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Preface

The field of agriculture is currently experiencing a significant change brought about by the

integration of cutting-edge technologies and tools from the fourth industrial revolution, leading to

the emergence of what is referred to as Agriculture 4.0. This Reprint is a compilation of articles that

highlight several noteworthy recent developments in this domain, such as innovative methods for

remote crop sensing and agricultural machinery, the creation of novel computer vision and deep

learning algorithms, and progress in aquaculture technologies. It also includes a comprehensive

assessment of the current state of Horticulture 4.0.

Dolores Parras-Burgos, José Miguel Molina Martı́nez, and Ginés Garcı́a-Mateos
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Abstract: The United Nations emphasized a significant agenda on reducing hunger and protein
malnutrition as well as micronutrient (vitamins and minerals) malnutrition, which is estimated to
affect the health of up to two billion people. The UN also recognized this need through Sustainable
Development Goals (SDG 2 and SDG 12) to end hunger and foster sustainable agriculture by enhanc-
ing the production and consumption of fruits and vegetables. Previous studies only stressed the
various issues in horticulture with regard to industries, but they did not emphasize the centrality
of Industry 4.0 technologies for confronting the diverse issues in horticulture, from production to
marketing in the context of sustainability. The current study addresses the significance and ap-
plication of Industry 4.0 technologies such as the Internet of Things, cloud computing, artificial
intelligence, blockchain, and big data for horticulture in enhancing traditional practices for disease
detection, irrigation management, fertilizer management, maturity identification, marketing, and
supply chain, soil fertility, and weather patterns at pre-harvest, harvest, and post-harvest. On the
basis of analysis, the article identifies challenges and suggests a few vital recommendations for future
work. In horticulture settings, robotics, drones with vision technology and AI for the detection of
pests, weeds, plant diseases, and malnutrition, and edge-computing portable devices that can be
developed with IoT and AI for predicting and estimating crop diseases are vital recommendations
suggested in the study.

Keywords: horticulture; micronutrient; Industry 4.0; SDGs; IoT; blockchain; real-time prediction;
AR; bigdata

1. Introduction

According to the Food and Agriculture Organization and World Health Organization
State of Food Security and Nutrition in the World (SOFI) report,45 million children die
from the deadliest form of malnutrition under the age of five [1]. A chronic deficiency of
essential nutrients in their nutrition has also resulted in delayed development and growth
in two billion children under the age of five. This indicates that there is a need to have more
emphasis on overcoming food insecurity and malnutrition due to climate extremes and
economic disruption. Even the SDGs (SDG 2 and SDG 12) of the UN emphasize eradicating
hunger and enhancing food security with responsible consumption and production toward
sustainability [2,3]. Healthy micronutrients for overcoming malnutrition can be achieved
with sustainable farming of fruits and vegetables, i.e., horticulture [4]. India is currently the
world’s second-largest producer of fruits and vegetables, trailing only China. Horticulture
comprises fruits, root and tuber crops, mushrooms, vegetables, spices, aromatic plants,

Appl. Sci. 2022, 12, 12557. https://doi.org/10.3390/app122412557 https://www.mdpi.com/journal/applsci
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flowers, bamboo, coconut, cashew, and cocoa. Different strategies such as technology
promotion, research, post-harvest management, and marketing are key for the growth of
horticulture. Improving horticulture production, increasing farmer income, improving
nutritional security, and improving productivity by using quality germplasm, planting
material, and micro irrigation to save water are the key vision of India for the promotion of
holistic horticulture growth.

Horticulture crops significantly contribute to the Indian economy by enhancing farm
output, generating employment, and providing raw materials to various food-processing
businesses [5]. The amount of land allotted for horticulture is minimal, but the demand
for the production of horticulture is high. Therefore, meeting the demand with minimum
resources is a bit challenging, as sustainable practices need to be adopted to meet a sus-
tainable environment [6]. It has also been observed that the export rate of Asian countries
such as India has increased in the past few years; however, there are a few challenges such
as meeting quality standards set by international countries and payment for exports. The
main challenge in fruits and vegetables is the short lifetime after plucking. Additionally,
given that the majority of horticulture cultivation is processed in rural areas, it has been
determined that horticulture has to be promoted in urban areas.

1.1. Problem Statement

Ref. [7] discussed the main problems that are present in horticulture, including the
decline of fertile soil, global warming, rising land prices, shortage of water, and lost
opportunity of low-cost labor, all of which portray serious threats to growth of horticulture.
For horticultural crops, abiotic stresses like an inundation, temperature extremes, salinity,
pH, and drought are major obstacles. As an outcome of global warming, there will be
less precipitation all in all, and the snow cover will melt faster, resulting in extreme
drought. These circumstances lead to several stress-related problems, including the deficit
of fertile soil, flooding, increased evapotranspiration, low soil-oxygen levels, decreased
production, leachate of nutrients, and slow planting. Alongside increasing temperatures,
global warming had also contributed to record-breaking cold weather. Land salinity and
irrigation-water salinity are also significant concerns for horticultural production. Along
with these problems, previous studies also discussed that sustainable pest-management
methods need to be adopted to protect against pathogens and pest resistance. The absence
of markets to accumulate production, the substantial percentage of middlemen, the absence
of marketing institutions safeguarding farmers’ interests, the imperfect pricing system, and
the absence of transparency in market-information systems, especially in the export market,
is the main marketing problems for horticultural produce.

1.2. Motivation, Novelty, and Contribution of the Study

As discussed above, the traditional approaches lack appropriate monitoring of pest
control, water management, soil management, light control, and temperature control, as
these parameters are crucial for the effective production of horticulture with a sustainability
aspect. The previous study found that the different issues in this group highlight the
necessity for more environmentally sound processes, in addition to a rise in the utilization
of automated systems and accurate processes. Industry 4.0 technology has proven its
capability in various applications through the fusion of advanced technologies such as the
Internet of Things, artificial intelligence, blockchain, robotics, digital twins, and big data.
The amalgamation of Industry 4.0 and horticulture provides the opportunity to transform
industrial agriculture into the next generation, namely Horticulture 4.0. Moreover, Industry
4.0 is capable of achieving sustainable and intelligent ecosystem with real-time manage-
ment of farming, automation, intelligent decisions, real-time processing, and analysis [8].
It has proved that Industry 4.0 technologies have already delivered exceptional results in
greenhouse farming for a sustainable food supply chain with the integration of hardware
and software algorithms and giving rise to higher yields using fewer resources and less wa-
ter. Although many studies have addressed Industry 4.0 technologies individually for fruits
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and vegetables, they are limited studies that merely address multiple Industry 4.0 digital
technologies as single concepts for discussing their significance in horticulture. Based on
the aforementioned information, this study analyzed the value and applications of Industry
4.0 technologies in horticulture for real-time monitoring of fruit-and-vegetable conditions in
various environmental settings, intelligent and predictive analytics for fruit-and-vegetable
growth and disease estimation, and virtual horticulture plants. The contribution of the
study is as follows:

• The significance of using Industry 4.0 technologies for horticulture is discussed in the
study for sustainability.

• We also discuss the significance and applications of the Internet of Things, cloud
computing, artificial intelligence, blockchain, and big data for horticulture for en-
hancing traditional practices for disease detection, irrigation management, fertilizer
management, maturity identification, marketing, and the supply chain, soil fertility,
and weather patterns at pre-harvest, harvest, and post-harvest

• Finally, the article discusses the challenges and suggests recommendations for the wide
adoption of any future enhancement in the vicinity of horticulture. In horticulture
settings, robotics, drones with vision technology and AI for the detection of pests,
weeds, plant diseases, and malnutrition, and edge-computing portable devices that
can be developed with IoT and AI for predicting and estimating the disease of crops
are vital recommendations suggested in the study.

1.3. Methodology of the Study

In this section, the methodology of the study is presented. Based on the limitations
identified in previous studies, this study framed a research question that was employed to
carry out the review. The research question was, “What is the progress and significance of
Industry 4.0 technology integration in horticulture?” This research question constructed
various keywords with Boolean function operators in the Scopus and Web of Science
databases. The following strings were considered for obtaining publications: “horticul-
ture AND Industry 4.0”, “horticulture AND sustainability”, “Industry 4.0 for fruits and
vegetables”, “Industry 4.0 AND digitalization”, “horticulture AND digitalization”, “horti-
culture AND IoT”, “IoT AND fruits and vegetables”, “disease detection AND horticulture
crop”, “blockchain AND horticulture”, “artificial intelligence AND horticulture”, “quality
assessment AND artificial intelligence”, “big data AND horticulture”, “blockchain AND
marketing of fruits and vegetables”, “blockchain AND energy”, “crop monitoring AND
horticulture”, and “soil fertility AND horticulture.” During the search for articles, there
was al ack of articles that merely emphasized the integration of Industry 4.0 for horticulture.
Therefore, we considered a few conference articles and other supportive articles in this
study. Based on the obtained articles, the study categorized four different sub-sections in
which the progress and significance of the previous studies that implemented Industry 4.0
for enhancing horticulture from production to marketing are assessed. After analyzing
the studies, few limitations were identified and vital recommendations for future work
were suggested.

1.4. Comparative Analysis

Table 1 provides a comparative analysis of the different studies that focused on hor-
ticulture that are analyzed within the proposed study. In most previous studies, it was
identified that the study only focused on some key areas in horticulture, like yield monitor-
ing, pesticide monitoring, and quality assessment. A recent study emphasized the different
issues in horticulture from the perspective of industries. Along with this, [9] reviewed the
different critical parameters that are required for automation with IoT for vertical gardens.
Ref. [10] carried out a review on the significance of deep-learning models in horticulture for
various applications. Ref. [11] discussed the implementation of digital twins in horticulture.
However, there is a possibility of emphasizing the importance of multiple Industry 4.0
technologies for addressing the different issues of horticulture from production to market-
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ing. The current study focused on discussing the different Industry 4.0 technologies for
overcoming the different issues of horticulture within the context of sustainability. This
study highlights the significance and application of Industry 4.0 for horticulture. Based on
the limitations identified, this study also discusses vital recommendations for future work.

Table 1. Comparative analysis of the previous studies with the current study.

Ref Objective Findings

[8]
The study carried out a review to analyze the critical

parameters that are significant for automation in
vertical gardens through IoT.

One of the study’s key findings is that the majority of
studies used 6–20 tiers (40%) when integrating VGs,

with lettuce representing the most dominant
crop (28.6%).

[9]
A brief overview of deep-learning approaches is

provided in which deep-learning technologies are
used in the horticultural domain.

Large datasets need to be built by collecting
real-condition imaging data of plants to create

robust models.

[10] The study carried out a review to provide insight into
the implementation of digital twins in horticulture.

There is a dominant focus on the cultivation process at
the greenhouse level, among others, for climate

control, energy management, and lighting.

[12] Yield monitoring of annual and perennial
crops of horticulture

The study contends that many commercial strategies
for mapping horticultural crop yield are necessary. It

was also discovered that integrating multiple
technologies can provide better and more

accurate results.

[13] To determine the pesticide-residue levels in widely
consumed fruits and vegetables throughout Kuwait

The results conclude that there is a high presence of
pesticides in fruits and vegetables.

[14]
The Delphi Technique was utilized to recognize the

most significant challenges facing the
horticulture industry.

A framework was proposed for assisting researchers
in identifying the key issues in horticulture within the

COVID-19 context.

[15]
A real-time monitoring system was constructed to

evaluate the quality losses that a perishable product
can suffer during transportation and storage.

Conceptual shelf-life was minimized while stored or
transported at an incorrect temperature.

The following describes how the study is structured: Section 2 discusses an overview of
Horticulture 4.0 and Industry 4.0 technologies, Section 3 addresses the intervention of Industry
4.0 technologies in horticulture, and Section 4 covers the discussion and recommendations.

2. Overview of Horticulture and Industry 4.0

High temperatures have two main effects on crop production: they inhibit vegetative
growth and have a detrimental effect on fruit production. Prolonged transpiration along
with subjection to extreme temperatures limits vegetable crops that are susceptible to
considerable transpiration deficits [16,17]. Another problem is that the maximum time for
the fruit set is proportional to humidity levels. Extremely high temperatures can occur.
The obvious limitation encountered by cold temperatures is the freezing of plant tissues.
Rapidly pushing freezing temperatures at a phase of rapid growth might cause damage
to a variety of plant tissues [18,19]. Some plants can adapt to cold temperatures provided
there is sufficient time and the appropriate circumstances, whereas others cannot. Changes
in regional precipitation patterns may cause an increase in drought conditions in many
different parts of the world as atmospheric CO2 levels to rise [20]. Although the current
belief is that leaf photosynthetic responds to high CO2 as well as soil-water deficiency, the
connections between CO2 enrichment and drought stress remain unexplored [21]. These are
the few problems that have been addressed by previous studies in the area of horticulture.
Below, we discuss the significance of Industry 4.0 technologies and their importance in
enhancing practices in horticulture. Industry 4.0, often known as the Fourth Industrial
Revolution, is the phenomenon that results from the impact of the IoT on information and
communication technology. With the help of technologies like the integration of cyber-
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physical systems (CPS), IoT, and the real-time interaction between machinery, software,
and people, it aims to revolutionize the industry through smart factories that will enable
greater flexibility in production needs, efficient resource allocation, and process integration
from device monitoring to final delivery [22].

Figure 1 depicts the technologies that can be intervened in horticulture, such as
artificial intelligence (AI), blockchain, big data, the Internet of things (IoT), and cloud
computing, in industry 4.0. Figure 1 illustrates the implementation and application area
in which Industry 4.0 can be adopted for horticulture. In horticulture, there are different
stages, including pre-harvesting, harvest, and post-harvest. Industry 4.0 technologies
cover the following parameters for horticulture: automation of actuators, disease detection,
irrigation management, fertilizer management, maturity identification, marketing and
supply chain, soil fertility, and weather patterns. Along with these applications, Industry
4.0 integration in horticulture enables quality assessment and grading of horticulture
products. The quality assessment of horticulture products is different in the three stages.
The following are aspects through which the quality and grading of a horticulture product
are decided, and they are typical cultivar ripeness, absence of defects and blemishes, a
non-harmful number of pesticide residues, freshness, and other chemicals. Therefore, the
quality assessment and grading of horticulture products mainly rely on the parameters
discussed above. The monitoring of each parameter and utilizing the data generated from
different wireless sources with Industry 4.0 technologies boost the performance of the
horticulture industry for the future.

Figure 1. Horticulture 4.0.

Overview of Technologies and TheirFunctions

IoT is the primary technology that enables the provision of real-time information that
is required for other technologies to implement their functions. IoT is an open network of
intelligent devices that may self-organize; exchange information, data, and resources; and
respond and act according to circumstances and environmental changes [22]. Fundamen-
tally, IoT comprises the following layers in its architecture: perception layer, access layer,
network layer, middleware layer, and application layer [23]. The perception layer is a key
layer in which sensors, actuators, and identification technologies empower the transmission
of real-time information and also enable control of things from remote locations through
internet connectivity. The network layer empowers the transmission of packets of data
with the assistance of communication protocols that are embedded in the architecture.
Wireless fidelity (Wi-Fi), Bluetooth, and Zigbee are widely used communication protocols
to establish a wireless sensor network and connect it with the internet to form the IoT [24].

The limitations of these communication protocols are the short transmission range and
high-power consumption. In view of the IoT, most IoT devices are resource-constrained
(work on battery power), so it demands communication protocols that consume less energy
and transmit to a long range. A low-power–wide-area network (LPWAN) enables these
challenges to be overcome, as it meets the requirements of the IoT [25]. Long-range (LoRa),
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Sigfox, and narrowband (NB-IoT) are LPWAN communication technologies. As part of
the application layer, a cloud server is suitable for visualization, real-time monitoring, and
applying further analytics on the data available in it.AI is the science of enabling computers
to accomplish intelligent tasks that could only be completed by humans.

AI is a multidisciplinary technology capable of combining machine learning, cognition,
human-computer interaction, emotion recognition, data storage, and decision-making [26].
The bottleneck of AI was overcome with the advancement of processing power, and the
development of deep learning and enhanced learning based on huge data progressed. With
the constant advancement of GPUs has come the successful development of customized
processors and increased computer capacity; this has established the groundwork for
AI’s rapid progress. Artificial neural networks (ANNs), decision-support systems (DSSs),
genetic algorithms (Gas), support-vector machines, and computer vision are some of the
AI techniques that are widely applied in the field of agriculture for the management of
soil, crops, disease, and weeds [27]. Big data is defined as data sets that are too massive
or complicated to be acquired, maintained, and processed in a low-latency manner by
conventional database systems [28]. Big data has characteristics such as high volume, high
velocity, and high variety. Big-data analytics can ultimately enable better and faster decision-
making, model, and forecast future outcomes, and improve business intelligence [29]. A
distributed, unchangeable database called blockchain makes it simpler to track assets and
record transactions in a corporate network [30]. Distributed ledger technology, immutable
records, and smart contracts are the key elements of blockchain. Each transaction is logged
as a “block” of data as it occurs. Each block is linked to the ones that come before and after
it. Transactions are linked in an irreversible chain

Horticulture is utilizing the IoT to collect data from field planting and horticultural
facilities for production, management, and service. Robots, drones, remote sensors, and
computer imagery are used in horticulture as part of the IoT to monitor crops, survey, and
map fields, as well as to provide data to farmers for logical farm-management strategies that
will reduce both time and cost [31]. AI is facilitating various sectors in agriculture to enhance
productiveness and performance and to overcome traditionally demanding situations in
each field. The intervention of AI in horticulture is helping farmers to improve their
farming efficiency and reduce hostile environmental impacts [32]. Blockchain horticulture
empowers information to be traced throughout the food supply chain to improve food
safety. The ability of blockchain to store and manage data creates traceability, which is
utilized to enhance the creation and deployment of innovations for intelligent farming
and index-based horticultural insurance. Improved quality control and food safety are
advantages of applying blockchain to gardening. Increased supply-chain traceability of
farmers’ productivity will lead to more equitable payments for farmers [33].

Farmers can learn in-depth information about topics like rainfall patterns, water
cycles, fertilizer requirements, and more thanks to large datasets. Companies can utilize
this information to choose which crops to produce and when to harvest them in order to
maximize their profits [34]. Data on horticulture are gathered, examined, and stored using
cloud computing. Farmers can better understand crop conditions by using cloud-connected
wireless sensors to collect data from the field and machine-learning algorithms to analyze
that real-time information [35]. Precision horticultural farming heavily relies on augmented
reality. Farmers can use augmented reality in horticulture to boost production, reduce crop
waste, and teach other farmers [36].

3. Intervention of Industry 4.0 in Horticulture

In this section, we discuss the various Industry 4.0 technologies in horticulture intend-
ing to transform into Horticulture 4.0.

3.1. IoT Intervention in Horticulture

The potential of pests and plant diseases is inseparably associated in particular with-
specific weather characteristics. Previous research concluded that humidity and rainfall
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have a significant impact on pathogen spread and propagation [37]. Pests and diseases are
more inclined to spread as a result of the wind. According to the information presented
above, pests and diseases are prevalent in crops, and monitoring of the related parameters
can be achieved with the IoT. An intelligent monitoring system was proposed on the basis
of the IoT with a global packet for radio service (GPRS) and Zigbee communication protocol
for pest warning, planting works, and production-quality checks of apples with the assis-
tance of soil sensors, meteorological sensors, and cameras [38]. The feasibility, yield, and
irrigation water-use efficiency of an IoT-based precision-irrigation system with LoRaWAN
technology on fresh-market tomato production was analyzed [39]. ET, Watermark 200SS-5
soil-metric potential sensors, MP40, and a decision-support system were used to design
and test four irrigation-scheduling treatments. A study was conducted with the integration
of a camera module, and the images collected were used to analyze the water-management
system as well as detect plant disease within a green environment [40].

Researchers established a technology platform using the IoT for environmental data
acquisition, disaster warning, transmission, remote control, and an information push in
vegetable greenhouses in real-time and lessen the influence of climate catastrophes on
vegetable development [41]. The data collected by an IoT board are expected to be utilized
to train machine-learning models for the development of intelligent automated indoor
microclimate horticulture crops [42]. A database contains the results of the sensor analysis
and it is also linked with data from the Indonesian Weather Agency, which contains daily
meteorological data from the cultivation location [43]. To ensure the proper operation of
the greenhouse automation system, multiple measuring stations are needed in a modern
greenhouse to identify the local climate parameters in various areas of a large-scale green-
house [44]. The IoT paradigm is allowing the scientific community to establish integrated
settings where data could be automatically transferred among many distinctive networks
to provide consumers with specific relevant information [45]. The security of the foods sup-
plied can be ensured by utilizing the provenance data that are kept throughout the supply
chain of vegetables, including during planting, harvesting, government oversight, testing,
transportation, customs clearance, warehousing, repackaging, and internal testing [46,47].

Every kind of pest and disease is believed to be harmful to plants and to have a serious
unfavorable effect on horticulture. To decrease the frequent use of pesticides and fungicides
and to anticipate when pests will arise, the IoT system was created [48]. Soft-computing
technologies are used to identify fruits by combining the three essential characteristics of
an object—color, shape, and texture. This method reduces the dimensions of the feature
vector. As a result, the combined and normalized image features produce better classifica-
tion accuracy with fewer training data [49]. Real-time supply-chain monitoring can give
stakeholders insight into perishable food to better manage to price and take appropriate
action to uphold quality requirements [50]. Farmers confront a variety of challenges when
growing vegetables, including issues with seeds, managing pests and diseases, commodity
costs, and product marketing. Farmers can use the internet and the concept of mobile cloud
computing to access information and engage in an interactive dialogue about vegetable
production through mobile learning [51]. A framework for papaya grading based on
the Artificial Bee Colony algorithm was proposed to classify papaya fruits from digital
photographs [52,53].

Figure 2 illustrates an architecture that was implemented by previous studies for
monitoring different parameters in horticulture. As discussed in Section 2, one of the key
components of the IoT is sensors. Sensors such as temperature, soil moisture, humidity,
light intensity, pH, NPK, and water level are crucial for obtaining important information
about the soil and environment. Along with these sensors, the camera module is used
to obtain data from the horticulture field. The sensors remain the same for the indoor
and outdoor environments of horticulture cultivation. Data on the soil and environment
are mapped to obtain better productivity by smart controlling of irrigation and fertilizer.
Based on the soil data, the crop-yield analysis is analyzed, and fertilizers can be used as
needed. All of these sensors send the soil and environment data to the computing unit,

7



Appl. Sci. 2022, 12, 12557

at which point the data-sensor processor communicates with the cloud server through a
wireless-communication protocol and gateway. In the cloud server, the data are visualized
on the graphical user interface.

Figure 2. IoT for horticulture.

3.2. AI in Horticulture

Fresh and wholesome food is essential for feeding the expanding world population,
and greenhouses and indoor agricultural techniques play a crucial role in this. In the past
two decades, hyperspectral imaging research has developed, and in the decades to come,
its use in horticulture is expected to grow. There are still challenges to the applicability. The
automated detection of pests and diseases in plants empowers the effective monitoring of
scalable fruit-and-vegetable crops. The detection of pests and diseases at the right time
enhances pest- and disease-management systems [54]. The previous study concluded
that AI algorithms can be implemented in horticulture for distinct applications, including
fruit detection, pest, disease detection, weed detection, plant-stress detection, and yield
prediction through the spectroscopy-and-camera system [55]. A study was implemented to
identify common pests and diseases in apple fruit using sparse coding. Computer-vision
techniques can identify pest- and disease-damaged fruits and provide data to assist in the
detection and treatment of diseases and pests in the early stages [56]. Soil-organic-carbon
(SOC) monitoring is a crucial characteristic of soil quality because it directly determines
soil fertility and enables sustainable soil-nutrient management [57]. To improve SOC
prediction, artificial neural networks (ANN), cubist regression, support-vector machines
(SVM), multiple linear regression (MLR), and random forests (RF) were applied to the data
of soil-nutrient indicators, total catchment area, and the topographic-wetness index.

Automatic detection of plant pests and diseases can aid in the monitoring of large
farms and gardens. The application of AI in the drying process of fruits and vegetables has
received a lot of attention because it can generate better-dried fruit-and-vegetable products
when combined with an efficient physical field [58,59].An IoT-based tool can determine
whether a climacteric fruit has been artificially ripened or not. To determine whether
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the fruit is ripened artificially or naturally, machine-learning algorithms are applied [60].
We discuss these techniques and discuss the significance of combining computer-vision
techniques with an autonomous robotic system that uses the deep-learning concept of
artificial intelligence [61]. In order to reduce food waste, one study used sensors and
analyzed gases produced by certain food products to detect rotten food at an early stage
and boost accuracy. To forecast how frequently food will degrade, the researchers used
machine learning, the IoT, and sensors. To assess the freshness of food, this study used ML
and IoT. The implementation of vision-based hardware in robots enables the realization of
intelligent spraying, crop-yield prediction and price forecasting, predictive insights, and
disease diagnosis (Figure 3). In addition, during the supply chain, the AI-based IoT system
enables the indoor environment conditions to be adjusted on the basis of external climatic
conditions and travel time to avoid the spoilage of fruit and vegetables.

Figure 3. AI in horticulture and farming.

Table 2 illustrates the different studies that implement AI for horticulture crops for
disease detection, quality assessment, and grading. The table provides the different algo-
rithms that have been implemented for feature selection, feature extraction, classification,
and regression for identifying defects, bruising quality assessment, and grading of the fruit.
Different studies have used different feature-selection and feature-extraction techniques
such as random frog, random forest, linear discriminant analysis-based fully convolutional
networks, competitive adaptive reweighted sampling–successive projection algorithms,
uninformative variable elimination, successive projection algorithm, gray histograms, and
gray-level co-occurrence matrices. Classification and regression techniques include least-
squares support-vector machines, support vector machines, convolutional neural networks,
logistic regression, random forest, multilayer perceptron, linear discriminant analysis,
k-nearest neighbors, and backpropagation in the neural network.

9



Appl. Sci. 2022, 12, 12557

Table 2. AI for horticulture crops.

Ref Function Feature Selection/Extraction Classification/Regression

[62] A classification model is created to
separate hard and soft blueberries. Random frog Least-squares support-vector machine,

active learning algorithms

[63] To accurately identify internal
bruising in blueberries

Random forest, linear discriminant
analysis-based fully

convolutional networks
Support-vector machine

[64] Detection of internal mechanical
damage of blueberry

Customized convolutional
neural networks

Convolutional neural networks, logistic
regression, random forest,

multilayer perceptron

[65] Accurate assessment of
bruising damage Relief

Linear discriminant analysis, random
forest, support vector machine,

k-nearest neighbors

[66] Assessment of strawberry ripeness
using hyperspectral imaging

Competitive adaptive reweighted
sampling–successive projection

algorithm, Uninformative variable
elimination, the successive

projection algorithm

Random forest, support vector
machine, partial least-squares

regression, support-vector regression,
random forest regression

[67] Detection and analysis of
decaying blueberries

Gray histogram, gray-level
co-occurrence matrix Backpropagation in neural network

Table 3 illustrates AI implementation in horticulture with accuracy and data-acquisition
parameters. The previous studies illustrate that AI has been implemented for multiple
applications such as quality assessment of fruit by evaluating moisture levels in the fruits.
Following these studies, AI was used to forecast the yield of fruits such as bananas and
blueberries. A few studies implemented AI for the detection and segmentation of ap-
ple fruits and branches in orchards through fused convolutional features, ResNet-101,
clustering-RCNN, and CNN. The accuracy of different classifiers is illustrated in the table,
and SVM, KNN, and DT achieved 100%. During the classification of tomato diseases, CNN
achieved 99.18% accuracy on the dataset formed from 14,828 images. In the detection of
citrus fruits, the CNN applied to the UAV images achieved 96.24% accuracy.

Table 3. AI implementation for horticulture with accuracy and data-acquisition sources.

Ref Objective Data Acquisition Source Algorithm Accuracy

[68] Quality assessment of fruits
through moisture content Non-invasive sensing SVM, KNN, and DT

100% for days 1 and 4 by three
classifiers with 80%

moisture content

[69] Forecasted banana-harvest
yields

Agrarian-reform beneficiary
(ARB) cooperative of Dapco in
Davao del Norte, Philippines

Long–short-term memory
Single and multiple LSTM layers

with 43.5% and
44.95% error rates.

[70]

A data-processing pipeline is
built to count blueberries, assess

maturity, and assess
compactness.

Four southern highbush
blueberry cultivars Mask R-CNN Detection: 90.6% and

segmentation: 90.4%

[71] Classification of the different
tomato diseases

The dataset contains
14,828 images of tomatoes leave

infected with nine diseases.
CNN 99.18%

[72]
An apple monitoring system

was developed with an
edge-detection network.

Spherical video camera and two
personal computers

Fused convolutional
features F1 score: 53.1% (FCF)

[73] Detection and segmentation of
apples in an orchard Vision sensor ResNet-101 F1 score: 0.832 for the detection

of apples

[74] Fruit detection in apple orchards Not mentioned Clustering-RCNN 0.853

[75] Detection of citrus fruits Unmanned aerial vehicle images CNN 96.24
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3.3. Blockchain

Blockchain is a distributed-ledger technology with the advantage of being tamper-
resistant to information. It is anticipated to be able to address the issue of resource allocation
for transactions among numerous unreliable parties in the supply chain for fresh fruit [76].
One potential method for supply-chain traceability in the pineapple industry is blockchain
technology. The fruit-chain protocol that was introduced has identical consistency and
liveliness qualities as assuming an honest majority of computer power [77] and is roughly
fair with an overwhelming probability. Although blockchain might be viewed as a viable
option for food-chain traceability, it was determined that [78] the goal of the investigation
was to learn more about blockchain technology and its potential applications in the retail
industry. Additionally, potential blockchain uses that might help the retail sector and the
wider industry are foreseen. The study also underlined the crucial role that blockchain
technology plays in the retail sector for fruit as well as the connections between these
aspects [79].

Figure 4 shows blockchain technology in horticulture. The blockchain enables a
distributed network to be established among the different entities in the supply chain for
real-time monitoring and tracking of the activities from any location that is immutable and
transparent. Blockchain empowers digital and secure trading to be created by incorporating
smart contracts between entities. In addition, blockchain enables the realization of secured
transactions of the export of fruits and vegetables in the international market. The quality
and standards of the fruits and vegetables that are set by international bodies can be
protected with secured hash cryptography.

Figure 4. Blockchain technology in horticulture.

Consumers are driving an entirely different transformation in food procurement as a
consequence of the growth in global food catastrophes that are triggering health insecurity.
Consumers have called for transparency, traceability, and attentiveness along the entire
fruit supply chain. The importance of the supply chain in this industry is increased by the
fact that the products are perishable and have a limited shelf life. Yields are impacted by
inconsistent delivery and a lack of fertilizers and insecticides as a result of dependence on
middlemen, market instability, and other factors. Increased costs for input and transporta-
tion, post-harvest losses, and problems with safety and quality dominating supply-chain
losses are key challenges involved in the fruit supply chain. Blockchain integration in the
fruit supply chain (Figure 5) allows for post-harvest and inventory management streamlin-
ing, increasing operational effectiveness and lowering losses. End-to-end traceability with
QR codes on the fruits presents the final customer with an honest and reliable narrative. A
fair price for the producers is ensured by the grouping and collaboration of all stakeholders
on a single platform, which fosters confidence and transparency. Real-time data collection
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allows for simple tracking and tracing, which helps with recall management. In addition
to this, blockchain is used for monitoring the pre-harvest process for yield and quality.
Post-harvest management for monitoring the crucial phases to prevent losses and boost
output, monitoring a set of procedures for confirming sustainable practices, and digital
records that cannot be altered and display accurate information are necessary to meet
legal requirements.

Figure 5. Applications of blockchain for Horticulture 4.0.

3.4. Big Data in Horticulture

A multi-sensor network system was established to accumulate smaller ecological
statistical data on vegetable-growing regions. Researchers were able to identify the critical
components pushing pest spread using multidimensional information such as environment,
soil, meteorology of vegetable fields, and ultimately the vegetable-pest warning system
premised on multidimensional big data [80]. The distinctive nutrition-based vegetable-
production and -distribution system utilizes the inventive big-data framework and its
multiple benefits to provide a healthful food recommendation to the end customer as well
as various predictive analyses to boost system efficacy [45]. The new ICT horticulture project
will heavily rely on big-data methodologies; therefore, it is important to understand how
to manage them and how they could affect everyday business [81] Big-data intervention
in horticulture is presented in Figure 6. Because fruits and vegetables are produced in
such large quantities, the sensor data that are available and can be used in horticulture are
now considered big data. The big data can be transmitted to the cloud server and made
available in a distribution box and control box through wireless-communication protocols.
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Figure 6. Big-data overview in horticulture.

4. Results

In this section, the results identified from the analysis of previous studies based on
Industry 4.0 integration for horticulture monitoring are discussed.

• The IoT is predominantly used in horticulture to monitor various pests and diseases
that are harmful to plants and have a serious negative impact on horticulture. The
Internet of Things system was configured to minimize the frequency with which
pesticides and fungicides are used and to predict when pests will appear. Along
with this, IoT and cloud computing are employed to identify fruits by combining
an object’s three essential characteristics—color, shape, and texture. Farmers face
a variety of challenges when growing vegetables, including seed issues, pest-and-
disease management, commodity costs, and product marketing. Farmers can access
information and engage in an interactive process about vegetable production through
the internet and the concept of the mobile cloud.

• AI in horticulture enables the detection of diseases, quality assessment, and grading of
horticulture crops. Linear discriminant analysis-based fully convolutional networks,
random forest, competitive adaptive reweighted sampling–successive projection al-
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gorithm, uninformative variable elimination, successive projection algorithm, and
gray-level co-occurrence matrix have been used for feature extraction and selection.
Least-squares support-vector machine, support-vector machine, convolutional neural
networks, logistic regression, random forest, multilayer perceptron, and k-nearest
neighbors are the key techniques used for classification and regression.

• Yields are impacted by inconsistent delivery and a lack of fertilizers and insecticides
as a result of dependence on middlemen, market instability, and other factors. In-
creased input and transportation costs, post-harvest losses, and safety and quality
issues dominate supply-chain losses. However, the incorporation of blockchain im-
proves pre-harvest and post-harvest management through real-time tracing and secure
transactions in the distributed network.

5. Discussion and Recommendation

In this section, based on the discussion of the analysis above, we discuss the recommen-
dations for applications in horticulture as part of future work. A few vital recommendations
are as follows:

• When considering long-term benefits like improved production and automation, the
use of the IoT in horticulture is strongly advised and very successful. The Internet
of Drones enables horticulture operations to be improved. The Internet of Drones
is an architecture intended to focus on providing UAVs, also commonly known as
drones, with coordinated connectivity to controlled airspace. Drones for horticulture
are used to monitor fields, plant crops, irrigate fields, spray pesticides, and also to
assess the health of plants [82,83]. Moreover, drones with vision-based technology and
AI empower the detection of weeds and identify the stages of the growth of plants
in pre-harvest, harvest, and post-harvest. Drones can be used to monitor the quality
assessment and grading of horticulture crops to minimize the damage and loss of the
product during transportation and storage.

• Robotics leverage AI technology to improve harvest quality and precision. In horticul-
ture settings, robotics with vision technology and AI for the detection of pests, plant
diseases, and malnutrition. Before choosing which herbicide to apply in a region, AI
can detect and target weeds through the visuals obtained from the camera module
inserted into robots. A wide range of issues in the farming sector can be resolved by
using an amalgamation of robots and AI approaches [84]. In addition to this, currently,
different robots with AI technology are used for weed removal and plucking, sorting,
and packaging of fruits [85].

• Globally, horticulture supply chains have an exciting opportunity to improve trans-
actional efficiency, reduce resistance, and promote traceability thanks to blockchain
technology [80]. Blockchain technology can help the horticulture and food industry
deal with and control known risks while maintaining affordability across the ecosys-
tem. Blockchain in horticulture enables the linking of various horticultural entities for
the visualization of data from production to supply on distributed-ledger networks.
Granular information on rainfall patterns, water cycles, fertilizer requirements, and
more are made available to farmers through big data. This enables them to make wise
decisions, such as which plants to sow for greater profitability and when to harvest.
Making the proper choices ultimately increase crop output. The fundamental goal of
precision horticulture is to guarantee profitability, efficacy, and sustainability [86].

• In horticulture, edge computing is employed for different activities. Edge computing
can be utilized to analyze the data at the edge of a network for better monitoring and
productivity. Mobile edge computing (MEC) is an architecture that provides cloud-
computing services at the edge of networks leveraging mobile base stations [87,88].
Currently, different study areas have implemented edge-computing-based portable de-
vices in order to predict what is useful for the user in enhancing their practices [89,90].
In the scenario of horticulture, an edge-computing-based portable device can be devel-
oped with IoT and AI for predicting and estimating disease in a crop. Based on the
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analysis and prediction, it can also communicate to the user on the cloud server and
the respective horticulture authorities to suggest a solution in real-time.

• Figure 7 illustrates a hybrid architecture that is implemented in horticulture with the
amalgamation of the IoT, cloud computing, AI/ML, blockchain, and big data. This ar-
chitecture enables a smart and intelligent ecosystem to be achieved in horticulture with
multiple features such as blockchain-assisted marketing, prediction of international
markets, and the quality of fruits and vegetables based on real-time environmental
data. The generated output and sensor data can then be distributed in the peer-to-peer
network of any location.

Figure 7. Hybrid architecture for Horticulture 4.0.

6. Conclusions

Horticulture is the field of cultivation of fruits and vegetables. It ensures production
and consumption by minimizing malnutrition in the current scenario addressed by United
Nations. Recently, Industry 4.0 technologies have delivered the ability of digitalization
and realize the SDGs set by the United Nations. The previous studies did not highlight the
significance and application of Industry 4.0 for distinct issues of horticulture. Based on this
limitation, the current study addressed the significance and application of Industry 4.0 tech-
nologies such as the Internet of Things, cloud computing, artificial intelligence, blockchain,
and big data for horticulture to enhance traditional practices of disease detection, irrigation
management, fertilizer management, maturity identification, marketing, and supply chain,
soil fertility, and weather patterns at pre-harvest, harvest, and post-harvest.

The findings of the study are as follows: in horticulture, the IoT is primarily used to
monitor various pests and diseases that are harmful to plants and have a serious negative
impact on horticulture. In addition, IoT and cloud computing is used to identify fruits
by combining three essential characteristics of an object: color, shape, and texture.AI in
horticulture has enabled the detection of diseases, quality assessment, and crop grading.
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For feature extraction and selection, we used fully convolutional networks, a random forest,
and a competitive adaptive reweighted sampling–successive projection algorithm based on
linear discriminant analysis. The key techniques used for classification and regression are
the least-squares support-vector machine, support-vector machine, convolutional neural
networks, logistic regression, multilayer perceptron, and k-nearest neighbors. Inconsistent
delivery and a lack of fertilizers and insecticides as an outcome of dependence on middle-
men, market instability, and other factors have a negative impact on yields. Increased input
and transportation costs, post-harvest losses, and safety and quality issues that dominate
supply-chain losses can be overcome with blockchain during-harvest and post-harvest
management. Finally, the study suggested vital recommendations for future works, such
as robotics; drones with vision technology and AI for the detection of pests, weeds, plant
diseases, and malnutrition; and edge computing portable devices developed with the IoT
and AI for predicting and estimating disease in crops.
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Abstract: A fourth agricultural revolution, termed agriculture 4.0, is gradually gaining ground
around the globe. It encompasses the application of smart technologies such as artificial intelligence,
biotechnology, the internet of things (IoT), big data, and robotics to improve agriculture and the
sustainability of food production. To date, narratives around agriculture 4.0 associated technologies
have generally focused on their application in the context of higher-income countries (HICs). In
contrast, in this perspective, we critically assess the place of sub-Saharan Africa (SSA) in this new
technology trajectory, a region that has received less attention with respect to the application of such
technologies. We examine the continent’s readiness based on a number of dimensions such as scale,
finance, technology leapfrogging, institutions and governance, education and skills. We critically
reviewed the challenges, opportunities, and prospects of adopting agriculture 4.0 technologies in
SSA, particularly with regards to how smallholder farmers in the region can be involved through a
robust strategy. We find that whilst potential exist for agriculture 4.0 adoption in SSA, there are gaps
in knowledge, skills, finance, and infrastructure to ensure successful adoption.

Keywords: agriculture 4.0; internet of things (IoT); precision agriculture; robotics; smallholders;
sub-Saharan Africa (SSA)

1. Introduction

Agricultural systems across the globe have evolved over the years. The literature
identifies a “first agricultural revolution” or “Agriculture 1.0” [1–4], that involved hunting,
gathering and settled farming; and a “second agricultural revolution”, or the British agricul-
tural revolution [5], in the 18th century, which saw an increase in agricultural production
due to improved land productivity from mechanised agriculture [3]. Agricultural systems
then evolved as a “third” Asian Green Revolution was introduced with a technology
package of hybrid seeds, irrigation, modern pest control and synthetic fertilisers [6] in the
1960s; and more recently to what is termed agriculture 4.0 [7,8], the “fourth agricultural
revolution”. Agriculture 4.0, a recent and potentially game-changing transition lacks a
universally accepted definition. However, it encompasses the adoption of high technology
(High-Tech) solutions such as the internet of things (IoT), biotechnology innovations, cloud
computing, precision agriculture, smart farming, drones, sensors, and robotics [9–13]. It is
also underpinned by the idea of sustainable intensification, covering concepts that are in
line with sustainable food production and better agricultural systems [14,15].

The Asian Green Revolution, which ended in 1990, has been credited with resolving
food crises, reducing poverty and offering potentially important lessons for sub-Saharan
African (SSA) countries [16]. Yet, the Asian Green Revolution has also proven to be
controversial. Criticisms include the inability of smallholder farmers to compete with larger
farms, which led to increased inequality amongst farmers; and an increase in fertiliser use
that led to eutrophication of streams and lakes [17–19].

Appl. Sci. 2021, 11, 5750. https://doi.org/10.3390/app11125750 https://www.mdpi.com/journal/applsci
21



Appl. Sci. 2021, 11, 5750

Taking a cue from the Asian Green Revolution, African agriculture policymakers,
with the support of donors like the Bill and Melinda Gates Foundation, the Rockefeller
Foundation, UK Aid, the United States Agency for International Development (USAID)
and the Mastercard Foundation, proposed an African Green Revolution where improved
seeds and fertilisers were to drive this process [20,21]. This led to the creation of the
Alliance for a Green Revolution in Africa (AGRA) in 2006 [22]. The broad goals of AGRA
were to provide African smallholder farmers with high-yielding agricultural practices
that would allow them to double their yields [18]. Yet to date the evidence suggests that
this, albeit ambitious, target has not been achieved. Critics variously suggest that AGRA
did not achieve its goals due to the lack of consultations with farmers; the imposition of
Western-type technologies not appropriate for SSA’s farming systems; high input costs that
were not offset by sufficiently high yields; and a focus on chemical-intensive monoculture
cropping that leads to loss of crop and diet diversity [22].

This article assesses the challenges and prospects for agriculture 4.0 adoption in SSA.
Most of the literature addressing agriculture 4.0 takes a higher-income country (HIC)
viewpoint. To the best of our knowledge, few works exist on this topic from an SSA
perspective, and only some of the technologies associated with agriculture 4.0 that have
been introduced in higher-income countries appear to be being implemented in SSA [12].
In Section 2 we consider the potential of agriculture 4.0 technologies in SSA, by focusing
on characteristics of the region, and of the technologies. We explore SSA’s readiness for,
and ability to embrace, agriculture 4.0, focusing on the challenges and opportunities for
SSA’s farmers to tap into the agriculture 4.0 revolution. In Section 3, we explore how SSA
can leverage the opportunities for adopting agriculture 4.0. Finally, Section 4 concludes, by
reflecting on the implication of SSA losing out in the new wave of an agricultural revolution.

2. Prospects and Challenges for Agriculture 4.0 Adoption in Sub-Saharan Africa

Agriculture in SSA is mostly rainfed, and in many countries is dominated by small-
holder farmers who tend to have low levels of irrigation [23], and face biophysical and
institutional challenges on top of the recent neglect of the sector [24]. These challenges
include lack of insurance [25] and inefficient credit markets [26,27]; degraded soils, biodi-
versity loss [28]; and climate change [29–31]. Together these challenges exacerbate efforts
to reduce food insecurity [7,32].

Different strategies have been employed by smallholder farmers across SSA to tackle
these various challenges. For example, sustainable intensification of agriculture using new
technologies has been highlighted in the literature as essential for producing additional
food without reducing biodiversity and other ecosystem services [11,33]. In some African
countries, this has included the promotion and adoption of integrated pest management,
conservation agriculture, agroforestry, and system improvements [34,35]. Conservation
agriculture (CA) which involves minimum tillage, diversified crop rotations and soil
surface cover has been widely practiced in southern parts of Africa [36–38]. This broad
suite of technologies and practices has economic (such as reduced labour requirements),
agronomic (such as improved water conservation), and environmental (such as reduced
soil erosion) benefits. These practices also reduce soil degradation and improve climate
change management through carbon sequestration.

To address a lack of irrigation in arid and semi-arid areas, in the western Sudano-
Sahelian zones, rainwater harvesting techniques such as Zai (planting pits) are utilised
in Burkina Faso [39]; in northern Nigeria, integrated crop-livestock systems in a circular
economy act as insurance against failure of one system and at the same time, improve
the water holding capacity of soils for efficient food production [40,41]. In eastern Africa,
genetically modified (GM) water-efficient maize seed has been promoted among small-
holder farmers by the International Maize and Wheat Improvement Centre (CIMMYT) in
partnership with Monsanto PLC to adapt to rainfall variability [42]. Finally, farmers in SSA
do increasingly have access to rural micro, small and medium-sized enterprises (MSMEs)
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that seek to provide financing [26], better credit, and weather-indexed-based insurance
against climate variability [25].

In the rest of this section, we explore the extent to which agriculture 4.0 technologies
can complement, replace or improve upon these and other strategies that focus on sus-
tainable increases in agricultural production; the scarcity of natural resources; adapting to
climate change; and avoiding food waste [4,14]. We first consider scale, in particular, the
reality that many farmers in SSA are smallholders, many intercrop, and within-field crop
diversity is common, which may hinder the broad adoption of agriculture 4.0 technolo-
gies [43]. Second, we focus on finance, the reality that agriculture 4.0 technologies tend to
be financially intensive [19], and the historically poor access to capital that smallholder
farmers in SSA have faced. Our third area of exploration is the extent to which African
countries have the digital infrastructure in place. Fourth, we address the institutions, gov-
ernance, and ethics surrounding agricultural technology adoption; and finally, we explore
the extent to which Africa’s farmers have the education and skills needed to embrace
agriculture 4.0.

2.1. Scale

Smallholders continue to dominate agriculture in SSA, with 80% of agricultural output
produced by farmers with landholdings less than 2 hectares on average, [27]. Some scholars
have suggested that improvements in agricultural productivity in SSA, just like in the
case of the Asian Green Revolution, are likely to be driven by smallholders who currently
control most of the landholdings [44]. Others have argued that relying on the conventional
smallholder model of agriculture is inefficient because African smallholder productivity
is very low, e.g., [20,45]. Either way, understanding the scale at which agriculture 4.0
technologies are likely to operate is particularly important for SSA; and the reality is that, at
least in the short to medium term, smallholder farmers will remain important in the sector.

Agriculture 4.0 has often been associated with large-scale farming [13,46]. For example,
unmanned aerial vehicles (UAVs) are increasingly being used for fertilisers and chemical
spraying. UAVs, in combination with smartphone platforms to provide remote sensing
data, also use global positioning systems (GPS) for digital soil mapping [10,11,14,15] for
various environmental and agricultural development purposes [47]. However, uptake of
this technology was reported in a South African study to be low [47].

Modalities already exist in SSA where smallholder farmers could rent these or similar
services or jointly source such “lumpy” technologies, thereby overcoming any “scale”
constraint. For example, in recent years, SSA countries have seen elements of the ‘fourth
agricultural revolution’ technology such as the mobile application for tractor hiring be-
ing promoted by international organisations including the International Crops Research
Institute for the Semi-Arid Tropics (ICRISAT) and the private sector [12]. One specific
example is a blockchain-enabled application that links tractor providers and smallholder
farmers to promote agricultural mechanisation [48]. This application, called Hello Tractor,
is a software that provides a platform for renting tractors for land cultivation from owners
by smallholders. More broadly, ICRISAT’s innovation Hub (iHub) has been developed to
support activities along the crop production value chains from seed certification, product
manufacturing and retail [49], many of which are scale neutral and as such could be of
direct benefit to smallholder farmers in SSA.

Agriculture 4.0 technologies could have an important role in African countries where
fertiliser use has long been low [50], despite many initiatives to increase its use. For example,
in June 2006, the African Union (AU) member states’ Ministers of agriculture, at a summit
in Abuja, Nigeria, resolved to increase the level of fertiliser use from 8 to 50 kg per hectare
on average by the year 2015. This was despite a lack of scientific evidence to support
the value of such an arbitrary increase [51], prompting concerns that the move would
likely be counterproductive, leading to an increased cost of production. Agriculture 4.0
technologies such as soil mapping for soil analysis could offer more sustainable alternatives
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by identifying areas of nutrient deficiencies to inform precision fertiliser application that is
cost-efficient and environmentally sound [14].

Remote sensing data has long been used in agriculture, whether to simply map
cropland, or to determine biomass, yields, and crop stress [52]. Further, it is becoming more
affordable, in part due to the availability of free high-resolution satellite imagery. Digital
soil mapping has the potential to identify the location of high-value agricultural land by
providing detailed information on soils and is already being used in SSA [47]. However,
the scale and heterogeneity of Africa’s agricultural landscapes are likely to continue to
pose challenges, particularly for smallholder farmers [43]. For example, Lowder, Skoet [27]
highlight, in particular, the difficulty of using satellite data to determine crop yields in
smaller farms.

The livestock sector has experienced its own “revolution”, which has paralleled what
has been referred to as “Industry 2.0”, the mass production of goods to increase productiv-
ity [3]. Particularly in higher-income countries, livestock farming has shifted away from
home-based animal husbandry towards intensive, often large-scale, farming [3]. Agricul-
ture 4.0 technologies can be found in, for example, livestock monitoring and biosensing,
which can be used to detect and identify infectious diseases, drug residues, and ovulation
prediction [53]. Many of these technologies are linked to intelligent animal health monitor-
ing systems, in which animals may wear the technology [3]. Agriculture 4.0 approaches
have also been linked to ecologically friendly efficient farming approaches, that could
include monitoring emissions from livestock [54].

In many SSA countries, the scale and intensity of the livestock sector differ consider-
ably from the large-scale farming found in HICs. However, although in some higher-income
countries per capita consumption of meat is plateauing or even falling, in SSA and other
low- and middle-income countries (LMIC), consumption continues to increase, with pork,
beef, and chicken being the most consumed meats [54], and with this increase in consump-
tion comes increases in GHG emissions. This suggests that in the future, agriculture 4.0
technologies relevant to livestock will be increasingly important for SSA.

2.2. Finance and Capital for Investment, Research and Development

Financial constraints and poor literacy are likely to affect the uptake of agriculture
4.0 technologies. Much of SSA’s low-income rural population works in highly uncertain
environments, with little access to capital, input and output markets, or crop insurance.
These realities limit the ability of smallholder farmers to invest in “modern” technologies,
especially those requiring upfront high-cost investments [55]. In addition, investment
in agricultural research and development (R&D) as a percent of agricultural gross do-
mestic product (GDP) in SSA is relatively low at 0.38% (2001–2013 average) and falling,
and considerably lower than other regions in the world when measured per hectare of
cropland or per agricultural labourer [7]. Importantly for agriculture 4.0, a digital in-
frastructure funding gap of about one billion euros exists in SSA [25]. This suggests a
high degree of underfunding of agricultural research in Africa [24] with implications for
technology adoption.

Efforts by African governments to increase investments in agriculture are yet to reach
targeted goals. For instance, the African governments launched the Comprehensive African
Agricultural Development Program (CAADP) in 2006 that commits them to spend at least
10% of their total budget on agriculture by 2025. As of 2014, only Malawi, Zimbabwe and
Mozambique had met or surpassed this target, with Zambia, Rwanda and Niger close to
reaching the target [24]. And in 2017, only 20 out of the 47 reporting African Union (AU)
countries remained on track to meet the 2025 commitments [25].

Agriculture 4.0 technologies are generally perceived to be financially intensive [11],
thereby making their deployment likely to be difficult for Africa’s smallholder farmers.
For example, “next-generation” nanosensor technology is being used to increase sustain-
able food production and better agricultural system in the United States of America and
Australia [56,57]. A fast speed method has recently been shown to increase chloroplast

24



Appl. Sci. 2021, 11, 5750

transformation in vitro with the potential of improving crop yields for crops such as
arugula, watercress, spinach and tobacco [56]. These same technologies are being used for
plant phenotyping and disease monitoring in the field [58]. Yet their cost of deployment
makes them currently almost certainly inaccessible to African smallholder farmers.

A study on the perception of Brazilian farmers regarding the adoption of agriculture
4.0 technologies such as precision agriculture integrated with data from remote sensors on
smartphones found that the cost of the machines, software, equipment and connectivity
was a constraint to adoption [59]. More generally, capital availability has also been found
to be a pre-requisite to the adoption of conservation agriculture technologies, especially
where new equipment is needed [60].

Financial and agricultural advisory services technology start-ups such as Esoko in
Ghana, Farmcrowdy in Nigeria, and EcoFarmer in Zimbabwe, which offer farmer advice
on input use, credit and weather-indexed insurance, have received considerable attention
in SSA [25]. For example, tech start-ups in these areas received investments of about
335 million Euros in 2018 [25]. These investments will create employment opportunities
and increase uptake of the digital technologies [25]. This also suggests that financing
agriculture 4.0 technologies, whilst still a constraint, may be less so in the future.

2.3. Leapfrog Technology Opportunities and Digital Infrastructure Availability

The reality for many African countries has been poorly developed physical infras-
tructure, including a low density of fixed telephone landlines and physical bank branches.
This might historically have constrained economic development. However, increasingly
African countries have proven able to leapfrog these technologies. That is, rather than
follow what might be considered traditional technology adoption pathways, taken earlier
by HICs, African countries may be able to skip an intermediate technology stage.

Examples of this technology leapfrogging that have already occurred that have partic-
ularly benefitted smallholder farmers relate to telecoms and banking [61]. For example,
many African countries have rapidly transitioned from having a very low penetration of
fixed landlines and traditional bricks and mortar banking infrastructure to a relatively high
proportion of households with access to mobile telephony and mobile banking. New and
modern information and communication technologies (ICTs) have played critical roles
in bridging key agricultural extension and development infrastructure gaps. The mobile
money transfer service application, M-Pesa, was pioneered in Kenya by Vodafone and
expanded into other SSA countries such as Tanzania and South Africa [62]. M-Pesa is trans-
forming agriculture in SSA, in part by providing mobile payment systems to farmers that
have enabled many to boost crop production and move out of subsistence agriculture [63].
Other agriculture 4.0 mobile-technology-supported financial and agricultural technologies
such as M-Farm and Esoko have been widely adopted in SSA countries such as Kenya and
Ghana respectively [62]. Esoko provides farmers with daily market prices for many key
agricultural crops, using Short Message Services (SMS) sent to farmers’ mobile phones, in
addition to information on weather, market situation and farming tips [64,65].

Many agriculture 4.0 technologies rely on the fourth generation (4G) of broadband
cellular network technology, cloud computing, and big data analytics. Around 60% of
SSA smallholder farmers have access to mobile connection with an increasing network of
4G connections and Data Centres being developed in SSA [25], suggesting that Africa’s
farmers are, in this respect, relatively well placed to take advantage of mobile phone-driven
agriculture 4.0 technologies, that could also leverage the breakthroughs already recorded in
ICTs’ adoption in SSA and leapfrog the conventional technologies in agricultural advisory
and financial services provision for the underserved [25].

2.4. Institutions, Governance, and Ethics

Agriculture 4.0 will almost certainly change the way of work for farmers and the cul-
ture around traditional ways of farming [15], whether in higher or lower-income countries.
Some scholars are already asking whether agriculture 4.0 is the way forward for society
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in general, expressing concern that the social and ethical implications of adopting such
technologies have not received adequate consideration in the design and implementation
processes [6,13].

These concerns are likely to be just as relevant for African smallholder farmers as
for those in higher-income countries, and indeed concerns over institutions, governance
and the ethical implications of new technologies are nothing new. There have long been
concerns over the ethics of hybrid seeds, and plant breeders’ rights, e.g., [66]. Efforts
to increase mechanisation in African farming have in the past been hampered by rent-
seeking through elite capture and the lack of access to spare parts [67]. And sustainable
intensification of agricultural systems across African countries has been hampered by weak
institutions, whether due to poorly functioning markets or property rights over land [68].

2.5. Education and Skills

Younger and more educated farmers have been found to be more likely to adopt
agriculture 4.0 technologies [69], and more broadly farmers are likely to need ICT skills and
capabilities to fully embrace agriculture 4.0 [70]. Yet farmers in SSA are less literate than
those in HICs; farm workers less literate than non-farm workers [7,71], and many farmers
lack the skills to operate sophisticated technologies and to collect and manage the high
volume of data used to improve decision-making [72]. This suggests that lack of education
and skills in data management as a barrier to agriculture 4.0 adoption is likely to be an
issue in some African countries. The gap in the quality of education and the need for more
training in Africa have previously been highlighted in several African Union Commission
Policy frameworks, see [72–74].

3. Going Forward: Opportunities for SSA to Tap into the Agriculture 4.0 Revolution

3.1. Reasons for Optimism

The surge in food demand in SSA due to the rise in population and the demand for
more nutritious food by an increasing number of middle-income families is leading to
greater opportunities for smallholder farmers in SSA to improve their production and
incomes through the diversification and enhancement of their production systems using
agriculture 4.0 technologies [12]. More broadly, agriculture 4.0 technologies have the
potential to increase job creation, improve the revenues of farmers, and increase self-
sufficiency and food exports [75]. However, if this fourth revolution bypasses Africa’s
farmers, African countries are likely to increasingly deplete their available natural habitats
or rely on food imports, to the detriment of valuable biodiversity, long-term food security
status, rural livelihoods, and poverty reduction.

Smallholder farmers in SSA tend to operate on small patches of land, making use of
family labour or ‘community work parties’ to cultivate their lands, with little access to
credit or insurance, and with high uncertainty of weather around agro-climatic conditions,
prices, and access to markets. Despite these challenges, there seems to be considerable
scope for the adoption of agriculture 4.0 technologies in SSA. Already the continent has
demonstrated leadership with regards to mobile banking and the use of mobile telephony
for increasing market efficiency; and access to 4G networks is relatively good and growing.
Also, funding for tech start-ups has received boosts recently from foreign investors and
multinational organisations to bridge the funding gaps. Extension information is currently
accessible to an increasing number of farmers through mobile applications [25]. However,
more training to harness the benefits of ICT education is needed to consolidate these
gains [72].

One overarching constraint for Africa’s farmers is that many must deal with the
multiple constraints of scale, finance, and poorly functioning institutions. Innovative
approaches that deal with multiple constraints include the Hello Tractor application that
addresses scale and lumpy investments associated with mechanisation, access to credit
and rental markets for machinery, and takes advantage of mobile supported technologies.
Similarly, African farmers are benefiting from access to soil mapping, aerial chemical and
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fertiliser applications, that combine large and small-scale technology, and that increase the
productivity and income of smallholder farmers. Yet overall technology adoption is still
very limited across the continent, for example, the use of tractors remains low, leading to
poor productivity and low yields [7]. As such, it is imperative to consider the potential of
site-specific technology adoption to fill the low yield gap experienced in SSA [44].

Agriculture 4.0 suites of technologies may find application in an SSA context when
smallholder farmers organise themselves into clusters. Clustering can promote interaction
with stakeholders along agricultural value chains and has been shown to enhance the
adoption of technology [76]. Clustering can also ensure that technology companies can be
profitable when they deploy the agriculture 4.0 technologies for the benefit of smallholder
farmers due to the advantage of scale, compared to dealing with individual farmers
working on less than a hectare on average [25]. Such clusters are also likely to enhance
access to more profitable markets by farmers, thereby increasing farmers’ bargaining power
to secure the best deals for their clusters.

There is evidence that SSA as a whole is already embracing agriculture 4.0-associated
technology systems as part of the new wave of the fourth industrial revolution [61] and
this offers the continent an opportunity to advance in diverse areas such as climate in-
surance services provision, agritech-financing, agricultural advisory services provision
and farmer-supply chain linkages using blockchain technologies [25,77]. The positive
impacts anticipated of this agriculture 4.0 technology adoption include yield increases and
a reduction of carbon footprint in line with the Sustainable Development Goals (SDGs), low
cost of attracting and maintaining farmers in the supply chain, and price transparency [25].

Adoption of technologies promoted by agriculture 4.0 that lead to improvements in
the environment may be particularly relevant for smallholders. For example, adopting agri-
culture 4.0 technologies for precision agriculture is likely to lead to fertilisers and pesticides
being applied in the required doses and concentration, informed by data on the soil condi-
tion and nutrient requirements for each crop linked to the weather forecast for rainfall [12].
It is estimated that about 60% of conventional fertilisers are lost to the environment on
application, leading to pollution [14], particularly of water bodies. These agriculture 4.0
technologies, therefore, enable farmers to both reduce their input costs and improve their
environmental sustainability. The use of nanofertilisers, an example of nanotechnology
precision agriculture, in which nutrients are released slowly resulting in exact dosages [14],
also has the potential to improve farm economic and environmental sustainability.

In urban areas, many agriculture 4.0 technologies are associated with the automation
of agricultural operations using high-tech solutions [12] supported by well-developed ICT
infrastructure, for instance, the rise in wireless communication technologies that use low
power wide area network (LPWAN) such as Sigfox, LoRa and NB-IoT [78]. This is not the
case in rural areas where smallholders tend to be located [79]. Nevertheless, platform-based
ICT and mobile technologies are most suited to the smallholder context and are likely to
support SSA with regard to food security and agricultural sustainability [25].

3.2. Reasons for Caution

Despite the potential for optimism with regards to agriculture 4.0 in Africa, there are
reasons to remain cautious. First, the future of agriculture, as it has been in the past, will be
driven by technology and innovation, though increasingly in the context of climate change.
Yet despite the challenges affecting SSA’s food production and security, the continent’s
readiness to take advantage of this technology revolution is still in doubt. In many African
countries, current levels of investment in critical infrastructure are far below the threshold
required for the continent to benefit from the high tech revolution [61]. For example,
in the spread of mobile phones for agricultural advisory and banking services, much of
SSA could miss out again on another agricultural revolution if the required conditions
for adoption such as technology skills are not in place. Moreover, as pressure on the
natural environment increases there will similarly be an increasing need for agricultural
advances and innovations to be underpinned by good agricultural practices. Agriculture
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4.0 technologies uptake, when done well, should be capable of promoting data-driven
agriculture for economically and environmentally sustainable farming. However, these
technologies do not exist in a vacuum, and the extent to which agriculture 4.0 does indeed
align with sustainable development depends on the broader institutional environment
within which relevant technologies are introduced, how they are introduced and taken up.

Second, though the expectation is that agriculture 4.0 technologies will improve
agriculture and food security in an efficient and sustainable way, it is possible that these
new technologies and ways of working could alter agricultural systems for the worse [80].
For example, increased technology adoption could lead to a disregard of experiential
knowledge and disconnect the farmer from the landscape [15], something of potentially
particular relevance for SSA agriculture.

Third, several studies focusing on technology adoption have found that despite the
significance of technology in improving productivity, unwillingness on the part of farmers
to adopt could be a constraint to adoption [7,31]. This could be due to poor awareness,
lack of insurance to manage the risks involved in up taking a new idea or lack of skills
and knowledge about the appropriateness of technology, as reported by a study conducted
in Brazil [59]. Lack of acceptance of technology has also been reported as a barrier to
the adoption of agriculture 4.0 technologies in a HIC context [11]. In Nigeria, despite the
benefits of agricultural biotechnology advancement in food and non-food production from
genetically modified organisms (GMOs) such as pest control and early maturation, the
technology has not been accepted due to health, legal and ethical concerns [81].

Fourth, the benefits of this revolution in technology are not likely to be evenly spread
across the globe, and it remains uncertain as to with whom and where the benefits will
reside [11]. Further, without a clear understanding of how agriculture 4.0 will affect
societies, particularly in lower-income countries, these new technologies have the potential
to create more problems than they solve due to ethical concerns linked to the deployment
of such technology. As such, there is a need for policymakers and technology companies
to work together with farmers and communities more broadly in SSA to ensure that the
benefits of this suite of technologies are not only optimised for productivity and efficiency
but that both environmental and social impacts are addressed explicitly.

4. Conclusions

This perspective provides one of the first assessments of agriculture 4.0 that focuses
specifically on sub-Saharan Africa. It highlights the key challenges that the continent faces;
the extent to which the region is, or is not, ready to embrace this technology revolution and
the risks of missing out. It also emphasises the importance of understanding the benefits
and potential costs of agriculture 4.0 technologies in the African context; the relationship
with the existing diverse agricultural development pathways that focus on sustainable
food and agricultural systems [13].

There is an alternative drive to promote agroecology principles that encompass both so-
cial and natural sciences that underscore systems philosophy and ecological thinking [13,82].
This is based on the evidence that agroecology practices increase yields in a sustainable
and affordable way [22,51]. Whilst agroecology principles have shown great promise for
sustainable yield improvement, this approach is likely to be insufficient to meet the food
need of the growing SSA population. Therefore it is imperative to identify and adopt
suitable technologies that are context-specific and in line with current realities [83].
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Abstract: To obtain good productive performance, sows have different nutrition requirements at
different gestation periods. However, in gestation stalls, conventional feeders have large relative
errors, management is difficult because of the large numbers of sows, and there are shortcomings
in feeding precision and data management. In order to achieve precision feeding and enhance the
control of multiple feeders for gestating sows housed in stalls, this study was carried out to investigate
a precision feeding system that could be controlled at multiple levels. This system consisted of an
electronic sow feeder (ESF), controller area network (CAN), personal digital assistant (PDA), central
controller, and Internet of Things platform (IoTP). The results of the experiment showed that relative
errors of 60 ESFs delivering feed were within ±2.94%, and the coefficient of variation was less than
1.84%. When the received signal strength indicator (RSSI) ranged from −80 dbm to −70 dbm, the
packet loss rate of the PDA was 3.425%. When the RSSI was greater than −70 dbm, no packet loss
was observed, and the average response time was 556.05 ms. The IoTP was at the performance
bottleneck when the number of concurrent threads was greater than 1700. These experimental results
indicated that the system was not only highly accurate in delivering feed, but was also highly reliable
in the transmission of information, and therefore met the production requirements of an intensive
gestation house.

Keywords: gestating sow; precision feeding; CAN; PDA; IoT platform

1. Introduction

Globally, there is an increasing demand for animal products (e.g., meat, dairy products,
eggs, wool, leather, etc.) [1–4]. African swine fever [5] and excessive population growth [6,7]
have brought new challenges, requiring pig husbandry to further develop in the direction
of intensification, specialization, and refinement [8,9].

Feed costs account for a major proportion of the total cost of raising pigs [10]. Reduc-
ing feed waste helps to mitigate the world food crisis, as well as reduce the costs of pork
production [11,12]. The appropriate feeding allowance should be determined at various
gestation stages [13,14], as inadequate or excessive feeding can compromise the reproduc-
tive performance of sows [15]. The gestation period of sows is typically categorized into
three stages. During early gestation, there is no clear benefit observed from increased
feeding [16], and excessive nutrient intake may lead to higher embryo mortality and lower
litter sizes [17]. In mid-gestation, gilts are still growing and developing, and sows need to
recover body reserves lost from the previous breeding cycle [18]. Late gestation is a period
for improving the birth weight of piglets [19,20]. Increasing the energy intake of sows has a
positive effect on individual piglets, but may also elevate the stillborn rate [21].

The implementation of precision feeding has a positive impact on the sustainability of
pig husbandry [22,23]. Compared with conventional feeding, precision feeding decreases
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the intake of lysine and protein and reduces feed costs without adversely affecting growth
and reproductive performance [24–26]. Additionally, in terms of environmental protection,
precision feeding reduces nitrogen and phosphorus excretion [27,28]. Buis et al. [29]
observed that gilts subject to precision feeding ate more and lost less weight during
subsequent lactation. Quiniou [30] found that precision feeding decreased the risk of
sows being too fat or too thin, thereby decreasing the risk of impaired farrowing or milk
production, and also that there was less variability in backfat thickness when sows farrowed
in the same batch. Iida et al. [31] showed that the risk of fetal displacement in sows could
be identified early by measuring feed intake and time spent at an ESF.

The integrated application of automation and Internet of Things (IoT) technologies in
pig husbandry can contribute to more accurate data records [32,33] which in turn reduce the
burden on practitioners, lower the cost of farming, and raise productivity. The IoT connects
physical objects and spaces into a local area network or internet and enables efficient
monitoring and management by integrating data objects [34–36]. Zeng et al. devised a
three-layer wireless sensor network system based on ZigBee to monitor four environmental
parameters (temperature, relative humidity, and concentrations of carbon dioxide and
ammonia) in commercial gestation units; real-time monitoring of the microclimate and
timely intervention were achieved by analyzing the temporal and spatial characteristics of
the pigsty [37]. Lee et al. developed a monitoring system using wireless broadband leaky
coaxial cable to collect data from Bluetooth Low-energy (BLE) tags attached to individual
pigs. These data were used to compute and estimate the position and movement of each
pig [38].

Group housing and conventional stall housing have their own advantages and dis-
advantages [39,40]; however, because of different degrees of development and economic
factors, stalls are still heavily used outside Europe. As part of the transition of intensive pig
farms towards automation and informatization, the development of a precision feeding
system suitable for stall housing represents a significant step forward. Liu and Xiong et al.
designed an electronic feeder for the precision feeding of sows housed in stalls [41,42].
However, there is a scarcity of research examining the shortcomings and defects of precision
feeding systems within a real intensive pig farm. We identified these following challenges:
(1) it is inconvenient for breeders to adjust the parameters of the ESF, because they have
to raise their heads or stand on tiptoe to click buttons attached to ESFs; (2) close contact
between breeders, sows, or feed should be avoided to prevent African swine fever; (3) pig
farms are usually built in the suburbs with poor wireless network signals, resulting in the
frequent disconnection of communication between the ESF and the internet; and (4) the
unified management of the ESF is completely reliant on the internet, which is prone to data
loss, leading to production errors.

In order to overcome the abovementioned difficulties, we devised a precision feeding
system suitable for gestation units using stalls which combined automation, CAN, PDA,
central controller, and IoT technologies. In this system, the average performance of 60 lines,
and potential correlation between the feeding performance and the location of the feeding
line were focused on. The three-level hierarchical control method was introduced: (1) for a
Center Controller and all ESFs in a gestation unit, and CAN-based LAN was utilized to
unite them; (2) for an individual ESF and a PDA, and WIFI-based LAN was used to establish
a connection; (3) for a Center Controller and the IoTP, and the Internet took responsibility
to share production data. Live trials were conducted to evaluate the three-level hierarchical
control method’s performance and reliability.

2. Materials and Methods

2.1. Gestation Sow Housing

The use of stalls is common for intensive pig farms in China. Our experiments were
conducted at a pig farm in Sichuan Province, China. The sows were housed in a gestation
unit from weaning to 110 days of breeding. The gestation unit consisted of 30 columns,
each containing 60 stalls 2.2 m long and 0.65 m wide, and an automatic feed line 2.0 m
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above the floor. The feeding system was applied to one of the columns, and each stall was
equipped with an ESF. A total of 60 ESFs were used, together with a central controller and
a PDA. Figure 1 illustrates part of the environment in which the precision feeding system
was implemented.

 

Figure 1. Part of the environment in which the precision feeding system was implemented.

2.2. System Design
2.2.1. Overall Architecture

The precision feeding system for gestating sows was constructed using ESFs, a CAN, a
central controller, a PDA, and an IoTP. The ESFs ensured accurate, timed, and ration feeding;
the CAN connected all the ESFs and provided a unified management method; the central
controller managed the CAN through a graphical interface and uploaded feeding data to
the IoTP; the PDA operated individual ESF via an application and WLAN communication;
and the IoTP received and displayed device information and feeding data. Figure 2 shows
the overall architecture of the system.

2.2.2. Electronic Sow Feeder

The ESFs comprised a delivery mechanism and a control circuit. The delivery mech-
anism consisted of a plastic bucket, a motor (37GA370SH283011, 24V, 20RPM, Zhejiang
Youtuo Motor Co., Ltd., Jinhua, China), and a feeding auger. The electronic circuit included
an MCU (STM32F103, ARM), a CAN transceiver module (ISO1050DUBR, Texas Instru-
ments Semiconductor Technology Co., Ltd., Shanghai, China), a WLAN transceiver module
(ESP-075, Ai-Thinker Technology Co., Ltd., Shenzhen, China), memory, a buzzer, etc.

Each ESF implemented the following functions: (1) it fed sows at regular intervals
according to the programmed scheme; (2) it maintained a connection with the CAN,
reported operation status, and received commands from the central controller; and (3) it
operated the socket server at the appointed port to communicate with the PDA on a
one-to-one basis.

Figure 3 shows the delivery mechanism and the electronic circuit.

2.2.3. Controller Area Network

Because of the large number of ESFs in the gestation unit, there was a need for a
control strategy which could cope with multiple devices and manage the devices uniformly
and efficiently. CAN is an efficient serial bus communication protocol with characteristics
including high communication efficiency, strong anti-interference ability, a node arbitration
mechanism, and self-diagnosis of errors. Because gestation units are complex environments
with a lot of interference noise, the development of a CAN is highly beneficial for the
management of ESF clusters.
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2.2.4. Central Controller

The CAN controlled the ESFs via data streams and communication protocols but these
could not be intuitively understood by the breeders. The central controller implemented a
graphical interactive interface to manage the CAN using a touchscreen, thereby improving
the user experience for the breeders. The central controller was equipped with an Intel
Celeron J1900 CPU, 4GB RAM and a touchscreen and ran the Windows 7 operating system.
The human–computer interaction was developed using the C++ programming language
and the Qt5.9 framework. Qt is a cross-platform GUI framework for desktop, embedded,
or mobile platforms.

Figure 2. Overall architecture of the precision feeding system with hierarchical control for gestation
units using stalls.
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(a) (b) 

Figure 3. (a) Delivery mechanism and (b) electronic circuit.

The central controller fulfilled the following functions: (1) it connected the CAN to
manage all the ESFs as a master node; (2) it collected the operation status of the ESF as well
as the feeding data which were uploaded to the IoTP in HTTP; and (3) it displayed the
status of the ESF, presented information, adjusted the feeding scheme, and calibrated the
delivery speed. Figure 4 shows parts of the screens.

  
(a) (b) 

Figure 4. (a) Operating status page and (b) feeding scheme page.

2.2.5. PDA

The feeding system was regulated as a whole by the CAN, but the ESFs also required
a convenient, one-to-one management method. As a type of GUI software with excellent
performance and high visibility, Android application technology was used to implement the
key functions related to activity, service, broadcast, content provider, and other components.
The application running on the PDA (equipped with a laser scanner and Android 8.0
operating system) was developed to manage an individual ESF.

The application includes “ScanReceiver”, “ConnectService”, communication proto-
col, function page, and so on. “ScanReceiver” extended “BroadcastReceiver”, received
the scanning broadcast from PDA, and parsed out the valid content. “ConnectService”
extended service, connected to WLAN according to SSID, and established a one-to-one
socket pipeline. The communication protocol was employed to safeguard against malicious
attacks through message parsing and validation. The function pages served as the gateway
to ESF management. Figure 5 illustrates the workflow of using the PDA to manage the ESF.
The steps involved for breeders to manage the ESF using the PDA were as follows:

(1) The PDA scanned the QR code attached to the ESF and transferred the byte content to
the APP via broadcast.

(2) The content was parsed to extract the Service Set Identifier (SSID), representing the
unique WLAN generated by an ESF.

(3) Based on the SSID, the app established a socket pipeline with the ESF.
(4) Breeders could manage the ESF through function pages such as Entry, Exit, Breeding,

Backfat Adjustment, Diagnosis and Test, and Information Query pages.
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(5) Connectivity between the app and ESF had to be maintained. If the ESF did not
receive a heartbeat from the app every 3 s, it would interrupt the connection to prevent
data inconsistency.

Figure 5. Workflow of PDA management of ESF.

Figure 6 displays some of the PDA screens, each with specific responsibilities:

(1) The “ENTER STALL” page facilitated the association between a sow and an ESF.
(2) The “EXIT STALL” page allowed for the disassociation between a sow and an ESF.
(3) The “SOW BREEDING” page enabled inputting mating date to adjust the feeding

scheme accordingly.
(4) The “BACKFAT ADJUSTMENT” page allowed input of the backfat thickness to notify

the ESF to update the feeding scheme.
(5) The “FAULT DIAGNOSIS” page provided a means to query fault information related

to the ESF.
(6) The “QUERY INFORMATION” page provided functionality to inquire about the

sow’s status.

   
(a) (b) (c) 

Figure 6. (a) Home page, (b) “ENTER STALL” page, and (c) “BACKFAT ADJUSTMENT” page.
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2.2.6. IoT Platform

The IoTP allowed the operating status and feeding data from multiple production lines,
units, and farms to be gathered from the ESFs and enabled terminal devices (smart phone
and computers) to browse these data remotely. The IoTP ran on the Alibaba ecs.n4.small
cloud server, which had a single-core VCPU, 2 GB RAM, 100 GB hard disk, and 0.5 Gb/s
network bandwidth.

The IoTP could be divided into three parts: receiving, data, and display layers. The
receiving layer was responsible for collecting and parsing the messages uploaded by the
central controller, as well as verifying the legitimacy of the data in order to prevent mali-
cious attacks. The data layer stored the ESF operating status and feeding data provided an
interface for the display layer to query the data, and also made scientific and appropriate
suggestions according to the feeding situation of the sows. The display layer used visual-
ization to enable users to view real-time and historical data, including information relating
to the feeding situation, feeding scheme, and the ESF operating status.

The receiving layer was constructed using the Spring Boot backend framework and
Java programming language, and data were stored in a MySQL database. The data-browser
software in the display layer was built using the Vue frontend framework and JavaScript
programming language. Coupling was decreased and scalability advanced because of the
separation of the frontend and backend. Figure 7 shows the layered architecture of the IoTP
as well as the data-browser software viewed on a smart phone.

  
(a) (b) 

Figure 7. (a) IoTP layered architecture and (b) the data-browser software viewed on a smart phone.

2.3. Statistical Analysis
2.3.1. Feed Delivery Accuracy of the Electronic Sow Feeders

The accuracy of ESFs in delivering feed is crucial for ration feeding and preventing
feed waste. The relative error is calculated as shown in Equation (1), and the smaller the
relative error, the higher the feeding accuracy.

δ =
M − M0

M0
× 100% (1)

where δ is the relative error; M is the weight of actual feed in g; and M0 is the weight of
expected feed in g.
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The coefficient of variation is calculated as shown in Equation (2), and the smaller this
is, the better the feeding stability.

CV =
S
X
× 100% (2)

where CV is the coefficient of variation; S is the sample standard deviation; and X is the
mean feed weight.

2.3.2. PDA Communication Reliability

The communication reliability of the PDA had a significant impact on its dependability
for controlling ESFs and the motivation of breeders to use a PDA. The reliability of wireless
communication between PDA and ESF can be effectively evaluated using the packet loss
rate (PLR) and response time (PDA_RT). A smaller PLR indicates more reliable wireless
communication, and this is calculated as shown in Equation (3).

PLR =
Sa − Rb

Sa
× 100% (3)

where Sa is the number of times packet-a was sent and Rb is the number of times packet-b
was received.

The shorter the PDA_RT, the more rapid the wireless communication, and this is
calculated as shown in Equation (4).

PDA_RT =

⎧⎨
⎩

Tr − Ts, successfullyreveivepacket − b

5000 , losepacket − b
(4)

where Tr is the timestamp of packet-a sent by PDA and Ts is the timestamp of packet-b
received by PDA.

2.3.3. Data Insertion Performance of the IoT Platform

The IoTP was responsible for maintaining communication with multiple central con-
trollers as well as ensuring data security. In the performance test of the IoTP, throughput
rate (TR) and response time (IoTP_RT) were important indicators. TR is calculated as
shown in Equation (5) and refers to the number of requests processed per second. A larger
TR indicates that the IoTP can connect with a greater number of central controllers.

TR =
NoR

Tc
(5)

where NoR is the number of requests processed by the IoTP and Tc is the total time taken
to process all requests in ms.

IoTP_RT is calculated as shown in Equation (6) and refers to the time taken to process
a request. The smaller the response time, the faster the IoTP processes the request.

IoT_RT = Tf − Ts (6)

where Tf is the time in ms at which IoTP finishes processing the request and Ts is the time
in ms at which the IoTP starts processing the request.

3. Results

3.1. ESF Feed Delivery Experiment

The ESF ration feeding depended on both the speed of feed delivery and the rotation
angle of the auger. The speed of feed delivery refers to the mass of feed delivered by a
revolution of the motor. The rotation angle of the auger was electronically calculated to feed
rations of different sizes. In the gestation unit, the feed was transported via a feed line and
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chain, with longer paths resulting in increased abrasion. In order to investigate the effect of
abrasion on feeding performance and the stability of the system, the speed of feed delivery
was measured using rations of different sizes. The trials were conducted on a sample feed
line with 60 consecutive ESFs. The tools included electronic scales (EHA28, Guangdong
Xiangshan Weighing Instrument Group Co., Ltd., Zhongshan, China) and containers.

For the speed measurement, a PDA was used to control the 60 ESFs to rotate augers
sequentially, and the mass of feed delivered was measured. The error from 30 revolutions
was smaller than that from one revolution, so the former was chosen for the speed measure-
ment. The results are shown in Figure 8. The data were essentially centered between 1350 g
and 1450 g, with a standard deviation of 21.60, a mean value of 1395 g, and a coefficient of
variation of 1.55%. Fifty-seven of the feeders had similar delivery speeds, whereas feeder
numbers 5, 31, and 59 deviated further, which could be due to variations in the auger,
motor, plastic box, or even the installation environment. The data indicated that there
was no obvious relationship between feed abrasion and delivery speed on a feed line, and
60 ESFs had good feeding uniformity.
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Figure 8. Weight of feed delivered by 60 consecutive ESFs with 30 revolutions of the augers.

For the ration feeding, six experimental groups were established: 1.6 kg, 2.0 kg, 2.4 kg,
2.8 kg, 3.2 kg, and 3.6 kg. In each experimental group, 60 ESFs were controlled to deliver
feed quantitatively, and the weight of feed actually delivered was measured separately. The
results in Figure 9 show that the relative error of the feeding system consistently remained
within ±2.94% and the coefficient of variation was less than 1.84% at different expected
feed weights. In terms of overall feeding performance, the feeding system was shown to
have a low relative error, a low coefficient of variation, high accuracy, and strong stability,
which met the requirements for the accurate control of feed allowances for sows.
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coefficient of variation and the expected feed weight.
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3.2. PDA Communication Experiment

The RSSI of the PDA affects its communication ability and can lead to socket pipeline
rupture and information loss, in addition to interfering with the normal operation of the
feeding system. In order to investigate the relationship between RSSI and PDA_RT, five
ESF were randomly selected as samples and divided into eight groups with RSSI as the
variable. The test process was as follows: (1) the PDA sent packet-a to the ESF, and recorded
the time of sending; (2) the ESF received packet-a and replied with packet-b; (3) the PDA
received packet-b and recorded the time of receipt. The number of times packet-a was sent,
the number of times packet-b was received, the times at which packet-a was sent, and the
times of receipt of packet-b were then counted, and the PLR and PDA_RT calculated.

During the communication request process, to ensure the uniqueness of the packet-b
response, the PDA could only run one request at a time. The PDA released the socket
channel for other requests only after a complete process was finished. If the PDA sent
packet-a but did not receive packet-b, the socket channel could be continuously occupied,
causing subsequent communication requests to be blocked. Therefore, the upper limit
of the communication duration was set at 5000 ms. If packet-b was not received within
5000 ms, the communication request would be regarded as timed out and terminated.

Figure 10 shows the results. When the RSSI was from −80 dbm to −70 dbm, the PDA
sent 146 packet-as and received 141 packet-bs, with a PLR of 3.425%. When RSSI was from
−90 dbm to −80 dbm, the PDA sent 47 packet-as and received 32 packet-bs, with a PLR
of 31.91%, and the communication pipeline was easy to disconnect, which explained the
small sample size at this interval. When the RSSI was from −70 dbm to −10 dbm, there
was no packet loss, the average PDA_RT was 556.05 ms, and the communication between
the PDA and ESF was stable. Therefore, the power of the ESF WLAN transceiver in the ESF
should be adjusted to an RSSI between −70 dbm and −10 dbm to meet the requirements of
the application used by the gestation unit.
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Figure 10. The relationship between PDA_RT and RSSI.

3.3. Data Insertion Experiment for the IoT Platform

The IoTP had to handle multiple concurrent data insertion requests simultaneously,
and its performance in data insertion was more critical to the system’s reliability than
its data reading performance. As the number of central controllers deployed increased,
IoTP concurrency also increased, raising the risk of the server encountering issues such as
excessive memory usage, inadequate CPU processing power, and blocked IO resources.
These problems could eventually result in the service program crashing.

In order to explore the optimum number of concurrent data insertions that the IoTP
could load under the existing server configuration, we developed a Web application using
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Java programming language and executed it on a Tomcat server. The performance test of
the web application running on Tomcat was carried out using the software JMeter 5.6.2.
The detailed process was as follows: (1) We established 22 thread groups, each representing
a different number of concurrent threads (ranging from 0 to 2200 threads in increments of
100). These thread groups were set up to simulate the task where the Center Controller
sent HTTP requests to the IoTP. Each thread simulated a Center Controller. (2) The packet
size of each Http request was set as fixed 364 bytes. When IoTP received an HTTP request,
it was parsed into a database row structure, and then inserted into the database. The
IoTP would respond with a message indicating the successful data insertion. All threads
initiated within a span of 5 s. JMeter was used to generate an aggregated report, allowing
the analysis of the system’s response time and throughput rate.

The experimental results are shown in Figure 11. For concurrent threads below 1700,
there was a gradual increase in both the TR and the average IoTP_RT with the escalation of
concurrent threads. However, once the concurrent threads exceed 1700, both the TR and
average IoTP_RT stabilized at approximately 254 requests per second (rqs) and 4548 ms,
respectively. The cause was the server being configured with one virtual cpu core and 2 GB
memory. When the number of concurrent threads reached 1700, the resource usage reached
the maximum and the request was blocked. This behavior could be attributed to the server
configuration, which consisted of a single virtual CPU core and 2 GB of memory. As the
concurrent threads reached 1700, resource usage peaked, resulting in blocked requests.
Consequently, it was evident that the IoTP experienced a performance bottleneck when the
number of concurrent threads exceeded 1700, highlighting the need to avoid overloading it.
On the other hand, when the concurrent threads remained below 1700, the IoTP exhibited
improved performance and ensured the availability of additional computational resources
to handle unforeseen circumstances.
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Figure 11. (a) Relationship between TR and concurrent threads and (b) relationship between average
IoT_RT and concurrent threads.

4. Discussion

In Europe, there is increased protection of animal welfare. However, in many devel-
oping countries and regions, stalls are still used to raise sows in gestation units. Most
studies focus on the design of precision feeding equipment in group housing, but few have
considered the problems that need to be overcome for precision feeding in stall housing
systems: (1) conventional feeders are prone to over-adjustment leading to large errors
in the delivery of feed; (2) there are many feeders installed in the stalls but a lack of ef-
ficient hierarchical control; and (3) with high levels of bio-security, the production area
and information department are isolated from each other, leading to the slow transfer of
production data.

In this research, we conducted a feed delivery experiment using 60 ESFs installed at
various positions along the feed transmission line. The speed at which each ESF delivered
feed was measured. The data revealed a central tendency between 1350 g and 1450 g, with
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an average value of 1395 g and a coefficient of variation at 1.55%. Notably, our analysis did
not reveal discernible relationship between feed abrasion and delivery speed. To evaluate
the accuracy of feed delivery, we based our calculations on an average speed of 1395 g per
30 revolutions, and we investigated the relative error between the actual delivered feed
mass and the expected delivery mass. Our findings consistently demonstrated that the
relative error for all 60 ESFs remained within the range of ±2.94%, with a coefficient of
variation of less than 1.84% across different expected feed weights. It is worth noting that
Chen et al. [43] conducted a similar experiment, but their focus was on a single ESF, resulting
in a maximum relative error of +2%. Given our emphasis on the collective performance of
multiple ESFs, the ±2.94% range is deemed an acceptable indicator. The structure of the
feeding auger stands out as the optimal choice for the widespread implementation of ESFs,
as it ensures uniform and consistent feeding performance.

In the scientific literature, there is a conspicuous absence of data communication of
ESFs in large-scale gestation units using stalls. In a study involving the use of the feeding
station Nedap Velos, conducted by Thomas et al. [44], a significant challenge arose—feed
intake data had to be manually extracted on a daily basis due to the lack of long-term data
storage capabilities. Additionally, the study reported instances of lost RFID tags in group
housing, resulting in potential inaccuracies in data recording. In our system, each ESF is
dedicated to a specific sow, which addressed the issues mentioned above. Furthermore,
through the CAN, ESF data are seamlessly transmitted to the Center Controller, facilitating
efficient data collection and distribution. This not only enhances data management but also
leads to significant cost savings in terms of labor.

Sow production management can be categorized into two approaches: normal man-
agement and batch flow management [45]. In batch flow management, timed artificial
insemination and the administration of various hormones are employed to regulate the
timing of estrus, ovulation, and farrowing [46]. However, normal management necessi-
tates individualized care for each sow. To facilitate this, we designed the PDA for the
convenient adjustment of individual ESFs. The PDA features an intuitive user interface
that provides essential functionalities for pig farming, effectively reducing the cognitive
burden on breeders by minimizing comprehension costs. Through a wired connection
with ESFs, close contact between breeders and ESFs is prohibited to ensure bio-safety. In
practical applications, maintaining the power of the ESF’s WIFI module at levels greater
than −70 dbm within an appropriate operating distance is advisable to ensure a stable
communication effect.

IoTP was implemented to integrate data from various regions and dismantle infor-
mation barriers among departments. A server (equipped with one core VCPU and 2 GB
of RAM) can manage up to 1700 concurrent threads. Exceeding this limit may result in
slow data links, blockages, and, in severe cases, cloud service crashes. To address this, we
recommend scaling the number of servers and implementing load balancing algorithms
when surpassing 1700 concurrent threads. This approach will enhance system concurrency
and fault tolerance. Additionally, considering varying GRPS signal strengths in different
pig farms, utilizing Ethernet cables is a viable option to improve the central controller’s
network signal.

While the system has been successfully implemented on a pig farm in Sichuan Province,
China, it proved to be challenging to collect additional data and analyze the feeding status
of the sows due to strict access policies aimed at preventing African swine fever. In practice,
individuals not directly associated with the pig farm are restricted from prolonged stays or
even entry.

In the next stage of our research, we will investigate the effects of this feeding system
on the performance of gestating sows and explore the potential associations between
gestation days, feed intake, backfat thickness, fetal abortion, litter size, and weaning
performance. Furthermore, our team’s endeavors may revolve around leveraging IoT
platforms along with Big Data analytics and Foundation Models technology, for conducting
more comprehensive analyses of production data.

44



Appl. Sci. 2023, 13, 12031

5. Conclusions

In order to achieve precision feeding in gestation units using stalls, and to enhance
the management ability of feeding systems, this paper presents a precision feeding sys-
tem with multilevel control. The three-level hierarchical control method was introduced:
(1) CAN-based LAN was employed to unite the Center Controller and all ESFs within
a gestation unit, ensuring reliable connections and consistent data; (2) WIFI-based LAN
was utilized to establish a connection between an individual ESF and a PDA, optimizing
the human–computer interaction experience; (3) the internet was leveraged for real-time
sharing of production data between the Center Controller and the IoTP. In the context of
the intensification and isolation of pig farms in China, our research enables the automatic
adjustment of feed allowance during various stages of a sow’s reproductive cycle. This
approach may achieve a better balance between feed costs and productive performance,
potentially contributing to addressing global food crises. Furthermore, our research dis-
mantles information barriers within the farm, allowing breeders to concentrate on essential
tasks such as breeding, vaccination, estrus detection, and more, rather than being burdened
with data collection, compilation, consolidation, and distribution.
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Abstract: Pest control is essential for increasing agricultural production. Agricultural drones with
spraying systems for pest control have generated great interest among farmers. However, spraying
systems installed on unmanned aerial vehicles, like any other sprayer, can cause damage to the
environment due to drift of the agent. Air induction (AI) nozzles are known to produce less drift
(e.g., larger spray drops) than other nozzles, but there is a lack of research analyzing their effectiveness
in combination with drones. In this study, AI and flat fan nozzles were installed on drones to evaluate
their spray and pest control performance. Aerial spraying was conducted on rice and soybeans to
measure the coverage and penetration ratio and analyze the crop production as well as the crop
damage due to pests and diseases. The drone flight was conducted at an altitude of 3 m and a
velocity of 2 m/s. Spray droplets were collected using water-sensitive paper at two heights above the
soil surface. The experiments showed that the crop coverage with the AI nozzle was 130% higher
than that with the flat fan nozzle. The drift reduction of AI nozzles increased the coverage of spray
droplets. But the difference in the penetration ratios, which is the ratio of agents to be delivered
inside the crop, was not significant between the nozzles. Also, there was no significant difference in
crop yield and pest control efficacy. Consequently, the performance of the AI nozzle did not show
differences from that of the XR nozzle, except for coverage. However, the AI nozzle raised less drift,
so it should be considered for use in aerial control.

Keywords: agricultural drones; air induction nozzle; aerial spraying; control efficacy; coverage;
penetration ratio

1. Introduction

The increasing global population reached 8 billion in November 2022; it is projected
to reach 9.7 billion by 2050 [1]. Thus, the demand for food has also increased with the
population; therefore, food production will also need to increase by up to 70% [2]. To
achieve this food production goal, pests must be controlled because crop yield would
substantially decrease without pest control [3]. In particular, pests and insects are becoming
increasingly common as a result of global warming, necessitating pest-prevention mea-
sures [4]. However, the number of farmers is continuously decreasing, causing a farm
labor shortage [5]. In the past, the main method of control was pesticide spraying through
knapsack sprayers and boom sprayers, which was laborious and exposed workers to agents.
To solve this problem, many researchers have studied various sprayers for effective and
efficient pest control. Moreover, recently, considerable attention has been focused on the
use of agricultural spraying drones [6–9].

Agricultural spraying drones comprise a system that sprays plant protection products
using a remote or automatic control tool [10–12]. Plant protection products are sprayed
from unmanned aerial vehicles and delivered to crops using gravity and downwash airflow

Appl. Sci. 2023, 13, 11552. https://doi.org/10.3390/app132011552 https://www.mdpi.com/journal/applsci
49



Appl. Sci. 2023, 13, 11552

from the rotor. Agricultural drones facilitate convenient operations, high work efficiency
for targeted application, and high worker safety; therefore, their use by farmers is gradually
increasing [13–15]. In particular, agricultural drones are widely used in East Asia [16]. For
example, China has 106,000 drones for pest control, and their work area is estimated to be
64 million hectares [17]. Xiongkui et al. [18] analyzed the current pest control status using
drones in China, Japan, and South Korea and presented the challenges of aerial spraying.
In Europe, a few studies of spray drones in mountainous terrain have been conducted in
spite of regulation [19]. Several studies focused on improving the usability of agricultural
drones have been also conducted [20,21].

With the growth of the agricultural spraying drone market, there is a huge concern
about the drift of pesticides and drop bounce from agricultural drone spray systems [22].
In Europe, aerial spraying is generally not permitted due to the risk of drifts [23]. In
South Korea, aerial spraying has also become a problem due to revised pesticide use
standards in 2019. The quantity of drift is generally associated with the ratio of fine spray
droplets [24]. Depending on the size of the spray droplets, more than 70% of the volume
can be drifted [25].

Many factors including flight altitude, additives, and downwash can affect the spray-
ing performance of agricultural drones [26–28]. Various studies have been conducted to
analyze droplet downwash from drones [29]. Yang et al. [30] conducted a study to build a
CFD model to analyze the effects of downwinds and crosswinds on the behavior of sprayed
droplets. Zhan et al. [31] researched influence of the downwash airflow of UAVs and found
that the strength of the airflow is positively correlated with deposition and penetration
and negatively correlated with uniformity and drift. The type of nozzle determines the
diameter of the sprayed droplets and the spray angle and shape, thereby substantially
impacting spraying performance [32,33]. Chen et al. [25] used four flat fan nozzles with
different orifice sizes to analyze the effect of droplet size on droplet deposition and drift.
They verified that the deposition, penetration of droplets, and drift distribution were af-
fected by the droplet size. Guo et al. [34] used machine learning methods to analyze the
droplet diameter and distribution pattern of the nozzles. Among the various nozzles, flat
fan nozzles are widely used for unmanned aerial sprayers [35] because of a high spray
efficiency [36]. In contrast to flat fan nozzles, AI nozzles produce large droplets by in-
cluding air bubbles inside the droplets and reduce the drift of droplets [37–39]. Dafsari
et al. [40] developed a new AI nozzle for aerial spraying, tested it, and found that it worked
as designed and had a smaller spray diameter than a conventional AI nozzle. However,
there is a lack of research that actually uses drones equipped with AI nozzles to conduct
control and analyze their effectiveness. Therefore, research is needed to actually perform
aerial spraying with AI nozzles and compare performance differences with conventional
nozzles when using drones.

When comparing the performance of two nozzles, the effect of pest reduction when
pest control is conducted using agricultural drones must also be investigated [41]. The
control efficacy is one of the most important criteria of the spraying system. However, most
previous studies have only examined the deposition of spray droplets using collectors to
evaluate the physical spraying performance of agricultural drones. Furthermore, even
when pest control is conducted using the same system, the penetration rate of plant
protection products may vary depending on the size and shape of the crops, affecting pest
control efficacy [25,42,43]. However, only a few studies have been conducted to compare
the differences in the pest control efficacy of crops when using agricultural drones.

The main objective of this study was to compare the spraying performance of a flat
fan nozzle and an AI nozzle when using a drone. To compare spraying performance, the
deposition, penetration rate, and control efficacy have to be analyzed using water-sensitive
paper. In order to compare the different results between crops, we planned to perform the
experiment on soybeans and rice. Crops have to be collected after pest control to compare
control efficacy by investigating the yield and damage caused by pests.
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2. Materials and Methods

2.1. Experimental Site

The experiments were conducted at a farmland in Gimje, South Korea (Figure 1). The
experimental field was where rice and soybeans were cultivated, and the areas for rice and
soybean cultivation were 4000 m2, respectively. Rice and soybeans are the main food crops
in South Korea, and, recently, soybean cultivation in paddy fields has been increasing, so
both were selected as target crops. The rice variety was Sindongjin, which was planted
on 2 June with a planting density of 15 plants/m2. The soybean variety was Daechan,
which was planted on 17 May with a planting density of 8.3 plants/m2. The spraying
was conducted around 9 am to minimize the influence of wind. The weather conditions
during the experiment were measured using a kestrel 5500 weather meter (KestrelMeters,
Boothwyn, PA, USA). The temperature during the experiment was 20.9~25.3 ◦C, and the
wind speed was 1~2 m/s. There were no significant obstacles that affected pest control
around the experimental site.

  

Figure 1. View of experimental site. On the left, the field with rice cultivar ‘Sindongjin’, and right,
Soyabean cultivar ‘Daechan’.

2.2. Equipment

The agricultural drone used in the experiment was a multicopter (SG-10p, Hankook-
samgong, Seoul, Repubic of Korea) with eight rotors (Figure 2). An agricultural drone
was equipped with a flight controller (K++, JIYI, Shanghai, China). Maximum thrust of
rotor is 5.1 kg. The detailed specifications of the agricultural spraying drone are listed in
Table 1. The pump installed on the drone had a rated pressure of 0.8 MPa and a rated flow
rate of 5.5 L/min. During the experiment, the chemical solution tank was filled with 10
L of the plant protection product solution before the flight. Only the two front nozzles
were used to eliminate the overlapping effect of spraying the front and back nozzles. The
nozzles were installed in the pipe located just below the rotor. The horizontal distance
between the nozzles was 158 cm and the spray width of the drone was 4 m. The drone
was operated by a professional using a remote control (T12 Data link Remote Controller,
Skydroid, Quanzhou, China).
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Figure 2. Agricultural spraying drone with quad rotor (SG-10P).

Table 1. Specifications of agricultural spraying drone.

Parameter Value

Dimension (mm) 2075 (W) × 2075 (L) × 700 (H)
Total weight (kg) 14.5
Flight controller K++

Maximum thrust (kg/rotor) 5.1
Maximum takeoff weight (kg) 24.9

Rated pressure (MPa) 0.8
Rated flow (L/min) 5.5

Capacity of solution tank (L) 10
Spray width(m) 4

Number of used nozzles 2

Conventional flat fan nozzles (XR110015VS, Teejet Technologies, Glendale Heights,
IL, USA) and AI nozzles were used with drones. The XR110015VS has a flat fan-shaped
spray form, and the droplet size is classified as fine on a general spraying pressure. In
the AI nozzle, the sprayed droplet diameter is enlarged via air induction. The AI nozzle
is less affected by wind compared with other nozzles. To develop a new AI nozzle for
aerial spraying, a research on nozzle design factors was conducted and a new AI nozzle
was developed based on it [40]. The developed AI nozzle has a spray rate of 0.6 LPM, an
air to liquid mass ratio (ALR) of 0.0005, and a spray angle of 110 degrees. The volume
median diameter (VMD) was measured based on the standardized method to identify the
characteristics of the droplets sprayed from the two nozzles [44]. The VMD is an important
factor in determining the amount of drift because it determines how far the droplets travel
horizontally in the wind. If the VMD of the spray droplets is smaller, spray droplets can
move farther away depending upon the wind speed and air inversion characteristics at
the time of spraying [45]. The measurement results showed that the VMDs of the flat fan
and AI nozzles were 189 and 450 μm, respectively. The specifications of the nozzles are
listed in Table 2.

Table 2. Characteristics of flat fan and AI nozzles.

Nozzle Pressure (MPa) Spray Angle VMD (μm)

XR110015 0.28 110 189
AI 0.28 110 450
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2.3. Evaluation of Spray Coverage and Penetration

To analyze the effect of nozzle type on coverage and penetration, the agricultural
spraying drone was equipped with a flat fan nozzle and an AI nozzle and sprayed with
water on 6 September and 5 October 2021. The drone flew at a height of 3 m above
the ground and a speed of 2 m/s during the experiment. The flight distance of single
spraying was 40 m. The pressure of pump was set to 0.28 Mpa based on the nozzle
recommendation [44]. The flow rate of the pump at this pressure was 1.2 L/min. The
sprayed droplets were collected using water-sensitive paper (76 mm × 52 mm, Teejet
Technologies, Glendale Heights, IL, USA) [46]. Since the water-sensitive paper is sensitive
to moisture, the humidity was controlled below 80% by draining the water in the rice field
the day before the experiment. To minimize the effects of humidity, the paper was put
out immediately prior to spraying and collected a few seconds after the drone sprayed
the plant protection product. Three sampling points were symmetrically arranged along
the perpendicular direction of the agricultural drone flight route with three repetitions
(Figure 3). The interval distance between sampling points was 2 m. The total length of
the sampling points was designed for the effective spray width. The distance between
the flight center line was 10 m and, while the drone was returning, the spraying stopped.
The water-sensitive paper was attached to the angle-control label stand (Figure 4). The
water-sensitive paper was installed at two levels: the canopy (h1 = 80 cm) and middle
point (h2 = 40 cm) of the crop at each sampling point. The collectors were installed at three
points on the flight path. After the experiment, each water-sensitive paper was sealed in a
zipper bag to block contact with moisture and delivered to the laboratory. The images of
the water-sensitive paper were obtained using a red, green, and blue camera and analyzed
via binarization.

Figure 3. Layout of flight path and collectors. The distance between groups of collectors is 10 m and
the drones fly perpendicular to the wind direction.

Figure 4. (left) Arrangement of water-sensitive paper at two height levels (40, 80 cm) and (right)
appearance of angle-control label stand.
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The coverage and penetration ratio (PR) were measured to evaluate the nozzle spray
performance because the amount of agent delivered to the surface or inside the crop affects
control effectiveness. Coverage refers to the ratio of the droplet deposition area on the
collector to the entire collector area. The amount of deposition can be compared based
on coverage (Equation (1)) [47]. The collector located at the canopy was used to analyze
the coverage. The PR was measured to identify the ratio of agents to be delivered inside
the crop. PR is important, especially for leafy plants, because it affects the delivery of the
agent [48]. The PR was calculated using the ratio of droplet areas attached to the canopy and
middle point of crops (Equation (2)). R (Version 4.2.2, The R Foundation, Vienna, Austria),
a statistical analysis software, was employed to analyze the data. A two-way analysis of
variance was conducted to analyze sensitive factors affecting the spray performance.

C =
AD
AW

(1)

PR =
C2

C1
(2)

where C is coverage, AD is total area of droplets deposited, AW is total area of water-
sensitive paper, PR is penetration ratio, C1 is coverage of water-sensitive paper at h1, and
C2 is coverage of water-sensitive paper at h2.

2.4. Efficacy Analysis

The plant protection product was sprayed three times on rice and soybeans to compare
the pest control efficacy based on the nozzle type in July and August 2021. Insecticides and
fungicides are shown in Table 3. The plant protection product was diluted with water in a
ratio of 1:8. The amount of plant protection product sprayed in each pest control operation
for each plot was 0.44 L.

Table 3. Ingredients of plant protection products.

Spraying Date Plant Protection Product Dosage

Rice

1 16 July 20% Ferimzone + 1.5% Fluxapyroxad + 8% Etofenprox + 3% Metaflumizone 0.44 L
2 5 August 6% Azoxystrobin + 5% Validamycin A + 10% Etofenprox 0.44 L
3 12 August 8% Etofenprox + 3% Metaflumizone + 30% Ferimzone + 3% Thifluzamide 0.44 L

Soybean
1 5 July 8% Etofenprox + 3% Metaflumizone 0.44 L
2 5 August 6% Azoxystrobin + 5% Validamycin A + 10% Etofenprox 0.44 L
3 12 August 8% Etofenprox + 3% Metaflumizone + 13.6% Boscalid + 8% Pyraclostrobin 0.44 L

The rice and soybean fields were divided into three areas: the area of pest control
using an AI nozzle, the area of pest control using a flat fan nozzle, and the nontreated area
(Figure 5). The total area of 4000 m2 for each crop was divided into areas of 1600, 1600,
and 800 m2. To reduce experimental error, the seed variety, soil condition, and cultivation
method were the same between treatments. The drone worked across the plot and flew
perpendicular to the boundary to minimize the impact on neighboring areas. Based on the
treatment, the yield and damaged crop ratio caused by pests and diseases were investigated.
In the case of rice, we targeted rice blast and rice stem borer and sheath blight, and in the
case of soybeans, we targeted anthracnose, litura, and clavatus. For sheath blight, rice stem
borer, anthracnose, and litura, the percentage of affected stems were examined. For rice
blast, the percentage of affected ears were examined. For anthracnose and clavatus, the
percentage of affected soybeans were examined. Once the plant reached full maturity, a
harvest was conducted for pest inspection and production investigation. The three subplots
per treatment, area of 3 m × 1.2 m, were selected and investigated by collecting crops for
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yield and damaged crop ratio data. Duncan’s test was conducted to analyze the difference
between the experimental results.

Figure 5. Layout of field for experiment treatment, sampling zone, and flying path.

3. Results and Discussion

3.1. Coverage and Penetration Ratio of Spray

The analysis of the coverage of droplet deposition by plants and nozzles showed
that the coverage of the experiment with the AI nozzle (5.05 and 3.35%) was 2.5 times
higher than that of the experiment with the flat fan nozzle (2.11 and 1.44%) in both plants
(Figure 6). When the same amount of spray is applied using both nozzles, an increase in
deposition indicates a decrease in drift. This means that in drone aerial sprayers, just like
in ground-based sprayers, the use of AI nozzles reduces drift compared with the use of
flat fan nozzles. The larger diameter of the droplets sprayed from the AI nozzle resulted
in less drift, consistent with previous research [25]. However, Hunter et al. [49] showed
that coverage decreases as the size of the droplet increases. This appears to be caused by
downwash from the drone affecting the behavior of the spray droplets. For more accurate
analysis, a downwash analysis of the drone should also be performed. According to two-
way analysis of variance, there is significant difference only in the effect of the nozzle type
(p < 0.05) (Table 4). This means that it is useful to use AI nozzles to deliver more spray
droplets to the crop during spraying operations. Although the average deposition of rice
was higher than that of soybeans, there was no significant difference by plant [50,51]. The
deposition of droplets is affected by the height of the crop, size of the spray drops, and
wind speed, but in this study the crops were of similar height, so there does not seem to be
a difference in coverage [52].

Table 4. Two-way analysis of variance of droplet deposition.

Factor
Degree of
Freedom

Sum of
Squares

F p-Value

Plant 1 6.15 0.764 0.3904
Nozzle 1 43.9 5.450 0.0279

Plant × Nozzle 1 1.92 0.238 0.6300

The C2 of the AI nozzle was 1.68% in rice and 1.12% in soybean. And the C2 of the
flat fan nozzle was 0.27% in rice and 0.73% in soybean. The PR averages of the AI nozzle
were (27.4 and 33.3%) and those of the flat fan nozzle were (19.0 and 31.5%), respectively
(Figure 7). To analyze the effect of plant and nozzle on the PR, a two-way analysis of
variance was performed, and it was found that there was no significant difference in
the treatment (Table 5). According to previous research, it was expected that larger size
spray droplets have a greater PR [25]. However, in this study, spray droplets applied to
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soybeans using the flat fan nozzle resulted in higher-than-expected C2. After checking the
experimental data, the C2 value was measured to be higher in the downwind direction in
two out of three iterations. This may have been caused by a temporary strong wind at the
time of the experiment, and we believe that it needs to be improved through additional
experiments in the future.

Figure 6. Coverage of droplet deposition with error bar representing standard deviation by plants
and nozzles.

Figure 7. Penetration ratio of droplet deposition with error bar representing standard deviation by
plants and nozzles.

Table 5. Two-way analysis of variance of penetration ratio.

Factor
Degree of
Freedom

Sum of
Squares

F p-Value

Plant 1 1104 2.668 0.117
Nozzle 1 398 0.962 0.337

Plant × Nozzle 1 2 0.005 0.947

3.2. Control Efficacy

The crop productions at sprayed areas were higher than that of non-sprayed areas for
both crops (Table 6). To compare the difference caused by the nozzle, Duncan’s test was
conducted to determine whether there was a difference in crop production. As a result, no
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significant difference was found between the experimental groups using AI and flat fan
nozzles for both crops (p < 0.05). Based on the coverage measurements in Section 3.1, the
amount of spray droplets delivered to the crop canopy was higher with the AI nozzle, but
there was no difference in the PR, so there was no difference in yield. And it is considered
that this is the result of trying to minimize the impact of various factors on crop yields,
but not being able to fully control them. Also, the increased size of the spray droplets
resulted in increased deposition with less drift, but the decreased surface area seems to
have reduced the effectiveness. Further research is needed to determine the optimal spray
droplet size.

Table 6. Crop production rate by treatment.

Rice (g/m2) Soybean (g/m2)

AI nozzle 465a 324a
Flat fan nozzle 449a 309a

Control 322b 240b
a,b: the same letter note indicates no significant difference at the p = 0.05 significant level, different letters indicate
significant differences at p = 0.05 significant level.

To compare direct pest control efficacy, the damage ratio of rice caused by pests and
diseases was investigated (Figure 8). The investigation results showed that in the case
of AI nozzle treatment, the damage ratios of rice blast, rice stem borer, and sheath blight
were 39.3%, 1.0%, and 6.5%, respectively; in the case of flat fan nozzle treatment, these
values were 42.0%, 2.9%, and 8.0%, respectively; and for the control group, these values
were 71.1%, 7.6%, and 35.0%, respectively. The damage ratios caused by three pests and
diseases were reduced by 6.4%, 65.5%, and 18.7% when using AI nozzles compared with
those when using flat fan nozzles. Therefore, the AI nozzle is shown to have better control
efficacy, giving some indication of smaller drop drift using the conventional nozzles.

 

Figure 8. Control efficacy of rice after spraying by pests and diseases.

The damage ratios of soybeans caused by pests and diseases were also investigated
(Table 7). The pest that causes damage to the leaves was anthracnose and the insect was
litura. And the pest that damages grain was anthracnose and the insect was clavatus. It
was shown that the damage caused by pests outweighed the damage caused by diseases
and that the leaf damage was more severe than grain damage. For more detailed analysis,
Duncan’s test was conducted to determine whether there was a difference in the damage
ratios. However, no significant difference was found between the experimental groups
using AI and flat fan nozzles for both crops (p < 0.05). Similar to the results of the production
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investigation, there was no significant difference in the PR values between treatments, so it
seems that there is no difference in control efficacy. When analyzing the effects of aerial
control in the future, it is considered more accurate to examine PR values rather than
canopy coverage. Wang et al. [53] conducted a study using four different types of sprayers
and found that control efficacy varied depending on the type of sprayer. Further analysis is
needed to determine if the no significant difference is caused by a small difference from the
nozzle or other factors (e.g., wind speed).

Table 7. Control efficacy of soybean after spraying.

Damaged Leaf Ratio Damaged Grain Ratio

Disease (%) Pest (%) Disease (%) Pest (%)

AI nozzle 0.5a 11.8a 2.2a 3.6a
Flat fan nozzle 0.7a 15.9a 2.4a 4.7a

Control 2.3b 49.7b 8.0b 18.4b
a,b: the same letter note indicates no significant difference at the p = 0.05 significant level, different letters indicate
significant differences at p = 0.05 significant level.

4. Conclusions

The number of farmers using spraying drones is increasing owing to its various ad-
vantages. However, spray drift has been a challenge in aerial spraying systems. To address
this issue, an AI nozzle with an effective drift reduction capacity was used. However, there
are few research works that installed AI nozzles to drones and analyzed their effectiveness.
In this study, AI and flat fan nozzles were installed on drones to evaluate their spray
performance. Moreover, the pest control performance was also evaluated. The deposition
and penetration ratios were measured using a flat fan nozzle and an AI nozzle. Pest control
efficacy was analyzed based on the type of target crops (rice and soybean). The crops used
were rice and soybean. The study results are listed as follows:

1. For both crops, coverage was more than 2.3 times higher when using AI nozzles
compared with that when using flat fan nozzles. The larger size droplets of the AI
nozzle apparently reduced drift, which was attributed to increased deposition of the
sprayed droplets. A two-way analysis of variance showed that the effect of the nozzle
on the coverage was significant (p < 0.05). For the effect of the plant on coverages,
there was no significant difference.

2. The penetration ratios of both nozzles were analyzed. A two-way analysis of variance
showed no significant difference due to the treatment method. It seems that weather
conditions may have affected the results of the experiment. Previous studies of
vertically growing maize, which has a similar morphology to rice, have yielded
different results than this study, and additional analysis is required.

3. The crop production rate was investigated. Duncan’s test showed no significant
difference between the experimental groups. Environmental and genetic factors seem
to have influenced production. Also, it seemed that the decreased surface area reduced
the effectiveness.

4. For the control efficacy, Duncan’s test showed no significant difference between the
experimental groups. As the results of the production investigation, similar PR values
between treatments made no difference in control efficacy.

5. When measuring aerial spray performance, penetration rates must be measured at
the same time.

The analysis of the aforementioned results showed that using AI nozzles instead of flat
fan nozzles for aerial pest control increased the droplet deposition of the sprayed droplets.
However, there was no significant difference in production and control efficacy. Thus, this
study showed that aerial control with AI nozzles delivers more spray droplets to the field
and the effect on control efficacy needs further study.
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In this study, a single flight condition (2 m/s forward speed at 3 m height) was used
to compare the effect of nozzle type on control performance. In the future, it is necessary
to conduct experiments under various flight conditions and/or to compare UAV loadings
over time to drift. However, since it is difficult to control various conditions in the field, the
primary analysis is performed through Computational Fluid Dynamic (CFD) simulations
and supplemented with field experiments.
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Abstract: This article examines existing optical methods for the diagnostics of food and feed products
used in agriculture to determine their nutritional value or detect maximum permissible indicators.
Among the most common feeds used for cattle, corn silage is considered. Its nutritional value
depends on many external factors that need to be taken into account when formulating feeding
rations. This article is dedicated to assessing the prospects of using visible-range photoluminescence
for determining dry matter content, total protein content, and NDF (neutral detergent fiber) using a
portable device in field conditions without lengthy sample preparation. This research aims to develop
a laboratory device and establish the theoretical foundations for determining the nutritional value
of agricultural feeds using photoluminescence. The study revealed that the most indicative range
for measuring nutritional corn silage is to use excitation via radiation with a wavelength of about
362 nm. At the same time, the luminescent radiation flux must be measured in a range of 440–620 nm.
Moreover, R2 values greater than 0.8 were achieved in correlation after constructing luminescence
relationships only for the determination of dry matter content/moisture, total protein content, and
NDF. This indicates the potential use of the proposed method for determining these parameters.

Keywords: corn silage; photoluminescence; dry matter; protein; NDF; regression models

1. Introduction

Modern livestock complexes for the maintenance of large cattle specialized in milk and
beef production are enterprises with a high level of automation of technological processes.
However, some of these processes cannot be executed with 100% efficiency without human
intervention [1]. One such process is the feeding of animals, which involves a complex of
preparatory measures for calculating and justifying the composition of feed components
and the energy value of the mixed diet [2].

In general, when forming the feeding ration for animals, the farmer adheres to a
strictly rational approach from the perspective of milk or beef productivity, as well as the
preservation of animal health, ensuring productive longevity [3]. Achieving high levels of
animal efficiency in terms of milk and beef production is determined by the feedstock of
the animals, the balance of the diet, and the energy value of the feed [4].

The nutritional or energy value of feeds used for animal feeding is typically determined
through preliminary analysis, where a key indicator is the dry matter content. This indicator
determines the amount of nutrients that the animal will receive by consuming a specific
component of the feed mixture [5].

The dry matter content in plant feeds for agricultural animals is measured using
gravimetric, dielcometric, and optical methods.

The gravimetric method, most common in countries with low investment attractive-
ness in the agricultural sector, particularly in terms of technological provision, involves the
sampling of the analyzed feed, weighing, and then recording the initial mass indicator of
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the taken feed portion. Subsequently, the feed portion undergoes drying by placing it in a
dehydrator or a household drying chamber using special containers. It is processed until
the mass of the processed feed portion ceases to decrease (indicating complete drying of
the sample). By calculating the proportion, the percentage of lost moisture is determined,
and conclusions are drawn about the level of dry matter/moisture of the investigated feed.

This described method is most frequently used by farmers to determine dry matter
indicators on the farm without laboratory services. However, it does not provide entirely
accurate results due to the fact that complete drying of the feed to 100% is impossible when
interacting with the surrounding environment. Part of the feed may adhere to the used
utensils and absorb moisture from the surroundings. The significant disadvantages of this
method include it being a fire hazard, as well as the labor-intensive sample preparation (up
to 30 min per sample) [1,6].

Among commercial devices, the dielcometric method has gained the widest preva-
lence, which is based on the correlation between the dielectric permittivity of a material
and its moisture content. Instruments that operate based on the dielcometric method are
designed as a rod, one end of which is placed into the tested sample, while the measuring
part is located at the other end. The moisture assessment results can be obtained within
20 s. However, a significant drawback of the method is that the tested sample must be
tightly compressed, which is why the method is most effective for determining the moisture
content of wood, feed compacted in a trench, or gathered into briquettes using special
presses. Otherwise, the device introduces a high level of error [1,7].

Optical methods represent the most promising direction, with broad developmental
potential compared to the methods mentioned above. Instruments based on optics are more
costly in terms of development and manufacturing. However, the potential of the hardware
aspect offers significantly wider possibilities in terms of the number of determinable
parameters. For example, devices released to the market, such as Aurora NIR (Mayville,
WI, USA) and Dinamica Generale (Poggio Rusco, Italy), enable not only the determination
of dry matter content but also protein, ash, and fiber. The principle on which the operation
of such devices is based is near-infrared spectroscopy [1,8].

However, concerning the non-contact determination of ash, ADF, and NDF cellulose
concentrations, as well as fats, it is expedient to conduct research into the effectiveness of
applying an optical method in the visible range from 380 to 780 nm [9].

According to the conducted literature review, the photoluminescence of the visible
range demonstrates its effectiveness in terms of detecting okadaic acid (OA), a marine
biotoxin produced by microalgae that poses a significant threat to mariculture, seafood
safety, and human health. The results of processing experimental data showed that the
reliability of detection using luminescence is confirmed by a coefficient of variation of 2.54%
when employing alternative methods [10].

Luminescence is employed to identify the adulteration of butter by detecting non-dairy
fats through the dependence of the intensity ratios of components in the extended spectrum
of luminescence on palm oil content when excited at a wavelength of λ = 266 nm [11].
Additionally, it is used for the quantitative determination of fat content in milk [12].

The broader diagnostic functionality of plant products, including those that have
undergone extensive processing, is provided by luminescent nanoprobes, enabling the
diagnosis of heavy metal content, pesticides, and the presence of veterinary drugs, microbes,
and mycotoxins [13].

Photoluminescence is a useful technique for the non-destructive and quick evaluation
of cereals and other starchy products. Visible light peaking at around λ = 460 nm is observed
from cereals, such as rice, wheat, barley, millet, flour, corn starch, and peanut, under the
illumination of ultraviolet light at λ = 365 nm [14].

The photoluminescence method demonstrates its effectiveness in detecting riboflavin
and its derivative flavin mononucleotide in cellulose materials [15], which also suggests
the potential for identifying important vitamins in livestock feed.
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Moreover, photoluminescence has been actively utilized in the industrial processing
of food products and the preparation of semi-finished goods. For instance, in the range
of 550 nm, myoglobin in poultry meat actively fluoresces, allowing the degree of poultry
cooking to be determined through its detection [16].

Similarly, for the detection of vitamin B2 (riboflavin) in cellulose materials, its con-
centration is determined in milk at peak intensity values of λ = 545 nm, by measuring the
configuration of backscattering using ultraviolet LEDs, violet LEDs, or a blue LED as the
excitation light [17].

In confirmation of the efficiency of detecting qualitative feed indicators and ensuring
safety prior to direct animal consumption, photoluminescence enables the visualization of
serum albumin within the range of 480 to 535 nm [18].

The most commonly used mathematical method for processing optical signals obtained
from photodiodes is correlation–regression analysis, often accompanied by the pre-training
of the hardware algorithm. In this process, preliminary results obtained through chemical
analysis are utilized as the reference parameter for the corresponding sample.

In the scope of this present study, we examined the prospect of utilizing the photolumi-
nescence method as a tool for determining the dry matter content in livestock feed. To test
the key hypotheses, a prototype device equipped with LEDs and photodiodes calibrated to
a specific range of luminescence was developed for corn silage and compound feed.

The goal of the presented research is to develop a laboratory apparatus and estab-
lish theoretical foundations for determining the nutritional value of agricultural feeds
using photoluminescence.

2. Materials and Methods

Study of Spectral Characteristics of Feed Mix Components

The physical phenomenon serving as a basis for the offered method consists of mea-
suring the image reflection ability of a forage mix surface layer.

At the preliminary laboratory study stage, it was necessary to determine spectral
characteristics of components of feeding mixes as exemplified by a cattle feed ration. This
type of ration can contain natural-origin forages (grass green mass, corn silage, alfalfa
haylage) and concentrated mixed fodder (consisting of grain mash, corn, and barley as
rape meal and sunflower meal).

The study aimed to determine the optical properties and establish correlation spectral
dependencies of the most commonly used components in cattle feed mixtures. The investi-
gated materials included corn silage. The exploration of optical properties was carried out
using a spectrofluorimeter CM 2203 (Lumex, St. Petersburg, Russia) (Figure 1), through
which the most indicative ranges of photoluminescence for corn silage were determined.

Based on the conducted measurements, it was revealed that the excitation of photolu-
minescence in corn silage occurs from 220 nm to 550 nm. The most representative range
of photoluminescence for corn silage was found to be from 350 nm to 365 nm, where the
strongest light signal absorption occurred. This allowed for the use of light-emitting diodes
and photodiodes tuned to the corresponding frequency in the portable device prototype.

Preliminary measurements from the spectrofluorimeter, which determined the most
representative measurement range of 350–365 nm, shaped the concept of constructing a
portable optical device. As there is a high probability of external light exposure within
this range, the decision was made to eliminate external light exposure by creating a light-
permeable casing with a retractable case.

For the utmost representativeness of optical measurement results, the internal part
containing the optical module was colored in a matte black shade to eliminate reflections.

The external appearance of the portable optical device for determining the photolumi-
nescence of agricultural feeds is depicted in Figure 2.

65



Appl. Sci. 2023, 13, 10444

Figure 1. Spectrofluorimeter CM 2203 for determining the indicative ranges of photoluminescence in
agricultural feed.

Figure 2. Portable optical device for determining the nutritional value of corn silage through pho-
toluminescence. 1—feed bed, 2—display, 3—interface control unit, 4—console, 5—photodiodes,
6—light-emitting diode, 7—adjusting screw.

Since the luminescent emission from silage has extremely low intensity, signal am-
plifiers are necessary for its detection alongside the photodiode. Operational amplifiers
AD820ANZ (Analog Devices, Shanghai, China) are used as amplifiers. Once the sig-
nal passes through the operational amplifier, it is processed via the microcontroller AT-
mega328P (Atmel Corporation, Shenzhen, China) and subsequently displayed on the LCD
2004 (Winstar Display, Taiwan, China). The laboratory analyzer is powered by batteries
with a nominal capacity of 2200 mAh. Device control is carried out through the keyboard
(Figure 2, position 3).

The key indicator that determines the quantity of nutrients in feed is the dry matter
content or its inverse value (humidity). Based on these values, farmers determine the
agrotechnical deadlines for plant processing or the timing for starting feed harvesting.
Additionally, it involves modeling a multi-component diet, considering the balance between
total dry matter consumption and moisture level. This is especially important for livestock
groups during peak lactation periods.

The algorithm for determining the dry matter content using a portable optical device
based on photoluminescence is presented in Figure 3.
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Figure 3. Algorithm for determining nutritional value indicators using an optical device.

The main hypothesis of the presented study is to determine the nutritional value
of agricultural feed using an optical method that does not require preliminary sample
preparation. This will ensure the construction of a device for conducting measurements in
the field. To do this, we measured photoluminescence fluxes using a laboratory sample
according to the following equations.

Sampling of corn silage from the storage was carried out using a manual sampler;
then, vacuum sealing of the material was carried out. Up to 59 measurements were carried
out to construct correlation dependencies for each indicator, while the values with the
largest spread from the average were entered in Table 1.

Table 1. Photo of the voltage and parameters of the silo at different humidities.

U, mV 20.27 15.88 24.93 22.61 23.83 32.38 34.21 40.08

Humidity w, % 74.22 71.59 66.02 60.01 59.08 54.07 47.27 44.98

Starch C, % 27.41 27.21 28.78 34.5 33.66 33.81 34.7 35.1

Protein Pt, % 7.35 7.61 7.23 7.04 7.24 6.78 6.80 6.67

ADF CADF, % 28.05 28.99 24.62 22.82 22.24 21.53 21.00 20.50

NDF CNDF, % 47.06 47.50 45.32 40.52 38.96 40.01 38.66 38.02

Ash A, % 5.69 5.20 4.71 3.98 3.99 3.76 3.55 3.31

Raw fat Ft, % 3.60 3.16 3.16 3.26 3.00 3.04 2.99 2.90
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The integral value of photoluminescence flux is determined using Formula (1).

Φ =
∫ λ2

λ1

ϕl(λ)dλ (1)

ϕl(λ)—photoluminescence spectra;
λ1–λ2—limits of the operating spectral range of photoluminescence.
In this case, photonic signals are determined according to Formula (2).

U = Ug − Ud (2)

Ug—total voltage on the photodiode;
Ud—dark voltage.
Formula (3) is expressed through the photonic signal.

U = SU ·Φ (3)

SU—voltage sensitivity of the photodiode.
Further, by using the provided mathematical data processing algorithm and the

developed original photoluminescence device, measurements of corn silage were car-
ried out with the construction of correlation–spectral dependencies concerning the dry
matter content.

The research was conducted in June 2023 on the basis of the Federal Agroengineering
Center VIM, while the samples of corn silage were grown on the basis of the agricultural
firm JSC Zelenogradskoye (Moscow region) and laid for storage in 2022. Sampling was
carried out using a special sampler, while the packaging of the corn silo sample was
vacuum- and light-tight.

3. Results

Among the three previously identified excitation maxima in plant organisms (362 nm,
424 nm, 485 nm) (PHP23), the silage absorption spectrum shows the most pronounced
peak at 362 nm. The peak at 424 nm is more than twice as small and shifted to the short-
wavelength region. The peak at 485 nm is not evident in the spectrum. Peaks in the long-
wavelength region above 550 nm are instrument noise and do not induce luminescence,
as experimentally verified by the authors. Furthermore, as evident from Figure 4, the
excitation and, consequently, photoluminescence are very weak, necessitating work with
integral parameters.

The spectral excitation characteristic of the silage is presented in Figure 4.
Earlier, we found that in plant feeds with maximum excitation (362 nm, 424 nm,

485 nm) [19], in the excitation (absorption) spectrum of the silos, the maximum 362 nm
is most pronounced. The maximum of 424 nm is more than twice as small and shifted to
the shortwave region. The maximum of 485 nm does not appear in the spectrum. Bursts
in the long-wavelength region above 550 nm are the noise of the device and do not excite
luminescence, which was verified experimentally by the authors. Also, from Figure 4, it can
be seen that the excitation and, consequently, photoluminescence are very weak; therefore,
it is necessary to work with integral parameters.

In Table 1, we entered data characterizing the largest variation in the measurement
process in the amount of eight values for each indicator. At the same time, the experiment
assumed a repetition of measurements up to 59 times for each sample.

Based on the array of obtained values, dependencies of the photo signal on silage
moisture content were constructed, along with their approximations, as presented in
Figure 5.

The dependence U(w) can be statistically and reliably approximated using a linear
function with a coefficient of determination R2 = 0.8522.
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Figure 4. Spectral characteristic of silo excitation.

U

w

Figure 5. Dependence of photon voltage on silage moisture and its linear approximation.

For silage with varying moisture content, the change in the photoluminescence in-
tensity is caused by the quenching of fluorescence due to changes in the concentration of
mechanically bound (free) water in the near-surface tissues. The quenching of fluorescence
is caused by collisions of excited atoms with their surrounding unexcited particles. As a
result of the collisions, the excitation energy transfers into the kinetic energy of the collid-
ing particles or into the excitation energy of the partner. The efficiency of the quenching
depends on the collision frequency with the excited atom and the probability of quenching
during collisions. Quenching becomes pronounced at high concentrations when the free
path length of particles is small and the collision frequency is high. The quenching effect
is particularly strong in condensed media. The quenching of fluorescence as a result of
the collisions of the excited particles is accompanied by a reduction in the average lifetime
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of the excited state. The nature of the particles colliding with excited atoms significantly
influences the efficiency of quenching.

Static quenching is caused by the formation of a non-luminescent product as a result of
the interaction between the fluorophore and the quencher (water). Since static quenching is
related to the formation of non-luminescent complexes Z between the fluorophore molecule
L and the quencher molecule Q, the quenching process can be described using Formula (4).

L + Q = Z (4)

If the absorption of the fluorophore and the complex is the same, then the following
expression can be written (Formula (5)).

η

ηQ
= 1 + βyQ (5)

η—luminescence yield in the absence of quencher;
ηQ—luminescence yield in the presence of quencher;
βy—stability constant of the non-luminescent complex;
Q—concentration of quencher molecules.
In this case, the value of Q is proportional to the moisture content of the silage, w.
In addition to determining the dry matter content in corn silage, this research aimed to

test the hypothesis regarding the determination of other nutritional value indicators using
photoluminescence. These indicators also hold significant importance in the management
of feeding for cattle and other animals, such as protein content, ADF and NDF cellulose
content, ash content, etc.

The investigated sample of corn silage on the developed device was also subjected to
the determination of starch concentration using a chemical method. However, in the process
of searching for correlation dependencies between the intensity of photoluminescence and
starch content in corn silage, no relationships were identified (Figure 6).

U

C

Figure 6. Dependence of photon voltage on starch content in corn silage and its linear approximation.

The relationship between photon voltage and starch content in the silage cannot be
statistically and reliably approximated due to the fact that the value of R2 < 0.8.

However, for the determination of protein concentration in corn silage, photolumines-
cence proves to be a promising method, as evidenced by the identified dependencies with
R2 > 0.8 (Figure 7).
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U

P

Figure 7. The dependence of the photon voltage on the protein content in the silo and its linear
approximation.

The dependence of U(P) can also be statistically significantly approximated using a lin-
ear function with a coefficient of determination R2 = 0.8945, where P is the
protein content.

Furthermore, during the course of the research, we investigated the correlation of
photoluminescent signals with the content of ADF in corn silage (Figure 8).

U

C

Figure 8. The dependence of the photon voltage on the ADF content in the silo and its approximation
using a second-order polynomial.

The relationship of U to CADF is statistically significant and is confirmed by the fact
that R2 > 0.8; however, the values can only be approximated by a second-order polynomial,
as R2 = 0.8346 (Figure 9).

During the laboratory research, we also analyzed the content of ash, taking into
account the variation in photon voltage in the corn silage (Figure 10).

As a result of processing the experimental data, the value of R2 < 0.8 indicates the
absence of the possibility to statistically and reliably approximate the relationship between
the photon voltage and the ash content in corn silage.

Furthermore, during the literature analysis, sources referring to the potential determi-
nation of fat content in various materials were explored. However, concerning the feeding
of large ruminants and the formulation of rations, it is crucial to assess the total fat con-
tent. Through photoluminescence analysis and statistical data processing, no correlation
relationships were detected, as evidenced by the graph (Figure 11).
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U

C

Figure 9. Dependence of the photon voltage of corn silage on the NDF content.

U

A

Figure 10. Dependence of photon voltage on the ash content in corn silage.

U

F

Figure 11. Dependence of the photon voltage on the total fat content in the corn silo.

72



Appl. Sci. 2023, 13, 10444

The relationship between photon voltage and raw fat content in silage cannot be
statistically and reliably approximated (R2 < 0.8).

Based on the obtained results for three silage parameters (moisture content, protein
content, and ADF content), calibration equations for the developed laboratory instrument
can be derived.

For dry matter/moisture content, see Equation (6):

w = −1.22U + 92.35 (6)

For total protein content, see Equation (7):

Pt = −0.038U + 8.11 (7)

For ADF content in corn silage, see Equation (8):

CADF = 0.019U2 − 1.42U + 46.90 (8)

4. Discussion

We previously revealed that the foundation of the automation process and the elimi-
nation of human factors in agriculture are typically built upon optical technologies. These
technologies enable the automatic positioning of manipulators in milking robots using
LiDAR or TOF cameras, measurements of milking intensity in cows using LED sensors, and
the assessment of milk quality through the interpretation of color characteristics [20–23].

Feeding processes are equally important factors that shape the profitability of the in-
dustry. For farmers, it is crucial to make quick managerial decisions regarding adjustments
to feeding rations or crop harvesting. The proposed solution for the optical express analysis
of feed crops, exemplified by corn silage, allows farmers to determine the nutritional value
of the feed used in-field conditions without the involvement of specialized laboratories.

In the explored literature and commercial device brochures, the use of NIR analysis
methods for the nutritional value of feeds in agriculture is noted. Our presented research
contributes to testing the hypothesis of using photoluminescence to determine nutritional
value, providing corresponding correlation dependencies of photoluminescence concerning
total protein content, moisture, ADF, and other indicators [24–26].

A similar spectral method, but based on reflectivity data, was used to detect Fusarium
pepper disease [27]. Unfortunately, the creation of a device implementing the method was
not reported.

The device proposed in this study, unlike analogs, does not need to analyze the
structure of volatile organic compounds [28] and does not require the construction of an
image [29,30].

We found that among the existing studies, the most common are manuscripts that
reveal the essence of spectroscopy in the near-infrared range (700–1400 nm) as a tool for
determining the nutritional value of agricultural feed. At the same time, the essence of the
method is to register the reflecting signals associated with the vibrational movements of
the molecules of the surface layer of the biomaterial that is being analyzed. Also, the NIR
method requires the use of an expensive spectrometer for recording the reflecting signal
and hardware with software for processing spectral data.

We proposed a method related to the effect of photoluminescence in the visible range
and confirmed our hypothesis with the results of the experimental studies. At the same
time, the practical value of photoluminescence as a tool for determining the nutritional
value of feed is the low cost of electronic components (diode and photodiode) compared to
a spectrometer and a light source for implementing this task in the near-infrared range.

5. Conclusions

1. To measure the nutritional value of corn silage, it is advisable to use excitation via
radiation with a wavelength of about 362 nm. At the same time, the luminescent
radiation flux must be measured in the range of 440–620 nm.
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2. Based on the preliminary measurements, a component base was selected for the
original photoluminescence device, where the photodiodes and light-emitting diodes
were tuned to the indicative photoluminescence range of corn silage.

3. Through the development and fabrication of an experimental photoluminescence
device, measurements of corn silage were performed to determine its dry matter
content, total protein content, ash, ADF, and NDF using the physical method of
photoluminescence. Dependencies were identified that allowed for the assertion
that photoluminescence can be used to determine the dry matter content/moisture,
total protein content, and ADF content in corn silage. These results are supported by
statistically significant indicators (R2 < 0.8) that can be approximated.

4. In order to conduct further research and improve the results, we plan to modernize
the laboratory sample of the device, which will allow for measuring nutritional values
with greater reliability in narrow ranges of visible radiation.

6. Patents

1. Patent No. RU 2775170 C1, IPC G06T 7/60, G06T 7/90, A01K 5/02. A system for
assessing the quality of animal feed/Pavkin D.Y. Nikitin E.A. Kiryushin I.A./Patent
holder: Federal Scientific Agroengineering Center VIM. Application: 2021129058,
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skiy P.A./Patent holder: Federal Scientific Agroengineering Center VIM. Application:
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Abstract: Food safety and quality are the first steps in the food chain. This work reports a miniatur-
ized, low-cost, and easy-to-use near-infrared spectroscopy (NIRS) measurement system for alfalfa
quality control. This is a significant challenge for dairy farm technicians and producers who need
rapid and reliable knowledge of the forage quality on their farms. In most cases, the instrumentation
suitable for these specifications is expensive and difficult to operate. The core of the proposed NIR
spectroscopy measurement system is Texas Instruments’ NIRscan Nano evaluation module (EVM)
spectrometer. This module has a large sensing area and high resolution, suitable for forage samples.
To evaluate the feasibility of the prototype for analyzing agrifood samples, different ways of present-
ing the sample, intact or ground, were tested. The final objective of the research is not just to check
the efficiency of the proposed system. It is also to determine the characteristics of the measurement
system, and how to improve them for alfalfa quality control.

Keywords: agrifood quality control; digital micromirror device (DMD); forage; near-infrared
spectroscopy (NIRS)

1. Introduction

The nutritional value of animal feed is essential to quality, safe feed consumption,
and animal welfare [1]. In addition to this fact, and due to the great variability in the
raw materials used to feed animals, it is necessary to develop strategies focused on the
tight control of animal feed products. These should be combined with the research and
development of new, simple, economical, and robust methods for monitoring quality and
safety parameters [2,3].

Forage is one of the main feed products in animal husbandry and must, therefore, be
subject to safety and quality controls. Among the most important quality parameters for
forages, the following three can be highlighted [4]. The fiber content is mainly provided
by the fodder cell wall, and represents its carbohydrate. The mineral content (ash) gives
information about possible contamination with soil, and supplies micronutrients to the
diet. It also provides information on the quality of the forage. The third parameter is the
protein content, which is extremely important in animal production.

Several important books on NIR spectroscopy are currently available, but some of
them are not up to date. Ozaki et al. [5] report a new state-of-the-art textbook on NIR
spectroscopy, covering its principles, spectral analysis and data treatments, instrumentation,
and applications. In [6], Huck et al. review the fundamental principles of NIRS, and its
applicability, regulatory issues, advantages, and limitations in natural product research.

Near-infrared spectroscopy (NIRS) techniques have always been valued and used in
food analysis and quality control, due to the speed of analysis, the simplicity of sampling,
the non-invasive nature of the techniques, and the possibility of their being implemented
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in the production line. In this review [7], Shenk et al. introduce scientific and technical
reports using the NIRS to evaluate food, agriculture, and forest products.

In addition to the advantages of this technique, the possibility of developing minia-
turized NIR systems that are easy to use, and specialized in the quality control of the
raw forages used in animal feed, makes it possible to increase quality control (sampling).
Thus, Cherney et al. [8] evaluate several hand-held NIR instruments for the precision
and accuracy of the currently available calibrations for dry-matter and forage nutritive
value. Crocombe [9] outlines the technologies used in portable spectroscopy, and Beć
et al. [10] discuss the characteristics of miniaturized NIR sensors in comparison to benchtop
laboratory spectrometers.

The use of easy-to-use portable NIRS instrumentation minimizes time losses, because
nonspecialized personnel are able to analyse samples on site, and a real-time response is
achieved as soon as the analysis is carried out. These characteristics are some of those
required in precision farming [11].

Several miniaturized spectrophotometers have been developed and marketed in
the last decade, some of which are extremely small, light, and inexpensive. By allow-
ing measurements in the field, at the point of delivery, production, sale, purchase, and
use, these spectrometers transform NIRS technology. Table 1 lists some commercial
miniaturized NIRSs, and presents their main characteristics, as found on the websites of
the manufacturers.

Table 1. Main specifications of some commercial miniaturized NIRSs.

Manufacturer Model Technology
Spectral

Resolution
(nm)

Spectral
Range (nm)

Size
(mm)

Prize
(USD)

Texas
Instruments

NIRscan Nano
EVM

Grating–MEMS
DMD 10 900–1700 58×62 × 36 1000

VIAVI
Solutions MicroNIR 1700 LVF–Linear 12–20 950–1650 50 × 45 14,500

Si-Ware
Systems NeoSpectra MEMS–FT 8–16 1250–1700 178 × 91 × 62 6950

Consumer
Physics SCiO X X 740–1070 67.7 × 40.02 ×

18.8 3395

Ocean Optics Flame NIR Grating ~10.0 970–1700 89.1 × 63.3 ×
34.4 9926

SouthNest
Technology nanoFTIR NIR MEMS

Michelson 6 1000–2600 143 × 49 × 28 X

Spectral
Engines NIRONE S1.7 Fabry–Pérot 13–17 1350–1550 25 × 25 × 17.5 8940

X: No information is provided on the manufacturer’s website.

This work evaluates the feasibility of a miniaturized and low-cost NIRS measurement
system for alfalfa quality control. The core of this system is a NIR spectrometer based on
the Texas Instruments NIRscan Nano evaluation module (EVM). It has a large sensing
area and high resolution to analyse forage samples. To evaluate the feasibility of the
prototype, different ways of presenting the sample, intact (raw) or ground, were studied.
This equipment has already been tested for use in liquid sample analysis [12], with a specific
cuvette for liquid samples. For this purpose, alfalfa samples were analysed. Alfalfa is one
of the main forages used to feed animals, due to its high biomass production, and protein
and fiber contents. In summary, this work contributes:

• to confirming the efficiency of the proposed NIRS measurement system;
• to identifying the qualities of the equipment; and
• to looking for aspects to improve and implement in the future.
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The remainder of this paper is organized as follows: Section 2 reports the materials
and methods for analysing dairy farm forage quality. Section 3 presents the results and
discussion. Finally, Section 4 contains conclusions and future works.

2. Materials and Methods

2.1. NIRscan Nano Evaluation Module

The core of the optoelectronic measurement system is the Texas Instruments NIRscan
Nano evaluation module (USD 1000 approx.) [13]. The block diagram of this module for
reflectance measurements is shown in Figure 1. A slit collects and concentrate diffuse
reflections, by illuminating samples at an angle that eliminates specular reflections. Light
passing through the slit is collimated, low-pass filtered, and then dispersed into its con-
stituent wavelengths via a reflective grating. Each wavelength is represented by a separate
image created by the focusing lens of the digital micromirror device (DMD).
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Figure 1. Block diagram and image (upper right corner) of the Texas Instruments DLP NIRscan
Nano EVM.

The DMD is controlled by the embedded processor, which turns only certain mirrors
on and off at certain times. The width of the DMD columns selected as “on” determines
the amount of light directed to the photodetector, as well as the resolution of the system.
The DMD columns selected as “off” divert unselected wavelengths away from the pho-
todetector’s optical path, to prevent interference. By doing this, they can achieve high
signal-to-noise ratios (SNRs). An array detector cannot take advantage of the adaptive
scanning techniques that can be performed using this type of architecture. Light energy is
collected and concentrated, by the collection lenses, onto the single-point InGaAs photode-
tector. Analog-to-digital converters (ADCs) convert photodetector signals to digital values
through transimpedance amplifiers.

2.2. NIRS Measurement System

The instrument sample window can be enlarged if raw samples with larger particle
sizes are analyzed. This will produce reproducible spectra. However, this is difficult
when measuring samples directly, as the sample window is very small (10 mm × 10 mm).
This problem was overcome through the attaching of a semicircular sample holder to
the spectrometer, as shown in Figure 2a. To ensure homogenous results for the sample,
10 measurements are made at each holder position. Figure 2b shows the microcontroller
(LOLIN ESP32, USD 10) attached to the spectrometer module that drives the servomotor
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(MG90S, USD 10). This servo motor is powered by a 3.7 V to DC–DC converter (Pololu
U1V0F5, USD 6). When the start button is pressed, the servo motor rotates, and stops
at different positions to take measurements. After rotating 180◦, the holder returns to
its original position, and waits for another measurement to take place. When the load
button is pressed, the servo motor rotates 90◦ to an intermediate position, making loading
and unloading easier. When neither of these two actions occur, the microcontroller enters
sleep mode.

  
(a) (b) 

Figure 2. Measurement system with (a) a whole sample, and (b) a microcontroller board attached
over the spectrometer module.

2.3. Forage Samples

For this study, a calibration set of 57 samples of hay or dehydrated alfalfa collected
in the north of Spain was utilized. Approximately 200 g of alfalfa was collected during
the sampling procedure, to be analyzed using miniaturized NIRs. Prior to the collection
of the raw scans, the samples were homogenized. After that, the alfalfa samples were
milled, using a domestic spice mill (which is cheap and easy to use), and re-scanned in their
ground form. This type of mill does not allow mesh-size setting. The variability associated
with this factor appears in the collected spectra, and also in the chemometric results. This
is because all spectroscopic information is considered when developing calibrations.

When the NIR analysis was complete, the quality of the alfalfa samples, based on
animal feed requirements, was characterized, according to their nutritive value parameters.
This was done using laboratory reference procedures. A Van Soest analysis [14] was
performed on the neutral detergent fiber (NDF), a gravimetric analysis was conducted on
the mineral content (MC), and a Kjeldahl analysis was conducted on the crude protein (CP).
The CP and NDF are two of the critical parameters for classifying alfalfa quality. CP values
of 19% or higher, combined with crude fiber values of 29% or lower, are related to good
forage quality [15]. Table 2 summarizes the statistics for the nutritive parameters of all
the samples involved in this study. It includes the range and variability in each analyzed
parameter. Appendix A includes the individual values for each alfalfa sample included in
this study.
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Table 2. Statistics for the nutritive value of the alfalfa samples (N = 57).

Parameter (%) Mean Min. Max. SD

NDF 40.70 29.24 61.01 5.50
MC 10.64 8.47 13.71 0.91
CP 14.48 7.19 17.01 1.70

NDF: neutral detergent fiber; MC: mineral content; CP: crude protein.

2.4. Spectral Acquisition

Spectral acquisition requires a scan configuration (see Figure 3). Texas Instruments pro-
vides two different scan configurations within the "Factory” settings: “Column”
and “Hadamard”.

 

Figure 3. NIRscan Nano GUI scan screen (reflectance signal).

Column scanning selects wavelengths one at a time. With Hadamard scanning, several
wavelengths are multiplexed at a time, and the wavelengths are decoded individually.
Hadamard scanning collects light, and offers a higher SNR, but it depends heavily on the
spectrum being measured, and on the measurement system [15]. Column analysis is more
effective for analyzing forage samples, because it is more accurate than other methods of
analysis, due to its reproducibility.

Before scan collection, one to five sections can be configured, depending on the type
of method (Column or Hadamard), the spectral range (the starting wavelength and ending
wavelength), the digital resolution (the wavelength points captured within the defined
spectral range) the exposure time (between 0.635 and 60.960 milliseconds), and the number
of scans per sample (in this work, 10 scans at 10 different points in the sample).

In this work, all samples were scanned in reflectance mode, using the measurement
system shown in Figure 2.
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In order to increase the sampling window and improve the spectroscopic information
for each sample, after the alfalfa samples were homogenized, each was divided into
three subsamples and scanned using miniaturized NIRs. Each spectrum is an average of
10 spectra, in a wavelength range between 901 and 1700 nm, with a non-linear path
wavelength between 2.9 and 3.9 nm. A total of 30 scans were collected for each alfalfa
sample. The precision of the collected spectrum for each sample or signal reproducibility
was evaluated for the raw and ground alfalfa. The statistic of the root-mean-square error
(RMSE) was calculated. Using (1), it is possible to calculate the RMSE for each sample
spectrum. Lower RMSE values are related to reproducible and repeatable spectra.

RMSE = 106 ×
√

∑ D2

n
; D = ya − yb (1)

ya = log 1/R to λ for the average spectrum resulting from averaging a number of scans, and
R is reflectance.
yb = log 1/R to λ for the average spectrum resulting from averaging b number of scans
n = number of spectral data

2.5. Spectral Data Processing

To establish a calibration model to quantify alfalfa nutritive parameters, different
chemometric strategies were assayed. The software Unscrambler X version 10.4 was em-
ployed to find the linear correlation between the NIRS spectra and nutritive parameters.
This software takes NIRS spectra and transforms them into a matrix with X and Y variables,
defined as the wavelength and reflectance. To detect potential spectral outliers, a principal
component analysis was performed on the calibration set, before regression models were
constructed using partial least squares (PLSs) [16]. An optimal number of PLSs factors is
determined using the Unscrambler X software version 10.4 package, based on the minimum
residual variance and 20 segments. Different spectrum mathematical pretreatment strate-
gies were used for NDF, MC, and CP quantification. These approaches were performed
using both the full range of equipment, from 900 to 1700 nm, and a reduced one, from 900
to 1600 nm.

To establish a successful model, a combination of pretreatments, including scatter
correction with the standard normal variate (SNV), and the first and second Savitzky–Golay
derivatives (SG), were tested in this study. Six possible pre-treatments were developed for
three parameters, studying two possible wavelength ranges, for both the raw and milled
samples. A total of 72 mathematical pre-treatments were assayed.

For the evaluation and selection of the most suitable chemometric model, the fol-
lowing statistics were calculated: the coefficient of determination for calibration (R2, see
Equation (2)), and the standard error of calibration (SEC, see Equation (3)) [17].

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (2)

yi are the reference values obtained in the laboratory, ŷi is the prediction of the model, and
n represents the number of samples used in the calibration set.

SEC =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (3)

This parameter provides an average of the typical uncertainty for future sample
prediction based on the ŷi and yi values for the ith sample.

For each parameter evaluated, the best mathematical pre-treatment was selected for the
raw and ground NIR sample analysis. The criteria for the selection of these pre-treatments
were based on the lowest values of calibration standard error (SEC), as well as the values
closest to one for the calibration determination coefficients (R2) [18].
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3. Results and Discussion

For an NIRS procedure to be understood, the characterization of the spectrum data
obtained using the NIRscan Nano prototype is essential. Figure 4 shows the raw and SNV
spectra, plus the first Savitzky–Golay derivative spectra of the alfalfa samples included in
the calibration procedure. Within the NIR wavelength range of the NIRscan Nano prototype,
we can identify some characteristic bands of forages. According to the bibliography, those
bands observed at 1166 nm are related to the protein content of the samples [18], and those
observed at around 1350 nm are related to the fiber content [19]. Additionally, around
1400 nm, there is a band that can give information about the moisture content because, at
that wavelength, OH bond overtone vibrations are observed [20]. In Figures 4 and 5, a
rectangle highlights all the cited wavelengths, and the referenced respective parameters.
Hence, in Figure 4b, which is an extended area between 1650 and 1700 nm of Figure 4a,
we can observe that some of the collected spectra show a noisy signal at the end of the
collected spectra. This noisy wavelength range, as shown in Figure 4c, can be minimized
after scattering correction (SNV) is applied, along with other mathematical pretreatments,
such as derivatives.
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Figure 4. Spectra of the whole samples: (a) raw spectra; (b) extended area from 1650 to 1700 nm;
(c) standard normal variate + first Savitzky–Golay derivative pretreatment.
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Figure 5. Spectra of the ground samples: (a) raw spectra; (b) extended area from 1650 to 1700 nm;
(c) standard normal variate + first Savitzky–Golay derivative pretreatment.

To evaluate the effect of the sample pretreatment on the spectral data set, ground
samples were scanned using NIRscan Nano. Figure 5a shows the spectral data set. As can
be seen, no differences in the representative bands are observed. Moreover, the extended
wavelength range (1650–1700 nm; see Figures 4b and 5b) shows that, after milling the
sample pre-treatment, the noisy wavelength range disappears. These data confirm that
the spectral quality depends on the sampling procedure (raw or ground). This distorted
wavelength range is due to the huge and non-homogeneous particle size of the alfalfa
samples. It is worthy of mention that, after the application of mathematical pretreat-
ments, no differences were observed in the collected spectra of the alfalfa samples (see
Figures 4c and 5c).

As observed in Figures 4 and 5, between 1600 and 1700 nm, the absorbance increases,
and the SNR is lower than in other ranges. It is because the intensity measured at the
detector is proportional to the number of DMD mirrors positioned to reflect the incident
illumination towards it. As the number of pixels changes, the measured intensity is affected
as well, resulting in an increase in noise levels.

Once the spectra were evaluated, the precision of the subsampling procedure for each
scanned sample (raw and ground alfalfa) was evaluated [21]. Five samples were randomly
selected from the 57 analysed. The RMS value was calculated for both the intact and ground
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samples with the two ranges proposed (901–1700 nm and 901–1600 nm). The results are
shown in Table 3.

Table 3. The root-mean-square error (RMS) values for the paired subsamples of the same
scanned sample.

901–1700 nm 901–1600 nm

Sample Raw Ground Raw Ground

1 60,529 27,209 43,283 14,560
2 58,378 23,853 33,386 10,886
3 54,190 20,057 34,085 7029
4 54,854 30,655 36,262 17,678
5 48,472 33,325 34,239 21,939

Once the values have been calculated, two clear trends can be observed. As ex-
pected, the RMS values obtained for the intact samples (raw) are higher than those ob-
tained for the ground ones. These results could be due to heterogeneity in the raw alfalfa.
The difference was also significant when the entire spectrum was compared or the last
100 nm was suppressed. Table 3 shows that the RMS values ranging from 900 to 1600 nm
are lower than the full range of values. These results highlight the influence of the sampling
procedure on the spectrum data precision.

After characterizing the spectral signal, the next step was to develop a calibration
model. To attempt calibration, it is necessary to build a data matrix including nutritive
values (the NDF, MC, and CP) and spectral data. After that, prior to the carrying out of
calibrations, as mentioned in the Material and Methods section, different mathematical
pre-treatments were applied, for the three parameters, to the raw and ground samples,
both for the full range and the reduced range. Partial-least-square regression is used to
establish the correlation between the spectra and the assayed parameters.

Table 4 summarizes the NIRS models’ calibration statistics to quantify the NDF. As
can be seen in Table 4, the R2 values are higher and the SEC values are lower in the chemo-
metric models developed with the reduced wavelength range than in those developed
using the full one. In relation to the variability in the results depending on the mathemat-
ical pretreatment, it is important to note that the SNV plus the second Savitzky–Golay
derivative reached the best calibration statistics for the raw and ground samples. Previous
authors [22], after evaluating different commercial portable NIRS instruments to analyze
ground forages, obtained R2 values for the NDF ranging between 0.95 and 0.71, depending
on the instrumentation employed. Regarding the SEC values, their results were between
2.85 and 1.21. It is not possible to obtain SEC values lower than 1, because the standard
error of the laboratory (SEL) for this parameter is higher than 1.3 [22].

Table 4. Calibration statistics of NIR multivariate models for neutral detergent fiber quantification.

Raw alfalfa

Wavelength range: 901–1600 nm 901–1700 nm
Mathematical
pretreatment R2 SEC R2 SEC

1 4 4 SG 0.898 1.554 0.883 1.670
2 4 4 SG 0.784 2.184 0.786 2.289

SNV 1 4 4SG 0.911 1.392 0.791 2.187
1 4 4 SG SNV 0.840 1.910 0.145 1.398
SNV 2 4 4SG 0.955 1.066 0.514 3.155
2 4 4 SG SNV 0.726 2.558 0.540 3.238
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Table 4. Cont.

Raw alfalfa

Ground alfalfa

Wavelength range: 901–1600 nm 901–1700 nm
Mathematical
pretreatment R2 SEC R2 SEC

1 4 4 SG 0.756 2.749 0.598 2.830
2 4 4 SG 0.842 2.258 0.623 3.371

SNV 1 4 4SG 0.761 2.694 0.043 5.383
1 4 4 SG SNV 0.796 2.421 0.510 3.946
SNV 2 4 4SG 0.892 1.861 0.540 3.803
2 4 4 SG SNV 0.730 2.860 0.524 3.321

N1N2N3: derivative order, number of left smoothing points, number of right smoothing points;
SG: Savitzky–Golay derivative; SNV: standard normal variate; R2: coefficient of determination of calibration; SEC:
standard error of calibration.

Table 5 summarizes the calibration statistics for the CP. Most mathematical treatments
reach R2 values lower than 0.5 for raw alfalfa samples. This could be related to the
heterogeneity in alfalfa forage, with two clearly different parts, the leaf and the stem. The
leaf is the part of the plant that contains a protein fraction. However, it is important to
remark that using the reduced range, the spectrum mathematical pretreatment of the SNV
for the scatter correction, and the second Savitzky–Golay derivative (the same mathematical
pretreatment as for the NDF), R2 values of 0.885, with an SEC of 0.377, were achieved. A
typical SEL for reference CP analysis is around 0.210 [22].

Table 5. Calibration statistics of NIR multivariate models for crude protein quantification.

Raw alfalfa

Wavelength range: 901–1600 nm 901–1700 nm
Mathematical
pretreatment R2 SEC R2 SEC

1 4 4 SG 0.742 0.510 0.884 0.428
2 4 4 SG 0.262 0.911 0.608 1.262

SNV 1 4 4SG 0.307 1.314 0.156 1.524
1 4 4 SG SNV 0.678 0.842 0.257 1.378
SNV 2 4 4SG 0.885 0.377 0.345 0.855
2 4 4 SG SNV 0.328 0.812 0.318 1.368

Ground alfalfa

Wavelength range: 901–1600 nm 901–1700 nm
Mathematical
pretreatment R2 SEC R2 SEC

1 4 4 SG 0.671 0.986 0.706 0.927
2 4 4 SG 0.906 0.530 0.290 1.014

SNV 1 4 4SG 0.773 0.816 0.790 0.650
1 4 4 SG SNV 0.734 0.882 0.723 0.651
SNV 2 4 4SG 0.862 0.660 0.216 1.145
2 4 4 SG SNV 0.820 0.746 0.179 1.433

N1N2N3: derivative order, number of left smoothing points, number of right smoothing points;
SG: Savitzky–Golay derivative; SNV: standard normal variate; R2: coefficient of determination of calibration; SEC:
standard error of calibration.

Based on the ground samples, and a reduced range (901–1600 nm), the developed
models showed statistics around 0.7 or higher, with SEC values between 0.530 and 0.986.
Considering these results, it is worth mentioning that, even though the homogeneity in the
ground samples gives better calibration statistics, NIRscan Nano reached acceptable values
when scanning the raw samples.
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Feeding animals with minerals is a common practice; however, if there is an abnormal
mineral content, there is a high probability of contamination with soil, which is not desirable
in animal feeding systems. To quantify the MC in alfalfa forages, 24 different calibration
models have been developed, assaying different mathematical pretreatments of spectrum
data. The statistics of the proposed PLS models are shown in Table 6. As stated before, the
reduced range gave better calibration statistics than the full one. Comparing mathematical
pretreatments, the scatter correction applied after the derivatization procedure increased
the R2 values, and reduced the SEC. The highest R2 and the lowest SEC values were
0.861/0.219 and 0.867/0.318 for the raw and ground samples, respectively.

Table 6. The calibration statistics of the mineral content multivariate models.

Raw alfalfa

Wavelength range: 901–1600 nm 901–1700 nm
Mathematical
pretreatment R2 SEC R2 SEC

1 4 4 SG 0.524 0.503 0.211 0.572
2 4 4 SG 0.619 0.492 0.129 0.861

SNV 1 4 4SG 0.783 0.374 0.734 0.464
1 4 4 SG SNV 0.502 0.579 0.312 0.491
SNV 2 4 4SG 0.675 0.409 0.679 0.434
2 4 4 SG SNV 0.861 0.219 0.687 0.444

Ground alfalfa

Wavelength range: 901–1600 nm 901–1700 nm
Mathematical
pretreatment R2 SEC R2 SEC

1 4 4 SG 0.650 0.530 0.652 0.506
2 4 4 SG 0.770 0.435 0.243 0.819

SNV 1 4 4SG 0.570 0.586 0.670 0.519
1 4 4 SG SNV 0.867 0.318 0.347 0.723
SNV 2 4 4SG 0.604 0.566 0.591 0.579
2 4 4 SG SNV 0.781 0.424 0.301 0.625

N1N2N3: derivative order, number of left smoothing points, number of right smoothing points;
SG: Savitzky–Golay derivative; SNV: standard normal variate; R2: coefficient of determination of calibration; SEC:
standard error of calibration.

These NDF, CP, and MC calibration model statistics, obtained using the NIRS mea-
surement system, are like those acquired via commercial portable instruments, using a
wavelength range like that evaluated in this work [22,23]. The SEC values are in accor-
dance with laboratory results, and the effect of the sampling procedure has been studied
comparatively in this work. As a summary of the obtained results, Table 7 selects the best
models obtained for each sampling procedure (raw or ground alfalfa) and parameter. As
can be seen, the second derivative is the best of the assayed pretreatments that provide
satisfactory results for the nutritive value quantification.

Table 7. Statistical analysis of alfalfa nutritive values (N = 57).

Parameter Sampling
Mathematical
Pretreatment

Range
(nm)

R2 SEC

NDF
Raw SNV 2 4 4 SG 900–1600 0.955 1.066

Ground SNV 2 4 4 SG 900–1600 0.892 1.861

CP
Raw SNV 2 4 4 SG 900–1600 0.885 0.377

Ground 2 4 4 SG 900–1600 0.906 0.530
MC Raw 2 4 4 SG SNV 900–1600 0.861 0.219

Ground 1 4 4 SG SNV 900–1600 0.867 0.318
N1N2N3: derivative order, number of left smoothing points, number of right smoothing points;
SG: Savitzky–Golay Derivative; SNV: standard normal variate; R2: coefficient of determination for calibration,
SEC: standard error of calibration; NDF: neutral detergent fiber; MC: mineral content; CP: crude protein.
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4. Conclusions and Future Work

In this work, heterogeneous forage (alfalfa) has been selected as a model to evaluate
the precision of instrumental measures (spectra collected), and the effects of sampling
presentation (raw or ground), on calibration statistics. The results have revealed that homo-
geneous forage samples (those milled) allow us to achieve better calibration models than
those scanned in their raw form (heterogeneous). However, for all sampling procedures, it
has been possible to obtain satisfactory calibration to quantify the nutritive parameters.

Through the proposed instrumentation, users can evaluate the forage quality, increase
sampling without incurring costs, and obtain results in real time. This is done by avoiding
delays related to carrying samples from the farm to the laboratory. Furthermore, this
instrument does not require specialized training.

In the future, with the use of internet of things (IoT) tools, data can be sent to the cloud
for processing. In this way, they would be accessible from any device. Thanks to storage
and processing in the cloud, data are accessible from any site with internet access. This
allows the use of data in decisions.
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Appendix A

Alfalfa

Sample Code
Mineral Content

Crude

Protein

Neutral Detergent

Fiber

1 11.41 13.69 48.42
2 13.71 12.12 52.30
3 10.80 14.68 40.53
4 10.46 15.06 39.69
5 12.04 14.05 42.10
6 9.96 13.59 43.37
7 10.83 7.19 61.01
8 9.55 13.18 43.82
9 10.65 14.20 40.02
10 11.09 15.17 38.52
11 9.92 16.53 32.17
12 12.16 17.01 38.92
13 9.44 13.35 46.84
14 11.26 15.98 34.66
15 9.98 16.27 36.25
16 9.58 13.88 43.68
17 10.61 13.78 43.17
18 11.52 15.90 37.41
19 10.24 14.49 42.38
20 10.54 14.22 41.76
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Alfalfa

Sample Code
Mineral Content

Crude

Protein

Neutral Detergent

Fiber

21 10.86 13.28 43.66
22 11.42 16.28 37.79
23 10.78 16.83 39.99
24 10.88 14.01 42.53
25 10.61 14.56 40.62
26 10.27 14.35 42.58
27 10.42 12.74 47.38
28 11.41 15.89 37.76
29 9.41 10.53 51.14
30 10.47 14.23 42.64
31 10.77 16.86 35.55
32 11.32 14.17 42.64
33 10.04 14.64 29.24
34 11.14 13.76 43.73
35 10.49 15.50 37.09
36 10.87 14.23 40.99
37 10.51 14.96 40.71
38 9.39 13.69 39.99
39 11.57 14.67 44.27
40 11.47 13.28 36.94
41 10.08 13.95 45.79
42 11.33 14.28 39.69
43 11.45 16.35 35.44
44 11.48 14.91 39.50
45 8.49 16.43 44.22
46 9.89 16.69 40.03
47 9.22 13.60 45.70
48 8.47 14.17 31.49
49 10.95 16.65 31.44
50 9.40 13.87 35.89
51 11.15 15.85 36.56
52 11.86 16.42 33.51
53 10.56 14.50 39.19
54 10.79 14.69 36.60
55 10.46 14.40 36.64
56 10.35 10.82 47.84
57 10.67 15.13 36.26

Average 10.64 14.48 40.70
Maximum 13.71 17.01 61.01
Minimum 8.47 7.19 29.24

Standard Deviation 0.91 1.70 5.50
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Abstract: Chickpeas are one of the most widely consumed pulses globally because of their high
protein content. The morphological features of chickpea seeds, such as colour and texture, are
observable and play a major role in classifying different chickpea varieties. This process is often
carried out by human experts, and is time-consuming, inaccurate, and expensive. The objective of the
study was to design an automated chickpea classifier using an RGB-colour-image-based model for
considering the morphological features of chickpea seed. As part of the data acquisition process, five
hundred and fifty images were collected per variety for four varieties of chickpea (CDC-Alma, CDC-
Consul, CDC-Cory, and CDC-Orion) using an industrial RGB camera and a mobile phone camera.
Three CNN-based models such as NasNet-A (mobile), MobileNetV3 (small), and EfficientNetB0
were evaluated using a transfer-learning-based approach. The classification accuracy was 97%, 99%,
and 98% for NasNet-A (mobile), MobileNetV3 (small), and EfficientNetB0 models, respectively. The
MobileNetV3 model was used for further deployment on an Android mobile and Raspberry Pi 4
devices based on its higher accuracy and light-weight architecture. The classification accuracy for
the four chickpea varieties was 100% while the MobileNetV3 model was deployed on both Android
mobile and Raspberry Pi 4 platforms.

Keywords: chickpea; convolutional neural network; transfer learning; classification

1. Introduction

Pulses constitute one of the most significant crops in the leguminous family. About
90 million metric tonnes of pulses are produced worldwide [1]. Common beans, lentils,
chickpeas, dry peas, cowpeas, mung beans, urad beans, and pigeon peas are the main
pulses farmed worldwide. Pulses are significant sources of protein, phosphorus, iron,
calcium, and other essential minerals, and help millions of individuals in impoverished
nations meet their nutritional needs [2,3]. Pulses have recently acquired popularity on a
global scale as an alternative to animal-based sources of protein [4]. With a production
of 15 million metric tonnes and a third-place ranking among pulses after beans and peas,
chickpeas are one of the high protein pulses grown in more than 57 nations [1]. Depending
on the cultivar, agronomic practices, and climatic factors, the protein content of chickpeas
varies from 17% to 24% [5]. Additionally, chickpeas are a good source of energy and
include vitamins, minerals, fibre, and phytochemicals. According to Wood and Grusak,
2007 [6], regular consumption of chickpeas lowers the risk factors for diabetes, cancer, and
cardiovascular disease.

For processors, customers, and other stakeholders, the quality of chickpeas is crucial
in influencing their preference [7]. The various factors considered in evaluating the quality
of chickpeas are 100-seed weight, ash content, colour, cooking time, cooked chickpea seed
stiffness, moisture content, protein content, seed size distribution, starch content, total
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dietary fibre, water absorption, and others [8]. It is difficult to assess the quality of a sample
that contains mixed chickpea varieties, so maintaining varietal purity is the first crucial step
in determining chickpea quality. Prior to a deeper examination of their visible or internal
properties, the identification or classification of chickpea types assumes relevance. The most
used imaging method for classifying agricultural products by varietal is RGB imaging [9].
Around the world, different chickpea cultivars are produced in various agroclimatic zones.
The nutrient content, physical characteristics, and economic worth of each variety vary.
Different chickpea varieties can be identified by their physical characteristics, such as colour
and texture, which are visible and aid in classification. However, this classification process
is time-consuming, expensive, and frequently performed by human professionals. Due
to the intricacy of the task and the abundance of visual and environmental components,
research into the creation of tools for the automation of these occupations is still underway.
The need for accurate variety identification systems in precision agriculture is also growing
as a result of the ramifications for the economy, ecology, and society [10].

Deep learning models are being used more frequently, which has led to significant
improvements, notably in classification tasks [11–15]. Deep learning has been used in recent
research for agricultural crop classification due to the increased accuracy and hardware
accessibility. In addition, the rapid advancement of open-source hardware in recent years
has promoted the creation and use of low-cost agricultural surveillance tools with image
processing and AI capabilities. Single-board computers (SBCs) in many configurations, like
the Raspberry Pi (RPi), have spread quickly across many different applications like food
manufacturing [16] and surveillance monitoring [17]. Osroosh et al., 2017 [16] detailed the
design and construction of a monitoring system that employs thermal and RGB images,
built on a Raspberry Pi 3, that is able to operate in difficult real-world scenarios. Rasp-
berry Pi was utilised by Hsu et al., 2018 [18] to build a low-cost monitoring network for
agricultural applications that is intended for wide adoption. A monitoring environment
with many devices and interfaces was developed by Morais et al., 2019 [19], enabling
communication in low-cost agricultural equipment.

In light of this backdrop, the current work provides the results of training using transfer
learning in architectures that have just been investigated for agricultural applications,
as well as their implementation on affordable hardware like the android mobile and
Raspberry Pi 4 microcomputer. In order to obtain findings that help in the classification
of chickpeas, one of the objectives of this research is to incorporate CNN models in a
low-cost, low-power device that can process information in real time. Therefore, four
common Canadian chickpea varieties were utilised and an attempt was made to identify
them utilising computer vision and machine-learning-based methodologies in order to
automate the process of chickpea classification. The work’s goal is broken down into two
subcategories. The first stage involves creating the classification model using computer
vision and machine-learning-based approaches. The deployment phase, which involves
deploying the trained machine-learning model on Android mobile and Raspberry Pi 4
devices, and evaluating its performance, takes place in the second stage.

2. Materials and Methods

In this study, the Crop Development Centre (CDC), University of Saskatchewan,
Saskatoon, Canada, provided four popular Canadian chickpea varieties (CDC-Alma, CDC-
Consul, CDC-Cory, and CDC-Orion) harvested in 2020. To remove unwanted foreign
particles, the seeds were sieved. The seeds were also hand-sorted to remove broken,
mouldy, and discoloured seeds, as well as washed to remove any leftover dust particles.
The initial moisture content of each variety of cleaned chickpeas was evaluated after 24 h
in a 105 ◦C hot air oven [20]. To achieve equal moisture distribution among the samples,
all chickpea varieties were reconditioned to 12.5 ± 0.5% wet basis by adding measured
distilled water and well mixing it, followed by seven days of storage in airtight low-density
polyethylene (LDPE) bags at 5 ◦C.
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The proposed approach in this study is presented as a block diagram in Figure 1. It
combines data acquisition, pre-processing, model training, and deployment. The images
used for the experiment were collected using a smartphone camera and an industrial
camera in a natural lightning environment. Various data pre-processing techniques were
used to augment the existing dataset. For training purposes, transfer learning was used
to create and train machine-learning models. The model evaluation was performed on a
separate test dataset. Thereafter, the optimal machine-learning model was deployed on an
Android device and a Raspberry Pi 4 to check its real-time performance.

 
Figure 1. Flow diagram of the experimental process.

2.1. Data Acquisition

To build robust classification models, the RGB images of the chickpea sampled were
captured using two different cameras (smartphone camera and industrial camera) to
accommodate potential variations due to imaging systems. The smartphone (Samsung
Galaxy A6 Plus) used comes with a dual camera, where the primary camera has 16 MP,
followed by 5 MP for the secondary camera with an f/1.7 aperture opening. First, the
chickpeas were placed in a tray in a manner such that it was fully filled with chickpeas.
In order to collect images through a smartphone, the smartphone camera was set on top
of the chickpea tray in such a way that it could capture the maximum area of the tray
without including the borders of the tray. The images were 3456 × 4608 in resolution
and a total of 150 images were collected for each variety. As for the industrial camera, a
GigE colour industrial camera (Model: DFK 33GX273; Specifications: 1.6 MP, 60 FPS; The
Imaging Source, USA) was used. The chickpea seeds were placed over a conveyor belt
and the speed of the belt was fixed at 1 m/min to avoid image distortion. The industrial
camera was set up on top of a conveyor belt and the video of the chickpea variety was
captured. Thereafter, the video was processed and each frame of the video was extracted
as an image. The extracted images were used to build our chickpea dataset with different
cameras. Thereafter, a total of 400 images were collected for each variety from captured
video with 1440 × 1080 resolution. Thereafter, all the images were combined (smartphone
and industrial camera) and the final dataset consisted of 550 images per variety. The reason
behind using two different sources of dataset (i.e., industrial camera and smartphone) is to
increase the variability in the dataset which helps in better generalisation by the model. In
other words, it will increase the robustness of our trained model since each source of data
is exposed to different environmental conditions and, by combining the data, the model
becomes more tolerant to changes in lighting, noise, and other factors, producing more
reliable and accurate results. Further, this variability will make the model better generalise
on datasets acquired with different camera resolution and conditions. Figure 2 displays the
collected images for the four chickpea varieties.
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Figure 2. Images of four chickpea varieties.

2.2. Data Augmentation

Image data augmentation is a way of artificially increasing the amount and diversity of
a training dataset by realistically transforming images currently in the training dataset. Data
augmentation aids in the building of more efficient models, which improves the model’s
generalisability, and prevents overfitting and the problem of the network memorising
specific information of the training images [21,22]. Image alteration methods used in this
work for real-time augmentation include rotation, horizontal and vertical translation, shear,
and zoom. The training dataset is made up of both the original images and the augmented
images produced through alterations.

Different pre-processing techniques were applied using the ImageDataGenerator func-
tion defined in TensorFlow. Table 1 shows the list of different data augmentation pre-
processing techniques and their values. The rotation range rotates the image clockwise by
a given number of degrees. A horizontal flip flips the image horizontally. The width shift
range shifts the image left or right by considering the given number as a percentage (i.e.,
0.2 = 20%). The height shift range shifts the image up or down by considering the given
number as a percentage. Shear range distorts the image by considering the given value as
an angle. Zoom range zooms the image by considering the given number as a percentage.

Table 1. Different data augmentation parameters along with their values.

Parameter Value

Rotation Range 40
Horizontal Flip True
Width Shift Range 0.2
Height Shift Range 0.2
Shear Range 0.2
Zoom Range 0.2

2.3. Feature Extraction

The present work uses a CNN-based model for extracting features from the input images.
In our study, three different models named NasNet-Mobile, MobleNetV3-Small, and Efficient-
NetB0 were selected. The architecture of these models is fast and efficient, designed for frequent
or real-time predictions on mobile devices and single-board computers [23,24]. All three mod-
els are designed using neural architecture search (NAS) to achieve optimal architecture for
on-device machine learning. NAS is the process of automatically searching for the optimal deep
neural network (DNN) architecture using three major components: search space, optimisation
methods, and candidate evolution methods. The main idea of search space is to define the
optimal architecture of the model by considering the input dataset [25]. Since it requires prior
knowledge of the dataset, it is not ideal for novel domains. Another problem with search space
is its limitations in exploring the available architecture, as some of the excluded architecture
might be a better choice. Optimisation methods help search space determine the best possible
architecture by considering the effectiveness of the selected architecture. The last component,
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candidate evolution, is designed for comparing the results produced by optimisation methods
and helps search space choose the best possible architecture [26].

2.3.1. NasNet-A (Mobile)

The first model used in our study was NasNet-A (mobile). As the name suggests, the
architecture of this model was developed using NAS. Researchers redesigned a search space
(the first component of NAS) by including controller recurrent neural network (RNN) in order
to obtain the best architecture for the CIFRA 10 dataset. Thereafter, the same architecture
(NasNet architecture) was taken, and stacking of the copies of the developed CNN layers
on each other was performed and applied to the ImageNet dataset. As a result, the new
architecture was able to achieve 82.7% top-1 and 96.2% top-5 accuracy on the ImageNet dataset.
Table 2 showcases the high-level representation of the used NasNet-A (mobile) architecture.
As can be observed from the table, the architecture consists of reduction cells and normal cells.
Reduction cells produce a feature map of their inputs by reducing their height and weight,
whereas normal cells produce a feature map with the same dimensions as their inputs [27].

Table 2. NasNet-A (mobile) model architecture.

Stage Operator Resolution Channels Layers

1 Conv2D, 3 × 3 224 × 224 3 1
2 Reduction Cell 111 × 111 32 2
3 Normal Cell 28 × 28 44 4
4 Reduction Cell 28 × 28 88 1
5 Normal Cell 14 × 14 88 4
6 Reduction Cell 14 × 14 176 1
7 Normal Cell 7 × 7 176 4

2.3.2. MobileNetV3 (Small)

The second model chosen was MobileNetV3 (small) because of its high efficiency for
on-device machine learning. In order to develop the cell for MobileNetV3, researchers
took MobileNetV2′s cell (consisting of residual and linear bottlenecks) and added squeeze-
and-excite to the residual layers. Moreover, upgraded layers (with modified switch non-
linearities), squeeze, and residual have sigmoid functions instead of sigmoid to get better
results. After designing this cell, NAS was applied to obtain the best possible network
architecture. Additionally, researchers also applied the NetAdapt algorithm to the developed
model to fine-tune each layer. The model had 67.5% top-1 accuracy with 16.5 ms average
latency on the ImageNet dataset. Table 3 indicates the high-level architecture of the model [28].

Table 3. MobileNetV3 (small) model architecture.

Stage Operator Resolution Channels Layers

1 Conv2d, 3 × 3 224 × 224 3 2
2 Bottleneck, 3 × 3 112 × 112 16 2
3 Bottleneck, 3 × 3 56 × 56 16 2
4 Bottleneck, 3 × 3 28 × 28 24 1
5 Bottleneck, 3 × 3 28 × 28 24 2
6 Bottleneck, 3 × 3 14 × 14 40 1
7 Bottleneck, 3 × 3 14 × 14 40 1
8 Bottleneck, 3 × 3 14 × 14 40 1
9 Bottleneck, 3 × 3 14 × 14 48 1
10 Bottleneck, 3 × 3 14 × 14 48 2
11 Bottleneck, 3 × 3 7 × 7 96 1
12 Bottleneck, 3 × 3 7 × 7 96 1
13 Conv2d, 1 × 1 7 × 7 96 1
14 Pool 7 × 7 576 1
15 Conv2D, 1 × 1, NBH 1 × 1 576 1
16 Conv2D, 1 × 1, NBH 1 × 1 1024 1
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2.3.3. EfficientNetB0

The third model selected for the study was EfficientNetB0 because of its state-of-the-
art accuracy, small size, and speed compared to other ConvNets. In order to develop the
EfficientNet, researchers used NAS on a new mobile-sized convolutional network and
came up with EfficieNetB0, which had 77.1% top-1 accuracy and 93.3% top-5 accuracy on
the ImageNet dataset. In order to make EfficientNetB0 more efficient, researchers proposed
a new compound scaling method that uniformly scales all dimensions (depth, width,
and resolution) of any given model and used that method on EfficientNetB0 to produce
better versions of it (i.e., EfficientNetB1, EfficientNetB2, EfficientNetB3, EfficientNetB4,
EfficientNetB5, EfficientNetB6, and EfficientNetB7). For our study, we used EfficentNetB0,
which consists of a mobile inverted bottleneck MBConv cell and squeeze-and-excitation, as
shown in Table 4 [29].

Table 4. EfficientNetB0 architecture.

Stage Operator Resolution Channels Layers

1 Conv2d, 3 × 3 224 × 224 32 1
2 MBConv1, k 3 × 3 112 × 112 16 1
3 MBConv6, k 3 × 3 112 × 112 24 2
4 MBConv6, k 5 × 5 56 × 56 40 2
5 MBConv6, k 3 × 3 28 × 28 80 3
6 MBConv6, k 5 × 5 14 × 14 112 3
7 MBConv6, k 5 × 5 14 × 14 192 4
8 MBConv6, k 3 × 3 7 × 7 320 1
9 Conv2D, 1 × 1 7 × 7 1280 1

2.4. Training of CNN Architectures

The chickpea image dataset was organised into four labelled files, each with 550 original
images. The dataset was split into three parts: training, validation, and testing. The training
was performed on 80% of the original images, with the remaining 10% used for valida-
tion and the other 10% for testing. As a result, the 80:10:10 ratio was consistent across
all varieties and models. The validation set was used to validate training performance,
whereas the test set was used to validate classifier performance. The images for training,
validation, and testing were chosen by initialising the GPU random seeds to ensure that the
model networks were trained, validated, and tested on the same dataset. All three model
architectures utilised in this work were trained five times using five different random
seeds and the findings reported in this study are for a single random seed (3) shared by
all model architectures. The different hyperparameters utilised during network training,
such as momentum, number of epochs, and optimiser (stochastic gradient descent), were
modified to properly train the CNN for image classification. Momentum is employed
during network training to accelerate the learning rate. An epoch is the number of times
the network traverses the complete training dataset. It is important to note that the number
of epochs that a model should be trained for depends on a number of factors, including
the size and complexity of the dataset, the complexity of the model, and the desired level
of accuracy. The optimiser is used to update the network’s learnable parameters during
training in order to reduce the loss function [30]. The settings of these hyperparameters
(Table 5) were chosen based on available literature and then kept constant to allow for fair
comparisons between networks [31]. The learning rate specifies how frequently the weights
in the layers are updated during training, whereas the batch size specifies the number of
images used to train the network in each epoch. The minimum and maximum ranges of
the hyperparameters were determined through several trials and based on existing related
literature. Since the training was performed on pre-trained networks with defined weights,
the learning rate was kept low at 0.005. A very low learning rate may result in prolonged
training time without convergence, while a very high learning rate may result in poor
learning of complexity from the training dataset [32]. Similarly, choosing the right batch
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size is critical for network training because a small batch size will converge faster than a
large batch size. Furthermore, a bigger batch size will achieve optimum minima, which
a very tiny batch will find difficult to achieve. For the training, ‘TensorFlow Lite Model
Maker‘ was used that simplified the process of training a TensorFlow Lite model using
custom dataset. It uses transfer learning to reduce the quantity of required training data
and training time, resulting in fewer epochs of model training. In this study, we have added
two layers, a dropout layer and a dense layer, after each pre-trained CNN. The dropout
rate used was 20% in the dropout layer and the dense layer had four units, or neurons, in
order to classify four different varieties of chickpea with the SoftMax activation function.
The study was conducted on a Google Colab configured with an NVIDIA Tesla K80 GPU
and 12 GB of RAM.

Table 5. Values of hyperparameters used in machine-learning models.

Parameters Values

Max Epochs 5
Mini Batch Size 32
Optimiser Stochastic Gradient Descent (SGD)
Initial Learning Rate 0.005
Momentum 0.9
Loss Function Categorical Cross Entropy

2.5. Model Evaluation

In this study, the model’s performance was assessed using accuracy, precision, sensi-
tivity, and specificity obtained from the confusion matrix of the models [33].

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Specificity =
TN

TN + FP
(3)

Sensitivity =
TP

TP + FN
(4)

where TP, TN, FP, and FN represent true positive, true negative, false positive, and false
negative, respectively. True positive is a consequence in which the model predicts the
positive class accurately and true negative indicates accurate prediction of the negative
class. False positive indicates the incorrect prediction of the positive class by the model and
false negative indicates the incorrect prediction of the negative class.

In addition to the previously mentioned metrics used to evaluate classifier perfor-
mance, the models were also assessed based on the area under the receiver operating
characteristic (ROC) curve, known as AUC. AUC is a significant scalar value that provides
an overall assessment of a classifier’s performance. The ROC curve plots the true positive
rate (TPR) against the false positive rate (FPR), with TPR on the y-axis and FPR on the
x-axis. AUC measures the classifier’s ability to distinguish between classes and represents
the degree of separability. It ranges from 0.5 to 1.0, where the minimum value corresponds
to a random classifier and the maximum value indicates a perfect classifier. AUC has the
advantageous properties of threshold and scale invariance, making it a robust metric. This
implies that AUC is not influenced by the chosen threshold or the scale of probabilities.
Computationally, AUC is determined by aggregating trapezoid areas beneath the ROC
curve. AUC values between 0.7 and 0.8 are considered acceptable, 0.8 to 0.9 as excellent,
and greater than 0.9 as outstanding [33].
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The classification time measure would utilise the model’s average time to predict an
image class. This was accomplished by employing a timer at the beginning and end of
the evaluation procedure, and the classification time was calculated using the following
formula [34]:

Classification time =
Test evaluation time

Number o f steps × Batch size
(5)

The Python batch dataset format was applied to the test dataset. The batch size
hyperparameter was used to group the images in this format. A batch in this experiment
consisted of 32 images.

2.6. Confusion Matrix

The confusion matrix of the test set was used to assess the models’ performances. The
confusion matrix results give the quantitative and predictive values for chickpea varietal
categorisation. The anticipated class/output class is on the X-axis of the matrix shown in
Figure 3, while the true class/target class is on the Y-axis. The diagonal cells in the matrix
reflect correctly categorised observations, showing that the anticipated and actual classes
are the same, whereas the remaining observations have been misclassified [33].

Figure 3. Confusion matrix for multi–class classification.

2.7. Deployment Platforms

Among the three studied machine-learning models, it is planned to deploy the model
with optimal performance on an Android device and a Raspberry Pi 4 device to verify its
functionality in the real world.

2.7.1. Mobile Application Development

To deploy trained machine learning on mobile devices, the models were converted to
TensorFlow Lite termed interpreters in the format of “.tflite” files using the TensorFlow Lite
Task Library API. TensorFlow Lite is a collection of tools built for edge, embedded, and
mobile devices, allowing for on-device machine learning. The benefits of edge machine
learning include real-time latency (no data offloading), privacy, robustness, connectivity,
a smaller model size, and efficiency (costs of computation and energy in watts per FPS).
It supports Linux, Android, iOS, and the MCU. The TensorFlow Lite converter and Ten-
sorFlow Lite interpreter are two components for the deployment of TensorFlow models
on mobile devices [35]. To begin, the Keras model that is created using the TensorFlow
2.0 library was exported to pb (protocol buffer) models. Second, the PB models were
converted to TensorFlow Lite models using the TensorFlow Lite Converter. Finally, the
TensorFlow Lite interpreter was set to execute the TensorFlow Lite models on smartphones
and take advantage of smartphone hardware resources to boost detection performance
even further [36]. To facilitate the use of TensorFlow Lite models on mobile phones, the
mobile application was developed for Android OS using the Java programming language
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and the TensorFlow Lite library. The application takes live camera image streams as input
and processes them individually. Each image was processed by a Keras-based Tensorflow
Lite model and the model produced a list of confidence scores, indicating the probability
of the image belonging to a particular class. The application would take the highest confi-
dence score index and display the image with a label with that index. A screenshot of the
application is given in Figure 4.

Figure 4. Deployed model in Android device (smartphone) showing the prediction accuracy for
Orion chickpea variety.

2.7.2. Raspberry Pi 4

Raspberry Pi is a low-cost, credit-card-sized single-board computer that was developed
in 2012 by the Raspberry Pi Foundation in the UK. Raspberry Pi has its own operating
system, previously called Raspbian, based on Linux. The Raspberry Pi includes 26 GPIO
(General Purpose Input/Output) pins, allowing users to connect a larger variety of external
hardware devices. Furthermore, it supports practically all of the peripherals offered
by Arduino. This board accepts code in practically any language, including C, C++,
Python, and Java. The Raspberry Pi has a faster processor than the Arduino and other
microcontroller modules [37]. It can function as a portable computer. The details of the
Raspberry Pi 4 are given in Table 6.

The Tensorflow Lite model was deployed on the Raspberry Pi 4 through a script
written in Python that provides basic information, including the real-time prediction of
chickpea variety and the percentage of prediction accuracy. The script takes real-time
images as input and feeds them one by one to the TFLite model to process them. The model
provides a set of confidence scores, which represent the probability of the image belonging
to different categories. Then, the script will select the index corresponding to the highest
confidence score and present the image along with the label associated with that index.
The experimental arrangement for model deployment using the Raspberry Pi 4 is given in
Figure 5.
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Table 6. Technical attributes of the single-board computer Raspberry Pi 4.

Processor Broadcom BCM2711, Quad core Cortex-A72 (ARM
v8) 64-bit SoC @ 1.5GHz

RAM 8GB LPDDR4-3200 SDRAM
Bluetooth Bluetooth 5.0, BLE

Wi-Fi 2.4 GHz and 5.0 GHz IEEE 802.11ac wireless
USB 2 USB 3.0 ports; 2 USB 2.0 ports

Ethernet Gigabit Ethernet
HDMI 2 × micro-HDMI ports (up to 4kp60 supported)
Storage MicroSD card slot

Power supply 5.1V 3A USB type C power
Dimensions 85.6 mm × 56.5 mm

Operating temperature 0 to 50 ◦C

 
Figure 5. Experimental arrangement for model deployment in Raspberry Pi 4 using industrial camera.

3. Results and Discussion

3.1. Performance of the Models

The performance of the models is displayed in Figure 6. It is vital to monitor the
progress of training a deep learning network. The training metrics for each iteration
are shown in the training graphs (Figure 6). This visualisation not only displays the
changes in network accuracy as the network is trained but it also displays any overfitting
of the training data [9]. Figure 6 shows the classification accuracy and cross-entropy
loss for the best overall classification accuracy of the pre-trained CNN networks. The
holdout validation monitors the training progress and assists in model optimisation. The
variation between their training and validation accuracy is negligible, which indicates the
model has generalised well enough on the training dataset and performed well on the
validation dataset. The figures revealed that NASNet Mobile (Figure 6a), MobileNetV3
(Figure 6b), and EfficientNetB0 (Figure 6c) appeared to have comparable outcomes. The
models achieved validation accuracy values that were higher than their training accuracy
(Table 7) and the figures indicated no overfitting, with the models converging within five
epochs. Further, when the model was trained beyond five epochs, it resulted in model
overfitting and poor accuracy.
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(a) 

  
(b) 

  
(c) 

Figure 6. Accuracy and loss graph for each model: (a) NasNet-A (mobile); (b) MobileNet V3 (small);
(c) EfficientNet B0.

The analysis of Table 7 indicated that the test accuracy obtained with NasNet-A, Mo-
bileNetV3, and EfficientNetB0 was 96.82%, 99.09%, and 98.18%, respectively. The high
classification accuracy of NasNet can be ascribed to its architecture, where there are only
two types of modules or cells. The normal cell extracts features and a reduction cell down-
samples the input [27]. The ultimate architecture is created by stacking these cells in a
specific pattern, resulting in faster convergence of the network with high accuracy. The
good classification accuracy of the MobileNetV3 model can be attributed to their bottle-
neck residual block, which uses 1 × 1 convolutions to generate a bottleneck. When a
bottleneck is used, the number of parameters and matrix multiplications is reduced, which
makes the residual blocks as thin as possible in order to maximise depth while using fewer
parameters [38]. The original EfficientNet’s basic module is Mobile Inverted Bottleneck
Convolution, which contains an expansion convolution to allow for a significantly larger
number of channels for depth-wise convolution, resulting in higher accuracy [39]. Further-
more, these networks have a complex architecture and are classified as directed acyclic
graph (DAG) networks, which have one layer that receives input from multiple layers

101



Appl. Sci. 2023, 13, 7804

and also outputs to multiple layers [9]. Since the chickpea varieties appeared to be very
similar, it was critical for the network to learn the complexity among the varieties in order
to perform well in classification.

Table 7. Training, validation, and testing results of the three models for chickpea varietal classification.

Model Training Validation Testing
Time Per

Image (ms)

Loss Accuracy Loss Accuracy Loss Accuracy

NasNet-A
(mobile) 0.499 0.946 0.459 0.959 0.455 0.968 38.36

MobileNetV3 0.465 0.966 0.427 0.981 0.425 0.990 26.82
EfficientNetB0 0.495 0.950 0.442 0.977 0.426 0.981 42.86

A useful tool for visualising the performance of the CNN networks is the confusion
matrix. Tables 8–10 display the confusion matrix of the three models used to categorise the
four varieties of chickpeas, making it simpler to identify the classes that led to the greatest
amount of inaccuracy in the trained models. For a better understanding of the precision
and sensitivity (recall) values acquired for each class and model, it is possible to determine
the number of images that constitute true positives or false positives for each class. Table 8
of the confusion matrix illustrates this by showing that, of the 50 samples used to categorise
CDC-Leader, 46 were correctly identified (TP = 46), whereas 4 were mistakenly classified as
CDC Orion (FP = 4). As a result, the CDC Leader’s accuracy was 92% and its false positive
rate was 8%. From the confusion tables, it can be observed that the varieties CDC-Leader
and CDC-Orion often mispredict each other’s labels, which may be attributed to their close
colour shades and subtle differences in seed texture.

Table 8. Confusion matrix of NasNet—A (mobile).

Consul Cory Leader Orion Specificity Sensitivity

Consul 57 0 0 0 1 1
Cory 0 54 0 0 1 1
Leader 0 0 46 4 0.982 0.921
Orion 0 0 3 56 0.975 0.949

Precision 1 1 0.938 0.933

Table 9. MobileNetV3 (small) confusion matrix.

Consul Cory Leader Orion Specificity Sensitivity

Consul 61 0 0 0 1 1
Cory 0 58 0 0 1 1
Leader 0 0 50 0 0.988 1
Orion 0 0 2 49 1 0.961

Precision 1 1 0.961 1

Table 10. EfficientNetB0 confusion matrix.

Consul Cory Leader Orion Specificity Sensitivity

Consul 49 0 0 0 1 1
Cory 0 50 0 0 1 1
Leader 0 0 54 2 0.988 0.964
Orion 0 0 2 63 0.987 0.969

Precision 1 1 0.964 0.969
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Further, the value of the area under the average receiver operating characteristic (ROC)
curve, AUC, is provided in Figure 7a for all the three models. It was observed that the
AUC values were the highest for the MobileNetV3 and EfficientNetB0 models followed
by NasNet-Mobile. The high AUC values are an indicator of the excellent classification
performance by the classifier models. Besides, the one-vs.-all classification approach was
also conducted with ROC curve and AUC (Figure 7b). Since there are four chickpea
varieties, four ROC curves were generated along with their AUC values. For each variety, it
was taken as the positive class and the other varieties were jointly grouped as the negative
class. The high AUC values in all the three models gives us an indication of the good
performance of the models at classifying individual varieties.

 

 

 

 

 

 

(a)  (b) 

Figure 7. (a) Average ROC curve and AUC value of MobileNetV3, NasNet-Mobile, and Efficient-
NetB0 models; (b) one-vs.-all ROC curves and AUC values of MobileNetV3, NasNet-Mobile, and
EfficientNetB0 models.
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It is crucial to determine the time taken by the various models to identify a test
image because this reveals the model’s real-time detection speed [40]. For a massive
number of convolutional operations, deep CNN needs powerful computing power. The
development of small models is urgently needed because smartphones and single-board
computers frequently have resource limitations due to their small size. Smaller models
can significantly increase detection speed while lowering resource costs. Table 7 shows
the length of time required by various CNN models to categorise a single image. On
mobile devices and single-board computers, MobileNetV3 outperformed NasNet-A and
EfficientNetB0 in terms of speed. NasNet-A mobile (23 MB) and EfficientNetB0 (29 MB)
had substantially larger models than MobileNetV3 (1.99 MB), although MobileNetV3′s
detection speed (27 ms/image) was quicker than NasNet-A mobile (38 ms/image) and
EfficientNetB0 (43 ms/image).

Hence, the classification of the images by MobileNetV3 took the least time among the
compared models, making it the most effective model. The model, however, was assessed
as a Keras model. Thereafter, the model was enhanced using post-training quantisation
and transformed to a TensorFlow Lite model in order for it to be used in edge computing
applications like Android mobile and Raspberry Pi 4.

3.2. Performance of the Deployed MobileNetV3 Model

The optimal machine-learning model chosen for deployment was MobileNetV3 based
on its relative superior performance. To determine the deployment’s performance, the
smartphone’s camera was held on top of a conveyor belt. The chickpea seeds were placed
on a conveyor belt operating at a speed of 1 m/min. The smartphone identified each variety
in real time, as can be seen in Figure 4. In order to record the results, the results of each
frame were saved. As the testing experiment was conducted for 10 s at a speed of 40 fps,
we got 400 labels. Thereafter, the confusion matrix was generated from the recorded results
(Table 11). A similar approach was taken in the case of Raspberry Pi 4 deployment, where
an industrial camera was used to capture the live images of chickpeas, classify them in
real time, and display the results on the monitor as given in Figure 5. From Table 11, it is
clear that the MobileNetV3 model can successfully classify the chickpea varieties during
real-time deployment on both platforms.

Table 11. MobileNetV3 (small) confusion matrix on deployed platforms (Android mobile and
Raspberry Pi 4).

Consul Cory Leader Orion Specificity Sensitivity

Consul 100 0 0 0 1 1
Cory 0 100 0 0 1 1
Leader 0 0 100 0 1 1
Orion 0 0 0 100 1 1

Precision 1 1 1 1

4. Conclusions

The present study used a CNN-based model with the transfer-learning approach
to distinguish the four different varieties of chickpea. The CNN models used for the
study were NasNet-A, MobileNet-V3, and EfficientNet-B0. It was observed that the three
models generalised well on the test dataset, with accuracy of 96.82%, 99.09%, and 98.18%,
respectively. Further, the optimal MobileNetV3 model was deployed on two platforms,
viz., Android mobile and Raspberry Pi 4, by converting trained models into the TensorFlow
Lite version. The classification accuracy obtained was 100% on both deployment platforms.
Compared to the other models, the MobileNetV3 is lightweight, inexpensive, and requires
less time to train. In order to conduct deep learning tasks in rural areas without mobile
networks, MobileNetV3-based models are ideal for integration into smartphone apps and
IoT devices. However, this study is not applicable to mixtures of varieties and can only
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accurately identify the chickpea varieties before any mixing. Future studies may involve
the application of this automated classification technique to beans and other legumes, and
the information can act as a useful resource for bean and legume breeders.
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Abstract: Optimization of agricultural practices is key for facing the challenges of modern agri-food
systems, which are expected to satisfy a growing demand of food production in a landscape charac-
terized by a reduction in cultivable lands and an increasing awareness of sustainability issues. In this
work, an operational methodology for characterization of vegetation biomass and nitrogen content
based on close-range hyperspectral remote sensing is introduced. It is based on an unsupervised
active learning technique suitable for the calibration of a partial least square regression. The pro-
posed technique relies on an innovative usage of Shannon’s entropy and allows for the set-up of
an incremental monitoring framework from scratch aiming at minimizing field sampling activities.
Experimental results concerning the estimation of grassland biomass and nitrogen content returned
RMSE values of 2.05 t/ha and 4.68 kg/ha, respectively. They are comparable with the literature,
mostly relying on supervised frameworks and confirmed the suitability of the proposed methodology
with operational environments.

Keywords: UAV; precision agriculture; hyperspectral imagery; active sampling; vegetation biomass;
vegetation nitrogen content; partial least squares regression

1. Introduction

Nowadays, adequate crop management is crucial to ensure high and sustainable food
production. The increasing world population needs higher productivity, but at the same
time, reduces the availability of agricultural lands [1]. Moreover, the increased awareness of
the environmental impact of fertilizers and water supplies is modifying farming practices
and regulations with the objective of minimizing waste of resources [2]. As a result,
according to the second and the twelfth Sustainable Development Goals, i.e., zero hunger
and responsible consumption and production, agri-food systems are asked to meet the
challenge of increasing productivity in a sustainable manner [1].

In this context, automation and digitalization are key, because they allow for optimiz-
ing all the phases of the agricultural cycle, from sowing to harvesting. However, while
automation, i.e., the exploitation of machines able to help and outperform humans in
production tasks, has been widespread in agricultural practice for several years [1], digital-
ization, i.e., the creation and exploitation of digital twins of farmlands [3], is still limited.

Digital twins are virtual equivalents of physical objects [4] with whom they are con-
nected in real time. Their intrinsic dynamic nature includes the representation of the current
behavior of real objects, as well as the prediction of their future state [5]. In the case of
agricultural systems, the parameters to be collected for building such a representation are
related to both the environment (such as air temperature, humidity, precipitations, etc.) and
the vegetation. These are traditionally retrieved through field measurements that, despite
their precision, become unsustainable in presence of distributed targets. Therefore, the
exploitation of remote [6] and close-range sensing technologies is essential [7–9]. Indeed,
resolution issues and the flexibility of close-range remote sensing platforms, with particular
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reference to the possibility of carrying different sensors, make drones the preferred tools
for precision agriculture. In particular, hyperspectral imagery is mostly exploited because
of the spectral resolution and detail it can offer [10].

The approaches developed to retrieve vegetation biophysical parameters from remote
sensing data can be classified as physical-based or empirical [11]. In the first case, a model
based on radiative transfer theory is inverted. This requires significant knowledge of the
scene, which has to be adequately parametrized both at canopy structure and atmospheric
levels, since the solution of the problem is to find the best match between the simulated
signal and the measured one. In turn, empirical methods rely on the direct calibration
of a relationship between the measured signal and the biophysical variable of interest.
These methods are constrained by how representative the calibration data is compared
to the behavior of the object to be modeled [11]. However, if significant training samples
are provided, empirical methods, such as the partial least squares regression (PLSR) [12],
are able to deliver accurate predictions of many variables of agricultural interest. Despite
some studies raised concerns about the ability of such methodologies to model nonlinear
relation between remote sensing data and, as an example, the biomass [13], the literature
widely exploited PLSR to estimate quantities such as grapevine yield and berry weight [8],
grassland biomass [14], nitrogen [9] and phosphorus [15] content and carotenoids content
in cotton crops [16].

Using empirical methods, the selection of significant samples is fundamental for model
calibration. In the literature, this concept is usually expressed as active sample selection or
active learning [17]. Its purpose is to extend the forecasting capability of an existing training
dataset by adding a limited number of samples from newly available acquisitions [9,18] in
order to allow new predictions with limited field work.

As stated in [18], active learning techniques suitable to solve regression problems
can be categorized as based on uncertainty [19] or diversity criteria [20]. In the first case,
available samples are ranked according to their uncertainty. The higher the uncertainty,
the better their rank. In this family of methods, those based on variance-based pool of
regressors (PAL) are probably the most interesting. The initial step in the PAL algorithm
is the generation of n random subsets of the available training set. Each subset is used to
train a regressor which delivers a prediction for the samples stored in the test set. This way,
the samples in the test are coupled with n predictions, each one having its own variance
with respect to the original training set. The higher the variance, the higher the uncertainty
associated with a specific sample, which is therefore aggregated to the training set [18].
This methodology is thoroughly discussed in [21] and adopted, as an example, in [9].

Active learning techniques based on diversity criteria select samples based on the
dissimilarities they introduce in the training datasets [18]. In this context, several metrics
can be used to assess such dissimilarity like the Euclidean distance [22] or the cosine angle
distance [23].

While the past literature mostly focused on the analysis of vegetation parameters,
specific crops or growing stages, maybe not yet investigated using a given sensor [24–26],
the purpose of this paper is the introduction of a crop monitoring framework, based on a
PLSR model, iteratively updated as new measurements becomes available. The proposed
approach is characterized by the use of a novel unsupervised and completely data-driven
selection criterion for the choice of sampling areas for model calibration. It is assumed that
any prior knowledge about the field or models to draw upon for active samples selection
are available. In other words, monitoring activities are started from scratch and initialized
by the first observation. Calibration data for PLSR are selected based on an innovative
technique relying on the concept of entropy as defined by Shannon [27].

According to the active learning paradigm, the proposed methodology allows for
(i) reducing field sampling, (ii) including newly acquired data within the model to improve
its prediction capability and (iii) setting-up a continuous monitoring framework.

The work is organized as follows. Exploited data and the adopted methodology
are introduced in Section 2. Section 3 is dedicated to the presentation of the obtained
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experimental results, which are discussed in Section 4. Conclusions are drawn at the end of
the work.

2. Materials and Methods

2.1. Data

Data used in this study have been collected in two different campaigns using, as
described by Franceschini et al. [9], the WageningenUR Hyperspectral Mapping System
(HYMSY) [28]. It is a complex multisensory imaging system including, among other things,
a hyperspectral sensor able to acquire data in 101 reflectance bands included in the range
450–950 nm with 5 nm interval. As declared in [9], data are provided in georeferenced (i.e.,
geometrically corrected) calibrated reflectance units.

The test site is a crop field cultivated with ryegrass (Lolium perenne) [29]. The study
area was divided in 60 rectangular plots (see Figure 1) measuring 1.5 × 8 m. A total of
15 different fertilization treatments, with different nitrogen (N) amounts, were applied to
the plots. In such way, each treatment was applied to 4 plots. In Figure 1, each treatment is
associated with a different color.

Figure 1. An orthomosaic of the study area. Colored rectangles indicate the plots. Each color refers to
a fertilization treatment.

Ground measurements have been implemented concurrently with drone acquisitions
with destructive methods on 15 May 2014 (average dry mass: 33.5 t/ha, average nitrogen
content: 43.4 kg/ha), 14 October 2014 (average dry mass: 16.2 t/ha, average nitrogen
content: 37.2 kg/ha), 9 May 2017 (average dry mass: 11.0 t/ha, average nitrogen content:
23.8 kg/ha), 29 August 2017 (average dry mass: 10.2 t/ha, average nitrogen content:
29.8 kg/ha) and 26 October 2017 (average dry mass: 9.5 t/ha, average nitrogen content
23.8 kg/ha) [9].

The objective of the study is the estimation of grassland biomass and nitrogen content.
Ground data for both the quantities are available for each plot. Indeed, as reported in [9],
only 49 plots were considered for the estimation, as some of them are partially obscured by
a metallic structure altering their reflectance, as shown in Figure 1.

2.2. Methodology

The overall methodology is presented in Figure 2. Its rationale is to set-up a monitoring
framework using no prior knowledge about the field and no models available to draw
upon for active samples selection. A completely data-driven active sampling procedure
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allowing a prediction starting from scratch is proposed for the retrieval of calibration data
necessary for PLSR.

Figure 2. Proposed workflow. The active sampling procedure is fed by any observation available.
Regression is implemented using all the data available at time ti to generate the prediction of the
biophysical variable of interest.

The prosed active sampling method is based on the concept of entropy H as defined
by Shannon [27]

H =
N

∑
i=1

−Pn log2 Pn, (1)

where Pn is the normalized probability of the n-th histogram quantization level and N is
total number of bins. Entropy is a measure of the quantity of information carried by a
signal. The higher the entropy, the higher its information content.

In the literature, entropy is usually exploited as selection criterion for query by bagging
(EQB). In this technique, the samples were selected based on the maximum disagreement
between a committee of classifiers obtained by bagging. First, different training sets were
defined by replacement within original training data. Then, each training set was used to
train the selected classifier to predict labels for each unlabeled sample. Finally, the entropy
of the distribution of the different labels associated to each sample was calculated with
the purpose to evaluate the disagreement among the classifiers. The samples showing the
maximum entropy, i.e., those with maximum disagreement among the classifiers, were
added to the current training set [30]. For the purposes of this paper, it is particularly of
interest as its calculation was very fast, even relative to large datasets. Moreover, being
a histogram shape parameter, it is suitable to be used with vectors composed by hetero-
geneous data, such as spectral measurements and vegetation indices, without projection
within an auxiliary homogeneous feature space.

According to the diversity paradigm of active learning techniques, the entropy is
exploited as parameter to discriminate whether the sample under consideration is adding
information to the set already collected. The hypothesis behind the method is that, within a
given hypercube, reflectance differences between different areas of the image are due to
variations of the biophysical parameter under investigation. These areas are represented
by the plots, in which, according to [9], the spectral response was averaged in order to
extract a single feature vector for each of them (see Figure 3). The histogram was calculated
using all the available spectral features, starting from a plot randomly selected. At the time
of the first acquisition, all the components of the feature vector were considered for the
calculation of the histogram.
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Figure 3. Schematic representation of the proposed active sampling methodology.

The histogram entropy was calculated according to Equation (1). A new plot was
added by appending its spectral content to the vector constituted by the one previously
considered. In other words, the vectors representing the spectral response of the plots were
concatenated to form a longer one of k × n elements, where k is the number of available
spectral features and n the number of plots considered. The entropy of the new histogram
was calculated and, if higher than the previous value, the plot was marked as selected for
field sampling. The procedure was repeated up to the end of available plots.

Marked plots are ideally sampled to retrieve ground data. They can be used to tune
future sampling campaigns. In particular, the Pearson linear correlation coefficient [31]
between the average plot response and ground data is computed in order to guide the
successive active sampling procedure. When a new acquisition became available, the
histogram was computed considering only the spectral features showing a significant
correlation with the ground truth.

In synthesis, the proposed active sampling procedure can be summarized as follows.

1. At time zero, i.e., when just one image is available:

a. Consider each plot of the field as cluster and make the spatial average for each
spectral band;

b. Calculate the histogram considering all the elements of the average spectral
response starting from one randomly selected plot. Calculate the entropy H1
of the histogram according to Equation (1);

c. Add another plot to the dataset by appending its (average) spectral response to
the vector constituted by the one of the first plot. Calculate the new histogram
and its entropy H2;

d. If H2 > H1 mark the plot as informative and continue by adding new plots
to the dataset without deleting those marked as not informative. The plots
marked as informative will be sampled to retrieve model calibration data.

2. Use ground data collected with the above procedure to calculate the linear correlation
with each spectral band.

3. When a new acquisition becomes available, repeat the procedure described at Point 1,
this time using only the spectral features showing significant correlation with ground
data (see point 2) for histograms calculation. A reasonable threshold to select features
showing at least moderate correlation can be set to 0.4 [32]. All the available data
should be used for samples selection. In other words, the new clusters should be
appended to those already available from time zero in order to set-up an incremental
sampling framework. This growing vector is the one used for entropy calculation at
each iteration.

4. As the number of flights increases, the linear correlation analysis between the dif-
ferent spectral features and ground data continues to modulate the active sampling
procedure. In this case, the computation of histograms will consider only the features
showing, on average, a linear correlation coefficient higher than 0.4.
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Following the diagram depicted in Figure 2, active sampling feeds the PLSR to estimate
the value of specific biophysical parameter within the entire area of interest. The proposed
model initially exploits a total of 141 variables constituted by the entire hyperspectral
data-cube (101 reflectance bands) plus a selection of 40 vegetation indices, as suggested,
among the others in [8,33]. For the ease of the reader, the list of the indices used in this
study is reported in Table 1, which has a twofold purpose. The first is to collect all the
formulas in one place, as it could be difficult to retrieve each of them from the literature.
The second is to suggest a possible set of variables to exploit in similar studies.

Table 1. Hyperspectral vegetation indices used in this work as regression variables. In the formulas,
the variable Rn refers to the central band wavelength expressed in nanometers. Indexing starts from
102 as band position indices from 1 to 101 are reserved to hyperspectral measurements.

Index Full Name Formula Reference

102 Green normalized difference
vegetation index GNDVI1 = R850−R540

R850+R540
[8]

103 Green normalized difference
vegetation index GNDVI2 = R780−R550

R780+R550
[8]

104 Renormalized difference
vegetation index RDVI = R800−R670

( R800+R670)
0.5 [34]

105 Red edge Position Index REP670,700 = 700 + 40
R670+R780

2 −R700
R740−R700

[35]

106 Red edge Position Index REP670,850 = 700 + 45
R670+R778

2 −R850
R735−R695

[36]

107 MERIS terrestrial chlorophyll index MTCI = R754−R709
R709+R681

[37]

108 Modified chlorophyll absorption
ratio index MCARI700,670 = [(R700 − R670)− 0.2(R700 − R550)]

R700
R670

[38]

109
Modified Chlorophyll Absorption
Reflectance Index/Optimized Soil

Adjusted Vegetation Index
MCARI700,670
OSAVI800,670

=
[(R700−R670)−0.2∗(R700−R550)]

R700
R670

(1+0.6)(R800−R670)
R800+R670+0.16

[33]

110
Transformed Chlorophyll

Absorption Ratio Optimized Soil
Adjusted Vegetation Index

TCARI700,670
OSAVI800,670

=
3
(
(R700−R670)−0.2(R700−R550)

R700
R670

)
(1+0.6)(R800−R670)

R800+R670+0.16

[33]

111 Transformed Chlorophyll
Absorption Ratio TCARI700,670 = 3

(
(R700 − R670)− 0.2(R700 − R550)

R700
R670

)
[38]

112 Modified Chlorophyll Absorption
Ratio Index MCARI750,705 =

(
((R750 − R705)− 0.2 ∗ (R750 − R550))

R750
R705

)
[39]

113
Modified Chlorophyll Absorption
Reflectance Index/Optimized Soil

Adjusted Vegetation Index
MCARI750,705
OSAVI750,705

=

(
((R750−R705)−0.2∗(R750−R550))

R750
R705

)
(1+0.6)∗(R750−R705)

R750+R705+0.16

[39]

114 Transformed Chlorophyll
Absorption Ratio TCARI750,705 = 3

(
(R750 − R705)− 0.2(R700 − R550)

R750
R705

)
[40]

115
Transformed Chlorophyll

Absorption Ratio/Optimized Soil
Adjusted Vegetation Index

TCARI750,705
OSAVI750,705

=
3
(
(R750−R705)−0.2(R700−R550)

(
R750
R705

))
(1+0.6)(R750−R705)

R750+R705+0.16

[39]

116 Chlorophyll index red edge CIRE =
(

R780
R710

)
− 1 [33]

117 Chlorophyll index green CIG =
(

R780
R550

)
− 1 [33]

118 Normalized Difference
Vegetation Index NDVI850,660 = R850−R660

R850+R660
[7]

119 Normalized Difference
Vegetation Index NDVI835,660 = R835−R660

R835+R660
[7]

120 Normalized Difference
Vegetation Index NDVI775,670 = R775−R670

R775+R670
[7]

121 Modified Normalized Difference
Vegetation Index mNDVI = R775+R670

R775+R670
[41]

122 Soil Adjusted Vegetation Index SAVI = (1+0.5) (R802−R660)
(R802+ R660+0.5)

[42]

123 Renormalized Difference
Vegetation Index REDVI = R800−R670√

R800+R670
[40]
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Table 1. Cont.

Index Full Name Formula Reference

124 Normalized Difference Red
Edge Index NDRE720,795 = R795−R720

R795+R720
[43]

125 Normalized Difference Red
Edge Index NDRE750,770 = R770−R750

R770+R750
[8]

126 NIR—red edge—red normalized
difference vegetation index NRER = R850−R695

R695+R660
[8]

127 Transformed Vegetation Index TVI = 0.5(120(R750 − R550)− 200(R670 − R550)) [44]

128 Modified triangular
vegetation index MTVI = 1.2[1.2(R800 − R450)− 2.5(R600 − R540)] [8]

129 Enhanced Vegetation Index EVI850,660 = 2.5
(

(R850−R660)
((R850+6∗ R660−7.5∗ R505)+1)

)
[43]

130 Enhanced Vegetation Index EVI800,670 = 2.5
(

(R800−R670)
((R800+6∗ R670−7.5∗ R508)+1)

)
[8]

131 Leaf Chlorophyll Index LCI = R850−R710
R850+R680

[45]

132 Modified Normalized Difference
Vegetation Index MTCIvar =

R850−R680
R680+R660

[8]

133 Nitrogen Reflectance Index NRI = R555−R550
R555+R550

[46]
134 Photochemical Reflectance Index PRI = R570−R530

R570+R530
[47]

135 Spectral Polygon Vegetation Index SVPI = 0.4(3.7(R800 − R670)− 1.2(R530 − R670)) [48]
136 Simple Ratio SR710 = R750

R710
[49]

137 Simple Ratio SR680 = R800
R680

[49]
138 Ratio Vegetation Index RVI = R810

R660
[50]

139 Vogelmann Index VOG = R745
R720

[51]
140 Gitelson and Merzlyak index GM = R750

R550
[8]

141 Modified normalized difference MND = R750−R705
R750+R705+2R508

[8]

A tentative regression step was run using 10 latent variables (projected components).
Its principal objective is to calculate the variable importance in projection (VIP) score. It
was defined, for each variable j, as the sum, over latent variables f, of its PLS-weight value
wj weighted by the percentage of explained variance of the specific latent variable SSYf
according to relation [52]

VIPj =

√√√√√ J ×
[
∑F

f=1 w2
f j × SSYf

]
∑F

f=1 SSYf
, (2)

where F is the total number of latent variables and J the total number of variables (in our
case 141). The relation for the calculation of SSYf is given by [53]

SSYf = b2
f tT

f t f , (3)

where b f and t f are the PLS inner relation coefficients and the score matrix relevant with
the f -th latent variable, respectively.

The VIP score varies in a fixed range, being the sum of squared VIP equal to total
number of variables. Therefore, it is common practice in the literature to assume as
threshold for retaining informative variables a VIP score larger than one. This means that
those variables have an above average influence on the building of the model explaining
the observations [53].

The variables selected through VIP scoring are used for the final regression. In order
to choose the optimal number of components [54], a leave-one-out cross-validation has
been implemented [55]. This procedure consists in the building of a model leaving out from
the calibration set one by one all the samples. In other words, if 20 samples are available,
the model is built each time using 19 samples. The one left out changes at each iteration.
The model built in such way is evaluated by using as test set the sample left out and the
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RMSE with respect to the corresponding measure is calculated. The process is repeated
using in PLSR a different number of components. For all the tries, the cumulative RMSE is
calculated. Finally, the optimal number of components is selected as the one corresponding
with the lowest cumulative RMSE.

3. Results

The proposed active sampling approach has been validated separately for dry mass
and nitrogen content estimation purposes. Although the ground truth is available on all the
plots, an operative scenario has been simulated with the objective to collect the minimum
possible number of field samples. The proposed active sampling approach suggests how
many and which area should be considered for field sampling. The purpose of the following
experiments is to assess the regression performance of the iteratively calibrated model,
showing the added value of the ground sampling at each calibration step.

The results obtained by applying the proposed methodology to the available data are
reported in Table 2 and Figure 4 for the dry mass experiment and in Table 3 and Figure 5 for
the nitrogen one. The variables exploited for each regression, determined via VIP scoring,
are listed in Table 4.

Table 2. Dry mass estimation results using the proposed methodology, the greedy sampling and the
random sampling approaches. The first five columns express, for each date, the number of samples
exploited for PLSR model calibration, with the red-framed cell indicating the prediction date. Results
are expressed in terms of the root mean squared error RMSE. The values RMSEp refer to predictions
made using a model calibrated with data acquired up to Di−1. The last column of the table refers
to the average dry mass for each date. D1: 15 May 2014, D2: 14 October 2014, D3: 9 May 2017, D4:
29 August 2017, D5: 26 October 2017.

Proposed Random Sampling GSx

D1 D2 D3 D4 D5 Total
RMSE
(t/ha)

RMSEp

(t/ha)
RMSEmax

(t/ha)
RMSEmean

(t/ha)
RMSE
(t/ha)

Mmean

(t/ha)

48 48 0.14 na 9.93 2.70 0.14 33.5
48 27 75 4.97 62.3 5.55 3.77 3.91 16.2
48 27 28 103 2.07 196 4.70 2.38 2.39 11.0
48 27 28 24 127 1.38 20.9 2.83 2.26 1.35 10.2
48 27 28 24 21 148 1.69 11.7 3.55 2.70 2.03 9.50

Table 3. Nitrogen content estimation results using the proposed methodology, the greedy sampling
and the random sampling approaches. The first five columns express, for each date, the number of
samples exploited for PLSR model calibration, with the red-framed cell indicating the prediction
date. Results are expressed in terms of the root mean squared error RMSE. The values RMSEp

refer to predictions made using a model calibrated with data acquired up to Di−1. The column
named as RMSE∗ reports values calculated on data averaged per-treatment in analogy with the study
implemented in [9]. The last column of the table refers to the average nitrogen content for each date.
D1: 15 May 2014, D2: 14 October 2014, D3: 9 May 2017, D4: 29 August 2017, D5: 26 October 2017.

Proposed Random Sampling GSx

D1 D2 D3 D4 D5 Total
RMSE
(kg/ha)

RMSE*
(kg/ha)

RMSE
(t/ha)

RMSEmax

(kg/ha)
RMSEmean

(kg/ha)
RMSE
(kg/ha)

Nmean

(kg/ha)

47 47 1.10 2.96 na 13.4 4.96 1.70 43.4
47 27 74 8.84 7.22 93.1 9.71 7.03 8.74 37.2
47 27 28 102 4.63 2.65 265 7.67 4.71 3.87 23.8
47 27 28 26 128 6.87 6.16 48.8 10.8 7.93 5.82 29.8
47 27 28 26 20 148 4.56 4.43 56.5 10.5 7.34 6.99 23.8
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(a) (b) (c) 

(d) (e) (f) 

Figure 4. Scatter plots of the predicted dry mass against ground data. (a) D1 (R2 = 0.831), (b) D2

(R2 = 0.002), (c) D3 (R2 = 0.350), (d) D4 (R2 = 0.485), (e) D5 (R2 = 0.267), (f) all data (R2 = 0.923).

  
(a) (b) (c) 

  
(d) (e) (f) 

Figure 5. Scatter plots of the predicted nitrogen content against ground data. (a) D1 (R2 = 0.876),
(b) D2 (R2 = 0.307), (c) D3 (R2 = 0.601), (d) D4 (R2 = 0.605), (e) D5 (R2 = 0.252), (f) all data (R2 = 0.884).
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Table 4. Variables used for regression determined via VIP scoring. NVIP stands for number of
VIP variables.

Dry Mass Nitrogen

NVIP VIP NVIP VIP

D1 7 B112 (0.780), B113 (0.742), B114 (0.633), B115
(0.439), B127 (0.439), B128 (0.474), B135 (0.591) 8 B100 (0.732), B101 (0.754), B109 (−0.293), B112 (0.626), B113

(0.667), B114 (0.901), B115 (0.802), B127 (0.610)

D2 5 B101 (0.158), B112 (0.065), B113 (0.115), B115
(0.266), B127 (0.333) 9 B65 (0.685), B99 (0.343), B100 (0.130), B101 (0.182), B112

(0.135), B113 (0.263), B114 (0.253), B115 (0.345), B127 (0.519)

D3 9
B63 (0.774), B64 (0.699), B108 (0.028), B109
(−0.134), B112 (0.432), B113 (0.358), B114

(−0.543), B115 (−0.427), B127 (0.183)
11

B63 (0.780), B64 (0.767), B69 (0.719), B100 (0.255), B108
(−0.080), B109 (−0.242), B112 (0.526), B113 (0.441), B114

(−0.381), B115 (−0.243), B127 (0.232)

D4 9
B63 (0.545), B64 (0.588), B108 (0.249), B109

(0.192), B112 (0.728). B113 (0.726), B114 (0.134),
B115 (0.085), B127 (0.658)

10
B63 (0.435), B64 (0.477), B69 (0.527), B108 (0.136), B109

(0.080), B112 (0.669), B113 (0.661), B114 (0.233), B115 (0.187),
B127 (0.579)

D5 9
B63 (0.474), B64 (0.469), B108 (0.189), B109

(0.124), B112 (0.287). B113 (0.259), B114
(−0.168), B115 (−0.232), B127 (0.215)

11
B57 (0.278), B58 (0.420), B63 (0.547), B64 (0.538), B108
(0.253), B109 (0.190), B112 (0.340), B113 (0.317), B114

(−0.211), B115 (−0.280), B127 (0.280)

The figures show the scatter plots of the predicted dry mass and nitrogen content
against the corresponding ground data. In both cases, the last one, i.e., the graph (f), refers
to the whole dataset.

In Tables 2 and 3, the results were obtained using the proposed methodology and the
literature approaches using greedy sampling (GSx) [56] and random sampling are reported.
Acquisition dates are referred with the symbol Di. The first five columns report, for each
date, the number of samples exploited for PLSR model calibration. The red-framed cell
indicates the prediction date. The sixth column expresses the total number of samples
used for model calibration. Quantitative data are provided in terms of the root mean
squared error (RMSE). The values reported in the last column of the tables (RMSEp) refer
to predictions for acquisition Di made using a model calibrated using data collected up to
the date Di−1. Data concerning the random sampling approach refer to the maximum and
average RMSEs obtained following 1000 experiments.

As for the dry mass experiment (see Table 2), the RMSE with respect to ground truth
ranged between 0.14 t/ha obtained on 15 May 2014 and 4.97 t/ha registered on 14 October
2014. The average RMSE was of 2.05 t/ha. The number of samples selected for PLSR
ranged from 48 for the acquisition made on 15 May 2014 to 21 referred to the flight made
on 26 October 2017 with an average of about 30 samples per date.

The values of RMSEp were useful to assess the forecasting capability of the fitted
model. They have been calculated by using the model fitted at time Di−1 with the data
acquired at time Di. From the Table, it arises that the model failed the prediction at time D2
and D3. Starting from time D4, predictions show reasonable RMSE, although its value was
much higher than that the one obtained using active learning.

Random sampling approach has been evaluated by computing the maximum RMSE
and the average one. In the first case the range was between 2.83 t/ha and 9.93 t/ha. In the
second, between 2.26 t/ha and 3.77 t/ha. The GSx approach returned an average RMSE of
1.96 t/ha.

As for the nitrogen content experiment, (see Table 3), the obtained RMSE ranged
between 1.10 kg/ha, obtained on 15 May 2014, and 8.84 kg/ha, registered on 14 October
2014. The average value was 5.20 kg/ha. The number of samples selected for PLSR ranged
from 47 for the acquisition made on 15 May 2014 to 20 referred to the flight made on
26‘October 2017. For this experiment, further data about the RMSE calculated by averaging
data based on the fertilization treatment (see Figure 1) have been reported in analogy with
the results discussed in [9]. In this case, the obtained RMSE∗ ranged between 2.96 kg/ha,
obtained on 9 May 2017, and 7.22 kg/ha, registered on 14 October 2014, with an average of
4.68 kg/ha. As for forecasting, the model calibrated with data collected up to time Di−1 fails
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in the prediction of the nitrogen content at D2 and D3. Starting from D4, it was possible to
make reasonable predictions, even with a significantly higher approximation with respect
to active learning.

The random sampling test has been evaluated through calculation of the maximum
RMSE and the average has been evaluated. In the first case, the range was between
7.67 kg/ha and 13.4 kg/ha. In the second case it was between 4.71 kg/ha and 7.93 kg/ha.
The GSx approach returned an average RMSE of 5.42 kg/ha.

In Figure 6, the Pearson coefficient trends, with respect to available biomass (Figure 6a)
and nitrogen (Figure 6b), data are reported. It is remarkable that the higher RMSE was
registered for the acquisition, the one made on 14 October 2014 (see the orange line in the
graphs) shows the lower correlation in the vegetation indices area.

Figure 6. Linear correlation coefficient trends against the available ground data relevant with (a) dry
mass and (b) nitrogen content. Indices on the x-axis from 1 to 101 refers to spectral bands. Those
ranging from 102 to 141 correspond to the vegetation indices listed in Table 1.

In Tables 2 and 3 it is also reported the number of samples selected by the proposed
active learning technique. Clearly, in an operational environment, the samples marked as
informative for the estimation of all the biophysical parameters under investigation are
collected simultaneously. With the help of Figure 7, it is possible to have a more precise
idea about the amount of sampling necessary to implement the proposed framework.

In this graphics, each rectangle represents a plot. Each of them is divided in five
parts, each one representative of an available acquisition. Sub-parts colored in green stand
for selected samples. Figure 7a represents the sampling schema for biomass estimation,
while Figure 7b depicts the one for nitrogen content investigation. By counting the green
parts relevant to each acquisition, it arises that the number of necessary samples is 48, 29,
32, 30 and 24, for a total of 163, which corresponds approximately to the 66% of all the
available samples.
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(a) (b) 

Figure 7. Schematic representation of the study area highlighting the samples selected by the pro-
posed active learning technique. Each rectangle represents a plot. It is divided in 5 parts representing
an acquisition date. If the part is colored in green, the sample is selected for regression. (a) Sampling
schema for dry mass estimation. (b) Sampling schema for N-uptake estimation.

4. Discussion

Optimization of agricultural practice is key for facing the challenges of modern food
production systems, which are expected to satisfy a growing demand, both in terms of
quality and quantity, in a landscape characterized by a reduction of cultivable lands and an
increasing awareness concerning sustainability issues.

Grassland can be accurately characterized by using UAV hyperspectral imagery. To this
end, PLSR calibrated with an innovative active learning methodology has been exploited
in this work.

The results presented here (using PLSR) revealed that predictions can be made with
an average RMSE of 2.05 t/ha and 4.68 kg/ha for dry mass and N-uptake estimation,
respectively. As shown in the previous section, they are mostly insensitive with respect to
the validation sets used, as the results obtained using all the samples and only those not
selected from the active sampling technique are quite similar.

As shown by data reported in Table 4, the variables used for regression mainly belong
to NIR frequencies (as already observed in [9]) and to the family of chlorophyll absorption
indices (CARI). By observation of the curves depicted in Figure 6 and of the linear corre-
lation values in Table 4, it arises that these regressors are, on average, correlated with the
biophysical variable under investigation. This contributes to reliable regressions in almost
all the experiments, as shown in Figures 4 and 5. The only one which can be considered a
failure is the D2 dry mass regression. This experiment had a poor agreement with ground
data, as testified by picture Figure 4b.

As a general comment, the acquisition D2 is the one showing the lower correlation
with ground data, especially in the vegetation indices area (see the orange line in Figure 6a).
Moreover, among all the implemented regressions, the one implemented at D2 has been
implemented using the lowest number of VIP variables (five) which also showed poor
correlation with ground data. This means that amount and the quality of information
selected as valuable through VIP scoring was lower with respect to the other cases and
this could have had an impact on the estimate. Moreover, looking at the average biomass
values on the scene reported in Table 2, it is observed a significant decrease between D1 and
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D2. This suggests the presence of nonlinearity in the data which could be not appropriately
modeled by PLSR.

Overall, the obtained estimates for vegetation biomass and nitrogen content are com-
parable to those reported in the literature by studies using similar equipment. As an
example, reference [57] claimed a RMSE of 3.75 t/ha in the estimation of maize biomass.
Oliveira et al. [58] reported an RMSE of 16.99 kg/ha in the estimation of nitrogen content
of grasslands. Reference [9] reported an RMSE of 3.25 t/ha and 6.50 kg/ha for biomass and
N-uptake estimations of grassland, respectively, with the N-uptake result referring to an
average made at fertilization treatment scale.

The results obtained using the proposed methodology have been compared against
those returned by PLSR calibrated with GSx and random sampling, which is a common
sampling strategy [59–61], especially when an extended ground truth is available [9].

From the comparison it arises that random sampling is, on average, less effective
than the proposed methodology, as the average RMSE values tends to be higher than
those reported in Section 3. This behavior is even more evident looking at the maximum
RMSE values, which are constantly higher than the ones returned using the proposed
methodology. These results suggest that active sampling is beneficial, especially when the
dimensionality of the problem is increased by several acquisitions, as it is able to include in
the calibration set the samples mostly representative of the variability of the data.

As for GSx, it can be argued that its performance is equivalent with that provided
by the proposed entropy-based approach. However, GSx has one important parameter
that should be set by the operator, i.e., the number of samples to be selected by active
learning [56]. The experiments presented here have been implemented using the same
number of samples output by the proposed approach, but it is in principle unknown.
As the parameter affects the results of the calibration, this could be a serious drawback,
especially in presence of extended targets. Moreover, GSx requires the projection of data in
a homogeneous feature space for the computation of the distance between samples and
this increases the computational complexity of the approach [56].

PLSR is a well-established linear statistical approach suitable for the analysis of multi-
collinear spectral dataset, thus making full use of redundant information [62]. This tech-
nique has been widely exploited to estimate crop biophysical variables from hyperspectral
remote sensing data [24–26]. However, the literature also revealed that the large amount of
data usually exploited in PLSR may contain irrelevant information, which could reduce the
performance of the technique [62]. To cope with this, the VIP score calculated following a
tentative regression has been used as discriminator and only the variable exhibiting a VIP
value higher than one have been used for the final analysis [52].

Reference [9] allows for an analogy with the results here reported as its authors
made available the data exploited for this study. However, significant differences in the
methodology are present. In reference [9], the active sampling procedure relies on a
technique developed in [21], opportunely reworked in order to improve the selection of the
most representative samples. Two important aspects to be remarked about this framework
are the necessity of supervision in active learning and the fact that it is based on predictive
models already available, which are retrieved via bootstrapping [63]. In other words,
the prediction model constituting the base for active sampling is built by splitting the
calibration set in two parts. The first part is used to fit the prediction, while the second
for validation. This process is repeated several times changing the composition of the two
subsets. The final model is the one delivering the lowest RMSE.

The main innovation introduced in this paper is the active learning technique which,
exploiting Shannon’s entropy as diversity criterion, allows for the set-up of an unsupervised
methodology suitable for the implementation of an incremental monitoring framework
starting from scratch. The obtained results are fully comparable with the literature, which
mainly relies on supervised techniques needing an already available model for active
sampling implementation. This makes the proposed methodology very well suited for
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operational environments, in which predictive models are usually not available for specific
crop fields and automation is highly requested.

In this context, a crucial aspect is represented by the amount of sampling necessary for
the successful calibration of PLSR, as this could be a bottleneck for real-world implementa-
tion of monitoring activities. As reported in Section 3, the proposed methodology requires
an initial massive sampling, as the entropy tend to increase when few calibration points are
considered. However, as reported in Table 2, Table 3 and Figure 6, this behavior is strongly
mitigated beginning with the second acquisition, in which the number of samples selected
for calibration is almost halved and the trend is decreasing as soon new data are acquired.
As reported in Section 3, if the whole dataset is considered, the amount of calibration data
necessary to fit the predictions is about the 66% of the total.

In the literature, the amount of sampling requested for the calibration of machine learn-
ing techniques for predicting vegetation traits is not always explicitly declared. However,
assuming that the area of interest has been preventively divided in sub-regions considered
homogeneous against the parameter to be predicted (see as an example Figure 1), it is
reasonable to collect ground data about the 70% of them [9,64] in order to implement an
effective bootstrapping. This number is comparable with the one found by implementing
the proposed methodology.

The last comment is about the prediction capability of the models, which is probably
the most interesting aspect for end-users as it could cut out the need for field sampling. In
the previous the prediction at date Di has been determined using the data collected up to
date Di−1. The obtained results are different for the dry mass and the nitrogen content. In
the first case, the RMSE values suggest that after few sampling campaigns it is possible
to calibrate a model able to deliver reasonable predictions, although a longer time series
should be studied in order to assess this consideration.

As for nitrogen content estimation, less stable RMSE values have been reported. This
suggests that more calibration data are needed in order to build a model able to deliver
reliable predictions. As a general comment, looking at the diagrams reported in Figures 4
and 5, it is possible to argue that, following two seasons of sparse sampling using the
proposed active learning methodology, it is possible to retrieve a model with significant
fitting with the ground truth. This confirms the findings of reference [9].

5. Conclusions

In this work, the characterization of vegetation biophysical parameters using un-
manned aerial vehicles equipped with hyperspectral sensors has been discussed. The
main innovation introduced is the active sampling technique for calibration of partial
least squares regression models which, exploiting Shannon’s entropy as diversity crite-
rion, allows for setting-up an unsupervised incremental monitoring framework starting
from scratch.

The proposed methodology has been tested by exploiting a dataset involving five
flights made by a remotely piloted platform equipped with a hyperspectral sensor. The
obtained results concerning the estimation of the ryegrass biomass (RMSE = 2.05 t/ha) and
of content (RMSE = 4.68 kg/ha) revealed that the delivered prediction models are suitable
for the purpose, although the relatively small dataset exploited for this study should
be extended in order to draw conclusions about its generalization potential. Possible
instabilities can be due to low correlation between measurements and ground data and or
the presence of nonlinearity difficult to be modeled using partial least square regressions.

The amount of sampling needed is comparable with the numbers provided by the
literature and therefore compatible with operational environments. In this regard, the
obtained data also suggest that sampling activities can be drastically reduced as soon
the monitoring is enriched with new acquisitions, thus making the proposed framework
suitable for interoperability with agricultural digital twins.
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Abstract: The calculation of weight and mass in aquaculture systems is of great importance, since
with this task, it is decided when to harvest; generally, the above is manipulating the body manually,
which causes stress in the fish body. Said stress can be maintained in the fish body for several
hours. To solve this problem an improved method was implemented using artificial intelligence,
near-infrared spectroscopy camera, Haar classifiers, and a mathematical model. Hardware and
software were designed to get a photograph of the fish in its environment in real conditions. This
work aimed to obtain fish weight and fish length in real conditions to avoid the manipulation of
fish with hands for the process mentioned, avoiding fish stress, and reducing the time for these
tasks. With the implemented hardware and software adding an infrared light and pass band filter for
the camera successfully, the fish was detected automatically, and the fish weight and length were
calculated moreover the future weight was estimated.

Keywords: machine learning; Haar; NIR; aquaculture; fish growth

1. Introduction

Imaging object detection, nowadays, is widely used to identify objects. However,
the most advantageous to the classification of moving objects [1], especially underwater
object detection, has been a challenge because the water influences the recognition of the
object [2]. The use of image analysis has produced applications that help in the agriculture
to medicine fields [3]. On the other hand, in aquaculture, multiple tasks can be performed
using imaging detection. However, there are also modern practices involving automation
and intelligent technology [4]; technology such as the internet of thing (IoT) helps to
obtain data from the tank culture with the use of sensors and avoid poor levels of oxygen,
water contamination, parasites, or disease transmission [5]. Additionally, some examples
are the regression methods used in aquaculture for the management and water quality
predictions, time series methods, artificial neural network methods, and support machine
methods [6]. Moreover, agriculture 4.0 contributes to the development of agriculture
because crops can be cultivated much easier with less effort in less time, as well as every
time the growing variables can be monitored by a sensor and displayed on a PC or cell
phone screen: digital technologies such as cyber-physical (CPS), artificial intelligence (AI),
wireless sensor networks (WSN), big data analytics (BDA), autonomous robots systems
(ARS), and ubiquitous cloud computing (UCC) [7].

An essential aspect of aquaculture farms is fish growth; the fish’s body length and
width are related to fish weight. This information calculates the feeding ratio, fish size
classification, and harvest [8]. Regularly, these data are collected manually, transforming
into an expensive and tiring, as well as a waste of time, experience for intensive systems [9];
moreover, handling the fish with hands causes stress to it, and stress causes cortisol. It is
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accepted that long-term elevation in cortisol results in reduced food intake and growth
in fish [10]. In addition to avoiding stress fish, there are different non-invasive methods,
such as mathematical models or the length–weight relationship (LWR). They are based on
numerical observations that can estimate fish biomass [11]; moreover, there is substantial
demand for automatic fish monitoring systems, because these could improve efficiency
and reduce the labor requirements in the aquaculture industry [12]. A machine vision
system (MVS) consists of an image acquisition system, image processing, and statistical
analysis [13], and MVS is a non-invasive technique for estimating fish mass and size,
which has been attracting the interest of researchers because it avoids stress and injury [14].
Another vital aspect of MVS is that these fish sampling systems involve two tasks: fish
detection, which discriminates fish from non-fish objects in underwater videos, and fish
species classification, which identifies the species of the detected fish [15]. The quality of
the images will depend on the light conditions at the time of the shooting; otherwise, if this
factor is ideal, more accurate processing results will be achieved [16].

Some aquaculture installations have poor lighting, and near-infrared (NIR) computer
vision technology is not affected by visible light intensity. It can obtain good imaging results
in relatively dim light environments [17]. The NIR had other advantages: autofluorescence,
deeper tissue penetration, and minimum photodamage to biological samples [18]. Addi-
tionally, the NIR has the rapid acquisition of sample data, the potential for simultaneous
determination of several parameters, and the ability to replace destructive, expensive,
and time-consuming conventional reference methods [19]. Another tool is Haar cascad-
ing by machine learning method; this uses a classifier from many positive and negative
photos [20]; the advantage of using the machine learning method is short detection time,
high detection rate, and strong adaptability to light changes [21]. In the case of machine
vision system, ref. [1] used convolutional neural network and machine vision to provide
an automatic method for grading fish feeding intensity; additionally, ref. [2] used a ma-
chine vision system including a multi-column convolution neural network (MCNN) and
deeper dilated convolution neural network (DCNN) for counting fishes; finally, ref. [3]
used machine vision, acoustics. and sensors to analyze fish behavior in pro of production
and management decisions.

This article aims to show a non-invasive method to obtain fish weight using image
NIR plus Haar cascading classifiers. These tools are used to segment the fish and obtain fish
length, then obtain accurate weight measurements with a mathematical model. Generally,
the mathematical models used for aquaculture are logistics, exponential, Michaelis-Menten,
Gompertz, Von Bertalanffy, and Janoschechk. Finally, this work is different from others; in
the first instance, it used an infrared camera adding a pass-band filter lens to reduce the
wavelength, obtain more focus in capturing the fish, and avoid the noise that can interfere;
it also used Haar classifier to identify the fish in the culture system, and compared with
other works, they used more complex analysis such as the convolution neural network,
multi-column convolution neural network, artificial neural network, or wavelet; lastly, the
system used a mathematical model to estimate fish future weight and length.

2. Materials and Methods

2.1. System Design

An essential aspect of the experiment was how to get the pictures; for this task, a way
to place all the used elements was implemented, and it is shown in Figure 1.

Each number specifies an element:

1. PC was used with the NIR camera and MATLAB 9 software to program the Haar
cascade classifier.

2. NIR camera iDS brand, made in Germany, Dimbacher Str. 10, UI-3240CP-NIR-GL
model, this camera is infrared sensitive in the near-infrared range. The equipment
was obtained in the web page of the brand.

3. Kowa lens sensor size 2/3”, focal length 1.4–12 mm, C mound, and this lens has a
passband filter. The equipment was obtained in Midwest Optical System.
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4. The species used in this case for the experiment was tilapia used.
5. Glass fishbowl 30 cm long × 20 cm wide × 22 cm high.
6. Infrared lamp INF-L-DBLIR082/16H.
7. Lighting controller, CCS Inc. (Tokyo, Japan) PD3-5024-4-EI(A); lastly, to subject the

camera, two tripods were used, one DOLICA ST650 brand with clamp and another of
the Manfrotto brand obtained the webpage

The operation of the system is as follows. First, the image is captured by the NIR
camera this camera is connected to the PC, the information captured by the camera is used
by an algorithm done with Haar cascade classifier and mathematical models. Lastly, the
information related to fish actual length, future length, the actual weight, and future weight
is shown in the user interface.

Figure 1. Arrangement of materials.

2.2. Image Acquisition System

An essential aspect of obtaining images is the light from the environment, which is
the reason for the use of a NIR camera. To obtain the collection fish data, the fish species
used was tilapia Oreochromis niloticus; a total of 1200 pictures were obtained with the NIR
camera; the resolution of 1.3 MP, 1280 × 1024, and the image format used was PNG, later
the software was trained whit these pictures. The camera was collocated in two places to
get the pictures; first, the camera was placed in front of the fishbowl; an infrared lamp stood
behind; this one was placed behind the fishbowl to increase the intensity of light images.
The fishbowl was filled with water, and some fish got into it; this camera configuration is
shown in Figure 2. The procedure to take the pictures was necessary to connect the NIR
camera to the PC through the USB port. In the pc was installed, as well as the NIR infrared
camera software, and using this software, the images were taken, and we saved them in
the PC.

Figure 2. First system configuration.

The second configuration considered the camera above the fishbowl and the infrared
lamp above the fishbowl; because fish culture tanks are made of black geomembrane, it is
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impossible to set the NIR camera in front of the fish tank and the infrared lamp opposite to
the fish tank Figure 3.

Figure 3. Second system configuration.

2.3. Fish Growth Models

An essential aspect of the experiment was to choose a growth model; fish growth is
any change in size or amount of body. These changes could be positive or negative, and the
fish length can be obtained the weight with the equation:

W = aLn (1)

where W is the fish weight in grams; L is the fish length in cm; a is the intersection in the
y-axis, and n is the exponent to estimate the fish’s well-being.

A relationship to know the fish’s fatness or well-being and the condition factor [22].
This relationship is shown in Equation (1). Additionally, can be transformed to:

log (W) = log (a) + b log (L) (2)

The formula expresses the following, in the case of b, it might not vary from the ideal
value of 3.0, depicting an isometric growth; otherwise, if b has a value less than 3.0, the fish
is turning slimmer with increasing length, and growth is considered negative allometric.
On the other hand, if b is greater than 3.0, the fish is getting heavier, which is proof of
positive allometric growth, which shows an optimum condition. However, depending on
the kind of fish feed, this relates to the quantity of protein in the fish feed [23].

There is another model that uses some variables, precisely the temperature [24], taking
into account that fish is a poikilothermic species; Equation (3) is shown a model growth
based on temperature:

ΔL = −1.6707 + 0.09682 T (3)

where L is the length in cm and T is the temperature in ◦C.
The result obtained in Equation (3) can be transformed to weight by Equation (4)

W = 1.861 × 10−8·L3 (4)

where W is weight in grams and L is the length in cm.
Mainly for the experiment was interested in the models that predict the growth of the

fish, depending on the age and then thrown length in cm; the logistic, Michaelis-Menten,
Gompertz, Von Bertalanffy, and Janoscheck models were the basis. Taking into account that
the artificial vision device coupled with the processing software would show the length
of the fish, the models used were the Michaelis-Menten model; the equation used in the
algorithm was:

Length =
0.009 ∗ 235.272.983 + 630.14 ∗ day2.983

235.272.983 + day2.983 (5)
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The other mathematical model used was the Logistic, shown in Equation (6), unlike
the Michaelis-Menten model, which predicts the weight in grams based on age in days.

Weight =
427.64

1 + 85.9133 ∗ e(−0.023612∗day)
(6)

2.4. Algorithm Training

The software used for the experiment was MATLAB; this software has a tool called
Haar Clasiffier, and this software can obtain the classification in real-time. The training
algorithm was performed with 1200 images taken by the camera. The classifier has pre-
trained classifier objects, but generally, they refer to body parts, so it is impossible to use
the pre-trained classifiers for this work. For the experimental object detector, 1200 fish
images were loaded into the algorithm; these were considered positive samples, and the
algorithm also needed negative samples. The negative samples were pictures taken with
the NIR camera, but these images were not fish and were considered negative. With
this training, the algorithm could detect regions of interest and differentiate between fish
and non-fish. Additionally, the algorithm can automatically generate negative samples
to increase the training level, which improves the algorithm to detect fishes and objects
that are not fishes. Figure 4 shows a positive image, and Figure 5 shows a negative image.
After the training, the system could automatically identify the fish in the fishbowl using
the Haar classifier. Then, the system will be collocated in an aquaculture system to be
proven. Lastly, the image labeler was used, which provides an easy way to identify the
positive samples by interactively specifying rectangular regions of interest. Additionally,
the positive images previously saved can be made more positive by adding rotation noise or
by varying brightness or contrast. In the case of negative images, as more stages are added,
the detector’s overall false positive rate decreases, causing the generation of negative
samples to be more difficult. An aspect to take into consideration is that Haar classifier can
throw false positives. In this training, the false positive test was performed with the camera
taking objects that can be in the fish environment, but are not fish, these were classified
as negative images. In the first instances, there could be many false positives, but as the
training continues, this false positive rate starts to reduce. The impact on the test result
is that, in the beginning, the software could throw false positives, but with the use of the
software, this will decrease.

Figure 4. Positive image.

Figure 5. Negative image.
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For this reason, it is helpful to supply as many negative images as possible. To improve
training accuracy, we supplied negative images with backgrounds typically associated
with the objects of interest. Additionally, we included negative images that contained
non-objects similar in appearance to the objects of interest.

The strong classifier used in this work was the Adaboost for searching a small number
of features related to fish and not having a significant variation.

2.5. Image Processing

After algorithm training, the system was put to work in real-time; for this, the NIR
camera was used to set communication with the computer through USB protocol and show
live video in the software interface implemented in the previously designed PC. First, the
system was tested with the first configuration; the way to do this was after the NIR camera
and the infrared lamp were collocated in their respective positions. The software interface
has the option to capture video, and when this is performed automatically in an interface
implemented, it appears on the length and weight of the fish. Figure 6 shows how the
algorithm performs the image processing.

Figure 6. Flow chart of the image processing.

As shown in Figure 6, the main algorithm comprises two main blocks: the pre-
processing and the estimation. It starts when the NIR camera plays the captured video, and
the algorithm instantly detects if the objects that appear in the camera are fish or not, and
it is possible to perform by using Haar classifiers in the algorithm using only a region of
interest for the investigation. The fish detector generates a box containing the fish detected
correctly; that is, when the fish is entirely in a lateral position, this is shown in Figure 7. This
performed through a process that is transparent for the user. Once the region of interest is
delimited, the image is extracted and processed to extract its contour, obtaining the width
and length measurements of the fish in pixel dimensions.

Figure 7. Fish detection by the algorithm.
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This kind of processing is considered a machine learning approach because later it
could automatically identify the objects of interest by marking them with a box chart, as
shown in Figure 7; the MATLAB software was used to train the algorithm. The way that
the algorithm identifies the fish apart from the positive and negative images requires a
way to identify the object rapidly; in this regard, the Haar classifiers are used. The image
is detected, then the algorithm applies the Haar classifiers, and instantly the parts are
discarded from the image that do have not the object of interest; this is made with statistics,
and the Haar classifiers implemented in the algorithm use rectangles (Figure 8) to identify
the objects of interest.

Figure 8. The process to identify a fish.

The below algorithm performs using the integral image at locations x, y that contains
the sum of pixels above and left x, y, adding.

ii(x, y) = ∑
x′≤x,y′≤y

i
(
x′, y′

)
, (7)

where ii(x, y) is the integral image and i(x, y) is the original image, and the following
occurrences are used:

s(x, y) = s(x, y − 1) + i(x, y) (8)
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ii(x, y) = ii(x − 1, y) + s(x, y) (9)

where (x, y) is the cumulative row sum, s(x, y) = 0, and ii(−1, y) = 0 the integral image
can be compounded in one pass over the original image [4]. All the basis to this processing
was initiated by [25]

2.6. User Interface

A user interface was made to make the system easy to use; with a NIR camera, an
image was obtained, then the initial weight, initial length, future weight, and future length
appeared in the interface. Additionally, an option was needed for the number of days to
estimate the future weight and length; for this, mathematical models were used. Figure 9
shows the user interface.

Figure 9. User interface.

3. Results

3.1. NIR Camera

The distance between the camera and the center of the fish tank was adjusted to 30 cm
to obtain an image that could capture both juvenile and adult fish. During the development
of the prototype, tests were carried out at the laboratory under controlled conditions to
prove the concept and verify the correct functioning of the algorithm and the integral
system; they were also made with different lighting levels, and lamp positions are shown
in Figure 10. The best position for the laboratory setting was opposite the fishbowl; in the
case of the 500 L fish tank the best position was on the top.

Figure 10. Captures from NIR camera.

To verify if the algorithm made the correct conversion from pixel to centimeters,
Figure 11 shows the capture obtained with the NIR camera using a tape measure.
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Figure 11. Pixels to centimeters conversion.

Infrared lighting and the infrared camera allow a high contrast between the object of
interest and the rest of the habitat, thus allowing for elements that can be considered noise
to be ruled out, with said noise being the color of the water in the fish tank or suspended
particles. With the band-pass filter, it was possible to block everything below or above
850 nm wavelength, so all components within the visible spectrum of light, such as colors,
were removed.

3.2. Haar Cascade Fish Detection

The work considered a non-intensive density, 20 kg/m3, and in an intensive system,
the density was 80 kg/m3; the system was tested with both densities. The algorithm was
capable of detecting fish within their typical development habitat. Processing time was
around 1.5 s from image capture to fish measurement display.

The algorithm contributes to fish detection because the fish recognition is automatic,
due to the camera or video [5], the algorithm can analyze a large amount of data in a short
time, and the data previously was saved in the algorithm [6], also the algorithm allows
segmenting the object in more difficult environments [7]; moreover, the algorithm can be
combined with other methods to improve it [8].

The testing dataset was performed after the training, and this was performed using
the first system configuration shown in Figure 12; several repetitions were made, which
consisted of detecting the fish in the small fishbowl. The validation stage was performed
using a 500 L fish tank, and in these tanks, a certain number of fish were placed, and
the validation was performed on different days by taking photographs from different
tanks. Additionally performed were weight and length measurements to corroborate the
validation of the algorithm. The recognition performance obtained from the validation
phase resulted in an average accuracy of 92%, a true positive rate equal to 95%, and finally,
a false positive rate equal to 12%.

Figure 12. Weight and length measurement.

Several measurements were performed to validate the prototype and graphical inter-
face, using the prototype and recording data in different tanks with fish of the same size
and age. These measurements were performed at different times; Figure 13 shows the tanks
and the camera collocated nearby by the tanks, Figure 14 shows the data interface with
the algorithm.
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Figure 13. The system used to test the algorithm.

Figure 14. Interface and the algorithm.

3.3. Mathematical Model

The two models used in the experiment to obtain an equation based on the length in
centimeters that can estimate the weight in grams were combined in a regression, taking
the logistic model that estimates the weight based on age in days as the dependent variable.
As an independent variable, the Michaelis-Menten model estimated the length based on
age in days. Figure 15 shows the regression analysis.

Figure 15. Regression analysis between two models (Logistic and Michaelis-Menten).

As previously mentioned, the algorithm and the interface were used to have a complete
system; the algorithm evaluated the images obtained with the camera, and the interface
showed the length and weight that appeared in Figure 14.

With the previous regression obtained, the equation related the length in centimeters
and the weight in grams

Weight = (−0.339061 + 0.482898 ∗ length)2 (10)
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Subsequently, the length in the previous equation was used to estimate the fish culture
day. Additionally, a regression analysis was performed, taking the day as the dependent
variable and length as rgw independent variable; the equation obtained was:

Time =
(

4.86558 + 0.013364 ∗ length2
)2

(11)

With the day entered by the user, the interface returned the fish’s future weight and
future length. Additionally, it took into account the resulting length and weight that the
interface returns by the artificial vision system for these Equations (5) and (6) were used.
Figure 16 shows the graph in which the future weight adjustment is made, taking into
account the weight thrown by the interface based on the length of the artificial vision system.

Figure 16. Fish weight adjustment.

An adjustment was made, considering the length thrown by the interface. With these
adjustments, the weight and length prediction were more accurate (Figure 17).

Figure 17. Fish length adjustment.

In this part, the weight and length error analysis were performed with statistical
software that estimated the r-square.

135



Appl. Sci. 2023, 13, 69

4. Discussion

Selecting an appropriate distance and illumination for using the NIR camera is es-
sential and has to be fixed throughout the experiment. As used by [14], the distance from
level water to the camera was 140 cm, whereas [17] used a distance of 150 cm. For the
experiment, 150 cm was the distance, and the tank used had a depth of 50 cm; in this case,
the system can only capture fish on the water’s surface. Another limitation is density, but
if the system has the required flow water speed, this is not a limitation. The NIR camera
has a harmless wavelength between 700 to 1400 nm and can penetrate biological tissues.
Additionally, this is used in different fields, for example, to monitor leaf area [26], for iris
recognition [27], automobile tasks [28], fire detection [29], detect chemical compounds [30],
and finger veins recognition [31].

As previously mentioned, the Haar classifier is considered in machine learning tools;
unlike other tools, such as convolutional works, big data analytics, or the internet of things,
the Haar classifier just needs a one pc. For the other tools, an internet connection or cloud
space is required. In the experiment, a pass band filter was used to reduce the wavelength,
get focus in a specific wavelength, and help to have less range of experimentation.

The Haar classifiers are mainly used for face detection, but some applications are
used for different challenges, such as automotive applications [32,33], agriculture [34], and
cataract detection [35]. Generally, the Haar classifier can be adapted for every application,
such as in this work. However, the essential part is the training part, and if this training
is complex, the Haar classifier can be used for any application. Regarding this work, the
training part can be more complicated, but this implies the waste of resources because,
for aquaculture applications, the environment has fish and is less likely to have negative
images considered as no fish.

The mathematical models were an essential part of this experiment. They helped to
obtain a relation between length and weight. Models in aquaculture are used for feeding
control [36], production in general [37], harvest [38], energy calculation [39], and monitoring
culture variables [40], and the use of these models helps the aquaculture system to have a
precision culture. However, the most crucial aspect of aquaculture is growth, such as the
model used in this experiment. The mathematical model used in the experiment had good
results, as shown in Figures 16 and 17.

5. Conclusions

The method first allowed for the recognition of the fish and then the processing to
obtain fish length and fish weight to avoid the fish stress because of the handling. The
measurement task by hand takes consideration time; this method consumes less time for
this task. If the environment of the fish changes or the species is different, new training in
the software will be required.

As time goes, applications related to artificial intelligence will be more common; this
technology allows to have a better control in the majority of systems of production.
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Abstract: The use of information and communication technologies (ICT) in agriculture is far from their
potential. In this article, we consider how to facilitate and systematize the process of transforming
traditional agriculture into digital agriculture; Agriculture 4.0. Among the different technologies,
we focus on the IoT aspects. In the article, we propose a new approach for the design of intelligent
agricultural management and supervision systems. The proposed approach is illustrated as an
example of application in the beekeeping sector. Indeed, this sector is affected by a crisis due to the
disappearance of bees and the different actors need support to make their decisions. As an example
of decisions that can be made, we can cite: treatment planning or policy planning. An architecture
based on sensors and open data is proposed to help them make decisions. An implementation of it is
shown; it is based on a device with sensors, as well as an interface to collect the data on beehives and
show notifications and alerts to beekeepers. The proposed architecture is flexible, and it can be used
in the context of different levels of technology maturity. The final objective is to develop a reusable
architecture for Agriculture 4.0.

Keywords: intelligent system; agriculture 4.0; smart beehives; maturity model

1. Introduction

Recently, the beekeeping industry has been threatened by a decline in the number of
bee populations and a drop in production. Beekeepers grapple with many issues related
to the health of bee colonies. Scientific work is focused on a deep understanding of
the causes of these phenomena in order to help beekeepers make the right decisions [1].
In France, a study on the mortality rate of bee colonies during the winter of 2020–2021
was carried out with more than 13,000 participating beekeepers (Platform ESA. National
survey on winter mortality of bee colonies, 2021. Accessed on 28 September 2022. https:
//siteweb.esa.inrae.fr/en/node/536). In general, the death rate is estimated at 24.8%.

According to a FranceAgremer (FranceAgrimer: The National Establishment of Agri-
cultural and Sea Products) study [2], sales of honey and derivatives (pollen, pure royal
jelly, honey and royal jelly, etc.) in supermarkets are estimated in 2020 at 16,200 tons, an
increase of nearly 11% compared to 2019. The increasing consumer interest is explained by
the positive image of the product (healthy, natural, etc.). For more than 10 years, honey
production in France has been increasing, but despite this, it is not enough to cover an
increasingly strong demand. Consequently, France imports honey to fill the gap between
consumption and production. The volumes of imported honey thus increased by 36%
between 2010 and 2020 (6% in 2020).

It is now evident that environmental pollution and climate change are a great danger to
our planet. Experts have confirmed that they pose a very dangerous threat to many species
of terrestrial and marine fauna. However, the death of the bee population necessary for polli-
nation is considered the most important warning for humans. According to FranceAgrimer
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(FranceAgrimer. Observatory of the production of honey and royal jelly, July 2022. Accessed
on 28 September 2022. https://www.franceagrimer.fr/fam/content/download/69152/
document/SYN-API-Observatoire_Miel_et_Gel%C3%A9e_Royale_2021.pdf?version=3), the
total number of beekeepers has increased over the past 6 years and for the first year, the
Observatory has highlighted a decline in the number of beekeepers in France. Thus, in
2021, there were 70,847 declared beekeepers, compared to 71,273 in 2020. Nevertheless,
the number of beekeepers with more than 50 hives continues to grow (+288 beekeepers, or
more than a 5% improvement). France has 5708 beekeepers with more than 50 hives.

A solution to tackle these issues is to connect and digitalize the beehives. Our goal is
to help the beekeepers and decision-makers (politician, responsible for cooperative, etc.) to
make their decisions and to supervise one or several beehives. These decisions could be
from a day to a year. More specifically, beekeepers keep a record or journal of their hives.
In this record, the beekeepers note the information about all treatments, handling, feeding,
visits, harvesting of the honey, etc.

In addition, many applications in manufacturing systems require a combination of new
technologies, resulting in the emergence of Industry 4.0. The most well-known technologies
used by Industry 4.0 are IoT, Cloud Computing, Big data, and cyber-physical systems (CPS).
CPS are mechanisms that allow monitoring through communication, data storage, and
computational capabilities directly incorporated into objects [3]. More precisely, CPS has
embedded software that uses sensors and actuators. To allow humans and software to
communicate between them, standard interfaces have been developed. The use of data
coming from sensors or from the network is supported by this software. They have storage
and processing abilities.

Agriculture systems have the same challenges as those encountered by manufactur-
ing systems. Theses challenges are related to their sizing, to the understanding of their
mechanisms, to the improvement of their productivity, and to their performance evalu-
ation. Theses challenges produce difficulties to make decisions for all the actors in the
agriculture systems.

Digitalization processes are currently being increasingly introduced into various
sectors of the national economy, including the agricultural sector [4]. Digital Transformation
(DT) refers to the combination of digital technology and areas of the business to finally
realize the transformation of the management model and business model [5]. Indeed, DT
is often referred to either as evolution, or the creation of entire new business models in
companies or business sectors [6]. Digitalization can be considered as part of DT [7]. It
describes socio-technical processes and their impacts on human activities that result from
the use of interconnected digital technologies [8]. DT is a convergence of hard (technology)
and soft (people and businesses) forces and movements from which additional value
emerges [9]. According to the authors, one of the disruptive technologies adopted in DT
implementations is “IoT connected devices”. In the same way, the following categories were
used for coding the DT [10]: Technologies, Management/Processes, and People. The authors
also list the elements within each category. Among these elements, in this paper, we meanly
use IoT (Technology) in order to create new services and products (Management/Processes) for
workforce, stakeholders, and partners (People). Thus, our process respects the properties
of the DT, with an implementation in beekeeping. As new services, we focus on the
development of decision support systems. This new service allows us to improve the
business models of the different actors and to help save the bees.

In our context, we depict a new approach to apply the DT in the beekeeping sectors
and help the actors of this area to make their decisions. To this end, different proposals
are made:

• A proposal of Maturity Model (MM) Levels for smart beehives;
• A proposal for analysing all the decisions that can be made in the beekeeping sectors

using spatio-temporal matrix;
• A proposal of generic architecture that corresponds to the decisions analysed in

the matrix.
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The paper is structured as follows: Section 2 presents a synthetic review of work
about smart agriculture and more specifically on beekeeping with a focus on IoT. Section 3
proposes a Maturity Model to categorize the digital maturity of smart beehive systems and
presents classification of the literature on smart beehives following this Maturity Model.
Section 4 depicts a spatio-temporal matrix to analyse the possible decision-making on smart
beehives. Section 5 explains the global view and the generic architecture for the proposed
smart beehives. An implementation is shown in the Section 6. Finally, Section 7 presents
the conclusions and perspectives.

2. Context and Related Work

2.1. From Industry 4.0 to Agriculture 4.0

One of the main objectives of our approach is to facilitate the use of IT communication
and information tools in agriculture. As an analogy to Industry 4.0, digital agriculture,
smart agriculture, intelligent agriculture, or Agriculture 4.0 can be defined as a set of
modern technologies that today meet the needs of communication, storage, automatism,
computing, and security.

Industries, as well as researchers and decision-makers around the world, have increas-
ingly called for a fourth industrial revolution to enter a new era of digital and connectiv-
ity [11].

According to Danjou et al. [12], 10 technology groups can be considered to implement
Industry 4.0, such as cloud computing, IoT, CPS, and big data. The use of these technologies
allows the transmission of information throughout the entire system and enables better
control and monitoring. Practically, they are adapted to the operations in real time according
to varying requirements and demand [11].

From these concepts, we proposed to reuse them in the domain of Agriculture 4.0
(Figure 1) similar to Ref. [13], who proposed a framework to manage traceability in Agricul-
ture 4.0. Agriculture becomes a very important sector to apply the concept of CPS to [14].
In fact, the agriculture sector follows the industrial revolution and moves from traditional
systems to the implementation of a full range of modern systems. These systems enable
data management of the geographic information, production experiments, climate infor-
mation, and other data. The beekeeping sector is obviously concerned by this revolution.
Figure 1 shows the reuse of 10 technologies from Industry 4.0. The orange circles represent
the technologies used in our project.

In the context of our project and paper, we are only interested in five technologies:

• Internet of Things, because decisions need data collection done through connected
objects like smart hives;

• Cyber-Physical System, a set of primordial principles that allow defining the hierarchy
of decision makers and decision cycle;

• Big Data, because data is the most important thing on which decisions are based;
• Cloud computing, which refers to the delivery of resources and services on demand

over the Internet, i.e., the access to data from different resources and high comput-
ing power via the internet. It is an important computing step that facilitates the
deployment of intelligent systems;

• Artificial Intelligence: in fact, nowadays, artificial intelligence is a powerful tool that
can be used to help users in the process of making decisions.

Among the concepts of the agriculture 4.0 presented in this section, the main concept
used in this paper and our system is IoT. The next section presents this concept.
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Figure 1. Reuse of the 10 technologies of Industry 4.0.

2.2. IoT for Digital & Green Agriculture

In an era of the Information Technology (IT) revolution, IoT is being utilized in various
forms such as smart pills, personal devices, smart cities, robotics, smart monitoring devices,
and real time monitoring systems. IoT can be explained by the ever growing intercon-
necting that connects hardware, computing devices, sensors, interfacing software, people
of different networks, to exchange data and communication [15]. It facilitates and eases
the process of communication and interaction between the elements connected through
the network. The technology of IoT was derived from Radio Frequency Identification
(RFID) and Wireless Sensor Networks (WSN) [16]. The data collected from RFID and
WSN can be communicated easily to the different nodes of the interconnected sensors.
The technology of IoT is being widely used in various devices such as home appliances,
phones, gadgets, vehicles and other networking objects. Simply put, it means that all
networking devices can be interconnected with each other globally for a real-time data
exchange without the interference of human beings. IoT usage is growing rapidly in the
IT industry, driven by the use of connected device applications. However, the COVID-19
pandemic will have a major impact on global IoT spending in 2022. IDC forecasts that
global IoT spending will grow at a compound annual growth rate (CAGR) of 11.3% over
the 2020–2024 forecast period (Worldwide Spending on the Internet of Things Will Slow
in 2020 Then Return to Double-Digit Growth, According to a New IDC Spending Guide.
https://www.idc.com/getdoc.jsp?containerId=US49578922, August 2022. Accessed on 28
September 2022).

According to IDC, there will be 41.6 billion connected objects generating 79.4 zetta
bytes of data in 2025 (Steve Ranger. What Is the IoT? Everything you need to know about
the internet of things right now. https://www.zdnet.com/article/what-is-the-internet-of-
things-everything-you-need-to-know-about-the-iot-right-now/, February 2020. Accessed
on 28 September 2022). There are many different types of connected sensors that can be
used in IoT applications to make the process simpler and efficient [17]. Appliances such
air conditioning, security cameras, etc., can be controlled and audited from anywhere
through connected devices. Smart cities are also being developed through the help of IoT
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by the transportation data analysis. The technology of IoT is used by supply chain systems
also when they use trackers to track deliveries in real time. Similarly, applications such
as ApplePay, PayPal, etc., are also forms of connected devices that are used by banking
systems to enable transactions using smartphones. Smart devices are used to collect data
with the help of sensors and collected data can be transferred to the network layer through
cloud systems. It is used for collecting various types of data that is useful to monitor and
track various activities. The data collected through the different networks is converted into
useful data, which become very important elements in the decision process.

What is the landscape of the sensors and IoT in agriculture? Agriculture benefits from
interconnected objects, as the use of smart devices in the agriculture sector enables the
monitoring of different important values and activities of farmers. The applications of
connected devices are being utilized to track and record different kinds of data such as
temperature, humidity, pollution, etc. Smart and IoT applications entered agriculture with
a delay in relation to other fields such as medicine or industry. However, these solutions
have started to increase over the years for better monitoring. This paves way for better
practices in the form of better quality services and cost reduction. IoT-based approaches in
the agriculture and agro-industry have proved to be very useful and have become necessary
to propose better adapted services. More precisely, most initiatives in the agriculture and
agro-industry focus not only on increasing the production but also on improving services
such as sustainability, biodiversity vigilance, etc.

IoT is another very important paradigm used in the agro-industrial and environmental
field [18]. The authors in Ref. [19] explain that one of the main requirements for devices
used in IoT projects is that they must be energy efficient. The main point is to be able
to evaluate the energy impact of the proposed architecture. The authors also explain
the interest of Edge Computing in the future of agriculture. The IoT driven by AI-based
recommendation model is one of the greatest promises of the development [18].

Several research activities have been carried out to study the use of IoT concept and
agriculture. The authors of Ref. [20] presented an interesting survey of IoT solutions
and demonstrated how IoT can be integrated into the smart agriculture sector. Ref. [21]
presented the design of a smart system based on low-cost IoT sensors and popular data
storage services and data analytics services on the cloud for crop production. The authors
of Ref. [22] presented an overview on the recent trends on sensors and IoT systems for
irrigation in Precision Agriculture. On the same scope, Ref. [23] proposed a data acquisition
platform that is easily reusable. Other authors [24] have focused on the communication
between the sensors and a NoSQL database through the use of an Interoperable Platform.
The goal is to support the actors to help them manage their crops. In Ref. [25], the authors
present a comprehensive review of emerging technologies for IoT-based smart agriculture.
They provide a classification of IoT applications for smart agriculture into several categories.
They propose to list the connected smart agriculture sensors that enable the IoT.

3. Maturity Model Levels and Smart Beehives

Many authors have already dealt with smart beehives with different levels of tech-
nological maturity. We therefore propose to focus on technological maturity for smart
beehives and then analyse the articles that cover this field.

3.1. Maturity Model Levels for Smart Beehives

Beekeepers, depending on their financial means, will have different levels of techno-
logical maturity. The more connected beekeepers are, the more precise and relevant the
notifications they receive will be.

To design our maturity levels, we were inspired by the literature about Maturity Model
(MM) in Industry 4.0. We have therefore redefined MM so that it is compatible with a
system similar to ours. Indeed, the literature proposes different Maturity Model levels to
evaluate the digitalization of manufacturing systems [26–28].
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Among the different existing maturity levels, we were interested in those correspond-
ing to IoT and CPS. Westermann et al. [29] offered a maturity model for all CPS systems.
We then adapted this model to our system. Table 1 proposes to summarize this adaptation.

The system is partially interlinked with other systems in horizontal and vertical
dimensions [29]. Horizontal means communication with systems along the value chain,
e.g., up- or down-stream systems such as other machines or other smart beehives in the
studied domain. Vertical means interlinking with superordinate systems such as central
decision centres or ERP in industry.

The system at the hive level will be between levels 1 and 5. Depending on the CPS set
up by the beekeeper, the level of alerts and notifications will be different (Table 1).

Table 1. Maturity model levels adapted for smart beehives.

Maturity Model
Levels

1 2 3 4 5

Data Input

Manual or vocal
input

(semi-automatic)
and global

connection to envi-
ronmental data

Automatic input
by sensors and

global connection
to environmen-

tal data

Automatic input
by sensors and

global connection
to environmen-

tal data

Automatic input
by sensors and

local/global
connection to envi-

ronmental data

Automatic input
by sensors and

local/global
connection to envi-

ronmental data

Intelligence Centralized Centralized Centralized and
locally limited

Centralized +
Local (including

history of decisions
made) + Local

analysis of the data
and automatic
alerts sending

Centralized +
Local cooperation
and negotiation

between beehives

Communication

Vertical with
synchronization
for several days

or weeks

Vertical with
synchronization
for several days

or weeks

Vertical with
Real Time

Synchronization

Vertical with
Real Time

Synchronization

Horizontal and
Vertical with

Real Time
Synchronization

Regarding the agriculture, Büyük et al. [30] dealt with the Digital Maturity Assessment
Model for Smart Agriculture. It consists of a model for companies that evaluates their
competencies in Smart Agriculture. It is possible to calculate the digital maturity levels by
using the proposed evaluation model. Actors in the agricultural sector can also analyse
their degree of success in relation to the requirements of Industry 4.0. With the proposed
criteria, the human and technological aspects are taken into account. The whole cycle (from
the farm to the industry) could be analysed. Only the technological and farm aspects of
this evaluation model correspond to our project.

3.2. Smart Beehives Literature Classified by Maturity Model Levels

Even though using technology in the beekeeping domain is still in its infancy, some
works attempt to exploit certain technology aspects in order to improve the beekeeper
practices and performance. Table 2 presents some of these works, each of them correspond-
ing to a system that has input data and output data, and is based on special hardware,
software, and algorithms. The last column of the table indicates the maturity of the system,
as described in Section 3.

144



Appl. Sci. 2022, 12, 11179

Table 2. Literature about smart beehives analysed with the Maturity Model presented in the Table 1.

Authors Date Input Data Output Data Hardware Software MM

Aksoy et al. [31] 2018

company age,
company province,
level of education,

status of membership
of an association, other

activities, hives
number, race of bees,
frequency of queen

change

honey production
Data Mining

algorithms: CART,
CHAID, MARS

1

Dineva and
Atanasova [32] 2018

beehive internal data
(temperature, humidity,
weight, noise), external

data (temperature,
humidity, CO2,
polluting air)

relation between data,
prediction of future

events
sensors OSEMN 2

Braga et al. [33] 2020

temperature, weight,
weather data, dew

point, wind direction,
wind speed, rainfall,

luminosity

colony health status:
good health, bad

health, or collapse of
colony health

sensors

K nearest neighbors
method, Random
decision forests,

Neural Networks

2

beeinformed.org [34] 2021 weight, number of
varroas, virus, nosema statistics sensors web application, open

data, diagrams 2

Edwards-Murphy
et al. [35] 2016

CO2, O2, polluting
gases, temperature,

humidity, acceleration

colony health state,
beehive internal

weather data and
external weather data

sensors (temperature,
humidity, acceleration,
air), network devices

(3G, ZigBee)

Machine learning:
decision tree 3

Markovic et al. [36] 2016 temperature critical events temperature sensors Complex event
processing (CEP) 3

Balta et al. [37] 2017

hive data (temperature,
humidity, weight, bees
traffic), external data

(weather, location
information)

bees counting,
management of

devices, resources and
sensors, management

of beekeeping data
(beehive, apiary and

region), detecting
dangerous situation
(robbing, swarming
and colony losses)

Raspberry Pi, camera,
sensors

sqlite, mongoDB,
Node.js, Express.js,
Angular.js, java on

android, MQTT
protocol, RESTful
protocol, Cloud

computing (Microsoft’s
Azure and IBM’s

Bluemix), Rule-based
algorithm, XML, JSON,

CSV

3

Zogović et al. [38] 2017

weight, temperature,
O2, CO2, vibration,

sound, humidity,
foragers traffic, thermal

images of colonies,
atmospheric pressure

decision making aid,
automatic actions

performed by robots

scale, sensors, robot,
actor, camera

OODA cycle: observe,
orient, decide, act 3

Cazier
(beeculture.com) [39] 2018

weight, temperature,
humidity, sound,

images, knowledge of
good beekeeping

practices

alerts, suggestions of
actions, management

practices, optimisation
(colony health,

production, pollination
performance)

use of the beeXML
standard, continuous

learning and
integration of good

practices

3

Mrozek et al. [40] 2021 stream video of bees at
hive entrance bee infestation status RaspberryPi, Camera,

GSM modem

Neural Networks,
Google Cloud, AWS

Cloud, AWS Lambda,
AWS DynamoDB

3

Debauche et al. [41] 2018

external data:
temperature, humidity,
atmospheric pressure,
luminosity. Beehive

internal data: humidity,
temperature,

acceleration, air
contaminants

monitoring of bees
behaviour, information
for comprehension and

analysis of the
extinction of bees,
colony health state

Network protocols
(LPWAN, 3GPP),
sensors, PyCom
microcontroller

Lambda Architecture,
REDIS, PostgreSQL,

Apache kafka, Apache
Samza, HDFS, Docker

3
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Table 2. Cont.

Authors Date Input Data Output Data Hardware Software MM

Zetterman [42] 2018

temperature, weight,
sound, humidity,
number of bees,

acceleration, CO2

data collection,
monitoring, graphics sensors web application 3

Latioui et al. [43] 2019

expert rules, social
network data (images,

texts), beekeeper
voice, GPS

alerts,
recommendations,

voice detection
sensors Chatbot, deep learning,

text mining 3

None of the articles presented in Table 1 provide a description of the digital maturity
level. Most of those articles have proposed architectures to manage the data exchange
between components. However, these architectures are very technical and have a lack of
global view and genericity. Thus, they are hardly reusable. We propose in this paper, using
the digital maturity level and the analysis made in the next section, to approach the subject
in a more global and generic way.

4. Analysis with a Spatio-Temporal Matrix

To design an architecture for a decision-making system, a relevant methodology must
be used. Among methodologies that can be used in the case of beekeeping, there is the
spatio-temporal “3 × 3 matrix”. It consists of filling a matrix composed of two axes: the
temporal horizon and the modelling level. There are several works that try to use a two-
dimensional grid to design a decision-making system, for instance, Chabrol et al. [44]
proposed to couple the modelling approaches to the time horizons to design decision aid-
tools for the hospital domain. Comelli et al. [45] propose a methodology based on studying
horizon levels and system flows to evaluate the supply chain. The suggested framework
in Ref. [46] has the advantages of handling decisions on two dimensions. It allows the
designer to have a global view and to achieve a more complete architecture, taking into
account different temporal and spatial levels. As explained in that paper, Figure 2 shows
the matrix axis and its matching levels for the case of beekeeping.

Figure 2. Spatio-temporal matrix.
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The authors of Ref. [46] define the spatio-temporal matrix, show its matching levels
for the case of beekeeping, and illustrate its application by an example of web application
for managing apiary data. This tool allows its user to take decisions at the beehive or
microscopic level. These decisions are either tactic, such as planning activities for the
next week or month, or operational, such as evaluating results and adapting the activities.
Figure 3 shows the application of the 3 × 3 matrix for that use case.

Figure 3. Application of the spatio-temporal matrix to the beekeeping case.

Our suggested architecture implements some levels of the matrix.

5. Decision Support Systems for Smart Beehives

According to Ref. [47], a Decision Support System (DSS) is a computer-based system
intended for use by a particular manager or usually a group of managers at any organi-
zational level in making a decision in the process of solving a semi structured decision.
The DSS produces an output in the form of periodic or special report or the results of
mathematical simulations. For the famous Cambridge Dictionary (Cambridge Dictionary.
https://dictionary.cambridge.org/fr/dictionnaire/anglais/decision-support-system. Ac-
cessed on 13 October 2022), DSS is “a computer program that can arrange and sort large
amounts of data, and that is used to help people in companies and organizations make
important decisions based on the data: A successful decision support system is one that
assists rather than replaces the human decision-maker”.

By following these definitions, Figure 4 shows our global view of how to implement
DSS to help beekeepers manage their beehives. The three levels of decision-making,
described in Figure 4, correspond to the spacial dimension of the matrix depicted in
Section 4. The data used to make the decision come from two sources:

• Sensors in the embedded system of the beehive;
• Open data about the weather (temperature, humidity, etc.) and pollen. The pollen is

to know the state of the flora in a sectioned area.
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Figure 4. Global view of the decision support systems for smart beehives.

5.1. Generic Architecture for Smart Beehives

Our solution is inspired by a standard API (Application Programming Interface) for
managing contextual information (NGSI-LD API) [48]. This standard enables near real-time
access to information from many different sources (not only IoT data source). NGSI-LD
open specification released by ETSI defines the context information model and the API
to produce, consume, and subscribe to context information. In our solution, different
sensors are used to measure and quantify the indicators of the beehives. The most used
are weight and temperature. The weight can be used to see the increase or decrease in the
weight of the hives. It makes it possible to monitor the production of honey and to trigger
alerts if the variation in weight is significant. Weight can also indicate the best feeding and
processing strategy applied to a hive, particularly comparing weight over time and between
different hives/apiary. Outdoor weather conditions change over time, and the temperature,
humidity, and wind speed must be taken into consideration. All these different types of
data are used to optimize beekeeping decisions. One of the major problems in beekeeping is
the varroa destructor mite. It is the most destructive enemy of the Western honeybee (Apis
mellifera). The varroa is a serious threat to bee health. A bee colony infested with mites
will typically die off in these regions within three years. Until now, it has been difficult to
deal with this problem. Indeed, counting varroa mites is interesting when quantifying how
many bees are infected per hive. However this task remains very complicated because it is
often carried out manually. Our platform offers an automatic counting service based on
photos of frame bees. This service is based on deep learning methods to process images and
detect objects. In fact, two neural networks for object detection and image segmentation are
used. Faster RCNN is used for detecting bee locations; for each bee in the image it predicts
a bounding box surrounding the object. Figure 5 illustrates the network outputs. To locate
varroas, the U-NET takes as input an image containing one bee and segments it into two
regions: varroa and background. Figure 6 illustrates the U-NET outputs. Estimating the
infestation level is performed by combining these two detections; first the frame image is
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given to the system, then the bees are identified, and after that the presence of varroa is
predicted for each bee. The infestation percentage is calculated by dividing the number
of infected bees by the number of bees. This system needs data for learning; in fact, bee
images were retrieved from project partners, from camera photos, and from the Internet.
Thanks to annotation tools, the images were annotated by bounding boxes for bees and
ellipses for varroas.

Figure 5. Detected bees by Faster RCNN. Coloured bounding boxes are predicted objects and white
bounding boxes are ground-truth objects.

Figure 6. Varroa segmentation by U-NET. The yellow region represents varroa. True Mask is ground-
truth segmentation and Predicted Mask is the predicted segmentation.

5.2. Databases

Our system is able to send valuable information to subscribed beekeepers thanks
to the collection and extraction of data from different data sources such as sensors. The
collected data will help train machine learning models capable of generating advice or
alerts to users.

A survey was carried out by our partner (ITSAP—Bee Institute). The survey is based
on multiple questionnaires on the several activities and needs of beekeepers (Survey “Bee-
keepers and digital technology”. https://itsap.asso.fr/pages_thematiques/numerique/
enquete-apiculteurs-numerique/, 31 January 2020. accessed on 28 September 2022).

The number of beekeepers participating in the survey is 415 (43% have more than
70 hives).The most important productions are honey and breeding. According to the survey,
data collection appears to be a relatively common practice among beekeepers. While certain
information must necessarily be collected to meet administrative requirements (especially
for the breeding register), others show a desire to collect objective information on the
colonies. However, a handwritten input remains the majority in most cases, despite the
advantage of having a computer version concerning the ease of consultation of the data and
their use. Only 60% of beekeepers who responded to the survey monitor varroa infestation.

The most expected features consist of fairly simple data processing, namely graphic
productions and indicator tables. In addition to data visualization, beekeepers are looking
for an intelligent alert service capable of reporting relevant information (Table 3).
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Table 3. Expectations of beekeepers regarding the functionalities to be integrated into a manage-
ment platform.

Functionality Interested Beekeepers (%)

Data visualization 81

Alert service 78

Voice input 77

Data storage 72

Data sharing between beekeepers 71

The proposed data model is based on the results of this survey concerning the useful
and necessary information that should be managed on an apiary.

The implementation of this architecture is done in collaboration with beekeepers.
This will lead to the development of a comprehensive and flexible system that would
allow the beekeeping community to share relevant information and knowledge, and make
appropriate decisions. All information is modelled from data models that allow the
unification of data structures using standards and also ensure further extensibility, if
necessary.

Figure 7 presents an excerpt from our data model. We have developed a new model
that would meet the needs of our beekeepers. Conceptually, the model presented is based
on two levels:

• Spatial dimensions: sensors/hive/apiary/zone;
• Temporal dimensions: real-time /operational(day /week)/tactic (week/month) /strate-

gic (year).

Figure 7. Excerpt from the data model.
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Figure 8 presents an excerpt from our central data mode. The figure shows an example
of a service offered, collecting data by integrating the time dimension.

As an example, for an apiary:

• Real-time: quantity of honey;
• Operational: varroa counting;
• Tactic: varroa treatment;
• Strategic: define the type and the amount of treatment and write a health risk manage-

ment.

Figure 8. Excerpt from the central data model.

The selection of materials used to build the embedded system is a compromise between
the cost and the accuracy of the sensors. Indeed, our goal is to encourage the beekeepers to
make their digitalization and the cost of the system is a very important criterion.

6. Case Study

The case study developed in this project corresponds to level 3 of the MM presented
in Section 3 and in Table 1. Table 4 presents our case study with the MM.

Table 4. Maturity Model levels of the case study.

Maturity Model Levels 1 2 3 4 5

Beehive connected - - yes - -

We have chosen the agile approach because it is flexible based on principles of col-
laboration, adaptability, and continuous improvement. This approach is ideal for our
project, which is service-oriented and allows for the rapid adaptation based on stakeholder
feedback.

The information is transferred by using smartphone or web applications to the data
model for later decisions, as shown in Figure 9. Along with the best practices and modern
design techniques, REST architectural style allows building an API that is both extendable
and flexible. Indeed, the use of API HTTP REST provides various possible interactions
with third-party platforms in both directions. REST APIs should accept the JSON format
for the request payload and send responses to JSON. JSON is a standard for transferring
data. Almost every networked technology can use it.
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Figure 9. An example of the proposed architecture.

The criteria for this project are:

• Low-power board computer, because the system has to be embedded on the apiary
during several weeks;

• The materials have to be low-cost because we need to convince the beekeepers to use
it. It means we have to make a compromise between accuracy and price.

From these constraints, we selected the materials below:

• Arduino: the best embedded low-power single board computer;
• Sensors for the humidity and temperature: AZDelivery DHT11;
• Sensors for the Weight: HX711 Module;
• Sensors for communication: Z-Delivery ESP8266 ESP-01 Serial Wireless WLAN

WiFi Transceiver Module Transceiver.

We made our weight sensor by combining four single strain gauges (load sensor). We
made boxes to encapsulate the sensors using a 3D printer. Figure 10 shows: single strain
gauge (a) arranged in a Wheatstone bridge configuration (c). A load sensor combinator from
sparkfun (b), which is a module that directly integrates a Wheatstone bridge configuration
to which we only have to connect the four sensors according to the diagram (c). The
combinatory board is hooked up to an amplifier (HX711 module). Load cell measurements
can be off due to a range of things (temperature, vibration). In our tests, we obtained
calculation variations between +2% and −3.5%.

At the top of Figure 11, we can see the day’s indicators (specified at the top left), such
as the maximum and minimum temperatures of the hive, its maximum and minimum
humidity levels, as well as its weight. These indicators turn red if they are too high, and
blue if they are too low. Each indicator is represented as a curve below, showing the
evolution of the data over a chosen period (which year, month, or number of days can
be changed in the filters at the top right). We also see on each of the curves the forecast
of the potential evolution of the data for the remainder of the month. Finally, the dotted
lines represent the warning threshold that a curve must not exceed. In Figures 11–13, the
measurements were made until 19 February. After this date, it is a question of prediction.
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(a) (b)

(c)

Figure 10. Weight sensor: (a) single strain gauge, (b) a load sensor combinator from sparkfun,
(c) Wheatstone bridge configuration c https://learn.sparkfun.com/tutorials/load-cell-amplifier-
hx711-breakout-hookup-guide/all. Accessed on 28 September 2022.

Figure 11. Dashboard: data.
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The figures also show a prediction of the weight as well as the weather. We use the
linear regression algorithm.

Very similar to Figure 11, Figure 12 shows the indicators for the external data. The
ambient temperature as well as the outdoor humidity levels have been taken into account.
Unlike the previous part, the indication of the wind force as well as the weather forecast
for the day are shown.

Figure 12. Dashboard: environmental data.

In Figure 13, on the left, the total pollination rate by region (selectable in the filter
below for a global view in France, or for a focus on a particular region) over a chosen period
is shown. For more details, on the right, we can see the most common types of pollen
(according to their pollination rate in number of grains/m3 of air) in France, in a particular
region. It is possible via the filters below to choose a region, or a particular type of pollen.

Figure 13. Dashboard: pollination data.

The Alert Manager is a component of our system. Its mission is to address beekeepers
with possible alerts or valuable information based on data provided by all other parts of
the system (e.g., sensors and predictions).

Figure 14 shows the nature of the data to be managed and collected by the system, as
well as the information output from the system. In the context of our case study, a system of
alerts and notifications has been developed. A screenshot with an example of use is shown
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in Figure 15. The Today column presents the alerts or notifications from the current day
data. The Forecast column shows the alerts and notifications for future days from forecast
analysis. The severity rate is represented by different colours (orange for warnings and red
for the alerts). The parameter settings for each hive are changed.

Figure 14. System data and information.

Figure 15. Example of alerts and notifications from environmental data.

7. Conclusions

This paper presents a new approach for modelling, monitoring, and deploying Agri-
culture 4.0 systems. As for Industry 4.0, agriculture is going through its digital revolution.
In fact, Agriculture 4.0 is based on solutions and technologies developed for Industry
4.0. In this context, smart beehives need some technological solutions to build smart hive
motoring systems. The goal is to help different stakeholders to make the best decisions.
We studied through a spatio-temporal matrix with the time and the geographical horizons
all kinds of decisions that can be made. Indeed, beekeeping is affected by a crisis due
to the disappearance of bees, and the different stakeholders need support to make their
decisions. Our approach used a part of these technologies: Big Data, the Internet of Things,
Cyber-Physical Systems, Cloud Computing, and Artificial Intelligence. We have imple-
mented a Digital Transformation (DT) process to help the actors of the beekeeping sector.
The idea was to develop new services for beekeepers and more generally for the actors of
the apiary using these technologies. Among the elements of the DT, the “people” become
essential, and even more important than anything else [10]. It is why beekeepers and their
cooperatives were fully involved. We used their vocabulary and we worked together to
understand their culture. Concretely, a reusable and flexible architecture based on sensors,
data from beekeepers, and Open Data has been introduced. To illustrate our new approach,
a specialized software application has been developed. This application notifies and alerts
beekeepers to help them to take care of their hives. We also proposed a Maturity Model
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(MM) to diagnose the level of digitalization in the area of agriculture. We analysed the
literature on smart beehives regarding this MM.

A long term perspective is to move toward the development of a methodology to
address issues related to Agriculture 4.0 and support agriculture in their DT in general.
Another important perspective is to use this approach to build a global architecture. It
allows to register all the data at different hierarchical levels (land, apiary, and beehive
databases). Such an architecture would be based on Industry 4.0 and Fog computing (Edge
Computing). We will analyse architectures proposed by these concepts [49]. Moreover, our
use case will evolve toward more local decisions, and will correspond to level 4 of our MM
(Table 1). It means that the decisions will be faster, more relevant, efficient, and accurate.
Concretely, this evolution will be achieved thanks to the development of a data analysis
module inside the beehives. This will allow us to cross-check and analyse the history of the
data acquired. Another future line of research is the development of cooperation between
the embedded systems of smart beehives of the same apiary. It will generate better accuracy
for the notification and alert system. To achieve all these evolutions, we need to implement
machine and deep learning algorithms.
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40. Mrozek, D.; Gȯrny, R.; Wachowicz, A.; Małysiak-Mrozek, B. Edge-Based Detection of Varroosis in Beehives with IoT Devices with
Embedded and TPU-Accelerated Machine Learning. Appl. Sci. 2021, 11, 11078. [CrossRef]

41. Debauche, O.; Moulat, M.E.; Mahmoudi, S.; Boukraa, S.; Manneback, P.; Lebeau, F. Web Monitoring of Bee Health for Researchers
and Beekeepers Based on the Internet of Things. Procedia Comput. Sci. 2018, 130, 991–998. [CrossRef]

42. Zetterman, B.E.A. Beekeepers Usage of IoT: Data Collection, Sharing and Visualization in the Domain of Beekeeping. Master’s
Thesis, Linnaeus University, Vaxjo, Sweden, 2018.

43. Latioui, Z.E.; Bougueroua, L.; Moretto, A. Social Media Chatbot System—Beekeeping Case Study. In Hybrid Intelligent Systems;
Advances in Intelligent Systems and Computing; Madureira, A.M., Abraham, A., Gandhi, N., Varela, M.L., Eds.; Springer
International Publishing: Cham, Switzerland, 2020; Volume 923; pp. 302–310.[CrossRef]

44. Chabrol, M.; Gourgand, M.; Rodier, S. A modeling methodology and its application to the design of decision-making aid tools
dedicated to the hospital systems. In Proceedings of the RCIS’08: International Conference on Research Challenges in Information,
Marrakech, Morocco, 3–6 June 2008.

45. Comelli, M.; Féniès, P.; Tchernev, N. A combined financial and physical flows evaluation for logistic process and tactical
production planning: Application in a company supply chain. Special Section on Recent Developments in the Design, Control,
Planning and Scheduling of Productive Systems. Int. J. Prod. Econ. 2008, 112, 77–95. [CrossRef]

46. Huet, J.C.; Bougueroua, L.; Kriouile, Y.; Moretto, A. Toward an intelligent system architecture for smart agriculture: Application
to smart beehives. In Proceedings of the 20th International Conference on Intelligent Systems Design and Applications—ISDA
2020, Online, 12–15 December 2020.

47. McLeod, R. Information Systems, 1st ed.; Prentice Hall PTR: Hoboken, NJ, USA, 1989.
48. ETSI. Context Information Management (CIM); NGSI-LD API. Technical Report; ETSI. 2020. Available online: https://www.etsi.

org/deliver/etsi_gs/CIM/001_099/009/01.03.01_60/gs_CIM009v010301p.pdf (accessed on 28 September 2022).
49. Rafique, W.; Qi, L.; Yaqoob, I.; Imran, M.; Rasool, R.U.; Dou, W. Complementing IoT Services Through Software Defined

Networking and Edge Computing: A Comprehensive Survey. IEEE Commun. Surv. Tutor. 2020, 22, 1761–1804. [CrossRef]

158



Citation: Okarma, K.; Lech, P.;

Andriukaitis, D.; Navikas, D.;

Korzelecka-Orkisz, A.; Tański, A.;
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Abstract: The optimal water flow in fish breeding tanks is one of the crucial elements necessary for the
well-being and proper growth of fish, such as salmon or trout. Considering the round tanks and the
uneven distribution of water-flow velocity, ensuring a nearly optimal flow is an important task that
may be performed using various sensors installed to monitor the water flow. Nevertheless, observing
the rapid development of video analysis methods and considering the increasing availability of
relatively cheap cameras, the use of video feedback has become an interesting alternative that limits
the number of sensors inside the water tanks in accordance with the requirements of fish breeders.
In this paper, an analysis of the use of optical flow algorithms for this purpose is performed and an
estimation method based on their features is proposed. The results of the flow estimation using the
proposed method are verified experimentally and compared with the measurement results obtained
using the professional water-flow meter, demonstrating a high correlation, exceeding 0.9, confirming
the proposed solution as a good alternative in comparison to the use of expensive sensors and meters.

Keywords: video analysis; visual feedback; water monitoring; optical flow; aquaculture; recirculating
aquaculture systems

1. Introduction

The application of video analysis has recently become one of the leading interdis-
ciplinary trends in modern aquaculture. Some of the evident reasons for this situation
are the increasingly available and affordable video cameras as well as the growth of the
computational power of the popular devices that, in some applications, may replace typical
personal computers, such as, e.g., Raspberry Pi, FPGA boards, nVidia Jetson Nano and
similar more sophisticated hardware platforms. An analogous situation also exists in the
automotive industry and some other areas of technology, which is typical for the rapid
development of Industry 4.0 solutions, which is becoming Agriculture 4.0 as well [1].

The most typical applications of video analysis in fish farming seem to be motion
tracking [2], as well as the recognition and classification of fish [3], which has recently also
utilized popular convolutional neural networks (CNNs) [4]. The application of such video
systems may also be helpful for the determination of fish behavior [5–8] as well as in the
development of intelligent feeding systems [9–11]. Another interesting area of research
related to these topics is water-quality monitoring [12]. Some other recent works focus on
the applications of artificial-intelligence methods, including mobile remote-control systems
and IoT solutions applied in fish farms [13,14].
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Many of these research areas are motivated by the willingness to limit the number
of sensors and additional equipment mounted inside the ponds or tanks, which is also
essential for economic reasons. Such video-based approaches do not affect fish directly,
reducing the possibility of injuring individual fish, additionally simplifying the hardware
architecture of systems containing sensors and their necessary connections. Therefore,
a similar approach may also be beneficiary in monitoring the water flow in recirculating
aquaculture systems (RAS).

Proper water flow in fish-farming ponds and tanks is one of the most crucial require-
ments in the fish-farming centers in which species such as salmon and trout are bred.
These fish behave in a specific way, positioning themselves parallel to the water current.
Therefore, the correct flow velocity of water determines the proper development of the
fish as well as the welfare of the whole group of them present in the pond. Much work
has been carried out in recent years to determine the optimal flow speeds for maintaining
overall fish health, but the water velocity distribution inside circular tanks is often very
heterogeneous, particularly near their walls (edges). Usually, these works are focused on
analyzing the effect of design parameters on the distribution of water velocities inside
circular aquaculture tanks [15]. An example of such a model can be found in the paper [16],
where the proposed model estimates the velocity distribution by determining the angular
momentum per unitary mass close to the tank wall and around the central axis. The model
depends on the water inlet and outlet flow rates, water inlet velocity, reservoir radius, water
depth, and three reservoir-specific parameters that must be determined experimentally. It
also takes into account the influence of the wall roughness, the characteristics of the water
inlet devices, and the presence of individual elements at the bottom of the tank causing
friction losses. However, it is not always necessary to use such advanced models, as in
most cases simplified models of flow distribution are sufficient.

The optical flow methods analyzed in this paper may also be used for the estimation
of the water-flow velocity in rivers [17–19], replacing previously used particle image ve-
locimetry (PIV) methods [20] as well as typical motion-tracking methods based on point
detectors [21]. Nevertheless, in such types of video recordings, there is no ground truth
data; hence, the evaluation of the obtained results may be conducted with the use of
trajectory reconstruction. In recent years, the accuracy and efficiency of such techniques
have improved significantly [22], making it also possible to apply some of the methods in
real-time applications [23]. Some of the proposed approaches utilize feature matching ap-
plied for orthorectification and velocimetry, such as airborne feature matching velocimetry
(AFMV) [18], whereas the applicability of the optical-flow methods has also been verified
in experimental irrigation stations. It led to promising results, with average relative errors
less than 6.5%, applying the time-averaged surface velocity of water flows based on the
Farneback optical flow method [24].

With an appropriate measuring environment, it is possible to prepare spatial dis-
tributions of the flow in the tank [25]. Unfortunately, breeders are usually opposed to
the excessive installation of sensors that can injure fish, so the most commonly available
information is the amount of water leaving the water pump supplying the fish-farming
tank. The spatial distribution is constant for the static configuration of the tank, that is: the
number and settings of nozzles, pump performance and the shape of the tank. It changes as
the amount of fish and floating biomass increases, which is problematic if it is not possible
to place the sensors in the water together with the fish.

The video measurement method developed and presented in the article is non-invasive,
with the quality of results comparable to those obtained by sensors immersed in the tank
and a flow meter measuring the performance of the pump feeding the tank.

2. Materials and Methods

2.1. Experimental Site

One of the essential parts of a system that uses vision feedback to determine the
behavior of fish in a breeding tank is the estimation of the water-flow velocity. Such studies
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can be carried out by various image analysis methods, which, however, require verification
with a calibrated water-flow meter used in experimental studies. To verify the suitability of
individual methods of video sequence analysis for this purpose, experimental tests were
carried out by recording video material for the determined values of water flows in a round
tank (SDK RT 29-68 type). The experiments were initially carried out without the fish in
the tank in order to prevent possible disturbance caused by their movements.

Due to the fact that the water in the tank is never perfectly clean and transparent,
visible small objects may appear on its surface, making it easier to estimate the flow velocity
thanks to their tracking. Additionally, it may be useful to have fixed elements of the tank
or other objects attached to it, or a reflection of the elements above the tank. The flow of
water at different speeds causes visible undulations in the shapes of these objects, while in
the case of small elements floating on the water surface, it is possible to estimate the flow
velocity on the basis of tracking their movement.

The experimental study was performed in a rainbow-trout farm located in Garnki in
the northern part of Poland about 35 km from the Baltic Sea coast. The reference measure-
ments were conducted using the electromagnetic water-flow meter MTF-10 and SonTek
FlowTracker2 in the above-mentioned fish tank, as illustrated in Figure 1. Video acqui-
sition took place using the color IP camera Dahua IPC-HFW2231T-ZS-27135-S2 typically
applied in video surveillance and industrial monitoring systems. It is a varifocal IPC
camera of the Lite series that records frames of video sequences with FullHD resolution
(1920 × 1080 pixels) at the speed of 25 or 30 frames per second.

It has a two megapixel CMOS 1/2.8 inch Progressive Scan sensor with a sensitivity
of 0.002 lux/F 1.5. It also has the option of using an additional illuminator in the form of
4 IR LEDs with a range of 60 m and an automatic ICR infrared filter. It has the built-in
2.7–13.5 mm lens with a viewing angle of 28–109 degrees and a motorized zoom with
autofocus, which enables external, remote adjustment of the focal length level with the help
of a built-in electric motor, and also automatically adjusts the sharpness level. The native
format of data recording is Dahua’s DAV, the camera also supports H.265+, H.265, H.264+
and MJPEG compression. The latter format, also referred to as Motion JPEG, may be used
in the applications where a high compression ratio is not necessary, as in this case the
video stream consists of a series of recorded frames compressed using a JPEG algorithm
without using inter-frame information in the compression process. The housing has an
IP67 tightness class, the camera supports 12 V DC or 48 V power supply using the Power
over Ethernet interface (PoE 10/100 Base-T 802.3af).

Additional functionalities and advantages of the camera are the following technologies:
3D NR (noise reduction system that allows the image to be transparent in the event of
changing signal levels, which protects the recordings against smudging), WDR (wide
dynamic range—extended dynamic range, important in places with different lighting
levels of the observed scene), BLC and HLC (back light compensation—important when
the camera is directed towards a strong light source—and high lighting compensation
to reduce the negative impact of point light sources, e.g., reflected in water), intelligent
infrared lighting function and region of interest (RoI) limitation to minimize the size of
saved files.

Due to some limitations of the local conditions, the camera was mounted directly
above the tank (about 1 m above the water surface), enabling the observation of a selected
part of the tank. One of the very important technical issues during the installation of the
camera was also to ensure proper image sharpness. Another, quite obvious, limitation of
the camera installation was the need to ensure the rigidity of the mount to prevent possible
camera vibrations. In order to be able to effectively use vision techniques to estimate the
water-flow velocity, it is necessary to ensure that the camera is stationary with respect to
the housing of the rearing tank.
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(a)

(c)

(b)

(d)

Figure 1. Location of the RAS fish farm and the equipment used in experiments: (a) location of Gar-
nki, Poland shown on the map; (b) fish tank type SDK-RT 29-68 mounted on site; (c) electromagnetic
water-flow meter MTF-10 (source: http://www.mtfflow.pl accessed on 13 September 2022); (d) SonTek
FlowTracker2 Handheld-ADV (source: https://www.ysi.com/flowtracker2 accessed on 13 Septem-
ber 2022).

The set used in the research, consisting of a pump with an electromagnetic flow meter,
allowed the use of flows (understood as the expenditure of water inflow) in the range of
1.5–5.0 dm3 per second. Taking into account the need to stabilize the water flow in the
entire reservoir, the recording of the video material was delayed in relation to the moment
of setting the desired flow. The sample frames from the recorded video sequences obtained
for various water flows are presented in Figure 2. Some changes are well visible even
in the individual frames due to the presence of reflections of ceiling beams in the water.
Some examples of the video frames captured in the presence of fish for various water-flow
velocities are illustrated in Figure 3.
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(a)

(c)

(b)

(d)

Figure 2. Sample video frames acquired for various measured water-flow velocities: (a) 1.86 dm3/s;
(b) 2.80 dm3/s; (c) 3.96 dm3/s; and (d) 5.03 dm3/s.

(a)

(c)

(b)

(d)

Figure 3. Sample video frames acquired for various measured water flow velocities in the presence
of fish: (a) 2.35 dm3/s; (b) 2.99 dm3/s; (c) 3.62 dm3/s; and (d) 4.01 dm3/s.

2.2. The Overview of the Applied Optical Flow Methods

The first of the considered approaches was the use of global entropy of the image
and its local values determined for individual frames of the video sequence. According to
the adopted assumption, for higher water-flow velocities, individual frames of the video
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sequence should be characterized by greater variability, and, thus, higher values of image
entropy. However, the observed changes in entropy for individual frames of the video
sequence did not allow to obtain satisfactory results, mainly due to the lack of use of
inter-frame information. Therefore, subsequent studies focused on estimating the motion
vectors between adjacent frames of the video sequence. For this purpose, it is possible to
use several methods from the optical flow family [26].

To estimate the value of optical flows for individual frames of recorded video se-
quences, three different methods were used:

• Horn–Schunck (HS) method;
• Farneback (F) method;
• Lucas–Kanade (LK) method.

Determining the optical flow between two frames of a video sequence requires solving
an equation with constraints:

Ixu = Iyv + It (1)

where Ix, Iy and It are spatial and temporal (spatiotemporal) derivatives of image bright-
ness, and u and v are the values of the horizontal and vertical optical flow (horizontal and
vertical components of the vector), respectively.

The Horn–Schunck (HS) method is based on the assumption that the optical flow in
the image is smooth over the entire surface of the image; hence, the velocity vector field
[u v]T determined by this method should minimize the value of the equation:

E =
∫∫ (

Ixu + Iyv + It
)2dx dy+ α ·

∫∫ [(
∂u
∂x

)2
+

(
∂u
∂y

)2
+

(
∂v
∂x

)2
+

(
∂v
∂y

)2
]

dx dy (2)

where the global coefficient α enables the selection of smoothness on the image surface,
whereas the individual partial derivatives are determined in relation to the image pixel
coordinates. Minimizing this expression in the HS method leads to the following relationships:

uk+1
x,y = ūk

x,y −
Ix ·
(

Ixūk
x,y + Iyv̄k

x,y + It

)
α2 + I2

x + I2
y

, (3)

and

vk+1
x,y = v̄k

x,y −
Iy ·
(

Ixūk
x,y + Iyv̄k

x,y + It

)
α2 + I2

x + I2
y

. (4)

The vector
[
uk

x,y vk
x,y

]
is an estimate of the flow velocity for a given image pixel with

coordinates (x, y), whereas
[
ūk

x,y v̄k
x,y

]
contains its average values from the defined neigh-

bourhood.
To determine the values of u and v flows, in the first step the gradient images Ix and

Iy should be determined using the well-known Sobel convolution filter for a standard
3 × 3 pixels mask. The It value calculated as the difference between images is determined
using the [−1 1] mask, whereas the average velocity for each pixel (excluding it) is de-
termined using a convolution with a mask typical for 4-connected neighborhood (two
horizontal and two vertical neighbouring pixels). The determination of the values of flows
u and v in subsequent steps is iterative. The default value of the parameter α is 1.

The Farneback (F) method assumes the generation of an image pyramid in which each
level has a lower resolution compared to the previous level. Selecting a pyramid level
greater than 1, the algorithm can track points at multiple levels of resolution, starting from
the lowest level. An increase in the number of levels in the pyramid allows the algorithm to
detect larger displacements of points between frames, however, increasing the number of
necessary computations in this case. This is an example of a dense method that operates in
the HSV color space (after the conversion from RGB). The flow vectors are also visualized
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in the HSV space, where the angle (hue) corresponds to the direction of the vector and
the magnitude of the flow represented by the length of the vector is reflected by the value
(V) component.

Motion tracking starts at the lowest resolution level and continues until the conver-
gence is achieved. Point locations detected at this level are propagated as key points for
the next level. Therefore, the Farneback method makes it possible to increase the tracking
accuracy at each successive level. The decomposition of the pyramid enables the algorithm
to detect large pixel movements for distances greater than the size of the neighborhood
under consideration. The default number of levels in the pyramid is 3 with the scale factor
0.5 (split into 4 parts). By default, three iterations of the solution search are performed for
each level with the default neighborhood area of 5 pixels. The convolutional Gaussian filter
with the default 15 × 15 pixels mask is used as the averaging (smoothing) filter.

The most popular Lucas–Kanade (LK) method belongs to the group of sparse methods;
hence, full calculations are performed only for selected points of the image. In this method,
the image is divided into fragments in which a constant flow velocity is assumed. To find
a solution, a weighted least-squares fit of the optical flow limitation equation to the constant
model [u v]T for each Ω section is performed by minimizing the expression:

∑
x∈Ω

W2(Ixu + Iyv + It
)2 (5)

where W denotes a centrally weighted window function. The solution has the following form:⎡
⎣ ∑
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⎤
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Similarly to in the HS method, the It value is determined between video frames
using the [−1 1] mask. To determine the values of flows u and v, the following actions
are performed:

• Determining the values of the directional gradients Ix and Iy using the convolutional
filter with the mask [−1/12 2/3 0 − 2/3 1/12] and its transposed version,
respectively;

• Calculation of the differential It value between the frames;
• Smoothing the gradients Ix Iy and It using the 5 × 5 pixels convolutional filter with

the mask type [1/16 1/4 3/8 1/4 1/16];
• Solving the system of two linear equations for each pixel:

A =

[
a b
c d

]
=

⎡
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)
∑
(

W2 Ix Iy

)
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using the eigenvalues of the matrix A determined as λ1 = a+c
2 +

√
4b2+(a−c)2

2 and

λ2 = a+c
2 −

√
4b2+(a−c)2

2 . Both those values are compared to the threshold τ applied
for the reduction in the noise effect. If at least the threshold value τ is obtained by
both eigenvalues, the system of equations can be solved by Cramer’s method. When
both eigenvalues are less than the threshold τ, the optical flow is zero, whereas if only
λ1 ≥ τ (and λ2 < τ), the matrix A is singular and the gradient flow is normalized to
calculate u and v values. The default threshold value is τ = 0.0039.

One of the possible extensions of the LK method is the use of the additional temporal
filtering based on the application of the DoG filter, leading to the Lucas–Kanade derivative
of Gaussian (LKDoG) method. Nevertheless, during the conducted initial experiments,
this method led to significantly worse results and, therefore, further experiments focused
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on the application of three above-described algorithms, the implementation of which is
available, e.g., in MATLAB® and OpenCV library.

The illustration of the simplified flowchart of the method proposed in the paper is
shown in Figure 4.

Weight 1Feature 1

Feature 2 Weight 2

Water flow 
measurements

Optical flow 
analysis

Estimated flow

Video recording 
system

Feature 3 Weight 3

Correlation

Figure 4. The simplified flowchart illustrating the idea of the proposed approach.

2.3. Experiments

In the conducted experimental studies, the possibility of using the above optical flow
methods was verified in order to validate the features of video sequences based on various
methods of determining optical flows, characterized by the highest possible compliance
with the values of water flows measured with a water-flow meter. For this purpose, a set of
video sequences was recorded for fixed flow values, and then the optical flow values for
each frame, as well as their selected parameters, were calculated.

Due to the assumption of a constant value of the water flow in the tank during the
recording of individual video sequences, as well as the rigid mounting of the camera (fixed
in relation to the tank housing), it was assumed that the time-averaged and median values
determined for individual pixels would be subject to analysis. This assumption was made
despite the existence of certain differences between the values of optical flows represented
by the designated motion vectors for individual frames, although leading to reliable results
as presented later.

As the optical flow methods are based on the calculation of local gradients, global
changes in brightness have no effect on the obtained results. An opposite situation can only
take place in the case of very strong lighting or darkness, which is considered an emergency
state. The method proposed in the article was developed primarily for fish breeding farms
located in closed halls, where it is possible to maintain controlled lighting conditions. Due
to the fact that intensive fish fattening, justified for economic reasons, usually requires the
use of continuous 24-h lighting to intensify food intake by fish, the lighting used in this
case is sufficient for the proper functioning of the developed method.
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3. Discussion of the Experimental Results

Calculation of the individual flow maps was made with the use of the three methods
considered in the paper: Horn–Schunck, Farneback and Lucas–Kanade. Since all calcu-
lations were made for the recorded video sequences, the results obtained for individual
pixels were averaged. Sample results obtained with the use of the three above-listed meth-
ods for two exemplary water-flow velocities are illustrated in Figure 5. All the presented
flow maps demonstrate the highest values of detected optical flows for the reflections of
several elements located above the tank visible on the water surface (wooden roof boards,
electric extension cord, camera). Therefore, further analyses related to determining the flow
characteristics were carried out for the central parts of the visible area. Nevertheless, it is
worth noting that the presence of reflections on the water surface of solid elements of the
structure located above the tank is in fact beneficial for the methods applied to determine
the optical flows.

As noticed on the presented flow maps, the flow rates shown in the images did not
always follow expectations, which is well-visible, especially for the LK method. However,
in this case, the application of the Farneback method yielded water-flow estimates more
in line with the predictions. To improve the accuracy of the flow estimation, providing
a highly linear correlation with the velocities measured with an electromagnetic flow meter,
a set of features determined based on the obtained flow-velocity maps for the central parts
of the scene was selected. The goal of the application of these features is the efficient
utilization of the visual feedback for the detection of changes in the water-flow values
based on the continuous analysis of the video sequence. Thanks to such an approach, the
detection of some failures of, e.g., a pump or flow meter (significant non-compliance of
the value determined using the video sequence analysis with the values from the flow
meter) would be possible. Ultimately, after calibrating the system, it is also possible to use
the proposed vision approach for fish-farming tanks in situations when an installation of
a water-flow meter is impossible.

The achieved relationship, based on a non-linear combination of the three features
with the fitting curves obtained for the linear and quadratic functions, is shown in Figure 6.
The features used in this combination, which ensure the Pearson’s linear correlation coeffi-
cient greater than 0.9, are:

• Squared entropy of the motion vectors map for the Farneback method (Ent2
F);

• Standard deviation of the motion vector map for the Lucas–Kanade method (stdLK);
• Variance in the local entropy of the motion vector map for the Lucas–Kanade method

(varEntLK).

The final formula combining the three above features may be obtained using the
optimization of the weighting coefficients, finally leading to the following expression:

Est f low = A ·
(

Ent2
F − 12 · stdLK + varEntLK

)
+ B (8)

where the parameters A = 4.5 and B = −0.4 depend on the spatial configuration of the
camera and the tank and might be changed according to needs.

The dependence presented on the graph is approximately linear, however, one can
notice an increase in the flow estimation error with the increase in its value. For this reason,
the application of the proposed method in real conditions may be limited to lower flow
values, for which the linearity of the relationship between the estimated and measured
values is easily noticeable. However, additional verification and calibration is required if
a different type of tank is used.
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Figure 5. Sample averaged optical flows obtained for two different water flow velocities:
(a) Farneback method for 2.17 dm3/s; (b) Farneback method for 5.03 dm3/s; (c) HS method for
2.17 dm3/s; (d) HS method for 5.03 dm3/s; (e) LK method for 2.17 dm3/s; and (f) LK method for
5.03 dm3/s.
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An additional factor affecting the results obtained in the video feedback loop is the
presence of fish; however, considering the fact that most of the time the fish do not move
significantly, it is possible to detect and filter out the detected sudden movements of the
fish. As verified experimentally by some other researchers [25,27,28], the presence of fish
may decrease the water velocity by 25–30% in comparison to the tank without fish, affecting
the flow pattern. However, it has been confirmed that trends of mean velocity in the radial
direction remain unchanged [25]. Therefore, as verified for some video sequences acquired
in the presence of fish, the method proposed in the paper also leads to similar conclusions
and results in the presence of fish biomass, assuming the necessary calibration, taking into
account the expected velocity decrease.

Nevertheless, it is also worth noting that a typical water flow used in fish farming
for such types of tanks does not exceed 3.7 dm3/s; hence, the proposed method may be
successfully applied for the typical velocity range from 1.5 to about 3.7 dm3/s, ensuring
the Pearson linear correlation coefficient equal to 0.9868.

(a) (b)

Figure 6. The relationships between the uncalibrated estimates achieved using the proposed method
and the velocities measured using the water-flow meter: (a) for the whole range 1.5–5.0 dm3/s; (b) for
the typical range 1.5–3.7 dm3/s.

For further verification of the universality of the proposed solution in fish-farming
tanks, additional experiments were performed after recording several hours of video
sequences using five water-flow velocities in the presence of fish, as illustrated in Figure 3.
However, the proposed method requires the additional calibration in the presence of fish
and some changes in the parameters, also using a different camera location. In such cases,
very good experimental results were also obtained applying the fourth root of the entropy
of the motion vectors map for the Lucas–Kanade method (Ent0.25

LK ) instead of the squared
entropy of the Farneback motion vectors map (with A = 30 and B = −55.5). Additionally,
in this case, there is no necessity to use the Farneback method at all, since all three features
originate from the Lucas–Kanade method. Therefore, an additional advantage of this
simplified approach is the decrease in the number of computations, preserving relatively
high correlation with measurement results (0.9847 in the experiments illustrated in Figure 7).
Similarly, considering the four measurements obtained for the water flows from 2.35 to
4.01 dm3/s, a high linearity of the obtained relationship may be noticed as well.
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Figure 7. The relationships between the uncalibrated estimates achieved using the proposed simpli-
fied approach utilizing the Lucas–Kanade method and the velocities measured using the water-flow
meter in the presence of fish.

4. Conclusions

The video feedback method presented in the paper makes it possible to monitor the
water flow in the RAS fish-farming tanks and even avoid the use of water flow meters
in some configurations. The possibility of the detection of potential failures of the water
pumps or water-flow meters makes the proposed solution not only an interesting alternative
to typical flow measurements but also a relatively cheap addition due to the increasing
availability of affordable high-resolution video cameras.

The proposed solution may also limit the necessity of mounting some underwater
sensors which may injure individual fish. The correctness of the water-flow estimation,
verified for typical velocities, also allows its application in some other tanks after the
necessary calibration of the algorithm’s parameters. As the proposed method is based
on the analysis of the local gradients, it is not sensitive to typical changes in lighting and
weather conditions.

Further research on this topic will concentrate on the verification of sensitivity-to-
lighting conditions as well as some other constraints, to achieve the higher universality
of the proposed approach, allowing it to work in some unexpected conditions. Another
direction of research will be related to extensions related to the combination of the proposed
method with fish-counting and fish-tracking methods.
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Abbreviations

The following abbreviations are used in this manuscript:

AFMV Airborne feature matching velocimetry
BLC Back light compensation
CMOS Complementary metal-oxide-semiconductor
CNN Convolutional neural network
DC direct current
FPGA Field-programmable gate array
HLC High light compensation
ICR Infrared cutfilter removal
IoT Internet of Things
IR Infrared
JPEG Joint Photographic Experts Group
LED Light-emitting diode
MJPEG Motion JPEG
PoE Power over Ethernet
PIV Particle image velocimetry
RAS Recirculating Aquaculture System
RoI Region of interest
WDR Wide dynamic range
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3. Forczmański, P.; Nowosielski, A.; Marczeski, P. Video Stream Analysis for Fish Detection and Classification. In Soft Computing in
Computer and Information Science, Advances in Intelligent Systems and Computing; Wiliński, A., ElFray, I., Pejaś, J., Eds.; Springer
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Abstract: This paper investigates how much Italian farms are involved in the so-called “Agriculture
4.0” (Agri 4.0) journey. The paper focuses on analyzing the knowledge and adoption levels of specific
4.0-enabling technologies while also considering the main benefits and obstacles. A descriptive
survey was carried out on a total of 670 respondents related to agricultural companies of different
sizes. The findings from the survey demonstrate that Italian farms are in different positions in
their journey toward the Agri 4.0 paradigm, mainly depending on their size in terms of revenues
and land size. Furthermore, there are strong differences concerning both the benefits and obstacles
related to the adoption of the Agri 4.0 paradigm, here depending on the technology adoption level.
Regarding future research, it would be interesting to carry out the same study in other countries to
make comparisons and suitable benchmark analyses. Although scholars have debated about the
adoption of technologies and the benefits related to the Agri 4.0 paradigm, to the best of the authors’
knowledge, no empirical surveys have been carried out on the adoption level of digital solutions in
agriculture in specific countries.

Keywords: Agriculture 4.0; smart agriculture; digitalization; descriptive survey; digital technologies

1. Introduction

In the coming decades, the world will face major issues that will have massive effects
on the agricultural sector. Three main challenges are on the horizon: (1) The world popula-
tion is set to increase. It is estimated that the human population will reach 9 billion people
by 2050, increasing the demand for food by 70%, and water consumption in agriculture is
expected to increase by 41% (the sector is already responsible for the consumption of almost
70% of the fresh drinking water on the planet) [1]. (2) In the medium term, climate change
will profoundly affect the extent of arable land worldwide [2]. (3) The aging population
in developed economies will soon bring the need to automate and digitize the agriculture
sector [3].

Agriculture is a fundamental part of all economies in the world and, like all key
sectors, is involved in the Fourth Industrial Revolution. The evolution of the primary
sector toward digitalization is not dictated by an overall trend but aims to address the
main macro issues in the years and decades to come, such as the need to make crops
more efficient and effective and to evolve in an environmentally sustainable way. The
strong link between sustainability and digital innovation is not limited to the primary
sector but involves all major economic ones. From this approach, the phenomenon of
Agriculture 4.0 (from now on, Agri 4.0) derives from the broader theme of Industry 4.0,
which is considered to have huge potential in providing digital solutions to address the
main problems encountered by traditional agriculture, enabling support for farmers to
make faster decisions, achieve higher process efficiency, and have the ability to take timely
action to meet market demands [4]. The literature sometimes also refers to this emerging
phenomenon as “smart agriculture,” basically taking its cue from the concept of smart
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manufacturing, which is already widely used in industry [5]. In other cases, scholars have
used the term “smart farming” [6,7] or “digital farming” [8]. All these terms can be seen as
synonyms, so for the current paper, the term Agri 4.0 will be used for simplicity purposes.

Scholars have focused on how digital technologies impact the agricultural sector [9,10]
and how the diffusion of the Agri 4.0 paradigm can transform production processes and
business strategy [4].

Although this paradigm has been investigated in the literature, presenting concrete
examples of categorization of the possible benefits, obstacles, and dedicated digital tech-
nologies, there is no pervasive study focusing on the knowledge of digital solutions in
agriculture and their degree of utilization. Moreover, the scientific literature presents no
contributions when it comes to surveying the state of knowledge of the solutions among
farmers and their degree of use, as well as the impacts received in using these solutions,
both in general terms and specifically in the Italian context. In addition, research on Agri
4.0 neglects the use of empirical methods, such as empirical surveys, to develop scientific
results from information from farmer practitioners. The few empirical surveys carried out
by scholars have tended to focus on other drivers or on a single aspect throughout the
whole questionnaire, such as the ones by Bolfe [11] and Chuang [12].

In an attempt to fill the above-mentioned literature gaps, the following research
questions have been formulated:

RQ1: What is the level of awareness of Agri 4.0 solutions among farm enterprises?
RQ2: What is the level of adoption of Agri 4.0 solutions?
RQ3: What are the main benefits perceived in adopting Agri 4.0 solutions?
RQ4: What are the main challenges perceived in adopting Agri 4.0 solutions?
The research questions were set based on a reference scheme developed by the authors,

which is presented in Figure 1.

 

Figure 1. Reference scheme.

In particular, RQ1 and RQ2 aim at investigating the technological issues concerning
Agri 4.0, while RQ3 and RQ4 investigate the effects in terms of the benefits and obstacles of
the previous research questions.

Therefore, the present paper addresses the Agri 4.0 paradigm, aiming to gather ev-
idence from the current state-of-the-art in the Italian agricultural context. Based on a
descriptive survey completed by 670 respondents, the current paper aims to understand
the degree of penetration of the phenomenon, covering many different open points of the
paradigm and addressing these in multiple dimensions (distinctive solutions knowledge
and utilization rate, benefits, and challenges).

The current paper concentrates on the Italian context. This choice was driven by the
fact that, given the composition of the research group, the number of companies that could
be involved was larger and because the Italian agriculture system is first in agriculture in
Europe based on added value and third based on gross saleable production. Italy is also the
world’s leading producer of wine by volume and leading European producer of vegetables
by value [13].

The present study also provides a systematization of the technological solutions
adopted within the Agri 4.0 paradigm. Finally, the current paper provides a rationalization
of the benefits and obstacles related to the implementation of the aforementioned digital
technological solutions in the primary sector.
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The current article is structured as follows: Section 2 gives an overview of the paradigm
and presents the Agri 4.0 studied solutions. Section 3 describes the research methodology
used, which is followed by Section 4, in which the four main thematic analyses are discussed.
Next, Section 5 discusses the results, providing the research implications of the study and
proposals for future research agendas in Agri 4.0.

2. Literature Review

2.1. Agri 4.0: Phenomenon and Paradigm Definition

The concept of Agri 4.0 encompasses several different scientific domains, some of
which are directly related to land cultivation (water control, crop cultivation, harvesting,
etc.), while others are an expansion of the agricultural area to different disciplines, such
as engineering, economics, management, and so forth. Advances in different areas of the
information and communication technology (ICT) domain, combined with the need to
improve agricultural productivity, both for food safety and environmental impact issues,
have determined the research area for Agri 4.0. Therefore, Agri 4.0 is derived from the
broader concept of Industry 4.0 [9], which aims to define the integration of different
technologies (such as Internet of Things (IoT), artificial intelligence, cloud computing,
etc.) to automate cyber-physical tasks and processes, allowing for better planning and
control of agricultural systems. The relationship of this concept with that of the Industry
4.0 paradigm, that is, the adoption of digital technologies to support the processes of
manufacturing companies, is clear.

As reported in the literature, reducing input costs and increasing productivity seem
to be the driving forces behind the progress in agriculture. However, the importance of
sustainability should not be overlooked, a concept that has emerged as a major issue across
the spectrum of human activities. Therefore, one of the goals of Agri 4.0 is to minimize the
environmental impact of agricultural activities [14]. Thus, the implementation of Agri 4.0
solutions implies the possibility of farms achieving certain goals and benefits.

2.2. Enabling Digital Solutions for Agri 4.0

Taxonomies to group digital solutions in Agri 4.0 have already been presented in
the literature. In particular, some interesting solutions are the ones presented by Lezoche
et al. [9] and Liu et al. [10]; in both studies, the authors have presented an interesting
categorization and description of the main technologies to be considered in Agri 4.0.

On the other hand, the current study focuses on solutions rather than technologies
(i.e., different technologies can be part of the same type of solution); therefore, drawing on
information and insights arising from the literature, five different clusters are presented:
decision support system software; monitoring systems; systems for precision activities;
mapping systems; and autonomous systems. The full list is presented in Table 1.

Table 1. List of the Agri 4.0 solutions considered.

Cluster of Technology Solutions Solutions References

Decision support system software
Business management software

[15,16]
Decision support system (DSS)

Monitoring systems

Agricultural machinery and equipment

[17,19]
Crop and soil

Enterprise infrastructure

Indoor cultivation
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Table 1. Cont.

Cluster of Technology Solutions Solutions References

Systems for precision activities

Precision irrigation systems

[9,20]Variable rate distribution system

On-field treatment with drones

Mapping systems

Satellite technologies

[18,21]Mapping equipment installed on machinery

Mapping drones

Autonomous systems
Robot for field activities

[10,22]
Satellite guidance

(a) Decision support system software: This type of software facilitates the decision-
making process by helping prioritize goals, evaluate alternatives, and simulate out-
comes. Within this category, there are two key reference solutions: (a) Business
management software helps in automating the management processes within com-
panies. In particular, this software is useful for various business functions, such as
agricultural production, warehouse management, and accounting [15]. (b) Decision
support systems (DSS) are computer tools that use data and mathematical models to
support the decision maker, here being the farmer [16].

(b) Monitoring systems: Monitoring systems use different technologies, such as smart
sensors and pervasive connectivity, to monitor different areas of a farm [17,18]. The
Agri 4.0 paradigm diffusion strongly relies on the development of innovative tech-
nologies such as sensors, the IoT, and Big Data [19]. Therefore, this cluster is divided
into four different application areas that cover the main areas to be monitored within
an agricultural company: agricultural machinery and equipment domain, crop and
soils monitoring, enterprise infrastructure, and indoor cultivation.

(c) Systems for precision activities: The systems for precision activities enable the tar-
geted use of various agricultural inputs [9,20]. Specifically, in this cluster, it is possible
to identify three solutions: precision irrigation systems, variable rate distribution
systems, and on-field treatment with drones.

(d) Mapping systems: Land mapping is a fundamental activity of Agri 4.0. Thanks to
the knowledge of the spatial variability of soil properties, farm potential in terms
of quality, quantity, and yield can be optimized [18,21]. In this regard, the three
solutions refer to satellite technologies, mapping equipment installed on machinery,
and mapping through drones.

(e) Autonomous systems: The use of increasingly advanced IT (information technology)
and OT (operation technology) leads the agriculture industry to use autonomous
systems both in terms of moving machines during operations and in terms of deciding
on the activities to be performed within the fields [10,22]. The main solutions of this
cluster are robots for field activities and satellite guidance.

2.3. Agri 4.0: Benefits and Obstacles

A long list of potential benefits can be listed under different economic areas, as well
as environmental benefits with a reduction of pollutants [23,24] and social benefits with
positive effects on the well-being of the workers involved and on society in general [25].
At the same time, there are also criticalities involved in implementing new systems, es-
pecially digital ones, in contexts such as the agricultural sector. For those who decide to
implement innovative systems, there can be challenges of a technological, economic, and
implementation nature, as well as those arising from corporate culture and organizational
issues [26,27].
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The benefits investigated can be categorized into four clusters, which have been
identified according to the triple bottom line (TBL; that is, people, planet, and profit)
principles [28]. The first two clusters (effectiveness and efficiency) refer to the profit or
bottom line. The next two are environmental and social benefits. From these four clusters,
a set of 14 benefits was proposed. A full list of the benefits and references is presented in
Table 2.

Table 2. List of benefits.

TBL Cluster Cluster of Benefit Benefits References

Profit

Effectiveness

Product quality increase

[24,29]
Yield increase

Soil quality increase

Increase in selling price

Efficiency

Less water consumption

[30,31]

Less technical input consumption

Less machinery usage

Simplification in the cultivation decisions to be
made

General cost reduction

Planet Environmental benefits
Air pollution (CO2, N2O, . . . ) decrease

[23]
Water pollution decrease

People Social Benefits

Work safety increase

[25,32,33]Reduced time spent on bureaucratic tasks

Physical labor reduction

(a) Effectiveness benefits: The benefit cluster related to the economic part of the TBL.
Operational effectiveness encompasses the practices employed to maximize resources
and deliver high-quality results [24,29]. Here, the authors investigated four different
benefits related to effectiveness: higher product quality, yield increase, better soil
quality, and an increase in the selling price of goods produced.

(b) Efficiency benefits: The benefit cluster related to the economic part of the TBL. Re-
ducing the consumption of productive inputs and, thus, the associated costs is critical
because it is known that a firm that has lower cumulative costs to perform all value-
generating activities than its competitors has a cost advantage [30,31]. Here, the
authors investigated five different benefits related to efficiency: less water consump-
tion, less technical input consumption, less machinery usage, simplification in the
cultivation decision to be made, and general cost reduction.

(c) Environmental benefits: Sustainability from an environmental perspective is another
benefit that can be achieved through the use of 4.0 solutions in agriculture [23].
Reducing the use of pollutants (such as agrochemicals and various fertilizers) increases
soil quality, but from a purely environmental standpoint, there are real effects on air
pollution decrease (CO, NO, etc.) and decreases in water pollution.

(d) Social benefits: The adoption of Agri 4.0 techniques has the potential to increase
farmers’ quality of life in terms of increased work safety and decreased work stress.
The controllable work environment in a plant factory is much more desirable than field
cultivation, which requires a lot of physical energy to complete [32,33]. Specifically,
the benefits under this cluster are three: increase in work safety, reduced time spent in
bureaucratic activities, and a reduction in physical labor [25].

For ‘obstacles,’ four main clusters have been identified. The clusters cover the main
areas of challenge when introducing a technological evolution in a certain environment:
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(a) Technological challenges: This cluster refers to technical and technological issues
related to the implementation of 4.0 solutions in agriculture [34]. Technical barriers
can be limited or without interoperability (the data collected cannot be reused and
different solutions do not work together) and lacking connectivity. However, it is also
important to mention the limited or absent flexibility in the sense that the provided
solution works only under optimal operating conditions (primarily weather) [27].

(b) Economic challenge: The implementation of innovative solutions and technologies
in every field leads to a significant economic effort by the company that intends to
adopt an innovative path. For this reason, it takes into consideration the economic
return of the investment made in 4.0 solutions [35]. The challenge in question is the
low investment return rate.

(c) Implementation challenges: The skills needed to properly implement 4.0 solutions,
especially in companies in the primary sector, inevitably lead to the challenge of
usage difficulty. Subsequently, the challenge connected to the first one is insufficient
assistance because many companies can face obstacles that are difficult to overcome
without an appropriate implementation assistance path [26].

(d) Cultural and organizational challenge: Because of the introduction of digitalization
in agriculture, the 4.0 revolution in all economic sectors will require a new set of skills
related to the introduction of digital solutions in companies [25]; for this reason, the
challenge presented in the survey is the lack of key digital skills in the farm.

Out of these clusters, seven different obstacles could be derived. The full list of
challenges and references is presented in Table 3.

Table 3. List of challenges.

Cluster of Challenges Challenges References

Technological challenge

Limited or absent interoperability

[27,34]Limited or absent flexibility

Lack of connectivity

Economic challenge Low return of investment [35]

Implementation challenge
Insufficient assistance

[26]
Usage difficulty

Cultural and organizational challenge Lack of key digital skills in the farm [25]

3. Methodology

Survey research is useful for obtaining information about a specific phenomenon
concerning large populations, allowing for an adequate level of accuracy [36,37]. The
current research adopts descriptive survey research because the objective is to understand
the significance of a phenomenon and describe its occurrence in a population [38,39]. In-
deed, descriptive surveys are highly valuable for gathering data from diverse populations
because the researcher can extract the attitudes and features of respondents accurately [40].
Moreover, it is possible to provide an effective “picture” of the phenomenon being inves-
tigated from which evidence can be drawn. Thus, a descriptive survey is a convenient
method when knowledge of a phenomenon is not too poorly underdeveloped, the variables
and context can be described in detail, and the objective is to understand to what extent
a given relationship is present. The intent of descriptive surveys is not necessarily to
determine causal relationships, but they do provide an effective method for investigating a
representative sample and enabling data regarding particular issues to be collected, which
may be used to form the basis of decision-making activities in the future [41].

Therefore, the primary research objective is not theory development but rather the
investigation of the impacts of the Agri 4.0 paradigm in the Italian primary sector by
describing the knowledge levels, achieved benefits, and perceived challenges.
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To obtain the above-mentioned objectives, a survey research process consisting of
three steps was adopted: survey design, pilot testing, and data collection and analysis.

3.1. Survey Design and Pilot Testing

The questionnaire was characterized by 18 mixed open and closed questions, and
it was structured into four sections. The first section aimed to collect general informa-
tion and a registry about the company and respondents. The second section asked about
the level of knowledge for each solution proposed; the description of each technological
solution was provided through a “link” button to the respondents to provide the same
interpretation of technology meaning and avoid bias related to ambiguous questions. The
third section inquired about the company’s perceptions of the benefits of Agri 4.0. Fi-
nally, the fourth section investigated the challenges and obstacles in adopting the Agri 4.0
paradigm.

To reach the highest number of respondents, a web survey was administered for
conducting the research [42]. The trend of conducting surveys online has grown in recent
times because they can offer many benefits over paper-based surveys. Indeed, with respect
to face-to-face and e-mail surveys, web surveys do not require the manual transfer of
responses into a database; the cost is minimal compared with other means of distribution,
and greater anonymity is guaranteed, helping to avoid interviewer biases [42]. Online
survey research can also allow researchers to isolate specific groups of participants who
share common features [43].

Subsequently, to test possible question bias, translation accuracy, and the logical flow
of the survey, pilot testing was performed before survey distribution [44]. In the first step,
a group of colleagues was involved to check the readability and help pinpoint whether the
questionnaire was within the study objectives. After refining the survey, the second step
then involved sending the questionnaire to seven beta-tester companies to get feedback
from them for further possible improvement. The pilot testing helped assess the content of
the questionnaire and guaranteed the validity for the official launch.

Concerning the survey sample, the unit of analysis refers to Italian agricultural compa-
nies and farms. Moreover, this research involves all types of agricultural companies—except
livestock farms—with no limits concerning their size and cultivation sector. The survey
was carried out from January to October 2021, and repeated waves of reminders and recall
activities were conducted with the support of the main Italian agricultural associations.
The analysis started with a total number of 1273 responses before eliminating incomplete
responses, duplicate responses, and test responses conducted internally by the team. As a
result, a sample of 670 companies was validated. The survey respondent is the owner of
the company to which the questionnaire was sent (or the decision maker in their place),
who, therefore, has an overview of their farm.

3.2. Sample Description

Table 4 shows the company size of the cluster. Because there is currently no specific
classification for farm size in the primary sector, it was decided to develop five customized
clusters. Indeed, it was considered misleading to use the classical criteria related to manu-
facturing enterprises because of the great diversity in terms of turnover between the sectors.
It should be noted in the table that most of the sample, 70%, is below EUR 250,000 in
turnover. Only the remaining 30% are above this threshold, of which 17% have a turnover
of over half a million euros.
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Table 4. Revenue clusters distribution in the sample.

Number of
Farms

(%)

Revenue Cluster A. <EUR 30,000 147 22
B. between EUR 30,000 and 100,000 194 28
C. between EUR 100,000 and 250,000 133 20
D. between EUR 250,000 and 500,000 84 13
E. >EUR 500,000 112 17

Total 670 100

For a more complete analysis and because of the peculiarities of the sector under
study, an additional proxy for the size of the sample companies was used (Table 5), that is,
cultivated hectares. In this case, there is no clear definition of the classes to be considered.

Table 5. Land size cluster distribution in the sample.

Number of Farms (%)

Hectares Cluster A. <10 192 29%
B. 10–20 112 17%
C. 20–50 148 22%
D. >50 218 32%

Total 670 100

Figure 2 represents the Italian distribution of farm locations; to have data with the
correct granularity, the data are represented by province rather than by region. Here, the
distribution of the sample subject ranges over the entire country, demonstrating a very
important capillarity. In detail, there are 178 companies in Southern Italy, 96 in the center,
and 396 belonging to Northern Italy.

Figure 2. Geographical distribution of companies in the sample.

As a final representative analysis of the reference sample, Table 6 shows the distribu-
tion of prevalent cultivation. The classification method presented was developed following
two interviews with experts in the field (agronomists), who indicated the categories listed
in the table. The sample is highly heterogeneous in this respect as well, reinforcing the
generalization of the analyses and considerations made in the current study.
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Table 6. Pareto distribution of prevalent cultivation.

Prevalent Cultivation Sample Pareto Distribution (%)

(a) Cereals 37.4

(b) Vineyards 19.7

(c) Forage 8.2

(d) Olive groves 7.9

(e) Vegetables 5.5

(f) Pome fruit trees 4.7

(g) Stone fruit orchards 4.6

(h) Industrial crops 3.3

(i) Leguminous 2.1

(j) Flowers and ornamental plants 1.6

(k) Nursery tree 1.6

(l) Other arboretums 1.4

(m) Potatoes 1.3

(n) Citrus groves 0.5

(o) Other 0.3

Total 100

3.3. Variable Definition and Measure

Table 7 shows the variables used in the survey. The variable “Agri 4.0 solutions
knowledge level” evaluates the degree of knowledge of the various solutions proposed.
Four options are considered: “I have never used this solution, and I am not familiar with
it,” “I have never used this solution, but I know it,” “I do not currently use this solution
but have used it in the past,” and “I currently use this solution.” A variable implicitly
connected to the one just described is “Agri 4.0 solutions adoption,” in which the answer “I
currently use this solution” was used to represent the results.

Table 7. Variable definition and criteria.

Variable Type Nr. of Levels/Clusters Levels

Company size (revenues) Ordinal 5
A. Less than EUR 30,000; B. between EUR 30,000 and
100,000; C. between EUR 100,000 and 250,000; D.
between EUR 250,000 and 500,000; E. over EUR 500,000

Company size (land) Ordinal 5
A. Lower than 10 hectares; B. Between 10 and 20
hectares; C. Between 20 and 50 hectares; D. Over
50 hectares

Agri 4.0 solutions
knowledge level Ordinal 4

I am not familiar with the solution; I am a little familiar
with the solution; I am familiar with the solution at a
theoretical level; I am familiar with the solution at a
practical level

Agri 4.0 solution
adoption Ordinal 2 I use the solution; I do not use the solution

Benefits Ordinal 5 Null; Low; Middle; High; Very High
Challenges Ordinal 5 Null; Low; Middle; High; Very High

To identify the enabling solutions, benefits, and obstacles related to the Agri 4.0
paradigm, no systematic analysis was carried out, but a narrative literature review was
conducted. This type of analysis, which is widely used in studies related to the medical sci-

181



Appl. Sci. 2022, 12, 9215

ences [45], does not involve following a strict protocol or specific standards but still allows
for the identification of the main studies describing a problem of interest [46]. Concerning
the identification of the articles to be analyzed, the Scopus and Web of Science databases
were surveyed using strings formulated from the keywords related to agriculture and
digitalization (“Smart Agrifood,” “Smart Agriculture,” “Smart Farming,” “Agrifood 4.0,”
“Agriculture 4.0,” “Farming 4.0,” “Internet of Farming,” “Digital Agrifood,” “Digital Agri-
culture,” “Digital Farming,” “Precision Agriculture,” and “Precision Farming”). The set of
enabling solutions, benefits, and obstacles have already been presented in Section 2.

4. Results

4.1. RQ1: What Is the Level of Awareness of Agri 4.0 Solutions among Farm Enterprises?

The first highlight of the analysis derives from the investigation of the current degree
of knowledge of Agri 4.0 solutions within the sample considered. Figure 3 summarizes the
results. The level of awareness was measured using a 4-point scale, from a low to a high
level of awareness of the solutions, specifically (a) I am not familiar with the solution, with
no awareness of solutions existence; (b) I am a little familiar with the solution, meaning
having only marginally heard of the solution; (c) I am familiar with the solution at a
theoretical level, meaning having a good level of theoretical knowledge; and (d) I am
familiar with the solution at a practical level, meaning knowing the solution and having
knowledge of practical examples in the field.

Figure 3 shows all the solutions proposed within the questionnaire, ordering them
from the most to least known. Another important aspect to consider is the statistical
distribution of the number of solutions deeply known by the respondents (counting only
answers in which the solution is familiar to the respondents). The distribution depicted in
Table 8 represents the number of times a certain number of solutions is known at the same
time, presenting the percentage over the entire sample and number of respondents.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Remote management and monitoring systems for indoor crops

Robots for field activities

Decision support systems

Variable rate distribution systems

Enterprise infrastructure remote monitoring systems

Drone field treatment services

Crop and soil monitoring systems

Monitoring and control systems for agricultural machinery and
equipment

Crop and land mapping services through drones

Crop and soil mapping services through sensors mounted on farm
machinery

Satellite Guide

Crop and land mapping services through satellite technologies

Business management software

Precision Irrigation Systems

I am not familiar with the solution I am a little familiar with the solution

I am familiar with the solution at a theoretical level I am familiar with the solution at a practical level

Figure 3. Agri 4.0 solutions awareness level.
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Table 8. Statistical distribution of the number of digital solutions known.

Number of Digital Solutions
Known Simultaneously

Respondents (%) Respondents (Nr.)

0 28.4 190
1 17.3 116
2 13.7 92
3 11.2 75
4 9.6 64
5 7.5 50
6 4.2 28
7 3.4 23
8 2.1 14
9 1.3 9
10 0.7 5
11 0.3 2
12 0.3 2

Total: 100 670

The table clearly shows that the number of respondents claiming to know more
solutions decreases as the number of known solutions increases.

The most well-known solutions within the given answer set are by far precision
irrigation systems and business management software, followed by two technological
solutions that share a similar technological basepoint, i.e., crop and land mapping services
through satellite technologies and satellite guides. In this case, the management software
solution is the most well known in practice, demonstrating that it is the solution most likely
to be implemented by companies.

Crop and land mapping though drones deserves a separate discussion, which, despite
being in the middle of the ranking for awareness, is one of the least known at the practical
level, with only 3% of the respondents indicating that they had seen a practical example
of this type of solution. A similar argument can be made for robots for field activities,
of which not a single respondent claimed to have any practical knowledge, and remote
management and monitoring for indoor crops, as the two least well-known solutions of the
solution set.

The level of awareness of the solutions identified in the current study can be correlated
with the descriptive variables of the analysis used as control variables to check for the
presence of trends and patterns. To calculate the level of knowledge, scores were assigned
from 0 to 3 in ascending order, here based on the answers given to the question about the
level of awareness. To determine the level of awareness for each respondent, the sum of the
level for each solution was divided by the maximum obtainable.

Figure 4 shows an increased pattern of awareness level related to hectare size of the
farm, with the cluster of largest companies having a higher average (45%), median (45%),
inferior quartile (33%) and major quartile (55%) than any other cluster. Furthermore, an
increasing trend in the awareness of Agri 4.0 solutions is evident with respect to the size of
the land worked.
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Figure 4. Boxplot graph of awareness level depending on the size of the company (land size).

This trend is further verified and reinforced by the analysis of the relationship between
awareness level and turnover (Figure 5), in which it is possible to see how the level
of awareness increases with an increase in the revenue cluster. The boxplot graph is
particularly significant because each element (minimum, maximum, inferior quartile, major
quartile, mean, and median) of the larger revenue class is greater than each element of the
smaller revenue class. The boxplot shows that, on average, companies with a turnover
of more than EUR 500,000 are currently using half (48%) of the solutions proposed in
the survey.

Figure 5. Boxplot graph of awareness level depending on company size (revenues).

4.2. RQ2: What Is the Level of Adoption of Agri 4.0 Solutions?

For each Agri 4.0 solution, the respondents were asked to specify whether they used
the solution or not, allowing for the identification of adopters and nonusers.

Comparing the level of awareness versus the level of adoption, as expected, the rate of
awareness increases for those using Agri 4.0 solutions compared with those who do not
utilize any of the solutions.

Figure 6 links the first two research questions, highlighting higher awareness of
different Agri 4.0 solutions among the respondents who used at least one solution compared
with those who did not use any.
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Figure 6. Boxplot graph of awareness level and utilization of 4.0 solutions.

The level of adoption can also be analyzed by comparing it against some control
variables relative to the surveyed sample. First, it was examined whether there was a link
between the size of companies and rate of utilization of technological solutions.

To assess whether the data and analyses had statistical significance or not, a chi-square
test was performed, here measuring the p-value. Typically, its value is a very small number,
close to zero. Here, the p-value is the assigned level of significance (i.e., a measure of
evidence against the null hypothesis) and, to be statistically significant, this value must
be less than 0.05. A significant association was found between revenue size cluster and
utilization level of Agri 4.0 solutions (Table 9), in which the Pearson’s χ2 test p-value was
very low (3.48 × 10−19, ensuring the significance of the analysis.

Table 9. Pearson’s χ2 test for adoption level and revenue clusters.

Agri 4.0 Solution Adoption Level
At Least One
Solution Adopted

No Solutions Adopted

Revenue Cluster A. <EUR 30,000 47 100
B. between EUR 30,000 and
100,000 98 96

C. between EUR 100,000 and
250,000 97 36

D. between EUR 250,000 and
500,000 63 21

E. >EUR 500,000 91 21

Pearson’s χ2 test: p-value = 3.48 × 10−19 (significant).

The growing trend in the level of adoption depends on the size (in terms of turnover)
of the companies. This trend is further confirmed by the boxplot presented in Figure 7.
To calculate the levels of adoption in the boxplot graphs, the sum of the usage responses
for each respondent for the various solutions was analyzed and then divided by the total
number of proposed solutions.
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Figure 7. Boxplot graph of the adoption rate depending on company size (revenue).

The association is clear in Figure 7, in which, from the lowest to the highest revenue
class, all significant adoption-level metrics increase. The sample presents an average of 5%
from the smallest class of revenue to an average of 27%, also taking into consideration the
fact that the sample shows a maximum percentage of adoption level that goes from 14% to
71% for the most significant turnover class.

The analysis represented in Figure 7 indicates that companies with higher turnover
not only have more knowledge of the available solutions, but also a higher degree of use,
perhaps because of the greater capacity to spend resources on these solutions.

The trend shown above is also confirmed when using the size of the cultivated area
as a proxy for farm size. This can be prooved by the strong association between these
two variables (utilization rate–size in hectares) with a Pearson’s χ2 test p-value equal to
4.618 × 10−15 (significant).

Table 10 shows the increase of utilizers as the farm’s size increases. At the same
time, the number of farms not using 4.0 solutions drops, resulting in a strong relationship
between these two variables. Moreover, from a visual perspective (Figure 8), the boxplot
graph helps in seeing the main message of this analysis: the utilization values increase
as the number of hectares increases, but it is interesting to note the strong increase from
50 hectares onwards.

Table 10. Pearson’s χ2 test for adoption level and land size cluster.

Agri 4.0 Solution Adoption Level
At Least One So-
lution Adopted

No Solutions
Adopted

Hectares A. <10 57 53
Cluster B. 10–20 26 56

C. 20–50 46 66
D. >50 94 54

Pearson’s χ2 test: p-value = 4.618 × 10−15 (significant).
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Figure 8. Boxplot graph of the utilization rate depending on company size (land size).

Subsequently, the focus of the analysis shifted to another important control variable in
the questionnaire: the respondent’s educational qualification (whether agricultural or not).

In Table 11, it is possible to see the strong relationships between the degree of utiliza-
tion and type of education received by the business owner. The Pearson’s chi-square test
p-value results in a very small value, ensuring the statistical significance of the analysis.

Table 11. Pearson’s χ2 test for adoption level and type of education.

Agri 4.0 Solutions Adoption Level
At Least One So-
lution Adopted

No Solutions
Adopted

Agricultural A. No 205 194
education B. Yes 191 80

Pearson’s χ2 test: p-value = 7.98 × 10−7 (significant).

The graphical relationship of the effect that the control variable has on the degree
of adoption is depicted in Figure 9. The subgroup of respondents with an educational
background in agriculture presents a greater degree of adoption of Agri 4.0 solutions
than the subgroup without this type of background. This can be seen in all aspects of the
boxplot, from the minimum to the maximum, as well as for the interquartile range (0–21%
vs. 7–29%), the mean (13% vs. 18%), and the median (7% vs. 14%).

Figure 9. Boxplot graph of adoption level and type of education.
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4.3. RQ3: What Are the Main Benefits Perceived in Adopting Agri 4.0 Solutions?

Figure 10 shows a boxplot that compares the benefit (divided into 14 different classes
of benefit) obtained from the implementation of 4.0 solutions by users with the expected
benefit by those who are not currently using any of the 4.0 solutions proposed in the
questionnaire. This analysis highlights how the expectations of nonusers exceed the reality
of users in terms of the level of benefit.

Figure 10. Boxplot graph of the level of benefit between users and nonusers.

This result deserves a more specific analysis; in Figure 10, the average of the benefit
obtained and that expected from the two types of different actors, here unpacked in the
14 different obtainable benefits, is visualized. Figure 10 also represents the average benefit
perceived by large users, which means those users who are currently operating many
solutions (above eight different solutions).

Figure 11 represents what was previously summarized in Figure 10, providing more
detail regarding each benefit presented to the respondents. It is interesting to note that, for
all benefits (except for the benefit of reducing water consumption), the respondents who
are users of 4.0 solutions present an average level of benefit lower than the average benefit
that nonusers expect. In particular, it is possible to see how this gap is wider for “increase in
sales price,” which reports a rather low value (1.7 average value) for users while showing a
potentially higher benefit for nonusers. In general, the benefits that have brought the most
benefit to the sample under analysis are “lower consumption of technical inputs,” “lower
water consumption,” and “soil quality improvement.” However, it is also interesting to
notice an upward trend. As previously stated, the average of the users is clearly lower than
the expected benefit of the nonusers, but it is also true that the average of the large users
(in this case, those respondents declaring that they use eight or more different solutions)
increases considerably to the level of the expectations. A takeaway from this trend is that
to reach (at least at the level of the average) the level of benefit expectation, it is necessary
to use several solutions in parallel to exploit the joint work to achieve the desired benefits.
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Figure 11. Benefits of Agri 4.0 solutions.

To gain a better understanding of the differences between users and nonusers, a rank-
ing of benefit levels for users and expectations for nonusers was drawn up in descending
order to identify the relative position of each benefit in these two lists. The results are
shown in Table 12. The columns of “position” represent the relative position for users’
benefits, and, in brackets, the position difference for nonusers’ expected benefits is given.

Table 12. Relative position of benefits.

Benefit Position: Users Position: Nonusers

Lower consumption of technical inputs 1 2 (−1)

Lower water consumption 2 14 (−12)

Soil quality improvement 3 1 (+2)

Increased product quality 4 3 (+1)

Reducing water pollution 5 6 (−1)

Increased safety at work 6 10 (−4)

Reduction of air pollution (CO2, N2O, . . . ) 7 7 (-)

Cost reduction 8 4 (+4)

Increased yields 9 5 (+4)
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Table 12. Cont.

Benefit Position: Users Position: Nonusers

Lower consumption of technical inputs 1 2 (−1)

Lower water consumption 2 14 (−12)

Cost reduction 8 4 (+4)

Increased yields 9 5 (+4)

Reduced machinery usage 10 12 (−2)

Reduction of physical work fatigue 11 9 (+2)

Simplification in the cultivation decisions
to be made 12 11 (+1)

Reduced time spent on bureaucratic tasks 13 13 (-)

Increase in sales prices 14 8 (+6)

The message that emerges from Table 12 is indicative of whether the various benefits
perceived by users are in line (at least from the point of view of relative position) with
expectations or not. Maintaining this approach but aggregating the benefits by cluster, we
find interesting results.

As depicted in Figure 12, it is possible to notice that the “people” and “planet” clus-
ters have an average position in line between the two samples. The “profit” cluster is a
different matter. In this case, the analysis should be divided into subclusters of efficiency
and effectiveness. In the first one, the perceived benefit is higher than the expected one,
demonstrating the usefulness of 4.0 solutions in this area, while the relative position of
the effectiveness subcluster is lower than expected (on average 2.2 positions lower in
the ranking).
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Figure 12. Aggregate positioning of benefits.

4.4. RQ4: What Are the Main Challenges Perceived in Adopting Agri 4.0 Solutions?

The analysis aimed to describe the barriers to implementing 4.0 systems in agriculture
and expected difficulty in overcoming these barriers. In this paragraph, the aim is to
replicate the structure of analysis presented in the previous research question, replicating
the same type of analysis to identify analogies between the two research questions.

As a first analysis, Figure 13 represents the level of challenge declared by respondents,
dividing the sample between users and nonusers, with users defining their perceived level
and nonusers defining their expectations of the proposed challenge. The analysis of the
boxplot depicted in Figure 13 contrasts with the analysis seen for benefits. In this case, on
average, users experience a lower level of obstacles than nonusers. However, the analysis
is at an aggregate level, and one cannot see the obstacles one by one. For this reason, the
analysis of the level per obstacle has also been replicated (Figure 14).
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Figure 13. Boxplot graph of level of challenge between users and nonusers.

Figure 14. Challenges with Agri 4.0 solutions.

In this case, unlike the analysis carried out for the benefits, there is not the same trend,
and the analysis depicted in Figure 14 contrasts with the findings of the previous research
question. In this case, it is significant that each of the barriers has a lower challenge level
found by users compared with the expectations of nonusers. In addition, the trend for
those who use many different solutions in parallel does not lead to a particular increase
or decrease in the challenge level for each obstacle proposed, thus identifying a constant
trend in the challenge level as the number of solutions used increases but with an increase
in the variability of the level per item, as can be seen in Figure 14.

To better understand the challenge level and relationship for each item in the list
between users and nonusers, a ranking of the items from the highest level of perceived
challenge to the lowest level was again drawn up (Table 13).
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Table 13. Relative position of challenges.

Challenge Position: Users Position: Nonusers

Limited or no interoperability 1 1 (-)

Lack of connectivity 2 5 (−3)

Lack of return on investment 3 7 (−4)

Insufficient assistance 4 6 (−2)

Limited or no flexibility 5 4 (+1)

Lack of appropriate skills in
the company 6 3 (+3)

Difficulty of use 7 2 (+5)

In contrast to the same table presented for benefits, in this case, a higher position
corresponds to a more serious problem for respondents. The first important consideration
that is possible to see from Table 13 is that limited or no interoperability is at the top of both
the problems encountered by users and expectations of respondents who do not use any
Agriculture 4.0 solution, demonstrating the centrality of the issue for Agri 4.0 and, more
generally, in the 4.0 paradigm. Furthermore, in this case, it is interesting to compare the
clusters, as carried out in the benefits, and compare the relative position in the case of user
response and expectations of nonusers.

As presented in Figure 15, in this case, economic obstacles hold a higher position,
so the perceived problem is greater than the expectations of nonusers; here, even four
positions differ between the two types of respondents. As far as the technology category is
concerned, the position is relatively stable between the two samples. It is also interesting
to note that technological challenges rank first among the problems encountered by users.
Less serious than expected are cultural and organizational challenges and implementation
problems, both of which have a lower relative position than expected for these clusters.
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Figure 15. Aggregate positioning of obstacles.

5. Discussion and Conclusions

The current study aimed to map the state-of-the-art in Agri 4.0 within Italian farms
through a descriptive survey, here adopting the perspectives of the awareness and adoption
level, understanding which benefits users value the most and the differences between
nonuser clusters, as well as identifying the critical factors and challenges that impact a
company’s adoption level regarding Agri 4.0 solutions. A large sample of 670 agricul-
tural companies in Italy was analyzed. In particular, the digital solutions presented to
respondents refer to five different clusters: DSS software, monitoring systems, systems for
precision activities, mapping systems, and autonomous systems. In addition, this study
considered the benefits by clustering the specific items by referring to the TBL, that is,
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economic, social, and environmental benefits, while analyzing several kinds of challenges:
technological, economic, implementation, and cultural and organizational.

At a general level, our study shows that Italian farms display a heterogeneously
distributed level of knowledge of the proposed solutions, but few farms know more than
one solution in depth. Moreover, the current study shows that some control variables
influence the level of awareness more than others; as turnover and cultivable area increase,
an increase in the average level of awareness of Agri 4.0 solutions can be seen. The first
is the level of awareness of each digital solution, which is still not pervasive over all the
different solutions identified. Extensive knowledge of the solutions is still far from common.
Above all, it is possible to see that the percentage of those who claim to know examples
of practical implementation is low for each solution. The other important point is the
degree of adoption. Here, the key message is that the average level of adoption increases
as the turnover and size of the arable land increase. The level of maturity, therefore, is
still low on average, and the market is not very dynamic if smaller companies are more
out of the change process. In fact, smaller companies have less capacity to invest, and in
line with the result of the barriers to adoption (which puts the economic problem at the
top), this leads to a greater shift in adoption toward larger companies. At the same time, a
similar increasing trend can be noticed in the degree of adoption. Although the average
penetration rate is not particularly high, companies that have embarked on the journey to
Agri 4.0 transformation have generally perceived lower barriers than companies that have
yet to begin this journey. Finally, the present article has also investigated the benefits and
potential obstacles to implementing Agri 4.0 solutions. The analysis shows that the main
benefits perceived by the user are the reduction of technical inputs and water, which, in
turn, benefit the entrepreneur economically but can also be said to have a positive impact
on the environment. It is also interesting to note that the main problem encountered is the
limited, even lack of, interoperability between 4.0 systems in the field. This obstacle is the
point at which the actors and technology providers of the Agri 4.0 value chain must focus
on to extract the maximum value from the digitalization of agricultural systems.

5.1. Research and Managerial Implications

For the current study, there are several implications, both for scholars and for practitioners.
The first aim of the proposed study was to provide evidence in a developed economy

market of the state of adoption of Agri 4.0, here trying to define through concrete numbers
the state of adoption of the paradigm in Italy, which can be representative also of other
European economies. As defined above, there is no study analyzing the state of penetration
of Agri 4.0 in Italy or Europe. Hence, the current study paves the way for scholars to pursue
empirical research regarding the paradigm and state of the art. Some of the key insights of
the proposed study are that Agri 4.0 is gaining more momentum, mainly because of the
continuing need to be more sustainable, efficient, and using increasingly circular means
while using digital leverage. However, within the main applicable solutions, it appears
there are different levels of awareness that make up the digital solutions because some
solutions are probably not yet mature enough to fit the needs of farmers.

The same applies even more so to the level of adoption because, on paper, the expected
benefits are far greater than those perceived. This seems to me an important implication,
and there is probably a mismatch between practical application and theory. A further im-
plication is that the more solutions are used simultaneously, the more there is an alignment
between expected and actual benefits.

The results of the exploratory survey presented in the current article provide several
insights that can be useful for professionals working in the agricultural sector, technological
suppliers of Agri 4.0 solutions, and public administration decision makers. First, it is clear
that the approach to the digitalization of agricultural processes is currently possible for all
companies, regardless of size, here in terms of revenue and arable land, even though an
increasing trend is noticed in Figures 7 and 8.
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The identification of the most known solutions within the sample leads to two possible
implications for practitioners: (1) from the point of view of public institutions, it helps
us to understand which solutions or clusters of solutions should be invested in from a
communication and knowledge point of view as a way to inform potential users of the
potential of these solutions; (2) it helps the companies providing the different solutions to
identify the most well-known ones and, ultimately, which solutions can be used the most
(at least in the short term).

In addition, the benefit analysis has shown that the average benefit among users is
lower than the expectations of nonusers, but that, for those who use a large number of
solutions in parallel, the average benefit per solution is similar to the level of expectations.
At the same time, challenge expectations are higher than the challenges experienced by
users. Furthermore, the results highlight that, for both nonuser and user expectations,
the technological obstacle (particularly from the point of view of interoperability between
different systems and lack of connectivity in the fields) is the worst and, therefore, the
most important to pay attention to, particularly from the point of view of policy-makers,
who must focus on these aspects to entice and channel investment from farms that have
not yet invested in Agri 4.0. In fact, one of the main difficulties that can undermine the
success of a digitalization strategy in agriculture is the risk of not being able to connect the
new technologies with the infrastructure already in place on the farm or even with other
solutions in parallel. To overcome this constraint, it is important to develop an integration
strategy plan that allows for effectively linking not only the solutions to each other, but also
the people who must be properly trained and whose skills must be properly aligned. In
this way, it is possible to properly implement Agri 4.0.

5.2. Limitations and Future Research Directions

As with any other research, the current study also comes with limitations. First, the
sample investigated in the present study is not perfectly aligned with the current Italian
agricultural context in terms of revenues and land size. Indeed, the sample differs from
the Italian landscape, which is smaller in terms of the size of arable land and turnover [47].
Thus, there is still extensive room for improvement. Moreover, the current study focused
only on Italian agricultural companies, which may limit the generalization of the results.
Despite this, however, it is necessary to specify that the Italian agricultural sector is one
of the best performers in the Italian economy, with one of the highest added value to the
gross domestic product (GDP) in Europe.

A possible limitation lies in comparing the benefits and barriers from two “parallel”
clusters, potentially creating bias. To overcome this problem, it would be interesting to
perform a longitudinal study as a follow-up. Here, the current survey could be repeated
in a few years, comparing the cluster that is not currently adopting any solution and
evaluating their evolution over time; this can be done mainly to compare the evolution
from the point of view of adoption and analyze what the new users see as the benefits and
barriers compared with initial expectations.

Another interesting future direction of work could be to compare the level of awareness
and adoption with other countries, both with a similar sector structure (such as Spain or
France) and others that are among the early adopters of Agri 4.0 and precision farming
(such as the Netherlands), to carry out specific benchmark analyses. Further areas of
research can be derived from adopting the same research also in companies from another
sector, such as breeders of livestock for meat production and meat, eventually comparing
the differences between the internal branches of the agricultural sector.
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Abstract: Inaccurate and untimely adjustments of cleaning parameters during the operation of wheat
combine harvesters lead to high cleaning losses and impurity rates. For this reason, a self-made
4 L-2.5 threshing and cleaning experiment table was employed for cleaning parameter optimization
experiments for wheat combine harvesters in this paper. The influence of the cleaning parameters
on thecleaning loss and impurity rates was analyzed, and the optimum combination of cleaning
parameters was predicted and verified. The contribution hierarchy of cleaning parameters to cleaning
loss rate is as follows: crank speed of shale shaker > opening of chaffer > operation speed > fan speed
> throttle opening. Meanwhile, the contribution hierarchy of cleaning parameters to impurity rate is
as follows: operation speed > fan speed > throttle opening > crank speed of shale shaker > opening
of chaffer. The predicted optimum combination of cleaning parameters, i.e., when the cleaning loss
and impurity rates are both at a minimum and the feed quantity is at the maximum, is as follows:
operating speed—2.2 m/s; opening of chaffer—26 mm, throttle opening—20◦; fan speed—1100 r/min;
and Crank speed of shale shaker—350 r/min. With these settings, the cleaning loss rate was 1.5%
and the impurity rate was 1.9%. In the validation experiment, the average cleaning loss rate was
found to be 1.47%, the average impurity rate was 1.96%, and the relative error of the predicted values
was 0.03% and 0.06%, respectively. Compared with the cleaning index of combine harvesters with
commonly used parameters, the cleaning loss rate was reduced by 0.12% and the impurity rate was
reduced by 0.19%.

Keywords: wheat; 4 L-2.5 combine harvester; threshing and cleaning testbed; cleaning parameters
optimization; response surface methodology

1. Introduction

The cleaning device is one of the core structures of a wheat combine harvester; it is
used to perform threshing mixture cleaning operations in order to complete the separation
of wheat grains and impurities, as well to clean the wheat grain itself [1–5]. Therefore,
the operative quality of the cleaning device is directly related to the overall operating
quality of the combine harvester [6,7]. Cleaning parameters refer to adjustable settings
that affect the operation quality of the cleaning device of the combined harvester, whereas
the cleaning loss and impurity rates are evaluation indexes for the cleaning quality of
the harvester [8–10].

Extensive research has been conducted on theoptimization of wheat harvester cleaning
parameters and their influence on cleaning quality. Zhong et al. [11] undertook orthogo-
nal experiments on thecleaning components of a 4lz-1.0q rice wheat combine harvester;
the results of wheat field tests were analyzed using the fuzzy comprehensive evaluation
method. The optimal parameter combinations of vibrating screen crank speed, screen
surface structure, centrifugal fan speed, and vibrating screen amplitude in the cleaning
process, as well as the primary and secondary order cleaning parameters affecting cleaning
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performance, were obtained, thereby improving the machine’s adaptability and ensuring
good harvesting quality. Geng et al. [12] attempted to optimize the cleaning parameters,
such as cleaning screen amplitude, cleaning screen frequency, fan wind speed, and air flow
direction angle, of a wheat combine harvester to investigate their effect on thecleaning loss
and impurity content rates. In their study, the optimal combination of cleaning parame-
ters was determined, providing a reference for the parameter selection and optimization.
Jin et al. [13,14] undertook a bench optimization test on themain operating parameters
(feed rate, air door opening, fan speed, and angle of upper and lower air guide plates) of
a double outlet, multi-air duct cleaning device. Those authors studied the influence of these
factors on thecleaning loss rate, impurity content rate, and secondary impurity content
rate, determining the optimal parameter combination thereof. A response surface bench
test was carried out with the mass fraction of grains, stems, and sundries in the total mass
of the desorbed matter of a double desorber as the test index. Feed rate, the opening of
the air door, fan speed and the angle of the upper and lower air guide plates were used as
test factors. The influences of these factors on thetest index were analyzed, and the best
matching parameters were obtained, serving as a reference for the study of the harvester’s
performance and the structural design of a multi air channel cleaning device. Li et al. [15]
carried out a wheat bench test on themain influences (feed rate, air door opening and fan
speed) on theoperation of a multi duct centrifugal fan with double outlets. The impact
of each factor on thecleaning quality evaluation index (cleaning loss rate and impurity
content) was investigated, and the optimal parameter combination was determined, pro-
viding a reference for research and design of multi duct centrifugal fans. Tong et al. [16]
proposed improvements to the fan structure, i.e., longitudinal axial flow full feed double
air channels and six outlets. Those authors then performed an orthogonal optimization
simulation of fan speed, fan incidence angle, and fish scale screen angle using the improved
cleaning device. The influence law of various factors on theairflow field was analyzed,
and the optimal parameter combination was obtained to improve the performance of
the cleaning device even further. Using the cleaning device of a small-scale semi-feeding
wheat combine harvester in intercropping mode as the research object, Zhang et al. [17] took
the cleaning and loss rates as evaluation indices, and the feeding speed, suction pressure,
cylinder height, and angle of the lower cone as test factors in an orthogonal simulation
of the cleaning process. In this way, the optimal cleaning parameter combination was
identified. Furthermore, a field test validated the simulation optimization results in order
to improve the cleaning performance of a wheat combine harvester in intercropping mode.
Using the test-bed of a cyclone separation and cleaning system with double threshers and
taking wheat as the test object, the rotation speed of the first-stage thresher, second-stage
thresher, and suction fan as test factors, and cleaning rate as the test index, Shi et al. [18–20]
performed orthogonal and regression tests to optimize the parameters, providing a basis
for the design of a portable grain chopper cleaning system. Using the cyclone separation
system of the double thresher within a micro grain combine harvester as the research
object, the rotation speed of the two-stage thresher and the suction fan as test factors,
and the grain cleaning rate, cleaning loss rate, and grain crushing rate as test indexes,
a cleaning performance regression test was performed and the motion parameters for
the cleaning system were optimized; this research serves as an experimental foundation for
the parameter design of cleaning systems for micro-grain combine harvesters. As a result
of that research, a composite device was developed for conveying, separating, and cleaning
grain effluent; the optimal parameters of this device were obtained through indoor tests,
and its cleaning capacity was improved. Using orthogonal tests, general rotation combina-
tion tests, and a novel design, Ni et al. [21] reported the optimum combination of structural
parameters and motion parameters of each part of the cyclone separation and cleaning
system without a guide vane in the separation cylinder. The results revealed improved
cleaning performance of the micro wheat combine harvester. Liu et al. [22] selected the main
parameters that affect the cleaning performance index using a self-made cleaning system
test-bed with the upper cone angle of the separation cylinder, the height of the cylinder,
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the number of guide vanes, the speed of the suction fan, and the speed of the thresher as
design variables. The optimal combination of parameters and performance were obtained
through orthogonal tests, a second general rotation combination test, and a novel design,
which serves as a further foundation for the design of cleaning systems for micro wheat
combine harvesters.

In spite of the aforementioned studies, research on theoptimization of wheat harvester
cleaning parameters and their impact on cleaning quality is still insufficient. The cleaning
parameters studied are few and incomplete, resulting in inaccurate and untimely cleaning
parameter adjustments during wheat combine harvester field operation. Wheat machine
cleaning is often inefficient; it restricts the cleaning operation level of the combine harvester
and limits the annual wheat crop output.

In light of these issues, this paper takes all five adjustable parameters (operation
speed, chaffer opening, throttle opening, fan speed, and shale shaker crank speed) that
affect the cleaning quality of wheat combine harvesters as cleaning parameters, takes
cleaning loss rate and impurity rate as cleaning quality evaluation indicators, and uses
Design Expert software to complete the response surface experiment design. A bench test
of the optimized wheat harvester cleaning parameters was completed using a self-made
4 L-2.5 threshing and cleaning test bed. The contribution rate and response effect of the five
cleaning parameters relative to the two cleaning quality evaluation indexes were analyzed
using the contribution rate and response surface methods, and the hierarchy of wheat
mechanical cleaning parameters was obtained. The present research is an expansion and
improvement of previous research on theoptimization of existing wheat machine cleaning
parameters and their influence on cleaning quality. The research findings can be used
to guide the setting and adjustment of cleaning parameters during the field operation of
wheat combine harvesters, as well as to provide a theoretical foundation for the research
and development of future wheat combine harvester adaptive cleaning systems.

2. Materials and Methods

2.1. 4 L-2.5 Threshing and Cleaning Experiment Table and Cleaning Device Structure

The 4 L-2.5 threshing and cleaning experiment table was composed of a material
conveying device, a material feeding device, a threshing device, a cleaning device, a control
system, and a touch screen to electronically control of the operation speed, feed auger
speed, conveyor chain harrow speed, threshing drum speed, and fan speed. In contrast,
the crank speed of the shale shaker opening as well as the opening of the chaffer were
adjusted manually. Figure 1 shows the structure and workflow of the 4 L-2.5 threshing and
the cleaning experiment table.

 
(a) Structure of 4 L-2.5 threshing and the cleaning experiment table 

Figure 1. Cont.
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Figure 1. Structure and workflow of the 4 L-2.5 threshing machine and the cleaning experiment table.
1. Material conveying device. 2. Material feeding device. 3. Threshing device. 4. Cleaning device.
5. Control system. 6. Touch screen.

The cleaning device consisted of a shale shaker, throttle opening adjusting plate,
screen opening adjusting plate, sampling box, crank connecting rod mechanism, crank
torque sensor, crank motor, fan motor, fan torque sensor, fan, and a frame and subframe.
The structure is shown in Figure 2.
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Figure 2. 4 L-2.5 Threshing and cleaning experiment table. 1. Shale shaker. 2. Throttle opening
adjusting plate. 3. Fan. 4. Screen opening adjusting plate. 5. Sampling box. 6. Crank connecting rod
mechanism. 7. Crank torque sensor. 8. Crank motor. 9. Subframe. 10. Fan motor. 11. Fan torque
sensor. 12. Frame.

2.2. Control Method of Cleaning Parameters

The cleaning parameters affecting cleaning operations are operation speed, fan speed,
throttle opening, crank speed of the shale shaker, and the opening of the chaffer. Therefore,
this paper studied the optimization of these parameters. To improve the accuracy of
the experiment, the five parameters needed to be adjusted with a high degree of precision.
Operation speed, fan speed, crank speed of shale shaker, and the other devices were
set via a touch screen interface, while throttle opening and the opening of chaffer were
adjusted manually. The experiment table was controlled by a touch screen interface.
The opening of chaffer X describes the vertical distance between the adjacent parallel
screens, and the throttle opening is the relative change angle between the throttle opening
regulator and the fan support plate. Figure 3 shows the manual adjustment mechanism of
the cleaning device.
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(a) Opening of chaffer control part (b) Throttle opening control part 

Figure 3. Manual control of cleaning parameters. 1. Chaffer sieve. 2. Screen opening adjusting plate.
3. Throttle opening regulator. 4. Fan support plate. X. Opening of chaffer. θ. Throttle opening.

2.3. Experiment Parameters

The collection of 1 m2 wheat plant samples and the measurements of parameters were
completed at the Hedong wheat experimental base, Linyi City, Shandong Province, China.
Statistics are provided in Table 1.

Table 1. Wheat characteristics.

Name Parameter

Wheat varieties Lin Mai 4
Growth period 235 days

1 m2 wheat plant quality 1600 g
1 m2 wheat yield 647 g

Wheat spike length 77.6 mm
Natural height of crop 649 mm

Grass Valley ratio 0.78
Moisture content of grain 13.34%

100 grain weight 3.76 g

The implemented operation parameters were determined in various ways, i.e., by
taking measurements on theexperiment table, using previous field experiment research and
relevant literature, and field wheat harvest practical experience, as shown in Table 2 [23–34].

Table 2. Implemented parameters.

Name Parameter

Feeding auger speed 180 r/min
Conveyor chain harrow speed 440 r/min

Threshing drum speed 950 r/min
Cut width 1.8 m

Conveyor belt width 1.5 m

2.4. Experiment Data Calculation Method

We referred to relevant literature to set the calculation equation of the feed quantity,
cleaning loss rate, and impurity rate [13,15].

The feed quantity was calculated using Equation (1) as follows:

Q =
W
t

=
M × B × L

t
= M × B × v (1)
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where Q is the Feed quantity in kg/s; W is wheat plant quantity in kg; T is operation time
in seconds; M is 1 m2 wheat plant quantity; B is cut width in meters; L is operation distance
in meters, and V is operation speed in m/s.

The cleaning loss rate was calculated using Equation (2) as follows:

S =
Wsh
Wch

=
S0 / (B × L)

Wch
× 100 % (2)

where S is the percentage of cleaning loss; S0/(B × L) is 1 m2 loss quality of wheat cleaning
in g/m2; S0 is loss quality of wheat cleaning; B × L is the Harvest area in m2; Wsh is
the wheat cleaning loss quality of 1 m2 in g/m2; Wch is 1 m2 wheat harvest quality in g/m2;
B is the cut width in meters; and L is operation distance in meters.

The impurity rate was calculated using Equation (3) as follows:

Z =
Wz

Wzy
× 100 % (3)

where Z is the percentage of impurity; Wz is the quality of impurities in samples containing
impurities; and Wzy is the quality of the impurity samples.

2.5. Experiment Design and Data Statistics

The values and ranges of the five cleaning parameters during the routine operation
of a wheat combine harvester were selected based on relevant literature and field expe-
rience [11–22]. During routine operation thevalues of the five parameters were set to
the middle their respective ranges. The codes −1, 0, and 1 represent the low, middle,
and high values of the cleaning parameter range, as determined by the conversion func-
tion in the Design Expert software. The following is the code-to-actual-value conversion
formula, as well as the representative symbols for the five cleaning parameters:

⎧⎪⎪⎨
⎪⎪⎩

1 = maxX
0 = midX
−1 = minX
X = A, B, C, D, E

(4)

where X represents five cleaning parameters; 1 represents the maximum value for each
parameter; 0 represents the middle value; −1 represents the minimum value; A is operation
speed in m/s; B is opening of chaffer in mm; C is throttle opening degree; D is the fan
speed in r/min; and E is the crank speed of the shale shaker in r/min.

The Design Expert software was applied for the design of five factors and three
horizontal response surface experiments. The calculation and analysis of the cleaning loss
and the impurity rates were completed using the experiment data calculation method.
Tables 3 and 4 show the statistics for the five cleaning parameter levels and the cleaning
loss and impurity rates.

Table 3. Cleaning parameters.

Code
Operation Speed

A (m/s)
Opening of

Chaffer B (mm)
Throttle Opening

C (◦)
Fan Speed D

(r/min)
Crank Speed of Shale

Shaker E (r/min)

−1 1.5 22 0 900 350
0 2.0 24 10 1000 400
1 2.5 26 20 1100 450
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Table 4. Experiment data for five factors and three horizontal response surfaces.

NO.
A (m/s) B (mm) C (◦) D (r/min) E (r/min) A (m/s) B (mm) C (◦) D (r/min) E (r/min) Cleaning

Loss Rate S
(%)

Impurity
Rate Z

(%)Code Value Actual Value

1 0 1 1 0 0 2.0 26 20 1000 400 1.26 1.90
2 −1 0 0 0 1 1.5 24 10 1000 450 0.63 0.63
3 1 0 0 −1 0 2.5 24 10 900 400 2.61 4.13
4 0 0 0 −1 1 2.0 24 10 900 450 2.02 2.52
5 0 1 0 1 0 2.0 26 10 1100 400 1.28 1.83
6 0 0 0 1 −1 2.0 24 10 1100 350 1.37 1.87
7 0 0 0 0 0 2.0 24 10 1000 400 1.65 2.17
8 0 −1 0 −1 0 2.0 22 10 900 400 2.33 2.54
9 0 −1 0 1 0 2.0 22 10 1100 400 2.37 1.82

10 0 0 1 0 −1 2.0 24 20 1000 350 1.36 1.91
11 0 0 0 1 1 2.0 24 10 1100 450 2.09 1.81
12 1 1 0 0 0 2.5 26 10 1000 400 2.62 2.83
13 −1 0 0 1 0 1.5 24 10 1100 400 0.55 0.57
14 0 0 0 0 0 2.0 24 10 1000 400 1.51 2.26
15 0 0 1 −1 0 2.0 24 20 900 400 1.83 2.45
16 −1 0 0 0 −1 1.5 24 10 1000 350 0.45 0.77
17 0 0 −1 0 1 2.0 24 0 1000 450 2.01 2.33
18 0 0 0 0 0 2.0 24 10 1000 400 1.77 2.22
19 0 1 0 0 1 2.0 26 10 1000 450 1.29 1.97
20 0 1 0 0 −1 2.0 26 10 1000 350 1.13 2.32
21 1 0 0 1 0 2.5 24 10 1100 400 2.65 2.62
22 0 0 0 0 0 2.0 24 10 1000 400 1.53 2.08
23 1 0 1 0 0 2.5 24 20 1000 400 2.68 2.75
24 0 0 1 1 0 2.0 24 20 1100 400 1.85 1.74
25 0 1 0 −1 0 2.0 26 10 900 400 1.22 2.58
26 −1 0 0 −1 0 1.5 24 10 900 400 0.51 0.88
27 0 −1 0 0 1 2.0 22 10 1000 450 2.41 1.96
28 −1 0 1 0 0 1.5 24 20 1000 400 0.53 0.52
29 0 0 0 0 0 2.0 24 10 1000 400 1.46 2.14
30 −1 1 0 0 0 1.5 26 10 1000 400 0.38 0.65
31 0 −1 0 0 −1 2.0 22 10 1000 450 2.31 2.31
32 0 −1 −1 0 0 2.0 22 0 1000 400 2.32 2.36
33 −1 −1 0 0 0 1.5 22 10 1000 400 0.66 0.64
34 0 0 0 −1 −1 2.0 24 10 900 350 1.35 2.57
35 0 −1 1 0 0 2.0 22 20 1000 400 2.34 1.86
36 0 0 −1 −1 0 2.0 24 0 900 400 1.41 2.68
37 −1 0 −1 0 0 1.5 24 0 1000 400 0.48 1.21
38 0 0 0 0 0 2.0 24 10 1000 400 1.62 2.03
39 1 −1 0 0 0 2.5 22 10 1000 400 3.33 2.81
40 1 0 −1 0 0 2.5 24 0 1000 400 2.62 3.50
41 0 0 −1 0 −1 2.0 24 0 1000 350 1.35 2.40
42 0 0 −1 1 0 2.0 24 0 1100 400 1.80 1.93
43 0 1 −1 0 0 2.0 26 0 1000 400 1.23 2.37
44 1 0 0 0 −1 2.5 24 10 1000 350 2.62 2.84
45 1 0 0 0 1 2.5 24 10 1000 450 3.76 2.85
46 0 0 1 0 1 2.0 24 20 1000 450 2.07 1.85

2.6. Experiment Process

Experiments were conducted from 1 July 2019, to 9 July 2019 at the Agricultural
Machinery Research Office of the School of Agricultural Engineering and Food Science,
Shandong University of Technology, China. Before the experiments, it was determined that
the quality of the harvested wheat plants was to be 5.4 × 1600 g with to a cutting width
of 1.8 m. 5.4 × 1600 g. Plants were evenly distributed at a distance of 2 m or more from
the conveyor belt surface to the header, with a sharing area of 3 m × 1.8 m in order to
ensure that the feed quantity was consistent.

A cleaning loss collection bag was fixed at the outlet of the cleaning room to collect
the cleaning loss samples, while a sampling box was used to collect miscellaneous samples
at the grain collection auger. The optimization bench experiment and sample processing
of the cleaning parameters were performed according to the response surface experiment
design table. Then, cleaning loss and impurity quantity and quality data were recorded.
The experimental setup is shown in Figure 4.
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Figure 4. Experiment table.

3. Results

3.1. Cleaning Loss Rate
3.1.1. Establishment of the Regression Model of Cleaning Loss Rate and Significance Test

According to the experiment results shown in Table 4, a variance analysis of the clean-
ing loss rate was undertaken; the results are shown in Table 5. The p-value is used to
analyze the significance of objects; p ≤ 0.01 implies that the response model is extremely
significant, p ≤ 0.05 means that it is relatively significant, and p > 0.05 means that it is
insignificant. The regression equation of the cleaning loss rate was as follows:

S = 1.59 + 1.18A − 0.51B + 0.060C + 0.063D + 0.29E − 0.017AB + 0.017AC + 0.000AD + 0.19AE − (2.500E − 003BC) −
(5.000E − 003BD) − (2.500E − 003BE) − 0.088CD + (2.500E − 003CE) + (5.000E − 003DE) + 0.065A2 +

0.15B2 + 0.031C2 + 0.035D2 + 0.11E2
(5)

Table 5. Analysis of variance of cleaning loss rate.

Source Sum of Squares df F p

Model 28.48 20 42.35 <0.0001 significant
A 22.4 1 666.09 <0.0001
B 4.19 1 124.68 <0.0001
C 0.058 1 1.71 0.2025
D 0.064 1 1.9 0.1807
E 1.33 1 39.5 <0.0001

AB 1.23 × 10−3 1 0.036 0.8502
AC 1.23 × 10−3 1 0.036 0.8502
AD 0 1 0 1.0000
AE 0.15 1 4.41 0.0460
BC 2.50 × 10−5 1 7.44 × 10−4 0.9785
BD 1.00 × 10−4 1 2.97 × 10−3 0.9569
BE 2.50 × 10−5 1 7.44 × 10−4 0.9785
CD 0.031 1 0.91 0.3490
CE 2.50 × 10−5 1 7.44 × 10−4 0.9785
DE 1.00 × 10−4 1 2.97 × 10−3 0.9569
A2 0.037 1 1.1 0.3035
B2 0.21 1 6.12 0.0205
C2 8.41 × 10−3 1 0.25 0.6214
D2 0.011 1 0.32 0.5756
E2 0.1 1 2.96 0.0975

Residual 0.84 25
Lack of Fit 0.78 20 3.04 0.1102 not significant
Pure Error 0.064 5
Cor Total 29.32 45

R2 0.9713
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From Table 5, it can be seen that the p-value of the cleaning loss rate model was less
than 0.01, indicating that the established model was extremely significant. The decision
coefficient R2 of the model was 0.9713, indicating that the model reflected a response value
change of 97.13%. In the regression model, the p-values of A, B, and E were less than 0.01,
while those of AE and B2 were greater than 0.01 but less than 0.05. The p-values of the other
items were greater than 0.05.

3.1.2. Contribution of Each Parameter to Cleaning Loss Rate

Contribution rate Δj reflects the degree of influence of a given parameter on theestab-
lished regression model; the greater the value of Δj, the greater the degree of influence. Δj
may be calculated as follows:

δ =

{
0
1 − 1

F

F ≤ 1
F > 1

(6)

Δj = δj +
1
2

m

∑
i = 1
i 	= j

δij + δjj j = 1, 2, · · · , m (7)

where F is the value of variance analysis; δ is the assessment value; Δj is the contribution
rate of the first power term of the j-th factor; Δjj is the contribution rate of the second power
term of the j factor; and Δij is the contribution rate of interaction between the factor j and
other factors.

According to Equations (6) and (7), the contribution of each parameter to the cleaning
loss rate was calculated, as shown in Table 6. The hierarchy of the cleaning parameters
relative to the cleaning loss rate was as follows: crank speed of shale shaker E > opening of
chaffer B > operation speed A > fan speed D > throttle opening C.

Table 6. Contribution of each parameter to cleaning loss rate.

Name Contribution Rate (%)

Operation speed A 1.4760
Opening of chaffer B 1.8286
Throttle opening C 0.4152

Fan speed D 0.4737
Crank speed of shale shaker E 2.0235

3.1.3. Analysis of Response of Each Parameter to Cleaning Loss Rate

From the data provided in Tables 5 and 6, it can be seen that operation speed (A),
the opening of chaffer (B), and the crank speed of shale shaker (E) had a greater impact
on thecleaning loss rate than throttle opening (C) and fan speed (D). From Figure 5a–d,
it can be seen that operation speed (A) had a positive correlation with the cleaning loss
rate, and that operation speed A and the crank speed of the shale shaker (E) interacted
with the cleaning loss rate, as the former determines the feeding quantity, and a larger
feeding quantity leads to an increase in the cleaning quantity of the threshing mixture
over time. The cleaning device failed to separate the grains and impurities, increasing
the quantity of such materials that was discharged out of the cleaning room. The crank
speed of shale shaker (E) determines the rate of separation and the discharge speed of
the threshing mixture, and the interaction of these variables increases the cleaning loss
rate. Additionally, the opening of chaffer B had a negative correlation and a secondary
effect on thecleaning loss rate due to the increase of opening b of the chaffer. As the
distance between the adjacent parallel sieves increased, the number of wheat grains passing
through the shaker increased proportionally, and the loss of wheat grains was reduced,
along with the loss rate due to cleaning. Furthermore, throttle opening C had a positive
correlation with the cleaning loss rate, since the former determines the air inlet area of
the fan, and increasing this variable increased the air inlet area and volume of the air field
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in the cleaning room. As the wind force on thethreshing mixture increased, the number of
grains discharged from the cleaning chamber by the threshing mixture and the cleaning loss
rate also increased. Additionally, fan speed D had a positive correlation with the cleaning
loss rate, since the former determines the wind speed in the cleaning room. The number
of seeds blown out of the cleaning room by the threshing mixture over time increased,
and the cleaning loss rate increased accordingly. Finally, the crank speed of the shale shaker
(E) had a positive correlation with the cleaning loss rate, because the former determines
the frequency of the shale shaker, and as such, with an increase in speed, the frequency
of the threshing mixture pushed back and forth by the vibrating screen, the number of
grains discharged from the cleaning chamber by the threshing mixture, and the cleaning
loss rate increased.

     
(a) S = f(A,B,0,0,0) (b) S = f(A,0,C,0,0) (c) S = f(A,0,0,D,0) (d) S = f(A,0,0,0,E) (e) S = f(0,B,C,0,0) 

     
(f) S = f(0,B,0,D,0) (g) S = f(0,B,0,0,E) (h) S = f(0,0,C,D,0) (i) S = f(0,0,C,0,E) (j) S = f(0,0,0,D,E) 

Figure 5. Response surface analysis of the effect of each parameter on cleaning loss rate.

3.2. Impurity Rate
3.2.1. Establishment of the Regression Model of Impurity Rate and Significance Test

According to the experiment results shown in Table 4, variance analysis was carried
out for the impurity rate; the results are shown in Table 7. The regression equation for
the impurity rate was as follows:

Z = 2.15 + 1.15A + (9.375E − 003)B − 0.24C − 0.38D − 0.067E + (2.500E − 003)AB − 0.015AC − 0.30AD + 0.038AE +
(7.500E − 003)BC − (7.500E − 003)BD + 0.000BE + (1.000E − 002)CD + (2.500E − 003)CE − (2.500E − 003)DE −

0.27A2 − 0.056B2 + 0.028C2 + 0.093D2 − 0.043E2
(8)

From Table 7, it can be seen that the p-value of the impurity rate model was less
than 0.01, indicating that the established regression model was extremely significant.
Furthermore, the decision coefficient R2 of the model was 0.9783, which implies that
the model can reflect a response value change of 97.83%, indicating that the obtained linear
regression equation fitting effect was very good. In the regression model, the p-values
of A, C, D, AD, and A2 were all less than 0.01, indicating that the influence on themodel
was very significant. The p-values of the other items were greater than 0.05, indicating
insignificant influence.
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Table 7. Analysis of variance according to impurity rate.

Source Sum of Squares df F p

Model 25.96 20 56.24 <0.0001 significant
A 21.3 1 922.99 <0.0001
B 1.41 × 10−3 1 0.061 0.807
C 0.9 1 39.11 <0.0001
D 2.37 1 102.78 <0.0001
E 0.072 1 3.1 0.0905

AB 2.50 × 10−5 1 1.08 × 10−3 0.974
AC 9.00 × 10−4 1 0.039 0.845
AD 0.36 1 15.6 0.0006
AE 5.63 × 10−3 1 0.24 0.6258
BC 2.25 × 10−4 1 9.75 × 10−3 0.9221
BD 2.25 × 10−4 1 9.75 × 10−3 0.9221
BE 3.55 × 10−15 1 1.54 × 10−13 1
CD 4.00 × 10−4 1 0.017 0.8963
CE 2.50 × 10−5 1 1.08 × 10−3 0.974
DE 2.50 × 10−5 1 1.08 × 10−3 0.974
A2 0.63 1 27.23 <0.0001
B2 0.027 1 1.18 0.2879
C2 7.01 × 10−3 1 0.3 0.5865
D2 0.076 1 3.29 0.0815
E2 0.016 1 0.68 0.4163

Residual 0.58 25
Lack of Fit 0.54 20 3.67 0.0772 not significant
Pure Error 0.037 5
Cor Total 26.53 45

R2 0.9783

3.2.2. Contribution of Each Parameter to Impurity Rate

Equations (6) and (7) were used to quantify the contribution of each parameter to
the impurity rate, as shown in Table 8. The hierarchy of these parameters was as follows:
operation speed A > fan speed D > throttle opening C > crank speed of shale shaker
E > opening of chaffer B.

Table 8. Hierarchy of parameters relative to impurity rate.

Name Contribution Rate (%)

Operation speed A 2.4301
Opening of chaffer B 0.1525
Throttle opening C 0.9744

Fan speed D 2.1543
Crank speed of shale shaker E 0.6774

3.2.3. Analysis of the Response Effect of Each Parameter to the Impurity Rate

From the data provided in Tables 7 and 8, it can be seen that operation speed (A), throt-
tle opening (C), and fan speed (D) had greater impacts on theimpurity rate than the chaffer
(B) and crank speed of shale shaker E. From Figure 6, it can be seen that operation speed (A)
had a positive correlation with the impurity rate. The operation speed of A and fan speed
D influenced the impurity rate, with the former having a secondary effect, as it determined
the feeding quantity, and an increase in feeding quantity leads to an increase in threshing
mixture cleaning. The cleaning device was unable to separate the grains and impurities
in a timely manner. As such, the number of grains and impurities passing through the vi-
brating screen increased, and the impurity rate increased accordingly. An increase of fan
speed D increased the separation amount in the threshing mixture and the number of impu-
rities blown out while reducing the impurity rate. As also shown in Figure 6, the opening
of chaffer B had a positive correlation with the impurity rate, as with an increased distance
between the adjacent parallel sieves of the chaffer, the sieve penetration of the threshing
mixture increased, and the separation of the grain and the impurity decreased, thereby
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increasing the impurity rate. Additionally, throttle opening C had a negative correlation
with the impurity rate, because this parameter determines the air inlet area of the fan; with
a greater air inlet area and air volume of the air field in the cleaning room, the wind force
on thethreshing mixture, the amount of separation between the threshing mixture and
the impurities, and the number of impurities blown out all increase while the impurity rate
decreases. Furthermore, fan speed D had a negative correlation with the impurity rate, as
increasing the fan speed increased the wind field speed, thereby increasing the amount
of separation of the threshing mixture grain and impurity, as well as the amount of im-
purity blown out, resulting in a decrease in the impurity rate. Finally, the crank speed of
shale shaker E had a negative correlation with the impurity rate, as this factor determines
the frequency of the shale shaker. With an increase in the crank speed, the frequency and
screening rate of the threshing mixture pushed back and forth by the vibrating screen
increased, as did the amount of separation of wheat threshing mixture grain and impurities
and the number of impurities blown out, thereby reducing the impurity rate.

     
(a) Z = f(A,B,0,0,0) (b) Z = f(A,0,C,0,0) (c) Z = f(A,0,0,D,0) (d) Z = f(A,0,0,0,E) (e) Z = f(0,B,C,0,0) 

    
(f) Z = f(0,B,0,D,0) (g) Z = f(0,B,0,0,E) (h) Z = f(0,0,C,D,0) (i) Z = f(0,0,C,0,E) (j) Z = f(0,0,0,D,E) 

Figure 6. Response surface analysis of each parameter on impurity rate.

3.3. Optimization and Verification of Cleaning Parameters
3.3.1. Optimization of Cleaning Parameters

It is desirable that the cleaning loss and impurity rates are as low as possible and
the operation speed is maximal to achieve the optimum cleaning operation level and
the maximum feed quantity. According to the response effect analysis of each parameter
relative to cleaning loss rate, it can be seen that to ensure the minimum cleaning loss rate,
it is necessary to ensure the maximum opening of the chaffer and the minimum throttle
opening, fan speed, operation speed, and crank speed of a shale shaker. To minimize
the impurity rate, it is necessary use the minimum operation speed and opening of chaffer
and the maximum throttle opening, fan speed and crank speed. To ensure the collection
efficiency and undertake an effective cleaning operation of a wheat machine, the feed
quantity and the operation speed are required to be at the maximum values. To predict
the optimum combination of the cleaning parameters when the cleaning loss and impurity
rates were the smallest and the feed quantity was the largest, it was necessary to perform
an optimization analysis of five cleaning parameters. To this end, the following model
was established: ⎧⎪⎪⎨

⎪⎪⎩
maxA
minS
minZ
−1 ≤ A, B, C, D, E ≤ 1

(9)
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By using the Design Expert software to optimize the cleaning parameters, it was
concluded that the optimum combination of parameters was as follows: operation speed—
2.2 m/s; opening of chaffer—26 mm; throttle opening—20◦, fan speed—1099.8 r/min; and
crank speed of shale shaker—350 r/min. By applying these settings, a cleaning loss rate of
1.5% and an impurity rate of 1.9% were obtained.

3.3.2. Verification of the Optimum Cleaning Parameters

From 1 July 2019, to 9 July 2019, the optimum combination of cleaning parameters
was verified in the Agricultural Machinery Research Office of the School of Agricultural
Engineering and Food Science, Shandong University of Technology, China. Table 1 shows
the wheat characteristic parameters for the wheat plants used in the experiment. Since
it was difficult to set the fan and crank speeds of the shale shaker to 1 decimal place, to
facilitate the smooth operation of the experiment, the cleaning parameter combination
was adjusted as follows: operation speed—2.2 m/s; opening of chaffer—26 mm; throttle
opening—20◦; fan speed—1100 r/min; and crank speed of shale shaker—350 r/min. Using
this combination of parameters, three sets of bench verification experiments were carried
out; see Table 2.

The cleaning loss and impurity rates of the three groups of validation experiments were
calculated using Equations (2) and (3) and average values of 1.47% and 1.96%, respectively,
were calculated, as shown in Table 9. The relative errors between the experimental data
and the predicted values were 0.03% and 0.06%, respectively.

Table 9. Optimum cleaning parameter combination verification experiment data.

Experiment Serial Number Cleaning Loss Rate (%) Impurity Rate (%)

1 1.25 1.89
2 1.54 1.98
3 1.61 2.01

Average value 1.47 1.96

4. Discussion

Our bench test and analysis of cleaning parameter optimization of a 4 L-2.5 wheat
combine harvester are an extension and improvement on previous research on theoptimiza-
tion of cleaning parameters of wheat combine harvesters and their influence on cleaning
quality. To complete the research in this paper, a bench test under closed conditions was
used, i.e., excluding the influence of complex working conditions such as weather, environ-
mental conditions, and the driver’s level of experience. Such an approach provides more
realistic results than a simulation test. The cleaning parameters investigated included all
five adjustable parameters that influence the cleaning quality of wheat combine harvesters.
Notably, we investigated how to effectively reduce the loss rate and impurity content of
wheat harvester cleaning, as well as how to effectively improve the accuracy and timeliness
of cleaning parameter setting and adjustment during field operation.

The cleaning parameters of the six groups of experiments (see Table 4) with test
numbers 7, 14, 18, 22, 29, and 38 were the same. These six groups of experiments revealed
average cleaning loss and impurity rates of 1.59% and 2.15%, respectively. The cleaning
loss and impurity rates obtained using the optimum cleaning parameter combination were
reduced by 0.12% and 0.19%, respectively, when compared to the experimental data of
the optimum cleaning parameter combination.

The apparatus studied in this paper was an air screen cleaning device, similar to those
discussed in the literature [11–16]. The cleaning parameters studied in the literature have
included shale shaker crank speed and centrifugal fan speed (fan speed) [11], cleaning
screen frequency (crank speed of shale shaker), fan wind speed (throttle opening) [12], feed
quantity (operation speed), throttle opening, and fan speed [13], feed quantity (operation
speed), throttle opening, and fan speed [14], feed quantity (operation speed), throttle
opening and fan speed [15], and fan speed and the included angle of the fish scale screen
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(opening of chaffer) [16]. Given that in each of these papers, only two or three parameters
were studied, it may be stated that the optimization of cleaning parameters in this paper
and the study of their impact on cleaning quality are more comprehensive.

5. Conclusions

An optimization bench experiment of the cleaning parameters of a wheat combine
harvester was completed by using the bench experiment method. The contribution rate
method was used to analyze the experimental data, and the influences of operation speed,
fan speed, throttle opening, the opening of chaffer, and crank speed of the shale shaker
on thecleaning quality were determined. The contribution hierarchy of cleaning parameters
relative to cleaning loss rate is as follows: crank speed of shale shaker > opening of
chaffer > operation speed > fan speed > throttle opening. Meanwhile, the contribution
hierarch of the cleaning parameters relative to impurity rate is as follows: operation
speed > fan speed > throttle opening > crank speed of shale shaker > opening of chaffer.
The response effects of five cleaning parameters on cleaning loss rate and impurity rate
were obtained by analyzing the response surface graph. An optimization model was
established, and a response surface data analysis was carried out using Design Expert
software. The optimal combination of cleaning parameters (operation speed—2.2 m/s;
opening of chaffer—26 mm; throttle opening—20◦; fan speed—1100 r/min; and crank
speed of shale shaker—350 r/min) was predicted when the cleaning loss and impurity
rates were at the minima and the feed quantity was at the maximum. Subsequently,
using a 4 L-2.5 threshing and cleaning experiment table, a bench experiment intended
to determine the optimum cleaning parameters combination was carried out. The result
revealed a cleaning loss rate of 1.47% and an impurity rate of 1.96%. Compared with
the evaluation indexes of the cleaning quality of the combine harvester with routine
cleaning parameters, the cleaning loss rate was reduced by 0.12% and the impurity rate by
0.19%. The results of this paper provide a theoretical basis for the research and development
of a self-adaption cleaning system for wheat combine harvesters.
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Abstract: The agricultural machinery is making a considerable negative contribution to the accel-
eration of global warming. In this study, we analyzed the impact of combine harvesters (CHs) on
the global warming potential (GWP) by evaluating the telematics data from 67 CHs operating in
Lithuania and Latvia between 2016 and 2020. This study examined the use of their technological
operations and the associated impacts on ambient air and performed field tests using the same
CH model to determine the composition of exhaust gases and the impact of different technological
operations on GWP. The data confirmed the release of significant GWP during indirect operation,
and it was estimated that considerable lengths of time were spent in idle (~20%) and transport (~13%)
modes. During these operations, over 13% of the total GWP (~27.4 t year−1 per CH), affected by
emissions, was released. It was calculated that a GWP reduction exceeding 1 t year−1 per machine
can be achieved by optimizing the idling and transport operations. The dual telematics/field test
data approach facilitates a comprehensive assessment of both the impact of CH exhaust gases on
GWP and the methods for reducing the negative impact on the environment.

Keywords: air pollution; exhaust gas; telematics system; nitric oxide; carbon dioxide

1. Introduction

One of today’s critical challenges is to meet the needs of a growing human population
with limited resources, while prioritizing both global food security and sustainability
(based on increasing crop yields) within the context of reducing environmental impacts [1].
Simultaneously, the potential for the efficient use of soil by future generations must be
increased [2]. The urgent threat of climate change requires specific action, especially by the
main emitters of greenhouse gases (GHGs), like agriculture, which is closely associated
with environmental pollution. Agricultural activities are responsible for around 24% of
GHGs [3], which often lead to water quality deterioration, wastage of water resources, and
loss of biodiversity [4]. According to the latest Food and Agriculture Organization reports
on agricultural GHG emissions, the world has almost doubled GHG in the last 50 years, and
this amount could increase by another 30% by 2050 [5]. In terms of agricultural technologies,
diesel fuels and fertilizers account for most of the energy consumed [6,7]; furthermore,
fertilizers and pesticides have been identified among the most important secondary sources
of CO2 emissions [8]. It is estimated that harvesting accounts for up to 30% of the total cost
of using agricultural machinery. Reductions in fuel consumption, air pollution, and the
associated costs incurred by farmers [9] can be realized by the optimization of work and
the correct operation of combine harvesters (CHs). In 2017, the global agricultural sector
produced CO2eq emissions of 11.1 gt year−1 [10], with Lithuania alone responsible for
4387.0 kt year−1 [11]. As an EU member state, Lithuania participates in the global climate
change mitigation process, contributes to EU commitments, prepares national documents,
participates in the formation of climate change policy, and is one of the 195 countries that
have ratified the United Nations Framework Convention on Climate Change.
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Rapidly increasing concentrations of atmospheric GHGs, including CO2, CH4, and
N2O, are contributing to unprecedented changes in the earth’s atmosphere. Collectively,
these three GHGs account for over 90% of anthropogenic global warming [12]. GWP is a
widely used, convenient, and quantifiable measure of environmental impacts. Thus, this
paper uses GWP as a clear indicator of the unified concept. It should be noted that the
impact of CH exhaust gases on GWP is primarily influenced by the direct use of diesel
fuel and its conversion to CO2 within internal combustion engines. Other emissions,
including N2O and CH4, can be reduced by different engine technologies, (e.g., clean-
up catalysts, NO control by selective catalytic reduction [13], and CO/HC emissions
control by diesel oxidation catalysts), and a direct correlation has been noted between
CO2 emissions and fuel consumption. In order to reduce engine emissions, the following
engine improvement systems can also be useful: cylinder shut-off [14,15], start–stop [16,17],
and speed reduction [18,19]. Emissions can also be reduced by switching to alternative
fuels, such as compressed natural gas (LNG) and liquefied petroleum gas (LPG) [20], or
by installing electric hybrid engines into the agricultural machinery [21–23]. However,
overall, emissions can only be reduced if less fuel is used [24–26]. Other researchers are
also looking at ways to reduce fuel consumption and air pollution when harvesting with
CHs [27,28]. In their 2019 research, Špokas et al. revealed that leaving longer-length stubble
in the field when harvesting is an acceptable way of reducing fuel consumption (and thus
emissions) while preserving the driving speed. They achieved a reduction in hourly fuel
consumption of 6.2 l h−1, which in turn resulted in 16.3 kg h−1 less CO2, by increasing the
stubble height of oilseed rape from 0.2 to 0.4 m (equating to 7 t h−1 less stem mass being
fed into the CH). However, research on the environmental impacts (in terms of GHGs or
the GWP) of CHs is still lacking.

Thus, this study aimed to evaluate the GWP of the exhaust gases of CHs by assessing
different technological operations and to identify methods for its reduction. We substantiate
the benefits of the telematics data and field test data analysis method for a comprehensive
economic and environmental assessment. We also propose an improved model of a
continuous process to achieve economic and environmental goals, presented in a previously
published article [29].

2. Data and Methods

2.1. Telematics Data Collection and Analysis

This study analyzed telematics data from CHs (one of the most popular models in the
region with a tangential threshing apparatus) operating in Lithuania and Latvia between
2016 and 2020. Access to the relevant databases required a username and password.
Such access was obtained from the manufacturer’s representative. In order to be able to
objectively compare the telematics data with the data obtained during the field tests, a
set of telematics data was selected only for CHs of the same model. In total, our filtering
conditions were met by 67 different machines (from an array of 239 different machines). The
information was then organized into a unified database to statistically process the collected
data. In this study, the data for each individual machine for each year were downloaded to
a personal computer; these were then imported into a data array for further processing.
Only the information needed for the study was selected from the large telematics database,
including working time and fuel consumption in different operational modes. A machine’s
working time (h year−1) can be categorized as follows: idle with a partially full grain tank
(T1), idle with a full grain tank (T2), unloading and not harvesting (T3), harvesting and
unloading (T4), harvesting (T5), headland turn separator engaged (T6), transportation
below 16 km h−1 (T7), and transportation above 16 km h−1 (T8). The categorizations for
fuel consumption (l year−1) were as follows: idle with a partially full grain tank (F1), idle
with full grain tank (F2), unloading and not harvesting (F3), harvesting and unloading (F4),
harvesting (F5), headland turn separator engaged (F6), transportation below 16 km h−1

(F7), and transportation above 16 km h−1 (F8).
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In the analysis, the T1 and T2 times were obtained during the CH’s idle mode, T7 and
T8 were collected during the transport mode, and T3, T4, T5, and T6 were acquired during
the CH’s working mode. Fuel consumption was calculated: F1 and F2 represent the fuel
consumed at idling, F7 and F8 are the quantities of fuel consumed during the transport
mode, and F3, F4, F5, and F6 represent the fuel consumed during direct work.

2.2. Calculation Methodology for Greenhouse Gases and Global Warming Potential

For the GHG and GWP calculations, this study converted the fuel consumption data
from the telematics database from l year−1 and l h−1 to kg year−1 and kg h−1, respectively.
A diesel fuel volume-to-mass conversion factor of 0.832 kg l−1 [30–32] was then employed.

The GHG emissions in the telematics data analysis were not measured directly but
were assessed using the methodology outlined in Chapter 1.A.4 of the EMEP/EEA’s Air
Pollutant Emission Inventory Guidebook [33]:

E pollutant = FC fuel type × EF pollutant, (1)

where E pollutant denotes the emission of a specified GHG (CO2, N2O, and CH4), FC fuel type
denotes the fuel consumption, and EF pollutant denotes the emission factor of the pollutant
(g t−1 or kg t−1) of the consumed diesel fuel (Table 1).

Table 1. Greenhouse gas (GHG) emission factors in agricultural transport using diesel fuel.

GHG Emission Factors

CO2, kg t−1 N2O, g t−1 CH4, g t−1

3160 139 13

The GHG impact on GWP was estimated using Equation (2) [12,34–37]

GWP = ECO2 + 25 × ECH4 + 298 × EN2O. (2)

The GWP in CO2 equivalents is such that 1 kg of CO2 equates to 1 kg of CO2eq, 1 kg
of CH4 equals 25 kg of CO2eq, and 1 kg of N2O corresponds to 298 kg of CO2eq.

2.3. Field Test Measurement Device for CO2, O2, and NO

Concentrations of CO2, O2, and NO in the exhaust gases of the CHs during harvest-
ing were analyzed using a hand-held AUTOplus 5-2 (Kane, Welwyn Garden, UK) gas
analyzer, which has been used in previous research to analyze the emissions from mobile
vehicles [38–41]. Table 2 provides the measurement range and resolution of the analyzer.

Table 2. Measurement range of the individual components of exhaust gases.

Component Resolution Accuracy Measurement Range

CO2 0.1% ±5% of reading
±0.5% volume

0–16%
Over range: 25%

O2 0.01% ±5% of reading
±0.1% volume

0–21%
Over range: 25%

NO 1 ppm ±5% of reading
±25 ppm of volume

0–5000 ppm
Over range: 5000 ppm

At the time of the measurements, the analyzer had a valid calibration passport. Cali-
bration was performed using a reference calibration gas. In the field tests, the measuring
device was connected to the exhaust pipe via a flexible hose. After the speed (engine load
factor) of the CH was modified, the exhaust gas composition was allowed to stabilize for
1 min. Then, 20 measurements were recorded, which were stored in the measuring device
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at 10 s intervals. The received data were then transferred to a personal computer via KANE
LIVE software for further processing.

2.4. Combine Harvester and Test Site Specifications

In 2019 and 2020, field trials were conducted on the land of an agricultural company
engaged in crop production. The Wideband Global SATCOM system field coordinates
of the study site in 2019 and 2020 were 54.7970, 23.0079. The 2019 study used the winter
wheat variety Ada for harvesting, whereas Balitus was used in 2020. Five samples were
collected from 0.25 m2 areas in five randomly selected field locations to determine the
weight of 1 m2 of the crop. The Ada variety weighed 1702.9 ± 209.1 g m−2 (grain moisture:
12.2% ± 1.1%), while the weight of the Balitus variety was 1370.2 ± 154.6 g m−2 (grain
moisture: 13.5% ± 1.3%).

The wheat flow mass delivered to the CH was calculated using the following formula:

q = CS × HW × WM, (3)

where q denotes the wheat mass fed to the CH (feed rate) in kg s−1, CS denotes the CH
speed during harvesting in m s−1, HW denotes the CH header width in m, and WM
denotes the mass of the wheat in 1 m2.

The same CH was used for the 2019 and 2020 field studies. There are already newer
and higher environmental standards (i.e., Tier5) CHs. However, we chose to examine one
of the most popular machines in the region at the moment. It should also be emphasized
that the life cycle of a CH in the field is long, and this type of CH will work for many years
to come. Table 3 presents the precise measurement specifications.

Table 3. Combine harvester characteristics.

Indicator Measurement Unit Value

Manufacturer - John Deere

Model - T670i

Year of manufacture Year 2016

Emission level - Final Tier 4

AdBlue© - No

Header (cutter bar) width M 9.14

Threshing cylinder diameter M 0.66

Threshing channel width M 1.67

Concave area m2 1.35

Cleaning shoe separation area m2 6.3

Grain tank capacity l 11,000

Engine power kW 292

Engine operational hours during the 2019 study h 620

Engine operational hours during the 2020 study h 828

In the field tests for both years, fuel consumption and engine load of the CHs were
recorded using data from the machines’ on-board computers. For each technological
operation or change in harvesting speed, 10 on-board computers display values were
recorded at equal 10 s intervals.

2.5. Statistical Analysis

The data were analyzed using Statistica 10.0 (TIBCO Software, Palo Alto, CA, USA)
statistical software with a level of 0.05 as the significance criterion.
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3. Results and Discussion

3.1. Results of the Telematics Data Analysis

Table 4 provides the summarized results of the telematics data analysis.

Table 4. Combine harvester operating time structure and global warming potential (GWP) in various
engine modes.

Year
1 Machine

Utilization, h Year−1
1 GWP, kg h−1 1 GWP, kg Year−1

Idle mode

2016 20.1 ± 9.0 23.9 ± 1.6 493.0 ± 243.8
2017 40.1 ± 17.7 25.1 ± 1.2 1039.1 ± 522.1
2018 39.7 ± 30.8 22.7 ± 0.9 863.1 ± 384.5
2019 69.2 ± 22.5 22.1 ± 1.1 1354.2 ± 374.0
2020 61.8 ± 13.8 22.2 ± 1.0 1233.5 ± 213.2

2 2016–2020 57.2 ± 9.3 22.5 ± 0.5 1166.2 ± 154.0

Transport mode

2016 22.3 ± 14.6 69.5 ± 9.4 1489.7 ± 952.9
2017 29.4 ± 8.6 64.6 ± 6.1 1849.0 ± 439.2
2018 26.8 ± 6.30 60.2 ± 4.5 1609.7 ± 323.5
2019 41.1 ± 8.83 63.4 ± 2.9 2654.4 ± 596.9
2020 38.0 ± 5.38 64.4 ± 2.7 2488.6 ± 376.2

2 2016–2020 35.9 ± 3.71 63.8 ± 1.6 2319.0 ± 253.2

Working mode

2016 97.5 ± 60.0 138.3 ± 7.4 13,618.9 ± 8442.6
2017 154.8 ± 51.7 134.9 ± 7.7 20,301.4 ± 5474.0
2018 147.5 ± 38.1 121.7 ± 5.7 17,833.1 ± 4032.2
2019 202.2 ± 47.7 125.1 ± 3.6 25,131.5 ± 5832.7
2020 209.6 ± 28.7 128.8 ± 2.9 26,828.7 ± 3660.7

2 2016–2020 189.0 ± 20.3 127.7 ± 2.0 23,932.0 ± 2516.6

All modes

2016 140.0 ± 82.0 107.7 ± 9.6 15,601.6 ± 9586.4
2017 224.3 ± 74.5 105.9 ± 8.2 23,189.5 ± 6269.6
2018 214.0 ± 54.9 95.5 ± 6.0 20,306.0 ± 4618.2
2019 312.5 ± 77.3 96.2 ± 3.7 29,140.1 ± 6704.7
2020 309.5 ± 47.0 101.2 ± 2.7 30,550.8 ± 4189.1

2 2016–2020 282.2 ± 32.5 99.7 ± 2.0 27,417.2 ± 2879.2
1 The arithmetical means of working time and global warming potential were obtained from the telematics
database containing data from 67 CHs. 2 2016–2020: averages of parameters over 5 years.

The study revealed the following key results:

• On average, each CH spent 68.2% ± 1.1% of its time in direct harvesting work between
2016 and 2020. Accordingly, in this mode, a GWP of 87.2% ± 0.7% was released into
the environment via the exhaust gases. In the other modes (idle/transport), the
emission of air pollutants occurred while the CH was engaged in indirect work. A
similar value was calculated in previous studies and for other CH models [42].

• The maximum recorded engine operation time of a single CH per year (in all modes)
was 1036.9 h year−1 with a minimum of 18.1 h year−1.

• The highest total annual GWP (in all modes) of a single CH was 94,262.7 kg year−1,
while the lowest was 1974.7 kg year−1.

• Despite significant differences in absolute values between individual machines, the
overall proportions of time spent engaged in direct work and in idle/transport modes
were deemed comparable. The calculated correlation coefficient between the work (TW)
and the idle (TI) modes was R2 = 0.88 (TW = 2.03TI + 72.87), whereas the coefficient
between the work and the transport (TT) modes was R2 = 0.75 (TW = 4.73TT + 18.88).
The calculated correlation coefficient between the GWP emitted in the work (FW)
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and idle (FI) modes was R2 = 0.81 (FW = 14.72FI + 6761.8), while the coefficient
between the GWP emitted in the work and transport (FT) modes was R2 = 0.75
(FW = 8.61FT + 3961.1). These strong correlations indicate a stable relationship be-
tween the different modes (idle, transport, and work); however, they can also suggest
that implementing changes to reduce both indirect working time and GWP emissions
can be problematic.

The data analysis revealed the potential to reduce both the duration of indirect work
and the associated negative environmental impacts. However, previous research has
identified the influence of poorly organized work, inappropriate operator practices, and
lack of knowledge and skills in the inefficient use of agricultural machinery [43,44].

3.2. Influence of Technological Operations on the Global Warming Potential in Idle, Transport, and
Harvesting Modes

It can be concluded from the telematics data that during idling, the length of time
spent in this mode (20.3%) and the GWP released (4.3%) account for fairly significant shares
of the totals. By comparison, the idle time of other non-road machines can be between 20%
and 70% [45–47]. The 2019 field tests explored the impact of fuel consumption on the GWP
and the use of various technological operations at the idle speed of the CH engine. Figure 1
presents the obtained results.

 

Figure 1. Hourly global warming potential (GWP) of a combine harvester (CH) in idle mode engaging
different operational units (Eng = engine, Thr = threshing unit, Cho = straw chopper unit, Cut = cutter
bar unit, and Unl = grain unloading unit, where n = engine crankshaft speed) in the 2019 tests. The
value of each column is derived from an average of 20 replicates.

These results confirm that engine speed had the most significant impact on the hourly
GWP in idle mode. An increase in engine speed from 1200 to 2200 min−1 represented a
very significant 2.7-fold increase in GWP emissions. However, other operations produced
lower increases in GWP emissions, as follows:

• Cereal threshing unit: 7.5%
• Straw chopper unit: 20.3%
• Cutter bar unit: 10.2%
• Grain unloading unit: 0.3%
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Generally, maximum reductions should be made in the duration of idling; however,
where this is not possible, engine speed should be reduced, and unused technological
operations should thus be terminated.

During the transport mode, the length of time and the GWP accounted for 13.2% and
8.8% of the totals, respectively. In 2019, the same field tests explored the relationships
between engine speed, the use of technological operations, driving speed, and GWP.
Figure 2 provides the obtained results.

Figure 2. Relations between combine harvester (CH) speed in transport mode and global warming
potential (GWP) in the 2019 tests (stubble height, 15 cm; soil moisture, 16.2%): B1—All gears are
switched off. Engine crankshaft speed n = 1690 min−1 B2—Gears engaged: header, threshing unit,
and straw chopper. n = 1690 min−1 B3—All gears are switched off. n = 2340 min−1 B4—Gears are
engaged: header, threshing unit, and straw chopper. n = 2200 min−1 P1—All gears are switched off.
n = 1690 min−1 P2—All gears are switched off. n = 2340 min−1 The value of each point was obtained
from an average of 20 replicates.

According to the outcomes of the 2019 field test study, the absolute numerical value
of the GWP increased commensurately with driving speed, while the GWP per km was
reduced. The graphs in Figure 2 indicate that when the CH moves between fields, it is
preferable to terminate any technological operations, reduce the engine speed, and increase
the driving speed.

The telematics data collected over a 5-year period from 67 CHs of the same model
were compared with data from a specific CH obtained during field research. From the
results given in Table 4 and Figure 1, the hourly GWP in idle mode can be potentially lower
and equal to the 14.29 kg h−1 achieved during the tests, although an analysis of the 5-year
data revealed the value to be 22.54 kg h−1. Considering that each CH spends an estimated
average of 57.18 h year−1 in idle mode, a potential GWP reduction of 471.7 kg year−1 per
machine is possible. This figure is even higher for the transport mode, for which the 5-year
data provide an average hourly GWP of 63.84 kg h−1. Switching off all technological
gears, reducing the engine speed to 1690 min−1, and driving at a speed of 8 km h−1 can
achieve a GWP of 44.91 kg h−1 (Figure 2). The average time spent in the transport mode
is 35.94 h year−1, which allows for a potential GWP reduction of 680.3 kg year−1. By
optimizing the operation of CHs during their idling and transport modes, a potential GWP
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reduction of 1.15 t year−1 per machine is achievable. It should be stressed that reductions
in GWP will not only produce positive environmental impacts but also have direct financial
benefits for farmers.

The GWP per ton of wheat processed (Figure 3) was barely affected by changes to
the speed of the threshing cylinder during threshing, particularly when the CH reached
its optimal working speed (approx. 4–5 km h−1). At a harvesting speed of 1 km h−1 with
threshing cylinder rotational speeds of 850 and 950 min−1, a 12.42% difference was noted in
GWP. However, after reaching a maximum (and typical) harvesting speed of 5 km h−1, the
GWP difference was 3.88%. A decrease in GWP per ton of wheat processed was realized
by significantly increasing the running speed of the CH during harvesting; a comparison
between running speeds of 1 and 5 km h−1 at a threshing cylinder speed of 950 min−1

resulted in a significant decrease in GWP by 60.08%. In fact, the driving speed during
harvesting (or, more precisely, the supplied wheat crop flow in the threshing apparatus
and the engine load) is the most important economic and environmental factor. If the
selected driving speed is too low, the GWP per ton of raw material processed will be very
high. Conversely, if the speed is too high (at the same time overloading the engine), we
will lose part of the crop due to grain damage and grain separation losses. The latest CH
models have built-in technologies that automatically select the driving speed (at the same
time, the supplied crop in the threshing apparatus and the engine load) in order to achieve
optimal fuel consumption and reduce the environmental impact. In our study, assessing
these factors and making decisions depend on the CH driver. That is why it is important to
research and publicize research results and properly educate CH drivers.

Figure 3. Relation between combine harvester (CH) speed in harvesting mode and global warm-
ing potential (GWP) per ton of wheat mass processed in the 2019 tests (engine crankshaft speed
n = 2200 min−1): B1—threshing cylinder rotational speed nt = 950 min−1 B2—nt = 850 min−1 The
value of each point was obtained from an average of 20 replicates.

3.3. Link between Global Warming Potential in Threshing Mode and Exhaust Gas Concentrations
and Engine Load

Figure 4 presents the results of the integrated field research conducted in 2020. The
data show a connection between the GWP per ton of wheat processed, the exhaust gas con-
tent/concentration, the driving speed during harvesting, the feed rate, and the engine load
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factor. The most obvious result is that both NO content and CO2 concentration increased
commensurately with harvesting speed (and thus engine load), while the concentration of
O2 decreased. When comparing the values obtained at the slowest and fastest harvesting
speeds (1 and 4.5 km h−1, respectively), the following differences are noted:

• O2 concentration decreased by 23.4%
• CO2 concentration increased by 26.7%
• NO concentration increased by 118.9%

Figure 4. Relationships between combine harvester (CH) speed, wheat feed rate, engine load factor,
global warming potential (GWP) per ton of wheat mass processed, and exhaust gas concentrations
during threshing in the 2020 tests. The value of each point was obtained from an average of
20 replicates.

These variations are attributed to the fact that, as the speed of the CH increases, the
amount of wheat flow per unit of time also increases. Simultaneously, there is an increase
in engine load and corresponding rises in both gas compression and temperature inside
the internal combustion engine’s cylinder. Increases also occur in the interactions between
N, O, and C in both ambient air and diesel fuel. The consequences of heat and pressure
cause O2 in the exhaust gases to decrease and CO2 and NO levels to rise [48].

Despite the research estimates indicating that the lowest GWP per ton of wheat
processed during harvesting is achieved at top operational speeds (Figures 3 and 4), there
is no definitive conclusion or solution. Furthermore, when a CH reaches a certain critical
speed during harvesting, there is an increase in both grain damage and grain separation
losses [32]; therefore, other researchers indicate the need to include evaluations of both
grain damage and grain loss [49]. Future research should investigate the determination
of optimal harvesting speeds by comprehensively estimating GWP, grain damage, and
grain losses.

After analyzing the accumulated multi-year telematics data and conducting field
tests on a specific CH, we clearly see that there is potential for a more efficient use of
the machine. We can propose a process that would allow continuous improvement to
achieve economic and environmental goals (Figure 5). The proposed process has several
scenarios and may include both machine data analysis with and without field testing to
determine maximum measures to reduce fuel consumption, make optimal use of expensive
agricultural machinery, and reduce GWP. The process offers the possibility of data analysis
(only the data of a specific machine can be analyzed, or the whole array of machines of the
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same model can be compared), which shows the real situation in time and fuel consumption.
The data obtained during the field tests are compared with the values recorded in the
telematics system, and the possibilities of optimal work are analyzed. The analysis shall be
followed by specific measures affecting economic and environmental factors, including,
but not limited to, the training of CH operators, the regulation of machinery, and a better
organization of ancillary transport.

Figure 5. Dual telematics/field test data analysis method process to reduce fuel consumption and
environmental pollution.

4. Conclusions

During a CH’s relatively short annual operation (~282 h year−1), substantial quantities
of GWP (~27 t year−1) are emitted. This study estimated the GWP released during the idle
and transport modes to be significant (~1.2 and ~2.3 t year−1, respectively) and confirmed
that GWP can be reduced by 32.9% during idling and transportation by decreasing engine
speeds and disabling unnecessary process operations. Additionally, it was confirmed that
increasing the driving speed during the transport mode produces a reduction in GWP
per kilometer travelled; an increase in speed from 2 to 12 km h−1 can cause the GWP to
decrease from 27.4 to 6.7 kg km−1. Furthermore, a fuel consumption–exhaust emission
analysis revealed that the GWP per unit of wheat mass processed decreases significantly at
higher harvesting speeds, and an estimated speed of ≥3 km h−1 with a wheat feed rate of
at least 10 kg s−1 was proposed. It should be emphasized that driving speed, feed rate, and
engine load during harvesting are the most important economic and environmental factors.
Changes in the composition of exhaust gases are related directly to the driving speed
during harvesting; the latter is also closely correlated with the load factor of the engine.
This study also practically investigated the dependencies of changes in CO2 (6.1–7.7%) and
NO concentrations (65–143 ppm) on engine load (which ranged between 40% and 96%
during harvesting). As a result of the research, the authors propose a wider application
of the dual telematics/field test data analysis method. It makes it possible to pursue both
economic and environmental goals.
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Abstract: Monitoring the main environmental conditions during storage and transportation of
perishable foods is necessary to predict quality losses throughout shelf life. By far, temperature is
the main factor affecting quality and shelf life, but there are other variables that would greatly affect
quality losses such us relative humidity, O2, CO2, ethylene, etc. Thus, the real-time knowledge of
the evolution of these parameters during the whole supply chain allows suppliers to prevent for
food losses. This paper deeply describes the design of a flexible monitoring system with real-time
communication to be used in the supply chain of perishable commodities, using Wi-Fi wireless
communication as collaborative networks between different measurement points. Aspects such
as consumption, performance and feasibility of the system are described in detail to check the
adaptability of its use.

Keywords: shelf life; temperature monitoring; wireless sensor networks; commodities quality

1. Introduction

Most of the perishable food to be exported requires several transportation days to
reach the destination. To preserve quality of the transported products, recommended
environmental conditions are required [1]. According to FAO (2019) [2], 1.3 billion tons are
annually wasted, corresponding to more than 30% of all the food produced, from which
approximately 50% are fruit and vegetables. These data are unsustainable in our society
and require an effort to minimize these extremely high food losses. New technologies
such as Internet of Things (IoT) and artificial intelligence (AI) used during the postharvest
supply chain would allow us to know more precisely where these losses occur and propose
actions to minimize them [3–5].

Temperature is the most important environmental factor to be preserved between
certain recommended values during the postharvest stages [6]. Many works have related
the evolution of the temperature of the perishable commodities with the quality losses,
obtaining representative models that allow for predicting the shelf life [7–11]. Shelf life
is the time in which a food product remains at high-quality standards while being micro-
biologically safe [12]. These models allow for estimating commodities’ shelf life based
on the temperature data recorded during the postharvest stages [13]. Several suppliers
provide devices able to record temperature data for a long time (months or years). Small
card-shaped devices with USB connection are one of the most frequently used as tempera-
ture loggers during transport or other postharvest periods [14,15]. Other devices such as
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time temperature integrators (TTI) are also used to show temperature preservation during
a certain period [16]. Radio frequency identification (RFID) and IoT technologies, such as
Bluetooth or NFC, are recently being used to distribute sensors inside pallets or cardboard
boxes, making it possible to determine the temperature variation between different areas of
the same load [17], providing an either efficient or not pallet distribution [18,19] The time-
temperature data registered by these portable and autonomous devices are downloaded at
the destination for temperature abuse detection. A brief review is detailed in Section 2.

Quality standards and consumer requirements, as well as the necessary guarantee by
the transporter to ensure the correct logistical handling of the commodities, means that this
sector demands precise, autonomous and flexible devices that are capable of data recording
and real-time reporting those variables that influence the dynamic shelf life of a perishable
product, as defined by postharvest technology. Even though the temperature is the main
factor, other environmental variables such as relative humidity, luminosity, vibrations and
physiological active gases such as oxygen (O2), carbon dioxide (CO2) and C2H4 (ethylene)
influence the quality degradation processes, most of them resulted to maturation, so that
their detection and control throughout the postharvest supply chain determines optimal
preservation conditions [20].

Wireless sensor network (WSN) platforms have been widely used in placements
where a high density and an intelligent allocating of sensors is required for precision
measurement [21]. Areas such as precision agriculture [22,23], oceanography [24] and home
automation [25–27] use IoT technology and cloud solutions [28,29] to deploy collaborative
sensor networks. This WSN collects the information of the several nodes and routes the
data to the Internet by using some of the protocols available such as GSM/GPRS, NoB-IoT,
SigFox, LoRa, etc., which provide real-time access to the data.

In summary, the data-logger devices currently used for postharvest commodity moni-
toring are divided into: (i) passive communication devices with low power requirements
but without real-time communication, i.e., they are not capable of transmitting the variables
during the commercial life of the commodity; thus, it is possible only when the device
is connected or approached to a reader in any of the phases of the product’s commercial
cycle (RFID, indicator strips, USB loggers, I-button, etc.); (ii) IoT devices, which use some
wireless communication bands to send the data to cloud servers on the Internet without
operator handling (Bluetooth, Wi-Fi or ZigBee).

IoT devices can be divided between those that use narrowband networks such as SigFox,
(SigFox, Labège (France), NB-IoT, LTE-M, or LoRA with low power consumption that have
data-sending limitations and, currently, limited coverage and other devices with wideband
networks. These devices that use wide bands, such as GSM, Iridium and CDMA, require
devices with high power consumption that depend on sampling, the data frame protocol
and frequency of data sending but have worldwide coverage. The use of these devices
for postharvest commodity monitoring makes it necessary to manage power consumption
optimally to achieve the same autonomy that the theoretical commodity shelf life.

The needs demanded by the land transportation sector in issues, such as integration,
flexibility, autonomy and multi-point variable measurement, have motivated the design of
the system presented in this article, which aims to overcome the limitations observed in
the market equipment, highlighting the following:

• Flexibility for any type of sensor measurement using analogic signals (voltage or
current) or digital signals (1-wire, RS-232, SDI-12 [30]).

• Compatibility with cloud servers. Standard J-Son type frames are used for real-time
data allocation.

• Use of non-proprietary networks and as standard as possible to allow for worldwide use.
• Management of collaborative networks for master-slave multi-point measurement.
• Energy management for a minimum autonomy of 1 month with 15 min of

data sampling.
• Reduced size for flexible placement.
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• Low-cost design for assuming its loss or breakage during all stages of the commodity
handling life.

The designed and described in this paper is a flexible multi-point measurement tool,
able to communicate in real time the measured variables with a power consumption capable
of providing a minimum autonomy of 1 month. The system is developed as a sensor nodes
with two roles, the ‘slave’ node and ‘gateway’ node. The ‘slave’ node uses the Wi-Fi
network for communication. The ‘gateway’ node uses GSM/GPRS for real-time cloud
data allocating through the Internet but, in addition, it generates a Wi-Fi infrastructure
for receiving multi-point measurement from the slave nodes. Slave nodes are designed
for independent working. It means that they are able to connect and send data through
any Wi-Fi network available during the postharvest chain and registered in the setup
configuration of the device. The gateway node can be used as a mono-point measurement
device and as a harvesting node in a WSN with the slave nodes.

The objective of this article is to demonstrate that a wireless network system based
on Wi-Fi communication is able to operate correctly under the specifications of flexibility,
robustness to signal loss and power autonomy enough to be used in the cold supply chain
of perishable commodities.

This paper is divided into 8 sections. After the first section with the introduction,
Section 2 reviews the commercial devices used for commodities controlling transporta-
tion. Section 3 describes the system architecture and the different working configurations.
Section 4 describes the hardware design and the different components used for the nodes.
Software design for communication, time synchronization and power management are
described in Section 5. Section 6 explains the methodology followed for conducting the
tests, followed by the presentation of the results in Section 7 and the conclusions and future
work in Section 8.

2. Review of State-of-Art of Commercial Sensors for Shelf-Life Prediction Used
in Transportation

A market study was carried out to review the technologies offered by different com-
panies worldwide. It focuses on how the equipment controls the commodities during
transportation, irrespective of kind of goods, industries, features controlled or transport.

An analysis of the dataloggers used yielded the following results: the simplest passive
communication one is based on time-temperature indicators (TTI) and just controls temper-
ature [31], but it is not the most frequently used because RFID is the most extensive. The
Faubel (Faubel & Co. Nachf. GmbH, Melsungen, Germany) company offers a system based
on RFID and NFC, but it just controls temperature [32]. NFC communication is used by
Marathon Products (Marathon Products, Inc., San Leandro, CA, USA) [33]. The disadvan-
tage of these systems is the dependence on other devices for the manual or low-distance
reading process, which avoids the possibility of network sensor reading and the real-time
data transferring to proprietary servers for remote access. To avoid these inconveniences,
some companies deploy gateway devices able to manage the measuring nodes, allowing
for remote sensing and collecting data. This is the case of Secure System (Secure System
GmbH, Munich, Germany), which focuses on security and personalized container access
control, and recently also controls temperature and humidity [34]; Sensitech (Sensitech,
Beverly, MA, USA), which uses a router that receives the information transferred by a
RFID sensors network [15]; and OnAsset Intelligence (OnAsset Intelligence, Inc., Irving,
TX, USA), which connects its sensor tags by Bluetooth Low Energy (BLE) [35] to a har-
vesting data-system. With this evolution, these companies offer a flexible tool that allows
for wireless measurement at several points simultaneously. In the last few years, other
companies have promoted the use of devices connected via LoRa as an improvement.
However, although they allow for wireless communications between measurement points,
they need routers or gateways to send the data to the Internet [36–39]. ORBCOMM [40]
(ORBCOMM Networks LLC, Rochelle Park, NJ, USA) and Aeris (Aeris Communications,
Inc., San Jose, CA, USA) [41] implement their connected devices directly into the micropro-
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cessor installed into the refrigerator container to register the temperature readings to use
their cloud connectivity.

A synergy between the connection by BLE or LoRa and the communication using
GSM is made by Roambee (Roambee Corporation, Santa Clara, CA, USA) [42], Swiftsensor
(Swift Sensors, Inc., Austin, TX, USA) [43] or JRI (JRI, Fesches le Châtel, France) [44],
whose systems send the registered data to a user interface. Laird Connectivity (Laird
Connectivity, Akron, OH, USA) [45] has replaced BLE with NB and LTE. Meanwhile,
HyperTech (Hyper-Tech Systems, Petach Tikva, Israel) [46] offers sensors based on Zigbee
wireless devices, in the same way as hIOTron (hIOTron Gateway and application, Ashoka
Nagar, Maharashtra) [47], which includes with in-built GNSS module to track the vehicle
position. Other companies including SenseAware from FedEx (FedEx Corporate Services,
Inc., Memphis, TN, USA) [48] or TagBox (TagBox Solutions Private Limited, Bengaluru,
India) [49] prefer to work with wireless devices that use Wi-Fi and GSM technologies for
communication facilities.

As an evolution, some companies design devices that work simultaneously as a sensor
and router collecting and send the data using just GSM [50–53].

3. System Architecture

During the postharvest handling stages, the commodity is located in several places
where Wi-Fi access points belonging to logistic companies that commercialize the product
are available; thus, the system could be programmed with the lists of SSIDs and passwords
to which it would connect in each stage. To solve the problems of lack of connection,
the sensor nodes have storage capacity. As mentioned before, the difference between the
gateway and the slave sensor nodes lies in the communication tasks they can perform. The
gateway node acts as sink and coordinator, managing the information measured by itself
and the information sent by the slave nodes. The combined information is transmitted to
the servers through the Internet using commercial data communication networks (GPRS,
SigFox or LTE). In addition, unlike a traditional wireless sensor network (WSN), the slave
nodes can send the measured and recorded information without being connected to the
gateway since they comply with the 802.11 (Wi-Fi) standard and this allows them, if
properly configured and if Wi-Fi infrastructure is available, to send the information to the
servers without a gateway node. In this way, the slave nodes can be located among the
commodities, inside the card boxes or pallets, monitoring the conservation variables during
the whole supply chain. The two working scenarios of the system are shown in Figure 1.
Both scenarios manage multi-point measurement: (a) configuration is used during land
transport, where Wi-Fi connection is not available; (b) configuration is used in a logistic
warehouse, where Wi-Fi infrastructure is available. The combination of both types of nodes
allows for the use of the system in the different situations of commodities handling.

  
(a) (b) 

Figure 1. (a) Two slave nodes are communicating with one gateway node, which provides the cloud access; (b) two slave
nodes are sending the measured information to the cloud servers through an existing Wi-Fi infrastructure.
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4. Hardware Description

The sensor nodes were developed under hardware platforms based on ESP32 (ESPRES-
SIF SYSTEMS, Co., Ltd., Shanghai, China) that provide embedded Wi-Fi and BLE interfaces
besides several input/output pins for reading and control of the sensors. ESP32 is capable
of functioning reliably in industrial environments, with an operating temperature ranging
from –40 ◦C to +125 ◦C. It is engineered for mobile devices, wearable electronics and IoT
applications, ESP32 achieves ultra-low power consumption with a combination of several
types of proprietary software. ESP32 also includes state-of-the-art features, such as fine-
grained clock gating, various power modes and dynamic power scaling. It includes built-in
antenna switches, RF balun, power amplifier, low-noise receiver amplifier, filters and
power management modules [54]. WiPy (Pycom Ltd., Eindhoven, The Netherlands) is a
microPython-enabled ESP32-based development board with a full suite of free services [55].
WiPy 3.0 is an updated enterprise grade IoT development platform. The tiny MicroPython
enables Wi-Fi and a Bluetooth IoT development platform with a ESP32 chipset and dual
processor [56] (see Figure 2). Pycom provides software libraries to control the device and
the interfaces that can be used.

Figure 2. WiPy 3.0 development board based on ESP32 chip.

Both the sensor and gateway nodes are designed using this low-cost hardware module.

4.1. Sensor Node Design

The diagram of the sensor node can be seen in Figure 3.

 

Figure 3. Sensor node architecture diagram.

The sensor node is powered by a 3.7 V 3500 mAh PoLi battery, which directly supplies
the WiPy module (its power range is 3.5 V to 5.5 V) by connecting it to the Vin pin. The
WiPy has a voltage regulator that provides a stable voltage of 3.3 V and 550 mA, externally
connected to pin 3V3 of the module. This voltage is used to provide power to the sensors of
the node through a PNP transistor that allows, controlling its state (cut off/saturation), for
the power supply activation of the sensors. The activation of this transistor is controlled by
pin P9 of the module, configured as a digital output. As the 3V3 connection to the sensor
power supply can be controlled by software, maximum energy optimization is achieved as
the sensors are only powered when measurements are needed.
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The sensor nodes are able to measure temperature, relative humidity and light condi-
tions through the use of these components:

LDR NSL06S53 (Advanced Photonics, Camarillo, CA, USA). This sensor is used for
light detection in undesired truck door opening events. LDR is connected to a fixed
113 kΩ resistor, making a resistive divider that is powered by 3.3 V sourced by the DC/DC
converter of the WiPy. This resistive divider provides a voltage output proportional to the
LDR value and connected to P19 (ADC1_4) of the WiPy module.

DHT22 module (Aosong Electronics Co., Ltd. Guangzhou, China). This device is based
on AM2302 that includes one NTC temperature and a humidity-sensing component formed
by two electrodes with a moisture-holding substrate between them. The temperature range
is −40 to 125 ◦C (accuracy ±0.5 ◦C and resolution 0.1 ◦C) and the relative humidity range
is 0% to 100% (accuracy ±2% and resolution 0.1%). A one-wire proprietary bus is used for
communication between digital I/O P11 of WiPy module and DHT22. The sensor data
frames are composed of 40 bits [57] (see Equation (1)).

DATA = 16 bits RH_data + 16 bits Temperature_data + 8 bits check-sum (1)

In addition, the device can measure the battery voltage using another resistive divider
connected to analogic P16 (ADC1_3 of WiPy module).

The size of the Electronic PCB is 73 × 28 mm. A 3D view of the PCB is depicted
in Figure 4, where the battery and programming connectors can be observed, and the
plugs for LDR and DHT22 (JP4) are presented. Two push-buttons are added for reset and
programming sequence purposes.

Figure 4. Sensor node 3D view of the PCB.

4.2. Gateway Node Design

The diagram of the gateway node can be seen in Figure 5.

 

Figure 5. Gateway node architecture diagram.

The gateway node is also based on WiPy 3.0. In addition to sensors managing, the
gateway node has extended functions such as:
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• A MicroSD slot card for data storage. Three pins are used for SD managing. DAT0,
SCLK and CMD are driven by P8, P4 and P20 using a UART1.

• A GPRS communication module (SIM800, SimComm, Shanghai, China) powered
directly from the battery and controlled by AT commands through the UART of the
Pycom module. The WiPy module has three UARTs, which can be easily redirected to
several pins for a flexible design. The Tx and Rx signals of the SIM800 are connected to
P5 and P6 pins and the reset line is fed through P7 of the WiPy. UART1 is dynamically
assigned to drive the AT commands because the UART1 is shared with SD storing.

• A CO2 sensor (COZIR-GC16 CO2Meter, Ormond Beach, FL, USA) for commodities’
breathe monitoring. This sensor has a 0–20000 ppm range with an accuracy of 70 ppm
±5%. The sensor is serial controlled through UART2 directed to P20 (Tx) and P19 (Rx)
pins of WiPy module. LDR light sensor is connected to P18 pin in the gateway node.

• A DC/DC boost switching regulator (MIC2288, Microchip Technology Inc. Chandler,
Arizona, USA) that provides 12 V power supply to additional sensors.

• Two analogic inputs are either voltage (0–3 V) or current (4–20 mA) for additional
sensor measurements, P14 and P15.

The power supply is provided by the WiPy module (3.3 V) to the microSD and the
CO2 sensor. It is switched using a transistor for optimum energy saving as explained in
Section 3.

The size of the gateway node board is 82 × 40 mm. The 3D view of the PCB is shown
in Figure 6.

Figure 6. Gateway node 3D view of the PCB.

The GPRS SIM800 module is placed on the board using the JP01 and JP02 plugs. A
push-button S1 is installed to run the setup sequence.

5. Software Architecture

The code programmed in the nodes was developed in microPython. Besides the
standard microPython modules, Pycom company supplies specific libraries to control the
GPIO, UARTs, DC-DC and other peripheral components included in the WiPy 3.0 module.
The next flowcharts show the general operation of the gateway node (Figure 7) and sensor
node (Figure 8).
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Figure 7. The general operation of Gateway node.

 

Figure 8. The general operation of the sensor node.

Both nodes were developed around four operational groups:

• Instrumentation, sampling and information storage.
• Energy management.
• Management of the communications of the nodes.
• Remote setup.

5.1. Instrumentation, Sampling and Information Storage

The instrumentation procedure is executed according to the programmed sampling
time, which defines the frequency that the system wakes up, measures the sensors, records
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the information and (if necessary) sends the data. In the designed nodes, the instrumenta-
tion time was defined as an integer value of the number of samples desired per hour, with
a maximum of 12. This process makes the system always instrument in the same minute
every hour. The equation to calculate the remaining seconds that the system has to fall into
the deep sleep before the next sample is calculated with the following equations.

Equation (2) calculates the exact minute of the hour when the next sampling will
take place.

minutesampling = sampling ∗ int
(

minutecurrent

sampling

)
+ 1 (2)

where sampling is the minutes between measurements programmed in the setup file.
Equation (3) calculates the remaining seconds to reach the sampling time and, therefore,

the time that the node must be in deep-sleep ultra-low power mode before it wakes up.

secondswakeup = minutesampling ∗ 60 − minutecurrent ∗ 60 − secondcurrent (3)

Regarding the deviation in the time measurement between sampling periods, a test
was performed to measure the time differences when the node was awakened from deep
sleep. The average deviation for a period of 900 s (15 min) was 2.7 s, which implies an
accuracy of 0.3%. This low accuracy is because the ESP32 does not use the RTC to wake up
the device, but an ultra-low power timer. However, the device compares at each wakeup
RTC and resets the second’s wakeup value for the next sampling, so the timer accuracy
value is not too important.

Analogic sensors are connected to ADC pins integrated into the module. In addition,
P16 is used for battery level measurement. UARTs and digital pins are used for digital
sensors, as previously written.

To improve the stability of the sensor readings, a biased average of 20 sensor readings
was performed every 25 ms.

A Python dictionary with seven keys in the format [ID_nodo; Temp; Hum; %CO2;
%Lum; Vbatt; ppm C2H4] is returned after the measurement procedure is executed.

These data are temporarily stored in a partition of the device’s flash memory. If the
communication procedure is not possible due to coverage lacks or other problems, the data
are stored together with the time stamp assigned to that dictionary in the SD card.

5.2. Power Management

Power management is a priority function of the system since the operation of the
nodes is necessary for several weeks. Most of the time, the nodes are in an inactive mode, so
the associated deep-sleep (time-out) function is used, which requires only 25 μA [56]. This
function can be “awakened” through a timeout specified as a parameter of this function.
This parameter is calculated at the end of the current process using Equations (2) and (3).

Using Wi-Fi communication for information exchange is very convenient due to the
high compatibility and the large amount of Wi-Fi equipment available. However, the
high consumption of this type of communication makes it necessary to incorporate energy
managers to optimize battery life. The best way to reduce the power consumption of Wi-Fi
transceivers is to reduce the time they must be online to send and receive information.

Regarding this issue, a time-synchronization algorithm was developed, so that the
sensor nodes and the gateway nodes are synchronized with each other minimizing the
connection time between them. The time pattern is always handled by the gateway node
since it must “wait” for the sensor nodes to connect and send the information. The flowchart
of the algorithm is presented in Figure 9.
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Figure 9. Execution diagram of the time-synchronizing procedure.

5.3. Communications

To optimize the time that the process is involved in the communication procedure,
sockets over TCP are used for sending/receiving information to/from the server.

As mentioned in Section 3, the gateway node can be used as a stand-alone sensor
device that performs socket communication with the server through GPRS/SigFox/LTE
networks or, in addition, used as an access point Wi-Fi server for reception data messages
from sensor nodes.

The information frames generated from the sensor nodes are sent directly to the
database server if there is a recorded SSID available. Otherwise, the information is sent
through the gateway. In this situation, the information registered by the nodes is carried out
through an internal IP enabled by the gateway (192.168.4.1) common to all the slave nodes
that communicate with the outside through it. In this case, the gateway node receives and
coordinates the information from the slave nodes, synchronizing in each communication
the “time-synchronization” slot and creating the necessary frames for the socket of the
server that hosts the data.

Table 1 shows the format of the data frames sent by the gateway node to the server
once the information from four Slave nodes distributed and connected to the generated
access point was received.

Table 1. Format of the data frames sent by the gateway node to the server.

Node Data Frame

Gateway [GTW1; Temp; Hum; %CO2; %Lum; Vbatt; ppm C2H4]
Slave 1 [SLV_1; Temp; Hum; %Lum; Vbatt]
Slave 2 [SLV_2; Temp; Hum; %Lum; Vbatt]
Slave 3 [SLV_3; Temp; Hum; %Lum; Vbatt]
Slave 4 [SLV_4; Temp; Hum; %Lum; Vbatt]

After the data frames are sent and ACK from the server is received, the gateway
node sends the timestamp in Unix epoch format and the geolocation coordinates using the
engineering mode of the SIM800 to get detailed network information [53].
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5.4. Remote Setup

Remote setup is a critical procedure for easy operational management of the devices.
Bluetooth BLE was used to carry out the programming of the setup parameters since ESP32
incorporates BLE and personal devices, such as smartphones or tablets, also feature this
technology. Consequently, BLE can easily be used by the operator as a tool for setting up
the nodes. Configuration parameters include operating values such as the sampling period,
cloud data storage and the SSIDs and passwords of the Wi-Fi networks through which the
nodes are connected in the different locations of the transported product. These data can
also be inserted using QR codes.

The node activates the BLE reception after a push-button is pressed that enables the
transfer of data from an APP that uses the Bluetooth services of the device on which it is
installed (see Figure 10).

 

Figure 10. APP designed for setup procedure of the nodes.

6. Test Methodology

The performance of the system cannot only be exclusively described by the correct
measurement of the parameters, it has to be subjected to different temperature and humidity
conditions of the storage and transport rooms, which affect the transmission performance
and energy autonomy.

Tests were carried out with the designed devices installed with different master-slave
or slave-only configurations in three stages of the distribution process of the commodities:
(i) center for sorting and packaging after harvest, (ii) cold storage and (iii) transportation
and distribution stages (see Figure 11).

The center for sorting and packaging where the devices were installed was Fruca
Marketing (Ctra. Fuente Álamo, km 6, 30,332 Balsapintada, Murcia, Spain). The devices
were configurated with Wi-Fi network provided by the company.

Cold storage tests were carried out in the Intituto de Biotecnologia Vegetal facilities
(IBV–Campus Muralla del Mar 30202, Cartagena, Murcia).
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Figure 11. Stages of the postharvest supply chain used for real test of the system.

Finally, the land transport trials were carried out on several trips where the devices
were installed at strategic points in the refrigerated cabin. The transports to different
locations in Europe were carried out by the companies Transportes Mesa (Calle Los Car-
riones, 20, 30,594 Cartagena, Murcia) and Transportes el Segura (Poligono Industrial de
Lorqui, S/N, Lorqui, Murcia). The setpoint temperatures were 10, 5 and 2.5 ◦C to check the
operation and thermal distribution in the different locations of the devices.

7. Results

7.1. Performance of the Communication System

Six trials were conducted for communication testing purposes. Lettuces were used
as a model of perishable food to be monitored in the trials, which lasted 10–12 days
approximately. Trials 1 to 4 used two slave nodes for the three stages and one gateway
node to provide internet access during the transportation and distribution stage. Trials 5
and 6 used three slave nodes during the three stages connected to several Wi-Fi networks
previously configured in the setup file of the nodes. The devices were deployed at different
places inside the commodities boxes. To check the communication performance in the
different tests, the device records in the SD card packets, which were successfully sent
at their corresponding sampling time (received packet). When the communication is
unsuccessful, the device records the frame to send it later, and in that case, the attempt is
marked as lost packet in order to evaluate the success rate in the communication tests of
the devices in the different trials. Table 2 shows the total amount of data monitored and
sent successfully to the server.

The ratio between received and lost data packets shows the communication perfor-
mance. Although lost data were recovered as soon as the nodes restored Internet access,
the valid data ratio demonstrates that Wi-Fi can be used as a communication carrier in
these processes.

Wireless transmission performance at 2.4 GHz frequencies, such as those used in
Wi-Fi, is influenced by temperature and humidity conditions [58,59].

These disturbances were reflected in the tests by some inter-sensor sending rates.
However, 14 of the 18 tests that were carried out in temperature conditions between
10 and 2 ◦C had performance rates above 90%, which supports the use of this wireless
transmission technique for the specific conditions of transport and storage of perishable
products. However, it should be noted that non-communicated data are stored internally
by the nodes and sent later when conditions are suitable.
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Table 2. Data communication results for performance analysis.

Trial 1 (2018)
DOY 81–93

Total Data
Measured

Received Packet Lost Packet % Valid Data

Gateway 1181 1180 1 99.9%
Slave node 1 1181 1103 78 93.4%
Slave node 2 1181 1171 10 99.1%

Trial 2 (2018)
DOY 100–120

Total Data
Measured

Received Packet Lost Packet % Valid Data

Gateway 1691 1691 0 100%
Slave node 1 1691 1682 9 99.5%
Slave node 2 1691 1663 28 98.3%

Trial 3 (2019)
DOY 91–100

Total Data
Measured

Received Packet Lost Packet % Valid Data

Gateway 920 920 0 100%
Slave node 1 920 431 489 46.8%
Slave node 2 920 897 23 97.5%

Trial 4 (2019)
DOY 102–112

Total Data
Measured

Received Packet Lost Packet % Valid Data

Gateway 947 947 0 99.9%
Slave node 1 947 716 231 75.6%
Slave node 2 947 645 302 68.1%

Trial 5 (2019)
DOY 245–256

Total Packets
Measured

Received Packet Lost Packet % Valid Data

Slave node 1 959 910 49 94.9%
Slave node 2 959 959 0 100%
Slave node 3 959 878 81 91.5%

Trial 6 (2019)
DOY 258–271

Total Packets
Measured

Received Packet Lost Packet % Valid Data

Slave node 1 1281 1205 75 94.1%
Slave node 2 1281 1214 66 94.8%
Slave node 3 1281 1078 202 84.2%

7.2. Energy Management

Energy management is also a key factor in highly temperature-dependent and humidity-
dependent conditions. The operational duration of the nodes depends on the capacity of
the battery and the sampling period, so the analysis of the energy behavior of the node in
an operational cycle is representative of the energy expenditure of the node in operational
conditions. A digital power meter Yokowaga WT210 (Musashino, Tokio, Japan) was used
for energy monitoring of the nodes.

Wi-Fi SSID searching and data sending to the cloud server are the processes with the
greatest consumption in the sensor node. In order to calculate the energy consumption in
the worst scenario, the sensor node was programmed with five SSID, but only the last one
was available. The different modes and routines are described in Figure 12.
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Figure 12. Power required by the different processes used in a complete execution cycle of a
sensor node.

A large part of the consumption in each sampling cycle depends on the attempts
to connect to the available communication network (Figure 12). For this reason, proper
management of the networks allows for a reduction in energy consumption.

During the tests carried out at land transport, different conditions of communication
losses with the gateway were observed, as shown in Table 2. The environmental conditions
and the location of each node within the transport cabin influence the communication
quality and the power consumption. Figures 13 and 14 show the results of the evolution of
the voltage during trials 5 and 6, where the different slopes and voltage variations can be
seen in accordance with the communication packets lost due to not being able to connect to
the first network and trying to connect to the five access points available in the list.
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Figure 13. Trial 5: voltage evolution of the three nodes distributed in several places inside of the
refrigerated truck container.

 

Figure 14. Trial 6: voltage evolution of the three nodes distributed in several places inside of the
refrigerated truck container.

7.3. Temperature Measuring Performance

The system was tested in real conditions for one month. The commodities were placed
in a cold storage room and a land transport container. Three different setpoint temperatures,
at 10, 5 and 2 ◦C, were selected for system performance purposes. Two slave nodes placed
in different locations inside the container were used. Position 1 was placed just below the
evaporator of the freezer, and position 2 was placed at the back of the container on the
opening doors. A gateway node was used to communicate the data (see Figure 15).
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Figure 15. Distribution of the nodes during land transportation.

Charts in Figure 16 show the performance of the system. A temperature difference
can be observed between the node positions. This difference is due to the different storage
and transport conditions of the pallets containing the commodities.

  

(a) (b) 

 
(c) 

Figure 16. Evolution of the temperature between the two node locations at different temperatures: (a) 10 ◦C; (b) 5 ◦C; (c) 2 ◦C.

8. Conclusions

During storage and transportation of perishable commodities, several environmental
factors should be kept within recommended thresholds to preserve quality throughout the
supply chain, maximizing their shelf life. Temperature is the most important environmental
factor affecting quality; however, most of the temperature control systems used in trans-
portation media do not have multi-point measurement and temperature-recording systems,
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which are based on temperature cards or tags, and also do not have real-time communication
protocols to know the conditions in which the commodities are being stored.

Due to the thermal differences observed in the tests, the real-time knowledge of such
conditions during storage and transportation can be used not only as a warning mechanism,
but also as a tool for predicting shelf life.

In this sense, a portable, multi-configurable system with real-time communication is
presented in this paper.

The main advantages of the designed system over other similar devices are that it
combines the measurement of multiple parameters with the flexibility of sending the mea-
sured information through Wi-Fi networks, whose infrastructure is widespread and easy to
install. However, the Wi-Fi infrastructure is a broadband network, and therefore, its energy
consumption is higher than other wireless technologies such as SigFox, LoRa or ZigBee.
Therefore, to be able to use this technology taking advantage of the aforementioned advan-
tages with sufficient autonomy, specific time synchronization algorithms were developed
to allow for device usage ranges greater than 28 days.

On the other hand, the temperature and humidity conditions of the different stages of
the supply chain affect the quality of data transmission, with tests showing data loss rates
of less than 10% even in unfavorable conditions. Temporary storage of unsent data allows
data to be sent when transmission conditions are favorable.

The main disadvantage is that the devices cannot be used for maritime transport as
designed. The metal containers typically used in this type of transport affect the data
transmission capacity. This could be solved by installing external antennas, although this
would affect the ease of installation of the nodes. On the other hand, in the ocean there is
no coverage for networks such as Sigfox, LoRa or NB-IoT, but ships usually have Wi-Fi
communication (with satellite networks such as Iridium), so the nodes described in this
article could be valid for this type of transport.

Regarding the use of the system by the agents involved in the supply chain, the main
drawback observed was the programming of the nodes with the different networks (SSIDs
and passwords) that the commodities were going to travel through during the journey
from the harvest to the warehouse. This problem was solved by means of the APP, which
allows the nodes to be programmed in an intuitive way with the different configurations.
However, the input of the information is manual, and errors can be made that can cause
the system to malfunction. For this reason, in future work, we proposed to improve the
configuration system by using QR coding associated with the product and the route it
will follow to the destination, making it unlikely that errors will be made when entering
the information of the different Wi-Fi networks. On the other hand, the QR coding will
allow for access to the traceability of the product conditions during the whole process. As
future research, further experiments will be conducted to compare our proposal with other
systems using different communication technologies.

9. Patents

The system has been patented in Spain (Registration number: ES201730301A). ‘Dis-
positivo, sistema y método de monitorización en tiempo real de las variables físicas y
ambientales durante el transporte de mercancías perecederas’.
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Abstract: Research on organic electrochemical transistor (OECT) based sensors to monitor in vivo
plant traits such as xylem sap concentration is attracting attention for their potential application in
precision agriculture. Fabrication and electronic aspects of OECT have been the subject of extensive
research while its characterization within the plant water relation context deserves further efforts.
This study tested the hypothesis that the response (R) of an OECT (bioristor) implanted in the trunk
of olive trees is inversely proportional to the water flux density flowing through the plant (Jw). This
study also examined the influence on R of vapor pressure deficit (VPD) as coupled/uncoupled with
light. R was hourly recorded in potted olive trees for a 10-day period concomitantly with Jw (weight
loss method). A subgroup of trees was bagged in order to reduce VPD and in turn Jw, and other
trees were located in a walk-in chamber where VPD and light were independently managed. R was
tightly sensitive to diurnal oscillation of Jw and at negligible values of Jw (late afternoon and night)
R increased. The bioristor was not sensitive to the VPD per se unless a light source was coupled
to trigger Jw. This study preliminarily examined the suitability of bioristor to estimate the mean
daily nutrients accumulation rate (Ca, K) in leaves comparing chemical and sensor-based procedures
showing a good agreement between them opening new perspective towards the application of OECT
sensor in precision agricultural cropping systems.

Keywords: bioristor; mineral nutrition; OECT; precision agriculture; PEDOT; sap concentration

1. Introduction

The management of mineral nutrition in agricultural systems contributes to the ade-
quate nutrients availability for biochemical and structural functions in planta. Matching
plant nutrient demand with nutrient soil supply (and availability) at short interval time
(days or even hours) might help to avoid excessive (supply>>demand) or deficient (sup-
ply<<demand) nutrition and in turn contributing to healthy plant and environment. A
number of in-vivo sensors and non-touch image-based technologies are increasingly pro-
posed within innovative agriculture to monitor plant traits including water status, diseases
and minerals content [1–4]. Real time monitoring of nutrient availability in xylem sap is
pivotal for that purpose and to minimize agriculture dependency on mineral fertilization
and/or face nutrition stress.
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A relatively new set of organic electrochemical transistors (OECT) devices is emerg-
ing for the determination of physical and chemical characteristics of liquid samples and
biological system including the ionic content [5–7]. Through mathematical models the
change of the OECT device bulk conductivity allows the detection of the concentration
of ions in solution making them increasingly used for bio-interfacing, bio-sensing, and
electrophysiological recording [7–9]. Due to their ions’ sensitivity and selectivity (e.g., K,
Mg, Na) [10,11], OECT-based biosensors are promising tool within a smart plant nutrition
management context. For example, current open-source application includes leaf nutrient
content (sourced by foliar analysis) for the implementation of the monthly fertigation plan
in olive [12]. Having a real time monitoring of ions carried in the sap as input data would
strength that kind of app.

An OECT sensor (hereafter named bioristor) has been proposed for the in vivo real
time monitoring of some physiological traits (including concentration of ions in the xylem
sap) under variable environmental conditions and drought stress in herbaceous crops
(e.g., tomato) [13–15]. However, due to the differences in the vascular system between
herbaceous and trees [16], testing similar sensors for perennials is highly desirable.

The sensitivity of bioristor to positively charged ions (e.g., Ca, K) [15] led to a close
relationship between the molar concentration of aqueous solutions and the sensor response
(R). Moreover, previous work reported R and VPD and stomatal conductance highly
correlated (R2 = 0.82) in tomato [14,15] under a VPD ranging within 0–0.8 kPa. The VPD
is a well-known driver of transpiration (and in turn of sap flow) which often lags behind
(or occurs in advance) of VPD particularly under high VPD [17,18]. In addition, values
of VPD in cultivated areas (e.g., Mediterranean-type) usually peak at 3–4 KPa [19], hence
testing an OECT sensor in a perennial crop under Mediterranean growing conditions and
in relation to plant transpiration would integrate current knowledge on OECT sensor.

Concentration of xylem sap (Ci, mol m−3) at any instant is satisfactorily approximated
by the ratio of the flux density of solutes (Js, mol m−2 s–1) and that of (volumetric) water
(Jw, m3 m−2 s–1) entering the xylem [20]. Values of Js depend on several factors including
nutrients uptake by roots, xylem tissues loading-unloading, nutrients delivery and utiliza-
tion along the transportation pathway [21]. In addition, roots might passively (diffusion)
and/or actively uptake ions [22]. A mass flow of ions into root also occurs because they are
dragged in by Jw (activated by transpiration flux) and/or because Jw induces a continuous
removal of the ions at membrane interface after they have been released into the xylem
lumen [23,24]. Concerning the flow of water in the xylem (Jw), by recalling the Poiseuille’s
Law and based on the cohesion theory, it depends on plant conductance and is driven
by the hydrostatic soil-plant-atmosphere pressure gradient (ΔP) which is generated by
diffusion of water vapor from leaf to the atmosphere in response to the leaf-to-air VPD [20].
Hence, Jw is influential on Ci because it contributes to the load of ions (proportionally to
the soil solution concentration and the reflection coefficient) and because it operates as the
solvent of xylem sap [20].

It appears that while fabrication and electronic aspects of OECT have been the subject
of roughly extensive research, its characterization within a plant water relation and ion
transport mechanisms context deserve further efforts. Therefore, this study tested the
hypothesis that the response of bioristor (R) which is candidate to measure Ci would be
inversely proportional to water flux density (Jw).

Within a mechanistic approach VPD drives the water flux (VPD → Jw). Water flux is
also triggered by light availability due to its influence on stomatal behavior and in turn on
transpiration [25]. Under outdoor conditions changes of VPD occur simultaneously with
that of other meteorological variables (e.g., light) making their effect(s) on transpiration
(and on R) difficult to separate. To infer new information on the influence of VPD per se on
R, this study examined whether the response of the bioristor to changing environmental
conditions is dominated by VPD per se or by water flux. For this purpose, olive trees
growing in a walk-in chamber were subjected to various combinations of light dark and
VPD cycles.
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In order to progress towards the application of OECT sensor for precision agriculture,
this study also examined the suitability of the bioristor to estimate ion accumulation
rate in leaves. Considering that accumulation of ions in a certain time period would be
proportional to the flux density of water and sap concentration in the same time period (i.e.,
Jw × Ci), that accumulation was calculated in parallel using Ci inferred from the OECT
sensor and from actual analytically determined tissue concentration.

2. Materials and Methods

2.1. Plant Material and Experimental Design

The experiment has been conducted in a greenhouse at the ALSIA-CRMA research
center, Southern Italy (40◦23′31.4” N, 16◦47′10.9” E) using 12 olive trees (Olea europaea L.,
var. Picholine). Trees were 2 years old and grown in a 6.2 L PVC pot and were fertilized
at 15 days interval before the experiment (total of 4 applications) using 3 g/pot of NPK
fertilizer 14.7.14 (Slowenne 212, Valagro Spa, Atessa, Italy). Each pot was covered with
a plastic film and aluminum foil to minimize warming and direct evaporation of water
from the soil. bioristors were installed on the 2nd of April (hereafter 0 day after sensor
installation, DASI). At 6 DASI (7 p.m.) the whole plant canopy of 6 trees was enclosed in a
plastic bag (130 L) to minimize the VPD of the air surrounding the canopy. Bag closure was
ensured by wrapping the bag around the trunk with tight sealing film (Parafilm-M, Sigma
Aldrich, St. Louis, MI, USA). After 9 days (15 DASI, 7 p.m.), bags were removed.

2.2. Determination of Jw

Each potted tree was positioned on a digital scale (5 g resolution) (FieldScale, Phenospex,
Heerlen, Netherlands) programmed to measure and record the weight every 15 min interval.
Irrigation was supplied daily to fully restore water consumption using tap water in order to
maintain soil moisture close to 85% of field capacity. The daily water consumption (g d−1)
was calculated as the difference of weigh recorded at 7 p.m. of two consecutive days.
Plant water consumption (W) (mol H2O h−1) was calculated hourly throughout the 24 h
interval from 00:00 to 23:00 h solar time as the difference between two consecutive weights
measured at 1 h interval. Plant transpiration (E) (mol H2O m−2 h−1) was determined as
W/LA where LA was the plant leaf area (m2).

The initial LA was determined by counting the total number of leaves per plant and
considering a mean area (see below) of 3.53 cm2 per leaf. The number of leaves newly
developed during the experiment was determined by counting at the end of the trial
the leaves standing on the new part of the shoots. For mean leaf area determination,
3 bulk samples (total 200 leaves) were collected from 3 trees not included in the trial,
leaves were then pictured, and the surface area of each single bulk was determined via
image analysis (ImageJ, https://imagej.nih.gov/ij/). Then a linear correlation between
the number of leaves of each bulk and the corresponding leaf area was employed to
satisfactorily (R2 = 0.99) estimate the mean area of a single leaf as the slope value. Leaf area
was assumed to linearly develop during the experimental period.

Values of water flux density (Jw, mol m−2 h−1) was calculated as W/TA where TA
was the trunk cross sectional area (m2) estimated by measuring the trunk diameter close to
the point where the bioristor was installed.

2.3. OECT Installation

Bioristor (i.e., biological resistor) sensors were installed across trunk at approx. 40 cm
from the ground following the procedure reported in [15]. Briefly, bioristor is composed by
two PEDOT:PSS (poly-3,4-ethylenedioxythiophene polystyrene sulfonate) functionalized
threads: a main channel of the transistor and a gate of the transistor that, subjected to a
positive voltage, generates the electric field that pushes the cations present in the sap in
the polymer deposited on the main wire, changing its conductivity [13]. Sensors were
prepared and inserted in two trunk holes (∅ = 0.8 mm, 5 mm distance) drilled with a
dremel allowing them to fully cross the trunk. The constant voltage on the source-drain
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channel was of −0.1V while the voltage applied at the gate was 1V. Figure 1 shows the
setup of the bioristor.

 

Figure 1. Side view of the olive tree trunk showing the setup of the bioristor with channel and gate
wires which were connected to the multifunction I/O device for supply, record and store of electrical
currents. In the inset: illustrative trunk cross sectional view (at the channel insertion point) showing
the textile fiber functionalized with Pedot:PSS (white arrow).

All bioristors were then connected to a multichannel digital analogic converter I/O
(USB-6343, National Instruments, Austin, TX, USA) to supply voltages controlled by a
home-made software which, measure and store in the PC the values of electrical currents.
Values of the OECT sensor response (R) was determined according to Coppedè et al. [13] as
R = (IdS − IdS0)/IdS0, where Ids0 is the current at gate voltage equal to zero, and IdS was the
resulting current at the voltage equal 1. For data analysis covering successive days, data of
R before plotting were scaled (min–max normalization, (0, 1) range) to ensure comparisons
between days of experiment.

2.4. Walk-in Chamber Experiment

To examine the effect of light and VPD on R, 3 additional trees were located in a
2 × 3 × 2.5 m walk-in chamber (KW Apparecchi Scientifici, Monteriggioni–Siena, Italy).
The chamber was equipped with 6 lamps (mod. APO 6 OrtoLED42-6, INDOORLINE s.r.l.,
Garzigliana, TO, Italy). Each lamp had 90 led ensuring an illumination equivalent to a
light PAR intensity of approx. 1100 μmol m−2 s–1. Inside the chamber the regulation of
parameter (air temperature, humidity) was operated once it deviated ±10% of the target
value. Trees inside the chamber were separately positioned on 3 additional digital scales
and their W, E, and Jw determined as reported above.

2.5. Ions Accumulation Rate
2.5.1. Bioristor Based Estimates

The mean daily accumulation rate (mg day−1) of Ca and K in newly developing leaves
was calculated as follow:

accumulation rate = N_Jw × [R] × N_LA/n (mg day−1)

where N_Jw was the hourly water flux density suppling the new leaf area reported in
volumetric values (m h-1) measured over n (17) days of experiment; [R] was the hourly
nutrient concentration estimted from R values converted in mol m−3 of K and Ca [15];
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N_LA, was the leaf area (m2) of the new developing leaves. The N_Jw and [R] where
reported to daily values by summing the diurnal 24 records collected over the 0:23 h. The
flux Jw (mol m−2 h−1) was partitioned between new developing (N_Jw) and old leaves
according to their leaf area as destructively determined at the end of the experiment under
the assumption they had similar E.

2.5.2. Analytical Determination

Leaves collected for final leaf area determination from 6 plants were dried in a venti-
lated oven (65 ◦C, minimum 48 h till constant weight) to determine the total dry matter
per plant (DM). An aliquot of dry matter was used for mineral element (me) (i.e., Ca e
K) concentration ([me]) determination according to Celano et al. [26]. The mean daily
accumulation rate was determined considering the number of days of the experiment (n)
by means of the formula DM × [me]/n.

2.6. Meteorological Data

Air temperature (◦C) and relative humidity (%RH) were monitored through digital
probes (mod. CS215, Campbell Scientific Inc., Logan, UT, USA) positioned close to the
canopy (×1 a tree). Probes were connected to a datalogger (CR10X, Campbell Scientific
Inc., UT, Logan, USA) programmed to record a 60s interval and to compute the mean value
every 15 min. Additional probes were used to monitor air temperature and RH inside the
bagged canopy. In order to avoid direct contact between probes and eventual condensed
water, the probes were put in a plastic tube open at the bottom. A total of 6 probes per
treatment were monitored. The VPD was then calculated from air temperature and RH
values [27].

2.7. Data Analysis

The statistical analysis, plotting and fitting were by OriginPro 9.3 (OriginLab Corpora-
tion, Northampton, MA, USA).

3. Results

The response of OECT biosensors fabricated with organic electronic materials are
increasingly tested for sensing ions or molecules within various applications and re-
search (e.g., healthcare, environmental monitoring, healthcare products, water and food
test) [6,28,29]. Nanosized transducers such as OECT based sensors are also relevant for
agriculture mainly because of the role of ions and molecules in plant structure and function
and food quality [30,31]. Here, an OECT based sensor installed in a living trunk has been
examined to test its response to the amount of water flowing through the plant and to
environmental factors (VPD and light) contributing to open up novel avenues for precision
in plant mineral nutrition.

3.1. Sensitivity of the Bioristor to Diurnal Change of Environmental Conditions

The sensor response (R) showed a typical circadian pattern confirming previous
studies employing the bioristor in annual crops [13,14]. In the present study, R trends
have been analyzed against the changes of Jw and transpiration. It was observed that R
quickly declined from early morning (~6:00 h) concomitantly with the beginning of plant
transpiration flux (Figure 2). As soon as plant transpiration rate begun to decline (approx.
1300–1500 h), R trend reversed and continuously increased until approx. 19:00–20:00 h
when the transpiration reached minimum values (Figure 2). Thereafter, while transpiration
continued to sit at the minimum, R further increased and highest values were recorded
around midnight or just before the beginning of the transpiration cycle of the next day
(Figure 2).
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Figure 2. Diurnal variations of R (�) and plant transpiration (E) (continuous line) recorded over two
consecutive days. The vertical dashed line separates the two consecutive days (8 and 9 April).

To explain increasing R values observed at null or very low transpiration (Figure 2)
the main mechanisms of ions and water load into xylem should be evoked. Although
the weight of active and passive loading mechanism(s) of ions (and other solutes) into
the xylem has not yet clearly defined [32], the xylem loading of ions might be uncoupled
from that of water because plant’s membrane is differentially permeable to water and
ions [20,32]. Xylem conduits are non-selective structures, hence water and solutes flow
in the xylem at the same velocity through the mass flow driven by the ΔP independently
by the osmotic pressure, excepting under saturating conditions when transpiration ceases
(e.g., night or at very low VPD), or in case of low-transpiring organs (e.g., fruit,) [20–33].

Under non-limited water condition and according to the constancy of water flow
through the plant [34], almost the whole volumetric water flux density taken up by root
is transpired by leaf and in turn the same volume of water is loaded into xylem. Hence,
variation in the Jw calculated through plant transpiration is a reliable proxy for volumetric
water uptake from soil and loaded into xylem. Values of plant transpiration (E) (Figure 2)
were consistent with those of sap flow (referred per unit of leaf area) measured in potted
olive trees under similar VPD [35].

Variations of R appeared to be proportional to those of plant transpiration particularly
during the first part of the day (from ~6 h to ~13 h, hereafter referred as “morning”)
(Figure 2). Figure 2 also shows a substantial late “afternoon” and “night” variation (in-
crease) of R which was independent of E (and thus of VPD). Considering that E depends
on leaf-to-air VPD and canopy conductance [20], R would correlate with VPD as suggested
by previous reports [15]. Such a correlative link between VPD and R might be influenced
by the eventual hysteretic pattern of R. That is, diurnal R might move in a hysteresis loop
when plotted against VPD with the hysteretic magnitude differing day-by-day depending
on VPD level (Figure 3).

Results show that in a warm day with VPD peaking at approx. 3 KPa, data of R
collected a.m. had different slope compared to that measured p.m. (Figure 3C–D). While in
a mild day (max VPD at ~1.5 KPa) the slopes of R data measured a.m. and p.m. were more
comparable (Figure 3A–B). This might be explained considering the possible time lag effect
of VPD on diurnal pattern of certain traits (e.g., sap flow, transpiration) [17,36,37] related to
sap ionic concentration and in turn to R. It appears that disentangling the diurnal pattern
of R in relation to Jw (which is triggered by VPD), would contribute to expand previous
knowledge on the response of OECT sensors to the surrounding environment (see below).
The VPD-R linear correlations and the evidence that VPD triggers the xylem stream [20]
suggest that the OECT would monitor the xylem tissue although it was in contact with
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xylem and phloem as per installation procedure, however a specific experiment is needed
to test it.

R
R

R

R

R

R

R

R

Figure 3. Example of diurnal variation of R in tree #5 (A,C) and #10 (B,D) plotted against VPD
recorded during days with maximum high VPD (C,D) and low (A,B) highlighting the hysteresis of
R between a.m. (�) and p.m. (•) data. Note that a.m. and p.m. values in each panel were pooled
before fitting (continuous mild line) and R2 determination. For panel (C,D) additional fittings were
performed separately for a.m. (bold continuous line) and p.m. (bold dashed line) data. The numbers
close to the symbol indicate the day hour when data have been recorded. Arrows indicate the time
course of the day from 0 to 23 h.

Values of xylem sap concentration depend on the ratio between the solutes flux density
(Js) and that of water (Jw) [38], hence factors affecting Js and Jw would be influential on
output of any device measuring xylem sap concentration. This study was undertaken to
test whether the bioristor response R (which is an OECT-based proxy for xylem sap con-
centration) changes according to Jw. Particularly, considering that in the xylem there is no
membrane selectivity and that at high Jw it dominates upon other parameters influencing
the xylem ions load (e.g., temperature, carriers) [20,24], it is expected that R would change
(decline) with increasing Jw.

Accounting for the diurnal variation of R (Figure 2), the “morning” and the “afternoon–
night” daytime parts were identified. The “morning” was characterized by a fast increase
of Jw from negligible values early morning (~6 a.m.) to maximum ones recoded at around
midday which induced a consistent decay of R (Figure 4). Incidentally, Figure 4 shows again
the hysteretic behavior of R between a.m. and p.m. data. The Jw values detected during the
“afternoon–night” stage were in general lowest than that measured “morning” and follow
an exponential pattern, however the highest and often sharp increase of R was detected
late in the afternoon (e.g., after 18:00 h) when Jw < 0.5 mol m−2 s–1 (Figure 4). This result
is difficult to discuss due to very limited data existing on this specific issue, however it is
line with the non-linear correlation between Jw and xylem sap concentration reported in
the literature for soybean plant [39]. Under increasing transpiration (as during “morning”)
the load of solutes into the stele of xylem at root region is dominated by ions dragged
in by the water flux density Jw [21,24] Hence, the increasing Jw during the “morning”
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(Figure 4) induced a consistent reduction of R because of a conceivably “dilution” of the
sap concentration dependent on water moving with increasing transpiration stream [24].

Figure 4. Example of the influence of Jw on the diurnal variation of R recorded during (�) “morn-
ing” and (•) “afternoon–night”. Labels indicate the hour of the day, note that 1–5 h refer to the
following day.

By contrast, when Jw is null or negligible (because of low ΔP) (e.g., during night)
solutes are loaded mainly by passive diffusion or even active transport [32]. However,
active transport requires availability of newly synthesized sugars/carbohydrates which
are poorly available during night (White et al., 2012). Hence, the increase of R observed
when transpiration is negligible (i.e., approx. from 18–19 p.m. to 4–5 a.m. of the the next
day) (Figure 4) might reflect the increase of xylem sap concentration due to osmotic root
pressure and unload of nutrients from saturated xylem tissues [23].

Data collected in this study allow to generalize the partitioning of R to Jw according
to the daytime. Correlative information collected over an 8-day period reported in Figure 5
confirms a non-linear decay of R with increasing Jw during the “morning” (Figure 4; [38]).

Figure 5. Correlation between R and Jw over a time series (8 consecutive days) recorded in tree
#5 during the (A) “morning” and (B) “afternoon” and “night” stages. The “morning” stage begin
early when transpiration start (approx. 6:00 h) and end at time n (approx. 13–15 h), when the
difference between transpiration measured at time n + 1 and that measured at time n is <0. The
“afternoon–night” span from hour n + 1 till the 4:00–5:00 h of the next day before the beginning of the
new transpiration cycle.
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The analysis of the “afternoon–night” data confirms the approx. 10% increase of R
at negligible Jw (Figure 5) mainly because of the lack of the “dilution” effect which is
reasonably expected to be caused by a sustained Jw. To allow comparisons across days
and trees, values of R have been normalized (min–max, 0:1 range) in analogy to a study
that compared daily fruit transpiration throughout the growing season [39]. Normalized R
responded to Jw according to the part of the day considered (i.e., morning, afternoon–night)
(Figure 6). It is confirmed also that the pattern of the “morning” dataset (increasing Jw)
was substantially similar to that of the “afternoon–night” but without the vertical harm
generated when Jw was stably negligible (Figures 5 and 6).

n

n

Figure 6. Correlation between R signal and the water flux density (Jw) hourly measured in olive
trees during (top panel) “morning” (�) and (bottom panel) “afternoon” (•, grey filled) and “night”
(•, black filled). The n + 1 h indicates the time of the day (between 13 and 15 h) corresponding to
that when Jw become lower than that measured at time n. Note that scatters have been fitted using
the model y = a + b/x consistent with that of the ions’ concentration expected in the xylem, lines are
illustrative only.

3.2. Response of Bioristor to Water Flux Density

The main driving force of the flux density of water (Jw) is the VPD, hence it is expected
a reduction of Jw upon a reduction of VPD. To test the influence of Jw on R, a group of
trees was bagged to bring the air surrounding the canopy close to the saturation point and
in turn the VPD close to zero. The bagging method has been documented to effectively
reduce VPD at plant or branch and fruit scale by reducing RH with negligible impact on
air temperature [30,34,40].

The VPD promptly responded to the bag application (19 h, 5 DASI) and removal (19 h,
15 DASI) mainly through variation of relative humidity which approximated 90% RH (not
shown). On average, the daily VPD of the air surrounding the bagged olive canopy was
reduced by 80% compared to that of control trees (Figure 7). This induced a consistent
reduction of daily water consumption in bagged trees compared to control ones (Figure 8).

Throughout the 10-day bagging experiment an 80% reduction of the VPD was recorded
which induced a 60% reduction in Jw (Figure 7).

Under no stomatal limitation, the causal chain VPD → Jw → R anticipates the indirect
influence of the VPD on R as mediated by Jw because Jw is proportional to ΔP (hydro-
static soil-plant-atmosphere pressure gradient) generated by the leaf-to-air VPD. Figure 9
shows diurnal oscillations of R recorded in some succeeding days with different VPD
and consequently different Jw. It is confirmed that reducing VPD reduced Jw and in turn
increased R. In addition, R increased by 8–12% during the time when Jw was negligible
(from late afternoon until early morning of the following day). The increasing R signal at
negligible Jw conceivably reflects the absence of sap dilution induced by water flux and
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the increasing root pressure usually occurring overnight when plants have almost null
transpiration [22,23,41].

Figure 7. Values of VPD and Jw (at trunk level) measured throughout the experiment in olive
trees under control and low VPD (grid gray filled). The dashed line refers to the tree enclosed in a
transparent plastic bag to induce the low VPD. Time of bag on and off were indicated by ↑ and ↓
arrows, respectively.

Figure 8. Cumulated diurnal plant transpiration measured in trees under control (•) and reduced
VPD (�) by means of bag application. Each point is the average of 6 trees, bars (± SE) are visible
when larger than symbol. Data relates to day 8th of experiment.

Figure 9. Oscillation of diurnal bioristor signal R (continuous line), water flux density Jw (blue filled
area) and VPD (grid filled area) recorded over 4 consecutive days separated by vertical dashed lines.
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Figure 9 shows also the general correspondence of R and Jw patterns during the
morning daytime and the alignment between maximum pick of Jw and the minimum one
of R. The plot highlights that the Jw lags in advance to VPD (Figure 9) confirming a known
aspect of water relations [18,42,43] suggesting that Jw would be a robust parameter to
consider for OECT-based sensors analysis.

3.3. Disentangling Bioristor Response to Environmental Conditions

Under outdoor conditions the changes of VPD occur simultaneously with that of
other meteorological variables (e.g., light, wind) making their effect(s) on transpiration
very difficult to separate. However, the present study aimed at supporting that Jw is the
main driver of R, because it is a proxy of xylem sap concentration which depends on the
Js/Jw ratio. Hence, trees were exposed to combinations between stable/variable VPD and
on/off light. Figure 10 reports the values of R and Jw recorded in a tree standing in the
walk-in chamber during 3 consecutive days. Results show that R responded to change of
Jw induced by light-on period while the increase of VPD per se was not influential when it
was uncoupled from light (i.e., during dark). This result is in line with the response of sap
flow to variations of VPD and radiation observed in Populus spp. [43].

Figure 10. Diurnal pattern of bioristor signal R (circle), transpiration (E, continuous line) and VPD
(dashed line) recorded over 3 consecutive days inside a walk-in chamber with variable light/dark
and VPD conditions. The grey filled area indicates the dark period. Here below a detailed description
of variations occurring during the 3 days analyzed.

Notably, as for the second day, also in the third day the superimposed increasing VPD
during dark was not influential on E and in turn on R. This might be explained considering
that stomata were conceivably closed during the light-off period due to the direct effect of
light on stomatal opening [44].

On the third day R slightly increased (Figure 10) likely because (i) of the lack of the
“dilution” effect of Jw and (ii) of the conceivable increased root pressure due to increased
sap concentration determined by passive and active components of Js, moreover, increasing
R might be related to reduced ions load by xylem tissues which likely saturated [21,23].

First day, light-on was set for 10 h (from 5 a.m. to 3 p.m.) and was off (dark) for the
remaining time of the day. The VPD was set to increase concurrently to the light-on period
miming its behavior under outdoor condition. In that first day, R oscillations were in line
with data collected outside the chamber identifying the “morning” and “afternoon–night”
stages during the light-on and light-off time, respectively.

Second day, the light-on period was restricted to just 4 h (from 5 a.m. to 9 a.m.) while
the VPD was set to progressively increase also during the dark period until 8 p.m. As
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expected, R responded to change of Jw induced by light period while the increase of VPD
was not influential when it was uncoupled with light.

Third day, light was kept off for 24 h, while the VPD was set to cycle from approx.
10:00 to 20:00 h. Values of transpiration sited close to negligible values during the whole
24 h period, and consequently values of R remained roughly stable (at highest value)
without showing neither the “morning” nor the “afternoon–night” oscillations.

3.4. Perspective on the Use of Bioristor to Monitor Leaf Mineral Accumulation

This study also examined whether the OECT sensor might be potentially used for
estimation of nutrients (i.e., Ca and K) accumulation in newly growing leaves. Considering
that Jw might causes the non-diffusive xylem load of ions at root scale and their solubi-
lization in the sap (as discussed above), the sensitivity of the bioristor to changes of Jw
(Figures 9 and 10) anticipates the promising capability of the bioristor to precisely estimate
ions accumulation in plant organs. Apart from concentration of nutrients in the feeding
xylem sap, nutrients accumulation depends on several factors including xylem-phloem
mobility of the nutrient, growth of the organ, use of nutrients along the transportation
path [24]. Within the experimental period (17 days) leaf area significantly increased by
approx. 30% and 15% of the initial value in trees with regular (control) and reduced Jw,
respectively (Figure 11A). That increment of leaf area corresponded to approx. 21 g dry
matter per tree of new leaves (control) while it was significantly 50% lower (Student’s t-test,
p = 0.05) in trees under reduced Jw. The Ca and K nutrient content in that dry matter was
determined destructively (dry matter analysis) and through the OECT based estimates
(Figure 11B) showing a good agreement between the two methods. The non-linearity
between the two methods might be explained considering that the nutrient accumulation
depends on several factors (see above), while OECT-based method here adopted employed
only the ion sap concentration and water flux density carrying the nutrients. Coefficients
used to convert R values in Ca an K molar concentrations were retrieved from [15] who
measured under lab condition the values of R in response to salt solutions of known con-
centrations, of course these coefficients need to be validated in in vivo systems. Improved
version of the bioristor accounting for in vivo condition would refine the sensor output,
however, it might be preliminarily stated that the bioristor could be a promising tool for
monitoring of nutrients accumulation within a precision agriculture domain.

 
Figure 11. (A) Average leaf area per plant (± SE) measured at beginning and at the end of the experiment in trees under
regular (control) and reduced Jw. The increment of leaf area has been determined as the difference between initial and
final values. Comparing the increment of leaf area between treatments, * indicates statistically significant differences.
(B) Accumulation rate (mg day 1) of Ca (•) and K (�) as determined through the OECT values of sap concentration and
through the chemical analysis of the dry mater of new developed leaves with a 2 weeks’ period. Note that dash circled
values have been sampled from trees under reduced Jw.
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4. Conclusions

This paper demonstrated that the signal response of an OECT sensor (a candidate
proxy of sap ionic concentration) installed in the trunk of a perennial tree is inversely
proportional to the water flux density (Jw) flowing-through the transpiring tree. Under
negligible plant transpiration, the signal increased likely reflecting the putative increase
of sap concentration due to increased osmotic pressure and lack of the “dilution” effect
operated by Jw. The diurnal response of an OECT based sensor should be partitioned
according to the part of the day (i.e., “morning”, “afternoon”, “night”) also to account
for possible hysteresis of its pattern due to changing interaction between Jw and VPD.
Based on results gained in the walk-in chamber it could also be concluded that the VPD
per se is not influential on the OECT signal unless a light source is coupled to trigger plant
transpiration. Experimental results on the suitability of the sensor-based data to estimate
ion accumulation in leaves open new perspectives for its application in mineral nutrition
in agriculture.
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Abstract: Information and telecommunication technologies (ICTs) offer new opportunities to provide
more timely information services to farmers. This work aims to present a progressive web app (PWA)
for mobile devices, which incorporates updated technical information on the pests and diseases of
grapevines. In its development, it generated a database with content related to and photographs
of grapevine pests and diseases for access by users using mobile devices. In addition, using an
Expert System, the application allows the diagnosis of pathologies and the identification of pests by
answering questions that are asked. This PWA is mainly addressed to technicians, students, and
winegrowers who want to implement more environmentally friendly crop management strategies.
Viñamecum is currently freely.

Keywords: grapevine diseases; grapevine pests; diagnosis; information and telecommunication
technologies; progressive web app; decision system; online systems

1. Introduction

Grapevines (Vitis vinifera and Vitis spp.) are one of the most extensively grown and
economically important woody perennial fruit crops in the world [1]. According to the
FAO (2019) [2], the European continent, with 3.46 million ha and 26.7 million t, leads
grape production worldwide and is followed by Asia (1.99 million ha and 29.51 million t),
America (0.96 million ha and 14.4 millon t), Africa (0.34 million ha and 4.89 millon t), and
Oceania (0.17 million ha and 1.97 millon t). Its cultivation is limited by the climatic demands
imposed by optimal plant development [3] and the incidence of diseases and pests, which
can compromise its productivity [4,5]. Chemical control has traditionally been used in
conventional viticulture to control pests and diseases in the vineyard [6]. However, this
practice is potentially leading to pollution [7] and human health issues [8]. For this reason,
the use of phytosanitary products has been regulated in some countries. For example, in
Europe, the Directive 2009/128/EC [9] established a framework for Community action to
achieve the sustainable use of pesticides and the promotion of integrated pest management
(IPM). IPM is an ecosystem-based strategy that focuses on the long-term prevention of
crop pests and diseases through different techniques that include the use of resistant
varieties, biological control, habitat management, modification of cultural practices and,
when needed, judicious and timely use of chemical controls [10,11]. To implement this
strategy in vineyard management, it is necessary to have qualified technical personnel and
provide specific information to farmers so that they can act under the premises of the IPM.

The widespread growth of information and telecommunication technologies (ICTs)
in rural areas offers new opportunities to provide more timely and low-cost information
services to farmers, as well as assists in coordinating agricultural agents [12]. Moreover,
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the enormous progress of mobile devices has opened up a wide range of opportunities
that were previously unfeasible. Their portability and computing performance are features
that have allowed the development of innovative applications in fields such as medicine,
sports, and agriculture [13]. However, in the field of viticulture, new technologies and
modern management techniques are needed to ensure and facilitate a correct performance
of the winegrowers in order to obtain a quality harvest and reduce the environmental
impact. The goal of the present work was to develop a novel smartphone application,
called Viñamecum [14], to facilitate a correct control of grapevine diseases and pests and
boost IPM in vineyards. This application allows the identification of species suspected to
act as pests or pathogens in the vineyard and incorporates technical information on their
biological cycles, the different control strategies and images of the damages or symptoms
they cause. The application was developed and implemented for mobile devices with the
aim of maximizing its availability to users.

2. Solution Adopted: Viñamecum

Viñamecum is a PWA application that incorporates technical information on vineyard
pests and diseases and allows the identification of pests and diseases through the use of
an expert system. This PWA application is currently freely available at https://fcc.uca.es/
web/vinamecum, accessed on 10 March 2021.

For the design and development of the “Viñamecum” application, the target users, the
areas or places where it can be used and the applicability of the tool have been considered.

Due mainly to the fact that the native language of the users to whom this application
was originally addressed is Spanish, the language used throughout the application is
Spanish. Another factor to take into account in the choice of language was the lack of such
applications targeted at native Spanish-speaking users. For instance, in other languages,
we found applications such as “Di@gnoPlant Vigne” developed by the French National
Institute for Agricultural Research (INRA) [15], “MyVigneto Care” in Italian [16], and
“Pests and Diseases of Grapes” written in English, but in a non-technical language and with
the downloading involving economic costs [17]. The application is planned to be translated
into other languages in the future.

Furthermore, a technology was required that would allow it to run on a mobile device,
be easy to install and be used with poor connections so that it could be used in places with
poor mobile coverage. In addition, the application would have to be fast and resource-
efficient. Other desirable features were that it should be easily upgradable, have a simple
interface and offer the possibility of user notifications.

There are different tools that could be used in the development of mobile apps. In
this work, PWAs were chosen [18]. A search for “PWA the future of mobile apps” in
Google generates numerous outputs that illustrate the importance of this technology in the
development of applications. The first result tells us: “Progressive Web Application (PWA)
is truly considered the future of multi-platform development because of its application
on several devices, the improved speed, and the easiness that requires no installation or
updates”. We could say that a PWA is an enhanced web page, although its development is
not entirely straightforward since they have several features that must be implemented.

The main reasons for the choice of this technology were as follows:

1. Available offline: it allows to have the data available even if we do not have internet
connection, which is very desirable due to the environment in which the application
will be used.

2. Security: the idea is that a farmer can contribute to the application and introduce
warning systems. PWAs have enhanced security features and for example impose the
use of encrypted connections (Hypertext Transfer Protocol Secure protocol). This is
essential when sending data anonymously over the internet.

Some of the features of this technology are discussed in more detail below.
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2.1. Progressive Web Applications

A Progressive Web Application (PWA) is a type of application software delivered over
the web [18], created using common web technologies such as HTML, CSS, and JavaScript.
The origins of PWAs can be traced back to the launch of the iPhone in 2007. Steve Jobs
announced that web applications, developed in HTML5 using the AJAX architecture [19],
would be the standard format for iPhone applications. No software development kit (SDK)
was required, and applications would be fully integrated into the device through the Safari
browser engine. This model was later changed for the App Store [20], as a means to avoid
jailbreakers and appease frustrated developers. In October 2007, Jobs announced that
an SDK would be released the following year. As a result, although Apple continued to
support web apps, the vast majority of iOS apps shifted to the App Store.

This type of application is intended to run on any platform that uses a standards-
compliant browser. In addition, its includes working offline, push notifications, and device
hardware access, enabling user experiences similar to native apps on mobile and desktop
devices. Since a progressive web app is a web page or website known as a web app, there
is no requirement for developers or users to install web apps through digital distribution
systems such as the Apple App Store [20] or Google Play [21].

While web apps have been available for mobile devices since the beginning, they have
generally been slower, less feature-rich, and less widely used than native apps. However,
with the ability to work offline, which was previously only available to native apps, PWAs
running on mobile devices can run much faster and provide more features, closing the
gap with native apps, and being portable on desktop and mobile platforms (see [18] for
further details).

One of the main advantages of the PWAs is that they do not require separate bundling
or distribution. Publishing a progressive web app is the same process as it would be for any
other web page. PWAs work in any browser, but “app-like” features, such as connectivity
independent, installing on the home screen, and sending messages, depending on browser
compatibility. As of April 2018, these features are supported to varying degrees in Microsoft
Edge, Google Chrome, Mozilla Firefox, and Apple Safari browsers, but more browsers may
support the future’s necessary features.

The core of a PWA is in a program named Service Worker (SW), which is just a
JavaScript program. It operates separately from the main browser to handle push noti-
fications, synchronize background data, caches or retrieve resource requests, intercept
network requests and receive centralized updates. SWs are used to give PWAs the ability
to deliver the high performance and rich experience of native mobile apps, to provide
real-time updates, and to improve search engine visibility of traditional web apps.

From a technical point of view, SWs go through a three-step lifecycle of registration,
installation, and activation. Registration involves telling the browser the location of the
service worker in preparation for installation. Installation occurs when there is no service
worker installed in the browser for the web application or an update to the service worker.
Activation occurs when all PWA pages are closed, so there is no conflict between the
previous version and the updated version. The lifecycle also maintains consistency when
switching between service worker versions, as only a single service worker can be active
for a domain. For more details on these steps, the reader is referred to [18] (Chapter 4).
Technically, SWs provide a programmable network proxy in the web browser to manage
web/HTTP requests programmatically. Service workers sit between the network and
the device to deliver content. They can use caching mechanisms efficiently and enable
error-free behavior during offline periods.

Finally, we emphasize that PWAs can be installed on mobile, but this is unnecessary
as the same tasks can be carried out simply through the web. In other words, they do
not require installation; thanks to this feature, they offer important advantages: better
performance, short loading times, interface similar to that of a native app, automatic
updating, responsive design, push notifications, secure TLS protocol, and no internet
connection. The technology used to develop PWAs provides a cross-platform system,
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independent of the browser and operating system. This means that there is no need to
develop specific programming for each operating system, which greatly reduces costs.

2.2. Knowledge Base and Expert System

An expert system is a computer system emulating the decision-making ability of a
human expert [22]. Expert systems are designed to solve complex problems by reasoning
through knowledge bodies, represented mainly as if-then rules rather than through a
conventional procedural code. The components of the expert system used in this app are
the following:

• Knowledge Base: in this component, facts, and rules are represented. Knowledge in
a particular domain is stored here and rules for solving a problem, procedures, and
intrinsic data relevant to the domain.

• Inference engine is the brain of the expert system. Its function is to obtain the knowl-
edge base’s relevant knowledge, interpret it, and find a relevant solution to the user’s
problem. It contains the rules of its knowledge base and applies them to known facts
to infer new facts.

The main part of this application is the Knowledge Base. There are different forms
of storage for it. In this application, the form adopted has been a spreadsheet in which
each row is a disease/pest, and each column is a symptom/damage. The “1” or “0” mark
indicates whether, for a disease/pest, a symptom/damage appears or not. From a mathe-
matical perspective, it is nothing more than a matrix of m rows (number of diseases/pests)
and n columns (number of symptoms/damages) with zeros and ones in their entries. We
denote the set of matrices of this form by (Z2)

m×n.

2.3. User Interface

One of the most important parts of an application is the user interface. In this app, we
had to make a design that made it possible for non-expert users (some of them had never
worked with this kind of technology before) to interact with the program and that users
could easily send all the errors found in it.

We chose to implement a very simple diagnostic system. The user only has to answer
1 (if the symptom/damage is present) or 0 (if it is not present). Once detected, the user will
be redirected to a page with the characteristics of the disease/pest. The app also has many
illustrations, as you can see in the example in the Section 3. The total amount of pictures
used in the app is around 400. All these images make it easy for the farmer to identify the
symptoms or damages caused by diseases or pests in the vineyard and they make possible
to obtain a diagnosis in situ. In addition, the app includes the different strategies the farmer
can use to control the diseases and pests. For instance, a link is provided to the website of
the “Ministerio de Agricultura, Pesca y Alimentación” (Spain) [23] that regulates the active
substances authorized for phytosanitary control.

2.4. The Efficiency of the System

We can view our knowledge base as a matrix A of m rows (diseases/pests) and n
columns (symptoms/damages). Formally, we can say that we have an A matrix (Z2)

m×n.
We will see each row as the set of symptoms of a disease.

The process to determine the disease or pest consists of asking for possible symp-
toms/damages through the user interface. If the symptoms or damage is present, all rows
(diseases/pests) that do not manifest that symptom/damage (all rows with a 0 in that
column) will be deleted. If the answer is negative, it eliminates the rows that manifest the
symptom/damage (all rows with a 1 in that column). The implementation in pseudo-code
is showed in Algorithm 1.

The average maximum time needed to obtain an answer is log(m), where m is the
number of rows (diseases and pests classified). We have to take into account that after
performing the first steps of the algorithm, our matrix will be equal to the following one:
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Algorithm 1: Computation of IS.

Input : A = (aij) ∈ (Z2)
m×n.

Output : the row of A verifying all the conditions.

begin
B ← A;
(mB, nB) ← dimensions(B);
/* we add a 0th-column to B with the row numbers */
for i ∈ {1, . . . , mB} do

bi0 ← i;
nB ← nB + 1
while mB > 2 do

q ← Random(2, nB)
/* Ask question q y save the answer in r */
r ← Question(q)
/* Remove the rows not fulfilling r */
B ← {b0j|j ∈ {0, . . . , nB}} ∪ {bij|biq == r}
/* Remove the qth column */
B ← {bij | j 	= q}
(mB, nB) ← dimensions(B);

return b10;

B =

⎛
⎜⎜⎜⎜⎝

0 Diseases Symtomp 1 . . . Symtomp q . . .
1 disease 1 1 . . . 0 . . .
2 disease 2 0 . . . 1 . . .

. . . . . . . . . . . . . . . . . .
n disease n 0 . . . 0 . . .

⎞
⎟⎟⎟⎟⎠.

In each step, the algorithm eliminates on average half of the rows. The actions
performed at each step with the matrix consist of eliminating one of the rows that do not
meet the condition. If the random value is q, the resulting matrix would be as follows:

0 Diseases Symtomp 1 . . . Symtomp q . . .

1 disease 1 1 . . . 0 . . .
2 disease 2 0 . . . 1 . . .

. . . . . . . . . . . . . . . . . .
n disease n 0 . . . 0 . . .

⎛
⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎠

The efficiency of the algorithm is based on the search for the elements of a column
that are equal to 1 or 0 (depending on the user’s answer).The column to be examined is
obtained directly from the matrix and to determine the diseases or pests we are left with,
only the rows that have not been discarded so far have to be examined. A tree design could
have been used to store all the information, but making it in the form of a matrix makes it
much easier to maintain. For example, adding new diseases is as simple as adding a new
item to our disease database (the current list of pests and diseases is shown in Table 1).

On the other hand, this form of storage allows us to see the existing relationships
between the symptoms of each of the diseases and to establish between them different
chains of diseases and symptomatology. From a mathematical point of view, what we have
is a graph [24] that relates the different diseases/pests and establishes a distance and a
partial order between each of them. The detection of nearby diseases/pests in adjacent
areas could enable us to detect diseases with very similar symptomatologies.
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Table 1. List of pests and diseases detected by Viñamecum.

Pests Diseases

Agrotis segetum Bacterial blight of grapevine

Brevipalpus lewisi McGregor Black-rot

Calepitrimerus vitis Nalepa Downy mildew

Ceratitis capitata Esca of grapevine

Colmerus vitis Pagenstecher Eutypa dieback

Drepanotrips reuteri Uzel Grapevine fanleaf disease

Drosophila melanogaster Grapevine leafroll disease

Eotetranychus carpini Oud Grey mould disease of grapevine

Epicometis hirta Petri disease

Eulecanium cori Bouché Phomopsis Dieback

Frankliniella occidentales Phytoplasma diseases

Haltica ampelophaga Pierce’s disease

Jacobisca lybica y Empoasca viti Powdery mildew

Lobesia botrana

Melolontha melolontha

Panonychus ulmi Koch

Planococcus citri Risso

Schistocerus bimaculatus

Sparganothis pilleriana

Tetranychus urticae Koch

Vesperux xatarti

Xylotrechus arvicola

3. A Complete Example

This application can be accessed at the site Viñamecum, accessed on 10 March 2021.
From there, the installation is quite simple. When selecting the option “Viñamecum” from
the menu, the first three images in the Figure 1 will be seen. Then, Algorithm 1 will
be executed.

When answered, the program will ask us a question that will make the algorithm
perform a loop, and as many questions as necessary will be asked to determine the disease
from the symptoms. Once a solution is obtained, the program will display it, and a message
will be sent with a link to the description of the disease and its treatment, as shown in
Table 2.
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Figure 1. Screenshots of “Viñamecum” for the diagnosis of a disease.

Table 2. Conclusion and steps taken by “Viñamecum” from the data provided by the user.

Steps Performed in the App Result of Viñamecum

• 1st question: Do you no-
tice a stop in leaf growth?
Yes

• 2nd question: The vine
shows rickets, weakening
and low cropping? No

• 3rd question: Do the
leaves dry from the edges
inward and curl slightly?
Yes

• 4th question: Does the
plant show weakening
with small shoots, short
internodes, small and
chlorotic leaves? No

• Diagnosis: THRIPS
(Drepanotrips reuteri Uzel)

As can be seen, all the diseases/pests have been illustrated completely so that the
specialist can appreciate the validity of the result obtained in the application. In Figure 2,
we can see the images availables in the app for Drepanotrips reuteri Uzel.
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Figure 2. Description of Drepanotrips reuteri Uzel.

4. Conclusions

Based on our experience with the application from its development to its implementa-
tion, we have seen that this type of app has a practical application in viticulture. The use of
these applications can facilitate integrated pest management.

It is important to highlight that these applications must have the following characteristics:

• Ease of use for farmers;
• Easy installation on mobile devices. PWAs make all this work much easier;
• Automatic updates. PWAs provide simple mechanisms for this purpose;
• They have to provide clear solutions as quickly as possible. The farmers are experts,

although it is sometimes difficult to handle so much information on diseases and pests.
That is why this type of initiative is so well received on their part;

• They must be available in places with no or poor connections. Crop sites are sometimes far
away from communication towers. This is why PWAs are the most appropriate solution;

• The use of mobile devices and the lack of connection make it so that large databases
cannot be accessed. Thus, the knowledge base and inference engine used are simple,
but in this context, they are a quite effective tool. In addition, the simplicity of the
inference engine makes mobile devices suitable for this type of application.

Finally, we would like to emphasize that this paper is just an introductive contribution
to the diffusion and the knowledge of the software Viñamecum. Our goal is to have its
content continuously updated over time as it is already being used and we are receiving a
lot of feedback from the users to improve it.

5. Patents

The “Viñamecum” application was registered on 27 November 2018 with reference
CA-256-18 in the “Registrador Territorial de la Propiedad Intelectual de la Comunidad
Autónoma de Andalucia”, Spain.
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The following abbreviations are used in this manuscript:

API Application Programming Interface
CSS Cascading Style Sheets
ESYRCE Encuesta sobre Superficies y Rendimientos Cultivos
FAO Food and Agriculture Organization
ha hectares
HTML HyperText Markup Language
IPM Integrated Pest Management
PWA Progressive web application
SW Service Worker
t tons
TLS Transport Layer Security
W3C World Wide Web Consortium
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Featured Application: This work demonstrates the feasibility of using wireless networks with

Wi-Fi technology in the deployment of sensor networks for precision agriculture.

Abstract: The application of deficit irrigation techniques is essential in arid or semi-arid areas of
the southeast of Spain, where water is a scarce and very costly resource. However, to apply these
techniques, it is necessary to carry out preliminary tests on the specific crop in order to develop
the models that allow the optimization of water use while achieving acceptable yields. The system
proposed in this article demonstrates the feasibility of using wireless technologies available in most
facilities (Wireless Fidelity) to deploy a high-density network of nodes with a variety of heterogeneous
sensors to collect data from the soil, plant, and atmosphere. The data are sent and stored in a cloud
server for real-time visualization from any mobile device and further analysis. The nodes have been
developed using low-cost processors and are equipped with batteries and solar panels, allowing their
autonomy to be virtually unlimited, as shown by the consumption studies and tests carried out.

Keywords: precision agriculture; wireless sensor networks; smart agriculture; regulated deficit irrigation

1. Introduction

In arid and semi-arid zones, such as the southeast of Spain, the agriculture yield is
conditioned by limiting factors, the main one being the available irrigation water. Regu-
lated deficit irrigation (RDI) techniques allow controlling the water applied to the crop in
critical and non-critical phenological stages, determining periods where the crop can be
irrigated with much less water. Therefore, these techniques have been widely used in these
areas where water is a scarce resource [1–3]. However, the application of RDI strategies
is conditioned by crop and climatic conditions. The development of irrigation models
specifically designed for a crop would allow the application of RDI for water optimization
purposes. In order to develop these models, it is necessary to carry out several comparative
tests on different areas of the same crop, where the conditions of the applied RDI are
modified. By studying the production and soil and plant water relations on trees subjected
to the different treatments, it is possible to determine the most appropriate models for
optimal irrigation management. In order to establish these RDI models, sensors that report
on the state of the soil, plant and atmosphere are required. In addition, to achieve suffi-
cient precision, it is important to have several repetitions of the measurements deploying
different deficit irrigation regimes to obtain relations among the agronomic results and the
water stress indicators studied [4–6].

Sensor networks are widely used when a high density of instrumentation is required
on test plots. In the particular case of wireless sensor networks (WSN), their usefulness has
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been demonstrated in different papers [7–10], where the absence of wiring has resulted
in a very important improvement in terms of installation flexibility and time savings in
installation and maintenance. Several protocols have been described in the bibliography
for the deployment of WSN in precision agriculture (PA) [11,12]. Zigbee is one of the
most commonly used technologies in recent years with positive results [13–18], although
it is claimed that ZigBee communication has the problem of short distance, complicated
networking and high communication frequency [19]. From the experience of our research
group in previous installations, in which we deployed WSNs with Zigbee nodes [20–23],
we found significant drawbacks such as the high maintenance required by the nodes, the
difficulty of programming the Zigbee stack, the high price of the software licenses and the
limited availability of microcontrollers that supported this stack. Some authors such as [11],
who conducted a comprehensive review of WSN technologies and their applications in PA,
claim that the most suitable technology for this type of applications is narrowband internet
of things (NB-IoT). A well-known example is long-range radio (LoRa), which allows
very low energy consumption and long life (i.e., 10 years with battery), low cost, wide
coverage and large networks (52,000 devices/channel/cell). This is why LoRa is being used
extensively in IoT applications in all fields, including PA [19,24–32]. However, there are
numerous WSN deployments in PA that use 802.11 wireless fidelity (Wi-Fi) [18,33–38]. It is
important to highlight that the suitability of each technology in terms of range, robustness
and, above all, in terms of instrumentation capacity, must be analyzed and studied to use
it properly. Wi-Fi networks have also been used previously in other disciplines such as
post-harvest for monitoring perishable products in transport and conservation [39].

The sensor network described in this article aims to support agronomic trials to relate
criteria of deficit irrigation in almond trees with measured values of soil-plant-atmosphere.
To this end, it is necessary to study different deficit irrigation treatments. Due to the size
of the plot, the number of trees and parameters to measure, a large and reliable network
infrastructure was needed. WSN was selected as the best option for this study, since cabling
would be very expensive and unfeasible in practice (due to the need of ducts and ditches,
problems with animals, soil moisture...) and a Wi-Fi network was already available at the
farm. In particular, using Wi-Fi allows us to take advantage of an infrastructure that already
exists in several installations, it is easy to use and the development of the nodes can be very
cheap due to its widespread integration in conventional microcontrollers. In technologies
such as LoRa, the chips are licensed by a unique company (Semtech Corporation, Camarillo,
CA, USA) and they are subjected to Intellectual property [29,40,41]. In addition, Wi-Fi
enables the integration of very heterogeneous equipment and sensors. On the other hand,
there are a lot of very low-cost system on a chip (SoC) devices with Wi-Fi communication,
which are very popular among IoT developers (like ESP8266 and ESP32 [38,42,43]). These
devices allow easy integration of soil sensors with specific protocols in agriculture such as
SDI-12. Although this technology has disadvantages including high power consumption
(compared to others such as Zigbee or LoRa), the use of energy harvesting elements such
as solar panels or micro wind turbines [44,45], allows the design of nodes with virtually
unlimited autonomy. In fact, one of the objectives of this article is to demonstrate the
feasibility of deploying WSN using Wi-Fi by properly managing the energy consumption
of the nodes.

2. Materials and Methods

2.1. Experimental Plot

The deployment was carried out at the “Tomás Ferro” Experimental Agri-food Station
of the Technical University of Cartagena (37◦41′18.9′′ N; 0◦57′01.7′′ W; 32 m above the sea
level), located at La Palma (Murcia, Spain) during three growing seasons (2017–2019). The
plant material consisted of seventeen-year-old almond trees (Prunus dulcis (Mill.) D. A.
Webb cv. Marta, grafted on Mayor rootstock) and spaced 6 × 7 m (238 trees ha−1).

The soil was a silty-clay-loam texture and the bulk density ranged 1.3–1.5 g cm−3. The
irrigation water, from the Tajo-Segura Water Transfer System, has low salinity (Electrical
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conductivity, EC25 ◦C, of 1.2 dS m−1) and was applied with an automatic controller (Agronic
4000, Sistemes Electrònics PROGRÉS, S.A., Lérida, Spain) that performed control of irriga-
tion, fertilization, pH regulation, pumping and filter cleaning with fault detection. The irri-
gation system was comprised of a double drip line per row with 12 pressure-compensated
drippers (PC dripper 4.0 L h−1, Netafim, Tel Aviv, Israel) per tree and spaced 1.0 m.

Daily agrometeorological data were recorded by a weather station at the experimental
orchard owned by the Agricultural Information Network System of Murcia (SIAM—siam.
imida.es (accessed on 6 April 2020)). The climate of the area was classified as Mediterranean,
with dry and warm summers and mild winters. During the experimental period, most
rainfall events occurred between September and May, with the average annual rainfall of
327 mm. The average annual reference evapotranspiration (ET0) of 1320 mm with daily
average temperatures ranged between 5.5 ◦C (January) and 29.5 ◦C (August) whereas
air temperature rarely drops below 0.0 ◦C. Daily average relative humidity was ranged
between 36.5% and 86.0%.

2.2. Irrigation Treatments

The irrigation scheduling was carried out in taking into account the evaporative
demand (reference crop evapotranspiration, ET0), the corresponding crop coefficients
KC [46,47] and the percentage of ground area shaded by the tree canopy (Kr). Therefore,
plants irrigation requirements (ETC) were determined as ETC = ET0·KC·Kr. In our case, the
irrigation was managed remotely using a Wi-Fi infrastructure to facilitate and guarantee
the reliability of the treatments.

Irrigation treatments were distributed according to a randomized complete block
design with three blocks per treatment. Each experimental plot consisted of three adjacent
rows of four trees per row, but only the two central trees of the central row were used
for experimental measurements. A total of five irrigation treatments were applied in
this experiment and the annual average of water applied was 7658, 4758, 3490, 5220 and
4770 m3 ha−1 for the control treatment (this treatment is irrigated at 115% ETC in order to
obtain non-limiting soil water conditions), sustained deficit irrigation (SDI) at 80% ETC
(SDI80), and another at 50% ETC (SDI50), regulated deficit irrigation at 45% ETC (RDI45)
and another at 30% ETc (RDI30) only in phenological stage IV and at 100% ETc during the
rest of irrigation season, respectively. Irrigation timing and frequency were varied during
the irrigation seasons (February–November).

2.3. WSN Infrastructure

The experimental plot already provided a basic Wi-Fi installation and data connection
network, as it was included in the network infrastructure of the Technical University
of Cartagena.

Figure 1 depicts the general scheme of the devices, networks and services deployed in
this work for the collection and monitoring of data, as well as for the remote management
of the devices. On the laboratory terrace of the farm building (spot a), a device that
integrates a 19 dBi 120-degree sector antenna and router board (mANTBox 19 s, MikroTik,
Riga, Latvia) was installed. This router, powered by power over ethernet standard (PoE),
was connected to the university network available at the laboratory. A virtual private
network (VPN) server was configured in this router to facilitate network maintenance and
access to equipment such as the datalogger and the fertigation controller. In addition, the
router also implements the connection via 5 GHz Wi-Fi (802.11 ac) with a second router
with integrated 16 dBi drum antenna (SXT Lite5 ac, MikroTik, Riga, Latvia), located at
spot b. The following devices are located at this spot (b): (i) A large weighing lysimeter
(2.5 × 2.5 × 1.7 m) with forced suction at the bottom, installed in the middle of a 0.4 ha
almond orchard with trees spaced at 5 × 6 m. The soil tank was laid on a platform
equipped with load cells (model FX2, Sensocar, Spain) which supplied the total weight
of the lysimeter. A 15-year old almond tree (P. dulcis (Mill) D. A. Webb cv. Marta) was
used as a lysimeter tree for evapotranspiration determination (ETc). The accuracy of the
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whole weighing system was estimated to be ±500 g. The tree was drip irrigated by four
laterals with six 4 L h−1 pressure compensating drippers. Irrigation management consisted
of restoring water losses due to evapotranspiration and drainage from the previous day;
(ii) A data-logger (CR1000, Campbell Scientific, Inc., Logan, UT, USA) used to collect data
every 15 min from the sensors installed in the lysimeter: weight and drainage measurement,
soil sensors for matric potential (MPS−6 Decagon Devices) and volumetric water content
(VWC) (Enviroscan Sentek technologies, Stepney SA 5069 Australia), tree sensors for stress
water index determination using dendrometers and thermo-radiometers. A climatic station
with ET0 and vapor pressure deficit (VPD) was also installed; (iii) an Ethernet switch to
connect the access points of the wireless links; (iv) a router (BaseBox 2, MikroTik, Riga,
Latvia) and a dual polarity, 120◦, 2.4 GHz 15 dB, sector antenna (AM2G15-120, Ubiquiti,
New York, NY, USA) which provides 2.4 GHz Wi-Fi wireless coverage (802.11n) to the
sensor nodes; (v) a 60 degrees 2 × 2 MIMO 10 dbi sector antenna with wireless on-board
(SXT 2, MikroTik, Riga, Latvia) to establish an 802.11 wireless link to the irrigation controller,
located at spot c. The fertigation control device (Agronic 4000) was connected to a serial
Wi-Fi converter (USR-WIFI232-610, Jinan USR IOT Technology Limited, Shandong, China)
through its RS-232 serial port to enable its wireless connection to the access point of spot b
for the remote management of the fertigation programmer from any computer connected
to the VPN of our installation.

 

Figure 1. WSN infrastructure of the experimental orchard.

Thanks to this infrastructure, the sensor nodes of the almond plot send the data to a
server hosted in the cloud, which provides all the necessary services for its visualization
from any personal computer or mobile device. This application allows real-time visualiza-
tion, logging and querying of historical data, and alarm reporting among other features.

2.4. Agronomic Sensors

To allow for real-time monitoring, several sensors were connected to wireless nodes
(see Table 1):
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• A total of four sensors per replicate (twelve in total) deployed as follows: two volu-
metric soil water content sensors (10HS, Decagon devices, Inc., Pullman, WA, USA)
and two matric potential of soil water sensors (MPS-6, Decagon devices, Inc., Pullman,
WA, USA), installed at 23 cm from each dripper and 25 and 45 cm depth located under
the canopy and along the tree drip lines.

• A total of two linear variable displacement transducer sensors (LVDT, Model DF ± 2.5 mm,
Solartron Metrology, Bognor Regis, UK) per replicate (six in total) were installed on
the main tree branch for measuring micrometric branch diameter variations.

• A total of two infrared radiometer sensors (IR120, Campbell Scientific Inc., USA) per
treatment were mounted on wooden poles and installed at 0.5–1.0 m over the trees
canopy for monitoring canopy temperature.

• A total of four climatic sensors (VP4, Decagon devices, Inc., Pullman, WA USA) were
installed to record air temperature, relative humidity and vapor pressure deficit.

Table 1. Overview of the sensors used in the plot.

Sensor
Measured

Data
Output Range Resolution Accuracy

Supply
Voltage Range

Current
Consumption

10HS 1 Soil moisture 0.3–1.25 V 0–57% VWC Not applicable ±3% VWC 3–15 VDC 15 mA

MPS-6 1
Soil matric

potential and
temperature

SDI-12
−9 to

−100000 kPa 0.1 kPa
±10% (from

−9 to
−100 kPa) 6–15 VDC 10 mA

−40 to +60 ◦C 0.1 ◦C ±1 ◦C

LVDT DF2.5 2 Displacement
sensor 750 mV/mm ±2.5 mm Not applicable

(analog sensor) 10–24 VDC 10 mA

VP-4 1

Relative
humidity,

temperature,
vapor pressure

and
barometric
pressure

SDI-12

0 to 100% RH 0.1% RH from ±2 to
±8%

3.6–15 VDC 5 mA−40 to 80 ◦C 0.1 ◦C from ±0.3 to
±0.4 ◦C

0 to 47 kPa 0.001 kPa from ±0.03 to
±0.33%

50 to 110 kPa 0.01 kPa ±0.4 kPa

IR120 3 Leaf
temperature

20 mV per ◦C
(difference
from sensor

body)

−25 to +60 ◦C Not applicable
(analog sensor) ±0.2 ◦C

+2 to +3.5 V
(Thermopile)
−2.5 V or
+400 mV

(Thermistor)

0.4 mA

1 https://www.metergroup.com (accessed on 29 October 2020), 2 https://www.solartronmetrology.com (accessed on 29 October 2020), 3

https://www.campbellsci.eu (accessed on 29 October 2020).

2.5. Sensor Nodes

From the hardware/software point of view, there are two types of nodes: type A and
type B, with different subtypes according to the sensors connected to them. The electronics
of nodes A and B are housed inside a 120 × 120 × 90 mm IP65 box (G279C, Gainta AEK
GmbH—Electrical Enclosures, Frankfurt, Germany). The power supply system consists of
a 3.7 V, 3000 mAh Li-ion rechargeable battery, charged by an 80 × 80 mm solar panel (5 V,
0.8 W). Figure 2 shows pictures of both types of node installed in the field.

Table 2 shows the 25 nodes installed in the plot (see Figure 1), detailing, for each of
them, the type it belongs to, the replicate, the irrigation treatment it is monitoring and the
sensors connected to it.
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Figure 2. Pictures of type-A (left) and type-B (right) nodes.

Table 2. Description of the deployed nodes.

Node
Number

Node Type Replicate
Irrigation
Treatment

Sensors

1 B1 1 Control 2 10HS, 2 MPS-6, 1 VP-4 and 1 IR120
2 B1 1 SDI80 2 10HS, 2 MPS-6, 1 VP-4 and 1 IR120
3 B2 2 SDI50 2 10HS, 2 MPS-6 and 1 IR120
4 B2 1 RDI45 2 10HS, 2 MPS-6 and 1 IR120
5 B1 3 RDI30 2 10HS, 2 MPS-6, 1 VP-4 and 1 IR120
6 B2 2 RDI30 2 10HS, 2 MPS-6 and 1 IR120
7 B2 2 SDI80 2 10HS, 2 MPS-6 and 1 IR120
8 B2 1 SDI50 2 10HS, 2 MPS-6 and 1 IR120
9 A1 2 Control 2 10HS, 2 MPS-6 and 2 LVDT

10 A1 2 RDI45 2 10HS, 2 MPS-6 and 2 LVDT
11 A1 3 SDI50 2 10HS, 2 MPS-6 and 2 LVDT
12 A1 3 SDI80 2 10HS, 2 MPS-6 and 2 LVDT
13 A1 3 Control 2 10HS, 2 MPS-6 and 2 LVDT
14 A1 3 RDI45 2 10HS, 2 MPS-6 and 2 LVDT
15 A1 1 RDI30 2 10HS, 2 MPS-6 and 2 LVDT
16 A2 1 Control 2 LVDT
17 A2 1 SDI50 2 LVDT
18 A2 1 RDI45 2 LVDT
19 A2 1 SDI80 2 LVDT
20 A2 2 RDI30 2 LVDT
21 A2 2 SDI50 2 LVDT
22 A2 2 SDI80 2 LVDT
23 A2 3 RDI30 2 LVDT
24 B3 2 RDI45 1 IR120
25 B3 2 Control 1 IR120
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The hardware of the type A node (see Figure 3) is based on a wireless datalogger
designed by our research group for PA applications (MEWiN MainBoard) [20]. For the
signal conditioning from the sensors, an interface board (SensorBoard A) has been designed,
connected to the first one by means of expansion connectors. An ESP8266 microcontroller
(Esspressif Systems Co. LTD., Shanghai, China) with WiFi communication capability is
also plugged to the SensorBoard A.

Figure 3. Block diagram of type-A node.

The SensorBoard A consists of four DC/DC voltage converters (12, 10, 5 and −5 V),
required to supply the sensors and to guarantee the operation of the different interfaces on
the board: one for SDI12 sensors, another for radial dendrometers and one for analogue
sensors (0–3 V). Finally, the board includes a circuit for the management of the rechargeable
battery that supplies the power to the node.

The type B Node is similar to type A, but it is based on the use of a Wipy 3.0 (Pycom©,
London, UK) (see Figure 4).

The SensorBoard B includes four DC/DC voltage converters (12, 10, −3.3 and −2.5 V),
required to supply the sensors and to guarantee the operation of the different interfaces on
the board: one for SDI12 sensors, another for thermal radiometers and one for analogue
sensors (0–3 V). Finally, the board includes a circuit for the management of the rechargeable
battery that supplies the power to the node.

The software of the nodes was developed using the MicroPython programming
language and a variety of open source libraries for Wi-Fi connectivity and sensor reading,
among others. For some tasks, such as data acquisition from SDI-12 sensors, specific
algorithms were developed.
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Figure 4. Block diagram of type-B node.

2.6. Time Synchronization

One of the requirements established by the agronomists for this study was that all the
nodes should take the sensor measurements at the same time every 15 min so that they
could be compared. Therefore, a synchronization algorithm was implemented: Once a day,
the nodes connected to a time server (NTP) and update their real-time clock (RTC), which
is very inaccurate (it has a daily drift of approximately 50 s). This inaccuracy, together
with the drift of the internal timer in deep sleep mode (about 0.3%), generated a time drift
that resulted in desynchronized measurements between nodes. To solve this problem, a
time correction algorithm was developed. This algorithm determined the time the system
requires to perform the measuring and data sending processes, working out the remaining
time needed to be in deep sleep mode before waking up at the exact minute defined by
the sampling period. In this deployment, measurements were performed every 15 min
(minute 0, 15, 30 and 45 of each hour) and measurements were sent every 30 min (minute 0
and 30 of each hour).

3. Results and Discussion

After the functional validation, in view of the importance of achieving the maximum
autonomy, the current consumption of each of the node types was measured in the field.
The measurements were performed with a data acquisition card (USB-6008, National
Instruments Corp., Austin, TX, USA) that measured the voltage drop at a 1 Ohm shunt
resistor placed in series with the battery that powered the node. The analog input of the
card was configured in differential mode in the range of ±1 V and the acquisition was
carried out in continuous mode at 1 kHz obtaining the averages every 0.25 s. In this mode,
the card has a 12-bit resolution (equivalent to 0.48 mA) and an absolute precision at 25 ◦C
of 1.53 mV (1.53 mA in current).

For both type A and type B nodes, consumption tests were performed for the three
possible operating modes, (i) the node connects to synchronize the date and time, collects
data from the sensors and sends them to the server (this is the most energy-demanding
operating mode and is therefore programmed to occur only every 24 h), (ii) the node
collects data and sends them to the server (occurs every 30 min) and (iii) the node collects
data and stores them in the memory card waiting for the next connection to the server
(occurs in the middle of the period between sending events, i.e., 15 min later).
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3.1. Consumption of Type A Nodes

Node type A had a standby consumption of 1.1 mA. Figure 5 shows the current
required in each of the states through which the node passes in operating mode (i). The
measured current and the duration of each of these states are shown in Table 3. With these
values, taking into account the standby current, the total consumption of the mode has
been calculated with Equation (1).

 

Figure 5. Node A—mode (i): NTP sync, sensor reading and data sending (once every 24 h).

The function of each state is indicated in its description (Table 3). In state 2 (task
signaling), the node displays information about the task it is executing by means of a
lighting sequence of four LEDs. This information helps the user to perform maintenance
and commissioning tasks in the field.

Table 3. Description of functional states of node A—mode (i).

State 1 2 3 2 4 5 4, 3

Description
Time syn-

chronization
Task

signaling
Access to
microSD

Task
signaling Data sending Sensors

reading

Access to
microSD and
data sending

Iaverage (mA) 61 4.6 21 7.1 74 282 75

Duration (s) 13 6 0.5 1 10 16.5 15

IA_total_i =
∑A_state=4,3

A_state=1

(
IA_state − IA_standby

)
· tA_state

24·60·60
= 0.084 mA (1)

Figures 6 and 7, Tables 4 and 5, and Equations (2) and (3) show similar calculations
for the other two modes of operation of the node: modes (ii) and (iii). Note that mode (i)
occurs once a day, i.e., every 86,400 s (24·60·60) and modes ii and iii every 30 min, i.e., every
1800 s (30 × 60).
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Figure 6. Node A—mode (ii): Sensor reading with data sending (every 30 min).

Table 4. Description of functional states of node A—mode (ii).

State 2 5 2 3 2 4

Description
Task

signaling
Sensors
reading

Task
signaling

Access to
microSD

Task
signaling

Data
sending

Iaverage (mA) 4 206 7 23 4.5 76

Duration (s) 2 16.5 3.5 1 4 15

IA_total_ii =
∑A_state=4

A_state=2

(
IA_state − IA_standby

)
· tA_state

30·60
= 2.54 mA (2)

 

Figure 7. Node A—mode (iii): Sensor reading without data sending (every 30 min).
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Table 5. Description of functional states of node A—mode (iii).

State 2 5 2 3

Description Task signaling Sensors reading Task signaling Access to
microSD

Iaverage (mA) 4 208 7 16

Duration (s) 2 16 3.5 1.5

IA_total_iii =
∑A_state=3

A_state=2

(
IA_state − IA_standby

)
· tA_state

30·60
= 1.86 mA (3)

Once the total consumption current of each of the operating modes has been deter-
mined, taking into account the standby current and the capacity of the battery installed in
the nodes, it is possible to calculate (Equation (4)) the autonomy (in days) provided that
the battery is not charged by any means.

Number o f days =
3000 mA·h(

IA_total_i + IA_total_ii + IA_total_iii + IA_standby

)
·24 h

= 22.38 days (4)

3.2. Consumption of Type B Nodes

The same measurements and calculations made for node A were carried out for type
B node. These calculations are shown in Figures 8–10, Tables 6–8, and Equations (5)–(7). In
this case, node B had a standby current of 1.5 mA.

 

Figure 8. Node B—mode (i): NTP sync, sensor reading and data sending (once every 24 h).

Table 6. Description of functional states of node B—mode (i).

State 1 6 5 3, 4

Description
Time

synchronization
Sensors

preheating
Access to
microSD

Access to
microSD and
data sending

Iaverage (mA) 61 4.6 21 74

Duration (s) 13 6 0.5 10
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IB_total_i =
∑B_state=3,4

B_state=1

(
IB_state − IB_standby

)
· tB_state

24·60·60
= 0.111 mA (5)

 

Figure 9. Node B—mode (ii): Sensor reading and data sending (every 30 min).

Table 7. Description of functional states of node B—mode (ii).

State 6 5 3 4

Description
Sensors

preheating Sensors reading Access to
microSD Data sending

Iaverage (mA) 46 170 150 100

Duration (s) 14 17 1 10

IB_total_ii =
∑B_state=4

B_state=2

(
IB_state − IB_standby

)
· tB_state

30·60
= 2.57 mA (6)

 

Figure 10. Node B—mode (iii): Sensor reading without data sending mode (every 30 min).
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Table 8. Description of functional states of node B—mode (iii).

State 6 5 3

Description Sensors preheating Sensors reading Access to microSD

Iaverage (mA) 46 170 150

Duration (s) 14 17 1

IB_total_iii =
∑B_state=3

B_state=2

(
IB_state − IB_standby

)
· tB_state

30·60
= 2.02 mA (7)

The autonomy of node B, provided that the battery is not charged by any means, is
depicted in Equation (8).

Number o f days =
3000 mA·h(

IB_total_i + IB_total_ii + IB_total_iii + IB_standby

)
·24 h

= 20.15 days (8)

3.3. Sensor Data Validation

In order to demonstrate the usefulness and viability of the deployed network of nodes,
data registered over a significant period of time from an agronomic and sensor network
reliability point of view are shown below.

Figure 11 shows the evolution of the VWC at both 25 and 45 cm depth, measured by
10HS sensors (node 04). Irrigation was scheduled every two or three days at 11 a.m. and it
took 2 h. VWC values ranged between 0.413 and 0.336 m3 m−3 during the test period. The
maximum values were reached during the irrigation events. After the irrigation events,
VWC values fell due to infiltration and they stabilized at values close to 0.358 m3 m−3. The
information registered by MPS-6 sensors (Figure 12) was complementary to that obtained
by 10HS sensors (Figure 11). In each irrigation event and depth, the value increased until
it was close to −7 kPa, being considered this as field capacity [48]. The falls of MPS-6
sensors were steeper than those registered by 10HS sensors. Both types of sensors detected
the irrigation events between 1 and 2 h after irrigation events started in both depths.
During the test period, evaporative demand increased strongly, going from a reference crop
evapotranspiration of 2.5 to 4.0 mm d−1 at the end of the study period, which accelerated
the falls of the VWC and soil matric potential values, as well as it showed a greater drop in
values. The values showed both types of sensors at saturation level were similar to those
reported by [49] on similar texture soil.

Figure 11. Evolution of VWC sensors at 25 and 45 cm depth measured by node 04 with 10HS sensors
(year 2020). The arrows indicate the irrigation events.
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Figure 12. Evolution of matric potential at 25 and 45 cm depth measured by node 04 with MPS-6
sensors (year 2020). The arrows indicate the irrigation events.

Additionally, the nodes automatically and continuously monitored plant water status
with LVDT sensors. Figure 13 shows trunk diameter fluctuations (TDF) where the daily
cycle of shrinkage for RDI30 for three consecutive days can be observed. The maximum
trunk diameter (MXTD) was reached at the beginning of the day and the minimum trunk
diameter (MNTD) was recorded during the afternoon. From data obtained from TDF, two
indices were calculated to establish plant water status. The daily trunk shrinkage values,
calculated as the difference between MXDT and MNTD on the same day, were 271, 411
and 292 μm for three consecutive days, respectively. The trunk growth rate values were
calculated as the difference between MXTD of two consecutive days. In general, they were
close to 0 μm throughout the period considered. The trend and values obtained were in
agreement with those reported by [50,51].

Figure 13. Evolution of trunk diameter fluctuations (TDF) of the RDI30 treatment trees during deficit
irrigation period (stage IV). The data was stored by node 23 equipped with linear variable displacement
transducer sensors (year 2019).

3.4. Reliability of the Nodes

In general terms, the performance of the nodes was satisfactory. Obviously, the instal-
lation required periodic maintenance tasks, such as cleaning the solar panels, and eventual
interventions due to occasional failures in the hardware of the nodes.

The evolution of the battery voltage of the nodes is a useful indicator of the “health” of
the node. As an example, Figure 14 shows the evolution of the battery voltage of one of the
nodes (node 25) in typical conditions. As can be seen, the battery management algorithm
starts the charge when the voltage falls below the lower threshold (3.95 V) and stops when
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the upper threshold is reached (4.1 V). In this way, it works within the optimum voltage
range for the battery and reduces the charge cycles, extending its useful life. During the
charge there are different voltage peaks corresponding to the daylight hours (the solar
panel supplies charge) and the hours of darkness during the night (there is no photovoltaic
generation and the battery discharges due to the node consumption). The “discrepancy”
that appears between days 82 and 87 (22 and 27 March 2020) corresponds to days when
solar radiation was lower due to the existence of cloudiness (see Figure 15).

 

Figure 14. Typical behavior of the battery voltage in a node without operational problems.

Figure 15. Battery voltage (node 25) vs. daily average radiation (source: http://siam.imida.es/ Agro-Meteorological
Weather Station CA12-La Palma, accessed on 6 April 2020). Cloudy days.

3.5. Typical Node Failures

Among the common problems detected during the operation of the deployment, the
most frequent were those that led to the exhaustion or destruction of the battery. The
usual reasons were (i) overheating due to the high temperatures reached inside the box in
summer, (ii) dirt or ageing of the solar panels and (iii) natural ageing of the batteries as
they reached the end of their lifespan.

Figure 16 presents the evolution of the battery voltage of node 23. As can be seen,
between 7 and 27 March there was a prolonged discharge due to the ageing of the panel,
which stopped charging (this was later verified in a field intervention). Once the solar

287



Appl. Sci. 2021, 11, 1628

panel was replaced on the 27th, the node started charging again. It is worth noting that
from this graph it is possible to extract very interesting information: due to the failure of
the panel, the node showed an autonomy of approximately 20 days, which validates the
theoretical calculations indicated in the section of consumption and autonomy estimation
of the nodes.

 

Figure 16. Evolution of the battery voltage of node 23.

Figures 17 and 18 depict failures in two other nodes due to dirt on the solar panels
(mainly dust and bird droppings). In the case of node 5 (Figure 17), it can be seen that
since 15 March, there were successive loads that did not reach the upper threshold. From
21 March, the panel did not supply the required current to increase the battery charge,
whose voltage started a downward trend until 25 March, the day on which the panel was
cleaned, and the node recovered. In the case of node 4 (Figure 18), the node never managed
to reach the upper threshold because the panel current was not sufficient, so on 24 March,
the voltage fell below the minimum operating voltage and the node stopped transmitting.

 

Figure 17. Evolution of the battery voltage of a node with a dirty panel (node 05).
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Figure 18. Evolution of the battery voltage of a node with a dirty panel (node 04).

4. Conclusions

The results described in this work demonstrate the viability of using new or existing
Wi-Fi infrastructures for the collection of agronomic data with low-cost nodes in deploy-
ments for taking measurements over long periods of time. Although some authors argue
that Wi-Fi is not the most suitable technology for WSN in PA, the application of techniques
to reduce consumption and the use of energy harvesting methods (solar panels) allows
for virtually unlimited node operating autonomy. Consequently, this work demonstrates
that, properly managing the energy demand, WSN deployment using Wi-Fi is feasible and
even advantageous in installations where Wi-Fi coverage is already available or a major
investment in the communications infrastructure is not desired. In addition, the use of Wi-
Fi is particularly convenient when using multi-node deployments on the same plot (high
density), e.g., in research trials where it is necessary to replicate measurements in several
locations to minimize variability, and also to perform them with different parameters to
evaluate the performance of irrigation strategies on a given crop.

In addition, time synchronization techniques have been implemented to ensure time
alignment of the data measured by the sensors. This facilitates its subsequent analysis for
the realization of agronomic studies that relate the different irrigation treatments with the
state of the plant and the crop yield.

Likewise, the experimental installation described in this work has demonstrated the
reliability of the nodes, sensors and communications infrastructure used. The experimental
results have shown that, although wireless networks require less installation and main-
tenance tasks than wired ones, they do need programmed servicing interventions and
occasional troubleshooting.

Next steps would involve the integration of nodes with other communication tech-
nologies such as LoRa to carry out studies to compare the advantages and disadvantages
of each technology.
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