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1. Introduction

An autonomous vehicle operates without human intervention, marking advancements
in navigating structured urban roads and unstructured environments. Central to its opera-
tion are two pivotal components: planning and control. The planning module creates an
open-loop trajectory, which lays out a spatiotemporal path for the ego vehicle to follow. The
control module’s role is to accurately follow this planned trajectory in a closed-loop manner
and adeptly handle a spectrum of conditions ranging from varying road and weather
situations to disruptive driving scenarios and even extending to abnormal circumstances,
such as physical malfunctions and cyber threats. These modules are crucial because they
embody the core intelligence of an autonomous system. This Special Issue aims to showcase
the latest developments in planning and control strategies, which play critical roles in the
evolution of autonomous vehicle technology.

Qualified submitted papers should focus on how the proposed planning and/or
control method solves real-world problems. The editorial board would maintain a high
standard in prescreening submitted drafts that are methodology oriented instead of task
oriented. Notably, this Special Issue also welcomes papers that discuss methods indirectly
related to planning and control as long as they facilitate the planning or control module.
Topics of interest include but are not limited to the following:

� Path/trajectory/motion planning and replanning;
� Path/trajectory/motion control;
� On-road/off-road planning and control;
� Modeling and simulation methods for planning and/or control;
� Testing and validation methods related to planning and/or control;
� Safety-related issues with planning and control;
� Security-related issues with planning and control;
� Human–machine interaction related to planning and/or control;
� Intelligent techniques/methods for planning and/or control;
� Integration of planning and control;
� Reviews of planning or control methodologies;
� Data-driven/model-based planning or control;
� Comparisons among different types of planning or control methods;
� Fault-tolerant planning and control;
� Cooperative planning and control;
� Real-world applications of planning and control.
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The rest of this editorial paper is organized as follows. Section 2 briefly reviews the
11 papers published in this Special Issue. Section 3 presents our perspective, and Section 4
concludes the article.

2. Overview of Contributions

The first paper published in this Special Issue is titled Occlusion-aware Path Planning
to Promote Infrared Positioning Accuracy for Autonomous Driving in a Warehouse. The
paper proposes an occlusion-aware path planning method for autonomous vehicles in
indoor environments and specifically addresses challenges in infrared positioning systems.
In these systems, the vehicle, equipped with an infrared emitter, often faces signal occlusion
issues due to obstacles, which can lead to inaccurate positioning if fewer than three receivers
detect the signal. To tackle this issue, the study introduces a four-layered planner to enhance
the accuracy of indoor infrared positioning by ensuring that the vehicle navigates areas
with minimal occlusion while adhering to collision avoidance and kinematic constraints.
The planner’s effectiveness in reducing positioning errors and maintaining trackability is
validated through simulations.

The second paper is titled A Path Planning Method for Underground Intelligent
Vehicles based on an Improved RRT* Algorithm. This paper addresses the challenge of path
planning for underground intelligent vehicles, with a particular focus on environments
with complex drifts and vehicles with articulated structures (i.e., tractor–trailer vehicles).
Recognizing the unique demands/features of underground scenarios, such as narrow,
curved spaces without GPS, and the need for precise control due to the vehicles’ complex
kinematics, the study proposes an enhanced path planning method. This method is
based on an improved version of the rapidly exploring random tree star (RRT*) algorithm
and is tailored to meet the specific constraints of underground intelligent vehicles. The
improvements to the RRT* algorithm include dynamic step size adjustment, steering angle
constraints, and optimal tree reconnection strategies. These modifications aim to ensure
that the path planning is efficient and compatible with the articulated structure of the
vehicles and the challenging underground environment. The effectiveness of this improved
algorithm is demonstrated through simulation case studies to showcase the improved
algorithm’s ability to generate paths with short lengths, few explored nodes, and high
steering angle efficiency.

The third paper is titled A Hybrid and Hierarchical Approach for Spatial Exploration
in Dynamic Environments. This paper introduces a novel, three-tiered hierarchical model
called IRHE-SFVO for spatial exploration in dynamic environments and for addressing
the challenge in AI system tasks, such as search and rescue. The model combines deep
reinforcement learning for high-level exploration with a rule-based, real-time, obstacle-
avoidance approach for local movement. It uses a global exploration module to identify
distant, reachable targets for exploration and a local movement module that employs an
optimistic A* algorithm and an improved finite-time velocity obstacle method for safe,
efficient navigation. This approach results in smooth, natural movements and improved
exploration efficiency, as demonstrated by tests on various 2D dynamic maps. The model’s
hierarchical structure simplifies training and enhances movement quality, marking an
improvement over current spatial exploration techniques.

The fourth paper is titled Real-time Drift-driving Control for an Autonomous Vehicle:
Learning from Nonlinear Model Predictive Control via a Deep Neural Network. This study
focuses on developing a drift control method for autonomous vehicles and specifically
addresses the challenge of managing oversteers in hazardous conditions, such as sharp
curves or slippery roads. Initially, a nonlinear model predictive control (NMPC) method
was designed to enable an autonomous vehicle to perform drift maneuvers. However,
NMPC’s reliance on real-time numerical optimization posed limitations in computational
efficiency. To address this issue, the study introduces a deep neural network (DNN)-based
controller trained using datasets generated from the NMPC method. This DNN-based
controller effectively replaces NMPC; it reduces the computational load while maintaining
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similar control performance. The study’s innovation lies in its successful integration of
a data-driven approach into drift control. It demonstrates the DNN-based controller’s
capability to accurately track predefined trajectories under realistic simulation scenarios.
This approach enhances real-time performance and has potential for broad applications in
autonomous vehicle control, particularly in safety-critical situations.

The fifth paper is titled A Hybrid Asynchronous Brain–computer Interface Based on
SSVEP and Eye-tracking for Threatening Pedestrian Identification in Driving. This paper
introduces a multimodal hybrid brain–computer interface (BCI) system that integrates
eye-tracking and electroencephalogram (EEG) signals to identify potentially threatening
pedestrians in a driving context. Traditional steady-state visual evoked potential (SSVEP)
BCIs in automatic driving can cause driver fatigue, so this study aims to improve interaction
efficiency and reduce fatigue. The system works by superimposing stimulus arrows of
different frequencies and directions on pedestrian targets, and subjects scan these arrows
until they identify a threatening pedestrian. The hybrid BCI system distinguishes between
active and idle states by using thresholds established in offline experiments, and subjects
select pedestrians on the basis of their judgment in online experiments. This approach
enhances selection accuracy by filtering low-confidence results. The system’s effectiveness
is demonstrated through experiments with six subjects. Its performance is superior to that
of a single SSVEP-BCI system. It has an average selection time of 1.33 s, 95.83% accuracy,
and an information transfer rate of 67.50 bits/min. This hybrid BCI system that combines
eye tracking and SSVEP offers a promising solution for dynamic pedestrian identification
in driving while enhancing safety and comfort.

The sixth paper is titled Space Discretization-based Optimal Trajectory Planning for
Automated Vehicles in Narrow Corridor Scenes. The study addresses the challenge of
optimal trajectory planning for automated vehicles in narrow corridor scenarios, a task
characterized by limited space and the need for safe, feasible, and smooth navigation. The
study introduces a novel space discretization-based optimal trajectory planning method that
focuses on minimizing travel time and avoiding boundary collisions. The approach involves
creating a mathematically described driving corridor model and a trajectory optimization
model that incorporates various constraints, such as vehicle kinematics, collision avoidance,
and actuator limitations, to ensure feasibility and comfort. The method’s effectiveness is
demonstrated through simulations and field tests, which show its superiority over baseline
methods in terms of smoothness, computational efficiency, and reducing tracking errors.

The seventh paper is titled Trajectory Planning for an Articulated Tracked Vehicle and
Tracking the Trajectory via an Adaptive Model Predictive Control. This study addresses the
challenge of trajectory planning and tracking control for articulated tracked vehicles (ATVs),
which are complex because of their unique steering mechanisms and nonlinear dynamics.
The study introduces a two-step approach. First, the hybrid A-star method combined with
minimum snap smoothing is employed for feasible kinematic trajectory planning. Second,
an adaptive model predictive controller (AMPC) is implemented for precise trajectory
tracking. The hybrid A-star method is selected for its effectiveness in generating smooth
paths suitable for ATVs’ nonholonomic nature, and the AMPC is designed to manage
ATVs’ nonlinearity through a linear-parameter-varying kinematic error-tracking model.
This approach improves tracking accuracy and reduces computational load compared with
standard model predictive controllers.

The eighth paper is titled GIS-data-driven Efficient and Safe Path Planning for Au-
tonomous Ships in Maritime Transportation. This paper introduces a novel path planning
method for autonomous ships and addresses the limitations of existing approaches that
often disregard the dynamic constraints of ships, leading to impractical and inefficient
trajectories. The proposed method, efficient and safe path planning (ESP), integrates ship
dynamics into the planning process to generate real-time optimal trajectories that are fuel-
efficient and smooth. ESP is distinct because of its threefold approach. First, it employs
a modified A* search algorithm called A-turning to find an optimal path with minimal
sharp turns by using geographic data from a geographic information system. Second, it
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formulates a minimum-snap trajectory optimization problem by incorporating dynamic
ship constraints to ensure a smooth, collision-free trajectory with minimal fuel consumption.
Last, ESP includes a local trajectory replanner based on B-spline for real-time avoidance of
unexpected obstacles. The method’s effectiveness is demonstrated through data-driven
simulations, which show ESP’s ability to plan safe global trajectories, minimize turning
points, and reduce fuel consumption while swiftly adapting to avoid unforeseen obstacles.

The ninth paper is titled Micro-Factors-Aware Scheduling of Multiple Autonomous
Trucks in Open-pit Mining via Enhanced Metaheuristics. The paper addresses the task of
scheduling autonomous trucks in open-pit mines, which is complex because of the need
for efficient coordination in dynamic environments. The study introduces a high-precision
scheduling model that considers micro-level temporal and spatial factors to optimize the
energy consumption, time, and output in the transportation system. Unique to this model
is the inclusion of charging requirements for autonomous trucks, a critical aspect that is
often overlooked in traditional scheduling. The methodological core of this research is the
integration of a Voronoi diagram for accurately estimating the traverse average speed of
each autonomous truck.

The tenth paper is titled Joint Dispatching and Cooperative Trajectory Planning for
Multiple Autonomous Forklifts in a Warehouse: A Search-and-learning-based Approach.
The paper explores the task of dispatching and cooperative trajectory planning for multiple
autonomous forklifts in warehouse environments. Traditionally, dispatching and planning
were treated as separate processes, leading to suboptimal motion quality in forklift teams.
The study introduces a novel joint dispatching and planning method that simultaneously
addresses these issues and aims to optimize cooperative trajectories. This method stands out
because of its rapid execution, minimal computational demands, and high-quality solutions.
It involves enumerating potential goals for each forklift and evaluating dispatch solutions
by using an improved hybrid A* search algorithm enhanced with an artificial neural
network for improved cost assessment. This approach ensures computational efficiency,
kinematic feasibility, and collision avoidance and can rapidly find optimal solutions. The
integration of neural networks into the dispatching process reduces the warehouse mission
completion time by 2% compared with that in strategies without machine learning. The
study highlights the importance of balancing shelf-filling states to prevent end-mission
deadlocks and demonstrates that the proposed method allows forklifts to cooperatively
find feasible trajectories quickly while maintaining efficiency even when priorities shift
during tasks.

The eleventh paper is titled Tube-based Event-triggered Path Tracking for AUV against
Disturbances and Parametric Uncertainties. The paper introduces a novel tube-based
event-triggered path-tracking strategy to improve disturbance rejection in autonomous
underwater vehicle (AUV) path tracking. The strategy combines a speed control law that
uses linear model predictive control (LMPC) and a tube model predictive control (tube
MPC) scheme. The LMPC controller is designed to reduce path-tracking deviation, and the
tube MPC scheme calculates optimal control inputs, thus enhancing disturbance rejection.
This approach considers AUVs’ nonlinear hydrodynamic characteristics. It uses linear
matrix inequality to establish tight constraints and a feedback matrix, both of which are
calculated offline for real-time efficiency. An event-triggering mechanism adjusts these
constraints based on surge speed changes, allowing for adaptive control. The strategy’s
effectiveness is demonstrated through numerical simulations, which show improved path-
tracking performance and real-time capability. The paper addresses the challenge of robust
control in AUVs in consideration of the complexities of underwater dynamics and the need
for efficient, real-time solutions.

3. Emerging Trends and Perspectives

Based on the insights obtained from these papers, we anticipate several future trends
in the field of autonomous driving planning and control.
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Enhancing Efficiency in Planners for Tailored Autonomous Driving Scenarios

In autonomous driving, motion planning methods are broadly categorized into
sampling-based [1], search-based [2], optimization-based [3], simulation-based [4], and
learning-based [5] techniques. Each of these methodologies has its strengths and limitations.
However, every real-world autonomous driving scenario presents distinct characteristics,
necessitating specific task-related constraint design or trajectory preference design in mo-
tion planning formulation. Although various planner types are available for general
applications, they often struggle to meet the specific needs of real-world scenarios. The
autonomous driving research area, which has grown in the past decade, no longer gains
substantial benefits from generic planners that do not effectively tackle real-world chal-
lenges. In the future, the development of motion planners is expected to increasingly focus
on distinct and tangible scenarios. The emphasis is likely to shift toward devising solutions
that are not only theoretically robust but also practically adept at addressing real-world
issues in autonomous driving [6].

Leveraging Multimodal and Hierarchical Control Strategies

Future developments in autonomous driving are expected to increasingly focus on
complex multimodal and hierarchical control strategies that can handle the dynamic and
intricate nature of driving environments. The integration of deep learning’s adaptability
and advanced processing with the consistent reliability of rule-based methods is a promis-
ing direction. This integration can boost the adaptability and efficiency of autonomous
driving systems, enabling them to effectively manage and adapt to changing conditions
and complex tasks.

Enhancing Trajectory Planning Intelligence via Human–Machine Interaction

By integrating brain–computer interfaces and eye-tracking technologies, autonomous
systems can now incorporate human input in various forms, such as human languages. This
integration taps into the potential of cutting-edge fields, such as large language models,
allowing for a dynamic and interactive driving experience. Such advancements mean
that human drivers can assist autonomous systems through verbal commands or receive
guidance through machine-interpreted human language, thus creating a collaborative and
intuitive driving environment. This approach not only adds an extra layer of information to
the decision-making process but also provides an additional safety net, making autonomous
driving safe and aligned with human instincts and responses.

Re-evaluating the Role of Machine Learning in Autonomous Driving Planning

The integration of machine learning, particularly deep and reinforcement learning,
is a growing trend in the field of autonomous driving motion planning. These methods,
known for their ability to process and learn from large datasets, promise advancements in
understanding and navigating complex and interactive driving environments. However,
their current applications remain confined to simulations, with limited real-world deploy-
ment on real vehicles. This situation is partly due to the methods’ generalization challenges;
they sometimes act as supplementary tools relying on rule-based systems for core decision-
making [7]. The true suitability of machine learning approaches for autonomous driving
planning is a subject of ongoing research. A balance must exist between the innovative
potential of these learning-based methods and the reliability of traditional rule-based ap-
proaches. This balance is crucial to developing practical, safe, efficient autonomous driving
systems that can operate effectively in diverse and unpredictable real-world scenarios.

4. Conclusions

This Special Issue has successfully showcased a range of innovative approaches in the
planning and control of autonomous vehicles by drawing insights from 11 groundbreaking
papers. Our editorial has revisited these contributions, emphasizing their role in tackling
real-world challenges and setting the stage for future advancements in autonomous driving.
The collected papers highlight the shift toward highly specialized planning and control
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methods, the integration of complex control strategies, the enhancement of human–machine
interaction, and the evolving application of machine learning in this dynamic field.

The field of autonomous driving is poised for considerable advancements. The focus
on the development of planners and controllers that are effective in real-world scenarios
marks a major progression. The incorporation of human input through advanced interfaces
and the strategic use of machine learning techniques are redefining the capabilities of
autonomous vehicles. These developments are not just technological achievements; they
represent a shift toward highly intuitive, safe, and efficient transportation solutions.

Autonomous driving technology is filled with promise and potential. As we continue
to innovate, the vision of safe, efficient, accessible transportation becomes increasingly
realistic. This Special Issue not only captures the current state of the art but also serves as a
guidepost for the future, where autonomous vehicles are expected to become an integral
part of our daily lives by reshaping our approach to mobility and connectivity. The path
forward is filled with excitement and endless possibilities. We are at the threshold of a new
era in transportation driven by intelligence, adaptability, and a commitment to enhancing
the human experience.
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Abstract: Infrared positioning is a critical module in an indoor autonomous vehicle platform. In
an infrared positioning system, the ego vehicle is equipped with an infrared emitter while the
infrared receivers are fixed onto the ceiling. The infrared positioning result is accurate only when
the number of valid infrared receivers is more than three. An infrared receiver easily becomes
invalid if it does not receive light from the infrared emitter due to indoor occlusions. This study
proposes an occlusion-aware path planner that enables an autonomous vehicle to navigate toward the
occlusion-free part of the drivable area. The planner consists of four layers. In layer one, a homotopic
A* path is searched for in the 2D grid map to roughly connect the initial and goal points. In layer
two, a curvature-continuous reference line is planned close to the A* path using numerical optimal
control. In layer three, a Frenet frame is constructed along the reference line, followed by a search for
an occlusion-aware path within that frame via dynamic programming. In layer four, a curvature-
continuous path is optimized via quadratic programming within the Frenet frame. A path planned
within the Frenet frame may violate the curvature bounds in a real-world Cartesian frame; thus, layer
four is implemented through trial and error. Simulation results in CarSim software show that the
derived paths reduce the poor positioning risk and are easily tracked by a controller.

Keywords: autonomous vehicle; infrared positioning; occlusion-aware path planning; numerical
optimal control; dynamic programming; quadratic program

1. Introduction

Indoor positioning is an important area of development with wide applications in
surveillance, human motion analysis, logistics, and entertainment [1–5]. As one of the
most well-known indoor positioning approaches, infrared positioning is characterized
by low energy consumption and high precision [6–8]. In an infrared positioning system,
an infrared emitter is installed on a movable target that is required to be localized, and
infrared receivers are fixed onto the ceiling. The infrared positioning result is accurate
only when the number of valid infrared receivers is more than three. An infrared receiver
becomes invalid if it does not receive the light originating from the infrared emitter due to
indoor occlusions.

Automated guided vehicles (AGVs) are commonly used in warehouses for cargo
delivery [9,10]. However, AGV positioning results easily become inaccurate when cargoes
in a warehouse occlude the light beams originating from the emitter installed on an AGV.
Instead of improving the positioning of the sensors, the current work considers the planning
of occlusion-aware paths that would enable an AGV to drive in the occlusion-free part of
the drivable area in a warehouse.

If the cargoes in a warehouse are permanently fixed, then the poor positioning regions
may be estimated a priori and regarded as static obstacles in an AGV path planning scheme.
In most cases, however, cargo placement is always changing, resulting in unfixed poor
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positioning regions. Thus, the concerned occlusion-aware path planner must work fast
while guaranteeing its outputs are collision-free and kinematically feasible [11].

1.1. Related Work

The most prevalent path planners in robotics may be classified into sampling-, search-,
optimization-, and learning-based methods.

Sampling-based planners generate candidate path/trajectory primitives and then
connect selected ones to form a complete solution. Such primitives are typically formed
using polynomials [12–14], state lattices [15–17], and closed-loop tracking [18].

Search-based methods divide a continuous solution space into nodes in a graph and
then search for a link between the nodes in the graph. Typical searchers include dynamic
programming (DP) [19,20], A* [16,21], and rapidly exploring random tree (RRT) [18,22].

An optimization-based planner formulates the concerned planning task as an optimal
control problem (OCP) before solving the OCP numerically. Herein, solving an OCP nu-
merically refers to discretizing it into a mathematical programming problem and solving it
using a gradient-based optimizer. Typical mathematical programming problems include
quadratic programming (QP) [20,23,24], quadratically constrained QP (QCQP) [25], nonlin-
ear programming (NLP) [26–28], and unconstrained optimization problems [12,29]. Most
gradient-based optimizers suitable for path planning only exhibit local optimization capa-
bilities because global convergence requires a much longer runtime than one can afford.
Given this property, the finally derived optimal path is close to the initial guess [30,31].
Therefore, identifying a good initial guess with global optimality contributes considerably
toward finding a high-quality optimum. A sampling-/search-based planner is commonly
used to provide a good initial guess [32,33].

A learning-based method generates vehicle motions based on trained data. Arti-
ficial neural networks [34], spline-constrained policy networks [35], and double deep
Q-networks [36] are used in offline training. Reinforcement learning-based methods [37,38]
are applied to online training.

The aforementioned four types of planners have their respective strengths and lim-
itations. Sampling- and search-based methods do not handle the configuration space in
its continuous form. Thus, they find suboptimal rather than optimal solutions. They even
fail to find any feasible solution if the complexity of the planning scheme is beyond the
sampling/search resolution level [23]. Increasing the resolution level is inapplicable when
using a sampling-/search-based planner due to the curse of dimensionality. Despite their
drawbacks, sampling-/search-based methods can efficiently describe the non-differentiable
occlusion-related cost [39,40]. An optimization-based planner finds optimal paths in the
continuous solution space; however, it has two typical limitations: (1) occlusion-related
constraints/costs cannot be handled due to non-differentiability, and (2) the runtime is con-
siderably longer than that of a sampling-/search-based method. Learning-based methods
work fast online after a long offline training process, but they lack interpretability, and thus
are rarely tested on real-world vehicles [41,42]. According to the above analysis, concluding
that one type of planner fully outperforms another is difficult; instead, maximizing the
advantages of each planner type while combining multiple types has been a common
practice in this community.

Combining a sampling-/search-based planner with an optimization-based one renders
a hierarchical planning framework; however, the optimization layer is time-consuming if
the planning scheme is described in the Cartesian frame. At this point, the majority of path
planners for on-road cruising scenarios describe the movements of an autonomous vehicle
in the Frenet frame to enhance real-time performance. The Frenet frame, also known as the
curvilinear frame, has been widely used to standardize the irregular trend of a road [43].
When using the Frenet frame, the ego vehicle is regarded as driving in a straight tunnel
with left and right bounds. The Frenet frame helps convert an NLP problem into an easier
form, making an optimization-based planner faster. However, the paths optimized in the
Frenet frame may violate vehicle kinematic constraints because the conversions between

8
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the Cartesian and Frenet frames are neither unique nor uniform [44]. The situation worsens
when the road is curvy, as it might be in our warehouse scenario. Therefore, a perfect
solution that simultaneously considers kinematic feasibility, optimality, runtime efficiency,
and occlusion-avoidance performance is not yet available.

1.2. Contributions

The current study aims to develop an occlusion-aware path planner for enhancing
the indoor infrared positioning accuracy of an autonomous vehicle system. The planner
is expected to be optimal and fast without violating fundamental restrictions, such as
collision-avoidance and kinematic constraints. In particular, we adopt the first-search-then-
optimize framework to combine search-based and optimization-based planners to find the
global optimum. Both planners work within the Frenet frame, and thus time efficiency is
enhanced. The optimizer is designed through trial and error; hence, the finally derived
path is kinematically feasible within a real-world Cartesian frame.

1.3. Organization

The remainder of this paper is organized as follows. Section 2 briefly presents the
concerned path planning task. Section 3 introduces our occlusion-aware path planner.
Section 4 provides the simulation results and discusses them. Finally, Section 5 concludes
the study.

2. Problem Statement

The purpose of this work is to generate a kinematically feasible and collision-free path
for a car-like robot in a warehouse, such that the impact of infrared positioning inaccuracy
can be reduced. The path planning task is described as the following OCP:

min J(z(s), u(s)),
s.t., f (z(s), u(s)) = 0, s ∈ [0, Smax];

z ≤ z(s) ≤ z, u ≤ u(s) ≤ u, s ∈ [0, Smax];
z(0) = zinit, u(0) = uinit;
z(Smax) = zend, u(Smax) = uend;
f p(z(s)) ⊂ χfree, s ∈ [0, Smax].

(1)

Herein, variable s stands for the distance that the ego vehicle has to travel; variable
Smax denotes the traveled distance when the ego vehicle reaches the destination, thus Smax
may not be known a priori; J(z(s), u(s)) denotes the cost function w.r.t. travel efficiency,
path smoothness, and positioning quality; z denotes the state profiles; u represents the
control profiles; f (z(s), u(s)) = 0 denotes the kinematic constraints written in the form
of ordinary differential equations; z ≤ z(s) ≤ z and u ≤ u(s) ≤ u denote the kinematic
constraints written as algebraic box constraints; z(0) = zinit, u(0) = uinit, z(Smax) = zend,
and u(Smax) = uend denote the two-point boundary constraints; χobs denotes the partial
workspace occupied by obstacles; suppose that χ denotes the entire workspace, then
χfree ≡ χ/χobs denotes the free space drivable for the ego vehicle; f p(·) is a mapping from
the vehicle state z to its footprint, thus f p(z(s)) ⊂ χfree represents the collision-avoidance
constraints [45].

In addition, one may define the poor positioning regions in the workspace as χocclusion,
wherein the ego vehicle cannot touch enough infrared receivers. Ideally, one would
expect the ego vehicle to always keep free from poor positioning and collisions, i.e.,
f p(z(s)) ⊂ χ/(χobs ∪ χocclusion) for any s ∈ [0, Smax]. However, this condition is too harsh
when the infrared beams are seriously blocked by the cargoes. As depicted in Figure 1,
no kinematically feasible paths exist in χ/(χobs ∪ χocclusion). Empirically, the temporary
loss of positioning accuracy is not a serious problem because the inertial measurement
units (IMUs) equipped onboard can accurately estimate the vehicle’s configuration within
a short period. Therefore, (1) allows the ego vehicle to travel in χocclusion, but penalizes
traveling in χocclusion for a long distance using the cost function J.
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Figure 1. A warehouse workspace with poor positioning regions. Note that there are no kinemat-
ically feasible paths if the ego vehicle follows the global route because the goal lies in the poor
positioning region.

3. A Four-Layer Path Planning Method

Our proposed path planner consists of four layers. In layer one, an A* path is searched
for in the 2D grid map to coarsely connect the initial and goal points. The A* path is
deployed to determine the homotopy class. In layer two, a curvature-continuous reference
line is planned close to the A* path via numerical optima control. The reference line is
deployed to construct a Frenet frame. In layer three, a coarse occlusion-aware path is
searched for within the Frenet frame using DP. In layer four, a curvature-continuous path
is optimized using QP. The overall architecture is shown in Figure 2.

 
Figure 2. Overall framework of occlusion-aware path planning method.

3.1. Layer One: Search an A* Path

As a preliminary step, the homotopy class needs to be identified, which decides how
the ego vehicle bypasses each of the obstacles (i.e., cargoes) from the start point to the
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goal. This work uses the A* algorithm to find a coarse path, given that it explicitly reflects
the determined homotopy class. Concretely, an occupancy grid map is formed based on
the warehouse layout and cargo locations. Dilating the occupancy grid map by L renders
a dilated map. In this work, L is set to the half-width of the ego vehicle. A 2D path is
searched for in the dilated map via the A* algorithm [46], which coarsely connects the
assigned starting and goal points. The output of layer one is a path presented in the form
of N waypoints stored in a set, i.e., Wgr =

{
(xgr

i , ygr
i )|i = 1, . . . , N

}
.

3.2. Layer Two: Generate a Reference Line

The preceding layer identifies a global route from the start point to the goal. This
layer is focused on generating a curvature-continuous path that is close to the global route.
The curvature-continuous path is denoted as a reference line, which is used to construct
a Frenet frame for future usage. The principle for generating a reference line is as follows.

The global route Wgr =
{
(xgr

i , ygr
i )|i = 1, . . . , N

}
derived in layer one is resampled

as NFE equidistant waypoints Wgrrs =
{
(xgrrs

i , ygrrs
i )|i = 1, . . . , NFE

}
. A reference line is

generated by driving a virtual vehicle to track the waypoints. This process can be described
as a trajectory planning-oriented OCP:

min J(z(t), u(t)),
s.t., f (z(t), u(t)) = 0

z ≤ z(t) ≤ z,
u ≤ u(t) ≤ u, t ∈ [0, tmax].

(2)

In (2), t is the time index, z(t) denotes the ego vehicle’s state profiles in the Cartesian
frame, i.e., [x(t), y(t), θ(t), v(t), a(t), φ(t)]. Furthermore, (x(t), y(t)) refers to the location
of the rear-axle midpoint of the ego vehicle, θ(t) is the orientation angle, v(t) is the lon-
gitudinal velocity, a(t) is the corresponding acceleration, and φ(t) is the steering angle.
u(t) denotes the control profiles [jerk(t), ω(t)], wherein jerk(t) is the derivative of a(t), and
ω(t) is the angular velocity of φ(t). All of the constraints in (2) are kinematic constraints,
which are presented by the well-known bicycle model [47]:

dx(t)
dt = v(t) · cos θ(t)

dy(t)
dt = v(t) · sin θ(t)

dθ(t)
dt = v(t)·tan φ(t)

LW
dv(t)

dt = a(t)
dφ(t)

dt = ω(t)
da(t)

dt = jerk(t)

, t ∈ [0, tmax]. (3)

Herein, LW denotes the vehicle wheelbase (Figure 3). The boundary constraints
z ≤ z(t) ≤ z and u ≤ u(t) ≤ u are defined as

−jerkmax ≤ jerk(t) ≤ jerkmax, amin ≤ a(t) ≤ amax, 0 ≤ v(t) ≤ vmax,
−Ωmax ≤ ω(t) ≤ Ωmax,−Φmax ≤ φ(t) ≤ Φmax, t ∈ [0, tmax].

(4)

The cost function J(z(t), u(t)) is defined as:

J =
∫ tmax

τ=0

{[
x(τ)− xgrrs(τ)

]2
+
[
y(τ)− ygrrs(τ)

]2} · dτ + wu ·
∫ tmax

τ=0

[
jerk2(τ) + ω2(τ)

]
· dτ, (5)

wherein wu > 0 is a weighting parameter, and
(
xgrrs(t), ygrrs(t)

)
is a parametric trajec-

tory formed by linearly connecting the NFE waypoints
{
(xgrrs

i , ygrrs
i )|i = 1, . . . , NFE

}
in

a sequence.
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Figure 3. Schematics for vehicle kinematics and geometrics.

Compared with (1), OCP (2) does not contain two-point constraints or collision-
avoidance constraints. Thus, the resultant trajectory may not connect the start point to the
goal and may not guarantee collision avoidance despite being kinematically feasible. At
this point, it should be clarified that the resultant reference line is only used to construct
a Frenet frame; the concerns about collision avoidance, occlusion avoidance, etc., will be
handled in a subsequent layer based on the constructed Frenet frame.

OCP (2) is solved numerically, which involves discretizing the OCP into an NLP
problem and then solving it via a gradient-based NLP solver, such as the interior-point
method (IPM) [48,49]. The solution to the NLP problem is a vector of waypoints together
with the corresponding state/control profiles in their discretized forms. A reference line is
formed by connecting the resultant waypoints smoothly via spline interpolation.

3.3. Layer Three: Search for a DP Path in the Frenet Frame

This layer is focused on generating a coarse path within the Frenet frame with collision
avoidance, occlusion awareness, travel efficiency, and path smoothness considered.

The first step is to map the start point and goal to the reference line so that their Frenet
coordinate values are identified as (sstart, lstart) and (send, lend), respectively (Figure 4). The
second step is to generate (NS + 1) equidistant skeleton points along the reference line
ranging from (sstart, 0) to (send, 0). A normal line is drawn along each skeleton point, which
is orthogonal to the reference line. Along each normal line, NL candidate grids are sampled
(Figure 4), which range in an interval around the skeleton point. For the nominal line
passing through the last skeleton point located at (send, 0), NL is set to 1 and the only
candidate grid left is specified as the goal (send, lend).

The planning task in layer three is to select one and only one candidate grid along
each of the normal lines such that the sequentially connected candidate grids are collision
free, occlusion minimized, short, and smooth. DP is adopted to find the optimal choice for
the candidate grid along each normal line [50]. Compared to enumeration, DP reduces the
search complexity from O

(
NL

NS
)

to O
(

NS · N2
L
)
, and thus promises to find the optimum

in a graph consisting of candidate grids. The brief principle of the DP search-based path
planning method in layer three is presented as follows.
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skeleton point

start point

goal
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Figure 4. Schematics for a graph of sampled grids in DP search.

In Algorithm 1, each candidate grid is regarded as a node. InitializeNodes() is used to
initialize the cost of each node as +∞. TraceBack(opti_id) is used to identify a sequence
of nodes from Node(NS, 1), Node(NS − 1, opti_id), to its ancestors until Node(0, 1). The
node sequence, if output in inverse order, forms a coarse path within the Frenet frame.
MeasureCost(Node1, Node2) measures the cost of the path segment from Node1 to Node2.
We define the cost function as a weighted sum of collision cost Jcollision, travel efficiency cost
Jefficiency, smoothness cost Jsmoothness, and positioning-related cost Jpositioning. The collision
cost penalizes the case that the ego vehicle collides with the surrounding cargoes when
driving along the concerned path segment. Jcollision is set to a large value (e.g., 1020) if
a collision occurs, otherwise, Jcollision is set to 0. The efficiency cost Jefficiency is written as
the length of the concerned path segment because this term encourages the ego vehicle to
travel across a short distance. Suppose the parent of Node1 is Node0, Jsmoothness is defined
as |(Node0.config − Node1.config)× (Node1.config − Node2.config)|. Intuitively speak-
ing, the smoothness cost Jsmoothness penalizes the case that the heading direction changes
from Node0, Node1, to Node2. Jpositioning penalizes the case that the ego vehicle stays
in the positioning-poor regions for a long distance. Furthermore, Nsample waypoints{
(swp

i , lwp
i )
∣∣∣i = 1, . . . , Nsample

}
are evenly sampled along the concerned line segment from

Node1 to Node2. Regarding the ith sampled waypoint (swp
i , lwp

i ), the corresponding co-
ordinate value in the Cartesian frame is identified as (xwp

i , ywp
i ) via frame conversion.

Suppose the infrared emitter is installed at the height of h onto the ego vehicle, one may
draw a line from the 3D point (xwp

i , ywp
i , h) to each infrared receiver and then check if the

line is occluded by cargoes in the warehouse. If there is no occlusion, then the receiver is
regarded as valid (Figure 5). If the total number of valid infrared receivers is larger than
three, then the concerned waypoint (swp

i , lwp
i ) is regarded as valid. Jpositioning measures the

rate of valid waypoints along the concerned line segment from Node1 to Node2.

3.4. Layer Four: Optimize a Curvature-Continuous Path

The preceding layer helps to identify a collision-free and occlusion-aware path, which
consists of (NS + 1) waypoints. Since NS is not large, the derived path is quite coarse. This
section is focused on how to refine the coarse path via numerical optimization within the
Frenet frame. In this work, path refinement is performed via Baidu Apollo EM planner [20],
which involves implementing path-velocity decomposition in an iterative loop before
an optimum (rather than sub-optimum) is finally derived. Since there are only static
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obstacles, the EM planner is degraded as a run-once path planning method, the details of
which are given as follows.

Algorithm 1. Path planning via DP search.

Input: Reference line, scenario layout, location of cargoes;

Output: A path Λ =
{
(sdp

i , ldp
i )|i = 0, . . . , NS

}
;

1. InitializeNodes();
2. Set Node(0, 1).config = (xstart, ystart);
3. For each j ∈ {1, . . . , NL}, do

4. Set Node(1, j).parent = Node(0, 1);
5. Identify Node(1, j).config;
6. Set Node(1, j).cost = MeasureCost(Node(0, 1), Node(1, j));
7. End for

8. For each i ∈ {1, . . . , NS − 2}, do

9. For each j ∈ {1, . . . , NL}, do

10. For each k ∈ {1, . . . , NL}, do

11. Identify Node(i + 1, k).config;
12. cost_candidate = MeasureCost(Node(i, j), Node(i + 1, k));
13. If Node(i + 1, k).cost > Node(i, j).cost + cos t_candidate, then

14. Node(i + 1, k).parent = Node(i, j);
15. Node(i + 1, k).cos t = cos t_candidate;
16. End if

17. End for

18. End for

19. End for

20. opti_id = arg min
j=1,...,NL

(Node(NS − 1, j).cost + MeasureCost(Node(NS − 1, j), Node(NS, 1)));

21. Λ = TraceBack(opti_id);
22. Return.

Figure 5. Schematics for the infrared receiver validation check. Five blue infrared beams together
with corresponding receivers are valid because they are not occluded by the cargoes.

The first step is to identify the left and right bounds that surround the coarse path
derived in layer three. As depicted in Figure 6, the left and right bounds are determined
using an incremental check. The identified left and right bounds are denoted as functions of
s, namely, ub(s) and lb(s). The optimization-based path planning task involves identifying
a function l(s) between the left and right bounds subject to kinematic constraints and
collision-avoidance constraints. In our concerned task, the decision variables include l(s),
dl(s), ddl(s), and dddl(s), which obey the following kinematic constraints:
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dl(s)
ds = dl(s),

ddl(s)
ds = ddl(s),

dddl(s)
ds = dddl(s),

−dlmax ≤ dl(s) ≤ dlmax,
−ddlmax ≤ ddl(s) ≤ ddlmax,
−dddlmax ≤ dddl(s) ≤ dddlmax,
s ∈ [sstart, send].

(6)

s

l

ub s

lb s

Figure 6. Schematics for the construction of left/right bounds in EM planner.

Herein, dlmax, ddlmax, and dddlmax are parameters that determine how fast l changes
with s, and thus are related to path smoothness. Empirically, the bounding parameters in
(6) should not be set strictly, otherwise the vehicle kinematics easily become in conflict with
the collision-avoidance constraints that will be introduced later. At this point, we believe
that the path smoothness can be enhanced via the cost function without suffering from the
infeasibility risk [23].

The two-point boundary constraints are written as

l(sstart) = Lstart, dl(sstart) = DLstart, ddl(sstart) = 0, dddl(sstart) = 0,
l(send) = Lend, dl(send) = DLend, ddl(send) = 0, dddl(send) = 0.

(7)

Herein, the parameters Lstart, DLstart, Lend, and DLend reflect the assigned initial and
goal configurations. Particularly, DLstart and DLend are related to the vehicle orientation
angles at s = sstart and send, respectively.

Regarding the collision-avoidance constraints, the vehicle body should not collide
with ub(s) or lb(s). Setting the vehicle body as rectangular is too complex, and thus we use
a series of same-radius circles centered along the longitudinal axle of the ego vehicle to
cover the rectangular vehicle body (Figure 7), and then require that each circle lies between
lb(s) and ub(s). For a circle biased from the vehicle’s rear axle by η, the collision-avoidance
constraints are defined as

η · tan θs + l(s) + 0.5 · LB ≤ ub(s + η),
η · tan θs + l(s)− 0.5 · LB ≥ lb(s + η).

(8)

The complete collision-avoidance constraints are formed by imposing (8) for any
η ∈ [−LR cos θs, (LW + LF) cos θs]. Herein, θs(s) denotes the vehicle’s orientation angle
within the Frenet frame. Inherently, θs(s) stands for the difference between the ego vehicle’s
heading direction and the tangent direction along the reference line at s. |θs(s)| is small
because the ego vehicle’s heading direction, in most cases, is not much biased from the
reference line. Thus, we have

tan θs ≡ dl(s)
ds ≡ dl(s),

cos θs ≈ 1.
(9)
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This yields the following constraints:

η · dl(s) + l(s) + 0.5 · LB ≤ ub(s + η),
η · dl(s) + l(s)− 0.5 · LB ≥ lb(s + η),
∀η ∈ [−LR, LW + LF].

(10)

The cost function is defined as

J = w1 ·
∫ send

s=sstart
(l(s)− lDP(s))

2ds + w2 ·
∫ send

s=sstart
dl2(s)ds+

w3 ·
∫ send

s=sstart
ddl2(s)ds + w4 ·

∫ send
s=sstart

dddl2(s)ds,
(11)

wherein w1, w2, w3, and w4 are weighting parameters, and lDP(s) denotes the coarse path
derived by DP in layer three. An OCP is formed by combining (6), (7), (10), and (11). The
discretized version of this OCP is a QP, which is easily solved using a QP solver, such as
osqp [51] and qpOASES [52]. The resultant path, after being converted back to the Cartesian
frame, may be infeasible if its curvature exceeds the allowable bounds. The infeasibility is
inevitable because the vehicle kinematics cannot be accurately modeled within the Frenet
frame [44]. As a remedy for this, we check the resultant path for violations of curvature
limits in the Cartesian frame; if an infeasible solution is derived, w1 is set smaller before
the QP problem is solved again. This process continues until a curvature-feasible path
is derived.

s

l

ub s

lb s

s s+

l
l+  

l+  +

l+  

 

Figure 7. Schematics for the formulation of collision-avoidance constraints in EM planner (zoom in
to see more clearly).

4. Simulation Results and Discussion

This section discusses the efficacy, occlusion awareness, and closed-loop tractability of
our proposed path planner.

4.1. Simulation Setup

Simulations were implemented in a MATLAB + CarSim platform and executed
on an Intel Core i9-9900 CPU with 32 GB RAM that runs at 3.10 × 2 GHz. We de-
fine a 50 m × 50 m warehouse with eight infrared receivers that are evenly distributed
along the four edges of the rectangular ceiling, the height of which is 5 m. The geo-
metric size of each cargo is 5 m × 5 m × h, wherein h is a random value ranging from
0 to 5 m. Other parametric settings are presented in our source codes, which are avail-
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able at https://github.com/libai1943/OcclusionAwarePathPlanningForAGV (accessed on
8 December 2021).

4.2. On the Efficacy of the Proposed Planner

The planning results of two typical simulation cases are depicted in Figure 8, which
shows the efficiency of each layer. In each of the two cases, the finally derived path is
collision free and kinematically feasible. Both properties can be reflected by the footprints
and curvature profiles plotted in Figure 9.

4.3. On the Occlusion Awareness of the Proposed Planner

This subsection investigates the occlusion awareness of the paths planned by the
proposed method. Figure 10 shows the results with/without the positioning-related cost
Jpositioning in layer three. When the cost term Jpositioning is discarded, the rate of good
positioning distance along the entire path is 86.5% and 92.5% in the aforementioned two
typical simulation cases, respectively. By contrast, with the cost term included, the rate
grows to 97.0% and 96.5%. This comparative result clearly shows that our proposed planner
can efficiently reduce the positioning inaccuracy caused by occlusions.

(a)

(b)

Figure 8. Path planning results of typical simulation cases in side view and bird-eye view: (a) Case 1;
(b) Case 2 (zoom in to see more clearly).
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Figure 9. Path planning performance, w.r.t. collision avoidance, and kinematic feasibility: (a) Case 1;
(b) Case 2.
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Figure 10. Comparative path planning results, w.r.t. occlusion awareness: (a) Case 1; (b) Case 2.
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4.4. On the Closed-Loop Tractability of the Proposed Planner

This subsection reports the closed-loop tracking performance in CarSim when follow-
ing the open-loop paths planned by the proposed planner (Figure 11). A linear quadratic
regulator (LQR) is adopted as the controller. As illustrated in Figure 12, the open-loop and
closed-loop paths do not differ much, which indicates that the planned paths are suffi-
ciently smooth and thus easy to track. The concrete closed-loop tracking simulation results
are presented in the following video link: https://www.bilibili.com/video/av677126688
(accessed on 8 December 2021).

 

Figure 11. CarSim simulation scenario layout and screenshot of simulation process.
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Figure 12. Path planning results, w.r.t. tractability: (a) Case 1; (b) Case 2.
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5. Conclusions

This paper has introduced a path planning method for an autonomous vehicle in
a warehouse, wherein the cargoes may occlude the inflated signals emitted by the ego
vehicle for inflated positioning. According to our conducted simulations, the proposed
planner is efficient according to its w.r.t. collision avoidance, kinematic feasibility, occlusion
awareness, and tractability.
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Abstract: Path planning is one of the key technologies for unmanned driving of underground
intelligent vehicles. Due to the complexity of the drift environment and the vehicle structure, some
improvements should be made to adapt to underground mining conditions. This paper proposes a
path planning method based on an improved RRT* (Rapidly-Exploring Random Tree Star) algorithm
for solving the problem of path planning for underground intelligent vehicles based on articulated
structure and drift environment conditions. The kinematics of underground intelligent vehicles are
realized by vectorized map and dynamic constraints. The RRT* algorithm is selected for improvement,
including dynamic step size, steering angle constraints, and optimal tree reconnection. The simulation
case study proves the effectiveness of the algorithm, with a lower path length, lower node count, and
100% steering angle efficiency.

Keywords: underground intelligent vehicles; path planning; RRT* algorithm; articulated vehicles;
unmanned driving

1. Introduction

In recent years, major mining groups have increased their investment in intelligent
mining, and the mining industry is gradually entering the era of being remote, smart,
and unmanned [1–5]. Intelligent vehicles are the most important pieces of equipment for
intelligent mining with unmanned driving. Path planning is one of the key technologies
for autonomous driving of intelligent unmanned vehicles. A reasonable path planning
algorithm helps vehicles optimize the running trajectory, avoid obstacles according to
the environment, and realize safe and efficient driving. The intelligent vehicles include
drilling rigs, charging jumbo, load–haul–dump (LHD), trucks, scaling jumbo, and bolting
jumbo, etc., the goal of which is to achieve intelligent mining processes by autonomous
positioning, autonomous navigation, autonomous driving, and autonomous operation.
These underground intelligent vehicles are shown in Figure 1.

The path planning of underground intelligent vehicles is one of the branches of
research of unmanned ground vehicles (UGV) and unmanned aerial vehicles (UAV). With
the advancement of technology, they have been widely used in the fields of logistics,
transportation, disaster relief, etc., [6,7]. The research into UGV automatic driving in
underground mining can be traced back to the 1960s [8,9]. The USA, Canada, Sweden, etc.,
have researched the remote control of vehicles, but due to the limitations of communications
and sensors, the application progress was slow. With the technological revolution, such
as the Internet of Things (IoT) and machine learning, unmanned mining operation has
become a research hotspot in the mining field again. The European Union (EU) initiated
the “Robominers” project to develop bionic robots for underground mining operations in
harsh environments [10]. Rio Tinto launched the “Mine of the Future” program, which
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aims to remote control more than 10 mines in Pilbara from Perth to realize unmanned
mining operations [11]. The Swedish Mining Automation Group (SMAG) also proposed
a plan to lead the automation upgrading of the mining industry [12]. The main research
interest in this paper is the path planning of underground intelligent vehicles. Based on the
known environmental map, starting point, and target, we use the path planning algorithm
to obtain an appropriate path that accords with mining operation and vehicle kinematics.
More generally, we research global path planning algorithms.

Figure 1. Underground intelligent vehicles.

In addition to the characteristics of common UGVs, the control of underground ve-
hicles has strong industry specificity, which leads to more complicated path planning.
First, the mechanical structure of the underground vehicles is more complicated, which is
different from the common four-wheeled UGVs on the ground and UAVs in the air [13].
Thus, the underground vehicles are more difficult to control from kinematics and need a
defined path. Second, compared to roads on the ground, the underground space is narrow
and curved, with many irregular surfaces. Path planning for underground vehicles needs
to focus more on passing narrow points and turns. Finally, there is no GPS underground,
and the communication is worse than that on the ground. The path is required to be rela-
tively simple, which reduces the control commands. Above all, the path planning method
for UAVs or UGVs will not totally accord with that of underground vehicles. Therefore,
it is necessary to upgrade the existing path planning method to adapt to underground
intelligent vehicles.

RRT* is a sampling-based algorithm with probabilistic and complete resolution, high
speed, and smooth results. For the 2D finite space of underground vehicles, it has a
higher probability to create a path through narrow points and turns, which is closer to
the underground requirements. Therefore, the RRT* algorithm was selected as the basic
algorithm in this paper. With the aim of intelligent mining operation, by considering
the kinematics of the intelligent vehicles and the drift environment, three improvements
are proposed, including dynamic step size, steering angle constraints, and optimal tree
reconnection. The algorithm improves the effectiveness of obstacle avoidance and shortens
the distance while ensuring efficiency, which provides a feasible path planning method for
intelligent vehicles.

Overall, this paper proposes a path planning method based on an improved RRT*
algorithm to solve the problem of path planning for underground intelligent vehicles under
articulated structures and drift environment conditions. Fully considering the environ-
mental and equipment characteristics of underground mines is also an important feature.
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The remainder of this paper is organized as follows. In Section 2, the related works are
reviewed and the necessary preliminaries of intelligent mining are presented. In Section 3,
the constraints of intelligent mining are formulated, including the drift environment formu-
lation and the kinematics of vehicles. In Section 4, the process of the classic RRT* algorithm
is analyzed and three improvement measures are proposed to adapt to underground in-
telligent vehicles. In Section 5, the case study by simulation method is presented, and the
results are discussed. In Section 6, the paper is concluded.

2. Related Works

2.1. Underground Intelligent Vehicles

Autonomous vehicle driving is one of the key technologies of intelligent mining, and
its main sensors and operating modes are shown in Figure 2. The intelligent vehicles collect
their states and environmental information by laser lidar, inertial measurement unit (IMU),
camera, RFID, and other sensors and calculate their current position and state by using edge
computing. Then, they interact with cloud computing through wireless communication to
obtain driving paths and complete the current driving process.

Figure 2. The main sensors and operating modes of autonomous driving vehicles.

Intelligent vehicles for underground mining can be divided into either an integral type
or an articulated type according to their structure. The integral type has the advantage of a
simple structure but has the disadvantage of often having insufficient power. It is mainly
used in pick-up trucks, small LHDs, and other small vehicles. The articulated type has
the advantages of a small steering radius and sufficient power and is more suitable for the
narrow environment of underground mining [14]. Therefore, it is widely used in heavy
equipment such as underground large LHDs, trucks, and jumbos. Articulated vehicles
are more suitable in underground mines [13]. However, articulated vehicles have more
complex structures than four-wheeled cars. For these reasons, articulated vehicles were
selected as the main research object of this paper.
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Large vehicles have a higher production capacity, but increasing the size of the drift
increases the development cost. The size of the drift is often selected to meet the minimum
specifications for vehicles, which put forward strict requirements for the running trajectory
of vehicles. Therefore, the core of path planning for intelligent vehicles is to coordinate the
environment of the drift and the kinematics of vehicles to obtain an optimal path trajectory
that guides the vehicles to drive autonomously.

2.2. Path Planning Methods

Based on high-precision positioning and unmanned driving technology, many un-
manned equipment path planning algorithms have been studied, which are mainly divided
into artificial potential field methods, graph search algorithms, and sampling-based algo-
rithms. The artificial potential field, proposed by Khatib, is a virtual force method, which
makes the equipment subject to the repulsive forces from obstacles and gravity and from the
target at the same time [15–18]. This method is simple to calculate, and the obtained path is
safe and smooth, but it easily falls into a local optimal solution. The graph search algorithm
converts the map for path planning into a graph and obtains the optimal path through
graph theory, including the Dijkstra algorithm, A* algorithm, etc. [19–24]. This method
takes into account both efficiency and completeness, but the map needs to be rasterized to
complete the graph conversion, resulting in poor path smoothness. The sampling-based
algorithm narrows the search space by discrete sampling in a continuous space. It is a
Monte Carlo method with uniform space, including the Probabilistic Road Map Method
(PRM), Rapid Random Extended Tree Method (RRT), etc. [25–29]. It has the advantages of
fast search speed and simple environment modeling, but it cannot obtain a global optimal
solution, and its efficiency is greatly affected by its step size and sampling mode.

The RRT algorithm [30] was proposed by Lavalle et al. in 1998. It is a random
sampling algorithm that uses incremental growth to achieve rapid search in non-convex
high-dimensional spaces. The RRT algorithm does not need to rasterize the search space
and has the advantage of high search space coverage. It is suitable for dealing with scenes
containing obstacles and motion constraints. Therefore, it is widely used in path planning
for intelligent devices. The RRT algorithm is a Monte Carlo method. It usually takes the
starting point as the root node and generates a random extended tree through random
sampling. When the child node reaches the target area, the sampling is completed, and a
feasible path is obtained.

The sampling of the RRT algorithm is random, and the generated path is a feasible
path rather than an optimal path. Therefore, a variety of improved methods are derived.
The RRT* algorithm [31] was improved based on the RRT algorithm, and the goal is to
improve the performance of the RRT algorithm in order to ascertain the optimal path. The
RRT* algorithm continuously optimizes the path during the search process by reselecting
the parent node and rerouting. With the increase in iterations, the obtained path gradually
approaches the optimal path.

There is relatively little research on path planning in underground mining, and cur-
rently it is mainly focused on underground disaster relief, surveying, and mapping. Ma
et al. [32] proposed a path planning method considering gas concentration distributions.
The global working path for a coal mine robot was planned based on the Dijkstra algorithm
and the ant colony algorithm, then local path adjustments were carried out. The research
object was coal mine robots, and the scene was disaster relief. Mauricio [33] proposed
a strategy of exploration and mapping for multi-robot systems in underground mines
where toxic gas concentrations are unknown. The principal algorithm was behavior control.
Papachristos et al. [34] considered the challenge of autonomous navigation, exploration,
and mapping in underground mines using aerial robots, and proposed an optimized mul-
timodal sensor fusion approach combined with a local environment morphology-aware
exploration path planning strategy. The research objects were four-rotor drones, and the
scene was underground surveying and mapping. Gamache et al. [35] set up a shortest-path
algorithm for solving the fleet management problem in underground mines with considera-
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tion for dispatching, routing, and scheduling vehicles. The solution approach was based on
a shortest-path algorithm. They considered all single-lane bi-directional road segments of
the haulage network. The research focused more on mining scheduling than vehicle path
planning. The solution provided the direction of the vehicle at an intersection, rather than
the trajectory of a single device. It can be considered as a form of cooperative scheduling,
which relates to the upper-level control of intelligent vehicles. Larsson [36] developed a new
flexible infrastructure-less guidance system for autonomous tramming of center-articulated
underground mining vehicles. The results showed that it was capable of autonomous
navigation in tunnel-like environments. However, the process of path planning was not
described. Tian [37] presented a novel strategy for autonomous graph-based exploration
path planning in subterranean environments. Yuan [38] focused more on path planning
and an obstacle avoidance mechanism under the complex geological conditions of a coal
mine. Dang [39] presented a novel strategy for autonomous graph-based exploration path
planning in subterranean environments. Song [40] considered both the distance of the path
and some hybrid costs to obtain a global path. Bai [41] proposed a multisensor data fusion
algorithm based on genetic algorithm optimization of the variably structured fuzzy neural
network. Ma [42] improved both the distance function and the selection of child nodes.
The feature of this paper is the full consideration of the environment with a vectorized map
and the articulated kinematics of underground mines. A comparison between some typical
underground mine path planning studies is shown in Table 1.

Table 1. Comparation of typical underground mine path planning research.

Research Algorithms Scenarios Path Type Map Type Equipment

[32] Dijkstra,
Ant colony Rescue Global Rasterized Mine robots

[33] Scanning
algorithms

Dangerous
environment
in coal mines

Local Real-time
sensing

Multi-robot
systems

[34]

Optimized
multimodal

sensor fusion
approach

Navigation,
mapping Navigation Real-time

sensing Aerial robots

[35] Enumeration
algorithm Production Global Topological Underground

vehicles

[36]
Feature

detection
algorithm

Production Navigation Real-time
sensing

Underground
articulated

vehicles

[37]
Artificial
potential

field
Rescue Global Rasterized Mine robots

and UAVs

[38] A* algorithm Production Global and
local Rasterized

Underground
four-wheeled

vehicles

[39]

Graph-based
exploration

path
planning

Exploration,
mapping

Global and
local

Real-time
sensing UAVs

[40] Ant colony
algorithm

Not
mentioned Global Rasterized Mine robots

[41] Genetic
algorithm Rescue Navigation Real-time

sensing
Rescue snake

robot

[42] D* algorithm Not
mentioned Global Rasterized Mine robots

This
paper

Improved
RRT*

algorithm
Production Global Vectorized

Underground
articulated

vehicles
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3. Constraints Formulation

Autonomously driven underground intelligent vehicles initiate a process of interac-
tion between the underground environment and the vehicle. Before path planning, it is
necessary to establish the environment, vehicle features, and interaction constraints.

3.1. Drift Environment Formulation

Drifts are the main environments for underground intelligent vehicles. These intel-
ligent vehicles start at the stope filled with ore, drive through the drifts, then reach the
orepass, and offload the ore. The point cloud is a common method for intelligent mine
environmental modeling, which is generated by laser scanners [43]. Figure 3 shows the
point cloud data obtained through SLAM, which is a typical drift environment. A typical
design profile of a drift is shown in Figure 4 [44]. Where vehicles are required to travel
through drifts, the vehicle cross-section will fix the dimensions of the opening. Under-
ground intelligent vehicles do not make vertical movements, so it is possible to process 3D
point cloud data into a 2D map by extracting the waistline and then converting the map
into a graph for the path planning algorithm.

 

Figure 3. Typical drift environment point cloud data by SLAM.

Figure 4. A typical design profile of a drift.

This paper uses the vectorized method instead of the common rasterization method as
the map preprocessing method. The drifts are narrow and long with complicated surfaces.
In the process of rasterization, the grid size has a great influence. Large-size grids cannot
express the small edges and corners of the drifts well, resulting in a lack of detailed map
information, and collisions during driving of the vehicles. Small grids lead to large total
grids, which result in calculations being carried out in increments and a reduction in
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efficiency. Therefore, the rasterization method has certain limitations in processing the drift
environment. A vectorized map can effectively improve these shortcomings. It expresses
map information such as points, lines, and areas by recording coordinates. The points are
represented by the north coordinate and east coordinate. The lines are represented by a
series of ordered coordinates. The surfaces are represented by a series of ordered and closed
coordinates. We recorded the coordinates of the scattered points on the map boundary
through dense interpolation and connected them to form lines. The dataset included
coordinate points, lines, and polygons, named as Polygonmap in the following. The effect
comparison between the rasterized map and vectorized map is shown in Figure 5. The
rasterized map used a 22 × 41 matrix, and the dataset was 26.4 kb, as shown in Figure 5a.
The vectorized map included 17 points, 17 lines, and 1 polygon. The dataset was 0.9 kb,
as shown in Figure 5b. The vectorized map has great advantages in map refinement and
data size.

  
(a) (b) 

Figure 5. Comparison of the rasterized map and vectorized map. (a) The rasterized map; (b) the
vectorized map.

3.2. Kinematics of Vehicles

Intelligent vehicle path planning needs to consider the kinematics to realize steering
and obstacle avoidance. Articulated vehicles are considered in this paper, which are
composed of a front body and rear body, and the vehicle bodies are connected through
the articulated points. Articulated vehicles in underground mines are usually rear-wheel
drives, and the steering is completed by controlling the relative position between the front
and rear bodies through the expansion and contraction of the steering cylinders. Non-
articulated vehicles can be abstracted as articulated vehicles with a rear body length of 0 to
achieve the universality of this article. Assuming that the tire and the ground have pure
rolling friction, the movement process of the vehicles can be simplified to rigid body plane
movement, as shown in Figure 6.

Figure 6. The simplified movement process of the vehicles.
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In order to describe the position of the vehicle, the kinematics formula needs to be
established. We established a Cartesian coordinate system for articulated vehicles. We
set the instantaneous steering center as PC(xC, yC), the axle center of the front body as
Pf

(
x f , y f

)
, the axle center of the rear body as Pr(xr, yr), the articulated point as PO(xO, yO),

the front and rear linear velocities as v f and vr, respectively, the headings as θ f and θr, the
radius of the front and rear body as R f and Rr, respectively, the steering angle as γ, and
the angular velocity as ωγ. Then the kinematics model of the articulated vehicles can be
described as follows [45].⎡

⎢⎢⎢⎣
.
xr.
yr.
θ f.
γ f

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

cosθ f
sinθ f

sinγ
R f cosγ+Rr

0

⎤
⎥⎥⎥⎦v f +

⎡
⎢⎢⎢⎣

0
0
Rr

R f cosγ+Rr

1

⎤
⎥⎥⎥⎦ωr (1)

Then, the position equation of the vehicles can be derived to avoid collision with drifts
or obstacles; that is, the collision detection should be performed on the geometric shape of
the vehicles, drifts, and obstacles. The Oriented Bounding Box (OBB) method was used to
transform each entity into multiple bounding boxes in different directions for intersection
testing. On the premise of authenticity, it is assumed that the front and rear bodies of the
articulated vehicles are two rectangles, the width is w, and the length of the front and rear
bodies are l f and lr, respectively, as shown in Figure 7.

Figure 7. The geometric movement state of vehicles.

The OBB of the articulated vehicles (Polygoncar) can be represented by polygon
ABCDEFG. According to the geometric relationship, the coordinates of each point of
Polygoncar can be expressed as the formulas

xA = xo − lrcosθr +
wsinθr

2
(2)

yA = yo − lrsinθr − wcosθr

2
(3)

xB = xo − lrcosθr − wsinθr

2
(4)

yB = yo − lrsinθr +
wcosθr

2
(5)
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xC = xo − wsinθr

2
(6)

yC = yo +
wcosθr

2
(7)

xD = xo −
wsinθ f

2
(8)

yD = yo +
wcosθ f

2
(9)

xE = xo + l f cosθ f −
wsinθ f

2
(10)

yE = yo + l f sinθ f +
wcosθ f

2
(11)

xF = xo + l f cosθ f +
wsinθ f

2
(12)

yF = yo + l f sinθ f −
wcosθ f

2
(13)

xG =
wcosθ f

2cosθr−wcosθ f cosθr
2−wcosθ f sinθr

2+wcosθrsinθ f
2

2(cosθ f sinθr−cosθrsinθ f )

+
xocosθ f sinθr−xocosθrsinθ f

(cosθ f sinθr−cosθrsinθ f )

(14)

The collision can be detected by the intersection area between the map and the OBB of
vehicles. If the vehicle is just within the feasible area of the map, it can be defined as no
collision. We constructed the collision detection formula of the vehicle according to the
Polygonmap and Polygoncar, as shown in Formula (15).

Collision =

⎧⎨
⎩

1, ∅ < Polygonmap ∩ Polygoncar < Polygoncar
1, Polygonmap ∩ Polygoncar = ∅

0, Polygonmap ∩ Polygoncar = Polygoncar

(15)

4. Improved RRT* Algorithm for Intelligent Vehicles

The RRT* algorithm has great advantages in search efficiency and search quality and
has been successfully applied in unmanned vehicle driving, UAV navigation, etc.

For underground mines, the application of the RRT* algorithm must consider the
following aspects:

(1) The underground drift is long and narrow, and the available area of the entire map is
small. The RRT* algorithm uses fixed-step full-map sampling, which results in low
sampling efficiency in the scene of the drift map;

(2) Drifts are usually constructed by a drilling and blasting method, and their surface
will inevitably be irregular. As a result, the map of drifts cannot be as smooth as a
regular road map, which will affect the smoothness of the solution path;

(3) Underground vehicles are usually large in size, and the steering radius should be
strictly controlled during their driving. Due to the randomness of the expansion, the
RRT* algorithm cannot guarantee a path that meets the steering radius of the vehicles.

Aiming to adopt the use of intelligent vehicles in underground mines, this paper
makes the following improvements to the RRT* algorithm:

(1) Dynamic step size

The classic RTT* algorithm adopts a fixed step size expansion strategy. When the step
size is small, the convergence speed is slow. When the step size is large, the vehicle easily
collides with the drift wall, causing sampling failure and indirectly affecting the solution
speed. The strategy of a fixed step size is: first, we randomly sampled xrand in the map;
secondly, we obtained its neighbor xnear; then, we connected xrand and xnear, and took the
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length of the StepSize from xnear to obtain the point xnew; if the collision detection was valid,
an expansion was completed. Collision detection with a fixed step has a higher probability
of failure. To solve this problem, a dynamic step size strategy was designed, and the step
size was taken as a dynamic random function of CollisionSize (the distance from xnear to
the collision point). When far from the obstacle, a larger step size was taken to ensure the
speed of convergence; when the obstacle was closer, a smaller step size was taken to ensure
the effectiveness of collision detection, as shown in Formula (16) and Figure 8.

DynamicSize =
{

StepSize Collision = false
CollisionSize × U[0, 1] Collision = true

(16)

 
(a) (b) 

Figure 8. Comparison of fixed step size and dynamic step size. (a) Fixed step size; (b) dynamic
step size.

(2) Steering angle constraints

The steering process of vehicles is strictly constrained by the max steering angle β.
Therefore, during the sampling process of the RRT* algorithm, the angle θ between the new
path and the parent path should be less than β, as shown in Formula (17) and Figure 9.

θ =
∣∣∣ .
γ f

∣∣∣ = arccos

⎛
⎜⎜⎝

−−−−−−−→xparentxnear ·−−−−−−−→xnearxnew∣∣∣∣−−−−−−−→xparentxnear

∣∣∣∣
∣∣∣∣−−−−−−−→xnearxnew

∣∣∣∣

⎞
⎟⎟⎠ ≤ β (17)

Figure 9. Geometric relation of steering angle constraints.

(3) Optimal tree reconnection

The classic RRT* algorithm uses random sampling, so the obtained path usually has
certain turns, which lead to the deceleration of vehicles. Therefore, unnecessary turns
should be avoided to lead the vehicles to drive straight. This will reduce the control diffi-
culty of unmanned driving while reducing the path distance. The optimal tree reconnection
process is as follows: we straightened and optimized the feasible path when the RRT*
algorithm found a solution; we continuously traversed from the root node to the child
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node; we searched for the child nodes that were directly connected without obstacles; we
connected the two nodes and deleted the intermediate nodes. This process turned the path
into a curve by reducing the number of nodes, as shown in Figures 10 and 11.

 
Figure 10. Process of optimal tree reconnection.

Figure 11. Geometric relation of optimal tree reconnection.

The pseudo code of the improved Algorithm 1 is as follows:
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Algorithm 1 Improved RRT* Algorithm

Input: xstart, xgoal , Map
Output: A path T from xstart to xgoal

1 T.initalize();
2 for i = 1 to n do

3 while true do

4 xrand←Sample(Map);
5 xnear←Near(xrand, T);
6 DynamicSize←CollisionCheck(xnear, Map);
7 xnew←Steer(xrand,xnear,DynamicSize);
8 if CollisionFree(xnew, Map) and Turnable(xnew, xnear, xparent) then
9 break;
10 end

11 end

12 Xnear_neighbours←NearNeighbour(xnew, T)
13 foreach xnear_neighbour ∈ Xnear_neighbours do

14 Test_dis←Cost(xnew) + Distance(xnew, xnear_neighbour)
15 if CollisionFree(xnew, xnear_neighbour, Map) and Test_dis < Cost(xnear_neighbour) then

16 xparent←Parent(xnear_neighbour);
17 Update(T);
18 end

19 end

20 if xnew = xgoal then

21 T←OptimalTreeReconnection(T);
22 success();
23 end

24 end

5. Simulation Analysis

5.1. Simulation Environment

In order to verify the adaptability of the improved RRT* algorithm, the classic RRT,
the classic RRT*, and the improved RRT* algorithms are simulated and verified in the
underground ore transportation scenario. The parameters of the vehicles come from the
Scooptram ST3.5 diesel LHD, as shown in Figure 12 and Table 2. The verification map
comes from a large underground mine in China, as shown in Figure 13a. The design size of
the drifts was 4.4 m × 3.9 m. The ore is transported by an LHD from Stope #1 to Orepass
#1. The map was preprocessed, and only the route of the LHD was retained. The simplified
map is shown in Figure 13b.

Figure 12. Scooptram ST3.5 diesel LHD.
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Table 2. Parameters of the Scooptram ST3.5 diesel LHD.

Parameter Value

Max steering angle 42.5◦
Width 2120 mm

Front body length 4130 mm
Rear body length 4330 mm

Data Source: Epiroc official website.

(a) 

(b) 

Figure 13. The map of the case study. (a) The original map; (b) the simplified map.

The case study simulated the operation process of the LHD from the stope to the
orepass and verified the algorithm’s ability to plan a feasible path in a long and narrow
space. The LHD is required to complete ore transportation with the minimum distance
under safe conditions and kinematic constraints. The simulation process was developed
with Python 3.7, the operating system was Windows 10 × 64 bit, the CPU was Intel Core
i7-8550U, and the memory was 16 GB. The simulation environment included Scipy 1.6.2,
Shapely 1.8.0, and Matplotlib 3.3.4. Scipy was used to create the formulas. Shapely was
used to calculate the OBB of vehicles and map polygons. Matplotlib was used to show
the path.
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5.2. Simulation Results

Comparative simulation experiments of the classic RRT algorithm, classic RRT* al-
gorithm, and improved RRT* algorithm were carried out, and the results are shown in
Figure 14. The red “X” represents the starting point and end point of the path planning, the
blue line represents the wall of the drifts, and the horizontal and vertical axes represent
the east and north coordinates. The yellow line represents the result of the classic RRT
algorithm, the green line represents the result of the classic RRT* algorithm, and the red
line represents the result of the improved RRT* algorithm.

Figure 14. The simulation results.

It can be seen from Figure 13 that the path generated by the classic RTT algorithm had
robust randomness, and there were a lot of irregular corners, such as Circle 1 and Circle 2.
In contrast, the smoothness of the path generated by the classic RRT* algorithm was greatly
improved, but the steering angle at the bend of the drift was too sharp, which was not
suitable for the steering angle of the vehicles, such as Circle 2 and Circle 3.

Ten independent random simulations were performed on each algorithm to offset the
random deviation of a single experiment. The results are shown in Table 3. The average
path length obtained by the improved RRT* algorithm was much lower than that of the
classic RRT algorithm but had only a small reduction compared with the classic RRT*
algorithm. The main reason is that the reconnection in the classic RRT* algorithm can
quickly approach the theoretically shortest time. The improved RRT* algorithm inherited
this feature, and there was no more room for improvement. For the average search time,
the performance of the improved RRT* algorithm was between the classic RRT algorithm
and the classic RTT* algorithm. The same reason also led to the increment in average
search nodes. Due to the optimal tree reconnection, the improved RRT* algorithm had
a significant advantage over the classic algorithm in terms of average path nodes. This
parameter reduced the control points during vehicle driving and reduced the difficulty
of automatic driving. The steering angle constraints made the improved RRT* algorithm
result fully meet the steering requirements, and the optimal tree reconnection increased
the smoothness of the path, so the device can directly follow the path without further
adjustment, avoiding multiple calculations. In general, the improved RRT* algorithm
greatly improved the quality of the path while appropriately sacrificing the solution speed.
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Table 3. Statistics of 10 independent random simulations.

Parameters Classic RRT Classic RRT* Improved RRT*

Average path length (m) 211.11 189.86 189.54
Average search time (s) 168.94 44.16 86.12

Average of search node count 561.60 267.30 360.00
Average of path node count 32.00 28.80 16.20

Effective ratio of steering angle 81.87% 92.71% 100.00%

Obstacles in underground drifts are common, such as faulty vehicles and stacked
materials. Further verification was conducted with known obstacles, as shown in Figure 15.
Two scenarios were considered with both avoidable obstacles and unavoidable obstacles
in the drift. The red line represents the final result, the yellow line represents the invalid
leaf of a random tree, and the blue point represents the obstacle. For avoidable obstacles,
the algorithm could pass them using a smooth curve without more additional sampling
being necessary. For unavoidable obstacles, the algorithm stopped sampling after a certain
number of samples.

   
(a) (b) 

Figure 15. The simulation result with known obstacles. (a) With avoidable obstacles; (b) with
unavoidable obstacles.

The kidnapping problem of intelligent vehicles might occur due to navigation failure
or other reasons. For the verification of the kidnapping problem, we assumed that the
vehicle planned to reach point B from point A but reached point B’ for kidnapping reasons.
Two scenarios were considered with both turnable kidnapping and unturnable kidnapping
for the vehicle, as shown in Figure 16. For turnable kidnapping, it will reach the front point
of the original path by the maximum steering angle. For unturnable kidnapping, it will
drive astern to the back point of the original path by the maximum steering angle.

  
(a) (b) 

Figure 16. The simulation result for the kidnapping problem. (a) With turnable kidnapping; (b) with
unturnable kidnapping.
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5.3. Discussion

With the aim of the unmanned driving of intelligent vehicles in underground mines,
we improved the path planning algorithm to adapt to the complex drift environment
based on the RRT* algorithm. Many existing algorithms have to rasterize the map, but
rasterized maps are not suitable for the drift environment. We constructed a vectorized
drift environment map and then selected the RRT* algorithm to improve it. The vectorized
map can effectively restore the details of the roadway environment and can also reduce
the dataset. Combined with the articulated structure of underground intelligent vehicles,
the dynamic characteristics were analyzed, and then the constraints were constructed. It
strengthened the consideration of complex vehicle structures in this field. The process of
the classical RRT* algorithm was analyzed, and then its shortcomings in adaptability to
underground mining were extracted. On this basis, three improvements were proposed:
a dynamic step size solved the algorithm efficiency problem; steering angle constraints
solved the vehicle dynamics problem; optimal tree reconnection solved the control difficulty
problem. By way of a simulation case study, the improved RRT* algorithm obtained a path
suitable for underground intelligent vehicles within a reasonable time. Its results increased
the effective ratio of the steering angle to 100%, fully met the vehicle’s requirements,
eliminated the secondary optimization of the path, greatly reduced the average number
of path nodes, and simplified the vehicle’s automatic driving control. Many existing
algorithms have to rasterize the map.

However, we must admit that in order to achieve the path planning effect, a large num-
ber of invalid samples were discarded, which led to an increase in calculation time. This
algorithm can improve the sampling efficiency and shorten the calculation time through
parallel calculation. This will be improved in future research to further reduce the calcula-
tion time. In addition, the simulation case study was completed in this paper, but no on-site
industrial experiment was carried out. The unmanned driving design of underground
intelligent vehicles coordinates with multiple modules, including communication, sensors,
SLAM, mechanical control, etc. It is also necessary to shut down some mining operations
to ensure the safety of the experiment area. Due to these difficulties, this research only
completed the path planning algorithm module, and in the future, an on-site industrial
experiment will be completed after the preparation of each module.

6. Conclusions

This paper proposed a path planning method based on an improved RRT* algorithm
for solving the problem of path planning for underground intelligent vehicles on an ar-
ticulated structure and in drift environment conditions. Through a vectorized drift map
and using the kinematics of vehicles, the constraints of articulated underground intelli-
gent vehicles can be ascertained. The RRT* algorithm is an efficient sampling-based path
planning algorithm, but it cannot meet the constraints of articulated underground intelli-
gent vehicles. To solve this problem, this paper proposed an improved RRT* algorithm,
including dynamic step size, steering angle constraints, and optimal tree reconnection. A
simulation case study proved that the algorithm was effective and could solve the problem
of underground intelligent vehicle path planning.

However, the method in this paper still has limitations, and future research will focus
on the following aspects. (1) The solution time is still unsatisfactory because 86.12s cannot
meet the application requirement for underground unmanned driving. Vehicles need to
obtain a path within several seconds. A parallel calculation will be used to increase the
solution speed and further reduce the calculation time. (2) There is still no joint debugging
with intelligent vehicles. After the preparation of the industrial site, it will be combined
with other modules to complete on-site industrial experiments and test the gap between
the simulated and actual performance.
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Abstract: Exploration in unknown dynamic environments is a challenging problem in an AI sys-
tem, and current techniques tend to produce irrational exploratory behaviours and fail in obstacle
avoidance. To this end, we present a three-tiered hierarchical and modular spatial exploration model
that combines the intrinsic motivation integrated deep reinforcement learning (DRL) and rule-based
real-time obstacle avoidance approach. We address the spatial exploration problem in two levels
on the whole. On the higher level, a DRL based global module learns to determine a distant but
easily reachable target that maximizes the current exploration progress. On the lower level, another
two-level hierarchical movement controller is used to produce locally smooth and safe movements
between targets based on the information of known areas and free space assumption. Experimental
results on diverse and challenging 2D dynamic maps show that the proposed model achieves almost
90% coverage and generates smoother trajectories compared with a state-of-the-art IM based DRL
and some other heuristic methods on the basis of avoiding obstacles in real time.

Keywords: spatial exploration; hierarchical framework; deep reinforcement learning; intrinsic
motivation; path planning; obstacle avoidance

1. Introduction

Spatial cognitive behaviour modelling is the basic content of human cognitive be-
haviour modelling, and is one of the hottest topics in the field of neuroscience and computer
science. At its core, the agent in an AI system needs to explore the environment to gain
enough information about the spatial structure. The possible applications include, for exam-
ple, search and rescue (SAR) missions, intelligence, surveillance and reconnaissance (ISR),
and planetary exploration. Therefore, it is important to design an efficient and effective
exploration strategy in unknown spaces.

At present, autonomous spatial exploration falls into two main categories: traditional
rule-based exploration and intelligent machine-learning-based exploration. The rule-based
exploration methods such as frontier-based method [1] is simple, convenient and efficient.
This kind of approach rely on an expert feature of maps, expanded the exploration scope
by searching for the next optimal frontier point which is between free points and unknown
points according to the explored map. However, the locomotion of the agent driven by
this method is mechanical and rigid, and it is also difficult to balance between exploration
efficiency and computational burden. As an effective tool for autonomous learning strate-
gies, deep reinforcement learning (DRL) has been more and more widely used in spatial
exploration. However, DRL suffers much from the inherent “exploration-exploitation”
dilemma, resulting in sampling inefficiency if the extrinsic rewards are sparse or even non-
existent. To solve the problem of sparse rewards, many recent DRL approaches incorporate
the concept of intrinsic motivation (IM) from cognitive psychology to produce intrinsic
rewards to make the rewards denser. However, intrinsic motivation based enhancement
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is insufficient for efficient exploration in unknown spaces. The main reason is that IM
treats all unseen states indiscriminately and ignores the structural regularities of physical
spaces. In addition, it is difficult for end-to-end DRL agent to simultaneously learn obstacle
avoidance, path planning and spatial exploration from raw sensor data.

To this end, we extend our previous work [2] and propose a three-tiered hierarchical
autonomous spatial exploration model, named Intrinsic Rewards based Hierarchical Explo-
ration with Soft-adaptive Finite-time Velocity Obstacle (IRHE-SFVO), to explore unknown
static and dynamic 2D spaces. This model consists of two parts: a Global Exploration Mod-
ule (GEM) and a Local Movement Module (LMM). GEM is used to learn an exploration
policy to produce a sequence of target points that will maximize the information gain about
the spatial structure based on the location of the agent, the trace of the agent, and the
explored portions as its spatial memory. Specifically, to make the motion pattern of the
agent more like human beings, GEM is not concerned with the immediate neighbourhood
of the agent, but determines a distant yet reasonably reachable target to be explored next.
Selected based on intrinsic rewards, such targets are usually those with a lot of unexplored
areas around them.

In the local movement phase, this paper designs a hierarchical framework to control
the movement to the target point. We separate this phase into two parts: planning and
controlling. In the planning stage, an optimistic A* path planning algorithm, which can
conduct self-adaptive path planning in a partially known environment, is used to compute
a shortest path between the current location of the agent and the target point. It assumes
that unknown areas are freely reachable and decides whether to replan the global path
according to the ongoing perception. In the controlling stage, we use the improved Finite-
time Velocity Obstacle (FVO), called Self-adaptive Finite-time Velocity Obstacle (SFVO),
and design an optimal velocity function to drive the agent to avoid moving obstacles in
real-time. This allows the agent to reach the target point quickly while avoiding collision
with moving obstacles at the same time.

Working in synergy, the modules in the three levels apply a long-horizon decision-
making paradigm instead of the step-by-step or state-by-state way used by some other
exploration methods [3]. This segmentation not only reduces the training difficulty, but
also tends to generate smooth movements between targets instead of unnatural trajectories.
In summary, the main novelties and technical contributions of this paper include: (a) a
hierarchical framework for spatial exploration that well exploits the structural regularities
of unknown environments, (b) an information-maximal intrinsic reward function for deter-
mining the next best target to be explored, (c) a hierarchical framework for local movement
that combines the global path planning with the local path planning for reaching the target
point rapidly and safely and (d) an optimal velocity function for choosing the best velocity
in collision-avoidance velocity set.

This paper is organized as follows. Section 2 describes related works in automatic
exploration, the DRL based on IM and real-time obstacle avoidance. Section 3 formulates
automatic exploration. Then, we present the details of our proposed algorithm and hy-
perparameter setting in Section 4. In Section 5, we compare our approach against several
popular competitors in a series of simulation experiments, showing that IRHE-SFVO is
promising for spatial exploration. Finally, in Section 6, we summarize our work this paper
and discuss future work.

2. Related Work

In this section, we will describe and analyse the research status and development
trends of autonomous spatial exploration, reinforcement learning based on IM and various
velocity obstacle methods in this section.

2.1. Autonomous Spatial Exploration

At present, the research on autonomous spatial exploration mainly includes two
categories: traditional rule-based autonomous spatial exploration and intelligent machine-
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learning-based autonomous spatial exploration. The mainstream of rule-based method
is frontier-based method proposed by Yamauchi in 1997 [1]. This method detects the
“frontier”, that is, the edges between the free area and the unknown area, then selects the
best “frontier point” by some principles, and the agent moves from the current position to
the selected “frontier point” by path planning and locomotion, so as to finally achieve the
purpose of exploring the whole map. The frontier-based exploration strategy is similar to
the NBV (Next Best View) problem in computer vision and graphics. Similarly, there is a
lot of literature on the second step of frontier-based exploration strategy, i.e., evaluating
and choosing the best frontier. There are generally three types of metrics: (a) cost-based
which select the next target based on the path length or time cost [4–7], (b) utility-based
which select the next target based on the information gain [8,9] and (c) the mixture [10].
Another typical traditional rule-based method is associated with information theory. These
methods leverage some metrics such as entropy [11] or mutual information (MI) [12] to
evaluate the uncertainty of the agent’s position and the evidence grid map to control the
agent to move in the direction of maximizing the information gain. In general, although
the rule-based approach is simple and efficient, the movement mode of the agent driven by
them is mechanical and rigid, and it is also difficult to balance exploration efficiency with
computational burden.

Due to the recent significant advance in DRL, a number of researchers have tried to
solve the exploration problem as an optimal control problem. Tai Lei and Liu Ming [13]
proposed an improved DQN framework to train robots to master obstacle avoidance strate-
gies in unknown environments through supervised learning based on convolution neural
networks (CNN). However, they only solved the collision avoidance problem and failed to
finish the spatial exploration task. Zhang et al. [14] trained an Asynchronous Advantage
Actor-Critic (A3C) agent that can learn from perceptual information and construct a global
map by combining it with a memory module. Similarly, an A3C network in [15] receives
the current map, the agent’s location and orientation as input, and returns the next visiting
direction, given that the space around the agent is equally divided into six sectors. Chen
et al. [16] designed a module of spatial memory and used the coverage area gain as an
intrinsic reward, and accelerated the convergence of policy through imitation learning.
Razin et al. [17] used Faster R-CNN to avoid collision and used double deep Q-learning
(DDQN) model to explore unknown space. However, although DRL can solve the problem
of limited dimensions, it has difficulty training in end-to-end control.

To solve these problems, Niroui et al. [18] and Shrestha et al. [19] combined DRL with
a frontier-based method to enable robots to learn exploration strategies from their own
experience. Li et al. [20] proposed a modular framework for robot exploration based on
decision, planning and mapping modules. This framework used DQN to learn a policy
for selecting the next exploration target in the decision module and used an auxiliary
edge segmentation task to speed up training. Chaplot et al. [21] used the Active Neural
SLAM module to address the exploration in 3D environments under the condition of
perception noises. We draw some inspiration from these two works but are more interested
in exploration in 2D environments.

2.2. RL Based on Intrinsic Motivation

To solve the notorious reward-sparse problem, many recent DRL approaches incorpo-
rate the intrinsic motivation from cognitive psychology. Intrinsic motivation is produced
from human’s natural interest in all kinds of activities that can provide novelty, surprise, cu-
riosity, or challenge [22], without any external rewards such as food, money or punishment.

Applying IM to the RL means that the agent generates an “intrinsic reward” by itself
during the interaction with the environment. The formulation of intrinsic rewards can
be roughly divided into three categories, (a) visit count and uncertainty evaluation-based
methods, (b) knowledge and information gain-based methods, and (c) competence-based
methods. The first class of methods, based on upper confidence bound (UCB), estimate the
counts of state visitation in high-dimensional feature space and large-scale state space, to
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encourage the agent to visit poorly known states. This genre includes the density-based
methods [23,24], state generalization-based methods [25–28] and inference calculation-
based methods [29]. Second, the knowledge and information gain-based methods generally
establish a dynamics model of the unknown environment and measures the intrinsic
rewards using the model’s increased accuracy as the exploration progresses. The specific
formal models of this type include predict inconsistencies based model [30–32], prediction
error based model [3,33–36], learning process based model [37] and information theory
based model [36,38,39]. The third class formulates the intrinsic rewards by measuring the
agent’s competence to control the environment or the difficulty and cost of completing a
task [40]. At present, the DRL based on IM has made great progress relative to the classic
RL in applications with complex state spaces and difficult exploration (such as Atari-57
games) [41].

2.3. Velocity Obstacle

A crucial problem in exploration is how to avoid static and dynamic obstacles in real
time. The known static obstacles are usually considered in global path planning, while
unknown or dynamic obstacles are the focus of local path planning. The common collision
avoidance methods include artificial aperture method (APF) [42], dynamic window method
(DWA) [43] and behaviour method [44]. These methods have strong adaptability and
high efficiency, so many researchers often combine the intelligent control algorithms with
these methods for obstacle avoidance [45,46]. Besides, lazy rapidly-exploring random
tree method (RRT) [47] method is also used for local path planning. However, these
methods above cannot avoid collisions completely with moving obstacles or have certain
randomness which leads to low efficiency of obstacle avoidance such as [47]. Alternatively,
Velocity Obstacle (VO), first proposed by Fiorini et al. [48], is a simple and efficient
algorithm that can avoid static and moving obstacles completely. It generates a conical
velocity obstacle space in the agent velocity space. As long as the current velocity vector is
outside the VO space, the agent will not collide with obstacles at any time in the future.
However, the basic VO has many disadvantages. First, if the agent and moving obstacles
or other agents use VO for local path planning at the same time, it will lead to oscillatory
motion on both sides [49]. Secondly, the VO space excludes every velocity that may lead to
collision, that is, a velocity that can cause a collision after a long time will also be excluded.
This leads to the reduction of the range of optional collision-avoidance velocities in some
scenarios, or even no optional velocity. To overcome these problems, Abe and Matsuo [50]
proposed a common velocity obstacle (CVO) method, which provides collision detection
between moving agents and enables agents to share collision information without explicit
communication. This information allows agents to use the general VO method for implicit
cooperation, so as to achieve the effect of avoiding collision. Guy et al. [51] proposed the
finite time velocity obstacle algorithm (FVO), which expands the optional velocity vector
of the traditional VO algorithm by calculating the collision velocity cone within a certain
time. In order to solve the local oscillation problem Fulgenzi et al. [49] proposed reciprocal
velocity obstacles (RVO) by considering the velocity change of both sides of the agents.

The proposed model in this paper combines the DRL, intrinsic motivation and ve-
locity obstacle. Due to the features of exploration in 2D dynamic spaces, we reshape the
generating paradigm of intrinsic reward. In order to ensure the safe and fast movement
of the agent, we propose another hierarchical approach that combines a variation of the
A* path planning method (called optimistic A*) and improved FVO (called self-adaptive
FVO, SFVO).

3. Problem Formulation

Before giving the details of the proposed model, this section first formulates the
exploration problem in a 2D environment.
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Definition 1. A Working Space, denoted as WSM , represents a 2D grid map of the size M × M.
Any element in WSM can be represented as (x, y), 1 ≤ x, y ≤ M. Each cell in the grid is
represented by T(x, y): T(x, y) = 0 means a free cell while 1 is for a location occupied by an
obstacle. Besides, we assume that the area of each cell is 1.

Definition 2. Definition 2 Observation Range (ObsR) of an agent is the set of any point whose
vertical and horizontal distance to the current position of the agent is not more than the observation
radius (n):

ObsR(xi, yi) = {(x, y)|(|x − xi| ≤ n, |y − yi| ≤ n)} (1)

Definition 3. Exploration Range (ExpR) of an agent is the set of any point whose vertical and
horizontal distance to the current position of the agent is not more than the exploration radius(m),
and it can be covered more than half of the area by the ‘radar wave’ emitted by agent:

ExpR(xi, yi) = {(x, y)|(|x − xi| ≤ m, |y − yi| ≤ m), S((xi, yi) → (x, y)) >
1
2
} (2)

S((xi, yi) → (x, y)) means the covered area by the “radar wave” emitted from (xi, yi)
to (x, y). A specific example is shown in Figure 1.

(a) (b) (c)

Figure 1. An example of Exploration Range. (a) shows the obstacles around the agent, where the red
solid circle represents the agent, and the black squares represent two obstacles. (b) shows the range
that can be covered by the “radar wave” emitted from the agent. The gray shaded areas indicate that
these areas are not covered by the “radar wave”. (c) shows whether each cell in this scenario can be
regarded as an explored area under Definition 3 when m = 3. The blue cells are the areas that the
agent has been explored, while the agent has not explored the white areas.

Note that the region observed by the agent does not represent where it has been
explored.As a simple example, imagine that we are searching for gold that cannot be seen
from the earth’s surface, so that we should use a gold detector to explore the region as far
as it can extend into. We cannot find gold using our eyes, but the detector can. In general,
the “detection range” (m) should not be greater than the “length of field of view” (n), i.e.,
m ≤ n and ExpR(xi, yi) ⊆ ObsR(xi, yi).

4. The Proposed Model

This paper combines the advantages of DRL algorithms, traditional non-learning
planning algorithms and real-time collision avoidance algorithms, and propose a novel
approach to solve the exploration problem in the 2D dynamic grid. The proposed model
is modular and hierarchical so that it cannot only exploit the structural regularities of the
environment but also improve the training efficiency of DRL methods. The overall structure
of our model is shown in Figure 2. GEM determines the next long-term target point to be
explored based on a spatial map mt maintained by the agent. LMM takes the next target
point as input and computes the specific action to reach the target point. We use tg to index
the step of selecting the next target in only GEM. For example, we select a target point at
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initial time, t = tg = 1, and we assume the agent takes 10 steps to reach this target and
select a next target point, then t = 11 and tg = 2 at this moment.

Figure 2. The overview of our IRHE-SFVO. In Global Exploration Module (GEM), the agent uses
the current location and observation to build a spatial map mt, then input mt into Global Policy and
output the next target point that will be explored. The Local Movement Module (LMM) determines
the specific action to reach the target point quickly and safely based on the agent’s current location,
the next target point, and the obstacle map maintained by the agent.

4.1. Global Exploration Module

We want to learn an exploration policy πg that enables the agent to select a location to
explore so that the information gain about the environment can be maximized. For this
purpose, we design an intrinsic reward function, favouring states where the agent can
increase its exploration range at a fastest speed. Proximal Policy Optimization (PPO) [52]
is used for training πg. Importantly, πg is learned on a set of training maps and tested on
another set of unseen maps. This setting is to demonstrate the desirable generalization of
our method across different environments.

4.1.1. Spatial Map Representation

First, as shown in the top block in Figure 2, GEM maintains a four-channel spatial
map, mt, as the input of the global policy. Then, the policy network outputs a next target
point (gtg ) that will be explored. To be specific, the spatial map contains four matrices of the
same size, i.e., mt = {0, 1}4×M×M, where M is the height and width of the explored maps.
Each element in the first channel represents whether the location is an obstacle (OMt):
0 is for a free cell and 1 is for a blocked one. In the beginning, OM0 = {0}M×M based on
the assumption of free space. Each element in the second channel represents whether the
location has been explored (EMt). The third channel encodes the current location (Pt) in a
one-hot manner, i.e., the element corresponding to the agent location is set to be 1, and the
others are 0. The fourth channel labels the visited locations (P1:t) from the initial time to
the current time. The rationality of establishing these four channels is that the agent can
fully exploit all spatiotemporal information useful for target decision-making. In particular,
this elegant design is: (a) to enable the agent to use the structural regularities of the spatial
environment to make correct decisions, (b) to prevent the agent from selecting the points
that have already been explored when choosing the next target point, and (c) to make the
agent select the best next target point based on the current location, considering the time
cost and exploration utility comprehensively.

4.1.2. Network Architecture

The policy network takes mt as input and outputs a gtg �→ πg(mt; θg), where θg are
the parameters of the global policy. As shown in Figure 3, the spatial map mt is first
passed through an embedding layer and the layer outputs a four-dimensional tensor of
size 4 × N × M × M × M, where N represents the length of each embedding vector. Then,
add the four constituent 3D tensors along their first dimension and we get a tensor with
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rich information whose size is N × M × M × M. Then, this 3D tensor is passed through
three convolution layers and three fully connected layers successively, and finally outputs a
next target point: gtg . Note that the embedding layer is essential for preserving information
embedded in the input because its input is 0–1 matrices of size 4 × M × M × M, which
are all very sparse. Although the convolutional and pooling operations can extract spatial
structure information, they will result in loss of many valuable information, and ignore
the association between the overall and part as well if we send a matrix to the CNN and
pooling layer directly. Therefore, to ensure the integrity of the information, it is necessary
to map the mt to a higher-dimensional vector first.
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Figure 3. The structure of the actor-critic network in GEM. N represents the size of each embed-
ding vector.

4.1.3. Intrinsic Reward

The effectiveness of DRL relies on rewards heavily. However, the exploration task
is a reward-sparse RL problem. To alleviate the problem, we design an intrinsic reward
(denoted by ri

tg
) and combine it with the external rewards (denoted by re

tg
) given by the

environment, i.e., rtg = ri
tg
+ re

tg
, so that the rewards along the exploration trajectory

becomes denser. This is critically helpful to speed up the convergence of the policy and
for the emergence of directed exploration. In literature, possible IM formulations include
“curiosity” [34], “novelty” [53] or “empowerment” [40] to generate intrinsic rewards as
described in Section 2. However, these approaches use blackbox models that cannot be
initialized at each episode because the weights of neural networks cannot be reset in
different episodes, resulting in the intrinsic reward getting smaller and smaller after each
episode under the same scenario. To solve this problem, we design a simple yet effective
intrinsic reward function that resets ri at each episode. We use the increase of the explored
area deduced from EMt when the agent arrives at a new target point as the intrinsic
rewards ri

tg
.

4.2. Local Movement Module

To be able to explore in dynamic spaces, the agent needs both to reach the target point
quickly and avoid colliding with moving obstacles. To achieve this goal, we design another
hierarchical framework in local movement module including two levels: planning and
controlling. In the planning stage, we use optimistic A* algorithm to plan an optimal path
under partial observability, and then divides the path into several segments according to
some rules. The end point of each segment is called a key point. In the controlling stage,
we design an SFVO (Self-adaptive FVO) for the agent to reach these key points sequentially,
and finally completes the movement along the path.
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4.2.1. Planning Stage

There are many global path planning algorithms such as breadth first search , depth
first search and Dijkstra. Instead of using the less efficient Generalized Dijkstra’s algorithm
to solve the Shortest Path Problem (SPP) in [54], we use A* algorithm which has better
search efficiency to plan the optimal global path. The basic A* algorithm performs well
in fully observable environments, but it does not work directly in our task since the OMt
dose not reflect the whole map. So we use a variation of A*, called optimistic A* algorithm.
We assume that all unknown cells of the obstacle map are traversable and then plan a path
between the current position of the agent and the target point. If the agent observes some
static obstacles while moving, then it will replan the path using A* algorithm.

Once an optimal path is computed, we select several key points on this path to guide
the agent reach the target point. For the motion controller, presented below, to drive the
agent to move between them. As shown in Figure 4, this paper categorizes three types of
key points: (a) turning points on the path, (b) boundary points on the path that crosses the
known and unknown region and (c) the destination point of the path, i.e., the target point.

(a) (b)

Figure 4. Examples of key points. The left figure shows the first and third types of key points, while
the right figure shows the second and third types of key points. The green squares are the current
locations of the agent. The blue squares represent the target points, which is also the third type of key
points. The red lines represent the optimal path that was generated by A* algorithm and the orange
squares are the first or second type of key points. The shaded area represents the unknown range of
the agent while the other area represents the known range that has been observed by the agent.

Note that, the second type of key points are selected in the known area. Otherwise,
if we select the boundary point in unknown area (the neighbour square above the orange
square in Figure 4b, an obstacle might be selected as the key point.

In particular, the rationality of the selection strategy is that: (a) each segment of the
path between key points is straight without considering dynamic obstacles, so that it is
convenient for the controller to control the movement; (b) it is applicable to unknown
spatial exploration problems under the partial observation conditions. We always choose
the locations known for the agent as the key point, making its performance more similar to
human exploration behaviour.

4.2.2. Controlling Stage

To avoid colliding with moving obstacles, we propose Self-adaptive Finite-time Veloc-
ity Obstacle algorithm (SFVO) built on FVO. Let A be the agent and B be an obstacle. For
ease of calculation, we assume the agent and obstacles are dish-shaped. We use D(p, r) to
represent a circular region with center p and radius r:

D(p, r) = {q| ‖ q − p ‖< r} (3)
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The finite-time velocity obstacle FVOτ
A|B represents the set of relative velocity values

between A and B that will cause the collision in time τ in the future:

FVOτ
A|B = {v|∃t ∈ [0, τ], tv ∈ D(pB − pA, rA + rB)} (4)

The collision-avoidance velocity (CA) of the agent is:

CAτ
A|B(VB) = {v|v /∈ FVOτ

A|B ⊕ VB} (5)

According to the features of autonomous spatial exploration in dynamic environ-
ments, we change the fixed time τ into into adaptive dynamic time τd, i.e., τd

0 = τmax
and τd(n) = τmax − Δτ · n, n represents the number of rounds of a cycle, Δτ represents the
reduction of finite time. This method is called Self-adaptive Finite-time Velocity Obstacle
(SFVO). Figure 5 tells that the larger τd we set, the larger range of FVOτd

A|B ⊕ VB, and the

smaller range of CAτd

A|B(VB). Therefore, we will adaptively adjust the velocity obstacle

range of the agent by decreasing τd gradually. Specifically, at the beginning, the agent
calculates the CAτd

A|B(VB) under the condition of τd = τmax. If CAτd

A|B(VB) = ∅, decrease

the τd by a fix time interval Δτ, and then calculate the collision-avoidance velocity again. If
there is still no alternative velocity when τd = 0, the agent stays idle until the next time
step to continue the process above. The pseudo-code of SFVO is shown in Algorithm 1.

|A BFVO
|A B BFVO V

Figure 5. FVO algorithm diagram. In the left figure, the shaded area shows the relative velocity that
will cause collision in time in the future. The right figure shows the collision velocity (shaded area)
and collision-avoidance velocity (white area) of the agent given the velocity of the obstacle.

Algorithm 1 SFVO

1: τd ← τmax
2: for τd > 0 do
3: FVOτ

A|B = {v|∃t ∈ [0, τ], tv ∈ D(pB − pA, rA + rB)}
4: CAτ

A|B(VB) = {v|v /∈ FVOτ
A|B ⊕ VB}

5: if CAτd

A|B(VB) = ∅ then

6: τd ← τd − Δτ
7: continue
8: else
9: return CAτ

A|B(VB)

10: end if
11: end for
12: return ∅
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Based on the SFVO, the agent can avoid static and dynamic obstacles in real time, and
its collision-avoidance velocity is vA ∈ CAτd

A|B(VB). However, if there is more than one
element in set vA, how can we choose an optimal velocity that not only drives the agent to
reach the target point quickly, but also minimizes the risk of collision.

Inspired by Kim et al. [55], we design an optimal velocity evaluation function which
consists of two parts: Expected Velocity Direction Evaluation Function ( fv) and Relative
Vertical Distance Evaluation Function ( fd). As shown in Figure 6. The target point of the
agent is known, so the direction of its expected velocity (vv) is the direction from the agent’s
current position points to the target point. So, fv can be expressed as Equation (6).

fv = kv|vv − vA| ⇒ kvcos〈vv, vA〉 = kv
vv · vA
|vv||vA| (6)

Note that, the action space of the agent in our task is discrete, and the agent moves
one unit at each step, i.e., the length of its velocity is fixed. So cos〈vv, vA〉 is equivalent to
|vv − vA|.

Target point

Figure 6. Schematic diagram of the expected velocity and the relative vertical distance. The green
disks represent the agent and the obstacle, respectively, and the red point represents the target point.

The relative vertical distance (dv) is defined as Equation (7).

dv = |PA − PB|sinθ =
v × (PA − PB)

|v| (7)

v is the relative velocity of the agent and the obstacle, i.e., v = vB − vA. A smaller dv means
that the obstacle is prone to collide with the agent. Note that dv can be negative according
to Equation (7), indicating that the obstacle is moving away from the agent and there is no
danger for the agent. And the large |dv| is, the safer the agent is. According to the analysis,
fd is designed as Equation (8):

fd =

{
−dv dv ≤ 0
− 1

dv
dv > 0

(8)

Finally, an overall evaluation function can be defined to be a weighted sum of fv and
fd, as shown in Equation (9). The importance of each part can be regulated by the weights
k1 and k2.

f = k1 fv + k2 fd (9)

When increasing k1 and decreasing k2, fv dominates and the agent is more inclined to
approach the target. In contrast, the agent takes priority in obstacle avoidance.
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4.2.3. The Hybrid Algorithm

The optimistic A* algorithm can calculate the shortest global path in the partially
known environment, but it cannot timely avoid the moving obstacles in dynamic environ-
ments. The SFVO with optimal velocity evaluation function can avoid collision in real time,
but it lacks global guidance and has only one expected direction. More specifically, in a
space with many moving obstacles, it is easy to fall into local minima, resulting in planning
longer paths or even failing to plan. With this problem in mind, we combine the planning
and controlling methods described above. The workflow of the hybrid algorithm is shown
in Figure 7.

Figure 7. Flowchart of the hybrid algorithm.

At the time t, the algorithm puts the target point (gtg ), which is produced by the
Global Exploration Module Pt and OMt into A* algorithm, plans a global path: patht =
fA∗(Pt, gtg |OMt). And extract the key points on the patht: {K1, K2, ..., Kn}. Then, put
the set of collision-avoidance velocities VA which is calculated by the SFVO algorithm
(Algorithm 1) VA = CAτ

A|B(VB), the observation (Ot) of the agent and the sequence of
key points into evaluation function ( f ), and calculate an optimal velocity of the agent
vopt ← f (VA, K1, K2, ..., Kn|Ot, OMt, Pt). Then, the agent moves one step at this velocity,
and updates OMt → OMt+1 and Pt → Pt+1 at the same time. At time t + 1, if there
is an obstacle on patht, i.e., ∃(i, j) ∈ patht, OM[i, j] = 1, conduct the A* path planning
again: patht+1 = fA∗(Pt+1, gtg |OMt+1), and continue with the above process. Otherwise,
patht+1 = patht and determine whether the agent has reached the key point K1. If so, the
sequence of key points is updated. Otherwise, the agent continues to use SFVO algorithms
for local movement control. When the agent reaches the target point (gtg ), the LMM stops
running. Then the GEM chooses a new next target point (gtg+1).

In addition, to make the motion trajectory smoother and reduce unnecessary local
oscillation, the agent can be regarded as reaching the key points as long as it reaches the
eight adjacent cells around the key point.
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These are all the functional modules of the IRHE-SFVO above. As we can see in
Figure 2, we use the Global Policy in GEM for generating next target points which the
agent will go to, then plan a best path between the current position and the target point
and extract the key points in the planning stage. Then, in the controlling stage, we use the
SFVO algorithm (Algorithm 1) and evaluation function (Equation (9)) to decide a specific
action of the agent, and then update the current knowledge of the spatial structure which
decides whether to replan the A* algorithm or update the key points sequence. We run the
above functional modules sequentially until the exploration is completed.

5. Empirical Evaluation

The goal of this paper is to build agents that can autonomously explore novel 2D
dynamic environments with moving obstacles. To verify the effectiveness of the proposed
method, we implement mentioned components for performance evaluation.

5.1. Experimental Setup

In order to evaluate the effect of the proposed model, we construct 2D grid maps by
referring to reference [56] to represent the layout of indoor scenes such as offices. The maps
are sized of M = 40, as shown in Figure 8. The first six maps make up the training set, and
the rest are test maps. These maps have different spatial layouts and there is no intersection
between the training set and the test set.

We use the ratio of the explored region as the metrics, which is calculated by dividing
the coverage area by the total area that can be explored. It is defined as:

ExpRatio =
C(EMt)

∑
x,y=M
x,y=0 (1 − T(x, y))

(10)

where C(EMt) represents the total area that is explored.

(a) Train map 1 (b) Train map 2 (c) Train map 3 (d) Train map 4 (e) Train map 5

(f) Train map 6 (g) Test map 1 (h) Test map 2 (i) Test map 3 (j) Test map 4

Figure 8. The different 2D grid maps without moving obstacles.

In these 2D grid maps, we set several obstacles which move independently of each
other. The initial positions and moving directions of the moving obstacles are randomly
selected, their movement mode is similar to that of the intelligent sweeping robots. As
shown in Figure 9, the obstacles move straight until they collide with the obstacle or touch
the boundary of the map, and then change the moving direction randomly.
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(a) (b)

Figure 9. The diagram of the initial distribution of moving obstacles and their movement trajectory.
The red cells represent the dynamic obstacles, and the yellow dotted line represents the possible
movement trajectory of this obstacle in left figure. When the environment is initialized, moving
obstacles are randomly generated in the blank area of the map, and each obstacle is independent of
each other. The right figure shows the initialization of the moving obstacles.

To simplify the calculation, both the agent and the moving obstacle are regarded as
circles with a radius of 0.5. Table 1 shows the parameters used in this experiment.

Table 1. Dynamic environment parameter details.

Parameter Value

The weight/height of grid maps (M) 40
Number of moving obstacles (i) 10

Observation range of the agent (n) 5
Exploration range of the agent (m) 2
Physical radius of the agent (rA) 0.5

Physical radius of the moving obstacles (rB) 0.5
The maximum of finite time in SFVO (τmax) 2
The reduction of finite time in SFVO (Δτ) 1

Total steps the agent moves (T) 800

Training Details. We use multi-process paralleled PPO to train the global policy in
GEM, with a different process for each map. The hyperparameters of PPO and global policy
network are shown in Tables 2 and 3, respectively.

Table 2. PPO hyperparameter details.

Hyperparameter Value

Number of parallel environment 6
Number of minibatches 12

Number of episodes 100,000
Number of optimization epochs 4

Learning rate 0.0001
Optimization algorithm Adam

Entropy coefficient 0.001
Value loss oefficient 0.5

λ 0.95
γ 0.99

ε/Clip range 0.1/[0.9, 1.1]
Max norm of gradients 0.5
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Table 3. Global policy network details.

Layer Parameters

Embedding Size of embedding vector = 16

Conv1 Output = 32, Kernel = 3, Stride = 1,
Padding = 1

Conv2 Output = 64, Kernel = 3, Stride = 1,
Padding = 1

Conv3 Output = 16, Kernel = 3, Stride = 1,
Padding = 1

MaxPool Kernel size = 2
Linear1 Output size = 64
Linear2 Output size = 32

Baselines. We use some classical methods and end-to-end DRL methods as baselines,
and all methods were tested 15 times on four test maps with random initial positions:

• RND-PPO: A popular IM based DRL approach. We adapt the source code from [3]
to the problem settings in this paper. RND is a SOTA (state-of-the-art) DRL method
based on prediction error, which has outstanding performance in Atari games. The
network of PPO is similar to the proposed model, and an LSTM module [57] is added.
The intrinsic discount factor γi = 0.999 and the other hyperparameters as the same as
the proposed model. The target and prediction network consist of 3 fully connected
layers and the learning rate of optimizing the prediction network lrRND = 0.0025. In
addition, we design an external reward that is given a negative reward (−10) when
the agent collides with an obstacle or moves out of the map;

• Straight: This method is widely used in intelligent sweeping robots. It works by
moving the agent in a straight line and performing a random turn when a collision
will occur in next time step [58];

• Random: The agent takes a sequence of random actions to exploration.
• Frontier: A method which is based on geometric features to decided its next best

frontier, drives the agent always goes to unknown spaces [59].

The RND-PPO is an end-to-end method, taking the observation as input and out-
putting a specific action of the agent. This kind of methods are hard to train for a desirable
policy. Compared with RND-PPO and Random, the Straight is more stable, as it changes
the velocity of the agent only when the agent will collide with an obstacle. Besides, the
frontier-based method is also hierarchical as ours, whose workflow is still to select a po-
sition and then move to it, and we find that the SOTA DRL exploration methods are also
difficult to achieve its performance in terms of exploration ratio [16].

5.2. Local Real-Time Obstacle Avoidance

We first verify the effectiveness of SFVO and the optimal velocity evaluation function
for real-time obstacle avoidance, as shown in Figures 10–12. The green squares represent
the positions of the agent at the current time, and the blue squares represent the target
points. The red squares represent the moving obstacle with downward velocity, and the
orange squares represent key points. The task of the agent is to reach the target point
quickly while avoiding static and dynamic obstacles at the same time.

Because of the existence of key points and the four-direction (up, down, left and right)
action space, each part of the path that between two key points forms in a straight line,
so the agent has to move perpendicular to the line or in the opposite direction in order
to avoid the moving obstacles. As a result, the expected velocity direction evaluation
function fv of the agent during obstacle avoidance is not greater than 0. Then, the agent
completely depends on the relative vertical distance evaluation function fd to select the
optimal velocity. On other words, if the theory described above is correct, no matter how
large k2 is, it will always play a role in obstacle avoidance. Then, after obstacle avoidance,
the agent needs to change its velocity to approach the key point, and the velocity selection

54



Electronics 2022, 11, 574

at this time completely depends on the expected velocity direction evaluation function fv.
That is to say, no matter how large k1 is, it always plays a role in the velocity selection of
approaching the key point after completing obstacle avoidance. Therefore, the combination
of weighting coefficients in the evaluation function set in this experiment (Equation (9)) is
relatively single. We set three groups of different weighting coefficients: k1 = 0, k2 = 1;
k1 = 1, k2 = 0; k1 = 1, k2 = 1. The trajectories of the agent under the three groups of
coefficients are shown in Figures 10–12.

(a) t = 0 (b) t = 1 (c) t = 3 (d) t = 4

(e) t = 5 (f) t = 6 (g) t = 8 (h) t = 10

Figure 10. The trajectory of the agent under the condition of k1 = 0, k2 = 1 set in f .

As shown in Figure 10, when k1 = 0, k2 = 1, the moving trajectory of the agent is more
and more away from the obstacle, but does not move towards key points. In essence, the
agent is still taking random movements on the basis of avoiding collision with obstacles.

(a) t = 0 (b) t = 1 (c) t = 3 (d) t = 4

(e) t = 5 (f) t = 23 (g) t = 24 (h) t = 38

Figure 11. The trajectory of the agent under the condition of k1 = 1, k2 = 0 set in f .

When k1 = 1, k2 = 0, the agent will ignore the risk of collisions while moving. As
shown in Figure 11, at t = 3, the agent judges that it will collide with the moving obstacle
in the next two steps with the current motion direction through SFVO algorithm, so that it
needs to make obstacle avoidance action. The agent is close to the static obstacle on the right
and far from the one on the left. Therefore, the best obstacle avoidance action of the agent at
this time should be to move left, which can avoid colliding with the moving obstacles and
reduce the risk of collision with other obstacles, as shown in Figure 12. However, the agent
does not consider the relative vertical distance dv from the obstacle under the condition of

55



Electronics 2022, 11, 574

k1 = 1, k2 = 0, nd has a 50% probability of moving right, as shown in Figure 11, which
increases the risk of collision with other obstacles.

(a) t = 0 (b) t = 1 (c) t = 3 (d) t = 4

(e) t = 5 (f) t = 23 (g) t = 24 (h) t = 38

Figure 12. The trajectory of the agent under the condition of k1 = 1, k2 = 1 set in f .

Figures 11 and 12 not only show the effectiveness of SFVO algorithm and evaluation
function for obstacle avoidance, but also demonstrate the efficaciousness of the hybrid
algorithm for path planning. At t = 0, the orange square which close to the agent is the
second type of key points, the square that is far from the agent is the first type, and the blue
square is the third type. When the agent reaches a key point or one of its adjacent eight
squares, it is deemed to have reached the key point, so it continues to select the subsequent
key points for local path planning. Finally, it guides the agent to the target point.

5.3. Comparison with Baselines on Spatial Exploration

We test the IRHE-SFVO with weighting coefficient k1 = 1, k2 = 1 of the evaluation
function and compare it with the baselines on the test maps. The results are shown in
Figure 13 and Table 4. It is worth noting that, from the perspective of safety, when the agent
will collide with an obstacle, it should stop moving or change the direction immediately.
However, the vanilla frontier-based strategy has no such specific design.

Table 4. The average exploration ratios of the proposed method and baselines on the four test maps.
The brackets indicate the average number of times when the agent driven by the frontier-based
strategy collides with moving obstacles in 15 spatial explorations on different test maps.

IRHE-SFVO RND-PPO Random Straight Fronteir

Test map 1 0.8656 0.2258 0.2406 0.5276 0.9943 (4.53)
Test map 2 0.8552 0.2707 0.2107 0.6078 0.9992 (3.06)
Test map 3 0.8842 0.2501 0.1861 0.4721 0.9966 (5.13)
Test map 4 0.8953 0.2177 0.2287 0.5498 0.9997 (4.13)
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(a) Test map 1 (b) Test map 2

(c) Test map 3 (d) Test map 4

Figure 13. Coverage Performance. Policies are tested in 800 steps (15 random start locations on each
of the 4 testing maps). Darker line represents mean exploration ratio and shaded area represents the
standard deviation across the 15 runs.

Figure 13 shows the coverage performance of different methods on the four test maps.
Combining Table 4, we can see that the order of coverage from low to high is: Random and
RND-PPO, Straight, IRHE-SFVO, Frontier. Specifically, we first notice that RND-PPO and
Random method have similar poor performance. The reasons are as follows: the core of the
dynamics-based curiosity agent such as RND is that if a state is encountered many times,
its novelty will continue declining due to network parameter updates during training. So,
in these grid maps, the agent needs to come out of its familiar area which is around the
initial location at each episode. However, after several episodes of training, the “novelty”
of the states around the initial position drop to a low level, and the agent does not touch
the high-novelty world outside so that it is difficult for the agent to walk out of its familiar
area. Second, the policy learned by the RND agent lacks the ability to explore since the
intrinsic reward is to encourage agents to traverse more states rather than teaching the
agent to learn how to explore. To be specific, its intrinsic reward will gradually decrease as
training times due to the black-box model, so that the learned policy will depend more and
more on the external reward, and the policy is dependent on external rewards completely
at the end of training. In our experimental setting, RND only has a collision punishment as
its external reward, so the agent moves randomly and only learns to avoid collision at the
end. This is why the RND-PPO algorithm is slightly better than the Random algorithm.

Then, we notice that the Straight method performs much better than Random and
RND-PPO because this method takes random actions only when a collision occurs. It
is more stable than the Random and RND-PPO algorithms, which move randomly at
every step.

Overall, these methods perform largely worse than IRHE-SFVO because our algorithm
has an instructive high-level exploration strategy and an effective local movement module.
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At the beginning of training GEM, the target points are selected almost randomly. As
the training proceeds, the agent, driven by the intrinsic rewards which are generated by
itself, gradually choose the points that are distant but easily reachable. Intrinsic reward,
generated from intrinsic motivation, can make individual feel satisfied psychologically or
emotionally because of increase of obtained knowledge or control [60]. In our exploration
task, the intrinsic rewards are calculated by the increase of the explored area, so the agent
will fill more cheerful when it chooses the point in an unknown region that is further away
from it. Furthermore, the agent will reasonably adjust the distance between itself and the
selected target point as the training progresses with the fixed number of target points that
will be chosen during an exploration task. For example, the distances will be larger when
the number of the target points is 10, while they will be smaller when the number of the
target points is 20. In addition, LMM can adapt the agent to the planned path and avoid
colliding with moving obstacles according to its perception, which can reach the target
points quickly and safely.

Finally, we notice that the frontier-based strategy has achieved the highest exploration
ratio in all the test maps. This method selects frontier points that lie on the boundary
between the known free space and unknown region according to the maps built by the
agent, and the experimental environments in this paper are very realistic, without any
perceived noise or action errors, which is highly favourable to the frontier-based exploration
agent. In the environment with moving obstacles, although this method may miss some
“frontier points” at some time, resulting in that the spaces around them are not explored for
a period of time. However, at a later time, this method can always select these “frontier
points” again for spatial exploration. Because the motion trajectories of moving obstacles
are random, it is impossible for them to stay at the positions where the frontier method
always misjudges these “frontier points”, so the exploration ratio of the frontier-based
method is almost unaffected by dynamic obstacles. However, safety is a crucial problem
that we must consider in spatial exploration. And Table 4 shows that the frontier-based
method has collided with dynamic obstacles many times during exploration, while the
others do not.

In addition, we visualize the paths and coverage areas of IRHE-SFVO and baselines
on test map 2, the initial position of the agent is (1, 1) on the bottom left. As shown in
Figure 14, in each row of subfigures from left to right are the trajectories at step 0, step 40,
step 200, step 400, Step 600 and step 800 respectively.

We can see that IRHE-SFVO algorithm covers almost all space, and its motion trajectory
is relatively smoother and more reasonable than those of its competitors. It can be thought
that it produces similar exploration strategies as human beings. Although frontier-based
method has high exploration coverage, its motion trajectory is mechanical and very zigzag,
such as the upper left corner and the blank area in the middle of the map. In addition,
combined with Figure 13 we can also see that the exploration efficiency of IRHE-SFVO is
slightly higher than that of the frontier in the initial exploration stage, because IRHE-SFVO
aims to maximize the information gain of each step, but this is also the reason for its
insufficient local exploration. Every time IRHE-SFVO selects a target point, it tends to select
the locations where a large number of unexplored areas around it, so that the agent can
quickly obtain a large amount of map information, but the exploration is insufficient for
local details.

In summary, we use the DRL based on the intrinsic motivation to simulate the human
high-level cognitive behavior during exploration, so that the agent always chooses those
places that are particularly unknown to explore. And as for the quick and safe movement,
we use a hierarchical framework including planning and controlling instead of learning
methods that have difficulty in joint training to simulate the human low-level real-time
response. Therefore, combining the two modules above, the IRHE-SFVO algorithm could
meet the requirements of high efficiency and quasi-humanity of spatial exploration.
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(a) The trajectory of IRHE-SFVO

(b) The trajectory of Frontier

(c) The trajectory of RND-PPO

(d) The trajectory of Random

(e) The trajectory of Straight

Figure 14. Sample trajectories of the competing approaches along with the coverage region in Test
map 2. The orange point represents the initial location of the agent. The solid green lines represent
the trajectories that the agent has traversed and the blue shaded region shows the explored area.

6. Conclusions and Future Work

This paper proposed a three-tiered hierarchical autonomous spatial exploration model,
IRHE-SFVO, that combines a high-level exploration strategy (GEM) and a low-level module
(LMM) including a planning phase and a controlling phase. This decomposition not only
overcomes the disadvantage of the end-to-end training difficulty, but also generates smooth
movements which makes the behaviours of agent more reasonable and safely. We showed
how to design and train these modules and validated them on multiple challenging 2D
maps with complex structures and moving obstacles. The results showed that the proposed
model has consistently better efficiency and generality than a state-of-the-art IM based
DRL and some other heuristic methods. Although the proposed approach tends to revisit
explored locations in some time, resulting in the lower coverage performance compared
with frontier-based method, IRHE-SFVO still meets the application requirements to a
certain extent.

For future work, we would like to extend this work to the following directions. First,
in order to further improve the coverage of exploration, we would like to design more
complex mechanisms like incorporating spatial abstraction into the framework to improve
the efficiency of exploration and the rationality of motion mode. Second, more complex
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constraints should be considered, such as uneven terrains, diverse surface features and
the energy of the agent. Third, we would like to work on multi-agent collaborative spa-
tial exploration, which faces the problems of non-stationary environments, incomplete
observations and inefficient exploration of single agent in complex environments.
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Abstract: A drift-driving maneuver is a control technique used by an expert driver to control a vehicle
along a sharply curved path or slippery road. This study develops a nonlinear model predictive
control (NMPC) method for the autonomous vehicle to perform a drift maneuver and generate the
datasets necessary for training the deep neural network(DNN)-based drift controller. In general, the
NMPC method is based on numerical optimization which is difficult to run in real-time. By replacing
the previously designed NMPC method with the proposed DNN-based controller, we avoid the need
for complex numerical optimization of the vehicle control, thereby reducing the computational load.
The performance of the developed data-driven drift controller is verified through realistic simulations
that included drift scenarios. Based on the results of the simulations, the DNN-based controller
showed similar tracking performance to the original nonlinear model predictive controller; moreover,
the DNN-based controller can demonstrate stable computation time, which is very important for the
safety critical control objective such as drift maneuver.

Keywords: data-driven control; time delay neural network; drift control; autonomous driving;
nonlinear model predictive control

1. Introduction

To maximize passenger safety, future autonomous vehicles will be required to operate
in various road environments and cope with various emergencies. A common emergency
situation is high lateral slippage of the rear wheels on a sharply curved path or an ice-
covered road, which leads to oversteering (see Figure 1). In such a situation, an autonomous
vehicle should be capable of guaranteeing safety.

 

Figure 1. Schematic of the oversteering phenomenon.
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Drift technology (Figure 2) is a vehicle control strategy developed for use in motor-
sports. This technology enables professional racecar drivers to quickly generate high yaw
rates that cannot be achieved with normal steering maneuvers. Such a driving technique
requires expert driving skills to handle the vehicle’s behavior at its dynamic limit. Addi-
tionally, it is also used as a method for maintaining vehicle stability when an unintentional
oversteering phenomenon occurs while driving.

 
Figure 2. Drift control maneuver.

Drift control methods for autonomous vehicles have been extensively studied. For
example, the University of California, Berkeley [1] and Stanford University [2,3] have
been developing drift control methods for several years. However, most existing control
methods are based on the drift equilibrium state derived from vehicle dynamics. In
particular, methods have been proposed to control a vehicle using a counter-steering
maneuver that turns the steering wheel opposite to the turning direction [4,5]. Recent
studies have introduced reinforcement learning techniques for developing drift control
algorithms [6].

A drift control algorithm based on a nonlinear model predictive control (NMPC)
method was also developed, which is a method using real-time numerical optimization to
compute the control inputs minimizing the cost function [7,8].

In general, NMPC is based on real-time optimization techniques over a finite future
horizon. The NMPC approach has many advantages; for instance, it considers the input and
state constraints along with the dynamics during numerical optimization. However, the
unpredictable computational time of most numerical optimization algorithms has limited
the performance of NMPC in real-time control applications. To overcome this limitation,
this study proposes a drift controller based on a deep neural network (DNN) algorithm.
The proposed controller learns from data generated using the model predictive control
(MPC) technique and demonstrates similar control performance as NMPC while delivering
better real-time performance.

With the continued development of algorithms and computing devices, artificial intel-
ligence (AI) is now being applied to various industrial applications. In automated vehicle
research, AI advances enhance the integrity and safety of automated vehicle software. AI is
also expected to serve as a solution for critical safety scenarios that are difficult to manage
with conventional approaches [9,10].

The development of AI techniques that could improve the existing control systems
has been addressed in several studies in various contexts. In particular, the performance of
existing control systems has been improved by learning the driving from the data, enabling
shared control between a driver and an autonomous driving system [11].

Other studies have attempted to increase the online performance of proportional
integral derivative controllers by learning through an artificial neural network
(ANN) [12–14]. Recently, primal-dual NNs have improved the real-time performance
and stability of MPC [15].

Several studies have been conducted to improve the performance of the controller
by reducing the uncertainty of the model using an ANN. In particular, the performance
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of MPC can be significantly improved by learning from real-time data, which provide
knowledge of the target model [16–27].

The present study develops an NMPC-based drift control method that accurately
tracks the predefined trajectories of an automated vehicle by using an established vehicle
model. The developed NMPC-based drift controller is then replaced by a DNN-based
controller pretrained on the data generated from the previously designed closed-loop
trajectories of the NMPC method.

By replacing the previously designed NMPC method with the proposed DNN-based
controller, we avoid the need for complex numerical optimization of the vehicle control,
thereby reducing the computational load. The computational time of the DNN-based
controller is very small and predictable in general, once the training process is complete.
However, the computational cost of the NMPC method is often high and very unpredictable
because its optimization problem includes many free variables that must be explored under
many constraints. By switching the iterative numerical optimization process with a fixed
number of NN computational processes, real-time implementation of the final control
algorithm on a cheaper controller platform can be achieved and the real-time performance
of the control method can be guaranteed. The new technique is especially advantageous in
safety-critical applications such as automated vehicle control [28–31].

The following sections describe the development process. Section 2 analyzes the
vehicle dynamics that were used for the NMPC’s design, and the simulation is introduced.
The vehicle model is based on a 1:10-scaled vehicle (the test platform for future research).
Section 3 presents the NMPC design process under which the automated vehicle performs
the drift maneuver while following the desired curved trajectories. Section 4 illustrates the
closed-loop simulation results of the designed NMPC, and Section 5 presents the design of
the DNN-based controller. The research conclusions are presented in Section 6.

2. Vehicle Dynamics Analysis

2.1. Three-Degrees-of-Freedom Bicycle Model

The horizontal motion of the vehicle was computed using the bicycle model shown in
Figure 3. Neglecting aerodynamic drag forces, the bicycle model is defined as follows:

.
β =

Fy f cos(δ)+Fyr
m − r,

.
r =

Fy f cos(δ)−lr Fyr
Izz

,

.
vx =

Fxr−Fy f sin(δ)
m + rvxβ.

(1)

Figure 3. Bicycle model for describing the horizontal motion of the vehicle.
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Table 1 defines the notations used in this study. The state variables of the vehicle
model in Equation (1) are the sideslip angle (β), yaw rate (r), and forward velocity (vx). The
control inputs are the rear tire force (Fxr) and the steering angle (δ).

Table 1. Nomenclature of the present study.

Symbol Meaning Unit

Fy f Front tire lateral force N
Fyr Rear tire lateral force N
v Vehicle velocity m/s

vw Rear-wheel velocity m/s
vx Longitudinal velocity m/s
α Tire slip angle rad
α f Front tire slip angle rad
αr Rear tire slip angle rad
μ Friction coefficient -
μs Friction coefficient of tire skids -
r Yaw rate rad/s
δ Steering angle rad
β Sideslip angle rad
m Vehicle mass kg
l f Distance from the center of gravity (CG) to the front axle M
lr Distance from CG to the rear axle M
Izz Yaw moment of inertia N·m/rad2

Cxr Rear tire longitudinal slip angle -
κ Tire slip ratio -

2.2. Brush Tire Model

The longitudinal and lateral tire forces in the bicycle model are computed using
a brush tire model, which constrains the maximum amount of tire force (the combined
longitudinal and lateral forces) within the elliptical circle in Figure 4. A tire force curve
versus the tire slip angle is illustrated in Figure 4, where the red area indicates the saturated
area and the blue area denotes the unsaturated area. The brush tire model was employed
using Equation (2).

Under normal driving conditions, the combined force acting on a tire remains within
the elliptic region and the tire model remains in the unsaturated state. Conversely, when
the magnitude of the combined force acting on the tire reaches the elliptic circle, the tire
model moves to the saturated state and a large amount of slip occurs. This situation is
dangerous because the vehicle can lock its wheels or skid, which increases the difficulty of
controlling the vehicle.

F =

{
γ − 1

3μFz
γ2 + 1

27μ2F2
z

γ3, γ ≤ 3μFz

μsFz, γ > 3μFz
,

Fx = Cx
γ

(
κ

1+κ

)
F,

Fy = Cα
γ

( tanα
1+κ

)
F,

γ =
√

C2
x
(

κ
1+κ

)2 − C2
α

( tanα
1+κ

)2,

α =

⎧⎨
⎩

α f = atan
( vy+l f ∗r

vx

)
− δ ≈ atan

(
β +

l f
vx

∗ r
)
− δ

αr = atan
(

vy−lr∗r
vx

)
≈ atan

(
β − lr

vx
∗ r
) ,

κ =
vw−vy

vx
.

(2)
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(a) (b) 

Figure 4. Saturation conditions of the brush tire model: (a) longitudinal and lateral forces and (b) slip
VS tire force.

2.3. Drift Equilibrium State Analysis

The vehicle’s trajectory was predicted using the bicycle model defined in Equation (1)
with speed and steering angle as the control inputs. To analyze the motion and stability
of the vehicle, the bicycle model was combined with the brush tire model under specific
conditions (Equation (2)). When the tire slip angle remains within a specific range and the
tire force is unsaturated, the vehicle’s motion will remain stable. However, when the tire
slip angle increases and the resulting tire force becomes saturated, the vehicle’s motion will
destabilize and even a slight disturbance will divert its states from equilibrium.

To maintain the drift maneuver, the vehicle must be controlled in an unstable equilib-
rium state. Especially on a slippery road, maintaining a drift maneuver requires a precise
and agile controller.

In this study, the equilibrium states were established using Equations (1) and (2) when
the time derivatives of the vehicle’s states were all zero.

Figure 5 plots the β, r, and vx equilibrium points according to the steering angle
at a longitudinal speed of 1.7 m/s. Plotted are the equilibrium states during a normal
driving maneuver (*) and during a drift maneuver (o, Δ) in the clockwise and
counterclockwise directions.

  
(a) (b) (c) 

Figure 5. Equilibrium states of (a) sideslip angle (β), (b) yaw rate (r), and (c) rear wheel force (Fxr) at
a vehicle speed of 1.7 m/s.
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3. Design of the Nonlinear Model Predictive Controller

3.1. Vehicle State Prediction Model

Based on the dynamics of the controlled system, the NMPC method predicts the future
motions of a vehicle over a fixed time horizon. In this study, the future trajectory was
predicted by discretizing the model of the vehicle’s dynamics (Equation (1) in Section 2).
The vehicle states (X) comprise the sideslip angle (β), yaw rate (r), and speed (vx) of the
vehicle as follows:

X = [β, r, vx]. (3)

The control input vector (u) comprises the rear-wheel speed (vw) and the steering
angle (δ) of the vehicle.

u = [vw, δ]. (4)

In terms of the rear-wheel speed (vw), the rear-wheel tire force in Equation (1) is given
by the following simplified tire force relation:

Fxr =
Cxr(vw − vx)

vx
. (5)

3.2. Nonlinear Model Predictive Controller Cost Function

The cost function for the optimization process of the NMPC method is the error vector
(Xe

k) between the current vehicle state vector (Xk) and the target state vector (Xre f
k ).

Xe
k = Xre f

k − Xk

=
[

β
re f
k − βk, rre f

k − rk, vre f
xk − vxk

]
.

(6)

The cost function (J) is defined in terms of the state error vectors and the control inputs.

J =
1
2
(
Xe

k+N
)T ∗ P ∗ Xe

k+N +
1
2 ∑k+N−1

j=k

(
Xe

j

)T ∗ Q ∗ Xe
j + uT

j Ruj. (7)

Note that the cost function comprises a quadratic term of the final Nth step error (Xe
N),

the sum of the quadratic terms of errors (Xe
k), and the quadratic terms of the control input

(uk) in future steps from k to k + N – 1, with weight matrices of P, Q, and R, respectively. The
inputs that minimize the cost function given by Equation (7) are determined by numerical
optimization based on a conjugate gradient method.

3.3. Nonlinear Model Predictive Controller System for Drift Driving

Figure 6 shows the control system of the developed NMPC-based drift control method.
First, the curvature (ρr) and reference speed (vr) of the driving trajectory are provided
by a path-generation algorithm. The drift equilibrium state is then obtained from the
three-dimensional (3D) maps shown in Figure 7. Given the vehicle speed and steering
angle at each time step, the 3D maps are configured to output the equilibrium states, i.e.,
βeq, req, and Fxreq , based on the equilibrium analysis presented in Section 2.

The drift equilibrium points obtained from the 3D maps were assembled into the target
state vector of the NMPC. The rear-wheel speed, vw, that allows the vehicle to maintain the
drift maneuver was calculated with the developed NMPC algorithm.

While maintaining the drift condition through rear-wheel control using the NMPC,
an additional pure pursuit algorithm was used as the steering-angle controller to follow
the desired trajectory. Similar to the NMPC, the pure pursuit algorithm inputs the current
vehicle position and the target trajectory and computes the steering angle (δ) from future
time steps k to k + N. Figure 8 illustrates the path-following implementation of the pure
pursuit control algorithm.
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Figure 6. The 1:10-scale nonlinear model predictive control-based drift control system.

   
(a) (b) (c) 

Figure 7. 3D maps of the equilibrium states of the (a) sideslip angle (β), (b) yaw rate (r), and
(c) rear-wheel force (Fxr).
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Figure 8. Vehicle state during drift driving.

In the pure pursuit control algorithm, the waypoints are determined from the center
point of the rear-wheel axis, which is switched to the center point of the vehicle to simplify
the control law. Each waypoint is located at distance l′d along the straight line in the
direction of the target body’s sideslip angle. The vehicle’s trajectory over N future steps
was computed using Equation (1), and the front-wheel steering angles up to N future steps
were calculated as

δk = atan 2Lsinβ
eq
k

l′d
+ kβeβk

= atan
(

2Lsinθk
l′d

)
+ kβ

(
β

eq
k − βk

)
.

(8)

The first term in Equation (8) represents the control input that allows the vehicle to
head toward the waypoints, and the second term represents the control input for creating
the vehicle’s track, i.e., βeq. To obtain the future equilibrium states followed by the NMPC,
the steering-angle inputs from the pure pursuit control algorithm are applied to the 3D
drift equilibrium maps.

4. Drift-Driving Test of the Nonlinear Model Predictive Controller

4.1. Test Scenario

The performance of the NMPC-based drift control method was evaluated through
numerical simulations. The controller was required to follow 8-shaped trajectories with
diameters of 2 m ( 1© and 2©) and 2.5 m ( 3© and 4©), as shown in Figure 9.

Figure 9. Numerical drift test scenarios.
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The control period and NMPC prediction period were set to 50 Hz (0.02 s) and
20 steps, respectively. Under these settings, the NMPC system can predict the maneuver
for 0.4 s.

4.2. Drift Test Results

In the test scenario, the test vehicle was controlled to drive on routes 1©– 4© repeatedly
using the drift maneuver. Figure 10 shows the sideslip angle and yaw rate (β and r,
respectively) of the vehicle during the simulation. In scenarios 1© and 3©, the vehicle drove
in the counterclockwise direction; hence, its body sideslip angle was negative and its yaw
rate was positive. Conversely, in scenarios 2© and 4©, the vehicle drove in the clockwise
direction with a positive body sideslip angle and a negative yaw rate. The designed NMPC
method accurately followed the desired sideslip angle and yaw rate provided by the
3D map.

Figure 10. Sideslip angle (β) and yaw rate (r) of the vehicle during the drift maneuver. The dotted
red lines and solid blue lines trace the control-target point of the drift control and the vehicle
state, respectively.

As shown in Figure 11, the front tire slip never exceeded the limit but the rear tire
slip did. Therefore, the front-wheel steering controller required a control-force margin to
maintain the desired trajectory, whereas the rear-wheel controller successfully maintained
the drift condition by following the desired angle and yaw rate.
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Figure 11. Front and rear tire slip angles of the vehicle during the drift maneuver. The solid blue
curves in the upper and lower panels represent the front and rear tire slip angles of the vehicle,
respectively, and the dotted red lines show the upper and lower saturation limits of the tires.
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Figure 12 shows the driving trajectory of the NMPC-based drift-driving control
method. The vehicle precisely followed the figure-eight-shaped target trajectory.

Y 
[m

]

Figure 12. Trajectory of the vehicle during the drift-driving simulation.

5. Design of the Neural Network Drift Controller

The NMPC method predicts a vehicle’s behavior up to a predetermined future time
and derives the optimal control inputs through numerical optimization with a predesigned
cost function. A notable advantage of this method is consideration of the characteristics
(dynamics and constraints) during the system optimization. On the downside, accounting
for these constraints significantly increases the computational time of the optimization,
which is undesirable in fast real-time control applications.

To overcome these limitations while exploiting the advantages of the developed NMPC
method, this study employed a DNN-based control method that uses the driving data
generated by the NMPC method during drift behavior.

5.1. Training Data Preprocess

The DNN was trained on approximately 50,000 sets of simulated trajectory-driving
data, collected along the 2-m-diameter path in Figure 10 (counterclockwise driving along
Path 1©).

Because the vehicle states, such as vehicle velocity and sideslip angle, have different
units and magnitudes, the data were preprocessed by normalizing as follows:

xnorm =
x − xmin

xmax − xmin
, (9)

where x represents the variable to be normalized and xmin and xmax represent the minimum
and maximum values, respectively, among the sets of variables x. To increase the efficiency
of the learning process, only data within the normal range were selected. The standard
score z was thus defined as follows:

z =
x − μ

σ
, (10)
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where μ and σ signify the mean and standard deviation of the data, respectively.
If the absolute value of the Z score exceeded 2, the datum was excluded from the

training data because it was outside the normal range of 95% probability. In this process,
the data were assumed to follow a Gaussian distribution. The data normalization results
are shown in Tables 2 and 3.

Table 2. Training data for steering (lateral) control.

Mean and Standard Deviation Normalization Variables

μ σ Min Max

Input Data

xe * −0.0307 0.1819 −0.2697 0.2674
y † 0.0080 0.2070 −0.2688 0.2695
β −0.4278 0.1314 −0.5625 −0.3534

βeq
o −0.4969 0.1213 −0.6379 −0.2630

Output Data δ −0.1742 0.1216 −0.3876 0.0651

* Longitudinal position error with respect to the reference point; † Lateral position error with respect to the
reference point; o Sideslip angle equilibrium point.

Table 3. Training data for steering (longitudinal) control.

Mean and Standard Deviation Normalization Variables

μ σ Min Max

Input Data

vx −0.0307 0.1819 −0.2697 0.2674
vy 0.0080 0.2070 −0.2688 0.2695
β −0.4278 0.1314 −0.5625 −0.3534
r −0.4969 0.1213 0.6379 0.2630

Output Data vw * −0.1742 0.1216 −0.3876 0.0651
* Vehicle’s rear-wheel speed.

As an example, Figure 13 presents the data before and after normalizing the sideslip
angle. The data were distributed in the range of −0.48–0.43 before normalization (left
panel) and the range 0 to 1 after normalization (right panel).

Figure 13. Results of preprocessing the training data of sideslip angle.

5.2. Neural-Network-Based Controller Architecture

The control system architecture includes two NN controllers (Figure 14). The first
NN controller, based on a DNN, controls the steering wheel to drive the vehicle along the
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desired trajectory during a drift maneuver. The second NN controller, based on a time
delay NN (TDNN), maintains the drift state of the vehicle.

Figure 14. Neural-network-based drift control system.

5.2.1. Deep Neural-Network-Based Controller for Steering Control

A typical NN comprises an input layer, one or more hidden layers, and an output
layer. To include the characteristics of the system and prevent unstable behavior due to
external disturbances [26,27], the present study employed a DNN with six hidden layers.
Each of the six hidden layers was configured with 20 artificial neural nodes as shown in
Figure 15. The input data of the network (Table 2) include the position error (xe, ye) between
the path point and the vehicle, the body slip angle (β), and the body slip-angle equilibrium
point (βeq) generated from the 3D map. The network outputs the vehicle steering angle (δ)
for lateral position control.

 

Figure 15. Deep neural network architecture for lateral positioning control.
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5.2.2. Time Delay Neural-Network-Based Controller for Drift State Control

The designed NMPC method for maintaining the drift equilibrium states was replaced
with a TDNN-based controller. To include the dynamic characteristics of the vehicle during
the drift maneuver, the network structure must reflect the near-past vehicle states. The
TDNN structure inputs the current data and the data of the past four steps (t, t−1, t−2,
t−3, and t−4) as follows:

Current States : Xt =
[
vt

x, vt
y, βt, rt

]
,

Previous States : Xt−1 =
[
vt−1

x , vt−1
y , βt−1, rt−1

]
,

...

Xt−4 =
[
vt−4

x , vt−4
y , βt−4, rt−4

]
,

(11)

Input Data : I =
[

Xt, Xt−1, Xt−2, Xt−3, Xt−4
]
, (12)

where the number of time delay steps was set to 4. The TDNN-based drift controller
(Figure 16) contains six hidden layers, each holding 20 artificial neural nodes.

 

Figure 16. Time delay neural network architecture for drift state control.

The TDNN inputs were the longitudinal and lateral speeds (vx, vy), body slip angle (β),
and rotation angular speed (r) in Table 3 and the output was the rear-wheel speed (vw). The
DNN was trained on ~50,000 sets of simulation data obtained from the trajectory-driving
data (counterclockwise driving around the 2-m-diameter path; see 1© in Figure 10).

6. Simulation Results of the Neural Network Drift Controller

The performance of the DNN-based drift control method was evaluated through
numerical simulations of a 1:10-scale vehicle driving counterclockwise around a 1-m-radius
circle. In this scenario, the vehicle speed was set to 1.7 m/s.

Figure 17 shows the sideslip angles of the front and rear wheels during the drift
maneuver. The lateral slip of the front tire did not exceed the saturation limit, whereas
the lateral slip of the rear tire exceeded the saturation limit while maintaining the drift
condition, allowing the rapid increase of yaw rate that is necessary for following the
1-m-radius circular path. The same phenomenon was observed during the closed-loop
simulation using NMPC.

Figure 18 plots the vehicle states during the drift maneuver. Although the TDNN-
based rear-wheel controller did not explicitly use the 3D map information of the vehicle
equilibrium states, the desired equilibrium points are also plotted as a reference.
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Figure 17. Front and rear tire slip angles during the drift maneuver. The solid blue lines in the upper
and lower panels present the slip angles of the front and rear wheels, respectively, and the dotted red
line shows the tire saturation threshold.
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Figure 18. Vehicle states during a drift maneuver (solid blue lines). The desired equilibrium points
(dotted red lines) are plotted for reference.
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The vehicle’s states accurately followed the desired equilibrium states of the body
sideslip angle, yaw rate, and longitudinal velocity, even though the TDNN-based controller
does not explicitly have information related to the 3D map. It was concluded that the
closed-loop trajectory data generated by the NMPC implicitly included information on the
drift equilibrium states, which was transferred to the TDNN-based controller during the
learning process.

Figures 19 and 20 display the closed-loop trajectory of the vehicle controlled by the
TDNN and the tracking errors, respectively. The mean lateral position error remained at
~0.06 m during the drift maneuver. The designed DNN-based steering controller accurately
followed the desired trajectory.

 
Figure 19. Vehicle trajectory during the drift maneuver.

Figure 20. Lateral position error during the drift maneuver.
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7. Conclusions

In this study, a drift control method for autonomous vehicles was developed as
a strategy for managing a dangerous oversteer phenomenon that may occur during driv-
ing. First, a NMPC-based drift controller was designed by analyzing the tire model and
vehicle dynamics during the drift maneuver. The closed-loop performance of the devel-
oped NMPC method was evaluated through numerical simulations of figure-eight-shaped
vehicle trajectories with different radii.

Second, a data-driven NN-based control method was employed to overcome the
limitations of the real-time performance of the existing NMPC-based drift controller. The
DNN- and TDNN-based controllers incorporated the closed-loop performance of the
previously designed NMPC method by learning the trajectories and input data obtained
from the simulations. The performance of the developed data-driven controller was further
verified through realistic numerical simulations, which confirmed the accurate tracking
performance of the vehicle along a circular path.

Based on the study results, the proposed data-driven control method has the potential
to be used as a controller for autonomous vehicles. The method retains the advantages
of the sophisticated model-based NMPC approach for managing expert driving tech-
niques such as drift. In addition, it can learn expert driving skills from a broad range of
user data, potentially overcoming the limitations of the current rule-based autonomous
driving system.
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Abstract: A brain–computer interface (BCI) based on steady-state visual evoked potential (SSVEP)
has achieved remarkable performance in the field of automatic driving. Prolonged SSVEP stimuli
can cause driver fatigue and reduce the efficiency of interaction. In this paper, a multi-modal hybrid
asynchronous BCI system combining eye-tracking and EEG signals is proposed for dynamic threaten-
ing pedestrian identification in driving. Stimuli arrows of different frequencies and directions are
randomly superimposed on pedestrian targets. Subjects scan the stimuli according to the direction of
arrows until the threatening pedestrian is selected. The thresholds determined by offline experiments
are used to distinguish between working and idle states of the asynchronous online experiments.
Subjects need to judge and select potentially threatening pedestrians in online experiments according
to their own subjective experience. The three proposed decisions filter out the results with low
confidence and effectively improve the selection accuracy of hybrid BCI. The experimental results of
six subjects show that the proposed hybrid asynchronous BCI system achieves better performance
compared with a single SSVEP-BCI, with an average selection time of 1.33 s, an average selection
accuracy of 95.83%, and an average information transfer rate (ITR) of 67.50 bits/min. These results
indicate that our hybrid asynchronous BCI has great application potential in dynamic threatening
pedestrian identification in driving.

Keywords: brain–computer interface (BCI); steady-state visual evoked potential (SSVEP);
electroencephalography (EEG); threatening pedestrians; eye-tracking

1. Introduction

In recent years, the brain–computer interface (BCI) has become a research hotspot in
the field of artificial intelligence, aiming at building communication between the human
brain and external devices. Electroencephalography (EEG), reflecting brain activity, is the
common signal source of BCI applications. As a non-invasive and low-cost signal, EEG has
shown high levels of reliability [1,2]. As a new interactive mode, BCI has been widely used
in the fields of medical assistance [3] automobile driving [4], robot control [5], etc.

As a complex BCI application, there is a direct control pathway between the brain and
the vehicle in Brain-Controlled Vehicles (BCV). At present, the BCI paradigms adopted by
BCV systems are mainly P300 [6], motor imagery (MI) [7], and steady-state visual evoked
potential (SSVEP) [8]. P300, which is always evoked by a visual stimulus with poor real-
time performance, can only be used for the control of static targets, such as switches, wipers,
etc. The real-time performance of MI is also poor, and the degrees of freedom available is
limited (generally less than four), which makes it impossible to complete the overall driving
task. SSVEP, which is an electrophysiological response to a repetitive visual stimulus, has a
high information transfer rate (ITR) and good real-time performance. When subjects focus
their attention on a stimulus, the corresponding frequency appears in the representation of
the EEG signals recorded mainly in occipital regions [9]. Studies [10,11] have shown that the
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human cerebral cortex will produce SSVEP characteristic components at the fundamental
or multiplicative frequency of the target stimuli when exposed to a fixed-frequency visual
stimulus. The target stimuli can be identified by detecting the dominant frequency of
SSVEP. Based on its high applicability, simplicity, and high accuracy, BCI adopting SSVEP
is conducive to the selection of threat targets in the process of automatic driving. However,
it is easy to cause fatigue by long visual flicker.

With the maturity of eye-tracking technology and the continuous improvement of
human requirements for interaction comfort, interaction based on eye-tracking has attracted
more and more attention. In contrast to EEG, interaction based on eye-tracking is more
natural, which can further reduce fatigue. In addition, eye-tracking interaction learning is
inexpensive, and most users can operate it without special training [12]. However, there are
still some drawbacks to eye-tracking. Some eye movements are not guided by volitional
attention. If the system does not distinguish between these eye movements, it is likely to
misunderstand human intentions and cause false triggering, which is called the “Midas
Touch” problem [13]. In addition, eye-tracking technology is not completely reliable. In
addition, some random instability factors can cause system errors. Several eye-movement
interactions have been applied to text spelling [14] and robot control [15].

A hybrid BCI system is generally composed of one BCI and another system (which
might be another BCI) and can perform better than a conventional BCI [16]. Some
studies [17] adopt hybrid systems to recognize characters, combining EEG and EOG. In
addition, eye-tracking, which is a popular technology in the field of computer vision, has
been gradually adopted to combine with BCI to control games [18], robotic arms [19], and
drones [20].

At present, the significant improvement of computer information fusion capability is
constantly promoting the development of automatic driving. Autonomous driving is grad-
ually moving from specific scenarios (such as highways, experimental parks) to complex
urban traffic. Urban traffic conditions are relatively complex, with many dynamic pedes-
trian targets and variable trajectories. In such a complex road situation, the environment
perception approach based on computer vision technology cannot predict a threatening
pedestrian target quickly and accurately. Driver intention is integrated into the vehicle’s
environment perception through BCI, which can help to improve the comfort and safety
of driving.

In this work, a multi-modal hybrid BCI combining SSVEP with eye-tracking is pro-
posed for the selection of potentially threatening pedestrians. The arrows in different
directions are randomly superimposed on pedestrian targets. SSVEP is evoked by the
stimuli of the corresponding frequency while subjects scan the threatening pedestrian
target according to the direction of arrows. I-VT filter is applied to process eye-movement
tracks, and canonical correlation analysis (CCA) is adopted to detect EEG signals. The
combination of eye-tracking and EEG can not only be used to distinguish between working
and idle states, but also shorten target selection time and improve accuracy. The experi-
mental results of six subjects show that the proposed hybrid asynchronous BCI system of
eye-tracking and SSVEP achieves better performance compared with a single SSVEP-BCI,
with an average selection time of 1.33 s, an average selection accuracy of 95.83%, and an
average information transfer rate of 67.50 bits/min.

The remainder of this paper is presented as follows: Section 2 introduces a hybrid
BCI system, target detection and tracking, graphical stimuli interface, participants, signal
acquisition and preprocessing. Section 3 presents the process of experiments, evaluation
metrics, and the results of experiments. Section 4 is the discussion of the hybrid BCI system,
and Section 5 summarizes the main work of this paper.

2. Materials and Methods

Figure 1 shows the overall framework for threatening pedestrian identification. Yolov5
is introduced to detect pedestrian targets, and DeepSORT is used to track pedestrians.
SSVEP stimuli of different frequencies are superimposed on the obtained pedestrian coor-
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dinates. Subjects scan pedestrians according to the direction of superimposed arrowhead
stimuli. The three decisions effectively reduce the false positives and improve the reliability
of threatening pedestrian identification.

Figure 1. Hybrid asynchronous BCI system for dynamic pedestrian detection.

2.1. System Description

The purpose of this study is to evaluate the performance of a multi-modal BCI that
combines eye-tracking and SSVEP for pedestrian tracking and selection. First, the ZED2
camera collects real-time video of driving foreground road conditions and performs multi-
target detection and tracking. The coordinates and IDs of the pedestrians are transmitted
to the remote computer through the LAN. Second, flashing arrows of different stimuli
appear on the targets after receiving data, and follow their movements. The arrows
point to a random distribution. After calibrating the eye tracker, participants gaze at the
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stimulation interface. The eye tracker and the EEG acquisition instrument begin to collect
the corresponding signals at the same time. The flow of online signal processing is shown
in Figure 1. The sampling frequency of the eye tracker is 60 Hz. In the processing of
eye-movement data, I-VT filter is introduced to process visual trajectories. Decision I:
When the confidence of the trajectory change over 60 consecutive sampling points exceeds
70%, the result {r1, r2 . . . } of eye-tracking is output. In the processing of EEG signals, the
canonical correlation analysis (CCA) algorithm performs feature extraction on 1000 ms of
EEG data and outputs the maximum correlation coefficient (ρ). Decision II: Output the
result {s1} of EEG selection when ρ exceeds the pre-set threshold. Decision III: Output
selection target when {r1, r2 . . . } ∩ {s1} �= ∅. Otherwise, no result output is considered an
idle state. Slide the window forward 200 ms to acquire eye-tracking data and EEG data for
the next 1 s and process until the target result is output.

2.2. Target Detection and Tracking

Detecting and tracking pedestrians in the driving environment can reduce the cogni-
tive load of drivers to a certain extent, and assist the vehicle intelligence system in making
decisions, which plays a very important role in improving the safety of intelligent vehicles,
and is a hot research topic in intelligent driving and computer vision.

In recent years, with the development of big data and the improvement of computer
performance, deep learning has been widely applied in the field of computer vision and
has achieved good performance. As a representative target-detection algorithm at the
present stage, YOLO algorithms have excellent performance in both detection speed and
accuracy, which can achieve end-to-end training. YOLO takes the whole image as the
input of the network, and directly outputs the coordinates and IDs of the objects after
inference. Compared with other algorithms, yolov5s [21] has higher detection accuracy,
faster detection speed, and lower consumption of computation, which can better meet the
real-time requirements and be easier to apply in the actual systems. However, detecting
the position of pedestrians is not enough. Each object must be tracked before being chosen.

Pedestrian detection determines the position and ID of the object in a particular frame,
and pedestrian tracking locks the target in consecutive frames. Most application scenarios
involve the tracking of multi-targets. DeepSORT [22] extracts the appearance characteristics
of targets, and adopts recursive Kalman filtering and frame-by-frame correlation [23] to
match the trajectory of multi-objects, which can effectively reduce the number of target IDs
transitions. In this study, we use yolov5 and DeepSORT to process the driving foreground
video, which realizes multi-object detection and tracking accurately and quickly, and
obtains the position coordinates and IDs of pedestrians in real time.

2.3. Graphical Stimuli Interface

According to the object positions and IDs obtained by the object-detection and tracking
module, flicker stimuli of different frequencies are superimposed on each pedestrian in
Figure 2, and participants can achieve their selection by staring at stimuli. The length of
arrows that flash alternately in black and white is 60 pixels. The frequency list is set to meet a
variable number of pedestrians. Studies [24] have shown that a frequency band of 8~15 Hz
can induce a relatively strong SSVEP response. Moreover, each frequency should satisfy
that there is no overlap between the fundamental frequency and the frequency doubling.
The interval between frequencies is set as large as possible to ensure the distinguishability
of signals. Considering the above factors, the frequency list is set to 6.10 Hz, 8.18 Hz,
15.87 Hz, 12.85 Hz, 10.50 Hz, 8.97 Hz, 13.78 Hz, 9.98 Hz, 11.23 Hz, 7.08 Hz, 14.99 Hz, and
11.88 Hz. The frequencies of the superimposed stimuli are sequentially selected from the
frequency list according to the coding order of each pedestrian ID. During the experiment,
participants find the threatening target and follow his movement until the flicker of the
target stack stops and turn yellow.
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(a) (b)

Figure 2. Stimuli presentation interface of hybrid BCI system on trial 6 of a block. (a) Arrows
in different directions are randomly superimposed on pedestrians according to the frequency list
corresponding to the ID order; (b) Subjects select the threatening object, and the arrow stops flashing
and turns yellow.

2.4. Participants

Six healthy subjects (22–25 years; four men, two women) with an average age of
23.2 years were recruited from the campus and participated in the study. No one was left-
handed. In addition, each subject reported no history of any psychiatric deficits. Following
the Declaration of Helsinki, all subjects signed a letter of commitment after receiving a
detailed description of the procedure.

2.5. Signal Acquisition and Processing

As shown in Figure 3, the eye-movement data were collected by Tobii Pro Nano at a
frequency of 60 Hz and an operating distance of 80 cm. Subjects were required to calibrate
their eye trackers before participating in experiments. An LCD screen (LEGION Y27gq-25,
1920 × 1080 pixels) was used to present stimuli with a refresh rate of 240 Hz.

Figure 3. Placement of data acquisition equipment.
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A 64-channel extended international 10/20 system was used to record the EEG signals
in this experiment. Figure 4 shows the placement of 9 electrodes for EEG collection, which
were placed in Pz, PO7, PO3, POz, PO4, PO8, O1, Oz and O2. The reference electrode
was placed behind the right ear, and the ground electrode was placed on the forehead.
Before data acquisition with BrainAmp DC amplifier (Brain Products GmbH, Germany),
the impedance of each electrode was reduced to less than 10 kΩ. The sampling frequency
was 200 Hz and was filtered by a 4–35 Hz bandpass and notch at 50 Hz. BCI2000 [25]
served as the control platform to collect EEG signals, the PyGame [26], a Python expansion
package, presented the stimuli interface, and MATLAB was responsible for real-time signal
processing. The display interface and the control platform were connected through the
TCP/IP protocol.

Figure 4. Placement of electrodes. The blue circles are the placements of the sampling electrode. The
reference electrode is placed on the green circle behind the right ear, and the ground electrode is
placed on the forehead.

Canonical correlation analysis (CCA) [27] was applied to extract features of prepro-
cessed EEG signals, which fuses multi-channel data and identifies the target by calculating
the correlation coefficient between multi-channel EEG signal and stimuli frequency. The
target was the option corresponding to the maximum SSVEP response score. Periodic
stimuli were represented as square-wave periodic signals that could be decomposed into
Fourier harmonic series:

Yf (t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

sin(2π f t)
cos(2π f t)

sin(2π ∗ 2 f t)
cos(2π ∗ 2 f t)

· · ·
sin(2π ∗ N f t)
cos(2π ∗ N f t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, t =
1
S

,
2
S

, · · · ,
L
S

, (1)

where N is the number of harmonics, t is the current time, L is the number of sampling
points of the original signals, and S is the sampling rate of EEG. CCA is a multivariate
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statistical analysis method, which calculates the maximum correlation coefficient (ρ) of the
linear combination of variables (x = XTWx, y = YTWy) in two data sets (X, Y), to reflect the
correlation of the two groups of signals. The calculation formula for ρ is as follows:

ρ(x, y) = maxωx ,ωy

E
[
xTy
]

√
E[xTx]E[yTy]

= maxωx ,ωy

E
[
ωT

x XYTω
]

y√
E[ωT

x XXTωx]E
[
ωT

y YYTωy

] , (2)

The velocity threshold recognition (I-VT) filter is a popular speed-based eye-tracking
method [28], which realizes the classification of eye tracks by analyzing the speed of eye
movement. As shown in Formula (3), the eye-movement velocity can be obtained by the
ratio of the distance between the two sampling points to the corresponding sampling time.
Speed is commonly expressed in visual degrees per second (◦/s). When the speed is higher
than the set threshold, the sample associated with the speed is determined to be a saccade,
and below the threshold is fixation.

vx =
x2 − x1

t2 − t1
, vy =

y2 − y1

t2 − t1
, (3)

where vx represents the velocity in the x direction, vy represents the velocity in the y
direction, and (x1, y1) is the coordinate of the eyeball’s position at the moment of t1.
Similarly, (x2, y2) is the coordinate of the eyeball position at t2 moment.

3. Results

3.1. Evaluation Metrics

The performance of hybrid BCI selection is evaluated by accuracy and information
transfer rate (ITR). In addition, ITR is calculated as follows (bits per minute):

ITR =

(
log2 N + P log2 P + (1 − P) log2

(
1−P
N−1

))
∗ 60

T
, (4)

T = ts + tb, (5)

where N represents the total number of targets, P is the target selection accuracy, and T
represents the time of target selection, including the stimuli flicker time of the target (ts) and
flicker interval time (tb). It can be seen that the ITR is not only related to the classification
accuracy, but also related to the number of selected targets.

3.2. Performance of the Offline Experiment

The threshold is set for the output of the SSVEP to distinguish between idle and
working states in online experiments. If the maximum correlation coefficient is higher than
the threshold, it is considered to be the working state; otherwise, it is considered to be the
idle state. The goal is that the results are not output when the subjects are not staring at
the target. In one trial of the offline experiment, participants tend to select threatening
pedestrians by staring at flickering stimuli blocks according to cues. Each trial consists
of an interval time of 2 s and a stimuli time of 4 s. Each participant participates in the
experiment with 2 blocks, and each block contains 10 trials. After a block, participants are
given a 5-min break.

Since the SSVEP responses of the participants are individually different, a specific
threshold is set for each participant. Ten correct choices of each subject in the offline
experiment are randomly selected to calculate the SSVEP response score, and the minimum
value is taken as the threshold. As shown in Figure 5, the SSVEP response scores of S5 in
10 correct selection tasks are 0.6387, 0.5647, 0.7696, 0.7065, 0.5630, 0.6896, 0.7323, 0.5981,
0.4541, and 0.6721, respectively. In addition, the minimum response score (0.45) is set as the
threshold for Subject 5. The SSVEP response scores of the 6 subjects in the random correct
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selection tasks for ten times are shown in Table 1, and the statistical thresholds are 0.56,
0.62, 0.51, 0.47, 0.45, and 0.39, respectively.

Figure 5. The SSVEP response scores of S5 for selecting correctly for 10 trials. Multi-colored lines
represent different stimuli frequencies. The minimum response score of 10 trials is 0.4541, which is
set as the threshold for Subject 5.

Table 1. SSVEP response threshold of 6 subjects.

Subject S1 S2 S3 S4 S5 S6

Threshold 0.56 0.62 0.51 0.47 0.45 0.39

3.3. Performance of Asynchronous Online Experiment

Thresholds obtained from offline experiments are used for online experiments. In the
online experiment, the subjects choose threatening pedestrians according to their subjective
cognition instead of prompts. There is no time limit for the subjects to complete the
experiment. The system continuously outputs control commands to realize the relative real-
time selection of threatening pedestrians. The other settings are the same as those for offline
experiments. EEG collection and eye-tracking acquisition are performed simultaneously. At
the beginning of the experiment, the subjects saccade the stimuli according to the direction
of arrows until the color of the stimuli flicker turns yellow and lasts for 0.5 s. If there is a
result output, the subjects proceed to the next trial.

Figure 6 shows the change in sight of the subject scanning arrows in the hybrid BCI
system. In the one-second time window of the selected target, one of the coordinates of the
saccade points remains basically unchanged, and the absolute value of the other coordinate
change is about equal to the length of the arrows (60 pixels).

SSVEP-BCI is introduced to verify the effectiveness and availability of the hybrid BCI
structure. In Table 2, several evaluation metrics such as the accuracy, target selection time,
and ITR are shown to evaluate the performance of two models in which six subjects select
dynamic threatening pedestrians. Hybrid BCI achieves a higher selection accuracy (95.83%),
shorter selection time (1.33 s), and higher ITR (67.5 bits/min). Compared to SSVEP-BCI,
the selection time is shortened by 0.69 s, the accuracy is improved by 5%, and the ITR is
increased by 25.2 bits/min. Subject 2 performs perfectly in both SSVEP-BCI and hybrid BCI,
with a selection accuracy of 100%. It is worth mentioning that Subject 2 selects threatening
pedestrians within 1 s, and the ITR reaches 92.88 bits/min in hybrid BCI. Subject 5 performs
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poorly in SSVEP-BCI with an accuracy of 80% and an ITR of 25.71 bits/min. By combining
eye tracks with EEG data, the accuracy of target selection is significantly improved to
90% and the selection time is shortened from 2.3 s to 1.6 s. These results show that in the
hybrid SSVEP architecture, the selection time and accuracy of subjects selecting dynamic
threatening pedestrians meet the requirements of online experimental tasks. The advantage
of hybrid BCI lies in the addition of eye tracks, which effectively avoids the wrong results
caused by inattention. At the same time, the multi-modal fusion of eye movements and
EEG enables subjects to make choices in a shorter time. The single eye-tracking system is
not stable, and the phenomenon of “Midas Touch” often occurs. In actual traffic scenarios,
the wrong choice of threatening targets will lead to traffic accidents caused by the inaccurate
operation of self-driving vehicles. The stability and robustness of the hybrid BCI can ensure
that the drivers can make the judgment and choose the threatening targets quickly and
accurately in assisted driving.

(a) (b)

(c) (d)

Figure 6. The change of eye movements during saccade in the direction of arrows. (a) Top-to-bottom
saccade; (b) Bottom-to-top saccade; (c) Right-to-left scanning; (d) Left-to-right saccade. The blue line
represents the change in the x direction and the orange line represents the change in the y direction.
The distance between the two gray lines is 60 pixels.
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Table 2. Results of asynchronous online selection of threatening pedestrians by SSVEP-BCI and
hybrid BCI.

Subject
SSVEP Hybrid

Mean Time (s) Accuracy (%) ITR (bits/min) Mean Time (s) Accuracy (%) ITR (bits/min)

S1 1.9 + 0.5 95 48.39 1.2 + 0.5 95 68.31
S2 1.8 + 0.5 100 60.57 1.0 + 0.5 100 92.88
S3 2.0 + 0.5 95 46.45 1.3 + 0.5 100 77.39
S4 1.9 + 0.5 90 41.32 1.4 + 0.5 95 61.12
S5 2.3 + 0.5 80 25.71 1.6 + 0.5 90 47.23
S6 2.2 + 0.5 85 31.38 1.5 + 0.5 95 58.07

Mean 2.02 + 0.5 90.83 42.30 1.33 + 0.5 95.83 67.50
Std 0.18 6.72 11.43 0.20 3.44 14.62

4. Discussion

In complex road environments, pedestrians have a great impact on the safety of vehicle
driving. The threat to driving safety is usually only a few pedestrians with special locations
or trajectories. However, they significantly interfere with the driving route, and even
directly determine whether the vehicle can pass safely. Therefore, marking potential threats
from many pedestrian targets and feedbacking the location information of these pedestrians
to the computer can help vehicles make safer decisions in subsequent control.

This paper proposes a hybrid BCI paradigm for threatening pedestrian selection based
on object detection and tracking. The object-detection and tracking method based on deep
learning obtains the coordinates and IDs of pedestrian targets, providing initial information
for hybrid BCI. This study takes the traffic scenes as the background and combines com-
puter vision with hybrid BCI, aiming at the judgment of dynamic threatening pedestrians.
Participants need to judge and select pedestrians who pose a threat to driving safety ac-
cording to their own subjective experience. Six subjects participated in offline experiments
and asynchronous online experiments. The thresholds determined by offline experiments
are used to distinguish between the working and idle states of the online experiments. In
asynchronous online experiments, the average selection time is 1.33 s, average accuracy
reaches 95.83%, and an average ITR reaches 67.5 bits/min. These results show that hybrid
BCI has great application potential in dynamic threatening pedestrian selection.

5. Conclusions

This paper designs a hybrid BCI that combines eye-tracking and EEG for threatening
pedestrian recognition in the driving environment. The experimental results of six subjects
show that hybrid BCI achieves better performance compared with a single SSVEP-BCI, with
an average selection time of 1.33 s, an average selection accuracy of 95.83%, and an average
information transfer rate (ITR) of 67.50 bits/min. The three proposed decisions filter out the
results with low confidence, which effectively improves the selection accuracy of hybrid
BCI. The driver’s understanding of the environment is fed back to the machine, and human–
machine collaborative driving is realized to a certain extent. Compared with methods that
rely solely on computer vision, this method has more advanced environmental semantic
understanding ability and is safer and more reliable in driving. The system has been
verified online in several specific experimental scenarios, but its applicability needs to be
further enhanced in scenarios where multiple threatening pedestrians exist or threatening
pedestrians suddenly appear. In future work, we will develop more rapid and accurate
signal-processing methods to analyze SSVEP, and combine Bayesian probability to decide
on threatening pedestrians in different scenarios.
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Abstract: The narrow corridor is a common working scene for automated vehicles, where it is pretty
challenging to plan a safe, feasible, and smooth trajectory due to the narrow passable area constraints.
This paper presents a space discretization-based optimal trajectory planning method for automated
vehicles in a narrow corridor scene with the consideration of travel time minimization and boundary
collision avoidance. In this method, we first design a mathematically-described driving corridor
model. Then, we build a space discretization-based trajectory optimization model in which the
objective function is travel efficiency, and the vehicle-kinematics constraints, collision avoidance
constraints, and several other constraints are proposed to ensure the feasibility and comfortability of
the planned trajectory. Finally, the proposed method is verified with both simulations and field tests.
The experimental results demonstrate the trajectory planned by the proposed method is smoother and
more computationally efficient compared with the baseline methods while significantly reducing the
tracking error indicating the proposed method has huge application potential in trajectory planning
in the narrow corridor scenario for automated vehicles.

Keywords: automated vehicle; trajectory planning; narrow corridor scene; space discretization
strategy

1. Introduction

Automated vehicles have drawn a huge amount of attention from academia and
industry in recent years because of the foreseen potential to improve driving safety and
efficiency [1–3]. With researchers’ continuous efforts, autonomous driving technologies
have made great progress over the past few decades [4–7]. However, as one of the core
modules in an autonomous vehicle system, trajectory planning remains to be challenging,
especially in complicated environments. Narrow corridors are typically among the most
complicated scenes, in which generating a safe, feasible, and smooth trajectory is difficult
due to the exterior and interior restrictions.

1.1. Related Work

Numerous studies have been devoted to vehicle trajectory planning [8–11]. The
mainstream methods in these studies can be classified into four groups: curve interpola-
tion methods, sampling methods, graph search methods, and numerical optimal control
methods [12]. The curve interpolation methods generate a trajectory by interpolating the
waypoints in a known set with curves such as the RS curve, clothoid, polynomial, Bezier,
B-spline, and so on [13]. For example, in [14], Bae et al. adopted a quintic Bezier curve
to generate candidate paths in the lane change maneuver while using lateral acceleration
as the path judgment index. Sampling methods try to search for the connectivity of the
configuration space by randomly sampling knots in it [15]. Rapid-exploring Random Tree
(RRT) is the most typical sampling-based method. For example, in [16], Zheng et al. applied
RRT to autonomous parking with vehicle nonholonomic constraints considered. The afore-
mentioned two categories of methods are easy to implement, yet they are not applicable in
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complicated environments. In detail, paths generated by curve interpolation are deeply
influenced by the preset waypoints, while paths generated by randomly sampling are not
consistent. Moreover, paths generated by these two methods are suboptimal. Instead,
graph search methods could construct the optimal trajectory by traversing the entire state
space to find paths with the minimum cost [17]. One famous algorithm of graph search-
based methods is the A* algorithm. For example, in [18], Min et al. proposed an improved
A* algorithm in an unstructured environment, in which profile collision avoidance was
realized by simply setting a redundant security space. Graph search-based methods are
inefficient while being used in high-dimensional spaces. To improve this method, some
researchers combined the graph search methods with the former curve interpolation meth-
ods or sampling methods. In [19], Li et al. used the RS curve and the hybrid A* algorithm
to generate paths for automatic parking, yet the path is not curvature continuous. In [20],
Dirik and Kocamaz proposed an RRT-Dijkstra algorithm to plan paths with discontinu-
ous curvature. Although graph search methods could construct the optimal trajectories,
they could not directly deal with complicated constraints such as obstacle avoidance and
actuator limitation. Conversely, optimization-based methods could construct an optimal
trajectory while well handling complicated constraints by creating accurate mathematical
models [21]. In [22], Li et al. designed a moving trend function in a framework of nonlinear
model predictive control, using a risk index to realize collision avoidance. In [23], Dixit et
al. used an MPC controller to generate feasible and collision free trajectories by combing
the artificial potential field method. In [24], Zhu et al. constructed an optimization problem
of parameterized curvature control to realize trajectory generation in dynamic on-road
driving environments. Though the trajectories generated by these optimization-based
methods are feasible, smooth, and continuous, even in complicated environments, yet they
are computational complex.

Narrow corridors are a special but common working scene for vehicles, especially for
special purpose vehicles working in a fixed route. These vehicles include logistics vehicles
in parks, forklifts in warehouses, underground scrapers in mines, and so on. Passable areas
of those vehicles in narrow corridors are strictly limited by the corridor boundaries. Thus,
vehicle motion in narrow corridors should be as precise as possible, otherwise, vehicles
could collide with the corridor boundaries or could not pass the turning areas. Existing
studies on trajectory planning for narrow corridors are concentrated on mobile robots
such as unmanned aerial vehicles, and sampling-based methods are the most popular [25].
However, unlike those mobile robots with holonomic constraints who could perform in situ
steering, vehicle turning maneuvers are restricted by the non-holonomic vehicle kinematics
constraints. Thus, sampling-based methods, whose trajectory curvature is not continuous,
are not suitable for vehicle trajectory planning in narrow corridors. There are a few studies
on vehicle trajectory planning in narrow passable areas. In [26], Kim et al. used Dubins
curves to generate paths for narrow parking lots in a predefined collision-free space, in
which curvature of the generated path is discontinuous and quite a part of accessible
areas is sacrificed. In [27], considering the parking environment with uncertainty, Li et al.
proposed a parallel stitching strategy to replan the trajectory for avoiding the new appeared
obstacles utilizing the accessible areas. In [28], Do et al. proposed a method based on
the support vector machine (SVM) and fast marching method (FMM) to plan paths for
narrow passage, in which obstacle avoidance and vehicle kinematics were considered yet
other constraints such as vehicle actuator limitation and terminal postures were ignored.
In [29], Tian et al. explored a method about how to turn around in narrow environments,
in which RS curves and Bezier curves were applied. With RS curves, a lot of free space
would be occupied in the place where the forward and back segments meet. Therefore, this
method would not be applicable in a strictly restricted narrow corridor. In [30], Li et al.
proposed a progressively constrained strategy that solves a sequence of easier planning
problems with shrunk obstacles before handling their nominal sizes. Although the finally
derived trajectories are curvature-continuous and optimal, the runtime is usually long
and the algorithm performance relies highly on the initial guess. In [31], with the aim
of reducing computational time, Li et al. proposed a lightweight iterative framework to

94



Electronics 2022, 11, 4239

generate an optimal trajectory for autonomous parking. In [32], Lin et al. proposed a
trajectory planning method for the mine scene but the experiments were not convincing
due to the lack of field tests. Methods mentioned above do generate collision-free paths in
narrow area scenes. However, the studies above either only consider the trajectory property
of collision avoidance or aim at totally different subject models and vehicle operation space,
which restricts their application in the narrow corridor scene.

1.2. Contributions

In this paper, we extend our previous work [32] in terms of successfully applying
the space discretization-based optimal trajectory planning method (hereinafter called the
SOTP method) for automated vehicles in multi-corner narrow corridor scenes, wherein the
trajectory curvature is guaranteed to be continuous, every inch of the precious drivable
space is sufficiently utilized, and exterior/interior constraints are strictly satisfied. In the
proposed SOTP method, we first design a mathematically-described driving corridor and
discretize its centerline to generate reference waypoints. Based on these derived reference
waypoints, we thereafter formulate a trajectory optimization model in the spatial domain
with the consideration of travel time minimization, boundary collision avoidance, and
constraint satisfaction in terms of vehicle kinematics, actuator range limitation, side force,
etc. Finally, the constructed trajectory optimization model is verified with both simulations
and field tests. The main contributions of this paper are as follows:

(1) A novel space discretization-based optimization method is proposed to solve the
challenging trajectory planning problem in narrow corridor scenes with very limited pass-
able areas. Compared with [32], more complicated constraints, e.g., boundary avoidance
is considered and processed with the accurately established mathematical models of the
vehicle and the narrow corridor being embedded into the trajectory generation process.

(2) A space discretization strategy is designed for the construction of the trajectory
optimization model. In this strategy, we consider the target trajectory to be described
by several discrete waypoints with velocity information. The simulation is designed
to demonstrate the enhanced smoothness and computational efficiency of the trajectory
planned by the proposed method compared with the baseline algorithm. A sensitivity
analysis of the key parameter, e.g., the safety margin is conducted to show the performance
of the proposed method.

(3) The field tests related to the trajectory generation ability and the quality of the
generated trajectory are conducted to illustrate the advantages of the proposed method
over a popular method in the application of the narrow corridor scenes.

1.3. Organization

The rest of this paper is organized as follows. Section 2 formulates the problem.
Section 3 introduces the methodology. Section 4 and Section 5 present the simulation and
field test results respectively. Finally, Section 6 concludes the paper.

2. Problem Statement

Narrow corridors concerned in this paper refer to one-way roads with the ratio of
vehicle width to road width exceeding 0.5. The workspace for vehicles operating in such
corridors is usually closed and fixed, which brings a challenge for trajectory generation. In
this case, how to generate such a reference trajectory is exactly what we explore below. We
assume that the boundary and the centerline of the narrow corridor could be accessible by
the perception technology or high definition map.

We consider a typical narrow corridor with specified left and right boundaries. Since
the twisted narrow corridor makes it difficult for a vehicle to traverse, we simplify the
boundaries via line segments and assume the corridor to be straight (Figure 1). By linear
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interpolation of the boundary position, we describe the corridor mathematically by using
the formulas as follows:

Al
i x + Bl

i y + Cl
i = 0, (1)

Ar
i x + Br

i y + Cr
i = 0, (2)

where Al
i , Bl

i , Cl
i are expression parameters of the left boundary in segment i and Ar

i , Br
i , Cr

i
are the right boundary. Suppose the corridor is comprised of Ns segments, so i ranges from
1 to Ns.

Figure 1. A typical narrow corridor with definite boundaries. The corridor is comprised of three
segments. Hence, this corridor can be represented by the parameter groups Al

i , Bl
i , Cl

i and Ar
i , Br

i , Cr
i ,

i ∈ {1, 2, 3}.

In the process of passing the narrow corridor, the vehicle is expected to run smoothly
and efficiently without any collisions. Therefore, the reference trajectory which the auto-
mated vehicle tries to track should be smooth, efficient, and collision-free under the premise
of feasibility. To generate such a trajectory, several factors are considered. In detail,

(1) For smoothness, large side-force related to high speed and large curvature is
avoided, and the vehicle posture at the corridor terminal is restricted and the motion
parameters are limited.

(2) For efficiency, the travel time is minimized.
(3) For collision avoidance, obstacle avoidance conditions based on the circle-fitting

strategy are designed.
(4) For feasibility, trajectory generation is set up upon vehicle kinematics and the

trajectory is designed as per the actuator range.

3. Methodology

To generate a time-optimal trajectory for a narrow corridor, we explore the trajectory
optimization model as follows.

3.1. Vehicle Kinematics Modeling

Vehicles in a narrow corridor generally travel with a low or medium speed because of
safety concerns, so the vehicle kinematic model [33], i.e., the bicycle model (Figure 2) that
satisfies Ackerman’s steering principles, is capable here.

Figure 2. The kinematic model with front-wheel steering.
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Similar to [32], we use the coordinate of the rear axle center to represent the vehicle
position. With the above-mentioned kinematic model, the vehicle kinematic equations
generally expressed in the time domain are as follows:

ẋ = v cos(ϕ), (3)

ẏ = v sin(ϕ), (4)

ϕ̇ =
v tan(α)

L
, (5)

where x and y are the vehicle position in the global coordinate system, ϕ is the vehicle yaw
angle, v is the velocity, α is the steering angle and L is the wheelbase.

In this study, we discuss the trajectory planning problem in the space domain to make
better use of the position information of the corridor boundaries. Therefore, we transform
the kinematic relationship from the time domain to the space domain with the chain rule
d(·)
dt = d(·)

ds
ds
dt =

vd(·)
ds . The transformed kinematic equations are as follows:

x′ = dx
ds

=
ẋ
v
= cos(ϕ), (6)

y′ = dy
ds

=
ẏ
v
= sin(ϕ), (7)

ϕ′ = dϕ

ds
=

ϕ̇

v
=

tan(α)
L

, (8)

where x′ and y′ are the first derivatives of the vehicle position versus space, and ϕ′ is the
first derivative of the vehicle yaw angle versus space.

3.2. Space Discretization Strategy

In narrow corridors, the total travel time is unpredictable due to the unknown velocity.
On the contrary, the total travel distance can be approximated by the corridor centerline
due to the limited drivable area. Particularly, the approximation error is tiny between the
corridor centerline discrete interval and the target trajectory discrete interval. Therefore, we
design a space discretization strategy here to construct the trajectory optimization model.
In detail, we take the discrete waypoints on the corridor centerline as a reference and use
its discrete interval to approximate the target trajectory discrete interval. In this way, the
mathematical relationships in the target trajectory can be explicitly described and the target
trajectory can be directly solved.

In the space discretization strategy, we discretize the vehicle trajectory in the space
domain and describe the trajectory by the discrete waypoints with velocity information. To
provide reference waypoints for this discrete trajectory, we discretize the corridor centerline
with certain rules. For the reason that vehicle operation in corner areas is more difficult
than that in other areas, we deal with these two situations differently by dividing the
corridor into turning areas and straight areas. In this process, the turning area is decided
by the unique tangent points of the corridor boundaries and corridor turning arcs with a
fixed corridor turning center, see Figure 3. Then, we discretize the centerline in the turning
areas and the straight areas separately, see Figure 4. The discrete points in the turning
areas are expected to be denser than the discrete points in the straight areas because of the
much harder driving environment in the turning areas. Thus, the waypoint interval in the
turning areas should be smaller than that in the straight areas. With the rules mentioned
above, we discretize the corridor centerline into N waypoints and then record their position
information. Here xo(k), yo(k), k = 1, 2, · · · , N is used to represent the waypoint position in
the global system and Δs(k), k = 1, 2, · · · , N − 1 is used to represent the waypoint interval.
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Figure 3. Corridor division. The turning area at the corridor is determined by the fixed road turning
center and corridor turning angle.

Figure 4. Centerline discretization. The upper formula represents the left boundary while the lower
formula represents the right boundary.

Now that the reference centerline has been discretized into N waypoints, the target
trajectory can be approximated by these N points in the form of ξ(s(k)) = ξ(s(1)) +
∑k−1

j=1 Δs(j), k = 2, 3, · · · , N, in which target trajectory waypoints interval are replaced by
the centerline waypoint interval Δs(k). We choose the vehicle position, vehicle yaw angle,
and vehicle velocity as the trajectory states. Thus, the final target trajectory ξ(s(k)) can be
represented by a sequence X(k), k = 1, 2, · · · , N as follows:

X(k) = [x(k), y(k), ϕ(k), v(k)]. (9)

What should be noted here is that the final trajectory would be approximate because
the actual intervals of the target trajectory waypoints are approximated by the centerline
waypoint intervals to express mathematical relationships explicitly and to directly plan
the target trajectory. Moreover, the approximation strategy used here is reasonable and
workable for the reason that the error caused by this strategy is very small in the case of a
narrow corridor.

3.3. Vehicle Trajectory Optimization

This subsection presents the construction of the trajectory optimization model based
on the space discretization strategy, considering the constraints related to safety, feasibility,
smoothness, and travel time.

3.3.1. Objective Function

Concerns about vehicle trajectory planning are mainly concentrated on safety, feasibil-
ity, comfort, and efficiency. The first three ones are hard constraints, while the efficiency
requirement is a soft one. Thus, we choose efficiency as the objective here, and an objective
function based on the corridor travel time is designed. By taking the discrete waypoints as
a reference, the total travel time can be approximately expressed as:

J =
N−1

∑
k=1

Δs(k)
v(k)

. (10)

3.3.2. Terminal Posture Constraints

The vehicle positions in the corridor entrance and exit are expected to be on the
corridor centerline, while the vehicle yaw angles are expected to be parallel to the corridor
heading orientations, which makes it quite difficult to find an exact solution. Thus, we
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constrain the vehicle’s final state to be near the expected posture. By taking the discrete
waypoints as a reference, the terminal constraint can be expressed as:

x(1) = xo(1), x(N) = xo(N)± Δx, (11)

y(1) = yo(1), y(N) = yo(N)± Δy, (12)

ϕ(1) = θenter, ϕ(N) = θexit ± Δθ, (13)

where θenter and θexit are the orientations of the corridor entrance and exit. The sizes
of Δx, Δy, Δθ are expected to be appropriate to guarantee that the vehicle is within the
corridor.

3.3.3. Vehicle Kinematics Constraints

Vehicle operation follows the kinematics relationship. Hence, the vehicle kinematics
constraints are considered here. By taking the discrete waypoints as a reference, the
kinematics constraints in the space domain can be approximately expressed as follows:

x(k + 1) = x(k) + Δs(k) cos(ϕ(k)), (14)

y(k + 1) = y(k) + Δs(k) sin(ϕ(k)), (15)

ϕ(k + 1) = ϕ(k) +
Δs(k) tan(ϕ(k))

L
. (16)

3.3.4. Vehicle Speed Constraints

We consider the constraint of vehicle speed here. By taking the discrete waypoints as
a reference, the vehicle speed constraint is as follows:

vmin ≤ v(k) ≤ vmax. (17)

3.3.5. Actuator Range Constraints

There are both longitudinal and lateral actuator constraints in a vehicle’s operations.
We ignore the limitation of longitudinal actuators here for the fact that a vehicle’s normal
operation in a narrow corridor would never reach its acceleration/deceleration limits.
Though the longitudinal actuator limitation is ignored here, we would restrict the longitu-
dinal motion parameters for comfort. This would be discussed in a later subsection. For the
later actuator, its range could not be ignored since an adequate steering angle is necessary
in a narrow turning area. By taking the discrete waypoints as a reference, the constraint of
steering is as follows:

− αmax ≤ α(k) ≤ αmax. (18)

3.3.6. Tire Side-Force Constraints

A big tire slip angle caused by a large side force would lead to vehicle model invalida-
tion. To avoid this situation, the side force related to the vehicle speed and path curvature
is constrained by the formula v2

R ≤ μg, where R is the curvature radius, μ is the side-force
coefficient, and g is the gravity coefficient. Since the vehicle follows the Ackerman steering
principle, R is dependent on the formula R = L

tan(α) . By taking the discrete waypoints as a
reference, the final expression of the side-force avoidance constraint is as follows:

v(k)2 tan(α(k))
L

≤ μg. (19)

3.3.7. Acceleration and Angular Velocity Constraints

Motion change has a great influence on the smoothness and comfort of vehicle oper-
ation. The vehicle motion is realized by speed control in the longitudinal direction and
front steering control in the lateral direction. Thus, we consider constraining the change
of the speed and steer angle here. That is to say, we constrain the acceleration and steer
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angular velocity. Since we take the discrete waypoints as a reference, the constraints can be
approximately expressed as:

∣∣∣∣v2(k + 1)− v2(k)
2Δs(k)

∣∣∣∣ ≤ amax, (20)∣∣∣∣v(k)(α(k + 1)− α(k))
Δs(k)

∣∣∣∣ ≤ ωmax, (21)

where amax represents the limit value of accleration and ωmax represents the limit value of
the steering angle velocity.

3.3.8. Collision Avoidance Constraints

Safety is the most important consideration in vehicle trajectory planning. For narrow
corridor scenarios, safety means no border collision happens. For border-collision detection,
we adopt a strategy of approximating a vehicle body shape with circles here to describe
the collision condition intuitively and leave some safety margin at the same time [34], as
shown in Figure 5.

Figure 5. Diagram of the circle fitting strategy.

In the circle fitting strategy, the circle parameters are decided by the circle number and
vehicle body parameters. Suppose the vehicle is fitted by Nc circles, and then the circle’s
parameters are calculated as follows:

xc
j (k) = x(k) + (l f + L +

l
Nc

(0.5 − j) cos(ϕ(k)), (22)

yc
j (k) = y(k) + (l f + L +

l
Nc

(0.5 − j) sin(ϕ(k)), (23)

r = 0.5

√
(

l
Nc

)2 + w2, (24)

where r is the circle radius, xc
j (k), yc

j (k) are the circle center position of the jth fitted circle, L
is the wheel base, l and w are the length and width of the vehicle respectively.

Now that the circle centers and radius are quantitatively derived. Boundary-collision
detection can be easily realized by comparing the value of the circle radius with all the
distance from the circle centers to the corresponding boundary segments, as shown in
Figure 6.

Figure 6. Corridor boundary-collision checking in trajectory planning.
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If any distance is less than the circle radius, a collision between the vehicle and corridor
boundary happens. Therefore, all the distances should be greater than the circle radius. In
particular, the distance between a circle center and the boundary segments is as follows:

dl
j(k) =

∣∣∣Al
i x

c
j (k) + Bl

i y
c
j (k) + Cl

i

∣∣∣√
Al2

i + Bl2
i

, (25)

dr
j (k) =

∣∣∣Ar
i xc

j (k) + Br
i yc

j (k) + Cr
i

∣∣∣√
Ar2

i + Br2
i

. (26)

By taking the discrete waypoints as a reference, the collision avoidance constraints
can be expressed as:

(
Al

i x
c
j (k) + Bl

i y
c
j (k) + Cl

i

)2 − r2
(

Al2
i + Bl2

i

)
> 0, (27)

(
Ar

i xc
j (k) + Br

i yc
j (k) + Cr

i

)2 − r2
(

Ar2
i + Br2

i

)
> 0, (28)

in which k range from 1 to N. On the basis of [32], the principle of the parameter and its
influence on the results will be discussed in Section 4.3.

3.4. SOTP Method Design

With the objective function and the constraints mentioned above, the trajectory opti-
mization model is finally constructed as follows:

min (10),

s.t. (11) to (21), (27) to (28).
(29)

The trajectory optimization model would lead to an optimal sequence of vehicle
velocities and steering angles. By the integration of this sequence, a target trajectory with
the characteristics of safety, feasibility, comfort, and efficiency would finally be generated.

What should be noticed here is that the target trajectory is used for reference in a
fixed scene. Thus, the optimization model is solved in a single time rather than the rolling
horizon way. Moreover, if the solving process fails to find an optimal solution because of
being trapped in a local infeasibility point, a trajectory recorded by an experienced driver
could be used to replace the target trajectory.

4. Numerical Simulation

Numerical simulation is conducted to verify the proposed SOTP method. We first test
the practicability in the single corner scenario and subsequently conduct statistical analysis
in the narrow corridor scenario with multi-corners compared with the baseline methods.

4.1. Single Corner Scenario

Narrow corridors are hard for vehicles to pass because the corridor boundaries strictly
limit the collision-free space, especially in the turning area. Therefore, in this subsection,
we apply the proposed method SOTP to the single corner scenario for investigating two
problems: (1) could the proposed method be feasible for the narrow corridor scene with
single corner? (2) what is the minimum corridor turning angle for passing?

4.1.1. Simulation Setup

To explore the solving ultimate limitation of the proposed method SOTP, we here
construct a narrow corridor cluster with a decreasing amplitude of 5◦, which ranges
from 180◦ to the minimum angle within their solving capability. Parameters of the narrow
corridor cluster are shown in Table 1. As for the vehicle model and vehicle motion limitation,
we adopt the same parameters as in Table A2 and Table A3 respectively. As we construct
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terminal posture constraints, we need to set the threshold value Δx, Δy, Δθ to ensure the
vehicle’s final posture to be near the expected posture. The key parameters of the SOTP
method are all listed in Table 2.

Table 1. Narrow corridor cluster parameters.

Symbol Meaning Value

NC1 Corner angle of the first
narrow corridor 180◦

NC2 Corner angle of the second
narrow corridor 175◦

· · · · · · · · ·
NCz Corner angle of the zth narrow

corridor (185-5z)◦

WNC
Corridor width of the narrow

corridors 3.5 m

Table 2. The proposed method parameters.

Symbol Meaning Value

Δx The allowable error in the
x-axis 0.0625 m

Δy The allowable error in the
y-axis 0.0625 m

Δθ The allowable heading error 0.0685 rad
Nc The number of fitted circles 3

N The number of discrete
waypoints 60

We use the platform of MATLAB to design the mathematically-described narrow
corridors and establish the proposed trajectory generation model. Since the trajectory
planning process discussed in this paper is converted to a nonlinear program (NLP),
we here use the NLP solver, IPOPT [35], to find the solution. After realizing trajectory
generation by the SOTP method, we subsequently set the trajectory tracking simulation on
a co-simulation platform of Simulink and CarSim to prove the generated trajectory could
be tracked in the practical application. For the established tracking controller, we take
the famous Stanley algorithm [36] for lateral tracking and the classical PID algorithm for
longitudinal tracking. All processes are executed on an Intel Core i5-11300H CPU with
16 GB RAM that runs at 3.1 Ghz.

4.1.2. Simulation Result

The minimum corner angle required to find a feasible solution is 120◦ for the proposed
SOTP method. As for the study purpose of this subsection, we here choose five groups of
data from the corridor clusters, within which the solvability of our method is guaranteed, to
illustrate the proposed method’s performance. These five groups of data belong to Narrow
Corridor NC1, Narrow Corridor NC4, Narrow Corridor NC7, Narrow Corridor NC10 and
Narrow Corridor NC13 of which the corner angles are 180◦, 165◦, 150◦, 135◦ and 120◦.

As shown in Figure 7, the planned trajectory is smooth with the guarantee of minimum
travel time and collision free. With the decrease in the turning angle, the average velocity
of the trajectory slow down as well while the controller could track the generated trajectory
which indicates the proposed method has huge potential to solve the narrow corridor
scenario.
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(a) The trajectory planning result (b) The trajectory tracking result

Figure 7. The simulation results in the single corner scenario. (a) the trajectory planning result and
(b) the trajectory tracking result. The minimum turning angle of the proposed method is 120◦ and
the trajectory could be tracked in different corner angles.

4.2. Multi Corners Scenario

In this subsection, we apply the proposed method and the baseline methods to a more
general scenario that has two corners and evaluate the quality of the generated trajectories
according to the evaluation metrics to present the excellent performance of the proposed
method. The narrow corridor scenario with limited collision-free space means the scope
of the feasible solution is smaller compared with those scenes with a larger passable area.
Hence, we only consider the narrow corridor scenario.

4.2.1. Baseline Methods

The baseline algorithm we choose for comparison is the hybrid state A* algorithm and
dynamic window approach (DWA) method [37]. The hybrid state A* method is widely
used in complicated scenes because of its advantage to find the optimal path satisfying the
non-holonomic constraints while the DWA method is popular in mobile robot navigation
by generating the control variables directly to avoid obstacles.

In the hybrid state A* algorithm, the path is formed by extending the nodes on
the grid map with the lowest cost in the 3D kinematic state space. Since the extending
nodes are influenced by the grip resolution, the target posture may never be reached. In
this case, a termination condition is necessary so that the search process can be stopped
once the extending node reaches a preset domain. In this study, we set the domain as:
Δx : ±0.25 m, Δy : ±0.25 m, Δϕ : ±15◦ After finishing the search process, a rough path can
be formed. Since the curvature of the original path is not continuous, a smoothing process is
essential. We use the conjugate gradient descent algorithm introduced in [38] to smooth the
original path here. Besides path planning, vehicle velocity also needs to be planned. Based
on the path generated by the hybrid A* algorithm, we here adopt nonlinear programming
to plan the vehicle velocity, considering the side force and acceleration constraint.

4.2.2. Simulation Setup

In this case study, the narrow corridor scenarios with more than two corners could
be split into a scene with two corners. Therefore, we only consider two special narrow
corridors. The first narrow corridor turns continuously in the same direction, while the
second turns continuously in the opposite direction. The former situation can be continuous
left to left turns or right to right turns. We name them the L2L mode and the R2R mode.
The latter situation can be continuous right to left turns or left to right turns. We name
them the R2L mode and the L2R mode. Because of the symmetry, we only need to simulate
one mode in each situation. As shown in Figure 8, narrow corridors with the L2L and
R2L modes are finally chosen to be the simulated scenes. More scenario details could be
available in Table A1 and the parameter of the SOTP method is adopted in Table 2.
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Figure 8. Typical continuous turning situations in narrow corridors with (a) presents the L2L mode
and (b) presents the R2L mode.

4.2.3. Evaluation Metrics

The assessment of the trajectory planning methods is concentrated on the ability
to find the optimal solution and the quality of the generated trajectory. We consider
computational performance, curvature, acceleration, and trajectory tracking error in the
simulation assessment to evaluate the performance of the proposed method.

Computational Performance : we compute the trajectory generation time of each
method on the same simulation platform to compare the computational performance. The
shorter time presents a higher computational efficiency.

Curvature: although we have added a limitation for the curvature, the curvature
variation stands for the smoothness of the trajectory and the smaller curvature variation
shows a better trajectory performance.

Acceleration: acceleration changes sharply may cause the jerk to change violently
which can lead to a terrible ride.

Travel Time: this point is also a kind of evaluation metric to present the travel efficiency.
The shorter travel time shows a higher quality of trajectory.

4.2.4. Trajectory Generation Result

We draw the generated trajectories and the evaluation results of all methods in Figure 9
for the L2L mode while in Figure 10 for the R2L mode. We know that vehicle operation in a
narrow corridor is very hard, especially at the corridor corner, because of the requirement
of more free area for turning. As shown in Figures 9a and 10a, the trajectories planned by
the SOTP method in both the L2L mode and R2L mode approach the outer boundaries
before turning while to the inner boundaries in the other areas. This phenomenon conforms
to the fact that the vehicle with the proposed method can find more free space before
turning compared with other baseline methods and it needs to shorten the trajectory to
save travel time in the other areas. Additionally, as the velocity heat distribution shown
in Figures 9a and 10a, the planned velocity would slow down before and rise up after
turning, which is in accordance with the characteristics of actual vehicle rides. Therefore,
the trajectories generated by the SOTP method in both corridors with the L2L and R2L
modes are qualitatively reasonable.
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(a) Trajectory of L2L mode (b) Evaluation of L2L mode

Figure 9. Trajectory generated by all methods in the narrow corridor scene with heat distribution
indicating the velocity change. (a) the trajectory planned in the L2L mode. (b) the curvature and
acceleration profile of the trajectories in the L2L mode.

(a) Trajectory of R2L mode (b) Evaluation of R2L mode

Figure 10. Trajectory generated by all methods in the narrow corridor scene with heat distribution
indicating the velocity change. (a) the trajectory planned in the R2L mode. (b) the curvature and
acceleration profile of the trajectories in the R2L mode.

The evaluation results including the curvature and the acceleration are shown in
Figures 9b and 10b. More details concerning the maximum curvature, maximum accelera-
tion, and average velocity are recorded in Table 3. From Figures 9b and 10b, the curvature
of the DWA method changes sharply at each corner while the SOTP method and hybrid A*
can availably restrain the curvature below 0.2 m−1. As for the acceleration, both the SOTP
method and the hybrid A* method can keep the acceleration in the allowable scope while
the travel time of the SOTP method is shorter than the hybrid A* method. Furthermore,
the computational time of the SOTP method is far less than that of the hybrid A* method
which presents the proposed method has more powerful computational performance.
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Table 3. The evaluation results.

Method Mode
Max.

Curvature
(m−1)

Max.
Acceleration

(m/s2)

Avg. Velocity
(m/s)

Travel Time (s)
Computational

Time (s)

Hybrid A star L2L 0.20 0.70 3.96 12.21 83.83
R2L 0.18 0.83 4.33 10.91 77.35

DWA L2L 0.69 2.33 1.77 27.68 48.65
R2L 0.62 2.42 1.47 33.33 82.62

SOTP(ours) L2L 0.20 2.00 4.39 11.16 30.91
R2L 0.20 2.00 4.84 10.11 9.37

It is concluded that the proposed method has the highest computational efficiency
and shortest travel time with the highest average velocity compared with other baseline
methods while its acceleration and curvature could also satisfy the motion limitation.

4.3. Sensitivity Analysis

As designed in Equation (24), we use the fitted circles to approximate the vehicle
shape for collision avoidance constraints. In this case study, we utilize different fitted circle
numbers to generate trajectory while the other parameters are the same as the previous
setting. The safety margin r is 1.24 m, 1.05 m, and 0.99 m with the case of Nc = 3, Nc = 5,
and Nc = 7 respectively. The planned trajectories are shown in the Figure 11 while the
evaluation results are shown in the Table 4. With the fitted circle number increasing, the
planned trajectory is smoother with a higher velocity in that the more fitted circles could
reduce the redundant area, as a consequence of enlarging the feasible solution space. The
trajectories with Nc = 5 and Nc = 7 have little difference indicating that the performance
could not be improved by continuously increasing the fitted circles. The computational
time of the L2L mode is totally greater than the R2L mode as a result of the limited space
used to correct the vehicle posture for passing the next corner.

(a) Trajectory of L2L mode (b) Trajectory of R2L mode

Figure 11. Trajectory generated by the SOTP method with different fitted circle numbers in the
narrow corridor scene with the velocity curve. (a) the trajectory planned in the L2L mode. (b) the
trajectory planned in the R2L mode.
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Table 4. The result of sensitivity analysis.

Fitted Circle
Number

Mode
Max.

Curvature
(m−1)

Max.
Acceleration

(m/s2)

Avg. Velocity
(m/s)

Travel Time (s)
Computational

Time (s)

Nc = 3 L2L 0.20 2.00 4.39 11.16 30.91
R2L 0.20 2.00 4.84 10.11 9.37

Nc = 5 L2L 0.13 2.00 6.75 7.27 29.29
R2L 0.12 2.00 6.83 7.17 5.62

Nc = 7 L2L 0.12 2.00 6.94 7.05 33.03
R2L 0.11 2.00 6.97 7.01 8.21

5. Field Experiment

Regarding the field test, we plan the trajectories by the SOTP method and the hybrid
A* method separately and establish controller to track them in a real environment on a
modified vehicle with an autopilot system.

5.1. Experiment Setup

In the field test, we test the trajectory planning and tracking in Narrow Corridor NC10,
which is the most rigorous among the five narrow corridors introduced above. We ignore
the generated velocity profiles and replace them with a constant speed of 10.8 km/h here
for the safety concerns in real narrow corridor scenes. The vehicle parameters and the
motion limitations are shown in Table A2 and Table A3 respectively.

The field test is conducted on a modified Lincoln MKZ platform as shown in Figure 12.
The platform is equipped with an integrated Global Navigation Satellite System (GNSS)
and an Inertial Measurement Unit (IMU). The vehicle also supports the by-wire control of
the throttle, brake, steering and gear shifting system. The algorithms of motion planning
and trajectory tracking control are implemented in C++ under Robot Operating System
(ROS). Additionally, the parameters of the SOTP method and the hybrid A* method are the
same as the previous setting. After generating the target trajectory, the vehicle is controlled
by a nonlinear model predictive control algorithm introduced in [39] to track the planned
trajectory at frequencies in excess of 100 Hz.

LIDAR

Millimeter-wave Radar

GNSS & IMU

Camera

Figure 12. The modified Lincoln MKZ with an autopilot system used in the field experiment.

5.2. Experiment Result

The trajectories tracking results are shown in Figure 13, including the path tracking
performance and the path tracking error. The lower tracking error shows that the trajectory
could be tracked more easily and the corresponding method can be used in the real world
more widely.
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Figure 13. The trajectories tracking results in the field experiment. (a) the path tracking performance
(b) the path tracking error.

The vehicle planned paths and the corresponding tracking paths in the field test are
shown in Figure 13a. Intuitively, the dotted red path almost completely overlaps with the
solid red path, while the dotted blue path has an obvious gap with the solid blue line. An
objective illustration of the path tracking result is shown in the Figure 13b. The centimeter-
level tracking error here is related to both the advanced tracking control algorithm and
the low testing speed for safety concerns. Anyway, the peak value in red is only 0.01 m
while the peak value in blue is almost 0.045 m, which means the tracking error in red is
much less than that in blue. Moreover, the fluctuation frequency of the tracking error in
red is much gentler than that in blue. Hence, it can be concluded that the SOTP method is
superior indeed.

6. Conclusions

This paper presents a space discretization-based optimal trajectory planning method
for automated vehicles in narrow corridor-related scenes, which we name the SOTP method.
With the space discretization strategy, we take the pre-discretized centerline waypoints as a
reference and construct the optimal trajectory generation model totally in the space domain.
An objective function in the trajectory optimization model is designed considering the travel
time, with the goal of high efficiency. For constraints, vehicle kinematics, boundary collision
avoidance, side force, actuator range limitation, terminal states, and boundary collision-free
constraints are considered to make sure that the generated trajectory is safe and feasible.
The proposed SOTP method is verified with both simulations and field experiments. The
results show that the SOTP method is capable of generating feasible, smooth, and collision-
free trajectories in narrow corridor scenarios. Furthermore, compared to the popular hybrid
state A* algorithm, the SOTP method owns higher efficiency to generate a trajectory in
the narrow corridor scene and the generated trajectories are smoother and more efficient.
Moreover, the tracking performance of the trajectories planned by the SOTP method is
much better, which would lead to more stable conditions for vehicle rides. Consequently,
the proposed method has ability to plan a feasible trajectory in a narrow corridor scenario
regarded as a corner case in the autonomous driving, potentially overcoming the limitation
of other search-based methods.

We consider a static scenario with the predefined passable corridor which may depend
on the high definition map. Therefore, in future works, we are going to consider the narrow
corridor scenario with dynamic obstacles and uncertainty such as the sudden appearance
of a pedestrian shielded by other obstacles to explore a more universal method.
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Appendix A

Table A1. Narrow corridor parameters.

Symbol Meaning Value

WL2L Corridor width (L2L) 3.5 m

T1L2L
The first corridor turning

angle (L2L) 135◦

T2L2L
The second corridor turning

angle (L2L) 135◦

WR2L Corridor width (R2L) 3.5 m

T1R2L
The first corridor turning

angle (R2L) 135◦

T2R2L
The second corridor turning

angle (R2L) 135◦

Table A2. Vehicle size parameters.

Symbol Meaning Value

l Vehicle length 4.925 m
L Vehicle wheelbase 2.850 m
l f Vehicle front overhang 1.076 m
w Vehicle width 1.864 m

Table A3. Vehicle motion parameters.

Symbol Meaning Value

αmax The maximum steering angle 30◦

ωmax
The limitation of wheel

steering angular velocity 30◦· s −1

vmax
The maximum allowable

vehicle speed 10 m · s−1

vmin
The minimum allowable

vehicle speed 1 m · s−1

amax
The maximum limitation of

vehicle acceleration 2 m · s−2

amin
The maximum limitation of

vehicle deceleration −2 m · s−2

μ The adhesive coefficient 0.3
g The gravity coefficient 9.8 m · s−2
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Abstract: This paper focuses on the trajectory planning and trajectory tracking control of articulated
tracked vehicles (ATVs). It utilizes the path planning method based on the Hybrid A-star and the
minimum snap smoothing method to obtain the feasible kinematic trajectory. To overcome the highly
non-linearity of ATVs, we proposed a linear-parameter-varying (LPV) kinematic tracking-error model.
Then, the kinematic controller was formulated as the adaptive model predictive controller (AMPC).
The simulation of the path planning algorithm showed that the proposed planning strategy could
provide a feasible trajectory for the ATVs passing through the obstacles. Moreover, we compared the
AMPC controller with the developed controller in four scenarios. The comparison showed that the
AMPC controller achieved satisfactory tracking errors regarding the lateral position and orientation
angle errors. The maximum lateral distance error by the AMPC controller has been reduced by 72.4%
compared to the standard-MPC controller. The maximum orientation angle error has been reduced
by 55.53%. The simulation results confirmed that the proposed trajectory planning and tracking
control system could effectively perform the automated driving behaviors for ATVs.

Keywords: articulated tracked vehicle; adaptive model predictive control; Hybrid A-star; trajectory
planning; trajectory tracking

1. Introduction

In articulated tracked vehicles, two double-tracked units are joined by an articulated
mechanism. Unlike skid-steer vehicles, ATVs have articulated steering mechanisms driven
by hydraulic actuators, which allow them to produce an articulation angle between the
front and rear units of the ATVs and steer the front unit to the desired location [1]. ATVs
have the advantage of a balanced driving force between both tracks, which results in
minimal driving torque requirements in the steering maneuver compared to single and
coupled tracked vehicles [2].

Research has been focused on off-road vehicles to enhance driving efficiency and
ensure safety by using automated driving systems [3,4]. Several approaches have been
applied to obtain a feasible kinematic trajectory for the off-ground vehicle [5]. As the
articulated steering mechanism gives ATVs unique steering characteristics, the rear unit of
ATVs contributes to the overall nonholonomic constraints. It is, therefore, impossible for
traditional planning methods such as the RRT [6] or artificial potential field [7] to produce
a feasible and smooth path for the ATVs. The Hybrid A-star algorithm could produce a
smooth, kinematics feasible path for nonholonomic systems [8,9]. The Hybrid A-star is
implemented in two stages, including the node search, to produce a kinematics-feasible
trajectory. The second stage then locally improves the quality of the path using analytical
expansion of the path.

For trajectory tracking, two types of modeling have been commonly used: kinematics-
based modeling and dynamics-based modeling. Because those ATVs operate at low speeds,
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dynamic factors such as road-wheel load distribution and centrifugal force can be over-
looked. The articulated steering vehicle (ASV) path-tracking deviation model has been
extended from ordinary mobile robots in terms of speed deviation, lateral position de-
viation, and heading angle deviation. To simplify the automatic guidance of ASV, Nayl
defined an improved path tracking model, considering the lateral displacement deviation,
heading angle deviation, and curvature deviation [10]. A tracking error model, which
includes both the position error and orientation error of both the front and rear units, has
been applied in [11] to facilitate the control design for the rear unit of the ASV.

Based on the above path tracking error model, Ridley developed a full state feedback
adaptive tracking method [12]. There are also numerous applications of complex controllers
based on robust control [13], fuzzy control [14], and sliding mode control [15,16]. In addition,
researchers proposed a linear switching control strategy that took advantage of the lineariza-
tion of the ASV to overcome its nonlinear characteristics [17]. A simpler and more robust
trajectory tracking controller, including the MPC controller, was suggested for the tracked
vehicle [18]. A further advantage of the model predictive control (MPC) algorithm is that
it takes constraints into account. Thus, the real-time status of the vehicle can be taken into
account directly in the MPC controller. A switch controller consisting of multiple MPC con-
trollers was proposed to account for the side angles of the ASV [19]. On the articulated vehicle
platform, Kayacan implemented linear MPC, nonlinear MPC, and robust tube-based MPC
algorithms for path tracking [20,21]. An articulated wheel loader achieved good tracking
accuracy despite varying road curvature using the adaptive MPC method [22].

The steering characteristics of ATVs have been extensively studied in the recent research
on ATVs in [23,24]. Furthermore, the design parameters regarding the steering characteristics
of the ATVs were examined in [25,26]. A fuzzy-PID control system has been proposed to
obtain the articulation angle of ATVs to track a predefined path [27]. After that, a closed-loop
control of the steering torque of the ATV hydraulic-driven system was introduced to obtain
the desired articulation angle [28]. Despite this, researchers have not studied motion control
for ATVs during complex maneuvers in obstacle-filled environments. Using the trajectory
provided by the path planner and optimization modules, this paper proposed a trajectory-
tracking control framework based on an adaptive MPC control framework for tracking the
trajectory of ATVs. The following works have been completed:

1. Using the Hybrid A-star path planning method to obtain a feasible kinematic trajectory.
2. Using the minimum snap method to optimize the planned trajectory and obtain the

reference vehicle kinematic states.
3. Designing a kinematic controller based on the AMPC control scheme to achieve robust

trajectory tracking control.

This paper structure is presented as follows. In Section 2, we establish the kinematic
model as well as the trajectory-tracking-error model for the ATVs. Section 3 presents
the trajectory planner for ATVs based on the Hybrid A-star method and the trajectory
optimized method based on the minimum snap method. Section 4 describes the two-layer
trajectory-tracking controller consisting of a forward control method and an adaptive model
predictive method. We discuss the simulation results of the proposed trajectory planner and
the control framework in Section 5. The conclusion of this work is presented in Section 6.

2. Autonomous Articulated Vehicle System

The geometry of the articulated tracked vehicle is shown in Figure 1. The ATVs
comprise two vehicles connected by articulating mechanisms and hydraulic steering ac-
tuators. Changing the articulation angle allows the ATVs to perform steering maneuvers.
Additionally, the front and rear vehicle’s tracks are controlled to maintain the longitudinal
speed. The motion control of ATVs is intended to guide the front and rear units of the ATVs
to the reference trajectory determined by the trajectory planner. The reference trajectory
is defined as [xr(t), yr(t), θr, ψr], where [xr(t), yr(t), θr] are the center of the front vehicle’s
gravity, and ψr denotes the orientation angle of the rear unit, respectively. In this work, the
reference trajectory, namely, qr = [xr(t), yr(t), θr(t), ψr(t)]T , and the derivatives of the ref-
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erence trajectory are all continuous and bound. The longitudinal velocities of the front and
rear vehicles are denoted by υ. θ̇ and ψ̇ are the yaw rates of the two ATV units, respectively.
Then, the state vector q = [x, y, θ, ψ]T denotes the ATVs’ position and orientation.

Figure 1. The modeling of an articulated tracked vehicle system in this work is divided into theoretical
mathematical modeling and virtual multi-body dynamic modeling based on the real vehicle system.
The modeling depicts the steering of the ATVs driven by the hydraulic cylinders, which results in the
change in articulation angle γ, the articulation angular rate γ̇, and the yaw-rate response of the front
unit and rear unit θ̇ and ψ̇.

In this paper, we consider the path planning and tracking of ATVs in a structured
environment, including the boundaries and obstacles described by the rectangle. The problem
of achieving a viable path and accurate control can be divided into two stages, trajectory
planning, and trajectory-tracking control. Several goals must be fulfilled in the trajectory
planning process, such as continuous driving velocity profiles and establishing a feasible
path to avoid obstacles. This planner provides a discrete and smooth reference path for the
trajectory-tracking controller. Finally, the controller produces accurate velocity and steering
angle for the ATVs to travel to the destination safely. Figure 2 shows the scheme of the whole
work, including the path planning and the path tracking control. In the control system, the
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trajectory planning module provides the reference positions Xr, Yr, θr, ψr and the kinematic
reference states υr, θ̇r to the trajectory tracking controller as the external disturbance.

Figure 2. Overall scheme of the path planning and tracking modules for the articulated tracked
vehicle system.

2.1. Kinematic Vehicle Models

In this section, the developed kinematic model is used to capture the main feature of
the kinematics of the ATVs [15], which can be expressed as follows:

ẋ = ῡ cos θ

ẏ = ῡ sin θ

θ̇ =
ῡ sin γ + Lrγ̇

L f cos γ + Lr

ψ̇ =
ῡ sin γ − L f γ̇

L f cos γ + Lr

(1)

where the variables x and y denote the coordinate of the geometry center of the front unit
of the ATVs; θ and ψ denote the orientation angle of two parts of ATVs, respectively. γ
and γ̇ denote the articulate angle and the articulate angle rate. The difference between the
orientation angle of two units is defined as the articulation angle γ. To maintain the safety
of the ATVs in the steering process, the steering control action, namely articulation angle
and articulation angle rate, should be less than the maximum value.

2.2. Tracking Error Dynamics Model

To obtain the tracking error between the vehicle and the reference trajectory, we define
the variable of tracking error:

qe = q − qr (2)

where q denotes the position and orientation of the ATVs, and qr indicates the position
and direction of the reference point on the desired path. Both q and qr are expressed in the
earth-fixed frame. The tracking error qe should, however, be expressed in the vehicle-fixed
frame to benefit from the computation of the kinematic controller. As a result, we use an
orthogonal rotation matrix to translate the vehicle motion from the earth-fixed frame to a
vehicle-fixed frame. Based on the kinematic parameter of ATVs, the transformation can be
expressed as follows:

qe =

⎡
⎢⎢⎣

ex
ey
eθ

eψ

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

cos θr sin θr 0 0
− sin θr cos θr 0 0

0 0 1 0
0 0 0 1

⎤
⎥⎥⎦
⎡
⎢⎢⎣

x − xr
y − yr
θ − θr
ψ − ψr

⎤
⎥⎥⎦ (3)
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where ex and ey denote the position distance deviation projecting on the longitudinal
and lateral directions, respectively. eθ and eψ denote the orientation error of two units,
respectively. This work presents a kinematic controller to propel the ATVs to follow a
predefined or planned trajectory while maintaining the vehicle states within physical limits.
In terms of the position deviation and orientation deviation, we propose the following
differential equations as follows:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ėx = θ̇ey + υ cos eθ − ϕr

ėy = −θ̇ex − υ sin eθ

ėθ = θ̇ − θ̇r

ėψ = ψ̇ − ψ̇r

(4)

2.3. Kinematic LPV Modelling

To construct the linear parameter varying (LPV) tracking error model, we define
a scheduling variable including the reference velocity and yaw-rate, expressed as
ρ(k) := [υr, θ̇r]. In the LPV model of the tracking error system, the state, control, and
output variables are defined as follows:

x =

⎡
⎢⎢⎢⎢⎣

ex
ey
eθ

eψ

γ

⎤
⎥⎥⎥⎥⎦ u =

[
υ
γ̇

]
y =

⎡
⎢⎢⎣

ex
ey
eθ

eψ

⎤
⎥⎥⎦ r =

[
υr
θ̇r

]
(5)

Then the tracking error model is transformed into the formulation of the LPV model:

ẋ = A(ρ(k))x + Bu(ρ(k))u + Brr (6)

where

A(ρ(k)) =

⎡
⎢⎢⎣

0 Ξ1 0 0 0
−Ξ1 0 0 0 0

0 0 0 0 Ξ2
0 0 0 0 0

⎤
⎥⎥⎦

Bu(ρ(k)) =

⎡
⎢⎢⎢⎢⎢⎣

1 ey
Lr
D

sin eθ −ex
Lr
D

0 Lr
D

0 − L f
D

0 1

⎤
⎥⎥⎥⎥⎥⎦Br =

⎡
⎢⎢⎢⎢⎣

1 0
0 0
0 −1
0 −1
0 0

⎤
⎥⎥⎥⎥⎦

where Ξ1 = υr sin γr
D and Ξ2 = υr

D , D = L f + Lr. From this LPV formulation of the tracking-
error model, a polytopic representation for the error model can be expressed as

x(k + 1) = (
2rc

∑
i=1

μi Ai)x(k) + (
2rc

∑
i=1

μiBi)u + Brr (7)

where rc is the number of scheduling component in ρ(k). The matrix Ai and Bi denotes the
each polytopic vertex of the matrix A(ρ(k)), Bu(ρ(k)), defined by the extreme realization
of scheduling components in ρ(k). The weighting coefficient μi is used to comprehen-
sively describe the scheduling variables ρ(k), which therefore determines the realization
of A(ρ(k)), Bu(ρ(k)) in the control system. Using the available information of scheduling
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variable ρ(k), we utilize the Takagi-Sugeno fuzzy method to obtain the state-space matrices
of the LPV formulation [29]. The membership function μi can be expressed as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Mυr =
ῡr−υ̂
ῡr−υr

Mθ̇r
=

¯̇θr− ˆ̇θ
¯̇θr−θ̇r

μ1(υ, θ̇) = Mυr Mθ̇r

μ2(υ, θ̇) = Mυr (1 − Mθ̇r
)

μ3(υ, θ̇) = (1 − Mυr )Mθ̇r

μ4(υ, θ̇) = (1 − Mυr )(1 − Mθ̇r
)

(8)

where ῡr and υr denote the upper bound and lower bound of the longitudinal speed
of reference. ¯̇θr and θ̇r denote the upper bound and lower bound of the yaw rates of
the reference. υ̂r denotes the measured longitudinal speeds of the vehicle; ˆ̇θ denotes the
measured yaw rate of the front unit of the ATVs.

3. Trajectory Planning

This section defines the path planner of ATVs in two stages, namely path searching
and trajectory optimization, as shown in Figure 3. The environment map is divided by
the grids at first. In the simulation, the ATVs are shrunk into two coupled rectangles
moving on a two-dimensional map. Obstacles, Λi(i = 1, 2, . . . , n), are marked with a cyan
color that the ATVs are not permitted to cross. The simulation has predefined the start
point (X, Y, θ)S and goal point (X, Y, θ)T . For the ATVs to reach the goal point and avoid
obstacles, a Hybrid A-star algorithm is proposed to generate a feasible kinematic trajectory.
The planned trajectory is optimized with the minimum snap algorithm for smoothness
and continuous acceleration. By interpolating the kinematic states concerning the time,
the optimal trajectory could be expressed by polynomial functions. It will check whether
its velocity and acceleration meet the physical limits. At the final step, the reference path
is summarized in terms of a series of points attached with the kinematic states of ATVs
(xr, yr, θr, ψr).

Figure 3. Flow chart of the trajectory planning algorithm of ATVs.
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3.1. Node Expansion

Path search is used to construct a collision-free route for the ATVs from the initial
position S to the goal position T. In this stage, we propose the Hybrid A-star algorithm,
which expands path nodes in the map’s continuous space to maintain the kinematic
feasibility of the planned path. The continuous moving state is defined as (x, y, θ, γ), which
refers to the position, orientation, and steering angle of the moving object. t is the expanded
node, and its cost can be evaluated by the function f(t). Based on the lowest value of the
evaluation function f(t), the Hybrid A-star algorithm expands the path node. It updates the
evaluation function of sub-nodes associated with the current node t until all nodes have
been traversed or the current node t is near the goal node T. Using the function g(t), we
could obtain the travel cost from the start node S to the current node t. In the meantime, a
heuristic function h(t) can predict the heuristic cost between the current position and the
goal. The overall cost can be calculated using f (t) as follows:

f (t) = g(t) + Chh(t) (9)

where Ch denotes the weighting coefficient of the heuristic cost. The list L denotes the
collection of nodes for the next expansion, and the list C refers to the expanded node
collection. The actual cost considers the moving distance from S to t. It includes additional
penalties for the steering angle and steering angle increments to avoid unreasonable steering
maneuvers. The actual cost g(t) for the current node can be expressed as follows

g(t) = Cdistance + γ ∗ Csteer + (γprev − γ) ∗ Csteer_di f f + Cprev. (10)

Cdistance denotes the distance from t to its parent node; Cprev denotes the actual cost for
the parent node. γ denotes the articulation steering angle for the current node while γprev
denotes the steering action for the parent node. Csteer and Csteer_di f f denote the weighting
coefficients for the steering input and the steering input change.

3.2. Heuristics Cost

As shown in Equation (10), the actual cost from S to current node t has been evaluated
by the function g(t). Since the minimum value of g(t) represents the optimal trajectory and
the corresponding steering action, the steering action to the goal can be derived from the
heuristic function h(t). The classical Hybrid A-star algorithm usually adopts two kinds
of heuristics. The first heuristic function is the nonholonomic-without-obstacles, which
only considers the kinematics of a moving object without considering the obstacles. The
second approach is holonomic-with-obstacles, which ignores the kinematics of moving
objects and produces a trajectory with the minimum Euclidean distance between the current
position and the destination in the presence of obstacles. To obtain the optimal guidance
for the current node, the algorithm adopts the maximum value of the two heuristics as
the heuristic function h(t) for the current node. To expand the node from t to T, the first
heuristics use the Reeds-Shepp (RS) curve, which takes into account the ATVs’ kinematics.
Using the grid A-star cost map as the second heuristic function enables the ATV to avoid
inefficient path searches by providing the map’s information to the vehicle. The maximum
of both heuristics has been calculated. The value of function h(t) will be determined by the
maximum of the two heuristics.

3.3. Analytical Expansion

The discretized control actions achieve the expansion of the node during the forward
node search. While using the optimal steering action, the moving object may not be able
to precisely reach the predefined position and orientation of the goal node T. As a result,
analytic expansions based on the RS curve would be used to guide the node search near
the goal. The RS curve would also be checked for collision with the obstacles along the way.
When the analytical expansion is employed, the algorithms perform an analysis that looks
for an RS curve to the goal node T before conducting the node search from the node t. The
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node search would be terminated if the algorithm could find a collision-free path to the
destination based on the RS curve. The RS curve would be augmented to the searched path,
and the overall path planning from t to T is accomplished.

3.4. Trajectory Optimized

In the stage of the node expansion, the discretized steering angles would select the
steering angle from a set of twenty steering angles from −35 degrees to 35 degrees. This
would result in the unnatural swerve steering of the articulated steering vehicle by non-
continuous steering actions. Moreover, the Hybrid A-star algorithm aims to produce the
shortest path, causing the planned route would be very close to the obstacles. Therefore,
the planned courses need to be improved regarding smoothness and safety.

Polynomial equations are often used to describe the trajectory of mobile transportation
using the fifth-order and seventh-order polynomials. The polynomial trajectory is expressed
by the n-order polynomial as follows:

p(t) =p0 + p1 × t + p2 × t2 + · · ·+ pn × tn

=
n

∑
i=0

pi × ti (11)

where p0, p1, . . . , pn are trajectory parameters. As the single polynomial cannot describe
the complex trajectory, the entire trajectory could be divided into k-segment polynomials,
and each segment is allocated with a certain time step as follows:

p(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
1, t, t2, · · · , tn] · p1 t0 ≤ t ≤ t1[
1, t, t2, · · · , tn] · p2 t1 ≤ t ≤ t2

· · ·[
1, t, t2, · · · , tn] · pk tk−1 ≤ t ≤ tk

(12)

where k denotes the number of segments, and pi = [pi0, pi1, . . . , pin]
T denotes the poly-

nomial coefficients of the ith segment. Then, the trajectory optimization process can be
transformed into an optimization problem for obtaining the feasible coefficient p1, p2, . . . , pk
that minimizes the integration of the square of the fourth derivative of position, namely,
snap. The optimal problem needs to consider the constraints, such as the continuity at the
junction of adjacent segments and the limits on the velocity and acceleration. In all, this
optimal problem has been formulated as a constrained quadratic problem with equality
constraints and inequality constraints in this work as follows:

⎧⎪⎨
⎪⎩

min J (p) = pTQp
s.t. Aeqq = beq

Aineqq ≤ bineq

(13)

where the matrices Q, Aeq and Aineq are functions of the time allocation δt � [δt1 , . . . , δtk ].
The equality constraint limits the states of movement, including the position, velocity,
and acceleration within the segments, and ensures the continuity between the segments.
Meanwhile, the inequality constraints form a trajectory corridor, which keeps a distance
from the obstacles. To assign the appropriate time for each trajectory segment, the Euclidean
distance between way-points is used to allocate time proportionally.

4. Control Design

In this section, we describe the design of the ATV trajectory tracking control scheme.
We have divided the control framework into two parts. The first part deals with the
longitudinal speed control of ATVs by adjusting the rotating speeds of the tracks. The
second one is the steering motion of the ATVs by adjusting the articulation angular rate.
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The control system produces feedback control actions by using an adaptive MPC algo-
rithm. This system regulates the states of the tracking deviation system through feedback
control. An error model for the tracking system has been proposed in Equation (6). To predict
the system state, the MPC systems need future information about the planned trajectory
to analyze the evolution of the tracking error over time. The path planning module could
provide the control system with the possible disturbance on the ATVs. The path planner
determines the disturbance vector r by the longitudinal velocity and yaw rate. u is a feedback
control action aimed at minimizing the tracking error in the presence of disturbance.

4.1. Reference Trajectory

A path-planning method has been proposed in Section 3 to derive a smooth trajectory
for ATVs. The reference states x, y, θ, ψ will be used to determine the ATVs’ kinematic
control. Based on the planned trajectory, we obtain the reference states υr and θ̇r. Planner
subsystems formulate time-based reference trajectories by evaluating a given reference
trajectory (xt

r, yt
r, θr, ψr) and its derivatives. The reference speeds υr and the reference yaw

rates θ̇r could be calculated as follows

υr =
√
(ẋt

r)
2 + (ẏt

r)
2

θ̇r =
ÿt

r ẋt
r − ẍt

r ẏt
r

(ẋt
r)

2 + (ẏt
r)

2

(14)

4.2. Adaptive MPC Controller

The path tracking of ATVs is controlled using the adaptive MPC algorithm, which
adopts the LPV formulation instead of the non-linear model of the tracking error. Based
on the information about scheduling variables, the LPV model in Equation (6) updates its
state-space models. As defined in Section 3, ρ = [υr θ̇r] is used as the scheduling variable
based on the reference path given by the path planner. Using the Equations (7) and (8), the
system matrices Ak and Buk can be calculated at any instant k. Throughout the prediction
horizon, the adaptive MPC controller could accurately predict the evolution of vehicle
states. Thus, the LPV tracking error model in Equation (6) enables the MPC controller to
balance computing complexity and efficiency.

To obtain a feasible control action u, the MPC controller must solve a quadratic optimiza-
tion problem at each instant k. The values of past states xk, the past control action uk−1 and
the disturbance vector rk are available to predict the system states xk+1 based on the related
matrix coefficients Ak and Buk. The optimization problem can be formulated as follows:

min
ΔU

Jk =
Hp−1

∑
i=1

(xT
k+iQxk+i + Δuk

T RΔuk)

s.t.

xk+i+1 = xk+i + (Akxk+i + Bukuk+i + Brrk+i)dt

uk+i = uk+i−1 + Δuk+i

ΔU ∈ ΔΠ

U ∈ Π

x̄ = x̂k

(15)

where x = [ex ey eθ eψ γ]T is the state vector for the nominal system; xk denotes the
estimated state vector at the time instant k. r = [υr θ̇r]T is the disturbance vector given by the
proposed path planner. Hp denotes the prediction horizon. Q ∈ R5×5 and R ∈ R2×2 are
semi-positive diagonal weighting coefficients for the state and control action increments to
obtain a convex cost function, respectively. u = [υ γ̇] denotes the vector of the control action.
Δu denotes the vector of the increment of the control actions. U and ΔU denote the sequence
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of the control actions and their increments through the prediction horizon. Π and ΔΠ
denote the physical limit on the articulation angular rate and its increments, respectively.

If the optimization problem in Equation (15) could be successfully solved, then a
sequence of control input increments can be obtained as ΔU = [Δuk Δuk+1 . . . Δut+Hp−1]

T .
Based on the past control action uk−1, the control action at the current time instant k is the
summation of the past control action uk−1 and the control increment Δuk from the sequence
ΔU as follows:

uk = uk−1 + Δuk (16)

4.3. Track-Speed Control

Based on the control action uk obtained by Equation (16), the longitudinal control of
ATVs is performed by adjusting the tracks of both front and rear unit of ATVs. To achieve
the desired longitudinal speed and avoid the excessive track slip, the speeds difference
of different tracks, [υr

f l, υr
f r, υr

rl, υr
rr] can be obtained by the calculation method developed

in [15,30]:

υr
f l = υ +

υsinγ

2(L f + Lrcosγ)
− υγ̇B

2(L f + Lrcosγ)

υr
f r = υ − υsinγ

2(L f + Lrcosγ)
+

υγ̇B
2(L f + Lrcosγ)

υr
rl = υ cos γ +

υLr sin γ2

2(L f + Lrcosγ)
+

υB sin γ

2(L f + Lr cos γ)
+

γ̇Lr(2L f sin γ − B cos γ)

2(L f + Lr cos γ)

υr
rr = υ cos γ +

υLr sin γ2

2(L f + Lr cos γ)
− υB sin γ

2(L f + Lr cos γ)
+

γ̇Lr(2L f sin γ + B cos γ)

2(L f + Lr cos γ)

(17)

where γ and γ̇ denote the articulation angle and articulation angular rate. B denotes the
width of the front unit of ATVs. υr

f l and υr
f r denote the left and right tracks longitudinal

speeds of the front vehicle, and υr
rl and υr

rr denote the linear speeds of tracks of the rear ve-
hicle. The velocities of four tracks of the articulated vehicle are obtained from Equation (17),
which ensures that the longitudinal speed of the front unit of ATVs is equal to the desired
longitudinal velocity given by the adaptive MPC controller. It is worth noting that the track
speeds given by Equation (17) could not deal with the lateral slippage of the tracks well.
Therefore, the lateral motion of the vehicle may occur in the steering maneuver that causes
the lateral tracking error.

5. Simulation and Discussion

5.1. Simulation Setup

This section evaluates the ATVs’ path planning and path tracking algorithms on a
simulation platform by MATLAB/Simulink and Recurdyn. Multi-body dynamics software
Recurdyn features a high-speed track module. The virtual ATV model in Recurdyn is
shown in Figure 4. The parameters of this virtual model are based on reality. This virtual
model uses parameters derived from reality. The proposed AMPC controller is evaluated
for its tracking performance on this virtual model. The simulation platform’s structure is
illustrated in Figure, whose parameters are given in Table 1.

We conducted the simulation on the MATLAB 2022a platform to verify the proposed
path planning method. The algorithm is implemented in Matlab programming language.
We designed two maps with different obstacles. The ATV model was configured with two
rectangles, whose sizes are 2.5 × 2 m and 2 × 2 m. The driving speed of the ATVs was set to
2.5 m/s. The parameters of the Hybrid A-star planner and the trajectory optimization are
listed in Table 2. The proposed method (Method 2) was compared to the original Hybrid
A-star method (Method 1). Method 1 also considers the kinematic characteristics of ATVs and
implements the node search by the discretized steer angles. At the same time, the Reed-Shepp
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(RS) curve is not adopted by Method 1 in the path search. Moreover, the heuristic function of
Method 1 is the Euclidean distance from the current node and the destination.

Figure 4. The virtual model of the articulated tracked vehicle constructed on the multi-body dynamics
software Recurdyn.

The simulation results of the proposed AMPC algorithm were compared with the fuzzy
control and MPC control published in [27,31,32]. The performance of the path-tracking
controller could be mainly determined by the lateral position error and the orientation
angle error of the front unit with respect to the reference path.

Four conditions were considered in the co-simulation of the path-tracking controllers. In
the first condition, the ATV was controlled to track an arc of 25 m radius with a longitudinal
velocity of 0.56 m/s. The second condition was to follow a path consisting of three circles
with 30 m, 20 m, and 40 m radius, respectively. The longitudinal speed was set as 3 m/s. In
the third condition, the reference path is a mixed path with three straight lines and two arcs
of 20 m radius. The vehicle was set to move at a speed of 4 m/s. Finally, the fourth condition
was to track a path generated by the Hybrid A-star planning method proposed in Section 3.
The proposed AMPC controller was compared with the standard—MPC controller in this
condition. In the above simulations, the parameters of the proposed controller were fixed
and presented in Table 3.

Table 1. Kinematic parameters of the articulated tracked vehicle model.

Symbol Description Value Unit

B Width of ATVs 2.1 [m]
D Length of ATVs 4.8 [m]
L f Distance from the hitch point to front unit 2.6 [m]
L f Distance from the hitch point to rear unit 2.2 [m]
γ Articulation angle [−0.75, 0.75] [rad]
γ̇ Articulation angular rate [−0.18, 0.18] [rad/s]
υ Vehicle longitudinal speed [−1, 4] [m/s]

Table 2. Parameters of the trajectory planning and optimization.

Description Value Unit

Minimum turn radius 10.4 [m]
Maximum velocity 5 [m/s]
Maximum acceleration 2 [m/s2]
Maximum steering angle 0.5 [rad]
Maximum steering rate 0.15 [rad/s]
Grid resolution in distance 2 [m]
Grid resolution in yaw angle 15 [degree]
Motion step size 1 [m]
Number of steering angle candidate 20
Steer angle change weighting coefficient 2
Steer angle weighting coefficient 1
Heuristic weighting coefficient 2
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Table 3. Parameters of the trajectory tracking AMPC controller.

Symbol Description Value

Ts The sample time of controller 0.2 [s]
Hp Length of the prediction horizon 10
Hc Length of the control horizon 5
Q Weighting coefficient for states diag(0.5 0.5 1 0.1 0)
R Weighting coefficient for control input diag(0.1 0.2)
P Terminal cost coefficient diag(0.1 0.1 1 1 0)

5.2. Simulation of Path Planning

The comparisons of the two simulation results are illustrated in Figure 5a,b. The solid
line denotes the results of Method 1, and the dash-dot line indicates the proposed Method 2.
As shown in Figure 5a, both path planning methods could generate the path to the goal.
A significant improvement can be observed as the path generated by Method 1 contained
non-smooth segments, while the planned path of Method 2 is much smoother and contains
fewer switches of turning direction. Moreover, in Method 1, the planning path is close
to the obstacles when the ATVs try to turn between the obstacles, as shown in Figure 5b.
On the contrary, the path by Method 2 could be in the middle of the obstacles to avoid
unnecessary turns when crossing the corridor between the obstacles.

Figure 5. Original Hybrid A-star (solid line) and the proposed Hybrid A-star (dash-dot line) path
planning in the simulation. (a) Map A; (b) map B.

Table 4 summarizes the comparison between Method 1 and Method 2 regarding the
maximum curvature, path length, the number of steering direction changes, and execution
time. The higher values indicate higher steering instability, a longer driving path, and
a higher computation cost to find the goal. From the comparison, Method 2 generates a
path with more minor curvatures than Method 1. Moreover, the path length of Method
2 is longer in map A, but shorter in map B, although the difference between the two
methods is not significant (88.46 versus 96.06 and 128.94 versus 116.09, respectively). In
both conditions, the proposed method’s computation time are both longer than Method 1
because the candidate RS curves must be computed and checked for the collision in Method
2. Whereas the benefit of the RS curve is the much less number of the steering change in
Method 2, as the RS curve could simplify the process of the path forward search.
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Table 4. Comparison of original method and the proposed method.

Map Method 1 Method 2

Curvature 1 Number 2 Length 3 Time 4 Curvature Number Length Time

Map A 0.095 4 88.46 15.5 0.059 1 96.06 23.3
Map B 0.098 5 128.94 26.4 0.096 2 116.09 40.6

1 Curvature denotes the maximum curvature of the planned path.2 Number denotes the number of the steering
direction change.3 Length denotes the overall length of the planned path. 4 Time denotes the computation time
of the planning method to obtain the planned trajectory.

5.3. Simulation of the Trajectory Tracking
5.3.1. Simulation Result of Case 1

In Case 1, the ATV is controlled to follow the curved path with a radius of 25 m, and
the ATV is assumed to be positioned at the initial point. In the previous research [27],
the fuzzy control system was utilized to guide the ATV to follow an arc. The simulation
result of the fuzzy control and the proposed AMPC control have been presented in
Figures 6–8. The maximum lateral error of the AMPC controller is almost the same as
that of the fuzzy-PID controller, as shown in Figure 7. Moreover, the AMPC controller
achieves a minor orientation deviation compared to the fuzzy-PID controller, as shown
in Figure 8. The maximum orientation error in the AMPC controller has been reduced
by 81.84% compared to the fuzzy-PID method. Thus, the trajectory generated by the
AMPC controller is closer to the predefined path than the fuzzy-PID method, as shown in
Figure 6.

Figure 6. The trajectory of the AMPC controller and the fuzzy-PID controller in Case 1.

Figure 7. The lateral position error of the AMPC controller and the fuzzy-PID controller in Case 1.
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Figure 8. The orientation angle error of the AMPC controller and the fuzzy-PID controller in Case 1.

5.3.2. Simulation Result of Case 2

Case 2 consists of three circle paths to test the tracking performance of the ATV for the
continuous steering mode. In the previous research [31], the standard-MPC controller was
proposed for path tracking of autonomous articulated vehicles. The path-tracking error
model of standard-MPC is based on lateral displacement, orientation, and curvature errors.
The curvature error is dedicated to the circular path with a constant radius. As our work has
not included the curvature error in the path-tracking model, we have compared the lateral
position error and orientation error of the AMPC method with that of the standard-MPC.

The reference path and the trajectory produced by the standard-MPC and the AMPC
are presented in Figure 9. The trajectory of the AMPC is closer to the defined path than the
standard-MPC. The position and orientation errors produced by the standard-MPC and the
AMPC have been illustrated in Figures 10 and 11. The AMPC method has achieved better
performance of the lateral position error than that of the standard-MPC. The maximum
position error of the standard-MPC is 2 m, while the maximum position error of the AMPC
is 0.67 m. In addition, the position error response of the AMPC converges to zero at the final,
while the standard-MPC retains a significant position error. The standard-MPC produces a
more minor orientation angle error than the AMPC controller. The maximum orientation
errors of the standard-MPC and the AMPC are 0.002 rad and 0.067 rad, respectively. The
reason may be due to the unavoidable skid of the articulated tracked vehicles compared to
the articulated vehicle with tires. Nevertheless, the orientation error caused by the AMPC
is acceptable for the ATV in practical operation.

Figure 9. The trajectory of the AMPC controller and the standard-MPC controller in Case 2.
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Figure 10. The lateral position error of the AMPC controller and the standard-MPC controller in
Case 2.

Figure 11. The orientation angle error of the AMPC controller and the standard-MPC controller in
Case 2.

5.3.3. Simulation Result of Case 3

Case 3 consists of straight lines and arcs with a radius of 20 m. The previous research
in [32] compared the tracking performance between the switch-MPC and the nonlinear
MPC (NMPC) on the path tracking of the articulated mining vehicle with tires. Although
the articulated vehicle of the research [32] differs from the ATV, the results in [32] have
significant value and are worthy of reference.

Figure 12 illustrates the articulation angle response of three controllers. The maximum
articulation angle response of the switch-MPC, the NMPC, and the AMPC controller is
0.5589 rad, 0.3940 rad, and 0.272 rad, respectively. Both the articulation angle response
of the NMPC and the AMPC controllers exhibit less overshoot and change smoothly
compared to the switch-MPC controller. Figure 13 illustrates the lateral position errors
of the controllers. The maximum position errors by the switch-MPC, NMPC, and AMPC
controller reached 0.7217 m, 0.0874 m, and 0.192 m, respectively. The ultimate position
error generated by the AMPC controller was reduced by 73.4 % compared to the switch-
MPC controller. Figure 14 presents the orientation errors of all controllers. The maximum
orientation errors are 0.1458 rad, 0.0461 rad, and 0.0392 rad for the switch-MPC controller,
the NMPC controller, and the AMPC controller, respectively. The maximum orientation
error of the AMPC has been reduced by 73.11% compared to the switch-MPC controller
and by 14.97 % with respect to the NMPC controller.

According to the research [32], the maximum computation times for the NMPC con-
troller and the switch-MPC controller are 0.014 s, and 0.04 s, respectively. As the AMPC
control system is constructed in the Matlab/Simulink, the profile report of the Simulink
run-time indicates that the proposed controllers have been invoked 200 times during the
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whole simulation time of 40 s. The overall computation time of the controller is 0.399 s.
The average computation time of the AMPC controller is approximately 0.002 s at each
time step. The average computation time of the AMPC is much less than that of both the
switch-MPC controller and the NMPC controller.

Figure 12. The articulation angle of the AMPC controller, the NMPC controller, and the switch-MPC
controller in Case 3.

Figure 13. The lateral position error of the AMPC controller, the NMPC controller, and the switch-
MPC controller in Case 3.

Figure 14. The orientation angle error of the AMPC controller, the NMPC controller, and the switch-
MPC controller in Case 3.
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5.3.4. Simulation Result of Case 4

To evaluate the reliability of the AMPC algorithm to track a non-uniform trajectory
given by the proposed path planner, we conducted a simulation where the ATV is controlled
to follow the non-uniform trajectory with varying curvature.

The simulation results are presented in Figures 15–19. The vehicle is set to move at
3 m/s. As shown in Figure 15, both the standard-MPC and the AMPC controllers could
drive the ATV to follow the given path, while the AMPC controller causes less offset from
the reference path compared to the standard-MPC controller. Figure 16 illustrates the
articulation angle of both controllers. The ultimate articulation angle of the standard-MPC
and the AMPC controller reached 0.611 rad and 0.532 rad, respectively. The maximum
articulation angle of the standard-MPC is more than the limit on the articulation angle.
Moreover, the articulation angle response of the AMPC controller presents less overshoot
compared to the standard-MPC controller. Figure 17 illustrates the articulation angle rate
of both controllers. The response of the AMPC controller exhibits more drastic changes
when compared to the standard-MPC controller. At the same time, the AMPC controller
outputs the articulation angle rate in advance to resist the disturbance, which could reduce
the tracking error of the ATV. Figure 18 depicts the lateral tracking errors of the AMPC
and the standard-MPC controller. The tracking error of the AMPC controller maintains
much less than that of the MPC controller through the tracking process. Moreover, the
maximum lateral tracking error of the ATV approached 0.832 m and 3.015 m by the AMPC
and the standard-MPC controller, respectively. The number of maximum position errors
by the AMPC controller was reduced by 72.4% compared to the standard-MPC controller.
Figure 19 illustrates the orientation angle error of both controllers. The orientation error
of the AMPC controller is also less than the standard-MPC controller along the time. The
maximum orientation error of the AMPC controller and the standard-MPC controller is
0.125 rad and 0.269 rad, respectively. The maximum value of the orientation angle error by
the AMPC controller was reduced by 53.53% compared to the standard-MPC controller.

Figure 15. The trajectory of the AMPC controller and the standard-MPC controller in Case 4.

Figure 16. The articulation angles of the AMPC controller and the standard-MPC controller in Case 4.
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Figure 17. The articulation angle rates of the AMPC controller and the standard-MPC controller in
Case 4.

Figure 18. The lateral position errors of the AMPC controller and the standard-MPC controller in
Case 4.

Figure 19. The orientation angle errors of the AMPC controller and the standard-MPC controller in
Case 4.

6. Conclusions

To enhance the ability of ATVs to drive in a complex environment, we apply the Hybrid
A-star method to plan a safe trajectory. Moreover, the planned path was optimized to
ensure smoothness and continuity. Comparing the proposed path planner with the original
Hybrid A-star method shows that the planner could generate a feasible trajectory with
minimum steering direction change. Numerous studies have applied the MPC algorithm
and verified its effectiveness for path-tracking control of the articulated vehicle. To achieve
the trajectory tracking of the articulated tracked vehicle to follow the planned path, we
propose an adaptive model predictive control (AMPC) control method that is based on the
time-varying tracking error system. We obtain the following results and conclusions by
comparing the AMPC controller with the previously developed fuzzy and MPC controller.

Firstly, the AMPC controller could rapidly track the reference path compared to the
fuzzy-PID controller. The AMPC controller also achieves a minor orientation angle error.
Secondly, the AMPC controller could achieve more minor tracking errors than the standard-
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MPC method. Thirdly, the tracking accuracy of the AMPC method is still inferior to the
NMPC method, while the AMPC method has the advantage of computation efficiency.

From the above analysis, the main contributions of this work could be summarized
as follows:

1. Although the adaptive model predictive control algorithm has been applied in the
path-tracking of the mobile robot, its application in the articulation vehicle is not
mature. The MPC algorithm has yet to be applied in the path-tracking control of the
articulated tracked vehicle. Thus, our work has extended the application of the MPC
algorithm in the field of ATVs.

2. The ATVs have unique steering characteristics compared to the skid-steering tracked
vehicles. The path tracking of the ATVs also needs to consider its kinematic charac-
teristics, for example, the multi-input and multi-output for the ATV control system.
Thus, it is challenging for the developed control methods to control the ATV in a
complex maneuver accurately. To this end, our work provides a practical method for
the path planning and path tracking of ATVs.

3. The simulation of several path-tracking cases has demonstrated that the standard-
MPC controller cannot accurately control the ATV to follow a path with varying
curvature. However, the proposed AMPC controller outperforms the standard-MPC
controller, while the AMPC controller can achieve the same level of tracking perfor-
mance compared to the nonlinear MPC controller.

However, the proposed Hybrid A-star planning method has the drawback of extensive
computation time, which could be improved by the refined algorithm structure in further
research. Moreover, the proposed AMPC method is applied in the kinematic control of the
ATV, which could not deal with the high-speed driving condition. In a further study, we
will focus on the dynamic control of ATVs and apply the AMPC method in the dynamic
control of ATVs.
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Abstract: Maritime transportation is vital to the global economy. With the increased operating and
labor costs of maritime transportation, autonomous shipping has attracted much attention in both
industry and academia. Autonomous shipping can not only reduce the marine accidents caused
by human factors but also save labor costs. Path planning is one of the key technologies to enable
the autonomy of ships. However, mainstream ship path planning focuses on searching for the
shortest path and controlling the vehicle in order to track it. Such path planning methods may lead
to a dynamically infeasible trajectory that fails to avoid obstacles or reduces fuel efficiency. This
paper presents a data-driven, efficient, and safe path planning (ESP) method that considers ship
dynamics to provide a real-time optimal trajectory generation. The optimization objectives include
fuel consumption and trajectory smoothness. Furthermore, ESP is capable of fast replanning when
encountering obstacles. ESP consists of three components: (1) A path search method that finds an
optimal search path with the minimum number of sharp turns from the geographic data collected by
the geographic information system (GIS); (2) a minimum-snap trajectory optimization formulation
with dynamic ship constraints to provide a smooth and collision-free trajectory with minimal fuel
consumption; (3) a local trajectory replanner based on B-spline to avoid unexpected obstacles in real
time. We evaluate the performance of ESP by data-driven simulations. The geographical data have
been collected and updated from GIS. The results show that ESP can plan a global trajectory with
safety, minimal turning points, and minimal fuel consumption based on the maritime information
provided by nautical charts. With the long-range perception of onboard radars, the ship can avoid
unexpected obstacles in real time on the planned global course.

Keywords: kinematics; improved A* algorithm; path planning; GIS

1. Introduction

With the rapid development of the global economy, according to the survey of the
Baltic and International Maritime Council/International Chamber Shipping (BIMCO/ICS),
the maritime industry has accounted for 80% of the world’s trade and transportation [1].
Thus, the safety and efficiency of maritime transportation are of paramount importance.
Current issues of maritime transportation include: (1) about 75–96% marine vessel accidents
being caused by humans; (2) a severe shortage of seafarers and management personnel; (3)
more than 80% of shipping costs being from fuel and labor [2]. Autonomous navigation
is vital to mitigate the above issues for ships in that it can be more vigilant than humans
at avoiding accidents by perceptions from heterogeneous sensors such as a camera, laser
scanner, and mmWave radar [3]. Ship autonomy not only saves human labor costs but also
utilizes intelligent path planning methods to achieve optimized fuel consumptions.

Realizing autonomous ships requires localization and path planning. Currently, the
global positioning system (GPS) and compass have been commonly available to provide
reliable location services. In contrast, path planning for ships still poses several challenges.
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Existing works mainly focus on the path planning for lightweight surface vessels, which are
agile and applicable to harbor patrol, marine resource exploration, etc. [4]. Ships, however,
exhibit high inertia and thus a significant delay in motion control. When encountering
sudden situations, e.g., encountering a large iceberg, its dynamic nature prevents agile
avoidance [5]. In addition to the “shortest path”, dynamical feasibility is crucial for ship
path planning [6].

Existing ship path planners are typically optimal path searching methods based on
A* and its modifications [7]. Although they provide optimal paths in a given map [8], the
optimality is limited in ideal maps including the occupancy grid map, Voronoi-visibility
roadmap [9], risk contour map [10], etc. Their path searching is conducted by discretized
heading directions without considering the ships’ dynamical constraints, making the
planned path dynamically infeasible. More recent works [11,12] have taken the dynamical
constraints into consideration. However, their iterative methods have high computational
complexities, failing to plan in real time to avoid expected sudden risks. Researchers also
proposed hybrid approaches that fuse the artificial potential field (APF) algorithm with
velocity odometry and path optimization [13–15] to achieve real-time obstacle avoidance in
complex maritime environments. However, the APF causes oscillations when searching for
paths through narrow areas, causing frequent turning and increasing fuel consumptions
and navigation risks. In addition to optimization-based methods, researchers incorporate
reinforcement learning into path planning [16,17]. However, learning-based methods suffer
from a trade-off between generality and accuracy. Their stochastic results cannot guarantee
the safety and efficiency of ship navigation. In summary, none of the existing path planning
methods meet the safety and efficiency needs when considering ship dynamics.

This paper presents ESP, a combinatorial optimized path planning approach that
generates a safe, smooth, and dynamically feasible trajectory while minimizing the shipping
cost. Realizing such an elegant approach poses several challenges: (1) to quantify the
turning cost in optimal and dynamically feasible path searching; (2) to minimize the
shipping cost in terms of fuel by formulating a minimum-snap problem, which is non-
trivial in combining the dynamic model of ships; (3) to cope with sudden risks, e.g., avoid
expected obstacles or enemy vessels, which requires replanning a smooth, safe, feasible
and optimized path in real time.

To address the above challenges, ESP consists of three components. First, we propose
A-turning, a path searching algorithm that quantifies the turning cost in order to obtain
the optimal path with fewer turns. Then, we formulate the minimum-snap optimization
problem subject to the dynamic constraints of ships to achieve the minimum shipping
cost in terms of fuel. Finally, we propose a real-time path replanning algorithm using
quasi-uniform cubic B-spline, achieving millisecond-level path replanning to cope with
sudden risks.

In summary, the contributions of this paper include: (1) quantifying the turning cost
and incorporating it into an optimal global path search through a modified A* algorithm;
(2) formulating a minimum-snap optimization problem to generate a smooth trajectory that
consumes the least fuel and satisfies the ship’s dynamic constraints; (3) enabling real-time
obstacle avoidance for ships through a B-spline-based local trajectory replanner.

ESP is evaluated in a data-driven simulator implemented by MATLAB and our de-
veloped geographic information system (GIS). The simulation results demonstrate the
effectiveness of ESP in generating a safe, smooth, and feasible path with minimal turns
and fuel consumption. Moreover, ESP enables a quick reaction for ships to smoothly avoid
unexpected obstacles by path replanning in less than 48 ms.

The rest of this paper is organized as follows. Section 2 reviews related works. Then,
we elaborate on the design of ESP in Section 3. The performance evaluation in Section 4
demonstrates the effectiveness of ESP. Section 5 concludes this paper.
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2. Related Works

Path planning can be divided into two steps: path searching and path optimization.
Path searching involves searching for an obstacle-free path from the start to the end. Path
optimization involves optimizing the searched path to meet users’ specific objectives, e.g.,
the shortest sailing distance, minimum fuel consumption, and minimum shipping cost.

Path searching has been well-studied for decades. It can be categorized by graph-
search-based and random-sampling-based path searching approaches. Graph-search-based
path planning methods follow a set of steps to generate unique navigation paths. The classic
algorithm, Dijkstra, expands a large number of irrelevant nodes during searching, which
greatly slows down the searching process. In order to improve the searching efficiency, A*-
family algorithms have been proposed. They make the searching process more purposeful
to the destination by introducing heuristic functions [18–20]. These heuristic functions
treat vessels as a mass point with unlimited turning and sailing speeds. Their results may
have large-angle steers between consecutive path segments. However, to the best of our
knowledge, the maximum speed of a ship (displacement > 320 t) is 15 knots, the maximum
acceleration is 1, and the turning radius is three times the ship length. Simply considering
the ship as a mass point leads to infeasible path planning, making the above heuristic
solutions impractical. In addition, Yu et al. [21] proposed an A* algorithm with velocity
variation and global optimization (A*-VVGO), which achieves the purpose of obstacle
avoidance by changing the speed of the ship, and combines the artificial potential field
method to ensure the smoothness of the path. Sang et al. [22] proposed a hybrid algorithm
of an artificial potential field based on A* and local programming, which is often combined
with many algorithms, such as the genetic algorithm (GA) [23], Fuzzy artificial potential
field (FAPF) [24], etc. These hybrid algorithms contain various advantages. However,
these methods do not consider vehicles’ dynamic constraints. Tracking the paths cannot
guarantee safety and smoothness. Moreover, graph-search-based methods cannot work
efficiently in large environments due to the searching space being exponential to the size of
the occupancy grid maps.

To address the searching efficiency problem with respect to the occupancy grid maps,
random-sampling-based algorithms have been proposed to incrementally build maps
by sampling. They can work in the planning of the ocean. Zhang et al. [25] proposed
the adaptive hybrid dynamic step size and target attractive force–RRT (AHDSTAF–RRT),
imposing the dynamic constraints of unmanned surface vehicles (USVs) to allow USVs to
navigate complex aquatic environments. Webb et al. [26] proposed Kinodynamic RRT*,
achieving asymptotically optimal motion planning for robots. However, these approaches
suffer from slow convergence and inflexible settings of step size. Thus, Strub et al. [27]
designed a heuristic function in the exploitation of random sampling with the aim that
the new samples would be more likely to be closer to the destination. Xu et al. [28]
proposed a simplified map-based regional sampling RRT* (SMRS–RRT*) algorithm to
achieve path planning in complex environments. Dong et al. [29] proposed a path planning
method based on improved RRT*–Smart, which optimizes the node sampling method
by sampling in the polar coordinate system with the origin of USV, improves the search
efficiency, and ensures that the navigation path follows the International Regulation for
Preventing Collision at Sea. This design does not only improve the convergence speed but
also improves the quality of the solution. Nevertheless, random-sampling-based methods
cannot provide optimal solutions. Their results are not unique. The searched path usually
contains many sharp turns, which is especially evident in open water.

Based on the path searching from graph-search-based and random-sampling-based
methods, researchers tried to generate smooth trajectories. A strawman option is to use
interpolation. Liang et al. [30] interpolated the trajectory with the Dobbins curve to ensure
the smoothness and reduce the number of sharp turns, but the trajectory curvature was
discontinuous. To solve this problem, Candeloro et al. [31] used the Fermat spiral to
connect the straight line segment with the curved segment, generating the trajectory with
a continuous curvature. Wang et al. [32] used B-spline interpolation to construct smooth
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trajectories with sparse waypoints. It, however, does not impose the vehicle’s dynamic
constraints, making trajectories infeasible to be executed. To generate dynamic feasible
trajectories, control-space sampling approaches [5,6,33] are simple and effective. However,
such approaches lack purpose, so their sampling process could take too much time and
fail to plan paths in real time. MahmoudZadeh et al. [34] combined a novel B-spline data
frame and the particle swarm optimization (PSO) algorithm to establish a continuous
route planning system to achieve route planning for USV ocean sampling missions. Zheng
et al. [35] proposed a ship collision avoidance decision method based on improved cultural
particle swarm to achieve the steering collision avoidance of a ship, but without considering
the speed constraint of the ship.

3. Methods

3.1. Problem Formulation

The obstacles considered in this paper are the static obstacles in the chart and the
unexpected static obstacles that appear within the detection range of the ship’s radar
during the actual navigation of the ship. One primary objective of our path planning
is to be collision-free. Additionally, we optimize two more objectives: best stability and
minimum fuel consumption. The specific objective function and constraints are given in
the following subsections.

3.2. Kinematic Model

The previous studies often ignored the influence of marine environments on the ship’s
motion state for the ease of modeling. In order to make the planned path fit the actual
sailing situation, this paper establishes the kinematics model of ships considering the
ocean current.

Figure 1 illustrates the kinematic model of a ship. OeXeYe denotes the world frame,
which refers to the coordinate system with respect to the earth. The earth’s gravity points to
the positive direction of the z-axis. The x–y–z axes follow the right-hand rule. The origin of
the world frame Oe is the geometrical center’s initial position, the positive direction of the
OeXe axis points to east, and the positive direction of OeYe points to north. ObXbYb denotes
the local frame, which refers to the ship’s body frame, Ob is used as the center of gravity of
the ship, the positive direction of the ObXb axis points to the bow, and the positive direction
of the ObYb axis points to the port side. Ψ denotes the yaw angle, u the surge velocity, v
the sway velocity, and δ the rudder angle. According to Newton’s second law, considering
surge, sway, and yaw, the force at the center of gravity of the ship is

⎧⎨
⎩

Xe = m
..
x

Ye = m
..
y

Nr = IZ
..
Ψ

(1)

IZ =
∫

V

(
x2 + y2

)
ρmdV (2)

where Xe denotes the force along the x-axis, Ye the force along the y-axis, x, y the position
of the ship’s center of gravity in the world frame, m the mass of the ship, Nr the force along
the z-axis,

..
Ψ the angular acceleration, and IZ the moment of inertia around the z-axis. As

shown in Equation (2), it depends on the volume of the ship V and the mass density ρm.
With the yaw Ψ, we express the transformation between the world frame and the local
frame as [

Xb
Yb

]
=

[
cosΨ −sinΨ
sinΨ cosΨ

][
Xe
Ye

]
(3)

Then, the forces on the surge and sway directions can be expressed as
{

Xb = m
( .
u − vr

)
Yb = m

( .
v + ur

) (4)
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where r denotes the yaw rate, and
.
u and

.
v denote the acceleration on the surge and sway

directions, respectively. From Equations (3) and (4), we obtain the kinematic model as follows.
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y
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Ψ
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⎡
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r

⎤
⎦ (5)
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Figure 1. The kinematic model of a ship.

3.3. Dynamic Model

This paper uses the first-order K–T model to represent the hydrodynamic model of
the ship, assuming that the port and starboard sides of the ship are symmetrical and the
ship mass is uniformly distributed. The hydrodynamic equation can be expressed as:

M
.
v + Cv + Dv = τ (6)

where v = [u, v, r]T ,

M =

⎡
⎣m11 0 0

0 m22 0
0 0 m33

⎤
⎦ =

⎡
⎣m − X .

u 0 0
0 m − Y .

v 0
0 0 Iz − N.

r

⎤
⎦ (7)

C =

⎡
⎣ 0 0 −(m − Y .

v)v
0 0 (m − X .

u)u
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v)v −(m − X .
u)u 0

⎤
⎦ (8)

D =

⎡
⎣d11 0 0

0 d22 0
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⎤
⎦ =

⎡
⎣−Xu 0 0

0 −Yv 0
0 0 −Nr

⎤
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τ = τE + τr (10)

where M denotes the inertial mass matrix, C the Coriolis centripetal force matrix, and D the
drag coefficient matrix. Xu and Yv denote the derivatives for the hydrodynamic, X .

u = ∂X
∂

.
u

,
Y .

v = ∂Y
∂

.
v

, and N.
r =

∂N
∂

.
r

. τE denotes the force imposed by the environment and τr denotes
the thrust of the propeller.

3.4. Ocean Circulation Model

Affected by the environment such as sea wind and ocean currents, a ship easily
deviates from its course or even capsizes during sailing, resulting in property damage and
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even casualties. Therefore, we consider the influence of ocean currents on the ship’s motion
state when planning its path.

Ocean currents are formed when seawater flows in a certain direction at a regular,
relatively steady speed. It is a large-scale, aperiodic form of seawater movement. According
to the characteristics of its location and time, ocean currents can be divided into uniform
currents, non-uniform currents, steady currents, and unsteady currents. In offshore or
seabed areas with irregular topography, the model of ocean currents is more complicated.
To simplify the modeling, we assume that ocean currents are constant and uniform. Let Vc
denote the ocean current speed and Ψc the direction of the current. Then, the velocity of the
ocean currents can be expressed as

vc =
[
VccosΨc VcsinΨc

]T (11)

Affected by ocean currents, the actual velocity of the ship is different from its velocity
in still water. At this time vr = v − vc, where vr is the velocity of the ship relative to the
ocean current.

3.5. Optimization Objectives

When a ship sails along a trajectory, the collision-free cost function is

fc = −
n

∑
i=0

Dis(Obstacle(pi)) (12)

where Dis(Obstacle(pi)) denotes the minimum distance from a waypoint pi to the obstacles,
which can be obtained by the Euclidean signed distance field (ESDF) [36]. The distance will
be negative if a waypoint is within an obstacle.

The smoothness is determined by the sum of snaps along the trajectory. The smooth-
ness cost can be defined as

fs =
∫ T

0
(p(4)(t))

2
dt (13)

where p(4)(t) denotes the fourth-order derivative, i.e., jerk, at time t.
The fuel consumption depends on the sailing speed. We use the exponential dis-

tribution model proposed in [37] as follows to describe the relationship between fuel
consumption and speed.

FCPH = 0.128e0.243V (14)

where V =
√

v2 + u2. Thus, we define the cost function of fuel consumption as

fo =
n−1

∑
i=1

ti · FCPHi (15)

where ti denotes the time duration between waypoint pi and pi+1 and FCPHi the fuel
consumption per hour between waypoint pi and pi+1.

Combining the collision-free cost, the smoothness cost, and the fuel consumption cost,
we obtain the overall optimization objective function

F = min{ fc + fs + fo} (16)

subject to
|u| ≤ umax (17)

|v| ≤ vmax (18)

|r| ≤ rmax (19)
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where umax, vmax, and rmax are the maximum surge velocity, the maximum sway velocity,
and the maximum yaw rate, respectively.

3.6. Occupancy Grid Map Construction

In order to apply the environmental information provided by the electronic chart for
path planning, it is necessary to process the chart into a binary occupancy grid map as
shown in Figure 2. In this process, we first set an appropriate binarization threshold that
converts an RGB image into a binary image. Such a threshold [38] is vital to constructing
an accurate grid map that ensures the feasibility of path planning. If the threshold is
inappropriate, as shown in Figure 2c, then a shoal is identified as a passable area, greatly
increasing the navigation risk. Second, the grid size determines the resolution of path
planning. Too large a grid cannot capture the subtle details of environments, e.g., small
obstacles, resulting in unsafe path searching. On the other hand, too small a grid greatly
increases the search space, reducing the computation speed.

   
(a) Color picture (b) Gray picture (c) Binary picture 

   
(d) Vector map (e) Gray picture (f) Binary picture 

Figure 2. Converting an electronic chart into an occupancy grid map, where the black areas in the
grid map represent obstacles and the white areas represent passable areas.

Considering the maneuverability of a ship, this paper chooses the minimum turning
radius as the criterion to measure the grid size. The ship’s minimum turning radius can be
measured through the ship’s maneuverability experiment. The turning radius depends on
the sailing speed and water flow velocity. According to [39], in our simulation, we set the
minimum turning radius of the ship as three times the length of the ship. Finally, we map
the geographic chart represented in terms of longitude and latitude to the grid map using
the following equation:

{
lon(i,j) = tlLon + |brLon−tlLon|

w ·(i − 1)

lat(i,j) = brLat + |tlLat−brLat|
h ·(j − 1)

(20)

where lon(i,j) and lat(i,j) denote the longitude and latitude of position (i, j). tlLon and tlLat
denote the longitude and latitude at the top-left corner of the selected area. brLon and
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brLat denote the longitude and latitude at the bottom-right corner of the selected area. w
and h denote the width and height of the electronic chart.

In our simulated forward exploration, we use eight discretized directions in the grid
map to search for paths as shown in Figure 3.

 

Figure 3. 8 discretized directions in path searching for autonomous ships.

3.7. Quantification of Turning Cost

The A* algorithm uses Equation (18) as the evaluation function to obtain a path with
the shortest distance.

f (Ni) = g(Ni) + h(Ni) (21)

where f (Ni) denotes the estimated cost from the starting point to the target point, g(Ni)
the actual cost from the initial node to node Ni, and h(Ni) the estimated cost of the best
path from node Ni to the target node.

However, in path searching for ships, the turning is much more difficult than for cars
or aerial vehicles. Thus, we have to add the cost of turning in order to better evaluate the
path. Here we use the diagonal distance to compute the turning cost as shown in Figure 4.

The yaw φi between waypoint pi and pi+1 can be computed as follows.

φi = arctan(
∣∣∣∣ pi+1(y)− pi(y)

pi+1(x)− pi(x)

∣∣∣∣) (22)

where pi(x), pi(y) denote the coordinates of waypoint pi, pi+1(x), pi+1(y) the coordinates
of waypoint pi+1, pi−1(x), pi−1(y) the coordinates of waypoint pi−1. Preventing collisions
is still of the highest priority in path planning. Thus, it is not reasonable to simply pursue
the minimum turning cost in planning. We add a penalty to the turning cost:

c(Ni) = ε · max(0, Δφi − φ) (23)

where φ is the penalty threshold of the yaw and ε the penalty coefficient. Empirically, we
set φ = 30◦ and ε = 0.8. Δφi is computed as follows.

Δφi =

∣∣∣∣arctan(
pi+1(y)− pi(y)
pi+1(x)− pi(x)

)− arctan(
pi(y)− pi−1(y)
pi(x)− pi−1(x)

)

∣∣∣∣ (24)

Finally, the new evaluation function of our path searching algorithm is defined as:

f (Ni) = g(Ni) + h(Ni) + c(Ni) (25)
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i-1
i

i+1

i+1(x)i(x)

i(y)

i+1(y)

 i

Figure 4. An illustration of how to compute the turning cost.

The improved A* algorithm is shown in Algorithm 1.

Algorithm 1. Improved A* algorithm

Input: Start node Xstart, end node Xend
1: OPEN_list:= Xstart, where f (Xstart) = h(Xstart)
2: CLOSE_list:={ }
3: while OPEN_list is not empty do

4: current node Xn:= the node in the OPEN_list with the lowest f (X)
5: if Xn = Xend break

6: Remove Xn from OPEN_list and add it to CLOSE_list
7: for each adjacent node, Xi of Xn do

8:: if f (Xi) = 0 || Xi ∈ CLOSE_list continue

9: if Xi �∈ OPEN_list
10: add Xi into OPEN_list
11: the parent node of Xi=, Xi > parent = Xn

12: calculate f (Xi), g(Xi), h(Xi) and c(Xi)
13: if Xi ∈ OPEN_list
14: calculate f (Xi) via (25)
15: Resort and keep OPEN_list sorted by f value
16: Xp = Xend
17: Path_list:= Xp
18: while Xp �= Xstart do

19: Xp = Xp.parent
20: Path_list = {Path_list, Xp}
Return: Path_list

3.8. Global Trajectory Optimization

The previous path searching gives us a discrete path with the minimum cost. However,
the path does not consider the dynamic feasibility with respect to time, velocity, and
acceleration. This part requires a further step to optimize the searched path into a smooth
trajectory. The trajectory can be defined as a -order polynomial.

p(t) = p0 + p1t + p2t2 + . . . + pntn =
n

∑
i=0

piti (26)

where p0, p1, . . . , pn are the coefficients of this trajectory. We denote P = [p0, p1, . . . , pn]
T ,

and then Equation (23) can be rewritten as
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p =
[
1, t, t2, . . . , tn

]
·P (27)

Then, Equation (14) can be expressed as

∫ T

0
(p(4)(t))

2
dt

=
k

∑
i=1

∫ ti

ti−1

(p(4)(t))
2
dt

=
k

∑
i=1

∫ ti

ti−1

(

[
0, 0, 0, 0, 24, . . . ,

n!
(n − 4)!

tn−4
]
·p)

T[
0, 0, 0, 0, 24, . . . ,

n!
(n − 4)!

tn−4
]
·pdt

=
k

∑
i=1

pT
∫ ti

ti−1

[
0, 0, 0, 0, 24, . . . ,

n!
(n − 4)!

tn−4
]T[

0, 0, 0, 0, 24, . . . ,
n!

(n − 4)!
tn−4
]

dt·p (28)

Let

Qi =
∫ ti

ti−1

[
0, 0, 0, 0, 24, . . . ,

n!
(n − 4)!

tn−4
]T[

0, 0, 0, 0, 24, . . . ,
n!

(n − 4)!
tn−4
]

dt (29)

We have ∫ T

0

(
p(4)(t)

)2
dt =

k

∑
i=1

pTQi p (30)

However, the polynomial expression cannot explicitly control the shape of the trajec-
tory. To gain better control, we choose the Bezier curve using Bernstein polynomials. The
k-th segment of the trajectory can be expressed as

Bk(t) =
n

∑
i=0

ci
kbk

n(t) (31)

where bk
n(t) =

(
n
k

)
·ti·(1 − t)n−i, t ∈ [0,1] ci

k denotes the control point of the k-th segment

of the Bezier curve.
Since the trajectory must pass through the first and last control points, it can satisfy

the positional constraints of the initial and final states. In addition, based on the hodograph
of the Bezier curve, we impose constraints on the velocity and acceleration of the trajectory,
ensuring the multi-order continuity of the trajectory.

3.9. Real-Time Obstacle Avoidance

In a static chart, a ship can navigate safely along the aforementioned global trajectory.
However, the marine environment is complex and changeable. Ships need to deal with
unexpected risks when sailing, e.g., avoiding islands and reefs. As shown in Figure 5, if
the ship maintains the planned global trajectory, it will collide with a temporary obstacle.
To address this issue, we perform local path planning based on the B-spline curve. The
advantage of the B-spline trajectory is that it can change the curve locally by adjusting
few control points, while any control point of a Bezier curve will change the shape of the
whole trajectory. Moreover, it guarantees that the locally replanned trajectory still satisfies
the ship’s kinematic and dynamic constraints. This not only achieves the goal of real-time
obstacle avoidance, but also satisfies all optimization objectives.
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Figure 5. A ship can hit an expected obstacle by sailing along the generated global trajectory.

A B-spline can be expressed as

Cp(u) =
n

∑
i=0

Ni,p(u)Pi (32)

where Pi denotes the i-th control point and Ni,p(u) is the B-spline basis function of degree
p. u = [u0, u1, . . . , um] is the knot vector. Typically, a three-degree B-spline can ensure the
smoothness of accelerations. Thus, we have

P(0,3) =
1
6
[
1 t t2 t3 ]

⎡
⎢⎢⎣

1 4 1
−3 0 3
3 −6 3

0
0
0

−1 3 −3 1

⎤
⎥⎥⎦
⎡
⎢⎢⎣

P0
P1
P2
P3

⎤
⎥⎥⎦ (33)

Figure 6 illustrates the collision avoidance algorithm. In this figure, P0 = [x0, y0] and
P3 = [x3, y3] are the start and the end of the local planning. The gray area ABCD represents
an obstacle. Ψi denotes the yaw at position Pi. di denotes the distance between Pi−1 and Pi.
The geometrical relationship among these positions can be expressed as

{
x1 = x0 + d1cosΨ0
y1 = y0 + d1sinΨ0

(34)

{
x2 = x3 − d3cosΨ2
y2 = y3 − d3sinΨ2

(35)

First, based on random sampling [40] and collision detection [41], we obtain d1, d3
and Ψ2(Ψ0 = 0), and then use the geometric relations in Equations (34) and (35) to solve for
the position of P1 = [x1, y1] and P2 = [x2, y2]. At last, the locally replanned B-spline can be
generated by the control points P0, P1, P2, and P3.

Figure 6. An illustration of the collision avoidance algorithm.
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4. Simulation and Results

We conduct the evaluation of ESP by implementing a data-driven simulator in MAT-
LAB. All simulation experiments are run on a quad-core 2.40 GHz Intel i5-1135G7 processor
and 16 GB RAM. We input the data from the database of our developed GIS. The data
include image and vector maps, longitude and latitude coordinates, and ship route infor-
mation. During the simulation, we use environmental data such as shoals and whirlpools
that are not currently marked in the GIS database to evaluate the effectiveness of ESP. The
simulated settings are listed in Table 1. Specifically, the ship length is 30 m, the maximum
turning radius is 3 times the ship length. The maximum velocity is 7.7 m/s. The maximum
acceleration and jerk are 1 m/s2 and 10 m/s3 [42], respectively.

Table 1. Simulation parameters.

Parameter Value

Length of the ship 30 m
Maximum velocity 7.7 m/s

Maximum acceleration 1 m/s2

Maximum jerk 10 m/s3

We simulate ESP in two scenes using the GCJ-02 coordinate system. In both scenes,
the velocities and accelerations at the start and the end are 0. The simulated occupancy grid
map is of size 50 × 50. We compare the path searching results of ESP with the A* algorithm
as shown in Figure 7. The results show that ESP effectively reduces the number of turning
points and the planned path is safe.

   

   

(a) (b) (c) 

Figure 7. In (a), the black line represents the searched path by A*. The green dot denotes the start
and the red star denotes the goal. In (b), the red line represents the searched path by ESP, considering
the turning cost. (c) shows the searched path by ESP in the chart.
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Figure 8 shows the performance of RRT. Due to the randomness of RRT, the planned paths
have many unnecessary turning points, which is detrimental to the safe navigation of ships.

   

   
(a) (b) (c) 

Figure 8. The results of the RRT algorithm. (a–c) are the three stochastic planning results of the RRT
algorithm. The solid black line is the planned route, the solid red line records the sampling process of
the algorithm, and the solid blue line shows the planning results.

Figure 9 shows the result of RRT*. RRT* needs to rewire parents to find asymptotically
optimal paths. The result will be close to the optimal solution with more iterations.

Figure 10 shows the optimized trajectory of our proposed ESP. It can be seen that
the optimized trajectory (the green curve in Figure 10a) meets the requirements of safety,
feasibility, and smoothness.

Table 2 shows the numeric comparison in Scene 1 among ESP, A* [12], RRT [43] and
RRT* [44] in terms of computation time, number of turns, and fuel consumption. It can be
seen that due to the need to measure the turning cost of the path, the searching time of ESP
is 0.105 s longer than that of the A* algorithm, and the algorithm’s operating efficiency is
reduced by 36.71%. Nevertheless, it is still 1.771 s shorter than that of the RRT algorithm,
and 6.021 s shorter than that of the RRT* algorithm. The efficiency of the algorithm is
improved by 4.35 times and 15.42 times, respectively. In addition, the number of turns of
ESP is obviously less than that of the A* algorithm, which reduces the number of large-
angle steers to 8 and improves the safety of ship navigation. The fuel consumption of ESP
is 164.6008 kg less than that of the A* algorithm, 387.1543 kg less than that of the RRT
algorithm, and 24.3311 kg less than that of the RRT* algorithm.
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(a) (b) (c) 

Figure 9. Three different searched paths from the RRT* algorithm. (a–c) are the three stochastic
planning results of the RRT* algorithm. The solid black line is the planned route, the solid red line
records the sampling process of the algorithm, and the solid blue line shows the planning results.

(a) (b) 

Figure 10. (a) The blue rectangles represent the sailing corridor. (b) The black line is the searched
path. The optimized trajectory is shown as the red curve.

To evaluate the smoothness, Figure 11 shows the generated positions, velocities, accelera-
tions, and jerks. All these curves are continuous and satisfy the ship’s dynamic constraints.
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Table 2. Performance comparison in Scene 1 with 1000 trials.

Methods Computation Time (s) No. of Turns Average Fuel Consumption (kg)

A* [12]
Average 0.286

18 921.7465Max 0.327

RRT [43]
Average 2.162

11 1144.3000Max 3.534

RRT* [44]
Average 6.412

4 781.4768Max 7.282

ESP
Average 0.391

8 757.1457Max 0.532

Figure 11. The optimized smooth trajectory in terms of position, velocity, acceleration, and jerk.

To highlight the effectiveness of ESP, Figure 12 compares the result of ESP with that
which did not consider the ship’s dynamic constraints. The blue line denotes the searched
path. The green line shows that Bezier curve without considering the dynamic constraints.
The red line is the optimized trajectory from ESP.

From the enlarged part, we can see that there are knots in the result without con-
sidering the dynamic constraints, making sailing control very difficult. In contrast, ESP
generates a smooth and continuous trajectory with the lowest number of turns, which
is safer.

Figures 13 and 14 show the collision avoidance in Scene 1 and 2. In Scene 1, ESP
generates a feasible and smooth local trajectory (the orange line) that avoids the unexpected
circular obstacle. In Scene 2, the original planned trajectory is very close to the shoal,
increasing the risk of the ship running aground. The local replanned trajectory effectively
solves the problem. In both scenarios, the goal of safely avoiding temporarily appearing
static obstacles is achieved.

The computation times of the local replanning in both scenes are listed in Table 3.
Over 1000 trials, the best calculation time is 48 ms, and the maximum computation time is
265 ms. The mean computation time is 192 ms in Scene 1 and 194 ms in Scene 2, ensuring
real-time processing.
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Figure 12. ESP vs. w/o considering the dynamic constraints.

 

Figure 13. Avoid the unexpected circular obstacle in Scene 1.
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Figure 14. Avoid the shoal to reduce the risk of ship running aground in Scene 2.

Table 3. Computation time of the local replanning in both scenes with 1000 trials.

Test Scene Max Computation Time (s)

Scene 1 0.233
Scene 2 0.265

Avoiding multiple obstacles requires multiple iterations of the above process, and the
response time will be multiplied by the number of iterations.

5. Conclusions

This paper proposes a GIS-data-driven method for the efficient and safe path planning
of autonomous ships in maritime transportation, which makes up for the shortcomings of
existing methods that ignore the motion dynamic limitations of ships in order to achieve
the shortest path, leading to sudden changes in the planned route and thus lacking practical
applicability. To this end, we propose ESP, a new path planner that provides comfortable
sailing while saving fuel. The key intuition of our proposal is to reduce the expensive
turning in path searching. The expensiveness comes from the inertia exhibited by the huge
weight of the ship. To realize the above intuitive idea, we design three components for
ESP. First, we quantify the ship’s turning cost based on its kinematic and dynamic model
and develop a modified A* path search algorithm. Second, we formulate an optimization
problem subject to dynamic ship constraints and environment constraints to produce
a safe and smooth trajectory that consumes minimal fuel. Finally, we use the B-spline
representation to perform real-time local replanning, enabling autonomous ships to quickly
respond to unexpected risks while maintaining the previous optimization objectives. The
data-driven experiments demonstrate the effectiveness of ESP. However, we currently only
consider the effect of ocean currents on the dynamic ship model. In future, we will consider
the influence of other environmental factors, e.g., sea wind, to build a more robust model
for autonomous ships. The avoidance of dynamic obstacles and the real-time avoidance of
multiple static obstacles will also be investigated on this basis.
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Abstract: Traditional open-pit mineral transportation systems are typically subject to manual com-
mand, frequently leading to vehicular delays and traffic congestion. With the advancement of
automation and electrification technologies, this study proposes a highly accurate scheduling method
for multiple autonomous trucks in an open-pit mine. This model considers micro-level temporal and
spatial factors to tackle the task of scheduling autonomous trucks within open-pit mines. The cost
function of the concerned scheduling problem is a comprehensive evaluation of energy consumption,
time, and output. Beyond the loading and unloading activities, the model also factors in the charging
requirements of autonomous trucks in mining regions. The scheduling model integrates a Voronoi
diagram search and optimal spatial path time matching, aiming to provide superior mission planning
and decision-making solutions for autonomous trucks in mining regions. For an efficient solution to
the scheduling problem, we propose an improved-evolution artificial bee colony (IE-ABC) algorithm.
This algorithm improves the global search and re-initialization processes and conducts algorithm
ablation experiments to closely examine their impact on optimization. Simulation results across
various algorithms, cost function definition strategy, and encoding strategy show that our method can
improve scheduling performance in energy consumption and time. Experimental results demonstrate
that the proposed model and algorithm can effectively solve the scheduling decision-making problem
in an unmanned open-pit mine.

Keywords: open-pit mine; autonomous truck; scheduling; artificial bee colony algorithm

1. Introduction

Open-pit mining presents benefits such as large-scale production, high resource re-
covery rates, and minimal environmental impact [1]. The complexity of the working
environment within the open-pit mining area and the low efficiency of manual mining
necessitate the introduction of autonomous mining systems [2].

In light of the rapid advancement of robotics, big data, artificial intelligence, and 5G
technology, we are now observing the emergence of intelligent unmanned dump truck
systems [3,4]. Given that around 50% of the gross operating costs in an open-pit mine
would be spent on material transport [5], it has been an obvious trend to deploy unmanned
transport tools to replace human labor [6]. Figure 1 illustrates that typical unmanned
transportation tools in an open-pit mine include unmanned dump trucks, excavators,
crushing stations, and charging piles. The excavator is used for mining ore, while the
unmanned dump truck is designated for ore transportation. The truck moves to the
location of the excavator for ore loading and then delivers it to the crushing station for
unloading. Positioned within the mining area, the crushing station primarily serves to
crush and pulverize the raw ore to meet the demands of further processing and utilization.
When the unmanned dump truck needs recharging, it navigates to the charging pile to
undergo the necessary charging process.
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Figure 1. Schematic on an unmanned transport system in an open-pit mine.

Operating all of the aforementioned devices automatically is difficult because it re-
quires simultaneously considering the features, principles, and capabilities of all devices
when generating control commands, otherwise the automated control performance would
be worse than that of human laborers [7]. In this sense, dividing the entire control scheme
into multiple layers is a practical and feasible solution [8,9]. As shown in Figure 2, a
scheduling module first assigns a traverse order for each of the devices; a decision-making
module decides how two or more devices interact locally when their nominal trajectories
are conflicting [10,11]; a planning module generates a spatio-temporal curve for each device
to track [12,13]. This solution is inherently holding a decoupled strategy, i.e., the features,
principles, and capabilities of all devices are no longer considered in a simultaneous way.
Adopting such a decoupled strategy easily renders the loss of solution optimality, although
it reduces the computational burden. Herein, the scheduling module is particularly impor-
tant because a suboptimal decision made in the scheduling module would largely influence
the downstream modules so that there is no chance to achieve optimality in mining op-
erations. This analysis indicates that the scheduling module is important to guarantee
the solution quality of an autonomous operating system in an open-pit mine [14]. The
goal of this study is to propose a high-precision scheduling methodology with microscopic
factors of each device considered, especially temporal factors. Through this, the scheduling
method promises to coarsely find an ideal dispatch solution for the downstream modules
efficiently without loss of optimality.

 scheduling module 

Assign a traverse order

solve the  nominal trajectories  conflict

generate spatio-temporal curve

 decision-making 
module

 planning module

Figure 2. Overall flowchart of an unmanned transport system.
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1.1. Related Work and Motivations

This subsection reviews the prevalent scheduling methods for dispatching multiple
devices (especially transport vehicles) in an open-pit mine or similar scenarios.

In recent years, the scheduling problem in open-pit mines has received considerable
attention. Patterson et al. [15] constructed a unique mixed-integer linear programming
problem for multi-truck scheduling and used a Tabu Search algorithm to solve it, aiming
to minimize the energy consumption of trucks and excavators. Zhang et al. [16], Yuan
et al. [17], Wang et al. [18], Bastos et al. [19], Zhang et al. [20], and Bao et al. [21] employed
similar strategies to build a model. However, the optimization objectives in these formu-
lated problems only considered fuel consumption while ignoring factors such as consumed
time and output amount. Wang et al. [22] proposed a multi-objective optimization (MOO)
algorithm for truck scheduling, while Zhang et al. [23] proposed a decomposition-based
constrained dominance genetic principle algorithm (DBCDP-NSGA-II) to solve the multi-
objective intelligent scheduling problem for trucks in open-pit mines. Ahumada et al. [24],
Chang et al. [25], and Afrapoli et al. [26] also built a multi-objective scheduling model.
However, a common limitation of refs. [22–26] is that the formulated problem did not
consider the refueling or charging requirements of the trucks. Zhang et al. [27] proposed a
meta-heuristic search algorithm to solve a mixed-integer programming problem formulated
for the concerned multi-truck scheduling scheme and demonstrated by experimentation
that this approach improves the energy efficiency of the transport system in open-pit mines.
Smith et al. [28] proposed a time-discretized mixed integer programming (MIP) model
for the truck scheduling problem in open-pit mines, and a heuristic is used to quickly
generate high-quality feasible solutions. However, the proposed model ignored the path
planning between loading and unloading spots. Similarly, Zeng et al. [29], de Melo [30], and
Yeganejou et al. [31] did not consider the path planning between loading and unloading
spots either.

Most previous scheduling models focused on single-objective optimization, partic-
ularly energy consumption, and often overlooked the need for multiple optimization
objectives. Additionally, these methods focused solely on truck-carrying activities without
considering the refueling or charging requirements of the trucks. Path planning between
loading and unloading spots, a crucial aspect of scheduling, has also been largely ignored
in previous research. As a conclusion of this subsection, the prevalent scheduling methods
do not model the concrete dynamics/kinematics and other temporal constraints of the
operating devices; thus, they did not account for the actual complexity of operating an
open-pit mine.

1.2. Contributions

Following the motivations introduced in the preceding subsection, we summarize the
contributions of this paper and are as follows.

First, we propose a high-precision scheduling model with microscopic factors of
each device considered. The model incorporates the use of a Voronoi diagram for spatial
path estimation and velocity assignment. The diagram is used to enhance the scheduling
accuracy so that local factors are well considered.

Second, this paper proposes a novel structure to present each of the solutions, thus
enhancing the interpretability of the scheduling process and facilitating the solution gener-
ation process.

Third, a novel metaheuristic optimizer is proposed to search for a high-quality schedul-
ing solution based on the aforementioned model and solution structure. The proposed
optimizer is a special variant of the artificial bee colony (ABC) algorithm, which enhanced
the ability to quickly exploit feasible solution candidates.

1.3. Organization

In the remainder of this paper, Section 2 formulates the concerned scheduling problem
as a combinatorial optimization problem. Section 3 introduces the proposed optimizer to
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solve the formulated optimization problem together with a novel solution presentation
structure. Simulation results are reported and discussed in Section 4, followed by Section 5,
where conclusions are finally drawn.

2. Problem Formulation

This section formulates the concerned scheduling scheme as a combinatorial optimiza-
tion problem, which is focused on how to use unmanned dump trucks and excavators to
deliver mine materials efficiently in open-pit mining. The purpose of the combinatorial op-
timization problem is to minimize the consumed energies, maximize the mineral transport
capacity, and minimize the operation time.

In this work, unmanned dump trucks and excavators are the two types of machinery
operated in the concerned mining transport scheme. Given that the terrain of the open-pit
mine is not even, some parts of the terrain occupied by obstacles are not drivable; thus, the
uneven parts of the terrain are regarded as obstacles. Suppose that the number of deployed
unmanned dump trucks is Ntruck. This work assumes that each excavator is fixed at a
loading spot, a designated location where loading operations occur. The gross number
of loading spots is denoted as Nloading_spots. Similarly, we assume that the number of
unloading spots is Nunloading_spots. Before its battery is completely depleted, an unmanned
dump truck should visit a charging spot for battery recharging. The basic working states
of an unmanned dump truck include moving to the loading spot, loading, moving to the
unloading spot, unloading, and moving to the charging spot. Given that the excavators are
fixed, operating the devices in this open-pit mine means manipulating the Ntruck unmanned
dump trucks. Thus, the concerned scheduling task is about deciding the working states
and targets of each unmanned dump truck in a sequence for the next Nstep steps.

2.1. Cost Function Formulation

The concerned scheduling scheme is inherently a combinational optimization problem,
aiming to minimize overall energy consumption, maximize transport capability, and reduce
vehicle idle times, for Nstep tasks assigned to each of the Ntruck unmanned dump trucks.
The cost function of the combinational optimization problem, as described in Equation (1),
is a weighted sum of three terms: each truck’s transport capability, energy consumption,
and the total time spent when the last truck among all the Ntruck ones finishes its Nstep-th
task. The three terms are summed up after being multiplied by weighting coefficients w1,
w2, and w3:

Ntruck

∑
i=1

(
w1

Qi
+ w2 × Ei

)
+ w3 × T, (1)

where Qi denotes the gross transport capability of unmanned dump truck i after finishing
all of its Nstep tasks, Ei denotes the consumed energies of unmanned dump truck i after it
finishes all of its Nstep tasks, and T denotes the earliest moment that all of the Ntruck trucks
finish their Nstep tasks. Details behind these variables are defined as follows.

2.2. Transport Capability Composition

In Equation (2), Qi is defined as the product of the basic loading capability of the
truck i (i.e., Ci) and Nunloading, the steps among all of the Nstep ones that involve unloading
actions. Notably, Nunloading is determined according to a specific solution.

Qi = Ci × Nunloading. (2)

2.3. Energy Consumption Composition

Equation (3) shows that the energy consumption of each unmanned dump truck
is composed of the energy consumption during the on-road cruising process, the en-
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ergy consumption during the loading actions, and the energy consumption during the
unloading actions:

Ei = Ecruising + Eloading + Eunloading. (3)

Herein, Ecruising sums up the energy consumption of unmanned dump truck i during
its cruising process. Eloading sums up the energy consumption of unmanned dump truck i
during all of its loading actions. Eunloading sums up the energy consumption of unmanned
dump truck i during its unloading actions.

Ecruising consists of two components: energy consumed by the drive system and that
of the accessory system [32]. According to the classical vehicle dynamics principle [33], the
energy consumption of an unmanned dump truck is defined as

Ecruising = w4 × v3
i × Tcruising + w5 × vi × Tcruising, (4)

where Tcruising is the driving time of unmanned dump truck i to complete Nstep tasks,
which is determined as per a specific solution candidate. vi denotes the average speed of
unmanned dump truck i during cruising process. w4 and w5 are weighting parameters.

Equations (5) and (6) define the energy consumption during loading and unloading
actions, respectively:

Eloading = w6 × Tloading, (5)

Eunloading = w6 × Tunloading. (6)

Herein, Tloading is the loading time of unmanned dump truck i during loading tasks;
Tunloading is the unloading time of unmanned dump truck i during its unloading tasks. w6
is the coefficient that converts loading/unloading time to energy consumption.

2.4. Time Composition

In the process of completing Nstep assigned tasks, each unmanned dump truck encoun-
ters several stages, including a driving stage, a waiting stage, a loading stage, an unloading
stage, and a charging stage. Equation (7) defines the time for each truck to complete the
corresponding Nstep established tasks.

Ti = Tcruising + Tloading + Tunloading + Twaiting + Tcharging, (7)

where Ti is the total time of unmanned dump truck i to complete Nstep tasks; Tunloading is
the waiting time of unmanned dump truck i to complete Nstep tasks; and Tcharging is the
charging time of unmanned dump truck i to complete the scheduled Nstep tasks.

Equation (8) presents the total time taken by Ntruck unmanned dump trucks to com-
plete Nstep given tasks.

T ≡ max
{

T1, T2, T3 . . . TNtruck

}
. (8)

Equation (9) indicates that the driving time of unmanned dump truck i is related to
the task spots that need to be visited:

Tcruising =
Nstep

∑
j=1

TravelTime
(
taskspotj, taskspotj+1

)
. (9)

Herein, TravelTime(a, b) is a function that estimates the driving time from task spot a
to b. taskspotj denotes the task spot that the jth task of unmanned dump truck i is required
to visit.

Equation (10) defines the loading time of unmanned dump truck i during loading tasks:

Tloading = Nstep_load × Tload_p, (10)
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where Tload_p is the loading time for unmanned dump truck i loading at each loading spot.
Nstep_load is the number of loading tasks.

Equation (11) shows the unloading time of unmanned dump truck i during unloading tasks:

Tunloading = Nstep_unload × Tunload_p, (11)

where Tunload_p denotes the unloading time for unmanned dump truck i unloading at each
unloading spot. Nstep_unload is the number of unloading tasks.

Equation (12) indicates that waiting time includes the time waiting for loading, waiting
for unloading, and waiting for charging.

Twaiting = Twaiting_load + Twaiting_unload + Twaiting_charge, (12)

where Twaiting_load denotes the time that unmanned dump truck i spends on waiting
for loading during the completion of Nstep tasks; Twaiting_unload denotes the time that
unmanned dump truck i spends on waiting for unloading during the completion of Nstep
tasks; and Twaiting_charge denotes the time that unmanned dump truck i spends on waiting
for charging during the completion of Nstep tasks.

Equation (13) shows that the charging time depends on the residual capacity when
the unmanned dump truck reaches the charging spot for charging:

Tcharging ≡ Efull − Eremain

q
. (13)

Herein, Efull is the full electric quantity of unmanned dump truck i; Eremain is the
residual capacity when the unmanned dump truck i reaches the charging spot; and q
represents the charging efficiency.

The residual capacity of the unmanned dump truck depends on how many tasks are
completed and which loading and unloading spots are visited.

3. Methodology

In the scheduling problem formulated in the previous section, the solution candidates
differ from one another in their task scheduling sequences, thereby resulting in different
cost function values. This section introduces how to solve the formulated problem. To that
end, the first thing is to define an encoding principle so that all of the solution candidates
can be presented uniformly in such a solution space. Thereafter, an efficient solver should
be proposed to search for the optimal or near-optimal solution in the defined solution space.
The technical details are introduced in the next few subsections.

3.1. Principle of Solution Vector Encoding

The encoding strategy for the scheduling sequence is determined by the number of
loading and unloading spots in the environment. Concretely, if there are two loading spots
and three unloading spots, the serial numbers for the loading spots are designated as {1, 2}.
Meanwhile, the serial numbers for the unloading spots are set to {3, 4, 5}, and the serial
number for the charging spot is represented as {6}. As shown in Figure 3, suppose that there
are eight tasks to be scheduled for each unmanned dump truck. The scheduling sequence
for the unmanned dump truck #1 might be {1, 3, 2, 4, 2, 1, 2, 5}. In such a sequence, the
red part of the figure should be penalized for repeated selections of the loading spot while
the green part should not be penalized. As for the unmanned dump truck #2, the red part
of the figure should be penalized for repeated selections of the unloading spot while the
green part should not be penalized.
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Figure 3. Schematic of solution vector encoding.

3.2. Scheduling Problem Re-Formulation

In the previous section, Equation (1) defines the cost function. However, the cost
function does not adequately consider the establishment of the hard constraint. Therefore,
we redefine the cost function here to ensure that the feasibility of the solution vector is not
determined solely by the constraint, but also by the penalty function. This redefinition
is beneficial for the subsequent utilization of the optimization algorithm, which will be
discussed in detail later.

When allocating tasks to multiple unmanned dump trucks, it is vital to ensure that
the optimal task scheduling sequence prevents excessive idle time for any truck. Thus, the
variance of time taken by each unmanned dump truck to finish its tasks is incorporated
into the cost function as a penalty term. This inclusion promotes quicker identification of
the optimal task scheduling sequence, averting significant disparities in the completion
times among trucks. As a result, the revised cost function is defined as follows:

Ntruck

∑
i=1

(
w1

Qi
+ w2 × Ei

)
+ w3 × T + w7 × Npunish + w8 × Tvar, (14)

where Npunish is the number of repeated loading and unloading spots in the task scheduling
sequence. w7 is the weight coefficient of the penalty term for repeated spots. Tvar represents
the variance of the time taken by all unmanned dump trucks to complete the given task
according to the current task scheduling sequence. w8 is the weight coefficient of the
penalty term for variance.

3.3. Improved-Evolution Artificial Bee Colony Search Procedure

The artificial bee colony (ABC) algorithm is a heuristic optimization algorithm based
on bee behavior. It is used to solve complex optimization problems by simulating the
foraging behavior and information exchange of bees. The local search accuracy of the
conventional ABC algorithm is not satisfactory. The improved-evolution artificial bee
colony (IE-ABC) algorithm used in this paper is an improved artificial bee colony algorithm.
The search intensity is manipulated by adding an adaptive change multiplier to the global
search equation, and the traditional re-initialization process is improved by the overall
degradation strategy to obtain a better optimal solution.

Algorithm 1 uses the IE-ABC search framework to search for the optimal scheduling
scheme, which includes the initialization phase (lines 1–2), the employed bee phase (lines
4–12), the calculation of the probability index to prepare for the roulette selection strategy
(lines 13–20), the onlooker bee phase (lines 21–38), and the scout bee phase (lines 39–44).
trial(i) records the number of times an inefficient search is performed by the ith employed
bee or any onlooker bee that searches around the ith employed bee. trial(item)

trial(item)+trial(k) in
the fifth line is utilized as an adaptive change multiplier to regulate the search intensity.
The solution vector X represents the scheduling sequence, and Equation (14) represents
the objective function GetCostFun(). P represents the probability index. During the
scout bee stage, if the number of searches exceeds the limit, the position of the scout bee
is reinitialized.

The pseudo-code of the IE-ABC algorithm is given as follows.
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Algorithm 1. IE-ABC.

1. Set the population size PN, and maximum cycle number MCN; Set the inefficient trial time
counter trial(i) ← 1 (i = 1, 2, . . ., PN/2);

2. Randomly initialize locations of PN/2 scout bees;
3. for iter = 1 to MCN do

4. for item = 1 to PN/2 do

5. Generate X∗
item for the item-th employed bee to search according to

X∗
item ← Xitem + rand(−1, 1)× (Xk − Xitem)× trial(item)

trial(item)+trial(k) ;

6. X′
item ← ChargeConstruct(X∗

item) ;
7. if GetCostFun(X′

item) < GetCostFun(Xitem) then

8. Xitem ← X∗
item , and set trial(item) ← 1 ;

9. else

10. trial(item) ← trial(item) + 1 ;
11. end if

12. end for

13. for i = 1 to PN/2 do
14. if GetCostFun(Xi) ≥ 0 then

15. f itness(i) ← 1
1+GetCostFun(Xi)

;

16. else

17. f itness(i) ← 1 + |GetCostFun(Xi)| ;
18. end if

19. P(i) ← ∑i
j=1 f itness(j)

∑PN/2
j=1 f itness(j)

;

20. end for

21. Set item = 0;
22. Set j = 1;
23. while item < PN/2 do
24. if P(j) > rand(0, 1) then

25. item ← item + 1 ;
26. Choose the jth employed bee to follow, and then generate,

Yitem ← Xj + rand(−1, 1)× (Xk − Xj)× trial(j)
trial(j)+trial(k) ;

27. Y′
item ← ChargeConstruct(Yitem) ;

28. if GetCostFun(Y′
item) < GetCostFun(Xj) then

29. Xj ← Yitem , and set trial(j) ← 1 ;
30. else

31. trial(j) ← trial(j) + 1 ;
32. end if

33. end if

34. j ← j + 1 ;
35. if j > PN/2 then

36. Set j ← 1 ;
37. end if

38. end while

39. for item = 1 to PN/2 do;
40. if trial(item) > Limit then

41. Re-initialize the location of the item-th employed bee;
42. Set trial(item) ← 1 ;
43. end if

44. end for

45. Memorize the best solution;
46. end for

47. Output the best solution;

During the initialization phase, the sequence for scheduling is arranged based on
the loading and unloading order to streamline the search for the best solution. After
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establishing this sequence, the energy consumption required for the unmanned dump truck
to complete its tasks is assessed. This assessment subsequently informs when the truck
needs recharging.

Algorithm 2 identifies the best recharging moments, relying on the loading and
unloading order of the unmanned dump truck. The algorithm starts by accepting the
sequence of loading and unloading tasks as its input. In its third line, it estimates the
driving time between successive task spots, as dictated by the task sequence. The next line,
i.e., line 4, computes the truck’s residual energy, based on the calculated driving time. Then,
from lines 5 to 10, the algorithm discerns if there exists a need for recharging by considering
the leftover energy. If charging is deemed necessary, it then updates the task sequence to
accommodate this.

The pseudo-code for the ChargeConstruct algorithm is presented below.

Algorithm 2. ChargeConstruct

Input: X;
Output: X′;

1. Set i = 1;
2. while i < Nstep do

3. Tcruising ← TravelTime(Xi, Xi+1) ;
4. Eremain ← Energycost(Tcruising) ;
5. if Eremain < 0 then

6. Xi ← chargespot ;
7. X ← newX ;
8. Nstep ← new Nstep ;
9. i ← 1 ;
10. end if

11. end while

12. X′ ← X ;
13. return.

The energy consumption of the unmanned dump truck is related to the working time.
The driving time of the unmanned dump truck between the loading spots, unloading spots,
and charging piles is proportional to the path length. The planning space is modeled by
using the Voronoi diagram, and the optimal path is obtained by combining the A* search
algorithm [34], so as to estimate the optimal path length.

The Voronoi diagram is a fundamental geometric concept used to divide a plane based
on a discrete set of spots. The diagram ensures that the distance from any spot in a given
region to its corresponding spot in the discrete set is smaller than the distance to any other
spot in the set.

Assuming that the set of discrete spots D = {d1, d2, d3 . . . dn}, the mathematical
expression of the Voronoi diagram is as follows:

√
(x − xi)

2 + (y − yi)
2 <
√
(x − xj)

2 + (y − yj)
2, i �= j (15)

where (xi, yi) and (xj, yj) represent the coordinates of any two discrete spots di and dj in
the set D, respectively. (x, y) represents the coordinates of any spot on the plane.

By satisfying Equation (15), the set of spots (x, y) forms the Voronoi region for the
discrete spot di. Consequently, the plane can be divided into n polygons, where each
polygon contains only one discrete spot di.

Furthermore, the spots lying on the edges of the Voronoi polygon satisfy specific constraints.⎧⎨
⎩
√
(x − xi)

2 + (y − yi)
2 =
√
(x − xj)

2 + (y − yj)
2√

(x − xi)
2 + (y − yi)

2 <
√
(x − xk)

2 + (y − yk)
2

, i �= j �= k (16)
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where (xi, yi) and (xj, yj) represent the coordinates of adjacent discrete spots di and dj,
respectively. (xk, yk) represents the coordinates of any other discrete spot dk.

The planning space is segmented into multiple Voronoi regions based on the placement
of obstacles within the environment. Recognizing that obstacles can vary in size and shape,
their boundaries are discretized using a method that employs numerous discrete spots
to encapsulate these boundaries. The Delaunay triangulation algorithm constructs the
Voronoi diagram from this. To enhance this representation, virtual nodes are placed near
pivotal areas, including loading spots, unloading spots, and charging spots. These nodes
are then integrated with the original Voronoi diagram, yielding the final representation.

The A* algorithm operates on a traversal search principle, leveraging a heuristic
function. This function gauges the cost of moving from any location to the destination,
steering the search towards the most viable routes. By adopting the Voronoi diagram as the
model for the planning space, the A* algorithm’s search is limited to traversing only the
nodes within the diagram, substantially enhancing its efficiency. After identifying the best
path, the algorithm can then estimate its length.

4. Simulation Results and Discussion

This section reports the simulation results, together with our in-depth discussions.
Concretely, the simulation experiments will be conducted in three aspects. First, com-
parative experiments will be performed using various optimization algorithms. Second,
comparative experiments will be carried out with different cost function definition strate-
gies. Third, comparative experiments will be performed using different encoding strategies
for the solution vector.

4.1. Simulation Setup

Simulations are implemented in a MATLAB platform and executed on an Intel(R)
Core(TM) i7-7700 CPU with 16 GB RAM that runs at 8 × 3.6 GHz.

Critical parameters are listed in Table 1. In order to increase the diversity of unmanned
dump trucks, two kinds of unmanned dump trucks are set up, which have different load
capacities and loading and unloading times, respectively. Each unmanned dump truck has
two average speeds during cruising.

Table 1. Parametric settings for simulations.

Parameter Description Setting

Ntruck Number of unmanned dump trucks 4

Nstep Number of tasks to be completed per unmanned dump truck 20

Nloading_spots Number of loading spot 2

Nunloading_spots Number of unloading spot 3

w1, w2, w3 Weight coefficient in Equation (1) 100, 2.7 × 10−7, 0.01

w4, w5 Weight coefficient in Equation (4) 0.925, 430

w6 Weight coefficient in Equation (5) 4000

Ci The load capacity of unmanned dump truck i 1 t, 2 t

vi The average speed of unmanned dump truck i during cruising 10 m/s, 15 m/s

Tload_p Loading time of unmanned dump truck i at loading spot 10 s, 20 s

Tunload_p Unloading time of unmanned dump truck i at unloading spot 10 s, 20 s

Efull Full electric quantity of unmanned dump truck i 0.25 kWh

q Charging efficiency 3 × 104 J/s

w7, w8 Weight coefficient in Equation (14) 1, 0.0001
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4.2. Simulation Results

The conventional ABC and the proposed IE-ABC are used to solve the proposed
scheduling problem. The results are shown in Table 2. The cost function value obtained
by IE-ABC is 10.31, while the cost function value obtained by ABC is 10.43. The cost
function value obtained by IE-ABC is 0.67% lower than that of ABC. Additionally, the
energy consumption and time required for the solution obtained by IE-ABC to complete the
task are 8.93 × 106 J and 620.0 s, respectively. On the other hand, the energy consumption
and time required for the solution obtained by ABC to complete the task are 9.18 × 106 J
and 624.9 s, respectively. Consequently, the solution obtained by IE-ABC reduces the energy
consumption and time required to complete the task by 0.23% and 0.93%, respectively,
compared to ABC. The improved algorithm has achieved steady advantages in terms of
both energy consumption and time. The scheduling Gantt chart of the solution obtained by
IE-ABC is shown in Figure 4.

Table 2. Simulation result of different optimization algorithms.

Algorithm Cost Consumed Energy (J) Time (s)

IE-ABC 10.31 8.93 × 106 620.0
ABC 10.43 9.18 × 106 624.9

 

Figure 4. Vehicle scheduling results presented in a Gantt chart.

It can be seen from Figure 4 that the effectiveness of the scheduling scheme is guaran-
teed. The obtained scheduling sequence can arrange the loading and unloading tasks of
the unmanned dump truck in an orderly manner, and the charging tasks are interspersed
among them to ensure the coordination and sustainability of the tasks. As shown in
Figure 4, the Gantt chart of the scheduling scheme for 20 tasks is arranged for the four
unmanned dump trucks, respectively. Different colors represent the unmanned dump
trucks working at different task spots, among which No. 1 and No. 2 represent the loading
spots, No. 3, No. 4, and No. 5 represent the unloading spots, No. 6 represent the charging
spot, red represents the unmanned dump truck driving stage, and purple represents the
unmanned dump truck waiting stage.

It can be seen from the figure that the unmanned dump truck #1 first travels to the
No. 2 loading spot to complete the loading task, and then travels to the No. 4 unloading
spot to perform the unloading task. The unmanned dump truck #2 reaches the No. 2
loading spot later than the unmanned dump truck #1, so the unmanned dump truck #2
waits for the unmanned dump truck #1 to complete the loading task at the No. 2 loading
spot, and then performs the loading task at the No. 2 loading spot.
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In order to explore the influence of different factors on ABC optimization, ablation
experiments are carried out. The ablation experiment results are shown in Figure 5. Com-
pared with the conventional ABC, IE-ABC mainly changes two factors. One is to add
an adaptive multiplier to the global search equation to manipulate the search intensity,
and the other is to implement the traditional re-initialization process through the overall
degradation strategy. In Figure 5, AE-1 only changes the first factor compared with the
conventional ABC, and AE-2 only changes the second factor. It can be seen from the results
in the figure that changing these two items has promoted the optimization search, and
changing the second factor has a greater impact on the early optimization.

Figure 5. Ablation experimental results.

In order to explore the impact of different cost function definition strategies on solving
the scheduling problem, a cost function considering energy consumption, time, and output
is established. This function is compared against a cost function that disregards time and
only considers energy consumption and output. The experimental results are presented in
Table 3. The cost function value of the optimal solution obtained using the cost function
considering energy consumption, time, and output is 10.31. In comparison, the cost
function value of the optimal solution obtained ignoring time and only considering energy
consumption and output is 10.63. The former is 3.1% lower than the latter. With the time-
incorporated cost function, the energy consumption and time for the optimal solution to
complete the task are 8.93 × 106 J and 620.0 s, respectively. Using the cost function without
time, the energy consumption and time required for the optimal solution to complete the
task are 9.00 × 106 J and 652.9 s, respectively. Compared to the latter, the former reduces
energy consumption and task time by 0.78% and 5.04%, respectively.

Table 3. Simulation result of different cost function definition strategies.

Cost Function Definition Strategy Cost Consumed Energy (106 J) Time (s)

Regarded-time Strategy 10.31 8.93 620.0
Disregarded-time Strategy 10.63 9.00 652.9

As shown in Figure 6, the Gantt chart illustrates the optimal scheduling scheme
obtained using the cost function that disregarded time and only considered energy con-
sumption and output. The meaning of different colors and numbers in Figure 6 is the same
as that in Figure 4. Compared to the optimal scheduling scheme in Figure 4 found by
comprehensively accounting for energy consumption, time, and output in the cost function,
the time for each unmanned dump truck to complete its corresponding 20 tasks is increased.
This indicates that incorporating time into the cost function along with energy consumption
and output enabled optimization to find an improved solution.
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To investigate the impact of different vector encoding strategies on the solution of
the scheduling problem, we compared the solution vector encoding strategy proposed in
Section 3.1 with the binary encoding strategy. In the binary encoding strategy, the allocation
of tasks is represented by a binary string. For example, if there are two loading spots
and three unloading spots, the scheduling sequence {01001} represents that the unmanned
dump truck travels to No. 2 loading spot to load and then proceeds to No. 5 unloading
spot to unload.

 

Figure 6. Scheduled Gantt chart with cost function that disregards time.

The comparative experimental results of the two encoding strategies are presented in
Table 4. The cost function value of the optimal solution obtained using the proposed en-
coding strategy is 10.31, compared to 10.61 for the binary encoding strategy. The proposed
encoding strategy’s cost function value is 2.83% lower than that of the binary encoding
strategy. The energy consumption and time for the proposed encoding strategy’s optimal
solution are 8.93 × 106 J and 620.0 s, respectively. In comparison, energy consumption and
time for the binary encoding optimal solution are 9.07 × 106 J and 636.2 s, respectively.
Compared to the binary encoding solution, the proposed encoding strategy’s solution
reduces energy consumption and task time by 1.54% and 2.55%, respectively.

Table 4. Simulation result of different encoding strategies.

Encoding Strategy Cost Consumed Energy (106 J) Time (s)

Proposed Encoding 10.31 8.93 620.0
Binary Encoding 10.61 9.07 636.2

Figure 7 shows the Gantt chart for the optimal scheduling scheme obtained through
binary encoding. The meaning of different colors and numbers in Figure 7 is the same as
that in Figure 4. Compared to the Gantt chart in Figure 4 using the proposed encoding
strategy, a larger time gap existed between the earliest finishing unmanned dump truck
#3 and the latest finishing unmanned dump truck #2 for their respective 20 assigned
tasks. Additionally, the total time is longer with the binary encoding strategy. This
indicates that the encoding strategy used in this study enabled obtaining an improved
scheduling scheme.
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Figure 7. The scheduling Gantt chart with binary encoding strategy.

4.3. Discussion

The developed scheduling algorithm is suitable for the unmanned dump truck schedul-
ing problem in a complex open-pit mine environment. First, for the complex terrain and
road network in the open-pit mine area, the algorithm can select the best path according
to the location and target of the unmanned dump truck to minimize energy consumption
and time cost. Second, the algorithm can intelligently allocate the driving route for the
unmanned dump truck according to the energy situation of the unmanned dump truck, so
as to avoid the occurrence of energy exhaustion. In addition, the algorithm can reasonably
arrange the driving sequence and work allocation of unmanned dump trucks according to
the location and task requirements between unmanned dump trucks, so as to maximize
the overall production efficiency. However, it is important to note that the algorithm may
face certain technical limitations in the open-pit mine environment. Factors such as terrain
changes and weather conditions can impact the algorithm’s performance.

5. Conclusions

This article has proposed a high-precision multi-vehicle collaborative scheduling
proposition model considering micro-space-time factors to solve the unmanned dump
truck scheduling problem in open-pit mines.

The optimization objective comprehensively considers energy consumption, time, and
output. In addition to the loading and unloading activities, the unmanned dump truck
also considers charging demand in the scheduling model. The model incorporates Voronoi
graph search and optimal time matching of spatial paths. It aims to provide a better task
decision planning solution for unmanned dump trucks in mining areas. To effectively
solve the scheduling problem, an improved artificial bee colony algorithm is proposed.
The original algorithm is enhanced in the global search process and the re-initialization
process. An ablation experiment is conducted to explore the impact of these improvements
on the optimization process. The ablation experiment result shows that changing these
two items has promoted the optimization search. In addition, comparative simulation
experiments are conducted using different algorithms, cost function definition strategies,
and encoding strategies. Comparative simulations indicate the proposal can reduce energy
consumption and time. Compared to the models utilizing ABC algorithms, cost function
strategy definition without considering time, and binary encoding strategy, the proposed
model and method achieved reductions of 0.67%, 3.1%, and 2.83% in the comprehensive
cost functions of energy consumption, time, and output, respectively. Moreover, simulation
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results demonstrate that the proposed model and method offer an effective solution for
scheduling decisions in mining areas.

There are numerous factors that impact the overall cost of the unmanned dump truck
scheduling problem. In the future, it is worth exploring the optimization of speed and
scheduling arrangements in the event of unmanned dump truck failures. These areas
present promising avenues for further research.
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Abstract: Dispatching and cooperative trajectory planning for multiple autonomous forklifts in a
warehouse is a widely applied research topic. The conventional methods in this domain regard
dispatching and planning as isolated procedures, which render the overall motion quality of the
forklift team imperfect. The dispatching and planning problems should be considered simultaneously
to achieve optimal cooperative trajectories. However, this approach renders a large-scale nonconvex
problem, which is extremely difficult to solve in real time. A joint dispatching and planning method
is proposed to balance solution quality and speed. The proposed method is characterized by its fast
runtime, light computational burden, and high solution quality. In particular, the candidate goals of
each forklift are enumerated. Each candidate dispatch solution is measured after concrete trajectories
are generated via an improved hybrid A* search algorithm, which is incorporated with an artificial
neural network to improve the cost evaluation process. The proposed joint dispatching and planning
method is computationally cheap, kinematically feasible, avoids collisions with obstacles/forklifts,
and finds the global optimum quickly. The presented motion planning strategy demonstrates that the
integration of a neural network with the dispatching approach leads to a warehouse filling/emptying
mission completion time that is 2% shorter than the most efficient strategy lacking machine-learning
integration. Notably, the mission completion times across these strategies vary by approximately 15%.

Keywords: autonomous forklift; cooperative trajectory planning; joint dispatching and planning;
Hybrid A* search algorithm; artificial neural network

1. Introduction

The increasing demands in the logistics industry all over the world have driven re-
searchers and engineers to focus on developing intelligent transportation systems aimed
at enhancing logistics efficiency [1,2]. One prominent application in this domain is un-
manned warehouse systems [3]. As a typical component in an unmanned warehouse, an
autonomous forklift transports parcels more efficiently than one driven manually because
the former does not induce objective mistakes such as fatigue, anxiety, impatience, or
anger [4]. Multiple autonomous forklifts should work together when the delivery burden
is heavy [5]. Deploying multiple autonomous forklifts enhances delivery efficiency if the
inter-forklift cooperation potential can be maximized. The typical modules that influence
delivery efficiency include delivery task dispatch [6], cooperative trajectory planning [7,8],
and control [9]. This paper is focused on the dispatching and cooperative trajectory plan-
ning schemes.
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1.1. Related Work
1.1.1. Dispatching Methods for Multiple Forklifts

A complete multi-forklift delivery planning system consists of two functions: delivery
task dispatch and cooperative trajectory planning. Before cooperative trajectory planning,
the goal point of each forklift is assigned in the dispatching phase [10]. Weidinger et al. [6]
proposed a metaheuristic-based method in which assignment candidates are pruned a priori
to facilitate the solution process [11]. A similar idea was proposed by Zhang et al. [12] to
dispatch multiple automated guided vehicles (AGVs) in a matrix manufacturing workshop.
However, both methods run slowly; thus, they cannot meet the real-time computation
demand in a warehouse [6,12]. Lin et al. built a multi-AGV dispatching system via
network structure together with simplex decision variables; in this system, an evolutionary
algorithm minimizes the completion time of all AGVs in a formulated network optimization
problem. However, References [6,12,13] shared a common limitation of assuming a uniform
speed for AGVs. Moreover, the inter-vehicle collision avoidance problem is reduced to an
oversimplified constraint, ensuring solely nonoverlapping time intervals per stopover.

Furthermore, recent studies have focused on the task integration of one AGV in-
stead of considering how multiple AGVs cooperatively operate within the confined area.
Bao et al. [14] proposed a heuristic method based on an auction strategy for a multi-AGV
task dispatch scheme considering complex factors (such as pod repositioning). The con-
cerned dispatch scheme is inherently an optimization problem with complex cost terms
and constraints facilitated by the proposed auction strategy. Lee et al. [15] proposed a
two-stage dispatching method. In particular, the first stage deals coarsely with the delivery
efficiency and delivery flow balance by solving a bi-objective optimization problem. The
result indicates how the parcels to be picked can be clustered. At stage 2, vehicles are
dispatched to complete the clustered missions. Dividing the original scheme into two stages
largely reduces the number of dispatch candidates without losing the optimum. Machine-
learning-based dispatching methods have also been proposed [16]. The formulated reward
functions efficiently simplify the dispatch scheme, particularly when complex factors are
considered [17,18]. However, few vehicle kinematics is considered in [14,15], and the
dispatching phase is fully separated from the trajectory planning strategy. This approach
results in difficulties in maximizing overall delivery efficiency.

1.1.2. Cooperative Trajectory Planning Methods for Multiple Forklifts

Cooperative trajectory planning follows the aforementioned dispatching phase. The
prevalent cooperative trajectory planners are based on model predictive control [19], which
is highlighted by its fast feature while strictly satisfying safety-related constraints. The
artificial potential field method is similarly widely applied in trajectory planning, but it
may encounter difficulty finding paths through narrow passages [20].

Ma et al. [21] converted constrained time-varying nonlinear programming problems
to general unconstrained optimization problems by properly designing a penalty function.
Thereafter, a particle swarm optimization method was employed to plan the motion of
multiple robots sequentially in a double warehouse with two elevators. However, the
optimization phase, along with other methods based on optimization, can significantly
increase the computational burden [22–24], which can be reduced by forming model-based
paths because warehouses are generally structured.

Yang et al. [1] proposed a strategy in which a time-varying dynamic evaluation func-
tion is formed based on a network congestion diffusion model to quantify the degree of
road congestion. Hereafter, an improved A* search algorithm and a time window algo-
rithm were combined as a hierarchical planning method to search the idle path and avoid
collisions. A path planning framework was designed by Zhou et al. [25] to simultaneously
reduce the cost of operation and the path for AGVs in airport parcel loading scenarios. An
ant colony optimization method was used to optimize the parcel pickup sequencing by
ignoring other moving vehicles, while Dijkstra’s algorithm was employed to determine
the shortest route of each AGV. Zacharia et al. developed a joint routing and motion
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planning method for AGVs that addresses uncertainties in demands and travel times.
Their approach combines a scheduler for updating destination resources during navigation
and integrates a fuzzy-based genetic algorithm with A* search to handle capacity and
distance variations [26]. Nonetheless, the vehicle kinematics considered in [1,25,26] remain
oversimplified for industrial use even in the trajectory planning phase.

In other studies, the paths of vehicles were assumed to be predefined, and only the
longitude trajectories were investigated. Kneissl et al. [27] formulated a method in which
potential collision zones are continuously detected. Moreover, the right-of-way is granted
to the first arriving vehicle while all the other vehicles involved stop and wait. Dresner et al.
proposed confronting the analogous problem of conflict zones with a reservation-based
system; in this system, vehicles request and receive time slots from the intersection while
they pass [28]. Similarly, a discrete-event logic, which is comparable with a conventional
right-handed bidirectional traffic system, was designed by Guney et al. [29] to handle
the priorities of the AGVs in a warehouse dynamically. Thus, the need for computa-
tionally demanding heuristic searches is eliminated to ease strategy implementation in
real-life industrial applications. Furthermore, Digani et al. [30] proposed an obstacle-free
path generation method to deal with local deviations from the predetermined path. In
the proposed method, new paths are generated via polar spline curves. However, the
aisles in a warehouse cannot be fully exploited when certain traffic laws in [27–30] are
strictly enforced.

1.1.3. Joint Dispatching and Planning Methods for Multiple Forklifts

Most of the existing dispatching studies, e.g., [6,10–18], cannot accurately evaluate
the candidate choices, possibly preventing the downstream planning module from achiev-
ing global optimality [1,21–30]. Thus, combining the dispatching and planning phases
is naturally considered. The multi-agent path finding (MAPF) problem in its classical
form is an effective approach for simplifying complex warehouse scenarios and facilitat-
ing cooperative solutions for dispatching and planning. In the MAPF problem, time is
discretized into steps, allowing vehicles to either move or wait during each step [31]. Con-
sequently, it becomes challenging to plan trajectories for vehicles with varying velocities
or based on specific kinematic constraints. To address this limitation, researchers have
explored extensions of the MAPF problem to accommodate such complexities. Among
those extensions, Zhang et al. [32] designed a joint strategy to deal with an automatic
valet parking system, in which a travel-distance-related reward function combined with a
deep reinforcement learning technique was used to allocate the target parking spaces. The
parking lot was segmented into local regions, and a rule-based right-of-way assignment
strategy was applied to solve collisions and deadlocks. A simplified trajectory planning
algorithm based on the car-following model [33] served as a tool to solve the trajectories of
multiple AGVs when no potential collision was involved. A similar strategy was proposed
by Lee et al. [34] for a supply-chain-connected warehouse. In their work, a cloud-based
semiautomatic warehouse management system assigns tasks to mobile robots to optimize
resource allocation. A robot control system executes an improved A* search algorithm to
generate the path of each AGV. Then, potential collisions, named stay-on, head-on, and
cross-conflict, are identified and solved by following certain priority-based rules. Redis-
patchment of the AGV with low priority is triggered as the conflict cannot be prevented by
those basic rules.

With regard to joint strategies, the studies above [32,34] can deal with large-scale
AGV-based scenarios. However, these studies were concerned with vehicles possessing the
simple kinematics of unicycle (differential-drive) robots [35] and generally focused on the
construction of maneuverable systems, ignoring the overall optimal solutions concerning
warehouse operations. Furthermore, during the trajectory planning phase, they initially
planned only the paths and ignored other moving obstacles. Such considerations substan-
tially reduce the risk of collisions and simplify the evaluation of the traveling difficulties
pertaining to one potential task relative to the corresponding traveling distance. In other
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words, it remains unknown the specific trajectory pertaining to each AGV as the jointed
strategy is finished, and this trajectory is dependent on local scenes when conflict zones
are involved. Thus, the results become unreliable when such strategies are applied to
a warehouse of automated forklifts with complex kinematics. As a conclusion of this
subsection, it deserves to develop a joint dispatching and planning method to balance the
forks’ motion quality and reaction speed in an unmanned warehouse.

1.2. Motivations

This study aims to substantially improve the efficiency of cooperative operations
among multiple autonomous forklifts by seamlessly integrating the dispatching and coop-
erative trajectory planning phases. Our primary objective is to address the limitations of
existing dispatching methods, which often overlook low-level forklift kinematic capability.
To overcome this challenge, we opt for the implementation of a graph search process in this
phase. Moreover, to ensure a robust solution that avoids getting trapped in local optima, we
chose to incorporate a machine-learning-based technique. In the trajectory planning phase,
we recognize that optimization-based methods are computationally expensive. As such,
our secondary objective is to develop an alternative search algorithm that employs a model-
based approach. This algorithm is designed to be both velocity-aware and sequentially
solvable, striking a balance between accuracy and computational efficiency.

1.3. Contributions

The core contribution of this paper is the proposal of a joint framework, which is
promising to reduce the computational burden because all formulations involved are
explicitly expressed. Concretely, the dispatching stage can enhance the multi-vehicle
task solution quality because it considers the future trajectory pertaining to each forklift.
Moreover, the kinematically feasible and safe trajectory of each forklift can be quickly
generated through our proposed method at the trajectory planning stage, due to the
removal of optimization-based methods.

1.4. Organization

In the rest of this paper, Section 2 formulates the in-warehouse delivery problem.
Section 3 provides the score-based dispatching technique, in which ANN is applied to
avoid deadlocks in evaluating the cost of each candidate dispatching option. Section 4
introduces the trajectory planning method, namely a model-based velocity-aware hybrid A*
search algorithm. Section 5 integrates the two aforementioned methods to develop a joint
dispatching and cooperative trajectory planning framework, followed by Section 6, where
comparative simulation results are present. Conclusions are drawn in Section 7, finally.

2. Problem Statement

Forklifts are used to deliver goods between fixed picking stations and predetermined
shelf areas during delivery tasks in warehouses. The passages are generally designed to be
narrow, and they merely allow turning maneuvers with a minimum radius and the passing
of only two vehicles. Hence, conflicts arise when multiple forklifts cooperatively operate
within a single warehouse.

Within one subtask during the filling of one warehouse, there are two stages: first, the
initial pose and the final one should be assigned to one forklift as the dispatching stage;
second, the trajectory planning stage generates a trajectory by avoiding collisions with any
static or moving objects and satisfying the vehicle kinematics.

2.1. Warehouse Layout

A typical small warehouse layout is schematized in Figure 1. In this warehouse, six
separated shelf clusters, denoted as sd (d = 1, 2, · · · , 6), are placed and provide areas to
store goods. Continuous lines indicate shelf walls, through which forklifts cannot move.
Two firewalls, represented by rows of grey squares, are present between shelf cluster s1 and
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s3 as well as cluster s2 and s4. Meanwhile, four picking stations, marked with slender solid
rectangles and pr (r = 1, 2, 3, 4), are located in both extremities of the vertical and wide
passage in Figure 1. Four forklifts can enter the passage of each row of the shelf clusters, as
long as neither stored stacks nor other vehicles block the route.

 
Figure 1. Schematic of a warehouse layout.

As presented in Figure 2, each shelf cluster has the capacity to accommodate varying
numbers of goods stacks with strategically positioned notches in the arrangement designed
to suit forklift kinematics during turns. This aspect will be elaborated on in Section 2.2.
Each stack is marked with a number in Figure 2 to represent the order in which a shelf
cluster can be filled. The shelf filling state and the vehicle state can be effectively expressed
by noting the covered grids when the warehouse is divided by the squares outlined by grey
dashed lines in Figure 2. In addition, when one forklift is unloading goods within a shelf
cluster, its fork side should point to the stack position (cf. upper left forklift schematic and
within shelf cluster s1 in Figure 1). Similarly, when one forklift is picking goods at a picking
station, the fork side should point to the station position (cf. upper forklift schematic and
picking station p1 in Figure 1).

 
Figure 2. Filling sequence pertaining to each shelf cluster.
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2.2. Kinematics of a Forklift Vehicle

As reported in Figure 3, a forklift can be described as a front-steering vehicle if the fork
part of the vehicle is treated as the rear side. The corresponding kinematic formulas write:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dx(t)
dt = v(t) · cos θ(t)

dy(t)
dt = v(t) · sin θ(t)

dv(t)
dt = a(t)

dθ(t)
dt = v(t)·tan φ(t)

l
dφ(t)

dt = ω(t)

(1)

where t is time; P, located at coordinate (x, y), indicates the mid-point of the rear wheel axis;
and θ, v, a, φ, and ω respectively denote the orientation angle, linear velocity pertaining to
point P, acceleration, steering angle of the front wheels, and steering rate. Furthermore, l
stands for the wheelbase length, m denotes the rear overhang length, n refers to the front
overhang length, and 2b is the car width. Given that the initial values as well as ω(t)
and a(t) are provided, the state variables can be calculated through integration over the
dynamic process.

x

y

2b
m

l
n

Figure 3. Parametric notations related to vehicle size and kinematics.

Meanwhile, a few boundaries are imposed on the state profiles over the entire simula-
tion period throughout all dynamic maneuvers:

⎧⎪⎪⎨
⎪⎪⎩

|a(t)| ≤ amax
|v(t)| ≤ vmax
|φ(t)| ≤ φmax
|ω(t)| ≤ ωmax

(2)

where amax, vmax, φmax, and ωmax respectively indicate the upper limits of the corresponding
variables.

3. ANN-Combined Score-Based Dispatching Approach

Filling a warehouse in an orderly manner requires several forklifts to perform multiple
deliveries and return subtasks. In the current work, subtasks are assigned to different
vehicles sequentially. With regard to such subtasks, selecting which vehicle will be used
to plan the new trajectory and determining which goal coordinates the forklift is going
to should comprise the fundamental initialization. Therefore, a dispatching system is
necessary to solve these problems.

The dispatching approach (cf. Algorithm 1) utilizes the planned trajectories T of
all vehicles, along with map information map, and vector F representing filled stacks for
different clusters, as its inputs. The core of this approach lies within a while loop, wherein
the potential subtask undergoes iterative updates (with a preset maximum iteration number
iterdispatch) until it reaches an optimal state, as defined by the proposed method.
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Outside of the loop, the function rank() sorts all vehicles based on t, arranging them
in ascending order from first to last. This sorting process generates a ranking vector R

consisting of four vehicle indices. If f ail = 1, indicating a failure in the trajectory search
between Pi(xi, yi) at instant ti and Pf

(
x f , y f

)
, the corresponding vehicle is repositioned at

the end in R and flagged as having been selected as ncurrent. In the loop, the algorithm is
divided into two parts. The first one (lines 4 to 13) concerns the selection of the current
investigated vehicle with an index of ncurrent, and the second part (lines 14 to 30), featuring
a scoring system combined with the results of an ANN method, determines the goal coor-
dinate for the current subtask. Notably, Algorithm 1 is applied when the ANN correction
system, which is elaborated on in Section 3.2, is enforced.

Algorithm 1: ANN combined score-based dispatching algorithm[
ncurrent, Pi, Pf , ti

]
← Dispatch

(
T, F, f ail, Pi, Pf , map

)

1. Initialize α ← 0 ;

2. R ← rank
(

T, Pi, Pf , f ail
)

;

3. while iter < iterdispatch, do

4. if α = 0, then

5. [ncurrent, ti] ← SelectInitialState(R) ;
6. else

7. if CheckSelection(R) > 0, then

8. [ncurrent, ti] ← SelectAlteredState(R) ;
9. else

10. [ncurrent, ti] ← SelectBackupState(R) ;
11. end if

12. end if

13. Pi = SetInitialPose(T, ncurrent, map);
14. if CheckDeliverTask(Pi) is true, then

15. Sd = PreAstarDeliver(Pi, F, map);
16. if max(Sd) > 0, then

17. Pf = SetFinalPose(Sd, map);
18. return;
19. else

20. α ← 1 ;
21. end if

22. else

23. Sr = PreAstarReturn(Pi, map);
24. if max(Sr) > 0, then

25. Pf = SetFinalPose(Sr, map);
26. return;
27. else

28. α ← 1 ;
29. end if

30. end if

31. end while

32. return;

3.1. Vehicle Selection and Initial Pose of a New Subtask

The function SelectInitialState() selects the vehicle, ranking the first one as ncurrent,
and sets ti, which is the initial instant of the trajectory to be planned, as the ending instant
of the last trajectory pertaining to ncurrent. Failure may occur in the determination of the
new trajectory for the fork ncurrent in the new subtask because other forklifts may block
the only corresponding route for a considerable time. Under such circumstances, a flag
variable α is set to 1, and all vehicles in R are checked to see if they have been selected as
ncurrent once for the current subtask by CheckSelection(). The function SelectAlteredState()
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is then utilized. In this function, the first motion-finished vehicle is discarded, and the
other forklifts are subsequently selected in turn as ncurrent on the basis of the rankings in R

until the trajectory can be formed. Furthermore, no trajectory can be successfully planned
for all forklifts at certain moments. In this case, SelectBackupState() is applied, in which
the vehicle that ranks last in R is selected, and the ti of the new trajectory is postponed
for a fixed time length of Δti relative to the end of the last subtask for vehicle ncurrent. The
vehicle ncurrent final stopping pose Pi(xi, yi, θi) is set as the initial pose of the new subtask
by function SetInitialPose().

3.2. Scoring System

A scoring system is applied to decide the goal coordinate of the new subtask. First,
the function CheckDeliverTask(Pi) is initially employed to ascertain whether the planned
trajectory involves heading to clusters or returning. The functions PreAstarDeliver() and
PreAstarReturn() are then applied separately depending on whether the goal is a rack
cluster or a picking station. In both functions, the grid networks, outlined by light colors in
Figure 2, indicate the nodes used to define the location of a vehicle and stacks. The resolu-
tion of such nodes is purposely reduced with the aim of lowering computation costs. Given
that the nodes are defined, a time dimension involved preliminary A* search algorithm,
whose expansion manner is presented in Figure 4, is used to generate preliminary trajec-
tories that link the starting pose Pi(xi, yi) at instant ti to each potential target coordinate.
Five patterns in total for this search algorithm are applied to vaguely indicate the possible
maneuvers a vehicle could perform. In particular, manner 5 in Figure 4 expands only in
the time dimension, representing the stopping condition of a virtual forklift. The time
consumed derived from this algorithm for a virtual vehicle represented by one node is then
applied as a parameter to evaluate the difficulty grades of reaching different goal poses.
Other vehicles and walls are treated as obstacles during the search. Notably, the orientation
angles θ for the initial and final poses are not required to be determined in such a system.
Thus, θ is not considered a dimension in this search for the sake of calculation simplification.

 

Figure 4. Expansion manner of the preliminary hybrid A* search.

In the function PreAstarDeliver(), the function Sd,0 is applied to evaluate the scores
pertaining to different target stack locations sd (cf. Figure 1) when a subtask with one stack
as the goal is considered. It writes:·
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Sd,0 = C1Gd + Jd,0

Jd,0 =

{
H + C2 Id + C3 preliminary trajectory is planned

C4 preliminary trajectory planning is failed within iterpre
H = −Δtcover

Id =

{
t f ind − ti + C5 sd ∈ {s1, s2}

t f ind − ti sd ∈ {s3, s4, s5, s6}

(3)

where Gd denotes the number of stacks to be filled/emptied in the target shelf cluster sd in
order to balance the warehouse filling/emptying mission in different clusters. Jd,0 stands
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for the approximate difficulty to reach different goal coordinates in shelf cluster sd. C4 is a
negative constant applied when the goal in practice is not reachable. H indicates time length
Δtcover. Δtcover counts the time units during which other vehicles occupy the shelf entrance
node (cf. the grey grid for the upper left forklift in s1 in Figure 1) of the goal pose within
a fixed time length Δtentry after the virtual vehicle entering the rack passage. The reason
Δtcover is added as a parameter is that, in practice, the availability of the above-mentioned
node is critical during the planning of the final trajectory that considers kinematics. Id is a
function of the time length

(
t f ind − ti

)
consumed to arrive at the target in this preliminary

search. Notably, this function is built to normalize the results for different shelf clusters
because shelf clusters s1 and s2 are far from the picking stations, and delivering goods to
these locations consumes much time. Furthermore, a negative constant C4 is assigned to
Jd,0 when the target cannot be reached through the search within a predefined maximum
iteration number iterpre. Meanwhile, C1, C2,. . ., C5 are calibration parameters. Among
these, a substantial weighting coefficient, C1, is allocated to regulate the stacks filled in each
shelf cluster; aiming for balance, C2, C3, C4, and C5 are designed to quantitatively assess
scores with respect to time considerations. If Sd,0 ≤ 0 is derived within iterpre, the vehicle
kinematics-considered trajectory is difficult to find. Thus, the flag variable α is set to 1 in
the initialization cycle, where ANN is not enforced, and ncurrent should be reassigned.

Similarly, in the function PreAstarReturn(), only the time consumed with respect to
different picking stations pr (cf. Figure 1) in the A* search is used in the evaluation of Sr,
which is expressed as:

Sr =

{
Ir preliminary trajectory is planned
0 preliminary trajectory planning is failed within iterpre

(4)

When ANN is not enforced, the potential targets are initially scored solely by means
of Equations (3) and (4). The greater the functions to be evaluated are, the greater the
likelihood of subsequent trajectory planning is and the faster the entire warehouse can be
filled. In this case, arg max Sd,0 and arg max Sr are selected as the goal poses for delivery
and return subtasks, respectively.

3.3. ANN Correction Method

The function PreAstarDeliver() is employed to refine goal score evaluations through
a multilayer perceptron (MLP) network, which is elaborated upon as follows.

Figure 5 presents a typical MLP network of ANN with one hidden layer. Mathemati-
cally, with the trajectory planning states as known variables, the MLP network of the type
reported in Figure 5 can be expanded step by step as follows:

ŷ(w, W) = F(
m

∑
j=1

Wjhj(w) + W0) = F(
m

∑
j=1

Wjfj(
n

∑
i=1

wjizi + wj0) + W0) (5)

where wji and Wj denote the weights assigned to the connection of the neurons. Wo and
wj0 are linked to the bias, whose values are simply the constant 1.

The ANN correction in the current study is designed for the scoring system for the goal
pose determination of delivery subtasks. In the initialization phase of the ANN correction
system, excluding the filling balance parameter of Gd in Equation (3), {J1,0, J2,0, · · · , J6,0}
respectively denote the base values of the output elements in J = {J1,est, J2,est, · · · , J6,est} (cf.
ŷ in Figure 5) for six MLP networks. Among the six elements, the one whose corresponding
pose is selected as the target for vehicle kinematics-considered trajectory planning is further
fixed based on the corresponding trajectory variables. The values of the other elements
remain as unchanged as the results in Equation (3). Suppose that sd is the shelf cluster
investigated within a subtask. Given that the base value Sd,0 is derived with Equation (3), if
sd that corresponds to arg max Sd,0 is selected as the goal to determine the trajectory, then
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the trajectory with the goal of sd will be planned, and the corresponding element in J will
be derived with Equation (6) as follows:

Jd,est =

⎧⎪⎪⎨
⎪⎪⎩

Jd,0 − C6(t f − ti − t + C7) trajectory is planned, and d ∈ {1, 2}
Jd,0 − C6(t f − ti − t + C8) trajectory is planned, and d ∈ {3, 4, 5, 6}

C5 trajectory planning is failed within iterpre
Jd,0 trajectory is not planned

(6)

where t f is the ending instant of the trajectory, t stands for the average value of the
time length pertaining to all previously derived trajectories, C6 is a calibrated constant
intended to balance Jd,0, and the latter solely accounts for time consumed to reach a goal
without factoring in the distance covered. C7 and C8 are respectively used to normalize the
difference in distances corresponding to various shelf clusters and the expected moving
time period of each subtask.
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Figure 5. Schematic of an MLP network.

Similar to the parameter Gd in Equation (3), the inputs (cf. z1, z2, · · · , zn in Figure 5)
of the ANN system are the number of stacks filled within each shelf cluster. A vector U with
six elements {u1, u2, · · · , u6 }, which correspond to six shelf clusters sd, is used. Suppose
that ud ∈ U is considered, it can be formulated as

ud =

⎧⎨
⎩

Gd delivery subtask is linked
−Gd return subtask or subtasks of both types are linked

0 no subtask is linked
(7)

The integers other than 0 can represent the filling states of the shelf clusters, which
are associated with the currently moving forklifts. The vehicle motion states are also
observed. This input of the MLP network vaguely provides information associated with
the possible area the vehicles may be located in, given that each shelf cluster should be
filled by following certain orders. Furthermore, at least two shelf clusters are not connected
to any subtask because only four forklifts in the warehouse are employed. Evidently, these
shelf clusters have no impact on the trajectory planning, and this situation is in line with
the circumstances, where the investigated shelf group is filled. Thus, 0 is assigned to ud in
this case.

As the number of hidden neurons is set to 12 according to an empirical technique [36],
the MLP system used to score shelf cluster sd can be expressed in the form of Equation (5) as

Ĵd,est(wd, Wd) = F(
12

∑
j=1

Wd,jhj(wd) + W0) = F(
12

∑
j=1

Wd,jfj(
6

∑
i=1

wd,jiud,i + wd,j0) + W0) (8)
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The Levenberg-Marquardt method is then used to train the MLP and the values
assigned to the elements of W and w.

In the following warehouse filling cycles and the final dispatching system, the scoring
system described in Equation (3) is replaced by the expression below to determine the opti-
mal goal pose for vehicle ncurrent. Equation (9) is the final scoring equation of the discussed
dispatching system, wherein C9 and C10 act as the calibration constants. These constants
are determined via a trial-and-error approach to yield results. The MLP contributes without
excessively disrupting performance concerning warehouse filling/emptying time.

{
Sd = C1Gd + Jd
Jd = C9 Jd,0 + C10Ĵd,est(wd, Wd)

(9)

After the initialization cycle of warehouse filling (referring to Figure 6), the training
process can continue until Cy cycles are finished. In the following cycles, the MLP has
already been established depending on the data pertaining to the previous cycles, and the
saved values of W and w are used to estimate the values Ĵd,est() via Equation (8). Therefore,
the base values of the MLP outputs Jd,0 are replaced by Jd in Equation (9) when shelf
cluster sd is considered. The expression of the corresponding element in J for the following
cycles writes:

Jd,est =

⎧⎪⎪⎨
⎪⎪⎩

Jd − C6(t f − ti − t + C7) trajectory is planned, and d ∈ {1, 2}
Jd − C6(t f − ti − t + C8) trajectory is planned, and d ∈ {3, 4, 5, 6}

C5 trajectory planning is failed within iterpre
Jd trajectory is not planned

(10)

 
Figure 6. Flowchart of MLP training.

3.4. Final Pose Selection

The final pose of each subtask is determined using the SetFinalPose() function. For
subtasks with the purpose of delivery, the destination coordinate Pf

(
x f , y f

)
is chosen based

on the arg max Sd criterion; for return subtasks, the coordinate Pf

(
x f , y f

)
corresponding

to arg max Sr is selected. Finally, the corresponding θ information should be added to
complete the destination pose.

4. Improved Hybrid A* Search Algorithm

Hybrid A* algorithm [37] is an extension of the conventional 2D A* search algorithm
due to its consideration of kinematics during node expansions over time. Different from
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the original hybrid A* search, the velocity variation is considered, and the node expansion
manner is determined based on action purposes in the algorithm (cf. Algorithm 2) applied
in this study. Furthermore, this improved heuristic method directly determines trajectory
details throughout a subtask without an optimization stage.

Algorithm 2 is used to expand a parent node (Pp, tp) in one manner Nc through the
improved hybrid A* search with the target of Pf . Focusing on the motion of one vehicle,
Listopen is used to store the data pertaining to all nodes (Popen, topen), which has been
explored and can be further expanded. The information contains the corresponding parent
nodes, expansion manner (cf. Section 4.1), time expansion data (cf. Section 4.2), and costs
(cf. Section 4.4). On the contrary, the node (Pclosed, tclosed) cannot be expanded anymore and
is stored in Listclosed. Furthermore, the function DetectCollision() is discussed in Section 4.3.
In addition, the function AddNode() is used to add a node with its affiliating data into
Listopen or Listclosed.

Algorithm 2: Improved hybrid A* search algorithm[
σ, Listopen

] ← SearchAStar
(

T, Nc, Pp, Pf , tp, Listopen, Listclosed, map
)

1.
[
thigh,c, tmid,c, tzero,c

]
← FixMovingTime

(
Listopen, Pp, tp, Nc

)
;

2. Listopen ← SetCost
(

Listopen, Pp, tp, Nc
)

;
3. γ ← DetectCollision

(
T, Nc, Pp, tp, Listopen, map

)
;

4. if (Pc, tzero,c) ∈ Listclosed , then

5. return;

6. end if

7. if (Pc, tzero,c) ∈ Listopen and γ = 0, then

8. if fc < fpre, then

9. Listopen ← ReplaceNode
(

Listopen, Pp, tp
)

;
10. end if

11. else

12. if γ = 0, then

13. Listopen ← AddNode
(

Listopen, Pc, tzero,c
)

;
14. if Pc = Pf , then

15. σ ← 1 ;
16. return;
17. end if

18. else if γ = 1, then

19. Listclosed ← AddNode(Listclosed, Pc, tzero,c) ;
20. return;

21. end if

22. end if

23. return;

4.1. Node Expansion Method

This section elaborates on the various possible expansion manners denoted as Nall ,
with each individual possibility represented by Nc. The drivable area is initially mapped
with the above-discussed grid networks (cf. Figure 2). The dimensions of the grid should
be skillfully coupled with the size of the vehicle, with the aim of reducing occupied cells
during a certain action and enhancing the utility rate of the space. The case demonstrated
in Figure 7 is a well-designed example. In this case, one vehicle covers two grid cells.
Thus, on a 2D space domain, the orientation angle θ involved in forklift movements can be
easily described. In addition, through one maneuver, the vehicle body occupies a small
number of grids. This can reduce the possibility of interference with other forklifts during
motion planning.
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(a) (b) 

Figure 7. Node expansion manners of improved hybrid A* algorithm: (a) Stopping and going straight;
(b) lane changing and turning.

As reported in Figure 7a,b, the nodes expanding manners Nall in the space domain
can be divided into eleven patterns, which are summarized as four categories covering
all possible maneuvers a forklift may intend to conduct. These include stopping, going
straight (cf. semitransparent solid rectangles in Figure 7a), lane changing (cf. rectangles
with diagonal stripes in Figure 7b), and turning (cf. solid rectangles in Figure 7b).

As far as the expanding manners are concerned, when v remains 0, one vehicle stops.
As v is other than 0 with steering angle φ = 0, one fork can go or reverse straight. Figure 8
demonstrates one modeled forklift path depicted by consecutive outlines, when the vehicle
goes upward and turns to the left from the right lower side to the center left. Through this
maneuver, φ is varied to gain an identical final location relative to grids as the initial state,
despite the change of π/2 in θ. Under such circumstances, the consecutive motions can be
easily established. Meanwhile, the modeled maneuver of reverse turning to the left can
also be noted in Figure 8, when the initial and final body outlines are exchanged.

Figure 8. Path of turning.

Similar to turning actions, a typical lane-changing maneuver is also modeled and
outlined in Figure 9. The forklift goes forward and changes to the left lane, which is shown
on the top row in Figure 9. The other possible node-expanding paths of turning and lane
changing are modeled by mirroring or rotating the examples reported in Figs. 8 and 9.

Figure 9. Path of lane changing.
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The smoothness of the modeled paths can be enhanced by adopting advanced tech-
niques, and the identical heuristic trajectory search rule of this work can also be applied to
the newly modeled paths.

4.2. Velocity Planner

The velocity planner determines the node expansion rule in the time domain and the
potential node arrival instants. When one maneuver starts or finishes, the vehicle speed
solely falls into one of three determined constants (vhigh, vmid and vzero), which correspond
to high speed, mid speed, and zero speed. Figure 10 reports all possible velocity selections
linked to the start and end of the maneuvers. vhigh can only be selected with the expansion
pattern of going straight to fulfill the kinematic constraints given by Equations (1) and (2).
The stop maneuver is an expansion of finite value solely on the time domain, it follows that
only vzero can be applied to this action.

Figure 10. Velocity selections when one maneuver starts or ends.

The velocity level over one maneuver can only be linked to itself or an adjacent one,
although all maneuvers can be arbitrarily linked along a trajectory. In other words, during
one maneuver, the vehicle speed can maintain or alter among those three velocities, but
the direct change between vzero and vhigh is illegal. For instance, if the vehicle finishes a
series of going straight actions with speed vzero, its ending velocity of the last second action
should then be vmid or vzero. Likewise, if turning follows going straight with an original
velocity vhigh, the speed of the last going straight maneuver should reduce to vmid to gain
an initial velocity vmid for turning.

Following the velocity selection rules, all possible speed variations through one ma-
neuver are shown in Figure 11. It is noteworthy that the link of vhigh→Going straight→vzero
and the opposite link are infeasible. Thus, 16 connection choices in total are applicable.
Furthermore, velocity is merely an intermediate state used to determine a time dimension
expansion, although it is a vital parameter for motion planning. The detailed velocity time
history during one maneuver can be modeled by applying varied techniques to obtain
the required initial and finishing speeds. In the current work, deceleration or acceleration
along one action between the same velocity levels is modeled with identical time lengths,
with the aim of simple calculation. The number of time expansion selections (cf. Te with
e ∈ {1, 2 · · · , 12} in Table 1) thus reduces to 12.

Figure 11. Velocity variations through one maneuver.
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Table 1. Node expansion selections in time domain.

Abbreviation Description

T1 vzero → Going straight → vzero
T2 vzero → Going straight → vmid or vmid → Going straight → vzero
T3 vmid → Going straight → vmid
T4 vmid → Going straight → vhigh or vhigh → Going straight → vmid
T5 vhigh → Going straight → vhigh
T6 vzero → Turning → vzero
T7 vzero → Turning → vmid and vmid → Turning → vzero
T8 vmid → Turning → vmid
T9 vzero → Lane changing → vzero
T10 vzero → Lane changing → vmid or vmid → Lane changing → vzero
T11 vmid → Lane changing → vmid
T12 vzero → Stop → vzero

The function FixMovingTime() determines time expansion data based on Table 2,
which is elaborated as follows. When planning a trajectory, the maximum feasible velocities
are consistently selected for all maneuvers with zero speed supplied to the start and end of
the trajectory. With regard to one node expansion, three values of thigh,p, tmid,p and tzero,p
are initially saved in the parent node as the possible start instant of the maneuver, and
these respectively correspond to ending velocities of vhigh, vmid, and vzero, if they exist.
In the cases where vhigh is not reachable, the value stored in thigh,p will be the minimum
time length during the maneuver, with ending velocity vmid. Consequently, thigh,p = tmid,p.
Similar result of tmid,p = tzero,p is obtained when the maximum realizable ending velocity
is vzero. As the parent node is initialized, values of thigh,c, tmid,c, and tzero,c are derived and
saved for the child node with the identical manner for the parent node. Furthermore, the
starting velocity of a new expansion may be imposed as vzero, combined with the node
expansion type of the previous maneuver. A stopping flag μ is then set as 1. Such a case
happens when an expansion of stop occurs or moving direction of a vehicle is reversed.
In the rest of the working conditions, the flag μ remains 0. Notably, a node is of four
dimensions, x, y, θ, and t; among them, t is an index used in the graph search, and more
than one value stored in one index could complicate the problem. Consequently, only the
vzero-related time instant tzero is stored as the node index.

Table 2. Model-based approach for saving time consumption data.

Current Maneuver μ=0 μ=1

Stop -
tzero,c ← tzero,p + T12
tmid,c ← tzero,p + T12
thigh,c ← tzero,p + T12

Going straight

if thigh,p = tmid,p, then
tzero,c ← tmid,p + T2
tmid,c ← tmid,p + T3
thigh,c ← tmid,p + T4

else
tzero,c ← tmid,p + T2
tmid,c ← thigh,p + T4
thigh,c ← thigh,p + T5

tzero,c ← tzero,p + T1
tmid,c ← tzero,p + T2
thigh,c ← tzero,p + T2

Turning
tzero,c ← tmid,p + T7
tmid,c ← tmid,p + T8
thigh,c ← tmid,p + T8

tzero,c ← tzero,p + T6
tmid,c ← tzero,p + T7
thigh,c ← tzero,p + T7

Lane changing
tzero,c ← tmid,p + T10
tmid,c ← tmid,p + T11
thigh,c ← tmid,p + T11

tzero,c ← tzero,p + T9
tmid,c ← tzero,p + T10
thigh,c ← tzero,p + T10
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Meanwhile, each node stores three ending time instants. Thus, one algorithm should
be applied to select the exact ending instant of each node. This algorithm first chooses
the minimum time thigh of each maneuver over the path. The deceleration phase is then
imposed on the last two nodes of the trajectory, and the corresponding tmid and tzero are in
turn assigned to these two nodes as the maneuver-finishing time instants. As the above
methods are implemented from the start to the end of the initialized trajectory, a few
modifications are imposed to fix the node time indices t in certain circumstances. For
instance, when μ = 1, the maximum achievable ending time tp for the former maneuver
node is determined by selecting the value of tmid,p. In this case, the ending velocity of
this maneuver turns to be vmid. Meanwhile, in the same combination of maneuvers, if a
previous maneuver exists and tpp > tmid,pp, tmid,pp is assigned to tpp, as the prior maneuver
cannot achieve a higher velocity.

4.3. Collision Detection Strategy

The pseudocode of the collision detection function DetectCollision() is recorded in
Algorithm 3. A variable γ is used as a flag to indicate the validity of the node expansion
as well as the type of collisions that may have occurred. When the current expansion Nc
is valid, γ is set as 0. γ = 1 means that at least the ending pose of the expansion risks
colliding, and γ = 2 signifies that the invalidity is only found in the link between the
starting and final locations. This algorithm consists of two parts, which separately refer to
collisions that occurred with ending and intermediate pose of the vehicle. As regards both
circumstances, collisions should be avoided throughout t ∈

[
tmid,p, tzero,c

]
.

Algorithm 3: Collision detection algorithm

γ ← DetectCollision
(
T, Nc, Pp, tp, Listopen, map

)
1. Initialize γ ← 0 ;
2. Pc ← FindEndingPose

(
Pp, Nc

)
;

3. Pin ← FindIntermediatePose
(

Pp, Nc
)

;
4. if CheckStaticCollision(Pc, map) is true, then

5. γ ← 1 ;
6. return;
7. end if

8.
[
tzero,c, tmid,p

]
← FixParkingTime

(
Pp, tp, Listopen, Nc

)
;

9. [Listcur,1] ← FindFinalGrids
(

Pp, Nc
)

;

10. [Listother] ← FindObstaclesGrids
(

T, tzero,c, tmid,p

)
;

11. if CheckDynamicCollision(Listcur,1, Listother) is true, then

12. γ ← 1 ;
13. return;
14. end if

15. if CheckStaticCollision(Pin, map) is true, then

16. γ ← 2 ;
17. return;
18. end if

19. [Listcur,2] ← FindIntermediateGrids
(

Pp, Nc
)

;
20. if CheckDynamicCollision(Listcur,2, Listother) is true, then

21. γ ← 2 ;
22. return;
23. end if

24. return;

Static obstacles correspond to the walls of the shelves and warehouse, and the related
collision detection method is expressed on lines 4 to 7 in Algorithm 3. FindEndingPose()
is used to obtain the current pose Pc(xc, yc, θc) based on the parent pose Pp

(
xp, yp, θp

)
and

the current expansion manner Nc. The function CheckStaticCollision() is applied to check
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if collisions with static obstacles exist. This check is first judged by identifying the validity
of the final pose. When it comes to maneuvers of turning and lane changing, an additional
intermediate pose (cf. thick dashed rectangular in Figures 8 and 9), obtained through
FindIntermediatePose(), should be further examined (cf. lines 15 to 18 in Algorithm
3). Focusing on the collision avoidance constraints formulation between the point Qj
(j = 1, · · · , Nobs and Nobs denotes the obstacle point number) and the current investigated
vehicle featuring vertexes A, B, C and D. A collision forms when Qj enters the rectangle
ABCD. The restriction that Qj is located outside of the rectangle ABCD can be formulated
by applying a triangle-area-based criterion [38],

S�Pi AB + S�Pi BC + S�PiCD + S�Pi DA > S�ABCD (11)

where SΔ indicates the triangle area, and refers to the rectangle area. Applying Equation (11)
to every node expansion with respect to every obstacle point, the static obstacle collision
judgement is yielded.

Dynamic obstacles in the current study are only forklifts, whose motions have been
saved in T, and the function FixParkingTime() is applied to find tmid,p in Listopen and
tzero,c by calling Table 2. As reported in Figures 8 and 9, the highlighted grids indicate
the approximate area occupied during the movements of turning and lane changing.
Similarly, the covered grids pertaining to other maneuvers in the same category can be
determined by mirroring or rotating the highlighted grids (cf. Figures 8 and 9). The
functions FindFinalGrids() and FindIntermediateGrids() are respectively used to record
the covered grids of the final pose Pc and the intermediate pose Pin for the current node
expansion patterns.

Without loss of generality, let us focus on the collision avoidance constraint formulation
between the vehicle ncurrent and the vehicle nk (ncurrent, nk = 1, · · · , 4 and ncurrent �= nk).
The function FindObstaclesGrids() is first utilized to search for the covered grids by the
vehicles nk, whose trajectories are not being planned, with respect to time. It is possible
that no actions of the forklift nk have been determined during the period when the current
maneuver of vehicle ncurrent could occupy. Under such circumstances, the grids that the
vehicle nk finally parks are treated as the covered ones.

Finally, CheckDynamicCollision() is used to detect if Listcur,1 or Listcur,2 is going to
simultaneously cover the grids already stored in Listoth over the valid time. Notably, during
the collision detection, the current action is virtually regarded as the final maneuver with
vzero set as the finishing velocity with tzero,c selected, thus an equal or longer time length
of this maneuver in actual operation is considered. This treatment can enhance the safety
performance to certain extents.

Notably, referring to Algorithm 3, the types of failure through an expansion have been
noticed when one expansion has failed. This provides a tool to distinguish if one child node
should be closed or skipped because that failure can be simply due to the intermediate
trajectory of the action is interfered, while the corresponding child node could be valid in
other situations.

4.4. Trajectory Cost Function

The function SetCost() is explained in this section. With regard to one node expansion,
the cost function f is the sum of two parts, as reported in Equation (12),

f = g + C11h (12)

in which g stands for the cumulative cost from the initial pose to the current pose and h
indicates the estimated cost from the child node of the current expansion to the target node
of the trajectory being defined. C11 is a calibrated weighting aimed at achieving a balance
between the computational resources used for searching and the resultant trajectory’s
quality. In total, it is expected that one forklift complete a delivery or return subtasks
subjected to the minimum travelling time of

(
t f − ti

)
. Meanwhile, times of turning,
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lane changing, and speed inverse maneuvers should be minimized in order to reduce
unnecessary movements, which may decrease the traffic capacity of the passages.

As far as the function of trajectory to the goal is concerned, Equation (13) is applied.
We used the Manhattan distance plus another function of θc. Both the distance and the
angle are evaluated in times of certain characteristic dimensions.

h =
∣∣xg − xc

∣∣/Δx +
∣∣yg − yc

∣∣/Δy +
∣∣θg − θc

∣∣/(π/2) (13)

where Δx = Δy, indicating the grid side length; xg, yg, and θg correspond to the goal space
coordinates; xc, yc, and θc refer to the coordinates of the current expansion child node.

The passed trajectory cost function that characterizes the time consumed from the
starting pose of the trajectory to the current one writes:

{
g = tzero,c − ti + p
p = pturn · mturn + plane · mlane + pinv · minv

(14)

where pturn, plane, and pinv respectively indicate the predefined penalties pertaining to
single time of turning, lane changing, and speed inverse. mturn, mlane, and minv denote the
cumulative number of corresponding maneuvers from the initial pose to the current child
node along the trajectory being defined.

In addition, if one node originally stored in Listopen is reached a second time with a
reduced value of fc during a node expansion compared to the previous saved fpre for the
same nodes, the function ReplaceNode() is used to switch the parent node to the parent
node of current expansion, with the aim of reducing calculation time length and optimizing
the trajectory being planned.

5. Joint Dispatching and Cooperative Trajectory Planning Framework

The trajectories of forklift vehicles in the warehouse are sequentially determined in
the complete cooperative operative algorithm (cf. Algorithm 4). Generally, the dispatching
technique is first applied to select the current vehicle index as well as the goal coordinate in
the space domain for the current trajectory planning subtask. Subsequently, an improved
hybrid A* search algorithm is used to determine all details pertaining to the newly planned
trajectory T. The above methods are repeated until all stack locations in the warehouse are
filled, as the warehouse filling state F is being updated.

The function CheckFilling() is used to derive the number of unfilled stacks. The
function FindInitialPose() is then applied to find the parent node

(
Pp, tp

)
for the next

expansion with minimum cost f found in Listopen and to simultaneously remove this node
from Listopen.

A maximum number of iterations itersearch in the improved hybrid A* algorithm is
induced to break the endless iterations that may derive a trajectory involving an unaccept-
able waiting period. The improved hybrid A* search algorithm is finished by satisfying
any one of the three criteria, which are, respectively, the goal coordinate reached as a new
child node, the iteration number exceeding itersearch, and no node saved in Listopen. Among
them, only the first criterion indicates the trajectory of the current subtask is successfully
planned, and a corresponding flag σ is thus set as 1 to declare this success.

The function GenerateTraj() is employed to generate the trajectory with the newly
planned trajectory by backtracking from Pf to Pi with t f ,zero as the ending instants. During
the backtracking, the maximum realizable velocities of the intermediate nodes are selected
based on the manner depicted in Figure 11 and Table 2.

Finally, the function UpdateFillingState() updates F as the stack located at Pf

(
x f , y f , θ f

)
has been filled.

188



Electronics 2023, 12, 3820

Algorithm 4: Cooperative operation algorithm

[T, F] ← OperateCooperative(T, F, itersearch, map)

1. while CheckFilling(F) > 0

2.
[
ncurrent, Pi, Pf , ti

]
← Dispatch

(
T, F, f ail, Pi, Pf , map

)
;

3. σ ← 0;
4. f ail ← 0 ;
5. thigh,p ← ti, tmid,p ← ti, tzero,p ← ti;
6. Listopen ← (Pi, ti), Listclosed ← ∅ ;
7. while Listopen �= ∅ or iter ≤ itersearch or σ �= 1, do

8. [Listopen, Pp, tp] ← FindInitialPose
(

Listopen
)

;
9. Listclosed ← AddNode

(
Listclosed, Pp, tp

)
;

10. for each Nc ∈ Nall , do

11.
[
σ, Listopen

]← SearchAStar
(

T, Nc, Pp, Pf , tp, Listopen, Listclosed, map
)

;

12. end for

13. end while

14. if σ = 1, then

15. T ← GenerateTraj
(

Pi, Pf , ti

)
;

16. F ← UpdateFillingState(T) ;
17. else

18. f ail ← 1;
19. end if

20. end while

21. return;

6. Numerical Experiments

Simulations of filling and emptying missions were conducted on the MATLAB 2021b
platform, utilizing the parametric settings reported in Table 3. Each warehouse filling or
emptying mission began with fully empty or filled initial conditions, respectively. The
motion planning for each forklift in the simulation environment solely takes into account
obstacles such as warehouse walls and other forklifts.

Table 3. Parametric settings regarding model and approach.

Parameter Description Setting

n Forklift front overhang length 0.3 m

m Forklift rear overhang length 1 m

l Forklift wheelbase 1.5 m

2b Forklift width 1 m

[lbx, ubx] Horizontal boundaries of map [−18, 18] m[
lbx, uby

]
Vertical boundaries of map [−12, 12] m

resolxy
Node resolution for search

algorithms 2 m

iterpre Maximum iteration in the time dimension involved A* search 500

iterdispatch
Maximum iteration of

redispatching 10

itersearch
Maximum iteration in the

improved A* search 5000

{C1, C2, · · · , C11} Calibration parameters {6, 1.5, 80,−40, 6, 0.5,−4, 2, 0.5, 0.5, 3}

{T1, T2, · · · , T12} Modeled time lengths of
maneuvers {4, 2, 1.25, 0.75, 0.5, 8, 5, 3, 12, 8, 5, 1} s
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Table 3. Cont.

Parameter Description Setting

pturn Penalty for turning maneuver 4

plane
Penalty for lane changing

maneuver 6

pinv
Penalty for speed inverse

maneuver 6

Δti
Time postponed when one
trajectory planning is failed 10 s

Δtcover Time in Equation (3) 20 s

Δtentry
Time length after the virtual vehicle entering the rack

passage to evaluate Δtcover
20 s

{tclaim, tunload} Time period for picking goods and unloading goods {5, 5} s

The simulation results are divided into two parts. The first part focuses on assessing
the consistency of the motion planning strategy by presenting three short-time trajectories
for multiple forklifts. In the second part, various dispatching strategies were benchmarked
using different scores specifically designed for the current warehouse scenario. This evalu-
ation was conducted to determine the performance and efficiency of different dispatching
strategies in the given warehouse scenario.

6.1. On the Performance of the Trajectory Planning Technique

Figure 12 reports how forklift 1 returns to a picking station from shelf cluster s1, where
it has just unloaded goods. Before the start of the scenario, forklifts 2 and 4 are in the
same state of return, and forklift 3 is unloading in shelf cluster s4. When the scene in
Figure 12 starts, forklift 1 accelerates and decelerates to reverse to the entrance of shelf
cluster s1. At the meantime, forklift 4 turns and heads to the picking station p4, leaving
the crossing of the wide passages empty. With the purple square showing the newly filled
stack, forklift 3 leaves shelf cluster s4 and enters s3 to finish turning round. When it is
inside of s3, forklift 1 goes through the passage between s3 and s4. Subsequently, forklift
1 reverses and turns to the picking station p2, and forklift 3 then enters the wide passages to
return to the assigned picking station, which is p3. Finally, forklift 2 is the first vehicle that
arrives at the crossing area of wide passages with the goods picked. During the scenario,
all trajectories are directly determined by means of the approach elaborated on in Section 4.
The least priority is dynamically offered to the newly departed vehicle. For instance, in this
scenario, forklift 3 initially has the lowest priority. Thus, it should judge if there is enough
time for the vehicle to turn around. Therefore, if the time is limited, vehicle 3 would wait at
the entrance of s4, until the passing of forklift 1.

Figure 13 shows how the last stack is filled. Because there is nowhere to be filled
hereafter, forklift 3 is parked in one picking station, and forklift 1 heads to picking station
s4 and stops. Initially, forklift 4 has just finished one unloading process, then it enters shelf
cluster s2 to turn over. After forklift 4 leaves s2, forklift 2 enters the shelf cluster to complete
the last delivery subtask. Meanwhile, forklift 4 accelerates, decelerates, and turns to picking
station s3 for final parking.

Figure 14 shows a scenario where the trajectory decision for forklift 3 encounters a
failure. In this case, forklift 1 reaches shelf s4 to unload goods, while forklift 3 completes
its unloading process earlier than forklift 1. Consequently, forklift 3 should be assigned a
higher priority to plan the trajectory based on function rank(). However, at this moment,
forklift 1 remains stationed at the entrance of shelf s4, obstructing the passage for forklift
3. As a result, a decision failure occurs, leading to an update in the trajectory planning
priority stored in R. Only after the completion of the trajectory planning for forklift 1 can
the trajectory planning for forklift 3 proceed accordingly.
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Figure 12. Planned trajectories between t = 687.25 s and t = 715.25 s.

 

Figure 13. Planned trajectories between t = 2327.25 s and t = 2354.50 s.

 
Figure 14. Planned trajectories between t = 284.75 s and t = 303.75 s.
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6.2. On the Performance of Dispatching Strategies

Table 4 benchmarks five distinct dispatching strategies for both filling and emptying
tasks. It is worth noting that these dispatching methods are applicable only to specific
coupling scenarios between grids and vehicle maneuvers, as they incorporate a preliminary
A* search during the dispatching process.

Table 4. Benchmark of the different dispatching strategies.

Strategy Name

Filling Emptying

Decision
Failure Times

End
Time (s)

Decision
Failure Times

End
Time (s)

ANN combined
strategy 38 2388.25 27 2597.25

Comprehensive
strategy 38 2441.00 21 2658.25

Greedy strategy 135 2768.75 75 3419.00

Traffic jam
removing
strategy

120 2709.00 51 3117.75

Balance strategy 55 2557.75 35 2660.50

The approaches differ in the assignment methods pertaining to delivering subtasks.
While the decision failure times in Table 4 indicate the number of times ncurrent or ti is
changed without a solid trajectory decided throughout the entire warehouse filling mission,
the end time is the finishing timing of the same task. Among the strategies, ANN combined
determines the goal through arg max(Sd) (cf. Sd in Equation (9)) when the coefficients of
the MLP are determined. Comprehensive strategy applies Sd,0 in Equation (3), and the
target is determined based on arg max(Sd,0). The other three strategies only concern a few
parameters in Equation (3). Greedy, traffic jam removal, and balance strategies select the
goal pose through arg max(Id), arg max(Jd,0), and arg max(Gd), respectively.

As reported in Table 4, the end time of the emptying task is approximately 10%
longer than that for filling tasks. However, the occurrence of decision failure times is
generally lower. This indicates that during emptying tasks, instances of a forklift obstructing
routes and blocking other vehicles for extended periods are rare. Yet, with the current
configuration of iterpre and itersearch, all vehicles might experience longer wait times on
average during each subtask.

The ANN combined strategy is the optimal method in terms of end time for both
filling and emptying tasks, requiring approximately 2% less time than the comprehensive
strategy. However, it does exhibit comparable or even slightly greater decision failure
times when compared to the comprehensive strategy. In general, a reduction in the first
parameter can reduce the computation burden of the hardware by performing fewer useless
calculations in searching a trajectory. The second parameter directly shows the efficiency
of the cooperative operation of multiple forklifts. Notably, the ANN approach applied to
train the dispatching system only concerns the efficiency of planning a trajectory for the
current vehicle. Therefore, it is possible that some stacks in only one shelf cluster are left to
be filled by selecting the best solution multiple times. In this case, multiple forklifts have to
cooperatively fill one shelf cluster, and the waiting period of each vehicle must increase.
Therefore, both the decision failure times and the end time may sharply increase.

In Figures 15–18, the sequence in which the warehouse is filled with different methods
is reported. The colored blocks plotted in the schematic warehouse stand for the stacks
filled during different periods (red for the first quarter of time, blue for the second, green for
the third, and cyan for the last). It is observed that the filling of different shelf clusters for
the ANN combined strategy (cf. Figure 15) in different quarters of the period is balanced to
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a certain extent. There are, respectively, 35, 37, 34, and 30 stacks filled during each quarter.
Particularly in the last quarter of the period, similar numbers of stacks filled are distributed
within all six shelf clusters, and this provides a possibility for a feasible and fast solution to
filling the warehouse.

 
Figure 15. Filling sequence of ANN combined strategy.

 
Figure 16. Filling sequence of comprehensive strategy.

 
Figure 17. Filling sequence of traffic jam removing strategy.
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Figure 18. Filling sequence of balance strategy.

By excluding the MLP of ANN, a comprehensive strategy is also capable of assigning
subtasks to each forklift explicitly. Although the performance is slightly worse than the
ANN combined one, it does not require the data pertaining to previous cycles. Figure 16
demonstrates the filling sequence for this approach. Similar to that of the ANN combined
approach, the filling state of the shelf clusters in the warehouse is relatively balanced
throughout the period. A few seconds are added in terms of the end time for this strategy
without the fine adjustment of the MLP.

Figure 17 exhibits the filling sequence of the traffic-jam-removing strategy. The differ-
ence between this method and the greedy strategy is that the previous one simultaneously
considers H in Equation (3). One stack in shelf cluster s2 is filled in the first quarter of
the period, and both the decision failure times and the end time pertaining to the traffic
jam removal approach reduce compared to the greedy strategy. Thus, a simple additional
function of H can slightly further characterize the difficulty of the trajectory planning.
Meanwhile, because the filling sequences of these two strategies are similar, the figure
pertaining to the greedy method is omitted. As shown in Figure 17, it basically evenly fills
shelf clusters s4, s5, and s6 in the first quarter of the period. The majority of stacks in s1
and around a third of stacks in s2 are filled in the last quarter. Considering four vehicles
cooperatively delivering goods, violations between trajectories evidently arise, and the
times of failure in trajectory decisions and the waiting time can increase markedly.

The filling sequence of the balance strategy is plotted in Figure 18. The filling of
different shelf clusters is nearly perfectly balanced. Evidently, this strategy can better
arrange the trajectories to fill the last few stacks of the warehouse compared to any other
approach. Therefore, the number of stacks filled during the last quarter of the warehouse
filling cycle is comparable to that during other periods. In particular, when the 5th, 14th,
and 23rd stacks of shelf clusters s3 and s4 (cf. Figure 2) are being filled, the paths between
the shelf clusters (s1 and s2) in the left side of the warehouse (cf. Figure 1) and picking
stations are cut. Meanwhile, the first delivery vehicle reaching these certain stack locations
between shelf clusters s3 and s4 can simultaneously block the routes to certain shelf clusters.
This phenomenon also appears in shelf clusters s5 and s6 when the identical stack indexes
are considered. Those are the unique conflicts that arose to cause the failure decisions and
the lengthening of the end time for the balance strategy.

7. Conclusions

This study presents a joint dispatching and cooperative trajectory planning framework.
In this framework, the dispatching method applies a time dimension involved A* search,
which is used to score different goal poses during a delivery subtask. ANN is simultane-
ously implemented to evaluate the difficulties for a forklift to arrive at a goods unloading
pose from a picking station. In addition, the stacks to be filled pertaining to different shelf
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clusters are used as the third parameter to balance the shelf filling states, with the aim of
avoiding deadlocks at the final stage of the mission.

As far as the trajectory planning approach within the framework is concerned, a model-
based improved A* search algorithm is used to sequentially determine the trajectory of
each vehicle without further optimization-based techniques. The node expansion manners
are determined on the basis of the purpose of a maneuver, and the speed pertaining to the
start and end of a maneuver is divided into stages.

Different dispatching strategies are benchmarked. The ANN combined strategy shows
the best performance in warehouse filling efficiency, but the decision failure times of
this method are comparable to those of the comprehensive strategy. Meanwhile, it is
observed that the balance of the filling state pertaining to shelf clusters is as important as
the evaluation of the goal-reaching difficulties. Furthermore, the trajectories of multiple
vehicles in a short time are presented. It is shown that although the priority of a vehicle
during one subtask is predefined, the vehicles are capable of cooperatively and continuously
finding feasible trajectories.

In the future, our joint strategy will be tested in a downsized unmanned warehouse
setup. Additionally, we aim to implement a zonal shutdown feature for enhanced safety
in case pedestrians enter the area. We also plan to integrate a forklift failure detection
mechanism to enable uninterrupted warehouse operations even in the presence of a few
malfunctioning forklifts.
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Abstract: In order to enhance the performance of disturbance rejection in AUV’s path tracking, this
paper proposes a novel tube-based event-triggered path-tracking strategy. The proposed tracking
strategy consists of a speed control law and an event-triggered tube model predictive control (tube
MPC) scheme. Firstly, the speed control law using linear model predictive control (LMPC) technology
is obtained to converge the nominal path-tracking deviation. Secondly, the event-triggered tube
MPC scheme is used to calculate the optimal control input, which can enhance the performance
of disturbance rejection. Considering the nonlinear hydrodynamic characteristics of AUV, a linear
matrix inequality (LMI) is formulated to obtain tight constraints on the AUV and the feedback matrix.
Moreover, to enhance real-time performance, tight constraints and the feedback matrix are all calcu-
lated offline. An event-triggering mechanism is used. When the surge speed change command does
not exceed the upper bound, adaptive tight constraints are obtained. Finally, numerical simulation
results show that the proposed tube-based event-triggered path-tracking strategy can enhance the
performance of disturbance rejection and ensure good real-time performance.

Keywords: autonomous underwater vehicle; tube model predictive control; path tracking

1. Introduction

Autonomous underwater vehicles (AUVs) have been widely used in marine scientific
research, underwater resource exploration, underwater oil and gas pipeline and structure
overhaul, seabed hydrothermal research, and military fields [1,2]. When AUVs perform
underwater tasks, they usually need to complete path-tracking tasks [3].

The 6-DOF motion of AUV in three-dimensional underwater space is coupled and
nonlinear, and the parameters of the model are often difficult to obtain precisely. In model-
based control methods, the control performance will suffer from parametric uncertainties [4].
Moreover, external disturbances caused by ocean currents will also degrade the control
performance [5,6]. Therefore, it is a challenge to enhance the robustness against external
disturbances and parametric uncertainties in model-based control methods [7]. Until now,
researchers have applied strategies for improving the robustness of model-based control
methods such as the model predictive control (MPC) technique [8,9] and sliding mode
control (SMC) technology [10] in the path-tracking control of AUVs. Note that MPC can
easily handle the physical constraints of the AUV when formulating the optimal control
problem. It is also well-known that MPC technology can provide some assistance for the
disturbance rejection [11]. In other words, the MPC technology itself is robust against
disturbance. Therefore, MPC is widely used in the path-tracking control of AUVs [12,13].

Zhang proposed a 3D path-tracking control method for AUVs using a linear model
predictive control (LMPC) [13]. The LMPC controller is used to calculate the speed control
law. Then, the control inputs of the AUV were directly calculated based on the dynamics
model, where the physical constraints on the control input failed to be considered. In [14,15],
the speed control law was generated by the kinematics LMPC, and the control inputs were
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generated by the dynamic LMPC. These physical constraints on the control input can
be considered when formulating the optimal control problem. Compared with [13], the
method in [14,15] can also enhance the robust performance against disturbances, by the
robustness of the nominal MPC technology itself. However, there is no direct disturbance
rejection strategy, such as disturbance estimation [16,17] or robust MPC technology [18].
The robustness of the nominal MPC technology itself is limited. These disturbance rejection
strategies can significantly improve the robustness performance, compared with the nomi-
nal MPC technology. Therefore, a direct disturbance rejection strategy can be introduced in
the nominal MPC technology to improve the tracking control performance.

The extended Kalman filter technology is used to estimate external current distur-
bances [17]. Based on the 12-dimensional kinematic model and kinetic model, a NMPC
controller is proposed to calculate the optimal control law using these results of disturbance
estimation. However, the disturbance estimation will bring extra dimensions, which may
lead to poor real-time performance. To overcome the challenge, disturbance estimation
is only based on the 5-dimensional kinematic model using MPC, which can save online
optimization computing time [10]. Note that control inputs are calculated using adaptive
sliding mode control technology, which is sensitive to the noise in the actual control sys-
tem. The control performance may suffer from the chattering problem in the practical
application [19].

Tube MPC, as a disturbance rejection strategy, was first proposed by Blanchini [20].
Compared with the disturbance estimation, the robustness improvement is achieved by
its own relatively stable mechanism. Suffering from external disturbance and parametric
uncertainties, there is a model mismatch between the nominal model and the actual model.
A robust positively invariant (RPI) set is proposed to measure the boundedness of the
mismatch [21]. In the tube MPC scheme, the tight constraint is calculated by tightening
the constraints of the actual system by an RPI set. The control law of the tube MPC
scheme consists of a nominal optimal control law and a feedback control law. The nominal
control law is obtained by solving a receding horizon optimal control problem with a
tight constraint. The feedback control law is used to address the deviation of the nominal
and actual states due to the model mismatch. The traditional tube MPC scheme [21,22]
is proposed for AUV’s path tracking [18]. Note that the RPI set is obtained based on
the assumed disturbance upper bound. Hence, the corresponding tight constraints may
become too conservative to degrade the path-tracking performance. Based on the coupled
6-dimensional AUV model, both the RPI set and the terminal feasible set are easy to have
no solution. Moreover, online calculating tight constraints of the nominal model brings too
much computing time, which will also lead to poor real-time performance.

Since the inherent robustness of the nominal MPC to address the model mismatch is
limited, the tube MPC has the potential to improve robustness against model mismatches.
However, the control performance suffers from poor real-time performance and no solution
for the RPI set. Our motivation is to apply the tube MPC to enhance the robustness of
AUV’s path tracking, with these issues addressed. This study proposes a tube-based event-
triggered path-tracking strategy, which consists of a kinematics LMPC controller and a tube
MPC controller. To converge the nominal path-tracking deviation, the kinematics LMPC
controller is used to calculate the optimal speed control law. The tube MPC controller is used
to compute the control input of the AUV to track the speed control law. Compared with
the tube MPC technology used in [18], to avoid no solution to the RPI, the coupled kinetic
model is decoupled into three Lipschitz nonlinear models [23]: a surge speed control model,
a heading control model, and a depth control model. With the corresponding Lipschitz
constant obtained, nonlinear properties of these models when formulating a linear matrix
inequality (LMI) are used to calculate the RPI set and the feedback matrix. The terminal
feasible set is obtained based on linear differential inclusion (LDI) technology. In order to
achieve good real-time performance, constraints on the nominal model and the feedback
matrix are all calculated offline. Note that the hydrodynamic force of the AUV is related
to the surge speed. The mismatch may depend on the surge speed change command.
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These offline calculated invariant constraints are too conservative to achieve better control
performance. Then, an event-triggering mechanism is used. When the surge speed change
command does not exceed the upper bound, two decision variables are introduced to
formulate a flexible tube. Then, adaptive constraints on the nominal model are obtained to
address the mismatch. When the surge speed change command exceeds the upper bound,
the offline tight constraints will be used. The main contributions of this work are as follows:

1. A tube-based event-triggered path-tracking strategy, which consists of a LMPC con-
troller and a tube MPC controller, is proposed to enhance the robustness against
disturbances and parametric uncertainties. The LMPC controller is used to calculate
the speed control law to converge the path-tracking deviation, and the tube MPC
controller is used to track the speed control law.

2. In the tube MPC controller, with nonlinear characteristics of AUV hydrodynamic force
considered, tight constraints in the nominal control law and the feedback matrix in
the feedback control law are obtained by formulating two LMIs. To achieve real-time
performance, these linear matrix inequalities are all calculated offline.

3. To overcome control performance degradation brought by conservative tight con-
straints calculated offline, an event-triggering mechanism is used to dynamically
adjust these constraints in the nominal control law according to the surge speed
change command. Compared with conservative tight constraints, better path tracking
can be achieved, and the real-time performance is also satisfied.

The remainder of this paper is organized as follows. In Section 2, preliminaries are
given. In Section 3, the AUV’s motion model and the path-tracking problem are given.
In Section 4, the detail design of the tube-based event-triggered path-tracking strategy is
given. In Section 5, the numerical simulation analysis is shown.

2. Preliminaries

The actual nonlinear continuous-time dynamics is described as a Lipschitz nonlinear
system [23]:

.
x = f (x, u, ω) = Ax + Bu + g(x) + Bωω (1)

with x ∈ Rn×1 and u ∈ Rm×1. ω ∈ =
{

ω ∈ Rn×1 : ‖ω‖∞ < cω

}
denotes the bounded

external disturbance. Positive constant cω is the disturbance upper bound. System (1) is
also subject to state and control input constraints:

x ∈ X ⊂ Rn×1, u ∈ U ⊂ Rm×1 (2)

where U is a compact set and X is bounded. Here g(x) is a Lipschitz nonlinear function
with a Lipschitz constant L > 0 such that:

‖g(x1)− g(x2)‖ ≤ L‖x1 − x2‖, ∀x1, x2 ∈ X (3)

The overline format of a variable denotes its nominal value, e.g., x denotes the nominal
value of x. The continuous-time nominal model is given by:

.
x = f (x, u, 0) (4)

and the corresponding discrete-time system models are given by:

xt+1 = fd(xt, ut, ωt) (5)

xt+1 = fd(xt, ut, 0) (6)
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Define KN1:N2 := {N1, N1 + 1, · · · , N2 − 1, N2}. The nominal cost function of pre-
dicted state sequence, xk|t, k ∈ K0:NT , and control input sequence, uk|t, k ∈ K0:NT−1, is
given as:

J = ∑NT−1
k=0 l(xk|t, uk|t) + Vf (xNT |t) (7)

where NT is the predictive horizon. l is the positive definite stage cost and Vf is the
terminal cost:

l(xk|t, uk|t) =
∥∥∥xk|t

∥∥∥2

QT
+
∥∥∥uk|t

∥∥∥2

RT
, Vf (xNT |t) =

∥∥∥xNT |t
∥∥∥2

PT
(8)

The state deviation between the actual system and the nominal actual is denoted by
z = x − x. The deviation system is given as:

.
z =

.
x − .

x = f (x, u, ω)− f (x, u, 0) (9)

In a tube MPC controller, the control law consists of a nominal MPC control law u and
a state feedback control law κ(x, x):

u := u + κ(x, x) (10)

where u is obtained by solving an optimal control problem, and κ(x, x) is used to converge
the state deviation z.

Definition 1. (Robust positively invariant (RPI) set): A set Ω ⊂ X is the RPI set of deviation
system (9), if there exists a feedback control law κ(x, x) ∈ U , such that for all zt0 ∈ Ω and ω ∈ ,
it holds that zt ∈ Ω for all t ≥ t0.

Then the constraints of nominal system (6) are given with an RPI set Ω as:

x ∈ X := X � Ω, u ∈ U := {u|u + κ(x, x) ∈ U} (11)

where X and U are tight constraint sets, which can be expressed as:

(x, u) ∈ M :=
{
(x, u) ∈ R(n+m)×1

∣∣∣hj(x, u) ≤ 0, j = 1, 2, · · · ,𝓅
}

(12)

Considering linear constraints, these constraints can also be expressed as a polytope:

M =

{[
x
u

]
∈ R(n+m)×1 : cjx + dju ≤ 1, j = 1, 2, · · · ,𝓅

}
(13)

Considering tight constraints (11) and nominal system dynamics (6), the following
optimal control problem is formulated to calculate the nominal MPC control law:

min
uk|t ,k∈K0:NT−1

J (14)

s.t.

x0|t = x0, u0|t = u0

xk+1|t = fd

(
xk|t, uk|t, 0

)
hj

(
xk|t, uk|t

)
≤ 0, j = 1, 2, · · · ,𝓅

xNT |t ∈ X f

where X f is the terminal feasible set. The optimal control input sequence u∗
k|t, k ∈ K0:NT−1,

is the solution to optimal control problem (14), and the nominal optimal MPC control law u
is obtained by:

u = u∗
0|t (15)
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3. AUV Motion Model and Problem Formulation

In this section, the kinematics model and kinetic model of the AUV are given, where
both external disturbances and parametric uncertainty are considered in the kinetic model.
In the proposed tube-based event-triggered path-tracking strategy, described in Section 4,
based on the kinematics model, a speed control law is designed to converge the nominal
path-tracking deviation. Then, based on the kinetic model, the control input of the AUV is
calculated to track the speed control law. Correspondingly, two problems treated in this
study are formalized.

3.1. AUV Motion Model

The global coordinate and the local coordinate frame are defined, and the coordi-
nate transformation relationship is shown in Figure 1. Here E − ξηζ denotes the global
coordinate system, and O − xyz denotes the local coordinate system [24].

Figure 1. AUV coordinate system [24].

Note that the roll motion is self-stable, and the roll motion attitude is also small,
meaning that the roll angle φ and the roll speed p can all be regarded as 0. Therefore, the roll
motion is not considered in this paper. The speed vector is denoted by ν = (us, v, w, q, r)T

in the motion coordinate O − xyz, where us, v, w, q, and r are respectively surge speed,
sway speed, heave speed, pitch speed, and yaw speed. The position and attitude angle
(pitch and yaw angles) vector is denoted by η = (x, y, z, θ, ψ)T in global coordinate system
E − ξηζ. The kinematics model is given as:

ηT = JνηνT (16)

where Jνη is a transformation matrix from O − xyz to E − ξηζ:

Jνη =

⎡
⎢⎢⎢⎢⎣

cosψcosθ −sinψcosθ + cosψsinθsinψ cosψsinθ 0 0
sinψ cosψ −cosψsinψ + sinθsinψ 0 0
−sinθ 0 cosψ 0 0

0 0 0 1 0
0 0 0 0 1

cosθ

⎤
⎥⎥⎥⎥⎦ (17)

The kinetic model is given as:

M .
ν = (C(ν) + D(ν) + ΔFCD)ν + F + G(τ) + τd (18)
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where M ∈ R5×5 is the inertial matrix, C(ν) ∈ R5×5 is the Coriolis and centripetal matrix,
D(ν) ∈ R5×5 is the hydrodynamic damping matrix, and F ∈ R5×1 is the hydrostatic
force and moment. τ = (Fx, δr, δs)

T is the AUV’s control vector, where Fx is the stern
thruster force, δr is the vertical plane deflection, and δs is the translational plane deflection.
G(τ) : R3×1 → R5×1 is the active control force in the AUV’s motion coordinate system
O − xyz. τd ∈ R5×1 is the external disturbance. ΔFCD ∈ R5×5 represents the disturbance
brought by parametric uncertainties [10].

3.2. Model Decoupling

Note that the degrees of freedom of the AUV are coupled in nonlinear model (18). In
order to simplify the design of the controller, the 5 DOF nonlinear dynamic model (18)
of the AUV is decoupled for surge speed control, heading control, and depth control.
Considering that the AUV always maintains a constant surge speed for path tracking, the
nominal surge speed us in the heading nominal control model and depth nominal control
model above is set as a constant. Then, these decoupled models can all be described as a
Lipschitz nonlinear system. The hydrodynamic coefficients in these models are given in
our previous research [24].

1. Surge speed nominal control model:

.
xu = Auxu + BuUu + gx(xu) (19)

where the state is denoted by xu = us. The control input is denoted by the nominal stern
thruster force Uu = Fx. Au = xu/(m − X .

u), Bu = 1/(m − X .
u), and gx(xu) = Xuuus|us|. m

is the mass of the AUV. X .
u is the added mass. Xuu is hydrodynamic damping coefficient.

2. Heading nominal control model:

.
xy = Ayxy + ByUy + gy

(
xy
)

(20)

where the state is denoted by xy = (v, r)T . The control input is denoted by the nominal
vertical plane deflection: Uy = δr.

Ay =

[
m − Y .

v −Y.
r

−N .
v Izz − N.

r

]−1[Yuvus (m + Yur)us
Nuvus Nurus

]
,

By =

[
m − Y .

v −Y.
r

−N .
v Izz − N.

r

]−1[Yuuδs

Nuuδs

]
,

gy
(

xy
)
=

[
m − Y .

v −Y.
r

−N .
v Izz − N.

r

]−1[ Yvvv|v|+ Yrrr|r|
Nvvv|v|+ Nrrr|r|

]
(21)

where Izz is the rotational inertia. Y .
v, N.

r, Y.
r and N .

v are the added mass. Yuv, Yur, Nuv, Nur,
Yuuδs and Nuuδs are hydrodynamic coefficients. Yvv, Yrr, Nvv and Nrr are hydrodynamic
damping coefficients.

3. Depth nominal control model:

.
xz = Azxz + BzUz + gz(xz) (22)

where the state is denoted by xz = (w, q)T . The control input is denoted by the nominal
translational plane deflection: Uz = δs.

Az =

[
m − Z .

w −Z .
q

−M .
w Iyy − M .

q

]−1[
Zuwus

(−m + Zuq
)
us

Muwus Muqus

]
,

Bz =

[
m − Z .

w −Z .
q

−M .
w Iyy − M .

q

]−1[
Zuuδs

Muuδs

]
,
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gz(xz) =

[
m − Z .

w −Z .
q

−M .
w Iyy − M .

q

]−1[
Zwww|w|+ Zqqq|q|
Mwwq|q|+ Mqqq|q|

]
(23)

where Iyy is the rotational inertia. Z .
w, M .

w, Z .
q and M .

q are the added mass. Zuw, Zuq,
Muw, Muq, Zuuδs and Muuδs are hydrodynamic coefficients. Zww, Zqq, Mww and Mqq are
hydrodynamic damping coefficients.

3.3. Problem Statement

Problem 1. Given a vector ηr ∈ R5×1 that stands for the reference position and attitude angle and
a vector νr ∈ R5×1 that stands for the reference speed, the nominal path-tracking deviation vector is
denoted by eη := η − ηr and the surge speed deviation vector is denoted by eus := us − usr. The
speed control law νd := (usd, vd, wd, qd, rd)

T = κη

(
eη , eν

)
needs to be obtained to converge the

nominal path-tracking deviation: lim
t→∞

eη(t) = 0.

Problem 2. The speed control law deviation vector is denoted by eνd = ν − νd and the actual
path-tracking deviation is denoted by eη := η − ηr =

(
ex, ey, ez, eθ , eψ

)T . Based on decoupling
models (19), (20), and (22), AUV’s control vector τ = (Fx, δr, δs)

T needs to be obtained to respond
to the speed control law: lim

t→∞
eνd(t) = 0. Finally, the actual path-tracking deviation eη can be

converged: lim
t→∞

eη(t) = 0.

4. Methodology

In order to address the external ocean current disturbance and parametric uncertainties
of the Coriolis and centripetal matrix and the hydrodynamic damping matrix, a tube-based
event-triggered path-tracking strategy consisting of a LMPC controller and a tube MPC
controller is developed. The scheme of the proposed path-tracking strategy is shown in
Figure 2.

J

NJ

 

Figure 2. Scheme of the proposed path-tracking strategy.

Based on the kinematics model, the LMPC controller is used to address Problem 1,
whose inputs are the reference waypoint and real-time nominal states of the AUV, and
outputs are the speed control law.

Based on decoupled models (19), (20), and (22), according to the speed control law and
real-time states of the AUV, the tube MPC controller is used to compute optimal control
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inputs of the AUV. The nominal control law is obtained by solving a constrained optimal
control problem. According to these decoupled models, the surge speed will have a great
effect on the AUV’s state, and the mismatch of these decoupled models may depend on the
surge speed. These offline calculated invariable constraints on the nominal system may be
too conservative. According to the change in the surge speed command, an event-triggering
strategy is used to formulate an adaptive flexible tube to deal with the mismatch.

4.1. LMPC Controller

First, nominal kinematics model (1) is discretized as:

ηt+1 = ηt + TJνηνt (24)

where T is the sampling time.
Limited by the AUV’s kinetics characteristics, sharp changes in speed ν are not allowed.

Then, the increment of speed ν is used as the control input:

ult = Δνt = νt − νt−1 (25)

To minimize the path-tracking deviation and avoid sharp changes in speed, the
objective function is designed as follows:

JLMPC = ∑Nl−1
k=0

(∥∥∥eηk|t
∥∥∥2

Qη

+
∥∥∥eus k|t

∥∥∥2

Qus
+
∥∥∥ulk|t

∥∥∥2

Rν

)
+
∥∥∥eη Nl |t

∥∥∥2

Pη

+
∥∥∥eus Nl |t

∥∥∥2

Pν

(26)

where Nl is the predictive horizon in the LMPC controller.
The constraints of the control input and speed are given as:

ul ∈ 1 = {ul : ulmin ≤ ul ≤ ulmax} (27)

ν ∈ V = {ν : νmin ≤ ν ≤ νmax} (28)

where ulmax and ulmin are the control input’s upper bound and low bound, which satisfy
ulmin = −ulmax, and νmax and νmin are the speed’s upper bound and low bound.

Then an optimal control problem is designed to calculate the nominal speed control
law νdt :

min
ul k|t ,k∈K0:Nl−1

JLMPC

s.t.

η0|t = ηt, u0|t = ut

ηk+1|t = ηk|t + TJνk|t
νk|t = νt + ∑k

j=0 ul j|t
ulk|t ∈ 1

νk|t, νNl |t ∈ V

(29)

where u∗
l k|t is the solution to the optimal control problem. Then the speed control law νdt is

obtained as:
νdt = u∗

l 0|t + νt (30)

where u*
l 0|k is the increment of speed in the present moment.

4.2. Tube MPC Controller

Like the tube MPC scheme given in (10)–(14), the nominal control law is used to
track the speed control law, which is obtained by solving an optimal control problem. The
nonlinear hydrodynamic characteristics are considered in the state transition constraint,
xk+1|t = fd(xk|t, uk|t, 0), which are decoupled in (19), (20), and (22). Moreover, the ter-
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minal feasible set X f and the RPI set Ω also need to be obtained when formulating the
optimal control problem. The state feedback control law, which considers the nonlinear
characteristics of the AUV, is used to converge the deviation of the actual state x and the
nominal state x. In a Lipschitz nonlinear system, the Lipschitz constant L can be used to
describe the nonlinear characteristics. Following [23], with the Lipschitz constant L set, a
feedback matrix used to calculate the stated feedback control law and the (RPI) set Ω can
be obtained by formulating an LMI. Following [25], another optimal control problem is
formulated to obtain the terminal feasible set X f considering the linear differential inclusion
characteristics of the AUV. To ensure real-time performance, they are calculated offline. A
brief derivation of the LMI and the optimal control problem is given as follows.

Assumption 1. In these decoupling models, there always exists a corresponding constant L to
satisfy the condition of the Lipschitz nonlinear function (3).

Lemma 1 [23]. For a Lipschitz nonlinear system (1), there exists a positive definite matrix
X ∈ Rn×n, a matrix Y ∈ Rm×n, and scalars λ0 > λ > 0 and μ > 0 such that:

[
(AX + BY)T + AX + BY + λX Bω

BT
ω −μIn

]
≤ 0, L ≤ (λ − λ0)αmin(PR)

2‖PR‖ (31)

with PR = X−1, and the feedback matrix K = X−1Y.

With parameters λ0 and μ set, LMI (31) is solved to obtain the matrices X, Y and
the parameter λ. Matrices X and Y are used to calculate the feedback matrix K. With
disturbance upper bound cω set, together with λ and X, the RPI set Ω and the feedback
control law κ(x, x) can be obtained:

Ω =
{

x ∈ Rn
∣∣xT PRx ≤ μcω

λ

}
κ(x, x) = K(x − x)

(32)

where the RPI set Ω and the feedback matrix K are all invariant. With the RPI set Ω
calculated, the constraint on the nominal state is obtained, which is equivalent to constraints
on the nominal control input using the Minkowski Operation [26]. Then, constraints of
nominal system (11) can be obtained.

With the RPI set Ω obtained, the constraints of nominal system (6) are invariant, which
are treated as an invariant rigid tube. The LDI of nominal system (6) is defined:

Θ(M) =

{
FΘ(i) := [A(i),B(i)] =

[
∂ f
∂x

,
∂ f
∂u

]
,
[

x
u

]
∈ M, i ∈ [k +N , ∞)

}
(33)

The minimum convex polytope is denoted by CoΘ(M):

CoΘ(M) =
{

FΘ(i) ∈ Rn×(n+m) : FΘ(i) = ∑N
j=1 β jFΘ j = ∑N

j=1 βi
[Aj,Bj

]

βi ≥ 0, ∑N
j=1 βi = 1, i ∈ [k +N , ∞)

}
(34)

where FΘ j is the extreme matrix of the minimum convex polytope CoΘ(M), and N is the
number of the extreme matrix.

The terminal feasible set X f ⊂ Rn :=
{

x ∈ Rn
∣∣xT PTx ≤ γ

}
is obtained as follows:
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Lemma 2 [25]. Suppose the LDI of nominal system (6) is given by (33), and the constraints of
nominal system (6) are obtained by (11) and (31). There exist matrices 0 < W1 ∈ Rn×n and
W2 ∈ Rm×n such that:⎡

⎢⎢⎣
−FΘ jWT −WFΘ

T
j W1Q

1
2 WT

2[(
Q

1
2

)T
W1

W2

] [
In 0
0 R−1

]
⎤
⎥⎥⎦ ≥ 0, j = 1, 2, · · · ,N (35)

and [
1/γ cjW1 + djW2(

cjW1 + djW2
)T W1

]
≥ 0, j = 1, 2, · · · ,𝓅 (36)

are satisfied with W =
[
W1 WT

2
]
. The terminal weighting matrix PT is set as PT = W−1

1 .
Q ∈ Rn×n and R ∈ Rm×m are positive definite diagonal matrices.

Note that the determinant, det(γW1), represents the volume of the terminal region
X f , and a too-small terminal region will easily lead to the infeasibility of nominal optimal
control problem (14). To enlarge the terminal region, another optimal control problem is
formulated as:

min
γ,W1,W2

log det(γW1)
−1 (37)

s.t.
constraints (35), (36)

γ > 0, W1 > 0

According to speed control law (30), surge speed step signal Δus can be obtained.
When the surge speed step signal exceeds the upper bound, i.e., Δus > Δus, the constraints
of nominal system (6) will be used. When the surge speed step signal Δus does not
exceed the upper bound, i.e., Δus ≤ Δus, an adaptive flexible tube, treated in the form of
inequalities, is introduced.

The variable sk|t, which represents the size of the adaptive flexible tube, is calculated
by decision variable wk|t to change offline calculated constraints (11). The decision variable

wk|t is subject to nonlinear function
∼
wδ(sk|t). Then, optimal control problem (14) becomes:

min
uk|t ,wk|t ,k∈K0:NT−1

J (38)

s.t.

x0|t = x0, u0|t = u0, s0|t = 0
xk+1|t = fd(xk|t, uk|t, 0)

sk+1|t = ρsk|t + wk|t
hj(xk|t, uk|t) + cjsk|t ≤ 0, j = 1, 2, · · · ,𝓅

wk|t ≤ w, sk|t ≤ s
wk|t ≥

∼
wδ(sk|t)

xNT |t ∈ X f

where constant ρ ∈ (0, 1) is a decay factor, and cj is a positive constant. Constraint upper
bound w and s are all positive constants.

The nonlinear constraint
∼
wδ(sk|t) is given by:

∼
wδ(sk|t) =

√
cδ,ucω + αw(sk|t) (39)

where αw(sk|t) := ∑l
i=0 aisi

k|t is a polynomial with ai ≥ 0. cδ,u and cω are positive constants.
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4.3. Implementation of the Proposed Strategy

To conclude, the proposed tube-based event-triggered path-tracking strategy consists
of an offline strategy and an online strategy. To achieve good real-time performance,
the offline strategy is introduced in Algorithm 1. LMI (31) is used to calculate the tight
constraint Ω and the feedback matrix K. Optimal control problem (37) is used to calculate
the terminal feasible set X f . The online strategy is introduced in Algorithm 2. The optimal
control problem (29) in the LMPC controller is first solved to obtain the speed control
law. Then, the control law of the tube MPC controller (10), which consists of a nominal
control law and a feedback control law, is respectively calculated to track the speed control
law based on these decoupled models (19), (20), and (22). According to the surge speed
step signal Δus, optimal control problem (38) or optimal control problem (14) is solved to
obtain the nominal control law based on the offline calculated tight constraint and terminal
feasible set X f . Then, the offline calculated feedback control matrix is used to calculate the
feedback control law to converge the deviation of the nominal and actual states.

Algorithm 1 Offline strategy

1. Define nominal cost function (7); choose state and control input constraints (2)
2. Choose appropriate parameters λ and L to solve LMI (31)
3. Obtain feedback matrix K and RPI set Ω (32)
4. Calculate invariant rigid tube (11)
5. Choose appropriate weight matrices Q and R to solve optimal control problem (37)
6. Obtain terminal feasible set X f

Algorithm 2 Online AUV path-tracking algorithm

1. Measure AUV’s actual state ηt, νt, and nominal state ηt, νt
2. Solve optimal control problem (29) to obtain the speed control law νdt

3. If Δust ≤ Δus:
4. Based on these decoupling models (19–20,22), separately formulate optimal control problem

(38) to obtain nominal control vector τt =
(

Fxt, δrt, δst
)T

5. Otherwise:
6. Based on these decoupling models (19–20,22), separately formulate optimal control problem

(14) to obtain nominal control vector τt =
(

Fxt, δrt, δst
)T

7. End
8. Calculate the AUV’s control vector τt = τt + K(νt − νt)
9. Set t = t + 1, and go back to 1

5. Numerical Simulation

Numerical simulations are conducted to demonstrate the control performance of
the proposed tube-based event-triggered path-tracking strategy. Path-tracking deviation,
control input smoothness, and real-time performance are used to evaluate the control
performance. In order to show the variation trend of the path-tracking deviation intuitively,
the path-tracking integral deviation index is introduced, e.g., Sex denotes the integral
deviation of x in global coordinate system E − ξηζ:

Sext =
∫ t

0

∣∣ex j
∣∣dj (40)

Problem 1 is always solved by the proposed LMPC controller. These contrasting
simulations differ in the method for solving Problem 2: “MPC” denotes simulation results
using a nominal MPC controller from [15]. “RTMPC” denotes the simulation results
using the tube MPC scheme (10)–(14) [23]. “ATMPC” denotes simulation results using the
proposed tube-based event-triggered path-tracking strategy. To verify the superiority of
the proposed path-tracking strategy, three real-time simulations were carried out, where
“ATMPC” is compared with “RTMPC” and “MPC”.
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Numerical simulations were carried out using Simulink/Matlab, with AMD Ryzen
Threadripper PRO 3995WX 64-Cores 2.70Ghz CPU and 256 GB RAM running Windows 10.
Following this, optimal control problem (29) can be converted to a standard quadratic
programming (QP) problem [22]. Then, the ‘quadprog’ function in Matlab can be used to
solve the QP problem. When formulating the general optimal control problem (38), we
refer to the open-source code, gitlab.ethz.ch/ics/RAMPC-CCM.

5.1. Parameters Set

Note that the influence of parameters on control performance in the optimal control
problem is significant. To focus on evaluating the control performance of the proposed
path-tracking strategy, in the contrasting simulations, these same parameters in different
methods are all set to the same value. Then, the parameters in the numerical simula-
tion are given as follows. Following [10], the external sinusoidal disturbance term is
set as τd = [1.25sin(t); 0.785sin(t); 0.485sin(t); 0.0325sin(t); 0.325sin(t)]. The upper bound
of the surge speed step signal Δus is set as 0.05. Following [10], the parametric uncer-
tainties are reflected by the percentage of the hydrodynamic term. Then, ΔFCD is set as
ΔFCD = 0.2(C(ν) + D(ν)).

Note that the proposed path-tracking strategy consists of a LMPC controller and a
tube MPC controller. The LMPC controller is used to calculate the speed control law to
converge the path-tracking deviation, and the tube MPC controller is used to track the
speed control law.

For the LMPC controller, these parameters in (24–29) are listed in Table 1. In the LMPC
controller, weighting matrix Qη and Qν are for minimizing the path-tracking deviation
eη . The weight matrix Rν is for the smooth change in AUV’s speed. With these weight
matrices set appropriately, the speed control law can efficiently converge the path-tracking
deviation, avoiding abrupt changes in AUV’s speed.

Table 1. Parameter value in the LMPC controller.

Parameter Value Parameter Value Parameter Value

Qη
diag{4.4, 19.2, 5.2,

20.5, 25.5} Pη
diag{4.4, 19.2, 5.2,

20.5, 25.5} νmin
−[0; 0.06; 0.01;

0.03; 0.08]
Qν 25.5 Pν 25.5 Nl 4
Rν diag{2, 0.3, 5, 2, 0.1} ul max

[0.2; 0.01; 0.01;
0.03; 0.05]

νmax [1.2; 0.06; 0.01;
0.03; 0.08]

Note that the tube MPC controller is used for surge speed control, heading control,
and depth control, respectively, based on these decoupled models (19), (20), and (22). These
corresponding parameters of each controller in (24)–(29) and (38) are listed in Tables 2–4.
ΔFx is the increment of the stern thruster force. Δδr is the increment of the vertical plane
deflection. Δδs is increment of the translation plane deflection. In the tube MPC controller,
the weighting matrices play a similar role. With the appropriate QT and RT set, the control
input of the AUV can change smoothly to track the nonmail speed control law. The RPI
set in Definition 1 is used to obtain the tight constraint in nominal system dynamics to
ensure that the deviation z (9) also contained in the RPI set. The feedback matrix is used
to converge the deviation. As mentioned in Section 4.2, with appropriate parameters λ, μ
and PR obtained, the tube MPC controller can efficiently track the speed control law.
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Table 2. Parameter value in the tube MPC controller for surge speed control.

Parameter Value Parameter Value Parameter Value Parameter Value

QT 20.5 RT 50.5 PT 138.8 NT 5
T 0.05 Pv 25.5 λ 2.7 PR 2.3
X {us|0 ≤ us ≤ 1.2} U {(Fx, ΔFx)||Fx| ≤ 15, |ΔFx| ≤ 2} cω 0.12 μ 1.7
K −182.38 w 5 cδ,u 0.01 ρ 0.5
l 3 a1 0.2 a2 0.1 a3 0.05

Table 3. Parameter value in the tube MPC controller for heading control.

Parameter Value Parameter Value Parameter Value Parameter Value

QT
diag{190.5,

180.5} RT 50 PT
[6462.1, 215.8;
215.8, 3688.3] NT 9

T 0.05 s 5◦ λ 0.6 PR
diag{0.91,

0.61
X {(ν, r)||ν| ≤ 0.01, |r| ≤ 0.05} U {(δr , Δδr)||δr | ≤ 20◦, |Δδr | ≤ 5◦} cω 0.07 μ 2.6
K [−28.29; 11.54] w 10◦ cδ,u 0.01 ρ 0.5
l 3 a1 0.2 a2 0.1 a3 0.05

Table 4. Parameter value in the tube MPC controller for depth control.

Parameter Value Parameter Value Parameter Value Parameter Value

QT
diag{2.5,

5.5} RT 5 PT
[199.5, 25.6;
25.6, 103.9] NT 9

T 0.05 s 5◦ λ 1.8 PR
diag{0.29,

0.59
X {(w, q)||w| ≤ 0.02, |q| ≤ 0.07} U {(δs, Δδs)||δs| ≤ 14◦, |Δδs| ≤ 5◦} cω 0.05 μ 2.9
K [−28.29; 11.54] w 10◦ cδ,u 0.01 ρ 0.5
l 3 a1 0.2 a2 0.1 a3 0.05

When the adaptive flexible tube is used, two decision variables are used to dynami-
cally adjust these tight constraints. Parameter s represents the upper bound of the tight
constraints. Parameters w, ρ, and nonlinear function

∼
wδ(sk|t) are used to represent the

variation in the tight constraint.

5.2. Analysis and Discussion

The reference path of the AUV is generated by tracking the sinusoidal shape trajectory,
and the initial state of the AUV is set as:η0 = [0; 0; 0; 0; 27 ∗ π/180], ν0 = [0.1; 0; 0; 0; 0].

To visually compare the control performance of “MPC”, “RTMPC”, and “ATMPC”,
AUV’s trajectories during path tracking are shown in Figure 3.

Intuitive path-tracking performance can be visualized in the trajectory of AUV during
path tracking, which is the position of the AUV given in Section 3.1. Figure 3 shows a three-
dimensional view of the AUV’s path-tracking control performance of “MPC”, “RTMPC”,
and “ATMPC”. The trajectory of “MPC” fails to track the reference trajectory well. Al-
though the path-tracking deviation of “MPC” tends to converge, there are still several
obvious position offsets, especially at the beginning of path tracking. Actual trajectories of
both “RTMPC” and “ATMPC” can separately track the nominal trajectory. Note that the
nominal trajectory of “ATMPC” tracks the reference trajectory better, compared with that
of “RTMPC”.
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Figure 3. AUV trajectory during path tracking.

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

xr = t
yr = 5sin(0.1t)
zr = 0.01t
θr = −atan( 0.01√

1+0.5cos2(0.1t)
)

ψr = atan(0.5cos(0.1t))
usr = 1

(41)

where xr, yr, and zr are the reference positions. usr is the reference surge speed.
To compare the path-tracking deviation in detail, the path-tracking deviation and

path-tracking integral deviation are respectively shown in Figures 4 and 5. The maximum
deviations in position and attitude angles are given in Table 5. Section 3.3 introduced the
path-tracking deviation, whose absolute value is used. The definition of path-tracking inte-
gral deviation is given in (41). As shown in Figure 4, under sinusoidal external disturbances
and parametric uncertainties, position and attitude angle deviations of three methods all
have a bounded and convergent tendency over time. Compared with the position and
attitude deviations of “MPC”, that of “RTMPC” has been all effectively reduced in every
moment. As shown in Figure 5, the growth trend of the integral deviation is also much
slower. In addition, the maximum position deviation of “RTMPC” can be reduced from
0.38 m to 0.12 m. That is a reduction of about 68%. The maximum pitch angle deviation
of “RTMPC” can be reduced from 3.45◦ to 0.58◦. That is a reduction of about 83%. The
maximum yaw angle deviation of “RTMPC” can be reduced from 3.45◦ to 1.07◦. That is a
reduction of about 69%. It can be seen the “RTMPC” has good robustness against external
disturbances and parametric uncertainties.

Compared with “RTMPC”, the proposed tube-based event-triggered path-tracking
strategy has a smaller position and attitude angle deviations. The maximum position
deviation of “ATMPC” can be reduced from 0.12 m to 0.04 m. That is a reduction of about
67%. As shown in Figure 4, compared with the position deviation in the x direction and of
“RTMPC”, that of “ATMPC” is almost the same in every moment. However, after about 20 s,
the position deviation of y is much smaller in every moment. In addition, the maximum
yaw angle deviation can be reduced from 1.07◦ to 0.45◦. That is a reduction of about 58%.
As shown in Figure 4, after about 10 s, the yaw angle deviation is almost smaller in every
moment. Integral deviations can intuitively show the variation trend of these position and
attitude deviations in Figure 5.
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Figure 4. Deviation of position and attitude angle.

Figure 5. Integral deviation of position and attitude angle.

Table 5. Maximum deviation of position and attitude angles.

Method
Max Position
Deviation (m)

Max Pitch Angle
Deviation (◦)

Max Yaw Angle
Deviation (◦)

MPC 0.38 3.45 3.45
RTMPC 0.12 0.58 1.07
ATMPC 0.04 0.57 0.45

To compare control input smoothness, the range of the AUV’s speed and the control
input are respectively shown in Figures 6 and 7. AUV’s speed and the control input have
been given in Section 3.1. As shown in Figure 6, the surge speed of “ATMPC” and “RTMPC”
tracks the desired surge speed well. The sway speed, heave speed, pitch speed, and yaw
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speed changes in “ATMPC” and “RTMPC” occur more smoothly, compared with those
of “MPC”.

u s
v

w
q

r

Figure 6. Range of the AUV’s speed.

Figure 7. Range of the AUV’s control input.

As shown in Figure 7, compared with the stern thruster force of “MPC”, that of
“ATMPC” and “RTMPC” have better smoothness, avoiding the high-frequency oscillation
phenomenon. As shown in the local zoom-in of Figure 7, the smoothness of the stern
thruster force of “ATMPC” is enhanced, compared with that of “RTMPC”. It can be seen
that the nominal control input of the “ATMPC” is within the upper bound of the tight
constraint, and the output value of “ATMPC” is almost the lowest, which may be consistent
with the purpose of energy conservation in real-world application.

Like the vertical plane deflection shown in Figure 7, those of “RTMPC” and “ATMPC”
can all avoid large periodic changes, compared with that of “MPC”. At the beginning
of the simulation, the range of the vertical plane deflection of “MPC” has a tendency to
be unstable. With the adaptive tight constrain introduced, the vertical plane deflection
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of “ATMPC” changes more smoothly. As the simulation time goes on, there is almost no
oscillation phenomenon. As shown in Figure 7, the blue line is contained within the gray
area, and the trend of the upper and lower limits in the gray area is consistent with the
trend of the blue line.

Like the translational plane deflection shown in Figure 7, that of “RTMPC” and
“ATMPC” can also avoid large periodic changes, compared with that of “MPC”. With
the adaptive tight constraint introduced, the translational plane deflection of “ATMPC”
changes more smoothly, and tends to stabilize more quickly.

To analyze the real-time performance, the time consumption of different methods is
recorded in Table 6. Note that the tightened constraint set of “RTMPC” is calculated offline.
It can be explained that the average time consumption and the maximal time consumption
of “RTMPC” are almost the same as those of “MPC”. The average time consumption and
the maximal time consumption of “ATMPC” will not increase by much: the average time
consumption increases by 2.91 ms, and the maximal time consumption increases by 3.47 ms.

Table 6. Time consumption of different methods.

Method
Max Time

Consumption (ms)
Average Time

Consumption (ms)

MPC 7.25 7.27
RTMPC 7.88 7.34
ATMPC 11.35 10.25

6. Conclusions

In this paper, a novel tube-based event-triggered path-tracking strategy against dis-
turbance is proposed, which consists of an LMPC controller and a tube MPC controller.
In the LMPC controller, based on the nominal kinematics model of the AUV, a nominal
optimal speed control law is obtained to converge the nominal path-tracking deviation. In
the tube MPC controller, AUV’s available control inputs are separately calculated based
on a decoupled model. Considering the nonlinear hydrodynamic characteristics of the
AUV, an LMI is formulated to calculate the feedback matrix and tight constraints offline.
The terminal region in the tube MPC controller is obtained offline using linear differen-
tial inclusion technology. When the surge speed step signal does not exceed the upper
bound, the tight constraints become adaptive. Numerical simulation results show that
the feedback matrix is successfully used to match the actual trajectory and the nominal
trajectory. With the adaptive constraints introduced, the nominal trajectory tracks the
reference better. Note that the online computing time of the tube MPC is acceptable, and
these corresponding control inputs are also smooth. Therefore, the proposed tube-based
event-triggered path-tracking strategy can enhance the path-tracking performance and
ensure good real-time performance.

In the MPC controller, the disturbance upper bound needs to be set appropriately. If
the bound is too small, the robustness is weak; otherwise, the tube will be too conservative.
The RPI set may not be obtained, or the optimal control problem is easy to be infeasible. In
numerical simulation, the disturbance upper bound is still easy to set appropriately. In the
application of a real-world system, it may be a challenge. The disturbance bound is different
for different real-time scenarios, which may be difficult to accurately set. This may lead to
degradation of the control performance. In future research, the work will be extended to
predict the model mismatches due to parametric uncertainties and external disturbances
to improve the accuracy of the nominal model, based on data-driven technology, such as
machine learning. The RPI set is used to address the bounded prediction deviation. If the
prediction deviation is convergent and bounded, it can effectively solve the problem of
setting the disturbance upper bound in real-world applications.
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Nomenclature

� Pontryagin difference, A � B = {x|x + yεA, yεB} In n-dimensional identity matrix

αmin(·)(αmax(·)) the smallest (largest) real part of eigenvalues of
a matrix

Rm×n A matrix with m rows and n columns

bounded external disturbance cω disturbance upper bound

Q, R, P positive weight matrix ‖·‖2
Q

quadratic norm of a vector with positive weight
matrix Q

g(·) Lipschitz nonlinear function L Lipschitz constant
x, u nominal state and control input x, u actual state and control input
JN, J1 cost function K feedback matrix
Xf terminal feasible set Ω robust positively invariant (RPI) set
h(·) < 0 inequality constraint M constraint set
fd(·) state transition function NT, Nl predictive horizon
Θ(·) linear differential inclusion function CoΘ(·) minimum convex polytope
det(·) determinant calculation αw(·) polynomial function
KN1:N2 set {N1, N1 + 1, · · · , N2 − 1, N2}
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