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Viscoelastic materials are abundant in nature and present in our daily lives. Examples
include paints, blood, polymers, biomaterials or food products. It is thus important to
study and understand the viscoelastic behaviour of these different materials.

In this Special Issue, a total of eleven contributions (ten research papers and one
review paper) from different areas of viscoelasticity (mathematical modelling, numerical
simulations) are presented.

McDermott et al. [1] proposed an improved viscoelastic turbulence model in a fully
developed drag reducing channel flow, where turbulent eddies are modelled by a k-ε repre-
sentation, together with polymeric solutions described by the finitely extensible nonlinear
elastic Peterlin (FENE-P) constitutive model. The performance of the model was evaluated
using a variety of direct numerical simulation data described by different combinations of
rheological parameters and was able to predict all regimes of drag reduction (low, intermedi-
ate, and high) with good accuracy. Ingelsten et al. [2] developed a new Lagrangian–Eulerian
method for the simulation of viscoelastic free surface flows. The approach was developed
from a method in which the constitutive equation for viscoelastic stresses was solved at
Lagrangian nodes connected by flow and interpolated onto a Eulerian grid using radial
basis functions. In the new method, a backwards-tracking methodology was used to allow
fixed locations for the Lagrangian nodes to be chosen a priori. The proposed method
was also extended to the simulation of viscoelastic free surface flows with the volume
of fluid method. Bertoco et al. [3] presented the HiGTree–HiGFlow solver for numerical
simulations of the KBKZ integral constitutive equation. The numerical method used finite
differences and tree-based grids, which leads to greater accuracy in local mesh refinement.
Wojcik et al. [4] performed fluid dynamic simulations using the FENE-P model and an
incompressible Newtonian fluid to understand the role of elasticity in the formation of
vortices in a narrow channel with a 90◦ curvature. The analysis bridged the flow behaviour
of a purely elastic fluid and that of a Newtonian fluid. Their predictions were in good
agreement with previous experimental and numerical works. Liu et al. [5] investigated
singularities in the stress field of the flow of a viscoelastic fluid at the stagnation point for
various viscoelastic constitutive models. Exact analytical solutions of two-dimensional
steady wall-free stagnation point flows for the generic Oldroyd 8-constant model were
obtained for the stress field using different material parameter relationships. Compatibility
with the conservation of momentum was considered for all solutions.

Aabid et al. [6] studied and summarised the active control of high-speed aerodynamic
flows. Vishalakshi et al. [7] studied 3D MHD fluid flows under the influence of a magnetic
field with an inclined angle. Their results have been used in many real-world applications,
e.g., automotive cooling systems, microelectronics, heat exchangers, etc. Anusha et al. [8]
studied the two-dimensional magnetohydrodynamic problem for a steady incompressible
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flow over a porous medium. They concluded that the porosity and radiation parameters
enhance the temperature distribution, while the suction/injection parameter suppresses
the temperature distribution. Skinner et al. [9] developed a computational algorithm
based on an accepted analytical model to investigate the viscoelastic behaviour of carbon
fibre-reinforced polymer composite flywheel rotors with an aluminium hub mounted by
press-fit. The simulations showed that over time the viscoelastic effects are likely to reduce
the peak stresses in the composite rim. However, viscoelasticity also affects the stresses
in the hub and at the hub–rim interface, leading to rotor failure. It was also found that
the charge/discharge cycles of the flywheel energy accumulator can lead to significant
fatigue loads.

Furlan et al. [10] derived different formulations to obtain a solution for Giesekus’
constitutive model for a flow between two parallel plates. Bertoco et al. [11] presented a
numerical study of the development length (the length from channel entry required for the
velocity to reach 99% of its fully developed value) of a pressure-driven viscoelastic fluid
flow (between parallel plates) modelled by the generalised constitutive Phan–Thien–Tanner
equation (gPTT). They concluded that at low values of the Weissenberg number (Wi), the
highest value of the development length was achieved for α = β = 0.5; at high values of Wi,
the highest value of the development length was achieved for α = β = 1.5.

Although submissions for this Special Issue have now closed, research into the field of
viscoelasticity continues to address various challenges we face today: medicine (e.g., drug
delivery, foods that consider their rheology, and complex blood flow), development of new
and smart materials (e.g., paints, biomaterials, and clothing), new industrial developments.
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Abstract: A new Lagrangian–Eulerian method for the simulation of viscoelastic free surface flow
is proposed. The approach is developed from a method in which the constitutive equation for
viscoelastic stress is solved at Lagrangian nodes, which are convected by the flow, and interpolated to
the Eulerian grid with radial basis functions. In the new method, a backwards-tracking methodology
is employed, allowing for fixed locations for the Lagrangian nodes to be chosen a priori. The proposed
method is also extended to the simulation of viscoelastic free surface flow with the volume of fluid
method. No unstructured interpolation or node redistribution is required with the new approach.
Furthermore, the total amount of Lagrangian nodes is significantly reduced when compared to the
original Lagrangian–Eulerian method. Consequently, the method is more computationally efficient
and robust. No additional stabilization technique, such as both-sides diffusion or reformulation
of the constitutive equation, is necessary. A validation is performed with the analytic solution for
transient and steady planar Poiseuille flow, with excellent results. Furthermore, the proposed method
agrees well with numerical data from the literature for the viscoelastic die swell flow of an Oldroyd-B
model. The capabilities to simulate viscoelastic free surface flow are also demonstrated through the
simulation of a jet buckling case.

Keywords: viscoelastic flow; computational fluid dynamics; volume of fluid; immersed boundary
methods

1. Introduction

Viscoelastic free surface flows are of significant importance for many industrial pro-
cesses. This includes polymer extrusion, additive manufacturing, seam sealing, and
adhesive joining. In such processes, the viscoelastic properties of the flow, such as the
flow history, can have major influence on the quality of the final product. Furthermore,
production time and raw materials may be subject to a large cost. Therefore, extensive
manual effort and physical testing may be necessary to optimize the process in terms of
product quality, material consumption, and production cycle time.

Numerical tools can be helpful in reducing the manual preparation time, as they offer
the possibility to replace a significant part of the physical testing with computer simulation.
Furthermore, numerical simulations may enable testing early in the design phase. For
many complex industrial applications, a large demand for suitable numerical simulation
tools therefore exists. Furthermore, for such tools to be useful, high demands are put on
accuracy, robustness, and computational efficiency.

A common approach for simulating viscoelastic fluid flow is to discretize the govern-
ing equations in the Eulerian frame of reference with the finite volume method (FVM) [1–3]
or the finite element method (FEM) [4,5]. The Eulerian frame of reference is suitable for
diffusion-dominated problems, including viscous fluid flow as well as heat and mass
transfer. On the other hand, viscoelastic constitutive equations are typically hyperbolic
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and they involve no physical diffusion term. Thus, in this sense, the Lagrangian frame of
reference is a more natural description for the constitutive equation. Therefore, Lagrangian
or semi-Lagrangian methods are appealing as alternative approaches to the Eulerian frame.

Rasmussen and Hassager [6] developed a Lagrangian finite element method in order
to calculate the flow of an upper convected Maxwell (UCM) fluid. The entire flow history
was stored and re-meshing was required, due to deformation. Harlen et al. [7] proposed a
split Lagrangian–Eulerian method for viscoelastic Stokes flow. The constitutive equation
was solved at the nodes of a co-deforming mesh, while the momentum and continuity
equations were solved with an Eulerian finite element method. Re-meshing due to mesh
distortion was also used in their method. Halin et al. proposed the Lagrangian particle
method (LPM) [8]. In their method, the momentum and continuity equations were solved
with the Eulerian finite element method. The constitutive equation was solved along the
trajectories of massless Lagrangian particles. The stresses in the particles were then fitted
to local polynomial expressions in order to enable the evaluation of the corresponding
finite element integrals in the momentum. Hence, a minimum of three particles per two-
dimensional element was required for the polynomial approximations to be feasible. Later
on, the adaptive Lagrangian particle method (ALPM) [9] was proposed, utilizing adaptive
addition and the deletion of particles. However, a fairly large number of particles was
required for the simulations to produce stable transient results. Furthermore, Wapperom
et al. [10] proposed the backward-tracking Lagrangian particle method (BLPM), in which
backwards integration of the velocity field allowed for the choice of fixed particle locations
a priori, increasing the efficiency of their particle tracking approach.

The simulation of viscoelastic free surface flow has been approached with different
methods. For example, Crochet and Keunings [11] simulated the viscoelastic die swell
effect of an Oldroyd-B fluid with a mixed finite element method as early as 1982. More
recent similar examples of finite element methods on non-stationary grids can be found
in Balemans et al. [12] and Spanjaards et al. [13]. The marker-and-cell (MAC) approach is a
method that has been used quite extensively for simulation free surface flows [14–20], in which
the governing equations discretized with finite differences and the free surface is tracked
while using marker particles. The method has been successfully used for the simulation, for
example, of the die swell and viscoelastic jet buckling with a variety of constitutive models.
The simulations are typically performed on staggered, uniform grids, which has certain
limitations for complex simulation geometries and in terms of computational efficiency
when high resolution is required. Furthermore, the existence of a gas phase surrounding
the viscoelastic fluid is not taken into account, which may be required for some cases. The
front-tracking method is another similar method [21].

The volume of fluid (VOF) method is a popular method for the simulation of Newto-
nian as well as viscoelastic free surface flow with finite volume discretization. VOF is a
diffuse–interface method, in which the presence of two or more fluid phases is represented
by their corresponding volume fractions, advected with geometric or algebraic schemes. A
sharp fluid interface may then be reconstructed from the solution. A single set of momen-
tum, continuity equations are then solved for the whole domain, and the fluid properties
are locally averaged with the fluid volume fraction. Furthermore, the transport of the
volume fraction may be solved with the same spatial grid as the momentum and continuity
equation, which makes the method suitable for finite volume simulation of free surface
flow. Some examples follow.

Habla et al. [22] developed a VOF-solver for viscoelastic free surface flow that is based
on the open source solver OpenFOAM [23]. The simulations were stabilized by reformulat-
ing the viscoelastic constitutive equations with the log-conformation representation (LCR)
and with both-sides diffusion (BSD) in the momentum equation. Comminal et al. [24]
simulated the viscoelastic die swell effect for Oldroyd-B and Giesekus fluids with the
VOF method, combined with two different schemes for the convection of the fluid vol-
ume fraction, a geometric scheme, as well as an algebraic scheme that directly solved the
transport equation for the volume fraction. Furthermore, their methods were compared
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to the VOF solver that is available in RheoTool [25], which is an open source toolbox for
viscoelastic flow that is based on OpenFOAM. The constitutive equation was also refor-
mulated with LCR in their study. Bonito et al. [26] reported a related method, using a
mathematical formulation that is similar to the volume of fluid method, while solving
the governing equations with a piecewise linear finite element method, contrary to finite
volume discretization.

In previous work, a Lagrangian–Eulerian framework for viscoelastic flow has been
proposed [27,28]. In the method, the constitutive equation is solved at Lagrangian nodes,
which are convected by the flow. The momentum and continuity equations are discretized
with the finite volume method on an Eulerian octree grid and then solved with SIMPLEC
iterations [29]. Boundary conditions that are imposed by objects in the domain are treated
using implicit immersed boundary methods [30,31]. The contribution to the momentum
equation from the viscoelastic stress is established through the unstructured interpolation
of the stress tensors from the Lagrangian nodes to the cell centers of the Eulerian grid while
using the radial basis function.

The ability to efficiently simulate industrial applications, such as adhesive extrusion,
parts assembly, and additive manufacturing, is a main motivator to develop the new
method. For this purpose, it is necessary that the numerical method is accurate, computa-
tionally efficient, and robust. The ability to model viscoelastic free surface flow in complex
geometry with moving objects is also necessary. The proposed method was shown to
produce results in good agreement with available analytic and numerical data from the
literature [27]. It has also been shown that the Lagrangian formulation of the constitutive
equation allows for the efficient parallelization of the viscoelastic stress calculation, which
makes the method highly suitable for GPU-acceleration [28]. Furthermore, the use of an
immersed boundary method in combination with the automatically generated grid enables
simulation on arbitrary geometry with minimal pre-processing.

In the previous studies [27,28], the proposed Lagrangian–Eulerian method has been
validated for single-phase flows with uniform grids. The natural next steps include en-
abling the simulation of free surface flow as well as simulation on refined grids. Therefore,
in the current work, the proposed method is further developed in these two aspects. Firstly,
the framework is extended for simulation of viscoelastic free surface flows with the volume
of fluid method. Secondly, a backwards-tracking procedure is introduced to the solution of
the constitutive equation, partly inspired by the backward-tracking Lagrangian particle
method by Wapperom et al. [10]. The result is a more robust method, due to the structured
relation between the Lagrangian nodes and the Eulerian grid. No stabilization method,
i.e., neither both-sides diffusion nor reformulation of the constitutive equation, is required
for the studied flows. Furthermore, the computational cost as compared to the original
Lagrangian–Eulerian method is reduced, since no unstructured interpolation or node redis-
tribution is needed and because the total number of Lagrangian nodes decreased. In the
context of multiphase flows, the viscoelastic constitutive equation is only solved inside the
viscoelastic phase, which further increases the computational performance.

The rest of the paper is structured, as follows. In the next section, the governing
equations are presented, followed by a detailed description of the proposed numerical
method. In the results section, the new method demonstrated and validated with analytic
solutions and numerical data from the literature. Finally, conclusions are drawn and future
work is outlined.

2. Governing Equations

Viscoelastic fluid flow is described by the incompressible momentum and continuity
equations

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p +∇ · (2μS + τ) + f, (1)

∇ · u = 0, (2)

5
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where ρ is the density, u velocity, μ the solvent viscosity, S = 1
2 (∇u + (∇u)T) the strain

rate tensor, τ the viscoelastic stress tensor, and f a body force. The viscoelastic stress is
governed by a constitutive equation of the general form

λ
�
τ + F(τ)τ = 2ηS, (3)

where λ is the relaxation time, η polymeric viscosity, and F a scalar-valued function. The

operator
�
(•) denotes the upper-convected derivative of τ, which expands to

�
τ =

Dτ

Dt
− (∇u)T · τ − τ · ∇u, (4)

where
Dτ

Dt
=

∂τ

∂t
+ u · ∇τ, (5)

is the Lagrangian, or material, time derivative of τ. The Lagrangian time derivative de-
scribes the rate of change of τ in an infinitesimal material element, which moves with

the flow. Convected time derivatives, such as
�
(•), appear in viscoelastic constitutive

equations and they ensure frame-invariance for the transport of tensorial properties. It is re-
marked that, while the form of (3) is not applicable for all available differential constitutive
equations, it covers the constitutive models discussed in this work.

In general, the viscoelastic stress tensor may be modeled as a sum of the contribution
of N modes as

τ =
N

∑
k=1

τk, (6)

where τk is the stress tensor that corresponds to the kth mode. Each stress tensor τk is then
governed by a constitutive equation on the form of (3) with an individual set of model
parameters.

3. Numerical Method

The momentum Equation (1) and the continuity Equation (2) are discretized on a
collocated Eulerian grid with the finite volume method. The pressure–velocity coupling
is accomplished by solving the momentum and continuity equations with SIMPLEC
iterations [32]. An octree grid is used, in which the cells can be refined in desired locations
by recursively dividing them into smaller cells to a given refinement level. The refinements
may be static or adaptively updated, typically around moving objects or fluid interfaces.
Figure 1 displays an example grid in two dimensions with one refinement level, showing
the cell centers and the grid nodes. The grid, including the adaptive refinements, is
automatically generated by the solver.

× ×

×
× ×

× ×

Figure 1. Two-dimensional grid with one refinement level, showing cell centers (×) and grid
nodes (•).
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Boundary conditions from objects in the domain are imposed while using the mirror-
ing immersed boundary method [30,31]. The velocity field is implicitly mirrored across the
immersed boundary surface, such that the imposed boundary condition is satisfied for the
converged solution. Surface triangulations represent the geometrical objects.

The viscoelastic constitutive equation is solved in the Lagrangian frame of reference
in material elements that are represented as Lagrangian nodes. From (3) and (4), it follows
that the stress in a Lagrangian node is described by the ordinary differential equation
(ODE)

Dτ

Dt
=

2η

λ
S − 1

λ
F(τ)τ + (∇u)T · τ + τ · ∇u. (7)

Furthermore, the trajectory of the node must be known when solving (7), as it involves the
local velocity gradient ∇u . The trajectory of the node is given by the ODE

Dx

Dt
= u, (8)

where x is the position of the node.
Given an initial stress state in a set of Lagrangian nodes, a straightforward approach

to obtain the stress state at a future time is to simultaneously solve (7) and (8) forwards
in time. Indeed, this method has been successfully employed in previous work [27,28].
Lagrangian nodes were then initialized with a given distribution density at the start of
the simulation. The distribution was maintained in each time step by adding or deleting
nodes, if necessary. After solving the constitutive equation at the Lagrangian nodes, the
viscoelastic stress was interpolated to the Eulerian cell centers while using radial basis
functions (RBF).

In this work, the method is further developed by introducing the concept of backwards-
tracking. The key idea is to choose the locations of the Lagrangian nodes a priori, at which
the viscoelastic stresses are then stored, and then track them backwards in time in order
to obtain their initial location in each time step. The constitutive equation may then be
solved forwards in time such that the stresses are obtained at for the next time step at the
chosen locations. Different choices for the locations are conceivable. In the current work,
the locations of the Lagrangian nodes are chosen to be at the Eulerian grid nodes.

Consider the calculation of the viscoelastic stress for the nth simulation step, which
corresponds to the time interval In = [tn, tn+1]. At this point, it is assumed that momentum
equation has been solved, such that the velocity field is known for t ∈ In.

The Lagrangian constitutive equation is solved along the trajectories of Lagrangian
nodes. For a Lagrangian node, the trajectory x(t) can be expressed in terms of the position
at the end of the time step, as

x(t) = x(tn+1)−
∫ tn+1

t
u(t′, x(t′))dt′, t ∈ In, (9)

where x(tn+1) is the predefined final location of the Lagrangian node which. The trajectory
x(t) for t ∈ In is first calculated by solving (8) backwards in time. Subsequently, when the
trajectory is known, the viscoelastic stress τ(tn, x(tn)) is interpolated from the viscoelastic
stresses from the solution of the previous simulation step. The Lagrangian constitutive
Equation (7) is then solved forwards in time and the viscoelastic stress is thus obtained at
the final location x(tn), i.e., at the predefined location.

Generally, the choice of locations for the Lagrangian nodes is somewhat arbitrary.
However, by choosing the locations of the Eulerian grid nodes, the connectivity and
structure of the octree grid may be utilized when the stress at time tn is interpolated to
the position of a Lagrangian node x(tn). The stress at the node at time tn is obtained
through bilinear or trilinear interpolation, respectively, for two-dimensional (2D) and
three-dimensiona (3D). Furthermore, the viscoelastic stress contribution to the discretized
momentum equation may be calculated directly from node stresses. Therefore, no unstruc-
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tured interpolation of viscoelastic stresses is necessary. The calculation of this contribution
is described in detail further on in this section.

Figure 2 shows a schematic description of the steps that are involved in the algorithm.
In summary, the performed steps are:

(a) Calculate the Lagrangian node trajectory by solving (8) backwards in time, starting at
the predefined location x(tn+1).

(b) Interpolate the stress τ(tn, x(tn)) to the Lagrangian node from the known node values
at time tn.

(c) Solve (7) forwards in time along the trajectory x(t), t ∈ In.

x(tn+1)

x(tn)

(a) Backwards-tracking

τ(tn)

(b) Interpolation

τ(tn+1)

τ(tn)

(c) Forwards-solving
Figure 2. Schematic description of the steps that are involved in the backwards-tracking algorithm.

The ordinary differential Equations (7) and (8) may be solved with any appropriate
choice of ODE solution algorithm. In this work, the fourth order Runge–Kutta method,
which is commonly referred to as the RK4 method [33], is used. Furthermore, Nsub equally
sized substeps of length Δtsub are used, being defined, such that NsubΔtsub = Δt =
tn+1 − tn. In the current work, Nsub = 3 is used.

When solving (7) and (8), local quantities that are stored on the Eulerian grid are
required along the trajectory of the Lagrangian nodes. More specifically, the velocity u is
needed for the backwards-tracking and the velocity gradient ∇u is needed to solve the
constitutive equation. The velocities are stored at the Eulerian cell centers. When the local
velocity is required, the cell centers containing the Lagrangian node are identified and
the velocity is interpolated to its location while using bilinear or trilinear interpolation,
respectively, for 2D and 3D. When the velocity gradient is required, it is calculated from
the bilinear or trilinear interpolation formula using the same interpolation basis.

For the interpolation of a field φ to a location within a box spanned by the corners
(xi, yj, zk), i, j, k ∈ {0, 1}, the trilinear interpolation formula in order to calculate the inter-
polant φ̂ reads

φ̂ =
1

∑
i=0

1

∑
j=0

1

∑
k=0

ci
xcj

yck
zφijk, (10)

where φijk is the value of φ at the corner (xi, yj, zk) and with the coefficients

ci
l =

{
1 − x̄l/Δxl , i = 0

x̄l/Δxl , i = 1
, l = x, y, z, (11)

where x̄l is the lth coordinate of the interpolation position relative to the lower corner of
the box and Δxl is the size of the box that coordinate direction. The gradient of φ̂ follows
from (10) and (11), as

∂φ̂

∂x
=

1

∑
i=0

1

∑
j=0

1

∑
k=0

(
∂ci

x
∂x

)
cj

yck
zφijk, (12)

∂φ̂

∂y
=

1

∑
i=0

1

∑
j=0

1

∑
k=0

ci
x

(
∂cj

y

∂y

)
ck

zφijk, (13)
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∂φ̂

∂z
=

1

∑
i=0

1

∑
j=0

1

∑
k=0

ci
xcj

y

(
∂ck

z
∂z

)
φijk, (14)

where the derivatives of the coefficients read

∂ci
l

∂xl
= ∓ 1

Δxl
, i = 0, 1, l = x, y, z. (15)

The corresponding formulas for bilinear interpolation in two dimensions are obtained by
letting the coefficient ck

z = 1 and, thus, ∂ck
z/∂z = 0, and skipping the summation over k.

When interpolating to a Lagrangian node near fluid grid refinements the smallest
local cell size is used in order to form the interpolation box. Furthermore, not all corners of
the interpolation box coincide with a cell center. The velocities at such corners are obtained
through least squares interpolation, by fitting a first order polynomial from the centers of
the cells that intersect the interpolation box. The interpolation box is visualized in Figure 3.

×

×

×

×
x

(a) Uniform

×

◦

◦

×

×
x

(b) Refined
Figure 3. Basis for interpolating properties stored at the fluid grid to Lagrangian nodes in areas with uniform grid spacing
(a) and near refinements (b).

The volume of fluid (VOF) method is used to model the presence of a viscoelastic fluid
phase and a Newtonian phase. A color function ξ, is then defined, such that

ξ =

{
1 In the viscoelastic phase
0 In the Newtonian phase

}
. (16)

The discrete counterpart of ξ is the fluid volume fraction α ∈ [0, 1], which is the local
volume average of ξ in an Eulerian cell. The transport of α is described by the convection
equation [34]

∂α

∂t
+ u · ∇α = 0. (17)

By definition, α is the local volume fraction of the viscoelastic phase in a control
volume. Hence, if α = 1, the control volume is filled with the viscoelastic fluid and if
α = 0 with the Newtonian fluid. If α ∈ (0, 1), this is interpreted as that the control volume
intersects the interface between the fluid phases. The transport Equation (17) is discretized
with the finite volume method on the Eulerian octree grid. In order to minimize the
numerical diffusion of α and, thus, avoid smearing the fluid interface, the convection term
in (17) is discretized with the compact CICSAM scheme [35].

A single set of the Equations (1)–(3) is solved for the whole computational domain.
Fluid properties are locally averaged as

φ = αφ1 + (1 − α)φ2, (18)

where φv and φN are the properties of the viscoelastic and the Newtonian phase, respec-
tively. The averaging is applied for ρ, μ, η, and λ, as well as for τ when calculating the
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contribution to the momentum equation. When α is needed at a Lagrangian node, it is
interpolated with the same method as used for velocity.

Special care for the viscoelastic stress in the interface region α ∈ (0, 1) is necessary
due to the non-sharp interface nature of the VOF method. A brief motivation for this
follows. In many examples of viscoelastic free surface flow, the viscosity of the Newtonian
fluid may very well be on the order of 10−5 of that of the viscoelastic phase. Hence,
the average velocity gradient in the Newtonian phase may be much larger than in the
viscoelastic phase. Consequently, if the velocity gradient of the Newtonian phase is allowed
to have large influence on the constitutive equation in the interface region; this can result
in unphysically large stresses. This is especially the case if not all velocity and length scales
in the Newtonian phase are resolved near the interface. Thus, a means of reducing this
effect around the free surface is proposed.

A threshold volume fraction is used, such that Lagrangian nodes are only created
inside the viscoelastic phase, which are defined by the condition α ≥ αlim = 0.1. Thus, the
constitutive equation is only solved in the viscoelastic part of the computational domain
and the stress is assumed to vanish outside the viscoelastic phase. Furthermore, when the
velocity gradient is calculated at a Lagrangian node, the corners of the interpolation box at
which α < 0.1 · αlim are also considered to be outside the viscoelastic phase. The velocities
at such corners are excluded from the gradient calculation and they are replaced by 0th
order extrapolation from the corners which are inside the viscoelastic phase.

It is remarked that, apart from numerical stability, the described approach is advanta-
geous in terms of computational efficiency, since the constitutive equation only needs to be
solved in part of the domain.

When the stress field has been calculated, the term ∇ · (ατ) is integrated and then
added to the right hand side of the discretized momentum equation. At this stage, the
product rule is applied, such that

∇ · (ατ) = α∇ · τ + τ · ∇α, (19)

which can be seen as separating the pure interfacial contribution of the viscoelastic stress to
the fluid momentum from the remainder part [36]. The formulation of (19) is used, since it
was found to enhance numerical stability. The first term of (19) is integrated over the cells
with Gauss’ divergence theorem, as∫

c.v.
∇ · τdV =

∫
c.s.

n̂ · τdS = ∑
f

∫
f.s.

n̂ f · τdA, (20)

where c.v. denotes the cell volume, c.s. the cell surface, f.s. the surface of cell face f , and the
vector n̂ denotes the surface normal pointing outwards from the cell. In the second step of
(20) the surface integral is divided into a sum of the integrals over the respective surface
faces of the cell, for which the normal vectors n̂ f are constant. The integral over each face
is approximated with the trapezoidal rule while using the stresses at the Eulerian grid
nodes. If a cell has neighbors that have a higher refinement level, e.g. in the case shown
in Figure 1, the face to each smaller neighbor cell is individually integrated, such that the
stress contribution from each grid node is included correctly.

The volume integral of the second term of (19) is approximated with the cell average
stress and volume fraction gradient, as∫

c.v.
(τ · ∇α)dV ≈ (τ · ∇α)ΔV, (21)

where ΔV is the cell volume and (•) denotes volume average. The cells where α < 0.1 · αlim
are assumed to be outside the viscoelastic phase and the stress contribution is instead set
to zero.

The full algorithm for viscoelastic free surface flow can be summarized, as follows,
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1. Calculate and add the viscoelastic stress contribution to the discrete momentum
equation.

2. Solve velocity and pressure fields u, p from the momentum Equation (1) and continu-
ity Equation (2) while using SIMPLEC iterations.

3. Solve the transport of the fluid volume fraction α from (17)
4. Solve the viscoelastic stress from the constitutive Equation (3) to the new time while

using the backwards-tracking procedure.

When compared to the original version of the Lagrangian–Eulerian framework that
was proposed in Ingelsten et al. [27], the new method is expected to be more robust due
to the structured nature of the Lagrangian nodes as well as the staggered arrangement
between the storage locations of the velocity and the viscoelastic stress. Although the
computational efficiency is not assessed in detail in this work, the computational cost is, in
fact, reduced. As a reference, the computational performance of the original Lagrangian–
Eulerian method was studied for the flow of a four-mode PTT fluid over a confined
cylinder [27]. Four Lagrangian nodes per fluid cell were initialized for the node set. Out of
the total stress calculation time, approximately 50% was spent on solving the ODE systems,
30% on the unstructured interpolation, and 10% on the redistribution of the Lagrangian
node set. In the new method, the unstructured interpolation, as well as the redistribution,
is completely removed. Furthermore, the number of Lagrangian nodes is reduced to be on
the same order as the number of Eulerian cells. Thus, a large reduction in computational
time should be expected.

The proposed method is implemented in the software IBOFlow® [37], an in-house
CFD code that was developed at the Fraunhofer–Chalmers Research Institute for Industrial
Mathematics in Gothenburg, Sweden. In addition to viscoelastic flow, the solver has
previously been employed to simulate conjugated heat transfer [38–40], and fluid-structure
interaction [41], as well as free surface flow of shear-thinning fluids with applications for
seam sealing [42,43], adhesive application [44], and 3D-bioprinting [45].

4. Results

In this section, the proposed method is evaluated for three different flow cases. First, a
basic validation is carried out by comparing the numerical results with the analytic solution
for a transient channel flow. The method is then compared to the numerical results from
the literature for simulations of the viscoelastic die swell effect. The capability to simulate
viscoelastic free surface with adaptive mesh refinement is demonstrated for simulations of
viscoelastic jet buckling.

The test cases that are reported in this section are simulated while using a single-mode
Oldroyd-B model, which has the constitutive equation

λ
�
τ + τ = 2ηS, (22)

corresponding to F(τ) = 1 in (3). Furthermore, a viscosity ratio β is defined as

β =
μ

μ + η
. (23)

By definition of the total viscosity ηt = μ + η, it follows from (23) that μ = βηt and
η = (1 − β)ηt.

Note that the Lagrangian–Eulerian method that is proposed in this work is by no
means limited to the Oldroyd-B model. All of the constitutive equations in the form of (3)
are supported by the framework.

4.1. Planar Poiseuille Flow

A basic validation of the proposed method is performed for a viscoelastic planar
Poiseuille flow. The numerical results for the transient as well as the steady flow are
compared to the corresponding analytic solution.
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The computational domain has height and length h and it is shown in Figure 4. The
upper boundary is treated as a wall with the no-slip condition u = 0 and the lower
boundary has a symmetry condition. At the left and right boundaries, the Dirichlet
conditions p = Δp and p = 0 are imposed, respectively, while the cyclic conditions are
used for the velocity and viscoelastic stress. Thus, the numerical model represents an
infinitely long channel of height 2h, which is subjected to a constant pressure drop Δp. The
simulation starts from rest, with velocity and viscoelastic stress equal to zero.

p = Δp p = 0

y

x

h

h

Δx

Figure 4. Schematic of the planar Poiseuille flow.

A Weissenberg number for the flow is defined as Wi = λU/h, where U is the mean
steady flow velocity, and a Reynolds number as Re = 2ρUh/(μ + η). The flow is simulated
for β = 1/9, 1/18, 1/27 and Wi = 0.1, 1. Here, U = 0.1 m/s, ρ = 1 kg/m3 and η = 1 Pas are
constant, while Wi and β are varied, respectively, by changing λ and μ between simulations.

In order to ensure sufficient temporal resolution, the flow is simulated using different
time step lengths. These simulations are performed for the lowest viscosity ratio β = 1/27,
for which the transient variations are the largest. A uniform Eulerian grid with the cell size
Δx = H/20 is used.

In Figure 5, the simulated centerline velocity, i.e., at x = h/2, y = 0, obtained with the
time step lengths 10−4 s, 10−5 s and 10−6 s, are shown for Wi = 0.1 and Wi = 1. The velocity
that si obtained with the longest step length is clearly different from those obtained with the
two shorter step lengths. However, the two shorter lengths produce results that practically
overlap on the scale of comparison. Thus, the step length Δt = 10−5 s is considered to be
sufficiently small and it is used to obtain the remaining results reported in this section.
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Figure 5. Centerline velocity in channel flow simulated using different time steps.

Xue et al. presented an analytic solution of the transient solution for the flow consid-
ered [46]. In Figure 6, the obtained centerline velocities for the β = 1/9, 1/18, 1/27 are
shown for Wi = 0.1 and Wi = 1 and compared to the analytic solution. The results demon-
strate the strong influence of the relationship between the solvent viscosity and polymeric
viscosity on the transient flow. The numerical results overlap the analytic solution, showing
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that the proposed method treats the transient flow dynamics correctly. Furthermore, the
results confirm that the spatial resolution Δx/h = 20 is sufficient for this case.
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Figure 6. Centerline velocity in channel flow simulated using viscosity ratios β.

In order to assess grid dependency in more detail, the flows for β = 1/27 and
Wi = 0.1, 1 are simulated until a steady flow is reached while using varying spatial
resolution. The flow being steady is ensured through the condition

||φn−1 − φn||L2

||φn||L2

< 10−10, (24)

where ||•||L2
denotes the L2-norm over the cells of the Eulerian grid, φ is velocity or

viscoelastic stress, and the subscript n denotes the quantity at the nth time step.
The error measurements with respect to the analytic steady state solution are calculated

as

Eφ =
||φs − φa||L2

||φa||L2

, (25)

where φs and φa denote the simulated and analytic solution, respectively. The computed
errors for velocity and viscoelastic normal stress are shown as a function of grid size in
Figure 7. The errors decrease with second order slope with grid refinements, which is
coherent with the second order accuracy that was observed for the original Lagrangian–
Eulerian method [27,28].
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Figure 7. Computed errors with respect to the analytic solution for velocity (a) and viscoelastic normal stress (b).
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4.2. Die Swell

The die swell effect is a phenomenon that occurs for the free surface flows of vis-
coelastic fluids flowing in a pipe or channel and exiting through circular or slit dies.
Barnes et al. [47] described the origin of the die swell effect by viewing the viscoelastic fluid
as a bundle of elastic threads. In the channel flow, the threads are stretched by the normal
stress component τxx, where x is the flow direction. When the fluid exits the channel,
the threads are allowed to relax and shorten in length. Consequently, the diameter of the
emerging fluid increases.

Flows that exhibit the die swell effect are commonly used to benchmark and validate
numerical methods [11,13,14,16–20,22,24]. In addition to the free surface, the flow has
extensional characteristics around the channel exit as well as a stress singularity at the
channel exit corner. These flow features make the flow suitable for testing robustness and
accuracy of new numerical methods. Therefore, in this work, a planar die swell flow is
simulated. The case parameters are selected to allow for a meaningful comparison with
numerical data from the literature.

A schematic description of the computational domain can be found in Figure 8.
A channel of height 2h and length 10h is considered. A symmetry boundary condition is
used at y = 0, such that effectively half of the domain is simulated. The expansion zone is
5h high and 12h long, giving the domain a total length of 22h. The length of the channel
and size of the expansion zone are chosen to be sufficiently large for boundary effects not
to affect the flow near the channel exit.

The exterior boundaries of the expansion zones are treated as outlets with the pressure
condition p = 0, and an immersed boundary is used to impose the no-slip condition for
the channel walls. Gravity is neglected.

Outlet

Inlet h hmax

5h

10h 12h

x

y

Figure 8. Die swell domain.

The viscoelastic fluid in the channel is an Oldroyd-B fluid with the viscosity ratio
β = 1/9. The surrounding fluid is a Newtonian fluid with much lower viscosity and
density than the viscoelastic fluid. In this work, these parameters are set to μair = 10−6μ
and ρair = 10−3ρ, respectively. Comminal et al. used a similar definition [24], but with
ρair = 10−2ρ.

The simulation of the flow starts from rest, with the channel filled with viscoelastic
fluid. Transient flow is simulated for a sufficiently long physical time for the flow in the
channel and the expansion region to fully develop, as well as for the free surface flow to
exit through the outlet with a uniform velocity profile.

At the inlet, fully developed flows are imposed for the velocity and viscoelastic stress.
For fully developed channel flow of an Oldroyd-B fluid, it can be shown that

u(y) =
3
2

U
(

1 − y2

h2

)
, (26)

∂u
∂y

= −3Uy
h2 , (27)
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τxy(y) = η
∂u
∂y

, (28)

τxx(y) = 2λτxy(y)
∂u
∂y

= 2λη

(
∂u
∂y

)2
, (29)

where U is the mean velocity. A derivation of the expressions can be found in Appendix A.
The channel half height h and velocity U are taken as characteristic length and velocity

scales for the flow. Thus, a Weissenberg number for the flow may be defined as

Wi =
λU
h

, (30)

and a Reynolds number as

Re =
2ρUh
μ + η

. (31)

A dimensionless time is also defined as t∗ = tU/h.
The swell ratio Sr = hmax/h is the main quantity of interest, in terms of validation by

comparison. The swell ratio is a function of the so-called recoverable shear SR, which is
defined as [11]

SR =

∣∣∣∣ N1

2τxy

∣∣∣∣
y=h

=

∣∣∣∣τxx − τyy

τxy

∣∣∣∣
y=h

=
3λU

h
= 3Wi, (32)

where N1 = τxx − τyy is the first normal stress difference. In the simulations that are
reported in this section, the quantities U, η, μ, and ρ are constant, while SR is varied by
changing λ between simulations. The Reynolds number is Re = 0.5 for all simulations.

Tanner [48,49] developed a theoretical solution for the amplitude of the die swell as
a function of the recoverable shear. For an Oldroyd-B channel emerging from a slit the
solution reads

Sr = 0.19 +

(
1 +

SR
2

3

) 1
4

. (33)

The theory does not take the stress singularity at the channel exit corner into account
and is, therefore, only expected to yield a good approximation of the swell ratio when
the influence of elasticity is small, i.e., for small Wi. Nevertheless, it is often included for
comparison in numerical studies of the die swell effect and it is included in this study.

The influence of the spatial discretization on the numerical results is assessed through
a grid dependence study and the flow is simulated for SR = 2.5 with three different grids,
denoted as M1, M2, and M3. A grid is defined by a base cell size Δxbase and a set of
refinements, as described in Section 3. The grids M1, M2, and M3, respectively, have the
base cell sizes Δxbase = h/5, h/10, h/20. The largest cells are located in the expansion zone,
far from the channel exit. One level of refinement is used in the channel and around the
channel opening and two levels of refinement near the exit corner. As an example, grid
M1 is shown in Figure 9. The area around the channel exit corner has been zoomed for
clarity. Table 1 summarizes the grids used. A constant time step length is used, such that
UΔt/Δxmin = 0.01, where Δxmin is the smallest cell size of the grid.

Table 1. Summary of grids that are used to study the grid dependence of the die swell simulations.

Grid h/Δxbase h/Δxchannel h/Δxcorner Num. Cells Total.

M1 5 10 20 4829
M2 10 20 40 19,685
M3 20 40 80 78,740
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Figure 9. Grid M1 used in the grid dependence study, as defined in Table 1.

First, the velocity as well as the viscoelastic normal and shear stress are compared to
the analytic steady solution inside the channel. In Figure 10, the corresponding profiles
obtained using grid M1 across the channel at x/h = 5, halfway from the inlet to the channel
exit. Already at the lowest grid resolution, the simulated profiles overlap the analytic
solution. The results that are obtained with M2 and M3 are visually the same and the
figures are, therefore, omitted. The results validate that the constitutive equations are solved
correctly and that the immersed boundary method used to impose the boundary conditions
at the channel wall works as intended for the solution algorithm for the viscoelastic stresses.
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Figure 10. Simulated profiles for SR = 2.5 across the channel at x = 5h, obtained with grid M1, compared to the
analytic solution.

In Figure 11, the position of the free surface that is visualized by the contour α = 0.5 is
shown for SR = 2.5 for the grids that are defined in Table 1. Some small surface oscillations are
observed in the results from the two finer grids M2 and M3 in the region x/h < 2. As reference,
Comminal et al. [24] reported similar behavior for their corresponding simulations. In
their simulations, small self-sustained surface oscillations appeared at a certain level of
recoverable shear, in their case SR > 1.5 for the Oldroyd-B fluid, and for sufficiently high
resolution. Similar observations were also made for simulations with the Giesekus model
in their study. The oscillations were damped out further downstream and they did not
influence the calculated swell ratio hmax/h. Similar characteristics are observed in the
current work, as in Figure 11. Comminal et al. attributed the oscillations to numerical
difficulties around the free surface due to the nature of the non-sharp interface in the VOF
method.

In the light of this discussion, the results that are obtained on grid M2 and M3 are
in relatively good agreement. This is particularly true far downstream of the channel
exit, where the free surface produced by M2 and M3 are very close, while M1 produces a
different result. The results indicate that M2 is of sufficient spatial resolution to predict the
swell ratio Sr. Therefore, the results presented in the remainder of this section have been
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obtained while using grid M2. In addition, the simulation with grid M2 has been repeated
with half the time step size, such that UΔt/Δxmin = 0.005, which produced equivalent
results.
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Figure 11. Free surface position in the expansion zone of the die swell geometry, simulated for grids M1, M2, and M3 for
SR = 2.5.

The simulations are repeated with grid M2 for SR ∈ {1.0, 1.5, 2.0, 2.5}. In Figure 12, the
contour α = 0.5 is shown for SR = 1 at different times. Figure 13 shows the corresponding
results for SR = 2.5. Similar behavior is observed in both cases. The emerging viscoelastic
fluid increases in diameter directly upon exiting the channel. The magnitude of the increase
is strongly influenced by the level of elasticity, as qualitatively predicted by Tanners theory.
At a certain distance from the channel exit, approximately for x/h > 3, the emerging
viscoelastic fluid reaches a terminal diameter.

The swell ratio is calculated for the simulations as Sr = hmax/h, where hmax is taken
as the position of the free surface at x/10. The calculated swell ratios that were obtained
with the proposed method are compared to available numerical data from the literature.
The data used are the original FEM simulations reported by Crochet and Keunings [11],
the marker-and-cell simulations by Tomé et al. [14], the pseudo-VOF simulation by Habla
et al. [22], and the three different VOF methods used by Comminal et al. [24]. Table 2 briefly
summarizes the data. For a full description of the cases and numerical methods, the reader
is referred to the respective studies. However, a brief discussion concerning the differences
between the results is given below.
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Figure 12. Snapshots of die swell simulation with SR = 1.0, interface between viscoelastic phase (green) and Newtonian
phase (white) visualized by α = 0.5.
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Figure 13. Snapshots of die swell simulation with SR = 2.5, interface between the viscoelastic phase (green) and Newtonian
phase (white) visualized by α = 0.5.

Table 2. Summary of numerical data as compared for the die swell flow.

Work Method Re

Current work VOF, Lagrangian-Eulerian 0.5
Crochet & Keunings [11] Mixed FEM 0
Tomé et al. [14] GENSMAC 0.5
Habla et al. [22] pseudo-VOF 0.5
Comminal et al. [24] (CCU) VOF, Geometric scheme 0
Comminal et al. [24] (HRIC) VOF, Algebraic scheme 0
Comminal et al. [24] (RheoTool) VOF, Algebraic scheme (MULES) 0.01

The calculated swell ratios as a function of the recoverable shear for the flows simu-
lated with the proposed method are compared to the results from the literature in Figure 14.
It is remarked that Comminal et al. employed a different definition of the Weissenberg
number and swell ratio. However, all of the data that are presented in Figure 14 have been
adopted to the definition used in the current work.

Indeed, a certain spread among the data is observed. The differences are not unex-
pected, though, as there are slight differences between how the different data have been
obtained. This is in terms of the numerical method used as well as the simulation setup.
Furthermore, Comminal et al. even obtained different results while using three slightly
different numerical methods for exactly the same flow.

Crochet and Keunings and Tomé et al. did not consider a fluid surrounding the
viscoelastic phase, as the per construction of their numerical methods. Comminal et al.
used a similar definition of the surrounding fluid as in the current work, but with larger
density. Habla et al. stated that the surrounding fluid is treated as air with μair → 0 and
ρair → 0, but the magnitudes were not reported. Furthermore, the value of viscosity ratio
of the viscoelastic fluid β varied between their simulations. This is in contrast to a constant
β = 1/9, which has been used in the other simulations included in this work.

Given the above discussion, a certain variance in the data is to be expected. However,
the different results do follow the same general trend, including the swell ratios predicted
with the proposed Lagrangian–Eulerian method.

Another aspect is that of grid dependence. The simulation performed by Crochet and
Keunings had a grid resolution which, by today’s standards, was very coarse. They used
six triangular finite elements across the half-width of the channel. Therefore, the resulting
swell ratios should be treated with caution when comparing to more recent results. Tomé
et al. used a uniform grid of Δx/h = 1/10 which is on the order of the coarse grid M1.
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Habla et al. reported the number of control volumes to be 4165, but did not specify the local
cell sizes in detail. The number of control volumes is again comparable to grid M1 in the
current work. Comminal et al. did conduct a grid dependence study with three different
grids. Their finest cells were closer to the grids that were used in this work as compared to
the other authors. Therefore, could be expected for the results reported in this work to be
closest to the results of Comminal et al. given the similarities in grid resolution as well as
the use of the VOF method. Their computed swell ratios are generally larger than the other
literature results, with the exception of those from Crochet and Keunings. The same is also
true for the swell ratios that were computed with the proposed method, particularly for
increasing SR.

In conclusion, while there is a spread between the data that are produced in different
numerical studies, they follow the same general trend. The results that were obtained
with the method proposed in this work follow the same trend and with the swell ratios
comparable to the earlier published works.
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Tomé et al.
Comminal et al. CCU
Comminal et al. HRIC
Comminal et al. RT
Tanner’s theory

Figure 14. Simulated swell ratio compared to data from the literature.

4.3. Jet Buckling

The simulation of jet buckling is a common flow case for testing the capabilities of nu-
merical methods for free surface flow. The phenomenon has been numerically investigated
for different viscoelastic constitutive models by several authors [14–18,20,26].

The phenomenon occurs for a fluid jet that flows onto a rigid plate under certain
conditions. Cruickshank [50] proposed a condition that is based on experimental and
theoretical observations, stating that a planar Newtonian jet will buckle if H/D > 3π
and Re < 0.56, where H is the distance from the inlet to the plate, D the inlet width, and
Re = ρUD/μ, where U is the inlet velocity. A modified yet approximate condition, based
on numerical investigation, was later proposed by Tomé and McKee, stating that buckling
should occur if

Re2 ≤ 1
π

(H/D)2.6 − 8.82.6

(H/D)2.6 . (34)

It is remarked that, in simulations, numerical round-off errors are responsible for triggering
the buckling, since the flow setup itself is actually symmetric.

Figure 15 shows a schematic of the fluid jet buckling domain that is used for simulation
with the Lagrangian–Eulerian method proposed in this work. The domain is 50 mm wide
and 100 mm high. An inlet of width D = 5 mm is located at the center of the upper
boundary. At the inlet, a uniform velocity U = 0.5 m/s is imposed. The upper boundaries
to the left and right, respectively, are outlets with the Dirichlet pressure condition p = 0.
The remaining domain boundaries are treated as walls by imposing the no-slip condition.
Gravity is acting in the negative y-direction with g = 9.81 m/s2.
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The viscoelastic fluid is a single-mode Oldroyd-B fluid with the viscosity ratio β = 0.1,
density ρ = 1000 kg/m3, and the total viscosity ηt = 10 Pa · s. The surrounding Newtonian
viscosity is air with viscosity μair = 1.8205 × 10−5 Pa · s and density ρair = 1.204 kg/m3.

The Reynolds number for the flow is defined as Re = ρUD/(μ + η), which, for the
chosen parameters, yields Re = 0.25. A Weissenberg number is defined as Wi = λU/D.
The flow is simulated for the Oldroyd-B fluid with λ = 0.1 s, corresponding Wi = 10. As
reference, a simulation is also performed with a Newtonian fluid, for which β = Wi = 0.

D

20D

10D

x

y

Figure 15. Viscoelastic fluid buckling domain.

In the viscoelastic jet buckling simulations that were performed in this work, the
octree grid is adaptively refined with two levels around the viscoelastic fluid phase. As the
simulation progresses, the grid is therefore updated and the cells are refined and coarsened,
where needed. A grid dependence study is performed while using three adaptive grids of
increasing resolution. The grids have the respective base cell sizes Δxbase = D/2, D/4, D/8,
which correspond to the finest cell sizes Δxmin = D/8, D/16, D/32. The simulations are
performed with a constant time step Δt satisfying ΔtU/Δxmin = 0.08.

The grid dependence is evaluated with respect to two simulation properties. Firstly,
the free surface α = 0.5 is compared for the three adaptive grids. The first normal stress
difference N1 = τyy − τxx along the jet at x = 5D is also compared. Because the buckling
itself is triggered by numerical round-off errors, the exact conditions at which the buckling
starts in the simulations may vary between grids. Therefore, the grid study comparison is
made at a simulation time before buckling is initiated.

In Figure 16, the free surface is compared for the three grids at the simulation times
t = 130 ms and t = 140 ms. The results obtained with the three grids are in relatively good
agreement, particularly those that are obtained with the two finer grids. In Figure 17, the
first normal stress differences along the jet are compared at the same simulation times.
These results indicate even more strongly that the two finer grids produce stresses that are
very close, while a slight discrepancy for the coarsest grid is observed. The remainder of
the results reported in this section have been obtained while using Δxmin = D/16.
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Figure 16. Isosurface α = 0.5 in viscoelastic jet buckling simulation with λ = 0.1 s and Wi = 10 obtained with the finest cell
sizes Δxmin = D/8, D/16, D/32.
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Figure 17. First normal stress difference N1 = τyy − τxx along the line x/D = 5 in viscoelastic jet buckling simulation with
λ = 0.1 s and Wi = 10 obtained with the finest cell sizes Δxmin = D/8, D/16, D/32.

In Figures 18 and 19, a series of snapshots from the simulation of the Newtonian and
the viscoelastic jets are shown, respectively. For the Newtonian case, only a very slight
tendency to buckle is observed as a slight asymmetry in the fluid on the rigid surface.
However, for the viscoelastic fluid, the buckling phenomenon is very apparent. When the
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viscoelastic jet impacts the rigid surface, the material first builds upwards until, inevitably,
the buckling is initiated. The results demonstrate the strong influence of elasticity to the
fluid jet buckling phenomenon. Furthermore, it confirms the capability of the proposed
method to capture the viscoelastic effects and predict the phenomenon.
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Figure 18. Newtonian jet buckling simulation.
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Figure 19. Viscoelastic jet buckling simulation with λ = 0.1 s.

5. Conclusions

In this work, a new Lagrangian–Eulerian method for the simulation of viscoelastic
free surface flow has been proposed. The method was developed from a previously
proposed method, in which the fluid momentum and continuity equations were solved on
a stationary Eulerian octree grid, while the viscoelastic constitutive equation was solved
along the trajectories of Lagrangian nodes which were convected by the flow. The main
improvements in this work was the introduction of a backwards-tracking procedure for
solving the viscoelastic constitutive equation, as well an extension to the simulation of
viscoelastic free surface flow with the volume of fluid method.

The backwards-tracking procedure allowed for the storage of the viscoelastic stresses
in a structured arrangement. Consequently, the unstructured interpolation of stresses as
well as the addition and deletion of Lagrangian nodes, which was required in the previous
method, was eliminated in favor of a significant reduction of the computational cost and
increased robustness. Furthermore, no additional stabilization method, such as both sides
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diffusion or reformulation of the constitutive equation, was employed for any of the flows
studied in this work.

The proposed method was validated with analytic solutions for a planar Poiseuille
flow of Oldroyd-B fluids. The transient, as well steady flow, solutions were in excellent
agreement with analytic solutions and the steady solution converged to the analytic solution
with second order accuracy. Furthermore, the proposed method was evaluated for two
types of viscoelastic free surface flow. The viscoelastic die swell effect was simulated with
the Oldroyd-B model and the predicted swell ratios were in good agreement with the
numerical data from the literature. Planar jet buckling of a highly viscoelastic fluid was
also simulated, demonstrating the capability of the method for an additional flow case as
well as the use of adaptive grid refinements.

The computational performance was not subject to detailed study in this work. How-
ever, as per the construction of the new method, the computational cost for the viscoelastic
stress calculation was significantly reduced when compared to the previous Lagrangian–
Eulerian method. Furthermore, it has previously been shown that the Lagrangian formula-
tion of the constitutive equation is highly suitable for parallel calculations, including for
GPU-acceleration. This also applies for the new method.

In conclusion, the new method is an important step in the development of efficient
and useful tools for simulating industrial processes involving viscoelastic fluids. In future
research, the proposed Lagrangian–Eulerian method will be used for the numerical inves-
tigation of viscoelastic free surface flows with moving objects, including for viscoelastic
adhesive application and parts assembly, as well as for additive manufacturing processes.
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Appendix A. Oldroyd-B Fluid Fully Developed Channel Flow

Assuming steady two-dimensional, fully developed channel flow, the constitutive
equation reduces do

τxy = η
∂u
∂y

, (A1)

τxx − 2λτxy
∂u
∂y

= 0, (A2)

τyy = 0. (A3)

Insertion of τxy from (A1) into (A2) gives

τxx = 2λη

(
∂u
∂y

)2
, (A4)

The momentum equation in the flow direction reduces to
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∂p
∂x

= μ
∂2u
∂y2 +

∂τxy

∂y
, (A5)

which by insertion of τxy from (A1) becomes

∂p
∂x

= μ
∂2u
∂y2 +

∂

∂y

(
η

∂u
∂y

)
= (μ + η)

∂2u
∂y2 , (A6)

Integration of (A6) with respect to y once yields

y
∂p
∂x

= (μ + η)
∂u
∂y

+ C1, (A7)

where C1 is an integration constant. Due to the symmetry condition ∂u
∂y |y=0 = 0, which by

insertion of y = 0 into (A7) leads to C1 = 0. Inserting C1 = 0 to (A7) and integrating in y
again yields

y2

2
∂p
∂x

= (μ + η)u + C2 (A8)

where C2 is an integration constant. Using the no-slip condition uy=h = 0 gives

C2 =
h2

2
∂p
∂x

, (A9)

which inserted to (A8) after some rearrangement gives

u(y) = − 1
2(μ + η)

∂p
∂x

(
h2 − y2

)
, (A10)

or, simply,

u(y) = A(h2 − y2), (A11)

where a is a constant.
Now, the mean velocity U can be calculated as

U =
1
h

∫ h

0
u(y)dy =

A
h

∫ h

0
(h2 − y2)dy = . . . =

2
3

Ah2, (A12)

such that A = 3U/(2h2). The velocity can then be expressed in terms of the mean velocity
as

u(y) =
3U
2h2 (h

2 − y2) =
3U
2

(
1 − y2

h2

)
. (A13)

Hence, the velocity gradient reads

∂u
∂y

= −3Uy
h2 , (A14)

which gives the final expressions for τxy and τxx.
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Abstract: In this work, we present the implementation and verification of HiGTree-HiGFlow solver
(see for numerical simulation of the KBKZ integral constitutive equation. The numerical method
proposed herein is a finite difference technique using tree-based grids. The advantage of using
hierarchical grids is that they allow us to achieve great accuracy in local mesh refinements. A
moving least squares (MLS) interpolation technique is used to adapt the discretization stencil near
the interfaces between grid elements of different sizes. The momentum and mass conservation
equations are solved by an implicit method and the Chorin projection method is used for decoupling
the velocity and pressure. The Finger tensor is calculated using the deformation fields method and a
three-node quadrature formula is used to derive an expression for the integral tensor. The results of
velocity and stress fields in channel and contraction-flow problems obtained in our simulations show
good agreement with numerical and experimental results found in the literature.

Keywords: KBKZ integral constitutive equation; tree-based hierarchical grids; deformation fields

1. Introduction

Over the years, several software programs have been developed to solve problems
involving complex viscoelastic fluid flows. Due to a lack of generality, some challenges
can arise when trying to solve problems with specific characteristics. In most works that
develop numerical methods for simulating viscoelastic flows, the constitutive equations
are approximated by differential equations, such as the Oldroyd-B [1–3], Upper-Convected-
Maxwell (UCM) [4,5], Phan–Thien–Tanner [6,7], eXtended Pom-Pom [8,9] models, among
others. However, advances in computational resources have motivated researchers to
consider more sophisticated rheological models that are expressed in integral form instead
of differential equations. In this sense, integral models allow a better approximation of the
behavior of viscoelastic fluids. However, they require a greater computational effort and
this is because, at each moment of the simulation, it is necessary to store and access the
history of the entire deformation of the fluid (since it previously started to be deformed).
Among the integral models that we found in the literature, the constitutive equation KBKZ-
PSM has been considered by many researchers who study numerical methods for this kind
of fluid. A detailed discussion of the importance of the KBKZ-PSM integral constitutive
model and the development of numerical techniques to approximate integral models can
be found in the works of Tanner [10] and Mitsoulis [11]. The vast majority of problems
using the KBKZ-PSM integral model involve confined flows, such as channel-flows [12,13]
and flows in abrupt contractions [3,14,15]. Flow problems possessing free surface(s) have
also been considered by some researchers. More interesting flow problems that involve
transient free surface(s) and integral models are the filament stretching [16] and a numerical
study of the die swell phenomenon [17–21].
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On the other hand, a numerical solution of partial differential equations in general
grids has been questioned by many researchers in recent decades. Many schemes try to
combine efficiency and simplicity with the flexibility of unstructured mesh networks. A
major advantage of using such meshes is the ability to refine the mesh locally, improving
accuracy in specific regions without dramatically increasing the number of unknowns.
Among all possible ways of discretizing the spatial domain (simplified meshes, curvilinear
meshes, among others), hierarchical meshes based on Cartesian trees are a common choice.
They allow the development of finite difference methods, without the hassle of mapping
and transforming distorted elements or dealing with general and complicated stencils, as
in non-Cartesian grids. Since flows are generally computed on facets aligned with the
Cartesian axis, numerical schemes are generally simpler to derive. However, these facets
are generally shared by different numbers of elements on each side, which is the main
challenge in implementing numerical methods. Different techniques to deal with this
problem have been developed in the literature, most of them restricted to quadtree meshes
(in 2D) or octree (3D) meshes, which are special cases of hierarchical grids represented by
data structures quadtree/octree. Despite this restriction, these tree-based data structures
are generally good enough and still an adequate choice for adaptive grids and moving
borders [22]. Thus, we intend to implement in the present work the transient KBKZ-
PSM model through a method of finite differences in hierarchical meshes that employ
interpolations using the moving least squares (MLS) method [23]. The developed numerical
method is verified by using mesh refinement in channel flow and we show results from the
simulation of the 4:1 contraction problem using a KBKZ fluid. Our results are compared
to the ones obtained using the OpenFOAM system [24], which uses finite volumes in the
discretization of Navier–Stokes equations. We used the OpenFOAM v2006 version to
implement the equations with the finite volume method.

2. Governing Equations

The governing equations for transient, isothermal and incompressible flows are the
mass conservation and the equation of motion, which, in dimensionless form, can be
written as follows (for details, see Tomé et al. [21]):

∇ · v = 0 , (1)
∂v

∂t
+∇ · (vv) = −∇p + ε∇2v +∇ · S + F . (2)

Using the EVSS transformation [25], the extra-stress tensor τ is written as

τ = S + ε γ̇ , where γ̇ = ∇v + (∇v)t and ε =
c

Re
; c > 0,

where S is a non-Newtonian tensor, v is the velocity field, p is the kinematic pressure and t
is the time. In these equations, F represents the external forces, ε is a stability parameter (as

shown in Araújo et al. [26]), Re =
ρ0UL

η0
is the Reynolds number, η0 is the zero-shear-rate

viscosity, ρ0 is the fluid density and U and L are the velocity and length scales, respectively.
In this work, the rheological model that defines the behavior of fluid flow is the

KBKZ-PSM [11] integral constitutive equation, which is shown below:

τ(t) =
∫ t

−∞
M(t − t′)H(I1, I2)Bt′(t)dt′ , (3)

where Bt′(t) is the Finger tensor and M is the memory function, which adopts the follow-
ing form:

M(t − t′) =
m1

∑
k=1

ak
λkDe

e
− t−t′

λk De (4)
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and H is the Papanastasiou–Scriven–Macosko [25] damping function, which is calculated
using the following equation:

H(I1, I2) =
α

α − 3 + βI1 + (1 − β)I2
. (5)

The parameters λk, ak, k are relaxation times, relaxation moduli and the number of
relaxation modes, respectively. The quantities I1 = tr[Bt′(t)] and I2 = 1

2
(
(I1)

2 − tr[B2
t′(t)]

)
are the first and second invariants of Bt′(t), respectively. The parameters ak, λk, α, β are

obtained from a curve fitting to the rheological properties of the fluid. De = λre f
U
L

is the

Deborah number, λre f = ∑ akλk
2

akλk
is the average relaxation time and the zero-shear-rate

viscosity is written as η0 = ∑ akλk.

3. Numerical Method

In this section, we present the methodology used in this work, the HiGTree/HiGFlow
and the OpenFoam systems.

3.1. HiGTree/HiGFlow System

The HiGFlow system is a C language software, developed at ICMC-USP, which brings
together a series of methods for the numerical simulation of flow of single-phase and
multiphase fluids, using the finite difference technique. This system is being developed in
a modular way, allowing new techniques and methods to be easily tested and added to the
system. One feature is that the user chooses the dimension and the modules to be used
in the program (such as single-phase, Newtonian, generalized Newtonian, viscoelastic)
at compile time. In the same way, the user specifies the numerical techniques to be used
in the input files: projection method, numerical scheme for the convective term, model
of the constitutive equation for viscoelastic flows, in addition to the various parameters
for simulation. In this work, all tests were performed in two dimensions (2D), and the
following numerical techniques were chosen: an implicit Euler method to compute the
velocity, the CUBISTA scheme to discretize the convective terms and an explicit Euler
method for the convection of the Finger tensor.

On the other hand, the HiGTree system is responsible for creating the data structure,
domains, linear and non-linear system solvers, as well as carrying out the interpola-
tions schemes. Parallelization strategies are also implemented through the PETSc library
(Portable, Extensible Toolkit for Scientific Computation), which contains a set of functions
implementing the best-known methods for representing matrices, vectors and data in
parallel, solution of linear systems with pre-conditioning, solution of linear and non-linear
systems, ordinary differential equations, etc.

3.1.1. Hierarchical Grids

Equations (1) and (2) are approximated using finite differences in hierarchical Carte-
sian meshes. An illustrative representation of the mesh is given in Figure 1a and its
structure of dependencies is illustrated in Figure 1b. In this data structure, each cell can be
partitioned into distinct geometric shapes. Such generalization imposes difficulties in the
numerical approximation in finite differences.
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(a) (b)

Figure 1. HiGTree data structure: (a) computational cell representation, (b) tree-based data structures.

For example, considering Figure 2, suppose that we are interested in approximating
the second derivative in y direction centered on Uc. Using second-order finite differences,
we have:

∂2Uc

∂y2 ≈ 1
δy

(Ut − 2Uc + Ub); (6)

We can notice that, for this case, Ub does not match known values in the mesh
(recalling that the components of the velocity field are computed in the facet centers), but
it can be calculated by interpolation using values of neighboring cells as shown in the
following equation:

Ub =
Vb

∑
k=1

wb
kUk; (7)

The number of neighbors Vb is defined according to the imposed precision. The
weights wb

k = wk(x) are calculated using the moving least squares (MLS) method [23].

Figure 2. Finite difference 2nd-order stencil discretization.

3.1.2. Calculation of v(x, tn+1) and p(x, tn+1)

Upon discretizing Equation (2) in time using, for instance, a first-order explicit dis-
cretization, the idea of the incremental projection method is to use the newest previous
pressure field, which yields an explicitly computed velocity field v∗ that is not divergence-
free, through the solution of the following equation:

v∗ − vn

δt
+ vn · ∇vn = −∇pn + ε∇2vn +∇ · Sn + Fn (8)
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The corrected velocity field can be computed from the decomposition itself:

v∗ = vn+1 +∇ϕ, (9)

where ϕ = −δt(pn+1 − pn), which is obtained by solving the Poisson equation:

∇2 ϕ = ∇.v∗, (10)

with n.∇ϕ = 0 on the boundaries ∂Ω. Equation (10) can be easily derived by obtaining the
divergence of Equation (9) (for more details, see [23,27]).

3.1.3. Calculation of the Extra-Stress Tensor τ(x, tn+1)

We follow the methodologies described in Tomé et al. [21] and Araújo et al. [26] to
calculate the extra-stress tensor τ(x, tn+1). The constitutive Equation (3) can be written
as follows:

τ(tn+1) =
∫ t−tc

−∞
M(tn+1 − t′)H(I1, I2)Bt′(tn+1)dt′

+
∫ t

t−tc
M(tn+1 − t′)H(I1, I2)Bt′(tn+1)dt′ ,

(11)

where tc = t if t < sc or tc = sc if t ≥ sc. The parameter sc (sc is a time interval) depends on
the relaxation parameter λre f . This methodology is called s-approach and is described in
more detail in Hulsen et al. [28].

Now, let t′j, j = 0, 1, · · · , N, be (N + 1)-points in the interval [tn+1 − tc, tn+1], where
N is a fixed number. Then, the integral equation can be written as:

τ(tn+1) =
∫ t−tc

−∞
M(tn+1 − t′)H(I1, I2)Bt′(tn+1)dt′

+

N−2
2

∑
j=0

∫ t′2j+2

t′2j

M(tn+1 − t′)H(I1, I2)Bt′(tn+1)dt′ ,
(12)

where t′0 = 0 or t′0 = tn+1 − tc.
We consider Bt′(tn+1) = Bt−tc(tn+1) for t′ < tn+1 − tc and, therefore, the first inte-

gral becomes:∫ t−tc

−∞
M(tn+1)H(I1(Bt−tc(tn+1)), I2(Bt−tc(tn+1)))Bt−tc(tn+1)dt′ (13)

which can be solved without any further issues.
Regarding the integrals within the summation operator in Equation (12), we use the

method of undetermined coefficients (with a second-order quadrate formula) for their cal-
culation (for details, see Tomé et al. [21]). In the following sections, we describe the method
used to compute the tensor Bt′(tn+1)

(tn+1) and how the points t′j(tn+1) are calculated.

• Discretization of the time interval [t − tc, tn+1]
One of the key issues of the deformation fields method is how the integration nodes
t − tc = t′0 < t′1 < · · · < t′N = tn+1 are distributed over the interval [t − tc, tn+1],
because such distribution can affect the accuracy of the results when solving complex
flows. In Araújo et al. [26], the authors presented one discretization using a function
that allowed them to determine the distribution of the time-integration points, which
showed excellent results in some of the specific flow cases studied (such as extensional
flows). However, care must be taken if we plan to generalize these results to more
complex flows. In this work, we decide to use the more generic methodology pre-
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sented in Tomé et al. [21]. We consider time-dependent flows so that the integration
nodes are calculated using a geometric progression at time tn+1 as follows:

1. Set t′0 = t − tc and t′N = tn+1;
2. Using tc, where tc = tn+1 if t < sc or tc = sc if t ≥ sc make t′N−j = t′N − δt qj,

j = 1, 2, · · · , N − 1, where q = (tc/δt)1/N , δt is the time-step.

• Computation of the Finger tensor Bt′(tn+1)
(x, tn+1)

One of the difficulties in the numerical simulation of viscoelastic flows using integral
constitutive models is how to calculate accurately the strain history. In finite ele-
ments, this can be accomplished by a particle-tracking method based on the velocity
field (see [12]), but, here, a different approach is taken. We follow the ideas of the
deformation fields method [28] in which the Finger tensor is obtained by solving an
appropriate evolution equation, where Bt′(t)(x, t) is given by:

∂

∂t
Bt′(t)(x, t) + v(x, t) · ∇Bt′(t)(x, t) = [∇v(x, t)]T · Bt′(t)(x, t) + Bt′(t)(x, t) · ∇v(x, t) , (14)

with the condition Bt′=tn+1
(x, tn+1) = I.

The Finger tensor Bt′(t)(x, tn+1) is calculated using the Euler method and the high-
order upwind scheme CUBISTA [29] is used to discretize the convective terms. We
point out that the Finger tensor Bt′(t)(x, tn+1) is calculated at the past times t′(t). The
updated Finger tensor Bt′(tn+1)

(x, tn+1) is evaluated using a second-order interpolation
method that is discussed in detail by Tomé et al. [3].

3.2. OpenFOAM System

All numerical experiments carried out in the present work will be compared with
the results obtained using the OpenFOAM solver for integral models implemented by
Araujo et al. [26]. The meshes were adapted in order to have simulations with similar
conditions (and as close as possible) to the HiGFlow meshes. For the simulation of the
contraction problem, for instance, the mesh shown in Figure 3 was used, where five regions
with different refinements in the x direction can be observed. Notice that the upstream
and downstream regions of the contraction geometry have volumes with exactly the same
dimensions used in the HiGFlow simulations. On the other hand, a regular mesh was used
for the channel-flow case. It is worth noting that the simulations were performed using the
PISO method and half of the computational domain, considering the flow symmetry and
the lower computational cost.

The coupling between stress and velocity was performed using the Improved Both
Sides Diffusion (iBSD) [30] method, which adds a diffusive term on both sides of the
momentum equation. For the solution of the linear systems resulting from the discretization
of the velocity, the Bi-CGSTAB (BiConjugate Gradient Stabilized) method [31] was used
with DILU (Simplified Diagonal-based Incomplete LU preconditioner) preconditioner, and,
for the pressure, the conjugated preconditioned gradients (PCG) method was used with
DIC (Simplified Diagonal-based Incomplete Cholesky) preconditioner.

In OpenFOAM, it is possible to choose the methods of discretization for some terms
of an equation—for instance, diffusive or convective terms. Regarding this work, the
numerical schemes used are described in Table 1.
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Figure 3. Computational domain used in OpenFOAM for the contraction problem.

Table 1. Numerical schemes in OpenFOAM.

Term Scheme

∇ · vv Minmod
∇ · vB Minmod
∇ · τ Gauss linear
∇p Gauss linear
∇v Gauss linear
∇2v Gauss linear corrected

Computation of the Finger Tensors

In OpenFOAM implementation, the Finger tensors, B(x, t, t − s), are labeled by the
elapsed time, s. The integration points, sk, are distributed in the interval [t − smax, t],
according to the following expression:

sk = tc × eξk − 1
eξN − 1

(15)

where tc = min{t, smax}, N is the number of integration points and ξ is a parameter that
depends on the value of s1 (for more details, see [26]). All the simulations were performed
using s1 = Δt and N = 51.

The Finger tensors B(tn, tn − sk) are convected according to Equation (14). We use a
Euler explict scheme to obtain the fields B(tn+1, tn − sk). These fields are then interpolated,
allowing us to calculate the fields B(tn+1, tn+1 − sk).

4. Results

In this section, we present a verification of the methodology described in Section 3.1.
Initially, the methodology is applied to the channel-flow problem. Using several meshes
(uniform and non-uniform), the HiGFlow system showed good agreement with the solution
obtained with the OpenFOAM system. Results of meshes’ orders and errors are also shown.
Lastly, the numerical simulation of contraction flows is presented. The results are compared
with solutions of the OpenFOAM system [26], Freeflow system [3], Mitsoulis [14] and
Quinzani [15].
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4.1. Mesh Independence in Channel-Flow

The numerical method described in Section 3 was applied to simulate the flow of
a KBKZ fluid in a 2D planar channel (see Figure 4) of length 10L and height L, where
L = 0.006 m. At the channel entrance, a dimensionless parabolic velocity profile given
by u(y) = 4y(1 − y) was used. The scaling parameters were the centerline velocity,
U = 0.1 ms−1, and the fluid simulated was FLUID S1, whose parameters are described
in Table 2. In this flow, we had Re = 0.34, De = 1, ε = 0.1, sc = 0.1s and the number of
deformation fields was N = 100.

10

1

x

y u

Figure 4. Dimensionless representation of the channel domain.

Table 2. Fluid parameters used in this work. Adapted from [15].

FLUID S1

ρ0 = 801.5 kg/m3, α = 10, β = 0.7,
λre f = 0.06 s η0 = 1.424 Pa·s

k λk (s) ak (Pa) ηk (Pa·s)

1 0.6855 0.058352 0.0400
2 0.1396 1.664756 0.2324
3 0.0389 14.560411 0.5664
4 0.0059 99.152542 0.5850

In order to verify the mesh convergence of the results, the flow was simulated using
several meshes (see Tables 3 and 4 and Figure 5).

Table 3. Uniform meshes.

Meshes dx = dy

MI (8 × 80) 0.125
MII (16 × 160) 0.0625
MIII (32 × 320) 0.03125
MIV (64 × 640) 0.015625

MV (128 × 1280) 0.0078125

Table 4. Non-uniform meshes used in the 2D planar channel.

Refined Meshes—Two Levels

Meshes Larger dx Smaller dx

MRI 0.125 0.0625
MRII 0.0625 0.03125
MRIII 0.03125 0.015625

Refined Meshes—Three Levels

Meshes Larger dx Middle dx Smaller dx

MRVI 0.125 0.0625 0.03125
MRV 0.0625 0.03125 0.015625

36



Appl. Sci. 2021, 11, 4875

Figure 5 shows the non-uniform meshes, where we can see the structure of the mesh.
In Figure 5a, the mesh MRI (with two levels of refinement) is depicted, and in Figure 5b,
we can see the mesh MRVI (with three levels of refinement).

(a) Mesh MRI (b) Mesh MRVI

Figure 5. Refined meshes: (a) two levels and (b) three levels.

The u-profiles are illustrated in Figure 6, where the mesh convergence can be seen. We
adopted mesh MV as a reference mesh (black line) and the solutions of the refined meshes
(full symbols) and uniform meshes (empty symbols) are shown. In this figure, we also
show the OpenFoam system profile using the mesh MV. We saw good agreement between
the solutions obtained in both systems.

Our results for the tensor components τxx and τyy are presented in Figure 7, where
we can also see good agreement between the numerical solutions of the HiGFlow and the
OpenFOAM systems.
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Figure 6. The u-profiles used by simulation of channel problem.
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Figure 7. Comparison between the sumerical solutions of the tensor components obtained using HiGFlow (with different
meshes) and OpenFOAM (mesh MV). (a) τxx and (b) τyy tensor components.

To verify the convergence, we show the errors (L1 , L2 , L∞) and the orders in Table 5.
The errors are calculated using the following equations:

L1 =
∑n

0 |u(i)MV − u(i)∗|
∑n

0 |u(i)∗|
, L2 =

√
∑n

0 (u(i)MV − u(i)∗)2

∑n
0 u(i)∗2 and L∞ =

max|u(i)MV − u(i)∗|
max|u(i)∗|

where u(i)MV is the solution in mesh MV and u(i)∗ is the solution in meshes MI − MIV
and MRI − MRV, u(i) is the ux profile in points i = (x(i), y(i)) in which x(i) = 5 and

y(i) = i ∗ 0.125, i = 0, 1, · · · , 8. The orders Q for uniform meshes Q =
log
(

EM2\EM1

)
log
(

h2\h1

) show

values close to 2 (Q ≈ 2), which is the correct value that we expected to observe, since
the velocity is calculated using an implicit Euler method. The values EM2 and EM1 are the
errors (in the norms L1, L2 or L∞) for two consecutive meshes (the dx value in M2 is lower
than in M1) and h2 and h1 are the dx values in their respective meshes.

Table 5. Errors and orders for u-velocity. The mesh MV was assumed as a reference solution.

ux Errors

Mesh L1 L2 L∞

MI 1.046 × 10−3 1.012 × 10−3 1.022 × 10−3

MII 1.718 × 10−4 1.815 × 10−4 2.327 × 10−4

MIII 3.602 × 10−5 3.657 × 10−5 4.493 × 10−5

MIV 5.619 × 10−6 5.897 × 10−6 7.583 × 10−6

RMI 4.809 × 10−4 5.598 × 10−4 7.115 × 10−4

RMII 1.007 × 10−4 1.018 × 10−4 1.110 × 10−4

RMIII 2.253 × 10−5 2.238 × 10−5 2.382 × 10−5

RMVI 5.306 × 10−4 5.452 × 10−4 5.918 × 10−4

RMV 1.077 × 10−4 1.129 × 10−4 1.250 × 10−4

ux Orders

Mesh L1 L2 L∞

MI-MII 2.606 2.479 2.134
MII-MIII 2.254 2.311 2.373
MIII-MIV 2.680 2.633 2.567
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4.2. Numerical Simulation of 4:1 Abrupt Planar Contraction Problem

In this section, we show the simulations for the 4:1 abrupt planar contraction flow.
This problem is interesting because, for instance, the flow near the contraction is a complex
mixture of shear and elongation, and secondary fluid motions might exist, even in the
Newtonian limit (see [15]). For this reason, contraction flows have been extensively studied
previously in the literature (see [3,14,15,26]).

Figure 8 shows the domain representation, where we adopted a dimensionless
parabolic inlet velocity profile u(y) = 3

8
1
4 (2− y)(2+ y). The scaling parameter L = 0.0064 m

is the height of the small channel, and we used N = 50 deformation fields, ε = 0.1 and the
time interval sc = 0.1 s. In Table 6, we report the scaling parameters of average velocity
ū used in all simulations and the dimensionless parameters Re = ρLU

η0
, De = λU

L , De(γ̇)
(see [15]) and the characteristic shear rate γ̇.

4

20 25

1x
y

u

Figure 8. Domain representation.

Table 6. Flow parameter values used in the contraction problem.

Planar Contraction Flows

ū
[m

s
]

γ̇
[

1
s
]

De(γ̇) Re De

0.044 13.9 0.38 0.16 0.41
0.100 31.3 0.55 0.36 0.94
0.150 48.4 0.66 0.56 1.45
0.221 69.1 0.77 0.80 2.07

The mesh M1 used in these simulations is shown in Figure 9. We used three levels
of refinement, with the most refined part near the contraction region. We also used one
uniform mesh M2 for De = 0.94 in order to check the convergence solutions in two meshes.
In M2, dx = dy = 0.03125 m, and in M1, we use small values of dx = dy = 0.03125 m as
well as larger values, dx = dy = 0.125 m.

Figure 9. Graphical representation of the mesh M1 used in the contraction simulation.
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In Figure 10, we illustrate the centerline axial profile velocity ux(y) solutions for
different values of the Deborah number De = 0.41, 0.94, 1.45 and 2.07 for the HiGFlow
(green lines) and OpenFOAM (black lines) systems using mesh M1. The experimental
results of Quinzani et al. [15] and numerical results of Mitsoulis [14] and Tomé et al. [3]
(for De = 1.45) are also shown for comparison purposes. For the case with De = 0.94,
we show two solutions using our methodology in mesh M1 (non-uniform mesh) and
mesh M2, where we can see good agreement between the solutions. For this reason, we
adopted the M1 mesh to simulate the other cases with different values of number De.
For the profile ux(y), the HiGFlow system showed good agreement with the OpenFOAM
solutions in the regions before and after the contraction. Near to contraction (see Figure 10),
we have a region of instability and the methodology behaves differently, but our results
showed similar behavior to the instabilities presented in the works of Quinzani et al.
(orange triangles) [15], Mitsoulis [14] (blue bullet) and Tomé et al. (violet square) [3].

Figure 10. Centerline axial velocity profiles obtained using HiGFlow (green lines) and OpenFOAM
(black lines). Experimental [15] and numerical results [3,14] found in the literature are also shown for
comparison purposes.

In Figure 11, we show the numerical solution using HiGFlow (green lines) and Open-
FOAM (black lines) systems for the tensor components τxx and τyy with the same flow
parameter values reported in Table 6 using M1 and M2 for the case with De = 0.94. The
methodologies presented in this work are different. OpenFOAM uses the finite volume
method while HiGFlow approximates the equations using finite differences. Therefore,
the solutions obtained will not be equal but should be comparable. Outside the contrac-
tion region, the OpenFOAM and HiGFlow solutions are very similar for all values of De.
However, in the region close to the contraction, the solutions obtained using OpenFOAM
showed a higher peak (x ≈ 0) but this is mostly seen in the cases with the highest values
of De.
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(a) (b)

Figure 11. Numerical results for (a) τxx and (b) τyy using HiGFlow system (HF-M1 e HF-M2) and OpenFOAM system
(OF-M1).

In Figure 12a, we show the comparison between the first normal stress difference
values N1 = τxx − τyy for two different cases of Deborah number, De = 0.41 and De = 1.45.
For better visualization, the other two values of De (see Table 6) are illustrated in Figure 12b,
where we can see that the values of HiGFlow (green lines) have good agreement with
experimental data (orange triangles) reported by Quinzani [15], while the solution using
OpenFOAM was similar to the solution presented by Mitsoulis [14].

(a) (b)

Figure 12. The first normal stress differences N1: (a) for De = 0.41 and De = 1.45; and (b) for De = 0.94 and De = 2.07.

In Figure 13, we compare the streamlines obtained using OpenFOAM (a) and HiGFlow
(b) with a fixed value of De = 2.07. We can see that there is vortex formation in both cases
and that the solutions are relatively comparable.
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Figure 13. Streamlines of the contraction flow problem with De = 2.07. (a) OpenFOAM and
(b) HiGFlow.

5. Discussion

The work aims to present the numerical simulation of the KBKZ integral constitu-
tive equations for incompressible and transient complex flows. We used a new solver
HiGTree/HiGFlow lately developed by Souza et al. [23]. In this solver, we have imple-
mented the methodology described in Section 3.1 to simulate viscoelastic flows modeled by
integral constitutive equations. Initially, the numerical technique was verified by refined
mesh in channel flows. Using the FLUID S1 (see Table 2), we performed nine simulations
using non-refined and refined meshes. For comparison purposes, a mesh was chosen and
the simulation using the OpenFOAM solver [26] was performed. In these simulations,
we can see that, although the methodologies used in HiGFlow and OpenFOAM are quite
different (the first uses finite differences and the second uses finite volume), we obtained
very similar results in both systems. We also verified that the errors decrease with the mesh
refinement and that the order of convergence of the velocity was around two, as expected.

A classic problem in the simulation of integral viscoelastic flows is known as 4:1
abrupt contraction and, thus, the literature for this problem is extensive. We chose to check
our methodology for the four values of De presented in Mitsoulis [14]. In addition to
the comparison with the results of this author, we performed the simulations using the
OpenFOAM solver [26] and also compared our results with the experimental ones from
Quinzani [15] and with the numerical results from FreeFlow [3]. We know that, in the
contraction region, there are singularities and numerical techniques that might exhibit
different behaviors. Although the values obtained by us in this work differ somewhat from
the values obtained by Mitsoulis [14] or OpenFOAM [26], they were quite comparable
to the experimental values of Quinzani [15]. Thus, we verified that the methodology
presented here is capable of simulating complex flows in transient fluid regimes governed
by integral constitutive models using the rapid technique of finite differences in hierarchical
meshes with local refinement.

The computational efficiency of the models has been previously studied [3,21,26].
However, it is worth mentioning that the methods used in the present work used fewer
integration points (deformation fields) compared to the points used in the early work of
Hulsen et al. [28] and are similar to those used more recently by Hulsen and Anderson [32].
This improvement is due mainly to the distinct methodologies adopted to obtain the
integration points, which allow efficient distribution of the elapsed time. Although the
results presented here are two-dimensional, our methodology is still able to simulate flows
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in higher dimensions (the user just has to specify the dimension (2, 3 or higher) in the input
data file). Our future work will be to present simulations in three dimensions for classic
problems. In three dimensions, for example, integral models are still computationally
expensive, as there is a need to store and connect a fixed N number of fields to each cell.
Therefore, we will also work on ways to improve or modify the integral calculation—for
instance, as was done in the recent work of Hulsen [32].
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Abstract: Singularities in the stress field of the stagnation-point flow of a viscoelastic fluid have
been studied for various viscoelastic constitutive models. Analyzing the analytical solutions of these
models is the most effective way to study this problem. In this paper, exact analytical solutions of
two-dimensional steady wall-free stagnation-point flows for the generic Oldroyd 8-constant model
are obtained for the stress field using different material parameter relations. For all solutions, com-
patibility with the conservation of momentum is considered in our analysis. The resulting solutions
usually contain arbitrary functions, whose choice has a crucial effect on the stress distribution. The
corresponding singularities are discussed in detail according to the choices of the arbitrary func-
tions. The results can be used to analyze the stress distribution and singularity behavior of a wide
spectrum of viscoelastic models derived from the Oldroyd 8-constant model. Many previous results
obtained for simple viscoelastic models are reproduced as special cases. Some previous conclusions
are amended and new conclusions are drawn. In particular, we find that all models have singularities
near the stagnation point and most of them can be avoided by appropriately choosing the model
parameters and free functions. In addition, the analytical solution for the stress tensor of a near-wall
stagnation-point flow for the Oldroyd-B model is also obtained. Its compatibility with the momentum
conservation is discussed and the parameters are identified, which allow for a non-singular solution.

Keywords: viscoelastic models; stagnation-point flow; stress singularities; Weissenberg numbers

1. Introduction

The working fluids encountered in practical applications and industry are often
non-Newtonian, and research on this type of fluids has been conducted for decades. In
theoretical research, a variety of non-Newtonian fluid models has developed [1]. One
group of these models is of the rate type which involves differential transport equations
for the stress tensor. As these models are highly complex and mostly non-linear, exact
analytical solutions can only be obtained for very special flow cases. Many theoretical
works limit themselves to investigating the distribution of stress tensor in simple canon-
ical viscoelastic flows by means of relatively simple models, such as the Oldroyd-B and
Maxwell-B model, see, e.g., [2–4]. A classical model problem in this context, and also to be
considered presently, is the similarity solution for the velocity field in a stagnation-point
flow described, e.g., in [5]. Therein, the velocity distribution is usually assumed in the
form (u, v) = (x f ′(y),− f (y)), though for a wall-free stagnation-point flow or a creeping
stagnation-point flow far away from the wall, the velocity profile reduces to f (y) = ay,
i.e., (u, v) = (ax,−ay), where a is constant rate of the strain. Under this assumption,
Phan-Thien [6,7] obtained exact solutions to the plane and axisymmetric stagnation-point
flows for both Maxwellian and Oldroyd-B fluids, respectively, where the governing equa-
tions were reduced to a system of ordinary differential equations. It was shown that in a
stagnation-point flow with a certain Weissenberg number, there is a singularity in the stress
field. Renardy [8] analyzed a steady creeping flow of the upper convected Maxwell (UCM)
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fluid, in which the shear stress was assumed to be zero, and the normal stress depended
only on the transverse coordinate of the outflow. His solution demonstrated that a singu-
larity exists not only at the stagnation point, but also along the entire streamline passing
the stagnation point downstream. Thomases et al. [9] used the same ansatz for the velocity
field and solved the stress field of an Oldroyd-B fluid by using the method of characteristics.
Their results showed that the behavior of the solutions is very sensitive to the Weissenberg
number. However, the exact analytical solutions were only constructed for the model
equations of the stress field without considering the compatibility with the momentum
conservation equation. Cruz et al. [10] obtained a general analytical solution for a steady
planar extensional wall-free stagnation-point flow of a viscoelastic fluid described by the
UCM model. This solution depends on both space coordinates, and represents an extension
of the previous solutions considering only the dependence of the transverse coordinate.
Recently, Meleshko et al. [11] extended the analysis of the stress distribution in a wall-free
stagnation-point flow from the UCM model to the Johnson–Segalman model and also took
the momentum conservation equation into account. Their solution demonstrates that the
Johnson–Segalman model has a non-removable logarithmic singularity.

In a near-wall stagnation-point flow, the velocity must satisfy the no-slip con-
dition at the wall, so the velocity profile for the wall-free stagnation-point flow, i.e.,
(u, v) = (x f ′(y),− f (y)) with f (y) = ay, is here no longer suitable. In this case, the
function f (y) could take the form of f (y) = ayn with n > 1 for an impermeable wall
located at y = 0. Under the simplest assumption f (y) = ay2, Becherer et al. [12] and
Van Gorder et al. [13], respectively, considered an UCM fluid and presented the exact solu-
tions to the coupled PDEs of the viscoelastic stress. However, they did not analyze the com-
patibility of their solutions with the momentum conservation equation. Van Gorder [14]
analyzed the same problem and showed that the solution for the stress components fails
to satisfy the momentum conservation equation except in the linear case f (y) = −ay,
corresponding to a wall-free stagnation-point flow. Therefore, to investigate near-wall
stagnation-point flows, a more general velocity profile obeying the momentum conserva-
tion has to be proposed.

All the models mentioned above can be derived from the Oldroyd 8-constant model,
and many other models are also special cases of the Oldroyd 8-constant model [15]. It is
interesting to investigate whether the other viscoelastic models have similar singularities
as the Oldroyd-B, Maxwell-B and Johnson–Segalman models. For this purpose, we will
search for exact analytical solutions for the Oldroyd 8-constant constitutive framework
of a wall-free stagnation-point flow satisfying the compatibility with the conservation of
momentum by means of the method of characteristics and analyze the effect of various
model parameters on the solutions with regard to their singularity. Many conclusions
previously obtained by other researchers for simple viscoelastic constitutive models are
either confirmed or rectified. Some new conclusions are drawn. In particular, we find that
all models have singularities near the stagnation point and most of them can effectively be
avoided by appropriately choosing the model parameters and free functions. For the near-
wall stagnation-point flow satisfying the no-slip conditions, it is impossible to analytically
solve the constitutive equations of the Oldroyd 8-constant model. Instead, we focus on
the Oldroyd-B model and analyze the compatibility of the solution with the momentum
conservation equation.

2. Model Equations

2.1. Conservation Equations

The balance equation of momentum and mass conservation for an incompressible
fluid take the form:

ρ
Du

Dt
= ∇ · σ + ρf, (1)

∇ · u = 0, (2)
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where ρ is the fluid density, u the flow velocity, σ is the Cauchy stress tensor, and f the
volume force which is neglected in the present study. For a Maxwell fluid, σ can be split in
two parts:

σ = −pI + Tp, (3)

where Tp is the polymetric stress contribution and p the dynamic pressure. For an Oldroyd-
type fluid, a Newtonian stress part with a viscosity ηs is added to the total stress and the
Cauchy stress tensor is given by

σ = −pI + 2ηsD + Tp = −pI + T. (4)

here D = 1
2 (∇uT +∇u) is the symmetric rate-of-strain tensor. T is called the deviatoric

stress tensor with T = 2ηsD + Tp.

2.2. The Oldroyd 8-Constant Model

The most general linear viscoelastic model is the Oldroyd 8-constant model [16]
described by

T + λ1
◦
T + μ0(trT)D − μ1(TD + DT) + ν1[tr(TD)]I

= 2η0[D + λ2
◦
D − 2μ2D2 + ν2tr(D2)I],

(5)

where λ1, λ2, μ0, μ1, μ2, ν1, ν2 are material constants with the dimension of time. η0 is the

total viscosity split by η0 = ηp + ηs and ηp is the polymer contribution to the viscosity.
◦
T is

the corotational objective time derivative of T defined as

◦
T :=

dT

dt
− WT + TW, (6)

where W = 1
2 (∇uT −∇u) is the skew-symmetric vorticity tensor. Giesekus [1] has ex-

tended the Oldroyd 8-constant model by adding the term ν0(trT)I to the left-hand side of
(5), but this extension will not be considered in the present investigation.

Most viscoelastic models can be derived from the Oldroyd 8-constant model [15].
For example, setting μ1 = λ1, μ2 = λ2 = ηs

η0
λ1, and μ0 = ν1 = ν2 = 0 in (5) gives the

Oldroyd-B model:

T + λ1
�
T = 2η0

(
D + λ2

�
D

)
(7)

where the symbol � is the upper-convected time derivative, defined by

�
T :=

dT

dt
−∇uT · T − T · ∇u. (8)

Usually, a retardation parameter is defined by β =
ηp
η0

∈ [0, 1]. β = 0 corresponds to

a Newtonian fluid, β = 1 to a Maxwell fluid, and in between a Oldroyd fluid. If ηs
η0

= 1,
hence λ2 = λ1, the Oldroyd-B fluid reduces to the Newtonian fluid with the constitutive
equation T = 2ηsD. If ηs = 0, hence λ2 = 0, η0 = ηp, T = Tp, and the Maxwell-B model
is obtained:

Tp + λ1
�
Tp = 2ηpD. (9)

Combining the constitutive Equation (7) and the relation T = 2ηsD + Tp for an
Oldroyd fluid results in a constitutive relation in terms of Tp, which is completely consistent
with the expression of (9). However, in contrast to the Maxwell fluid, the Newtonian
viscosity ηs in the momentum equation of an Oldroyd-type fluid is not zero. More examples
of viscoelastic models derived from the Oldroyd 8-constant model can be found in the
Table II of [15].
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We employed the dimensionless variables, which are scaled by the characteristic
length L0, strain rate a and viscosity η0 as following:

x̃ =
x

L0
, ũ =

u

aL0
, p̃ =

p
aη0

, T̃ =
T

aη0
, Re =

ρaL2
0

η0
, W1 = aλ1,

W2 = aμ0, W3 = aμ1, W4 = aν1, W5 = aλ2, W6 = aμ2, W7 = aν2,
(10)

where W1, ..., W7 are Weissenberg numbers and Re the Reynolds number. Omitting the tilde
symbol, the constitutive Equation (5) can be rewritten in the following dimensionless form:

T + W1
◦
T + W2(trT)D − W3(TD + DT) + W4[tr(TD)]I

= 2[D + W5
◦
D − 2W6D2 + W7tr

(
D2

)
I].

(11)

Then, the dimensionless Oldroyd 8-constant model (11) will be utilized for investigat-
ing the two-dimensional steady stagnation-point flows with regard to their singularities
under different material parameter relations.

3. Analytical Solutions of a Wall-Free Stagnation-Point Flow and Their Singularities

For the velocity field of a two-dimensional steady stagnation-point flow, there exists a
similarity solution described as

u = (x f ′(y),− f (y)), (12)

where f (y) is an arbitrary function depending only on y [5,6]. In the case of a wall-free
stagnation-point flow, the flow is a potential flow, which means ∇× u = 0. This leads to
f ′′(y) = 0, and further f (y) = ay. The parameter a stands for the constant rate of the strain
and is employed in the non-dimensionalization, as shown in (10). Hence, the dimensionless
velocity field is given by

u = (x,−y). (13)

The velocity field is symmetrical for both the x and the y axis, as shown in Figure 1,
so we only need to consider the case with x, y > 0 in the following analysis.

Figure 1. Sketch of the velocity field in a wall-free stagnation-point flow.

The stress tensor is symmetric and takes a two-dimensional form of:

T =

(
T11 T12
T12 T22

)
. (14)
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Substituting (13) and (14) into (11), we obtain the following three scalar constitutive
equations:

W1x
∂T11

∂x
− W1y

∂T11

∂y
= (k1 − 1)T11 − k2T22 − k3 + 2, (15)

W1x
∂T22

∂x
− W1y

∂T22

∂y
= k2T11 − (k1 + 1)T22 − k3 − 2, (16)

W1x
∂T12

∂x
− W1y

∂T12

∂y
= −T12, (17)

where k1 = 2W3 −W2 −W4, k2 = W2 −W4 and k3 = 4(W6 −W7). It is to notice that
◦
D = 0

under the assumption of the velocity (13), so the Weissenberg number W5 has not any
influence on the stress field.

In the PDE system (15)–(17), Equation (17) for T12 is uncoupled with (15), (16), and
thus can be solved independently. The coupling of (15) and (16) for T11 and T22 depends on
the value of k2. If k2 = 0, both the equations are decoupled and can be solved separately
for T11 and T22. If k2 
= 0, Equations (15) and (16) constitute a coupled PDE system with
non-constant coefficients. In addition, the solutions of the PDE system (15)–(17) must also
satisfy the compatibility condition derived by substituting (4), (13) and (14) into the rotation
of the momentum Equation (1):

∂2T11

∂x∂y
− ∂2T22

∂x∂y
− ∂2T12

∂x2 +
∂2T12

∂y2 = 0. (18)

In the following, the analytic solutions of the constitutive Equations (15)–(17) with
consideration of the compatibility condition (18) will be derived, respectively, for the two
cases k2 = 0 and k2 
= 0.

3.1. Case k2 = 0

Many of the viscoelastic models derived from the Oldroyd 8-constant model (11)
are characterized by W2 = W4, i.e., k2 = 0. Examples are the Oldroyd-B, Maxwell-B,
Johnson–Segalman models. Their solutions are all contained in this part.

In the case of k2 = 0, the three components of the stress tensor can be separately
solved by using the method of characteristics. The characteristic equations of (15)–(17) are
given by

dx
W1x

=
dy

−W1y
=

dT11

(k1 − 1)T11 − k3 + 2
, (19)

dx
W1x

=
dy

−W1y
=

dT22

−(k1 + 1)T22 − k3 − 2
, (20)

dx
W1x

=
dy

−W1y
=

dT12

−1
. (21)

The values of k1 − 1 and k1 + 1, arising in (19) and (20) as the coefficients of T11 and
T22, have a crucial effect on the structure of their solutions. Therefore, the solutions will be
further investigated for the following three cases, respectively.
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3.1.1. Case (k1 − 1)(k1 + 1) 
= 0

In this case, k1 
= ±1, we can obtain the following solutions by solving the
Equations (19)–(21):

T11 = F1(ψ) · y
1−k1
W1 +

k3 − 2
k1 − 1

, (22)

T22 = F2(ψ) · y
1+k1
W1 − k3 + 2

k1 + 1
, (23)

T12 = F3(ψ) · y
1

W1 . (24)

F1(ψ), F2(ψ) and F3(ψ) are arbitrary functions of ψ = xy, and ψ = const. represents the
characteristic lines of the solutions. This result is consistent with that obtained by Van
Gorder [14] for the stagnation-point flow of an upper convected Maxwell fluid, in which
k1 = 2W1 and k3 = 0.

Further satisfying the compatibility condition (18) yields the following restriction on
functions F1, F2, and F3:[

ψF′′
1 +

(
1 − k1

W1
+ 1

)
F′

1

]
y−

k1
W1 −

[
ψF′′

2 +

(
1 + k1

W1
+ 1

)
F′

2

]
y

k1
W1

+

[
ψ2F′′

3 +
2

W1
ψF′

3 +
1

W1

(
1

W1
− 1

)
F3

]
y−2 − F′′

3 y2 = 0.
(25)

the only way to satisfy this condition for any value of y is that all coefficients of yk vanish.
This induces three different cases depending on the value of k1

W1
. The case of k1

W1
= ±2

corresponds to the Oldroyd and Maxwell fluids. Their solutions for Weissenberg number
W1 
= 1

2 are covered in this investigation.

(i) If k1
W1

= 2, only two restriction conditions for F1, F2, and F3 can be obtained from (25),
meaning that:

ψF′′
1 +

(
1

W1
− 1

)
F′

1 + ψ2F′′
3 +

2
W1

ψF′
3 +

1
W1

(
1

W1
− 1

)
F3 = 0, (26)

ψF′′
2 +

(
1

W1
+ 3

)
F′

2 + F′′
3 = 0. (27)

Hence, F1 and F2 can be related to F3 by

F1 = −ψF3 +

(
1 − 1

W1

) ∫
F3dψ + C1ψ

2− 1
W1 + C2, (28)

F2 = −ψ−1F3 +

(
1

W1
+ 1

)
ψ
− 1

W1
−2

∫
ψ

1
W1 F3dψ + C3ψ

− 1
W1

−2
+ C4, (29)

where C1, C2, C3 and C4 are arbitrary constants, and F3 is still an arbitrary function of
ψ = xy. To avoid the integral terms emerging in the above relations, we replace F3 by
another arbitrary function F(ψ) as follows:

F3 =

(
ψ

1− 1
W1 F′

)′
= ψ

− 1
W1

(
ψF′ − 1

W1
F
)′

. (30)
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Substituting (30) into (28), (29) and then into (22)–(24), results in the final solutions of
the stress tensor:

T11 = −x2− 1
W1 F′′ + C1x2− 1

W1 + C2y
1

W1
−2

+
k3 − 2
k1 − 1

, (31)

T22 = −x−
1

W1 y2F′′ + 2
W1

x−
1

W1
−1yF′ − 1

W1

(
1

W1
+ 1

)
x−

1
W1

−2F

+C3x−
1

W1
−2

+ C4y
1

W1
+2 − k3 + 2

k1 + 1
, (32)

T12 = x1− 1
W1 yF′′ +

(
1 − 1

W1

)
x−

1
W1 F′. (33)

In a recent investigation by [17], the solution of a wall-free stagnation-point flow for
the Maxwell fluid with W1 
= 1

2 satisfying the momentum equation was discovered.
This corresponds to our solutions (31)–(33) with k1 = 2W1 and k3 = 0. Physically,
the components of the stress tensor should be limited everywhere, including at the
stagnation point (x, y) = (0, 0) and at infinity. Hence, further restrictions on the
arbitrary constants C1, C2, C3, C4 and the arbitrary function F(xy) in the solutions are
needed. To avoid the singularity of the stress tensor, Ref. [17] suggested the choice:

F(xy) = (xy)2+ 1
W1

+δe−b(xy)2
, C1 = C2 = C3 = C4 = 0, (34)

where δ > 0 and b > 0. However, this choice (34) cannot prevent the singularity
as was claimed. To demonstrate this, as an example, we substitute (34) into (33)
resulting in:

T12 =
[

a1 + a2(xy)2 + a3(xy)4
]
e−b(xy)2 · (xy)1+δ · y

1
W1 = G(xy) · y

1
W1 , (35)

where a1 = (2 + δ)(2 + δ + 1
W1

), a2 = −2b(6 + 2δ + 1
W1

) and a3 = 4b2 are constant
coefficients. For W1 > 0, the particular solution (33) has the following properties:

• Along the characteristic curves xy = 0 and xy → ∞, T12 → 0, no singularity occurs.
• Along the characteristic curve xy = c0, where c0 is a non-zero finite constant, the

value of G(xy) is a bounded constant G(c0), while y
1

W1 is singular at y → ∞. An
infinite shear stress T12 arises in the region far away from the stagnation point
(y → ∞) and near the y-axis (x → 0).

With the choice (34), similar singularities also appear in the stress tensor components
T11 and T22 far away from the stagnation point, for y → ∞ (but x → 0) or x → ∞ (but
y → 0). As an example, the corresponding stress components T11 and T12 excluding the
constant part k3−2

k1−1 are presented in Figures 2 and 3 for the case W1 = 0.25, δ = 2 and
b = 12 with a much finer spatial resolution than [17] used. The present figures show
that a singularity in the stress field may arise in the region far away from the stagnation
point (y → ∞) and near the y axis (x → 0), as previously analytically recognized, while
in [17], this tendency was invisible due to the rather coarse resolution employed.
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Figure 2. Stress component T11 with a spatial resolution of x ∈ [0 : 0.001 : 0.3], y ∈ [0 : 0.001 : 15].

Figure 3. Stress component T12 with a spatial resolution of x ∈ [0 : 0.001 : 0.2], y ∈ [0 : 0.001 : 10].

Actually, the appearance of the singularity at (x, y) → (0, ∞) or (x, y) → (∞, 0)
is independent from the choice of the arbitrary function F(xy). This can be easily
recognized by observing the distribution of the stresses (31)–(33) along an arbitrary
characteristic curve xy = c0, where c0 is non-zero finite constant. As an example, the

term x−
1

W1 F′(xy) tends to be infinite at (x, y) → (0, ∞) for W1 > 0 or at (x, y) → (∞, 0)
for W1 < 0. These singularities are independent from the choice of F(xy) and thus non-
removable. However, possible singularity near the stagnation point (x, y) → (0, 0)
can be effectively prevented by choosing a reasonable function F(xy), e.g., (34). This
ensures that no singularity occurs in the stress field near the stagnation point. For
a stagnation-point flow with the velocity field given by (13), the velocity becomes
unbounded at x → ∞ or y → ∞ and is thus physically no longer meaningful. The
singularity arising in the far field at x → ∞ or y → ∞ may not be relevant when a
bounded stagnation-point flow is investigated. We should then focus on the analysis
of singularity in a bounded area near the stagnation point.

(ii) If k1
W1

= −2, performing the similar steps as for the above case gives the solutions:

T11 = x−
1

W1 y2F′′ − 2
W1

x−
1

W1
−1yF′ + 1

W1

(
1

W1
+ 1

)
x−

1
W1

−2F

+C1x−
1

W1
−2

+ C2y
1

W1
+2

+
k3 − 2
k1 − 1

, (36)

T22 = x2− 1
W1 F′′ + C3x2− 1

W1 + C4y
1

W1
−2 − k3 + 2

k1 + 1
, (37)

T12 = x1− 1
W1 yF′′ +

(
1 − 1

W1

)
x−

1
W1 F′. (38)

Similarly, by reasonably choosing of Ci (i = 1, 2, 3, 4) and F(xy), singularity near the
stagnation point can be avoided.
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(iii) If k1
W1


= ±2, we obtain four equations for F1, F2 and F3 from (25). Solving them and
then substituting them into (22)–(24) yield:

T11 = C1x−
1−k1
W1 + C2y

1−k1
W1 − k3 − 2

1 − k1
, (39)

T22 = C3x−
1+k1
W1 + C4y

1+k1
W1 − k3 + 2

1 + k1
, (40)

T12 = 0. (41)

To prevent the singularity near the stagnation point (x, y) = (0, 0), only one of C1, C2
and one of C3, C4 need to be zero according to the relative relationship between k1 and
W1. This results in a stress distribution that depends on only one coordinate x or y.

3.1.2. Case k1 − 1 = 0

In this case, the coefficient of T11 in (19) vanishes. The corresponding solution of T11 is
simply given by

T11 =
k3 − 2

W1
ln y + F1, (42)

where F1 is an arbitrary function of ψ = xy. The solutions of T22 and T12 remain the same
as given in (22)–(24). Again, considering the compatibility condition, the final solutions are
obtained depending on the value of W1. All intermediate steps, which are similar to those
in the last Section 3.1.1, are omitted.

(i) If W1 = 1
2 , we obtain the solutions:

T11 = 2(k3 − 2) ln y − F′′ + C1 ln(xy) + C2, (43)

T22 = −x−2y2F′′ + 4x−3yF′ − 6x−4F + C3x−4 + C4y4 − k3

2
− 1, (44)

T12 = x−1yF′′ − x−2F′; (45)

The logarithmic singularity in T11 caused by ln y at y → 0 can only be avoided when
k3 = 2, i.e., W6 − W7 = 1

2 . In this case, the choice (34) for the arbitrary constants Ci
(i = 1, 2, 3, 4) and arbitrary function F(xy) is still suitable to prevent the singularity
near the stagnation point.
However, for the Oldroyd model, i.e., the case of W6 − W7 = 4(1 − β)W1 with
0 < β < 1 and for the Maxwell model, i.e., the case of W6 − W7 = 0, the logarith-
mic singularity at the Weissenberg number W1 = 1

2 is unavoidable. The similar
conclusion was also drawn by [11] for Maxwell fluid.

(ii) If W1 
= 1
2 :

T11 =
k3 − 2

W1
ln y + C1 ln(xy) + C2, (46)

T22 = C3x−
2

W1 + C4y
2

W1 − k3

2
− 1, (47)

T12 = 0. (48)

The singularity caused by the term ln y can only be avoided if k3 = 2. In addition,
C3 also has to be zero to prevent the singularity at xy → 0. This choice will cause a
uniform stress field, which may be physically disputable.

3.1.3. Case k1 + 1 = 0

Analogous to the last two subsections, the solutions in this case are distinguished for
the following cases.
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(i) If W1 = 1
2 :

T11 = x−2y2F′′ − 4x−3yF′ + 6x−4F + 6C1x−4 + C2y4 − k3

2
+ 1,

T22 = 2(k3 + 2) ln y + F′′ + C3 ln(xy) + C4,

T12 = x−1yF′′ − x−2F′.

(49)

where the logarithmic singularity caused by ln y in T22 could only be avoided with the
extra restriction k3 + 2 = 0. However, for the Oldroyd model there is k3 = 2(1 − β)
at W1 = 1

2 with < 0β < 1 and for the Maxwell model k3 = 0, so that logarithmic
singularity is non-removable. The similar conclusion was also drawn by [11] for a
Maxwell fluid.

(ii) For W1 
= 1
2 :

T11 = C1x−
2

W1 + C2y
2

W1 − k3

2
+ 1,

T22 =
k3 + 2

W1
ln y + C3 ln(xy) + C4,

T12 = 0.

(50)

Similar to the last cases, the singularity in T11 and T22 can only be avoided at k3 = −2
with Ci = 0 (i = 1, 2, 3). This again corresponds to a uniform stress field and thus may
be physically disputable.

3.2. Case k2 
= 0

For some of the viscoelastic models derived from the Oldroyd 8-constant model k2
is not zero, such as the Williams 3-constant Oldroyd model, Oldroyd-4-constant model,
etc., details see [15]. For this case, the solution of T12 remains the same as in (24). T11
and T22 need to be solved from the coupled PDE system consisting of (15) and (16) with
non-constant coefficients.

Applying the method of characteristics, the PDE system reduces to the following
ODE system:

W1y
dT11

dy
= (1 − k1)T11 + k2T22 + k3 − 2, (51)

W1y
dT22

dy
= −k2T11 + (1 + k1)T22 + k3 + 2, (52)

along the characteristic curves xy = const. Furthermore, using the transformation:

y = eW1 ỹ (53)

Equations (51) and (52) can be transformed into an ODE system with constant coefficients:

dT11

dỹ
= (1 − k1)T11 + k2T22 + k3 − 2, (54)

dT22

dỹ
= −k2T11 + (1 + k1)T22 + k3 + 2, (55)

or in matrix form:
dt

dỹ
= At + b (56)

with:

t =

(
T11
T22

)
, A =

(
1 − k1 k2
−k2 1 + k1

)
, b =

(
k3 − 2
k3 + 2

)
. (57)
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Eliminating T22 by combining (54) and (55), gives an second-order ODE with constant
coefficients for T11:

d2T11

dỹ2 − 2
dT11

dỹ
+ (1 − k2

1 + k2
2)T11 = k2(k3 − 2)− (k1 + 1)(k3 + 2). (58)

The homogeneous solution of this ODE depends on the type of solutions of the
corresponding characteristic equation:

λ2 − 2λ + (1 − k2
1 + k2

2) = 0. (59)

Its eigenvalues are:

λ1,2 = 1 ±
√

k2
1 − k2

2. (60)

Depending on the value of k2
1 − k2

2, the homogeneous solution of (58) has the following
three different cases:

(i) If k2
1 − k2

2 > 0, λ1 and λ2 are real numbers with λ1 
= λ2, we obtain:

T11,h = C1 · eλ1 ỹ + C2 · eλ2 ỹ; (61)

(ii) If k2
1 − k2

2 = 0, i.e., λ1 = λ2 = 1, we obtain:

T11,h = (C1 + C2ỹ) · eỹ; (62)

(iii) If k2
1 − k2

2 < 0, λ1/2 = 1 ± iω with ω =
√

k2
2 − k2

1 are conjugates complex numbers,
the homogeneous solution of T11,h is given by

T11,h = eỹ[C1 sin (ωỹ) + C2 cos (ωỹ)]. (63)

The particular solution of the ODE (58), depending on the value of the coefficient
1 − k2

1 + k2
2, includes two cases as follows:

(i) If 1 − k2
1 + k2

2 
= 0, we obtain:

T11,p =
k2(k3 + 2)− (k1 + 1)(k3 − 2)

1 − k2
1 + k2

2
; (64)

(ii) If 1 − k2
1 + k2

2 = 0, the particular solution takes the form:

T11,p = −1
2
[k2(k3 + 2)− (k1 + 1)(k3 − 2)]ỹ. (65)

The general solution of the ODE (58) is expressed as

T11 = T11,h + T11,p. (66)

Obviously, the second case of the particular solution, (65), can only be combined with
the first case of the homogeneous solution, (61).

The solution of T22 can be directly determined by inserting the solution for T11, (66),
into (54):

T22 =
1
k2

(
dT11

dỹ
+ (k1 − 1)T11 − k3 + 2

)
. (67)

To obtain the final solutions of the original PDE system consisting of (15) and (16),

we only need to replace the variable ỹ with y by the transformation ỹ = ln y
1

W1 , and all
arbitrary constants Ci with arbitrary functions Fi(xy). Finally, together with the solution of
T12 in (24), we obtain the complete solutions of the PDE system (15)–(17) as follows.
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(i) If k2
1 − k2

2 > 0 and k2
1 − k2

2 
= 1:

T11 = k2

(
F1 · y

1+ω
W1 + F2 · y

1−ω
W1

)
+

k2(k3 + 2)− (k1 + 1)(k3 − 2)
1 − k2

1 + k2
2

,

T22 = (k1 + ω)F1 · y
1+ω
W1 + (k1 − ω)F2 · y

1−ω
W1 +

(k1 − 1)(k3 + 2)− k2(k3 − 2)
1 − k2

1 + k2
2

,

T12 = F3 · y
1

W1 .

(68)

(ii) If k2
1 − k2

2 = 1, the solutions take the form:

T11 =k2

(
F1 · y

2
W1 + F2

)
− 1

2W1
[k2(k3 + 2)− (k1 + 1)(k3 − 2)] ln y,

T22 =(k1 + 1)F1 · y
2

W1 + (k1 − 1)F2 − k1 − 1
2k2W1

[k2(k3 + 2)− (k1 + 1)(k3 − 2)] ln y

− 1
2k2

[k2(k3 + 2)− (k1 − 1)(k3 − 2)],

T12 =F3 · y
1

W1

(69)

(iii) If k2
1 − k2

2 = 0:

T11 = k2F1 · y
1

W1 +
k2

W1
F2 · ln y · y

1
W1 +

k2(k3 + 2)− (k1 + 1)(k3 − 2)
1 − k2

1 + k2
2

,

T22 = k1F1 · y
1

W1 + F2 · y
1

W1 +
k1

W1
F2 · ln y · y

1
W1 +

(k1 − 1)(k3 + 2)− k2(k3 − 2)
1 − k2

1 + k2
2

,

T12 = F3 · y
1

W1 .

(70)

(iv) If k2
1 − k2

2 < 0:

T11 =k2

[
F1 · cos

(
ln y

ω
W1

)
+ F2 · sin

(
ln y

ω
W1

)]
· y

1
W1

+
k2(k3 + 2)− (k1 + 1)(k3 − 2)

1 − k2
1 + k2

2
,

T22 =
[
(k1F1 + ωF2) · cos

(
ln y

ω
W1

)
+ (k1F2 − ωF1) · sin

(
ln y

ω
W1

)]
· y

1
W1

+
(k1 − 1)(k3 + 2)− k2(k3 − 2)

1 − k2
1 + k2

2
,

T12 =F3 · y
1

W1 .

(71)

Here, ω =
√

k2
1 − k2

2, F1, F2 and F3 are arbitrary functions of xy.
The logarithmic singularity caused by the term ln y in the solution (69) can only be

avoided under the special circumstance k2(k3 + 2)− (k1 + 1)(k3 − 2) = 0. Similar to the
cases in the last subsection, satisfying the compatibility condition yields three to four
restriction equations on the functions F1, F2, and F3 according to the relationship between
ω and k1. Furthermore, to avoid the singularity near the stagnation point (x, y) = (0, 0),
the obtained final stress distribution either depends on only one variable or is again
meaninglessly uniform. These tedious derivations are not given.

4. Analytical Solutions of a Near-Wall Stagnation-Point Flow

Analytic investigations of near-wall stagnation-point flows of viscoelastic fluids have
rarely been dealt with. These investigations only treat the constitutive stress equations,
however, the momentum equation is not satisfied, as can be seen, e.g., in [12,13]. The
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difficulty is the accessibility of analytic solutions. In contrast to a wall-free stagnation-point
flow, the similarity solution of the velocity field (12) in a near-wall stagnation-point flow
must satisfy the no-slip conditions at the wall y = 0. This requires f ′(0) = 0 in addition to
f (0) = 0. To satisfy this condition, the simplest choice is f (y) = y2 as have been employed
in [12,13]. Here, we investigate a more general form f (y) = yα with α > 1 and y > 0. The
corresponding dimensionless velocity field takes the form:

u = n(αxyα−1,−yα), (72)

where n = ±1 denotes the direction of the flow. As displayed in Figure 4, n = 1 corresponds
to the inflow toward the stagnation point and n = −1 indicates the outflow away from the
stagnation point.

Figure 4. Sketch of velocity field in a near-wall stagnation-point flow.

For such a velocity field, an analytical solution is only attainable for less complex
viscoelastic models. In this paper, we consider the most commonly employed Oldroyd-B
model. As described in Section 2, the constitutive model equation for an Oldroyd-B fluid
can be expressed for Tp, which is the polymetric contribution to the stress tensor. Omitting
the index p, the dimensionless model equation takes the form:

T + W
�
T = 2βD, (73)

where W is the only Weissenberg number in this model, and β =
ηp

ηp+ηs
∈ [0, 1] is the

retardation parameter.
As has been shown, the Reynolds number does not appear in the constitutive model

equations, so its value does not affect the singularities of the models. Therefore, it is conve-
nient and common to assume the Reynolds number Re = 1. In this case, the corresponding
momentum equation is given as

u · ∇u = −∇p + (1 − β)∇ · D +∇ · T. (74)

Inserting the velocity field (72) into the constitutive Equation (73), we obtain a PDE
system, consisting of three equations as follows:

Wαxyα−1 ∂T11

∂x
− Wyα ∂T11

∂y
= (2Wαyα−1 − n)T11 + 2Wα(α − 1)xyα−2T12 + 2βαyα−1, (75)

Wαxyα−1 ∂T22

∂x
− Wyα ∂T22

∂y
= −(2Wαyα−1 + n)T22 − 2βαyα−1, (76)

Wαxyα−1 ∂T12

∂x
− Wyα ∂T12

∂y
= −nT12 + Wα(α − 1)xyα−2T22 + βα(α − 1)xyα−2. (77)
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The solutions of this PDE system must also satisfy the momentum Equation (74).
Applying the curl operator to (74) in order to eliminate the pressure p results in the
compatibility condition:

∂2T11

∂x∂y
− ∂2T22

∂x∂y
− ∂2T12

∂x2 +
∂2T12

∂y2

=2α(α − 1)xy2α−3 − n(1 − β)α(α − 1)(α − 2)(α − 3)xyα−4.
(78)

Then, we will give the analytical solution of the PDE system (75)–(77) and discuss its
compatibility with Equation (78).

4.1. Analytical Solutions of the Model Equation

We firstly solve (76) for T22, which is uncoupled from (75) and (77). Then, Equations (75)
and (77) can be successively solved. Using the method of characteristic for (76) yields the
characteristic equations:

dx
Wεxyα−1 =

dy
−Wyα

=
dT22

−(2Wαyα−1 + n)T22 − 2βαyα−1 . (79)

Its solution takes the form:

T22 = F1(xyα) · y2αe−
y1−α

nW(α−1) +
2β

W
αy2αe−

y1−α

nW(α−1)

∫
y−2α−1e

y1−α

nW(α−1) dy, (80)

where F1(xyα) is an arbitrary function of xyα, and xyα = const. represents the characteristic
curves of the solution. Substituting (80) into (77) and solving the resulting PDE with the
same method as above yields:

T12 =F2(xyα) · e−
y1−α

nW(α−1) − F1(xyα) · αxy2α−1e−
y1−α

nW(α−1) +
β

2nW2 xy−α

+
β

nW2 xyα
(
αyα−1 +

1
2nW

)
e−

y1−α

nW(α−1)

∫
y−3αe

y1−α

nW(α−1) dy,

(81)

with the arbitrary functions F1, F2 of xyα. Similarly, substituting (81) into (75) and solving
the consequent PDE result in the solution for T11:

T11 =F3(xyα) · y−2αe−
y1−α

nW(α−1) − 2αF2(xyα) · xy−1e−
y1−ξ

nW(α−1)

+ ξ2F1(xyα) · x2y2α−2e−
y1−α

nW(α−1) − 2αβ

W
y−2αe−

y1−α

nW(α−1)

∫
y2α−1e

y1−α

nW(α−1) dy

− αβ

W2 x2y−ξ−1 − αβ

nW2 x2yα−1(αyα−1 +
1

nW
)
e−

y1−α

nW(α−1)

∫
y−3αe

y1−α

nW(α−1) dy

− α2β

nW2 x2e−
y1−α

nW(α−1)

∫
y−α−2e

y1−α

nW(α−1) dy,

(82)

where F1, F2, and F3, again, are arbitrary functions of xyα.
The solutions in the case α = 2 are consistent with that obtained by [12,13].
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4.2. Compatibility Condition

Substituting the solutions of the stress components (80)–(82) into the compatibility
condition (78) yields the following restriction on the functions F1, F2, and F3:

− αF′
1 · y3α−1 − (

F′′
2 +

1
nW

F′
1
) · y2α + α

(
αF′

1ψ + 2(α − 1)F1
)
ψyα−3

+ α
(− αF′′

2 ψ2 − (3α − 1)F′
2ψ + 2F2 − α

nW
F′

1ψ2 − α − 2
nW

F1ψ
) · y−2

+ α
(

F′′
3 ψ − F′

3 −
3

nW
F2 − 1

W2 F1ψ
) · y−α−1 +

1
nW

( 1
nW

F2 + F′
3
) · y−2α

+ ψ · G(y) = 0,

(83)

where ψ = xyα and:

G(y) =2β
[ 1

nW2 α(α − 1)y−2α +
1

W
α2(α + 1)y−α−1 + nα2(α + 1)2y−2

+ 4Wα2(α + 1)(α − 1)yα−3] · ∫ y−3e
y1−α

nW(α−1) dy

+
[
nα

(
α(α2 − 2α + 5)− 2(1 − β)(2α2 − 3α + 3)

)
y−4 − 2α(α − 1)yα−3

+ 4βWα2(α + 1)(α − 1)yα−5 +
2

W
(1 − β)α(α − 1)y−α−3] · e

y1−α

nW(α−1) .

(84)

The condition (83) could only be satisfied for any value of y along the characteristic
line ψ = 0, which denotes the symmetric line x = 0. Along this line, the compatibility
Equation (83) will be greatly simplified to:

− αF′
1 · y3α−1 − (

F′′
2 +

1
nW

F′
1
) · y2α + 2αF2 · y−2

− α
(

F′
3 +

3
nW

F2
) · y−α−1 +

1
nW

( 1
nW

F2 + F′
3
) · y−2α = 0,

(85)

which leads to:

F1(ψ) = F1(ψ = 0) = C1, F2 = 0, F3(ψ) = F(ψ = 0) = C3, (86)

where C1 and C3 are arbitrary constants. The corresponding stress components along the
y-axis are given by

T11 =C3y−2αe−
y1−α

nW(α−1) − 2β

W
αy−2αe−

y1−α

nW(α−1)

∫
y2α−1e

y1−α

nW(α−1) dy,

T22 =C1y2αe−
y1−α

nW(α−1) +
2β

W
αy2αe−

y1−α

nW(α−1)

∫
y−2α−1e

y1−α

nW(α−1) dy,

T12 =0.

(87)

Furthermore, applying the L’Hospital’s rule, we can analyze the behavior of the stress
components near the stagnation point, respectively. Since α > 1 and y > 0, we obtain:

lim
y→0

y±2αe−
y1−α

nW(α−1) =

{
0 for n = 1,

∞ for n = −1,
(88)

lim
y→0

y±2αe−
y1−α

nW(α−1)

∫
y∓2α−1e

y1−α

nW(α−1) dy = 0. (89)

To avoid the singularity for the case of outflow, we can choose C1 = C3 = 0. Hence,
for both the cases of inflow and outflow, regular solutions exist near the stagnation point.
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As mentioned above, the solutions under the velocity assumption (72) can satisfy the
conservation of the momentum equation only on the symmetric axis. In order to obtain a
solution that satisfies the compatibility equation, a more suitable function f (y) to describe
the velocity field has to be proposed. This is an interesting topic for future study. Actually,
in many previous investigations for both wall-free and near-wall stagnation-point flows,
the singularity of the stress field was analyzed by forcing the solution to be independent of
x, see, e.g., [8,12,13].

5. Conclusions

In this paper, we obtained the analytical solutions of the stress distributions of a
wall-free steady stagnation-point flow with the proposed velocity profile u = (ax,−ay)
for the Oldroyd 8-constant model under different material relations. All solutions here
are compatible with the momentum conservation equation, and their singularities are
discussed in detail. The results show that all models have singularities near the stagnation
point. Most of these can be effectively avoided by appropriately choosing the model param-
eters and free functions. However, the singularity in Oldroyd-B and Maxwell-B models at
the Weissenberg number Wi = 1

2 is non-removable. The results in this investigation can be
directly used to analyze the stress contributions and their singularities of a wide spectrum
of viscoelastic models derived from the Oldroyd 8-constant model. Furthermore, for the
Oldroyd-B model, we obtained the analytical solutions of the stress tensor in a near-wall
stagnation-point flow with the proposed velocity profile u = ±(αxyα−1,−yα) with α > 1
and show that the solutions can satisfy the momentum conservation along the streamline
passing the stagnation point. To the best of our knowledge, such an analysis of the compat-
ibility of model solutions with momentum conservation in a near-wall stagnation-point
flow is absent in the literature. To further investigate near-wall stagnation-point flows, a
more general velocity profile has to be proposed.

Furthermore, nowadays, there is a tendency to make comparisons, at least qualitative,
between complete theoretical models that are not computer-implementable and experimen-
tal models in order to understand which terms of the theoretical models are not covered
by the experimental models, and moreover, to understand the correspondences between
terms of the theoretical and experimental models, see, e.g., [18]. For the next step, it will be
an interesting and valuable work to further compare the models discussed in this article
under different material parameter relations with the experimental models.

Author Contributions: Conceptualization, M.O. and Y.W.; validation, J.L.; formal analysis, J.L., M.O.
and Y.W.; investigation, J.L.; writing—original draft preparation, J.L.; writing—review and editing,
M.O. and Y.W.; visualization, J.L.; supervisions, M.O. and Y.W.; funding acquisition, M.O. and Y.W.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Deutsche Forschungsgemeinschaft (DFG—German
Research Foundation). The OAP was funded by Technical University of Darmstadt.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We acknowledge support by the Deutsche Forschungsgemeinschaft (DFG—
German Research Foundation) and the Open Access Publishing Fund of Technical University of
Darmstadt, and further partial funding by the DFG as part of the OB 96/46-1 and OB 96/52-1 projects.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Giesekus, H. Phänomenologische Rheologie: Eine Einführung; Springer: Berlin/Heidelberg, Germany, 1994.
2. Dillen, S.; Oberlack, M.; Wang, Y. Analytical investigation of rotationally symmetrical oscillating flows of viscoelastic fluids.

J. Non–Newton. Fluid Mech. 2019, 272, 104168. [CrossRef]

60



Appl. Sci. 2021, 11, 6931

3. Ma, B.; Wang, Y.; Kikker, A. Analytical solutions of oscillating Couette-Poiseuille flows for the viscoelastic Oldroyd B fluid. Acta
Mech. 2019, 230, 2249–2266. [CrossRef]

4. Saengow, C.; Giacomin, A.J.; Kolitawong, C. Exact analytical solution for large-amplitude oscillatory shear flow from Oldroyd
8-constant framework: Shear stress. Phys. Fluids 2017, 29, 043101. [CrossRef]

5. Schlichting, H. Boundary-Layer Theory, 6th ed.; McGraw-Hill: New York, NY, USA, 1968; p. 96.
6. Phan-Thien, N. Plane and axi-symmetric stagnation flow of a Maxwellian fluid. Rheol. Acta 1983, 22, 127–130. [CrossRef]
7. Phan-Thien, N. Stagnation flows for the Oldoryd-B fluid. Rheol. Acta 1984, 23, 172–176. [CrossRef]
8. Renardy, M. A comment on smoothness of viscoelastic stresses. J. Non–Newton. Fluid Mech. 2006, 138, 204–205. [CrossRef]
9. Thomas, B.; Shelley, M. Emergence of singular structures in Oldroyd-B fluids. Phys. Fluids 2007, 19, 103103. [CrossRef]
10. Cruz, D.O.A.; Pinho, F.T. Analytical solution of steady 2D wall-free extensional flows of UCM fluids. J. Non–Newton. Fluid Mech.

2015, 223, 157–164. [CrossRef]
11. Meleshko, S.V.; Moshkin, N.P.; Pukhnachev, V.V.; Samatova,V. On steady two-dimensional analytical solutions of the viscoelastic

Maxwell equation. J. Non–Newton. Fluid Mech. 2019, 270, 1–7. [CrossRef]
12. Becherer, P.; van Saarloosa, W.; Morozovb, A.N. Stress singularities and the formation of birefringent strands in stagnation flows

of dilute polymer. J. Non–Newton. Fluid Mech. 2008, 157, 126–132. [CrossRef]
13. Van Gorder, R.A.; Vajravelu, K.; Akyildiz, F.T. Viscoelastic stresses in the stagnation flow of a dilute polymer solution. J. Non–

Newton. Fluid Mech. 2009, 161, 94–100. [CrossRef]
14. Van Gorder, R.A. Do general viscoelastic stresses for the flow of an upper convected Maxwell fluid satisfy the momentum

equation? Maccanica 2012, 47, 1977–1985. [CrossRef]
15. Saengow, C.; Giacomin, A.J.; Grizzuti, N.; Pasquino, R. Startup steady shear flow from the Oldroyd 8-constant framework. Phys.

Fluids 2019, 31, 063101. [CrossRef]
16. Oldroyd, J.G. Non–Newtonien effects in steady motion of some idealized elastico-viscous liquids. Proc. R. Soc. Lond. Ser. Math.

Phys. Sci. 1958, 245, 278–297.
17. Meleshko, S.V.; Moshkin, N.P.; Pukhnachev,V.V. On exact analytical solutions of equations of Maxwell incompressible. Int. J.

Non-Linear Mech. 2018, 105, 152–157. [CrossRef]
18. Versaci, M.; Palumbo, A. Magnetorheological Fluids: Qualitative comparison between a mixture model in the Extended

Irreversible Thermodynamics framework and an Herschel–Bulkley experimental elastoviscoplastic model. Int. J. Non-Linear
Mech. 2020, 118, 103288. [CrossRef]

61





applied  
sciences

Article

Different Formulations to Solve the Giesekus Model for Flow
between Two Parallel Plates

Laison Junio da Silva Furlan 1,†, Matheus Tozo de Araujo 1,†, Analice Costacurta Brandi 2,

Daniel Onofre de Almeida Cruz 3 and Leandro Franco de Souza 1,*

Citation: da Silva Furlan, L.J.;

de Araujo, M.T.; Brandi, A.C.;

de Almeida Cruz, D.O.; de Souza, L.F.

Different Formulations to Solve

Giesekus Model for Flow between

Two Parallel Plates. Appl. Sci. 2021,

11, 10115. https://doi.org/10.3390/

app112110115

Academic Editor: Luís L. Ferrás

Received: 30 September 2021

Accepted: 21 October 2021

Published: 28 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Applied Mathematics and Statistics, University of Sao Paulo, Sao Carlos 13566-590, Brazil;
laisonfurlan@usp.br (L.J.d.S.F.); mtaraujo@icmc.usp.br (M.T.d.A.)

2 Department of Mathematics and Computer Science, Sao Paulo State University,
Presidente Prudente 19060-900, Brazil; analice.brandi@unesp.br

3 Department of Mechanical Engineering, Federal University of Rio de Janeiro, Rio de Janeiro 21941-972, Brazil;
doac@mecanica.coppe.ufrj.br

* Correspondence: lefraso@icmc.usp.br
† These authors contributed equally to this work.

Abstract: This work presents different formulations to obtain the solution for the Giesekus con-
stitutive model for a flow between two parallel plates. The first one is the formulation based on
work by Schleiniger, G; Weinacht, R.J., [Journal of Non-Newtonian Fluid Mechanics, 40, 79–102 (1991)].
The second formulation is based on the concept of changing the independent variable to obtain
the solution of the fluid flow components in terms of this variable. This change allows the flow
components to be obtained analytically, with the exception of the velocity profile, which is obtained
using a high-order numerical integration method. The last formulation is based on the numerical
simulation of the governing equations using high-order approximations. The results show that
each formulation presented has advantages and disadvantages, and it was investigated different
viscoelastic fluid flows by varying the dimensionless parameters, considering purely polymeric fluid
flow, closer to purely polymeric fluid flow, solvent contribution on the mixture of fluid, and high
Weissenberg numbers.

Keywords: Giesekus model; flow between two parallel plates; exact solution; numerical solution;
high-order approximations; high Weissenberg number

1. Introduction

The solution for the velocity and extra-stress tensor distribution in a viscoelastic fluid
flow using a specific model can be obtained numerically and, sometimes, analytically. Each
specific model has its own complexity and limitations, compared to the real viscoelastic
fluids. The numerical solution of a laminar viscoelastic fluid flow is necessary for many
flow analyses, for instance, in laminar-turbulent transition flow studies. The fluid flow
components of this laminar flow can be obtained easily with some viscoelastic models,
for instance, the velocity and extra-stress tensor field solutions for the Oldroyd-B model
for the flow between two parallel plates. For some other models, the solution can require
more profound analysis and mathematical and numerical tools to be obtained, even for
simplified geometries.

In general, practical problems do not allow for analytical solutions due to their com-
plexity. For this reason, numerical methods for simulating non-Newtonian fluid flows
have been part of a very active area of research. Techniques for simulating viscoelas-
tic flows have been used to solve different constitutive models such as Oldroyd-B [1,2],
FENE-P [3,4], FENE-CR [5,6], PTT [4,7,8], and Giesekus [9,10]. The fluids that are elastic
and have a constant viscosity are known as Boger fluids and the Maxwell, Oldroyd-B, and
Giesekus models are suitable to simulate these fluids type [11].

Appl. Sci. 2021, 11, 10115. https://doi.org/10.3390/app112110115 https://www.mdpi.com/journal/applsci
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For the Giesekus constitutive model [12], Yoo and Choi [9] studied the analytical
solution for Couette and Poiseuille flows. For the Poiseuille flow, they obtained a semi-
analytical solution for the mean velocity. The values were obtained by the integration
(numerical, due to the complexity of the resulting equation) of the expression obtained for
the derivative of the mean velocity.

Schleiniger and Weinacht [10] continued Yoo and Choi’s [9] studies, presenting a weak
and classical solution for Poiseuille flow, with and without solvent viscosity contribution.
However, just like Yoo and Choi [9], the presented solution for the average velocity is
obtained implicitly.

More recently, Raisi [13] presented an approximation for the solution of the Couette–
Poiseuille flow for the Giesekus model. However, its results depend on the numerical
solution of the shear stress at the stationary plate by the Newton–Raphson method.

Ferrás [8] also carried out studies for the solution of the Poiseuille flow using the
Giesekus model, and showed an agreement between the results obtained by the mentioned
works and the guarantees of the solution existence for the branch 1/2 < αG ≤ 1.

Tomé et al. [14] presented a solution method for the Giesekus viscoelastic fluid flow
based on work by Schleiniger and Weinacht [10], where an analytical solution for the flow
between two parallel plates problem was proposed. In their work, the authors considered
a purely polymeric fluid flow.

Among the differential constitutive models, the laminar flow solution with the
Giesekus model can not be obtained directly, because the extra-stress tensor appears
non-linearly through the quadratic term. On the other hand, the model is considered to
better approximate the rheology of polymers [15,16] and has the advantage of simplicity
where only three parameters are involved: the temporal relaxation λ, the mobility param-
eter αG, and the viscosity of the polymer ηp. Furthermore, the Giesekus model is able to
predict the first and second normal-stress differences.

The current study presents different formulations to obtain the solution for the
Giesekus constitutive model considering the flow between two parallel plates (Poiseuille
flow for Newtonian fluid flow). The first one is the formulation proposed by Schleiniger
and Weinacht [10]. The second formulation is the independent variable change, a new
method proposed here, and the last method is the numerical simulation of the governing
equations using high-order approximations. Each formulation to solve the laminar flow
between two parallel plates has its advantages and disadvantages, and these features are
explored here.

The paper is divided as follows: Section 2 presents the governing equations; the
different formulations to obtain the laminar solution are presented in Section 3, includ-
ing a semi-analytical solution obtained through the results presented by Schleiniger and
Weinacht [10], a formulation to solve considering the independent variable change, and a
numerical formulation through the high-order numerical approximation. Section 4 shows
the results obtained with each formulation to solve the governing equations, investigating
the limitations of each solver. The main conclusions are presented in Section 5.

2. Mathematical Formulation

In this paper, we consider a non-Newtonian, two-dimensional, and incompressible
fluid flow, which is assumed to be unsteady and without body forces. The dimensionless
governing equations are given by the continuity equation:

∇ · u = 0, (1)

and the momentum equation:
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∂u

∂t
+∇ · (uu) = −∇p +

β

Re
∇2u +∇ · T, (2)

where u is the velocity field, t is the time, p is the pressure, β = ηs
η0

is the coefficient that
controls the solvent viscosity contribution (where η0 = ηs + ηp, with η0 being the total
viscosity, ηs and ηp being the solvent and polymer viscosity, respectively), Re = ρUL

η0
is the

Reynolds number (ρ is the fluid density) and T is the non-Newtonian extra-stress tensor
that must obey an appropriate constitutive equation.

The Giesekus constitutive model [12–15] is given by the following equation,

T + Wi
∇
T +

αGWiRe
(1 − β)

(T · T) =
2(1 − β)

Re
D, (3)

where D is the rate of deformation tensor, Wi = λU
L is the Weissenberg number, λ is the

relaxation-time of the fluid, L is the channel half-width, U is the velocity scale, αG is the

so-called mobility parameter (0 ≤ αG ≤ 1) and
∇
T is the upper-convected derivative of

T. This model is based on molecular concepts and it reproduces the characteristics of
polymeric fluids [8].

The system of Equations (1) and (2) with the Giesekus constitutive Equation (3) in
two-dimensional Cartesian coordinates (x, y) are adopted. For the formulation where the
solution is analytic or semi-analytic, some simplifications are carried out in the governing
equations. The assumptions of such flow for these formulations are: steady-state flow(

∂(·)
∂t = 0

)
, no variation of the velocity and tensor in the streamwise direction

(
∂(·)
∂x = 0,

u = u(y), T = T(y)
)

, normal velocity equal zero, and a constant streamwise pressure

gradient
(

∂p(x,y)
∂x = px < 0

)
. The value of the streamwise pressure gradient is achieved

considering the integral
∫ 1
−1 udy = 4/3. This value is obtained for the Newtonian veloc-

ity profile with a maximum value equal to 1 in the channel center. According to these
assumptions, it is considered a horizontal channel where the fluid flows in the streamwise
direction x; hence, the following system is taken into account:

px =
β

Re
u′′ + T′

xy , (4)

∂p(x, y)
∂y

= T′
yy , (5)

Txx − 2WiTxyu′ + αGReWi
(1 − β)

(
T2

xx + T2
xy

)
= 0 , (6)

Txy − WiTyyu′ + αGReWi
(1 − β)

Txy
(
Txx + Tyy

)
=

(1 − β)

Re
u′ , (7)

Tyy +
αGReWi
(1 − β)

(
T2

xy + T2
yy

)
= 0 . (8)

In addition, it will be considered −1 ≤ y ≤ 1 and, thus, Txx(0) = Txy(0) = Tyy(0) =
u′(0) = 0 at the center (y = 0).

3. Different Formulations to Obtain the Fully Developed Laminar Flow with the
Giesekus Model

This section presents different formulations to find the fully developed viscoelastic
fluid flow between parallel plates using the Giesekus model. The first formulation is based
on Schleiniger and Weinacht [10], the second one is a new formulation that solves the
Giesekus equation based on the independent variable change (y for the tensor Txy). With
this change in the system, it is possible to obtain a restriction condition for the pressure
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gradient, showing that this model has some restrictions on the previous formulation. The
third formulation is a high-order simulation (HOS) code using vorticity–velocity formula-
tion and a log-conformation formulation adopted for the extra-stress tensor calculation to
overcome the high Weissenberg number problem (HWNP).

3.1. Schleiniger and Weinacht Formulation

Here, we present the steps to solve analytically the non-linear system of equations
that represent the steady-state of the isothermal, incompressible flows of a Giesekus fluid
with a Newtonian solvent between two parallel plates. The formulation is based on [9,10],
who presented them using different dimensionless forms among each other. Schleiniger
and Weinacht (SW) [10] solved and discussed the solutions mathematically, considering
the Giesekus fluid with and without Newtonian solvent, and they commented about the
Giesekus fluid without the Newtonian solvent for the axisymmetric case. In their paper,
the solution is not obtained explicitly, i.e., the derivative of the solution may not be checked
out directly by the reader. Hence, this section will provide a detailed explanation to achieve
the analytical solution and a numerical algorithm for solving the implicit equation, which
is named herein the “semi-analytical solution”.

The system of equations—Equations (4)–(8) is analogous to the system (2.1)–(2.5),
solved by Schleiniger and Weinacht [10], with some differences in the dimensional system.

Rewriting Equation (8) in an equivalent form, we get:(
Tyy +

(1 − β)

2αGReWi

)2

+ T2
xy =

(1 − β)2

4α2
GRe2Wi2

, (9)

which provides two expressions to Tyy as a function of Txy,

Tyy =
−(1 − β)±

√
(1 − β)2 − 4α2

GRe2Wi2T2
xy

2αGReWi
. (10)

Since the extra-stress tensor should be equal to zero along the centerline of the channel,
the best choice in Equation (10) is the plus sign:

Tyy =
−(1 − β) +

√
(1 − β)2 − 4α2

GRe2Wi2T2
xy

2αGReWi
. (11)

Adding Equations (6) and (8), one can obtain:

(Txx + Tyy) +
αGReWi
(1 − β)

[(Txx + Tyy)
2 − 2TxxTyy + 2T2

xy]− 2WiTxyu
′
= 0, (12)

or equivalently,

αGReWi
(1 − β)

(Txx + Tyy)
2 + (Txx + Tyy)− 2αGReWi

(1 − β)
TxxTyy+

+
2αGReWi
(1 − β)

T2
xy = 2WiTxyu

′
.

(13)

The value of (Txx + Tyy) can be obtained from Equation (7):
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(Txx + Tyy) =
(1−β)

Re u
′
+ WiTyyu

′ − Txy
αG ReWi
(1−β)

Txy
. (14)

Moreover, Equation (14) implies that:

Txx =
(1 − β)[(1 − β) + ReWiTyy]u

′

αGRe2WiTxy
− (1 − β) + αGReWiTyy

αGReWi
. (15)

Equations (14) and (15) are valid for all y 
= 0. The values of the extra-stress tensor
components Txx, Tyy, Txy and the streamwise velocity component u

′
are known at centerline

y = 0.
Substituting Equations (14) and (15) into Equation (13) and carrying on some algebraic

manipulations, and with the use of Equation (8), one can obtain:

u
′
=

[ (1−β)
Re + bWiTyy]Txy

[ (1−β)
Re + WiTyy]2

, (16)

where b = 2αG − 1.
Equation (16) shows that u

′
is a function of the extra-stress tensor component Tyy and

Txy. As Equation (11) shows that the extra-stress tensor component Tyy is a function of the
extra-stress component Txy, it is possible to use Equation (11) in Equation (16); after some
algebraic manipulations, again, a equation for u

′
can be obtained:

u
′
=

2αGReTxy[(1 − β) + b
√
(1 − β)2 − 4α2

GRe2Wi2T2
xy]

[b(1 − β) +
√
(1 − β)2 − 4α2

GRe2Wi2T2
xy]

2
. (17)

We should comment about the sign of the square root term presented in Equation (17).
The solution of the Giesekus model needs to satisfy all equations, in particular Equation (8),
which was rewritten as Equation (9). The Equation (9) means that:(

Tyy +
(1 − β)

2αGReWi

)2

≤ (1 − β)2

4α2
GRe2Wi2

, (18)

and also

T2
xy ≤ (1 − β)2

4α2
GRe2Wi2

. (19)

The restriction given by Equation (19) leads to (1 − β)2 − 4α2
GRe2Wi2 ≥ 0, i.e., the

square root term presented in Equation (17) is always non-negative since Equation (8) has
to be taken into account. Therefore, this restriction must be respected in this paper.

Integrating Equation (4) with respect to y and using that Txy = u
′
= 0 at the centerline

y = 0, one can arrive at:

Txy =
−β

Re
u
′
+ pxy, −1 ≤ y ≤ 1, (20)

where px is a negative constant.
Substituting Equation (20) into Equation (17), one can obtain an implicit expression

for u
′
:

u
′
=

2αGRe(−β
Re u

′
+ pxy)[(1 − β) + b

√
(1 − β)2 − 4α2

GRe2Wi2(−β
Re u′ + pxy)2]

[b(1 − β) +
√
(1 − β)2 − 4α2

GRe2Wi2(−β
Re u′ + pxy)2]2

. (21)
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In order to obtain the analytical solution, it is necessary to follow the next steps:

1. Solve Equation (21) to obtain u
′

for a given px;
2. Solve Equation (20) to obtain Txy(y);
3. Solve Equation (11) to obtain Tyy(y);
4. Solve Equation (15) to obtain Txx(y).

Again, we should note that Equations (21), (20), (11) and (15) are similar to
Equations (5.2) to (5.5), given by Schleiniger and Weinacht [10], respectively, with some
differences in the dimensional system. Since sequence 2, 3, and 4 is followed, it is possible
to see that all of the components of the extra-stress tensor can be obtained explicitly, just
using some algebraic calculations. However, in step 1, it is not easy to solve u

′
analytically.

Therefore, in the next section, we will discuss the assumptions and the numerical strate-
gies adopted to choose px properly, to calculate u

′
, and to calculate the component of the

velocity u for complementing the present section, and for providing applicability of the
mathematical work by Schleiniger and Weinacht [10] in the engineering field.

3.2. Independent Variable Change

The formulation proposed here is based on the change of the independent variable in
the equation system. The equation system is rewritten in terms of the component tensor
Txy. This change in the equation system allows us to find a solution for y as a function
of Txy analytically. From the Equations (6) and (8), two solutions for each equation can
be obtained:

Txx =

(−1 + β)

(
1 ±

√
1 − 4ReTxyWi2αG(ReTxyαG+2(−1+β)u′ )

(−1+β)2

)
2ReWiαG

, (22)

and

Tyy =

(−1 + β)

(
1 ±

√
1 − 4Re2T2

xyWi2α2
G

(−1+β)2

)
2ReWiαG

. (23)

In the channel center, the extra-stress tensor should be zero. Therefore, the solution
adopted is the one with the signal of the minus (−) before the square root. From the
Equation (4), by integrating in the y direction, one can obtain an equation for u

′
(y):

u
′
=

Re
β

(
pxy − Txy

)
.

Substituting the last equation and the Equations (22) and (23) into Equation (7), the
resulting equation is a function of the variables px, y and the extra-stress tensor compo-
nent Txy:

(
Txy − pxy

)[− 2 +
2
β
+

1
αG

⎛⎝1 −
√

1 − 4Re2T2
xyWi2α2

G
(−1 + β)2

⎞⎠+

+
1

αGβ

(√
1 − 4Re2T2

xyWi2α2
G

(−1 + β)2 − 1

)]
+ Txy

√
1 − 4Re2T2

xyWi2α2
G

(−1 + β)2 +

+Txy

√
1 − 4Re2T2

xyWi2α2
G

(−1 + β)2 +
8Re2TxyWi2

(
Txy − pxy

)
αG

(−1 + β)β
= 0.

(24)
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The aim of this formulation is to solve the Equation (24) for y and then obtain a
solution y as a function of Txy. After some algebraic manipulations and simplifications,
two equations can be obtained, one is given by:

y =
Txy

px
.

This equation satisfies the hypothesis in the channel center, but from the equation
of the model, the relation between y and Txy is non-linear, so this equation should not be
adopted. The interesting equation is the second one, which expresses the non-linear relation
between the tensorial forces and the width of the channel, as one can see in the equation:

y =

[
Txy

(
− 2α2

G

(
(β − 1)

(
β

(√
1 − 4α2

GRe2T2
xyWi2

(β − 1)2 − 1

)
+ 1

)
+

+Re2T2
xyWi2

)
+ αG(β − 1)(3β − 2)

(√
1 − 4α2

GRe2T2
xyWi2

(β − 1)2 − 1

)
+

+(β − 1)2

(
1 −

√
1 − 4α2

GRe2T2
xyWi2

(β − 1)2

))]/
[

px

(
2αG(β − 1)2

(√
1 − 4α2

GRe2T2
xyWi2

(β − 1)2 − 1

)
+

(β − 1)2

(
1 −

√
1 − 4α2

GRe2T2
xyWi2

(β − 1)2

)
−

−2α2
G(−β + ReTxyWi + 1)(β + ReTxyWi − 1)

)]
.

(25)

The Equation (25) allows to obtain a distribution of y from a given Txy. Starting from
the channel center, where Txy is zero, the values for Txy are increased to obtain, respectively,
y, until the channel boundaries, where y = ±1.

For this procedure, it is necessary to find a step size that is able to capture the extra-
stress tensor component Txy distribution until y = ±1. For that, an assumption that gives
us a 6th degree function is accomplished, in which coefficients are all the variables involved
in the flow. To obtain this function, it is assumed that, at the wall, the extra-stress tensor
component is Txy = hn, where h is the size of increment and n is the number of increment
needed to arrive in y = −1, starting from the channel center (notice that, if it is considered
the increment until y = 1, the assumption for Txy should be Txy = −hn).

Equation (25) is solved at the wall y = −1, assuming Txy = hn. After some algebraic
manipulations, we obtain a function in h, which gives the increment size as the lower real
root. The solution of this function has six roots (four complex and two real roots or four
real and two complex roots). The required solution is the lower real root. This function
is important because it allows one to estimate of the number of points that are needed to
obtain the distribution of the extra-stress tensor component in the channel (it is possible
because the function is also dependent on n). The function is given by:
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P(h) = α2
Gh6n6Re4Wi4 + 2α2

Gh5n5PxRe4Wi4 + h4(α2
Gn4Px2Re4Wi4+

+4α4
Gβ2n4Re2Wi2 − 12α3

Gβ2n4Re2Wi2 + 8α3
Gβn4Re2Wi2+

+11α2
Gβ2n4Re2Wi2 − 12α2

Gβn4Re2Wi2 + 2α2
Gn4Re2Wi2−

−3αGβ2n4Re2Wi2 + 5αGβn4Re2Wi2 − 2αGn4Re2Wi2)+

+h3(−8α3
Gβ2n3PxRe2Wi2 + 8α3

Gβn3PxRe2Wi2+

+12α2
Gβ2n3PxRe2Wi2 − 16α2

Gβn3PxRe2Wi2 + 4α2
Gn3PxRe2Wi2−

−5αGβ2n3PxRe2Wi2 + 9αGβn3PxRe2Wi2 − 4αGn3PxRe2Wi2)+

+h2(−2α2
Gβ3n2 + 5α2

Gβ2n2 − 4α2
Gβn2 + α2

Gn2 + 3αGβ3n2−
−8αGβ2n2 + 7αGβn2 − 2αGn2 + β3(−n2) + 3β2n2 − 3βn2+

+2α2
Gβ2n2Px2Re2Wi2 − 4α2

Gβn2Px2Re2Wi2 + 2α2
Gn2Px2Re2Wi2−

−2αGβ2n2Px2Re2Wi2 + 4αGβn2Px2Re2Wi2 − 2αGn2Px2Re2Wi2+

+n2) + h(2α2
Gβ4nPx − 8α2

Gβ3nPx + 12α2
Gβ2nPx − 8α2

GβnPx+

+2α2
GnPx − 3αGβ4nPx + 13αGβ3nPx − 21αGβ2nPx + 15αGβnPx−
−4αGnPx + β4nPx − 5β3nPx + 9β2nPx − 7βnPx + 2nPx)+

+α2
Gβ4Px2 − 4α2

Gβ3Px2 + 6α2
Gβ2Px2 − 4α2

GβPx2 + α2
GPx2−

−2αGβ4Px2 + 8αGβ3Px2 − 12αGβ2Px2 + 8αGβPx2 − 2αGPx2+

+β4Px2 − 4β3Px2 + 6β2Px2 − 4βPx2 + Px2

(26)

The next step of the present method is to calculate the distribution between the tensor
component Txy and y, and use it to find the gradient pressure px. In order to find the
pressure gradient, we adopted the existing condition of the solution in the real plane given
by Schleiniger and Weinacht [10]:

T2
xy ≤ (1 − β)2

(2ReWiαG)2 . (27)

Using this condition in the Equation (25), at the wall y = 1, and solving the inequation
for px, we obtained an existence condition for the flow in terms of the pressure gradient:

px ≥ −1 + β + 2αG(2 + 2αG(−1 + β)− 3β)

2ReWi(1 − 2αG)
2αG

. (28)

Note that if Re, Wi or αG is zero (UCM and Oldroyd-B), the pressure gradient does
not have a limiting value, the same happens if αG = 1

2 . From the inequation (28), it is
possible to see that the hypothesis of the pressure gradient component px lower than zero
is satisfied. After these calculations, it is possible to obtain all of the flow components using
the equations written in terms of the component tensor Txy.

The last step is the calculation of the velocity profile u(y) as a function of Txy. Equation (29)
shows the relation between the component tensor Txy and the derivative of the velocity
profile u(y),

u
′
=

Re
β

(
pxy − Txy

)
. (29)

For the calculation of the velocity profile, it is necessary to rewrite these equations in
terms of the tensor component Txy. For that, an expression for du

dTxy
is needed. Using the

chain rule, the Equation (29) can be rewritten as:
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du
dTxy

=
du
dy

dy
dTxy

=
Re
β

(
pxy − Txy

) dy
dTxy

. (30)

Integrating Equation (30) the following expression can be obtained:

u(Txy) =
Re
β

[
px

y2

2
− Txyy +

∫
ydTxy

]
. (31)

Solving
∫

ydTxy, it can be obtained:

u(Txy) =

(
(β − 1)3

(
2αG +

√
1 − 4α2

GRe2T2
xyWi2

(β − 1)2 − 1

)
×

×
((

8(αG − 1)αG + 1
)(

2αG +

√
1 − 4α2

GRe2T2
xyWi2

(β − 1)2 − 1

)
×

× log

(
− 2αG −

√
1 − 4α2

GRe2T2
xyWi2

(β − 1)2 + 1

)
+

+
4αG(2αG − 1)

(
αG

(
2(β − 1)2 + Re2T2

xyWi2
)− 2(β − 1)2

)
(β − 1)2

))/
/(

4αGReWi2
(
− 2αG(β − 1)2

(√
1 − 4α2

GRe2T2
xyWi2

(β − 1)2 − 1

)
+

+(β − 1)2

(√
1 − 4α2

GRe2T2
xyWi2

(β − 1)2 − 1

)
+

+2α2
G(−β + ReTxyWi + 1)(β + ReTxyWi − 1)

))
,

(32)

where the logarithm term does not have a solution in the real plane for any value of
αG, Re, Wi, Txy, and β. This information, about the equation for the velocity u, shows
that it is not possible, using this formulation, to obtain an analytical solution for velocity.
Therefore, the calculation sequence to obtain the main flow components is:

1. From Equation (28), it is possible to obtain the px max, used to start the simulation
and the recursive process;

2. Equation (26) allows one to obtain the step size required to find the point distribution
to increase Txy, to obtain the coordinate y, respectively;

3. Find u
′

by the Equation (29);
4. Integrate numerically u

′
to obtain the velocity u. It is important to emphasize that,

to calculate the integral numerically, an interpolation for new values of y equally
spaced is adopted, since the analytical y obtained from Txy is not equally spaced.
A high-order finite difference approximation was adopted for this calculation;

5. After the integral calculation, it is verified if the value of this integration is 4/3.
This is the value obtained for Newtonian fluid in a Poiseuille flow with a maximum
streamwise velocity equal to 1. If the value of the integral is different from 4/3,
the Newton–Raphson method is used to obtain a pressure gradient where the flow
resulting from this gradient has numerical integration of the velocity equal 4/3;

6. Using the expressions given in Equations (22) and (23), it is possible to obtain the
extra-stress tensor components distribution.
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3.3. High-Order Simulation (HOS)

For the numerical simulation of the Giesekus fluid flow, a high-order method is
adopted. In order to eliminate the pressure term in the Navier–Stokes Equation (2), the
vorticity–velocity formulation is adopted. Thus, the vorticity component in the z direction,
ωz, can be written as:

ωz =
∂u
∂y

− ∂v
∂x

. (33)

The equation system to be solved is given by:

∂u
∂y

+
∂v
∂x

= 0, (34)

∂2v
∂x2 +

∂2v
∂y2 = −∂ωz

∂x
, (35)

∂ωz

∂t
+

∂(uωz)

∂x
+

∂(vωz)

∂y
=

β

Re

(
∂2ωz

∂x2 +
∂2ωz

∂y2

)
+

∂2Txx

∂x∂y
+

∂2Txy

∂y2 − ∂2Txy

∂x2 − ∂2Tyy

∂x∂y
, (36)

and the Giesekus constitutive equation:

T + Wi
∇
T +

αGWiRe
(1 − β)

(T · T) =
2(1 − β)

Re
D. (37)

In this equation, the log-conformation method [17,18] is adopted to overcome the high
Weissenberg number problem—HWNP. Using this technique, a conformation tensor A is
adopted. The relation between T and the conformation tensor A is given by

T =
(1 − β)

ReWi
(A − I), (38)

and
Ψ = loga(A). (39)

The equation to be solved using this technique is given as follows:

∂Ψ

∂t
+∇ · (uΨ) = (ΩΨ − ΨΩ) + 2B +

1
Wi

a−Ψ(I − aΨ)[I + αG(aΨ − I)], (40)

where a = e is the Euler’s number.
All of the spatial derivatives are approximated by fifth- and sixth-order compact finite

differences [19]. Time derivatives are discretized using a classical fourth-order Runge–
Kutta scheme [20]. The Poisson equation is solved using a multigrid full approximation
scheme (FAS) [21]. The calculation of the vorticity on the wall is performed according
to [22] using compact high-order finite difference approximations.

The boundary conditions adopted are Newtonian Poiseuille profile at the channel
entrance (left boundary), non-permeability and no-slip conditions at the walls (upper and
lower boundaries), and Neumann boundary conditions for the velocity at the channel
exit (right boundary). The problem is solved as an unsteady problem and a very long
channel is adopted to avoid the influence of the left boundary. The simulation is carried
out until the maximum difference between the vorticity in two consecutive time steps is
lower than 10−9.

The calculation sequence to obtain the main flow components by solving
Equations (34)–(36) and (40) is given by:

1. Apply a time integration for the vorticity and the extra-stress tensors Ψ (Runge–
Kutta method);

2. Calculate the extra-stress tensor components through the log-conformation method;
3. Calculate the right-hand side of the Poisson equation given by Equation (35);
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4. Calculate the velocity v by solving the Poisson equation—Equation (35);
5. Calculate the velocity u using the continuity equation—Equation (34);
6. Update the vorticity ωz at the walls;
7. Apply a filter after the last step of the time integrator.

The filtering strategy adopted in the last step is a 6th order compact filter given by [23].
The filter is applied at the end of each time step integration. It consists of recalculating
vorticity distribution through a tridiagonal system to eliminate the spurious oscillations
that can appear in the numerical solution.

For the results shown here, the number of points in the streamwise (x) and wall-normal
(y) directions were 9049 and 249, respectively. The distance between two consecutive points
were dx = 2π

16 and dy = 2
248 , and were constant in all domains.

4. Results

In this section, the results are presented for each formulation described. A comparison
and the advantages and disadvantages of each formulation is presented. The relation to
the pressure gradient obtained from the second formulation will be explored.

In order to explore the results, advantages, and disadvantages of each formulation,
different types of fluid and flows were simulated, varying the dimensionless parameters.

4.1. Agreement Region

In the present section, we present a comparison of the results obtained with the
three techniques in a range of parameters, where all are in agreement. In the range of
dimensionless parameters adopted in the present section, all of the formulations showed
good agreement. The range of parameters adopted here is given by:

• Reynolds number—0 < Re < 10,000;
• Weissenberg number—0 < Wi < 10;
• β parameter—0.01 < β < 1;
• αG parameter—0 < αG < 0.5.

Some results were chosen to show the range mentioned above. These results are
presented showing the variation of the streamwise velocity U(y) and the three components
of the extra-stress tensor Txx, Txy and Tyy in the wall-normal direction y.

Figures 1–3 show the comparison among the formulations presented for different
values of the dimensionless numbers Re, β, and αG in the range of the agreement region.

It is possible to observe very good agreement between the results obtained by different
formulations, both for β close to zero (close to polymeric fluid) and for β close to one (close
to Newtonian fluid).
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Figure 1. Streamwise velocity U(y) and the components of the extra-stress tensor Txx, Txy and Tyy variation in the wall-
normal direction y. Dimensionless numbers: Re = 2000, β = 0.25, αG = 0.1 and Wi = 2.
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Figure 2. Same as in Figure 1 for dimensionless numbers: Re = 5000, β = 0.5, αG = 0.2 and Wi = 2.

y
-1 -0.5 0 0.5 1

U(y)

0

0.2

0.4

0.6

0.8

1

Schleiniger and Weinacht (1991)
High Order Simulation (HOS)
Independent Variable Change

-0.05 0 0.05

0.985

0.9855

0.986

y
-1 -0.5 0 0.5 1

T
xx

×10 -5

0

1

2

3

4

5

6

7

8

9

-1 -0.98 -0.96

×10 -5

7.6

7.8

8

y
-1 -0.5 0 0.5 1

T
xy

×10 -5

-3

-2

-1

0

1

2

3

-1 -0.95 -0.9

×10 -5

2

2.02

2.04

2.06

y
-1 -0.5 0 0.5 1

T
yy

×10 -6

-6

-5

-4

-3

-2

-1

0

-1 -0.95 -0.9

×10 -6

-6

-5.5

Figure 3. Same as in Figure 1 for dimensionless numbers: Re = 8000, β = 0.75, αG = 0.2 and Wi = 2.
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For these simulations, different values for the dimensionless parameters of the flow
were considered, where all the formulations converge to a solution. It is noteworthy that the
formulations have certain limitations for some values for the dimensionless numbers. Out
of the agreement region, the results using the first and the second formulation diverges or
appears with oscillations on their field. The exploration of these bounds are shown below.

4.2. Purely Polymeric Flows

Considering the dimensionless number β = 0, the flow of a viscoelastic fluid is known
as a purely polymeric fluid flow, since there is no Newtonian solvent contribution in the
fluid composition.

The independent variable change formulation does not converge for a purely poly-
meric fluid. Therefore, for flows with β = 0, the Schleiniger and Weinacht [10] and HOS
formulations were used, and their results were compared.

Figures 4–6 show the variation of the streamwise velocity U(y) and the three compo-
nents of the extra-stress tensor Txx, Txy and Tyy in the wall-normal direction y.
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Figure 4. Same as in Figure 1 for dimensionless numbers: Re = 2000, β = 0, αG = 0.3 and Wi = 2.
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Figure 5. Same as in Figure 1 for dimensionless numbers: Re = 5000, β = 0, αG = 0.2 and Wi = 2.
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Figure 6. Same as in Figure 1 for dimensionless numbers: Re = 8000, β = 0, αG = 0.1 and Wi = 2.

The extra-stress tensor results obtained by the formulations of Schleiniger and
Weinacht [10] and HOS, considering the flow for a purely polymeric fluid, showed a
good agreement among each other. However, a small difference between the velocity
profiles can be observed at the channel center (u(y = 0)).

4.3. Low β Number—Close to Purely Polymeric Flows

As mentioned earlier, the formulation using the independent variable change does not
work for β = 0. However, an analysis of the results for this formulation was performed,
considering β close to zero. The results obtained by the formulation Schleiniger and
Weinacht [10] and by the HOS formulation are compared. The comparisons were carried
out for the streamwise velocity U(y) and the three components of the extra-stress tensor
Txx, Txy and Tyy, as can be seen in Figures 7–9, for β = 0.1, 0.05 and 0.01, respectively.
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Figure 7. Same as in Figure 1 for dimensionless numbers: Re = 5000, β = 0.1, αG = 0.3 and Wi = 2.

y
-1 -0.5 0 0.5 1

U(y)

0

0.2

0.4

0.6

0.8

1

Schleiniger and Weinacht (1991)
High Order Simulation (HOS)
Independent Variable Change

-0.1 -0.05 0 0.05 0.1

0.875

0.876

0.877

0.878

0.879

y
-1 -0.5 0 0.5 1

T
xx

×10 -4

0

0.5

1

1.5

2

2.5

3

3.5

-1 -0.99 -0.98 -0.97 -0.96

×10 -4

3.1

3.2

3.3

y
-1 -0.5 0 0.5 1

T
xy

×10 -5

-8

-6

-4

-2

0

2

4

6

8

-1 -0.99 -0.98 -0.97 -0.96

×10 -5

7.05

7.1

7.15

7.2

y
-1 -0.5 0 0.5 1

T
yy

×10 -5

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

-1 -0.99 -0.98 -0.97 -0.96 -0.95

×10 -5

-3.1

-3.05

-3

-2.95

Figure 8. Same as in Figure 1 for dimensionless numbers: Re = 8000, β = 0.05, αG = 0.3 and Wi = 2.
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Figure 9. Same as in Figure 1 for dimensionless numbers: Re = 2000, β = 0.01, αG = 0.3 and Wi = 2.

The results obtained are in agreement, however, as the value of the dimensionless num-
ber β decreases, the difference between the formulations increases. This shows precisely
the restriction commented above that, for the independent variable change formulation,
the lowest value for β has to be β = 0.01 in order to obtain acceptable results with this
formulation. It is worth mentioning that, as the solution obtained is analytical for all com-
ponents, except for the streamwise velocity, the increase in the number of points adopted
in the solution did not show an influence for lower values of β simulations.

4.4. High Weissenberg Number

The HOS formulation was implemented with the log-conformation technique for flow
simulation, considering high values of the Weissenberg number. The SW formulation [10]
was not able to converge to the solution when considering Re and Wi higher than 8000 and
10, respectively.

However, the formulation based on the independent variable change was able to
obtain solutions for any values of Re > 0, Wi > 0 and 0 < αG < 0.5, with the only
restriction to use the dimensionless number β > 0.01.

Figures 10–12 show the variation of the streamwise velocity U(y) and the three
components of the extra-stress tensor Txx, Txy and Tyy in the wall-normal direction y for
different dimensionless numbers of Re, β, αG, and with Weissenberg number Wi = 150, 300,
and 500.
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Figure 10. Same as in Figure 1 for dimensionless numbers: Re = 2000, β = 0.25, αG = 0.1 and Wi = 150.
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Figure 11. Same as in Figure 1 for dimensionless numbers: Re = 8000, β = 0.5, αG = 0.3 and Wi = 300.
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Figure 12. Same as in Figure 1 for dimensionless numbers: Re = 5000, β = 0.75, αG = 0.2 and Wi = 500.

One may observe that the results obtained by the different formulations are in agree-
ment. An interesting behavior presented by the HOS formulation can be observed. The
results obtained by this formulation, for high Weissenberg numbers, show oscillations for
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the extra-stress tensor components in the channel center, and as the Weissenberg number
increases, the oscillations are more pronounced.

Oscillations usually appear in simulations of flow between parallel plates close to
the wall and not in the channel center. However, for high values of the Weissenberg
number, a discontinuity is observed in the extra-stress tensor components in the channel
center. With the HOS formulation, even using the log-conformation technique to solve
the problem of the high Weissenberg number, oscillations were found in the extra-stress
tensor components in this region. The use of mesh refinement in the wall-normal direction
smooths these oscillations. It is also possible to adopt a stretched mesh, refining only in the
region of the channel center to reduce these oscillations and the computational cost.

4.5. Advantages and Disadvantages for Each Formulation

The formulation based on the Schleiniger and Weinacht formulation [10] is advanta-
geous in terms of the velocity cost in obtaining the flow components, because the system
of equations is solved in a semi-analytical way. Another advantage of this formulation is
the possibility to obtain the flow variables without the contribution of the solvent; that is,
flow for the purely polymeric fluid (β = 0). The disadvantage appears in the direction of
convergence towards the adequate pressure gradient for the ideal flow. This disadvantage
is related to the term inside the square root of Equation (21), it can becomes negative, and
the solution is no longer real. This behavior appears for high values of Weissenberg Wi,
Reynolds number Re, and the mobility parameter αG.

The formulation based on the independent variable change is advantageous for ana-
lytically obtaining the main components of the desired flow. Another advantage: there is
no restriction for the values of the flow variables, except those already found by Schleiniger
and Weinacht [10] (such as αG = 0.5). The disadvantage is the computational cost, since it
was not possible to obtain an analytical expression for this. It is necessary to interpolate
a new distribution for the tensor Txy to find an equally spaced domain of y, then it is nu-
merically integrated to the expression (29), and finally the streamwise velocity component
can be obtained. Another disadvantage of this formulation is the limitation of the flow
simulation for purely polymeric fluids (β = 0). The limitation arises from the equation for
the derivative of velocity (29), where the right-hand side terms are divided by β.

The solution obtained by high-order simulation is advantageous because simplifica-
tions are not adopted in the equation system that models the flow, so the problem is solved,
considering all of the terms in the equation system. The disadvantage of this formulation is
the computational cost, since many CPU hours are necessary to obtain the solution for each
case. The adopted code uses domain decomposition parallelization, high-order methods
for approximating the spatial derivatives, and a classical fourth-order Runge–Kutta method
for the temporal derivative.

The simulations were carried out in a computer Intel Xeon E5-2680v2 2.8 GHz. The
wall time required for the Schleiniger and Weinacht [10] and the independent variable
change formulations were less than 5 s. The high-order simulations were performed using
16 cores and the wall time was about 20 h.

5. Conclusions

This paper presents three different formulations to obtain the solution of a two-
dimensional viscoelastic fluid flow between two parallel plates, modeled by the Giesekus
constitutive equation.

The first formulation presented is based on the work by Schleiniger and Weinacht [10].
The second formulation presented is based on the idea of the independent variable change.
This change allows the flow components to be obtained analytically, except for the velocity
profile, obtained using a high-order numerical integration method. The third formulation
presented was called high-order simulation (HOS), i.e., the numerical simulation of the flow
modeled by the Navier–Stokes equations and the constitutive equation, using high-order
methods to obtain the solution.
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The Schleiniger and Weinacht [10] formulation is efficient to obtain the flow compo-
nents accurately and quickly. However, using many numerical methods for the solution
makes convergence difficult for specific parameter values. Each step is verified if the
value inside the square root is negative, making the solution complex and no longer real.
However, this formulation proved efficient in obtaining the flow components for purely
polymeric fluids (β = 0), converging to the solution for almost all values proposed. It did
not work for high values of Reynolds Re and Weissenberg Wi numbers.

The formulation based on the independent variable change proved to be very efficient,
as it solves all of the flow components analytically, but the velocity profile. The flow
components are obtained quickly and accurately, for any values of dimensionless numbers
of Reynolds Re, Weissenberg Wi, αG, and β > 0. The only limitation of this formulation is
when the fluid is composed of purely polymeric fluid flows, or near it β < 0.01.

The HOS formulation is based on the complete solution of the Navier–Stokes equations
and the considered constitutive equation. This formulation has a high computational cost
since the simulations take a long time to be solved. However, the numerical methods
used proved to obtain good results for the simulations carried out for all of the proposed
dimensionless parameters, with a high Weissenberg number, β = 0, αG, and Reynolds
number Re.

It could be observed that the formulations presented proved to be efficient at obtaining
the components of the desired flow. The results of the formulations were explored and
analyzed, and their respective limitations and efficiencies were commented on. These
results could be used to clarify and help researchers with which formulation is most
suitable, depending on the fluid and flow parameters adopted.
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Abstract: In this work, we present a numerical study on the development length (the length from the
channel inlet required for the velocity to reach 99% of its fully-developed value) of a pressure-driven
viscoelastic fluid flow (between parallel plates) modelled by the generalised Phan–Thien and Tanner
(gPTT) constitutive equation. The governing equations are solved using the finite-difference method,
and, a thorough analysis on the effect of the model parameters α and β is presented. The numerical
results showed that in the creeping flow limit (Re = 0), the development length for the velocity
exhibits a non-monotonic behaviour. The development length increases with Wi. For low values of
Wi, the highest value of the development length is obtained for α = β = 0.5; for high values of Wi,
the highest value of the development length is obtained for α = β = 1.5. This work also considers
the influence of the elasticity number.

Keywords: viscoelastic fluids; generalised PTT model; finite-differences; development length

1. Introduction

A variety of functional applications are based on the premise that the flow is fully
developed. It is assumed that after a certain time the fluid has travelled a certain length
(development length—L) along the channel, after which the flow no longer changes in the
direction of flow. This is used, for example, in extrusion dies, lab-on-a-ship, etc. [1–3].

The development length of Newtonian flows in channels and pipes (see Figure 1) is
well understood [4].

Figure 1. Schematic of the channel and pipe geometries used for the study of the development length.
(a) Channel flow. (b) Pipe flow.

Durst et al. [4] developed two correlations between L (the distance the fluid travels to
become fully developed) and the Reynolds number, Re = ρUH

η , where U is the imposed
mean inlet velocity, ρ is the fluid density, H is the width of the channel (for pipes, one

Appl. Sci. 2021, 11, 10352. https://doi.org/10.3390/app112110352 https://www.mdpi.com/journal/applsci
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should replace H by D-diameter), and η is the Newtonian viscosity. These correlations are
given by,

L
H

= [(0.631)1.6 + (0.0442Re)1.6]1/1.6, (1)

L
D

= [(0.619)1.6 + (0.0567Re)1.6]1/1.6, (2)

and predict well the development length for channel and pipe flows, respectively. For
other works on the development length of Newtonian fluids please consult the following
references [5–10].

For generalised Newtonian fluids (with varying viscosity), several works have been
proposed in the literature [11–19]. We would like to highlight the works of Fernandes
et al. [19] and Poole and Ridley [18], in which they presented two correlations for the
development length in channel and pipe flows of power-law fluids (the viscosity is a
function of the second invariant of the deformation tensor, γ̇ (for simple flows, γ̇ is simply
the shear rate). The viscosity is then given by η = kγ̇n−1). The correlations are given by,

L
H

= [( f (n)− exp (15.706 − 4.002))1.6 + (0.0444Regen)
−0.209n2+0.645n+1.225]1/1.6, (3)

L
D

= [(0.246n2 − 0.675n + 1.03)1.6 + (0.0567ReMR)
1.6]1/1.6, (4)

for channel and pipe flows, respectively. Here, Regen = 6ρU2−n Hn

k
( n

4n+2
)n, ReMR =

8ρU2−nDn

k
( n

6n+2
)n, and f (n) = −0.355

1+2 exp (0.553−4.273n) . Note the increasing complexity in the
correlations when going from a Newtonian to a power-law fluid.

In the case of viscoelastic fluids, the number of papers on this topic is smaller. This
is due to the complexity of viscoelastic flows, such as the presence of singularities at
the entrance of the channel, overshoots in the velocity profile, and the high Weissenberg
number problem.

We would like to highlight the work of Na and Yoo [20] in which they perform numer-
ical simulations to determine the development length of an Oldroyd-B fluid and conclude
that the development length (for a fixed Re) increases slightly with the Weissenberg number,
Wi = λU

H (where λ is the relaxation time of the fluid in seconds), but is more strongly
affected by Re. Liang [1] proposed a theoretical work for the development length of vis-
coelastic fluids entering an extrusion die. They presented an expression for estimating the
length of the entrance region, which has applications in the extrusion industry. In the work
by Philippou et al. [10] the authors present a study on the flow development of a Bingham
plastic fluid in tubes and channels considering the Papanastasiou regularisation and the
finite element method. They considered the Navier’s slip law at the wall and concluded
that as slip increases, the development length initially increases exhibiting a global maxi-
mum before vanishing rapidly above the critical point corresponding to sliding flow. More
recently, Yapici et al. [21] presented a study on the development length of steady flows of
Oldroyd-B and Phan–Thien–Tanner (PTT) fluids through a two-dimensional rectangular
channel and concluded that the development length determined for the Oldroyd-B fluid
varies exponentially with Wi and linearly for the linear PTT model; they also concluded
that higher entry lengths are predicted with increasing Wi (at fixed Re).

To remove the unstable numerical effect of the singularity at the entrance corner, a
continuous inlet velocity profile is used in both works of Na et al. [20] and Yapici et al. [21].
This regularised profile can affect the true development length, so in the work of Guil-
herme [22] the log-conformation formulation [23–25] is used, which reduces the rate of
increase of the stresses and thus avoids the need to introduce artificial inlet velocity profiles.

It should be noted that the development of a correlation for the prediction of the
development length of such complex fluids is still difficult due to the high number of
parameters involved and the fact that it is model dependent.
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Here we follow the work of Guilherme [22], where a detailed analysis of the develop-
ment length of the linear PTT model is performed. We extend his work to the exponential
and generalised PTT models [22,26,27].

This work is organised as follows. First, we present the differential equations to
be solved and their numerical solution. In Section 3, we present the geometry and the
meshes. In Section 4, we perform a validation of the numerical method and the meshes,
using Newtonian benchmark results. In Section 5, we present and discuss the results for
viscoelastic fluids. The paper ends with the main conclusions in Section 6.

2. Governing Equations

The equations governing the flow of an incompressible fluid, under isothermal condi-
tions, are the continuity,

∇ · u = 0 (5)

and the momentum equations,

ρ
Du

Dt
= −∇p +∇ · σ + F, (6)

where u is the velocity vector, p is the pressure, σ is the stress tensor (to be defined later),
ρ is the mass density, and F represents the external forces. Note that all variables are
dimensionless, with: x = x∗/H, u = u∗/U, t = t ∗ U/H, p = p ∗ /(ρU2), σ = σ∗/(ρU2)
(the ∗ represents the dimensional variable).

In order to achieve a closed system of equations, a constitutive equation for the extra-
stress tensor, σ, is required. Recently, Ferrás et al. [27] proposed a new differential model
based on the Phan–Thien–Tanner constitutive equation [26] (see also [28]). This new model
considers a more general function for the rate of destruction of junctions, the Mittag–Leffler
function, where one or two fitting parameters are included, in order to achieve additional
fitting flexibility.

The Mittag–Leffler function is defined as,

Eα,β(z) =
∞

∑
j=0

zj

Γ(αj + β)
, (7)

with α, β being real and positive. Γ(·) is the gamma function, given by:

Γ(t) =
∫ ∞

0
xt−1e−xdx. (8)

when α = β = 1, the Mittag–Leffler function reduces to the exponential function, and when
β = 1 the original one-parameter Mittag–Leffler function, Eα is obtained.

The constitutive equation is given by:

K(σkk)σ + Wi
�
σ =

2(1 − ζ)

Re
D, (9)

where σkk is the trace of the stress tensor, Wi = λU/H is the Weissenberg number, Re =

UH/ν is the Reynolds number (ν = μ0/ρ is the kinematic viscosity), D = 1
2

(
∇u + (∇u)t

)
is the rate of deformation tensor, σ is the elastic stress, and ζ = μS

μ0
is the viscosity coefficient,

where μ0 = μS + μP is the total shear viscosity (μS is the solvent/Newtonian viscosity, μP

is the polymer viscosity) and
�
σ represents the Gordon–Schowalter derivative.

The stress function, K(σkk), is given by a new formulation that imparts more flexibility
and accuracy to the model predictions, as discussed in [27,29,30]. It is given by:

K(σkk) = Γ(β)Eα,β

(
εRe Wi σkk
(1 − ζ)

)
, (10)
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where ε represents the extensibility parameter, Γ is the Gamma function, and the normali-
sation Γ(β) is used to ensure that K(0) = 1, for all choices of β.

3. Numerical Method

The numerical method used in this work is based on finite differences. It can deal
with tree-like mesh grids (see Figure 2b) and allows fast Cartesian discretizations, flexi-
bility and accuracy, and local mesh refinement. In order to fit the discretization stencil
near the interfaces between grid elements of different sizes, a robust method based on a
moving least squares meshless interpolation technique is used to compute the weights of
the finite difference approximation in a given hierarchical grid, allowing complex mesh
configurations and preserving the overall accuracy of the resulting method.

Figure 2a shows a schematic representation of the mesh refinement. Note that some of
the points (variables) of the computational cells (red dots) must be approximated because
they are not located in the center of the cell (e.g., the center of computational cell 1 is not
the same as the location of the red dot used to compute the derivative of the property being
evaluated). To solve this problem, we use a special adaptive least square interpolation
(MLS). The method is known as HiG-Flow, and a detailed mathematical explanation can
be found in [31,32].

(a) (b)

Figure 2. (a) Mesh refinement and the need to use an adaptive least squares method; (b) dependency tree.

For the numerical solution of the Navier–Stokes equations together with the constitu-
tive equation given by the gPTT model, the momentum Equation (6) is rewritten:

∂u

∂t
+ u · ∇u = −∇p +

1
Re

∇2u +∇ · S + F, (11)

σ =
2(1 − ζ)

Re
D + S. (12)

From Equation (9), the rheological constitutive equation can be written as:

∂σ

∂t
+ (u · ∇)σ −

[
(∇u)t · σ + σ · ∇u

]
=

1
Wi

M(σ), (13)

where M(σ) is given by Equation (14),

M(σ) =
2(1 − ζ)

Re
D −

[
Γ(β)Eα,β

(
εRe Wi σkk
(1 − ζ)

)]
σ − ξ Wi(σ · D + D · σ), (14)

and the parameter ξ (0 ≤ ξ ≤ 1) accounts for the slip between the molecular network
and the continuous medium. For ξ = 0 there is no slip and the motion becomes affine.
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The parameter ξ leads to a non-zero second normal-stress difference in shear, resulting in
secondary flows in ducts having non-circular cross-sections. Since in this work we only
consider 2D flows, and, due to the high number of parameters involved in the numerical
simulations and the gPTT model itself, we have only considered the case when ξ = 0.

3.1. Calculation of u(n+1) and p(n+1)

To calculate the velocity u(n+1) and pressure p(n+1) fields, we use the incremental
projection method by Chorin [33], that uncouples the mass conservation and momentum
equations, given by Equations (5) and (6), respectively. This method allows one to obtain
an intermediate velocity field ũn+1 from Equation (11). In the HiG-Flow methodology, this
Equation (11) can be approximated using an explicit Euler method, Runge–Kutta RK-2
or RK-4, or, the semi-implicit Euler methods, Cranck–Nicolson, and BDF2. One can also
choose a spatial discretization orders of 2 or 4. One can use the the convective central
schemes or Upwind (order 1), or, schemes of order 2 like the Cubista [34] and Quick [35].

In this work an Implicit Euler scheme together with a second order spatial approxima-
tion and an Upwind Cubista scheme for the convective terms, is used:

ũ(n+1) − un

δt
+ un · ∇un = −∇pn +

1
Re

∇2ũ(n+1) +∇ · Sn + Fn (15)

here, δt is the time step, n represents the known values of velocity, stress, and pressure at
instant n, and n + 1 represents the new velocity field values (unknown) to be obtained from
the solution of the equation. At the inlet, (see Figure 3) we consider a constant velocity
profile, u(y) = 1 (the stress components are set to 0) and at the outlet, we assume fully
developed boundary conditions (Neumann boundary conditions) for the velocity and
stress (the pressure is imposed). Finally, at the walls (y = 0 and y = 1), we have the
empirical no-slip boundary condition (u = 0).

Figure 3. Dimensionless representation of the channel domain.

Using the projection method, it is well known that the velocity field ũn+1 obtained
from Equation (15) may not satisfy the mass conservation equation. Therefore, in order to
solve this problem, the equation for the potential ψ(n+1) = δt(pn − p(n+1)) is solved,

∇2ψ(n+1) = ∇ · ũ(n+1), (16)

and the Helmholtz–Hodge decomposition (see [31,32,36] for more details) is used to correct
the previous non-conservative velocity field ũ(n+1),

u(n+1) = ũ(n+1) −∇ψ(n+1). (17)

The new velocity field u(n+1) satisfies the mass conservation equation. Finally, the pressure

is updated p(n+1) = pn + ψ(n+1)

δt .
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3.2. Calculation of the Extra-Stress Tensor σ(n+1)

The velocity and pressure fields were obtained in the previous subsection. We now
aim to obtain the extra-stress tensor σ(n+1) field. Equation (13) is solved using the Explicit
Euler method, and, to calculate M(σ) (see Equation (14)), the Mittag–Leffler function and
the term Γ(β)Eα,β are obtained numerically from Equation (18) and the approximations
presented in the work by R. Gorenflo, J. Loutchko, and Y. Luchko [37],

Γ(β)Eα,β ≈ Γ(β)
N

∑
k=1

zk−1

Γ(α(k − 1) + β)
+ O(zN). (18)

The numerical implementation of the Mittag–Leffler function follows the work by
Davide Verotta and Eduardo Mendes [38] (developed in Fortran), which is adapted in this
work to C++. The original fortran code is based on a Matlab function developed by Igor
Podlubny and Martin Kacena [39] which, in turn, was based on the reference [37].

4. Geometry and Meshes

4.1. Geometry

Due to the low Re values considered in this work, and based on the few literature
results on the development length of viscoelastic fluids, we considered a geometry where
the length of the channel is fixed at 10 times its width (Figure 3).

4.2. Meshes

We performed simulations considering more than 8 levels of mesh refinement. After
some numerical experiments, the following meshes were considered:

• M1—uniform mesh with 160 × 16 computational cells and a minimum Δx/H and
Δy/H mesh spacing of 0.0625;

• M2—uniform mesh with 320 × 32 computational cells and a minimum Δx/H and
Δy/H mesh spacing of 0.03125;

• M3—uniform mesh with 640 × 64 computational cells and a minimum Δx/H and
Δy/H mesh spacing of 0.015625.

The tree meshes are shown in Figure 4.

Figure 4. Three consequently refined uniform meshes used in this work.

Numerical simulations were also performed considering a mesh with additional
refinement in the centerline of the channel, as shown in Figure 5. A total number of
16,000 cells was used.
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Figure 5. Mesh with refinement in the centerline region.

5. Validation of the Numerical Method

The validation of the numerical method is performed in two steps. First, the numerically-
determined fully-developed velocities and stresses are compared with the analytical so-
lution [27]. Then, the development length obtained for the gPTT model with Wi = 0.001
(almost Newtonian fluid) is compared with the benchmark results of Durst et al. [4].

5.1. Comparison with the Analytical Solution

Figure 6 shows a comparison between the analytical solution (solid line) and the
numerical solution (symbols) for mesh M3 with Re = 10−3, Wi = 0.1, 0.2, · · · , 1.0 and
ε = 0.25 (ξ was set to 0). In Figure 6a we have α = 0.5 and β = 0.5 and in Figure 6b α = 1.5
and β = 1.5.

(a α = 0.5 and β = 0.5 b α = 1.5 and β = 1.5

0 1
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0

wi = 0.1 [27]
wi = 0.2 [27]
wi = 0.3 [27]
wi = 0.4 [27]
wi = 0.1 − M3
wi = 0.2 − M3
wi = 0.3 − M3
wi = 0.4 − M3

0 1

0

1

y/L0

u/
U

0

wi = 0.1 [27]
wi = 0.2 [27]
wi = 0.3 [27]
wi = 0.4 [27]
wi = 0.1 − M3
wi = 0.2 − M3
wi = 0.3 − M3
wi = 0.4 − M3

-01 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 1 1

0 2

0 4

0 6

0 8

1 2

1 4

1 6

-01 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 1 1

0 2

0 4

0 6

0 8

1 2

1 4

1 6

Figure 6. Comparison between the analytical solution (solid line) and the numerical solution (symbols) for mesh M3 with
Re = 10−3, Wi = 0.1, 0.2, · · · , 1.0, and ε = 0.25 (ξ was set to 0). (a) α = 0.5 and β = 0.5. (b) α = 1.5 and β = 1.5.

It can be seen that an excellent agreement is obtained between the analytical and
numerical solutions for all the considered values of Wi, which underlines the robustness of
the numerical method and the meshes.

For lower values of α and β, we obtain a higher destruction rate of the junctions in the
gPTT model. Note that the typical viscoelastic velocity profile is more flattened for lower
values of α and β. In this case, the different values of Wi have a stronger impact on the
model’s behaviour. This result is similar to those found in the literature comparing linear
and exponential functions of the trace of the stress tensor.
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5.2. Comparison with the Development Length of a Newtonian Fluid

In the limiting case of Wi → 0 we obtain a Newtonian fluid. Therefore, we considered
Wi = 0.001 and performed simulations for the development length of a gPTT fluid, using
the geometry shown in Figure 4. We considered a Reynolds number in the range [0, 100],
where the nonlinear variation of the development length with Re is more pronounced. The
other parameters of the model were set as follows: α = 0.1, β = 0.1, ε = 0.25, ξ = 0.

Figure 7a shows a comparison between the development length obtained with the
gPTT model, a Newtonian fluid, and that obtained by the Durst et al. [4] correlation for the
variation of the development length with Re (see Equation (1)). The three results practically
overlap, proving once again the robustness of the numerical method.

As Re increases, the results for the gPTT model in the coarse mesh are slightly higher
than those obtained for the Newtonian fluid and the correlation. However, in the nonlinear
domain the results are quite accurate.

Figure 7b shows the velocity profiles obtained in the fully developed region of the
channel (mesh M3) considering the gPTT and Newtonian models for Re = 0.001 and
Re = 100.

a b

1 10 100

1

5

Re

L e
xt

Correlation proposed by Durst et al. [4]
M1- Newtonian
M2- Newtonian
M3- Newtonian
M1- gPTT
M2- gPTT
M3- gPTT

0 1

0

1

y/L0

u/
U

0

Newtonian - Re = 10−3

gPTT - Re = 10−3

Newtonian - Re = 102

gPTT - Re = 102

0 001 0 01 0 1 -01 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 1 1

0 2

0 4

0 6

0 8

1 2

1 4

1 6

Figure 7. (a) Comparison between the development length obtained with the gPTT model (with Wi = 0.001), a Newtonian
fluid, and the correlation proposed by Durst et al. [4], for three different meshes M1, M2, and M3. (b) Velocity profiles in the
fully developed region for mesh M3, considering the gPTT and Newtonian models, for Re = 0.001 and Re = 100.

Again, there is excellent agreement between the two solutions for the two different
values of Re. This shows that the value of Wi = 0.001 is a good approximation for the
Newtonian fluid.

Based on these results, the numerical code is now able to predict the development
length of the fluid modelled by the gPTT model considering a wider range of Wi numbers.

6. Development Length of a gPTT Fluid

6.1. Simulations

We performed a large number of simulations by considering Wi = 0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, 0.9, 1, creeping flow (Re = 0.001), and the following combination of α and β
parameters:

• (α, β) = (0.5; 0.5)-Meshes M1, M2, M3, Mr-Wi = 0.1, 0.2, 0.3, 0.4
• (α, β) = (0.5; 1.5)-Meshes M1, M2, M3, Mr-Wi = 0.1, 0.2, 0.3, 0.4
• (α, β) = (1.5; 0.5)-Meshes M1, M2, M3, Mr-Wi = 0.1, 0.2, 0.3, 0.4
• (α, β) = (1.5; 1.5)-Meshes M1, M2, M3, Mr-Wi = 0.1, 0.2, 0.3, 0.4
• (α, β) = (1.0; 1.0)-Meshes M2, Mr-Wi = 0.1, 0.2, 0.3, 0.4
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• (α, β) = (0.5; 0.5)-Meshes M2, Mr-Wi = 0.5, 0.6, 0.7, 0.8, 0.9, 1
• (α, β) = (0.5; 1.5)-Meshes M2, Mr-Wi = 0.5, 0.6, 0.7, 0.8, 0.9, 1
• (α, β) = (1.5; 0.5)-Meshes M2, Mr-Wi = 0.5, 0.6, 0.7, 0.8, 0.9, 1
• (α, β) = (1.5; 1.5)-Meshes M2, Mr-Wi = 0.5, 0.6, 0.7, 0.8, 0.9, 1
• (α, β) = (1.0; 1.0)-Meshes M2, Mr-Wi = 0.5, 0.6, 0.7, 0.8, 0.9, 1

This gives a total number of 132 simulations. The simulations with the finest mesh
took about 15 h each.

The first set of 72 simulations allowed conclusions to be drawn about the convergence
of the numerical method and the error in calculating the development length using the
Richardson extrapolation technique. Based on the results of these simulations, a second set
of simulations was performed for higher values of Wi using meshes M2 (see Figure 4) and
Mr (see Figure 5). These meshes were chosen based on a trade-off between accuracy and
computational time.

6.2. Creeping Flow
6.2.1. Case of L99%

The development length, determined as the length from the channel inlet required
for the velocity to reach 99% of its fully developed value, and denoted here as L99%, is
shown in Table 1. The results are shown only for Wi up to 0.4, since convergence problems
for finer meshes are observed for higher values of Wi. The main problem arises from the
singularity at the entrance corner of the channel, which generates an error that propagates
along the channel (for more details, see [24,25]).

Table 1. Benchmark development length values for the velocity (L99%).

Wi α β M1 M2 M3 Mr Lext % Error

0.5 0.5 0.701 0.669 0.660 0.661 0.657 0.48
0.5 1.5 0.675 0.655 0.649 0.642 0.647 0.29

0.1 1.5 0.5 0.689 0.659 0.652 0.650 0.651 0.24
1.5 1.5 0.653 0.650 0.648 0.632 0.644 0.68
1.0 1.0 — 0.658 — 0.641

0.5 0.5 0.844 0.737 0.711 0.736 0.703 1.202
0.5 1.5 0.806 0.731 0.713 0.721 0.707 0.844

0.2 1.5 0.5 0.788 0.701 0.682 0.692 0.677 0.781
1.5 1.5 0.803 0.736 0.712 0.747 0.699 1.851
1.0 1.0 — 0.719 — 0.709

0.5 0.5 0.984 0.853 0.805 0.865 0.777 3.578
0.5 1.5 0.980 0.878 0.852 0.822 0.843 1.073

0.3 1.5 0.5 0.883 0.775 0.750 0.784 0.742 1.015
1.5 1.5 1.033 0.933 0.928 1.012 0.928 0.022
1.0 1.0 — 0.836 — 0.852

0.5 0.5 1.104 1.024 0.949 1.102 - -
0.5 1.5 1.175 1.109 1.082 1.165 1.065 1.600

0.4 1.5 0.5 0.984 0.877 0.862 0.931 0.860 0.276
1.5 1.5 1.307 1.286 1.273 1.365 1.246 2.155
1.0 1.0 — 1.001 — 1.079

Note that the error is higher at the lowest and highest values of α and β, being more
pronounced when α and β are low. The maximum error was 3.6% and was obtained, as
expected, for Wi = 0.4 and α = β = 0.5. It should be noted that the errors are quite low
and therefore these solutions can be used as benchmarks.

Figure 8 shows the development lengths for mesh M2 presented in Table 1. A nonlinear
variation of the development length with α, β, and Wi is observed.
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Figure 8. Development length as a function of Wi considering 99% Umax (L99%) and mesh M2.

The development length increases with Wi, with viscoelastic effects delaying the
diffusion and convection of information from the walls to the center of the channel. This
diffusion and convection is also strongly influenced by the parameters of the Mittag–Leffler
function. For low values of Wi, the highest value of the development length is obtained for
α = β = 0.5; for high values of Wi, the highest value of the development length is obtained
for α = β = 1.5. A molecular continuum explanation of this phenomenon is not an easy
task. At high α and β values, the rate of destruction of the junctions is lower than at low α
and β values. This means that when Wi values are low and the rate of junction destruction
is high, information travels slowly from the wall to the center of the channel (compared to
when the rate of junction destruction is low). The opposite was expected. Note that in this
case the development lengths are very similar for all tested values of α and β, and therefore
the influence of these parameters on the development length is small. These results can be
justified by the low value of Wi.

As Wi increases, the highest value of development length is reached with a low rate of
destruction of junctions. This result can be justified by the fact that as the rate of destruction
of the junctions decreases, the information is transmitted more slowly due to the small
number of new contacts between the strands representing the molecules.

6.2.2. Case of L98%

In addition to the error arising at the entrance corner due to a singularity, we also
have the problem of the development length, which takes into account 99% of the fully
developed maximum velocity and may not work so well in an intermediate mesh as M2,
for higher Wi. This leads to an increased difficulty for the numerical method to capture
L99% for the mesh M2.

Therefore, to capture the essence of the development length for higher Wi values, we
considered another development length, L98% (length from channel entry required for the
velocity to reach 98% of its fully-developed value), which is less restrictive.

The results obtained for L98% are shown in Figure 9 for mesh M2 and Table 2 for the
three meshes (along with the extrapolated development length value).
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Table 2. Benchmark development length values for the velocity (L98%).

Wi α β M1 M2 M3 Mr Lext % Error

0.5 0.5 0.578 0.573 0.571 0.560 0.570 0.234
0.5 1.5 0.564 0.565 0.565 0.552 0.565 0.002

0.1 1.5 0.5 0.571 0.566 0.565 0.554 0.565 0.044
1.5 1.5 0.547 0.564 0.566 0.545 0.566 0.047
1.0 1.0 — 0.566 — 0.551

0.5 0.5 0.656 0.622 0.612 0.603 0.608 0.685
0.5 1.5 0.652 0.625 0.619 0.604 0.617 0.278

0.2 1.5 0.5 0.629 0.601 0.592 0.578 0.588 0.725
1.5 1.5 0.658 0.632 0.621 0.622 0.613 1.316
1.0 1.0 — 0.616 — 0.594

0.5 0.5 0.725 0.696 0.681 0.659 0.665 2.417
0.5 1.5 0.765 0.736 0.732 0.697 0.731 0.088

0.3 1.5 0.5 0.694 0.656 0.643 0.628 0.636 1.062
1.5 1.5 0.840 0.789 0.789 0.812 0.789 0.000
1.0 1.0 — 0.705 — 0.680

0.5 0.5 0.782 0.790 0.776 0.730 - -
0.5 1.5 0.875 0.885 0.897 0.836 - -

0.4 1.5 0.5 0.770 0.729 0.720 0.713 0.717 0.353
1.5 1.5 1.052 1.010 1.068 1.080 - -
1.0 1.0 — 0.820 — 0.809

0.5 0.5 — 0.893 — 0.812
0.5 1.5 — 1.062 — 1.010

0.5 1.5 0.5 — 0.813 — 0.819
1.5 1.5 — 1.265 — 1.367
1.0 1.0 — 0.958 — 0.975

0.5 0.5 — 0.998 — 0.907
0.5 1.5 — 1.258 — 1.216

0.6 1.5 0.5 — 0.909 — 0.946
1.5 1.5 — 1.536 — 1.663
1.0 1.0 — 1.106 — 1.163

0.5 0.5 — 1.106 — 1.006
0.5 1.5 — 1.473 — 1.443

0.7 1.5 0.5 — 1.009 — 1.083
1.5 1.5 — 1.817 — 1.960
1.0 1.0 — 1.258 — 1.360

0.5 0.5 — 1.207 — 1.110
0.5 1.5 — 1.702 — 1.672

0.8 1.5 0.5 — 1.112 — 1.225
1.5 1.5 — 2.103 — 2.254
1.0 1.0 — 1.412 — 1.573

0.5 0.5 — 1.298 — 1.206
0.5 1.5 — 1.947 — 1.870

0.9 1.5 0.5 — 1.214 — 1.365
1.5 1.5 — 2.392 — 2.544
1.0 1.0 — 1.562 — 1.752

0.5 0.5 — 1.368 — 1.279
0.5 1.5 — 2.236 — 2.029

1.0 1.5 0.5 — 1.313 — 1.499
1.5 1.5 — 2.679 — 2.827
1.0 1.0 — 1.709 — 1.933
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Figure 9. Development length as a function of Wi considering 98% Umax (L98%) and mesh M2.

The results obtained follow the same trend observed in the case L99%, with some
minor differences. The development length is initially higher for the case α = β = 0.5 than
for the case α = β = 1, until Wi = 0.2, where the growth rate of L98% becomes larger with
Wi for α = β = 1. For L99%, the two development lengths are quite similar.

For Wi = 1, we obtain a development length of 2.679 for α = β = 1.5 and a develop-
ment length of 1.313 for α = 1.5, β = 0.5 (and 1.368 for α = β = 0.5). Again, these results
are consistent with the idea that the higher the rate of destruction of junctions, the smaller
the development length (information travels faster across the channel).

Figure 10–12 show the different velocity profiles obtained at 10 different sections of
the channel. The first numerical velocity profile is taken at x/H = 0.1 (x/L = 0.01) and the
last profile is taken at the middle of the channel (x/H = 5 or x/L = 0.5).
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Figure 10. Velocity profiles obtained at 10 different sections of the channel for Wi = 1.0, α = 1, β = 1.
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(a) α = 0.5 and β = 0.5 (b) α = 0.5 and β = 1.5
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Figure 11. Velocity profiles obtained at 10 different sections of the channel for Wi = 1.0. (a) α = 0.5, β = 0.5; (b) α = 0.5,
β = 1.5.

Figure 10 shows the reference velocity profiles obtained for the classical case of an
exponential PTT model (α = β = 1). The velocity profile evolves from a plug profile in the
center of the channel (for profiles near the inlet) to the typical parabolic profile (in the fully
developed region). Note the overshoots near the walls that occur when the fluid is still
developing. This is due to the different characteristic times of the fluid and the diffusion of
information moving from the walls (y/H = 0 and y/H = 1) to the center of the channel
(y/H = 0.5).

Figure 11 shows the velocity profiles obtained for α = 0.5, β = 0.5 and α = 0.5, β = 1.5.
It can be seen that the overshoots are stronger near the inlet (compared to the exponen-
tial PTT model) and that a lower maximum velocity is obtained when the fluid is fully
developed. The influence of the parameter β is residual.

(a) α = 1.5 and β = 0.5 (b) α = 1.5 and β = 1.5
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Figure 12. Velocity profiles obtained at 10 different sections of the channel for Wi = 1.0. (a) α = 1.5, β = 0.5; (b) α = 1.5,
β = 1.5.

Figure 12 shows the velocity profiles obtained for α = 1.5, β = 0.5 and α = 1.5,
β = 1.5. In Figure 12a it can be seen that the overshoots near the inlet resemble the case
of the exponential PTT model, and that the maximum velocity increases again. The main
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difference is that the plug profile is now less pronounced. When β increases (Figure 12b),
one can observe a dramatic change in the evolution of the velocity profiles. The velocity
overshoots are almost suppressed and the maximum velocity increases. This means that
the rate of destruction of junctions improves the diffusion of information.

6.3. The Influence of the Elasticity Number

In this subsection we study the influence of the elasticity number, El = Wi
Re , on the

development length of the gPTT model. We consider three different values for El (0.1, 1, 10),
α = 0.5, and two different values for β, 0.5 and 1.5. The mesh used for the simulation is M2.

The results are shown in Tables 3 and 4 and Figure 13 for L98% and L99%.
As expected, the results for low values of Re are consistent with those obtained earlier

in this work (see previous sections for more details). The results obtained for the different
definitions of the development length are qualitatively similar. However, higher values of
development length are obtained for L99%, as expected.

For high values of β (1.5), the influence of the elasticity number seems to be neglected
by the fluid, since we obtain the same development length for El = 1 and El = 10. For
El = 0.1 the results are quite different, which is due to the low values of Wi compared to
the El = 1 and El = 10 cases.

For β = 0.5, the rate of destruction of junctions increases and the development length
decreases by about half. Again, the El = 1 and El = 10 cases show similar development
lengths, which is due to the similar values of Wi and the almost creeping flow conditions.

The results show that for the tested ranges of El, Wi, and Re, no critical value is found
for El. This is due to the fact that Mach’s Elastic number is less than 1.

Table 3. Influence of the Elasticity number, El = Wi
Re , on the development length of the gPTT model. El = 0.1, El = 1.0, and

El = 10.0 for L98%, α = 1.5.

El = 0.1 El = 1.0 El = 10.0

Re Wi β = 1.5 β = 0.5 Re Wi β = 1.5 β = 0.5 Re Wi β = 1.5 β = 0.5

0.01 0.001 0.5509 0.5509 0.01 0.01 0.5483 0.5486 0.01 0.1 0.5647 0.5671
0.1 0.01 0.5489 0.5493 0.1 0.1 0.5646 0.5671 0.05 0.5 1.2646 0.6751
0.5 0.05 0.5511 0.5559 0.5 0.5 1.2606 0.8005 0.075 0.75 1.9597 1.0564
1.0 0.1 0.5626 0.5673 0.75 0.75 1.9621 1.0310 0.1 1.0 2.6779 1.3049
2.0 0.2 0.6132 0.5801 1.0 1.0 2.6929 1.2440 0.125 1.25 3.3340 1.5250
3.0 0.3 0.7377 0.6052 0.15 1.5 3.8610 1.7201

0.175 1.75 4.2769 1.9524

Table 4. Influence of the Elasticity number, El = Wi
Re , on the development length of the gPTT model. El = 0.1, El = 1.0, and

El = 10.0 for L99%, α = 1.5.

El = 0.1 El = 1.0 El = 10.0

Re Wi β = 1.5 β = 0.5 Re Wi β = 1.5 β = 0.5 Re Wi β = 1.5 β = 0.5

0.01 0.001 0.6309 0.6310 0.01 0.01 0.6278 0.6285 0.01 0.1 0.6560 0.6628
0.1 0.01 0.6286 0.6293 0.1 0.1 0.6557 0.6626 0.05 0.5 1.5350 0.7590
0.5 0.05 0.6341 0.6433 0.5 0.5 1.5288 0.9888 0.075 0.75 2.4140 1.4070
1.0 0.1 0.6524 0.6611 0.75 0.75 2.4121 1.3760 0.1 1.0 3.3136 1.8657
2.0 0.2 0.7105 0.6756 1.0 1.0 3.3295 1.8284 0.125 1.25 4.0917 2.2971
3.0 0.3 0.8870 0.6810 0.15 1.5 4.7350 2.6578

0.175 1.75 5.2590 2.9676
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Figure 13. Influence of the elasticity number, El = Wi
Re , on the development length of the gPTT model. We consider three

different values of El (0.1, 1, 10), α = 0.5 and two different values of β, 0.5 and 1.5.

7. Conclusions

In this work, we present a numerical study on the development length of a pressure-
driven viscoelastic fluid flow (between parallel plates) modelled by the generalised Phan–
Thien and Tanner (gPTT) constitutive equation. The governing equations are solved using
the finite-difference method, and, a thorough analysis on the effect of the model parameters
α and β is presented. We consider two different definition of the development length:
The length from the channel inlet required for the velocity to reach 99% (and 98%) of its
fully-developed value.

The numerical results showed that the in the creeping flow limit (i.e., Re = 0), the
development length for the velocity exhibits a non-monotonic behaviour. The development
length increases with Wi, with viscoelastic effects delaying the diffusion and convection of
information from the walls to the center of the channel. For low values of Wi, the highest
value of the development length is obtained for α = β = 0.5; for high values of Wi, the
highest value of the development length is obtained for α = β = 1.5. At high α and β values,
the rate of destruction of the junctions is lower than at low α and β values. This means that
when Wi values are low and the rate of junction destruction is high, information travels
slowly from the wall to the center of the channel (compared to when the rate of junction
destruction is low). The opposite was expected. Note that in this case, the development
lengths are very similar for all tested values of α and β, and therefore the influence of these
parameters on the development length is small. These results can be justified by the low
value of Wi.

As Wi increases, the highest value of development length is reached with a low rate of
destruction of junctions. This result can be justified by the fact that as the rate of destruction
of the junctions decreases, the information is transmitted more slowly due to the small
number of new contacts between the strands representing the molecules.

We also studied the influence of the elasticity number, El, on the development length
of the gPTT model. As expected, the results for low values of Re are consistent with those
obtained for creeping flow. For high values of β (1.5), the influence of the elasticity number
seems to be neglected by the fluid, since we obtain the same development length for El = 1
and El = 10. For El = 0.1, the results are quite different, which is due to the low values
of Wi compared to the El = 1 and El = 10 cases. For β = 0.5, the rate of destruction of
junctions increases and the development length decreases by about half. Again, the El = 1
and El = 10 cases show similar development lengths, which is due to the similar values of
Wi and the almost creeping flow conditions.
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Abstract: A viscoelastic turbulence model in a fully-developed drag reducing channel flow is
improved, with turbulent eddies modelled under a k − ε representation, along with polymeric
solutions described by the finitely extensible nonlinear elastic-Peterlin (FENE-P) constitutive model.
The model performance is evaluated against a wide variety of direct numerical simulation data,
described by different combinations of rheological parameters, which is able to predict all drag
reduction (low, intermediate and high) regimes with good accuracy. Three main contributions
are proposed: one with a simplified viscoelastic closure for the NLTij term (which accounts
for the interactions between the fluctuating components of the conformation tensor and the
velocity gradient tensor), by removing additional damping functions and reducing complexity
compared with previous models; second through a reformulation for the closure of the viscoelastic
destruction term, Eτp , which removes all friction velocity dependence; lastly by an improved modified
damping function capable of predicting the reduction in the eddy viscosity and thus accurately
capturing the turbulent kinetic energy throughout the channel. The main advantage is the capacity
to predict all flow fields for low, intermediate and high friction Reynolds numbers, up to high drag
reduction without friction velocity dependence.

Keywords: drag reduction; FENE-P fluid; viscoelastic RANS model; OpenFoam CFD

1. Introduction

Since the pioneering experiment by Toms [1], it is known that the additions of small
(parts per million) amounts of long-chain flexible polymers to a turbulent flow can drastically reduce
the transport energy by decreasing the turbulent drag. The effects are most evident in turbulent
shear flow, in which dissolving the polymers in solution can reduce friction losses by as much as 80%
compared to the solvent alone [2]. After the discovery of the drag reduction (DR) phenomena,
several comprehensive studies were carried out to understand the physical mechanisms of the
interactions between the turbulent structures and polymer chains. Early comprehensive studies
in this area come from Lumley [3,4], Hoyt [5] and Virk [6]. Lumley suggests that the DR phenomenon
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is the result of an increase in effective viscosity in an area outside the viscous sub-layer and in the
buffer layer, caused by polymer chains stretching in a turbulent flow.

More recent studies have been proposed for the theory of the mechanisms of drag-reducing
polymer additives [7,8]. Several Direct Numerical Simulation (DNS) studies were conducted to
understand further the energy exchanges between the polymer chains and turbulence structures [9–14].
It is now known to at least low to moderate levels of DR, that the mechanism is the suppression of
the near-wall streamwise vortices by polymers that stretch in the extensional flow, and then relax as
they are rolled into other vortices, generating forces that tend to weaken these vortices. Quantitatively,
this can be expressed as a polymer body force [9], which is positive in the streamwise direction, with
an opposite sign (anti-correlation) in the wall direction.

DNS is a great resource to explore the underlying mechanics of drag-reducing viscoelastic
turbulent flows. However, for the majority of engineering motivations, DNS is not practical because of
the high number of variables which requires a substantial expense of memory and CPU-time. This cost
is more prevalent in high DR (HDR) schemes in which the near-wall velocity streaks become more
elongated, requiring an increased demand on computational resources.

An alternative approach in capturing flow features at much less computational demands is the
application of Reynolds-averaged Navier–Stokes (RANS) models, whose interest has increased in
recent years. One of the original implementations of elastic effects within turbulence models was
achieved by Pinho [15] and Cruz et al. [16]. Their work focused on low-Reynolds number k − ε

turbulence models, applying a Generalised Newtonian Fluid (GNF) constitutive equation involving
dependency of the fluid strain hardening on the third invariant of the rate of deformation tensor.
Following these studies, an anisotropic version was also developed which included an increased
Reynolds stress anisotropy [17], along with a Reynolds stress turbulence model [18], both able to
satisfactorily predict drag-reducing behavior. Nevertheless, the models are constrained because of the
inelastic formulation of the GNF constitutive equations.

Further developments in viscoelastic RANS models became possible owing to the emergence
of DNS data regarding turbulent viscoelastic fluids. The first elastic model was developed by
Leighton et al. [19], which was based on the finitely extensible nonlinear elastic with Peterlin closure
(FENE-P) dumbbell constitutive equation model. Their study involved the development of a polymer
strain–stress coupling based on the tensor expansion, which incorporated the conformation tensor
and Reynolds stress. From this work, more attention arose to the FENE-P model given the molecular
roots of the equations. Later, based on a-priori analysis of DNS data, Pinho et al. [20] developed a
low-Reynolds number k − ε model for FENE-P fluids which could predict flow features up to the
low drag reduction regime (LDR < 20%). Turbulent viscoelastic closures were proposed, including
the non-linear term involving the conformation tensor and the strain rate fluctuations within the
conformation tensor equation (denoted NLTij following the nomenclature of Housiadas et al. [21]
and Li et al. [22]); along with the viscoelastic turbulent transport term of the turbulent kinetic energy.
One of the key difficulties that arose in this initial study was the decrease in the magnitude of
turbulent kinetic energy as viscoelasticity increased, opposite to that found in the DNS literature [23].
Subsequently, the model closures were improved by Resende et al. [24] and the capacity of the
model predictions were extended to the intermediate drag reduction regime (20% < IDR < 40%).
However, the model closures involved complex damping functions and model constants which gave
spurious results for the high drag reduction regime (HDR > 40%). Resende et al. [25] applied the same
viscoelastic closures to a low-Reynolds number k − ω model with only a mathematical transformation
of the governing terms involving ω. The closures had identical limitations as the k − ε model for
predicting DR behaviour but demonstrated great versatility and robustness given its application to
alternative two-equation models.

During this time, a k − ε − v2 − f model for FENE-P fluids in fully developed channel flow was
proposed by Iaccarino et al. [26], following the initial studies of Dubief et al. [27]. They introduced the
idea of a turbulent polymer viscosity which accounts for the effects of viscoelasticity and turbulence
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on the polymer stress within the momentum equation. The reduction in the Reynolds shear stress
is assumed by a-priori DNS data analysis from the decreasing v2 shown within the DNS studies [9].
The model closure for the NLTij is much simpler than the one developed by Resende et al. [24],
but contains only the trace and not the individual components. The model was later improved by
Masoudian et al. [28] and can predict flow features up to maximum DR (MDR). The key advancement
of the closures were an NLTij closure based on DNS analysis and comparisons to the local eddy
viscosity peaks; the viscoelastic stress work in the turbulent kinetic energy equations; viscoelastic stress
in the momentum equation; and a viscoelastic destruction term in the dissipation transport equation.
The viscoelastic turbulent closures within the v2 equation (transverse viscoelastic stress work, εV

yy)
should be strictly a function of NLTyy, which is a key component in the formulation of an effective
polymer viscosity. However, because only the trace of the NLTij term is present within the model,
the closure had to be formulated using DNS analysis of alternative parameters.

Subsequently, after this study, a second-order Reynolds stress model for FENE-P fluids was
proposed by Masoudian et al. [29], extending on the idea of a correlation between the Reynolds stresses
and the NLTij components, similar to Leighton et al. [19]. The model can predict all DR regimes but
is generally unattractive due to the higher number of Newtonian terms resulting from higher-order
modeling. Masoudian et al. [30] then further improved the k − ε − v2 − f model capabilities via
the NLTij term by introducing a simple extension to include heat transfer, along with removing
wall dependence via the friction velocity. There are concerning features when one examines the
Bousinesq-type NLTij term, which has a zero NLTyy component, along with an opposite sign for NLTxy,
both terms being crucial for the polymer shear stress in the momentum balance (see Appendix 1 in
Pinho et al. [20]). Further, the increase of k in the buffer layer is small, meaning the decoupling
of the v2 component may not be enough to decrease the eddy viscosity. This is compensated by an
opposite trend in the dissipation rate, ε, for increasing DR, which subsequently balances the momentum
equations and causes the necessary increase in the velocity profiles.

An alternative approach in predicting DR flow features other than the use of higher-order models
such as the k − ε − v2 − f and Reynolds stress models mentioned previously, is that of a modified
damping function or polymer eddy viscosity, accounting for the effect the polymer has on reducing
the Reynolds shear stress. Tsukahara and Kawaguchi [31] proposed a modified damping function
for a low-Reynolds k − ε model for fluids described by the Giesekus constitutive equation, following
the same ideas as Pinho [15] and Cruz. The closure was developed based on the energy-dissipative
range and the dynamic characterization of the viscoelastic fluid. The model successfully captures the
increase in the magnitude of the turbulent kinetic energy, along with the shift through the buffer layer.
Although the magnitudes of k are largely over-predicted in many cases, which is counterbalanced
by a lack of closure for the viscoelastic destruction term. In some instances, the model predicts a
DR of 1% with a DNS result of 23%. Resende et al. [32] proposed a modified damping function for
a low-Reynolds number k − ε model for FENE-P fluids which can capture the increase of turbulent
kinetic energy as flow viscoelasticity is increased, improving on model predictions made previously by
Pinho et al. [20] and Resende et al. [24]. The study also improved largely on the NLTij closure accuracy
and simplicity formulated in the previous work. The model is able to predict flow features for a large
range of rheological parameters but is limited to a friction Reynolds number of Reτ0 = 395, along
with friction velocity still present in the model. For model applicability in flows with reattachment,
the friction velocity dependence poses a problem as the values become null at these points and lead to
spurious results or floating point errors within computational solvers.

In the present study, an improved k − ε model for FENE-P fluids is proposed, validated for all
drag reduction regimes (low, intermediate, high) and up to the largest friction Reynolds number
(Reτ0 = 1000) available in the DNS data. The important contribution to the current model is improved
and simplified NLTij term that removes complexity from the most recent model developed by
Resende et al. [32]; along with a modified damping function which accurately predicts the viscoelastic
contributions near and away from the wall, effectively reducing the eddy viscosity and thickening
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the buffer-layer as DR increases. Further, a reformulation of the viscoelastic destruction term, Eτp ,
which removes all friction velocity present in the previous k − ε models. The model is assessed against
DNS data covering a wide range of flow conditions in terms of the friction Weissenberg number, Wiτ0 ,
maximum polymer extension, L2, viscosity ratio, β, and friction Reynolds number, Reτ0 ; along with
comparisons against other turbulent FENE-P models within the literature.

The paper is organized as follows: Section 2 introduces the instantaneous and time-averaged
governing equations and identifies the viscoelastic terms that will require modeling; Section 3 explains
in detail the development of the viscoelastic turbulent closures; Section 4 summarises the model;
Section 5 gives the numerical procedure applied; Section 6 presents the results of the flow fields in
fully developed channel flow, covering all range of DR and flow conditions; and finally in Section 7,
the main conclusions are presented.

2. Governing Equations

The governing equations for incompressible turbulent flow of dilute polymer solutions are the
continuity and momentum equations respectively:

∂ûk
∂xk

= 0, (1)

ρ
Dûi
Dt

≡ ρ

(
∂ûi
∂t

+ ûk
∂ûi
∂xk

)
= − ∂ p̂

∂xi
+

∂τ̂ik
∂xk

, (2)

where the hat represents instantaneous quantities of velocity ûi, pressure p̂, stress tensor τ̂ij, and fluid
density ρ. The stress tensor is the sum of the Newtonian solvent which obeys Newton’s law of viscosity,
τ̂s

ij = 2μsŝij, with μs representing the solvent viscosity coefficient, and polymeric contributions, τ̂
p
ik,

τ̂ij = τ̂s
ij + τ̂

p
ij . (3)

The kinematic viscosity is used alternatively throughout this study and is defined as ν = μ/ρ.
The instantaneous rate of strain tensor, ŝij, is defined as

ŝij =
1
2

(
∂ûi
∂xj

+
∂ûj

∂xi

)
. (4)

The instantaneous polymer contributions are based on the FENE-P rheological dumbbell
model [33], with closure given by

τ̂
p
ij =

μp

λ

(
f (ĉkk)ĉij − δij

)
, (5)

with

f (ĉkk) =
L2 − 3

L2 − ĉkk
, (6)

known as the Peterlin function, and ĉkk is the trace of the instantaneous conformation tensor.
The other parameters that are associated with the FENE-P model are: λ, the relaxation time of
the polymeric fluid; L2, the maximum extensibility of the dumbbell model; and μp, the polymer
viscosity coefficient.

The behaviour of the instantaneous conformation tensor follows a hyperbolic differential equation
of the form,

∂ĉij

∂t
+ ûk

∂ĉij

∂xk
−
(

ĉkj
∂ûi
∂xk

+ ĉik
∂ûj

∂xk

)
=

∇
ĉ ij = −

τ̂
p
ij

μp
. (7)
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The Oldroyd’s upper convective derivative of the instantaneous conformation tensor is here

denoted with
∇
ĉ ij. The local and advective derivatives are the first and second terms respectively.

The bracketed term accounts for the effect of polymer stretching by the instantaneous flow.
The Reynolds averaging process [34] is applied to the governing equations via a Reynolds

decomposition of the flow fields such that, ûi = Ui + ui; where the use of overbars or upper-case
represents the averaged quantity; and primes or lower-case represent the instantaneous quantities.
The continuity and momentum equations now take the form:

∂Uk
∂xk

= 0, (8)

ρ
∂Ui
∂t

+ ρUk
∂Ui
∂xk

= − ∂p
∂xi

+ μs
∂2Ui

∂xk∂xk
− ∂

∂xk
(ρuiuk) +

∂τ
p
ik

∂xk
, (9)

referred to as the Reynolds-averaged Navier–Stokes (RANS). The Reynolds stress tensor is uiuk and
requires a closure model. The Reynolds-averaged polymer stress is τ

p
ik and written fully as

τ
p
ij =

μp

λ

[
f (Ckk)Cij − δij

]
+

μp

λ
f (Ckk + ckk)cij, (10)

where the additional term on the right requires a closure. The Peterlin function becomes

f (Ckk) =
L2 − 3

L2 − Ckk
. (11)

After Reynolds averaging, the instantaneous conformation tensor equation becomes

DCij

Dt
− Mij + CTij − NLTij =

τ
p
ij

μp
, (12)

Mij = Cjk
∂Ui
∂xk

+ Cik
∂Uj

∂xk
, (13)

CTij = uk
∂cij

∂xk
, (14)

NLTij = cjk
∂ui
∂xk

+ cik
∂uj

∂xk
, (15)

which is referred to as the Reynolds-averaged conformation evolution (RACE). Mij is the mean
flow distortion term; it is non-zero, but requires no closure. The remaining two terms are named
following the nomenclature of Li et al. [22] and Housiadas et al. [21]. They are labelled with CTij;
representing the contribution to the transport of the conformation tensor due to the fluctuating
advective terms; and NLTij, which accounts for the interactions between the fluctuating components
of the conformation tensor and the velocity gradient tensor.

Following the analysis of Pinho et al. [20], the nonlinear fluctuating correlation of the average
polymeric stress, f (Ckk + ckk)cij in Equation (10) was shown to be negligible for LDR and HDR when
compared with the linear part. This was later neglected in the models of Resende et al. [24] and
Masoudian et al. [28] and is also neglected here. The CTij term can also be omitted for all DR regimes
following a budget analysis of the RACE carried out by Housiadas et al. [21] and Li et al. [22].
The NLTij term cannot be neglected since it is a significant contributor to the RACE and therefore
requires a suitable closure.
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2.1. Model for the Reynolds Stress Tensor

The Reynolds stress tensor is computed by adopting the Boussinesq turbulent stress
strain relationship,

− ρuiuj = 2ρνTSij − 2
3

ρkδij, (16)

where k is the turbulent kinetic energy, Sij is the mean rate of strain tensor and μT = ρνT
is the eddy viscosity. νT is modelled by the typical isotropic k − ε turbulence model for low
Reynolds numbers, which includes a damping function fμ to account for near-wall effects:

νT = Cμ fμ
k2

ε̃N , (17)

where ε̃N = νs
∂ui
∂xj

∂ui
∂xj

is the viscous dissipation of k by the Newtonian solvent,

fμ =

[
1 − exp

(
−y+

aμ

)]2

, (18)

and aμ = 26.5. The dimensionless wall scaling is y+ = uτ0 y/ν0, where uτ0 is the friction velocity,
y is the distance to the nearest wall, and ν0 is the sum of solvent and polymer viscosity coefficients
(ν0 = νs + νp). The damping function requires additional modelling to capture the anisotropy of
the drag reducing flow as a result of viscoelastic flow effects, to be discussed further in this study
(Section 3.2).

2.2. Transport Equation for the Turbulent Kinetic Energy

The governing transport equation for the turbulent kinetic energy of turbulent flow with FENE-P
fluids is given by,

ρ
∂k
∂t

+ ρUi
∂k
∂xi

=ρ
∂

∂xi

[(
νs +

ftνT

σk

)
∂k
∂xi

]
+ Pk − ρ(ε̃N + D)

+ QV − ρεV , (19)

with

D = 2νs

(
d
√

k
dxi

)2

. (20)

Pk = −ρuiuj
∂Ui
∂xj

is the rate of production of k.
The Newtonian closures of Equation (19) are those present in the Nagano et al. [35,36] models.

To increase numerical stability, a modified Newtonian rate of dissipation of k is applied instead of
the true dissipation, which are related by εN = ε̃N + D. For better model performance and to correct
for the turbulent diffusion near walls, a turbulent variable Prandtl number is added of the form,
ft/σk = 1 + 3.5 exp(−(ReT/150)2) with ReT = k2/(νs ε̃) and model constant σk = 1.1. More details of
the form of Equation (19) can be found in Pinho et al. [20] and Resende et al. [24].

The last two terms on the right side of the Equation (19) are:

QV =
∂τ′

ik,pui

∂xk
and εV =

1
ρ

τ′
ik,p

∂ui
∂xk

, (21)

which are the viscoelastic turbulent transport and the viscoelastic stress work, respectively.
They represent the fluctuating viscoelastic turbulent part of the k transport equation and require
suitable closure models.
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A budget analysis for each term in the k transport equation was performed by Pinho et al. [20]
for different regimes of DR. They demonstrated that the magnitude of QV has more impact on the
overall budget in the IDR, and also developed a closure. In the HDR, the amplitude of QV is the
same as εV but has a different location in the buffer layer, in which the effects of QV are overcome by
turbulent diffusion, thus, revealing negligible effects to overall flow predictions. Masoudian et al. [28]
had chosen to neglect the QV contributions in the k − ε − v2 − f model and is also not included here
as well.

2.3. Transport Equation for the Rate of Dissipation of Turbulent Kinetic Energy

The corresponding governing transport equation for the modified Newtonian rate of dissipation
of k is given by,

ρ
∂ε̃N

∂t
+ ρUi

∂ε̃N

∂xi
=ρ

∂

∂xi

[(
νs +

ftνT

σε

)
∂ε̃N

∂xi

]
+ f1Cε1

ε̃N

k
Pk

− f2Cε2 ρ
(ε̃N)2

k
+ ρE + Eτp , (22)

with

E = νsνT(1 − fμ)

(
∂2Uj

∂xi∂xk

)2

. (23)

As mentioned in the previous sub-section, all terms are modelled in the Newtonian context
(excluding Eτp ). The damping functions of Equation (22) are f1 = 1 and f2 = 1 − 0.3 exp (−(ReT)

2);
with model coefficients σε = 1.3, Cε1 = 1.45 and Cε2 = 1.90.

The last term in Equation (22) is the viscoelastic contribution to the overall ε̃N balance. This term
acts as a Newtonian destruction to the dissipation and is given by,

Eτp = 2μs
μp

λ(L2 − 3)
∂ui
∂xm

∂

∂xk

{
∂

∂xm
[ f (Cnn) f (Ĉpp)cqqCik]

}
. (24)

It has non-negligible effects on flow predictions for all DR regimes and thus requires a
suitable model.

3. Development of Viscoelastic Closures

In this section, the turbulent viscoelastic cross-correlations that were isolated in the previous
section are presented with model closures. The closures are developed on the basis of the DNS data case
(19) (Table 1), and then subsequently compared with other DNS data sets for accurate model predictions.
The DNS data in Table 1 pertain to all DR regimes with a large variation in rheological parameters
and flow viscosity for fully-developed channel flow established by: Li et al. [23]; Thais et al. [37,38];
Masoudian et al. [28,30,39] and Iaccarino et al. [26].

The non-dimensional numbers that define the different DNS data sets are defined as follows:
the friction Reynolds number Reτ0 = huτ/ν0 is based on the friction velocity (uτ), the channel
half-height (h), the zero shear-rate kinematic viscosity of the solution, which is the sum of the kinematic
viscosity of the solvent and polymer (ν0 = νs + νp); The Weissenberg number Wiτ0 = λu2

τ/ν0; and the
ratio between the solvent viscosity and the solution viscosity at zero shear rate is β = νs/ν0.

In the following sub-sections, closures are developed for: the NLTij term of Equation (12) with
focus on the dominant NLTxx component; a modification of the damping function fμ (Equation (18)),
named fν, which accounts for the reduction of the Reynolds shear stress due to viscoelastic effects;
the viscoelastic stress work, εV of Equation (19); and the viscoelastic destruction, Eτp , of Equation (22).
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Table 1. Independent Direct Numerical Simulation data for turbulent channel flow of finitely extensible
nonlinear elastic-Peterlin (FENE-P) fluids at β = 0.9, with drag reduction (DR) model predictions.

Case Reference
Rheological Parameters Drag Reduction (%)

Reτ0 Wiτ0 L2 DNS Current Model Model [32]

(1) Li et al. [23] 125 25 900 19 20 -
(2) Li et al. [23] 125 25 3600 22 23 -
(3) Li et al. [23] 125 25 14,400 24 25 -
(4) Li et al. [23] 125 50 900 31 30 35
(5) Li et al. [23] 125 100 900 37 36 39
(6) Li et al. [23] 125 100 1800 45 43 -
(7) Li et al. [23] 125 100 3600 56 51 51
(8) Masoudian et al. [28] 180 25 900 19 19 -
(9) Li et al. [23] 180 50 900 31 30 34
(10) Masoudian et al. [28] 180 100 900 38 38 39
(11) Masoudian et al. [28] 180 100 3600 54 53 51
(12) Thais et al. [37] 180 116 10,000 64 60 -
(13) Iaccarino et al. [26] 300 36 3600 33 32 34
(14) Iaccarino et al. [26] 300 36 10,000 35 35 32
(15) Iaccarino et al. [26] 300 120 10,000 59 59 58
(16) Masoudian et al. [30] 395 25 900 19 22 19
(17) Masoudian et al. [30] 395 50 900 30 30 -
(18) Masoudian et al. [30] 395 50 3600 38 38 -
(19) Masoudian et al. [30] 395 100 900 37 37 38
(20) Masoudian et al. [30] 395 100 3600 48 47 52
(21) Masoudian et al. [39] 395 100 10,000 55 55 -
(22) Masoudian et al. [30] 395 100 14,400 61 60 62
(23) Thais et al. [37] 395 116 10,000 62 60 -
(24) Li et al. [23] 395 200 14,400 75 69 67
(25) Masoudian et al. [30] 590 50 3600 39 40 64
(26) Thais et al. [37] 590 116 10,000 61 59 74
(27) Thais et al. [38] 1000 50 900 30 33 60

3.1. Closure for NLTij

The NLTij exact transport equation is greatly simplified based on the DNS analysis of

Pinho et al. [20]: Following the transport equation of f (ĉmm)ckj
∂ui
∂xk

+ f (ĉmm)cik
∂uj
∂xk

, it is assumed that

f (ĉmm)ckj
∂ui
∂xk

+ f (ĉmm)cik
∂uj

∂xk
≈ f (Cmm)

(
ckj

∂ui
∂xk

+ cik
∂uj

∂xk

)
= f (Cmm)NLTij. (25)

The full details of this approximation and the exact transport equation of NLTij can be found in
Pinho et al. [20] and Resende et al. [24].

The complete closure of NLTij is presented below and was developed to improve model
predictions based on better physical modeling compared with the most recent model developed
by Resende et al. [32].

NLTij = ckj
∂ui
∂xk

+ cik
∂uj

∂xk

≈ fNCN1
λ
√

L̃εN

ν0 f (Cmm)
δij︸ ︷︷ ︸

I

− f 1/4
N CN2Mij︸ ︷︷ ︸

I I

+CN3
k
ν0

√
L̃Mnn

γ̇

∂Ui
∂xk

∂Uj
∂xk

γ̇2︸ ︷︷ ︸
I I I

,
(26)

where fN = νT/ν0 is the local eddy viscosity, γ̇ =
√

2SpqSpq is the shear rate invariant, L̃ =
√

L2/900 is
the normalised maximum extension with the lowest DR, with model constants CN1 = 0.11, CN2 = 0.3
and CN3 = 0.3.
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The closure of Equation (26) is modelled in three parts: parts I and I I are modeled in the same
fashion as the model of Resende et al. [32], part I I I is greatly improved and is the main contribution to
the NLTij closure.

Part I is approached by introducing the Taylor’s longitudinal micro-scale, λ f , to the relationship
between the double correlation of fluctuating strain rates and the turbulent kinetic energy in
homogeneous isotropic turbulence. More details can be found in Resende et al. [32], with adjustments
L0.42 to

√
L and f (Cmm)0.8 to f (Cmm).

Part I I is primarily responsible for capturing the shear component, NLTxy. The correlation here is
with the exact term, Mij (see Equation (13)), and by the local eddy viscosity, f 1/4

N . The L0.15 variation is
removed from the model developed by Resende et al. [32]. The negative part of the NLTxx component
is also captured here via the Mxx term, which according to Dubief et al. [27], is the region where
polymers inject energy into turbulence.

Part I I I is developed to predict the NLTxx component which is the dominant term in the trace of
NLTij, responsible for the stretch of the polymer chains due to turbulent fluctuations. Following the
same assumption as Masoudian et al. [29], one can see that NLTxx ∼ u′

xu′
x ∼ k. In physical terms,

the turbulent stretching terms represent the ability of the turbulent fluctuations to act on the polymer
chains. This stretching is effective if the polymer shear and maximum extensibility are large enough.
So,

√
L̃Mnn/γ̇ is included here with k. Note that for fully developed channel flow, this term reduces

to
√

L̃Cxy which increases proportionally to drag reduction. This new term includes the same physical
assumption as Masoudian et al. [28,30], and is simplified from the very complex ad-hoc approach of
Resende et al. [32], viz

NLTResende
I I I = f 0.9

N exp

(
− − fN

1.05
√

β(10 + 0.3L + L̃ − (L̃ − 1)2)

)

×
(

Cmm

(β/0.9)0.7β

(
2 −

[
1 − exp

(
−2Ubh/νs

3500

)]4
))0.7 dUi

dxk

dUj
dxk√

dUp
dxq

dUp
dxq

. (27)

The performance of the NLTij closure can be analysed in Figure 1 by comparing the predictions
with DNS data case (19) in Table 1, and with the model of Resende et al. [32]. Figure 1a–c plots
each normal component of NLTij, with the predictions as accurate as the previous model [32].
The new NLTxx component is capable of predicting the maximum value and peak location of the
destruction effect away from the wall along with the negative part near the wall, but requires a much
simpler closure. The closure performance becomes more noticeable at higher Reynolds numbers,
in which the polymer extension is largely overestimated previously. The NLTyy component is the
leading order term in the Cyy component away from the wall, which is the dominant contributor
to an effective polymeric viscosity. This strongly influences the turbulent dynamics according to
Thais et al. [40] and Benzi et al. [41] with their DNS and toy model analysis respectively. This term is
represented by the first term in Equation (26), along with NLTzz. The NLTzz component was shown
by Pinho et al. [20] to have low impact, and thus NLTzz = NLTyy is an appropriate approximation.
The shear component, NLTxy, can be viewed in Figure 1e, where the predictions omit similar results
compared with the previous model [32], but do not require additional L2 variation via L0.15.

Overall, all main features of NLTij are well captured such as the peak locations and
magnitudes, but with a much simpler closure for the dominant contributor of polymer stretch, NLTxx.
Further, the NLTxy and NLTyy terms responsible for the polymer shear stress contribution in the
momentum balance are featured, which were previously represented ad-hoc with friction velocity
dependence [26,28] or misrepresented [30].

113



Appl. Sci. 2020, 10, 8140

(a) (b)

(c) (d)

(e)
Figure 1. Comparison of the NLTij model between DNS data (+DR = 37%, case (19)) and predictions
with the new model (continuum lines), and previous model (dash lines): (a) NLT+

xx; (b) NLT+
yy;

(c) NLT+
zz ; (d) NLT+

kk and (e) NLT+
xy.
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3.2. Model for the Modified Damping Function, fν

There have been many attempts to predict the eddy viscosity reduction as flow viscoelasticity
increases for drag-reducing flows. In the case of low-Reynolds k − ε models for FENE-P fluids, this was
examined firstly by Pinho et al. [20] for the LDR regime; then later by Resende et al. [24] for the
IDR regime. In both cases, there was a consistent reduction in the magnitude of k as DR increased,
contrary to the DNS findings [23]. Similar attempts to model a modified damping function were made
by Pinho [15]; Cruz et al. [16]; Resende et al. [17] and Tsukahara and Kawaguchi [31] to develop
viscoelastic turbulence models using different constitutive equations.

Recently, Resende et al. [32] proposed a modified damping function which was able to predict
the correct behavior of the eddy viscosity close to the wall, leading to the appropriate increase for the
magnitude of k, and the shift away from the wall into the buffer layer as DR increased. This proposal
was founded from the a-priori DNS data analysis by Resende et al. [42], demonstrating the necessary
increase to the production of k close to the wall. The model derived by Resende et al. [32] is based
on the DNS analysis of Li et al. [23], with an approximation of the form DR ∼ Ckk/L, giving rise to
the correct damping of near-wall eddies as DR increases. In the k − ε − v2 − f models proposed by
Iaccarino et al. [26] and Masoudian et al. [28], the near-wall eddy viscosity damping effect is achieved
by v2, as νT = Cμv2k/ε. However, the reduction in v2 is not enough to increase k as given by the
DNS data.

The approach by Resende et al. [32] works well in increasing k in the buffer layer, but fails
to capture the viscoelastic effects away from the wall, due to the fact that f Previous

μ → 1 as y → h,
which is contrary to the DNS data of Li et al. [22] and the analogous behavior of v2 away from the
wall. Therefore an additional model is required to capture the effect of nonequilibrium away from
the wall, similarly to the Newtonian model of Park et al. [43]. Benzi et al. [41] demonstrated that the
overall effect of polymer stretching is to introduce an effective viscosity proportional to Cyy, which is
dominated by the NLTyy component (modeled here with the first term in Equation (26)). An additional
term is multiplied to the eddy viscosity to account for the global reduction of eddy structures for
increasing DR. This approach is similar to the model of Resende et al. [24] and the study using DNS
data of Resende et al. [42] which multiplies the damping function by a factor of 1 − g(VE), where
g(VE) is a function of the viscoelastic terms, VE.

The final model presented for the modified damping function, fν, is

fν = (1 − A)

[
1 − exp

(
− y∗

aμ

(
1 + B/aμ

))]2

, (28)

A = CA

(
fN

λ2 L̃3/2

f (Ckk)2
ε

ν0

)0.3

, (29)

B = CB(Ckk − 3)1.25/L, (30)

with model constants CA = 0.071 and CB = 0.44. An additional contribution in the present model
comes from an alternative representation of the dimensionless wall scaling y+ = uτ/νw, where νw is the
wall viscosity. The presence of the wall friction velocity poses a problem for flows with re-circulation
or reattachment were the friction velocity becomes null at these points, causing floating point errors
within computational solvers. Possibilities other than y+ that solve this issue are Rey ≡ ky/ν0 or the
turbulent Reynolds number, Ret. Wallin and Johansson [44] formulated an alternative scaling, y∗,
in terms of Rey so that y∗ ≈ y+ for y+ ≤ 100 in channel flows. The form proposed is

y∗ = Cy1Re1/2
y + Cy2Re2

y, (31)
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where Cy1 = 2.4 and Cy2 = 0.003. The Rey-term is motivated by the fact that the near-wall asymptotic
behaviour for Re1/2

y is ∼ y2. The Re2
y-term is artificially introduced to obtain a near linear relation in

the buffer region.
The performance of the fν closure can be analyzed in Figure 2 by comparing the predictions

with DNS data cases (16, 19, 20) for LDR, IDR and HDR respectively in Table 1 and with the
model of Resende et al. [32]. The predictions offer significant improvement away from the wall
compared to the previous model. The effects can be viewed for the turbulent kinetic energy and
the eddy viscosity in the results section, offering improved results for various levels of DR and
Reynolds numbers. The fν closure more accurately represents the anisotropic effect akin to the v2 − f
models of Masoudian et al. [28,30], with the thickening of the buffer layer from the stretched polymers,
along with a global reduction with the new closure.

Figure 2. Comparison of the fν model between DNS data (× crosses) and predictions with the new
model (continuum lines), and previous model (dash lines): each colour represents a different drag
reduction regime: red (low drag reduction (LDR), case 16); blue (intermediate drag reduction (IDR),
case 19); green (high drag reduction (HDR), case 20).

3.3. Development of Closures for εV and Eτp

The closure model for εV is approached following the DNS budget analysis of the governing
terms proposed by Pinho et al. [20]. In their work, they verified that the double correlation can be
neglected with respect to the triple correlation at LDR. This was later confirmed for IDR and HDR by
Resende et al. [24] and Masoudian et al. [28], respectively. Pinho et al. [20] extended this analysis and
demonstrated that the triple correlation can be decoupled and modeled as a function of NLTmm/2.
Following this, Masoudian et al. [28] confirmed the model capabilities within 5% accuracy for all DR
regimes via an extensive pdf study, and is the model used here given by

εV ≈ νp

2λ
f (Cmm)NLTmm. (32)

The closure model derived for Eτp assumes that it depends on the same quantities as the classical
Newtonian destruction term of the transport equation of ε, but involving a viscoelastic quantity,
typically with the viscoelastic stress work used by Resende et al. [24,32] and Masoudian et al. [28,30].
However, as εV contains a negative part close to the wall via the NLTmm contribution, it is not feasible
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to include εV in a suitable model for EτP , based on the DNS analysis of ε being strictly decreasing near
the wall for increasing DR.

The closure derived by Resende et al. [32] is complex with Wiτ0 dependence to force the correct
trend in ε. Here, a much simpler approach is obtained with dependence through k and some viscoelastic
quantities which increases proportional with DR. The closure is given by

Eτp ≈ −CN4
ε̃N

k

[
νp

√
Cμ fμ L̃3/4

(
k
ν0

)2
]

, (33)

with model constant CN4 = 0.083. The effect of Equation (33) on ε predictions can be viewed in the
results section for LDR and HDR.

Overall, it is clear that all the developed viscoelastic closures presented in this study perform well
compared with DNS data. Most importantly, this was achieved without the use of friction velocity
dependence. The simplicity of the governing closures allows easy implementation into 3D codes and
can be extended to flows with reattachment when DNS data becomes available.

4. Summary of the Present Model

The governing equations with complete closure models that were developed in the previous
sections are presented here.

Momentum equation:

ρ
DUi
Dt

= − ∂p
∂xi

+ ρ
∂

∂xk

[
(νs + νT)

∂Ui
∂xk

]
+ ρ

∂

∂xk

(νp

λ
[ f (Cnn)Cik − δik]

)
, (34)

where the eddy viscosity is given by

νT = Cμ fν
k2

εN , (35)

with modified damping function

fν = (1 − A)

[
1 − exp

(
− y∗

aμ

(
1 + B/aμ

))]2

, (36)

A = CA

(
fN

λ2 L̃3/2

f (Ckk)2
ε

ν0

)0.3

, (37)

B = CB(Ckk − 3)1.25/L, (38)

with constants aμ = 26.5, CA = 0.071 and CB = 0.44. y∗ is given by Equation (31).
Conformation tensor equation:

DCij

Dt
− Mij − NLTij = − 1

λ
[ f (Ckk)Cij − δij], (39)

with

NLTij ≈ fNCN1
λ
√

L̃εN

ν0 f (Cmm)
δij − f 1/4

N CN2Mij + CN3
k
ν0

√
L̃Mnn

γ̇

∂Ui
∂xk

∂Uj
∂xk

γ̇2 , (40)

where fN = νT/ν0 is the local eddy viscosity, γ̇ =
√

2SpqSpq is the shear rate invariant, L̃ =
√

L2/900 is
the normalised maximum extension with the lowest DR, with model constants CN1 = 0.11, CN2 = 0.3
and CN3 = 0.3.
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Transport equation of k:

ρ
Dk
Dt

= ρ
∂

∂xi

[(
νs +

ftνT

σk

)
∂k
∂xi

]
+ Pk − ρ(ε̃N + D)− νp

λ
f (Cmm)

NLTmm

2
, (41)

where Pk = −ρuiuj
∂Ui
∂xj

is the rate of production of k.
Dissipation transport equation:

ρ
Dε̃N

Dt
=ρ

∂

∂xi

[(
νs +

ftνT

σε

)
∂ε̃N

∂xi

]
− f2Cε2 ρ

(ε̃N)2

k
+ ρE

+

(
Cε1 Pk − CN4νp

√
Cμ fμ L̃3/4

(
k
ν0

)2
)

ε̃N

k
, (42)

with model constant CN4 = 0.083.
The remaining constants are from the Newtonian model and are Cε1 = 1.45, Cε2 = 1.90, Cμ = 0.09,

σk = 1.1 and σε = 1.3.

5. Numerical Procedure

This section presents the numerical methods applied in order to examine the viscoelastic
turbulence model against the available DNS data identified within the literature. A new finite
volume C++ computational solver was developed in the OpenFOAM software by modifying the
k − ε sub-class files and introducing the FENE-P viscoelastic quantities such as: the polymer stress to
the momentum equation; conformation tensor transport equation; and modified damping function to
include elastic effects.

A fully-developed channel flow using half of the channel height, h, is applied given the
symmetry of the governing geometry. We assigned 100 cells in the transverse (wall) direction with
approximately 10 cells located inside the viscous sublayer. This is to provide mesh independent results,
with errors within 0.5% for the mean velocity and the friction factor compared with a very fine mesh,
similarly with [30]. The initial state of the simulation is the Newtonian solution until a steady-state
solution was reached for each run case, except for HDR where a similar IDR developed case is applied
to reduce computational time. Relaxation factors for the additional conformation tensor field are set
to 0.2, along with residual control set to 10−5. To improve numerical stability, an artificial diffusion term
is added to the RACE of the form, κ∂2

kCij, where κ denotes a constant, isotropic, artificial numerical
diffusivity. In earlier studies [10], the dimensionless artificial numerical diffusivity is taken to be
κ/huτ ∼ O(10−2). Here, κ/huτ ∼ O(10−3) and has negligible effect on mean values.

A pressure gradient is forced in the stream-wise direction to be unity, with periodic boundary
conditions for all other flow fields, mimicking the DNS procedure of Li et al. [22]. No-slip boundary
conditions were imposed on the solid wall for the velocity field U, along with k and ε̃ set to
zero (or very small, ∼ 10−15). A Dirichlet boundary condition for Cij is reported in Appendix A
(similar to [26], but for all components), which is imposed within OpenFOAM under the swak4Foam
library using the groovyBC functionality developed by Gschaider [45].

When normalizing the governing equations and inherently the various physical quantities, the
velocity scale is taken to be the friction velocity (leading to the use of superscript +) and the length
scale is the viscous length, xi = x+i ν0/Uτ . The conformation tensor is already in dimensionless form.

6. Results and Discussion

Following the numerical procedure proposed in the previous section, the model performance
is assessed against a range of different flow and rheological parameters presented in the DNS data
within Table 1.
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6.1. Analysis of Conformation Tensor

Figure 3 compares the individual components of the conformation tensor with the present model
against the model of Resende et al. [32] and selected DNS data covering L2, Wiτ0 and Reτ0 variations
(cases 16, 19, 20 and 26 in Table 1). as can be viewed in Figure 3a, the Cxx predictions are consistent
with the DNS data. The new closure for NLTxx (see term III in Equation (26)) is responsible for the
improved predictions and can capture the Reτ0 , L2 and Wiτ0 variations with much greater simplicity,
especially for increased Reynolds number (Reτ0 = 590) compared with the model of Resende et al. [32].

(a) (b)

(c) (d)

Figure 3. Comparison of the conformation tensor between DNS data (× crosses) and predictions with
the new model (continuum lines), and previous model (dash lines): (a) Cxx; (b) Cyy; (c) Czz and (d) Cxy.
Each colour represents a different drag reduction regime: red (LDR, case 16); blue (IDR, case 19); green
(HDR, case 20) and orange (very HDR, case 26. DNS data not available for Cxy).

Figure 3b plots the Cyy component, showing good agreement with the DNS data and improving
upon the most recent model, especially away from the wall. The important feature is the location of
the value at the centre-line and the peak location which both show good improvement, especially
for higher Reynolds numbers (Reτ0 = 590). The improvements are a result of the new Eτp closure
(see Equation (33)) which directly impacts εN in the NLTyy closure (see term I in Equation (26)).
Figure 3c plots the Czz component and shows an under-prediction due to the isotropic assumption
used in the model of NLTij, however, its impact is not significant.
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The model predictions of the Cyy term are important in capturing the features of the
Cxy component. As can be observed in Figure 3d, the model is able to capture the near-wall region,
which, according to the findings of Li et al. [22], is the region of high chain dumbbell extension
(limited to y+ < 50) where the effect of Cxy acts towards the polymer shear stress.

It is evident that the overall predictions of the individual conformation tensor components are
improved compared to the model of Resende et al. [32]. This is a result of the new NLTij and Eτp

closures developed in the present work, which allows more scope of predictability and increased
numerical stability with simpler closures.

6.2. Analysis of k, ε and νT

The predicted k profiles are shown in Figure 4a for cases 16 and 19 in Table 1, and Figure 4b
for low and high Reynolds number cases (7 and 27). There is reasonable improvement of the profile
away from the wall as a result of the new fν closure for increasing drag reduction and for various
Reynolds numbers.

(a) Reτ0 = 395 (b) Reτ0 = 125 and 1000
Figure 4. Comparison of turbulent kinetic energy between DNS data (× crosses) and predictions with
the new model (continuum lines), and previous model (dash lines): (a) Reτ0 = 395—red (LDR case
16)—and blue (IDR case 19); (b) Reτ0 = 125—green (HDR, case 7) and Reτ0 = 1000—blue (IDR, case 27).

In Figure 5, the prediction of the dissipation rate are compared with the DNS data of both LDR
(case 16) and very HDR (case 22), along with predictions for the v2 − f model of Masoudian et al. [28].
The predictions for LDR are captured well with the DNS for both near and far from the wall. For HDR,
there is a significant improvement near the wall compared with the v2 − f model. This is a result
of the Eτp closure formulated (See Equation (33)) which decreases ε as flow viscoelasticity increases.
The model of Resende et al. [32] shows similar results to the current model and is not plotted so that
the figure is clearer. However, the complexity of the present Eτp closure model is reduced substantially
and removes all friction velocity dependence, but can still predict all the main flow features with
good performance.

The local eddy viscosity is plotted in Figure 6a for all ranges of DR. The combined performance
of fν, k and ε gives rise to the predictions shown. We observe a reduction in the eddy structures within
the buffer-layer and log-layer for increasing DR, as the DNS suggests. The damping function predicts
well this behavior with the near-wall polymer extension via Ckk and the global reduction via (1 − A).
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Figure 5. Comparison of the rate of Newtonian dissipation of k between DNS data (× crosses) and
predictions with the new model (continuum lines), and v2 − f model of Masoudian et al. [28]
(dash lines). Each colour represents a different drag reduction regime: red (LDR case 16); orange
(HDR case 22).

(a) (b)
Figure 6. Comparison of the (a) local eddy viscosity and (b) mean stream-wise velocity profile, between
DNS data (× crosses) and model predictions (continuum lines). Each colour represents a different
drag reduction regime: red (LDR case 16); blue (IDR case 19); green (HDR case 20); orange (very HDR
case 22).

6.3. Analysis of Velocity Profiles

Figure 6b shows the mean stream-wise velocity profiles for all ranges of DR at Reτ0 = 395. All of
the profiles reduce to the linear distribution u+ = y+ in the viscous sub-layer. Further from the wall,
the velocity profiles are well-captured for all ranges of DR.

The model can also predict well a range of Reynolds numbers with varying rheological parameters
as can be viewed in Figure 7a. This is extended in Figure 7b for high Reynolds numbers, where there is
a significant improvement compared with the model of Resende et al. [32]. This is a result of the new
closure model for NLTxx which scales well with Reynolds number and with reduced complexity.

The advantage of the current model is the ability to capture all velocity profiles well within
the model limits, with more simplicity with regards to model closures and without friction
velocity dependence.
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(a) Reτ0 = 125, 180, 300 (b) Reτ0 = 590, 1000
Figure 7. Comparison of the velocity profiles between DNS data (× crosses), current model predictions
(continuum lines) and previous model predictions [32] (dashed lines). Each colour represents a
different drag reduction regime: (a) red (LDR case 1); blue (IDR case 10); orange (very HDR case 15).
(b) blue (IDR case 27); orange (very HDR case 26).

7. Conclusions

A viscoelastic turbulence model in fully-developed drag-reducing channel flow is improved,
with turbulent eddies modeled under a k − ε representation, along with polymeric solutions described
by the finitely extensible nonlinear elastic-Peterlin (FENE-P) constitutive model. A new finite volume
C++ computational solver was developed in the OpenFOAM software by modifying the k − ε sub-class
files and introducing the FENE-P viscoelastic quantities such as: the polymer stress to the momentum
equation; conformation tensor transport equation; and modified damping function to include
elastic effects. The model performance is evaluated against a variety of rheological parameters within
the DNS data literature, including: friction Reynolds number Reτ0 = 125, 180, 300, 395, 590, 1000;
Wiessenberg number Wiτ0 = 25, 36, 50, 100, 116, 200; and maximum molecular extensibility of the
dumbbell chain L2 = 900, 1800, 3600, 10, 000, 14, 400. The DNS data case (19) in Table 1 (Reτ0 = 395,
DR = 37%) is used for the calibration of the closures developed for the turbulent cross-correlations
identified in Section 3. The model is capable of predicting all flow features for low and high Reynolds
numbers at all regimes of DR and improves significantly on the model of Resende et al. [32], with its
ability to capture higher Reynolds numbers with simpler and physical-based closures.

The main feature is the formulation of the NLTij term which accounts for the interactions
between the fluctuating components of the conformation tensor and the velocity gradient tensor.
The advantage of the closure is the reduction in the complexity and use of damping functions in
the dominant contribution, NLTxx, modeled here to increase with turbulent kinetic energy as the
flow viscoelasticity increases, demonstrating significant improvement with a range of rheological
parameters and flow conditions.

Further improvements are developed for the viscoelastic destruction term, Eτp , within the
dissipation rate transport equation. Modeled here with dependence on k and viscoelastic quantities,
showing the ability to predict ε for low and high drag reduction.

An improved modified damping function, fν, is also presented, which is able to predict the global
reduction of the eddy viscosity and shift away from the wall for increasing viscoelasticity, whilst also
improving the profiles of turbulent kinetic energy.

Overall, predictions compare very well with a wide range of DNS data and significantly improves
on capturing all flow features with simplicity and performance compared with the most recent
k − ε model developed by Resende et al. [32]. The simplicity of the present model allows easy
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implementation into 3D codes and increases numerical stability. All friction velocity dependence
is removed in the present model which is the first of its kind for damping function k − ε models,
whose main advantage is the realization of simulations in geometries with reattachment. Future work
to extend to this study includes the development of an improved k − ω model based on the present
model [25]. This would require the same concept of the modified damping function developed in this
paper to be applied, with capabilities to predict flow behavior in industrially represented geometries
such as pipes and constrictions.
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Appendix A

The FENE-P equations simplify considerably if we consider 1D, laminar, parallel flow:
ux = uz = 0 and ux = ux(y) ≡ u. The system becomes:

Cyy
du
dy

− 1
λ
( f (Ckk)Cxy) = 0 (A1)

1
λ

(
1 − f (Ckk)Cyy

)
= 0 (A2)

1
λ
(1 − f (Ckk)Czz) = 0 (A3)

2Cxy
du
dy

− 1
λ
(1 − f (Ckk)Cxx) = 0, (A4)

where f (Ckk) =
L2

L2−Ckk
. Introducing the Weissenberg number as Wi = λ du

dy and solving the system of
equations above, one finds the following cubic equation in f (Ckk) ≡ f :

f 3 − f 2 − 2Wi2

L2 = 0, (A5)

which omits one real solution, fR, that satisfies the laminar equations applicable at the wall:

Cxx =
1
fR

(
2Wi2

f 2
R

+ 1

)
(A6)

Cyy =
1
fR

(A7)

Czz =
1
fR

(A8)

Cxy =
Wi
f 2
R

(A9)

where

fR =
1
3

(
B

21/3 +
21/3

B
+ 1

)
(A10)

with

B = (A + [(A + 2)2 − 4]1/2 + 2)1/3 and A = 54
(

Wi
L

)2
. (A11)
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In our numerical simulations, the explicit definition of the wall value using Equations (A6)–(A9)
as a Dirichlet boundary condition considerably improves the stability of the solution procedure and is
preferred over a zero-flux Neumann boundary condition for the conformation tensor.
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Featured Application: Elasticity is predicted to play a significant role in the formation of vortices

in polymeric flow in a sharp bend. The polymer dilution and the flow rate determine if the

formation of the vortices occurs upstream or downstream of the bend corner.

Abstract: Fluid dynamic simulations using the FENE-P model of polymer physics are compared to
those of an incompressible Newtonian fluid base case in order to understand the role of elasticity
in the formation of vortices in a 90◦ bend narrow channel. The analysis bridges the flow behavior
of a purely elastic fluid and that of a Newtonian fluid. We evaluated how four dimensionless
numbers—Reynolds number (Re), Weissenberg number (Wi), viscosity ratio (β), and elasticity
number (El)—affect the formation of vortices. It is shown that increasing Re and Wi, or lowering β

will cause vortices to grow in size. Two phase space diagrams, β vs. El and β vs. Re, were created to
show the range of values where inertial and elastic vortices form. Both diagrams have three zones.
Depending on the polymer viscosity ratio and the elasticity number, the vortices form either upstream
of the bend (elasticity driven) or form downstream of the bend (inertia driven), are suppressed. Our
predictions are in good agreement with previous experimental and numerical works.

Keywords: elasticity; polymer; vortex; bend; flow

1. Introduction

Many modern-day products, such as rubber tires and plastic bags, are made from
polymers. These items are made by specialized processing machines that handle polymer
solutions in pipes, conduits, and accessories such as bends and elbows. These polymeric
solutions, as with any other liquid, are subjected to many fluid dynamic effects. One such
effect is the formation of recirculation zones, or vortices in abrupt, changes of flow direction
as in contractions and bends. These vortices are a feature where some amount of the fluid
becomes trapped in a cyclone like structure near or around corners, justifying those authors
that refer to them as separation bubbles [1]. Recirculation zones can have detrimental
effects on the flow of polymers and polymer solutions, affecting their manufacturing
processes. As a result, it is important to know the conditions under which vortices form.
The presence of vortices near or around corners is one of the most significant alterations
in channel flow for both non-Newtonian and Newtonian fluids. Vortices are well known
to form in Newtonian fluids due to the effect of inertia [2]. However, for polymers and
polymer solutions not all the physics involved are fully understood [3,4].

Understanding the flow behavior of polymers and polymer solutions is essential to
design and optimize fluid flow systems in many practical applications. For example, in
microfluidics the polymer concentration has a significant effect on viscoelastic behavior by
altering the base flow or result in flow instabilities. In that regard, Gulati et al. [5] studied
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the flows of dilute and semi-dilute polymer solutions in sharp 90◦ micro-bends in channels
of rectangular cross-section. Their flow visualizations show that a vortex is present in the
inner, upstream corner of the bend and grows with increasing Reynolds and Weissenberg
numbers for flows of shear-thinning, semi-dilute polymeric solutions. They reported that
secondary flows were not present for Newtonian flows under similar conditions and that
a vortex is absent for flow of a dilute, non-shear thinning PEO solution. They concluded
that shear-thinning appears to be central to the presence of an elastic secondary flow in
this geometry. Their experiments were carried at very low Reynolds number (10−6 < Re <
0.03), and Weissenberg numbers ranging from 0.42 to 126.

More recently, Kim et al. [6] reported instabilities in viscoelastic flow in a 90◦ bent
channel. They observed that the flow instability in an aqueous PEO solution occurs when
the concentration of PEO is as low as 50 ppm. Investigating the effects of the polymer
concentration, flow rate, and elasticity number, they found that the flow is stabilized in
shear-thinning fluids, whereas the flow instability is amplified when both elastic and
inertial effects are pronounced. Their experiments were carried out at Reynolds numbers
ranging from 0.3 to 3.0 and Weissenberg numbers of 0 (Newtonian flow) to 40.

Both studies [5,6] coincide in pointing to the shear thinning properties of the solution,
a decrease in viscosity under shear strain, as the main reason for the formation of vortices
and secondary flows.

At the macroscopic level, it is also well known that polymers, as well as surfactants,
are frequently added to Newtonian fluids with the purpose of reducing friction losses in
straight pipe turbulent flow. In some cases, the drag-reducing rate is as high as 75% [7]
making them attractive for using in complex industrial pipe flow systems. Friction losses
in industrial piping systems are mostly due to accessories such as bends, tees, and valves,
rather than in the straight pipes. Understanding how polymers affect the Newtonian
flow in bends and accessories would help in evaluating their drag reduction potential and
application in intricate piping systems.

Munekata et al. [8] studied the bend flow characteristics of two surfactant solutions,
experimentally and numerically. They found that the drag, friction coefficient, increases
or reduces depending on the average bulk velocity of the solution. As the solution con-
centration increases a larger bulk velocity is required to observe a reduction in the drag.
Although the drag reduction’s effects of the surfactants in the solution are lower in bend
flow than in a straight pipe, the authors attribute the drag reduction to the suppression of
the centrifugal effect and reducing the secondary flow due to the viscoelastic properties
of the solutions (normal stress effect). Their analysis was performed at a high Reynolds
number for both a Newtonian fluid and a highly viscoelastic fluid. They observed and
predicted smaller velocity gradients near the wall for viscoelastic fluid flow than that for
Newtonian fluid flow.

Even in purely Newtonian fluid flow, understanding the hydrodynamic behavior in a
bend channel or a pipe elbow remains relevant today. Matsumoto et al. [1] investigated
the flow dynamics for a Newtonian fluid in a bent channel via two-dimensional direct
numerical simulations. They investigated the flow structure along the channel as a function
of both the bend angle and the Reynolds number. Their numerical work suggests a scaling
relation between the shape of the separation bubble, a downstream vortex after the bend
corner, and the flow conductance. Their simulations were carried at high Reynolds number
but only for a Newtonian fluid. Nevertheless, they present an integrated phase diagram
for the flow dynamics, where depending on bend angle and Reynolds number either the
flow is uniform with no recirculation vortex forming, a vortex forms downstream of then
bend corner, or vortices shed intermittently from the bend corner.

In this paper we address the role of elasticity in the formation of vortices. With our
analysis we are bridging the flow behavior of a polymeric fluid and that of a Newtonian
fluid in a 90◦ bend narrow channel.

In agreement with previous works [5,6], we predict the formation of elastic and inertial
vortices for polymer solutions with specific rheological properties and flow conditions. Our
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primary interest is exploring the possibility of controlling the alteration of the flow, either
suppressing or promoting a vortex or separation bubble, by modifying the underlying
properties of the polymer solution.

The remainder of this paper is organized as follows. In Section 2, we introduce our
hydrodynamic and polymer models. In Section 3, we describe in detail our numerical
procedure including simulation parameters, and the computational domain including a
few details about the meshing. In Section 4, we present the numerical results, specifically
comparing Newtonian and polymer flow and discussing the role of elasticity and Reynolds
number on vortex formation. We also construct two flow phase diagrams. In Section 5, we
summarize our results and briefly comment on the future perspectives of the present work.

2. Materials and Methods

2.1. Governing Equations

Two types of fluids were studied in this research, a Newtonian fluid and a polymeric
fluid. Newtonian flows are characterized by Navier–Stokes equations. Polymer flows
require additional equations to characterize the elastic behavior of the polymer chains. In
this work, the polymer chains are characterized using the FENE-P model (finitely extensible
nonlinear elastic model with Peterlin closure [9]). The FENE-P model was chosen due to
its versatility and simplicity in characterizing polymer behavior. In the FENE-P model,
polymers are represented as dumbbells, two masses connected by a spring, as in many
other polymer models [10]. Nevertheless, in the FENE-P model the spring has a finite
stretching limit.

For this work it is assumed that the fluid is incompressible for both Newtonian and
polymer-based flows, for which the continuity equation becomes:

∇·→v = 0, (1)

where
⇀
v is the velocity of the fluid. The general momentum equation of motion is given by:

ρ

(
∂
→
v

∂t
+

→
v ·∇→

v

)
= −∇·Π + ρ

→
g , (2)

where Π is the total stress tensor:
Π = τ + pI, (3)

with τ as the extra stress tensor, p the hydrostatic pressure, and I the identity tensor.
For an incompressible Newtonian fluid, the stress tensor τ is given by:

τ = −ηs
.
γ, (4)

.
γ =

[
∇→

v +
(
∇→

v
)T

]
, (5)

where ηs is the Newtonian shear viscosity, and
.
γ is the strain rate tensor.

Combining (3)–(5), substituting into (2), and neglecting the effects of gravity yields the
well-known Navier–Stokes equation of fluid dynamics, see below. For a detailed derivation
of (6) see ref. [11].

ρ

(
∂
→
v

∂t
+

→
v ·∇→

v

)
= −∇p + ηs∇2→v . (6)

For complex fluids such as polymers and polymer solutions, Equation (4) is not
sufficient to describe the dynamics of the flows. An additional stress term is added to the
Newtonian constitutive equation. For complex fluids:

τ = τN + τP, (7)
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where τN denotes the Newtonian stress component, and τP denotes the stress component
characterizing the polymer behavior.

The equation used to estimate τP depends on the particular model of polymer physics
being employed. For the purposes of this research, the FENE-P constitutive equation is
given by [10]:

τP = GO f
(

I − A
)
, (8)

λA
(1) + f

(
A − I

)
= 0, (9)

where GO is the elastic modulus, and λ is the relaxation time of the polymers. The conforma-
tion tensor A measures the stretch and orientation of the polymers. The upper-convective
derivative [12], denoted by ( )(1), is given by:

∂( )

∂t
+

→
v ·∇( )−

((
∇→

v
)T ·( ) + ( )·∇→

v
)

, (10)

and:
f =

b
b − trA

, (11)

with b representing the square of the maximum extensibility.
The total stress in the polymer solution is then obtained by combining Equations (7)

and (8), and substituting that result back into (3):

Π = GO f
(

I − A
)− ηs

.
γ + pI. (12)

2.2. Computational Methodology
2.2.1. Numerical Solver

The numerical solver implemented to solve the governing equations for the present
work is the open-source programming package RheoTool. RheoTool is an open-source
toolbox based on the OpenFOAM® library to simulate the flow of Generalized Newtonian
Fluids (GNF) and viscoelastic fluids [13].

RheoTool is a modification of the viscoelastic solver available in the OpenFOAM ® tool-
box [14]. The main goal of the modification was to improve its stability for differential-type
constitutive equations. The major contributions of RheoTool are using the log-conformation
approach to solve Oldroyd-B type constitutive equations, handling high-resolution schemes
with a componentwise and deferred correction approach to discretize the convective terms,
and introducing a new stress–velocity coupling term together with the well-known SIM-
PLEC algorithm for pressure–velocity coupling [15].

In the present work, the polymer is characterized by the FENE-P model which is solved
using the log-conformation approach [16,17], and selecting the stress–velocity coupling as
the stabilization method.

In terms of discretization, gradient terms are discretized using the Gauss scheme with
linear interpolation, Laplacian terms are discretized using the Gauss scheme (only choice)
with linear interpolation and the corrected scheme for the surface normal gradient, and the
convective terms are discretized using the CUBISTA scheme [18].

The solver chosen for all (asymmetric) equations is the Preconditioned (bi-) Conjugate
Gradient with the Diagonal incomplete-Cholesky (LU) preconditioner.

The solution is advanced in time using the Euler scheme with adjustable time steps.
A minimum time step of 10−6 s is set together with a maximum Courant number of 2.0
and a maximum time step of 10−2 s. This time step condition allows for speed up of the
convergence of transient simulations to steady state.

2.2.2. Simulation Parameters

The main goal of this research is to evaluate the role that elasticity plays in the
formation of vortices in flow around a sharp corner. For that purpose, we performed
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multiple simulations to create two phase diagrams in order to show the overall effects of
four dimensionless parameters, Wi, Re, El, and β. These parameters are defined as follows:

• The Weissenberg number Wi = λ·U/H, where λ is the relaxation time of the polymer, U is
the characteristic velocity, and H is the characteristic length scale of the geometry (channel
height). The Weissenberg number is a ratio of the polymeric timescale to a convective
timescale, akin to an elastic to viscous forces ratio in the context of this work.

• The Reynolds number Re = ρ·U·H/η0, where ρ and η0 are, respectively, the density
and the zero-shear rate viscosity of the solution. The Reynolds number is a measure
of the ratio of inertia to viscous forces.

• The elasticity number, a derived parameter, characterizes the balance of elastic and
inertial forces in the fluid and is defined as El = Wi/Re.

• The solvent viscosity ratio β = ηs/ηo, where ηs is the Newtonian solvent viscosity and
ηo is the zero-shear rate viscosity of the solution.

An important note about the elasticity number El and the viscosity ratio β is that
they are both material parameters that depend on ηo, and are independent of the fluid
velocity. The zero-shear rate viscosity, ηo, physically corresponds to the concentration of
polymers in the solution. A decreasing El indicates a decrease in the polymer concentration.
Conversely, an increase in β corresponds also to a decrease in the polymer concentration,
which is the parameter typically varied during experimental work.

Two sets of simulations were conducted in order to meet this goal. The first group
of simulations conducted during this research were used to create a Weissenberg number
versus Reynolds number phase space diagram. The Weissenberg numbers evaluated were
0.5, 1, and 1.5. Simulations were run with viscosity ratios, β values, ranging from 0 to 1 in
0.1 increments. A β value of 0 represents a polymer melt. A β value of 1 represents the
viscosity of a Newtonian fluid (solvent). A second group of simulations was conducted in
order to create a viscosity ratio, β, versus elasticity number, El, phase diagram. All of these
simulations were performed with a constant value for the Weissenberg number (Wi = 1).

2.2.3. Computational Domain

Figure 1 shows a representation of the computational domain used to model the
right-angle bend geometry. The fluid flows into the system at the top left, where a uniform
inlet velocity (for a given flowrate Q) is imposed, travels around the sharp bend, and
then exits out at the bottom, where the outlet pressure is set. At the walls, no-slip and
no-penetration conditions are set for the velocities, and zero gradient for the pressure and
the stress tensors.

Figure 1. Computational domain, right-angle bend geometry. Q, volumetric flow rate; H, channel
height; inlet/outlet branches length is 10 times H.

The bend used in the simulations has a ten to one ratio of length to channel height,
H, in both branches. This ratio is more than enough to obtain a fully developed flow
well upstream of the corner bend and for the exit, being far enough away to prevent
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any upstream effect from the outlet boundary conditions, see references [19,20], and also
Appendix A. The geometry used follows the experimental work of Gulati et al. [5] and
is typical of benchmark cases and similar configurations that have been evaluated both
numerically and experimentally, see [1,6,21,22].

2.2.4. Meshing

Figure 2 presents an enlarged portion of the bend corner geometry with the progres-
sion in mesh refinement used for the simulations. Preliminary runs were performed in
the coarse mesh shown in Figure 2a. The mesh was halved twice for the final run of every
simulation, Figure 2c. An even finer fourth mesh was used in a few simulations to estimate
grid convergence regarding the size predicted for inertial and elastic vortices including the
phase maps.

 
 

 
(a) (b) (c) 

Figure 2. Uniform meshing size progression: (a) coarse, Δx = Δy = 1/50·H; (b) medium, Δx = Δy = 1/100·H; (c) fine,
Δx = Δy = 1/200·H.

Figure 3 presents a sample of the grid convergence analysis performed in choosing the
grid for the simulations and estimate the numerical errors of the predictions. The profiles in
the figure correspond to a case with an elastic vortex located upstream of the bend corner.
They were created along the white vertical line highlighted in Figure 2c; the grid chosen
for the numerical analysis. The line crosses the elastic vortex roughly in the middle.

  
(a) (b) (c) 

Figure 3. Grid convergence analysis, Wi = 1.0, El = 100, β = 0.1: (a) horizontal velocity; (b) vertical velocity; (c) axial stress.

Figure 3a compares the streamwise velocity component for the four grids evaluated.
The weighted average deviation error outside the vortex for the fine grid is 1.3% and 5.5%
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inside the vortex. Similarly, Figure 3b compares the spanwise velocity component for the
same four grids. The weighted average deviation error outside the vortex is 14% and 26%
inside the vortex, respectively (in both cases, note the very low actual value of the predicted
velocity). Lastly, Figure 3c compares the axial stress. The weighted average deviation error
outside the vortex is 4.0% and 8.3% inside the vortex, respectively.

Similar analyses were conducted for many cases, including those with inertial vortices
located downstream of the bend corner. In a typical high Reynolds number case, Re = 100,
the weighted average deviation errors of all variables are significantly smaller. For the
streamwise velocity component, the weighted average deviation error outside the vortex
for the fine grid is 0.02% and 0.4% inside the vortex, respectively. For the spanwise velocity
component, the weighted average deviation error outside the vortex is 0.09% and 0.5%
inside the vortex, respectively. Additionally, for the strain rate, the weighted average
deviation error outside the vortex is 0.04% and 0.28% inside the vortex, respectively.

In general terms, it was found that predicting the location and length of the vortex is
the most significant challenge in attaining grid convergence. Outside the vortex and far
from it, the grid convergence index (GCI) for the fine grid is excellent, ranging from 0.0 to
1.5% in all variables. Within the vortex, the GCI for the fine grid is acceptable, ranging from
0.1% to 25% in all variables. Again, it should be noted that actual values for the spanwise
velocity and the normal stress within the vortex are significantly smaller when compared
to the streamwise velocity and the axial stresses, by two to three orders of magnitude.
The mesh and grid convergence analyses were conducted following the Procedure for
Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications by
Roache et al. [23].

The formation of vortices in polymer flow has been studied extensively in planar
contractions and the size and strength have been shown to be strongly dependent on the
mesh [15,24,25]. For example, the effect of mesh refinement on the size of the vortices
was highlighted by Alves et al. [26] when developing benchmark solutions for the flow of
Oldroyd-B and PTT fluids in planar contractions. They found that a very high degree of
mesh fineness was required to obtain accurate results with the Oldroyd-B fluid, while the
PTT fluid in general did not require the finest meshes. These authors relied on Richardson’s
extrapolation to measure the level of convergence.

3. Results

3.1. Newtonian Flow

To better understand the effects the elasticity of polymers have on the formation of vortices
in a right angle bend geometry, simulations of Newtonian fluid flow were conducted first in
order to obtain a baseline or reference. It is well known that in Newtonian flow vortices form
downstream of a bend corner at sufficiently high Reynolds number [22,27].

To establish the baseline, the Reynolds number value at which the vortices first
appear was sought. This value, called Recrit for the duration of this paper, was found to
be approximately 30. For Reynolds number values larger than 30, a clear vortex forms
downstream of the bend corner. This critical Reynolds number value is in line with other
numerical work [1,2].

For Newtonian fluids, the Reynolds number is the single parameter required to describe
the flow. It is expected that higher Reynolds numbers should lead to larger vortices downstream
of the bend corner. We refer to these vortices forming downstream as inertial vortices from
now on. Figure 4 presents two inertial vortices. The vortex in Figure 4a corresponds to a flow
with a Reynolds number of 50, while Figure 4b corresponds to Re = 100.
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(a) (b) 

Figure 4. Downstream inertial vortices, Newtonian Flow: (a) Reynolds number Re = 50; (b) Reynolds
number Re = 100.

Comparing both figures, it can be seen that the second vortex at Re = 100 is predicted
to be significantly larger than the vortex that forms at Re = 50. This comparison shows
that a higher Reynolds number value leads to a larger inertial vortex in Newtonian flow. It
should be noted that the size (length) of the vortices in these and all figures that follow was
determined numerically by the change in direction of the tangential velocity near the wall,
equivalent to a change in sign of the shear stress (skin friction), see Appendix B.

To validate both, the statement that the inertial vortex size increases with Reynolds
number and that ‘RheoTool’ is a valid numerical open source tool for the solution of both
Newtonian and non-Newtonian flow, we modeled the bend Newtonian flow using the
commercial tool ANSYS Fluent v19.1. Figure 5 compares the non-dimensional vortex
length (vortex length to channel height ratio) predicted with both Fluent and Rheotool up
to a Reynolds number of 250. The values predicted by RheoTool are within 1% of those
predicted by Fluent. The figure clearly shows that the vortex length (l) increases with
Reynolds number. Additionally, the comparison also indicates that RheoTool is as good
as Fluent in solving the Navier–Stokes equations for Newtonian flow. It should be noted
that this Newtonian inertial vortex would become unstable at a sufficiently high Reynolds
number value [1].
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Figure 5. Non-dimensional inertial vortex length for Newtonian flow. The dashed line (logarithmic
regression) is added to highlight the trend of the Newtonian vortex length solution.

3.2. Polymer Flow

As previously discussed, there are four dimensionless numbers—Wi, Re, El, and β—
typically used to characterize polymer fluid dynamics. Nevertheless, the elasticity number
(El) is defined as the ratio of the Weissenberg and Reynolds numbers. Consequently,
only three dimensionless parameters are effectively needed to characterize polymer flow.
Evaluating and predicting the effect on these parameters on polymer flow and vortex
formation is the main goal of this research.

It has already been shown, for the Newtonian case, that a difference in Reynolds
number means a difference in vortex size. For polymer fluids, even though elasticity is
present, this should be no different. Holding the Weissenberg number constant comparing
two simulations with different elasticity numbers should give insight into how the Reynolds
number affects the vortices.

3.2.1. Inertial Vortices

The vortices in Figure 6 correspond to flows at different Reynolds numbers for the
same Weissenberg number of 1.5 and a viscosity ratio of 0.1. Larger downstream vortices
are predicted as the Reynolds number is increased. With both Wi and β held constant, it
should be this variation in Reynolds number that is accountable for the increase in vortex
size. It should be noted that increasing the Reynolds number while holding both Wi and β

constant is equivalent to reducing the elasticity number.

 
(a) (b) 

Figure 6. Cont.
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(c) (d) 

Figure 6. Downstream inertial vortices, Polymer Flow, Wi = 1.5 and β = 0.1: (a) Re = 50 (El = 0.03);
(b) Re = 60 (El = 0.025); (c) Re = 75 (El = 0.02); (d) Re = 100 (El = 0.015).

It can then be stated that larger Reynolds numbers lead to larger inertial vortices in
polymer flow. Conversely, reducing the Reynolds number by increasing the elasticity of
the polymer solution should reduce the inertial vortex size.

Like Newtonian flow, current predictions indicate that larger Reynolds numbers in
polymer flow should lead to larger inertial vortex sizes. This is consistent with laminar
Newtonian flow physics, but what role do the polymers play in inertial vortex sizes? A
way to evaluate the effect of the polymers on the flow would be to compare a Newtonian
inertial vortex to a polymer vortex at the same Reynolds number.

Figure 7 compares predicted inertial vortices between Newtonian Flow and Polymer flow
at the same Reynolds number but different Weissenberg numbers. The vortex in Figure 7a
corresponds to Newtonian flow at a Reynolds number equal to 100. The vortex in Figure 7b
corresponds to polymer flow with Wi = 0.5. (El = 0.005). The vortex in Figure 7c corresponds
to polymer flow with Wi = 1.0 (El = 0.01). Additionally, the vortex in Figure 7d corresponds to
a polymer flow with Wi = 1.5 (El = 0.015). All three polymer inertial vortices are predicted to
be comparable in size, within 5%; with the one corresponding to a Weissenberg number of 1.0
being the only one significantly larger than its Newtonian counterpart, but only about 10%,
just slightly above the average grid convergence error of 8%. This is an indication that adding
polymers to the flow at this high Reynolds number is predicted to have a slight to nonexistent
effect on the fluid dynamics of the flow around a bend. The Weissenberg number effect on
inertial vortices at high Reynolds numbers is predicted to only be moderate.

 
(a) (b) 

Figure 7. Cont.
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(c) (d) 

Figure 7. Downstream inertial vortices, Newtonian vs. polymer flow (β = 0.1.) for Re =100: (a) New-
tonian flow; (b) polymer flow, (Wi = 0.5, El = 0.005); (c) polymer flow, (Wi = 1.0, El = 0.01); (d) polymer
flow, (Wi = 1.5, El = 0.015).

The contour plots in Figure 8 show two inertial vortices both corresponding to a
moderate Reynolds number of 50 also with β = 0.1. The first vortex, Figure 8a, has a
Weissenberg number of 0.5, while the second, Figure 8b, corresponds to Wi = 1.0. Again,
these inertial polymer vortices are comparable in size, in this case within 2%, indicating
that the influence of the polymer in the size of the inertial vortex is also predicted to be
moderate at a moderate Reynolds number.

(a) (b) 

Figure 8. Downstream inertial vortices, Re = 50. Effect of Weissenberg Number (Polymer flow):
(a) Wi = 0.5 and El = 0.01; (b) Wi = 1.0 and El = 0.02.

Figure 9 summarizes all inertial vortex length predictions for polymer flow at high
Reynolds number. Both solutions for Newtonian flow, RheoTool and Fluent, are added
for comparison. Predictions for Wi equal to 0.5 and 1.5 are similar to that of Newtonian
Flow. At Wi = 1.5, polymer inertial vortices are predicted to be slightly smaller than the
Newtonian counterpart as the Reynolds number is reduced.
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Figure 9. Non-dimensional inertial vortex length for polymer flow vs. Reynolds number.

From Figure 9 it could be inferred that adding polymers to the solution does not
affect the size of the inertial vortices. Figure 10 presents the same data as Figure 9 but as a
function of the elasticity number. At every Weissenberg number, the predictions clearly
indicate that increasing elasticity leads to a rapid decrease in vortex size. This figure also
highlights that it is the Reynolds number, indeed the inertial effects, that is predicted to
drive the size of the inertial vortex, with the Weissenberg number playing a secondary role.
This figure also seems to indicate that there is a maximum size for the inertial vortex at any
given Reynolds number. This maximum vortex size is predicted for the cases where the
inertial and elastic forces are balanced: Weissenberg equal to 1.0.

Figure 10. Non-dimensional inertial vortex length for polymer flow vs. elasticity.

3.2.2. Elastic Vortices

As the Reynolds number is reduced, the downstream or inertial vortices are predicted to
disappear. However, as the Reynolds number is reduced further, vortices are predicted to form
upstream of the corner bend. We refer to these vortices forming upstream of the bend corner
as elastic vortices. At low Reynolds numbers, it is the Weissenberg number that is predicted to
determine the size of the elastic vortex. To evaluate how changing the Weissenberg number
affects vortices that form upstream of the bend corner, Figure 11 compares an elastic vortex for
Wi = 1 and El = 1·106 to a vortex for Wi = 1.5 and El = 1.5·106. Both simulations correspond to
a viscosity ratio of 0.1 and a Reynolds number of 1·10−6. It is clear that the two vortices are
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predicted to be of different sizes, with the vortex for Wi = 1.5 being larger. Since the elasticity
number and the Weissenberg number are linked, the vortices are predicted to be different in
size, most likely due to the difference in Weissenberg numbers.

  
(a) (b) 

Figure 11. Upstream elastic vortices, effect of Weissenberg number (Polymer flow Re = 1 × 10−6):
(a) Wi = 1, El = 1 × 106; (b) Wi = 1.5, El = 1.5 × 106.

Lastly, we evaluate the effect of the viscosity ratio. As explained previously, this ratio
can take any value between 0 and 1. Since a β value of 1 defines a purely Newtonian fluid,
we expect that fluids with viscosity ratios less than 1 should exhibit polymer behavior
similar to increasing the Weissenberg number in polymer flow. The elastic vortex should
therefore be larger for smaller β values because of its reliance on elasticity to form.

The elastic vortices in Figure 12 show the effect of decreasing β; from β = 0.4 to
β = 0.1. The second elastic vortex, lower viscosity ratio, is larger than expected, indeed,
significantly larger, roughly three times. Reducing β is predicted to have a similar effect
to that of increasing the Weissenberg number, increasing the size of the elastic vortex.
However, the presence of elasticity is not sufficient to produce elastic vortices; it was found
that elastic vortices are only predicted to form for viscosity ratios not exceeding a certain
value. In other words, a dilute polymer solution, mostly solvent with a viscosity ratio near
1, is always predicted to have Newtonian-like flow behavior without a vortex forming
upstream of the bend corner. Conversely, a concentrated polymer solution, mostly polymer
with a viscosity ratio near 0, is predicted to have secondary flows, vortices upstream of
the bend corner, for a large range of Reynolds numbers. These predictions are in line with
the experiments of Gulati [5] who found that stable elastic vortices form within the flow of
semidilute DNA solutions in a 90◦ micro bend channel above a certain threshold for the
solution elasticity.

  
(a) (b) 

Figure 12. Upstream elastic vortices, effect of viscosity ratio (polymer flow) for Wi = 1 and El = 1·106:
(a) elastic vortex for β = 0.4; (b) elastic vortex for β = 0.1.
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Based on these findings we created a map to evaluate the effect of the three parameters,
Wi, β, and El on the formation of elastic and inertial vortices. Figure 13 shows a phase
diagram mapped for viscosity ratio versus elasticity number for Wi = 1.0. This value was
chosen so the inverse of the elasticity number, El, is exactly the Reynolds number, Re. Three
regions form in this phase diagram: the ‘devoid region’, no vortex forms; the ‘inertia region’,
downstream or inertial vortices form; and the ‘elastic region’, upstream or elastic vortices
form. As can be seen in the diagram, the boundary between the elastic region and the devoid
region is a horizontal line at about β = 0.6. This is interesting because it suggests that there
is a critical viscosity ratio needed for the elastic vortex to form. It might be possible that this
boundary is not asymptotic, and that it is dependent on the Weissenberg and the Reynolds
numbers. Take note of the logarithmic x-axis. The effect of the Weissenberg number on this
predicted flow map will be the subject of a follow-up paper.

Figure 13. Phase space diagram, viscosity ratio versus elasticity number for Wi = 1.

The graph in Figure 14 is the same phase diagram as Figure 13, but the x-axis is now
the Reynolds number (the inverse of the elasticity number for Wi = 1.0). In the figure, it is
easier to see that elastic vortices only form at small Reynolds number values and viscosity
ratios less than 0.6. As it has already been shown that viscosity ratio has a similar effect
on vortex development to that of increasing the Weissenberg number, the question arises
as to whether or not β will delay the onset of inertial vortices. Looking at the figure, the
boundary of the inertial region is essentially a vertical line (Re = 29–37) indicating that β is
predicted to have only a very subtle effect on the onset of inertial vortices. In other words,
the Reynolds number is predicted to be the parameter with a primary role in determining
the onset of inertial vortices.

Figure 14. Phase space diagram, viscosity ratio versus Reynolds number for Wi = 1.
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Lastly, Figure 15 plots the vortex length of elastic vortices versus the elasticity numbers
at which they form for three values of Weissenberg number (Wi = 0.5, 1.0, 1.5) and a
viscosity ratio β = 0.1. The figure shows that for elasticity numbers between 0.1 and
10 the size of the elastic vortex is predicted to depend on both the elasticity number,
El, and the Weissenberg number, Wi. On the other hand, the figure also shows that for
El = 10 and above, the elastic vortex size is predicted to be of the same size for a given
Weissenberg number independently of the elasticity number. These predictions indicate
that the Weissenberg number plays the primary role in determining the size of the elastic
vortex that forms upstream of the bend corner for a fixed viscosity ratio. As discussed
earlier, as the Weissenberg number increases so does the size of the elastic vortex. These
predictions are also consistent with the experiments of Gulati [5] who found that the
Weissenberg number is the parameter that determines the presence and size of the elastic
vortices forming within the flow of semidilute DNA solutions in a 90◦ micro bend channel.

Figure 15. Non-dimensional elastic vortex length versus elasticity number for β = 0.1.

4. Discussion

It has been shown during this research paper that higher polymer concentrations and
higher inertia are both predicted to lead to larger vortices in a sharp bend geometry. Higher
polymer concentrations lead to elastic vortices located upstream of the bend. Conversely,
higher Reynolds numbers lead to inertial vortices located downstream of the bend.

It was also found that after vortices are formed their size is predicted to be primarily
determined by the properties of the polymer solution and the Reynolds number. In the case
of elastic vortices, the vortex size is set by both the Weissenberg number and the viscosity
ratio. In the case of inertial vortices, the vortex size is primarily set by the Reynolds number
with the Weissenberg number playing a secondary role.

What is more interesting is the fact that predictions indicate vortices can be suppressed
by adjusting the properties of the polymer solution, elasticity and viscosity ratio, for a
given solution volumetric flow rate. The transition to inertia driven vortices is predicted to
occur somewhat abruptly at elasticity numbers equivalent to the critical Reynolds number
for Newtonian flow. Above this critical Reynolds number, inertia vortices are predicted
to form downstream of the bend corner with polymer solution properties affecting the
size only moderately. Below this critical Reynolds number, all polymer solution properties
are predicted to affect not only the size but the formation of elastic vortices upstream of
the bend corner. The size of the vortex is predicted to be determined by the Weissenberg
number while the formation of the vortex itself is predicted to be determined by the
viscosity ratio, i.e., the polymer concentration in the solution.

It should be noted that with our numerical approach we did not expect to predict or
capture any secondary flow that might be induced or be present in the actual 3D geometry
used as reference [5]. Similar works have found or predicted a minor effect of the aspect
ratio of the channel in the size of the lip vortex [21] or the presence of secondary flows [28].
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As the present work summarizes, our current primary interest was to evaluate the
role that elasticity plays in the formation of lip vortices in the flow around a sharp corner.
It is clear that modifying the underlying properties of the polymer solution predicts that
the fluid dynamics can be significantly altered. Vortices, elastic and inertial, could both
be suppressed or promoted by adjusting the polymer solution properties for a given
volumetric flow situation.

5. Further Work

The phase diagrams presented in Figures 13 and 14 were created for a single Weissenberg
number. The non-dimensional elastic vortex length behavior presented in Figure 15 was
created for one single viscosity ratio. Additional diagrams for different values of both might
confirm the universality of the predicted behavior.

In the present work, we used the FENE-P model to predict the behavior of the polymer
solution. This model is computationally stiff. Extreme care has to be taken to find fully
converged numerical solutions. Replicating the work with other polymer models would
further verify the present findings.

In the long term, our goal is exploring the possibility of developing polymer and
polymerlike solutions that respond to and change properties in a controlled manner based
on self-induced flow instabilities. Ideally, developing an experimental setup where polymer
flow could be tested to create a real phase diagram for the fluid dynamics would validate
what the current work promises, controlling the formation of vortices based on the polymer
solution’s properties.
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Appendix A

As discussed within the text, a 10:1 branches-to-channel height ratio for the geometry
under analysis was found to be sufficient to predict fully developed flow before the bend
corner. Figure A1 presents a comparison of the streamwise velocity component at two
different locations. We are comparing profiles at a distance equivalent to 7H and 8H from
the inlet.

Figure A1a presents the comparison for the same elastic vortex case discussed in the
grid convergence analysis outlined in Figure 3; recall that an elastic vortex forms before the
bend corner. The two profiles are nearly identical, indeed indistinguishable. The weighted
average difference between the two profiles is 0.02%.

Figure A1b presents the comparison for the same inertial vortex case discussed in the
grid convergence analysis section; recall that an inertial vortex forms after the bend corner.
The two profiles are also nearly identical. The weighted average difference between the
two profiles is 0.52%.
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(a) (b) 

Figure A1. Streamwise velocity upstream of the corner bend: (a) elastic vortex for Wi = 1.0, El = 100,
β = 0.1; (b) inertial vortex for Re = 100.

In both cases, it is clear the chosen length to height ratio is sufficient to obtain the fully
developed flow condition before the bend corner. Hence, the inlet boundary condition
should have no influence or effect on the size predictions of both elastic and inertial vortices.

As in Figure A1, Figure A2 presents a comparison of the streamwise velocity compo-
nent at two different locations. We are now comparing profiles at a distance equivalent to
7H and 8H after the bend corner, or 3H and 2H far from the geometry outlet, respectively.

Figure A2a presents the comparison for the same elastic vortex case discussed above.
The two profiles are nearly identical, again indistinguishable. The weighted average
difference between the two profiles is 0.01%.

Figure A2b presents the comparison for the same inertial vortex case discussed above.
The two profiles are again nearly identical. The weighted average difference between the
two profiles is 0.65%.

  
(a) (b) 

Figure A2. Streamwise velocity downstream of the corner bend: (a) elastic vortex for Wi = 1.0,
El = 100, β = 0.1; (b) inertial vortex for Re = 100.

In both cases, it is clear the chosen length to height ratio is enough to predict that
the flow will recover completely from the perturbation caused by the vortices before the
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geometry outlet, nearly reaching the fully developed flow condition. Hence, the outlet
boundary condition should also have no influence or effect on the size predictions of either
elastic or inertial vortices.

Appendix B

As discussed within the text, the size (length) of all predicted vortices was determined
numerically by the change in direction of the tangential velocity near the wall. We indicated
that doing this was equivalent to a change in sign of the shear stress or skin friction.

Figure A3 presents a comparison of the wall shear stress and the near wall streamwise
(tangential) velocity. To allow a direct comparison, we normalized both stress and velocity
by the maximum value along the respective walls.

Figure A3a presents the comparison for the same elastic vortex case discussed in
Appendix A. The two profiles cross the zero line at nearly the same x-coordinate location.
The length of the vortex determined by either method is the same with a 0.0% deviation.

Figure A3b presents the comparison for the same inertial vortex case discussed in
Appendix A. The two profiles cross the zero line at almost the same y-coordinate location. The
length of the vortex determined by either method is roughly the same, with a 0.5% deviation.

 
 

(a) (b) 

Figure A3. Normalized wall shear stress and streamwise velocity near the wall in the vortex region:
(a) elastic vortex (xWss and Vx) for Wi = 1.0, El = 100, β = 0.1; (b) inertial vortex (yWss and Vy) for
Re = 100.

In both cases, elastic and inertial vortices, it is clear that determining the vortex size
by the change in direction of the tangential velocity near the wall is equivalent to a change
in the sign of the wall shear stress. Any deviation between the methods that could be
predicted is extremely small compared to the actual vortex sizes that were calculated.
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Abstract: High-velocity and long-lifetime operating conditions of modern high-speed energy storage
flywheel rotors may create the necessary conditions for failure modes not included in current quasi-
static failure analyses. In the present study, a computational algorithm based on an accepted analytical
model was developed to investigate the viscoelastic behavior of carbon fiber reinforced polymer
composite flywheel rotors with an aluminum hub assembled via a press-fit. The Tsai-Wu failure
criterion was applied to assess failure. Two simulation cases were developed to explore the effects
of viscoelasticity on composite flywheel rotors, i.e., a worst-case operating condition and a case
akin to realistic flywheel operations. The simulations indicate that viscoelastic effects are likely to
reduce peak stresses in the composite rim over time. However, viscoelasticity also affects stresses in
the hub and the hub-rim interface in ways that may cause rotor failure. It was further found that
charge-discharge cycles of the flywheel energy storage device may create significant fatigue loading
conditions. It was therefore concluded that the design of composite flywheel rotors should include
viscoelastic and fatigue analyses to ensure safe operation.

Keywords: viscoelasticity; polymer composite material; flywheel energy storage system; flywheel
failure; Tsai-Wu criterion

1. Introduction

State-of-the-art high-speed flywheel energy storage systems (FESS) are recognized for
several advantageous characteristics including a high charge and discharge rate, lifetimes
ranging from 10 to 20 years and high specific energy up to 100 Wh·kg−1 [1]. Further, they
are unaffected by depth of discharge or cycling effects common to electrochemical bat-
teries and have a relatively high cycle efficiency—up to 95% depending on the electrical
components [2]. While the high efficiency and long expected lifetime make FESS an attrac-
tive alternative over other short- and medium-term energy storage options, these same
attributes pose design and operational challenges.

The majority of studies on fiber reinforced polymer (FRP) composite flywheel rotors
have focused on instantaneous, or time-independent, behavior of composite rotors and
hubs to optimize performance or minimize cost [3–5]. If rotor failure is considered, it is
typically seen as a quasi-static process caused by excessive centrifugal loading exceeding
material ultimate strengths [6]. While attempts have been made to predict rotor failure
with progressive damage models [7], they largely neglect to incorporate viscoelasticity
into the stress and failure analyses. It has been theorized that changes in the interfacial
compressive forces could lead to rim separation or creep rupture [8], yet the number of
studies on viscoelastic behavior in composite rotors supporting this notion are limited.

Some works presented solutions for the boundary-value problem presented by flywheel
rotors constructed of viscoelastic materials and discussed creep effects [9,10]. Trufanov and
Smetannikov [9] focused on flywheel rotors with an outer shell supporting an inner com-
posite rim. Additionally, the rim is of non-uniform cross sections and features a variable
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winding angle, neither of which are commonly used in modern FESS [11,12]. Portnov [10]
discussed a solution to the equilibrium equations to determine creep strain in rotating
disks. Tzeng [13] expanded on previous works by simulating filament-wound composite
flywheel rotors with uniform rotor cross section and discussing viscoelastic behavior at
10 years and infinite time (1010 h). Tzeng showed that viscoelastic stress relaxation of
approximately 35% in the radial direction and a corresponding increase of approximately
9% in the circumferential direction can occur over the lifetime of the rotor. Emerson [14]
conducted experimental investigations on flywheel rotors subjected to three temperatures
and speed profiles over the course of 2 months using optoelectronic strain measurements.
While rotor creep tests were inconclusive due to a mechanical failure, this work did not
rule out any significant impact of creep on strains imposed for the press-fit assembly of the
rotor. A similar conclusion was found elsewhere [15].

While there have been developments in the understanding of viscoelastic behavior
of flywheel rotors, related insights do not necessarily translate well to typical use cases.
For example, FESS in public transit [16] are installed with a vacuum enclosure that min-
imizes temperature fluctuations. Expected lifetimes are 10 to 20 years. In addition, load
cycling occurs every few minutes, with viscoelastic effects effectively being negligible
in between cycles. For other promising FESS applications, such as electric vehicle (EV)
charging and renewable energy grid support, cycle times are likely much longer than for
FESS in public transit, yet temperature conditions and timeframes would be similar.

The present study seeks to describe the viscoelastic behavior of composite flywheel
rotors during their expected lifetimes using a computational algorithm to predict the stress
evolution in the rotor. Additionally, the Tsai-Wu criterion is used to describe the total
stress state, combining radial, circumferential, and axial stress to predict rotor failure.
The simulated rotor material is a filament-wound carbon fiber reinforced polymer (CFRP)
composite [17–19], similar to those typically used in flywheel rotor construction, making
its application here appropriate. The rotor also includes an aluminum hub that facilitates
the connection between the motor/generator unit and the bearing system. The effects
of creep and viscoelastic stress relaxation on a flywheel rotor are examined with respect
to two primary rotor failure modes: (i) separation between hub and rotor rims, and
(ii) matrix cracking.

2. Composite Flywheel Rotor Modeling

2.1. Analytical Model Description

The analytical model has been discussed in several publications, therefore only a brief
description will be provided here. While the present study focuses on the solution of a
single-rim rotor, the analysis can be generalized to multi-rim rotors as described in [20],
variable thickness rotors [21], and functionally graded materials [22]. The stress develop-
ment in the thick composite rotor is assumed to be axisymmetric, meaning the resultant
stresses and strains are independent of the circumferential coordinate. The material used
for these rotors is a unidirectional filament-wound FRP composite where the winding
angle is taken to be circumferential, i.e., 90◦. Hence, the composite is assumed to be
transversely isotropic. Additionally, it was assumed the aluminum hub and composite
rim are permanently bonded, that is, the model is unable to simulate separation between
hub and rim. However, the latter condition is indicated by interfacial radial stress being
greater than or equal to zero. Due to axisymmetry, the rotor response must only satisfy
the governing equation in the radial direction [23]. The stress equilibrium equation in
cylindrical coordinates is given as [24]

∂σr

∂r
+

σr − σθ

r
+ ρrω2 = 0, (1)
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where σr and σθ are the radial and circumferential hoop stresses, which are the only non-
trivial terms in the stress matrix; ρ is the material density; and ω is the rotor angular
velocity. The stress-strain relationship is defined as⎧⎪⎪⎨⎪⎪⎩

σθ

σz
σr
σθz

⎫⎪⎪⎬⎪⎪⎭ =

⎡⎢⎢⎣
Q11 Q12 Q13 0
Q21 Q22 Q23 0
Q31 Q32 Q33 0

0 0 0 Q66

⎤⎥⎥⎦
⎧⎪⎪⎨⎪⎪⎩

εθ

εz
εr
εθz

⎫⎪⎪⎬⎪⎪⎭, (2)

where [Q] is the stiffness matrix and {ε} is the strain vector. Note that the z-coordinate is
associated with the rotor axial direction. The [Q] matrix is the inverse of the compliance
matrix [S] [25], such that

[Q] = [S]−1 =

⎡⎢⎢⎣
S11 S12 S13 0
S21 S22 S23 0
S31 S32 S33 0
0 0 0 S66

⎤⎥⎥⎦
−1

. (3)

Considering Equation (2), the compliance matrix must define the behavior in the
circumferential (parallel to fibers), radial (transverse to fibers), axial (transverse to fibers),
and shear directions. Since the rotor material is assumed to be transversely isotropic with
no applied shear forces, the symmetric matrix simplifies from 10 unique terms to seven.
The strain in the circumferential and radial directions can be written as, respectively,

εθ =
ur

r
and εr =

∂ur

∂r
, (4)

where ur is the displacement in the radial direction and r is an arbitrary location along
the rotor radial direction. Invoking a plane strain assumption, strain in the axial and
shear directions is defined correspondingly by Equation (5). The appropriateness of this
assumption will be discussed later in this text.

εz = 0 and εθz = 0. (5)

Combining Equations (1), (2), and (4) yields a second order inhomogeneous ordinary
differential equation. Solving this equation gives the local displacement and local stress at
an arbitrary radius defined as

ur = −ρω2 ϕ0r3 + C1 ϕ1rκ + C2 ϕ2r−κ , (6)

σr = −ρω2 ϕ3r2 + C1rκ−1 + C2r−κ−1. (7)

The C parameters are integration constants dependent on the boundary conditions
and material properties. The κ and ϕ coefficients are intermediate terms dependent on the
stiffness matrix, defined as follows:

κ =
√

Q11
Q33

,
ϕ0 = 1

(9−κ2)Q33
, ϕ1 = 1

Q13+κQ33
,

ϕ2 = 1
Q13−κQ33

, ϕ3 = 3Q33+Q13
(9−κ2)Q33

.

(8)

Then, upon determining the integration constants, the radial displacement (Equation (6))
and radial stress (Equation (7)) can be found using Equation (8). Circumferential stress
can be found by combining Equations (4), (6), and (8) in conjunction with the stress-strain
relationship (Equation (2)).
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Generalizing to a multi-rim flywheel rotor with an arbitrary number of rims, i.e., the
rotor is constructed from N rims labeled j and can vary between j = 1, 2, 3 . . . N, then the
continuity condition at the interface states,

σ
j
r,ro = σ

j+1
r,ri ; uj

r,ro = uj+1
r,ri . (9)

where σ
j
r,ro is the radial stress at the outer radius, ro, in the jth rim, and σ

j+1
r,ri is the radial

stress at the inner radius, ri, of the next, j + 1, rim. The same notation is used to describe
the radial displacements, ur, at the interface.

2.2. Tsai-Wu Failure Criterion

The general Tsai-Wu failure criterion, described in [6,7,26,27], can be reduced to nine
terms for a transversely isotropic material and considering the absence of shear stresses.
This criterion finds a relationship, F, between the applied stress tensor and the material
tensile strengths and predicts failure when F ≥ 1. At failure, the stress tensor represents
the maximum allowable stress and F equals unity. Hence, the Tsai-Wu failure criterion can
be written as

F = F11
(
σall

1
)2

+ F22
(
σall

2
)2

+ F33
(
σall

3
)2

+ 2F12σall
1 σall

2 + 2F13σall
1 σall

3 +

2F23σall
2 σall

3 + F1σall
1 + F2σall

2 + F3σall
3 = 1,

(10)

where
(
σall

i
)

is the allowable stress in the i = 1, 2, or 3 directions at an arbitrary point in the
rotor. Note as applied herein, the 1 and 3 directions refer to the circumferential and radial
stress, respectively, while the 2 direction refers to the axial direction. While the plane strain
condition eliminates axial strain, it allows for axial stress; therefore, it is included in the
failure criterion. Then,

F11 = 1
σ1tσ1c

, F22 = F33 = 1
σ3tσ3c

, F1 = 1
σ1t

− 1
σ1c

,

F2 = F3 = 1
σ3t

− 1
σ3c

, F12 = F13 = −1
2
√

σ1tσ1cσ3tσ3c
, F23 = F22 − 1

2τ2
23

,
(11)

where the subscripts t and c refer to the tensile and compressive ultimate strengths, respec-
tively. The strength coefficients in the 2 and 3 directions are equal due to the transversely
isotropic assumption, discussed further in Section 3.1.

It is common, and more valuable, to define the relationship between maximum
allowable stress and the applied stress as the failure ratio (R) [7]. This relationship is found
by combining the maximum allowable stress tensor,

(
σall

i
)
, with the applied stress tensor,(

σ
app
i

)
, multiplied with R such that

σall
1 = Rσ

app
1 , σall

2 = Rσ
app
2 , σall

3 = Rσ
app
3 . (12)

Then, substituting Equation (12) into Equation (10) yields a quadratic equation, i.e.,

0 =

[
F11

(
σ

app
1

)2
+ F22

(
σ

app
2

)2
+ F33

(
σ

app
3

)2
+ 2F12σ

app
1 σ

app
2 + 2F13σ

app
1 σ

app
3

+ 2F23σ
app
2 σ

app
3

]
R2 +

[
F1σ

app
1 + F2σ

app
2 + F3σ

app
3

]
R − 1.

(13)

Solving this quadratic equation for R defines the failure ratio. When
(

σ
app
i

)
equals(

σall
i
)
, then R equals unity, indicating failure, whereas R > 1 indicates

(
σ

app
i

)
is less than(

σall
i
)

and no failure is predicted. It is convenient to define a strength ratio (SR) to be 1/R,
as this is more intuitive conceptually and graphically [7]. Failure under this criterion is
predicted when SR ≥ 1.
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2.3. Computational Methodology

The computational methodology has been discussed elsewhere [13,14], so only a brief
description is provided here. The analytical model, described in Section 2.1, assumes
constant loads, therefore the viscoelastic solution procedure requires approximating time-
varying behavior through a number of discrete time and load steps. The response at
each step is used to calculate stresses and SR for the flywheel throughout the simulation.
First, the rotor dimensions, material properties, and simulation parameters—including
time and velocity vectors of interest—are defined as inputs to the algorithm. Then, begin-
ning at the first time and velocity of interest, the material stiffness matrix is calculated for
each rim of the flywheel rotor (here, a single-rim rotor is considered). Next, the boundary
conditions at each interface and at the inner and outer surface of the rotor are calculated.
Using this information, the rotor response and SR are calculated for the given time and
velocity. Finally, the algorithm iterates to the next time and velocity. This continues for all
discrete times and velocities of interest, which yields the induced stresses and SR for all
points in the flywheel rotor at all times and velocities of interest.

3. Modeling Parameters

The flywheel rotor simulated in this study is constructed from a single CFRP rim press-
fitted to an aluminum hub. The hub and rim are simulated as cylinders with rectangular
cross sections.

3.1. Materials

The aluminum and CFRP are both assumed to be uniform throughout the rotor and
free of defects. Referring to [28], the aluminum exhibits negligible viscoelastic response at
temperatures below 50 ◦C, therefore viscoelastic behavior in the aluminum is not consid-
ered. The material properties of the chosen 7075-T6 aluminum are found in [29].

The composite considered in this study is IM7 carbon fiber (Hexcel Corp., Stamford,
CT, USA) with an 8552 epoxy resin system (Hexcel Corp., Stamford, CT, USA), as described
by Tzeng et al. [30]. The filament winding process employed for fabricating CFRP flywheel
rotors utilizes continuous unidirectional fiber reinforcement, which creates a transversely
isotropic behavior [31].

In the CFRP rim, the fibers run circumferentially and display only subtle viscoelastic
characteristics. The long-term behavior of a CFRP in the transverse direction is often
described using a time-temperature superposition (TTSP) master curve. This curve is
created by measuring short-term creep data at various elevated temperatures. Then, a shift
factor is applied to the elevated temperature experimental data to shift them temporally,
increasing the time axis while decreasing the temperature. Shifting all elevated temperature
experimental data creates a smooth master curve representing the lifetime strain and
compliance behavior, provided the applied stress from experimentation is known. Finally,
curve fitting is performed on the master curve to generate empirical equations for the creep
compliance. TTSP is applicable for modeling linear viscoelasticity, which is acceptable
for this application as permanent damage, material aging, and other higher order effects
are excluded from this simulation. The transverse compliance equations published by
Tzeng et al. [30] are given in Table 1 and Equation (14), as are the aluminum properties,
where variable t indicates time. The tensile strengths of the CFRP and yield strength of the
aluminum necessary for the Tsai-Wu criteria are given in Table 2.

S0
11 = 9.0 × 10−12 Pa−1, S0

22 = S0
33 = 1.1 × 10−10 Pa−1, S0

66 = 2.0 × 10−10 Pa−1. (14)
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Table 1. Material properties for aluminum 7075-T6 [29] and viscoelastic equations for CFRP [30] used
in the present study.

Material S11 [Pa−1] S22 [Pa−1] S33 [Pa−1] S66 [Pa−1] ν

Aluminum 1.39 × 10−11 1.39 × 10−11 1.39 × 10−11 3.72 × 10−11 0.33
CFRP S0

11(t)
0.01 S0

22(t)
0.03 S0

33(t)
0.03 S0

66(t)
0.03 0.31

Table 2. Directionally dependent strengths of CFRP and yield strength of aluminum used to find SR
from the Tsai-Wu failure criterion.

Material σ1t [MPa] σ1c [MPa] σ3t [MPa] σ3c [MPa] τ [MPa]

CFRP 2720 1689 64.1 307 137
Aluminum 572 572 572 572 331

3.2. Flywheel Rotor Simulation Parameters

Two cases were considered to investigate the effects of viscoelastic behavior on the
flywheel rotor. The first case simulates a worst-case scenario for creep and viscoelastic stress
relaxation in the flywheel rotor. The second case more closely simulates a realistic scenario
of an FESS experiencing daily charge/discharge cycles. The FESS capacity and flywheel
rotor dimensions are identical between the two cases. Recent studies on appropriate sizing
of FESS have identified various values ranging between 3 kWh and 20 kWh for residential
applications, light rail transit, electric vehicle charging, and frequency regulation for
microgrid applications [16,31,32]. For the present study, a capacity of 10 kWh was chosen
as it is situated in the middle of the range for the applications mentioned above. Note that
energy storage capacity scales linearly with rotor height (axial dimension), and scaling is
not expected to affect creep behavior appreciably, so the chosen rotor configuration can
easily be scaled up or down to adjust for a given application. This scaling could be done, as
suggested in [33], by stacking individual composite disks on top of one another to form the
rotor, in which case, the analysis for each individual disk is performed as described herein
while capacity may be increased or decreased as needed. To illustrate the chosen capacity, a
recent study [34] on residential photovoltaic (PV) potential in Lethbridge, Alberta, Canada,
identified that the majority of residential homes had roof space for up to 10 kW of solar
PV, meaning the FESS in this study could reasonably be expected to reach full capacity
throughout the day even under less than ideal irradiation conditions, in order to provide
power during high demand times such as in the evening. The simulated flywheel rotor
dimensions and energy capacity used in this study are given in Figure 1 and Table 3. Note
that changing power demand would necessarily require accelerating or decelerating the
flywheel rotor, imposing shear stresses, which is not included in the current model, hence
justifying the aforementioned biaxial stress condition.

Table 3. Flywheel rotor rim dimensions, press-fit interference, and energy capacity.

Parameter Aluminum Hub CFRP Rim Complete Rotor

Inner radius 160 mm 200 mm -
Outer radius 200 mm 330 mm -

Press-fit interference - - 0.8 mm
Rotor height - - 430 mm

Energy capacity - - 11.19 kWh
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Figure 1. Simulated flywheel rotor showing dimensions of metallic hub and carbon fiber rim.
The axis of rotation (AoR) is shown in blue.

Case 1: The worst-case scenario for viscoelastic effects is simulated by assuming the
flywheel rotor to operate at its limit load at all times. The model was used to simulate
10 years of operation. Based on the Tsai-Wu failure criterion, a critical or limit velocity,
ωlimit, was determined as 24,250 rpm. Note that failure is initially indicated at this velocity,
for an SR lightly above unity (1.01); however, viscoelastic stress relaxation will improve the
stress state, allowing for safe operation at this velocity over the long term.

Case 2: This scenario is intended to more realistically simulate the application of an
FESS in solar PV electric grids or EV charging support. For these applications, the FESS is
assumed to experience a single charge/discharge cycle every day as the system charges
during off-peak hours and discharges during peak hours. Peak electricity demands are
typically observed in the mornings and evenings [35], which are also when PV systems
have low productivity; therefore, a household would rely on the FESS during these times
to operate appliances or support the charging of a vehicle. (It should be mentioned here
that the considered FESS capacity is not sufficient to fully charge typical EVs on the market.
Rather, energy storage is seen as a means to support EV fast charging and associated peak
loads.) Minimum demands are observed in the middle of the day when a PV system is most
productive, thereby recharging the system. For this study, each day is divided into three
8-h phases and assigned a different average velocity for each period. These are referred
to as the maximum phase, intermediate phase, and minimum phase. It is recognized
that charging or discharging the FESS may occur over a period of hours; therefore, the
intermediate phase represents the average velocity during the charge-discharge periods.
Attempting to simulate a real-world scenario, the rotor is assumed to operate below ωlimit;
therefore, the velocity during the maximum phase, ωPmax, is set at 0.9 ωlimit. For the
minimum phase, the angular velocity, ωPmin, is chosen to be 0.25 ωlimit, as discussed
in [36]. Finally, the intermediate phase angular velocity, ωPint, is halfway between ωPmax
and ωPmin, i.e., 0.575 ωlimit. The rotor is simulated to rotate at each velocity, i.e., ωPmax,
ωPint and ωPmin, for 8 h each day, for 365 days per year.

4. Results and Discussion

Filament-wound composite flywheel rotors may be subject to a variety of failure
modes. Considering viscoelasticity and typical composite flywheel rotor construction, two
failure modes are of primary concern. First, the rotor structural integrity is dependent
on maintaining compressive loading at the interface between the hub and the composite
rim, created by the press-fit during assembly. Therefore, in view of possible stress relax-
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ation, a significant reduction or loss of this compressive loading may lead to rotor failure.
Second, it has been shown that the prevalent polymer matrix materials for composite rotor
fabrication, epoxy resins, experience creep embrittlement as they undergo viscoelastic
stress relaxation, leading to an increased size and density of micro-cracks under subcritical
loading conditions [37], i.e., applied loads which approach but do not exceed the matrix
strength. Therefore, substantial viscoelastic stress increases the potential for micro-crack
networks to substantially damage the matrix, which ultimately may lead to failure.

4.1. Algorithm Validation

The computational algorithm was validated by comparing simulation results with
stress distributions for viscoelastic stress effects published by Tzeng et al. [13]. In their
work, the rotor is constructed from two CFRP rims press-fitted together. The CFRP is
an IM7/8552 transversely isotropic composite with no viscoelastic behavior in the fiber
direction. Material properties are given in [13]. The simulation results are plotted alongside
the published data in Figure 2. The close congruence that is observed between the published
results and the current model provides validation that the present modeling approach is
capable of accurately predicting the stress response in the flywheel rotor. Hence, model
stress responses will herein be used in conjunction with the Tsai-Wu criterion to predict
failure location and behavior.

Figure 2. Radial (a) and circumferential (b) stress distribution comparison between the current model and Tzeng et al. [13]
for a two-rim press-fit CFRP flywheel rotor.

Recalling the plane strain assumption made for the present analysis, modeling results
validated the chosen approach, which simplified solving the radial inhomogeneous equilib-
rium equation. Contrasting present work with published literature, see e.g., [14,29,37–39],
comparable results were achieved. It should be noted that some of these studies assume
generalized plane strain. In addition, analyses that quantified axial stress [40] showed it to
be an order of magnitude less than radial stress, and two orders less than the circumferen-
tial stress. Given the body of published works that impose and validate the plane strain
assumption, and the comparatively small magnitude of axial stress, applying a plane strain
assumption for the present analysis was seen as appropriate.

4.2. Viscoelastic Behavior
4.2.1. Case 1

Simulation results in terms of radial and circumferential stress are shown in Figure 3
for the flywheel rotor constructed from an aluminum hub with a thick CFRP rim. While the
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hub, located between r = 160 mm and r = 200 mm, was not inherently subject to viscoelastic
behavior, its stress state changed as compressive loading from the composite rim decreased.

Figure 3. Radial (a) and circumferential (b) stress predictions for a flywheel rotor constructed of an aluminum hub and
CFRP rim, after assembly (zero velocity), at startup, and at various times up to 10 years of continuous operation at the limit
velocity of 24,250 rpm.

Considering the radial stress data depicted in Figure 3, the composite rim, in a pris-
tine state post-manufacturing (t = 0 and ω = 0), experiences high compressive loading,
approximately −46.7 MPa, due to the press-fit assembly. After startup to ωlimit, the peak
compressive load decreases to −27 MPa. This change is induced by the radial position
of the hub and rim leading to differences in centrifugal loads, as well as differences in
elastic modulus between the two materials. For comparison, the aluminum elastic modulus
is 71 GPa while the CFRP longitudinal and transverse modulus is 111 GPa and 9.1 GPa,
respectively. As a consequence, the outer rim deforms more than the aluminum hub, reduc-
ing the interfacial pressure. Note that this ability to compensate for differential deformation
while maintaining rotor integrity is one advantage of a press-fit assembly.

It can further be seen in Figure 3 that circumferential stress in the aluminum hub
increases over time. At the inner hub surface, circumferential stress increases from 542 MPa
to 596 MPa after 10 years; an increase of 9.2%. (Note that even though this circumferential
stress exceeds yield strength, the hub does not undergo failure because the stress coordinate
for the given stress state still resides within the failure envelope, invoking, e.g., maximum
distortion energy theory.) Additionally, the increased circumferential stress is coupled
with a decrease in radial compressive stress, i.e., radial stress becomes less compressive
in the aluminum hub. These changes in radial and circumferential stress are attributed to
the increased compliance of the CFRP rim during this time period, allowing the hub to
deform radially.

Regarding the composite rim, radial and circumferential peak stresses are predicted
to decrease moderately between 1% and 5.5%, respectively, over the 10-year simulation
period, which is to be expected based on previous research [14]. For greater clarity, peak
stress values in the rotor over the simulated 10-year period were determined for (i) the
interfacial pressure measured in the radial direction, (ii) the radial stress, and (iii) the
circumferential stress. Corresponding values are given in Table 4. To illustrate their change
over the simulated operation, they were normalized by their initial value at t = 0 and
plotted in Figure 4. Within the first year of (continuous) operation, the rotor undergoes
viscoelastic stress changes as the interfacial compressive stress decreases from −27 MPa to
−19 MPa, or approximately 70.4% of the initial value. After 1 year, interfacial compressive
stress decreases at a reduced rate, decreasing to 63.3% after 10 years. These results indicate
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that the composite material experiences rapid non-linear relaxation over the first year
of operation, which to a large extent is ascribed to primary or transient creep (phase I).
In the subsequent years of the rotor’s service life, stress relaxation is significantly reduced,
indicating the material has fully transitioned into secondary or steady-state creep (phase II).
Conceivably, the initial rapid relaxation could be avoided by subjecting the composite rim
to a suitable conditioning process prior to rotor assembly. In this case, only a relative minor
decrease in interfacial pressure of about 7% would be expected.

Table 4. Rotor peak stress values for interfacial stress, radial peak stress, and circumferential peak
stress at 0, 0.5, 1, 5, and 10 years of continuous flywheel operation at limit velocity.

Time [Year] 0 0.5 1 5 10

Interface pressure [MPa] −26.98 −19.60 −19.01 −17.66 −17.08
Radial peak stress [MPa] 50.96 50.86 50.83 50.75 50.71

Circumferential peak stress [MPa] 975.51 936.54 933.20 925.40 922.01

Figure 4. Normalized rotor peak stress for interfacial pressure, radial stress, and circumferential
stress over time for continuous flywheel operation at limit velocity. Values are normalized by the
corresponding stress at time t = 0.

Based on present findings, while viscoelastic stress relaxation leading to hub-rim
separation is a conceivable scenario, it is controllable provided adequate interfacial pressure
is achieved during assembly, or substantial initial creep effects can effectively be mitigated
otherwise (e.g., by CFRP rim conditioning). It is interesting to note that for a reduced
press-fit interference of 0.45 mm between the hub and rim (instead of 0.8 mm), creep effects
are sufficient to cause zero interfacial pressure over the considered operating time, that is,
separation between hub and rim would occur. Clearly, these results demonstrate that a
viscoelastic analysis is warranted for the engineering design of FESS rotors.

The Tsai-Wu failure criteria were used to determine the SR data and predict the
location and angular velocity associated with rotor failure. SR data facilitate predicting
failure since these data are based on the combined stresses exceeding the strength threshold.
In other words, the SR analysis provides an understanding of the total stress state of the
rotor. SR data for the current rotor are provided in Figure 5.
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Figure 5. Strength ratio (SR) data for the flywheel rotor (a), and peak SR in the aluminum hub and CFRP rim at various
times throughout the simulated lifetime (b).

The CFRP rim initially has the highest SR of 1.01 and is located at the midplane of
the rim; however, viscoelastic stress relaxation improves the stress state of this rim, so SR
decreases to 0.975 within 6 months, then continues to slowly decrease to about 0.96 after
10 years. The same cannot be said for the aluminum hub, which exhibits an evolution of
stresses approaching failure. The SR for the hub, while initially substantially less than
the composite rim, increases from 0.836 to 0.9 within 6 months, then continues to increase
to 0.92 over the following 10 years. With an increase by 6.8%, changes in SR for the
hub are rapid in the first year of operation, while the SR is predicted to increase by only
another 2% over the next 9 years. Referring to Figure 3, this SR growth is caused by a
rising circumferential stress in conjunction with a lessening of compression in the radial
direction. This behavior can be understood recalling Equation (13), which is composed
of radial, circumferential, axial, and coupled terms. The linear term for radial direction is
SRradial = F3σ

app
3 R. Since the peak radial stress is compressive, a large negative value is

introduced into Equation (13), thus reducing SR accordingly. As the CFRP rim undergoes
viscoelastic deformation, the radial compressive load diminishes, so SRradial diminishes as
well, thus removing the negative term from the equation, causing the observed SR increase
for the hub.

In summary, viscoelastic stress relaxation of the CFRP rim can improve its stress state
to the detriment of the aluminum hub. It is reasonable to conclude that for a given rotor
geometry, changing stresses may lead to damage of the aluminum hub and/or separation
between hub and rim components. Viscoelastic effects should therefore be considered in
flywheel rotor design. Nevertheless, based on the present observations, limited viscoelastic
stress relaxation in the rotor may also be beneficial to the overall rotor performance. While
substantial phase I creep may be a concern from a risk assessment point-of-view, mechanical
conditioning and/or thermal aging could be a means to mitigate large initial viscoelastic
effects after rotor assembly and operational startup while allowing for phase II creep to
gradually evolve over the rotor’s operational lifetime.

4.2.2. Case 2

As mentioned earlier, the load profile for case 2 is intended to more closely simulate
the operation of an FESS in actual applications, such as for solar PV electric grids or EV
charging. Graphs with the radial and circumferential stresses on day 1 of operation are
given in Figure 6. These graphs serve as representative examples of the stress distribution
for the simulated operation. While the magnitude of the radial and circumferential stresses
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was found to decrease in the rim and increase in the hub over time, the overall shape of
the stress response at each velocity (minimum phase, ωPmin, intermediate phase, ωPint,
maximum phase, ωPmax) was found to be similar for any day of the simulated operation, so
only data for the first day are provided. Comparing case 1 (Figure 3) and case 2 (Figure 6),
the stress responses at ωPmin and ωPmax closely resemble those from case 1 at t = 0, ω = 0
and at t = 0, ω = ωlimit, respectively, as is expected given the similarity between angular
velocities and the non-linear relationship between stress and velocity. Notably, for both
cases, the circumferential stress in the hub is seen to change from initially having a positive
slope (ω = 0, ω = ωPmin) to having a negative slope at high-velocity operation (ωlimit,
ωPmax). Between both extremes, stresses switch from tensile to compressive with the
magnitude occurring at the hub inner surface. This loading scenario resembles fatigue
loading with a negative stress ratio, positive mean stress, and a comparatively high stress
range. The hub design should therefore include a fatigue analysis, especially for FESS that
experiences high cycle rates, i.e., numerous cycles per day.

Figure 6. Radial (a) and circumferential (b) stress results at each velocity on day 1.

Figure 7 depicts SR data for all points along the rotor radial direction at each velocity
for day 1 and day 365. Again, while magnitudes at each point are seen to vary for the
different velocities, the overall shape of the SR curves at each velocity bear distinct similari-
ties. Broadly, SR graphs exhibit similar trends as in case 1. After year 1, SR values at ωPmax
increase in the hub but decrease in the composite rim. As one would expect, SR values in
Figure 7 are lower compared to data in Figure 5, due to the overall lower stress levels and
the reduced time that the rotor operates at high velocity.

During each phase, five key indicators are tracked throughout the simulation: (i) interface
stress, (ii) peak radial tensile stress (i.e., neglecting compressive stresses, as these are found
at the interface), (iii) peak circumferential stress in the CFRP rim, (iv) peak SR in the hub,
and (v) peak SR in the CFRP rim. Values for each indicator recorded on day 1, 90, 180,
270, and 365 are given in Table 5. To facilitate comparisons with case 1, data from Table 5
were normalized using the day 1 value at each velocity and each location or component of
interest, as depicted in Figure 8. Noting that since the peak radial tensile stress at ωPmin is
negligible throughout the simulation (see Table 5), this dataset was omitted in Figure 8.
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Figure 7. SR graphs for all points along the flywheel rotor radius at each velocity on day 1.

Table 5. Peak stress values at the hub-rim interface and radially and circumferentially in the CFRP rim, and peak SR values
for the aluminum hub and the CFRP rim, at various times throughout the simulated one-year period.

Phase Day 1 Day 90 Day 180 Day 270 Day 365

Peak interface pressure
[MPa]

ωPmin −41.04 −39.26 −39.03 −38.90 −38.80
ωPint −38.76 −36.49 −36.17 −35.98 −35.84

ωPmax −34.78 −31.54 −31.05 −30.77 −30.55

Peak radial tensile stress in CFRP rim
[MPa]

ωPmin 0.0 0.001 0.010 0.012 0.014
ωPint 10.19 10.35 10.37 10.38 10.39

ωPmax 35.33 35.26 35.24 35.23 35.22

Peak circumferential stress in CFRP
rim [MPa]

ωPmin 207.9 207.3 207.2 207.1 207.1
ωPint 426.8 420.2 419.3 418.7 418.3

ωPmax 816.7 800.9 798.4 797.0 795.9

SR for aluminum hub
[/]

ωPmin 0.271 0.256 0.255 0.253 0.253
ωPint 0.044 0.056 0.057 0.058 0.059

ωPmax 0.524 0.550 0.554 0.556 0.557

SR for CFRP rim
[/]

ωPmin 0.160 0.155 0.154 0.153 0.153
ωPint 0.242 0.236 0.235 0.235 0.234

ωPmax 0.760 0.740 0.737 0.735 0.734
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Figure 8. Stress results normalized by their initial value on day 1 for (a) interfacial pressure, (b) peak radial tensile stress,
and (c) peak circumferential stress in the CFRP rim, (d) peak SR in the aluminum hub, and (e) peak SR in the CFRP rim.

Akin to case 1, values for the interfacial pressure exhibit the most significant change
during the case 2 simulation, as shown in Figure 8a. This observation again substantiates
conclusions in previous work [30] which suggested that stress relaxation at the interface
could pose a risk to a flywheel rotor’s structural integrity. After 1 year of operation, the
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interfacial pressure is predicted to decrease by approximately 7%, 7.5%, and 12% at the
minimum, intermediate, and maximum velocities, respectively. However, these reductions
are significantly less compared to case 1, for which a decrease of 29% is predicted after year
1. Again, lower predicted interface pressures in case 2 are due to the rotor being subjected to
lower average angular velocities than in case 1, and the rotor spending less time subjected to
high velocity loading conditions. Since for each charge-discharge cycle the rotor transitions
from low to high velocity and vice versa, high cycle rates will typically subject the rotor to
reduced viscoelastic effects, as it will spend less time at or near maximum velocities.

Considering Figure 8b,c, changes in peak stresses are rather benign. The peak radial
tensile stress increases by a maximum of about 2%, which is comparable to the correspond-
ing decrease seen in case 1. The peak circumferential stress shows a reduction of 0.5% at
ωPmin and 3% at ωPmax. Reductions in both peak stress components are less than those for
case 1 for the same reasons as discussed earlier.

In Figure 8d, peak SR values for the aluminum hub are indicated to decrease for ωPmin
but to rise for the other two velocities. SR changes at ωPmin and ωPint, being seemingly
high at the latter velocity, are largely irrelevant given the comparatively low absolute SR
values for the hub at these operating conditions (see Figure 7). The rise in SR at ωPmax
is considerable but is still confined to below 10% and remains uncritical. Referring to
Figure 8e, the SR evolution for the CFRP rim is favorable, as observed for case 1, as values
decrease over the considered operating period.

Considering relative SR changes between case 1 and case 2 at high velocity and at
critical locations with respect to the rotor radial direction, i.e., the hub inner surface and the
rim’s cylindrical midsection, it is apparent that magnitudes in case 2 remain below those
in case 1, which is to be expected given that the rotor is subjected to an overall reduced
average velocity while also operating for less time under high velocity loading conditions.
For example, in case 1, after the first year, the SR for the hub increases by 6.8%, while in
case 2 (at ωPmax) over the same period, the increase is 3.3%.

5. Conclusions

The high-stress and long-lifetime operating conditions of modern composite flywheel
rotors create the necessary conditions for viscoelastic failure modes not included in con-
temporary quasi-static failure analyses. In this study, a computational algorithm, based on
an accepted analytical modeling approach, was developed to investigate the viscoelastic
behavior of fiber reinforced polymer composite rotors during their lifetimes. Additionally,
the Tsai-Wu failure criterion was used to compute strength ratios along the rotor radial
direction. The values were used to assess the conditions for rotor failure. A composite fly-
wheel rotor design was considered that meets capacity requirements to support an electrical
vehicle charging system or solar PV residential electric grid. The rotor consists of a press-fit
assembly of an aluminum hub with a carbon fiber polymer composite rim. The viscoelastic
behavior of the flywheel rotor was studied for two cases: (i) a worst-case scenario of the
rotor operating with an angular velocity at the failure threshold for a simulated lifetime of
10 years, and (ii) a charging/discharging cycle in which the rotor experiences a minimum,
intermediate, and maximum velocity for 8 h each per day over a one-year period.

The case 1 simulation indicated that due to viscoelastic stress relaxation, the radial
and circumferential stresses in the composite rotor reduce over time. After 10 years, peak
stress in the radial and circumferential directions were found to decrease by approximately
1% and 5%, respectively. Given that rim stresses continually decrease over time, the risk of
rim failure is diminishing during operation, provided no external factors, such as matrix
cracking, affect the rotor’s structural integrity. In contrast, circumferential stresses in the
aluminum hub increase while radial stresses decrease. This behavior was attributed to
an increasing compliance of the composite rim, allowing it to deform radially outward.
Thus, radial compressive stresses in the rotor are reduced, and in turn, circumferential
stresses in the hub are increased. The peak strength ratio for the composite rim decreases
by approximately 4% compared to an 8% increase in the hub after 10 years. The latter
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is of concern, as the peak strength ratio in the aluminum hub converges toward unity,
suggesting an increased risk of hub failure. The interfacial press-fit pressure is subject to
the largest decrease, approximately 36%. Still, taken on its own, this behavior represents a
low risk to the flywheel rotor’s structural integrity as long as the rotor design prescribes a
sufficient initial press-fit interference that upholds compressive interfacial pressure over
the rotor’s lifetime. Based on the observation in case 1, failure may occur in the rim at
startup if the rotor reaches a critical velocity, but would decrease over time even if the
critical velocity is maintained as viscoelastic stress relaxation improves the overall stress
state in the composite rim. However, this behavior does not preclude possible failure due
to other effects such as fatigue and matrix cracking, which warrants including such effects
in flywheel rotor design and analysis.

The daily charge-discharge cycle considered in case 2 imposes cyclic loading condi-
tions upon the rotor. In this scenario, strength ratios never reached unity, so failure is not
predicted for any part of the rotor. Consistent with case 1, viscoelastic stress relaxation
allows the radial and circumferential stress in the composite rim to decrease over time,
creating a more favorable stress state regardless of angular velocity or time. However, the
viscoelastic effects that improve the stress state for the rim are detrimental to the metallic
hub. Moreover, charge-discharge cycles were found to impose fatigue loading with a
negative stress ratio, positive mean stress, and a comparatively high stress range at the
inner surface of the hub.

In summary, the present study conducted simulations on flywheel rotors of appropri-
ate size and over appropriate time frames for applications such as in residential PV energy
systems or EV charging stations. While previous studies began to explore this topic, the
present study investigated the evolution of stresses in each principal direction between
6 months and 10 years of operation. Findings from these data are vital to consider when
designing flywheel rotors for similar and other applications. The simulations conducted
in the present study support the notion that viscoelastic effects reduce peak stresses in a
composite rim over time. However, this study also showed that viscoelasticity may affect
stresses in other parts of the rotor, i.e., the hub and the hub-rim interface, in ways that may
lead to rotor failure. Moreover, it was noted that charge-discharge cycles of the flywheel
energy storage device may create significant fatigue loading conditions. Therefore, it is
concluded that flywheel rotor design should include viscoelastic and fatigue analyses to
ensure safe operation, especially for devices experiencing high cycle rates and long-time
operation near critical velocities.
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Abstract: The current article explains the 3-D MHD fluid flow under the impact of a magnetic field
with an inclined angle. The porous sheet is embedded in the flow of a fluid to yield the better
results of the problem. The governing PDEs are mapped using various transformations to convert in
the form of ODEs. The yielded ODEs momentum equation is examined analytically to derive the
mass transpiration and then it is used in the energy equation and solved exactly by using various
controlling parameters. In the case of multiple solutions, the closed-form exact solutions of highly
non-linear differential equations of the flow are presented as viscoelastic fluid, which is classified as
two classes, namely the second order liquid and Walters’ liquid B fluid. The results can be obtained
by using graphical arrangements. The current work is utilized in many real-life applications, such as
automotive cooling systems, microelectronics, heat exchangers, and so on. At the end of the analysis,
we concluded that velocity and mass transpiration was more for Chandrasekhar’s number for both
the stretching and shrinking case.

Keywords: Walters’ liquid B; inclined MHD; similarity transformation; porous media; heat transfer;
radiation

1. Introduction

The challenges on stretching sheets are helpful for engineering and industrial ap-
plications for manufacturing plastic, polymers, and more. In the present paper we are
discussing the three-dimensional flow over a porous body on the non-Newtonian fluid
in the presence of MHD and an inclined angle. Sakiadis [1] examined the behavior of the
laminar and turbulent boundary layer flow of continuously moving solid surface and flat
surface. This work is extended by Crane [2], considering fluid with a stretching sheet, after
experiencing many challenges conducted on stretching sheet problems. Andersson [3,4]
has examined the problem with viscous flow with uniform magnetic field; this work is
properly valid for any Reynolds number. Wang [5], studied the stagnation point flow. Fang
and Zhang [6] examined the heat transfer analysis on the basis of an analytical method.
Miklavcic and Wang [7] discussed the asymmetric cases of two-dimensional flow in the
presence of a suction parameter with multiple solutions. Turkyilmazoglu et al. [8,9] worked
on Jeffrey fluid with a stagnation point. Mahabaleshwar et al. [10] examined the problems
on a stretching surface by considering MHD Newtonian hybrid nanofluid flow due to
superlinear stretching sheet. Very recently, Vishalakshi et al. [11] studied the stretching
sheet problem by using Rivlin-Ericksen fluid by using mass transpiration and thermal
communication. Mahabaleshwar et al. [12] investigated stretching sheet problems by
considering different aspects of parameters, such as the Brinkmann ratio, thermal radi-
ation, porous medium parameter, and so on. Apart from these studies, some research
was conducted on porous sheets while under the impact of magnetic parameter. Porous
medium and magnetic parameters contributed a major role in the study of stretching sheet
problems. There are many equations available to describe the porous medium. Many
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investigations conducted on porous medium occurred under the impact of a magnetic field.
Khan et al. [13] worked on the fluid flow with MHD, as well as the transfer of mass with
a porous medium. Nadeem et al. [14] worked on the numerical results of MHD Casson
nanofluid. Mahabaleshwar [15] conducted the work on magneto-convection electrically
conducting micropolar liquids. Mahabaleshwar et al. [16–18] worked on fluid flow with
heat transfer by considering different fluids using different parameters in the presence of
porous medium. Mahabaleshwar et al. [19–21] reviewed the flow of Casson fluid, couple
stress fluid, and nanofluid with heat transfer under the impact of MHD with various
parameters. See some the recent investigations on MHD and porous medium in [22–27].

Inspired by the above literatures, this current work is the study of 3-D flow with
transpiration and radiation. The novelty of the present work is to explain the three-
dimensional flow of a fluid with heat transfer under the impact of magnetic field and in
the presence of a porous medium. Resulting ODEs are obtained by changing PDEs by
using suitable variables. Analytical results can be conducted by using different controlling
parameters. Temperature equations can be examined analytically and exhibit in gamma
functions. Results can be obtained with the help of different physical parameters. The
results of skin friction and Nusselt number is also discussed. The present work contains
many industrial applications as well as its argument with the work of Vishalakshi et al. [28].

2. Problem Statement and Solution

A 3-D fluid flow was named Walter’s liquid B, due to a porous sheet with inclined
angle, transpiration, and thermal radiation. Fluid flow moved towards the x-axis and y-axis
and was placed normally to it. Let σ indicate electrical conductivity, assuming the flow of a
fluid, along with strength, B0. A porous medium was placed inside the flow of a fluid and
schematically the present flow was indicated in Figure 1.

Figure 1. Schematic diagram of the three-dimensional flow.

Using these assumptions, the modelled governing equations are defined as follows [29–31]

ux + vy + wz = 0, (1)

uux + vuy + wuz = νuzz −
(

ν

k1
+

σB0
2

ρ
sin2(τ)

)
u

−k{uuxzz + wuzzz − (uxuzz + uzwzz + 2uzuxz + 2wzuzz)}
(2)

166



Appl. Sci. 2022, 12, 4937

uvx + vvy + wvz = νvzz −
(

ν

k1
+

σB0
2

ρ
sin2(τ)

)
v

−k{vvxzz + wvzzz − (vxvzz + vzwzz + 2vzvxz + 2wzvzz)}
(3)

uTx + vTy + wTz = αTzz − 1
ρCP

(qr)z, (4)

along with B. Cs (see [32])

u = ax + luz, v = by + lvz, w = w0, at z = 0
u → 0, uz → 0, v → 0, as z → ∞

}
(5)

where, u, v, and w indicate the velocities along the x, y, and z direction, respectively, and
τ indicates the inclined angle; ν is the kinematic viscosity, l indicates slip factor, ρ is the
density, α is the thermal diffusivity, w0 indicates wall transfer velocity, and k indicates
permeability of the porous medium. Next we introduce the suitable variables as follows:

η =

√
|a|
ν

z, u = |a|x fη(η), v = |a|ygη(η), w = −
√
|a|ν( f (η) + g(η)) (6)

by using the similarity transformation Equation (1) converted as follows:

fηηη + ( f + g) fηη − fη
2 −

(
Q sin2 τ +

1
Da

)
fη+

K
[
( f + g) fηηηη +

(
fηη + gηη

)
fηη − 2

(
fη + gη

)
fηηη

]
= 0

(7)

gηηη + ( f + g)gηη − gη
2 −

(
Q sin2 τ +

1
Da

)
gη+

K
[
( f + g)gηηηη +

(
fηη + gηη

)
gηη − 2

(
fη + gη

)
gηηη

]
= 0

(8)

Therefore, B. Cs defined in Equation (5) becomes:

f (0) = VC, fη(0) = d + Γ fηη(0), g(0) = 0 (9)

fη(∞) → 0, fηη(∞) → 0, gη(∞) → 0, gηη(∞) → 0 (10)

where the d =
b
|a| indicates stretching/shrinking sheet parameter, mass flux velocity is

given by VC = − w0√|a|ν , viscoelasticity is K =
|a|k

ν
, Chandrasekhar’s number is to be

Q =
σB2

0
|a|ρ , Darcy number is Da−1 =

ν

k1|a| , and Γ = l

√
|a|
ν

is the velocity slip parameter.

3. Exact Solutions of Momentum Equation

Let us consider the solution of Equations (7) and (8) are as follows:

f (η) = VC + d
(

1 − exp(−λη)

λ(1 + Γλ)

)
, g(η) = d

(
1 − exp(−λη)

λ(1 + Γλ)

)
. (11)

where VC indicates mass transpiration, if VC > 0 indicates suction and VC < 0 indicates injection.
By using the Equation (11) in Equations (7) and (8) to get the following resulting

equations:

2Kλ2 − 1 = 0,

(1 + Γλ)

((
Q sin2 τ +

1
Da

)
− λ

(
VC − λ + KVCλ2))− 2d

(
1 + Kλ2) = 0,

(12)
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After solving Equation (7) we get:

λ = ± 1√
2k1

,

VC =

(
Q sin2 τ +

1
Da

)
(1 + Γλ)− 2d

(
1 + Kλ2)+ λ2(1 + Γλ)

λ(1 + Kλ2)(1 + Γλ)
,

(13)

Skin friction co-officiants are also modified in the following form:

fηη(0) = gηη(0) = − dλ

1 + Γλ
. (14)

4. Exact Solutions of Energy Equation

This problem is essentially forced into a convection problem with the following
boundary conditions:

T = Tw, at z = 0
T → T∞ as z → ∞.

(15)

By using Rosseland’s approximation, qr is defined as follows (see
Mahabaleshwar et al. [33–35]):

qr =
−4σ∗

3k∗

(
∂T4

∂z

)
. (16)

where σ∗ is the Stefan-Boltzmann constant, k∗ is the coefficient of mean absorption, and
T is the temperature of the fluid.

The term T4 can be expanded as

T4 = T4
∞ + 4T3

∞(T − T∞) + 6T2
∞(T − T∞)2 + . . . . . . , (17)

some higher order series ignore to get the result as:

T4 = −3T4
∞ − 4T3

∞T. (18)

Using Equation (18) in Equation (16) to yield the result as:

∂qr

∂y
= −16σ∗T3

∞
3k∗

∂2T
∂y2 . (19)

By using the transformations defined in Equations (6) and (19) in Equation (4) to yield
the following result:

ωθηη(η) + Pr( f (η) + g(η))θη(η) = 0, (20)

where f (η) is given in Equation (11), we consider ω =
3N + 4

3N
, N =

−4σ∗T3
∞

3k∗κ f
, and

Pr =
κ f

μCp
.

Then the corresponding boundary conditions become:

θ(0) = 1, θ(∞) → 0}, (21)

To derive a homogeneous equation of Equation (19) by the use of power series method.

The solution is θ(t) =
∞
∑

t=0
artm+r, where ar is the arbitrary constant and m is the constants

to be determined.
Where:

t =
2dk1Pre−λη

1 + Γλ
(22)
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On substituting t and also solving Equation (20) by using the B. Cs of Equation (21) to
yield the following results:

θ(η) = C1 + C2Γ

⎛⎜⎜⎝ 2
3ω

(
1 − 2K

(
Q sin2(τ) + Da−1

))
,

4dKPre−
η√

2
√

K

1 +
Γ√

2
√

K

⎞⎟⎟⎠ (23)

θ(η) =

Γ
( 2

3ω

(
1 − 2K

(
Q sin2(τ) + Da−1)), 0

)− Γ

⎛⎜⎜⎝ 2
3ω

(
1 − 2K

(
Q sin2(τ) + Da−1)), 4dKPre

− η√
2
√

K

1+
Γ√

2
√

K

⎞⎟⎟⎠

Γ
( 2

3ω

(
1 − 2K

(
Q sin2(τ) + Da−1

))
, 0

)− Γ

⎛⎜⎜⎝ 2
3ω

(
1 − 2K

(
Q sin2(τ) + Da−1

))
, 4dKPr

1+
Γ√

2
√

K

⎞⎟⎟⎠
(24)

5. Results and Discussion

In the current study, we emphasize the investigation on fluid flow with heat transfer
under the impact of an inclined angle, Chandrasekhar’s number transpiration, and radi-
ation. The PDEs of the problem are mapped into ODEs using suitable transformations,
then the resulting ODEs are solved analytically. Multiple solutions are used to analyse the
present study. The analytical results of the momentum and energy equation is obtained at
Equations (13) and (24), and the results of the momentum equation are obtained in terms
of mass transpiration. The solution domain λ linked with another parameters through
Equation (13). Analytical results of momentum and energy equation is, respectively, repre-
sented at Equations (13) and (24). By using graphical arrangements, the impact of different
parameters can be performed.

Figure 2a,b exhibits the impact of f (η) on η for various choices of Q for d = 1 and
d = −1, respectively, and keeping other parameters as τ = 90◦, k1 = 1 , and Da = 0.3.
Here, blue solid lines indicate the Γ = 1, and black dotted lines indicate the Γ = 0. From this
graph, it is cleared that f (η) is for values of Q for both d = 1 and d = −1. Figures 3 and 4
portray the effect of fη(η) on η for different choices of Γ and k1, respectively. Figure 3a,b
indicate the plots of fη(η) verses η for different choices of Γ for d = 1 and d = −1,
respectively, in this fη(η) less for more values of Γ for d = 1. It is opposite if d = −1, i.e.,
fη(η) is for more values of Γ for d = −1. Figure 4a,b indicate the plots of fη(η) verses η for
various values of k1 for d = 1 and d = −1, respectively, in this t is observed that fη(η) is
more for more choices of k1 for d = 1. This impact is opposite if d = −1. i.e., fη(η) less for
more values of k1 for d = −1. In this problem we express the analytical method in terms of
mass transpiration and the domain linked with other parameters through this equation.

Figure 5a,b portrays the plots of VC verses k1 for different choices of Q for d = 1 and
d = −1, respectively, and keeps the other parameters as τ = 90

◦
, Da = 0.3. Here, blue

solid lines indicate the Γ = 2 and black dotted lines indicate the Γ = 0. λ value connected
with k1 through Equation (13). In these graphs VC is for values of Q for both d = 1 and
d = −1.

Figure 6a,b demonstrated the impact of θ(η) on η for different values of Q for d = 1
and d = −1. In this θ(η) is for values of Q for both d = 1 and d = −1. Figure 7a,b
demonstrated the impact of θ(η) on η for various choices of N for d = 1 and d = −1, in
this it is observed that θ(η) is decreased for increasing the N for both d = 1 and d = −1. In
these graphs it is observed that there is little difference between d = 1 and d = −1. In these
figures, it is carefully observed that boundary value thickness is wider for the shrinking
sheet case when compared to the stretching sheet case. Boundary value thickness is the
velocity boundary layer; it is normally as the distance from the solid body.
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(a) 

 
(b) 

Figure 2. Impact of f (η) on η for various choices of Q for (a) d = 1 and (b) d = −1.
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(a) 

(b) 

Figure 3. Plots of fη(η) verses η for different values of Γ for both (a) d = 1 and (b) d = −1.
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(a) 

(b) 

Figure 4. Plots of fη(η) verses η for different choices of k1 for (a) d = 1 and (b) d = −1.
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(a) 

(b) 

Figure 5. Impact of VC on K for different values of Q for both (a) d = 1 and (b) d = 1.
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(a) 

(b) 

Figure 6. The plots of θ(η) verses η for different choices of Q for (a) d = 1 and (b) d = −1.
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(a) 

(b) 

Figure 7. Impact of θ(η) on η for various choices of Q for both (a) d = 1 and (b) d = −1.
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6. Concluding Remarks

A steady 3-D fluid flow over a porous sheet was taken to analyse the present study
under the impact of inclined magnetic field. Multiple slips are considered in the current
study to yield better results to the problem. The PDEs of the current problem were mapped
into ODEs using suitable variables. Then, analytical solutions were obtained using various
parameters. Graphical representations were achievable by using different parameters. With
the graphical arrangements, the following results can be deduced:

f (η) is for values of Q for both d = 1, and d = −1.
fη(η) less for values of Γ for d = 1. Also, it is for values of Γ for d = −1.
fη(η) increases with increased choices of k1 for d = 1, but it decreases with increasing

the values of k1 for shrinking sheet condition.
VC is for values of Q for both d = 1 and d = −1.
If τ = 0, φ = 0, Bi → ∞ to get the results of Vishalakshi et al. [28].
If Q = β = Da−1 = R = L = τ = 0. to get the results of classical Crane [2].
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Nomenclature

a and b Stretching/shrinking sheet coefficient constant
[
s−1]

B0 Strength of the magnetic field
[
wm−2]

CP Specific heat
[
JKg−1K−1

]
d Length scale [−]
Da Darcy number [−]
Q Chandrasekhar’s number [−]
Pr Prandtl number [−]
k1 Permeability of porous medium m2

k Material constant of fluid [−]
K Viscoelasticity [−]
l Slip factor [−]
m Constants to be determined [−]
N Radiation parameter [−].

qr Heat flux
[
Wm−2

]
T Fluid temperature [K]
Tw Wall temperature [K]
T∞ For field temperature [K]
u v and w Axial velocity towards x axis

[
ms−1]

VC Mass transpiration [−]
w0 Wall transfer velocity [mg]
x, y and z Coordinates [m]
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Greek symbols
α Thermal diffusivity

[
m2s−1]

η Similarity variable [−]
Γ Parameter of the analytical solution [−]
λ Constant domain [−]
ν Kinematic viscosity

[
m2s−1]

ρ Density
[
kgm−3

]
σ Electrical conductivity

[
S m−1

]
τ Inclined angle [Rad]
θ Scaled fluid temperature [K]
∞ Away from the sheet [−]
γ0 Porosity [p · u]

Abbreviations
BCs Boundary conditions [−]
MHD Magnetohydrodynamics
ODEs Ordinary differential equations [−]
PDEs Partial differential equations [−]
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Abstract: In high-speed fluid dynamics, base pressure controls find many engineering applications,
such as in the automobile and defense industries. Several studies have been reported on flow
control with sudden expansion duct. Passive control was found to be more beneficial in the last
four decades and is used in devices such as cavities, ribs, aerospikes, etc., but these need additional
control mechanics and objects to control the flow. Therefore, in the last two decades, the active
control method has been used via a microjet controller at the base region of the suddenly expanded
duct of the convergent–divergent (CD) nozzle to control the flow, which was found to be a cost-
efficient and energy-saving method. Hence, in this paper, a systemic literature review is conducted
to investigate the research gap by reviewing the exhaustive work on the active control of high-speed
aerodynamic flows from the nozzle as the major focus. Additionally, a basic idea about the nozzle
and its configuration is discussed, and the passive control method for the control of flow, jet and noise
are represented in order to investigate the existing contributions in supersonic speed applications.
A critical review of the last two decades considering the challenges and limitations in this field is
expressed. As a contribution, some major and minor gaps are introduced, and we plot the research
trends in this field. As a result, this review can serve as guidance and an opportunity for scholars
who want to use an active control approach via microjets for supersonic flow problems.

Keywords: flow control; de Laval nozzle; CD nozzle; microjet; supersonic flow; CFD; DOE

1. Introduction

In supersonic vehicles, the flow of exit from the rockets and missile engines has become
a significant issue. It has been found that the loss of air inside the high-speed vehicle engines
turns to increase the base drag. For example, a nozzle with sudden expansion ducts will
form a recirculation zone, increasing base drag. When the base drag increases, the total
amount of exit pressure will decrease, and this decrement will result in the loss of the
forwarding force or thrust. Hence, many studies have reported controlling the high-speed
flows as a passive and active control method. In a passive control method, the duct shape
is modified with additional devices/shapes, such as ribs, cavities, cylinders, aerospikes,
splitter plate, etc. In addition, researchers used different devices of flow formation, such as
a nozzle as internal flow control and bluff body, non-circular cylinders, airfoil, and wings
as external aerodynamics flow control. On the other hand, the active control of high-speed
flow has been studied extensively over the last two decades. Researchers have used a
high-speed nozzle with a sudden expansion duct and a microjet controller; a tiny hole in
the base area is drilled to control the flow, which was found to be an excellent technique
in a supersonic flow problem. Hence, this review is more focused on the active control
approach, using a microjet in a CD nozzle.

The abrupt expansion of the external compressible flow over the back of the projectiles
and its association to the base pressure has long been the focus of researchers’ interest. The
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base drag, which accounts for a significant portion of the overall drag, is determined by
the base pressure. Generally, the base pressure for a high-speed projectile is lower than
the ambient pressure. The vast majority of the ballistics test data were supplied, leading
us to presume that the base pressure ratio depends entirely on the flight Mach number.
Compared to traditional ballistics testing processes, the experimental investigation of the
internal flow apparatus provides several distinguishing benefits. A significant amount of
air supply is lowered, which would generally be necessary for the wind tunnel test section
to be large enough so that wall interference and other factors do not disrupt the model flow.
Internal flows are free of stings and other support devices that are necessary for external
flow investigations. The most significant benefit of the internal flow device is that static
pressure and surface temperature measurements can be recorded as well as the entry to the
expansion and the wake zone (Figure 1). These observations are crucial if the theoretical
predictions are to be extensively investigated.

The sudden expansion problems in the subsonic and supersonic flow regimes are
found in many applications. We discovered that previous researchers used a system to
replicate high altitude conditions in jet and rocket engine test cells, jet discharge results in
insufficient, sub-atmospheric discharge pressure. This was found by Khan et al. [1], who
used microjets to control the sudden expansion flow (base pressure) from the CD nozzle as
an active control method.

Figure 1. Sudden expansion flow field. Reprinted with permission from ref. [2]. Copyright
2021 Springer.

In this review, the following section explores the fundamental idea about flow de-
velopment and its types, which gives a basic understanding of this work. Section three
illustrates selected studies on the passive control method of high-speed flow, jet, and noise,
which provides information about the passive devices and their benefits. Section four is
the main objective of this work. Hence, for the detailed investigation, this is split into
the different methodologies: experimental, computational fluid dynamics (CFD) and soft
computing methods. We reviewed the most relevant papers related to the current work.
Section five is the main contribution of this review; based on the existing data in this field,
we explore and critically analyze the results. In addition, we propose some research gaps
for future work and finally conclude, based on the current existing work.

2. High-Speed Flow Development in Nozzle

For supersonic flow development and investigations, a CD nozzle is utilized in most
studies. A nozzle with no expanding part cannot produce supersonic air [3]; the flow
is sonic at the throat; therefore, an asterisk denotes conditions at a sonic level. At the
throat, the Mach number = 1, (V = a) and the throat area (a). Figure 2 illustrates a basic
CD nozzle model [4] and the parameters with an asterisk are defined as critical values.
If a high-pressure tank is connected to a pipe, then the velocity at the pipe exit changes
depending on the backpressure. At any other region of the nozzle, the Mach number
velocity and the local area can be derived by the continuity equation [5–7]. Even though it
is possible to study one-dimensional flow behavior directly, it is only a particular case of
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two-dimensional flow. One of the known one-dimensional flow phenomena is the normal
shock and formation of oblique shock waves. The occurrence of oblique shock waves in
different flow fields occurs, such as flight at high Mach numbers, aircraft design, diffusers,
and supersonic nozzles.

Figure 2. Convergent–divergent (CD) nozzle.

In previous studies, a particular flow rate was solved and analyzed mathematically
to solve the energy equations, using a two-dimensional model of a nozzle. The measured
iteration method improved the static tension, temperature, and velocity flows. The nozzle is
produced and meshed with an automated technique and the sizing of the meshing processes
and various values. The CD nozzle with sudden expansion was used to investigate the
effect of expansion ratio for creeping expansion flows of fluid in the study of [8–11]. The
CD nozzle was used to generate a supersonic flow and was simulated, using the ANSYS
fluent software. The generic formula for the nozzle was determined manually, and the
results were compared [3,12–14].

Nevertheless, the greatest difficulty in the CD nozzle outflow is in the subsonic and
supersonic flow regimes. An abrupt expansion of the problem has various applications
in the industry. In jet and rocket engine test cells, we observed that the system is used to
simulate high-altitude conditions; the discharging of the jet results in inadequate discharge
pressure, which is sub-atmospheric. Khan et al. [15] controlled the base pressure with
the active control method, using microjets. In the active control method, the microjets
were placed in the base region of the sudden expansion duct, and these microjets were
directly connected to the settling chamber with the air directly passing to the duct. The
inlet flow of the microjets reduced the recirculation zone, which resulted in decreasing the
drag formation. A detailed study on these active flow control can be seen in Section 4.

Usually, the fluid flows are three-dimensional; the terms one, two, or three refer to the
amount of coordinated space required to demonstrate the flow. The physical motion usually
tends to be three-dimensional. At the same time, these are hard to evaluate and call for the
most significant possible simplification. This is done by ignoring the flow variation in any
direction, thus simplifying the problem. A three-dimensional problem can be reduced to a
two-dimensional one and, subsequently, can be further simplified to one-dimensional one.
The continuity equation, Bernoulli’s equation, and momentum equation are used to study
the one-dimensional flow case as methods of solution [5,16–19]. General classification and
examples of flow fields can be seen in Refs. [20,21] which provided the information of
3D flows and sediment transport models for open channel flows [20]. Chong et al. [21]
classified the 3D flow, considering the first-order coupled linear differential equation, using
three matrix variations for both compressible and incompressible flows. The effect of
nozzle geometry on the high-velocity oxygen fuel (HVOF) system was calculated [22]; the
nozzle attached inside were adjusted, and they also proved that the cold spray technique
influences the HVOF system and applies to the nozzle configuration.
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3. Passive Control Methods

This section summarizes some of the passive control approaches of previous re-
searchers, and it is split into three major concerns: flow, jet, and noise control, in order to
extract the idea of these methods.

3.1. Flow Control

The examination of abrupt axi-symmetric expansion is a challenging subject that is
becoming popular in a range of flow systems in the current scenario. The duct is employed
with a smooth inner surface and a low base pressure in most cases. Sudden relief to the
shear layer at the nozzle exit is due to the availability of a duct with a larger area. Due to a
sudden increase in the duct area, the base pressure and flow-field may be articulated at
the base area through the vortex dynamics produced, due to a sudden increase in the duct
area. In contrast, the value of the base pressure is almost similar in the base area; however,
the mean values are taken for the analysis. As a result of its wide application, abruptly
increased flows have been thoroughly investigated.

The investigations were carried out in an abrupt expansion duct in several cases with
passive devices such as a rib, cavity, step body, and boattail. Several studies were carried
out experimentally to control the flow, and these results serve as the benchmark results.
Viswanath [23] studied the impacts of riblets in pressure gradients and three-dimensionality
on airfoils, wings, and wing–body combinations in different speed regimes to control the
viscous drag in 3M riblets. Ishide and Itazawa [24] tweaked the leading edge flaps to
enhance the delta wing design at a low Reynolds number of 1.9105 applied to a chord
(geometric mean) of 286 mm as the typical length for micro and crewless air vehicles.

The flow past desired blunt-nosed body with and without spikes was tested in a
primary 2D water channel, at a given Reynolds number [25], with spikes of various
forms, such as conical, hemispherical, flat, and square nose. Khurana and Suzuki [26]
used a forward-facing aerospike on the nose to examine the heat transfer and its control
through the aerospikes for lifting the body configuration in a hypersonic flow. They used
experimental techniques and a simplified model of the resulting basic symmetric-delta
configuration. A similar study by the same authors [27] was carried out to assess the
aerodynamic efficacy for aerospike on a hypothetical lifting-body in a hypersonic flow at
various Mach numbers. In Ref. [28], the experimental research was carried out to determine
the importance of the pressure hill height and the zone expansion impact for a flow-through
in different forms of spikes with Reynolds numbers ranging from 2278 to 4405 to detect the
vortex shedding process. In a prior work, the previous researchers [29] studied a theoretical
estimate of the shock standoff distance in a supersonic range with the modified Newtonian
impact theory. Based on this passive control strategy, the researchers [30] conducted the
tests using a transonic wind tunnel of 38 × 30 cm in the Mach number ranges of 0.7 to
1.0 and controlled the entire afterbody drag of the outlet flow. In the absence of the jet
flow at the base, the same author [31] examined the development of flow management
with passive control devices for the axi-symmetric base and afterbody drag reduction in
different speed regimes.

Experimentally, [32] studied the control of flow in a sonic jet in a circular convergent
nozzle by locating two tabs at the nozzle exit. The effects of annular ribs as a passive
control device on the base pressure control was examined, using an experimental technique
in a subsonic and sonic nozzle with an abrupt expansion duct [33]. In addition, the
researchers investigated the pressure fluctuations in a typical missile base area design
at a freestream Mach number of 0.7, with and without a base cavity [34]. The study
was discovered in resonant high-speed cavity flows controlled by high frequency pulsed
supersonic microjets [35] in addition to CD nozzles. A compression corner calculation
model was employed to perform extensive numerical investigations in the supersonic
flow field with varied injection pressure ratios, actuation locations, and nozzle types [36].
Figure 3 illustrates the different devices that were used to control the high-speed supersonic
flows, particularly in a CD nozzle.
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(a) (b) 

 
(c) 

Figure 3. Passive control devices: (a) cavities [37], (b) ribs [38], and (c) cylinders [39,40]. Reprinted
under the Creative Commons (CC) License (CC BY 3.0).

3.2. Jet Control

Mixing is required for efficient and effective jet performance in a variety of aerospace
applications. Thrust vector control, missile engines, and aircraft propulsion systems are
just a few of the technical applications based on jets. To manage the combustion chamber
size and improve the vehicle’s efficiency, effective mixing is necessary for air-breathing
engines. Optimal mixing on a small and big scale is required for combustion cycles to
work properly. Small-scale mixing is concerned with molecule mixing, whereas large-scale
mixing is concerned with the dismantling of large-scale vortices. Acoustic radiations are
caused by the existence of turbulent vortical structures and compressible waves (such as
shock waves in supersonic flows), which frequently exceed acceptable levels in practical
circumstances such as military and surveillance aircraft [41].

There are several studies that have reported on jet control, and we consider some cases
in this review. It was observed that the high-speed flow controlled by the excitation of free
shear-layer instabilities [42] uses localized arc filament plasma actuators in jets for different
Mach numbers at a supersonic range. Focusing the aspect ratio of the nozzle and nozzle
pressure ratio (NPR) with the Mach number variation, the elliptic jet control with limiting
tab [43] was investigated and showed that each parameter is important to control the jet
flows, similar to the overexpanded plug nozzle jet [44] controlled by the passive method.
Additionally, some researchers used ventilated triangular tabs to control the jet [45], control
the supersonic elliptic jet with ventilated tabs [46], and to measure the impact of the tab
location relative to the nozzle exit on the shock structure of a supersonic jet [47].

Khan et al. [48] experimentally investigated the effect of the extended cowl on the
flow field of planar plug nozzles for two different Mach number ranges (1.8 and 2.2) to
observe the influence of the cowl length for the pressure distribution. Manigandan and
Vijayaraja [49] experimentally investigated the flow-field and acoustic characteristics of the
elliptical throat in the CD nozzle. According to the findings, switching from an elliptical
to a circular throat alters the shock cell architecture, resulting in a substantial shift in
the scream amplitude, owing to wave weakening. The jet controlled for mixing the flow
was experimentally studied by Khan et al. [50] for the enhancement of the supersonic
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twin-jet mixing by vortex generator to observe the effects and the behavior of the daughter
streams. Similarly, an impinging plug nozzle jet using a vortex generator [51] was studied
experimentally. Figure 4 shows the nozzle and tab details, CAD drawing (Figure 4a),
photographic view without tabs (Figure 4b), schematic sketch of nozzle exits with triangular
tabs along the major and minor axes (Figure 4c), and triangular tab dimensions and the
photograph of the nozzle with triangular tabs along the major axis (Figure 4d).

 

Figure 4. Jet control device, (a) Nozzle drawing, (b) Nozzle image without tabs, (c) Both minor and
major tabs on the nozzle drawing (d) Triangular tabs dimension and nozzle image with major tabs [52].

3.3. Noise Control

In the past, the decrease in shock-related noise from aviation engines operating at
supercritical nozzle pressure ratio received attention. The fact that shock-related noise
occurs on many engines, including the turbofan engines utilized in today’s commercial
aircrafts, emphasizes its relevance. It has long been known and shown in model scale tests
that employing a proper CD nozzle instead of a convergent nozzle, as used in most super-
sonic aircraft engines, may minimize/remove the shock noise component [53]. However,
due to many unsolved issues concerning the noise characteristics of CD nozzles operating
under non-design circumstances, the actual application of this idea has been avoided [54].
Although an appropriate CD nozzle may be used to produce a shock-free jet flow at a
certain design pressure ratio, the same nozzle can be used for off-design pressure ratios
during takeoff and landing operations, resulting in shock noise [55].

The bulk of these noise reduction systems are referred to be passive since they cannot
be switched off or changed while in flight and might result in performance losses. Penn
State [56] is developing a fluid insert technique for supersonic jet noise reduction. The fluid
insert method aims to reduce noise in low bypass ratio turbofans while having minimal
impact on engine performance. The fluid inserts blast air into the diverging portion of the
nozzle on demand, which may be turned off or adjusted depending on the flight regime.
Although significant research has been conducted in the form of noise measurements
and Reynolds-averaged Navier–Stokes (RANS) calculations to enhance the fluid insert
technology [57,58], the reason why these inserts work is still not understood completely.
The correlation of changes in the flow field with corresponding changes in the noise is
inadequate, using only existing RANS data [59,60]. It was suggested that unstable scale-
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resolving simulations be used to obtain more insight into the flow field and to better
understand noise reduction techniques [56]. Additionally, when properly structurally
supported, acoustic reflectors of an adequate scale are a suitable noise reduction solution
for the high-pressure venting typical of blowdown operations [61]. Due to disadvantages,
such as delayed convergence and the complexity of the phase shift mechanism, a unique
technique was used that does not use secondary path modeling [62] and the sensitivity
of noise to system uncertainties [63]. Fluid inserts reduce the convection speed of wave
packets in the jet shear layer, resulting in a reduced Mach wave radiation angle [64].

This interaction is discussed here with a focus on noise creation and reduction when a
jet is parallel to or impinging on a solid wall. Various researchers have presented computa-
tional methods [65,66] with large-eddy simulations [67–71], high fidelity simulations [72]
and 3D simulation [73]. The noise reduction of supersonic jets by nozzle trailing-edge
changes was investigated experimentally [74], and hemispherical noise reduction reflec-
tors on transonic jet flows [75] were conducted. Different injection sites, angles, and
circumstances were also investigated, resulting in distinct acoustic behavior and flow-field
changes [76]. Using steady fluidic injection, researchers conducted an empirical scaling
analysis of supersonic jet control [77]. Aft and lateral wall inclinations for a cavity [78]
supersonic cavity flow utilizing high-speed upstream injection [79] and cavity dynamics to
the introduction of various storage configurations installed at different positions inside the
cavity [80] were all numerically modeled for noise reduction. The employment of a single
injector as a fluid insert helps break up the large-scale structures of the flow, according to
direct cross-correlations of near-field data with far-field microphone signals [81]. Pipe-jet
noise is reduced via geometric changes in the form of trailing edge castellations. The
interaction between the streamwise vortices is determined by the number of castellations,
which changes the sound generated [82]. Figure 5 shows the noise reduction configu-
rations, which are adopted in the nozzle exit region, and represents the baseline nozzle
(Figure 5a), nozzle (Figure 5b), schematic of a single fluid inserts in the nozzle (Figure 5c),
and designation of different azimuthal planes for the 3FC-2FI nozzle (Figure 5d).

  
(a) (b) 

  
(c) (d) 

Figure 5. Details of nozzle configurations. Reprinted with permission from ref. [64]. Copyright
2020 Springer.
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4. Active Control Methods

The major consideration of this review work is to explore the active control methods
of supersonic flows. Therefore, this section is split into the methodologies employed by the
researchers: experimental, CFD, and soft computing approaches.

4.1. Experimental Investigation

The wall and base pressure in the suddenly extended duct were measured by changing
the geometrical and flow parameters of the CD nozzle by Khan et al. [15]. The Mach number
can vary in any supersonic range, as seen in Figure 6 (CD nozzle with a larger duct). To
build a CD nozzle, the exit diameter of the nozzle may be kept constant, as the base pressure
results for nozzles with an exit diameter are accessible in the literature [15]. To calculate
the throat diameter, the isentropic relations were utilized [5]. The nozzles are calibrated
after manufacture in order to determine the exact Mach number at the nozzle exit.

Figure 6. Flow expansion, nozzle, and enlarged duct design for Mach number 1.87.

The experimental test model was an axisymmetric CD nozzle that was attached to
a concentric axisymmetric tube with an area ratio, and it could be adjusted. Figure 7
depicts a perspective of the experimental setup that was used for experimentations. The
researchers used a pitch circle diameter of 13 mm; there were eight micro-holes, four of
which (designated as c) were used for blowing, and the other four (labeled as m) were used
to record the base pressure. Controlling the base pressure was accomplished by blowing
through control holes (c) with air from the primary settling chamber [15]. The pressure
taps are shown in Figure 7 together with the rapid expansion duct. A perspective of the
experimental apparatus is shown in Figure 8. Brass was utilized for the investigations’
dramatically enlarged ductwork. Lower L/Ds were then achieved by machining the duct
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after measurements for a certain length of pipe were completed. Pressure taps made of
stainless steel were used to record the static wall pressure. Because the flow field soon
after departing the nozzle is so important, the first nine holes were spaced four millimeters
apart, and the remaining holes were spaced eight millimeters apart. The moisture content
of the compressed air is absorbed in a dual-tower semi-automatic silica gel dryer. Later the
dried air is heated and used to remove the moisture from the air altogether. A regulatory
pressure valve operated by a pressure relief pilot permits the dryer to operate; three tanks
were used to store the dry air with a total capacity [1].

In previous experimental methods, the NPR was 3 to 11 at various expansion levels
and showed that the L/D could be defined for a given Mach number and NPR, resulting in
a cumulative increase/decrease in the base pressure [1,83–88]. The experiments were also
conducted by [89] for area ratio 2.56 and area ratio 4.84 [90]. The statistical approach aims
to verify the experimental data, obtained at the VTI Žarkovo Institute during supersonic
wind tunnel tests: free escape and flow with one chosen type of obstacle [91]. The tests
were carried out at design NPR with sudden expansion for the duct length L = 10D to 1D.
The considered cross-sectional areas of the tube were 2.56, 3.24, 4.84, and 6.25 [92]. Figure 7
shows the experimental setup for the base and wall pressures.

 
Figure 7. Experimental setup [93]. Reprinted under the Creative Commons (CC) License (CC BY 4.0).

In the presence and absence of a base cavity, the experiments were conducted to
analyze the pressure variations in the base region of a conventional missile configuration
at a freestream Mach number of 0.7. The authors attempted to identify the variations in
pressure and illustrate the influence base cavities have on their behavior. Experiments
consisted of unstable calculations of pressure at six azimuthal locations. The disparity
in the pressure fluctuations in the azimuthal direction was observed due to a standard
axisymmetric, which is significant [35]. For the Mach numbers ranging from 1 to 3, the effect
of the microjet control in the CD nozzle with a sudden expansion duct was experimentally
tested at supersonic Mach numbers. The research varied nozzle parameters, such as an area
ratio of 2.56; NPR ranged from 3 to 11; and L/D ranged from 10 to 1 [94]. They extended
their work for Mach 2.5 and 3.0, and cross-sectional areas of 2.56, 3.24, 4.84, and 6.25; the
L/D ratio of the duct was 10 to 1, and the NPR used were from 3 and 11 [95].

To control the drag, the researchers [96] worked with base drag and experimentally
studied the aerospikes behind the base of bluff bodies. A 1 mm thick plate with two spikes
at 11.5 mm was mounted between the nozzle as a passive device. The efficacy of the
continuous grooved cavity was tested experimentally to control the base flows with spe-
cific parameters [97]; in the transonic system, the aerospikes effectively control the base
pressure [98] without disrupting the main flow, respectively.
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Figure 8. A view of the extended duct with pressure tapings and setup site [97]. Reprinted under the Creative Commons
(CC) License (CC BY 3.0).

In summary, Khan et al., investigated the active control of the base pressure [1,15,82–85,99]
in which they considered the differed Mach number at various supersonic flow ranges,
such as Mach numbers 1.25, 1.30, 1.48, 1.6, 1.8 and 2.0 in [84,85]; 1.87, 2.2 and 2.58 in [15];
and 2.0, 2.5 and 3.0 in [82], respectively. The test area ratio was from 2.56, 3.24, 4.84, and
6.25; the NPR was from 3 to 9; and the duct length for L = 10D until 1D. More attention was
given in the recent study to wall pressure distribution for different inertia levels, relief to
the flow, NPR, and the L/D ratio [93,100–107]. After monitoring the flow from the active
microjet control, it is also necessary to know whether the flow changes in the duct or not.
Hence, recent findings have also shown that several studies are conducted with equivalent
or variable Mach number and area ratios with the same NPR and L/D ratios. The majority
of wall pressure flows were considered with varying the area ratio, such as 2.56 [93,100],
3.24 [101,102,108,109], 4.84 [103–105,110], and varying the Mach number for the same area
ratio 2.56 with Mach 2 and 3 [106], 1.3. 1.9, and 2.4 [111] and for the area ratio 6.25 with
Mach 1.1 and 1.5 [112] and 2.1 and 2.8 [113].

4.2. Computational Fluid Dynamics Approach

As the second method of this study on high-speed flow control, a CFD approach was
chosen, and a relative work is overviewed to examine the objective and outcomes of the
previous investigation.

Apart from experimental studies, a numerical method was employed by various
researchers; such studies can be seen in this section. A fluid-structure analysis was found
for the delta wing (cropped) [114] based on an aeroelastic solver in the time domain.
Two fluidic thrust modulation methods were employed—shock thrust and throat shifting
thrust modulation [115]—for the investigation. Initially, the CFD approach examines the
supersonic flow through a de Laval nozzle and obtains complete isolation of the thrust
flow due to shock waves. The flow was studied for friction, and the temperature of gases
at the exit of the combustion chamber [116]. The finite volume model was developed for
the estimated two-dimensional and three-dimensional flow formations, using turbulence
model efficacies via ANSYS simulation [117]; it was used to investigate the extensive flow
field within the supersonic ejector and improved the ejectors mixing chamber wall structure
to attain an optimum entrainment ratio to obtain the highest possible capability the ejector
can achieve. The ANSYS fluent and ICEM meshing tool was used to conduct the simulation
and analyze the ejector performance: k-epsilon realizable and k-ω SST [118] and k-ω [119].
To find the micro-Laval nozzle performance, it was primarily investigated by its machined
surface topology, and a circular cross-section micro-Laval nozzle was modeled [120].

Modeling of the nozzle geometry and generating mesh was carried out using the
GAMBIT 2.4 program and validated with the findings of the experiment taken from
the literature, which are well known [121]. Patel et al. [122] derived the principles of
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the de Laval nozzle, using the nozzle operating theory, and examined the experimental
approach of evaluating flow for various nozzles; the variance of flow parameters, such
as pressure, temperature, velocity, and density, was visualized [123] to investigate the
effects of geometry and flow parameters on the thrust force created by the flow from
the CD nozzles to a circular duct with a larger cross-section. The study was carried out
for all Mach numbers using various area ratios (2–12) and NPR (3 to 11) [124–127]. The
researchers optimized the rocket air ejector configuration in AutoCAD, then analyzed
it using Ansys CFX using the numerical approach with 3D models [128]. The primary
purpose was to optimize the CD nozzle location for each operating circumstance and the
influence of reflected shock waves and boundary layers on the ejector performance in
the mixing chamber constant zone [129]. To compute the mass flow rate and multiphase
sound velocity for a CD nozzle, the equilibrium and homogeneous model that gives rise to
no-slip in temperature and velocity between the particle and gas phases was used [130].
Additionally, the mixing noise and shock-related wideband noise [131] in a nozzle was
discussed. The CFD methodology was also employed in this definition for varied area
ratios, the Mach number, NPR, and L/D, and analyzed the flow region surrounding the
base [132].

Meanwhile, it was found that ANSYS fluent was the most appropriate tool to solve
this problem. The CFD approach was a dominant concept in ANSYS software and a
foundational analysis to settle the problem. It is essential to know the governing equations
and the turbulent modeling of the current flow. In this respect, the studies examined
and illustrated the testing approach and identified an issue for situations considering the
various nozzle parameters and the flow range. In the analysis, the L/D of 10 was used for
the conduit. An area ratio between the exit area of the CD nozzle and the duct area was
also found and observed in the flow formations (Figure 9). The idea is used by the CFD
method for various area ratios, the inertia level, NPR, and the duct length [14,132–137] for
the compressible flow.

(a) (b) 

Figure 9. Velocity streamline for area ratio 6.25 (a) with control (b) without control [132]. Reprinted under the Creative
Commons (CC) License (CC BY 4.0).

The CFD procedure also used to explore the flow through the wedge [138,139], non-
circular cylinder [137,140], splitter plate [141–143], airfoil [144,145] and powered subma-
rine [146] for an incompressible flow range. From the fluent, more studies were found in
recent years in which some studies have been utilized with the pressure-based solver, and
K-epsilon turbulent modeling was used [134,136]. The fluent results were continued with a
change in parameters to investigate the effect of active microjet controller [2,147]. Figure 10
shows the perfect 2D model with the contour received as a result.
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4.3. Soft Computing Methods

Soft computing is an emerging technology for discovering these kinds of problems,
which parallel the remarkable capacity of the human imagination to target and study in an
atmosphere of ambiguity and imprecision. It contains many computer models, including
experimental system architecture, fuzzy set theory, neural networks, and approximate
reasoning, and it requires intensive computing for learning and reworking.

 

Figure 10. D nozzle with sudden expansion duct and their results. Reprinted with permission from ref. [2]. Copyright
2021 Springer.

4.3.1. Design of Experiments

If one needs to verify scientific predictions properly, these measurements are valuable.
In several engineering and medicine implementations, the design of experiments (DOE)
method was used to define the variables that are important in the production and optimiza-
tion phase to accomplish a helpful target. This approach was then used to find the most
prevalent strategy for the solution of the current object. The DOE plays a vital role in iden-
tifying relevant variables in the development process for industrial uses, such as planning
and experimentation [148–150]. These kinds of elements were used successfully with the
influence of designer control and changes over two or three stages. The experiments were
carried out based on the orthogonal array (OA) to obtain each possible response factor
affecting the input variables.

Researchers used the DOE principle based on the current problem and found that
this could be an efficient way to achieve the base pressure control with an appropriate
parameter. Therefore, to refine the base pressure control, the DOE technique was used. The
impact of microjets on control was achieved to obtain base pressure differences of various
parameters. The general DOE approach method can be seen in Figure 11.

Figure 11. Steps in implementation of DOE approach. Reprinted with permission from ref. [2]. Copyright 2021 Springer.
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The experimental study was used for various parametric combinations using microjets
to control the base pressure, using a CD nozzle. The data were used to refine the optimal
mix of parameters employed to provide precise control of base pressure for improved
performance with DOE [151]. A Taguchi design L9-OA and variance analysis (ANOVA)
was used to analyze the influence of nozzle parameters affecting the base pressure. Multi-
ple linear regression models, confirmation checks, and linear regression equations were
performed for accuracy in an optimization. The ANOVA method was also used to obtain
the individual parameters statistical significance on the total base pressure variability [152].
The observation on the control becomes effective for lower area ratio, compared to the
higher area ratio with the aid of 15 arbitrary test cases; two linear regression model pre-
sentations were tested for their estimated accuracy [153]. To optimize the response surface
methodology (RSM) of experimental data, non-linear regression models based on the cen-
tral composite design (CCD) and box-Behnken design (BBD) were developed to simplify
the input–output relationships [154]. The DOE with L27-OA and ANOVA was used to
determine the feedback (in percentage terms) of various process parameters and their
correlations with and without control on the base pressure [155,156]. The optimum noz-
zle parameters were targeted, such as convergent angle, divergent angle, and the throat
radius of the nozzle; the best values were assessed based on the flow parameters [157].
Jaimon et al. [158] used the DOE method to predict the suddenly expanded flow with
and without microjets as an active control. To develop the linear model, they used a
complete factorial design of the L16 orthogonal array (OA). Using Taguchi’s L27 orthogonal
array, a regression analysis was made [159], and optimized results investigated the suitable
parameters for base pressure control.

4.3.2. Fuzzy Logic

Jagannath et al. [160] discovered a fuzzy logic methodology for investigating pressure
loss in a sudden expansion duct. The authors aimed to notice minor pressure loss when the
L/D was 1, as evidenced by the fuzzy logic formulation. According to the authors, this can
be a qualitative examination of internal fluid flow through a nozzle with a sudden expan-
sion duct using the fuzzy logic methodology [161]. Because of all other characteristics, such
as wall static pressure and loss pressure, including the base pressure, they discovered the
best value of L/D. When the Mach number is changed to 1.58 or 2.06, all other parameters
remain the same as in the sudden expansion duct with cavities [162]. They found that the
fuzzy logic technique L/D of 1 is sufficient for smooth flow growth based on de Laval noz-
zle and wall static pressure changes in both circumstances. Quadros et al. [163] described
the critical aspects of the fuzzy logic technique in turbulent supersonic flow simulations as
a cost-effective methodology. The Mamdani-based fuzzy logic methodology was utilized to
build connections between input and output in the CFD findings. Triangular, generalized
bell shape and Gaussian membership functions were employed in this technique.

4.3.3. Machine Learning

A neural network was employed to examine the predicted floor pressure in a conver-
gent nozzle with shallow cavity internal flows at various subsonic Mach numbers [164].
The authors used feedforward neural networks (NNs) to highlight the modeling problem.
A mixed density network was trained using an artificial neural network (ANN) method-
ology using the updated database of the future flow profile. The ANN [165] was used to
learn and train flow characteristics over a transport aircraft configuration to estimate the
aerodynamic coefficients using different network sizes. The K-means technique was used
to cluster this massive amount of data. According to the RSM, microjets are efficient when
a favorable pressure gradient influences the flow. The effect of a lower area ratio and a
longer duct length on the base pressure is minimal. Furthermore, the random forest strat-
egy was applied, which belongs to this group and is employed in Bootstrap aggregation
employment regression and classification research [166]. Heat maps are used to visualize
the massive amount of experimental data generated. Six back-propagation neural network
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models (BPMs) based on input and output possibilities are built to forecast pressure in
high-speed flows for the first time. The six BPMs with two hidden layers containing four
neurons were determined to be the best suited for regression analysis. The very non-linear
values of the base and wall pressure are correctly predicted by BPM 5 and BPM 6 [167].
Figure 12 depicts a broad schematic depiction of the back-propagation model (BPM).

 
Figure 12. Back-propagation for base pressure modeling. Reprinted with permission from ref. [167]. Copyright 2020 AIP.

5. Critical Analysis of Literature

After conducting an exhaustive review on active flow management by blowing com-
pressed air at the duct base, it was observed that the researchers utilized experimental,
CFD and soft computing methods for determining the flow formation inside the nozzle
(Figure 13). The experimental method was used in maximum cases for which it was chal-
lenging to obtain high-speed flow formations inside the duct, with shadowgraph for clear
demonstration. Hence, the researchers utilized the CFD methods; it is easier to obtain the
contours for the different variations of the flow parameters. Multiple high-speed super-
sonic flows were studied well by the researchers. In the CFD, different turbulence models
were used to investigate the effectiveness of the aerodynamic flow variations; the limitation
found was that there is a lack of three-dimensional modeling and analysis, which can be
explored well in future investigation.

Next, a soft computing approach was recently found to optimize the parameters
on pressure flows; several studies have been reported via DOE. However, in few cases,
machine learning and fuzzy logic methods stated that the optimum results can predict from
the standard statical methods. A valuable combination of parameters in the development
and optimization of the flow process examines the necessary factors to achieve. Therefore,
soft computing minimizes the number of experimental and theoretical workflows for a
given situation. That can be more on future work for the researchers to measure the microjet
effect on the nozzle pressure control and to find the optimum parameters for controlling
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the base pressure. However, there are no studies have been reported in the literature on
either theoretical or analytical approaches with fundamental governing equations.

Figure 13. Methodologies used for active flow control.

In contrast, some of the passive control devices are shown in this review to know
another type of control method of high-speed flow, jet, and noise. One of the critical issues in
passive control is the need for additional energy sources to activate the control mechanism.
Indeed, the present literature focuses more on active control and their scenarios. Some of
the significant gaps/observations between the methodology related to the present work
are shown in Table 1.

Table 1. Major observation for active flow control.

S. No. Control Experimental CFD Optimization Remark

1 Active    
Very recently, CFD and

optimization studies were
found, and still a lot of scope

in optimization

2 Passive    Several studies have been
reported in all approaches

3 Without
Control    Several studies have been

reported in all approaches

For in-depth analysis of methodologies adopted for the active control method shown
by the trends plot, we consider the past two decades. From the graphical view, it has
clearly shown that many works have been done with the experimental method in the early
years as discussed previously. However, due to recent advanced technologies, such as
simulation and data optimization tools, experimental work was reduced in recent years and
the soft computing approaches have increased, which have found advantages in research
work. Indeed, until now, no mathematical model was made to predict the exact pressure
values before and after the microjet controller. The researchers utilized different techniques
to predict the results in a flow object. This gives an idea of how the methodologies are
increasing in the current scenarios as a scientific approach to solving the respective problem,
such as flow control. Figure 14 illustrates the last 20 years of work related to the current
study in percentages, considering different techniques used to evaluate the pressure values.

In another consideration, trends in the control of flow are considered a flow model,
such as nozzle/jets, bluff body, and airfoil (Figure 15). Nozzle/jets are a type of high-
speed configuration that was found in several studies from the past two decades for
aerospace applications. Next, the bluff body is also considered to know flow formation,
and it is controlled with passive devices, such as splitter plates, for the application of both
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automotive and aerospace industries. Lastly, airfoil is found in many studies but in most
of the cases, this has been only developed to investigate the aerodynamic forces in some
studies where the outer flow control was found.

 

Figure 14. Trends in research methodologies in active control of flow.

 

Figure 15. Trend’s inflow model and its control.

Apart from the microjet controller for the control of high-speed flow, the researcher
utilized different objects, such as smart material (actuator) to control the high-speed flow
when focused on the depth of the active control approach. In addition, the devices for
the flow control were found in the form of the cavity, corner model, diffuser, bluff body,
cylinders, airfoil, wedge, etc. In all studies, some outer flow controlled, and some inner
flow controlled was investigated. Table 2 illustrate the summary of the previous work with
the limitations in their studies.
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Table 2. Summary and limitations of the flow control method.

Type of Object Technique Adopted Focused Parameter Limitations Reference

Compression corner
calculation model

ANSYS Fluent with
k–  turbulence model

Numerical investigations in the
supersonic flow field with
different injection pressure

ratios, actuation positions, and
nozzle types

The only simulation was used for
investigation [36]

CD nozzle with
sudden

expansion duct

Experimental, CFD
and DOE

Effect of microjet control in a
sudden expansion duct with the

parametric investigation

Numerical investigation done by
2D model and microjet location is

fixed to a single point
[2]

CD nozzle with
sudden

expansion duct

RSM, clustering, and
random forest

regression

Pressure in suddenly expanded
high-speed aerodynamic flow

Predicting the pressure values
using the optimization method

with and without microjet
controller

[166]

Resonant high-speed
cavity

Wind tunnel test with
a blowdown-type

facility

High-frequency pulsed
supersonic microjets to control

resonant high-speed cavity flows

The fact that the REM/ SmartREM
actuator performance can be

enhanced
[35]

Cylindrical cavity
structure takes

A computational
method based on

high-order numerical
techniques

Flow physics of a pulsed
microjet actuator for high-speed

flow control

Efficient and geometrically
complicated pulsed actuators were
developed for various high-speed

flow and noise control

[168]

Ultra-compact
serpentine inlet

Experimental work
with high-pressure air

supply and CFD

Microjet flow control in an
ultra-compact serpentine inlet

Mach number of inlet throat
between 0.2 to 0.5, and it is varied

to a higher number
[169]

Crewless Arial Vehicle Experimental wind
tunnel test

Microjet-based active flow
control on a fixed-wing UAV

Experimental results possible to
simulate with the CFD model [170]

Impinging Jet
Experimental work
with supersonic jet

facility

Control of impinging supersonic
jet flows using microjets

A fluent model will be helpful in
such an example [171]

Supersonic
Crossflow model

Experimental work in
a supersonic wind

tunnel

Properties of
resonance-enhanced microjets in

supersonic crossflow

Limited to experimental work and
also the Mach number can be

varied
[172]

Ahmed body and
NACA 0015 airfoil

An experimental
study was conducted

in a subsonic wind
tunnel

Active flow control by
micro-blowing and effects on
aerodynamic performances

Experimental work only [173]

Flap’s pressure-side Experimental
approach

Microjet configuration
sensitivities for active flow
control on multi-element

high-lift systems

CFD and data optimization are
helpful techniques to predict the
multi-element high-lift system

[174]

Flap’s pressure-side Experimental
approach

Surface-normal active flow
control for lift enhancement and

separation mitigation for
high-lift standard

research model

Other aerodynamic forces [175]

Spaced jet
configurations

Experimental
investigation

Control of
compression-ramp-induced

interaction with
steady microjets.

It is advantageous to utilize a
control design (MJ6) that functions

well
[176]

Double-offset diffuser Experimental
technique

Flow dynamics affected by
active flow control in an

offset diffuser

Parametric study to predict more
accurate results from the

experimental data
[177]

Series of cavity flow Experimental
technique

The effects of high-frequency,
supersonic microjet injection on

a high-speed cavity flow
Specific Mach 1.5 [178]

cylindrical cavity
Simulation and
Experimental
investigation

Simulations of pulsed actuators
for high-speed flow control

The parametric investigation will
be effective in changing flow

control results
[179]
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Table 2. Cont.

Type of Object Technique Adopted Focused Parameter Limitations Reference

CD Nozzle with
sudden

expansion duct

CFD approach with
2D model

Base pressure control
using microjets Limited to two-dimensional model [133,137,147,180]

Wedge CFD approach with
2D model Aerodynamics flow control Limited to two-dimensional model [137,138]

Bluff body CFD approach with
2D model

Splitter plate to control flow and
non-circular cylinder

Limited to a two-dimensional
model [137,140–142]

Airfoil CFD approach with
2D model

Analysis of flows and prediction
of CH10 airfoil for unmanned

aerial vehicle wing design
Only simulation [150]

Challenges in the Flow Control Method

Some major issues can be found when the active flow control method is used:

• Experimental test: One of the major issues during the test is how to reduce the flow
disturbances in the connecting pipe from the main settling chamber.

• Instrumentation: With its sensing hole facing the flow, the pitot probe mounted on
a rigid 3D traverse with a resolution of 0.1 mm was used for pressure measurement.
Deficient Reynolds numbers based on the probe diameter significantly influenced
the pressures measured by pitot probes. However, this effect is seldom a problem in
supersonic streams because a probe of reasonable size will usually have a Reynolds
number above 500, which is above the range of troublesome Reynolds numbers.

• Data accuracy: Pressure distribution along the jet centerline with a normal to the tab
is difficult to measure and needs a proper location and observation.

• The nozzle calibration: The measured pitot pressure can determine the Mach number
by treating the flow through the nozzle to be isentropic, thus leading to the total
pressure at the nozzle exit being the same as the settling chamber pressure.

• Simulation: The 2D model was developed in several studies but this can only be
suitable when it is uncontrolled or passive controlled. Indeed, a microjet controller
needs a 3D model for more accurate results and it is difficult to design, also requiring
a supercomputer to simulate/analyze.

• Base pressure: Based on the previous result, the base pressure either increases or
decreases when it is controlled and also it varies by varying the nozzle parameter.
However, it is critical to increasing the supersonic or hypersonic ranges due to high-
speed formation in the setup that has a chance to incur breaks/damages; hence, it
needs a very high configured/quality setup for testing.

• Microjet location: It was found that the microjets were located in the PCD of 13 mm
but there is no other location that is reported in the literature; this can be explored
well in future studies.

• Soft computing: As compared to DOE, only a few studies are reported with machine
learning algorithms and the Fuzzy logic approach. These methods can be explored
well in future investigations.

6. Conclusions

Throughout this review, the previous work was presented and discussed. The concept
of CD nozzle and flow-field was addressed with a fundamental governing equation. The
study shows the critical point of view of how researchers utilized the fundamental concepts
in the problem solving of high-speed flows, considering active and passive methods. For
the passive method, flow, jet, and noise control studies were considered and critically
reviewed. Most of the studies in this literature were presented for the active control
method; this was the major work of this review. Active control investigation was divided
into three powerful techniques: experimental, numerical, and soft computing methods. It
was found over the last two decades, the study on active control was done widely with
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an experimental approach. In contrast, the CFD study was conducted very recently but
needs improvement on its performance with the three-dimensional approach and the
proper finite volume method. Moreover, soft computing is well utilized by the design
of experiments methods as compared to machine learning and fuzzy logic. Indeed, no
analytical investigation has been made on such a problem. Furthermore, a critical analysis
and research gaps in this field were discussed.

In summary, guidelines for scientists seeking to control flow with microjets in any
high-speed flow development object were introduced. Descriptions, findings, and analyses
of the critical literature on supersonic vehicle applications are included in these guidelines.
The categorization can provide a quick overview of the microjet controller study topics.
Furthermore, researchers may provide comprehensive viewpoints and benchmarks for
particular study topics via the difficulties and possibilities. In brief, these recommendations
can assist researchers in developing new ideas, especially in the early phases of this field
of study.
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Abstract: This examination is carried out on the two-dimensional magnetohydrodynamic problem
for a steady incompressible flow over a porous medium. The Cu − Al2O3 nanoparticles are added
to the water base fluid in order to improve thermal efficiency. The transverse magnetic field with
strength B0 is applied. The governing equations formed for the defined flow form a system of partial
differential equations that are then converted to a system of ordinary differential equations upon
applying the suitable similarity transformations. On analytically solving the obtained system, the
solutions for velocity profile and temperature distribution are obtained in terms of exponential and
Gamma functions, respectively. In addition, the physical parameter of interest, the local Nusselt
number, is obtained. The results are analyzed through plotting graphs, and the effect of different
parameters is analyzed. Furthermore, we observe that the suction/injection parameter enhances the
axial velocity. The porous and radiation parameters enhance the temperature distribution, and the
suction/injection parameter suppresses the temperature distribution.

Keywords: hybrid nanofluid; porous media; Brinkman ratio; suction/injection; magnetic parameter

1. Introduction

Several studies have focused on the problem of boundary layer flow (BLF) and heat
transfer across a stretching/shrinking sheet [1]. Because of its importance in industrial and
engineering processes, a significant amount of effort has been devoted to this area in recent
years. The application of certain flows in engineering and technological operations includes
refrigeration, electrical gadgets with fans, nuclear reactors, polyethylene extraction, steel
fabrication, and many more. Crane introduced the idea of flow across a stretching sheet by
analytically solving the steady 2D flow through a linearly stretched plat [1]. Wang further
generalized this concept to a 3D example [2]. Numerous scholars have since investigated
various facets of this form of movement [3–10]. They examined fluid flow and even heat
transfer properties of a permeable stretching sheet of convective boundary conditions (BCs),
viscous dissipation, and several types of fluid.

Choi was the first to invent the phrase “nanofluid” (NF) in 1995 [11], which is a mixture
that improves the physical and chemical properties of a fluid using nanoparticles. Currently,
the importance of energy consumption has led scientists to optimize thermal devices. One
of the solutions proposed for this purpose is using solid nanoparticles to amend the thermal
properties of conventional viscous fluids. Furthermore, a different type of NF, called a
hybrid nanofluid (HNF), is being studied to boost the mass transfer coefficient even more.
HNF is an enhanced NF composed of two unique nanoparticles, while ordinary NF consists
of a special nanoparticle that absorbs the base fluid. The chemical compositions of HNF are
then improved, which improves mass transfer efficiency. Most of the studies investigated
the BLF and mass transfer. The concept of HNF has been the subject of extensive scientific
studies. It was proven that hybrid nanofluids can be an alternative to the single nanofluid,
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because it can provide more heat transfer enhancement, particularly in the contexts of solar
energy, electromechanics and automobile use.

Mahabaleshwar et al. studied the radiation effect on inclined MHD flow and found
the exact solution for the flow over the porous media by considering different boundary
conditions, such as on the studied MHD flow with CNTs by considering the impact of
mass transpiration and radiation, on the flow and heat transfer with chemical reaction
in porous media, as well as on the unsteady inclined MHD flow for Casson HNF due to
porous media [12,13]. Moreover, Aly and Pop [14] performed a comparison between the
significance of HNF and NF on MHD flow and heat transfer by considering the effect of
partial slip. The flow of MHD in such a particular case was first explored by Sarpakaya [15]
and Mahabaleshwar [16]. Mahabaleshwar et al. [17] investigated the MHD effect on a
Newtonian fluid flow due to a super-linear stretching sheet. Fang and Zhang [18] and
Hamad [19] examined the MHD flow due to a shrinking sheet and a stretching sheet,
respectively. Turkyilmazoglu [20] examined the MHD flow, heat and mass transfer of
viscoelastic fluid with slip over the stretching surface, and obtained multiple solutions.
Suresh et al. [21,22] investigated the effect of HNF on heat transfer and the formation of
HNF out of (Al2O3-Cu/H2O). Vinay Kumar et al. [23] also investigated the MHD flow over
a nonlinear stretching/shrinking sheet and the impact of slip on it in a porous medium.

On the other hand, many studies have been conducted on HNF flow, MHD HNF
flow due to a quadratic stretching/shrinking sheet, radiative mixed convective flow, and
also dusty HNF [24,25]. Furthermore, recent developments and applications of HNF were
investigated in Refs. [26,27].

The Marangoni convection is stress due to the transverse gradient of surface tension
that is acting along interfaces to produce movements in liquid–liquid or liquid–gas in-
terfaces in some industrial processes. The thermo-Marangoni convection has important
applications in the semiconductor and metallurgical industries, as well as in welding and
crystal growth [27–29]. Chamkha [30] demonstrated that surface-driven flows, which may
be produced not only by Marangoni effects but also by the existence of the buoyancy effects
caused by gravity and the external pressure gradient, can produce steady boundary layers
along the interface of two immiscible fluids. Motivated by the aforementioned works,
the aim of the current study was to examine the 2D MHD steady incompressible flow
and heat transfer of HNF over a porous medium. In particular, we included the effect
of adding Cu − Al2O3 nanoparticles to the base fluid water in order to improve thermal
efficiency. The thermal conductivity of Cu − Al2O3 water increases with increasing volume
concentration of nanoparticles. The main reason for the increase in thermal conductivity of
Cu − Al2O3 water hybrid nanofluid is the functionalization of Al2O3 and Cu nanoparticles,
which have a higher thermal conductivity than Al2O3 nanoparticles. Thermal radiation was
also incorporated in the present study. Because of its impact on processes that operate at
high temperatures, thermal radiation has also drawn a lot of interest [31–33]. We performed
an analysis to obtain the velocity profile and temperature distribution for this system. The
manuscript is arranged as follows: In Section 2, the physical model is presented and, in
Section 3, the analytical solutions of the model are obtained. In Section 4, the results are
discussed. Finally, the concluding remarks are given in Section 5.

2. Physical Model

The 2D MHD steady incompressible flow and heat transfer of HNF over a porous
medium are here considered. As shown in Figure 1, the transverse magnetic field with
strength B0 is applied along the y-axis. In addition, the Cu and Al2O3 nanoparticles are
added to the water base fluid. This shows that the velocity boundary layer thickness is
more than the thermal boundary layer thickness. The ambient temperature of the HNF is
kept constant at T∞. In adopting the standard boundary layer approximation, the leading
equations are as follows [27],

∂u
∂x

+
∂v
∂y

= 0 (1)
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u
∂u
∂x

+ v
∂u
∂y

=
μe f f

ρhn f

∂2u
∂y2 − σhn f B2

0

ρhn f
u − μhn f

ρhn f K
u (2)

u
∂T
∂x

+ v
∂T
∂y

=
κhn f

(ρCP)hn f

∂2T
∂y2 − 1

(ρCP)hn f

∂qr

∂y
(3)

subject to BCs,
v = vw , μhn f

∂u
∂y = ∂σ

∂T
∂T
∂x at y = 0,

u → 0 , T → T∞ as y → ∞

}
(4)

Figure 1. Physical model of the flow.

All mentioned parameters are as described in the nomenclature. The subscript hn f
denotes the HNF quantities and are described as below,

ρhn f

ρ f
= (1 − φ2)

(
1 − φ1 + φ1

ρs1

ρ f

)
+ φ2

(
ρs2

ρ f

)
μhn f
μ f

= 1
(1−φ1)

2.5(1−φ2)
2.5

σhn f
σf

=
σs2+2σb f +2φ2(σs2−σf )
σs2+2σb f −φ2(σs2−σf )

,

where
σb f
σf

=
σs1+2σf +2φ1(σs1−σf )
σs1+2σf −φ1(σs1−σf )

khn f
k f

=
ks2+2kb f +2φ2(ks2−k f )
ks2+2kb f −φ2(ks2−k f )

,

where
kb f

k f
=

ks1 + 2k f + 2φ1

(
ks1 − k f

)
ks1 + 2k f − φ1

(
ks1 − k f

)
(ρCP)hn f

(ρCP) f
= (1 − φ2)

(
1 − φ1 + φ1

(
ρCp

)
s1(

ρCp
)

f

)
+ φ2

(
ρCp

)
s2

(ρCP) f
(5)
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The radiative heat flux is calculated by applying the Rosseland approximation for
radiation as follows [12,28],

qr = −4σ∗

3k∗
∂T4

∂y
(6)

It is implicit that the temperature varies within the flow, where the term T4 is the linear
function of the temperature. Therefore, using Taylor series expansion to the term T4 about
T∞ and ignoring the higher order terms, we acquire

T4 ∼= 4T3
∞T − 3T4

∞ (7)

Equation (3) reduces to

u
∂T
∂x

+ v
∂T
∂y

=
κhn f

(ρCP)hn f

∂2T
∂y2 +

16σ∗T3
∞

3k∗(ρCP)hn f

∂2T
∂y2 (8)

Consider the suitable similarity transformations as follows [27]:

ψ(η) = ξ2x f (η), η = ξ1y
u = ξ1ξ2x fη(η), v = −ξ2 f (η) , θ(η) = T−T∞

ax2
(9)

On using (9), Equations (2) to (4) are converted as

Λ fηηη + C1

(
f fηη − fη

2
)
−
(

C3M + C2Da−1
)

fη = 0 (10)

1
C4

(
C5

Pr
+ NR

)
θηη + f θη − 2 fηθ = 0 (11)

With the imposed BCs as

f (0) = S , fηη(0) = −2(1 − φ1)
2.5(1 − φ2)

2.5 , θ(0) = 1,
fη(η) → 0 , θ(η) → 0 as η → ∞

}
(12)

where Da−1 =
ν f

Kξ1ξ2
is the inverse Darcy number; Λ =

μe f f
μ f

is the Brinkman ratio;

M =
σf B0

2

ξ1ξ2ν f
is the magnetic field; NR = 16σ∗T∞

3

3k f k∗ is thermal radiation; and Ci, where i = 1 to
5, is taken as

C1 =
ρhn f

ρ f
, C2 =

μhn f

μ f
, C3 =

σhn f

σf
, C4 =

(ρCP)hn f

(ρCP) f
and C5 =

khn f

k f
(13)

The interested physical local Nusselt number Nux is given by

Nux =
xqw

k f (T − T∞)
(14)

where qw is the heat flux given as

qw = −khn f

(
∂T
∂y

+ qr

)
y=0

(15)

Equations (14) and (15) lead to

Nux = −
(

khn f

k f
− khn f PrNR

)
ξ1xθη(0) (16)
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3. Exact Analytical Solutions

In this section, we compute the analytical solution of the model. We separate the
section into two subsections for the velocity and temperature fields.

3.1. Velocity

The exact analytical solution of Equation (10) is in the form

f (η) = d1 + d2e−αη (17)

where α > 0 is to be determined. On using BCs (12a)

d1 = S − d2

d2 = − 2
α2 (1 − φ1)

2.5(1 − φ2)
2.5

(18)

So, using (17) in Equation (10) gives

Λα3 − SC1α2 −
(

C3M + C2Da−1
)

α − 2C1(1 − φ1)
2.5(1 − φ2)

2.5 = 0 (19)

3.2. Temperature Distribution θ(η)

Using Equation (17) and applying a new variable ε = −e−αη in Equation (11),

εθεε(ε) + (p − qε)θε(ε) + 2qθ(ε) = 0 (20)

with BCs as
θ(0) = 0 , θ(−1) = 1, (21)

where p = 1 − n
α

[
S + 2

α2 (1 − φ1)
2.5(1 − φ2)

2.5
]

and q = 2n
α3 (1 − φ1)

2.5(1 − φ2)
2.5, where

n = C4(
C5
Pr +NR

) .

To solve Equation (20), we deploy the Laplace transformation to obtain

S(q − S)ΘS(S) + [3q + S(p − 2)]Θ(S) = 0 (22)

Here, Θ(S) = L[θ(ε)]. Integrating Equation (22) gives

Θ(S) =
C(S − q)(p+1)

S3 (23)

In order to obtain the solution of Equation (20), we apply the inverse Laplace transfor-
mation and use the convolution property to acquire

θ(t) =
C

2Γ[−1 − p]

t∫
0

(t − w)2

wp+2 exp(qw)dw, here p < −1 (24)

where C is integrating constant can be determined by using the BCs θ(−1) = 1 in
Equation (24) to obtain,

C =
2Γ[−1 − p]

−1∫
0

(1+w)2

wp+2 exp(qw)dw
(25)
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Therefore, Equation (24) becomes

θ(ε) = −

ε∫
0

(ε−w)2

wp+2 exp(qw)dw

0∫
−1

(1+w)2

wp+2 exp(qw)dw
(26)

Operating the integration of Equation (26) gives the final expression for θ(t)

θ(ε) =
q2ε2Γ[−p − 1, 0,−qε] + 2qε Γ[−p, 0,−qε] + Γ[−p + 1, 0,−qε]

q2Γ[−p − 1, 0, q]− 2qΓ[−p, 0, q] + Γ[−p + 1, 0, q]
(27)

In terms of the similarity variable η, Equation (27) becomes:

θ(η) =
q2e−2αη Γ[−p − 1, 0, qe−αη ]− 2qe−αη Γ[−p, 0, qe−αη ] + Γ[−p + 1, 0, qe−αη ]

q2Γ[−p − 1, 0, q]− 2qΓ[−p, 0, q] + Γ[−p + 1, 0, q]
(28)

Differentiating Equation (28), we obtain

θη(0) =
2αq{Γ[−p, 0, q]− qΓ[−p − 1, 0, q]}

q2Γ[−p − 1, 0, q]− 2qΓ[−p, 0, q] + Γ[−p + 1, 0, q]
(29)

Therefore, from Equation (16,) Nusselt number becomes

Nux = −
(

khn f

k f
− khn f PrNR

)
ξ1x

2αq{Γ[−p, 0, q]− qΓ[−p − 1, 0, q]}
q2Γ[−p − 1, 0, q]− 2qΓ[−p, 0, q] + Γ[−p + 1, 0, q]

(30)

In the next section, we analyze these results.

4. Results and Discussion

We examined the 2D MHD steady incompressible flow and heat transfer due to a
porous medium containing Cu − Al2O3 nanoparticles in the base fluid by applying a mag-
netic field of strength B0 to the fluid flow. The addition of nanoparticles enhances the
thermal efficiency of the flow system. The leading equations form the system of PDEs and
are then converted into the system of ODEs by adopting suitable similarity transforma-
tions. The system is analytically solved to obtain the solutions for the velocity profile and
temperature distribution in terms of exponential and Gamma functions, respectively. In all
plots, the dotted lines refer to the behavior of the base fluid, while the solid lines refer to
the behavior of HNF for Cu − Al2O3.

Figure 2 demonstrates the axial velocity f (η) for various Da−1. We found that the
velocity declines as Da−1 increases. Panels (a)–(c), where the velocity is examined for S = 0
show that there is no permeability. For suction S = 1 and injection S = −1, we observe that
as S increases from injection to suction, the axial velocity for HNF very quickly coincides
with the base fluid as Da−1 increases. In all cases, the profile of fη(η) has a decreasing
nature, and it becomes constant to zero at a certain point of η.

Figure 3 depicts the velocity fη(η) as a function of η for various values of Λ. The
velocity increases with an increase in Λ. Panels (a)–(c), where the velocity is examined for
S = 0, show that there is no permeability. For suction S = 1 and injection S = −1, we
observe that the difference between the axial velocity of the base fluid and HNF is larger in
the case of suction and smaller in the case of injection. In all cases, the axial velocity is less
for an HNF than the base fluid.

Figure 4 shows the profile of fη(η) for various M. It can be seen that fη(η) is smaller
for larger values of M. Panels (a)–(c), where the velocity is examined for S = 0, show that
there is no permeability. For suction S = 1 and injection S = −1, we observe that the

210



Appl. Sci. 2022, 12, 7527

difference between the axial velocity of the base fluid and the HNF is more in the case of
suction and less in the case of injection.

 
(a) 

 
(b) 

Figure 2. Cont.
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(c) 

Figure 2. The axial velocity as a function of η for various values of Da−1 and for
three different regimes of S: (a) S = 0, (b) S = 1, and (c) S = −1. The other fixed parameters are:
Λ = M = 1, φ1 = 0.1, φ2 = 0.04.

 
(a) 

Figure 3. Cont.

212



Appl. Sci. 2022, 12, 7527

 
(b) 

 
(c) 

Figure 3. The axial velocity as a function of η for various values of Λ and for three different regimes
of S: (a) S = 0, (b) S = 1 and (c) S = −1. The other fixed parameters are: Da−1 = M = 1,
φ1 = 0.1, φ2 = 0.04.
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The effect of S is shown in Figure 5 for both the suction and injection cases. Clearly, the
velocity profile fη(η) decreases for a larger S. Panel (a) shows that the difference between
the axial velocity of the base fluid and the HNF is larger in the case of suction and smaller
in the case of injection as in panel (b). At η = 0, the axial velocity is different for various
values of each parameter.

 
(a) 

 
(b) 

Figure 4. Cont.
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(c) 

Figure 4. The axial velocity as a function of η for various values of M and for three different regimes
of S: (a) S = 0, (b) S = 1 and (c) S = −1. The other fixed parameters are: Λ = Da−1 = 1,
φ1 = 0.1, φ2 = 0.04.

 
(a) 

Figure 5. Cont.
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(b) 

Figure 5. The axial velocity as a function of η for various values of S, (a) for suction case and (b) for
injection case. The other fixed parameters are: Λ = Da−1 = M = 1, φ1 = 0.1, φ2 = 0.04.

Figure 6 displays the temperature profile θ(η) for various values of Da−1. We observe
that θ(η) increases as Da−1 increases. Panels (a)–(c), where the temperature is shown for
S = 0, show that there is no permeability. For suction S = 1 and injection S = −1, we
observe that θ(η) for HNF coincides with the base fluid as Da−1 increases. In all cases, we
found that θ(η) decreases and that becomes constant to zero at a certain point of η. The
temperature profile has the same value at η = 0 irrespective of the parameters’ values.
Moreover, as the thermal rate increases upon adding nanoparticles to the base fluid, we
can see from the figures that θ(η) becomes more of an HNF than a base fluid.

Figure 7 shows the temperature profile θ(η) for different values Λ. We observe that
θ(η) decreases with the enhancement in Λ. Panels (a)–(c) show the regimens of S. In
panel (a) for S = 0, there is no permeability, whereas in panel (b) suction (S = 1) and
finally in panel (c) for injection case (S = −1). We found that there is an achievement of
enhancement of heat transfer upon using HNF and that Casson fluid will suppress the
temperature distribution.

Figure 8 shows the temperature profile as a function of η for different values of M. We
see that θ(η) increases as M increases. Panels (a)–(c) show θ for S = 0, S = 1, and S = −1,
respectively. We observe that HNF has much more thermal conductivity than the base fluid.
Furthermore, we observe that as the value of S increases, the domain of the temperature
distribution decreases.
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(a) 

 
(b) 

Figure 6. Cont.
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(c) 

Figure 6. The temperature distribution θ(η) as a function of η for various values of Da−1 and for
three different regimes of S: (a) S = 0, (b) S = 1, and (c) S = −1. The other fixed parameters are
M = Λ = NR = 1, φ1 = 0.1, φ2 = 0.04.

 

 
(a) 

Figure 7. Cont.
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Figure 7. The temperature distribution θ(η) as a function of η for various values of Λ and for
three different regimes of S: (a) S = 0, (b) S = 1 and (c) S = −1. The other fixed parameters are:
M = Da−1 = NR = 1, φ1 = 0.1, φ2 = 0.04.
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(a) 

 
(b) 

Figure 8. Cont.
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(c) 

Figure 8. The temperature profile θ(η) as a function of η for several values of M and for
three different regimes of S: (a) S = 0, (b) S = 1, and (c) S = −1. The other fixed parameters are:
Λ = Da−1 = NR = 1, φ1 = 0.1, φ2 = 0.04.

Figure 9 shows the temperature distribution θ(η) for various values of the radiation
parameter NR. We can observe that θ(η) increases as the effect of radiation increases.
Panels (a)–(c) show the profile for cases with no permeability, with suction and injection. We
note that the domain of the temperature is larger in the case of injection and smaller in the
case of no-permeability. Furthermore, by observing each plot of temperature distribution,
the effect of radiation on the change of heat transfer rate is less than those of the magnetic
field and Casson fluid, i.e., the difference in temperature distribution between base fluid
and HNF is not that much more significant.

Finally, the effect of various values of S on the temperature profile is shown in Figure 10
for suction and injection cases. θ(η) decreases when as S increases, as shown in the figure.
The domain of θ(η) is larger in the case of injection than in suction.
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(a) 

 
(b) 

Figure 9. Cont.
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(c) 

Figure 9. The temperature distribution θ(η) as a function of η for different values of NR and for
three different regimes of S: (a) S = 0, (b) S = 1, and (c) S = −1. The other fixed parameters are:
M = Λ = Da−1 = NR = 1, φ1 = 0.1, φ2 = 0.04.

 
Figure 10. Cont.
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Figure 10. The temperature profile θ(η) as a function of η for several values of S. The other fixed
parameters are: M = Λ = Da−1 = NR = 1, φ1 = 0.1, φ2 = 0.04.

5. Concluding Remarks

In the present study, we examined 2D MHD steady incompressible flow and heat
transfer over a porous medium containing Cu − Al2O3 nanoparticles in a base fluid. The
addition of nanoparticles enhances the thermal efficiency of the flow system. The system
was analytically solved to obtain the solutions for the velocity profile and temperature
distribution in terms of exponential and Gamma functions, respectively. In addition, the
effect of different physical parameters was examined by using graphical representations.
The following observations were made:

• The axial velocity declines with increasing porous parameter or magnetic field, and
the suction/injection parameter increases with increasing Brinkman ratio.

• The temperature distribution increases for higher values of the porous parameter,
magnetic field, or radiation; it decreases with an increase in the Brinkman ratio or
suction/injection parameter.

• At η = 0, the axial velocity is different for various values of each parameter.
• The axial velocity is smaller for hybrid nanofluid than for base fluid.
• θ(η) is the same for every value of varying parameters at η = 0.
• As the thermal rate increases upon adding nanoparticles to the base fluid, the figures

showed that θ(η) will be larger for hybrid nanofluid than for base fluid.

In the future, we plan to conduct a similar investigation on a non-Newtonian fluid
with mass transfer problems. We postulate that adding the effect of viscous dissipation and
various physical parameters can uncover another interesting phenomenon.
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Nomenclature
Symbol Explanation SI unit

Latin symbols
B0 applied magnetic field

[
wm−2]

CP specific heat at constant pressure
[
JKg−1K−1

]
Da−1 inverse Darcy number [−]

f similarity variable [−]

k∗ mean absorption coefficient
[
m−2]

K permeability of porous medium
[
m−2]

Pr Prandtl number [−]

qr radiative heat flux
[
Wm−2]

qw local heat flux at the wall [−]

M magnetic parameter [−]

NR radiation parameter [−]

Nux local Nusselt number [−]

T temperature [K]
S > 0/ < 0 suction/injection velocity [−]

(x, y) coordinate axes [m]

(u, v) velocities along x- and y-directions
[
ms−1]

Greek symbols
α thermal diffusivity

[
m2s−1]

Γ gamma function [−]

κ thermal conductivity of fluid
[
WKg−1K−1

]
η similarity variable [−]

μ f dynamic viscosity of fluid
[
kgm−1S−1

]
μe f f effective viscosity

[
kgm−1S−1

]
ν kinematic viscosity

[
m2s−1]

ρ density
[
Kgm−3]

σ electrical conductivity
[
Sm−1]

σ∗ Stefan–Boltzmann constant [−]

φ nanoparticle volume fraction [−]

ψ stream function [−]

Λ Brinkman ratio [−]

Subscripts
f base fluid [−]

hn f nanofluid [−]

Abbreviations
BCs boundary conditions [−]

BLF boundary layer flow [−]

MHD magnetohydrodynamics [−]

HNF hybrid nanofluid [−]

Cu copper [−]

Al2O3 aluminum oxide [−]
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