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Preface

In the realm of complex decision making, characterized by inherent incompleteness and

uncertainty, the foundational work of Lotfi A. Zadeh on fuzzy set theory has been instrumental.

The efficacy of classical fuzzy sets in addressing vagueness has prompted an exploration of various

extensions, each catering to the intricacies of real-world decision-making problems. This book

delves into an array of advanced fuzzy theories, including type-2 fuzzy sets, hesitant fuzzy sets,

multivalued fuzzy sets, cubic sets, intuitionistic fuzzy sets, Pythagorean fuzzy sets, spherical fuzzy

sets, neutrosophic sets, and more. The richness of these extensions reflects the dynamism of fuzzy

theories in diverse decision-making applications.

Comprising ten research papers, this book presents a synthesis of the latest progress and

achievements in fuzzy decision theories. The contributions span theoretical developments and

practical applications, demonstrating the versatility of advanced fuzzy theories across domains such

as finance, healthcare, engineering, and beyond. The collective knowledge presented here serves as

a testament to the growing significance of fuzzy decision theories in addressing the complexities of

contemporary decision science.

In the paper entitled “A Hybrid MCDM Approach Based on Fuzzy MEREC-G and Fuzzy

RATMI” by Anas A. Makki and Reda M. S. Abdulaal, the authors address the critical realm of

multi-criteria decision making (MCDM), which plays a pivotal role in navigating complex problems

where diverse alternatives must be evaluated against conflicting criteria. Traditional MCDM

methods have been integral in this regard, yet the increasing prevalence of uncertain and ambiguous

decision-maker inputs in real-world scenarios necessitates the application of fuzzy logic. The

authors introduce a novel hybrid fuzzy MCDM approach that combines the strengths of two recent

methodologies: fuzzy MEREC-G, designed to handle linguistic input terms from multiple decision

makers and generate consistent fuzzy weights, and fuzzy RATMI, which ranks alternatives based on

their fuzzy performance scores on each criterion. Notably, this paper presents the first fuzzy extension

of both MEREC-G and RATMI methods. The study provides detailed algorithms for fuzzy MEREC-G

and fuzzy RATMI and demonstrates their application in solving real-world problems. Through

correlation and scenario analyses, the authors validate the new approach’s accuracy, consistency, and

sensitivity, highlighting its potential to deliver robust and reliable decision-making outcomes in the

face of uncertain and dynamic decision contexts.

The paper titled “MemConFuzz: Memory Consumption Guided Fuzzing with Data Flow

Analysis”, by Chunlai Du, Zhijian Cui, Yanhui Guo, Guizhi Xu, and Zhongru Wang, tackles the

critical issue of uncontrolled heap memory consumption—a software vulnerability exploited by

attackers to consume significant amounts of heap memory, leading to system crashes. Existing efforts

in vulnerability fuzzing of heap consumption, such as MemLock and PerfFuzz, often fall short in

considering the impact of data flow. In response, the authors present MemConFuzz, a novel heap

memory consumption-guided fuzzing model. MemConFuzz leverages static data flow analysis to

extract the locations of heap operations and data-dependent functions. Notably, the paper introduces

a seed selection algorithm based on data dependency, allocating more energy to samples with higher

priority scores during the fuzzing process. Experimental results demonstrate that MemConFuzz

outperforms existing approaches like AFL, MemLock, and PerfFuzz, showcasing superior efficiency

in both quantity and time consumption when exploiting vulnerabilities related to heap memory

consumption. This innovative contribution enhances our understanding and approach to addressing

critical software vulnerabilities associated with uncontrolled heap memory consumption.
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In the scholarly work titled “Some Operations and Properties of the Cubic Intuitionistic

Set with Application in Multi-Criteria Decision-Making” authored by Shahzad Faizi, Heorhii

Svitenko, Tabasam Rashid, Sohail Zafar, and Wojciech Sałabun, the authors present a comprehensive

exploration of operations and properties associated with the cubic intuitionistic set, offering valuable

insights with potential applications in multi-criteria decision making (MCDM). The introduced

concepts include the internal cubic intuitionistic set (ICIS), external cubic intuitionistic set (ECIS),

P-order, R-order (P-(R-) order), P-union, R-union (P-(R-) union), and P-intersection, R-intersection

(P-(R-) intersection). The paper delves into the investigation of various properties related to the

P-(R-) union and P-(R-) intersection of ICISs and ECISs, accompanied by illustrative examples

to elucidate these theoretical constructs. Additionally, the authors put forth significant theorems

pertaining to ICISs and ECISs, supported by rigorous proofs. The practical applicability of these

operations is demonstrated through a real-world scenario, applying the proposed concepts to solve a

multi-criteria decision-making problem. This work not only contributes to the theoretical foundation

of cubic intuitionistic sets but also showcases their relevance in addressing complex decision-making

challenges, thereby enriching the toolkit available for researchers and practitioners in the field.
In the paper titled “Study on Chaotic Multi-Attribute Group Decision Making Based on

Weighted Neutrosophic Fuzzy Soft Rough Sets” authored by Fu Zhang and Weimin Ma, the

authors delve into the realm of multi-attribute group decision making (MAGDM) with a distinctive

dimension termed Chaotic MAGDM. This novel scenario incorporates considerations not only

for the weights of decision makers (DMs) and decision attributes but also for the familiarity of

DMs with these attributes. The authors leverage the weighted neutrosophic fuzzy soft rough

set theory to address the complexities inherent in Chaotic MAGDM, presenting a new algorithm

tailored for MAGDM applications. A notable contribution lies in the integration of familiarity into

MAGDM within the framework of neutrosophic fuzzy soft rough sets. Furthermore, the paper

introduces a novel MAGDM model grounded in neutrosophic fuzzy soft rough sets and develops

a sorting/ranking algorithm based on the same set of theories. To illustrate the practical utility of

the proposed algorithm, a case study is provided, showcasing the application of the devised model.

This work not only advances the theoretical foundations of decision making under chaotic conditions

but also provides a valuable methodology for handling real-world MAGDM challenges through the

fusion of weighted neutrosophic fuzzy soft rough sets and chaos theory.
The paper titled “A Novel Driving-Strategy Generating Method of Collision Avoidance for

Unmanned Ships Based on Extensive-Form Game Model with Fuzzy Credibility Numbers,” authored

by Haotian Cui, Fangwei Zhang, Mingjie Li, Yang Cui, and Rui Wang, addresses the crucial issue

of intelligent collision avoidance for unmanned ships at sea. The study introduces an innovative

approach by proposing a novel driving strategy generation method rooted in an extensive-form

game model employing fuzzy credibility numbers. The key contribution lies in formulating an

extensive-form game model that accounts for the two-sided clamping situation of unmanned ships,

validated through a fuzzy credibility assessment. The research quantitatively divides the head-on

situations of ships at sea, facilitating targeted collision avoidance decisions for unmanned ships. The

utilization of an extensive-form game model, particularly in scenarios involving two-sided clamping,

is a notable aspect of the study. The integration of fuzzy credibility degrees into the game model

allows for the assessment of whether the collision avoidance decisions made by unmanned ships

achieve optimal results. Through case analysis and simulation, the effectiveness of the introduced

game model is confirmed, demonstrating its practical utility in real-time collision avoidance decision

making for unmanned ships in scenarios involving two-sided clamping. The proposed mathematical

model, as illustrated in an example, stands as a promising tool for enhancing the ability of unmanned

ships to navigate safely and make informed decisions in complex maritime environments.
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The paper titled “Medical Diagnosis and Pattern Recognition Based on Generalized Dice

Similarity Measures for Managing Intuitionistic Hesitant Fuzzy Information” by Majed Albaity

and Tahir Mahmood addresses the intersection of medical diagnosis, pattern recognition, and the

representation of intuitionistic hesitant fuzzy (IHF) information. Pattern recognition, a fundamental

aspect of computer science, has wide-ranging applications, including machine learning, information

compression, signal processing, and bioinformatics. The authors introduce the theory of generalized

dice similarity (GDS) measures to establish relationships between pieces of IHF information, making

valuable contributions to real-life problem solving. The GDS measures offer versatility by allowing

the derivation of various measures through parameter variations, known as DGS measures. The

paper leverages this theory to extend the well-established dice similarity measures (DSMs) to the

context of IHF sets, which encompass both membership and non-membership grades within the

finite subset [0, 1]. Pioneering the theory of generalized DSMs (GDSMs) computed based on IHF sets,

the authors introduce the IHF dice similarity measure, IHF weighted dice similarity measure, IHF

GDS measure, and IHF weighted GDS measure. The application of these measures is demonstrated

through medical diagnosis and pattern recognition problems, showcasing their proficiency and

capability. The authors conduct a comparative analysis with existing measures to enhance the

practical value of the proposed measures, thereby contributing to the advancement of computational

methodologies in the management of IHF information for medical diagnosis and pattern recognition.
In the paper titled “A Ship Fire Escape Speed Correction Method Considering the Influence of

Crowd Interaction” authored by Jingyuan Li, Weile Liu, Fangwei Zhang, Taiyang Li, and Rui Wang,

the authors delve into the critical issue of passenger ship fire evacuation and investigate the impact

of various personnel attributes and interactions on evacuation efficiency. The study introduces a

novel speed correction method designed to account for human attributes and interactions among

different populations during evacuation scenarios. Initially, hesitant fuzzy sets and hesitant fuzzy

average operators are employed to quantify four distinct personnel attributes. Subsequently, the

study extracts a formula for acceleration that considers the interactive influence of different groups of

people. Leveraging the first-order linear relationship between velocity and acceleration, the authors

propose an interactive velocity correction method for ship personnel evacuation. To validate the

effectiveness of the method, the study employs personnel evacuation simulation software, Pathfinder,

conducting experiments with both corrected and uncorrected speeds introduced into the evacuation

simulation process. The results demonstrate that the simulation outcomes of the revised speed plan

align more closely with real-world scenarios, emphasizing the practical significance of considering

personnel attributes and interactions in refining ship fire escape speed strategies for enhanced

evacuation efficiency and safety.
The paper titled “A Hybrid Intuitionistic Fuzzy Group Decision Framework and Its Application

in Urban Rail Transit System Selection” by Bing Yan, Yuan Rong, Liying Yu, and Yuting Huang

addresses the complex decision-making process of selecting an urban rail transit system, focusing on

green and low-carbon perspectives to promote sustainable urban development. Acknowledging the

uncertainty arising from conflicting criteria and the inherent fuzziness in decision-makers cognition,

the authors present a hybrid intuitionistic fuzzy multi-criteria group decision making (MCGDM)

framework. The proposed methodology addresses various aspects of the decision process. Firstly,

the weights of experts are determined using an improved similarity method. Subsequently, the

subjective and objective weights of criteria are calculated using DEMATEL and CRITIC methods,

and a comprehensive weight is obtained through linear integration. Considering the experts’ regret

degree and risk preference, the COPRAS method based on regret theory is introduced to determine

the prioritization of the urban rail transit system ranking. The practicality and effectiveness of the

developed method are demonstrated through a case study of urban rail transit system selection for

xi



City N. The results reveal that a metro system (P1) is the most suitable option for City N’s urban rail

transit system construction, followed by a municipal railway system (P7). A sensitivity analysis, a

comparative analysis, and a thorough case study validate the robustness, stability, and practicality of

the proposed decision-making framework, showcasing its efficacy in supporting informed decisions

in the context of urban rail transit system selection.
The paper titled “Group Decision-Making Problems Based on Mixed Aggregation Operations of

Interval-Valued Fuzzy and Entropy Elements in Single- and Interval-Valued Fuzzy Environments”

by Weiming Li and Jun Ye addresses the intricate challenges of operational problems in group

decision making (GDM) scenarios involving single- and interval-valued fuzzy multivalued hybrid

information expressions. Fuzzy sets and interval-valued fuzzy sets serve as crucial tools for

representing uncertain and vague information in real-world contexts. To tackle the complexity of

these mixed multivalued information expressions and operational challenges, the study introduces

the concept of single- and interval-valued fuzzy multivalued set/element (SIVFMS/SIVFME)

with identical and/or different fuzzy values. The conversion of SIVFMS/SIVFME into the

interval-valued fuzzy and entropy set/element (IVFES/IVFEE) is presented, relying on the mean

and information entropy of SIVFME to address operational problems with varying lengths. The

study defines the operational relationships of IVFEEs, introduces expected value functions and

sorting rules, and proposes IVFEE-weighted averaging and geometric operators, along with their

mixed-weighted-averaging operation. Leveraging these operations and functions, a GDM method is

developed for multicriteria GDM problems within the SIVFMS environment. The proposed method

is applied to a supplier selection problem in a supply chain as a practical example, demonstrating the

rationality and efficiency of SIVFMSs. A comparative analysis with other decision-making methods

highlights the superiority of the developed GDM method, providing a more reasonable and flexible

approach that compensates for existing methodological deficiencies in the GDM process.
The paper titled “An Intelligent Expert Combination Weighting Scheme for Group Decision

Making in Railway Reconstruction” by Lihua Zeng, Haiping Ren, Tonghua Yang, and Neal Xiong

introduces an intelligent approach to expert combination weighting for group decision making in the

context of railway reconstruction. The study addresses the limitations of existing intuitionistic fuzzy

entropies by proposing an improved version based on the cotangent function. This enhanced entropy

not only considers the deviation between membership and non-membership but also incorporates

the hesitancy degree of decision makers, providing a more comprehensive measure of uncertainty for

intuitionistic fuzzy sets. Furthermore, the paper introduces a novel intuitionistic fuzzy (IF) similarity

measure, whose values are IF numbers. The improved entropy and similarity measures are then

applied to the determination of expert weights in group decision making. The study presents an

intelligent expert combination weighting scheme, leveraging the new intuitionistic fuzzy similarity

to transform the decision matrix into a similarity matrix. Through the analysis of threshold change

rates and the design of risk parameters, the scheme achieves reasonable expert clustering results. In

this scheme, each category is weighted, and experts within each category are weighted using entropy

weight theory. The total weight of experts is then determined by synthesizing these two weights.

This comprehensive approach provides a new method for objectively and reasonably determining

expert weights in group decision-making scenarios. The proposed scheme is applied to the evaluation

of a railway reconstruction scheme, demonstrating its feasibility and showcasing its potential in

real-world applications.
As the editors responsible for curating this Special Issue, we extend our gratitude to the authors

whose dedicated research has enriched this collection. Their insights and expertise have contributed

to the depth and breadth of our exploration of fuzzy decision theories. We also express appreciation

to the reviewers whose meticulous assessments have ensured the scholarly rigor and quality of each
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contribution.
We would like to acknowledge the support and collaboration of the editorial team and the

publisher in bringing this book to fruition. Their commitment to academic excellence has been

integral to the success of this endeavor.
This book is not just a static representation of the current state of fuzzy decision theory; it

is an invitation to researchers, practitioners, and students to engage with the evolving landscape

of decision science. We hope that the insights shared within these pages inspire further inquiry,

spark innovative ideas, and pave the way for continued advancements in the fascinating and

ever-expanding field of fuzzy decision theory.

Jun Ye and Yanhui Guo
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Abstract: The intuitionistic fuzzy entropy has been widely used in measuring the uncertainty of
intuitionistic fuzzy sets. In view of some counterintuitive phenomena of the existing intuitionistic
fuzzy entropies, this article proposes an improved intuitionistic fuzzy entropy based on the cotangent
function, which not only considers the deviation between membership and non-membership, but
also expresses the hesitancy degree of decision makers. The analyses and comparison of the data
show that the improved entropy is reasonable. Then, a new IF similarity measure whose value
is an IF number is proposed. The intuitionistic fuzzy entropy and similarity measure are applied
to the study of the expert weight in group decision making. Based on the research of the existing
expert clustering and weighting methods, we summarize an intelligent expert combination weighting
scheme. Through the new intuitionistic fuzzy similarity, the decision matrix is transformed into a
similarity matrix, and through the analysis of threshold change rate and the design of risk parameters,
reasonable expert clustering results are obtained. On this basis, each category is weighted; the experts
in the category are weighted by entropy weight theory, and the total weight of experts is determined
by synthesizing the two weights. This scheme provides a new method in determining the weight
of experts objectively and reasonably. Finally, the method is applied to the evaluation of railway
reconstruction scheme, and an example shows the feasibility of the method.

Keywords: intuitionistic fuzzy entropy; hesitant degree information; intuitionistic fuzzy group
decision making; clustering; intuitionistic fuzzy similarity

1. Introduction

With the characteristics of high speed, large volume, low energy consumption, little
pollution, safety and reliability, railway transportation has become the main transportation
mode in the modern transportation system in China (see Figures 1 and 2) [1–3] and plays
an important role in the development of the national economy.

 
Figure 1. Business mileage of China’s railways.
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Figure 2. Total railway freight volume in China.

As an important national infrastructure and popular means of transportation, railway
is the backbone of China’s comprehensive transportation system. With the continuous
acceleration of China’s urbanization process and the urban expansion, railway construction
has entered a period of rapid development, and the railway plays an increasingly important
role in people’s choice of travel mode (see Figure 3) [1,4].

 
Figure 3. China railway passenger volume.

With regard to railway reconstruction, due to the huge investment and complex
factors [5–7], it is necessary to compare and select various construction schemes in order to
optimize the scheme with more reasonable technology and economy. Therefore, the use of
scientific evaluation methods is very important. At present, the method of expert scoring
and evaluation with the help of fuzzy theory has been more common, but the expert scoring
is more or less subjective. This paper proposes an intelligent expert combination weighting
method to optimize the scheme.

The rest of this paper is structured as follows. Section 2 introduces the related work
of this study. Section 3 introduces the preparatory knowledge. Section 4 puts forward the
weighted scheme of intelligent expert combination. Section 5 introduces the risk factors of
the railway reconstruction project and uses the method proposed in the fourth section to
optimize the railway reconstruction scheme. Finally, Section 6 summarizes the whole paper.

2. The Related Work

Fuzziness, as developed in [8], is a kind of uncertainty that often appears in human
decision-making problems. Fuzzy set theory deals with uncertainties happening in daily life
successfully. The membership degrees can be effectively decided by a fuzzy set. However,
in real-life situations, the non-membership degrees should be considered in many cases
as well. Thus, Atanassov [9] introduced the concept of an intuitionistic fuzzy (IF) set that
considers both membership and non-membership degrees. IF set has been implemented in

2
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numerous areas due to its ability to handle uncertain information more effectively [10–24].
Tao et al. [10] provided an insight with an alternative queuing method and intuitionistic
fuzzy set into dynamic group MCDM, which ranked the alternatives based on preference
relation. Intuitionistic fuzzy sets based on the weighted average were adopted for aggre-
gating individual suggestions of decision makers by Singh et al. [11]. Chaira [12] suggested
a novel clustering approach for segmenting lesions/tumors in mammogram images using
Atanassov’s intuitionistic fuzzy set theory. Jiang et al. [13] studied a novel three-way group
investment decision model under an intuitionistic fuzzy multi-attribute group decision-
making environment. Wang et al. [14] put forward a novel three-way multi-attribute
decision-making model in light of a probabilistic dominance relation with intuitionistic
fuzzy sets. Wan and Dong [15] developed a new intuitionistic fuzzy best-worst method
for multi-criteria decision making. Kumar et al. [16] formulated an intuitionistic fuzzy
set theory-based, bias-corrected intuitionistic fuzzy c-means with spatial neighborhood
information method for MRI image segmentation. In addition, intuitionistic fuzzy sets are
extended to various forms and applied to practical problems. Senapati and Yager [17–19]
proposed Fermatean fuzzy sets and introduced four new weighted aggregated operators, as
well as defined basic operations over the Fermatean fuzzy sets. Ashraf et al. [20] introduced
a new version of the picture fuzzy set, so-called spherical fuzzy sets (SFS), and discussed
some operational rules. Khan et al. [21] introduced a method to solve decision-making
problems using an adjustable weighted soft discernibility matrix in a generalized picture
fuzzy soft set. Riaz and Hashmi [22] introduced the novel concept of the linear Diophantine
fuzzy set (LDFS) with the addition of reference parameters.

Shannon used probability theory as a mathematical tool to measure information. He
defined information as something that eliminates uncertainty, thus connecting information
with uncertainty. Taking entropy as a measure of the uncertainty of information state,
Shannon put forward the concept of information entropy. De Luca and Termini [25] studied
the measurement of fuzziness of fuzzy sets, extended probabilistic information entropy
to non-probabilistic information entropy and proposed axioms that fuzzy information
entropy must satisfy. Szmidt and Kacprzyk [26] extended the axioms of De Luca and
Termini and extended fuzzy information entropy to IF information entropy. Some scholars
have conducted in-depth research in this aspect and constructed IF entropy formulae
from different angles and applied it to the fields of multi-attribute decision making and
pattern recognition [27–34]. Whether these entropy formulas can reasonably measure
the uncertainty of IF sets is directly related to the rationality of their application. In this
paper, some entropy formulas in existing literature are classified, and their advantages
and disadvantages are analyzed with data. On this basis, a new IF entropy is constructed
that not only considers the deviation between membership and non-membership but also
includes the hesitancy in the entropy measure. The rationality of entropy is fully explained
by data analysis and comparison.

In recent years, the decision-making problem with IF information has attracted many
scholars’ attention [35]. Due to the complexity and uncertainty of pragmatic problems,
expert group decision-making method is commonly used in decision-making problems.
Expert group decision making can fully gather the experience and knowledge of various
experts, making the decision-making results more scientific and reasonable. However,
in the actual evaluation, experts in group decision making are influenced by numerous
factors, such as knowledge structure, understanding of scheme, interest correlation and
so on. They often hold different views and attitudes. How to determine the weight of
experts and effectively aggregate the decision-making information of experts with different
preferences has become the focus of scholars [36–41].

In traditional group decision making, the expert weighting method usually uses the
consistency ratio of the judgment matrix to construct the weight coefficient, which lacks
the attention to the overall consistency of group decision-making objectives. In order to
surmount the shortcomings of the traditional method, a cluster analysis method is often
used to realize the expert weighting in group decision making. The basic principle of expert
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cluster analysis is to measure the similarity degree of expert evaluation opinions according
to certain standards and cluster experts based on the similarity degree. He and Lei [36]
extended fuzzy C-means clustering to IF C-means clustering and proposed a clustering
algorithm based on IF sets. Zhang et al. [37] and He et al. [38] proposed the concept of IF
similarity, whose value is an IF number; they also constructed the IF similarity matrix, the
IF equivalent matrix and its λ- cut matrix and gave a clustering method based on the IF
similarity matrix. Wang et al. [39] proposed a new method of an IF similar matrix, avoided
the tedious process of calculating an IF equivalent matrix and used the membership degrees
of elements in an IF similar matrix to cluster. Zhou et al. [40] conducted cluster analysis on
experts according to the principle of entropy, used information similarity coefficients to
measure the similarity degrees of expert opinions and then classified the experts.

The above clustering methods have the following problems when clustering IF infor-
mation.

(1) In reference [36], the clustering results of IF sets are expressed in real numbers, which
does not accord with the characteristics of IF sets.

(2) After obtaining the IF similarity matrix, the method proposed in reference [37,38] also
needs to test whether it is an IF equivalent matrix. If not, it needs a lot of iterative
operations until it becomes an IF equivalent matrix, which requires a large amount
of calculation.

(3) Reference [39] reduced the amount of calculation, but after obtaining the IF similarity
matrix, only membership degree is used for clustering, ignoring non-membership
degree and hesitation degree, which will inevitably cause the loss of information.

(4) In literature [40], there is no analysis on the value of the clustering threshold. The
value directly affects the clustering results, so the rationality of the value is particu-
larly important.

Considering the above situation, this paper proposes a method of clustering and
weighting experts based on IF entropy. According to the evaluation information of IF
numbers given by experts, a new IF similarity measure is constructed, whose value is an
IF number. Then the decision matrix is transformed into a similar matrix. By analyzing
the change rate of the threshold and designing the risk parameters, the decision maker
can choose the appropriate clustering threshold and risk parameters so as to obtain the
reasonable expert clustering results, and based on this result, experts are weighted between
categories. It can make more experts in a category, so that the weight of the category is
greater, which reflects the important principle of the minority obeying the majority in group
decision making. Using the new IF entropy proposed in this paper, the experts in the same
category with clear logic and an accurate evaluation can get a larger weight. The total
weight of experts is determined by synthesizing the weight between categories and within
categories. Finally, the IF weighted aggregation operator is used to aggregate weighted
experts and their IF information, and the alternatives are optimized and sorted.

3. Preliminaries

In the following part, we introduce some basic concepts, which will be used in the
next sections.

Definition 1 ([9]). Let X be a given universal set. An IF set is an object having the form
A = {< xi, μA(xi), νA(xi) >|xi ∈ X} where the function μA : X → [0, 1] defines the degree of
membership, and νA : X → [0, 1] defines the degree of non-membership of the element xi ∈ X,
respectively, and for every xi ∈ X, it holds that 0 ≤ μA(xi) + νA(xi) ≤ 1. Furthermore, for any
IF set A and xi ∈ X, πA(xi) = 1− μA(xi)− νA(xi) is called the hesitancy degree of xi. All IF
sets on X are denoted as IFSs(X).

For simplicity, Xu and Chen [41] denoted α = (μα, να) as an IF number (IFN), where μα

and να are the degree of membership and the degree of non-membership of the element α ∈ X to A,
respectively.

4
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The basic operational laws of IF set defined by Atanassov [9] are introduced as follows:

Definition 2 ([9]). Let A = {< xi, μA(xi), νA(xi) > |xi ∈ X} and B =
{
< xi, μB(xi), νB(xi)

> |xi ∈ X
}

be two IF sets; then,

(1) A ⊆ B if and only if μA(xi) ≤ μB(xi) and νA(xi) ≥ νB(xi) for all xi ∈ X;
(2) A = B if and only if A ⊆ B and B ⊆ A;
(3) The complementary set of A, denoted by AC, is AC = {< xi, νA(xi), >|xi ∈ X}
(4) An =

{
< xi, [μA(xi)]

n, [νA(xi)]
n >

∣∣xi ∈ X
}

;
(5) A ≺ B called A less fuzzy than B, i.e., for ∀xi ∈ X

if μB(xi) ≤ νB(xi), then μA(xi) ≤ μB(xi),νA(xi) ≥ νB(xi);
if μB(xi) ≥ νB(xi), then μA(xi) ≥ μB(xi),νA(xi) ≤ νB(xi).

Definition 3 ([9]). Let A = {< xi, μA(xi), νA(xi) > |xi ∈ X} and B =
{

< xi, μB(xi),
νB(xi) > |xi ∈ X

}
be two IF sets and ω = (ω1, ω2, · · · , ωn)

T be the weight vector of the

element xi(i = 1, 2, · · · , n), where ωj ≥ 0 and
n
∑

j=1
ωj = 1. The weighted Hamming distance for A

and B is defined as follows:

d(A, B) =
1
2

n

∑
i=1

ωi(|μA(xi)− μB(xi)|+|νA(xi)− νB(xi)|+|πA(xi)− πB(xi)|) .

Definition 4 ([26]). A map E : IFSs(X)→ [0, 1] is called the IF entropy if it satisfies the follow-
ing properties:

(1) E(A) = 0 if and only if A is a crisp set;
(2) E(A) = 1 if and only if μA(xi) = νA(xi), ∀xi ∈ X;
(3) E(A) = E(AC);
(4) If A ≺ B, then E(A) ≺ E(B).

Definition 5 ([37]). Let zij(i = 1, 2, · · · , m; j = 1, 2, · · · , n) be a collection of IFNs, and the
matrix Z = (zij)m×n is called an IF matrix.

Definition 6 ([37]). Let ψ : IFSs(X)× IFSs(X)→ IFNs and C1, C2, C3 be three IF sets.
ψ(C1, C2) is called an IF similarity measure of C1 and C2 if it satisfies the following properties:

(1) ψ(C1, C2) is an IFN;
(2) ψ(C1, C2) =< 1, 0 > if and only if C1 = C2;
(3) ψ(C1, C2) = ψ(C2, C1);
(4) If C1 ⊆ C2 ⊆ C3, then ψ(C1, C3) ⊆ ψ(C1, C2), and ψ(C1, C3) ⊆ ψ(C2, C3).

Definition 7 ([42]). The membership degree μi(xj) is expressed as μij, and the non-membership
degree νi(xj) is expressed as νij. If an IF matrix Z = (aij)m×n where aij =< μij, vij > satisfies the
following conditions:

(1) Reflexivity: aii =< 1, 0 >, i = 1, 2, · · · , m.
(2) Symmetry: aij = aji, i = 1, 2, · · · , m, j = 1, 2, · · · , n.

then Z is called an IF similarity matrix.
In order to compare the magnitudes of two IF sets, Xu and Yager [43] introduced the

score and accuracy functions for IF sets and gave a simple comparison law as follows:
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Definition 8 ([43]). Let A =< μ, ν > be an IFN; the score function M(A) and accuracy function
Δ(A) of A can be defined, respectively, as follows:{

M(A) = μ− ν
Δ(A) = μ + ν

(1)

Obviously, M(A) ∈ [−1, 1], Δ(A) ∈ [0, 1].
Based on the score and accuracy functions, a comparison law for IF set is introduced as below:
Let Aj and Ak be two IF sets, M(Aj) and M(Ak) be the scores of Aj and Ak, respectively,

and Δ(Aj) and Δ(Ak) be the accuracy degrees of Aj and Ak, respectively; then,

(1) If M(Aj) > M(Ak), then Aj > Ak.

(2) If M(Aj) = M(Ak), then

⎧⎨⎩
Δ(Aj) = Δ(Ak)⇒ Aj = Ak
Δ(Aj) < Δ(Ak)⇒ Aj < Ak
Δ(Aj) > Δ(Ak)⇒ Aj > Ak

.

The weighted aggregation operator for an IF set developed by Xu and Yager [43] is
presented as follows:

Definition 9 ([43]). Let Aj =< μj, νj > (j = 1, 2, · · · , n) be a collection of IF sets, and
ω = (ω1, ω2, · · · , ωn)

T be the weight vector of Aj(j = 1, 2, · · · , n), where ωj indicates the

importance degree of Aj, satisfying ωj ≥ 0(j = 1, 2, · · · , n) and
n
∑

j=1
ωj = 1, and let f A

ω : Fn → F .

If

f A
ω (A1, A2, · · · , An) =

n

∑
j=1

ωj Aj =< 1−
n

∏
j=1

(1− μj)
ωj ,

n

∏
j=1

νj
ωj > (2)

then the function f A
ω is called the IF weighted aggregation operator.

4. Our Proposed Intelligent Expert Combination Weighting Scheme

4.1. A New IF Entropy

The uncertainty of IF sets is embodied in fuzziness and intuitionism. Fuzziness is
determined by the difference between membership and non-membership. Intuitionism is
determined by its hesitation. Therefore, entropy is used as a tool to describe the uncertainty
of IF sets; the difference between membership and non-membership and their hesitation
should be considered at the same time. Only in this way can the degree of uncertainty
be reflected more fully. Next, we will classify the existing entropy formulas according to
whether they describe the fuzziness and intuitiveness of IF sets. In addition, the motivation
behind the origination of fuzzy and non-standard fuzzy models is their intimacy with
human thinking. Therefore, if an entropy measure does not meet some cognitive aspect,
we call it a counterintuitive case.

In this section, suppose that A = {< xi, μA(xi), νA(xi) >|xi ∈ X, i = 1, 2, · · · , n} is an
IF set.

(1) The entropy measure only describes the fuzziness of IF sets. For example, the IF
entropy measure of Ye [27] is

EY(A) =
1
n

n

∑
i=1

[(
√

2 cos
μA(xi)− νA(xi)

4
π − 1)× 1√

2− 1
]

The IF entropy measure of Zeng and Li [28] is

EZ(A) = 1− 1
n

n

∑
i=1

∣∣∣∣∣μA(xi)− νA(xi)

∣∣∣∣∣.

6
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The IF entropy measure of Zhang and Jiang [29] is

EZJ(A) = − 1
n

n
∑

i=1
[ μA(xi)+1−νA(xi)

2 log2(
μA(xi)+1−νA(xi)

2 )

+ νA(xi)+1−μA(xi)
2 log2(

νA(xi)+1−μA(xi)
2 )].

The exponential IF entropy measure of Verma and Sharma [30] is

EVS(A) = 1
n(
√

e−1)

n
∑

i=1
[( μA(xi)+1−νA(xi)

2 e1− μA(xi)+1−νA(xi)
2

+ νA(xi)+1−μA(xi)
2 e1− νA(xi)+1−μA(xi)

2 − 1)].

Example 1. Let A1 = {< x, 0.3, 0.4 >|x ∈ X} and A2 = {< x, 0.2, 0.3 >|x ∈ X} be two IF
sets. Calculate the entropy of A1 and A2 with the entropy formulae EY, EZ, EZJ and EVS.

According to the above formulae, the results are as follows:

EY(A1) = EY(A2) = 0.9895, EZ(A1) = EZ(A2) = 0.9,
EZJ(A1) = EZJ(A2) = 0.9928, EVS(A1) = EVS(A2) = 0.9905.

It can be seen that x belongs to IF sets A1 and A2; the absolute value of deviation between
membership and non-membership is equal; and the hesitation degree increases, so the uncertainty of
A1 is smaller than A2. However, the entropy formulae EY, EZ, EZJ and EVS calculated the entropy
of two IF sets as equal. In fact, for any IF sets Ã =

{
< xi, μÃ(xi), νÃ(xi) >

∣∣xi ∈ X
}

and B̃ ={
< xi, μB̃(xi), νB̃(xi) >

∣∣xi ∈ X
}

if μÃ(xi)− νÃ(xi) for all xi ∈ X, then any entropy formula E
above is adopted, and all of them have E(Ã) = E(B̃). These are counterintuitive situations.

(2) The entropy measure only describes the intuitionism of IF sets.
For example, we show the IF entropy measure of Burillo and Bustince [31]:

EB1(A) =
n

∑
i=1

[1− (μA(xi) + νA(xi))] =
n

∑
i=1

πA(xi)

EB2(A) =
n

∑
i=1

[1− (μA(xi) + νA(xi))
λ], λ = 2, 3, · · · , ∞;

EB3(A) =
n

∑
i=1

[1− (μA(xi) + νA(xi))]e[1−(μA(xi)+νA(xi))];

EB4(A) =
n

∑
i=1

[1− (μA(xi) + νA(xi))] sin(
π

2
(μA(xi) + νA(xi)));

Example 2. Let A3 = {< x, 0.09, 0.41 >|x ∈ X} and A4 = {< x, 0.18, 0.32 >|x ∈ X} be two
IF sets. Calculate the entropy of A3 and A4 with the entropy formula EB1 .

From Formula EB1 , we can get the following results: EB1(A3) = EB1(A4) = 0.5. For IF
sets A3 and A4, the hesitancy degree of element x is equal, but the absolute value of the deviation
between the membership degree and non-membership degree of A3 is greater than that of A4,
so the uncertainty of A3 is obviously smaller than that of A4. However, the entropy formulae
EB1 , EB2 , EB3 and EB4 calculated the entropy of two IF sets as equal, which is inconsistent with
people’s intuition. In fact, for any IF sets Ã =

{
< xi, μÃ(xi), νÃ(xi) >

∣∣xi ∈ X
}

and B̃ ={
< xi, μB̃(xi), νB̃(xi) >

∣∣xi ∈ X
}

, if
∣∣μÃ(xi) + νÃ(xi)

∣∣=∣∣μB̃(xi) + νB̃(xi)
∣∣ for all xi ∈ X, then

any entropy formula E above is adopted, and all of them have E(Ã) = E(B̃).

(3) The entropy measure includes both the fuzziness and intuitionism of IF sets.
However, some situations cannot be well distinguished.
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For example, we show the IF entropy measure of Wang and Wang [32]:

EW(A) =
1
n

n

∑
i=1

cot(
π

4
+
|μA(xi)− νA(xi)|

4(1 + πA(xi))
π)

The IF entropy measure of Wei et al. [33] is the following:

EWG(A) = 1
n

n
∑

i=1
cos( μA(xi)−νA(xi)

2(1+πA(xi))
π)

Example 3. Let A5 = {< x, 0.2, 0.5 >|x ∈ X} and A6 = {< x, 0.4, 0.04 >|x ∈ X} be two IF
sets. Obviously, the fuzziness of A5 is greater than that of A6. Calculate the entropies of A5 and
A6 with the entropy formulae EW and EWG.

We can get the following results:

EW(A5) = EW(A6) = 0.6903, EWG(A5) = EWG(A6) = 0.9350

which are counterintuitive.

For example, the IF entropy measure of Liu and Ren [34] is

ELR(A) =
1
n

n

∑
i=1

cos
μA

2(xi)− νA
2(xi)

2
π

Example 4. Let A7 = {< x, 0.2, 0.4 >|x ∈ X} and A8 = {< x, 0.4272, 0.25 >|x ∈ X} be two
IF sets. Obviously, the fuzzinesses of A7 and A8 are not equal. However, calculating the entropy of
A7 and A8 with the entropy formula ELR, we have ELR(A7) = ELR(A8) = 0.9823.

Motivation: we can see that some existing cosine and cotangent function-based entropy
measures have no ability to discriminate some IF sets, and there are counterintuitive
phenomena, such as the cases of Example 1 to 4. In this paper, we are also devoted to the
development of IF entropy measures. We propose a new intuitionistic fuzzy entropy based
on a cotangent function, which is an improvement of Wang’s entropy [32], as follows:

ERZ(A) = 1
n

n
∑

i=1
cot(π

4 + |μA(xi)−νA(xi)|
4+πA(xi)

π)
(3)

which not only considers the deviation between membership and non-membership degrees
μA(xi)− νA(xi), but also considers the hesitancy degree πA(xi) of the IF set.

Theorem 1. The measure given by Equation (3) is an IF entropy.

Proof. To prove the measure ERZ(A) given by Equation (3) is an IF entropy, we only need
to prove it satisfies the properties in Definition 4. Obviously, for every xi, we have:

0 ≤ |μA(xi)− νA(xi)|
4 + πA(xi)

π ≤ π

4
,

then

0 ≤ cot(
π

4
+
|μA(xi)− νA(xi)|

4 + πA(xi)
π) ≤ 1

Thus, we have 0 ≤ ERZ(A) ≤ 1.

8
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(i) Let A be a crisp set, i.e., for ∀xi ∈ X, we have μA(xi) = 1, νA(xi) = 0 or μA(xi) =
0, νA(xi) = 1. It is obvious that ERZ(A) = 0.

If ERZ(A) = 0, i.e., ERZ(A) = 1
n

n
∑

i=1
cot(π

4 + |μA(xi)−νA(xi)|
4+πA(xi)

π) = 0, then ∀xi ∈ X, we

have
n
∑

i=1
cot(π

4 + |μA(xi)−νA(xi)|
4+πA(xi)

π) = 0.

Thus |μA(xi)−νA(xi)|
4+πA(xi)

= 1
4 , amd then we have μA(xi) = 1 νA(xi) = 0 or μA(xi) =

0, νA(xi) = 1. Therefore, A is a crisp set.
(ii) Let μA(xi) = νA(xi),∀xi ∈ X; according to Equation (3), we have ERZ(A) =

1
n

n
∑

i=1
cot(π

4 ) = 1.

Now we assume that ERZ(A) = 1; then for all xi ∈ X, we have: cot(π
4 + |μA(xi)−νA(xi)|

4+πA(xi)
π)

= 1, then |μA(xi)− νA(xi)|= 0 , and we can obtain the conclusion μA(xi) = νA(xi) for all
xi ∈ X.

(iii) By AC = {< xi, νA(xi), μA(xi) >|xi ∈ X} and Equation (3), we have:

ERZ(AC) =
1
n

n

∑
i=1

cot(
π

4
+
|νA(xi)− μA(xi)|

4 + πA(xi)
π) = ERZ(A).

(iv) Construct the function:

f (x, y) = cot(
π

4
+

|x− y|
5− (x + y)

π), where x, y ∈ [0, 1].

Now, when x ≤ y, we have f (x, y) = cot(π
4 + y−x

5−(x+y)π); we need to prove that the
function f (x, y) is increasing with x and decreasing with y.

We can easily derive the partial derivatives of f (x, y) to x and to y, respectively:

∂ f
∂x

= − csc2(
π

4
+

y− x
5− (x + y)

π)· (2y− 5)π

[5− (x + y)]2

∂ f
∂y

= − csc2(
π

4
+

y− x
5− (x + y)

π)· (5− 2x)π

[5− (x + y)]2

When x ≤ y, we have ∂ f
∂x ≥ 0, ∂ f

∂y ≤ 0; then, f (x, y) is increasing with x and decreasing
with y; thus, when μB(xi) ≤ νB(xi) and μA(xi) ≤ μB(xi), νA(xi) ≥ νB(xi) are satisfied, we
have f (μA(xi), νA(xi)) ≤ f (μB(xi), νB(xi)).

So cot(π
4 + |μA(xi)−νA(xi)|

4+πA(xi)
π) ≤ cot(π

4 + |μB(xi)−νB(xi)|
4+πB(xi)

π), that is, ERZ(A) ≺ ERZ(B)
holds.

Similarly, we can prove that when x ≥ y, ∂ f
∂x ≤ 0, ∂ f

∂y ≥ 0, then f (x, y) is decreasing with
x and increasing with y, thus when μB(xi) ≥ νB(xi) and μA(xi) ≥ μB(xi), νA(xi) ≤ νB(xi)
is satisfied, so we have f (μA(xi), νA(xi)) ≤ f (μB(xi), νB(xi)).

Therefore, if A ≺ B, we have 1
n

n
∑

i=1
f (μA(xi), νA(xi)) ≤ 1

n

n
∑

i=1
f (μB(xi), νB(xi)), i.e.,

ERZ(A) ≺ ERZ(B). �
From Equation (3), the entropies of A1, A2, A3, A4, A5, A6, A7 and A8 in Examples 1 to

4 can be obtained as follows:

ERZ(A1) = 0.8634, ERZ(A2) = 0.8694,ERZ(A1) ≺ ERZ(A2).
ERZ(A3) = 0.6298,ERZ(A4) = 0.8215,ERZ(A3) ≺ ERZ(A4).
ERZ(A5) = 0.6356,ERZ(A6) = 0.5959,ERZ(A5) � ERZ(A6).
ERZ(A7) = 0.7486,ERZ(A5) = 0.7707,ERZ(A7) ≺ ERZ(A8).

The calculation results are in agreement with our intuition.
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According to the above examples, we see that the proposed entropy measure has a
better performance than the entropy measures EY, EZ, EZJ , EVS, EB1 , EW , EWG, ELR. Further-
more, the new entropy measure considers the two aspects of the IF set (i.e., the uncertainty
depicted by the derivation of membership and non-membership and the hesitancy degree
reflected by the hesitation degree of the IF set), and thus the proposed entropy measure is a
good entropy measure formula of the IF set.

4.2. Clustering Method of Group Decision Experts

For group decision-making problems, suppose that X = {x1, x2, · · · , xm} is a set of m
schemes, and O = {O1, O2, · · · , On} is a set of n decision makers. The evaluation values
decision makers Oj ∈ O to schemes xk ∈ X are expressed by IF number < μj(xk), νj(xk) >,
where μj(xk) and νj(xk) are the membership (satisfaction) and non-membership (dissat-
isfaction) degrees of the decision maker Oj ∈ O to the scheme xk ∈ X with respect to
the fuzzy concept so that they satisfy the conditions 0 ≤ μj(xk) ≤ 1, 0 ≤ νj(xk) ≤ 1 and
0 ≤ μj(xk) + νj(xk) ≤ 1 (j = 1, 2, · · · , n; k = 1, 2, · · · , m).

Thus, a group decision-making problem can be expressed by the decision matrix
O = [< μkj, νkj >]m×n as follows:

O = [< μkj, νkj >]m×n =

O1 O2 · · · On
x1
x2
...

xm

⎡⎢⎢⎣
< μ11, ν11 > < μ12, ν12 > · · · < μ1n, ν1n >
< μ21, ν21 > < μ22, ν22 > · · · < μ2n, ν2n >

· · · · · ·
< μm1, νm1 > < μm2, νm2 > · · · < μmn, νmn >

⎤⎥⎥⎦
m×n

4.2.1. A New IF Similarity Measure

To measure the similarities among any form of data is an important topic [44,45]. The
measures used to find the resemblance between data is called a similarity measure. It has
different applications in classification, medical diagnosis, pattern recognition, data mining,
clustering [46], decision making and image processing. Khan et al. [47] proposed a newly
similarity measure for a q-rung orthopair fuzzy set based on a cosine and cotangent function.
Chen and Chang [48] proposed a new similarity measure between Atanassov’s intuitionistic
fuzzy sets (AIFSs) based on transformation techniques and applied the proposed similarity
measure between AIFSs to deal with pattern recognition problems. Beliakov et al. [49]
presented a new approach for defining similarity measures for AIFSs and applied it to
image segmentation. Lohani et al. [50] presented a novel probabilistic similarity measure
(PSM) for AIFSs and developed the novel probabilistic λ-cutting algorithm for clustering.
Liu et al. [51] proposed a new intuitionistic fuzzy similarity measure, introduced it into
intuitionistic fuzzy decision system and proposed an intuitionistic fuzzy three branch
decision method based on intuitionistic fuzzy similarity. Mei [52] constructed a similarity
model between intuitionistic fuzzy sets and applied it to dynamic intuitionistic fuzzy
multi-attribute decision making.

At present, most of the existing similarity measures are expressed in real numbers,
which is not in line with the characteristics of intuitionistic fuzzy sets. In this section, we
define a new IF similarity measure whose value is an IF number.

For any two experts Oj and Ok, let

Xp(Oj, Ok) =
p

√
m

∑
i=1

wi(νij − νik)
pandMp(Oj, Ok) =

p

√
m

∑
i=1

wi(μij − μik)
p,

where wi is the weight of scheme xi for all i ∈ {1, 2, · · · , m} and
m
∑

i=1
wi = 1 and p ≥ 1 is

a parameter.
Let

μjk = 1−max
{

Xp(Oj, Ok), Mp(Oj, Ok)
}

,

10
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νjk = min
{

Xp(Oj, Ok), Mp(Oj, Ok)
}

Theorem 2. Let Oj and Ok be two IF sets; then,

ψ(Oj, Ok) =< μjk, νjk > (4)

is the IF similarity measure of Oj and Ok.

Proof. To prove the measure given by Equation (4) is an IF similarity measure of Oj and Ok,
we only need to prove that it satisfies the properties in Definition 6.

First, we prove that ψ(Oj, Ok) is the form of an IFN.

Because 0 ≤ Xp(Oj, Ok) = p

√
m
∑

i=1
wi(νij − νik)

p ≤ 1 and 0 ≤ Mp(Oj, Ok) =

p

√
m
∑

i=1
wi(μij − μik)

p ≤ 1, so 0 ≤ 1 − max
{

Xp(Oj, Ok), Mp(Oj, Ok)
} ≤ 1,0

≤ min
{

Xp(Oj, Ok), Mp(Oj, Ok)
} ≤ 1 and μjk + νjk ≤ 1. This proves that ψ(Oj, Ok) is

the form of an IFN.
Let ψ(Oj, Ok) =< μjk, νjk >=< 1, 0 >; we have

μjk = 1−max
{

Xp(Oj, Ok), Mp(Oj, Ok)
}
= 1

And νjk = min
{

Xp(Oj, Ok), Mp(Oj, Ok)
}
= 0, so Xp(Oj, Ok) = Mp(Oj, Ok). Because

of the arbitrariness of wi, we get μij = μik and νij = νik for all i ∈ {1, 2, · · · , m}, that is,
Oj = Ok.

Now we assume that Oj = Ok; then for all i ∈ {1, 2, · · · , m}, we have μij = μik, νij = νik;
we can obtain Xp(Oj, Ok) = Mp(Oj, Ok) = 0 and μjk = 1−max

{
Xp(Oj, Ok), Mp(Oj, Ok)

}
=

1,νjk = min
{

Xp(Oj, Ok), Mp(Oj, Ok)
}
= 0, that is, ψ(Oj, Ok) =< 1, 0 >.

Property 3 clearly holds.
If O1 ⊆ O2 ⊆ O3, i.e.,μi1 ≤ μi2 ≤ μi3,νi1 ≥ νi2 ≥ νi3 for all i ∈ {1, 2, · · · , m}, then

(μi1 − μi2)
p ≤ (μi1 − μi3)

p, (νi1 − νi2)
p ≤ (νi1 − νi3)

p for all i ∈ {1, 2, · · · , m}.
We have Xp(O1, O2) ≤ Xp(O1, O3) and Mp(O1, O2) ≤ Mp(O1, O3); therefore, μ12 ≥

μ13, and ν12 ≤ ν13, that is,ψ(O1, O3) ⊆ ψ(O1, O2). Similarly, it can be proved that
ψ(O1, O3) ⊆ ψ(O2, O3).

This theorem is proved. �

For IF similarity measure Equation (4), since each scheme is equal, this paper takes
p = 2, wi = 1

m for all i ∈ {1, 2, · · · , m}. Using this formula, the IF decision matrix
O = [< μkj, νkj >]m×n can be transformed into the IF similar matrix Z = (zjk)n×n, where
zjk = ψ(Oj, Ok) =< μjk, νjk > is an IFN.

The IF decision matrix can be transformed into the IF similarity matrix Z = (zjk)n×n by
using the IF similarity formula proposed in this paper, where zjk = ψ(Oj, Ok) =< μjk, νjk >
is an IFN.

People’s pursuit of risk varies from person to person. Let β ∈ [0, 1] be the risk
factor; then the IF similarity matrix Z = (zjk)n×n can be transformed into a real matrix
R = (rjk)n×n where rjk = μjk + β(1− μjk − νjk).

R = (rjk)n×n =

⎡⎢⎢⎣
r11 r12 · · · r1n
r21 r22 · · · r2n

· · · · · ·
rn1 rn2 · · · rnn

⎤⎥⎥⎦

11
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4.2.2. Threshold Change Rate Analysis Method

The method of Zhou et al. [40] is adopted in this section.
Let the clustering threshold θ = θt, where θt ∈ [0, 1]. If

rjk ≥ θt, j �= k (5)

then elements Ok and Oj are considered to have the same properties. The closer the
threshold is to 1, the finer the classification is.

In Zhou et al. [40], the selection of the optimal clustering threshold θi can be deter-
mined by analyzing the change rate Ci of θi. The rate of change Ci is given as follows:

Ci =
θi−1 − θi
ni − ni−1

(6)

where i is the clustering times of θ from large to small, ni and ni−1 are the number of objects
in the i-th and (i− 1)-th clustering, respectively, and θi and θi−1 are the thresholds for the
i-th and (i− 1)-th clustering, respectively. If

Ci = max
j

{
Cj
}

(7)

then the threshold value of i clustering is the best.
It can be seen from Equation (5) that the greater the change rate Ci of the clustering

threshold θ is, the greater the difference between the corresponding two clusters and
the more obvious the boundary between classes. When Ci is the maximum value, its
corresponding θ is the optimal clustering threshold value, which can make the difference
between the clusters obtained by the i-th clustering to be the largest, thus realizing the
purpose and significance of classification.

4.3. Analysis of Group Decision Making Expert Group Weighting

In group decision-making problems, because each expert has a different specialty,
experience and preference, their evaluation information should be treated differently. In
order to reflect the status and importance of each expert in decision making, it is of great
significance to determine the expert weight reasonably.

Two aspects need to be considered in expert weight, namely, the weight between cate-
gories and the weight within categories. The weight between categories mainly considers
the number of experts in the category of experts. For the category with large capacity, the
evaluation results given by experts represent the opinions of most experts, so the corre-
sponding categories should be given a larger weight, which reflects the principle that the
minority is subordinate to the majority, while the category with smaller capacity should be
given a smaller weight.

Suppose that n experts are divided into t categories; the number of experts in the i
category is ϕi(ϕi ≤ n); and the weights between the expert categories λi are as follows:

λi =
ϕi

2

t
∑

k=1
ϕt2

, k = 1, 2, · · · , t. (8)

The weight of experts within the category can be measured by the information con-
tained in an IF evaluation value given by experts. Entropy is a measure of information
uncertainty and information quantity. If the entropy of the evaluation information given by
an expert is smaller, the uncertainty of the evaluation information is smaller, which means
that the logic of the expert is clearer; the amount of information provided is greater; and
the role of the expert in the comprehensive evaluation is greater, so the expert should be
given more weight. Therefore, the weight of experts within the category can be measured
by IF entropy.

12
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The evaluation vector of expert k is Ok = (< μk(x1), νk(x1) >, · · · ,< μk(x5), νk(x5) >).
The IF entropy corresponding to Equation (1) is expressed as follows:

E(k) =
1
5

5

∑
i=1

cot(
π

4
+
|μk(xi)− νk(xi)|

4 + πk(xi)
π) (9)

The internal weight aik of the k expert in category i is as follows:

aik =
1− E(k)

ϕ(i)
∑

i=1
[1− E(i)]

(10)

By linear weighting λi and aik, the total weight of experts ωk is obtained:

ωk = λi·aik, k = 1, 2, · · · , n. (11)

4.4. Intelligent Expert Combination Weighting Algorithm

A cluster analysis method is often used to realize the expert weighting in group
decision making. The basic principle of expert cluster analysis is to measure the similarity
degree of expert evaluation opinions according to certain standards and cluster experts
based on the similarity degree. In short, Figure 4 shows the general scheme of the expert
clustering method.

 
Figure 4. The general scheme of expert clustering method.

To sum up, this paper proposes an expert combination weighting scheme for group
decision making, and obtains the following algorithm, which we call the intelligent expert
combination weighting algorithm (see Algorithm 1).

13
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Algorithm 1. Intelligent expert combination weighting algorithm

Input the IF decision matrix O = [< μij, νij >]n×m given by experts where
I = {1, 2, · · · , n} andJ = {1, 2, · · · , m}.
1: For j ∈ I implement.
2: For k ∈ I implement.
3: For i ∈ J implement.
4: The IF similarity measure between experts ψ(Oj, Ok) =< μjk, νjk > is calculated according to
formula (4).
5: End for

6: Let zjk = ψ(Oj, Ok) =< μjk, νjk > .
7: End for

8: End for

9: The IF decision matrix O = [< μij, νij >]n×m is transformed into the similarity matrix
Z = (zjk)n×n.
10: By selecting the risk factor β, the IF similarity matrix Z = (zjk)n×n is transformed into the real
matrix R = (rjk)n×n .
11: According to the real matrix R = (rjk)n×n, the dynamic clustering graph is drawn, and the
optimal clustering threshold is determined by Formulae (6) and (7). According to this threshold,
experts are classified into L categories.
12: For l ∈ L implement.
13: Using Formula (8), the weight of experts between categories λl is determined.
14: For k ∈ I implement.
15: Using Formula (8), the weight of experts between categories alk is determined.
16: Formula (11) is used to determine the total weight of experts. ωk is calculated.
17: End for.
18: End for.
19: For i ∈ J implement.
20: For k ∈ I implement.
21: The weighted operator (2) of IF sets is used to aggregate expert IF group decision-making
information.
22: End for.
23: According to definition 8, the scores and accuracy values of each scheme xi are obtained.
24: End for.
25: return The results of the ranking of schemes xi.

5. Performance Analysis

The railway is an important national infrastructure and livelihood project. It is a
resource-saving and environment-friendly mode of transportation. In recent years, China’s
railway development has made remarkable achievements, but compared with the needs of
economic and social development, other modes of transportation and advanced foreign
railway technique, the railway in China is still a weak part of the whole transportation
system [53,54]. In order to further accelerate railway construction, expand the scale of
railway network and improve the layout structure and quality, the state promulgated the
medium and long term railway network plan, which puts forward a series of railway plans,
including the plan for railway reconstruction.

The railway reconstruction project is carried out under a series of communication,
coordination and cooperation efforts, and the complex work is arranged in a limited
work area, so it has encountered many unexpected challenges, such as carelessness or
inadequate planning, which may lead to accidents and cause significant damage to life,
assets, environment and society. According to literature [55], we can conclude that there
are about seven types of risks in railway reconstruction projects, including financial and
economic risks, contract and legal risks, subcontractor related risks, operation and safety
risks, political and social risks, design risks and force majeure risks.

It is assumed that nine experts Oi(i = 1, 2, · · · , 9) form a decision-making group
to rank five alternatives xj(j = 1, 2, 3, 4, 5) from the seven evaluation attributes above.
Evaluation alternatives always contain ambiguity and diversity of meaning. In addition, in

14
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terms of qualitative attributes, human assessment is subjective and therefore inaccurate. In
this case, an IF set is very advantageous; it can describe the decision process more accurately.
IF sets are used in this study. After expert investigation and statistical analysis, we can get
the satisfaction degree μij and dissatisfaction νij given by each expert Oi(i = 1, 2, · · · , 9) for
each scheme xj(j = 1, 2, 3, 4, 5). The specific data are given in Table 1.

Table 1. Expert evaluation information on the program.

Expert x1 x2 x3 x4 x5

O1 <0.43,0.45> <0.24,0.70> <0.57,0.40> <0.29,0.55> <0.25,0.60>
O2 <0.58,0.30> <0.37,0.52> <0.30,0.50> <0.55,0.35> <0.35,0.50>
O3 <0.31,0.61> <0.74,0.22> <0.70,0.25> <0.50,0.40> <0.70,0.20>
O4 <0.44,0.45> <0.31,0.60> <0.56,0.40> <0.31,0.52> <0.24,0.60>
O5 <0.31,0.60> <0.70,0.20> <0.75,0.20> <0.60,0.30> <0.68,0.20>
O6 <0.70,0.20> <0.58,0.32> <0.52,0.40> <0.20,0.70> <0.60,0.30>
O7 <0.38,0.52> <0.72,0.21> <0.68,0.22> <0.61,0.30> <0.70,0.22>
O8 <0.41,0.40> <0.28,0.60> <0.55,0.35> <0.30,0.55> <0.26,0.60>
O9 <0.56,0.34> <0.40,0.50> <0.30,0.40> <0.71,0.10> <0.38,0.45>

The calculation steps of the proposed method are given as follows:
Step 1. According to Equation (4), the IF similarity matrix Z is obtained as follows:

Z =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

< 1, 0 > < 0.805, 0.152 > < 0.675, 0.304 > < 0.953, 0.033 > < 0.672, 0.327 >
< 1, 0 > < 0.685, 0.261 > < 0.821, 0.125 > < 0.685, 0.274 >

< 1, 0 > < 0.694, 0.271 > < 0.946, 0.051 >
< 1, 0 > < 0.689, 0.294 >

< 1, 0 >

< 0.746, 0.253 > < 0.668, 0.311 > < 0.945, 0.023 > < 0.752, 0.235 >
< 0.758, 0.211 > < 0.706, 0.246 > < 0.816, 0.133 > < 0.876, 0.075 >
< 0.751, 0.245 > < 0.938, 0.060 > < 0.691, 0.276 > < 0.689, 0.255 >
< 0.762, 0.229 > < 0.688, 0.276 > < 0.966, 0.022 > < 0.768, 0.210 >
< 0.722, 0.277 > < 0.954, 0.038 > < 0.686, 0.298 > < 0.698, 0.245 >

< 1, 0 > < 0.745, 0.250 > < 0.755, 0.216 > < 0.705, 0.286 >
< 1, 0 > < 0.683, 0.279 > < 0.720, 0.220 >

< 1, 0 > < 0.763, 0.220 >
< 1, 0 >

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Step 2. By selecting the risk factor β = 0.5, i.e., moderate risk, the real matrix R

is obtained.

R =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0.827 0.686 0.96 0.673 0.747 0.679 0.961 0.759
1 0.712 0.848 0.706 0.774 0.73 0.842 0.901

1 0.712 0.948 0.753 0.939 0.708 0.717
1 0.700 0.767 0.706 0.972 0.779

1 0.723 0.958 0.694 0.727
1 0.748 0.770 0.710

1 0.702 0.75
1 0.772

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Step 3. According to Equation (5), let i take all the values in turn to get a series of clas-
sifications, and then draw a dynamic clustering graph according to Equations (5) and (6),
as shown in Figure 5.

Figure 5. Dynamic clustering graph.

According to Equation (6), we have

C1 = 1−0.972
2−0 = 0.014, C2 = 0.972−0.961

3−2 = 0.011, C3 = 0.961−0.958
5−3 = 0.0015,

C4 = 0.958−0.948
6−5 = 0.01, C5 = 0.948−0.901

8−6 = 0.0235, C6 = 0.901−0.770
9−8 = 0.131.

Since it is meaningless for each expert to become a category or all experts to be classi-
fied into one category, we do not consider C6; then, we have C5 = max{C1, C2, C3, C4, C5}.

Therefore, taking θ = 0.891 as the optimal clustering threshold, the clustering result is
the most reasonable and consistent with the actual situation, and the clustering results are
shown in Figure 6. We can see that the corresponding clustering results are as follows:

{(1 4 8), (3 5 7), (2 9), (6)}

Figure 6. Clustering results.

Step 4. According to Equation (8), the weight of experts between categories is as follows:

λ1 = 0.3913, λ2 = 0.3913, λ3 = 0.1739, λ4 = 0.0435.
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Step 5. According to Equation (9), the entropy vector of the expert group is obtained
as follows:

(0.6868, 0.7405, 0.5538, 0.7364, 0.4995, 0.5935, 0.5507, 0.7159, 0.7339)

According to Equation (10), the weight of experts within the category is shown in
Table 2.

Table 2. The weight of experts within the category.

Category The Weight of Experts within the Category

Category 1 a11 = 0.3638, a14 = 0.3062,a18 = 0.330
Category 2 a23 = 0.3196,a25 = 0.3585, a27 = 0.3219
Category 3 a32 = 0.4937,a39 = 0.4303
Category 4 a46 = 1

Step 6. We weight λi and aik linearly to get the total weight vector ωk of experts
as follows:

(0.1424, 0.0859, 0.1251, 0.1198, 0.1403, 0.0435, 0.1260, 0.1291, 0.0748).

Step 7. According to the total weight of nine experts, the weighted aggregation
operator given by Equation (2) is used to aggregate the expert information, and the com-
prehensive evaluation vector is obtained as follows:

(0.3616, 0.4504), (0.5226, 0.3878), (0.5932, 0.3218), (0.4749, 0.3853), (0.4972, 0.3718).

According to Equation (1), the scores and accuracy values of the comprehensive
evaluation vector are calculated as follows:

M(x1) = −0.089, M(x2) = 0.1348, M(x3) = 0.2714, M(x4) = 0.0896,M(x5) = 0.1254.
Δ(x1) = 0.812, Δ(x2) = 0.9104, Δ(x3) = 0.915, Δ(x4) = 0.8602,Δ(x5) = 0.869

Therefore, the priority of the five alternatives is x3 � x2 � x5 � x4 � x1, and the
optimal one is x3.

6. Conclusions and Future Work

This article listed some counterintuitive phenomena of some existing intuitionistic
fuzzy entropies. We defined an improved intuitionistic fuzzy entropy based on a cotangent
function and a new IF similarity measure whose value is an IF number, applied them to the
expert weight problem of group decision making and put forward the expert weight com-
bination weighting scheme. Finally, this method was applied to a railway reconstruction
case to illustrate the effectiveness of the method.

In the future, we will apply the expert weight combination weighting scheme proposed
in this paper to situations in real life. We will also formulate this kind of entropy measure
and similarity measures for an interval-valued IF set [56], Fermat fuzzy set, spherical
fuzzy set, t-spherical fuzzy set, picture fuzzy set, single valued neutrosophic set [55,57],
Plithogenic set [58] and linear fuzzy set.

While studying the theoretical method, this paper used numerical examples rather
than the actual production data, which is the limitation of this paper. In the future research,
we will apply the expert weight combination weighting scheme proposed in this paper to
practical production problems.
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Abstract: Fuzzy sets and interval-valued fuzzy sets are two kinds of fuzzy information expression
forms in real uncertain and vague environments. Their mixed multivalued information expression
and operational problems are very challenging and indispensable issues in group decision-making
(GDM) problems. To solve single- and interval-valued fuzzy multivalued hybrid information expres-
sion, operations, and GDM issues, this study first presents the notion of a single- and interval-valued
fuzzy multivalued set/element (SIVFMS/SIVFME) with identical and/or different fuzzy values. To
effectively solve operational problems for various SIVFME lengths, SIVFMS/SIVFME is converted
into the interval-valued fuzzy and entropy set/element (IVFES/IVFEE) based on the mean and
information entropy of SIVFME. Then, the operational relationships of IVFEEs and the expected
value function and sorting rules of IVFEEs are defined. Next, the IVFEE weighted averaging and
geometric operators and their mixed-weighted-averaging operation are proposed. In terms of the
mixed-weighted-averaging operation and expected value function of IVFEEs, a GDM method is de-
veloped to solve multicriteria GDM problems in the environment of SIVFMSs. Finally, the proposed
GDM method was utilized for a supplier selection problem in a supply chain as an actual sample
to show the rationality and efficiency of SIVFMSs. Through the comparative analysis of relative
decision-making methods, we found the superiority of this study in that the developed GDM method
not only compensates for the defects of existing GDM methods, but also makes the GDM process
more reasonable and flexible.

Keywords: single- and interval-valued fuzzy multivalued set; interval-valued fuzzy and entropy
set; interval-valued fuzzy and entropy element weighted averaging operator; interval-valued fuzzy
and entropy element weighted geometric operator; mixed-weighted-averaging operation; group
decision making

MSC: 03E72; 91B06

1. Introduction

Fuzzy sets (FS) [1] and interval-valued fuzzy sets (IVFSs) [2] are two important tools
of fuzzy information expressions in real uncertain and vague environments. A bag/fuzzy
multiset [3,4] or an interval-valued fuzzy multiset (IVFM) [5] was proposed as the extension
of FS or IVFS, where each element in a universe set can occur more times with different
and/or identical fuzzy values or interval-valued fuzzy values. Therefore, they have been
used in various areas [6–10]. In a hesitant situation, a hesitant fuzzy set (HFS) [11] can
represent a set of a few of different fuzzy values of each element in the set. To express the
hybrid information of HFS and IVFS, some researchers presented cubic HFSs and applied
them to medical assessments of prostatic patients [12] and multicriteria decision-making
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problems [13]; then, other researchers introduced hesitant cubic fuzzy sets (HCFSs) and
applied them to multicriteria (group) decision-making problems [14,15]. However, their
hesitant information does not contain the same fuzzy values corresponding to the hesitant
characteristics/concept [11], which is different from the fuzzy multiset concept.

Regarding the probability of an element belonging to a set, hesitant probabilistic fuzzy
sets (HPFSs) [16,17] were introduced and applied to hesitant probabilistic fuzzy decision-
making problems. However, an HPFS only contains the probabilistic values of a few of the
same values, resulting in probabilistic distortion. Since the probabilistic method requires
a lot of fuzzy data (more sample data) to maintain reasonable probabilistic values, the
probabilistic values of small samples of data lead to irrationality/distortion. Therefore,
it is difficult to apply the probabilistic method in actual group decision making (GDM)
applications because the evaluation values of a lot of decision makers are required to ensure
the rationality of the probabilistic values. Hence, it is obvious that the use of HPFSs may
have some flaws from the perspective of probability.

Recently, Turkarslan et al. [18] introduced a consistency fuzzy set/element (CFS/CFE)
based on the mean of a fuzzy sequence and the complement of the standard deviation of
a fuzzy sequence in a fuzzy multiset to reasonably simplify the information expression
and operation of different fuzzy sequence lengths, and then proposed a cosine similarity
measure of CFSs for medical diagnosis in the case of fuzzy multisets. Furthermore, Du
and Ye [19] presented cubic fuzzy multivalued sets (CFMSs) and converted them into cubic
fuzzy consistency sets with the help of the mean of a fuzzy sequence and the complement
of the standard deviation of a fuzzy sequence. Then, they developed a hybrid weighted
arithmetic and geometric aggregation operator for GDM with CFMSs. In general, the
concept of standard deviation is only applicable to the calculation of fuzzy sequences
containing normal distributions, which exposes its limitations.

In real GDM problems, single- and interval-valued fuzzy hybrid multivalued informa-
tion expression and operation problems are very challenging issues, due to the uncertainty
and incompleteness of each decision-maker’s judgement/cognition of the evaluated object.
However, existing fuzzy multiset/HFS/HPFS/IVFM/CFMS cannot represent the single-
and interval-valued fuzzy hybrid multivalued information with identical and/or different
fuzzy values that are given by a group of decision makers in the GDM process. In the
GDM problem, one of the experts/decision makers can assign his/her single-valued or
interval-valued fuzzy evaluation value in terms of his cognition of the evaluated object in
the assessment process. For example, five experts evaluate a car’s “comfort” with a group
of fuzzy values (0.5, 0.5, 0.6, [0.6, 0.7], [0.7, 0.8]). The fuzzy values 0.5, 0.5, and 0.6 are given
by three of the five experts, and the interval-valued/uncertain fuzzy values [0.6, 0.7] and
[0.7, 0.8] are given by the two of the five experts. In this issue, the existing fuzzy multi-
set/HFS/HPFS/IVFM/CFMS can only represent a fuzzy sequence or an interval-valued
fuzzy sequence, but they cannot express such a group of single- and interval-valued fuzzy
hybrid values (the hybrid set of two different fuzzy sequences) simultaneously. Meanwhile,
there is no research on a single- and interval-valued fuzzy multivalued framework in the
existing literature. Therefore, it is necessary to propose a new expression form to effectively
express the single- and interval-valued fuzzy hybrid multivalued information to overcome
the defect of existing various fuzzy expressions. Motivated by this new idea, this paper first
puts forward the concept of a single- and interval-valued fuzzy multivalued set/element
(SIVFMS/SIVFME). Then, a new information entropy measure of SIVFME is proposed
to transform SIVFMS/SIVFME into an interval-valued fuzzy and entropy set/element
(IVFES/IVFEE) based on the mean and information entropy of SIVFME, and then some
operations of IVFEEs and the expected value function and sorting rules of IVFEEs are
defined. Next, the IVFEE weighted averaging (IVFEEWA) and IVFEE weighted geometric
(IVFEEWG) operators and their mixed-weighted-averaging operation are proposed to
overcome the flaws of the IVFEEWA operator, which mainly attends to group arguments,
and the IVFEEWG operator, which mainly attends to individual arguments [19], in the
IVFEE aggregation process. According to the proposed mixed-weighted-averaging opera-
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tion and the expected value function, a GDM method is developed to solve multicriteria
GDM problems with SIVFMSs. Finally, the proposed GDM method is utilized for an actual
supplier selection problem in a supply chain to show the rationality and effectiveness in
the setting of SIVFMSs. The results indicate that the proposed GDM method makes the
GDM process more reasonable and flexible.

This original study demonstrates the following main contributions and highlights:

(i). The proposed SIVFMS/SIVFME forms single- and interval-valued fuzzy multivalued
framework to reasonably express the mixed information of the single-valued/certain
fuzzy sequence and interval-valued/uncertain fuzzy sequence, which are given by
different decision makers in the GDM process.

(ii). The IVFEE transformed based on the mean and information entropy of SIVFME
can reasonably simplify the information expression and operation of different fuzzy
sequence lengths in SIVFMEs; then, the proposed transformation method using
the mean and information entropy of SIVFME can reveal the average level and
consistency/consensus degree of the single- and interval-valued fuzzy sequence in
SIVFME to keep much more useful information in the transformation process.

(iii). The mixed-weighted-averaging operation of the IVFEEWA and IVFEEWG operators
can provide a useful modeling tool for their GDM method in the environment of
SIVFMSs and overcome the flaw of having a single aggregation operator [19].

(iv). The developed GDM method can solve multicriteria GDM problems and make the
decision results more flexible and more reasonable for SIVFMSs.

The remainder of this article is made up of the following structures. In Section 2,
we present the concepts of SIVFMS, SIVFME, information entropy, and IVFEE. Then, we
define the operational laws of IVFEEs, and the expected value function and sorting rules
of IVFEEs. The IVFEEWA and IVFEEWG operators and their mixed-weighted-averaging
operation are presented in Section 3. In Section 4, a GDM method is given by using the
mixed-weighted-averaging operation and the expected value function. In Section 5, the
proposed GDM method is applied to an actual supplier selection problem in a supply
chain to show its rationality and effectiveness when dealing with SIVFMSs, and then the
superiorities of the proposed method are indicated by comparative analysis. Section 6
depicts conclusions and future research.

2. SIVFMS and IVFES

Definition 1. Let U = {u1, u2, . . . , us} be a finite universe set U. Then, a single- and interval-valued
fuzzy multivalued set H in U is defined as follows:

H = {〈uk, FH(uk)〉|uk ∈ U} (1)

where FH(uk) for uk∈ U (k = 1, 2, . . . , s) is a single- and interval-valued fuzzy sequence of the
element uk in the set H, denoted as an increasing fuzzy sequence FH(uk) = (λ1

H(uk), λ2
H(uk), . . . ,

λ
ak
H (uk), [λL1

H (uk), λU1
H (uk)], [λL2

H (uk), λU2
H (uk)], . . . , [λLbk

H (uk), λ
Ubk
H (uk)]) with identical and/or

different fuzzy values, such that 0 ≤ λ1
H(uk) ≤ λ2

H(uk), . . . ,≤ λ
ak
H (uk) ≤ 1 with ak single-valued

fuzzy values and [λL1
H (uk), λU1

H (uk)] ⊆ [λL2
H (uk), λU2

H (uk)] ⊆, . . . ,⊆ [λ
Lbk
H (uk), λ

Ubk
H (uk)] ⊆

[0, 1] with bk interval-valued fuzzy values.

Especially when all bk = 0 or ak = 0 for k = 1, 2, . . . , s, SIVFMS degenerates to a fuzzy
multiset or an IVFM.

For simplicity, the kth element FH(uk) in H is denoted as the kth SIVFME: FHk =

(λ1
Hk, λ2

Hk, . . . , λ
ak
Hk, [λL1

Hk, λU1
Hk], [λ

L2
Hk, λU2

Hk], . . . , [λLbk
Hk , λ

Ubk
Hk ]).

To solve the difficult conversions between different single- and interval-valued fuzzy
sequence lengths, it is necessary to convert SIVFMS into IVFES in terms of the mean and
information entropy of SIVFME.

First, the concept of the Shannon/probability entropy [20] is introduced below.
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Set R = {r1, r2, . . . , rs} as a probability distribution on a set of random variables. Thus,
the Shannon entropy of the probability distribution R is denoted as [20]

E(R) = −
s

∑
i=1

ri ln(ri) (2)

where ri ∈ [0, 1] and
s
∑

i=1
ri = 1.

If all probability values of ri (i = 1, 2, . . . , s) in R are the same, the probability entropy
can reach the maximum value of E(R), which reflects the perfect consistency (the same
probabilities) of all ri. Generally, the larger the probability entropy measure value, the
better the consistency level of all probability values.

According to the probability entropy notion, the interval-valued entropy concept
of SIVFME (an information entropy measure of SIVFME) is proposed, and SIVFMS is
converted into IVFES based on the mean and information entropy of SIVFME, which is
given by the following definition.

Definition 2. An IVFES Z of a SIVFMS H in a finite universe set U = {u1, u2, . . . , us} is defined as

Z = {(uk, mZ(uk), eZ(uk))|uk ∈ U},

where mZ (uk) ⊆ [0, 1] and eZ(uk) ⊆ [0, 1] (k = 1, 2, . . . , s) are the interval-valued mean and
interval-valued entropy of SIVFME, which are obtained by using the following formulae:

mZ(uk) = [mL
Z(uk), mU

Z (uk)] =

⎡⎢⎢⎢⎢⎣
1

ak+bk

(
ak
∑

i=1
λi

H(uk) +
bk
∑

i=1
λLi

H (uk)

)
,

1
ak+bk

(
ak
∑

i=1
λi

H(uk) +
bk
∑

i=1
λUi

H (uk)

)
⎤⎥⎥⎥⎥⎦, mZ(uk) ⊆ [0, 1], (3)

eZ(uk) = [eL
Z(uk), eU

Z (uk)]

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

min

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 1
ln(ak+bk)

⎛⎜⎜⎝
ak
∑

i=1

(
λi

H(uk)

∑
ak
i=1 λi

H(uk)+∑
bk
i=1 λLi

H (uk)
ln λi

H(uk)

∑
ak
i=1 λi

H(uk)+∑
bk
i=1 λLi

H (uk)

)
+

bk
∑

i=1

(
λLi

H (uk)

∑
ak
i=1 λi

H(uk)+∑
bk
i=1 λLi

H (uk)
ln λLi

H (uk)

∑
ak
i=1 λi

H(uk)+∑
bk
i=1 λLi

H (uk)

)
⎞⎟⎟⎠,

− 1
ln(ak+bk)

⎛⎜⎜⎝
ak
∑

i=1

(
λi

H(uk)

∑
ak
i=1 λi

H(uk)+∑
bk
i=1 λUi

H (uk)
ln λi

H(uk)

∑
ak
i=1 λi

H(uk)+∑
bk
i=1 λUi

H (uk)

)
+

bk
∑

i=1

(
λUi

H (uk)

∑
ak
i=1 λi

H(uk)+∑
bk
i=1 λUi

H (uk)
ln λUi

H (uk)

∑
ak
i=1 λi

H(uk)+∑
bk
i=1 λUi

H (uk)

)
⎞⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

max

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 1
ln(ak+bk)

⎛⎜⎜⎝
ak
∑

i=1

(
λi

H(uk)

∑
ak
i=1 λi

H(uk)+∑
bk
i=1 λLi

H (uk)
ln λi

H(uk)

∑
ak
i=1 λi

H(uk)+∑
bk
i=1 λLi

H (uk)

)
+

bk
∑

i=1

(
λLi

H (uk)

∑
ak
i=1 λi

H(uk)+∑
bk
i=1 λLi

H (uk)
ln λLi

H (uk)

∑
ak
i=1 λi

H(uk)+∑
bk
i=1 λLi

H (uk)

)
⎞⎟⎟⎠,

− 1
ln(ak+bk)

⎛⎜⎜⎝
ak
∑

i=1

(
λi

H(uk)

∑
ak
i=1 λi

H(uk)+∑
bk
i=1 λUi

H (uk)
ln λi

H(uk)

∑
ak
i=1 λi

H(uk)+∑
bk
i=1 λUi

H (uk)

)
+

bk
∑

i=1

(
λUi

H (uk)

∑
ak
i=1 λi

H(uk)+∑
bk
i=1 λUi

H (uk)
ln λUi

H (uk)

∑
ak
i=1 λi

H(uk)+∑
bk
i=1 λUi

H (uk)

)
⎞⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, eZ(uk) ⊆ [0, 1] (4)

It is obvious that the IVFES Z consists of interval-valued fuzzy average values and
entropy values to reasonably solve the expression and operation problems of different
sequence lengths in SIVFMEs.
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Remark 1.

(1) The entropy value indicates a degree of difference among various fuzzy values in the SIVFME
FH(uk). The larger the entropy value, the better the consistency of various fuzzy values in the
SIVFME FH(uk).

(2) All fuzzy values in FH(uk) are identical when eZ(uk) =
[
eL

Z(uk), eU
Z (uk)

]
= [1,1], which can

indicate the complete consistency of the multiple fuzzy values.
(3) In GDM problems, the larger the average value and entropy value of the group evaluation, the

better the group evaluation values and their consistency/consensus. When the entropy value
of the group evaluation values is equal to one, this reflects complete consistency/consensus of
the group evaluation values.

Example 1. Let us consider a GDM problem. When a group of four decision makers/experts is
asked to assess product quality (u1) and service quality (u2) in U = {u1, u2} regarding a supplier A,
they can give two groups of fuzzy assessment values, (u1, 0.7, 0.8, [0.6, 0.8], [0.7, 0.9]) and (u2,
[0.6, 0.7], [0.6, 0.7], [0.6, 0.7], [0.6, 0.7], [0.6, 0.7]). Therefore, using Equations (2) and (3), their
interval-valued fuzzy average values and entropy values are [0.7, 0.8] and [0.9963, 0.9972] for u1
and [0.6, 0.7] and [1, 1] for u2, respectively, which are expressed as the IVFES Z = {(u1, [0.7, 0.8],
[0.9963, 0.9972]), (u2, [0.6, 0.7], [1, 1])} in the GDM example.

In this example, it can be seen that the average values and entropy values can reflect the
magnitude and consistency/consensus degree of the group evaluation values. The larger
the entropy value, the better the consistency/consensus of the group evaluation values.

Then, the simplified expression form of a basic element z(uk) =
(
uk, mZ(uk), eZk(uk)

)
for [mL

Z(uk), mU
Z (uk)] ⊆ [0, 1] and [eL

Z(uk), eU
Z (uk)] ⊆ [0, 1] in the IVFES Z can be denoted as

zk = (mZk, eZk) for
[
mL

Zk, mU
Zk
] ⊆ [0, 1] and

[
eL

Zk, eU
Zk
] ⊆ [0, 1], which is named IVFEE.

Definition 3. Set two IVFEEs as z1 = ([mL
Z1, mU

Z1], [e
L
Z1, eU

Z1]) and z2 = ([mL
Z2, mU

Z2], [e
L
Z2, eU

Z2]).
Thus, their operational relationships are defined as follows:

(1) z1 ⊇ z2 if and if then mL
Z1 ≥ mL

Z2, mU
Z1 ≥ mU

Z2, eL
Z1 ≥ eL

Z2, and eU
Z1 ≥ eU

Z2;
(2) z1 = z2 if and if then z1 ⊇ z2 and z2 ⊇ z1;
(3) z1 ∪ z2 =

(
[mL

Z1 ∨mL
Z2, mU

Z1 ∨mU
Z2], [e

L
Z1 ∨ eL

Z2, eU
Z1 ∨ eU

Z2]
)
;

(4) z1 ∩ z2 =
(
[mL

Z1 ∧mL
Z2, mU

Z1 ∧mU
Z2], [e

L
Z1 ∧ eL

Z2, eU
Z1 ∧ eU

Z2]
)
.

Definition 4. Set two IVFEEs as z1 = ([mL
Z1, mU

Z1], [e
L
Z1, eU

Z1]) and z2 = ([mL
Z2, mU

Z2], [e
L
Z2, eU

Z2]).
Thus, their operational laws are defined as follows:

(1) z1 ⊕ z2 =

(
[mL

Z1 + mL
Z2 −mL

Z1mL
Z2, mU

Z1 + mU
Z2 −mU

Z1mU
Z2],

[eL
Z1 + eL

Z2 − eL
Z1eL

Z2, eU
Z1 + eU

Z2 − eU
Z1eU

Z2]

)
;

(2) z1 ⊗ z2 = ([mL
Z1mL

Z2, mU
Z1mU

Z2], [e
L
Z1eL

Z2, eU
Z1eU

Z2]);

(3) zλ
1 = ([(mL

Z1)
λ, (mU

Z1)
λ
], [(eL

Z1)
λ, (eU

Z1)
λ
]) for λ > 0;

(4) λz1 = ([1− (1−mL
Z1)

λ, 1− (1−mU
Z1)

λ
], [1− (1− eL

Z1)
λ, 1− (1− eU

Z1)
λ
]) for λ > 0.

However, it is obvious that the above operational results are still IVFEEs.
To compare two IVFEEs zk = ([mL

Zk, mU
Zk], [e

L
Zk, eU

Zk]) for k = 1, 2, the expected value
function is defined as

Q(zk) = (mL
ZkeL

Zk + mU
ZkeU

Zk)/2 for Q(zk) ∈ [0, 1] (5)

Then, the sorting rules of the two IVFEEs are given as follows:

(1) If Q(z1) > Q(z2), then z1 > z2;
(2) If Q(z1) = Q(z2), then z1 ∼= z2.
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Example 2. Assume that two IVFEEs are z1 = ([0.7, 0.8], [0.8, 0.9]) and z2 = ([0.6, 0.7], [0.7, 0.8]).
Then, their sorting is yielded below:

Using Equation (5), there are Q(z1) = (0.7 × 0.8 + 0.8 × 0.9)/2 = 0.56 and Q(z2) = (0.6 × 0.7
+ 0.7 × 0.8)/2 = 0.54. Since Q(z1) > Q(z2), their sorting is z1 > z2.

3. Two Weighted Aggregation Operators of IVFEEs and Their
Mixed-Weighted-Averaging Operation

In this section, we propose the IVFEEWA and IVFEEWG operators according to
the operational laws in Definition 4, and then define their mixed-weighted-averaging
operation to make up for their flaws in aggregating IVFEEs; that is, the weighted averaging
aggregation operator mainly tends to group arguments, and the weighted geometric
aggregation operator tends to group personal arguments.

3.1. Weighted Averaging Aggregation Operator of IVFEEs

Based on the operational laws in Definition 4, the IVFEEWA operator is defined to
aggregate IVFEE information.

Definition 5. Let zk = ([mL
Zk, mU

Zk], [e
L
Zk, eU

Zk]) (k = 1, 2, . . . , s) be a group of IVFEEs and
IVFEEWA: Ωs → Ω. Then, the IVFEEWA operator is defined as

IVFEEWA(z1, z2, . . . , zs) =
s⊕

k=1
λkzk (6)

where λk is the weight of zk with 0 ≤ λk ≤ 1 and ∑s
k=1 λk = 1.

Theorem 1. Let zk = ([mL
Zk, mU

Zk], [e
L
Zk, eU

Zk]) (k = 1, 2, . . . , s) be a group of IVFEEs with the
weight vector = (λ1, λ2, . . . , λn) for 0 ≤ λk ≤ 1 and ∑s

k=1 λk = 1. Then, the aggregated result of
the IVFEEWA operator is still IVFEE, which is obtained by the equation:

IVFEEWA(z1, z2, . . . , zs) =
s⊕

k=1
λkzk

=

([
1− s

∏
k=1

(1−mL
Zk)

λk , 1− s
∏

k=1
(1−mU

Zk)
λk

]
,
[

1− s
∏

k=1
(1− eL

k )
λk , 1− s

∏
k=1

(1− eU
k )

λk

]) (7)

Proof. Regarding mathematical induction, Equation (7) can be proved.

(1) When s = 2, by the operational laws in Definition 4, the aggregation result is yielded
as follows:

IVFEEWA(z1, z2) = λ1z1 ⊕ λ1z2

=

⎛⎜⎜⎜⎜⎜⎜⎝

⎡⎣ 1− (1−mL
Z1)

λ1 + 1− (1−mL
Z2)

λ2 −
(

1− (1−mL
Z1)

λ1
)(

1− (1−mL
Z2)

λ2
)

,

1− (1−mU
Z1)

λ1 + 1− (1−mU
Z2)

λ2 −
(

1− (1−mU
Z1)

λ1
)(

1− (1−mU
Z2)

λ2
) ⎤⎦,⎡⎣ 1− (1− eL

Z1)
λ1 + 1− (1− eL

Z2)
λ2 −

(
1− (1− eL

Z1)
λ1
)(

1− (1− eL
Z2)

λ2
)

,

1− (1− eU
Z1)

λ1 + 1− (1− eU
Z2)

λ2 −
(

1− (1− eU
Z1)

λ1
)(

1− (1− eU
Z2)

λ2
) ⎤⎦

⎞⎟⎟⎟⎟⎟⎟⎠
=

([
1− 2

∏
k=1

(1−mL
Zk)

λk , 1− 2
∏

k=1
(1−mU

Zk)
λk

]
,
[

1− 2
∏

k=1
(1− eL

Zk)
λk , 1− 2

∏
k=1

(1− eU
Zk)

λk

])
.

(8)

(2) When s = n, Equation (7) can keep the following result:

IVFEEWA(z1, z2, . . . , zn) =
n⊕

k=1
λkzk =

⎛⎜⎜⎝
[

1− n
∏

k=1
(1−mL

Zk)
λk , 1− n

∏
k=1

(1−mU
Zk)

λk

]
,[

1− n
∏

k=1
(1− eL

Zk)
λk , 1− n

∏
k=1

(1− eU
Zk)

λk

]
⎞⎟⎟⎠ (9)
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(3) When s = n + 1, by the operational laws in Definition 4 and Equations (8) and (9), the
aggregated result is given as follows:

IVFEEWA(z1, z2, . . . , zn, zn+1) =
n⊕

k=1
λkzk ⊕ λn+1zn+1

=

([
1− n

∏
k=1

(1−mL
Zk)

λk , 1− n
∏

k=1
(1−mU

Zk)
λk

]
,
[

1− n
∏

k=1
(1− eL

Zk)
λk , 1− n

∏
k=1

(1− eU
Zk)

λk

])
⊕ λn+1zn+1

=

⎛⎜⎜⎝
[

1− n
∏

k=1
(1−mL

Zk)
λk (1−mL

Zn+1)
λn+1 , 1− n

∏
k=1

(1−mU
Zk)

λk (1−mU
Zn+1)

λn+1

]
,[

1− n
∏

k=1
(1− eL

Zk)
λk (1− eL

Zs+1)
λn+1 , 1− n

∏
k=1

(1− eU
Zk)

λk (1− eU
Zs+1)

λn+1

]
⎞⎟⎟⎠

=

([
1− n+1

∏
k=1

(1−mL
Zk)

λk , 1− n+1
∏

k=1
(1−mU

Zk)
λk

]
,
[

1− n+1
∏

k=1
(1− eL

Zk)
λk , 1− n+1

∏
k=1

(1− eU
Zk)

λk

])
.

(10)

Obviously, Equation (7) exists for any s. �

Theorem 2. The IVFEEWA operator implies these properties:

(1) Idempotency: Set zk = ([mL
Zk, mU

Zk], [e
L
Zk, eU

Zk]) (k = 1, 2, . . . , s) as a group of IVFEEs. There
is IVFEEWA(z1, z2, . . . , zs) = z if zk = z = ([mL

Z, mU
Z ], [e

L
Z, eU

Z ]) (k = 1, 2, . . . , s).
(2) Boundedness: Set zk = ([mL

Zk, mU
Zk], [e

L
Zk, eU

Zk]) (k = 1, 2, . . . , s) as a group of IVFEEs and let

zmin =

([
min

k

(
mL

Zk
)
, min

k

(
mU

Zk
)]

,
[

min
k

(
eL

Zk
)
, min

k

(
eU

Zk
)])

and

zmax =

([
max

k

(
mL

Zk
)
, max

k

(
mU

Zk
)]

,
[

max
k

(
eL

Zk
)
, max

k

(
eU

Zk
)])

be the minimum IVFEE

and the maximum IVFEE, respectively. Then, zmin ≤ IVFEEWA(z1, z2, . . . , zs) ≤ zmax exists.
(3) Monotonicity: Set zk = ([mL

Zk, mU
Zk], [e

L
Zk, eU

Zk]) and z∗k =
([

mL∗
Zk, mU∗

Zk
]
,
[
eL∗

Zk, eU∗
Zk

])
(k = 1, 2, . . . , s) as two groups of IVFEEs. Then, there exists IVFEEWA(z1, z2, . . . , zs) ≤
IVFEEWA(z∗1, z∗2, . . . , z∗s ) if zk ≤ z∗k .

Proof. (1) For zk = z = ([mL
Z, mU

Z ], [e
L
Z, eU

Z ]) (k = 1, 2, . . . , s), by Equation (7) the result is
yielded below:

IVFEEWA(z1, z2, . . . , zs) =
s⊕

k=1
λkzk =

⎛⎜⎜⎝
[

1− s
∏

k=1
(1−mL

Zk)
λk , 1− s

∏
k=1

(1−mU
Zk)

λk

]
,[

1− s
∏

k=1
(1− eL

Zk)
λk , 1− s

∏
k=1

(1− eU
Zk)

λk

]
⎞⎟⎟⎠

=
([

1− (1−mL
Z)

∑s
k=1 λk , 1− (1−mU

Z )
∑s

k=1 λk
]
,
[
1− (1− eL

Z)
∑s

k=1 λk , 1− (1− eU
Z )

∑s
k=1 λk

])
=

([
mL

Z, mU
Z
]
,
[
eL

Z, eU
Z
])

= z.

(11)

(2) There exists the inequality zmin ≤ zk ≤ zmax when zmin and zmax are the minimum

and maximum IVFEEs. Thus, there also exists
s⊕

k=1
λkzmin ≤

s⊕
k=1

λkzk ≤
s⊕

k=1
λkzmax. Then, the

inequality zmin ≤
s⊕

k=1
λkzk ≤ zmax can be kept regarding the above property (1); i.e., there is

zmin ≤ IVFEEWA(z1, z2, . . . , zs) ≤ zmax.

(3) For zk ≤ z∗k , there is the inequality
s⊕

k=1
λkzk ≤

s⊕
k=1

λkz∗k ; i.e., IVFEEWA(z1, z2, . . . , zs)

≤ IVFEEWA
(
z∗1, z∗2, . . . , z∗s

)
exists.

Therefore, all the above properties are true. �
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3.2. Weighted Geometric Aggregation Operator of IVFEEs

Definition 6. Let zk = ([mL
Zk, mU

Zk], [e
L
Zk, eU

Zk]) (k = 1, 2, . . . , s) be a group of IVFEEs and
IVFEEWG: Ωs → Ω. Then, the IVFEEWG operator is defined as

IVFEEWG(z1, z2, . . . , zs) =
s⊗

k=1
zλk

k (12)

where λk is the weight of zk with 0 ≤ λk ≤ 1 and ∑s
k=1 λk = 1.

Theorem 3. Let zk = ([mL
Zk, mU

Zk], [e
L
Zk, eU

Zk]) (k = 1, 2, . . . , s) be a group of IVFEEs along with
the weight vector λ = (λ1, λ2, . . . , λs) for 0 ≤ λk ≤ 1 and ∑s

k=1 λk = 1. Then, the aggregated
result of the IVFEEWG operator is still IVFEE, which is yielded by the equation:

IVFEEWG(z1, z2, . . . , zs) =
s⊗

k=1
zλk

k =

([
s

∏
k=1

(mL
Zk)

λk ,
s

∏
k=1

(mU
Zk)

λk

]
,

[
s

∏
k=1

(eL
Zk)

λk ,
s

∏
k=1

(eU
Zk)

λk

])
(13)

Similarly to Theorem 1, Theorem 3 can easily be proved, which is omitted here.

Theorem 4. The IVFEEWG operator implies these properties:

(1) Idempotency: Let zk = ([mL
Zk, mU

Zk], [e
L
Zk, eU

Zk]) (k = 1, 2, . . . , s) be a group of IVFEEs. If
zk = z = ([mL

Z, mU
Z ], [e

L
Z, eU

Z ]) (k= 1, 2, . . . , s), then IVFEEWG(z1, z2, . . . , zs) = z.
(2) Boundedness: Let zk = ([mL

Zk, mU
Zk], [e

L
Zk, eU

Zk]) (k = 1, 2, . . . , s) be a group of IVFEEs, and let

zmin =

([
min

k

(
mL

Zk
)
, min

k

(
mU

Zk
)]

,
[

min
k

(
eL

Zk
)
, min

k

(
eU

Zk
)])

and

zmax =

([
max

k

(
mL

Zk
)
, max

k

(
mU

Zk
)]

,
[

max
k

(
eL

Zk
)
, max

k

(
eU

Zk
)])

be the minimum and maxi-

mum IVFEEs. Then, zmin ≤ IVFEEWG(z1, z2, . . . , zs) ≤ zmax exists.
(3) Monotonicity: Let zk = ([mL

Zk, mU
Zk], [e

L
Zk, eU

Zk]) and z∗k =
([

mL∗
Zk, mU∗

Zk
]
,
[
eL∗

Zk, eU∗
Zk

])
(k = 1, 2, . . . , s) be two groups of IVFEEs. Then, there exists IVFEEWG(z1, z2, . . . , zs) ≤
IVFEEWG(z∗1, z∗2, . . . , z∗s ) for zk ≤ z∗k .

Theorem 4 can be proved similarly to Theorem 2 (omitted).

3.3. Mixed-Weighted-Averaging Operation for the IVFEEWA and IVFEEWG Operators

Since the IVFEEWA operator and the IVFEEWG operator mainly tend to group ar-
guments and individual arguments, respectively, here we propose a mixed-weighted-
averaging operation for the IVFEEWA and IVFEEWG operators.

Definition 7. Set η ∈ [0, 1] as a weight parameter. Then, a mixed-weighted-averaging operation of
the IVFEEWA and IVFEEWG operators with a weight parameter η is defined below:

z(η) = η × IVFEEWA(z1, z2, . . . , zs)⊕ (1− η)× IVFEEWG(z1, z2, . . . , zs) (14)
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Theorem 5. Let η ∈ [0, 1] be a weight parameter. Then, the operational result of Equation (14)
with a weight parameter η is still IVFEE, which is obtained by the following equation:

z(η) = η × IVFEEWA(z1, z2, . . . , zs)⊕ (1− η)× IVFEEWG(z1, z2, . . . , zs)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎣
1−

(
s

∏
k=1

(1−mL
Zk)

λk

)η(
1− s

∏
k=1

(mL
Zk)

λk

)(1−η)

,

1−
(

s
∏

k=1
(1−mU

Zk)
λk

)η(
1− s

∏
k=1

(mU
Zk)

λk

)(1−η)

⎤⎥⎥⎥⎦,

⎡⎢⎢⎢⎣
1−

(
s

∏
k=1

(1− eL
Zk)

λk

)η(
1− s

∏
k=1

(eL
Zk)

λk

)(1−η)

,

1−
(

s
∏

k=1
(1− eU

Zk)
λk

)η(
1− s

∏
k=1

(eU
Zk)

λk

)(1−η)

⎤⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(15)

Proof. Based on Equations (7), (13), and (14), along with the operational laws in Definition
4, the following result is obtained below:

z(η) = η × IVFEEWA(z1, z2, . . . , zs)⊕ (1− η)× IVFEEWG(z1, z2, . . . , zs)

=

([
1−

(
s

∏
k=1

(1−mL
Zk)

λk

)η

, 1−
(

s
∏

k=1
(1−mU

Zk)
λk

)η]
,
[

1−
(

s
∏

k=1
(1− eL

Zk)
λk

)η

, 1−
(

s
∏

k=1
(1− eU

Zk)
λk

)η])
⊕([

1−
(

1− s
∏

k=1
(mL

Zk)
λk

)(1−η)

, 1−
(

1− s
∏

k=1
(mU

Zk)
λk

)(1−η)
]

,

[
1−

(
1− s

∏
k=1

(eL
Zk)

λk

)(1−η)

, 1−
(

1− s
∏

k=1
(eU

Zk)
λk

)(1−η)
])

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎣
1−

(
s

∏
k=1

(1−mL
Zk)

λk

)η

+ 1−
(

1− s
∏

k=1
(mL

Zk)
λk

)(1−η)

−
(

1−
(

s
∏

k=1
(1−mL

Zk)
λk

)η)(
1−

(
1− s

∏
k=1

(mL
Zk)

λk

)(1−η)
)

,

1−
(

s
∏

k=1
(1−mU

Zk)
λk

)η

+ 1−
(

1− s
∏

k=1
(mU

Zk)
λk

)(1−η)

−
(

1−
(

s
∏

k=1
(1−mU

Zk)
λk

)η)(
1−

(
1− s

∏
k=1

(mU
Zk)

λk

)(1−η)
)

⎤⎥⎥⎥⎥⎦,

⎡⎢⎢⎢⎢⎣
1−

(
s

∏
k=1

(1− eL
Zk)

λk

)η

+ 1−
(

1− s
∏

k=1
(eL

Zk)
λk

)(1−η)

−
(

1−
(

s
∏

k=1
(1− eL

Zk)
λk

)η)(
1−

(
1− s

∏
k=1

(eL
Zk)

λk

)(1−η)
)

,

1−
(

s
∏

k=1
(1− eU

Zk)
λk

)η

+ 1−
(

1− s
∏

k=1
(eU

Zk)
λk

)(1−η)

−
(

1−
(

s
∏

k=1
(1− eU

Zk)
λk

)η)(
1−

(
1− s

∏
k=1

(eU
Zk)

λk

)(1−η)
)

⎤⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎝
[

1−
(

s
∏

k=1
(1−mL

Zk)
λk

)η(
1− s

∏
k=1

(mL
Zk)

λk

)(1−η)

, 1−
(

s
∏

k=1
(1−mU

Zk)
λk

)η(
1− s

∏
k=1

(mU
Zk)

λk

)(1−η)
]

,[
1−

(
s

∏
k=1

(1− eL
Zk)

λk

)η(
1− s

∏
k=1

(eL
Zk)

λk

)(1−η)

, 1−
(

s
∏

k=1
(1− eU

Zk)
λk

)η(
1− s

∏
k=1

(eU
Zk)

λk

)(1−η)
]

⎞⎟⎟⎟⎟⎠.

(16)

When η = 1, 0, z(η) degenerates into the IVFEEWA operator of Equation (7) and the
IVFEEWG operator of Equation (13), respectively. �

4. GDM Method Using the Mixed-Weighted-Averaging Operation and Expected
Value Function

Here we propose a multicriteria GDM method using the mixed-weighted-averaging
operation and expected value function for SIVFMSs.

A multicriteria GDM problem usually contains a set of alternatives Y = {Y1, Y2, . . . , Ym},
which is assessed by a set of criteria U = {u1, u2, . . . , us}. To consider the importance
of different criteria uk (k = 1, 2, . . . , s) in U, decision makers specify a weigh vector λ =
(λ1, λ2, . . . , λs) for the set of criteria. Regarding the uncertainty and certainty of decision
makers’ cognitions/judgments for the suitability assessment of alternatives over the criteria,
the single- and interval-valued fuzzy values of the alternatives Yj (j = 1, 2, . . . , m) over
the criteria uk (k = 1, 2, . . . , s) will be specified by various decision makers. Thus, the
multicriteria GDM method is depicted by the following decision steps.

Step 1. A group of decision makers/experts is invited to give their single- and
interval-valued fuzzy values of the alternatives Yj (j = 1, 2, . . . , m) over the criteria uk
(k = 1, 2, . . . , s) and to set up the SIVFME decision matrix D = (FHjk)m×s, where FHjk =

(λ1
Hjk, λ2

Hjk, . . . , λ
ajk
Hjk, [λL1

Hjk, λU1
Hjk], [λ

L2
Hjk, λU2

Hjk], . . . , [λ
Lbjk
Hjk , λ

Ubjk
Hjk ]) composed of ajk single-valued

fuzzy values and bjk interval-valued fuzzy values (j = 1, 2, . . . , m; k = 1, 2, . . . , s) are
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SIVFMEs, such that 0 ≤ λ1
Hjk ≤ λ2

Hjk, . . . ,≤ λ
ajk
Hjk ≤ 1 and [λL1

Hjk, λU1
Hjk] ⊆ [λL2

Hjk, λU2
Hjk] ⊆

, . . . ,⊆ [λ
Lbjk
Hjk (uk), λ

Ubjk
Hjk ] ⊆ [0, 1] with identical and/or different fuzzy values.

Step 2. Using Equations (3) and (4) for the decision matrix D = (FHjk)m×s, the interval-
valued fuzzy average values mZjk and entropy values eZjk are obtained and IVFEEs are

assembled by zjk = (mZjk, eZjk) for mZjk =
[
mL

Zjk, mU
Zjk

]
⊆ [0, 1] and eZjk =

[
eL

Zjk, eU
Zjk

]
⊆

[0, 1] (k = 1, 2, . . . , s; j = 1, 2, . . . , m), which are constructed as the IVFEE decision matrix
M = (zjk)m×s.

Step 3. Using Equation (15) with some values of η, the operational values of zj(η) for
Yj (j = 1, 2, . . . , m) are obtained by the following equation:

zj(η) = η × IVFEEWA(zj1, zj2, . . . , zjs)⊕ (1− η)× IVFEEWG(zj1, zj2, . . . , zjs)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎣
1−

(
s

∏
k=1

(1−mL
Zjk)

λk

)η(
1− s

∏
k=1

(mL
Zjk)

λk

)(1−η)

,

1−
(

s
∏

k=1
(1−mU

Zjk)
λk

)η(
1− s

∏
k=1

(mU
Zjk)

λk

)(1−η)

⎤⎥⎥⎥⎦,

⎡⎢⎢⎢⎣
1−

(
s

∏
k=1

(1− eL
Zjk)

λk

)η(
1− s

∏
k=1

(eL
Zjk)

λk

)(1−η)

,

1−
(

s
∏

k=1
(1− eU

Zjk)
λk

)η(
1− s

∏
k=1

(eU
Zjk)

λk

)(1−η)

⎤⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(17)

Step 4. The expected values of Q(zj(η)) (j = 1, 2, . . . , m) are given by Equation (5).
Step 5. Alternatives are sorted in descending order of the expected values, and the

optimal one is selected depending on some specified value of η.
Step 6. End.

5. GDM Example of a Supplier Selection Problem and Comparative Analysis

5.1. Actual GDM Example

This section reports the application of the proposed GDM method to an actual example
of a supplier selection problem in a supply chain to show the rationality and effectiveness
of SIVFMSs.

Any enterprise tries to reduce the supply chain risks and uncertainty to improve cus-
tomer service, inventory levels, and cycle times, which will increasing its competitiveness
and profitability. Assume that a group of five suppliers is provided as a set of preliminary
alternatives Y = {Y1, Y2, Y3, Y4, Y5}. Then, a group of decision makers is invited to evaluate
the five suppliers with three criteria: performance (e.g., quality, delivery, and price) (u1),
technology (e.g., design capability, manufacturing capability, and ability to deal with tech-
nology changes) (u2), and organizational culture and strategy (e.g., external and internal
integration of suppliers, feeling of trust, compatibility across levels, and functions of the
supplier and buyer) (u3). The weight vector of the three criteria is specified as λ = (0.3, 0.33,
0.37). Thus, the proposed GDM method can be applied to this GDM problem, which is
depicted below.

Step 1. Suppose that three decision makers are invited to evaluate a set of five suppliers
Y = {Y1, Y2, Y3, Y4, Y5} with a set of three criteria U = {u1, u2, u3}. For instance, the three
decision makers can declare the degree that an alternative Y1 should satisfy a criterion u1,
and these values could be a group of three single- and interval-valued fuzzy values (0.7, 0.8,
[0.7, 0.9]). In this manner, all their evaluation values of SIVFMEs are indicated in Table 1.
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Table 1. Evaluation values of SIVFMEs provided by the three decision makers.

u1 u2 u3

Y1 (0.7, 0.8, [0.7, 0.9]) (0.6, [0.6, 0.7], [0.7, 0.8]) (0.6, 0.7, [0.7, 0.8])
Y2 (0.7, 0.8, [0.6, 0.7]) (0.6, 0.7, [0.7, 0.8]) (0.7, 0.7, [0.6, 0.9])
Y3 (0.8, [0.8, 0.9], [0.8, 0.9]) (0.8, [0.7, 0.9], [0.8, 0.9]) (0.6, 0.7, [0.7, 0.9])
Y4 (0.6, 0.6, [0.7, 0.8]) (0.6, 0.8, [0.7, 0.9]) (0.8, 0.8, [0.7, 0.9])
Y5 (0.8, 0.9, [0.7, 0.8]) (0.8, 0.9, [0.7, 0.8]) (0.7, [0.6, 0.8], [0.7, 0.8])

Step 2. Using Equations (3) and (4) on Table 1, IVFEEs can be obtained based on the
average values and entropy values of various SIVFMVEs, and the IVFEE decision matrix
M = (zjk)5×3 is established as follows:

M =

⎡⎢⎢⎢⎢⎣
([0.7333, 0.8000], [0.9952, 0.9981]) ([0.6333, 0.7000], [0.9938, 0.9975]) ([0.6667, 0.7000], [0.9938, 0.9977])
([0.7000, 0.7333], [0.9938, 0.9981]) ([0.6667, 0.7000], [0.9938, 0.9977]) ([0.6667, 0.7667], [0.9933, 0.9977])
([0.8000, 0.8667], [0.9986, 1.0000]) ([0.7667, 0.8667], [0.9983, 0.9986]) ([0.6667, 0.7333], [0.9870, 0.9977])
([0.6333, 0.6667], [0.9912, 0.9975]) ([0.7000, 0.7667], [0.9876, 0.9938]) ([0.7667, 0.8333], [0.9983, 0.9986])
([0.8000, 0.8333], [0.9952, 0.9986]) ([0.8000, 0.8333], [0.9952, 0.9986]) ([0.6667, 0.7667], [0.9977, 0.9983])

⎤⎥⎥⎥⎥⎦
Step 3. Using Equation (17) with η = 0, 0.3, 0.5, 0.7, and 1, the operational values of

zj(η) for Yj (j = 1, 2, 3, 4, 5) and the decision results are indicated in Table 2.

Table 2. Decision results of the proposed GDM method with various weight values of η.

η
z1(η), z2(η),

z3(η), z4(η), z5(η)

E(z1(η)),
E(z2(η)), E(z3(η)),
E(z4(η)), E(z5(η))

Sorting Optimal One

0

([0.6745, 0.7286],
[0.9942, 0.9978]),
([0.6765, 0.7341],
[0.9936, 0.9978]),
([0.7374, 0.8147],
[0.9942, 0.9987]),
([0.7025, 0.7582],
[0.9926, 0.9967]),
([0.7478, 0.8080],
[0.9961, 0.9984])

0.6988, 0.7024,
0.7734, 0.7265,

0.7758

Y5 > Y3 > Y4 >
Y2 > Y1

Y5

0.3

([0.6756, 0.7303],
[0.9942, 0.9978]),
([0.6767, 0.7347],
[0.9936, 0.9978]),
([0.7399, 0.8187],
[0.9951, 1.0000]),
([0.7047, 0.7620],
[0.9933, 0.9969]),
([0.7510, 0.8090],
[0.9962, 0.9984])

0.7002, 0.7027,
0.7775, 0.7298,

0.7780

Y5 > Y3 > Y4 >
Y2 > Y1

Y5

0.5

([0.6764, 0.7315],
[0.9942, 0.9978]),
([0.6768, 0.7351],
[0.9936, 0.9978]),
([0.7416, 0.8213],
[0.9956, 1.0000]),
([0.7061, 0.7645],
[0.9937, 0.9970]),
([0.7532, 0.8096],
[0.9963, 0.9985])

0.7012, 0.7030,
0.7798, 0.7320,

0.7794

Y3 > Y5 > Y4 >
Y2 > Y1

Y3
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Table 2. Cont.

η
z1(η), z2(η),

z3(η), z4(η), z5(η)

E(z1(η)),
E(z2(η)), E(z3(η)),
E(z4(η)), E(z5(η))

Sorting Optimal One

0.7

([0.6772, 0.7326],
[0.9943, 0.9978]),
([0.6769, 0.7355],
[0.9936, 0.9978]),
([0.7433, 0.8239],
[0.9960, 1.0000]),
([0.7076, 0.7670],
[0.9940, 0.9971]),
([0.7553, 0.8103],
[0.9963, 0.9985])

0.7021, 0.7032,
0.7821, 0.7341,

0.7807

Y3 > Y5 > Y4 >
Y2 > Y1

Y3

1

([0.6783, 0.7344],
[0.9943, 0.9978]),
([0.6770, 0.7361],
[0.9936, 0.9978]),
([0.7458, 0.8277],
[0.9966, 1.0000]),
([0.7097, 0.7707],
[0.9946, 0.9973]),
([0.7584, 0.8112],
[0.9964, 0.9985])

0.7036, 0.7036,
0.7855, 0.7372,

0.7828

Y3 > Y5 > Y4 >
Y1 = Y2

Y3

Step 4. By Equation (5), the expected values of E(zj(η)) (j = 1, 2, 3, 4, 5) are given in
Table 2.

Step 5. The sorting orders of the alternatives are Y5 > Y3 > Y4 > Y2 > Y1, Y3 > Y5 > Y4
> Y2 > Y1, and Y3 > Y5 > Y4 > Y1 = Y2. The optimal one is Y5 or Y3, depending on some
specified value of η.

Regarding the decision results in Table 2, there are different sorting orders for the
IVFEEWA operator and the IVFEEWG operator when η = 0, 1 (two special cases), since
the IVFEEWA operator tends to group arguments and the IVFEEWG operator tends to
group personal arguments. The mixed-weighted-averaging operation of the IVFEEWA and
IVFEEWG operators can compensate for the different tendencies of both when η �= 0, 1.

5.2. Comparative Analysis

To verify the efficiency of the proposed GDM method, the proposed GDM method is
compared with the existing consistency fuzzy decision-making method and various fuzzy
decision-making methods.

First, the proposed GDM method is compared with the existing consistency fuzzy
decision-making method [19]. For a convenient comparison with the existing consistency
fuzzy decision-making method [19], assume that all interval-valued fuzzy values and
entropy values in the IVFEE decision matrix M are fuzzy average values and consistency
degrees as a special case of the actual example mentioned above. Thus, the IVFEE decision
matrix M is reduced to the decision matrix of CFEs:

M′ =

⎡⎢⎢⎢⎢⎣
(0.7667, 0.9881) (0.6667, 0.9957) (0.6834, 0.9958)
(0.7167, 0.9960) (0.6834, 0.9958) (0.7167, 0.9955)
(0.8334, 0.9993) (0.8167, 0.9985) (0.7000, 0.9924)
(0.6500, 0.9944) (0.7334, 0.9907) (0.8000, 0.9985)
(0.8167, 0.9969) (0.8167, 0.9969) (0.7167, 0.9980)

⎤⎥⎥⎥⎥⎦
Thus, the existing decision-making method [19] can be applied to the special case of

the above actual example by the following CFE weighted averaging (CFEWA) and CFE
weighted geometric (CFEWG) operators and score function [19]:
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z′j = CFEWA(z′j1, z′j2, . . . , z′js) =
s⊕

k=1
λkz′jk =

(
1−

s

∏
k=1

(1−m′
Zjk)

λk , 1−
s

∏
k=1

(1− e′Zjk)
λk

)
(18)

z′j = CFEWG(z′j1, z′j2, . . . , z′js) =
s⊗

k=1
(z′jk)

λk =

(
s

∏
k=1

(m′
Zjk)

λk ,
s

∏
k=1

(e′Zjk)
λk

)
(19)

F(z′j) = (m′
Zje

′
Zj + (m′

Zj + e′Zj)/2)/2 for F(z′j) ∈ [0, 1] (20)

Using Equations (18)–(20), the aggregated values of the CFEWA and CFEWG operators,
the score values of F(z′j) for Yi (i = 1, 2, 3, 4, 5), and the decision results were achieved. They
are shown in Table 3.

Table 3. Decision results of the existing decision-making method in the case of CFEs [19].

Aggregation
Operator

z’
1, z’

2, z’
3, z’

4, z’
5

F(z’
1), F(z’

2), F(z’
3),

F(z’
4), F(z’

5)
Sorting

Optimal
One

CFEWA

(0.7061, 0.9960),
(0.7061, 0.9957),
(0.7862, 0.9978),
(0.7399, 0.9958),
(0.7846, 0.9974)

0.7772, 0.7770, 0.8383,
0.8023, 0.8368

Y3 > Y5 > Y4
> Y1 > Y2

Y3

CFEWG

(0.7016, 0.9960),
(0.7055, 0.9957),
(0.7761, 0.9964),
(0.7304, 0.9946),
(0.7781, 0.9973)

0.7738, 0.7765, 0.8298,
0.7945, 0.8319

Y5 > Y3 > Y4
> Y2 > Y1

Y5

In the decision results in Table 3, there exists their sorting difference, since there are the
different tendencies for the CFEWA and CFEWG operators. The optimal alternatives are Y3
and Y5 according to the existing decision-making method with CFE information. Although
the optimal ones, Y3 and Y5, are the same according to the proposed GDM method and
the existing decision-making method [19] in the example, the superiorities of the proposed
GDM method over the existing decision-making method [19] are as follows:

(1) SIVFMSs can effectively express group evaluation values using identical and/or differ-
ent single- and interval-valued fuzzy values, whereas CFMS introduced in [19] cannot.

(2) IVFEEs can reasonably reflect the mean and consistency/consensus degrees of the
group evaluation values with the help of quantitative calculations corresponding to
the mean and information entropy of a SIVFME in a SIVFMS. The transformation
method introduced in [19] is only suitable for the normal distribution of fuzzy data,
and there is no distribution limitation for the new transformation method proposed
in this paper.

(3) The proposed GDM method not only demonstrated its decision flexibility, but also
overcomes the flaws of the existing decision-making method using the single CFEWA
operator or the CFEWG operator.

In comparison with the PFDM methods [16,17], the PFDM methods need a lot of
fuzzy data to maintain the rationality (no distortion) of probabilistic fuzzy values from
the probabilistic viewpoint; otherwise, the probabilistic fuzzy values are infeasible and
irrational, since a lot of fuzzy data are created with difficultly by several decision makers
and obviously unrealized in the GDM application. Hence, the PFDM methods cannot repre-
sent this decision example involving three decision makers and also cannot express single-
and interval-valued fuzzy data. In the case of SIVFMSs, the proposed GDM method with
the mean and information entropy only needs a few of decision makers to perform GDM
problems with several single- and interval-valued fuzzy data, which are easily handled
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in actual applications. In this case, the proposed GDM method showed its rationality and
efficiency and is superior to the existing PFDM methods regarding SIVFMSs.

Furthermore, with respect to the above GDM example in the SIVFMS setting, existing
fuzzy multiset/IVFM/HFS/CHFS [9–15,18] cannot express SIVFMS, and then they also
cannot be applied to this GDM problem with SIVFMS information.

However, our method not only solves the expression and operation problems of
SIVFMEs, but also enhances the flexibility and rationality of GDM, which serve to highlight
its advantages in the setting of SIVFMSs.

6. Conclusions

In this study, the presented SIVFMSs could effectively express single- and interval-
valued fuzzy sequences in hybrid fuzzy multivalued situations to solve the difficult prob-
lems of various existing fuzzy expressions. The proposed information entropy of SIVFME
provides a reasonable mathematical tool for converting SIVFMEs into IVFEEs when deal-
ing with SIVFMSs. IVFEEs converted by the mean and information entropy of SIVFMEs
in SIVFMS can reasonably reflect the average and consistency level of group evalua-
tion values and effectively solve the operational problems of different fuzzy sequence
lengths in SIVFMSs. In addition, the proposed mixed-weighted-averaging operation of the
IVFEEWA and IVFEEWG operators can reasonably and flexibly aggregate IVFEE informa-
tion with a changeable weight parameter and compensate for the flaws of the IVFEEWA
and IVFEEWG operators. Next, the multicriteria GDM method developed based on the
proposed mixed-weighted-averaging operation solved flexible decision-making problems
involving SIVFMSs. Furthermore, the proposed GDM method was utilized for an actual
example of a supplier selection problem to indicate its application. Through the compara-
tive analysis with existing relative decision-making methods, the proposed GDM method
demonstrated its rationality and effectiveness. However, this study not only effectively
solved the expression and operation problems of the mixed information of single- and
interval-valued fuzzy sequences with identical and/or different fuzzy values, but also
strengthened the GDM rationality and flexibility with the help of the presented information
entropy and the proposed mixed-weighted-averaging operation, which highlighted its
merits when dealing with SIVFMSs.

This original study demonstrated new contributions in mixed fuzzy information
expression, presented a transformation method based on the mean and information entropy
of SIVFME, and presented mixed aggregation operations of IVFEEs and their GDM method
in the environment of SIVFMSs. However, the new techniques proposed in this paper
can only handle GDM problems with SIVFMSs, but cannot solve GDM problems with the
fuzzy information of truth and falsity membership degrees. Regarding future research, this
study will be further extended to image processing, pattern recognition, clustering analysis,
and their applications in the setting of SIVFMSs. Then, the Aczel–Alsina operations and
aggregation operators [21,22], and their applications, will be further developed in the
intuitionistic and interval-valued intuitionistic fuzzy multivalued context.
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Abstract: The selection of an urban rail transit system from the perspective of green and low carbon
can not only promote the construction of an urban rail transit system but also have a positive impact
on urban green development. Considering the uncertainty caused by different conflict criteria and
the fuzziness of decision-making experts’ cognition in the selection process of a rail transit system,
this paper proposes a hybrid intuitionistic fuzzy MCGDM framework to determine the priority of
a rail transit system. To begin with, the weights of experts are determined based on the improved
similarity method. Secondly, the subjective weight and objective weight of the criterion are calculated,
respectively, according to the DEMATEL and CRITIC methods, and the comprehensive weight is
calculated by the linear integration method. Thirdly, considering the regret degree and risk preference
of experts, the COPRAS method based on regret theory is propounded to determine the prioritization
of urban rail transit system ranking. Finally, urban rail transit system selection of City N is selected
for the case study to illustrate the feasibility and effectiveness of the developed method. The results
show that a metro system (P1) is the most suitable urban rail transit system for the construction of
city N, followed by a municipal railway system (P7). Sensitivity analysis is conducted to illustrate the
stability and robustness of the designed decision framework. Comparative analysis is also utilized to
validate the efficacy, feasibility and practicability of the propounded methodology.

Keywords: urban rail transit; intuitionistic fuzzy set; regret theory; DEMATEL; CRITIC; COPRAS

MSC: 90B50; 94D05

1. Introduction

At present, environmental problems, such as acid rain, air pollution and global warm-
ing, are prominent. One of the important reasons for this series of environmental problems
is the emission of a large number of greenhouse gases caused by urban traffic operation.
Severe environmental problems affect the ecological balance and human health [1]. The
large-scale increase in the number of cars stems from the deepening degree of urbanization.
The process of urbanization is accelerating, the construction of urban infrastructure is
gradually improving and many cities have successfully entered the automotive era with
the progress of society and economic development. However, although the popularity of
cars has greatly facilitated people’s lives, a series of problems, such as vehicle exhaust pol-
lution and traffic congestion, need to be paid attention to. Urban environmental problems
caused by automobile operation restrict the green development of the city. As the center
of population, economy and transportation, it is particularly important to realize urban
sustainable development.

Green travel can save energy, alleviate traffic congestion, reduce environmental pol-
lution and promote sustainable urban development. An urban public transport system
plays an important role in promoting urban sustainable development [2]. As one of the
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most effective green and low-carbon transportation modes, urban public transport is an
important part of green travel. It is mainly composed of buses and urban rail transit. Buses
can meet the daily travel of the public in small cities, but buses are far from meeting the daily
travel of the public in medium and large cities with a large population density, wide range
of activities and large passenger flow. Therefore, in order to alleviate the traffic pressure
in urban areas, the construction of an urban rail transit system has become the focus of
attention. As the backbone of urban public transport, urban rail transit has the characteris-
tics of being fast, convenient, efficient, safe and comfortable [3]. With the development of
the economy and the progress of science and technology, urban rail transit has developed
rapidly, but, in this process, its green standard has been formulated relatively late and a
perfect development system has not been formed, resulting in a series of problems regarding
that the existing urban rail transit does not adapt to the green development in terms of
environment, resources and equipment allocation. Hence, it is particularly important to
select the urban rail system from the perspective of green and low-carbon transportation.

Since the problem of urban rail transit system selection involves multiple criteria
and different types of urban rail transit systems, it requires the joint discussion of experts
in various fields to make decisions. Therefore, the problem of urban rail transit system
selection can be regarded as an MCGDM problem. In addition, limited by the complexity
of the decision-making environment and the inherent uncertainty of practical problems,
a traditional deterministic decision is difficult to solve such complex and uncertain deci-
sion problems. As an effective tool to describe uncertainty, IFS [4] are proposed to use
membership degree, non-membership degree and hesitation degree to express uncertain
information more comprehensively by expanding fuzzy set theory. In terms of information
measurement, Das et al. [5] studied the relationship between intuitionistic fuzzy informa-
tion measurement and its similarity measurement, distance measurement and knowledge
measurement based on the intuitionistic fuzzy framework. Mishra et al. [6] proposed
a series of similarity measures and entropy measures based on the cosine function and
logarithmic function under an intuitionistic fuzzy environment. In terms of decision meth-
ods, Ecer and Pamucar [7] proposed a method to rank insurance companies according to
Marcos under an intuitionistic fuzzy environment. Schitea et al. [8] proposed a MCDM
method based on IFS to select the best location for the summary location of hydrogen
mobility in Romania. Mishra et al. [9] developed a fuzzy decision method for ranking and
evaluating low-carbon sustainable suppliers by combining IFS and distance-based com-
bined evaluation. As for the intuitionistic fuzzy preference relationship, Zhang et al. [10]
studied the distance-based consistency measure in group-decision-making with an intu-
itionistic multiplication preference relationship and proposed some new distance measures
between intuitionistic multiplication sets. Meng et al. [11] studied group-decision-making
with heterogeneous intuitionistic fuzzy preference relations, including intuitionistic fuzzy
preference relations, multiplicative intuitionistic fuzzy preference relations, etc.

Considering that the dimensions of different criteria are different, and there are dif-
ferences, conflicts and mutual influences between criteria, the DEMATEL [12] method
developed by the Geneva center of Battelle Geneva Research Centre can represent the causal
logical relationship between criteria, which can visualize the structure of a complex causal
relationship with the help of a matrix or graph. In the DEMATEL method, by calculating
the cause degree and centrality of each criterion according to the relative importance of each
criterion provided by experts, that is, the influence degree and influence degree of each
criterion on other criteria, the subjective weight of each standard can then be determined
according to the cause degree and centrality. This structured approach helps to analyze
the interdependencies between criteria. The DEMATEL method is widely used. Many re-
searchers use the DEMATEL method for criterion evaluation or factor analysis. For example,
Topgul et al. [13] used the IF-DEMATEL method to evaluate the green degree of four stages
of incoming logistics in plant logistics, outgoing logistics and reverse logistics in the supply
chain. Roostaie et al. [14] used the DEMATEL method to analyze the factors affecting the
sustainability of buildings. Tseng et al. [15] and Liu et al. [16], respectively, analyzed the
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obstacles to the adoption of renewable energy and China’s sustainable food consumption
and production by using the DEMATEL method under the triangular fuzzy environment.
In addition, DEMATEL can also be used to determine the subjective weight of criteria in
MCDM problems, then evaluate the alternatives in combination with different evaluation
methods and, finally, select the optimal alternative. For example, Hosseini et al. [17] and Li
et al. [18], respectively, used the DEMATEL and VIKOR methods to evaluate solutions for
ecotourism centers during the COVID-19 pandemic and select for a machine tool under the
triangular fuzzy environment. Fang et al. [19] used the DEMATEL and TOPSIS methods to
evaluate the energy investment risk and safety management system.

Experts have bounded rationality in the reality decision analysis procedure [20], and
the psychological preference of experts will affect the decision-making results, so it is
necessary to consider the psychological behavior of experts. As an important branch of
behavioral decision-making theory, the regret theory proposed by Lomes and Suggen [21]
and Bell [22] describes the regret avoidance behavior of decision-makers in the decision
process through the regret–rejoice function and the risk preference coefficient of decision-
makers. For the application of regret theory, many researchers combine regret theory with
decision methods to put forward a group decision framework [23,24]. In other respects,
Zhang et al. [25] developed a case retrieval method based on regret theory. Liu and
Cheng [26] combined the likelihood-based MABAC method with regret theory to establish
a new MCGDM method. Liang and Wang [20] developed an extended scoring method
of gain and loss of advantage based on regret theory and the interval evidence reasoning
method. Huang and Zhan [27] proposed a three-way decision-making method based on
regret theory. Liu et al. [28] proposed a new method combining regret theory and the
evaluation method based on average solution distance.

In the past few decades, researchers have proposed many new methods to deal with
MCDM problems in real life, such as TOPSIS, VIKOR, MABAC, COPRAS and so on.
COPRAS is an MCDM method proposed by Zavadskas et al. [29] in 1994. This method
can effectively evaluate the scheme step by step in combination with the importance and
effectiveness of the evaluation criteria to obtain the best scheme. It has the characteristics
of wide application range and good evaluation effect [30]. The COPRAS method is also
widely used. For example, Büyüközkan and Göçer [31] combine AHP and COPRAS to
select the best digital supply chain partner. Balali et al. [32] used ANP and COPRAS to
rank the effective risks of human resource threats in natural gas supply projects. Mishra
et al. [33] and Alipour et al. [34] proposed the combination of SWARA and COPRAS for
the sustainability evaluation of the bioenergy production process and the selection of fuel
cell and hydrogen component suppliers, respectively. Yuan et al. [35] and Narayanamoorty
et al. [36], respectively, used DEMATEL and COPRAS to evaluate and select the third-party
logistics suppliers and the best alternative fuel, but both of them only used the subjective
weight determination method to determine the attribute weight. In addition, although
the methodological framework proposed by many scholars takes into account the regret
theory, there are, however, no studies combining regret theory with the COPRAS method
to provide decision support for the selection of an urban rail transit system.

Based on the above analysis, the motivations of this study are as follows:

(1) The selection of an urban rail transit system plays an important role in the sustainable
development of the city, but now there is no unified standard for the selection of an
urban rail transit system, and the construction of urban rail transit involves many
aspects. Therefore, it is necessary to determine the corresponding evaluation criteria
to select the appropriate type of urban rail transit system.

(2) In the MCGDM problem, the weight of the criterion is a very important part. In
the existing decision-making models, most studies only consider the subjective or
objective weight model, and the criterion weight determination method is single,
which is difficult to comprehensively consider the subjective and objective importance
of the criterion so as to affect the final decision-making results. Therefore, it is
necessary to establish the comprehensive weight of a criterion determination model
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considering the subjective and objective influence to obtain more reasonable and
credible decision-making results.

(3) Through literature analysis, it is found that the intuitionistic fuzzy group decision
methods in the existing research rarely consider the interaction between criteria in the
decision-making process, and most decision-making methods determine the optimal
alternatives based on the traditional utility theory, ignoring the psychological behavior
of experts in the decision process.

According to the above research motivation, the main contributions of this study are
outlined as follows:

(1) Determine evaluation criteria of an urban rail transit system. In order to solve the
problem that the existing urban rail transit system selection lacks unified standards,
this study establishes the urban rail transit system selection evaluation criteria from
four aspects: characteristics, technology, economy and environment.

(2) Build a comprehensive weight determination model of criteria. In order to determine
the criterion weight more reasonably, based on the intuitionistic fuzzy environment,
the objective weight and subjective weight of the criterion are calculated, respectively,
according to DEMATEL and CRITIC, and then the comprehensive weight of the
criterion is calculated by the linear integration method and a new comprehensive
weight determination model of the criterion is built.

(3) Develop a hybrid intuitionistic fuzzy group decision framework. Based on the pro-
posed intuitionistic fuzzy distance measurement method, the comprehensive weight
of the criterion determination model and COPRAS method combined with regret
theory, a hybrid group-decision-making framework for urban rail transit system se-
lection is established. Meanwhile, taking city N as an example, the effectiveness and
rationality of the method framework proposed in this study are verified.

The rest of this study is organized as follows: the Section 2 is the introduction of
preliminaries, including IFS and regret theory. The Section 3 first introduces the proposed
intuitionistic fuzzy distance measurement model, and then introduces the detailed steps
of the hybrid intuitionistic fuzzy group decision framework proposed in this study. The
Section 4 is the application of practical cases and the corresponding sensitivity analysis and
comparative analysis and the Section 5 provides the conclusions of this study.

2. Preliminaries

This section briefly introduces the background knowledge needed in this paper, in-
cluding IFS theory and regret theory.

2.1. Intuitionistic Fuzzy Sets

The following introduces the basic concepts and related theories of IFS.

Definition 1 ([4]). Let X be a non-empty set, and then

Ã =
{(

x, μÃ(x), γÃ(x)
)∣∣x ∈ X

}
(1)

is called intuitionistic fuzzy set on X. Where μÃ(x) : X → [0, 1] and γÃ(x) : X → [0, 1] repre-
sent the membership degree and non-membership degree of the subset Ã of element x in X, respec-
tively, and hold true for all x ∈ X, 0 ≤ μÃ(x) + γÃ(x) ≤ 1 on Ã. πÃ(x) = 1− μÃ(x)− γÃ(x),
0 ≤ πÃ(x) ≤ 1 represents the hesitation degree or uncertainty degree that element x in X be-
longs to Ã. The ordinal number pair

(
μÃ(x), γÃ(x)

)
composed of membership degree μÃ(x) and

non-membership degree γÃ(x) are IFNs.

Definition 2 ([4]). Let α̃ = (μα̃, γα̃) and β̃ =
(

μ
β̃
, γ

β̃

)
be two IFN, the operational laws of

IFNs are:

(1) α̃⊕ β̃ =
(

x; μα̃ + μ
β̃
− μα̃μ

β̃
, γα̃γ

β̃

)
;
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(2) α̃⊗ β̃ =
(

x; μα̃μ
β̃
, γα̃ + γ

β̃
− γα̃γ

β̃

)
;

(3) α̃ ∧ β̃ =
(

x; min
(

μα̃, μ
β̃

)
, max

(
γα̃, γ

β̃

))
;

(4) α̃ ∨ β̃ =
(

x; max
(

μα̃, μ
β̃

)
, min

(
γα̃, γ

β̃

))
;

(5) λα̃ =
(

x; 1− (1− μα̃)
λ, (γα̃)

λ
)

, λ > 0;

(6) α̃λ =
(

x; (μα̃)
λ, 1− (1− γα̃)

λ
)

, λ > 0.

Definition 3. The score function S and accuracy function H of IFN α̃ = (μα̃, γα̃) are defined
as S(α̃) = μα − γα and H(α̃) = μα + γα; however, when the membership degree is equal to the
non-membership degree, the score function cannot be directly used to compare intuitionistic fuzzy
numbers. So, Zeng et al. [37] proposed a novel score function as below:

S(α̃) = μα̃ − γα̃ − πα̃ ×
log2(1 + πα̃)

100
, S(α̃) ∈ [−1, 1]. (2)

Definition 4. Let α̃ = (μα̃, γα̃) and β̃ = (μ
β̃
, γ

β̃
) be two IFNs; the order relations between them

are defined as follows:

(1) If S(α̃) > S
(

β̃
)

, then α̃ is better than β̃, written as α̃ � β̃.

(2) If S(α̃) = S
(

β̃
)

, then

(i) If H(α̃) > H
(

β̃
)

, then α̃ is better than β̃, written as α̃ � β̃;

(ii) If H(α̃) = H
(

β̃
)

, then α̃ is equal to β̃, written as α̃ = β̃.

Definition 5 ([38]). Let α̃j =
(

μα̃j
, γα̃j

)
(j = 1, 2, · · · , n) be a set of IFNs; the intuitionistic fuzzy

weighted aggregation operator is defined as:

IFWAω(α̃1, α̃2, · · · , α̃n) =

(
1−

n

∏
j=1

(
1− μα̃j

)ωj
,

n

∏
j=1

(
γα̃j

)ωj

)
. (3)

where ωj is the weight of α̃j =
(

μα̃j
, γα̃j

)
, j = 1, 2, · · · , n, ωj ∈ [0, 1] and

n
∑

j=1
ωj = 1.

2.2. Regret Theory

The main idea of regret theory is to compare the results obtained by the selected
alternative with the possible results obtained by other alternatives and then characterize
the degree of rejoice and regret of decision experts and select the optimal alternative that
they will not regret.

Definition 6 ([39]). Let y1 and y2 be the evaluation values of alternatives P1 and P2, and then the
perceived utility value of experts on alternative P1 is

u(y1, y2) = v(y1) + R(v(y1)− v(y2)). (4)

where v(·) is a monotonically increasing concave utility function satisfying v′(·) > 0 and v′′ (·) < 0.
R(·) is a monotonically increasing concave regret–rejoice function satisfying R(0) = 0, R′(·) > 0
and R′′ (·) < 0. Δv = v(x1)− v(x2) represents the utility increment of alternatives P1 and P1.
R(Δv) > 0 means that the decision-maker is willing to choose option P1 and abandon option P2;
otherwise, he will regret.
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3. A Hybrid Intuitionistic Fuzzy Group Decision Framework

This part introduces the proposed hybrid intuitionistic fuzzy group decision frame-
work. Firstly, a new intuitionistic fuzzy distance measure is proposed, then the MCGDM
problem studied in this paper is described and, finally, the detailed steps of the decision
framework are given.

3.1. A Novel Intuitionistic Fuzzy Distance Measure

In this paper, IFS are used to deal with the fuzziness and uncertainty of decision
information. In the process of decision-making, intuitionistic fuzzy distance needs to be
used many times. In order to better measure intuitionistic fuzzy distance and reduce the
lack of information, a novel intuitionistic fuzzy distance measurement method needs to
be proposed.

Definition 7. Let α̃ =
{

α̃j|j = 1, 2, · · · , n
}

and β̃ =
{

β̃ j|j = 1, 2, · · · , n
}

be two intuitionistic

fuzzy number vectors, where α̃j = (μα̃j
, γα̃j

), β̃ j = (μ
β̃ j

, γ
β̃ j
). The new generalized intuitionistic

fuzzy distance measure is defined as follows:

Dσ
(

α̃, β̃
)
=

(
1

3n

n

∑
j=1

(∣∣∣∣μ̃α̃
j − μ̃

β̃
j

∣∣∣∣σ + ∣∣∣∣γ̃α̃
j − γ̃

β̃
j

∣∣∣∣σ + ∣∣∣∣π̃α̃
j − π̃

β̃
j

∣∣∣∣σ + ∣∣∣∣1
2

(
S
(
α̃j
)− S

(
β̃ j

))∣∣∣∣σ)
) 1

σ

. (5)

Theorem 1. Let α̃ =
{

α̃j|j = 1, 2, · · · , n
}

, β̃ =
{

β̃ j|j = 1, 2, · · · , n
}

and χ̃ ={
χ̃j|j = 1, 2, · · · , n

}
be three intuitionistic fuzzy number vectors, and then Dσ

(
α̃, β̃

)
is the

intuitionistic fuzzy distance measure.

(1) 0 ≤ Dσ
(

α̃, β̃
)
≤ 1;

(2) Dσ
(

α̃, β̃
)
= 0 if and only if α̃ = β̃;

(3) Dσ
(

α̃, β̃
)
= Dσ

(
β̃, α̃

)
’

(4) If α̃ ⊆ β̃ ⊆ χ̃, then Dσ
(

α̃, β̃
)
≤ Dσ(α̃, χ̃), Dσ

(
β̃, χ̃

)
≤ Dσ(α̃, χ̃).

(2) and (3) can be proved directly; only (1) and (4) are proved here.

(1) Since 0 ≤ μ̃α̃
j , μ̃

β̃
j ≤ 1, 0 ≤ γ̃α̃

j , γ̃
β̃
j ≤ 1, then

0 ≤
∣∣∣∣μ̃α̃

j − μ̃
β̃
j

∣∣∣∣ ≤ 1, 0 ≤
∣∣∣∣γ̃α̃

j − γ̃
β̃
j

∣∣∣∣ ≤ 1 ,
∣∣∣∣π̃α̃

j − π̃
β̃
j

∣∣∣∣→ 0,

0 ≤
∣∣∣∣1
2

(
S
(
α̃j
)− S

(
β̃ j

))∣∣∣∣ ≤ 1.

Hence, 0 ≤
(∣∣∣∣μ̃α̃

j − μ̃
β̃
j

∣∣∣∣σ + ∣∣∣∣γ̃α̃
j − γ̃

β̃
j

∣∣∣∣σ + ∣∣∣∣π̃α̃
j − π̃

β̃
j

∣∣∣∣σ + ∣∣∣ 1
2

(
S
(
α̃j
)− S

(
β̃ j

))∣∣∣σ) ≤ 3,

for σ ≥ 1, i.e.,

0 ≤ 1
3n

n

∑
j=1

(∣∣∣∣μ̃α̃
j − μ̃

β̃
j

∣∣∣∣σ + ∣∣∣∣γ̃α̃
j − γ̃

β̃
j

∣∣∣∣σ + ∣∣∣∣π̃α̃
j − π̃

β̃
j

∣∣∣∣σ + ∣∣∣∣1
2

(
S
(
α̃j
)− S

(
β̃ j

))∣∣∣∣σ) ≤ 1,

0 ≤
(

1
3n

n

∑
j=1

(∣∣∣∣μ̃α̃
j − μ̃

β̃
j

∣∣∣∣σ + ∣∣∣∣γ̃α̃
j − γ̃

β̃
j

∣∣∣∣σ + ∣∣∣∣π̃α̃
j − π̃

β̃
j

∣∣∣∣σ + ∣∣∣∣1
2

(
S
(
α̃j
)− S

(
β̃ j

))∣∣∣∣σ)
) 1

σ

≤ 1.
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(4) Since α̃ ⊆ β̃ ⊆ χ̃, then μ̃α̃
j ≤ μ̃

β̃
j ≤ μ̃

χ̃
j , γ̃α̃

j ≤ γ̃
β̃
j ≤ γ̃

χ̃
j , S

(
α̃j
) ≥ S

(
β̃ j

)
≥ S

(
χ̃j
)

for
all xj ∈ X. Then, we have∣∣∣∣μ̃α̃

j − μ̃
β̃
j

∣∣∣∣σ ≤ ∣∣∣μ̃α̃
j − μ̃

χ̃
j

∣∣∣σ,
∣∣∣∣μ̃β̃

j − μ̃
χ̃
j

∣∣∣∣σ ≤ ∣∣∣μ̃α̃
j − μ̃

χ̃
j

∣∣∣σ;

∣∣∣∣γ̃α̃
j − γ̃

β̃
j

∣∣∣∣σ ≤ ∣∣∣γ̃α̃
j − γ̃

χ̃
j

∣∣∣σ,
∣∣∣∣γ̃β̃

j − γ̃
χ̃
j

∣∣∣∣σ ≤ ∣∣∣γ̃α̃
j − γ̃

χ̃
j

∣∣∣σ;

∣∣∣∣1
2

(
S
(
α̃j
)− S

(
β̃ j

))∣∣∣∣σ ≤ ∣∣∣∣1
2
(
S
(
α̃j
)− S

(
χ̃j
))∣∣∣∣σ ≤,

∣∣∣∣1
2

(
S
(

β̃ j

)
− Sχ

)∣∣∣∣σ ≤ ∣∣∣∣1
2
(
S
(
α̃j
)− S

(
χ̃j
))∣∣∣∣σ.

Thus,(∣∣∣∣μ̃α̃
j − μ̃

β̃
j

∣∣∣∣σ + ∣∣∣∣γ̃α̃
j − γ̃

β̃
j

∣∣∣∣σ + ∣∣∣∣π̃α̃
j − π̃

β̃
j

∣∣∣∣σ + ∣∣∣ 1
2

(
S
(
α̃j
)− S

(
β̃ j

))∣∣∣σ) ≤(∣∣∣μ̃α̃
j − μ̃

χ̃
j

∣∣∣σ + ∣∣∣γ̃α̃
j − γ̃

χ̃
j

∣∣∣σ + ∣∣∣π̃α̃
j − π̃

χ̃
j

∣∣∣σ + ∣∣∣ 1
2
(
S
(
α̃j
)− S

(
χ̃j
))∣∣∣σ)

(∣∣∣∣μ̃β̃
j − μ̃

χ̃
j

∣∣∣∣σ + ∣∣∣∣γ̃β̃
j − γ̃

χ̃
j

∣∣∣∣σ + ∣∣∣∣π̃β̃
j − π̃

χ̃
j

∣∣∣∣σ + ∣∣∣ 1
2

(
S
(

β̃ j

)
− S

(
χ̃j
))∣∣∣σ) ≤(∣∣∣μ̃α̃

j − μ̃
χ̃
j

∣∣∣σ + ∣∣∣γ̃α̃
j − γ̃

χ̃
j

∣∣∣σ + ∣∣∣π̃α̃
j − π̃

χ̃
j

∣∣∣σ + ∣∣∣ 1
2
(
S
(
α̃j
)− S

(
χ̃j
))∣∣∣σ)

Furthermore,

Dσ
(

α̃, β̃
)
=

(
1

3n

n
∑

j=1

(∣∣∣∣μ̃α̃
j − μ̃

β̃
j

∣∣∣∣σ + ∣∣∣∣γ̃α̃
j − γ̃

β̃
j

∣∣∣∣σ + ∣∣∣∣π̃α̃
j − π̃

β̃
j

∣∣∣∣σ + ∣∣∣ 1
2

(
S
(
α̃j
)− S

(
β̃ j

))∣∣∣σ)) 1
σ

≤
(

1
3n

n
∑

j=1

(∣∣∣μ̃α̃
j − μ̃

χ̃
j

∣∣∣σ + ∣∣∣γ̃α̃
j − γ̃

χ̃
j

∣∣∣σ + ∣∣∣π̃α̃
j − π̃

χ̃
j

∣∣∣σ + ∣∣∣ 1
2
(
S
(
α̃j
)− S

(
χ̃j
))∣∣∣σ)) 1

σ

= Dσ(α̃, χ̃)

Dσ
(

β̃, χ̃
)
=

(
1

3n

n
∑

j=1

(∣∣∣∣μ̃β̃
j − μ̃

χ̃
j

∣∣∣∣σ + ∣∣∣∣γ̃β̃
j − γ̃

χ̃
j

∣∣∣∣σ + ∣∣∣∣π̃β̃
j − π̃

χ̃
j

∣∣∣∣σ + ∣∣∣ 1
2

(
S
(

β̃ j

)
− S

(
χ̃j
))∣∣∣σ)) 1

σ

≤
(

1
3n

n
∑

j=1

(∣∣∣μ̃α̃
j − μ̃

χ̃
j

∣∣∣σ + ∣∣∣γ̃α̃
j − γ̃

χ̃
j

∣∣∣σ + ∣∣∣π̃α̃
j − π̃

χ̃
j

∣∣∣σ + ∣∣∣ 1
2
(
S
(
α̃j
)− S

(
χ̃j
))∣∣∣σ)) 1

σ

= Dσ(α̃, χ̃)

Accordingly, Dσ
(

α̃, β̃
)
≤ Dσ(α̃, χ̃) and Dσ

(
β̃, χ̃

)
≤ Dσ(α̃, χ̃).

Definition 8. Let Ã =
(
α̃ij

)
m×n and B̃ =

(
β̃ij

)
m×n

be two intuitionistic fuzzy matrices, where

α̃ij =
(

μα̃ij
, γα̃ij

)
and β̃ij =

(
μ

β̃ij
, γ

β̃ij

)
are IFNs. Then, the distance between intuitionistic fuzzy

matrices Ã and B̃ is defined as follows:

D̂σ
(

Ã, B̃
)
=

(
1

3mn

m

∑
i=1

n

∑
j=1

(∣∣∣μ̃Ã
ij − μ̃B̃

ij

∣∣∣σ + ∣∣∣γ̃Ã
ij − γ̃B̃

ij

∣∣∣σ + ∣∣∣π̃ Ã
ij − π̃B̃

ij

∣∣∣σ + ∣∣∣∣1
2

(
S
(

Ãij

)
− S

(
B̃ij

))∣∣∣∣σ)
) 1

σ

. (6)

when σ = 1, σ = 2 and σ = +∞, D̂σ
(

Ã, B̃
)

are degenerated to the corresponding intuitionis-

tic fuzzy Hamming distance D̂1
(

Ã, B̃
)

, Euclidean distance D̂2
(

Ã, B̃
)

and Chebyshev distance

D̂+∞
(

Ã, B̃
)

.
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D̂1
(

Ã, B̃
)
=

1
3mn

m

∑
i=1

n

∑
j=1

(∣∣∣μ̃Ã
ij − μ̃B̃

ij

∣∣∣+ ∣∣∣γ̃Ã
ij − γ̃B̃

ij

∣∣∣+ ∣∣∣π̃ Ã
ij − π̃B̃

ij

∣∣∣+ ∣∣∣∣1
2

(
S
(

Ãij

)
− S

(
B̃ij

))∣∣∣∣). (7)

D̂2
(

Ã, B̃
)
=

√√√√ 1
3mn

m

∑
i=1

n

∑
j=1

(∣∣∣μ̃Ã
ij − μ̃B̃

ij

∣∣∣2 + ∣∣∣γ̃Ã
ij − γ̃B̃

ij

∣∣∣2 + ∣∣∣π̃ Ã
ij − π̃B̃

ij

∣∣∣2 + ∣∣∣∣1
2

(
S
(

Ãij

)
− S

(
B̃ij

))∣∣∣∣2
)

. (8)

D̂+∞
(

Ã, B̃
)
= max

1 ≤ i ≤ m
1 ≤ j ≤ m

(∣∣∣μ̃Ã
ij − μ̃B̃

ij

∣∣∣, ∣∣∣γ̃Ã
ij − γ̃B̃

ij

∣∣∣, ∣∣∣π̃ Ã
ij − π̃B̃

ij

∣∣∣, ∣∣∣∣1
2

(
S
(

Ãij

)
− S

(
B̃ij

))∣∣∣∣). (9)

3.2. Problem Statement

For the MCGDM problem under the intuitionistic fuzzy environment, let Pi(i = 1,
2, · · · , m) be the set of urban rail transit system types, Qj(j = 1, 2, · · · , n) be the set of
criteria. ωj(j = 1, 2, · · · , n) is the weight of the criterion Qj(j = 1, 2, · · · , n) and satisfying

0 ≤ ωj ≤ 1,
n
∑

j=1
ωj = 1. Dk(k = 1, 2, · · · , K) is the set of experts. The corresponding

weight of expert is expressed as λk(k = 1, 2, · · · , K) and satisfying 0 ≤ λk ≤ 1,
K
∑

k=1
λk = 1.

Ẽk = (ẽk
ij)m×n

represents the evaluation value of the urban rail transit system Pi under
criterion Qj given by the kth expert.

3.3. Detailed Steps of the Hybrid Intuitionistic Fuzzy Group Decision Framework

This paper developed a hybrid group decision framework considering the psychologi-
cal behavior of experts under the intuitionistic fuzzy environment. Firstly, experts express
their qualitative evaluation through linguistic variables and then obtain the intuitionistic
fuzzy decision matrix of experts. Secondly, the weight information of experts is determined
by similarity method based on the proposed intuitionistic fuzzy distance measure, and then
the aggregation decision matrix is obtained. Thirdly, the subjective weight and objective
weight of attributes are obtained by DEMATEL and CRITIC methods, respectively, and the
comprehensive weights of criteria are obtained by linear integration method. DEMATEL
method can fully consider the relationship between criteria, making the final subjective
weight results more accurate. CRITIC method is based on the contrast strength of criteria
and the conflict between criteria to comprehensively measure the objective weight of crite-
ria. The objective attribute of the data itself is fully used for scientific evaluation. In the
stage of ranking, the COPRAS method based on regret theory is used to calculate the com-
prehensive evaluation value of the scheme and finally determine the ranking of the urban
rail transit systems. COPRAS method is simple to operate, does not need standardization
process and can reduce the lack of evaluation information. The detailed steps are as follows
and the method framework is shown in Figure 1.

(1) Stage 1 Collect the evaluation information

Step 1.1: Obtain the linguistic decision matrix.
The evaluation value of Pi(i = 1, 2, · · · , m) in criterion Qj(j = 1, 2, · · · , n) is given by

expert Dk(k = 1, 2, · · · , K) in the form of linguistic variables.
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Figure 1. The framework of the proposed method.

Step 1.2: Convert to the fuzzy decision matrix.
The linguistic evaluation value is transformed into intuitionistic fuzzy number, and

then obtain the intuitionistic fuzzy evaluation matrix. Table 1 lists the linguistic variables,
which reflect the transformation relationship between linguistic variables of decision matrix
and IFNs.

Ẽk =

⎛⎜⎜⎜⎝
ẽk

11 ẽk
12 · · · ẽk

1n
ẽk

21 ẽk
22 · · · ẽk

2n
...

...
...

...
ẽk

m1 ẽk
m2 · · · ẽk

mn

⎞⎟⎟⎟⎠, ẽk
ij = (μ̃k

ij, γ̃k
ij).
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Table 1. The transformation relationship of decision-making matrix linguistic variables [40].

Linguistic Variables IFNs

Extremely Low (EL) (0.10, 0.90, 0.00)
Very Low (VL) (0.10, 0.75, 0.15)

Low (L) (0.25, 0.60, 0.15)
Medium Low (ML) (0.40, 0.50, 0.10)

Medium (M) (0.50, 0.40, 0.10)
Medium High (MH) (0.60, 0.30, 0.10)

High (H) (0.70, 0.20, 0.10)
Very High (VH) (0.80, 0.10, 0.10)

Extremely High (EH) (0.90, 0.10, 0.00)

(2) Stage 2 Determine the comprehensive evaluation matrix

Step 2.1: Similarity-based approach determines the weight of expert.
The determination of weights of experts is a key to MCGDM problem. In this study,

the weights of experts are determined by similarity method. Generally speaking, the closer
the expert’s evaluation is to the evaluation of the whole expert group, the greater the
expert’s weight is.

Step 2.1.1 Obtain the average evaluation matrix of the expert group from Equation (10)

eij =
(
μij, γij

)
= IFWAω

(
e1

ij, e2
ij, · · · , eK

ij

)
=

(
1−

K

∏
k=1

(
1− μk

ij

) 1
K ,

K

∏
k=1

(
γk

ij

) 1
K

)
. (10)

where IFWA is intuitionistic fuzzy weighted average operator.
Step 2.1.2 According to Definition 8, the distance between the kth expert’s evaluation

matrix Ek =
(

ek
ij

)
m×n

and the average evaluation matrix E =
(
eij
)

m×n of the expert group

is expressed as:

D̂1
(

Ek, E
)
= 1

3mn

m
∑

i=1

n
∑

j=1

(∣∣∣μk
ij − μij

∣∣∣+ ∣∣∣γk
ij − γij

∣∣∣+ ∣∣∣πk
ij − πij

∣∣∣+ ∣∣∣ 1
2

(
S
(
eij
)− S

(
eij

))∣∣∣).

D̂+∞
(

Ek, E
)
= max

1 ≤ i ≤ m
1 ≤ j ≤ n

{∣∣∣μk
ij − μij

∣∣∣, ∣∣∣γk
ij − γij

∣∣∣, ∣∣∣πk
ij − πij

∣∣∣, ∣∣∣ 1
2

(
S
(
eij
)− S

(
eij

))∣∣∣}. (11)

Step 2.1.3 Through the control parameters, the comprehensive distance calculated
from Equation (12) is:

D∗
(

Ek, E
)
= θD̂1

(
Ek, E

)
+ (1− θ)D̂+∞

(
Ek, E

)
. (12)

where D∗
(

Ek, E
)

represents comprehensive distance, θ represents balance coefficient,
0 ≤ θ ≤ 1.

Step 2.1.4 The smaller the distance d
(

Ek, E
)

, the greater the weight of the expert. The
corresponding weight λk is obtained from Equation (13):

λk =
1− D∗

(
Ek, E

)
K
∑

k=1

(
1− D∗

(
Ek, E

)) , k = 1, 2, · · · , K. (13)

Step 2.2: Aggregate the fuzzy decision-making matrix.
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Using Equation (14), expert decision matrices are aggregated to obtain the comprehen-
sive evaluation decision matrix:

eij = IFWAω

(
e1

ij, e2
ij, · · · , eK

ij

)
=

(
1−

K

∏
k=1

(
1− μ̃k

ij

)λk
,

K

∏
k=1

(
γ̃k

ij

)λk

)
. (14)

(3) Stage 3 Obtain the comprehensive weight of criteria

Firstly, the subjective weights of criteria are calculated by DEMATEL method, and
then the objective weights of criteria are calculated by CRITIC. Finally, the comprehensive
weights of criteria are obtained by combining the weight preference coefficient with the
subjective and objective weight.

Step 3.1: Determine the subjective weights of criteria with DEMATEL method.
Step 3.1.1 Construct the fuzzy direct-influence matrix
The direct influence relation matrix of criterion Qj to Ql is given by expert

Dk(k = 1, 2, · · · , K) in the form of linguistic variables and then transformed into intuition-
istic fuzzy numbers to obtain the intuitionistic fuzzy direct-influence matrix Tk = (tk

jl)n×n
.

Step 3.1.2 Aggregate the direct-influence matrices with Equation (15) to determine the
group direct-influence matrix T̃ =

(
t̃jl

)
n×n

:

t̃jl = IFWAω(t1
jl , t2

jl , · · · , tK
jl ) =

(
1−

K

∏
k=1

(
1− μk

jl

)λk
,

K

∏
k=1

(
γk

jl

)λk

)
. (15)

where μjl = 1− K
∏

k=1

(
1− μk

jl

)λk
, γjl =

K
∏

k=1

(
γk

jl

)λk
, λk is the weight of kth expert, λk =

1
K .

Step 3.1.3 Use Equation (16) to standardize the direct-influence matrix to obtain the
standardized direct-influence matrix T′ = (t′jl)n×n

:

t′jl =
tjl

max
1≤j≤n

(
n
∑

l=1
tjl

) , j, l = 1, 2, · · · , n. (16)

where tjl = μjl − γjl − πjl × log2(1+πjl)
100 , πjl = 1− μjl − γjl .

Step 3.1.4 Utilize Equation (17) to calculate the total impact matrix T∗ =
(

t∗jl
)

n×n
:

T∗ = T′ × (
I − T′

)−1. (17)

where I is the identity matrix.
Step 3.1.5 Employ Equations (18) and (19) to calculate importance ξ and influence ζ:

ξ j = Rj + Cj, j = 1, 2, · · · , n. (18)

ζ j = Rj − Cj, j = 1, 2, · · · , n. (19)

where Rj =
n
∑

l=1
tjl , Cj =

n
∑

j=1
tjl .

Step 3.1.6 Use Equation (20) to obtain the subjective weight ωs
j of criterion Qj:

ωs
j =

√
ξ2

j + ζ2
j

n
∑

j=1

√
ξ2

j + ζ2
j

. (20)

Step 3.2: Determinate the objective weights of criteria with CRITIC method.
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Step 3.2.1 Use Equation (21) to normalize the fuzzy decision-making matrix Ẽk = (ẽk
ij)m×n

:

ek
ij =

(
μk

ij, γk
ij

)
=

(
μ̃k

ij, γ̃k
ij

)
, for benefit criterion

ek
ij =

(
μk

ij, γk
ij

)
=

(
γ̃k

ij, μ̃k
ij

)
, for cost criterion

(21)

Step 3.2.2 Use Equation (22) to aggregate the fuzzy decision-making matrix:

e∗ij = IFWAω

(
e1

ij, e2
ij, · · · , eK

ij

)
=

(
1−

K

∏
k=1

(
1− μk

ij

)λk
,

K

∏
k=1

(
γk

ij

)λk

)
. (22)

Step 3.2.3 Use Equation (23) to obtain the standard deviation τj of the criterion:

τj =

√
1

n− 1

m

∑
i=1

(
Dσ

(
e∗ij, ej

))2
, j = 1, 2, · · · , n. (23)

where ej =
1
m

m
∑

i=1
e∗ij = IFWAω

(
e∗1j, e∗2j, · · · , e∗mj

)
=

(
1− m

∏
i=1

(
1− μ∗ij

) 1
m ,

m
∏
i=1

(
γ∗ij

) 1
m
)

.

Use Equation (24) to evaluate correlation coefficient ρjl between criteria:

ρjl =

m
∑

i=1

[
Dσ

(
e∗ij, ej

)
· Dσ

(
e∗ij, ej

)]
√

m
∑

i=1

(
Dσ

(
e∗ij, ej

))2
√

m
∑

i=1

(
Dσ

(
e∗ij, ej

))2
, j, l = 1, 2, · · · , n. (24)

where ej =
1
m

m
∑

i=1
e∗ij, el =

1
m

m
∑

i=1
e∗ij, j, l = 1, 2, · · · , n.

Step 3.2.4 Use Equation (25) to obtain the objective weight ωo
j of criterion Qj:

ωo
j =

τj
n
∑

l=1

(
1− ρjl

)
n
∑

j=1

[
τj

n
∑

l=1

(
1− ρjl

)] , j = 1, 2, · · · , n. (25)

Step 3.3: Obtain the comprehensive weights ωj of criteria.

ωj = ϕωs
j + (1− ϕ)ωo

j . (26)

where ϕ(0 ≤ ϕ ≤ 1) indicates the relative importance of subjective weight and objective
weight severally. Here, it is assumed that the subjective and objective weights are of equal
importance, so ϕ = 0.5.

(4) Stage 4 Determine the ranking of urban rail transit systems

In this paper, the power function u(x) = xε is used as the utility function of attribute
value, where ε(0 ≤ ε ≤ 1) is risk aversion coefficient, to describe the risk attitude of experts
in decision-making, and, the smaller it is, the higher the risk aversion degree of experts
is. R(x) = 1− exp(−ϑ · x) is used as the regret and joy function, where it is the regret
avoidance coefficient of experts, and the greater the ϑ(ϑ ∈ [0,+∞]) is, the higher the
expert’s regret avoidance degree is [41].

Let the evaluation value of Pi(i = 1, 2, · · · , m) be yi(i = 1, 2, · · · , m), and then the per-
ceived utility value of experts on Pi is ui = v(yi) + R(v(yi)− v(y∗)). Where
y∗ = max1≤i≤m{yi} is the utility value of the ideal urban rail transit system type.
R(v(yi)− v(y∗)) ≤ 0 indicates the regret value when the decision-maker chooses Pi and
abandons the ideal urban rail transit system type. Therefore, the perceived utility value
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of experts on the urban rail transit system type includes the utility value of the Pi and the
regret value of Pi compared with the ideal urban rail transit system type.

Step 4.1: Determinate comprehensive evaluation value of urban rail transit systems
based on COPRAS method considering regret theory.

Step 4.1.1 Determinate the weighted decision matrix:

�
U =

⎛⎜⎜⎜⎜⎝
�
uij

�
uij · · · �

uij
�
uij

�
uij · · · �

uij
...

...
. . .

...
�
uij

�
uij · · · �

uij

⎞⎟⎟⎟⎟⎠
where

�
uij = wj · uij.

Step 4.1.2 Use Equation (27) to calculate the utility value of the Pi under the criterion:

κij =
(

Dσ
(

eij, e∗j
))ε

. (27)

where ε is the risk aversion coefficient of decision-making experts. Based on the previous

studies [39,42], ε = 0.88, e∗j is ideal point. For benefit criteria, e∗j =

(
max

1≤i≤m
μij, min

1≤i≤m
γij

)
;

for cost criteria, e∗j =

(
min

1≤i≤m
μij, max

1≤i≤m
γij

)
.

Step 4.1.3 Use Equation (28) to calculate the regret value of Pi:

ξij = 1− exp(−ϑ·(Δu)). (28)

where Δu = κ∗j − κij, κ∗j = min
1≤i≤m

{
κij
}

is the utility value of ideal point. ϑ is the regret

avoidance coefficient of expert.
Step 4.1.4 Utilize Equation (29) to calculate the perceived utility value of Pi:

uij = κij + ξij. (29)

Step 4.1.5 Obtain the benefit value and cost value of Pi:
For benefit criteria, use Equation (30) to calculate comprehensive benefit value G+

i
of Pi:

G+
i =

r

∑
j=1

uij
+, i = 1, 2, · · · , m. (30)

For cost criteria, use Equation (31) to calculate comprehensive cost value G+
i of Pi:

G−i =
n

∑
j=r+1

uij
−, i = 1, 2, · · · , m. (31)

where “+” and “-” represent “benefit” and “cost”, respectively, r is the number of
benefit criteria.

Step 4.1.6 Use Equation (32) to determine the comprehensive evaluation value of Pi:

Hi = G+
i +

min
i

G−i
m
∑

i=1
G−i

G−i
m
∑

i=1

min
i

G−i
G−i

= G+
i +

m
∑

i=1
G−i

G−i
m
∑

i=1

1
G−i

, i = 1, 2, · · · , m; min
i

G−i = min
1≤i≤m

{
G−i

}
(32)

Step 4.2: Select the optimal urban rail transit system.
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During the process of urban rail transit system selection, the optimal urban rail transit
system shall be determined according to the comprehensive utility value Hi calculated by
Equation (32). That is, sort Hi from small to large. The larger Hi is, the better the scheme is.

4. Case Study

In this part, firstly, seven types of urban rail transit systems and eight criteria are listed.
Secondly, the proposed hybrid decision model is used for the selection of the urban rail
transit system of City N, and the optimal urban rail transit system is selected to prove the
applicability and effectiveness of the proposed method. Finally, the stability and robustness
of the model are verified through sensitivity analysis and comparative analysis.

Therefore, the types and related evaluation criteria of urban rail transit are systemati-
cally studied. Based on the existing research and discussion with four experts (Table 2 for
experts’ background), seven types of urban rail transit and eight criteria were determined
to evaluate the types of urban rail transit (Table 3). After the preliminary analysis, an expert
group composed of four experts was responsible for the evaluation of urban rail transit
types. These decision-makers have played a role in rail transit, universities and government
agencies. Next, the steps of the developed method in evaluating the type selection of urban
rail transit will be introduced.

Table 2. The background of experts.

Experts Major Occupation Working Experience

D1 Transportation Professor 26 years
D2 Transportation Professor 22 years
D3 Transportation Associate professor 15 years
D4 Transportation Researcher 8 years

Table 3. The evaluation criteria of urban rail transit system.

Primary Index Secondary Index Type Description

Characteristic
Transportation capacity (Q1) Benefit It refers to the average number of passengers

transported by the rail transit system per hour.

Transportation speed (Q2) Benefit It refers to the average operating distance of
the rail transit system per hour.

Technology

Technology maturity (Q3) Benefit It refers to the maturity of the technology used
in the construction of the rail transit system.

Application degree of green
technology (Q4) Benefit

It refers to the degree of application of green
technology in the design and construction
stage of the rail transit system, such as land
saving, energy saving, environmental
protection technology, etc.

Construction difficulty (Q5) Cost

It refers to the environmental conditions
required for the construction of the rail transit
system, such as underground, ground, soil
requirements, etc.

Economy

Construction cost (Q6) Cost It refers to the average construction cost per
kilometer of the rail transit system.

Operation and maintenance cost (Q7) Cost
It refers to the cost required for the operation
and maintenance of the rail transit system after
the completion of construction.

Environment Environmental harmony (Q8) Benefit

It refers to the influence degree of the noise
generated during the operation of the rail
transit system on the environment and the
environmental quality and aesthetics of the
internal environment (vehicles and stations).
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4.1. The Types of Urban Rail Transit System

As the backbone of urban public transport, urban rail transit has the characteristics
of being fast, convenient, efficient, safe and comfortable. Under the current green and
sustainable development policy, this type of system caters to the needs of the new era.
According to the research on the classification of various forms of urban rail transit systems,
this paper divides the urban rail transit system into seven forms: metro system, light rail
system, monorail system, modern tram system, mid–low-speed maglev system, automatic
guided track system and municipal railway system.

(1) Metro System (P1). A metro system is a kind of urban rail transit. It adopts a steel
wheel and rail system and mainly operates in tunnels built in underground space of
big cities. When conditions permit, it can also pass through the ground and operate
on the ground or viaduct.

(2) Light Rail System (P2). A light rail system refers to the tram or train running on all
streets or viaducts. It is a kind of urban rail transit system.

(3) Monorail System (P3). A monorail system is a medium-volume rail transportation
system in which vehicles and special track beams are combined into one. Its track
beam is not only the load-bearing structure of vehicles but also the guide track for
vehicle operation.

(4) Modern Tram System (P4). A tram is a rail transit vehicle driven by electricity and
running on the track. Because it runs on the street, it is also called road tram, or tram
for short.

(5) Mid–Low-Speed Maglev System (P5). A medium–low-speed maglev is a new tech-
nology with independent intellectual property rights in China, and it is also the most
advanced technology in urban rail transit. It is applicable to the traffic connection
between urban areas, close cities and scenic spots.

(6) Automatic Guided Track System (P6). Automatic guided track system trains run
along special guiding devices. The vehicle operation and stations can be controlled by
computer. It can realize full automation and unmanned driving. The automatic guided
track system is suitable for urban airport lines and point-to-point transportation lines
with relatively concentrated urban passenger flow. When necessary, it can operate
with fewer stops in the middle.

(7) Municipal Railway System (P7). A municipal railway, also known as commuter
railway and suburban railway, refers to the passenger rail transit system within the
metropolitan area, serving cities and suburbs, central cities and satellite cities, key
cities and towns, etc.

4.2. Relevant Criteria

The criteria for urban rail transit system selection are obtained based on literature
research and expert consultation summary. The evaluation criteria proposed in this study
is from the perspectives of characteristic, technology, economy and environment, with a
total of eight criteria, including five benefit criteria and three cost criteria. The detailed
description of the criteria is shown in Table 3.

4.3. Method Implementation

In this subsection, based on the above-listed seven urban rail transit system types
and eight urban rail transit evaluation criteria, City N is selected as an example to imple-
ment the hybrid group decision framework in order to select the most suitable urban rail
transit system type for City N. By the end of 2020, the total resident population of city
N was 9.404 million, and the population density was 622.52 people per square kilometer.
Throughout the year, the whole society completed 75.1333 million passenger trips, includ-
ing 24.264 million road passenger trips and 40.516 million railway passenger trips. In terms
of public transport, at the end of the year, there were 10,035 standard public transport
vehicles in the city. Further, 1272 lines were operated, an increase of 8.3%. Rail transit
completed 158 million passenger trips in the whole year. At the end of the year, there were

51



Mathematics 2022, 10, 2133

42,000 public bicycles in the city, with a total of 22.597 million car rentals in the whole year.
At the end of the year, there were 6281 taxis in the city.

The decision group is still composed of the above four experts, who provide the
linguistic evaluation decision matrix and the linguistic attribute direct influence matrix,
respectively, as shown in Tables 4 and 5.

Table 4. The linguistic decision-making matrix.

DEs Urban Rail Transit System
Criteria

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

D1

P1 EH H EH H VH VH VH H
P2 H H EH H MH MH H VH
P3 M MH H VH L ML MH VH
P4 ML ML H VH ML L L VH
P5 M VH M H H H MH H
P6 M MH H H M M M VH
P7 H EH VH H M H H VH

D2

P1 VH VH VH MH M M M M
P2 H H VH MH M M M M
P3 M M H MH M ML M MH
P4 ML ML H MH M ML M ML
P5 M EH ML H H H H H
P6 ML L M MH M ML M MH
P7 VH VH VH MH M MH MH M

D3

P1 VH VH VH MH M EH EH H
P2 MH MH VH MH M H EH H
P3 ML MH MH MH ML H EH EH
P4 ML ML MH ML H M M M
P5 ML MH VL VH H H EH H
P6 VL ML VL MH ML M M M
P7 EH EH VH MH M H VH H

D4

P1 VH VH H M H VH VH MH
P2 MH MH H M M MH ML H
P3 MH MH ML M ML M M H
P4 M M ML M M ML ML VH
P5 H H L MH MH H VH VH
P6 M M L M MH VH VH MH
P7 VH VH VH M MH M M M

Table 5. The fuzzy direct-influence matrix.

DEs Criteria Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

D1

Q1 EL VL VL VL ML ML H ML
Q2 H EL VL VL MH MH H H
Q3 MH MH EL M VH VH VH H
Q4 VL VL VL EL MH MH H EH
Q5 VL VL VL ML EL EH L L
Q6 M M VL VL MH EL L ML
Q7 L L VL VL VL VL EL VL
Q8 VL VL VL VL VL VL VL EL

D2

Q1 EL MH ML MH ML ML ML MH
Q2 M EL ML MH ML ML ML MH
Q3 VH VH EL H H M M MH
Q4 L L ML EL ML ML ML M
Q5 M H L ML EL M ML M
Q6 L L H M H EL ML ML
Q7 ML M H H MH M EL ML
Q8 MH MH VH EH MH H VH EL
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Table 5. Cont.

DEs Criteria Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

D3

Q1 EL MH L ML ML VH VH M
Q2 VH EL MH ML VH MH VH M
Q3 L MH EL VH H M MH M
Q4 L ML VH EL H VH VH VH
Q5 ML VH H H EL VH VH VH
Q6 VH MH M VH VH EL H H
Q7 VH VH MH VH H H EL VH
Q8 M M M VH H H VH EL

D4

Q1 EL EL H H VH VH VH M
Q2 EL EL VH MH VH VH VH VH
Q3 H VH EL VH VH VH VH EH
Q4 H MH VH EL M VH VH EH
Q5 VH VH VH M EL EH EH EH
Q6 VH VH VH VH EH EL M M
Q7 VH VH VH VH EH M EL L
Q8 M VH EH EH M M L EL

Then, the linguistic assessment matrix is transformed into a fuzzy evaluation matrix
and a fuzzy direct influence matrix represented by intuitionistic fuzzy numbers by the
intuitionistic fuzzy scale (adapted from Refs. [33,40]) listed in Tables 1 and 6, as shown in
Tables 7 and 8. Then, the expert weight (Table 9) is calculated from Equations (10)–(13), the
subjective weight is calculated from Equations (15)–(20), the objective weight is calculated
from Equations (21)–(25) and the final comprehensive weight (Table 10) is calculated from
Equation (26), and then the ranking of the urban rail transit system most suitable for City
N is calculated according to Equations (27)–(32), as shown in Table 11.

Table 6. The transformation relationship of directly affected matrix linguistic variables.

Linguistic Variables IFNs

Extremely Low (EL) (0.10, 0.80, 0.10)
Very Low (VL) (0.20, 0.70, 0.10)

Low (L) (0.30, 0.60, 0.10)
Medium Low (ML) (0.40, 0.50, 0.10)

Medium (M) (0.55, 0.40, 0.05)
Medium High (MH) (0.65, 0.30, 0.05)

High (H) (0.75, 0.20, 0.05)
Very High (VH) (0.90, 0.05, 0.05)

Extremely High (EH) (1.00, 0.00, 0.00)

Table 7. The fuzzy decision-making matrix.

DEs.
Urban Rail

Transit System

Criteria

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

D1

P1
(0.90, 0.10,

0.00)
(0.70, 0.20,

0.10)
(0.90, 0.10,

0.00)
(0.70, 0.20,

0.10)
(0.80, 0.10,

0.10)
(0.80, 0.10,

0.10)
(0.80, 0.10,

0.10)
(0.70, 0.20,

0.10)

P2
(0.70, 0.20,

0.10)
(0.70, 0.20,

0.10)
(0.90, 0.10,

0.00)
(0.70, 0.20,

0.10)
(0.60, 0.30,

0.10)
(0.60, 0.30,

0.10)
(0.70, 0.20,

0.10)
(0.80, 0.10,

0.10)

P3
(0.50, 0.40,

0.10)
(0.60, 0.30,

0.10)
(0.70, 0.20,

0.10)
(0.80, 0.10,

0.10)
(0.25, 0.60,

0.15)
(0.40, 0.50,

0.10)
(0.60, 0.30,

0.10)
(0.80, 0.10,

0.10)

P4
(0.40, 0.50,

0.10)
(0.40, 0.50,

0.10)
(0.70, 0.20,

0.10)
(0.80, 0.10,

0.10)
(0.40, 0.50,

0.10)
(0.25, 0.60,

0.15)
(0.25, 0.60,

0.15)
(0.80, 0.10,

0.10)

P5
(0.50, 0.40,

0.10)
(0.80, 0.10,

0.10)
(0.50, 0.40,

0.10)
(0.70, 0.20,

0.10)
(0.70, 0.20,

0.10)
(0.70, 0.20,

0.10)
(0.60, 0.30,

0.10)
(0.70, 0.20,

0.10)

P6
(0.50, 0.40,

0.10)
(0.60, 0.30,

0.10)
(0.70, 0.20,

0.10)
(0.70, 0.20,

0.10)
(0.50, 0.40,

0.10)
(0.50, 0.40,

0.10)
(0.50, 0.40,

0.10)
(0.80, 0.10,

0.10)

P7
(0.70, 0.20,

0.10)
(0.90, 0.10,

0.00)
(0.80, 0.10,

0.10)
(0.70, 0.20,

0.10)
(0.50, 0.40,

0.10)
(0.70, 0.20,

0.10)
(0.70, 0.20,

0.10)
(0.80, 0.10,

0.10)
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Table 7. Cont.

DEs.
Urban Rail

Transit System

Criteria

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

D2

P1
(0.80, 0.10,

0.10)
(0.80, 0.10,

0.10)
(0.80, 0.10,

0.10)
(0.60, 0.30,

0.10)
(0.50, 0.40,

0.10)
(0.50, 0.40,

0.10)
(0.50, 0.40,

0.10)
(0.50, 0.40,

0.10)

P2
(0.70, 0.20,

0.10)
(0.70, 0.20,

0.10)
(0.80, 0.10,

0.10)
(0.60, 0.30,

0.10)
(0.50, 0.40,

0.10)
(0.50, 0.40,

0.10)
(0.50, 0.40,

0.10)
(0.50, 0.40,

0.10)

P3
(0.50, 0.40,

0.10)
(0.50, 0.40,

0.10)
(0.70, 0.20,

0.10)
(0.60, 0.30,

0.10)
(0.50, 0.40,

0.10)
(0.40, 0.50,

0.10)
(0.50, 0.40,

0.10)
(0.60, 0.30,

0.10)

P4
(0.40, 0.50,

0.10)
(0.40, 0.50,

0.10)
(0.70, 0.20,

0.10)
(0.60, 0.30,

0.10)
(0.50, 0.40,

0.10)
(0.40, 0.50,

0.10)
(0.50, 0.40,

0.10)
(0.40, 0.50,

0.10)

P5
(0.50, 0.40,

0.10)
(0.90, 0.10,

0.00)
(0.40, 0.50,

0.10)
(0.70, 0.20,

0.10)
(0.70, 0.20,

0.10)
(0.70, 0.20,

0.10)
(0.70, 0.20,

0.10)
(0.70, 0.20,

0.10)

P6
(0.40, 0.50,

0.10)
(0.25, 0.60,

0.15)
(0.50, 0.40,

0.10)
(0.60, 0.30,

0.10)
(0.50, 0.40,

0.10)
(0.40, 0.50,

0.10)
(0.50, 0.40,

0.10)
(0.60, 0.30,

0.10)

P7
(0.80, 0.10,

0.10)
(0.80, 0.10,

0.10)
(0.80, 0.10,

0.10)
(0.60, 0.30,

0.10)
(0.50, 0.40,

0.10)
(0.60, 0.30,

0.10)
(0.60, 0.30,

0.10)
(0.50, 0.40,

0.10)

D3

P1
(0.80, 0.10,

0.10)
(0.80, 0.10,

0.10)
(0.80, 0.10,

0.10)
(0.60, 0.30,

0.10)
(0.50, 0.40,

0.10)
(0.90, 0.10,

0.00)
(0.90, 0.10,

0.00)
(0.70, 0.20,

0.10)

P2
(0.60, 0.30,

0.10)
(0.60, 0.30,

0.10)
(0.80, 0.10,

0.10)
(0.60, 0.30,

0.10)
(0.50, 0.40,

0.10)
(0.70, 0.20,

0.10)
(0.90, 0.10,

0.00)
(0.70, 0.20,

0.10)

P3
(0.40, 0.50,

0.10)
(0.60, 0.30,

0.10)
(0.60, 0.30,

0.10)
(0.60, 0.30,

0.10)
(0.40, 0.50,

0.10)
(0.70, 0.20,

0.10)
(0.90, 0.10,

0.00)
(0.90, 0.10,

0.00)

P4
(0.40, 0.50,

0.10)
(0.40, 0.50,

0.10)
(0.60, 0.30,

0.10)
(0.40, 0.50,

0.10)
(0.70, 0.20,

0.10)
(0.50, 0.40,

0.10)
(0.50, 0.40,

0.10)
(0.50, 0.40,

0.10)

P5
(0.40, 0.50,

0.10)
(0.60, 0.30,

0.10)
(0.10, 0.75,

0.15)
(0.80, 0.10,

0.10)
(0.70, 0.20,

0.10)
(0.70, 0.20,

0.10)
(0.90, 0.10,

0.00)
(0.70, 0.20,

0.10)

P6
(0.10, 0.75,

0.15)
(0.40, 0.50,

0.10)
(0.10, 0.75,

0.15)
(0.60, 0.30,

0.10)
(0.40, 0.50,

0.10)
(0.50, 0.40,

0.10)
(0.50, 0.40,

0.10)
(0.50, 0.40,

0.10)

P7
(0.90, 0.10,

0.00)
(0.90, 0.10,

0.00)
(0.80, 0.10,

0.10)
(0.60, 0.30,

0.10)
(0.50, 0.40,

0.10)
(0.70, 0.20,

0.10)
(0.80, 0.10,

0.10)
(0.70, 0.20,

0.10)

D4

P1
(0.80, 0.10,

0.10)
(0.80, 0.10,

0.10)
(0.70, 0.20,

0.10)
(0.50, 0.40,

0.10)
(0.70, 0.20,

0.10)
(0.80, 0.10,

0.10)
(0.80, 0.10,

0.10)
(0.60, 0.30,

0.10)

P2
(0.60, 0.30,

0.10)
(0.60, 0.30,

0.10)
(0.70, 0.20,

0.10)
(0.50, 0.40,

0.10)
(0.50, 0.40,

0.10)
(0.60, 0.30,

0.10)
(0.40, 0.50,

0.10)
(0.70, 0.20,

0.10)

P3
(0.60, 0.30,

0.10)
(0.60, 0.30,

0.10)
(0.40, 0.50,

0.10)
(0.50, 0.40,

0.10)
(0.40, 0.50,

0.10)
(0.50, 0.40,

0.10)
(0.50, 0.40,

0.10)
(0.70, 0.20,

0.10)

P4
(0.50, 0.40,

0.10)
(0.50, 0.40,

0.10)
(0.40, 0.50,

0.10)
(0.50, 0.40,

0.10)
(0.50, 0.40,

0.10)
(0.40, 0.50,

0.10)
(0.40, 0.50,

0.10)
(0.80, 0.10,

0.10)

P5
(0.70, 0.20,

0.10)
(0.70, 0.20,

0.10)
(0.25, 0.60,

0.15)
(0.60, 0.30,

0.10)
(0.60, 0.30,

0.10)
(0.70, 0.20,

0.10)
(0.80, 0.10,

0.10)
(0.80, 0.10,

0.10)

P6
(0.50, 0.40,

0.10)
(0.50, 0.40,

0.10)
(0.25, 0.60,

0.15)
(0.50, 0.40,

0.10)
(0.60, 0.30,

0.10)
(0.80, 0.10,

0.10)
(0.80, 0.10,

0.10)
(0.60, 0.30,

0.10)

P7
(0.80, 0.10,

0.10)
(0.80, 0.10,

0.10)
(0.80, 0.10,

0.10)
(0.50, 0.40,

0.10)
(0.60, 0.30,

0.10)
(0.50, 0.40,

0.10)
(0.50, 0.40,

0.10)
(0.50, 0.40,

0.10)

Table 8. The intuitionistic fuzzy direct-influence matrix.

DEs Criteria Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

D1

Q1
(0.10, 0.80,

0.10)
(0.20, 0.70,

0.10)
(0.20, 0.70,

0.10)
(0.20, 0.70,

0.10)
(0.40, 0.50,

0.10)
(0.40, 0.50,

0.10)
(0.75, 0.20,

0.05)
(0.40, 0.50,

0.10)

Q2
(0.75, 0.20,

0.05)
(0.10, 0.80,

0.10)
(0.20, 0.70,

0.10)
(0.20, 0.70,

0.10)
(0.65, 0.30,

0.05)
(0.65, 0.30,

0.05)
(0.75, 0.20,

0.05)
(0.75, 0.20,

0.05)

Q3
(0.65, 0.30,

0.05)
(0.65, 0.30,

0.05)
(0.10, 0.80,

0.10)
(0.55, 0.40,

0.05)
(0.90, 0.05,

0.05)
(0.90, 0.05,

0.05)
(0.90, 0.05,

0.05)
(0.75, 0.20,

0.05)

Q4
(0.20, 0.70,

0.10)
(0.20, 0.70,

0.10)
(0.20, 0.70,

0.10)
(0.10, 0.80,

0.10)
(0.65, 0.30,

0.05)
(0.65, 0.30,

0.05)
(0.75, 0.20,

0.05)
(1.00, 0.00,

0.00)

Q5
(0.20, 0.70,

0.10)
(0.20, 0.70,

0.10)
(0.20, 0.70,

0.10)
(0.40, 0.50,

0.10)
(0.10, 0.80,

0.10)
(1.00, 0.00,

0.00)
(0.30, 0.60,

0.10)
(0.30, 0.60,

0.10)

Q6
(0.55, 0.40,

0.05)
(0.55, 0.40,

0.05)
(0.20, 0.70,

0.10)
(0.20, 0.70,

0.10)
(0.65, 0.30,

0.05)
(0.10, 0.80,

0.10)
(0.30, 0.60,

0.10)
(0.40, 0.50,

0.10)

Q7
(0.30, 0.60,

0.10)
(0.30, 0.60,

0.10)
(0.20, 0.70,

0.10)
(0.20, 0.70,

0.10)
(0.20, 0.70,

0.10)
(0.20, 0.70,

0.10)
(0.10, 0.80,

0.10)
(0.20, 0.70,

0.10)

Q8
(0.20, 0.70,

0.10)
(0.20, 0.70,

0.10)
(0.20, 0.70,

0.10)
(0.20, 0.70,

0.10)
(0.20, 0.70,

0.10)
(0.20, 0.70,

0.10)
(0.20, 0.70,

0.10)
(0.10, 0.80,

0.10)
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Table 8. Cont.

DEs Criteria Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

D2

Q1
(0.10, 0.80,

0.10)
(0.65, 0.30,

0.05)
(0.40, 0.50,

0.10)
(0.65, 0.30,

0.05)
(0.40, 0.50,

0.10)
(0.40, 0.50,

0.10)
(0.40, 0.50,

0.10)
(0.65, 0.30,

0.05)

Q2
(0.55, 0.40,

0.05)
(0.10, 0.80,

0.10)
(0.40, 0.50,

0.10)
(0.65, 0.30,

0.05)
(0.40, 0.50,

0.10)
(0.40, 0.50,

0.10)
(0.40, 0.50,

0.10)
(0.65, 0.30,

0.05)

Q3
(0.90, 0.05,

0.05)
(0.90, 0.05,

0.05)
(0.10, 0.80,

0.10)
(0.75, 0.20,

0.05)
(0.75, 0.20,

0.05)
(0.55, 0.40,

0.05)
(0.55, 0.40,

0.05)
(0.65, 0.30,

0.05)

Q4
(0.30, 0.60,

0.10)
(0.30, 0.60,

0.10)
(0.40, 0.50,

0.10)
(0.10, 0.80,

0.10)
(0.40, 0.50,

0.10)
(0.40, 0.50,

0.10)
(0.40, 0.50,

0.10)
(0.55, 0.40,

0.05)

Q5
(0.55, 0.40,

0.05)
(0.75, 0.20,

0.05)
(0.30, 0.60,

0.10)
(0.40, 0.50,

0.10)
(0.10, 0.80,

0.10)
(0.55, 0.40,

0.05)
(0.40, 0.50,

0.10)
(0.55, 0.40,

0.05)

Q6
(0.30, 0.60,

0.10)
(0.30, 0.60,

0.10)
(0.75, 0.20,

0.05)
(0.55, 0.40,

0.05)
(0.75, 0.20,

0.05)
(0.10, 0.80,

0.10)
(0.40, 0.50,

0.10)
(0.40, 0.50,

0.10)

Q7
(0.40, 0.50,

0.10)
(0.55, 0.40,

0.05)
(0.75, 0.20,

0.05)
(0.75, 0.20,

0.05)
(0.65, 0.30,

0.05)
(0.55, 0.40,

0.05)
(0.10, 0.80,

0.10)
(0.40, 0.50,

0.10)

Q8
(0.65, 0.30,

0.05)
(0.65, 0.30,

0.05)
(0.90, 0.05,

0.05)
(1.00, 0.00,

0.00)
(0.65, 0.30,

0.05)
(0.75, 0.20,

0.05)
(0.90, 0.05,

0.05)
(0.10, 0.80,

0.10)

D3

Q1
(0.10, 0.80,

0.10)
(0.65, 0.30,

0.05)
(0.30, 0.60,

0.10)
(0.40, 0.50,

0.10)
(0.40, 0.50,

0.10)
(0.90, 0.05,

0.05)
(0.90, 0.05,

0.05)
(0.55, 0.40,

0.05)

Q2
(0.90, 0.05,

0.05)
(0.10, 0.80,

0.10)
(0.65, 0.30,

0.05)
(0.40, 0.50,

0.10)
(0.90, 0.05,

0.05)
(0.65, 0.30,

0.05)
(0.90, 0.05,

0.05)
(0.55, 0.40,

0.05)

Q3
(0.30, 0.60,

0.10)
(0.65, 0.30,

0.05)
(0.10, 0.80,

0.10)
(0.90, 0.05,

0.05)
(0.75, 0.20,

0.05)
(0.55, 0.40,

0.05)
(0.65, 0.30,

0.05)
(0.55, 0.40,

0.05)

Q4
(0.30, 0.60,

0.10)
(0.40, 0.50,

0.10)
(0.90, 0.05,

0.05)
(0.10, 0.80,

0.10)
(0.75, 0.20,

0.05)
(0.90, 0.05,

0.05)
(0.90, 0.05,

0.05)
(0.90, 0.05,

0.05)

Q5
(0.40, 0.50,

0.10)
(0.90, 0.05,

0.05)
(0.75, 0.20,

0.05)
(0.75, 0.20,

0.05)
(0.10, 0.80,

0.10)
(0.90, 0.05,

0.05)
(0.90, 0.05,

0.05)
(0.90, 0.05,

0.05)

Q6
(0.90, 0.05,

0.05)
(0.65, 0.30,

0.05)
(0.55, 0.40,

0.05)
(0.90, 0.05,

0.05)
(0.90, 0.05,

0.05)
(0.10, 0.80,

0.10)
(0.75, 0.20,

0.05)
(0.75, 0.20,

0.05)

Q7
(0.90, 0.05,

0.05)
(0.90, 0.05,

0.05)
(0.65, 0.30,

0.05)
(0.90, 0.05,

0.05)
(0.75, 0.20,

0.05)
(0.75, 0.20,

0.05)
(0.10, 0.80,

0.10)
(0.90, 0.05,

0.05)

Q8
(0.55, 0.40,

0.05)
(0.55, 0.40,

0.05)
(0.55, 0.40,

0.05)
(0.90, 0.05,

0.05)
(0.75, 0.20,

0.05)
(0.75, 0.20,

0.05)
(0.90, 0.05,

0.05)
(0.10, 0.80,

0.10)

D4

Q1
(0.10, 0.80,

0.10)
(0.10, 0.80,

0.10)
(0.75, 0.20,

0.05)
(0.75, 0.20,

0.05)
(0.90, 0.05,

0.05)
(0.90, 0.05,

0.05)
(0.90, 0.05,

0.05)
(0.55, 0.40,

0.05)

Q2
(0.10, 0.80,

0.10)
(0.10, 0.80,

0.10)
(0.90, 0.05,

0.05)
(0.65, 0.30,

0.05)
(0.90, 0.05,

0.05)
(0.90, 0.05,

0.05)
(0.90, 0.05,

0.05)
(0.90, 0.05,

0.05)

Q3
(0.75, 0.20,

0.05)
(0.90, 0.05,

0.05)
(0.10, 0.80,

0.10)
(0.90, 0.05,

0.05)
(0.90, 0.05,

0.05)
(0.90, 0.05,

0.05)
(0.90, 0.05,

0.05)
(1.00, 0.00,

0.00)

Q4
(0.75, 0.20,

0.05)
(0.65, 0.30,

0.05)
(0.90, 0.05,

0.05)
(0.10, 0.80,

0.10)
(0.55, 0.40,

0.05)
(0.90, 0.05,

0.05)
(0.90, 0.05,

0.05)
(1.00, 0.00,

0.00)

Q5
(0.90, 0.05,

0.05)
(0.90, 0.05,

0.05)
(0.90, 0.05,

0.05)
(0.55, 0.40,

0.05)
(0.10, 0.80,

0.10)
(1.00, 0.00,

0.00)
(1.00, 0.00,

0.00)
(1.00, 0.00,

0.00)

Q6
(0.90, 0.05,

0.05)
(0.90, 0.05,

0.05)
(0.90, 0.05,

0.05)
(0.90, 0.05,

0.05)
(1.00, 0.00,

0.00)
(0.10, 0.80,

0.10)
(0.55, 0.40,

0.05)
(0.55, 0.40,

0.05)

Q7
(0.90, 0.05,

0.05)
(0.90, 0.05,

0.05)
(0.90, 0.05,

0.05)
(0.90, 0.05,

0.05)
(1.00, 0.00,

0.00)
(0.55, 0.40,

0.05)
(0.10, 0.80,

0.10)
(0.30, 0.60,

0.10)

Q8
(0.55, 0.40,

0.05)
(0.90, 0.05,

0.05)
(1.00, 0.00,

0.00)
(1.00, 0.00,

0.00)
(0.55, 0.40,

0.05)
(0.55, 0.40,

0.05)
(0.30, 0.60,

0.10)
(0.10, 0.80,

0.10)

Table 9. The weight of DEs.

DEs λk

D1 0.2548
D2 0.2521
D3 0.2431
D4 0.2499
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Table 10. The weight of criteria and ranking.

Criteria ωs
j Ranking ωo

j Ranking ωj Ranking

Q1 0.0764 8 0.1631 3 0.1198 6
Q2 0.1066 7 0.1813 2 0.1439 2
Q3 0.1468 2 0.2039 1 0.1754 1
Q4 0.1168 6 0.0385 8 0.0776 8
Q5 0.1522 1 0.1185 5 0.1353 3
Q6 0.1245 5 0.1168 6 0.1206 5
Q7 0.1404 3 0.1261 4 0.1332 4
Q8 0.1363 4 0.0519 7 0.0941 7

Table 11. The ranking of urban rail transit system type.

Urban Rail Transit System G+
i G−i Hi Ranking

P1 −0.1409 −1.0936 −0.2057 1
P2 −0.5312 −0.2748 −0.7893 3
P3 −1.3059 −0.1643 −1.7376 4
P4 −1.9230 −0.0440 −3.5346 7
P5 −1.7623 −0.8585 −1.8449 5
P6 −2.4013 −0.2118 −2.7362 6
P7 −0.0762 −0.3434 −0.2828 2

It can be seen from Table 10 that the ranking of the subjective weight and objective
weight of criteria are quite different. The weight determination method combining subjec-
tive and objective weight can make the evaluation results more objective. The top three
final criteria are technology maturity Q3, transportation speed Q2 and construction dif-
ficulty Q5. The ranking of criteria may change due to different cities. For City N, the
first consideration is the three attributes of technology maturity, transportation speed and
construction difficulty.

It can be seen from Table 11 that the ranking of the urban rail transit system in City N
can be obtained through the comprehensive evaluation value. Here, the comprehensive
evaluation value is negative because the regret theory is considered. P1 ranks first; that is,
the type of urban rail transit most suitable for City N is metro system. City N is the third
largest city in Z Province, with a large population and high requirements for transportation
capacity. In addition, the metro system has high technical maturity and fast transportation
speed. The natural geographical environment of city N also makes the construction of
the metro system relatively difficult. Therefore, the metro system is the most suitable
urban rail transit for city N. The municipal railway system (P7) and light rail system (P2)
rank second and third, respectively. These two types are two other options that can be
considered for construction in city N in addition to the metro system. They also have the
characteristics of high technical maturity and fast transportation speed. Other criteria can
be comprehensively considered for selection. The final results of the ranking of the urban
rail transit system type can prove the applicability and effectiveness of the evaluation index
and evaluation framework proposed in this study.

4.4. Sensitivity Analysis

In this subsection, the stability and robustness of the proposed hybrid intuitionistic
fuzzy group decision framework will be explored through sensitivity analysis. The sensitiv-
ity analysis of this study is divided into two parts. The first part is the sensitivity analysis
of the relative importance coefficient of subjective and objective weights. The second part
is the sensitivity analysis of the regret avoidance coefficient of experts.

4.4.1. The Impact Analysis of Parameter ϕ on Decision Results

The relative importance coefficient ϕ of subjective and objective weights can express
the preference of decision-making experts for weights. In the previous example analysis,
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the value of ϕ is 0.5. Next, by changing the value of ϕ, different criteria weight values
are obtained, and then the adjusted criteria ranking results are observed. In this paper,
ϕ ∈ [0, 1], first, let ϕ = 0, increasing by 0.1; the final ranking results and ranking changes
are shown in Table 12 and Figure 2.

Table 12. The ranking of urban rail transit types under different ϕ values.

ϕ = 0 ϕ = 0.1 ϕ = 0.2 ϕ = 0.3 ϕ = 0.4 ϕ = 0.5 ϕ = 0.6 ϕ = 0.7 ϕ = 0.8 ϕ = 0.9 ϕ = 1

P1 1 1 1 1 1 1 1 1 1 1 1
P2 3 3 3 3 3 3 3 3 3 3 3
P3 4 4 4 4 4 4 4 4 4 4 5
P4 7 7 7 7 7 7 7 7 7 7 7
P5 5 5 5 5 5 5 5 5 5 5 4
P6 6 6 6 6 6 6 6 6 6 6 6
P7 2 2 2 2 2 2 2 2 2 2 2

Figure 2. The ranking change of decision results under different parameter ϕ values.

As can be seen from Figure 2, the final ranking is relatively stable by changing the
proportion of subjective and objective weights, and the top three are always P1 � P7 � P2.
When ϕ = 0 and 1, it means that only objective weight and only subjective weight are
considered, respectively. When only the subjective weight is considered, the ranking of the
fourth and fifth types will be exchanged and the other rankings will not change. Therefore,
comprehensive consideration of the subjective and objective weight can make the decision-
making results more stable.

4.4.2. The Impact Analysis of Parameter ϑ on Decision Results

The second part considers the influence of the expert regret avoidance coefficient on
the final decision outcome. The larger ϑ is, the higher the degree of the regret of experts.
The initial value of ϑ is 5. In the analysis, ϑ takes 1 to 10 and increases by 1. The ranking
and changes of the decision results are shown in Table 13 and Figure 3.
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Table 13. The ranking of urban rail transit types under different ϑ values.

ϑ = 1 ϑ = 2 ϑ = 3 ϑ = 4 ϑ = 5 ϑ = 6 ϑ = 7 ϑ = 8 ϑ = 9 ϑ = 10

P1 1 1 1 1 1 1 1 1 1 1
P2 3 3 3 3 3 3 3 3 3 3
P3 5 5 4 4 4 4 4 4 4 4
P4 7 7 7 7 7 7 7 7 7 7
P5 4 4 5 5 5 5 5 5 5 5
P6 6 6 6 6 6 6 6 6 6 6
P7 2 2 2 2 2 2 2 2 2 2

Figure 3. The ranking change in decision results under different parameter ϑ values.

As can be seen from Figure 3, changing the value of the regret avoidance coefficient
has little impact on the final ranking result, which is still relatively stable, and the top three
are still P1 � P7 � P2; only when the value of ϑ = 1 and 2, the medium–low-speed maglev
system (P5) and monorail system (P3) rank fourth and fifth, respectively. When the value
of ϑ is greater than or equal to 3, the rankings of the two types are exchanged. Monorail
system (P3) ranks fourth, while medium–low-speed maglev system (P5) ranks fifth. From
the sensitivity analysis of the above two parts, it can be seen that the model proposed in
this paper has strong stability.

4.5. Comparative Analysis

The same as this study uses IFS to deal with the uncertainty and inaccuracy in de-
cisions, the weight determination method remains unchanged based on IFS in the com-
parative analysis part. Three MCDM methods are selected to compare with the results of
this study. The first is the traditional COPRAS method, which does not consider the regret
theory. The other two methods are TOPSIS and ARAS. The comparison results are shown
in Table 14 and Figure 4.
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Table 14. The ranking under different evaluation methods.

Urban Rail Transit System This Paper IF-COPRAS IF-TOPSIS IF-ARAS

P1 1 3 1 3
P2 3 2 4 2
P3 4 4 6 4
P4 7 5 7 5
P5 5 6 3 6
P6 6 7 5 7
P7 2 1 2 1

 

Figure 4. The ranking results based on different evaluation methods.

Figure 4 shows the comparison of the ranking results under the four methods. It
can be seen that the ranking results under different evaluation methods are different, but
the overall trend is the same. The top three are mainly P1, P2 and P7. The best scheme
changes between P1 and P7, and the last three are concentrated among P4, P5 and P6.
By calculating the Spearman correlation coefficient of the ranking results of the original
method and other methods, it can be seen that all the correlation coefficients are greater
than 0.78, which shows that the evaluation model proposed in this study is relatively stable.
The detailed comparison analyses with other intuitionistic fuzzy decision approaches are
illustrated below.

Compared with the results of the traditional IF-COPRAS method, it is found that the
results obtained by the two methods are different, and the Spearman correlation coefficient
is 0.786. The reason for this difference is that the evaluation model proposed in this study
considers the regret theory; that is, the expert risk aversion coefficient and regret aversion
coefficient are considered at the same time. The result is the optimization of the traditional
IF-COPRAS method.

Compared with the results of the IF-TOPSIS method, the ranking results obtained
by the two methods are more consistent, and the ranking of 1, 2 and 7 are the same. This
can also be proven by the Spearman correlation coefficient of 0.821. The TOPSIS method
is a classical MCDM method, which has wide applicability. Through the consistency of
the results of the two methods, it can be seen that the method proposed in this study has
stability and robustness.

Compared with the results of the IF-ARAS method, the results of the ARAS method are
the same as those of the traditional COPRAS method. Therefore, the Spearman correlation
coefficient is also 0.786. This indicates that regret theory will affect the results.
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Based on the above discussion and comparative analysis, the proposed hybrid intu-
itionistic fuzzy group decision framework for the urban rail transit system selection of this
paper has the following advantages:

(1) The proposed framework describes the uncertainty and fuzziness in the decision-
making process through IFS, which makes the decision-making results closer to the
uncertain cognitive thinking of decision-makers.

(2) The proposed framework can effectively solve the decision problem with completely
unknown weight information, so it has a wider scope of application.

(3) The proposed framework determines the model through the comprehensive weight,
and reasonably considers the subjective and objective factors to make the importance
of the criterion more credible.

(4) The proposed framework combines regret theory and the COPRAS method and com-
prehensively considers the inconsistency of psychological behavior and the attribute
transformation process in the process of expert decision-making, so it improves the
rationality and reliability of decision outcomes.

5. Conclusions

In view of the shortcomings of the existing research, the main goal of this study is
to develop a hybrid MCGDM evaluation model for the selection of an urban rail transit
system. In order to overcome the uncertainty and inaccuracy in the process of expert
evaluation and make the evaluation information more reliable, this study put forward
a hybrid intuitionistic fuzzy group decision framework to select the satisfactory urban
rail transit system. The DEMATEL and CRITIC methods were selected to determine the
subjective and objective weight of the criteria, and the COPRAS method based on regret
theory was used to rank the types of urban rail transit systems and select the optimal
urban rail transit system. The sensitivity analysis and comparative analysis prove the
stability and robustness of the evaluation model. The results show that, no matter how the
coefficient changes, the top three schemes have not changed. Furthermore, the ranking
results still have high consistency by a detailed comparison analysis with other prior
methodologies. Therefore, the hybrid decision-making framework model proposed in this
study has strong practicability. It not only considers the subjective randomness of experts
in the decision-making process but also considers the risk preference and regret degree of
experts. It is more comprehensive and has more advantages in evaluating the selection of
urban rail transit.

The method proposed in this study also has some limitations. For example, when
calculating the weights of experts, only the relative distance of expert evaluation information
is considered, and the information, such as experts’ own experience, is ignored. In the process
of expert information fusion, the relationship of decision information under different criteria
is not considered. In the future, it can be further studied from the following aspects. Firstly,
this research model can be applied to other related MCGDM problems [43,44]. Secondly,
this research is based on the intuitionistic fuzzy environment. In the future, different fuzzy
linguistic environments and MCDM methods can be applied to this research model. Thirdly, in
the face of decision-making experts from different fields, it is difficult to reach a consensus on
the preference information provided by different experts, and small-group-decision-making
cannot fully ensure the credibility of the final decision-making results; therefore, it is a hot issue
to establish a large-scale group consensus decision-making model [45–47] in an intuitionistic
fuzzy environment and solve the actual group-decision-making problem combined with big
data artificial intelligence technology.
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Abstract: The aim of this study is to explore the effect of different personnel attributes and the
relationship between different people on evacuation efficiency in the case of a passenger ship fire. As
such, this study proposes a speed correction method that considers human attributes and interactions
between different populations. Firstly, a hesitant fuzzy set and hesitant fuzzy average operator
are adopted to quantify four kinds of personnel attributes. Secondly, considering the influence of
different people, this study extracts the formula for acceleration under the interactive influence of
different groups of people. At the same time, based on the first-order linear relationship between
velocity and acceleration, an interactive velocity correction method is presented in the evacuation
of ship personnel. Finally, this study uses the personnel evacuation simulation software Pathfinder
to conduct experiments, and introduces the corrected speed and the uncorrected speed into the
evacuation simulation process, respectively. The results show that the simulation results of the
revised speed plan are more consistent with reality.

Keywords: ship fire; emergency evacuation; hesitation fuzzy sets

MSC: 41-02

1. Introduction

In recent years, the density of maritime navigation has been increasing. The number
of ships, as the main means of water transportation, is also increasing year by year. During
navigation, ship fire is one of the main threats to navigation safety. In shipwreck incidents
over the years, accidents caused by fire account for about 11% [1]. Fire on ships is partic-
ularly dangerous because rescue is more difficult and fires spread fast, and the internal
structure of ships is complex. Therefore, it is difficult to evacuate and put out fires. Once a
fire occurs, it will cause a lot of economic losses and seriously threaten the safety of people’s
lives [2]. The occurrence of such accidents is closely related to the evacuation behavior
and evacuation time [3]. Therefore, the behavior mechanism and rules of different groups
in the evacuation process are studied extensively. It is beneficial to formulate scientific
and efficient emergency evacuation measures. It is also of great significance to ensure the
personal safety of evacuees in case of fire on ships.

Relevant studies have found that in the event of a fire, passengers will not only be
affected by personal attributes such as their emergency ability, cognitive ability, psychologi-
cal endurance, and value orientation, but also by different groups of people [4]. Therefore,
in the ship scenario, the interactive hesitancy fuzzy integration operator is used to integrate
the information of different groups. At the same time, the velocity and acceleration for-
mulas under the influence of different crowd interaction are extracted. Then the cognitive
ability and emergency response ability of the population at the fire scene are quantitatively
analyzed. This study revises and supplements the effects of capacity, value orientation,
psychological bearing capacity and group effect on evacuation efficiency. The models of
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escape acceleration and escape speed are also established, which provide theoretical basis
and decision support for the evacuation of ship fire personnel.

1.1. Literature Review

Ensuring the safety of people in a fire is the fundamental goal of evacuating people.
To achieve this goal, it is necessary to study the behavioral laws of evacuated people. The
study of evacuation behavior is one of the nine key research directions of fire science. At
present, the research on pedestrian evacuation mainly focuses on three aspects: evacuation
model construction, evacuation decision-making and personnel evacuation efficiency.

Concerning the construction of the evacuation model, Treuille et al. [5] proposed a
real-time crowd model with congestion in public places in multiple cities as the research
object. Helbing et al. [6,7] established a social model to describe the walking behavior
of the crowd in evacuation according to the calculation formula of Newton’s second
theorem. Wang et al. [8] integrated human factors into emergency evacuation and analyzed
the influence of various factors on evacuation behavior in different stages by building
an evacuation model. Wang et al. [9] constructed an evacuation model that considers
Openness, Conscientiousness, Extroversion, Agreeableness, and Neuroticism (OCEAN) to
analyze the impact of passengers’ personality traits on evacuation behavior. Hu et al. [10]
considered the interaction between the fire environment and evacuees from the perspective
of the system and established a manual evacuation procedure.

Concerning the evacuation decision part, Feng et al. [11] proposed an evacuation
decision-making model consisting of three parts: pedestrian distribution prediction model,
pedestrian flow calculation model and path situation and feedback correction model.
Lovreglio et al. [12] introduced an evacuation decision model predicting pre-evacuation
behavior, and the model simulates the probability of evacuees’ behavioral state. Peng
et al. [13] established a two-level decision-making model for emergency evacuation paths
of high-rise buildings based on BIM, which realized the optimal planning of emergency
evacuation paths. Sun et al. [14] used game-based theory in a small-world network context
and built an evolutionary game model of evacuation decision diffusion between evacuees
in the context of a complex network. Tian et al. [15] have designed a mobile-based system
to collect medical and temporal data produced during an emergency response to mass
casualty incidents.

Concerning the evacuation efficiency, Koo et al. [16] studied the psychological panic
effect coefficient of evacuation speed by combining theoretical derivation with three-
dimensional simulation technology. Chen et al. [17] adopted an improved social force
model to study the influences of the total number of pedestrians, required speed, and spe-
cific location of obstacles on the evacuation efficiency of multi-exit configuration. Jeon [18]
studied the impact of escape routes and emergency exits on evacuation speed under dif-
ferent environmental conditions. Yu et al. [19] conducted experimental and numerical
simulation study on evacuation time and average evacuation speed of personnel in railway
tunnels under train fire conditions.

The above research provides a theoretical basis for this research. At present, however,
there are few studies on fire evacuation in the scenario of ships. The research on the
behavior of personnel evacuation is not refined enough. Therefore, this study takes ships as
the research scene and adopts the method of questionnaire survey to collect data. Then, the
factors affecting evacuation efficiency of different groups are quantified. The relationship
between the behavior and psychological characteristics of people in a fire and the evacuation
speed are difficult to directly quantify into an accurate mathematical relationship, therefore,
this paper uses fuzzy logic to quantify their influence, and selects the classical hesitant
fuzzy weighted average operator for information integration.
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1.2. Objective Contribution

The purpose of this study is to explore the influence of the interaction between different
attribute groups on the evacuation efficiency in the ship fire scenario. The main research
contributions are as follows.

Firstly, this study is based on fuzzy mathematics theory, using the classical hesitant
fuzzy average operator. Then, the four attributes that affect crew escape on board are
integrated. Through the quantification of four objective influencing factors, evacuation
research is more realistic.

Secondly, a speed correction model considering the interaction of different populations
is developed. The reduction in evacuation speed caused by different crowd interaction is
quantified. It provides a reference for realizing evacuation research under the influence of
multiple factors.

Finally, this study collects data through questionnaires and calculates the model. The
simulation software is used to compare the modified speed plan with the unmodified speed
plan, and more realistic simulation results are obtained.

The contents of this study are arranged as follows. In Section 2, the research ideas
are described and the factors affecting the escape of personnel on board are analyzed.
In Section 3, a fuzzy set containing four kinds of people is established by using fuzzy
mathematics theory. Then, a speed correction method considering personnel attributes and
the interaction between different groups is developed. Section 4 verifies the validity of the
revised velocity model through simulation.

2. Research Foundation

2.1. Research Idea

The ship fire evacuation efficiency is affected by many factors. This study mainly con-
siders the influence of the interaction between different groups of people on the evacuation
efficiency. Then, a more realistic fire evacuation velocity model is extracted. The specific
research ideas are as follows.

Based on the above research goals, this study has carried out the following work.
Firstly, this study establishes the hesitant fuzzy sets of four kinds of people. The influence
of the attributes of emergency response ability, cognitive ability, psychological bearing
ability and value orientation is quantitatively analyzed. Secondly, this study introduces the
interaction between the target population and other groups of people, combined with the
classical universal gravitation formula. The acceleration formula of interaction between the
influence of different attributes and the influence of different people is extracted. Finally,
this study collects data through questionnaires, and uses simulation software to compare
the revised speed plan with the uncorrected speed plan to verify the validity of the model
(please, see Figure 1 for the research process).

Figure 1. Research process.
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2.2. Analysis of Key Factors for the Escape of Personnel on Board

In the process of fire evacuation, emergency ability, cognitive ability, psychological
endurance and value orientation are the key factors that affect the survival of people [20].
The sudden stimuli of fire make the crowd react instantaneously, and the instantaneous
response is closely related to the above four abilities of different people. The specific
explanations of emergency ability, cognitive ability [21], psychological bearing ability and
value orientation are as follows.

(i) Emergency ability: When people encounter an emergency, the brain immediately
deals with it based on past experience and the ability to think for itself. Self-thinking is a
subconscious response. Because children and the elderly have far less physical function
than adults, once a fire breaks out, children and the elderly will become vulnerable groups.
Their evacuation speed is also significantly lower than that of adults.

(ii) Cognitive ability: People with higher education levels have weaker fear, faster
reactions and stronger ability to escape. On the other hand, people with lower education
levels have slower reactions and weaker escape ability in the face of fire.

(iii) Psychological endurance: When a fire occurs on a ship, people will have a fear of
fire due to a lack of understanding of fire. In this state, people are prone to irrational behav-
ior. Adults have a strong psychological bearing capacity, while the elderly and children
have a weak psychological bearing capacity. There is a certain gap in the psychological
response of different groups of people in terms of psychological bearing capacity.

(iv) Value orientation: When a ship fire occurs, the value orientation of the elderly
is conservative, which greatly affects the escape ability of the elderly. Therefore, value
orientation is also one of the key factors affecting the escape speed of the crew on board.

2.3. Research Tools

When a fire occurs on a ship, panic and chaotic behavior are bound to occur in the
crowd. In a ship with concentrated personnel, the personnel’s emergency ability, cognitive
ability, psychological bearing ability and value orientation vary greatly. In addition, under
fire conditions, the four abilities of different groups are complex and abstract, and the
relationship with evacuation speed cannot be directly quantified. Therefore, this study
proposes a fire escape velocity correction model based on hesitant fuzzy sets.

Due to the complexity and uncertainty of objective information and the ambiguity of
human thinking, Zadeh introduced the concept of fuzzy sets [22]. Hesitant fuzzy sets are
fuzzy set extensions to handle hesitant situations that were not well handled by previous
tools [23]. Operator theory is an important part of fuzzy theory. Based on the arithmetic
ensemble method, this study uses the classical hesitancy fuzzy weighted average operator
(HFWA) and the classical hesitant fuzzy average (HFA). Then, the cognitive ability, emergency
response ability, value orientation, psychological bearing ability and group effect of people
in the fire scene are integrated. Furthermore, the objective information of different groups is
quantified [24]. The relevant definitions of the hesitant fuzzy set weighted average operator,
acceleration and velocity formulas used in this study are as follows.

Definition 1. Let X be a given finite set, then E = {〈 x, hE(x)〉|x ∈ X } is called hesitant fuzzy
set. Among them, hE(x) represents the possible membership degree of x belonging to X, which is
a subset of the interval [0, 1], and let h1,h2,h3, be three hesitant fuzzy elements, then their basic
operations are as follows

h1 ∩ h2 = ∪γ1⊂h1,γ2⊂h2{min(γ1, γ2)} ;
h1 ∪ h2 = ∪γ1⊂h1,γ2⊂h2{max(γ1, γ2)} ;
h1 ⊕ h2 = ∪γ1⊂h1,γ2⊂h2{γ1 + γ2 − γ1γ2} ;
h1 ⊗ h2 = ∪γ1⊂h1,γ2⊂h2{γ1γ2} .
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In addition, hj(j = 1, 2 · · · , n) is a set of hesitant fuzzy elements, and the operation of
hesitant fuzzy weighted average operator Hn → H is the mapping of Hn → H , and the
specific operation is as follows [25]

HFWA(h1, h2, · · · hn) =
n⊗

j=1
(wjhj) = ∪γ1⊂h1,γ2⊂h2

{
1− n

Π
j=1

(1− γj)
wj

}
; (1)

where w = (w1, w2, · · ·wn)
T is the weight vector of hj, wj > 0,

n
∑

j=1
wj = 1.

Definition 2. To calculate the escape speed of people on board, this study introduces relevant
acceleration formulas. For research convenience, the probability that the target group perceives the
other group is denoted as θ. The influence of the other group on the target group is denoted as μ,
and the influence direction of the other group on the target group is denoted as sgn

(
vj − vi

)
, When

vj < vi, its value is −1, vj > vi, its value is +1. tact is the instantaneous reaction time of personnel
escape. The acceleration equation is obtained as

a =
Δv
Δt

=
θi · μ · sgn(vj − vi)

tact
. (2)

Definition 3. Considering the influence of hesitancy fuzzy average operator and based on the first-
order linear relationship between velocity and acceleration, this study gives the velocity correction
formula of different people under different influences when fire occurs. The influence of all attributes
on a single population was denoted as Qi, vi is the expected speed of group i. The corrected speed v′
can be obtained as

v′ = (1−Qi) · vi + a · tact. (3)

3. Model Formulation

Based on the above analysis of human behavior characteristics in a passenger ship fire,
this study constructs its model as follows. Firstly, fuzzy mathematical theory is applied to
acquire fuzzy sets including different groups of people. Secondly, an ensemble operator
with different attributes is obtained by using the classical hesitant fuzzy average operator.
Thirdly, the escape speed of each crowd is obtained by combining the universal gravitation
formula and the relationship between velocity and acceleration. Finally, considering various
special cases, the properties and inferences are acquired. The model building process is
shown in Figure 2.

3.1. Consider Different Attributes and the Speed Correction Model of the Crowd

The steps of model construction are as follows. Step 1 is to construct the hesitant fuzzy
sets including an adult male, adult female, children and the elderly, and comprehensively
consider the factors affecting the escape speed of people on the ship. The classical hesitancy
fuzzy integration operator is used to consider and quantify various factors in Step 2. Step 3
is inspired by the classical universal gravitation formula, and extracts the formula of escape
acceleration of people on board under the interaction of two factors, i.e., different attributes
and different people [26]. Step 4, combined with the relationship between acceleration
and velocity, further extracts the escape speed of people on board under this interactive
influence [27].

Step 1. This study establishes hesitant fuzzy sets of four groups of people. For the
convenience of research, in this study, {Hi1, Hi2, Hi3, Hi4} represents the hesitant fuzzy sets
under the four attributes of the four groups of people. Nijk is the hesitant fuzzy elements
under the four attributes of the four groups of people. ρijk is the percentage of i crowd,
j attribute, and k ability judgment options. Among them, i represents the four groups
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of people, respectively; i ∈ {1, 2, 3, 4}. j represents the four attributes,j ∈ {1, 2, 3, 4}. k
represents the evaluation options of the four attributes; k ∈ {1, 2, 3, 4}. The hesitant fuzzy
sets under the four attributes of the four groups of people are expressed as follows:

Hi1 =

⎧⎨⎩
Ni11︷ ︸︸ ︷

ρi11, ρi11 · · · ρi11,
Ni12︷ ︸︸ ︷

ρi12, ρi12 · · · ρi12,
Ni13︷ ︸︸ ︷

ρi13, ρi13 · · · ρi13,
Ni14︷ ︸︸ ︷

ρi14, ρi14 · · · ρi14

⎫⎬⎭,

Hi2 =

⎧⎨⎩
Ni21︷ ︸︸ ︷

ρi21, ρi21 · · · ρi21,
Ni22︷ ︸︸ ︷

ρi22, ρi22 · · · ρi22,
Ni23︷ ︸︸ ︷

ρi23, ρi23 · · · ρi23,
Ni24︷ ︸︸ ︷

ρi24, ρi24 · · · ρi24

⎫⎬⎭,

Hi3 =

⎧⎨⎩
Ni31︷ ︸︸ ︷

ρi31, ρi31 · · · ρi31,
Ni32︷ ︸︸ ︷

ρi32, ρi32 · · · ρi32,
Ni33︷ ︸︸ ︷

ρi33, ρi33 · · · ρi33,
Ni34︷ ︸︸ ︷

ρi34, ρi34 · · · ρi34

⎫⎬⎭,

Hi4 =

⎧⎨⎩
Ni41︷ ︸︸ ︷

ρi41, ρi41 · · · ρi41,
Ni42︷ ︸︸ ︷

ρi42, ρi42 · · · ρi42,
Ni43︷ ︸︸ ︷

ρi43, ρi43 · · · ρi43,
Ni44︷ ︸︸ ︷

ρi44, ρi44 · · · ρi44

⎫⎬⎭.

Figure 2. Model building process.

Step 2. Based on the fuzzy mathematics theory, this study transforms the qualitative
problem into the quantitative problem. According to the above hesitant fuzzy sets, the
objective factors affecting crowd evacuation efficiency are integrated. Then, the influence of
a single attribute on a single population can be denoted as Qij. The influence of all attributes
on a single population was denoted as Qi by integrating Qij. Based on experience, the
literature, and current research, this study assumes that the weight of the four groups is
equal. According to the classical hesitant fuzzy average operator [24], Qi is obtained as

Qij =

(
1−

4

∏
i=1

(
1− ρijk

) 1
4

)
, (4)

Qi =

4
∑

j=1
Qij

4
, (5)
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respectively, where j = 1, 2, 3, 4; i = 1, 2, 3, 4.
Step 3. Consider that there is only a single target population, its escape speed is only

affected by four attributes and its expected speed. However, in a case of multiple groups,
the escape speed of the target group will be affected not only by cognitive ability, emergency
response ability, value orientation and psychological endurance but also by other groups.
To simplify the research work, this study divides the influences from other groups into
three categories, as follows. The probability that the target group perceives the other group
is denoted as θ, the magnitude of the influence of the other group on the target group is
denoted as μ, and the direction of the influence of the other group on the target group is
denoted as sgn

(
vj − vi

)
. Since this study only considers the influence between the four

groups of people, other influencing factors are not considered. Therefore, in this study, other
unconsidered factors are denoted as λ∗ and defaulted to 0.375 [28]. Mi is used to represent
the number of single people, with vi representing the expectations of a single population
escape velocity, with v′i representing a single population after a reaction time of the final
velocity. λij denotes mutual influence between the two groups, tact instantaneous response
time for escape, ω1 is the weight of the probability that the target group feels other groups
of people, and ω2 is the weight of the influence of other groups on the target population.
Based on experience, the literature, and current research [29], this study considers that the
instantaneous reaction time of adult men and women is t1act = t2act = 2 s, and the elderly
and children is t3act = t4act = 3 s. Thus, the formula of escape acceleration (ai) of a single
crowd is obtained as

ai =
4
∑

i=1

(
λij

)

=
4
∑

j=1

4
π ·arctan

⎛⎜⎜⎜⎝
( Mj

Mi+Mj

)w1 ·( |vi−vj|
max{vi ,vj}

)w2

⎞⎟⎟⎟⎠sgn(vj−vi)·|vj−vi|

tiact
.

(6)

Among them, sgn
(
vj − vi

)
represents the influence direction of other groups on the

target group. In i = {1, 2, 3, 4}, j ∈ {1, 2, 3, 4}, 1, 2, 3, and 4 represent adult males, adult
females, the elderly, and children, respectively. When vj > vi, the value of sgn

(
vj − vi

)
is

+1, indicating that other groups have a positive influence on the target group. When vj < vi,
the value of sgn

(
vj − vi

)
is −1, indicating that other groups have a negative influence on

the target group. When vj = vi, the value of sgn
(
vj − vi

)
is 0, and other groups are in the

same direction as the target group.
Step 4. This study integrates the influence of four attributes and other populations on

the target population, substitute it into Equation (3), v′i is obtained as

v′ i = (1−Qi) · vi +
4

∑
j=1

(
λij

) · λ∗ · tiact, (7)

where, i = 1, 2, 3, 4.
Then, substitute Equation (7) into Equation (6), and it is obtained as

v′ i = (1−Qi) · vi+

4
∑

j=1

4
π ·arctan

⎛⎜⎜⎜⎝
( Mj

Mi+Mj

)w1 ·( |vi−vj|
max{vi ,vj}

)w2

⎞⎟⎟⎟⎠sgn(vj−vi)·|vj−vi|

tiact
· λ∗ · tiact

(8)

where, i = 1, 2, 3, 4.
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3.2. Supplement and Description

The corollary and properties of Equation (8) are as follows.

Corollary 1. When Mi is much larger than Mj, Mi is regarded as the maximum value and Mj as
the minimum value, thus, which is substituted into Equation (8) to obtain v′ i = (1−Qi) · vi.

Theorem 1. When the number of the target population is considered larger than that of other groups,
the speed of the group is not affected by other groups but is only related to its expected speed and its
cognitive ability, emergency response-ability, value orientation and psychological bearing capacity.

Corollary 2. When Mj is much larger than Mi, Mj is regarded as the maximum value and Mi as

the minimum value, thus
Mj

Mi+Mj
= 1, which is substituted into Equation (8) to obtain the simplified

Equation (9).
v′ i = (1−Qi) · vi+

4
∑

j=1

4
π ·arctan

( |vi−vj|
max{vi ,vj}

)w2
sgn(vj−vi)·|vj−vi|

tiact
· λ∗ · tiact

(9)

where, i = 1, 2, 3, 4.

Theorem 2. When the number of other groups is much larger than the number of target groups, the
impact of the number of groups can be ignored.

Corollary 3. When vi and vj differs greatly, there will be the following two situations.

(i) vj is regarded as the maximum value and vi as the minimum value, so |vi−vj|
max{vi ,vj} = 1 are

substituted into Equation (8) to obtain simplified Equation (10).

v′ i = (1−Qi) · vi +
4

∑
j=1

4
π · arctan

( Mj
Mi+Mj

)w1
sgn

(
vj − vi

) · vi

tiact
· λ∗ · tiact, (10)

where, i = 1, 2, 3, 4.
(ii) Similarly, vi is regarded as the maximum value and vj as the minimum value, so

|vi−vj|
max{vi ,vj} = 1 can be substituted into Equation (8) to obtain simplified Equation (10).

Theorem 3. When the speed of the target crowd differs considerably from that of another crowd, the
evacuation speed of the target crowd is not affected by the speed of others.

Corollary 4. When vi = vj, then |vi−vj|
max{vi ,vj} =

∣∣vi − vj
∣∣ = 0, substitute the sub-data into

Equation (8) to obtain v′ i = (1−Qi) · vi.

Theorem 4. When the speed of the target group is the same as that of other groups, the speed of the
group is not affected by other groups, but is only related to its own speed and the impact of cognitive
ability, emergency response-ability, psychological bearing capacity and value orientation.

4. Simulation Example

In order to verify the effectiveness of the interactive speed correction method, a
comparative simulation experiment is carried out in this study. Firstly, a questionnaire
survey was conducted. Based on the results of the questionnaire survey, the expected speed
of four different groups of people is revised by using the interactive speed modification
method. Secondly, the single deck of a ro-ro passenger ship is selected as a simulation
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example. The deck is then modeled by Pathfinder evacuation software. Finally, this study
sets up two evacuation plans, namely, ordinary evacuation and evacuation under the speed
correction of interactive influence. Through the comparison of simulation results, it is
concluded that the speed correction method of interactive influence proposed in this study
is in line with reality.

4.1. Personnel Evacuation Speed Correction

The age, gender, cultural background, and other factors of the people on board will
not only affect their judgment of the degree of fire risk, but also affect the evacuation speed.
Therefore, this study combines the previous research results to design a questionnaire on
ship fire evacuation behavior [30]. The questionnaire structure of personnel evacuation
behavior in a ship fire situation is shown in Table 1. The questionnaire topic is mainly set to
investigate the cognitive ability, emergency response ability, value orientation, and psycho-
logical endurance of different groups of people. Questionnaires were randomly distributed
on an online questionnaire survey platform. The respondents were then divided into
different age groups. A total of 129 questionnaires were distributed, and 105 questionnaires
were finally effectively recovered. Finally, the reliability of the questionnaire was tested.
The Cronbach reliability coefficient α of the questionnaire was 0.67. This indicates that the
data reliability of the questionnaire is good and meets the requirements of usability. Among
them, the proportion of adult men, adult women, the elderly, and children surveyed is
8:8:3:2. The information summary is shown in Table 2.

Table 1. Questionnaire structure of personnel evacuation behavior in a ship fire situation.

Variable Problem Setting Options

basic information of
personnel

gender men; women

age under 20 years old; 20–60 years old:
over 60 years old

cognitive ability education level
high school diploma and below;
college degree; bachelor degree;

Master degree and above

emergency capability escape response when
hearing a fire alarm

look around and judge for yourself;

ask others to determine the direction
of escape;

escape immediately;

observe the behavior of others

value orientation will you escape
with valuables no; possibly; not sure, must

psychological endurance the level of panic at
hearing a fire alarm

no panic; low panic; moderate panic;
extreme panic

Table 2. Summary of questionnaire information.

Influencing Factors
Adult Male
(20–60 Years

Old)

Adult Female
(20–60 Years

Old)

Elderly
(Over 60

Years Old)

Children
(Under 20
Years Old)

Cognitive ability

high school diploma or below 3% 18% 14% 0%

college degree 54% 53% 43% 54%

bachelor degree 33% 24% 29% 46%

master degree and above 10% 5% 14% 0%
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Table 2. Cont.

Influencing Factors
Adult Male
(20–60 Years

Old)

Adult Female
(20–60 Years

Old)

Elderly
(Over 60

Years Old)

Children
(Under 20
Years Old)

The emergency ability

look around and judge for
yourself 29% 22% 43% 38%

ask others to determine the
direction of escape 37% 36% 14% 31%

escape immediately 20% 31% 43% 23%

observe other people’s behavior 14% 11% 0% 8%

The value orientation

no 58% 58% 68% 70%

probably 15% 10% 8% 10%

not sure 19% 22% 16% 10%

must 8% 10% 8% 10%

Mental endurance

no panic 17% 22% 29% 8%

low panic 32% 29% 43% 31%

moderate panic 29% 29% 14% 38%

extreme panic 12% 20% 14% 23%

Based on the questionnaire data, this study brings the above data into the speed
correction model and obtains the expected correction speed of four groups. The specific
model calculation steps are as follows.

Step 1. Bring ρijk into a fuzzy set based on the questionnaire data in Table 2. It can
be obtained that the impact of a single attribute on a single population is recorded as Qij.
Then, Qij is integrated to calculate the impact of all attributes on a single population, which
is recorded as Qi. Among them, M1= 40, M2= 40, M3= 15, M4= 10. The effects of all
attributes on adult men, adult women, the elderly, and children are

Q1= 0.246, Q2= 0.266, Q3= 0.275, Q4= 0.277

Step 2. In this study, the expected speeds of adult men, adult women, children and the
elderly are set to be 1.5 m/s, 1.3 m/s, 1.1 m/s, and 0.9 m/s, respectively. Combined with
the questionnaire data in Table 2 and substituted into Formula (6), the escape acceleration
ai of the four groups is, respectively,

a1= 0.205 m/s2, a2= 0.056 m/s2, a3 = −0.076 m/s2, a4 = −0.236 m/s2.

Step 3. Substituting vi, Qi, ai and tiact into Formula (8), the correction speed of adult
males, adult females, the elderly, and children can be obtained as

v1= 1.28 m/s, v2= 1 m/s, v3= 0.71 m/s, v4= 0.38m/s.

The above results are used as examples to simulate the modified expected speed of
adult men, adult women, children, and the elderly.

4.2. Simulation Model Construction

This study takes a ro-ro passenger ship as the simulation object. The ship has a length
of 196.27 m, a width of 28.60 m, a seating capacity of 1588 people, a passenger quota of
1500 people, and 10 decks. The seven and eight decks of the ship belong to the passenger
activity area, and both decks have independent evacuation assembly areas, vertical single
channel marine evacuation system, and fully enclosed lifeboats. In this study, the eight decks
of the ship are selected as the simulation model for the evacuation of ship fire personnel.
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In this study, Pathfinder software is used to model the above simulation examples.
The deck model is 196 m long, 28.6 m wide and 3 m high. A total of 620 people need to
be evacuated on the deck, and the proportion of adult men, adult women, children, and
the elderly is 8:8:3:2, who are randomly distributed on the deck. According to the internal
structure of the eighth deck, the evacuation routes and exits shall be set. Considering that
the vertical single channel marine evacuation system and the fully enclosed lifeboat are
difficult to set up in Pathfinder software, this paper sets the personnel evacuation deck as
the form of successful personnel evacuation. The 3D model of personnel evacuation on the
ship’s deck is shown in Figure 3. The green column represents adult men, the blue column
represents adult women, the yellow column represents children, and the black column
represents the elderly. The green line indicates the evacuation exit, that is, the evacuation
from the green line indicates the successful evacuation.

Figure 3. Ship Deck Evacuation 3D model.

4.3. Comparative Analysis of Evacuation Results

In order to verify the effectiveness of the correction method, this study sets up two
evacuation plans, namely ordinary evacuation and speed correction method of interactive
influence. At the same time, the velocity correction methods of ordinary evacuation and
interactive influence are compared and analyzed experimentally. In addition, the specific
details of the plan are as follows.

Plan 1: ordinary evacuation. The range of passenger evacuation speed is set to be
0.51~1.50 m/s, and remains unchanged. The evacuation path is uniform evacuation at the
exits on both sides of the deck.

Plan 2: speed correction method of interactive influence. Based on the calculation
results in Section 4.3, the expected evacuation speeds of adult men, adult women, the
elderly, and children are set to 1.28 m/s, 1 m/s, 0.71 m/s, and 0.38 m/s, respectively. The
evacuation speed obeys the normal distribution. The expected speed of each group is
compared with the corrected speed (please see Figure 4 for details). The experimental
results of the two evacuation plans are compared, as shown in Figure 5.

Figure 4. Speed comparison chart.
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Figure 5. Experimental results of two plans.

According to Figure 5 and Table 3, the total evacuation time of ordinary evacuation is
265.28 s, and the overall evacuation efficiency is high. The evacuation time of the interactive
speed correction method is 349.03 s, and the overall evacuation efficiency is low. With the
development of time, the evacuation efficiency decreases significantly. After 325 s, the
evacuation efficiency is close to 0. The evacuation efficiency (curve slope) of the speed
correction method of interactive influence is significantly lower than that of ordinary
evacuation, and the evacuation efficiency decreases significantly with the development of
time. This is due to the consideration of the negative psychology of personnel in the fire
and the influence of fire smoke. As time goes on, smoke concentration and temperature will
gradually increase, causing harm to the human body and resulting in reduced evacuation
efficiency. After 325 s, the evacuation efficiency of the interactive speed correction method
is close to 0. This is because the concentration and temperature of fire smoke are enough to
threaten the lives of people at 325 s. However, considering the mutual assistance behavior
of the group, people around will actively help those who are slow and unconscious, so that
they can keep the same speed and continue to move.

Table 3. Data comparison between two plans.

Plan Evacuation Time (s)
Evacuation Efficiency

(Rate of the Curve)
Remaining Staff

1 265.28 high 0

2 349.03 low 0

To sum up, ordinary evacuation oversimplifies the evacuation behavior of people.
It is assumed that people only evacuate evenly according to the evacuation path during
the evacuation process, and the impact of fire smoke and group behavior on people is not
considered, which is not in line with reality and there is a large error. The aim of the speed
correction method of interactive influence is to study evacuation from the human point
of view. Through the analysis of the complex psychology and group effect on evacuation
behavior, the evacuation path and evacuation speed are modified and supplemented. This
is more realistic.

5. Conclusions

This study adopts the HFA to research evacuation from the perspective of the people
on board, analyzes the influence of cognitive ability, emergency response ability, value
orientation, psychological tolerance and group effect on evacuation behavior of the people
in the fire scene. Then the escape acceleration and escape speed are corrected and sup-
planted to make them more realistic. The innovation of this study is mainly reflected in the
following three points.
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First, this study considers the interaction among fire escape personnel. The main
influencing factors among escaped groups are summarized as emergency ability, cognitive
ability, psychological bearing ability and value orientation. The interactive effects of the
four attributes of the four groups of people are introduced into the evacuation model,
which makes the evacuation research more realistic.

Secondly, this study uses the hesitant fuzzy integration operator to integrate the four
attributes of the four groups of people, and realizes the quantification of the interaction
between the groups. Then, the acceleration formula and velocity correction modulus
formula considering the interaction effect of different groups of people are extracted, and
the influence from other types of people is introduced into the evacuation research.

Finally, this study collects data through questionnaires and calculates the revised
speed for different populations. Then, simulation software is used to compare the revised
speed plan with the uncorrected speed plan, it is concluded that the revised speed plan is
more realistic and provides a reference for subsequent evacuation research.

The shortcoming of this study is that it fails to take into account the emotional conta-
gion of panic among pedestrians, the influence of fire smoke toxicity and fire temperature as
well as other factors. Further study will be carried out by combining the above influencing
factors with simulation examples.
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Abstract: Pattern recognition is the computerized identification of shapes, designs, and reliabilities in
information. It has applications in information compression, machine learning, statistical information
analysis, signal processing, image analysis, information retrieval, bioinformatics, and computer
graphics. Similarly, a medical diagnosis is a procedure to illustrate or identify diseases or disorders,
which would account for a person’s symptoms and signs. Moreover, to illustrate the relationship
between any two pieces of intuitionistic hesitant fuzzy (IHF) information, the theory of generalized
dice similarity (GDS) measures played an important and valuable role in the field of genuine life
dilemmas. The main influence of GDS measures is that we can easily obtain a lot of measures by
using different values of parameters, which is the main part of every measure, called DGS measures.
The major influence of this theory is to utilize the well-known and valuable theory of dice similarity
measures (DSMs) (four different types of DSMs) under the assumption of the IHF set (IHFS), because
the IHFS covers the membership grade (MG) and non-membership grade (NMG) in the form of a
finite subset of [0, 1], with the rule that the sum of the supremum of the duplet is limited to [0, 1].
Furthermore, we pioneered the main theory of generalized DSMs (GDSMs) computed based on IHFS,
called the IHF dice similarity measure, IHF weighted dice similarity measure, IHF GDS measure,
and IHF weighted GDS measure, and computed their special cases with the help of parameters.
Additionally, to evaluate the proficiency and capability of pioneered measures, we analyzed two
different types of applications based on constructed measures, called medical diagnosis and pattern
recognition problems, to determine the supremacy and consistency of the presented approaches.
Finally, based on practical application, we enhanced the worth of the evaluated measures with the
help of a comparative analysis of proposed and existing measures.

Keywords: intuitionistic hesitant fuzzy sets; generalized dice similarity measures; medical diagnosis;
pattern recognition; artificial intelligence

MSC: 03B52; 68T27; 68T37; 94D05; 03E72

1. Introduction

The decision-making procedure covers four main stages: intelligence, design, choice,
and implementation. The principle of the decision-making technique begins with the
intelligence stage. In this stage, the intellectual determines reality and identifies and
explains the troubles. However, before 1965, no one had utilized or studied the decision-
making troubles in the environment of the fuzzy set (FS) theory. For this, the well-known
idea of FS was initiated by Zadeh [1] by modifying the technique of crisp set into FS,
which covers the MG belonging to [0, 1]. FS has received considerable attention from the
distinct intellectual, and certain applications have been carried out by different scholars.
For example, Aydin [2] proposed the fuzzy multicriteria decision-making technique by
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using the Fermatean fuzzy sets, John [3] discussed the certain application of the type-2 FSs,
Mandel and John [4] explored the type-2 fuzzy sets made simple, and Mahmood [5] initiated
the idea of a bipolar soft set, discussed operational laws, and applied it in decision-making
problems.

FS has received attention from the distinct intellectual, and certain applications have
been carried out by different scholars. However, if an intellectual faces information in the
shape of {0.8,0.9,0.7}, then the principle of FS has been neglected. For this, the well-known
idea of hesitant FS (HFS) was initiated by Torra [6] by modifying the technique of FS into
HFS, which covers the MG, whose supremum value is belonging to [0, 1]. HFS is a modified
version of FS and has received attention from the distinct intellectual; certain applications
have been performed by different scholars. For example, Meng and Chen [7] developed the
correlation measures for HFSs, Li et al. [8] investigated the distance and similarity measures
for HFSs, Su et al. [9] proposed certain measures based on dual HFSs, and Wei et al. [10]
investigated the entropy and certain types of measures based on HFSs.

If a piece of intellectual faced information in the shape of “yes” or “no”, then the
principle of FS has been neglected. For this, the well-known idea of intuitionistic FS (IFS)
was initiated by Atanassov [11] by modifying the technique of FS into IFS, which covers
the MG and NMG, whose sum is belonging to [0, 1]. IFS is a modified version of FS and
has received attention from the distinct intellectual; certain applications have been carried
out by different scholars. For example, Ye [12] initiated the certain cosine measure by using
IFSs, Rani and Garg [13] developed the distance measures by using complex IFSs, Liang
and Shi [14] also explored certain measures based on IFSs, Xu and Chen [15] examined
the distance and similarity measures for IFSs, Xu [16] proposed the intuitionistic fuzzy
similarity measures, Garg and Rani [17] presented the correlation among any number of
complex IFSs, Zeshui [18] utilized certain measures for interval-valued IFSs, Wei et al. [19]
investigated the entropy and similarity measures for interval-valued IFSS, and Wang and
Xin [20] proposed the distance measures for IFSs.

It was demonstrated that the prevailing information computed based on FSs, HFSs,
and IFSs has a variety of applications in many different fields, for instance, computer
science, economics and finance, engineering sciences, and road signals. However, it is
also clear that they have many limitations and restrictions. For instance, we know that
IFS has managed only with two-dimensional information in a singleton set, and each
dimension of information can express only one value, but what if someone provided two-
dimensional information in the shape of singleton sets, and each dimension of information
could represent more than one value? In such a situation, experts noticed that the theory of
IFS was not able to proceed with the above information accurately. For this, the well-known
idea of an intuitionistic hesitant fuzzy set (IHFS) was initiated by Beg and Rashid [21] by
modifying the technique of IFS into IHFS, which covers the MG and NMG in the form
of a finite subset of [0, 1], whose sum of the supremum of the duplet is belonging to
[0, 1]. IHFS is a modified version of IFS and HFS to cope with complicated and unreliable
information in genuine life troubles, and it has gotten massive attraction from the distinct
intellectual. Certain applications have been carried out by different scholars. For example,
Peng et al. [22] initiated the cross-entropy measures by using the IHFSs, and Zhai et al. [23]
examined probabilistic interval-valued IHFSs.

In statistics and related theories, a similarity function, i.e., similarity metric or similarity
measure, is a real-valued function that computes the similarity among two terms. Even
though no single idea of similarity exists, generally such measures are, in a particular
sense, the inverse of distance metrics. Cosine similarity, Tangent similarity, hamming
similarity, Euclidean similarity, dice similarity, and generalized dice similarity measures are
the commonly employed types of similarity measures for real-valued vectors, used in data
retravel to score the similarity of documents in the vector space model. In machine learning,
common kernel mappings such as the Radial based function kernel can be observed as
similarity measures. In all these measures, we noticed that the GDS measures are massively
valuable and effective, as they are more generalized than the prevailing studied measures.
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Furthermore, GDS measures are a very significant part of the decision-making technique to
determine the closeness between any number of attributes. A certain application has been
performed by different scholars. By using different values of the parameter, we can easily
obtain the prevailing measures of cosine similarity, tangent similarity, hamming similarity,
Euclidean similarity, dice similarity. However, the principle of dice and GDS measures are
not implemented in the environment of IHFSs. The main goal of this study is to utilize
the principle of GDS measures in the environment of IHFS to improve the quality of the
research. We propose this theory, due to the following reasons:

1. How do we find the relation between two objects?
2. How do we propose new types of measures based on IHF information?
3. How do we find our required result?

To handle the above questions, we aim to illustrate the following investigations, which
are briefly explained in the form of certain points below:

1. To diagnose certain dice similarity measures based on IHF information.
2. To evaluate different types of GDS measures based on IHF information.
3. To investigate many cases of the investigated measures in order to improve the worth

of the evaluated measures.
4. To utilize two different types of applications, called medical diagnosis and pattern

recognition, based on pioneered measures.
5. To describe the sensitive analysis, advantages, and geomatical expressions of the

evaluated theories to determine the partibility of the investigated measures.

The main contribution of this study is constructed as follows: In Section 2, we briefly
recall the idea of IFSs, HFSs, and IHFSs. The main idea of dice similarity measure (DSM) is
also revised. In Section 3, we propose certain types of DSM measures based on IHFSs. In
Section 4, we explore the IHF GDS measure and IHF-weighted GDS measure. Based on the
investigated measures, certain special cases are also evaluated. In Section 5, we utilize two
different types of applications, called medical diagnosis and pattern recognition, based on
pioneered measures and discuss their comparative analysis. The conclusion of this study is
discussed in Section 6.

2. Preliminaries

The theory of IFSs, HFSs, IHFSs, and DSMs are the parts of this section. Further, the
mathematical term X, represented as a universal set with MG “MI” and NMG “NI”.

Definition 1 ([11]). An IFS I is investigated by:

I = {(X,MI(X),NI(X)) : X ∈ X}

with a rule: 0 ≤ MI(X) +NI(X) ≤ 1. Moreover, the hesitancy degree is shown by: dI(X) =
1− (MI(X) +NI(X)). During this study, the IFN is elaborated by I = (M,N).

Definition 2 ([6]). A HFS I is investigated by:

I = {(X,MI(X)) : X ∈ X}

where MI = {M1,M2, . . . .,Mn} with a rule: 0 ≤ sup(MI) ≤ 1.

Definition 3 ([21]). An IHFS Ξ is investigated by:

Ξ = {(X,MΞ(X),NΞ(X)) : X ∈ X}

where MΞ(X) and NΞ(X) are expressed the hesitant fuzzy numbers (HFNs), with a rule:
0 ≤MAX(MΞ(X)) + max(NΞ(X)) ≤ 1. Moreover, the refusal grade is initiated by: πΞ(X) =
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1− (MAX(MΞ(X)) + max(NΞ(X))). The intuitionistic hesitant fuzzy number is expressed by:
Ξ =

(
M

j
Ξ,Nj

Ξ

)
.

Definition 4 ([24]). For any two-positive vector X and Y, the DSM is initiated by:

D(X, Y) =
2X.Y

‖X‖2
2 + ‖Y‖2

2

=
2 ∑l

j=1 Xjyj

∑l
j=1 X

2
j + ∑l

j=1 y2
j

where X.Y = ∑l
j=1 Xjyj is expressed as the inner product and ‖X‖2 =

√
∑l

j=1 X
2
j and ‖Y‖2 =√

∑l
j=1 y2

j is expressed in the Euclidean or L2 norms of X and Y.

3. DSM for IHFSs

To illustrate the relationship between any two pieces of IHF information, the theory of
DSMs played an important and valuable role in the field of genuine life dilemmas. The main
influence of GDS measures is that we can easily obtain many measures by using different
values of parameters, which is the main part of every measure, called DGS measures. In
this study, we chose one of the most flexible and genuine principles, called the IHFS, which
covers the MG and NMG in the form of a finite subset of [0, 1], with the rule that the sum
of the supremum of the duplet is limited to [0, 1] and GDS measures are to develop the
four sorts of IHF dice similarity measure and IHF weighted dice similarity measure. Based
on the investigated measures, certain special cases were also evaluated.

Definition 5. By using any two IHFNS Ξ and Ξ′, a DSM D1
PΞF(Ξ, Ξ′) is investigated by:

D1
PΞF(Ξ, Ξ′)

= 1
M

M
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2
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M
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j
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j
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N
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)
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1
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j
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j
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)

which holds the necessary rules:

1. 0 ≤ D1
PΞF(Ξ, Ξ′) ≤ 1

2. D1
PΞF(Ξ, Ξ′) = D1

PΞF(Ξ
′, Ξ)

3. D1
PΞF(Ξ, Ξ′) = 1 ⇔ Ξ = Ξ′

Using some conditions, we can easily obtain further particular cases from the above
theory; for instance, to put Nj

Ξ(Xi) = N
j
Ξ′(Xi) = 0 in D1

PΞF(Ξ, Ξ′), then D1
PΞF(Ξ, Ξ′) will

change for HFSs. Furthermore, to put Mj
Ξ(Xi),M

j
Ξ′(Xi) and N

j
Ξ(Xi),N

j
Ξ′(Xi) as a singleton

set, then D1
PΞF(Ξ, Ξ′) will change for IFSs, meaning the theory diagnosed in this study is

massively powerful and dominant compared to others.

Definition 6. By using any two IHFNS Ξ and Ξ′, a WDSM WD1
PΞF(Ξ, Ξ′) is investigated by:

WD1
PΞF(Ξ, Ξ′)

=
M
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i=1
wi

2
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M
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)

which holds the necessary rules of Definition 5.

Using some conditions, we can easily obtain further particular cases from the above
theory, for instance, to put Nj

Ξ(Xi) = N
j
Ξ′(Xi) = 0 in WD1

PΞF(Ξ, Ξ′), WD1
PΞF(Ξ, Ξ′) will

change for HFSs. Furthermore, to put Mj
Ξ(Xi),M

j
Ξ′(Xi) and N

j
Ξ(Xi),N

j
Ξ′(Xi) as a singleton

set, WD1
PΞF(Ξ, Ξ′) will change for IFSs, meaning the theory diagnosed in this manuscript
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is massively powerful and dominant as compared to others. For w =
(

1
M , 1

M , . . . , 1
M

)T
, the

WDSM is converted for DSM based on IHFS such that WD1
PΞF(Ξ, Ξ′) = D1

PΞF(Ξ, Ξ′).

Definition 7. By using any two IHFNS Ξ and Ξ′, a DSM D2
PΞF(Ξ, Ξ′) is investigated by:

D2
PΞF

(
Ξ, Ξ′

)
=

1
M

M

∑
i=1

2
(

1.
M

∑l
j=1 M

j
Ξ(Xi)M

j
Ξ′(Xi) +

1.
N

∑l
j=1 N

j
Ξ(Xi)N

j
Ξ′(Xi) +

1.
π

∑l
j=1 π

j
Ξ(Xi)π

j
Ξ′(Xi)

)
⎛⎜⎝ 1

LMΞ(X)
∑l

j=1

(
M

j
Ξ(Xi)

)2
+ 1

LNΞ(X)
∑l

j=1

(
N

j
Ξ(Xi)

)2
+ 1

LπΞ(X)
∑l

j=1

(
π

j
Ξ(Xi)

)2
+

1
LM

Ξ′ (X)
∑l

j=1

(
M

j
Ξ′(Xi)

)2
+ 1

LN
Ξ′ (X)

∑l
j=1

(
N

j
Ξ′(Xi)

)2
+ 1

Lπ
Ξ′ (X)

∑l
j=1

(
π

j
Ξ′(Xi)

)2

⎞⎟⎠
which holds the necessary rules of Definition 5.

Using some conditions, we can easily obtain a lot of further particular cases from
the above theory; for instance, to put N

j
Ξ(Xi) = N

j
Ξ′(Xi) = 0 in D2

PΞF(Ξ, Ξ′), then

D2
PΞF(Ξ, Ξ′) will change for HFSs. Furthermore, to put Mj

Ξ(Xi),M
j
Ξ′(Xi) and N

j
Ξ(Xi),

N
j
Ξ′(Xi) as a singleton set, D2

PΞF(Ξ, Ξ′) will change for IFSs, meaning the theory diagnosed
in this study is massively powerful and dominant compared to others.

Definition 8. By using any two IHFNS Ξ and Ξ′, a WDSM WD2
PΞF(Ξ, Ξ′) is investigated by:

WD2
PΞF

(
Ξ, Ξ′

)
=

M

∑
i=1

wi

2
(

1.
M

∑l
j=1 M

j
Ξ(Xi)M

j
Ξ′(Xi) +

1.
N

∑l
j=1 N

j
Ξ(Xi)N

j
Ξ′(Xi) +

1.
π

∑l
j=1 π

j
Ξ(Xi)π

j
Ξ′(Xi)

)
⎛⎜⎝ 1

LMΞ(X)
∑l

j=1

(
M

j
Ξ(Xi)

)2
+ 1

LNΞ(X)
∑l

j=1

(
N

j
Ξ(Xi)

)2
+ 1

LπΞ(X)
∑l

j=1

(
π

j
Ξ(Xi)

)2
+

1
LM

Ξ′ (X)
∑l

j=1

(
M

j
Ξ′(Xi)

)2
+ 1

LN
Ξ′ (X)

∑l
j=1

(
N

j
Ξ′(Xi)

)2
+ 1

Lπ
Ξ′ (X)

∑l
j=1

(
π

j
Ξ′(Xi)

)2

⎞⎟⎠
which holds the necessary rules of Definition 5.

Using some conditions, we can easily obtain a lot of further particular cases from the
above theory; for instance, to put Nj

Ξ(Xi) = N
j
Ξ′(Xi) = 0 in WD2

PΞF(Ξ, Ξ′), WD2
PΞF(Ξ, Ξ′)

will change for HFSs. Furthermore, to put Mj
Ξ(Xi),M

j
Ξ′(Xi) and N

j
Ξ(Xi),N

j
Ξ′(Xi) as a sin-

gleton set, WD2
PΞF(Ξ, Ξ′) will change for IFSs, meaning that the theory diagnosed in this

study is massively powerful and dominant compared to others. For w =
(

1
M , 1

M , . . . , 1
M

)T

then WD2
PΞF(Ξ, Ξ′) = D2

PΞF(Ξ, Ξ′).

Definition 9. By using any two IHFNS Ξ and Ξ′, a DSM D3
PΞF(Ξ, Ξ′) is investigated by:

D3
PΞF

(
Ξ, Ξ′

)
=

∑M
i=1 2

(
1.
M

∑l
j=1 M

j
Ξ(Xi)M

j
Ξ′(Xi) +

1.
N

∑l
j=1 N

j
Ξ(Xi)N

j
Ξ′(Xi)

)
∑M

i=1

(
1

LMΞ(X)
∑l

j=1

(
M

j
Ξ(Xi)

)2
+ 1

LNΞ(X)
∑l

j=1

(
N

j
Ξ(Xi)

)2
)
+

∑M
i=1

(
1

LM
Ξ′ (X)

∑l
j=1

(
M

j
Ξ′(Xi)

)2
+ 1

LN
Ξ′ (X)

∑l
j=1

(
N

j
Ξ′(Xi)

)2
)

which holds the necessary rules of Definition 5.

Using some conditions, we can easily obtain further particular cases from the above
theory; for instance, to put Nj

Ξ(Xi) = N
j
Ξ′(Xi) = 0 in D3

PΞF(Ξ, Ξ′), D3
PΞF(Ξ, Ξ′) will

change for HFSs. Furthermore, to put Mj
Ξ(Xi),M

j
Ξ′(Xi) and N

j
Ξ(Xi),N

j
Ξ′(Xi) as a singleton

set, D3
PΞF(Ξ, Ξ′) will change for IFSs, meaning that the theory diagnosed in this study is

massively powerful and dominant compared to others.
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Definition 10. By using any two IHFNS Ξ and Ξ′, a WDSM WD3
PΞF(Ξ, Ξ′) is investigated by:

WD3
PΞF

(
Ξ, Ξ′

)
=

∑M
i=1 2w2

i

(
1.
M

∑l
j=1 M

j
Ξ(Xi)M

j
Ξ′(Xi) +

1.
N

∑l
j=1 N

j
Ξ(Xi)N

j
Ξ′(Xi)

)
∑M

i=1 w2
i

(
1

LMΞ(X)
∑l

j=1

(
M

j
Ξ(Xi)

)2
+ 1

LNΞ(X)
∑l

j=1

(
N

j
Ξ(Xi)

)2
)
+

∑M
i=1 w2

i

(
1

LM
Ξ′ (X)

∑l
j=1

(
M

j
Ξ′(Xi)

)2
+ 1

LN
Ξ′ (X)

∑l
j=1

(
N

j
Ξ′(Xi)

)2
)

which holds the necessary rules of Definition 5.

Using some conditions, we can easily obtain further particular cases from the above
theory; for instance, to put Nj

Ξ(Xi) = N
j
Ξ′(Xi) = 0 in WD3

PΞF(Ξ, Ξ′), WD3
PΞF(Ξ, Ξ′) will

change for HFSs. Furthermore, to put Mj
Ξ(Xi),M

j
Ξ′(Xi) and N

j
Ξ(Xi),N

j
Ξ′(Xi) as a singleton

set, WD3
PΞF(Ξ, Ξ′) will change for IFSs, meaning that the theory diagnosed in this study

is massively powerful and dominant compared to others. For w =
(

1
M , 1

M , . . . , 1
M

)T
then

WD3
PΞF(Ξ, Ξ′) = D3

PΞF(Ξ, Ξ′).

Definition 11. By using any two IHFNS Ξ and Ξ′, a DSM D4
PΞF(Ξ, Ξ′) is investigated by:

D4
PΞF

(
Ξ, Ξ′

)
=

2 ∑M
i=1

(
1.
M

∑l
j=1 M

j
Ξ(Xi)M

j
Ξ′(Xi) +

1.
N

∑l
j=1 N

j
Ξ(Xi)N

j
Ξ′(Xi) +

1.
π

∑l
j=1 π

j
Ξ(Xi)π

j
Ξ′(Xi)

)
∑M

i=1

(
1

LMΞ(X)
∑l

j=1

(
M

j
Ξ(Xi)

)2
+ 1

LNΞ(X)
∑l

j=1

(
N

j
Ξ(Xi)

)2
+ 1

LπΞ(X)
∑l

j=1

(
π

j
Ξ(Xi)

)2
)
+

∑M
i=1

(
1

LM
Ξ′ (X)

∑l
j=1

(
M

j
Ξ′(Xi)

)2
+ 1

LN
Ξ′ (X)

∑l
j=1

(
N

j
Ξ′(Xi)

)2
+ 1

Lπ
Ξ′ (X)

∑l
j=1

(
π

j
Ξ′(Xi)

)2
)

which holds the necessary rules of Definition 5.

Using some conditions, we can easily obtain further particular cases from the above
theory; for instance, to put Nj

Ξ(Xi) = N
j
Ξ′(Xi) = 0 in D4

PΞF(Ξ, Ξ′), D4
PΞF(Ξ, Ξ′) will

change for HFSs. Furthermore, to put Mj
Ξ(Xi),M

j
Ξ′(Xi) and N

j
Ξ(Xi),N

j
Ξ′(Xi) as a singleton

set, D4
PΞF(Ξ, Ξ′) will change for IFSs, meaning the theory diagnosed in this study is

massively powerful and dominant compared to others.

Definition 12. By using any two IHFNS Ξ and Ξ′, a WDSM WD4
PΞF(Ξ, Ξ′) is investigated by:

WD4
PΞF

(
Ξ, Ξ′

)
=

2 ∑M
i=1 w2

i

(
1.
M

∑l
j=1 M

j
Ξ(Xi)M

j
Ξ′(Xi) +

1.
N

∑l
j=1 N

j
Ξ(Xi)N

j
Ξ′(Xi) +

1.
π

∑l
j=1 π

j
Ξ(Xi)π

j
Ξ′(Xi)

)
∑M

i=1 w2
i

(
1

LMΞ(X)
∑l

j=1

(
M

j
Ξ(Xi)

)2
+ 1

LNΞ(X)
∑l

j=1

(
N

j
Ξ(Xi)

)2
+ 1

LπΞ(X)
∑l

j=1

(
π

j
Ξ(Xi)

)2
)
+

∑M
i=1 w2

i

(
1

LM
Ξ′ (X)

∑l
j=1

(
M

j
Ξ′(Xi)

)2
+ 1

LN
Ξ′ (X)

∑l
j=1

(
N

j
Ξ′(Xi)

)2
+ 1

Lπ
Ξ′ (X)

∑l
j=1

(
π

j
Ξ′(Xi)

)2
)

which holds the necessary rules of Definition 5.

Using some conditions, we can easily obtain further particular cases from the above
theory; for instance, to put Nj

Ξ(Xi) = N
j
Ξ′(Xi) = 0 in WD4

PΞF(Ξ, Ξ′), WD4
PΞF(Ξ, Ξ′) will

change for HFSs. Furthermore, to put Mj
Ξ(Xi),M

j
Ξ′(Xi) and N

j
Ξ(Xi),N

j
Ξ′(Xi) as a singleton

set, WD4
PΞF(Ξ, Ξ′) will change for IFSs, meaning the theory diagnosed in this manuscript

is massively powerful and dominant compared to others. For w =
(

1
M , 1

M , . . . , 1
M

)T
,

WD4
PΞF(Ξ, Ξ′) = D4

PΞF(Ξ, Ξ′).
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4. GDSM for IHFSs

To illustrate the relationship between any two pieces of IHF information, the theory of
GDS measures played an important and valuable role in the field of genuine life dilemmas.
The main influence of GDS measures is that we can easily obtain a large number of measures
by using different values of parameters, which is the main part of every measure, called
DGS measures. In this study, we chose one of the most flexible and genuine principles,
called the IHFS, which covers the MG and NMG in the form of a finite subset of [0, 1], with
the rule that the sum of the supremum of the duplet is limited to [0, 1], GDS measures are
to develop the four sorts of IHF GDS measure, and IHF weighted GDS measure. Based on
the investigated measures, certain special cases are also evaluated, with 0 ≤ ρ ≤ 1.

Definition 13. By using any two IHFNS Ξ and Ξ′, a GDSM GD1
PΞF(Ξ, Ξ′) is investigated by:

GD1
PΞF

(
Ξ, Ξ′

)
=

1
M

M

∑
i=1

(
1.
M

∑l
j=1 M

j
Ξ(Xi)M

j
Ξ′(Xi) +
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j
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j
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)
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1
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M
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N
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)2
)
+

(1− γ)

(
1

LM
Ξ′ (X)

∑l
j=1

(
M

j
Ξ′(Xi)

)2
+ 1

LN
Ξ′ (X)

∑l
j=1

(
N

j
Ξ′(Xi)

)2
)
⎞⎟⎟⎠

which holds the necessary rules of Definition 5.

Using some conditions, we can easily obtain further particular cases from the above
theory; for instance, to put Nj

Ξ(Xi) = N
j
Ξ′(Xi) = 0 in GD1

PΞF(Ξ, Ξ′), GD1
PΞF(Ξ, Ξ′) will

change for HFSs. Furthermore, to put Mj
Ξ(Xi),M

j
Ξ′(Xi) and N

j
Ξ(Xi),N

j
Ξ′(Xi) as a singleton

set, GD1
PΞF(Ξ, Ξ′) will change for IFSs, meaning the theory diagnosed in this study is

massively powerful and dominant compared to others.

Definition 14. By using any two IHFNS Ξ and Ξ′, a WGDSM WGD1
PΞF(Ξ, Ξ′) is investi-

gated by:

WGD1
PΞF

(
Ξ, Ξ′

)
=

M

∑
i=1

wi
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M
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Ξ(Xi)M
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⎛⎜⎜⎝ γ

(
1

LMΞ(X)
∑l

j=1

(
M

j
Ξ(Xi)

)2
+ 1

LNΞ(X)
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j
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)2
)
⎞⎟⎟⎠

which holds the necessary rules of Definition 5.

Using some conditions, we can easily obtain further particular cases from the above
theory; for instance, to put Nj

Ξ(Xi) = N
j
Ξ′(Xi) = 0 in WGD1

PΞF(Ξ, Ξ′), WGD1
PΞF(Ξ, Ξ′)

will change for HFSs. Furthermore, to put Mj
Ξ(Xi),M

j
Ξ′(Xi) and N

j
Ξ(Xi),N

j
Ξ′(Xi) as a

singleton set, WGD1
PΞF(Ξ, Ξ′) will change for IFSs, meaning the theory diagnosed in this

study is massively powerful and dominant compared to others. For w =
(

1
M , 1

M , . . . , 1
M

)T
,

WGD1
PΞF(Ξ, Ξ′) = GD1

PΞF(Ξ, Ξ′).

Definition 15. By using any two IHFNS Ξ and Ξ′, a GDSM GD2
PΞF(Ξ, Ξ′) is investigated by:

GD2
PΞF
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Ξ, Ξ′
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=
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Ξ′(Xi) +

1.
N
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∑l
j=1 π

j
Ξ(Xi)π

j
Ξ′(Xi)

)
⎛⎜⎜⎝ γ
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+
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⎞⎟⎟⎠
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which holds the necessary rules of Definition 5.

Using some conditions, we can easily obtain further particular cases from the above
theory; for instance, to put Nj

Ξ(Xi) = N
j
Ξ′(Xi) = 0 in GD2

PΞF(Ξ, Ξ′), GD2
PΞF(Ξ, Ξ′) will

change for HFSs. Furthermore, to put Mj
Ξ(Xi),M

j
Ξ′(Xi) and N

j
Ξ(Xi),N

j
Ξ′(Xi) as a singleton

set, GD2
PΞF(Ξ, Ξ′) will change for IFSs, meaning the theory diagnosed in this study is

massively powerful and dominant compared to others.

Definition 16. By using any two IHFNS Ξ and Ξ′, a WGDSM WGD2
PΞF(Ξ, Ξ′) is investi-

gated by:

WGD2
PΞF

(
Ξ, Ξ′

)
=

M

∑
i=1

wi

2
(

1.
M

∑l
j=1 M

j
Ξ(Xi)M

j
Ξ′(Xi) +
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Ξ(Xi)N

j
Ξ′(Xi) +

1.
π

∑l
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Ξ(Xi)π
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⎛⎜⎜⎝ γ

(
1
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M
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∑l

j=1

(
N
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+
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π

j
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)2
)
⎞⎟⎟⎠

which holds the necessary rules of Definition 5.

Using some conditions, we can easily obtain further particular cases from the above
theory; for instance, to put Nj

Ξ(Xi) = N
j
Ξ′(Xi) = 0 in WGD2

PΞF(Ξ, Ξ′), WGD2
PΞF(Ξ, Ξ′)

will change for HFSs. Furthermore, to put Mj
Ξ(Xi),M

j
Ξ′(Xi) and N

j
Ξ(Xi),N

j
Ξ′(Xi) as a

singleton set, WGD2
PΞF(Ξ, Ξ′) will change for IFSs, meaning the theory diagnosed in this

study is massively powerful and dominant compared to others. For w =
(

1
M , 1

M , . . . , 1
M

)T
,

WD2
PΞF(Ξ, Ξ′) = D2

PΞF(Ξ, Ξ′).

Definition 17. By using any two IHFNS Ξ and Ξ′, a GDSM GD3
PΞF(Ξ, Ξ′) is investigated by:

GD3
PΞF

(
Ξ, Ξ′

)
=

∑M
i=1

(
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M

∑l
j=1 M

j
Ξ(Xi)M
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∑l
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j
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j=1

(
N

j
Ξ′(Xi)

)2
)

which holds the necessary rules of Definition 5.

Using some conditions, we can easily obtain further particular cases from the above
theory; for instance, to put Nj

Ξ(Xi) = N
j
Ξ′(Xi) = 0 in GD3

PΞF(Ξ, Ξ′), GD3
PΞF(Ξ, Ξ′) will

change for HFSs. Furthermore, to put Mj
Ξ(Xi),M

j
Ξ′(Xi) and N

j
Ξ(Xi),N

j
Ξ′(Xi) as a singleton

set, GD3
PΞF(Ξ, Ξ′) will change for IFSs, meaning the theory diagnosed in this study is

massively powerful and dominant compared to others.

Definition 18. By using any two IHFNS Ξ and Ξ′, a WGDSM WGD3
PΞF(Ξ, Ξ′) is investigated

by:

WGD3
PΞF

(
Ξ, Ξ′

)
=

∑M
i=1 w2

i

(
1.
M

∑l
j=1 M

j
Ξ(Xi)M

j
Ξ′(Xi) +
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N
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j
Ξ′(Xi)
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γ ∑M

i=1 w2
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LNΞ(X)
∑l

j=1
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N
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)
+

(1− γ)∑M
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∑l
j=1

(
M

j
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+ 1
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∑l
j=1

(
N

j
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)2
)

which holds the necessary rules of Definition 5.

84



Mathematics 2022, 10, 2815

Using some conditions, we can easily obtain further particular cases from the above
theory; for instance, to put Nj

Ξ(Xi) = N
j
Ξ′(Xi) = 0 in WGD3

PΞF(Ξ, Ξ′), WGD3
PΞF(Ξ, Ξ′)

will change for HFSs. Furthermore, to put Mj
Ξ(Xi),M

j
Ξ′(Xi) and N

j
Ξ(Xi),N

j
Ξ′(Xi) as a

singleton set, WGD3
PΞF(Ξ, Ξ′) will change for IFSs, meaning the theory diagnosed in this

study is massively powerful and dominant compared to others. For w =
(

1
M , 1

M , . . . , 1
M

)T
,

WGD3
PΞF(Ξ, Ξ′) = GD3

PΞF(Ξ, Ξ′).

Definition 19. By using any two IHFNS Ξ and Ξ′, a GDSM GD4
PΞF(Ξ, Ξ′) is investigated by:

GD4
PΞF

(
Ξ, Ξ′

)
=

∑M
i=1

(
1.
M

∑l
j=1 M

j
Ξ(Xi)M

j
Ξ′(Xi) +

1.
N

∑l
j=1 N

j
Ξ(Xi)N

j
Ξ′(Xi) +

1.
π

∑l
j=1 π

j
Ξ(Xi)π

j
Ξ′(Xi)

)
γ ∑M

i=1

(
1

LMΞ(X)
∑l

j=1

(
M

j
Ξ(Xi)

)2
+ 1

LNΞ(X)
∑l

j=1

(
N

j
Ξ(Xi)

)2
+ 1

LπΞ(X)
∑l

j=1

(
π

j
Ξ(Xi)

)2
)
+

(1− γ)∑M
i=1

(
1

LM
Ξ′ (X)

∑l
j=1

(
M

j
Ξ′(Xi)

)2
+ 1

LN
Ξ′ (X)

∑l
j=1

(
N

j
Ξ′(Xi)

)2
+ 1

Lπ
Ξ′ (X)

∑l
j=1

(
π

j
Ξ′(Xi)

)2
)

which holds the necessary rules of Definition 5.

Using some conditions, we can easily obtain further particular cases from the above
theory; for instance, to put Nj

Ξ(Xi) = N
j
Ξ′(Xi) = 0 in GD4

PΞF(Ξ, Ξ′), GD4
PΞF(Ξ, Ξ′) will

change for HFSs. Furthermore, to put Mj
Ξ(Xi),M

j
Ξ′(Xi) and N

j
Ξ(Xi),N

j
Ξ′(Xi) as a singleton

set, GD4
PΞF(Ξ, Ξ′) will change for IFSs, meaning the theory diagnosed in this study is

massively powerful and dominant compared to others.

Definition 20. By using any two IHFNS Ξ and Ξ′, a WGDSM WGD4
PΞF(Ξ, Ξ′) is investigated

by:

WGD4
PΞF

(
Ξ, Ξ′

)
=

∑M
i=1 w2

i

(
1.
M

∑l
j=1 M

j
Ξ(Xi)M

j
Ξ′(Xi) +

1.
N

∑l
j=1 N

j
Ξ(Xi)N

j
Ξ′(Xi) +

1.
π

∑l
j=1 π

j
Ξ(Xi)π

j
Ξ′(Xi)

)
γ ∑M

i=1 w2
i

(
1

LMΞ(X)
∑l

j=1

(
M

j
Ξ(Xi)

)2
+ 1

LNΞ(X)
∑l

j=1

(
N

j
Ξ(Xi)

)2
+ 1

LπΞ(X)
∑l

j=1

(
π

j
Ξ(Xi)

)2
)
+

(1− γ)∑M
i=1 w2

i

(
1

LM
Ξ′ (X)

∑l
j=1

(
M

j
Ξ′(Xi)

)2
+ 1

LN
Ξ′ (X)

∑l
j=1

(
N

j
Ξ′(Xi)

)2
+ 1

Lπ
Ξ′ (X)

∑l
j=1

(
π

j
Ξ′(Xi)

)2
)

which holds the necessary rules of Definition 5.

Using some conditions, we can easily obtain further particular cases from the above
theory; for instance, to put Nj

Ξ(Xi) = N
j
Ξ′(Xi) = 0 in WGD4

PΞF(Ξ, Ξ′), WGD4
PΞF(Ξ, Ξ′)

will change for HFSs. Furthermore, to put Mj
Ξ(Xi),M

j
Ξ′(Xi) and N

j
Ξ(Xi),N

j
Ξ′(Xi) as a

singleton set, WGD4
PΞF(Ξ, Ξ′) will change for IFSs, meaning the theory diagnosed in this

study is massively powerful and dominant compared to others. For w =
(

1
M , 1

M , . . . , 1
M

)T
,

WGD4
PΞF(Ξ, Ξ′) = GD4

PΞF(Ξ, Ξ′).
By using the investigated measures, we discussed certain special cases of the DSM,

WDSM, GDSM, and WGDSM.
For γ = 0, in GD1

PΞF(Ξ, Ξ′), we obtained

GD1
PΞF

(
Ξ, Ξ′

)
=

1
M

M

∑
i=1

(
1.
M

∑l
j=1 M

j
Ξ(Xi)M

j
Ξ′(Xi) +

1.
N
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j=1 N

j
Ξ(Xi)N

j
Ξ′(Xi)

)
(

1
LM

Ξ′ (X)
∑l

j=1

(
M

j
Ξ′(Xi)

)2
+ 1

LN
Ξ′ (X)

∑l
j=1

(
N

j
Ξ′(Xi)

)2
)

Similarly, for γ = 0.5,
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GD1
PΞF(Ξ, Ξ′)= 1

M

M
∑
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2
(

1.
M
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j
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j
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(
A

j
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(
N

j
Ξ(Xi)

)2
)
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1
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∑l
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(
M

j
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+ 1
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Ξ′ (X)
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j=1

(
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j
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)2
+ 1
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(
N

j
Ξ′(Xi)

)2
)

⎞⎟⎟⎟⎟⎠
= D1

PΞF(Ξ, Ξ′)

For γ = 0.5, in GD1
PΞF(Ξ, Ξ′), we obtained

GD1
PΞF

(
Ξ, Ξ′

)
=

1
M

M

∑
i=1

(
1.
M

∑l
j=1 M

j
Ξ(Xi)M

j
Ξ′(Xi) +

1.
N

∑l
j=1 N

j
Ξ(Xi)N

j
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)
(

1
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(
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j
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+ 1

LNΞ(X)
∑l

j=1

(
N

j
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)2
)

For γ = 0 and 0.5, GD2
PΞF(Ξ, Ξ′), GD3

PΞF(Ξ, Ξ′), and GD4
PΞF(Ξ, Ξ′) are similar.

5. Decision-Making Processes

Pattern recognition is the computerized identification of shapes, designs, and relia-
bilities in information. It has applications in information compression, machine learning,
statistical information analysis, signal processing, image analysis, information retrieval,
bioinformatics, and computer graphics. Similarly, a medical diagnosis is a procedure to
illustrate or identify diseases or disorders, which would account for a person’s symptoms
and signs. The decision-making procedure covers four main stages: intelligence, design,
choice, and implementation. The principle of decision-making technique begins with the
intelligence stage. In this stage, the intellectual determines reality and identifies and ex-
plains the troubles. The main influence of this theory is to explore the main idea of medical
diagnosis and pattern recognition under the consideration of IHF information. The main
importance and briefing explanation about every application is available below. These
applications are taken from Ref. [17]. By using the proposed measures, the applications of
medical diagnosis and pattern recognition are discussed below.

5.1. Medical Diagnosis

Certain sorts of diseases have distinct symptoms and different affection; the medical
diagnosis procedure is determined by the distinct symptoms of the required diseases of
the intellectual which is safer from them. The diseases are expressed using the symbols
Ξ1, Ξ2, . . . , Ξn, and their symptoms are expressed by the values of universal sets. Using
the proposed measures, the numerical example is discussed below.

Example 1. For any set of diseases whose expressions are in the form of Ξ ={
Ξ1(Typhoid), Ξ2(Flu), Ξ3(Heart Probelms),

Ξ4(Pneumonia), Ξ5(coronavirus)

}
and their symptoms whose expressions are in

the form of X =

{
Fever, Cough, Heart pain,

Loss o f appetite, Short o f breath

}
. The symptoms of the distinct diseases are

discussed below in the form of unknown diseases:

Ξ1 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
({0.1, 0.2}, {0.2, 0.3, 0.4}),

({0.11, 0.21}, {0.21, 0.31, 0.41}),
({0.12, 0.22}, {0.22, 0.32, 0.42}),
({0.13, 0.23}, {0.23, 0.33, 0.43}),
({0.14, 0.24}, {0.24, 0.34, 0.44})

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭, Ξ2=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
({0.2, 0.3}, {0.1, 0.3, 0.2}),

({0.21, 0.31}, {0.11, 0.31, 0.21}),
({0.22, 0.32}, {0.12, 0.32, 0.22}),
({0.23, 0.33}, {0.13, 0.33, 0.23}),
({0.24, 0.34}, {0.14, 0.34, 0.24})

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭,

Ξ3=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
({0.3, 0.1}, {0.5, 0.2, 0.1}),

({0.31, 0.11}, {0.51, 0.21, 0.11}),
({0.32, 0.12}, {0.52, 0.22, 0.12}),
({0.33, 0.13}, {0.53, 0.23, 0.13}),
({0.34, 0.14}, {0.54, 0.24, 0.14})

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭, Ξ4=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
({0.1, 0.1}, {0.2, 0.2, 0.4}),

({0.11, 0.11}, {0.21, 0.21, 0.41}),
({0.12, 0.12}, {0.22, 0.22, 0.42}),
({0.13, 0.13}, {0.23, 0.23, 0.43}),
({0.14, 0.14}, {0.24, 0.24, 0.44})

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭, Ξ5 =
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⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
({0.3, 0.5}, {0.1, 0.2, 0.3}),

({0.31, 0.51}, {0.11, 0.21, 0.31}),
({0.32, 0.52}, {0.12, 0.22, 0.32}),
({0.33, 0.53}, {0.13, 0.23, 0.33}),
({0.34, 0.54}, {0.14, 0.24, 0.34})

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭. For this, we choose the known diseases Ξ′ =

⎧⎨⎩
({1, 1}, {0.0, 0.0.0.0}),

({1, 1}, {0.0, 0.0.0.0}), ({1, 1}, {0.0, 0.0.0.0}),
({1, 1}, {0.0, 0.0.0.0}), ({1, 1}, {0.0, 0.0.0.0})

⎫⎬⎭. Then, by using the GD1
PΞF(Ξ, Ξ′),

WGD1
PΞF(Ξ, Ξ′), GD2

PΞF(Ξ, Ξ′), and WGD2
PΞF(Ξ, Ξ′), the examined measures are discussed

in the form of Table 1 by using the weight vector 0.2, 0.3, 0.2, 0.2, and 0.1. For this, we chose the
value of γ = 1, then

Table 1. Expressions of the measured values by using different measures.

Methods Values

GD1
PΞF(Ξ, Ξ′) 0.5056, 0.8248, 0.542, 0.4772, 0.7232

WGD1
PΞF(Ξ, Ξ′) 0.0595, 0.1036, 0.0640, 0.0553, 0.0866

GD2
PΞF(Ξ, Ξ′) 0.4649, 0.7866, 0.4981, 0.4396, 0.6635

WGD2
PΞF(Ξ, Ξ′) 0.0473, 0.0821, 0.0509, 0.0441, 0.0687

Further, information computed in Table 2 is constructed based on the information
available in Table 1.

Table 2. Contained ranking analysis of the information in Table 1.

Methods Values

GD1
PΞF(Ξ, Ξ′) Ξ.2 ≥ Ξ.5 ≥ Ξ.3 ≥ Ξ.1 ≥ Ξ.4

WGD1
PΞF(Ξ, Ξ′) Ξ.2 ≥ Ξ.5 ≥ Ξ.3 ≥ Ξ.1 ≥ Ξ.4

GD2
PΞF(Ξ, Ξ′) Ξ.2 ≥ Ξ.5 ≥ Ξ.3 ≥ Ξ.1 ≥ Ξ.4

WGD2
PΞF(Ξ, Ξ′) Ξ.2 ≥ Ξ.5 ≥ Ξ.3 ≥ Ξ.1 ≥ Ξ.4

From Table 2, all sorts of measures are provided with the same ranking results. the best
optimal is Ξ2. Additionally, by using distinct types of measures based on IFSs and IHFSs,
the comparative analysis of the elaborated measures with certain prevailing measures
are discussed in the form of Table 3. The information related to prevailing measures is
as follows: Ye [12] initiated certain cosine measures based on IFSs, Beg and Rashid [21]
proposed certain measures based on IHFSs, and Peng et al. [22] proposed the cross-entropy
measures based on IHFSs. By using the information in Section 5.1, the comparative analysis
is discussed in the form of Table 3.

Table 3. Contained comparative information.

Methods Values Ranking Results

Ye [12] Cannot be Calculated Cannot be Calculated

Beg and Rashid [21] 0.0484, 0.1025, 0.0530, 0.0442, 0.0755 Ξ.2 ≥ Ξ.5 ≥ Ξ.3 ≥ Ξ.1 ≥ Ξ.4

Peng et al. [22] 0.3538, 0.6755, 0.3870, 0.3285, 0.5524 Ξ.2 ≥ Ξ.5 ≥ Ξ.3 ≥ Ξ.1 ≥ Ξ.4

GD1
PΞF(Ξ, Ξ′) 0.5056, 0.8248, 0.542, 0.4772, 0.7232 Ξ.2 ≥ Ξ.5 ≥ Ξ.3 ≥ Ξ.1 ≥ Ξ.4

WGD1
PΞF(Ξ, Ξ′) 0.0595, 0.1036, 0.0640, 0.0553, 0.0866 Ξ.2 ≥ Ξ.5 ≥ Ξ.3 ≥ Ξ.1 ≥ Ξ.4

GD2
PΞF(Ξ, Ξ′) 0.4649, 0.7866, 0.4981, 0.4396, 0.6635 Ξ.2 ≥ Ξ.5 ≥ Ξ.3 ≥ Ξ.1 ≥ Ξ.4

WGD2
PΞF(Ξ, Ξ′) 0.0473, 0.0821, 0.0509, 0.0441, 0.0687 Ξ.2 ≥ Ξ.5 ≥ Ξ.3 ≥ Ξ.1 ≥ Ξ.4
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From Table 2, all sorts of measures are provided with the same ranking results. The
best optimal is Ξ2.

5.2. Pattern Recognition

By using the elaborated measures, we aimed to use a practical application called
pattern recognition and try to evaluate it by using pioneered information.

Example 2. Without any complication or difficulty, the construction of any building is very
complicated. For this, a decision-maker collects the information for different places and resolves it
using the elaborated measures; then a very safe decision can be made. For this, we chose the different
types of building material, the information associated with which is discussed below.

Ξ1 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
({0.1, 0.2}, {0.1, 0.2, 0.3}),

({0.11, 0.21}, {0.11, 0.21, 0.31}),
({0.12, 0.22}, {0.12, 0.22, 0.32}),
({0.13, 0.23}, {0.13, 0.23, 0.33}),
({0.14, 0.24}, {0.14, 0.24, 0.34})

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭, Ξ2=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
({0.2, 0.3}, {0.2, 0.3, 0.4}),

({0.21, 0.31}, {0.21, 0.31, 0.41}),
({0.22, 0.32}, {0.22, 0.32, 0.42}),
({0.23, 0.33}, {0.23, 0.33, 0.43}),
({0.24, 0.34}, {0.24, 0.34, 0.44})

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭,

Ξ3=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
({0.1, 0.3}, {0.2, 0.1, 0.1}),

({0.11, 0.31}, {0.21, 0.11, 0.11}),
({0.12, 0.32}, {0.22, 0.12, 0.12}),
({0.13, 0.33}, {0.23, 0.13, 0.13}),
({0.14, 0.34}, {0.24, 0.14, 0.14})

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭, Ξ4=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
({0.1, 0.2}, {0.3, 0.2, 0.4}),

({0.11, 0.21}, {0.31, 0.21, 0.41}),
({0.12, 0.22}, {0.32, 0.22, 0.42}),
({0.13, 0.23}, {0.33, 0.23, 0.43}),
({0.14, 0.24}, {0.34, 0.24, 0.44})

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭,

Ξ5=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
({0.4, 0.5}, {0.1, 0.1, 0.1}),

({0.41, 0.51}, {0.11, 0.11, 0.11}),
({0.42, 0.52}, {0.12, 0.12, 0.12}),
({0.43, 0.53}, {0.13, 0.13, 0.13}),
({0.44, 0.54}, {0.14, 0.14, 0.14})

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
For this, we choose the known diseases, which are expressed below:

Ξ′ =

⎧⎨⎩
({1, 1}, {0.0, 0.0.0.0}),

({1, 1}, {0.0, 0.0.0.0}), ({1, 1}, {0.0, 0.0.0.0}),
({1, 1}, {0.0, 0.0.0.0}), ({1, 1}, {0.0, 0.0.0.0})

⎫⎬⎭
Then, by using the GD1

PΞF(Ξ, Ξ′), WGD1
PΞF(Ξ, Ξ′), GD2

PΞF(Ξ, Ξ′), and WGD2
PΞF(Ξ, Ξ′),

the examined measures are discussed in the form of Table 4 by using the weight vector 0.2,
0.3, 0.2, 0.2, and 0.1. For this, we chose the value of γ = 1.

Table 4. Expressions of the measured values using different measures.

Methods Values

GD1
PΞF(Ξ, Ξ′) 0.8166, 0.5859, 0.8271, 0.5057, 0.8219

WGD1
PΞF(Ξ, Ξ′) 0.098, 0.0728, 0.1313, 0.0596, 0.0984

GD2
PΞF(Ξ, Ξ′) 0.749, 0.5589, 0.9916, 0.4649, 0.7514

WGD2
PΞF(Ξ, Ξ′) 0.0777, 0.0578, 0.104, 0.0474, 0.078

Further, the information computed in Table 5 was constructed based on the information
available in Table 4.
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Table 5. Contained ranking analysis.

Methods Values

GD1
PΞF(Ξ, Ξ′) Ξ.5 ≥ Ξ.3 ≥ Ξ.1 ≥ Ξ.2 ≥ Ξ.4

WGD1
PΞF(Ξ, Ξ′) Ξ.3 ≥ Ξ.5 ≥ Ξ.1 ≥ Ξ.2 ≥ Ξ.4

GD2
PΞF(Ξ, Ξ′) Ξ.5 ≥ Ξ.3 ≥ Ξ.1 ≥ Ξ.2 ≥ Ξ.4

WGD2
PΞF(Ξ, Ξ′) Ξ.5 ≥ Ξ.3 ≥ Ξ.1 ≥ Ξ.2 ≥ Ξ.4

From Table 5, all sorts of measures are provided with the different ranking results. the
best optimal is Ξ5 and Ξ3. Additionally, by using distinct types of measures based on IFSs
and IHFSs, the comparative analysis of the elaborated measures with certain prevailing
measures are discussed in the form of Table 6. The information related to prevailing
measures is as follows: Ye [12] initiated certain cosine measures based on IFSs, Beg and
Rashid [21] proposed certain measures based on IHFSs, and Peng et al. [22] proposed the
cross-entropy measures based on IHFSs. By using the information from Example 1, the
comparative analysis is discussed in the form of Table 6.

Table 6. Contained comparative analysis.

Methods Values Ranking Results

Ye [12] Cannot be Calculated Cannot be Calculated

Beg and Rashid [21] 0.638, 0.4478, 0.8805, 0.3538, 0.6403 Ξ5 ≥ Ξ3 ≥ Ξ1 ≥ Ξ2 ≥ Ξ4

Peng et al. [22] 0.0666, 0.0467, 0.103, 0.0363, 0.067 Ξ5 ≥ Ξ3 ≥ Ξ1 ≥ Ξ2 ≥ Ξ4

GD1
PΞF(Ξ, Ξ′) 0.8166, 0.5859, 0.8271, 0.5057, 0.8219 Ξ5 ≥ Ξ3 ≥ Ξ1 ≥ Ξ2 ≥ Ξ4

WGD1
PΞF(Ξ, Ξ′) 0.098, 0.0728, 0.1313, 0.0596, 0.0984 Ξ3 ≥ Ξ5 ≥ Ξ1 ≥ Ξ2 ≥ Ξ4

GD2
PΞF(Ξ, Ξ′) 0.749, 0.5589, 0.9916, 0.4649, 0.7514 Ξ5 ≥ Ξ3 ≥ Ξ1 ≥ Ξ2 ≥ Ξ4

WGD2
PΞF(Ξ, Ξ′) 0.0777, 0.0578, 0.104, 0.0474, 0.078 Ξ5 ≥ Ξ3 ≥ Ξ1 ≥ Ξ2 ≥ Ξ4

From Table 2, all sorts of measures are provided with the different ranking results.
the best optimal is Ξ5 and Ξ3. In the future, we will utilize different types of operators,
methods, and measures in the environment of picture hesitant fuzzy sets and neutrosophic
hesitant fuzzy sets [24–31] to improve the quality of the proposed works. Therefore, the
elaborated measures based on IHFS are more powerful and more fixable than the prevailing
ideas [23–31].

6. Conclusions

The main and major features of this analysis are described below:

1. We pioneered the main theory of DSM based on IHFS and evaluated their particular
cases.

2. We established the GDS measures in the environment of IHFSs and discussed IHFDSM,
IHFWDSM, IHFGDSM, and IHFWGDSM.

3. Based on the investigated measures, certain special cases were also evaluated. Further-
more, by using the discovered measures, medical diagnosis and pattern recognition
problems were determined.

4. Finally, we determined the supremacy of the explored work and the sensitivity analy-
sis and advantages of the explored measures. Their geometrical expressions are also
discussed.

Our recent work focused on the prevailing information computed based on complex
q-rung orthopair FSs [32], spherical FSs (SFSs) [33], Aczel-Alsina operational laws [34],
different types of measures [35,36], Aczel-Alsina aggregation operators [37], Maclaurin
operators [38], Complex SFSs [39,40], linguistic group decision-making techniques [41], and
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unbalanced linguistic information [42], and we aim to employ it in the field of computer
science, road signals, software engineering, and decision-making.
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Abstract: This study aims to solve the problem of intelligent collision avoidance of unmanned
ships at sea, and it proposes a novel driving strategy generating method of collision avoidance
based on an extensive-form game mode with fuzzy credibility numbers. The innovation of this
study is to propose an extensive-form game model of unmanned ships under the situation of two-
sides clamping and verify the validity by fuzzy credibility. Firstly, this study divides the head-on
situation of the ship at sea quantitatively to help the unmanned ship take targeted measures when
making collision avoidance decisions. Secondly, this study adopts an extensive-form game model
to model the problem of collision avoidance of an unmanned ship in the case of clamping on two
sides. Thirdly, the extensive-form game model is organically combined with the fuzzy credibility
degree to judge whether the collision avoidance game of unmanned ship achieves the optimal
collision avoidance result. The effectiveness of the introduced game model is verified by case analysis
and simulation. Finally, an illustrative example shows that the proposed mathematical model can
better help unmanned ships make real-time game decisions at sea in the scenario of two-sides
clamping effectively.

Keywords: collision avoidance; encounter situation; fuzzy credibility numbers; intelligent unmanned
ships; extensive-form game model

MSC: 90C70

1. Introduction

In actual maritime navigation, the entire collision avoidance operation of unmanned
ships revolves around the three stages of “observation, judgment and decision making” [1].
At the same time, the specific water environment and different encounter states will also
affect the collision avoidance decision-making process of the unmanned ship. Under the
above background, to help unmanned ships take targeted measures to avoid collision
decisions, this study analyzes the situation of ships under the condition of both sides.

The two-sides clamping scenario is a condition in which a ship sails between two
ships while at sea. Investigation illustrates that it is dangerous when a ship is trapped in
this two-sides clamping situation. Considering that the collision avoidance operations of
unmanned ships is a game process, this study proposes an anti-collision decision model for
unmanned ships based on extensive-form game model [2].

1.1. Literature Review

According to investigation, the issues of unmanned ship collision avoidance in a
two-side scenario is focused on. At present, scholars’ research on ship collision avoidance
mostly focuses on three aspects: strategies for avoiding ship collisions, application of game
theory to ships, and practical application of fuzzy credibility numbers.
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In the past five years, avoiding collision problems have been mainly studied from
the viewpoints of risk assessment, variable distribution, safety domain, etc. Scholars have
performed research on strategies for ships avoiding collisions. In the study by Li et al. [3],
by balancing the safety and economy of ship collision avoidance, the avoidance angle and
the time to the action point are used as the variables encoded by the algorithm, and the
fuzzy ship domain is used to calculate the collision avoidance risk to achieve collision
avoidance. Thereafter, Lee et al. [4] proposed a heuristic search technology for collision
avoidance operations for autonomous ships. Based on the multi-vessel collision avoidance
problem, Wang et al. [5] researched the decision-making for obstacle avoidance based on
deep reinforcement learning to solve the problem of intelligent collision avoidance for
unmanned ships in unknown environments. Based on the mathematical model group’s
ship motion mathematical model, Xing et al. [6] proposed an open sea ship collision
prevention approach to enhance the prediction of ship collision risk and the real-time and
dependability of collision avoidance method.

At present, the application fields of extensive-form game mode are concluding contain-
ing transportation; Lisowski [7] introduced the application of the game control processes
in marine navigation. The control goal has been defined first. Then, the approximated
models of multi-stage positional game and multi-step matrix game of the safe ship steering
in a collision situation has been presented. Subsequently, Lisowski et al. [8] described
six methods of optimal and game theory and artificial neural network for synthesis of
safe control in collision situations at sea. The optimal control algorithm and game control
algorithm were used to determine the safe track. Afterwards, Zou et al. [9] identified
the safety evaluation indicator system and evaluation standards and established an after-
collisions safety evaluation model of maritime ships based on the extension cloud theory.
Considering the defects of the classic extensive game method in ship collision avoidance
decision-making, Tu et al. [10] proposed the improved extensive game method based on
the velocity obstacle method.

Up to now, fuzzy credibility numbers were mainly used to solve decision making
problem, project scheduling problem, multi-objective fuzzy-interval credibility-constrained
non-linear programming, etc. Ran et al. [11] aimed at the problems of inaccurate evalu-
ation results caused by experts in the process of simulation credibility evaluation based
on traditional fuzzy comprehensive evaluation according to personal preferences or ex-
pectations, and unreasonable selection of fuzzy synthetic calculations, and a simulation
credibility evaluation method based on improved fuzzy comprehensive evaluation was
proposed. Moreover, Ye et al. [12] proposed the concept of a fuzzy credibility number
as a new extension of the fuzzy concept. Thereafter, Vercher et al. [13] presented a new
forecasting scheme based on the credibility distribution of fuzzy events. In the same year,
Zhou et al. [14] proposed a decision support model for USVs to improve the accuracy of
collision avoidance decision-making.

Based on the aforementioned analysis, the collision avoidance of unmanned ships
is studied. The main innovation of this study is combining extensive-form game model
and FCN together. Specifically, by using the extensive-form game model, the collision
avoidance strategy of unmanned ships is studied for the special situation between the
two-sides. By using FCN, the danger of collision is quantified.

1.2. Goals and Contributions

The purpose of this study is to explore the decision-making problem of collision
avoidance for unmanned ships at sea under the two-sides clamp scenario. In response
to the aforementioned problems, this study establishes an extensive-form game model
based on the two-sides clamping scenario and applies it to solve the specific collision
avoidance problem.

The contribution of this study is as follows. Firstly, based on the extensive-form game
model, this study establishes a description of the ship collision avoidance structure under
the situation of two-sides clamping. Secondly, this study chooses driving strategy following
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a priority principle on ship collision avoidance and introduces a utility function to describe
it. By combining this utility function and the extensive-form game model, a set of utilities
of the own ship and the target ship are collected and compared to find the optimal collision
avoidance decision. Thirdly, this study establishes a ship collision risk fuzzy credibility
operator to judge whether the ship has escaped from collision danger.

The rest of this study is organized as follows. Section 2 clarifies the research basis.
Section 3 proposes the driving-strategy generating method for collision avoidance. Section 4
carries out simulation verification for the proposed method. Section 5 summarizes and
points out possible future work. The structure of this study is shown in Figure 1.

 

Figure 1. Research process.

2. Research Basis

This part mainly introduces the conflict identification of the ships’ encounter situation
at sea, which quantitatively analyzes the ship’s encounter situation, and introduces the rel-
evant knowledge of extensive-form game tree and sub-game refinement Nash equilibrium.

2.1. Route Conflict Situation Identification

The identification of the conflict situation on the route and the division of ship re-
sponsibilities are based on the 1972 International Regulations for Preventing Collisions at
Sea, namely COLREGS. In actual navigation, the collision avoidance measures taken by
unmanned ships are based on the collision avoidance rules listed in COLREGS combined
with various ship identification devices for automatic collision avoidance [15]. The uncoor-
dinated collision avoidance measures may lead to the uncoordinated collision avoidance
process of the entire ship so that the best avoidance opportunity is missed [16]. According to
the different angles of encounter of ships, the encounter situation will be divided into three
types: head-on situation, overtaking situation, and cross encounter situation. Head-on
situation is the situation that ships often encounter at sea, and it is also the main situation
that causes the ship to be in imminent danger or to collide. Therefore, this study researches
the collision avoidance strategy of ships in the confrontation situation.

2.2. Judgment of Head-On Ship Situation

The “International Regulations for Preventing Collisions at Sea” has the following four
points to judge the head-on situation of ship [17]. Firstly, both ships must be motorized
ships. Secondly, the sailing directions of the two ships are in an opposite or almost opposite
confrontation on the route. Thirdly, one motorized ship is sailing directly in front of or
nearly in front of the other. Finally, the two ships are seeing each other and constitute a
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collision hazard. Therein, the heading angle of B the two ships in the confrontation situation
ΔC is the relative azimuth. The heading opposite or close to the opposite means that the
heading difference between the two ships is within 174

◦ ≤ ΔC ≤ 186
◦

the range. From the
point of view of encountering the relative orientation of the two ships, the heading of the
two ships is close to the opposite, which means that one ship is located within 6◦ on the left
and right in front of the other ship. Therefore, the relative orientation of the confronting
situation should satisfy B ≤ 005

◦
or B ≥ 351

◦
; the specific details are shown in Figure 2.

 

Figure 2. Schematic diagram of Head-on situation.

2.3. Extensive-Form Game Model Tree

The extensive-form game is dynamic. The difference between it and the static game is
that the extensive-form dynamic game needs to determine the order of actions [18]. Each
knot on the “game tree” represents a player’s decision point, and this point is said to belong
to the player acting at that point [19]. The branches represent the possible actions of the
players, and each branch connects two knots, which has a direction from one knot to the
other. Each branch of the game tree may or may not be expanded. Meanwhile, each branch
in the game tree can be regarded as a new game tree, called a sub-tree, as shown in Figure 3.
The part of A is the sub-game of B, and A is also the sub-game of the whole game. The
nodes are expanded outward, as shown in Figure 4.

Figure 3. Extensive-form game model tree.
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Figure 4. The sub-tree of the game tree.

2.4. Sub-Game Refinement Nash Equilibrium

The Nash equilibrium strategy is that all players in the game adopt the best strategy
that is beneficial to them [20]. In the whole process of the game, the players of each
game are rational and intelligent. The combination of actions taken in each game is the
optimal strategy, and the sub-game developed by the game tree is also the optimal solution.
The combination of action strategies taken in the game process conforms to the Nash
equilibrium strategy. Sub-game refined Nash equilibrium is the most effective tool for
analyzing perfect information dynamic games in the game theory [21].

3. Unmanned Ship Collision Avoidance Model in Two-Sides Clamp Scenario

This subsection adopts the fuzzy mathematics method, which organically combines
the extensive-form game with the collision risk fuzzy credibility numbers. This study
analyzes the collision avoidance game problem of route conflict in the situation where the
unmanned ship is under two-sides clamping situation particularly. In this model, the fuzzy
confidence degree of collision risk is used to calculate whether the ship escapes from the
collision risk after the collision avoidance game, so as to judge whether the ship adopts the
optimal collision avoidance strategy.

3.1. A Novel Ship Collision Avoidance Model

In this subsection, a ship collision avoidance model is proposed in two-sides clamp
scenario. Specific steps are as follows.

Step 1: Determination of priority. When ships encounter emergency and dangerous
situations in the course of navigation, if they want to recognize each other’s game informa-
tion through various ship identification equipment on unmanned ships, they also need to
play sequential dynamic game on ships. To determine the action sequence of the players
in the game process, this study proposes a ship priority function. This study makes two
assumptions about the gross tonnage of the ship and the sailing speed of the ship regarding
the actual sailing experience. The larger the gross tonnage of the ship in the voyage, the
higher the priority in the game situation. Then, it is assumed that the higher the speed of
the ship during the voyage, the higher the priority in the ship game. The following formula
is given for the aforementioned two assumptions:

pi = w1(Gi/
n

∑
i=1

Gi) + w2(Vi/
n

∑
i=1

Vi). (1)

In Equation (1), it is noteworthy that pi represents the priority index of player i in the
game, Gi represents the total tonnage of player i in the game, and Vi represents i the speed of
the player in the game. Among them w1 and w2 represents the weight of the gross tonnage
of the ship and the speed, at the same time w1 + w2 = 1. After pi has been determined,
players pi alternately make action decisions based on the magnitude of the index.

Step 2: Action space (Action set). After obtaining the corresponding action sequence
based on the ship collision avoidance priority in step 1, it is assumed that ship i start to
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act. The set of game decision it makes in the current situation is called the action set of
the ship i. In this set of action strategies, the number of action strategies made by ship i is
related to the complexity of the game situation; the number of action strategies made by
the ship is related to the complexity of the game situation. The more complex the game
model, the more actions can be made, the more combinations of actions, and the longer
the solution process will take. This study only adopts steering avoidance as a collision
avoidance measure to simplify the development space of the game and reduce the time
required for the game-solving process. In sailing practice, the steering angle is too large,
which will cause inconvenience in resuming the voyage. Therefore, the upper and lower
limits of steering are 30◦ in this study, and each turn is 10◦ as an action strategy, then the
action set of the ship i can be represented as Ai =

{−30
◦
,−20

◦
,−10

◦
, 0
◦
, 10

◦
, 20

◦
, 30

◦}
.

Step 3: Profit function. After determining the ships’ collision avoidance priority and
the ships’ decision-making action set, this study only considers the ships’ offset as a profit
on the premise of ensuring that the ship can sail safely and establishes a profit function. In
collision avoidance, the lower the ships’ drift, the lower the ships’ cost, and the more the
ship benefits throughout the game process. Set the initial position of the ship as , x0, y0,, the
speed of the ship as v, the heading angle as ψ, and the time interval of the ship game as t.
This study only studies a series of games between our ship and the other two ships under
the special situation of the two-sides. It is assumed that one of the ships is an environmental
variable, that is, the ship does not take any steering measures to maintain direction and
speed. If the planned course is sailing at a constant speed, t is the displacement increments
of the abscissa, and the increment of the xl ordinate of the ship in time yl are:

xl =

⎧⎪⎪⎨⎪⎪⎩
vt sin(ψ), 0

◦ ≤ ψ ≤ 90
◦
;

vt cos(ψ− 90
◦
), 90

◦
< ψ ≤ 180

◦
;

−vt sin(ψ− 180
◦
), 180

◦
< ψ ≤ 270

◦
;

−vt cos(ψ− 270
◦
), 270

◦
< ψ < 360

◦
.

(2)

yl =

⎧⎪⎪⎨⎪⎪⎩
vt cos(ψ), 0

◦ ≤ ψ ≤ 90
◦
;

−vt sin(ψ− 90
◦
), 90

◦
< ψ ≤ 180

◦
;

−vt cos(ψ− 180
◦
), 180

◦
< ψ ≤ 270

◦
;

vt sin(ψ− 270
◦
), 270

◦
< ψ < 360

◦
.

(3)

After the i-th decision is made, the coordinates where the ship arrives (xp, yp) accord-
ing to the planned course and constant speed, it gets:

xp = x0 + ix, yp = y0 + iyl . (4)

During the actual ship’s action, the ship’s expected position (xi, yi) will be affected by
the last decision. If the ship’s position after making a decision is (xi−1, yi−1), then:

xi = xi−1 + xm, yi = yi−1 + ym (5)

where ψi represents the new heading angle of the ship after the i-th decision is executed:

ψi =

⎧⎨⎩
ψi 0

◦ ≤ ψi < 360
◦

ψi − 360
◦

ψi ≥ 360
◦

ψi + 360
◦

ψi < 0
◦

. (6)

However, environmental variables should be taken into account when considering
collision avoidance strategies. Therefore, the relevant distance variable is introduced in
combination with the collision risk μ. The unmanned ship will take measures to avoid the
ship when it encounters the nearest distance. The influence of bump measure on revenue
function is as follows:

μ =
1
2
− 1

2
sin

[
π

d2 − d1

(
ω− d1 + d2

2

)]
. (7)
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Among them, d1 and d2 are the safety field value of the ship and the safe passing dis-
tance of the ship, respectively, and the distance ω between our ship and the environmental
variable ship.

To sum up, it can be extracted that the ships’ offset S in the i-th decision of the player
S is shown in Equation (8):

S =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√√√√√ [x0 + vt sin(ψ)(i− 1) + vt sin(ψi)− (x0 + vt sin(ψ)i)]2

+

[y0 + vt cos(ψ)(i− 1) + vt cos(ψi)− (y0 + vt cos(ψ)i)]2
+ μ, 0

◦ ≤ ψ ≤ 90
◦
;

√√√√√√
[
x0 + vt cos(ψ− π

2 ), i− 1,+vt cos(ψi − π
2 )−

(
x0 + vt cos(ψ− π

2 )i
)]2

+[
y0 − vt sin(ψ− 90

◦
)(i− 1)− vt sin(ψi − π

2 )−
(
y0 − vt sin(ψ− π

2 )i
)]2

+ μ, 90
◦
< ψ ≤ 180

√√√√√ [x0 − vt sin(ψ− π), i− 1,−vt sin(ψi − π)− (x0 − vt sin(ψ− π)i)]2

+

[y0 − vt cos(ψ− π)(i− 1)− vt cos(ψi − π)− (y0 − vt cos(ψ− π)i)]2
+ μ, 180

◦
< ψ ≤ 270

√√√√√√
[
x0 − vt cos(ψ− 3π

2 ), i− 1,−vt cos(ψi − 3π
2 )− (

x0 − vt cos(ψ− 3π
2 )i

)]2

+[
y0 + vt sin(ψ− 270

◦
)(i− 1) + vt sin(ψi − 3π

2 )− (
y0 + vt sin(ψ− 3π

2 )i
)]2

+ μ, 270
◦
< ψ < 36

(8)

Step 4: Collision avoidance decision. In the dynamic game with complete informa-
tion, the reverse solution from the final decision position is the most effective method to
solve Nash equilibrium [22]. In order to facilitate understanding, the following complete
information dynamic game is taken as an example to analyze.

Suppose there are two ships No. 1 and No. 2, in which ship No. 1 can choose an action
a1 from the action set A1 and ship No. 2 can choose an action a2 from the action set A2.
At the same time, U1(a1, a2) and U2(a1, a2) represent the value of the ship’s profit of No. 1
and the ship’s profit of No. 2, respectively. Based on the principle of the inverse solution
method, it is assumed that ship No.1 in this example makes an action decision first, so the
analysis starts from ship No. 2. Assuming that ship No. 1 is selected from the action set
first a1, then ship No. 2 needs to choose an action from its own action set that is the most
profitable for itself in the environment affected by the decision of ship No. 1. Therefore,
ship No. 2 faces that the decision problem is denoted as maxU2(a1, a2), a2 ∈ A2, ∀a1 ∈ A1,
the optimal strategy made by ship No. 2 after ship No. 1 makes the action decision is
denoted by F2(a1), and there is one and only one optimal strategy.

When inferring the decision made by ship No. 1 in the process of reverse solving, ship
No. 1 predicts that ship No. 2 will take the next action according to its decision. Therefore,
ship No. 1 only needs to arbitrarily find an action that can maximize its benefits in its own
action set. So, the decision-making problem of ship No. 1 is written as follows. At this time,
(a1, a2) represents the maximum value of ship No. 1 and ship No. 2 which are the best
combination of actions.

In summary, the choice of ship collision avoidance strategy based on perfect informa-
tion game is mainly divided into four steps. Firstly, the surrounding environment of the
ship is checked during the voyage. Secondly, the occurrence of collision risk is judged in
the encounter situation. Thirdly, priority action sequence is taken into account. Finally, the
optimal strategy to play the game is calculated according to the action sequence. Specifi-
cally, the ship collision avoidance strategy and flow chart of the perfect information game
are shown in Figure 5.
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Figure 5. Flow chart of ship collision avoidance strategy in the perfect information game.

3.2. Expansion of Unmanned Ship Collision Avoidance Game Tree

The unmanned ship collision avoidance game model constructed in the previous
section is the process of game tree expansion. The game tree designed in this study is
a breadth search tree [23]. The nodes in the state space of the whole game tree can be
divided into three categories: UNSEARCH nodes, OPEN node sets, and CLOSE node sets.
Taking the game expansion tree with game round 3 as an example, node 1 is the head node,
which contains the heading angle, offset, and collision risk of the unmanned ship in the
current encounter situation. Node 1 is expanded to generate sub-nodes 2, 3, and 4. The
three sub-nodes are respected in the new ship state formed by the combination of different
actions taken by the ship in the situation. The aforementioned three nodes (including all
the information in the new state) are initialized, listed in sequence after the head node, and
pointed the parent pointer to node 1. After node 1 is expanded, the next node is sequentially
expanded in the queue, namely node 2. Then, node 2 becomes the current node, and then it
expands based on the space state of node 2. If the collision risk degree in the space state of
node 3 is greater than 0.5, there is a possibility of collision risk if the node in this space state
is expanded. So, node 3 is skipped and node 4 becomes the current node [24]. By analogy,
until the end of the game round, the schematic diagram of the game algorithm is shown in
Figure 6.

 

Figure 6. Game expansion tree of ship A and ship B.
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The process of solving is to find the node with the largest profit in the last layer of
nodes, that is, the node with the smallest sum of the offset of the two ships, in which the
value of the collision risk of the node members must be less than 0.5. After finding the
node with the greatest profit, it can follow its parent pointer for a reverse solution until
the root node of the entire extended game tree is found, and the final optimal solution is
the action combination information contained in the game strategy combination sequence
node of the two ships.

3.3. Collision Risk Fuzzy Credibility Number

After the collision avoidance game, the ship collision risk can be determined by using
the fuzzy credibility number of the ship collision risk [25]. There are many methods to
calculate ship collision risk: fuzzy mathematical calculation method, BP neural network
method, hazard mode immune control algorithm, bacterial foraging algorithm, and so on.
The fuzzy mathematical method has high calculation accuracy. BP neural network method
has strong self-learning ability, small calculation error, but high failure probability and long
calculation time. Therefore, this study uses the fuzzy mathematics method to measure the
ship collision risk.

In the introduced encounter situation, the judgment of whether there is a danger of
collision between ships mainly depends on the distance to the closest point of approach
DCPA, the time to the closest point of approach value between the ships TCPA, the ship
speed ratio between the ships K, the distance between the ships D, the azimuth angle of the
target ship relative to the own ship θ, and other related factors. In this study, the method of
fuzzy mathematics is used to calculate the collision risk index (CRI) [26]. When CRI = 0,
it means that there is no danger of collision between two ships. When CRI = 1, it means
that the collision cannot be avoided and CRI = 1. Let UDCPA, UTCPA, Uθ , UD, UK be the
DCPA, the TCPA, the azimuth angle between two ships, D between the two ships, and the
risk membership degree of the shipping speed ratio K, respectively, and its belong to [0, 1].
Then, it gets:

CRI = a
{

1
2 − 1

2 sin
[

π
d2−d1

(
DCPA − d1+d2

2

)]}
+b

[(
t2−|TCPA |

t2−t1

)2
]

+c
{

1
2

[
cos(θ − 19◦) +

√
440
289 + cos2(θ − 19◦)

]
− 5

17

}
+d

⎡⎣( H1·H2·1.7 cos(θ−19◦)+
√

4.4+2.89 cos2(θ−19◦)−D[
H1·H2·1.7 cos(θ−19◦)+

√
4.4+2.89 cos2(θ−19◦)

]
−(H1·H2·DLA)

)2
⎤⎦

+ e
1+ 2

K
√

K2+1+2K|sin(|ψt−ψo |)|
.

(9)

Among the d1 and d2 are the value of the safety field of the ship safety threshold and
the safe passing distance of the ship, respectively. At the same time a + b + c + d + e = 1.
Then, the aforementioned ship collision time t1 and ship attention time t2 are obtained as:

t1 =

⎧⎪⎪⎨⎪⎪⎩
√

D1
2 − DCPA

2

Vr
, DCPA ≤ D1,

D1 − DCPA
Vr

, DCPA > D1,
(10)

and:

t2 =

√
122 − DCPA

2

Vr
. (11)

It is noteworthy that, in Equations (10) and (11), D1 represents the closest avoidance
removal and D2 represents the distance at which the approaching ship should take avoid-
ance actions. Vr is defined as the velocity vector of the incoming ship relative to the present
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ship. Meanwhile, the schematic diagram of the latest avoidance distance D1 is shown in
Figure 7, where DLA is defined as the latest distance to turn the rudder. Here, the value
of DLA is valued as 12 times the length of the ship for convenience [27]. Especially, on the
conditions that DCPA ≤ d1, 0 ≤ |TCPA| ≤ t1 and D ≤ D1, the value of UDCPA, UD, UTCPA,
and CRI are all obtained as 1. In this situation, the ship is collided. Meanwhile, on the
conditions that d2 < DCPA and D2 ≤ D, it gets the value of UDCPA, UD, and UTCPA which
are all 0, which means there is no danger of collision between the two ships.

Figure 7. Geometric diagram of the latest avoidance distance.

4. Illustrative Example

To explain and verify the aforementioned extensive-form game model, an illustrative
example is given as follows.

4.1. Problem Introduction

On 26 March 2019, the Xinde Maritime Network released news that on the 24th local
time in the port of Fujairah, the United Arab Emirates, a tragic and incredible ship collision
accident occurred. An exceptionally large tanker collided with another LNG carrier. The
accident is a typical conflict scenario where the two ships sail down, as shown in Figure 8.

 
Figure 8. Course conflict scenario between two ships.

In such a situation where the two-sides are clamped, the ships can judge by the
conflict of the routes during the encounter: the ships in the blue route are the right-give-
way vessels, the purple-route vessels under the right-give-way vessels are the left-give-
way vessels, and the vessels located in the right-give-way vessels are the left-give-way
vessels. The pink route ships aforementioned are treated as environmental parameter
variables in the whole game situation. In this collision avoidance game, the action set
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of the ship in the green route is
{

10
◦
, 20

◦
, 30

◦}
, the action set of the ship in the pur-

ple route is
{−30

◦
,−20

◦
,−10

◦}
, and then the action combination of the two ships is{

(10
◦
,−30

◦
), (10

◦
,−20

◦
), . . . , (30

◦
,−20

◦
), (30

◦
,−10

◦
)
}

. The next action combination will
change, and the action set will change. Otherwise, the ship will be greatly offset, which is
not in line with the benefits.

Consider the two-sides clamping scenario combine with the head-on situation, the
target ships on two-sides of my ship approached at the 174

◦ ≤ ΔC ≤ 186
◦

relative course of
my ship. At this point, the ship is in the head-on sides of the two-sides clamping scenario.
The schematic diagram of the head on scenario analysis is shown in Figure 9.

 

Figure 9. Head-on situation of two-sides clipping scenario schematic diagram.

4.2. Simulation Process and Analysis

In this section, two ships, i.e., “Own Ship” and the “Target Ship” are taken into account
in this simulation sample, where the ship length of “Own Ship” is 105 m, the maximum
speed of “Own Ship” is 18 kn, and the gross tonnage of “Own Ship” is 6000 tons, whereas
the ship length of “Target Ship” is 139.8 m, the maximum speed of “Target Ship” is 13.5 kn,
and the gross tonnage of “Target Ship “is 6000 tons.

For convenience, the game round is valued as 3. According to the relevant parameters
of the two ships, the position of them is initialized. According to the 1972 International
Collision Avoidance Regulations, “the two ships should each take a right turn to avoid
collision” in encounter situation, which makes ship A as its own ship. In this case, the
relevant parameter variables are obtained as in Table 1. By using Equation (9), the original
collision risk between the two ships is 0.5911. Then, each ship starts to make a collision
avoidance decision at 0 s [28]. In the first round, the own ship takes a 10◦ right turn to avoid
collision. The target ship takes a 20◦ right turn to avoid collision. At the time node of 300 s in
the second round, the own ship takes a 10◦ right turn to avoid collision, the target ship takes
a 20◦ left turn to avoid collision, and the collision risk is 0.4635. At the time node of 600 s in
the third round, the own ship takes a 10◦ left turn to avoid collision, the target ship takes a
10◦ left turn to avoid collision, and the collision risk is 0.4329. In the third round, because
all ships completed the collision avoidance operation and there is no risk of subsequent
collision, the course is readjusted, and the original course is restored. The simulation results
of the confrontation situation based on the aforementioned are shown in Table 2. The
optimal collision avoidance sequence combination composed of the obtained sub-game
Nash equilibrium is

{
(10

◦
, 20

◦
), (0

◦
, 0
◦
), (0

◦
, 0
◦
)
}

. All collision avoidance behaviors are
consistent with COLREGS.
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Table 1. Related parameter variables.

Ship Parameters

Vr 24 kn t2 1800 s D 6 n mile Uθ 0.9558
ϕr 180◦ DCPA 0 n mile D1 0.9057 n mile UD 0
d1 1.12 n mile TCPA 900 s D2 4.278 n mile UK 0.4143
d2 2.21 n mile UDCPA 1 t1 135.874 s CRI 0.5912
θ 0◦ UTCPA 0.2926

Table 2. Simulation results of encounter situation.

Time/s Vessel Decision
Course
Angle

The Abscissa
(Nautical

Miles)

Y-Coordinate
(Nautical

Miles)

Offset
(Nautical

Miles)

Sum of
Offset

Risk
Collision

Index

initial time
A 0◦ 5 1 0

0 0.5911B 180◦ 5 7 0

0
A Turn right 10 ◦ 10◦ 5 1 0

0 0.5911B Turn right 20◦ 200◦ 5 7 0

300
A Turn right 10◦ 20◦ 5.1736 1.9848 0.1743

0.5216 0.4635B Turn left 10◦ 190◦ 4.658 6.0603 0.3473

600
A Turn left 10◦ 10◦ 5.5157 2.9245 0.5212

1.0423 0.4329B Turn left 10◦ 190◦ 4.4843 5.755 0.5212

900
A Restore the course 10◦ 5.6893 3.9093 0.6953

1.2164 0.4803B Restore the course 180◦ 4.4843 4.0755 0.5212

5. Conclusions

This study proposes a decision-making problem on the collision avoidance of un-
manned ships at sea in the situation of two-sides clamping. This study introduces the deci-
sion process of collision avoidance of unmanned ships at sea based on the extensive-form
game model and verifies the effectiveness of collision avoidance by using fuzzy credibility
numbers. Specifically, the main innovations of this study are concluded as follows.

Firstly, this study proposes a two-sides clamping intelligent collision avoidance strat-
egy for unmanned ships. This strategy can provide real-time collision avoidance measures
for unmanned ships at sea. The example analysis shows that this strategy can effectively
improve the efficiency of collision avoidance of unmanned ships.

Secondly, the simulation experiment is carried out with the navigation simulator
to realize the ship’s extended game collision avoidance decision-making system. The
simulation of two unmanned ships is carried out in the situation where two unmanned
ships in the case of clamping on two-sides. Aiming at the intelligent collision avoidance
problem of unmanned ships in the situation of two-sides, this study establishes a dynamic
collision avoidance game model for ships based on the extensive-form game model. The
unmanned ship can make the optimal collision avoidance action in the situation of being
clamped on two sides.

Thirdly, a novel collision risk fuzzy credibility number is used to calculate the ship col-
lision risk at the comprehensive fuzzy assessment based on the same time. The evaluation
indicators include DCPA, TCPA, the distance between the two ships, the relative orientation
between the two ships, the speed ratio of the two ships, and other factors.

Moreover, by using fuzzy credibility numbers, the decision-making efficiency on
collision avoidance of ships in uncertain environments can be improved. In future work,
the fuzzy credibility numbers can be considered in more decision-making situations in
shipping management. Furthermore, the Fermatean fuzzy sets [29] is applied to the
collision avoidance process of unmanned ships. Considering the multiple fuzzy factors that
affect the collision avoidance of unmanned ships at sea, this study combines Fermatean
fuzzy sets and links it with extensive-form game to provide support for the intelligent
collision avoidance of unmanned ships at sea.
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Abstract: In this article, we have proposed a multi-attribute group decision making (MAGDM) with a
new scenario or new condition named Chaotic MAGDM, in which not only the weights of the decision
makers (DMs) and the weights of the decision attributes are considered, but also the familiarity of
the DMs with the attributes are considered. Then we applied the weighted neutrosophic fuzzy
soft rough set theory to Chaotic MAGDM and proposed a new algorithm for MAGDM. Moreover,
we provide a case study to demonstrate the application of the algorithm. Our contributions to the
literature are as follows: (1) familiarity is rubbed into MAGDM for the first time in the context of
neutrosophic fuzzy soft rough sets; (2) a new MAGDM model based on neutrosophic fuzzy soft
rough sets has been designed; (3) a sorting/ranking algorithm based on a neutrosophic fuzzy soft
rough set is constructed.

Keywords: multi-attribute group decision making; fuzzy soft rough sets; neutrosophic fuzzy soft
rough sets
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1. Introduction

Multi-attribute decision making (MADM) is an important branch of modern decision
theory and methodology with a wide range of practical contexts, such as human resource
performance assessment, economic performance assessment, political election assessment,
military performance assessment, etc. However, due to the limitations of human knowledge
and the specialization of professions, as well as the diversity and complexity of real-world
decision making, a single decision maker (DM) cannot make the optimal option. As a
result, in most MADMs, decision makers (DMs) from diverse sectors, areas of expertise,
or knowledge backgrounds are frequently required to collaborate in order to make more
scientifically sound conclusions. That is, multi-attribute group decision making (MAGDM).
In addition, there is a lot of uncertainty and ambiguity in practical MAGDM. Therefore, the
study of MAGDM under fuzzy scenarios has become a popular research direction in recent
years. Considering that different DMs have different professional backgrounds, areas of
knowledge, expertise, etc. Therefore, in a MAGDM, how to engage DMs to evaluate the
attributes of the alternatives in their areas of expertise and familiarity is an issue that must
be considered in the decision making. In the existing literature or research results, there
are two common approaches to address this concern. One is to assign weights to DMs, the
other is to group DMs according to certain rules.

• Assigning weights to DMs.

Liu et al. [1] proposed a variable weighting approach by considering DMs and at-
tributes weights together for MAGDM problems under interval-valued intuitionistic fuzzy
sets. Yu et al. [2] developed a novel consensus reaching process for MAGDM based on
hesitant fuzzy linguistic term sets (HFLTSs) which not only can deal with multi-granular
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HFLTSs, but also considers the weight vectors of DMs and attributes in the proposed
consensus model. Liu et al. [1] presented a hybrid approach based on variable weights for
multi-attribute group decision making, and so on [3–12].

• Grouping DMs according to certain rules.

For example, Su et al. [13] proposed a MAGDM approach for evaluation and self-
confidence in online learning platforms based on probabilistic linguistic term sets.
Sun et al. [14] provided diverse fuzzy multi-branch rough sets based on binary relations
for MAGDM. Sun et al. [15] analyzed the diversified MAGDM problem with the personal
preference parameters, etc. [16–19].

2. Comparison and Motivation

To date, research on MAGDM in fuzzy scenarios has produced a very large number
of theoretical and practical results. All these studies have investigated the relationship
between DM and attributes from different perspectives either by assigning weights or by
grouping; however, the following issues still need to be further explored.

• Most of the existing studies are empowered weight according to the level of DMs. In
other words, DMs with high weight will have a higher proportion of the evaluation of
all attributes, even if it is an attribute that he or she is not familiar with.

• The scope of DMs’ expertise is ambiguous, so in practice it is difficult to group DMs
according to their expertise only. For example, if each DM only examines attributes
that relate to their own expertise, who should evaluate these combined attributes that
encompass a variety of expertise?

• Grouping DMs based only on their professional background would inevitably lose
many very valuable evaluations. Because most DMs have a great deal of practical
experience, they are well-placed to evaluate attributes even in non-specialist areas.

• Most studies did not consider the relationship between DMs and decision attributes.
That is, the familiarity of DMs with the decision attributes.

The following situations are often encountered in decision making. For example, in
a large-scale fire rescue, an important attribute of the rescue plan is the ability to quickly
rescue trapped people. This attribute is not only related to the cause of the fire, but also to
the structure of the building, construction materials, etc. Therefore, both fire experts and
building experts should be important evaluators of this attribute. Hence, it is obviously
unreasonable to have only one of the expert group (e.g., the fire expert group) to evaluate
it. In other words, simply grouping experts would result in a lack of many valuable
evaluations. Furthermore, fires are related to weather conditions, and a meteorologist is a
very well-known expert whose evaluation of this property will be less important if he or
she is not familiar with the fire scene. On the contrary, the person who built the building,
even if he is just a worker, will have a very important evaluation because he is more familiar
with the structure of the building at the fire site.

This suggests that the weights of DM’s evaluations are related to familiarity with the
attributes, rather than just considering the weights of the DM. In other words, in MAGDM,
not only the weight of the DM and the weight of the attribute are considered, but also the
familiarity of the DM with the attributes.

There will be a lot of uncertainty and fuzziness in the actual MAGDM problem, and
also the familiarity of the DM with the decision attributes will change in different scenarios.
Therefore, in the absence of an explicit method to determine the familiarity between DM
and decision attributes, using fuzzy theory to describe the familiarity between DM and
attributes is a good choice. In order to allow DMs to focus their attention on evaluation
scoring without considering the limitations of scoring values, we chose NFN (Neutrosophic
Fuzzy Number) for evaluation scoring.

In summary, we have proposed a MAGDM with a new scenario or new condition
in which not only the weights of the DMs and the weights of the decision attributes are
considered, but also the familiarity of the DMs with the attributes needs to be considered.
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That is Chaotic MAGDM (CMAGDM) which was proposed by Zhang et al. [20]. Then
we applied neutrosophic fuzzy soft rough set theory to CMAGDM and proposed a new
approach for CMAGDM. Our contributions are mainly as follows.

• Familiarity is rubbed into MAGDM for the first time in the context of neutrosophic
fuzzy soft rough sets;

• A new Chaotic MAGDM model based on neutrosophic fuzzy soft rough sets has been
designed;

• A sorting/ranking algorithm based on a neutrosophic fuzzy soft rough set is con-
structed.

The remainder of this paper is structured as follows: Section 3 briefly introduces the
basic concepts and framework of MAGDM, provides a brief overview of fuzzy theory and
several concepts in fuzzy theory. In Section 4, combining the neutrosophic fuzzy soft rough
set and CMAGDM, we provide a new Chaotic MAGDM model based on neutrosophic
fuzzy soft rough sets. A case study and the numerical analysis of the proposed model is
illustrated in Section 5. At last, conclusions are given in Section 6.

3. Theoretical Background

In this section, first, we will review the basic concepts and framework of MAGDM.
Second, we will provide a brief overview of fuzzy theory. Finally, we will review several
important concepts in fuzzy theory, as well as their basic rules and properties.

3.1. The Basic Concepts and Framework of MAGDM

The problem of selecting the best answer from a list of potential solutions, based on a
set of attributes or criteria, can be summarized as a decision problem. In real-world decision
making, there will always be a group of DMs. The corresponding MADM translates into
multi-attribute group decision making (MAGDM). The problem of MAGDM is represented
by the following notation [20]:

• A = {a1, a2, . . . , am} is the set of considered alternatives;
• C = {c1, c2, . . . , cn} is the set of attribute which are used for evaluating of alternatives;
• E = {e1, e2, . . . , el} is the set of the DMs involved in the decision process;
• w = (w1, w2, · · · , wn)T is the weight vector of the attribute (w � 0, ∑n

j=1 wj = 1);

• τ = (τ1, τ2, · · · , τl)
T is the weight vector of the DMs (τ � 0, ∑l

k=1 τk = 1);
• xk

ij is the kth DM evaluation of the ith alternative against to jth attribute
(k = 1, 2, · · · , l, i = 1, 2, · · · , m, j = 1, 2, · · · , n);

• X = {X(ek)|ek ∈ E} is the decision matrix set, and X(ek) is the decision matrix of the
kth DM:

c1 c2 · · · cn

X(ek) =

a1
a2
...

am

⎛⎜⎜⎜⎝
xk

11
xk

21
...

xk
m1

xk
12

xk
22
...

xk
m2

· · ·
· · ·
. . .
· · ·

xk
1n

xk
2n
...

xk
mn

⎞⎟⎟⎠ k = 1, 2, · · · , l.
(1)

In order to describe MAGDM more clearly and concisely, a MAGDM problem can
usually be represented by a sextuple 〈A, C, E, w, τ, X〉, that is:

MAGDM = 〈A, C, E, w, τ, X〉. (2)

3.2. A Brief Overview of Fuzzy Theory

In order to better combine uncertainty in MAGDM with fuzzy theory, we will make a
brief review of the development of fuzzy set (FS).

Zadeh [21] (1965) first proposed fuzzy theory. It breaks through the limitations of classical
set theory by introducing a membership function to represent uncertainty. Atanassov [22]
(1983) suggested a generalization of fuzzy sets making the degrees of membership (μ) and
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non-membership (ν) intervene to describe the vinculation of an element to a set, and the
sum of these degrees is less or equal to 1 (μ + ν ≤ 1), that is, an intuitionistic fuzzy set (IFS).
However, an IFS fails when the sum of these degrees is more then 1. So, Yager [23] (2016)
developed the concept of q-rung orthopair fuzzy sets (q-ROFS) and considered an efficient
method to explain the vagueness of MADM problems. In q-ROFS, the sum of two degrees
can be more then 1, it just needs to satisfy the condition μq + ηq ≤ 1, (q ≥ 1). It is clear that,
for q = 1, it is an IFS, it is a Pythagorean fuzzy set (Yager and Abbasov [24] 2013) (PyFS) if
q = 2, and it is a Fermatean fuzzy set (Senapati and Yager [25] 2020) (FFS) if q = 3, thus,
q-ROFS generalize the IFS, PyFS, FFS. When we face human opinions involving more types
of answers: yes, abstain, no, or refusal. Voting can be a good example of such a situation
as the human voters may be divided into four group of those who : vote for, abstain, vote
against, or refuse to vote. In order to solve this problem, Cuong and Kreinovich [26,27] in
2013 introduced a new notion of picture fuzzy set (PFS), which are directly extensions of FS
and of intuitionistic fuzzy set (IFS). In PFS, the following three dimensions are considered
simultaneously: degree of positive membership (μ), degree of neutral membership (η), and
degree of negative membership (ν), and satisfy the following condition μ + η + ν ≤ 1. The
structure of PFS is of great importance as it has the ability to deal with human opinion
efficiently. It is observed that the constraint on PFS makes us unable to assign values
by own choice. In simple words, one can say that the domain of PFS is restricted. The
concept of spherical fuzzy set (SFS) and T-spherical fuzzy set (T-SFS) is introduced as a
generalization of FS, IFS, and PFS by Mahmood et al. [28] in 2019. In T-SFS, the sum of
three degrees can more then 1, instead, need to satisfy condition μt + ηt + νt ≤ 1, (t ≥ 1).
Obviously, when t = 1, T-SFS degenerates to PFS, and if t = 2, T-SFS is a SFS. Neutrosophic
set (NS) was introduced by Smarandache [29]. In NS, there is a need to satisfy the condition
μA(x) + ηA(x) + νA(x) ≤ 3. Although there are many other fuzzy sets, such as fuzzy
multi-set (FMS) [30], interval-valued fuzzy set (IVFS) [31], hesitant fuzzy set (HFS) [32],
hybrid fuzzy set, and so on. These theories play a very important role in practice and theory.
However, due to limited space and the focus of our article, we will not repeat them here.

According to the above review and analysis of FSs, we can clearly draw the relationship
between different FSs, as shown in Figure 1. There are two ideas for the promotion of the
FS, one is from the dimension of the variable, the other is from the domain of the variable.

Figure 1. Dimension-Based Fuzzy Set Classification [21–26,28,29].

Researchers have expanded the fuzzy set from the perspective of variable dimension
and its domain. These works not only played a very important role in the development of
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fuzzy set theory, but also played a very important role in practical applications. However,
these ideas for generalizing fuzzy sets only consider the dimension and domain of fuzzy
variables and do not consider the ambiguity of the attribute. Here we still use [26]’s
voting example to illustrate our opinions. Suppose there are two candidates p1 and p2
participating in the campaign. A voter is very familiar with p1, but only knows about p2
based on his campaign speech. Now, the voter evaluates the two candidates using the
PFS method and receives the same score. Clearly, it is unreasonable to consider these two
evaluations as identical due to the difference in familiarity with the candidates. Phenomena
such as the above will be frequently encountered in MAGDM problems. Fortunately, in
addition to fuzzy sets, there are soft sets [33] and rough sets [34] that can describe unclear
and fuzzy relations. Especially, the combination of these uncertainty theories can describe
more details in MAGDM. These include fuzzy soft set (FSS) [35], fuzzy soft rough set (FSRS),
picture fuzzy soft rough set (PFSRF), spherical fuzzy soft rough set (SFSRS), T-spherical
fuzzy soft rough set (T-SFSRS) [36] and so on.

3.3. Concepts of Fuzzy Set

Classes and sets in the traditional mathematical sense do not include things such as
“the class of all real numbers which are significantly bigger than 1,” “the class of attractive
ladies,” or “the class of tall men.” However, it is still true that such loosely defined “classes”
are crucial to human thought. In essence, rather than the existence of random variables, the
source of imprecision is the absence of well specified criteria for class membership. Zadeh [21]
explored a concept which may be of use in dealing with “classes” of the type cited above.
That is the fuzzy set (FS), a “class” with a continuum of grades of membership. It is defined
as follows:

Definition 1 (Zadeh [21]). A fuzzy set A on a universe X is an object of the form

A = {(x, μA(x))|x ∈ X}, (3)

where μA(x) ∈ [0, 1] is called the “degree of membership of x in A”. The variable μA(x) is called a
Fuzzy Number (FN).

Intuitionistic fuzzy set (IFS) was developed by Atanassov [22] and is suitable for
situations in which there is uncertainty about the degree of membership of an element in a
defined set: each element in an IFS has a membership degree and a nonmembership degree
between 0 and 1 [37].

Definition 2 (Atanassov [22]). A intuitionistic fuzzy set A on a universe X is an object of
the form

A = {(x, μA(x), νA(x))|x ∈ X}, (4)

where μA(x) ∈ [0, 1] is called the “degree of membership of x in A”, νA(x) ∈ [0, 1] is called the
“degree of non-membership of x in A”, and where μA(x) and νA(x) satisfy the following condition:

∀x ∈ X, μA(x) + νA(x) ≤ 1.

The pair (μA(x), νA(x)) is called an Intuitionistic Fuzzy Number (IFN).

When we face human opinions involving more types of answers such as yes, abstain,
and refusal. Cuong and Kreinovich [26] introduced the concept of picture fuzzy set (PFS),
and Mahmood et al. [28] provided the concept of T-spherical fuzzy set (T-SFS), both of
which are direct extensions of the fuzzy set (FS) and the intuitonistic fuzzy set (IFS).

Definition 3 (Cuong and Kreinovich [26]). A picture fuzzy set A on a universe X is an object
of the form

A = {(x, μA(x), ηA(x), νA(x))|x ∈ X} (5)
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where μA(x) ∈ [0, 1] is called the “degree of positive membership of x in A”, ηA(x) ∈ [0, 1] is called
the “degree of neutral membership of x in A” and νA(x) ∈ [0, 1] is called the “degree of negative
membership of x in A”, and where μA(x), ηA(x) and νA(x) satisfy the following condition:

∀x ∈ X, μA(x) + ηA(x) + νA(x) ≤ 1.

Then for x ∈ X, let πA(x) = 1− (μA(x) + ηA(x) + νA(x)), πA(x) could be called the
“degree of refusal membership of x in A”. Let PFS(X) denote the set of all the picture fuzzy sets on a
universe X. A triplet (μA(x), ηA(x), νA(x)) can be referred to as a Picture Fuzzy Number (PFN).

Definition 4 (Mahmood et al. [28]). A T-spherical fuzzy set A on a universe X is an object of
the form

A = {(x, μA(x), ηA(x), νA(x))|x ∈ X} (6)

where μA(x) ∈ [0, 1] is called the “degree of positive membership of x in A”, ηA(x) ∈ [0, 1] is called
the “degree of neutral membership of x in A”, and νA(x) ∈ [0, 1] is called the “degree of negative
membership of x in A”, and where μA(x), ηA(x) and νA(x) satisfy the following condition:

∀x ∈ X, μt
A
(x) + ηt

A
(x) + νt

A
(x) ≤ 1.

Then for x ∈ X, let πA(x) = 1− (μt
A
(x) + ηt

A
(x) + νt

A
(x)), πA(x) could be called the

“degree of refusal membership of x in A”. Let T-SFS(X) denote the set of all the T-spherical fuzzy
sets (T-SFS)on a universe X. A triplet (μA(x), ηA(x), νA(x)) can be identified as a spherical
fuzzy number (T-SFN). If t = 2 the T-spherical fuzzy set is called spherical fuzzy set (SFS), and
corresponding SFS(X) denote the set of all the spherical fuzzy sets on a universe X. A triplet
(μA(x), ηA(x), νA(x)) can be referred to as a spherical fuzzy number (SFN).

Smarandache [29] generalized intuitionistic fuzzy sets (IFSs) to neutrosophic sets
(NSs). A neutrosophic set (NS) contains three parameters: truth membership function,
indeterminacy membership function, and falsity membership function. Unlike the PFS and
T-SFS, the NS has a broader definition domain, giving DMs more options for evaluating
scores in MAGDM.

Definition 5 (Smarandache [29]). A neutrosophic set A on a universe X is an object of the form

A = {(x, μA(x), ηA(x), νA(x))|x ∈ X} (7)

where μA(x) ∈ [0, 1] is called the “truth membership function of x in A”, ηA(x) ∈ [0, 1] is
called the “indeterminacy membership function of x in A” and νA(x) ∈ [0, 1] is called the “falsity
membership function of x in A”, and where μA(x), ηA(x) and νA(x) satisfy the following condition:

∀x ∈ X, μA(x) + ηA(x) + νA(x) ≤ 3.

A triplet (μA(x), ηA(x), νA(x)) can be referred to as a Neutrosophic Fuzzy Number (NFN).

By comparing the above concepts, it is easy to conclude that NS has a broader field
of definition, thus allowing the DM to focus more on scoring the options without having
to think too much about the constraints that need to be met for the evaluation scores. It is
with this in mind that the Neutrosophic Fuzzy Number (NSN) will be chosen for scoring
in this paper.

3.4. The Concept of Rough Set

Pawlak [34] introduced the concept of rough sets (RS) in 1982, which can handle
uncertainty, imprecision, and ambiguity in sets. It is defined as follows.
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Definition 6 (Pawlak [34]). Let R be an equivalence relation on the universe X (X �= ∅), (X, R)
be a Pawlak approximation space. A subset A ⊆ X is called definable if R(x) = R(x); in the
opposite case, i.e., if R(x)− R(x) �= ∅, A is said to be a rough set, where the two operations are
defined as:

R(x) = {x ∈ X|[x]R ⊆ A} (8)

R(x) = {x ∈ X|[x]R ∩ A �= ∅} (9)

As an illustration, let us consider the following example (Example 1).

Example 1. Table 1 is a information system of RS. The universe X = {ai|i = 1, 2, · · · , 8} and
A = {a2, a3, a4, a5, a7}. Suppose the equivalence relation R is that the attributes c2 and c4 have
the same value, then [X]R = {{a1}, {a2, a4, a6}, {a3, a7}, {a5}, {a8}}. Thus, we can obtain the
following results: R(A) = {a3, a5, a7}, R(A) = {a2, a3, a4, a5, a6, a7}. Since R(A)− R(A) �= ∅,
therefore, A is a rough set.

Table 1. A information system of rough set.

c1 c2 c3 c4 c5

a1 0.50 0.75 0.25 0.25 0.50
a2 0.50 0.25 0.25 0.75 0.50
a3 0.75 0.25 0.25 0.50 0.25
a4 0.25 0.25 0.50 0.75 0.50
a5 0.75 0.50 0.25 0.75 0.50
a6 0.25 0.25 0.50 0.75 0.50
a7 0.75 0.25 0.25 0.50 0.25
a8 0.25 0.50 0.50 0.50 0.50

3.5. The Concept of Soft Set

Molodtsov [33] proposed in 1999 a mathematical approach to dealing with uncertain
information with the core idea of emphasizing the study of uncertainty and ambiguity of
information from a parametric perspective, which is known as soft set (SS) theory. The
concept of SS is as follows.

Definition 7 (Molodtsov [33]). Let X be the universe. C is a set of parameters (attributes) about
objects in X, (X, C) is called a soft space, and C ⊆ C, ϕ is a mapping given by ϕ : C → 2X; here
2X is the power set of X, then a pair (ϕ, C) is named a soft set (SS) over the universe X.

To illustrate the point, let us consider the following example (Example 2).

Example 2. Suppose Table 2 is a information system of soft set. A = {a1, a2, a3, a4} is a universe
of soft set, C = {c1, c2, c3, c4, c5} is the set of parameters.
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Table 2. A information system of soft set.

c1 c2 c3 c4 c5

a1 1 0 1 0 0
a2 0 1 1 1 1
a3 1 0 1 1 0
a4 0 1 0 1 1

According to the Definition of soft set, we could easily come to the results as follows:

ϕ(c1) = {a1, a3} ; ϕ(c2) = {a2, a4} ; ϕ(c3) = {a1, a2, a3};

ϕ(c4) = {a2, a3, a4} ; ϕ(c5) = {a2, a4};

Take ϕ(c3) as an example, it means that the objects with attribute c3 are a1, a2 and a3.

3.6. The Concept of Fuzzy Soft Set

Maji et al. [35] combined the theory of fuzzy sets and soft sets in 2001 and proposed the
definition of fuzzy soft sets. A fuzzy soft set can essentially be seen as a parametric fuzzy
set for a given universe, which is a representation model that combines parameters and
fuzzy information together. It is no longer restricted to the 0 and 1 values of the parameters
in the soft set, but is a more flexible form of parameter selection that can be used in a wide
range of uncertainty areas [15]. The concept is as follows.

Definition 8 (Maji et al. [35]). Let X be a universal set, C be a collection of parameters regarding
X, and FS(X) represents the collection of all FSs over the universe X. A pair (ϕ, C) is said to ba
a Fuzzy Soft Set (FSS) over X, where C ⊆ C and ϕ : C → FS(X), where FS(X) represents the
collection of all the fuzzy sets (FSs) on a universe X. For every x ∈ X, the FSS can be defined as
follows:

S = {(x, ϕ(x))|x ∈ C, ϕ(x) ∈ FS(X)} (10)

Particularly, when |C| = 1, the fuzzy soft set degenerates to a fuzzy set.

Specially, when the fuzzy set is PFS, the corresponding concept has the following
form:

Definition 9 (Khan et al. [38]). Let X be a universal set, C be a collection of parameters (attributes)
regarding to X and PFS(X) represents the collection of all picture fuzzy set over the universe
X. A pair (ϕ, C) is said to ba a Picture Fuzzy Soft Set (PFSS) over X, where C ⊆ C and
ϕ : C → PFS(X). For every x ∈ X, the PFSS can be defined as follows:

S = {(x, ϕ(x))|x ∈ C, ϕ(x) ∈ PFS(X)} (11)

Obviously, when |C| = 1, the picture fuzzy soft set degenerates to a picture fuzzy set.

3.7. The Concept of Fuzzy Soft Rough Set

Combining fuzzy sets, soft sets, and rough sets can lead to a more flexible method
of describing parameters, namely fuzzy soft rough sets. If the fuzzy set is a picture fuzzy
set, the corresponding fuzzy soft rough set is called a picture fuzzy soft rough set and is
defined as follows.
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Definition 10 (Muahmmad and Martino [36]). Let X be the universe. C be a set of parameters
(attributes) about objects in X, PFS{X} be the collection of all picture fuzzy soft sets over the
universe X, R be a picture fuzzy soft set relation from universe X to C (That is ∀c ∈ C ⊆ C,R(c) ∈
PFSS(X)), and ψ be a mapping given by ψ : C → PFSS{X}. Then (ψ, C,R) is known as a
Picture Fuzzy Soft Rough Approximation Space. For every F ∈ PFS(C), the lower and upper
approximation of F can be defined as follows:

R(F ) = {(x, μ(x), η(x), ν(x))|x ∈ X} (12)

R(F ) = {(x, μ(x), η(x), ν(x))|x ∈ X} (13)

where

μ(x) = ∧c∈C(μR
(x, c) ∧ μF (c)), (14)

η(x) = ∨c∈C(ηR
(x, c) ∨ ηF (c)), (15)

ν(x) = ∨c∈C(νR
(x, c) ∨ νF (c)). (16)

and

μ(x) = ∨c∈C(μR
(x, c) ∨ μF (c)), (17)

η(x) = ∧c∈C(ηR
(x, c) ∧ ηF (c)), (18)

ν(x) = ∧c∈C(νR
(x, c) ∧ νF (c)). (19)

Here, 0 ≤ μ(x) + η(x) + ν(x) ≤ 1, 0 ≤ μ(x) + η(x) + ν(x) ≤ 1
Then

R(F ) = (R(F ),R(F )) = (x, (μ(x), μ(x)), (η(x), η(x)), (ν(x), ν(x))). (20)

The score function can be defined as:

S(R(F )) = μ(x) + μ(x)− η(x)− η(x)− ν(x)− ν(x). (21)

Example 3. In a (MADM), suppose the alternatives set is A = {a1, a2, a3} and the attributes set
is C = {c1, c2, c3, c4}, as presented in Table 3. Let F be a PFS over C as follows.

F = {(c1, 0.30, 0.30, 0.20), (c2, 0.50, 0.30, 0.10), (c3, 0.70, 0.20, 0.10), (c4, 0.20, 0.60, 0.10)}

Table 3. A information system of PFS.

c1 c2 c3 c4

(0.30, 0.30, 0.20) (0.50, 0.30, 0.10) (0.70, 0.20, 0.10) (0.20, 0.60, 0.10)

a1 (0.30, 0.20, 0.40) (0.10, 0.20, 0.50) (0.10, 0.40, 0.20) (0.20, 0.50, 0.10)
a2 (0.50, 0.20, 0.10) (0.80, 0.10, 0.00) (0.30, 0.40, 0.20) (0.20, 0.60, 0.10)
a3 (0.60, 0.10, 0.20) (0.50, 0.10, 0.30) (0.50, 0.20, 0.20) (0.40, 0.00, 0.10)

Then, we can calculate the corresponding lower and upper approximation of F as
follows.

R(F ) = {(a1, 0.10, 0.60, 0.50), (a2, 0.20, 0.60, 0.20), (a3, 0.20, 0.60, 0.30)};

R(F ) = {(a1, 0.70, 0.20, 0.10), (a2, 0.80, 0.10, 0.00), (a3, 0.70, 0.00, 0.10)}.

Finally, according to Equation (21) we obtain:

S(a1) = −0.6,S(a2) = 0.1,S(a3) = −0.1.

Obviously, S(a2) > S(a3) > S(a1). Therefore, it follows that: a2 � a3 � a1.
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4. A Novel Neutrosophic FSRS-Based Method for Chaotic MAGDM

4.1. Chaotic Multi-Attribute Group Decision Making

Zhang et al. [20] proposed the concept of Chaotic MAGDM, in which not only the
weights of DMs and decision attributes are considered, but also the familiarity of DMs with
the decision attributes. With the crossover factor of familiarity, Chaotic MAGDM is brought
closer to the real decision problem. The relevant concepts are as follows.

Definition 11 (Zhang et al. [20]). A MAGDM is called Chaotic MAGDM if there exists at least
one decision attribute such that at least two DMs have the different familiarity with it.

For convenience, the symbols of the variables used in Chaotic MAGDM are summa-
rized as follows: [20]:

• A = {a1, a2, . . . , am} is the set of considered alternatives;

• C = {c1, c2, . . . , cn} is the set of attribute which are used for evaluating of alternatives;

• E = {e1, e2, . . . , el} is the set of the DMs involved in the decision process;

• w = (w1, w2, · · · , wn)T is the weight vector of the attribute (w � 0, ∑n
j=1 wj = 1);

• τ = (τ1, τ2, · · · , τl)
T is the weight vector of the DMs (τ � 0, ∑l

k=1 τk = 1);

• xk
ij is the kth DM evaluation of the ith alternative against to jth attribute

(k = 1, 2, · · · , l; i = 1, 2, · · · , m; j = 1, 2, · · · , n);

• X = {Xk|k = 1, 2, · · · , l} is the decision matrix set, and Xk is the decision matrix of

the kth DM. As shown in Equation (1);

• f k
j is the familiarity of the kth DM against to the jth attribute (k = 1, 2, · · · , l; j =

1, 2, · · · , n);

• F = {F1,F2, · · · ,Fl} is the vector of the familiarity of DMs with attributes, where

Fk is the familiarity of kth DM.

Since we consider the relationship between DMs and decision attributes in Chaotic
MAGDM, we added the familiarity variable F to the MAGDM. That is using septuple
〈A, C, E, w, τ, X,F〉 to represent the Chaotic MAGDM. As shown in Equation (22)

ChaoticMAGDM = 〈A, C, E, w, τ, X,F〉. (22)

Clearly, the diversified multi-attribute group decision making proposed by Sun et al. [14]
is a special case of chaotic MAGDM. One of the core ideas of diversified MAGDM is that by
establishing a pluralistic binary fuzzy relationship between the set of evaluation attribute
indicators and different decision makers.

In order to describe a Chaotic MAGDM more visually, it can be represented by a
information form. As shown in Table 4.

116



Mathematics 2023, 11, 1034

Table 4. The Chaotic MAGDM Information Form.

c1(w1) c2(w2) · · · cn(wn)

e1(τ1) f 1
1 f 1

2 · · · f 1
n

a1 x1
11 x1

12 · · · x1
1n

a2 x1
21 x1

22 · · · x1
2n

...
...

...
. . .

...

am x1
m1 x1

m2 · · · x1
mn

...
...

...
...

...

ei(τi) f i
1 f i

2 · · · f i
n

a1 xi
11 xi

12 · · · xi
1n

a2 xi
21 xi

22 · · · xi
2n

...
...

...
. . .

...

am xi
m1 xi

m2 · · · xi
mn

...
...

...
...

...

el(τl) f l
1 f l

2 · · · f l
n

a1 xl
11 xl

12 · · · xl
1n

a2 xl
21 xl

22 · · · xl
2n

...
...

...
. . .

...

am xl
m1 xl

m2 · · · xl
mn

4.2. Weighted Neutrosophic Fuzzy Soft Rough Sets

In the Definition 10 proposed by Muahmmad and Martino. If, for example, in MADM,
F denotes the familiarity of the DMs against to the attributes rather then the values of
evaluation, then the defining functions of the upper and lower bounds of R(F ) must be
changed accordingly. So, we give the new definition as follows:

Definition 12. Let X be the universe. C be a set of parameters (attributes) about objects in X,
NFS{X} be the collection of all neutrosophic fuzzy soft sets over the universe X, R be a neutrosophic
fuzzy soft set relation from universe X to C (That is ∀c ∈ C ⊆ C,R(c) ∈ NFSS(X)), ψ be a
mapping given by ψ : C → NFSS{X}. Then (ψ, C,R) is known as a Neutrosophic Fuzzy Soft
Rough Approximation Space. For every F ∈ NFS(C), the lower and upper approximation of F
can be defined as follows:

R(F ) = {(x, μ(x), η(x), ν(x))|x ∈ X} (23)

R(F ) = {(x, μ(x), η(x), ν(x))|x ∈ X} (24)

where

μ(x) = min
c∈C

(μ
R
(x, c) ·min(μF (c), (2− ηF (c)− νF (c)))), (25)

η(x) = max
c∈C

(η
R
(x, c) ·max(ηF (c), (2− μF (c)− νF (c)))), (26)

ν(x) = max
c∈C

(ν
R
(x, c) ·max(νF (c), (2− μF (c)− ηF (c)))). (27)
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and

μ(x) = max
c∈C

(μ
R
(x, c) ·max(μF (c), (2− ηF (c)− νF (c)))), (28)

η(x) = min
c∈C

(η
R
(x, c) ·min(ηF (c), (2− μF (c)− νF (c)))), (29)

ν(x) = min
c∈C

(ν
R
(x, c) ·min(νF (c), (2− μF (c)− ηF (c)))). (30)

where, 0 ≤ μ(x) + η(x) + ν(x) ≤ 3, 0 ≤ μ(x) + η(x) + ν(x) ≤ 3

Then,

R(F ) = (R(F ),R(F )) (31)

= (x, (μ(x), μ(x)), (η(x), η(x)), (ν(x), ν(x))) (32)

The score function is as following:

S(R(F )) = μ(x) + μ(x)− η(x)− η(x)− ν(x)− ν(x). (33)

Example 4. Still analyzing the data in Example 3, under the new Definition 12, the corresponding
results are:

R(F ) = {(a1, 0.04, 0.85, 0.60), (a2, 0.04, 1.02, 0.22), (a3, 0.08, 0.24, 0.36)};

R(F ) = {(a1, 0.45, 0.06, 0.01), (a2, 1.28, 0.03, 0.00), (a3, 0.09, 0.00, 0.01)}.

Furthermore, S(a1) = −1.03,S(a2) = 0.05,S(a3) = 0.37, then S(a3) > S(a2) > S(a1).
So, the final sorting is a3 � a2 � a1.

If different attributes c (c ∈ C) have different weights, then the neutrosophic fuzzy
soft rough set will become a weighted neutrosophic fuzzy soft rough set.

Definition 13. Let X be the universe. C be a set of parameters (attributes) with the weight wC about
objects in X, NFS{X} be the collection of all neutrosophic fuzzy soft sets over the universe X, R be a
neutrosophic fuzzy soft set relation from universe X to C (That is ∀c ∈ C ⊆ C,R(c) ∈ NFSS(X)),
and ψ be a mapping given by ψ : C → NFSS{X}. Then (ψ, C,R, wC ) is known as a weighted
neutrosophic Fuzzy Soft Rough Approximation Space. For every F ∈NFS(C), the lower and upper
approximation of F can be defined as follows:

R(F ) = {(x, μ(x), η(x), ν(x))|x ∈ X} (34)

R(F ) = {(x, μ(x), η(x), ν(x))|x ∈ X} (35)

where

μ(x) = min
c∈C

(wc · μR
(x, c) ·min(μF (c), (2− ηF (c)− νF (c)))), (36)

η(x) = max
c∈C

(wc · ηR
(x, c) ·max(ηF (c), (2− μF (c)− νF (c)))), (37)

ν(x) = max
c∈C

(wc · νR
(x, c) ·max(νF (c), (2− μF (c)− ηF (c)))). (38)
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and

μ(x) = max
c∈C

(wc · μR
(x, c) ·max(μF (c), (2− ηF (c)− νF (c)))), (39)

η(x) = min
c∈C

(wc · ηR
(x, c) ·min(ηF (c), (2− μF (c)− νF (c)))), (40)

ν(x) = min
c∈C

(wc · νR
(x, c) ·min(νF (c), (2− μF (c)− ηF (c)))). (41)

here, 0 ≤ μ(x) + η(x) + ν(x) ≤ 3, 0 ≤ μ(x) + η(x) + ν(x) ≤ 3

Then,

R(F ) = (R(F ),R(F )) (42)

= (x, (μ(x), μ(x)), (η(x), η(x)), (ν(x), ν(x))). (43)

The evaluation function is

S(R(F )) = μ(x) + μ(x)− η(x)− η(x)− ν(x)− ν(x). (44)

Considering that as the parameters η, η, ν and ν increase, the value of the evaluation
function becomes very close to zero or even negative, this does not facilitate numerical
calculations and comparisons. Therefore, the evaluation function needs to be improved
accordingly. The new evaluation function is as following:

Definition 14. The score function is as following:

S(R(F )) = μ(x) + μ(x) + (2− η(x)− ν(x)) + (2− η(x)− ν(x)) (45)

= 4 + μ(x) + μ(x)− η(x)− η(x)− ν(x)− ν(x). (46)

Example 5. Still analyzing the data in Example 3 with the weight vector w = {0.50, 0.25, 0.15, 0.10}T,
under the new Definition 13 and Equation (14), the corresponding upper and lower bounds and
score functions are as follows.

R(F ) = {(a1, 0.0040, 0.1500, 0.2800), (a2, 0.0040, 0.1500, 0.0700), (a3, 0.0080, 0.0750, 0.1400)};

R(F ) = {(a1, 0.2250, 0.0120, 0.0010), (a2, 0.3750, 0.0075, 0.0000), (a3, 0.4500, 0.0000, 0.0010)};

S(a1) = 3.7860;

S(a2) = 4.1515;

S(a3) = 4.2420,

Obviously, S(a3) > S(a2) > S(a1), so the final ordering is a3 � a2 � a1.

In general, in chaotic multi-attribute group decision making (CMAGDM), different
DMs have different decision weights, so the total evaluation function of the corresponding
CMAGDM is as follows.

Definition 15 (Zhang et al. [20]). The total evaluation score function for the CMAGDM is S(ai):

S(ai) =
l

∑
k=1

τkSk(ai) (47)

where Sk(ai) is the kth DM’s score for the ith alternative (i = 1, ..., m; k = 1, 2, ..., l) ; τk is the
weight of the kth DM (τk � 0, ∑l

k=1 τk = 1).
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4.3. The Algorithm for CMAGDM

Through the analysis in the previous subsection, we summarize the algorithm for
solving CMAGDM as Algorithm 1.

Algorithm 1 The Algorithm for CMAGDM.
Input:

A, C, E, w, τ, X,F .

Output:

Optimal sorting: a∗1 � a∗2 � · · · � a∗m

1: Step 1: Calculate the NFSRSs vector R(F ):

2: for k = 1 to l do

3: Calculate R(Fk) according to the Definition (13)

4: end for

5: Step 2: Calculate the score vector S(A):

6: for k = 1 to l do

7: for i = 1 to m do

8: Calculate Sk(ai) according to the Definition (14)

9: end for

10: end for

11: Step 3: Calculate the total score vector S(A):

12: for i = 1 to m do

13: Calculate S(ai) according to the Definition (15)

14: end for

15: Step 4: Ranking of the total evaluation function for all alternatives

S(a∗1) ≥ S(a∗2) ≥ · · · ≥ S(a∗m).

16: Return a∗1 � a∗2 � · · · � a∗m

5. Numerical Analysis

In this section, we will analyze a real-life home purchase problem to explain the
specific application of our proposed method.

5.1. Problem Statement

A family with three members (husband, wife, and daughter) are planning to buy one
of four houses. Suppose the family considers the following factors in purchasing: price,
construction materials, decoration, convenience for shopping (e.g., availability of super-
markets, food markets, shops, etc.), and convenience of transportation (e.g., availability
of public parking, bus stops, metro stations, etc.). Assume that the purchase decision
weight of the husband is 40%, the wife is 35%, and the daughter is 25%. The weights of the
purchasing factors are as follows: 35% for price, 20% for construction materials, 15% for
decoration, 10% for convenience of shopping, and 20% for convenience of transportation.

Obviously, this is a MAGDM problem, it can be represented by a sextuple 〈A, C, E, w, τ, X〉,
that is:

MAGDM = 〈A, C, E, w, τ, X〉. (48)
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where A = {a1, a2, a3, a4}, a1, a2, a3, a4 denote the first house, the second house, the
third house, and the fourth house, respectively. C = {c1, c2, c3, c4, c5}, c1, c2, c3, c4, c5
denote price, construction materials, decoration, convenience for shopping, and conve-
nience of transportation, respectively, and the corresponding weight vector is w, where
w = {0.35, 0.20, 0.15, 0.10, 0.20}. E = {e1, e2, e3}, e1, e2, e3 denote husband, wife, and
daughter, respectively, the corresponding weight vector is τ, where τ = {0.40, 0.35, 0.25}.
X = {X(ek)|ek ∈ E} is the decision matrix set, and X(ek) is the decision matrix of the
kth DM.

Usually, however, the wife and daughter are not familiar with attribute (indicator)
construction materials, while the husband is not particularly familiar with attribute (indica-
tor) decoration. Since DMs have different levels of familiarity with attributes, this is not a
regular MAGDM problem, but a CMAGDM problem. It can be represented by a septuple
〈A, C, E, w, τ, X,F〉, that is:

CMAGDM = 〈A, C, E, w, τ, X,F〉. (49)

Assuming that the DMs select NFSS for scoring evaluation, the evaluation form is
shown in Table 5.

Table 5. CMAGDM information of house purchase.

c1 (0.35) c2 (0.20) c3 (0.15) c4 (0.10) c5 (0.20)

e1 (0.40) (0.92, 0.21, 0.07) (0.87, 0.10, 0.16) (0.83, 0.48, 0.43) (0.86, 0.29, 0.32) (0.77, 0.48, 0.35)

a1 (0.97, 0.55, 0.24) (0.91, 0.04, 0.38) (0.91, 0.07, 0.01) (0.71, 0.45, 0.47) (0.76, 0.03, 0.30)
a2 (0.75, 0.23, 0.20) (0.97, 0.41, 0.09) (0.85, 0.46, 0.47) (0.83, 0.32, 0.09) (0.66, 0.27, 0.34)
a3 (0.93, 0.42, 0.42) (0.66, 0.58, 0.29) (0.97, 0.48, 0.24) (0.94, 0.56, 0.01) (0.68, 0.16, 0.17)
a4 (0.83, 0.04, 0.16) (0.80, 0.11, 0.23) (0.80, 0.22, 0.26) (0.68, 0.47, 0.39) (0.70, 0.28, 0.35)

e2 (0.35) (0.98, 0.43, 0.08) (0.92, 0.54, 0.14) (0.98, 0.56, 0.39) (0.96, 0.50, 0.47) (0.99, 0.56, 0.33)

a1 (0.80, 0.24, 0.23) (0.96, 0.30, 0.01) (0.83, 0.27, 0.27) (0.70, 0.30, 0.18) (0.88, 0.07, 0.43)
a2 (0.74, 0.14, 0.28) (0.77, 0.23, 0.30) (0.89, 0.33, 0.37) (0.82, 0.39, 0.43) (0.98, 0.19, 0.40)
a3 (0.83, 0.58, 0.29) (0.99, 0.22, 0.08) (0.88, 0.14, 0.44) (0.78, 0.35, 0.44) (0.77, 0.23, 0.30)
a4 (0.83, 0.08, 0.31) (0.90, 0.42, 0.33) (0.90, 0.02, 0.38) (0.84, 0.22, 0.49) (0.66, 0.53, 0.16)

e3 (0.25) (0.73, 0.60, 0.03) (0.75, 0.42, 0.47) (0.83, 0.42, 0.32) (0.88, 0.51, 0.02) (0.92, 0.47, 0.38)

a1 (0.71, 0.22, 0.10) (0.93, 0.15, 0.15) (0.94, 0.12, 0.01) (0.86, 0.37, 0.34) (0.91, 0.59, 0.26)
a2 (0.68, 0.26, 0.11) (0.73, 0.41, 0.04) (0.91, 0.11, 0.24) (0.72, 0.41, 0.05) (0.93, 0.19, 0.11)
a3 (0.70, 0.28, 0.40) (0.85, 0.51, 0.05) (0.95, 0.43, 0.30) (0.85, 0.51, 0.36) (0.67, 0.10, 0.12)
a4 (0.99, 0.11, 0.01) (0.86, 0.08, 0.25) (0.93, 0.07, 0.01) (0.76, 0.03, 0.02) (0.99, 0.03, 0.16)

5.2. Numerical Computations

According to the Algorithm 1, we can obtain following results:

Step 1: By Equation (42), the NFSRSs vector R(F ) can be found. To illustrate the exact
process of calculation, we take the husband’s evaluation of alternative a1 as an example.

μ(a1) = min
c∈C

(wc · μR
(a1, c) ·min(μF (c), (2− ηF (c)− νF (c))))

= min(0.35× 0.97×min(0.92, (2− 0.21− 0.07)),

0.20× 0.91×min(0.87, (2− 0.10− 0.16)),

0.15× 0.91×min(0.83, (2− 0.48− 0.43)),

0.10× 0.71×min(0.86, (2− 0.29− 0.32)),

0.20× 0.76×min(0.77, (2− 0.48− 0.35)))

= 0.06106,
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μ(a1) = max
c∈C

(wc · μR
(a1, c) ·max(μF (c), (2− ηF (c)− νF (c))))

= max(0.35× 0.97×max(0.92, (2− 0.21− 0.07)),

0.20× 0.91×max(0.87, (2− 0.10− 0.16)),

0.15× 0.91×max(0.83, (2− 0.48− 0.43)),

0.10× 0.71×max(0.86, (2− 0.29− 0.32)),

0.20× 0.76×max(0.77, (2− 0.48− 0.35)))

= 0.58394.

Similarly, the values of η(a1), η(a1), ν(a1), ν(a1) can be calculated. The same approach
could be used to obtain the husband’s evaluation of alternative a2, a3, a4. Using the same
method, we can obtain all the evaluation of wife and daughter. Finally, the NFSRSs vector
R(F ) can be found. As shown in Table 6.

Table 6. Information of the NFSRSs vector R(F ).

μ η ν μ η ν

Husband a1 0.06106 0.33110 0.14448 0.58394 0.00462 0.00125
a2 0.07138 0.14268 0.12040 0.45150 0.02752 0.00774
a3 0.08084 0.25284 0.25284 0.55986 0.02464 0.00086
a4 0.05848 0.06552 0.09632 0.49966 0.01288 0.03237

Wife a1 0.06720 0.12516 0.11995 0.41720 0.01386 0.00184
a2 0.07872 0.07301 0.14602 0.38591 0.03744 0.04128
a3 0.07488 0.30247 0.15124 0.43285 0.02058 0.01472
a4 0.08064 0.11766 0.16167 0.43285 0.00294 0.03168

Daughter a1 0.07568 0.13570 0.05980 0.34045 0.01494 0.00125
a2 0.06336 0.12467 0.05275 0.32606 0.01370 0.00440
a3 0.07480 0.13426 0.19180 0.33565 0.01840 0.00750
a4 0.06688 0.05275 0.05550 0.47471 0.00264 0.00125

Step 2: By Definition (14), the score vector S can be obtained. Here is an example of the
calculation process using the husband’s scoring of the alternative a1.

S1(a1) = 4 + μ(a1) + μ(a1)− η(a1)− η(a1)− ν(a1)− ν(a1)

= 4 + 0.06106 + 0.58394− 0.33110− 0.14448− 0.00462− 0.00125

= 4.16356.

Using the same method, all evaluation scores can be derived, then the information of
the score vector S can be found, as shown in Table 7.

Table 7. Information of the score vector S .

S
Husband a1 4.16356

a2 4.22454
a3 4.10952
a4 4.35105

Wife a1 4.22360
a2 4.16688
a3 4.01872
a4 4.19954

Daughter a1 4.20444
a2 4.19391
a3 4.05849
a4 4.42946
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Step 3: By Definition 15, we can obtain the corresponding total evaluation score for four
houses as shown in Table 8. Using alternative a1 as an example, the process for calculating
its overall evaluation score is as follows.

Table 8. Final evaluation score for all the alternative.

A S

a1 4.19479
a2 4.19670
a3 4.06498
a4 4.31762

S(a1) = 4.16356× 0.40 + 4.22360× 0.35 + 4.20444× 0.25

= 4.19479.

Step 4: Obtain the final ranking. By the calculation in the previous step, obviously, we can
obtain: S(a4) > S(a2) > S(a1) > S(a3). That is, a4 � a2 � a1 � a3. The optimal alternative
a∗ = a4, so the 4th house is the optimal choice.

6. Conclusions

Most of the current studies on multi-attribute group decision problems mainly give the
corresponding solutions in different practical applications or when DMs use different fuzzy
sets [1,9–11,39–41]. Typically, the study of traditional group decision models and methods
consists of two main aspects: consensus building and optimal choice. The former refers
to how to make the opinions of all experts as consensual as possible among all candidate
alternatives, while the latter focuses on how to select the optimal decision alternative from
all candidates based on group preference opinions [14,15]. However, there are few research
results that consider the structure of the multi-attribute group decision problem itself, such
as the relationship between DMs and attributes. Based on such considerations, we propose
a chaotic multi-attribute group decision model that considers the familiarity of DMs with
attributes, which can well avoid the drawbacks arising from grouping or weighting of
decision makers by introducing familiarity in multi-attribute group decision making. At
the same time, we combine neutrosophic set with a wider definition domain with soft set
and rough set to give the concept of weighted neutrosophic fuzzy soft rough set and apply
it to chaotic multi-attributes group decision making to obtain the corresponding algorithm.
The validity of the model and the flexibility of the algorithm are well illustrated by practical
case studies.

Despite our attempts to solve more realistic problems, however, there are still many
shortcomings in our work. We have only considered the evaluation scoring of decision
makers using neutrosophic fuzzy sets, whereas in practical decision making, decision
makers can choose different evaluation methods, such as using different fuzzy sets or
precise numbers or linguistic variables, etc. This is a drawback of our work and is certainly a
direction for future research. In addition, this paper does not give a scheme for determining
familiarity. However, how to determine the familiarity, just like how to assign weights to
decision makers or decision attributes, is still the key to multi-attribute cluster decision
making, so this will be another popular direction for future research.
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The following abbreviations are used in this manuscript:

MAGDM Multi-attribute Group Decision Making
DM Decision Maker
FS Fuzzy set
PFS Picture Fuzzy Set
NFS Neutrosophic Fuzzy Set
RS Rough Set
SS Soft Set
FSS Fuzzy Soft Set
FSRS Fuzzy Soft Rough Set
PFSRS Picture Fuzzy Soft Rough Set
NFSRS Neutrosophic Fuzzy Soft Rough Set
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Abstract: This paper proposes some operations on the cubic intuitionistic set along with useful
properties. We propose the internal cubic intuitionistic set (ICIS), the external cubic intuitionistic set
(ECIS), P-order, R-order order (P-(R-) order), P-union, R-union (P-(R-) union), P-intersection, and
R-intersection (P-(R-) intersection). We further investigate several properties of the P-(R-) union and
P-(R-) intersection of ICISs and ECISs, and present some examples in this context. Some important
theorems related to ICISs and ECISs are also presented with proof. Finally, an application example
is given to measure the effectiveness and significance of the proposed operations by solving a
multi-criteria decision-making (MCDM) problem.
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1. Introduction

Zadeh [1] proposed the idea of fuzzy sets in 1965 and further extended this idea
to an interval-valued fuzzy set (IVFS) [2]. Some complex decision-making problems in
the economy, engineering, social science, environmental science, etc., exist that cannot
be completely modeled by methods of classical mathematics because of the presence of
various types of uncertainties. Others, on the other hand, use certain data processed by
methods that are hybrid approaches, such as the INVAR method [3] or the CODAS-COMET
method [4]. However, to handle the vagueness and uncertainty occurring in such decision-
making problems, some well-known mathematical theories have been introduced, such as
fuzzy set theory [1], intuitionistic fuzzy set (IFS) theory [5], interval-valued intuitionistic
fuzzy set (IVIFS) theory [6,7], hesitant fuzzy set theory [8], hesitant fuzzy linguistic set
theory [9], soft set theory [10], fuzzy soft set theory [11], etc. An example of this could
be the use of triangular fuzzy numbers in a fuzzy extension of a simplified best–worst
method [12].

At times, uncertainty research uses generalized approaches to better cope with the
decision-making process via approaches related to the Dempster–Shafer evidence theory
(DSET) [13], or quantum evidence theory (QET) [14]. Other ways are to use methods
based on either entropy [15] or distance measures [16]. Most of the researchers studied
IVFS [12]. For example, Zhang et al. [17] investigated the entropy of IVFSs based on
distance measures. Zeng and Guo [18] discussed the similarity measure, inclusion of the
measure, and entropy of IVFSs, while Grzegorzewski [19] proposed IVFSs based on the
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Hausdorff metric. Furthermore, IVFSs have been widely used and applied in real-life
applications. For example, Sambuc [20] and Kohout [21] used the concept of IVFSs in
medical diagnoses in thyroid pathology and medicine in a CLINAID system, respectively.
Gorzalczany [22] used the idea of IVFSs in approximate reasoning. Turksen [23,24] further
used the same idea of IVFSs in interval-valued logic in preference modeling [25].

Jun et al. [26] proposed the idea of a cubic set and presented its two important types,
called the internal cubic set and the external cubic set by using the idea of the fuzzy set and
IVFS. They further introduced some operations of union and intersection regarding the
cubic sets, such as the P-(R-) union and P-(R-) intersection, and studied important related
properties. Jun [27] further extended the idea of the cubic set, introduced the notion of the
cubic intuitionistic set, and discussed its useful applications in BCK/BCI-algebras. Recently,
studies on the cubic set theory have rapidly grown. For example, Jun et al. [28] proposed
the concept of cubic IVIFS and discussed its important applications in BCK/BCI-algebra.
With the help of using a cubic set and a neutrosophic set, Ali et al. [29] presented the
notion of a neutrosophic cubic set and studied some useful properties. Kang and Kim [30]
investigated the images and inverse images of almost-stable cubic sets and discussed
the complement, the P-union, and the P-intersection of inverse images of almost-stable
cubic sets. Chinnadurai et al. [31] investigated several properties of the P-(R-) union and
P-(R-) intersection of cubic sets and studied some properties of cubic ideals of near rings.
Jun et al. [32] proposed the ideas of cubic α-ideals and cubic p-ideals and studied several
useful properties.

Cubic sets are widely studied and are important in many areas, as discussed in
the literature by various researchers. Motivated by the advantages of cubic sets, this
paper proposes the notion of CIS based on IVFSs and intuitionistic fuzzy sets. Although
Jun [27] previously introduced the idea of CIS as cubic intuitionistic sets and discussed
their applications in BCK/BCI-algebras, this paper presents a completely different research
work under the framework of CIS. We first propose two important types of CIS, named
ICIS and ECIS. We then investigate the complement of CIS, the P-(R-) cubic intuitionistic
subsets, and the P-(R-) union and the intersection of CISs. Furthermore, we prove various
important theorems and results related to the proposed union and intersection operations.
Finally, we present an application example to demonstrate the validity of the proposed
operations by solving a MCDM problem.

The remainder of the paper can be summarized briefly as follows. Some basic concepts
related to the work are presented in Section 2. The notions of CIS, ICIS, and ECIS are
introduced in Section 3. We further investigate P-(R-)order, P-(R-)union, P-(R-)intersection,
and related important properties with proof in the same section. A MCDM approach using
CISs is presented in Section 4 along with an application example. We conclude the paper
with some concluding remarks in Section 5.

2. Preliminary

This section introduces necessary notions and presents a few auxiliary results that we
need in the rest of the paper. Throughout this paper, we let [I], IX, and [I]X stand for the
set of all closed subintervals of [0, 1], the collection of all fuzzy sets in a set X, and IVFSs in
X, respectively.

Definition 1. Let X be a non-empty set. A fuzzy set in set X is defined as function f : X → [0, 1].
the relation ≤, join (∨), meet (∧), and complement of IX for all x ∈ X can be defined, respectively,
as follows:

f1 ≤ f2 ⇔ f1(x) ≤ f2(x) for all f1, f2 ∈ IX ,

( f1 ∨ f2)(x) = f1(x) ∨ f2(x) = max{ f1(x), f2(x)},

( f1 ∧ f2)(x) = f1(x) ∧ f2(x) = min{ f1(x), f2(x)},

f c
1(x) = 1− f1(x),
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where f c
1 represents the complement of f1.

Definition 2. By an interval number, we mean a closed sub-interval a = [a−, a+] of Iwhere
0 ≤ a− ≤ a+ ≤ 1. The complement ac of a ∈ [I] is defined as follows:

ac = [1− a+, 1− a−].

The refined minimum and refined maximum (briefly, rmin and rmax) and the symbols �, �, = of
the elements a1 = [a−1 , a+1 ] and a2 = [a−2 , a+2 ] of [I] is defined as follows:

rmin{a1, a2} = [min{a−1 , a−2 }, min{a+1 , a+2 }],
rmax{a1, a2} = [max{a−1 , a−2 }, max{a+1 , a+2 }],

a1 � a2if and only if a−1 ≥ a−2 and a+1 ≥ a+2 .

Similarly, we can define a1 � a2 and a1 = a2.

Definition 3. For a non-empty set X, a function A : X → [I] is called an IVFS in X. The element
A = [A−(x), A+(x)] for every A ∈ [I]X and x ∈ X, is called the membership degree of an element
x to the set A. The IVFS is simply denoted as A = [A−, A+]. The complement Ac of A can be
defined as Ac = [1− A+, 1− A−].

For every A1, A2 ∈ [I]X , the following are true:

A1 ⊆ A2 if and only ifA1 � A2,

A1 = A2 if and only ifA1 = A2.

Definition 4 ([5]). Let E be a crisp set. An IFS Ã can be defined as

Ã = {〈x, μÃ(x), νÃ(x)〉 : x ∈ E}.

where μÃ : E → [0, 1] and νÃ : E → [0, 1] indicate, respectively, the membership and non-
membership degrees of x ∈ E with the condition 0 ≤ μÃ(x) + νÃ(x) ≤ 1 for every x ∈ E.

Definition 5 ([6]). An expression of the form given by

B = {〈x, MB(x), NB(x)〉 : x ∈ X}

is called the IVIFS in X, where MB : X → [I] and NB : X → [I] are IVFSs with the condition that

0 ≤ M+
B (x) + N+

B (x) ≤ 1 for all x ∈ X.

The intervals MB and NB denote, respectively, the membership and non-membership degrees of
x ∈ X.

Definition 6 ([26]). A mathematical structure of the form

A = {〈x, A(x), λ(x)〉 : x ∈ X},

is called the cubic set in X, where A and λ are, respectively, the IVFS and a fuzzy set in X. Jun [27]
introduced the notion of the cubic intuitionistic set as follows:

Definition 7 ([27]). A mathematical structure of the form

A = {〈x, A(x), λ(x)〉 : x ∈ X},

is called the cubic intuitionistic set where A is an IVIFS in X and λ is an IFS in X.
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3. Some Operations on the Cubic Intuitionistic Set

This section introduces the concept of CIS with some modifications as proposed by
Jun in [27] as follows:

Definition 8. By CIS in a non-empty set X, we mean a mathematical structure of the form

A = {〈x, MA(x)/αA(x), NA(x)/βA(x)〉|x ∈ X}

where MA : X → [I] and NA : X → [I] are IVFSs of the form MA(x) = [M−(x), M+(x)],
NA(x) = [N−(x), N+(x)] with the conditions that

0 ≤ M+
A(x) + N+

A (x) ≤ 1 and 0 ≤ αA(x) + βA(x) ≤ 1 f or all x ∈ X.

MA(x) and NA(x) denote, respectively, the membership and non-membership degrees of x and
αA : X → [0, 1], βA : X → [0, 1] are fuzzy sets in X. For simplicity, we denote CIS(X) as the
collection of all CISs A = 〈MA/αA, NA/βA〉 in X. In the rest of the paper, we will use the same
notations with symbols for CIS as presented in the above definition.

Remark 1. For any non-empty set X, let 1(x) = 1 and 0(x) = 0 for all x ∈ X. Then, A =

〈MA/1, NA/0(x)〉, B = 〈MB/0, NB/1〉 and C = 〈MC/ M−
C +M+

C
2 , NC/ N−C +N+

C
2 〉 are all CISs

in X.

Definition 9. For A = 〈MA/αA, NA/βA〉 ∈ CIS(X), the score value of A is defined as

Sc(A) =
1
3
[(

M−
A + M+

A + αA
)− (

N−(x) + N+(x) + βA
)]

where Sc(A) ∈ [−1, 1].

Definition 10. Let A = 〈MA/αA, NA/βA〉 and B = 〈MB/αB, NB/βB〉 ∈ CIS(X), then

(i) A = B ⇔ MA = MB, αA = αB; NA = NB, βA = βB (Equality)

(ii) A ⊆P B ⇔ MA ⊆ MB, αA ≤ αB; NA ⊇ NB, βA ≥ βB (P-order)

(iii) A ⊆R B ⇔ MA ⊆ MB, αA ≥ αB; NA ⊇ NB, βA ≤ βB (R-order)

Definition 11. Let 0 = [0, 0] and 1 = [1, 1]. Then, a CIS A = 〈MA/αA, NA/βA〉 in which
MA = 0, αA = 1, NA = 1 and βA = 0 (respectively, MA = 1, αA = 0, NA = 0 and βA = 1) is
denoted by 0̈ (respectively 1̈).

A CIS B = 〈MB/αB, NB/βB〉 in which MB = 0, αB = 0, NB = 1, βB = 1 (respectively
MB = 1, αB = 1, NB = 0 and βA = 0) is denoted by 0̂ (respectively, 1̂).

We can see that the score values of 0̈, 1̈, 0̂ and 1̂ can be computed, respectively, as
Sc(0̈) = −0.33, Sc(1̈) = 0.33, Sc(0̂) = −1 and Sc(1̂) = 1.

Definition 12. Consider the family of CISs Ai = 〈Mi/αi, Ni/βi〉, i ∈ � in X, we define

(a) P-union
∪P
i∈�

Ai = 〈 ∪
i∈�

Mi/ ∨
i∈�

αi, ∩
i∈�

Ni/ ∧
i∈�

βi〉

(b) P-intersection
∩P
i∈�

Ai = 〈 ∩
i∈�

Mi/ ∧
i∈�

αi, ∪
i∈�

Ni/ ∨
i∈�

βi〉

(c) R-union
∪R
i∈�

Ai = 〈 ∪
i∈�

Mi/( ∧
i∈�

αi, ∩
i∈�

Ni/ ∨
i∈�

βi〉
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(d) R-intersection
∩R
i∈�

Ai = 〈 ∩
i∈�

Mi/ ∨
i∈�

αi), ∪
i∈�

Ni/( ∧
i∈�

βi〉

Remark 2. The complement of A = 〈MA/αA, NA/βA〉 is defined as

Ac = 〈Mc
A/1− αA, Nc

A/1− βA〉.

Obviously, (Ac)c = A, 0̈c = 1̈, 1̈c = 0̈, 0̂c = 1̂, 1̂c = 0̂.

Remark 3. For the family of CISs Ai = 〈Mi/αi, Ni/βi〉, i ∈ � in X, we have
(∪P

i∈�
Ai)

c = ∩P
i∈�

(Ai)
c, (∩P

i∈�
Ai)

c = ∪P
i∈�

(Ai)
c, (∪R

i∈�
Ai)

c = ∩R
i∈�

(Ai)
c and (∩R

i∈�
Ai)

c = ∪R
i∈�

(Ai)
c.

Definition 13. Let X be a non-empty set.

1 A CIS A = 〈MA/αA, NA/βA〉 is said to be ICIS if M−
A ≤ αA ≤ M+

A and
N−A ≤ βA ≤ N+

A .
2 A CIS B = 〈MB/αB, NB/βB〉 in X is said to be ECIS if αB /∈ (M−

B , M+
B )

and βB /∈ (N−B , N+
B ).

Example 1. For a non-empty set X,

1 Let A = 〈MA/αA, NA/βA〉 be a CIS with MA = [0.1, 0.3], αA = 0.2, NA = [0.4, 0.6] and
βA = 0.5, then A is ICIS.

2 Let B = 〈MB/αB, NB/βB〉 be a CIS with MB = [0.2, 0.4], αB = 0.1, NB = [0.5, 0.6] and
βB = 0.7, then B is ECIS.

Remark 4. Every CIS in X can be considered a Zadeh fuzzy set, IFS, IVFS, IVIFS, and cubic
set according to (M = N = 0, β = 0), (M = N = 0), (N = 0, β = 0), (β = α = 0) and
(N = 0, β = 0), respectively.

Theorem 1. Let A = 〈MA/αA, NA/βA〉 be A CIS which is not an ECIS in X. Then there exist
x ∈ X such that αA(x) ∈ (M−

A(x), M+
A(x)) and βA(x) ∈ (N−A (x), N+

A (x)).

Proof. Straightforward.

Theorem 2. Let A = 〈MA/αA, NA/βA〉 be A CIS in X. If A is both ICIS and ECIS, then
α(x) ∈ U(M) ∪ L(M) and β(x) ∈ U(N) ∪ L(N) f or all x ∈ X where U(M) = {M+(x)|x ∈
X}, L(M) = {M−(x)|x ∈ X}, U(N) = {N+(x)|x ∈ X} and L(N) = {N−(x)|x ∈ X}.

Proof. Assume that A is both ICIS and ECIS. Then, using Definition 13, we have M−(x) ≤
α(x) ≤ M+(x), N−(x) ≤ β(x) ≤ N+(x) and α(x) /∈ (M−(x), M+(x)), β(x) /∈ (N−(x),
N+(x)) for all x ∈ X. Thus α(x) = M−(x) or α(x) = M+(x) and β(x) = N−(x) or β(x) =
N+(x). Hence α(x) ∈ U(M) ∪ L(M) and β(x) ∈ U(N) ∪ L(N) for all x ∈ X.

Theorem 3. Let A = 〈MA/αA, NA/βA〉 be A CIS in X. If A is ICIS (respectively, ECIS), then
Ac is ICIS (respectively ECIS).

Proof. Since A = 〈MA/αA, NA/βA〉 is ICIS in X, we have

M−
A ≤ αA ≤ M+

A andN−A ≤ βA ≤ N+
A(

respectively,αA /∈ (M−
A , M+

A) and βA /∈ (N−A , N+
A )

)
.

This implies that

1−M+
A ≤ 1− αA ≤ 1−M−

A and 1− N+
A ≤ 1− βA ≤ 1− N−A
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(
respectively,1− αA /∈ (1−M+

A , 1−M−
A) and 1− βA /∈ (1− N+

A , 1− N−A )
)
.

Hence Ac = 〈Mc
A/1− αA, Nc

A/1− βA〉 is ICIS (respectively, ECIS)

We will show (through the following example) that the P-union and P-intersections of
ECISs are not necessarily ECISs.

Example 2. Let A = 〈MA/αA, NA/βA〉 and B = 〈MB/αB, NB/βB〉 be two ECISs in X.
Let MA = [0.1, 0.3], αA = 0.5, NA = [0.4, 0.6], βA = 0.2, MB = [0.4, 0.6], αB = 0.2,
NB = [0.1, 0.3] and βB = 0.5 for all x ∈ X. Then A ∪p B = 〈MB/αA, NB/βA〉 and A ∩p B =
〈MA/αB, NA/βB〉. Hence, A ∪p B and A ∩p B are not ECISs.

From the following example, it can be easily seen that the R-union and R-intersection
of ICIS need not be ICISs.

Example 3. Let A = 〈MA/αA, NA/βA〉 and B = 〈MB/αB, NB/βB〉 be two ICISs in X. Let
MA = [0.1, 0.3], αA = 0.2, NA = [0.5, 0.7], βA = 0.6, MB = [0.5, 0.7], αB = 0.6, NB =
[0.1, 0.3] and βB = 0.2 for all x ∈ X. Then A ∪R B = 〈MB/αA, NB/βA〉 and A ∩R B =
〈MA/αB, NA/βB〉. Hence, A ∪R B and A ∩p B are not ICISs.

In the following examples, we will show that the R-union and R-intersection of ECIS
may not be ECIS.

Example 4.

1 Let A = 〈MA/αA, NA/βA〉 and B = 〈MB/αB, NB/βB〉 be two ECISs in X. Let MA =
[0.1, 0.3], αA = 0.5, NA = [0.35, 0.4], βA = 0.2, MB = [0.4, 0.6], αB = 0.7, NB =
[0.2, 0.3] and βB = 0.1 for all x ∈ X. Then A ∪R B = 〈MB/αA, NB/βA〉 and note that
αA ∈ (M−

B , M+
B ); therefore, A ∪R B is not ECIS.

2 Let A = 〈MA/αA, NA/βA〉 and B = 〈MB/αB, NB/βB〉 be two ECISs in X. Let MA =
[0.2, 0.4], αA = 0.1, NA = [0.4, 0.6], βA = 0.5, MB = [0.5, 0.7], αB = 0.3, NB = [0.1, 0.3]
and βB = 0.6 for all x ∈ X. Then A ∩R B = 〈MA/αB, NA/βA〉 and, hence, A ∩R B is not
ECIS.

Theorem 4. Let A = 〈MA/αA, NA/βA〉 and B = 〈MB/αB, NB/βB〉 be two ICISs in X, such
that max{M−

A , M−
B } ≤ (αA ∧ αB) and min{N+

A , N+
B } ≥ (βA ∨ βB). Then the R-union and

R-intersection of A and B are ICISs.

Proof. A and B are ICISs; therefore,

M−
A ≤ αA ≤ M+

A , N−A ≤ βA ≤ N+
A

M−
B ≤ αB ≤ M+

B and N−B ≤ βB ≤ N+
B

which implies that

(αA ∧ αB) ≤ (MA ∪MB)
+ and (βA ∨ βB) ≥ (NA ∩ NB)

−.

It follows that

(MA ∪MB)
− = max{M−

A , M−
B } ≤ (αA ∧ αB) ≤ (MA ∪MB)

+

and
(NA ∩ NB)

− ≤ (βA ∨ βB) ≤ min{N+
A , N+

B } = (NA ∩ NB)
+.

Hence, A ∪R B is ICIS. Similar arguments work in the case of A ∩R B.
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Given two CISs A = 〈MA/αA, NA/βA〉 and B = 〈MB/αB, NB/βB〉 in X. If we
exchange αA for αB and βA for βB, we denote these CISs by A∗ = 〈MA/αB, NA/βB〉 and
B∗ = 〈MB/αA, NB/βA〉, respectively.
The next example shows that, for any two ECISs in X, A∗ and B∗ need not be ICISs in X.

Example 5.

1 Let A = 〈MA/αA, NA/βA〉 and B = 〈MB/αB, NB/βB〉 be ICIS in X. Let MA = [0.1, 0.3],
αA = 0.7, NA = [0.5, 0.7], βA = 0.15, MB = [0.4, 0.6], αB = 0.35, NB = [0.2, 0.3]
and βB = 0.1 for all x ∈ X. Then it is easy to see that A∗ = 〈MA/αB, NA/βB〉 and
B∗ = 〈MB/αA, NB/βA〉 are not ICISs in X.

2 Let X = {a, b}. Let A = 〈MA/αA, NA/βA〉 and B = 〈MB/αB, NB/βB〉 be two ECISs in
X defined in Table 1. Moreover, A∗ = 〈MA/αB, NA/βB〉 and B∗ = 〈MB/αA, NB/βA〉 are
not ICISs in X because αB(a) = 0.35 /∈ [0.4, 0.6] = MA(a), βB(a) = 0.25 /∈ [0.1, 0.2] =
NA(a). Moreover, αB(b) = 0.15 /∈ [0.2, 0.4] = MA(b) and βB(b) = 0.35 /∈ [0.4, 0.6] =
NA(b).

Table 1. CISs A and B.

X MA/αA NA/βA MB/αB NB/βB

a [0.4, 0.6]/0.65 [0.1, 0.2]/0.35 [0.1, 0.3]/0.35 [0.4, 0.5]/0.25
b [0.2, 0.4]/0.1 [0.4, 0.6]/0.7 [0.4, 0.5]/0.15 [0.1, 0.3]/0.35

We will show through the following example that the P-union of two ECISs in X may
not be an ICIS in X.

Example 6. Consider again two ECISs, A and B, as shown in Table 1. In this case, A ∪P B is
not ICIS in X because (αA ∨ αB)(a) = 0.65 /∈ [0.4, 0.6] = MA ∪ MB, (βA ∧ βB)(a) = 0.25 /∈
[0.1, 0.2] = NA ∩ NB.

In the following result, we will find a condition for the P-union of two ECISs to be
an ICIS.

Theorem 5. For two ECISs A = 〈MA/αA, NA/βA〉 and B = 〈MB/αB, NB/βB〉 in X. If
A∗ = 〈MA/αB, NA/βB〉 and B∗ = 〈MB/αA, NB/βA〉 are ICISs in X. Then A ∪P B and
A ∩P B are ICISs in X.

Proof. Since A and B are ECISs in X, then

αA /∈ (M−
A , M+

A), βA /∈ (N−A , N+
A ),

αB /∈ (M−
B , M+

B ) and βB /∈ (N−B , N+
B ).

For all x ∈ X. Since A∗ and B∗ are ICISs in X, then

M−
A ≤ αB ≤ M+

A , N−A ≤ βB ≤ N+
A

M−
B ≤ αA ≤ M+

B and N−B ≤ βA ≤ N+
B

for all x ∈ X. Thus, we can consider the following cases for any x ∈ X.

Case 1
αA ≤ M−

A ≤ αB ≤ M+
A , βA ≤ N−A ≤ βB ≤ N+

A ,

αB ≤ M−
B ≤ αA ≤ M+

B and βB ≤ N−B ≤ βA ≤ N+
B .

Case 2
M−

A ≤ αB ≤ M+
A ≤ αA, N−A ≤ βB ≤ N+

A ≤ βA,
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M−
B ≤ αA ≤ M+

B ≤ αB and N−B ≤ βA ≤ N+
B ≤ βB.

Case 3
αA ≤ M−

A ≤ αB ≤ M+
A , βA ≤ N−A ≤ βB ≤ N+

A ,

M−
B ≤ αA ≤ M+

B ≤ αB and N−B ≤ βA ≤ N+
B ≤ βB.

Case 4
M−

A ≤ αB ≤ M+
A ≤ αA, N−A ≤ βB ≤ N+

A ≤ βA,

αB ≤ M−
B ≤ αA ≤ M+

B and βB ≤ N−B ≤ βA ≤ N+
B .

The arguments in all cases are similar; therefore, we consider the first case.
We have αA = M−

A = M−
B = αB and βA = N−A = N−B = βB.

Since A∗ and B∗ are ICISs in X, then

αB ≤ M+
A , αA ≤ M+

B , βB ≤ N+
A and βA ≤ N+

B .

It follows that
(MA ∪MB)

− = max{M−
A , M−

B } = (αA ∨ αB)

≤ max{M+
A , M+

B } = (MA ∪MB)
+ and

(NA ∩ NB)
− = min{N−A , N−B } = (βA ∧ βB)

≤ min{N+
A , N+

B } = (NA ∪ NB)
+.

Hence, A ∪P B is ICIS. Similar steps can be used for A ∩P B.

From Example 2, it can be easily seen that the P-union and P-intersections of ECISs
are not necessarily the ECISs in X. In the next result, we will show when the P-union and
P-intersection of two ECISs are ECISs in X.

Theorem 6. Let A = 〈MA/αA, NA/βA〉 and B = 〈MB/αB, NB/βB〉 be two ECISs in X,
such that

min{max{M+
A , M−

B }, max{M−
A , M+

B }} ≥ (αA ∧ αB)

> max{min{M+
A , M−

B }, min{M−
A , M+

B }}and

min{max{N+
A , N−B }, max{N−A , N+

B }} > (βA ∨ βB)

≥ max{min{N+
A , N−B }, min{N−A , N+

B }},

then A ∩P B is ECIS in X.

Proof. Take
αx = min{max{M+

A , M−
B }, max{M−

A , M+
B }},

βx = max{min{M+
A , M−

B }, min{M−
A , M+

B }},

α∗x = min{max{N+
A , N−B }, max{N−A , N+

B }}and

β∗x = max{min{N+
A , N−B }, min{N−A , N+

B }}
then αx is one of M−

A , M−
B , M+

A , M+
B and α∗x is one of N−A , N−B , N+

A , N+
B . We will consider the

case when αx = M−
A and α∗x = N−A or αx = M+

A and α∗x = N+
A . Similar arguments will work

for all remaining cases.
If αx = M−

A and α∗x = N−A , then

M−
B ≤ M+

B ≤ M−
A ≤ M+

A

N−B ≤ N+
B ≤ N−A ≤ N+

A
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and so βx = M+
B and β∗x = N+

B . Thus,

M−
B = (MA ∩MB)

− ≤ (MA ∩MB)
+ = M+

B = βx < (αA ∧ αB),

N−A = (NA ∪ NB)
− = αx > (βA ∨ βB)

and, hence,
(αA ∧ αB) /∈ ((MA ∩MB)

−, (MA ∩MB)
+)and

(βA ∨ βB) /∈ ((NA ∪ NB)
−, (NA ∪ NB)

+).

If αx = M+
A and α∗x = N+

A , then

M−
B ≤ M+

A ≤ M+
B andN−B ≤ N+

A ≤ N+
B

so
βx = max{M−

A , M−
B }andβ∗x = max{N−A , N−B }.

Assume that βx = M−
A and β∗x = N−A , then

M−
B ≤ M−

A < (αA ∧ αB) ≤ M+
A ≤ M+

B and

N−B ≤ N−A ≤ (βA ∨ βB) < N+
A ≤ N+

B .

From the above inequality, we have the following cases
Case-1

M−
B ≤ M−

A < (αA ∧ αB) < M+
A ≤ M+

B and

N−B ≤ N−A < (βA ∨ βB) < N+
A ≤ N+

B

Case-2
M−

B ≤ M−
A < (αA ∧ αB) = M+

A ≤ M+
B and

N−B ≤ N−A = (βA ∨ βB) ≤ N+
A ≤ N+

B .

Case-1 contradicts the fact that CISs A and B are ECISs. From Case-2, it implies that

(αA ∧ αB) /∈ ((MA ∩MB)
−, (MA ∩MB)

+)and

(βA ∨ βB) /∈ ((NA ∪ NB)
−, (NA ∪ NB)

+)

since
(αA ∧ αB) = M+

A = (MA ∩MB)
+and

(βA ∨ βB) = N−A = (NA ∪ NB)
−.

Assume that βx = M−
B and β∗x = N−B , then

M−
A ≤ M−

B < (αA ∧ αB) ≤ M+
A ≤ M+

B and

N−A ≤ N−B ≤ (βA ∨ βB) ≤ N+
A ≤ N+

B .

We now have two cases.
Case-1

M−
A ≤ M−

B < (αA ∧ αB) < M+
A ≤ M+

B and

N−A ≤ N−B < (βA ∨ βB) < N+
A ≤ N+

B .

Case-2
M−

A ≤ M−
B < (αA ∧ αB) = M+

A ≤ M+
B and

N−A ≤ N−B = (βA ∨ βB) < N+
A ≤ N+

B .
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Case-1 contradicts that A and B are ECISs. From Case-2, it implies that

(αA ∧ αB) /∈ ((MA ∩MB)
−, (MA ∩MB)

+) and

(βA ∨ βB) /∈ ((NA ∪ NB)
−, (NA ∪ NB)

+)

since
(αA ∧ αB) = M+

A = (MA ∩MB)
+and

(βA ∨ βB) = N−B = (NA ∪ NB)
−.

Similar results can be obtained if we assume

βx = M−
B andβ∗x = N−A orβx = M−

A and β∗x = N−B

Hence, the P-intersection of A and B is ECIS in X.

Theorem 7. Let A = 〈MA/αA, NA/βA〉 and B = 〈MB/αB, NB/βB〉 be two ECISs in X,
such that

min{max{M+
A , M−

B }, max{M−
A , M+

B }} > (αA ∨ αB)

≥ max{min{M+
A , M−

B }, min{M−
A , M+

B }}and

min{max{N+
A , N−B }, max{N−A , N+

B }} ≥ (βA ∧ βB)

> max{min{N+
A , N−B }, min{N−A , N+

B }},

then A ∪P B is ECIS in X.

Proof. The proof is similar to Theorem 6; therefore, we omit the details.

Example 7. Let A = 〈MA/αA, NA/βA〉 and B = 〈MB/αB, NB/βB〉 be two ECISs in X =
{a, b, c} as shown in Table 2. Then, A and B always satisfy the following conditions.

min{max{M+
A , M−

B }, max{M−
A , M+

B }} = (αA ∨ αB)

> max{min{M+
A , M−

B }, min{M−
A , M+

B }}and

min{max{N+
A , N−B }, max{N−A , N+

B }} > (βA ∧ βB)

= max{min{N+
A , N−B }, min{N−A , N+

B }}.

However, the P-union of A and B is not ECIS because (αA ∨ αB)(a) = 0.2 ∈ [0.1, 0.3] = [(MA ∪
MB)

−(a), (MA ∪MB)
+(a)] and (βA ∧ βB)(a) = 0.45 ∈ [0.4, 0.5] = [(NA ∩ NB)

−(a), (NA ∩
NB)

+(a)].

Table 2. CISs A and B.

X MA/αA NA/βA MB/αB NB/βB

a [0.1, 0.2]/0.2 [0.45, 0.6]/0.45 [0.05, 0.3]/0.03 [0.4, 0.5]/0.6
b [0.1, 0.4]/0.05 [0.5, 0.6]/0.7 [0.2, 0.3]/0.3 [0.55, 0.65]/0.55
c [0.6, 0.7]/0.7 [0.1, 0.15]/0.1 [0.5, 0.8]/0.4 [0.05, 0.2]/0.3

From Example 4, it can be easily observed that the R-union and R-intersection of ECISs
may not be ECISs in X. In the next result, we will show that the R-union and R-intersection
of two ECISs are ECISs in X.

Theorem 8. Let A = 〈MA/αA, NA/βA〉 and B = 〈MB/αB, NB/βB〉 be two ECISs in X,
such that

min{max{M+
A , M−

B }, max{M−
A , M+

B }} > (αA ∧ αB)
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≥ max{min{M+
A , M−

B }, min{M−
A , M+

B }}and

min{max{N+
A , N−B }, max{N−A , N+

B }} ≥ (βA ∨ βB)

> max{min{N+
A , N−B }, min{N−A , N+

B }},

then A ∪R B is ECIS in X.

Proof. Take
αx = min{max{M+

A , M−
B }, max{M−

A , M+
B }},

βx = max{min{M+
A , M−

B }, min{M−
A , M+

B }},

α∗x = min{max{N+
A , N−B }, max{N−A , N+

B }}and

β∗x = max{min{N+
A , N−B }, min{N−A , N+

B }}

then αx is one of M−
A , M−

B , M+
A , M+

B and α∗x is one of N−A , N−B , N+
A , N+

B . We will consider the
case when αx = M−

B and α∗x = N−B or αx = M+
B and α∗x = N+

B . Similar arguments will work
for all remaining cases.

If αx = M−
B and α∗x = N−B , then

M−
A ≤ M+

A ≤ M−
B ≤ M+

B and

N−A ≤ N+
A ≤ N−B ≤ N+

B

so βx = M+
A and β∗x = N+

A . Thus,

M−
B = (MA ∪MB)

− = αx > (αA ∧ αB)and

N+
A = (NA ∩ NB)

+ = β∗x < (βA ∧ βB)

and, hence,
(αA ∧ αB) /∈ ((MA ∪MB)

−, (MA ∪MB)
+)and

(βA ∨ βB) /∈ ((NA ∩ NB)
−, (NA ∩ NB)

+).

If αx = M+
B and α∗x = N+

B , then

M−
A ≤ M+

B ≤ M+
A andN−A ≤ N+

B ≤ N+
A

and so
βx = max{M−

A , M−
B }andβ∗x = max{N−A , N−B }.

Assume that βx = M−
A and β∗x = N−A , then

M−
B ≤ M+

A < (αA ∧ αB) < M+
B ≤ M+

A and

N−B ≤ N−A < (βA ∨ βB) ≤ N+
B ≤ N+

A .

We have two cases
Case-1

M−
B ≤ M−

A < (αA ∧ αB) < M+
B ≤ M+

A and

N−B ≤ N−A < (βA ∨ βB) < N+
B ≤ N+

A .

Case-2
M−

B ≤ M−
A = (αA ∧ αB) ≤ M+

B ≤ M+
A and

N−B ≤ N−A < (βA ∨ βB) = N+
B ≤ N+

A .
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Case-1 contradicts the fact that CISs A and B are ECISs. From Case-2, it implies that

(αA ∧ αB) /∈ ((MA ∪MB)
−, (MA ∪MB)

+)and

(βA ∨ βB) /∈ ((NA ∩ NB)
−, (NA ∩ NB)

+)

since
(αA ∧ αB) = M−

A = (MA ∪MB)
+and

(βA ∨ βB) = N+
B = (NA ∩ NB)

+.

Assume that βx = M−
B and β∗x = N−B , then

M−
A ≤ M−

B ≤ (αA ∧ αB) ≤ M+
B ≤ M+

A and

N−A ≤ N−B < (βA ∨ βB) ≤ N+
B ≤ N+

A .

We have two cases
Case-1

M−
A ≤ M−

B < (αA ∧ αB) < M+
B ≤ M+

A and

N−A ≤ N−B < (βA ∨ βB) < N+
B ≤ N+

A

Case-2
M−

A ≤ M−
B = (αA ∧ αB) < M+

B ≤ M+
A and

N−A ≤ N−B < (βA ∨ βB) = N+
B ≤ N+

A .

Case-1 contradicts the fact that CISs A and B are ECISs. From Case-2, it implies that

(αA ∧ αB) /∈ ((MA ∪MB)
−, (MA ∪MB)

+)and

(βA ∨ βB) /∈ ((NA ∩ NB)
−, (NA ∩ NB)

+)

since
(αA ∧ αB) = M−

B = (MA ∪MB)
−and

(βA ∨ βB) = N+
B = (NA ∩ NB)

+.

Similar results can be obtained if we assume

βx = M−
B andβ∗x = N−A orβx = M−

A andβ∗x = N−B

Hence A ∪R B is ECIS in X.

Example 8. Let A = 〈MA/αA, NA/βA〉 and B = 〈MB/αB, NB/βB〉 be two ECISs in a set
X = {a, b, c} as shown in Table 3. Then it is easy to see that A and B satisfy the conditions

min{max{M+
A , M−

B }, max{M−
A , M+

B }} = (αA ∧ αB)

> max{min{M+
A , M−

B }, min{M−
A , M+

B }}and

min{max{N+
A , N−B }, max{N−A , N+

B }} > (βA ∨ βB)

= max{min{N+
A , N−B }, min{N−A , N+

B }}.

However, A ∪R B is not ECIS because
(αA ∧ αB)(a) = 0.7 ∈ [0.6, 0.8] = [(MA ∪ MB)

−(a), (MA ∪ MB)
+(a)] and (βA ∨

βB)(a) = 0.1 ∈ [0.05, 0.15] = [(NA ∩ NB)
−(a), (NA ∩ NB)

+(a)].
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Table 3. CISs A and B.

X MA/αA NA/βA MB/αB NB/βB

a [0.6, 0.7]/0.7 [0.1, 0.15]/0.1 [0.5, 0.8]/0.9 [0.05, 0.2]/0.03
b [0.1, 0.4]/0.5 [0.5, 0.6]/0.5 [0.2, 0.3]/0.3 [0.55, 0.65]/0.55
c [0.1, 0.2]/0.2 [0.45, 0.6]/0.45 [0.05, 0.3]/0.4 [0.4, 0.5]/0.3

The following theorems can be easily verified and proved; therefore, we omit the details.

Theorem 9. Let A = 〈MA/αA, NA/βA〉 and B = 〈MB/αB, NB/βB〉 be two ECISs in X, such that

min{max{M+
A , M−

B }, max{M−
A , M+

B }} ≥ (αA ∨ αB)

> max{min{M+
A , M−

B }, min{M−
A , M+

B }}and

min{max{N+
A , N−B }, max{N−A , N+

B }} > (βA ∧ βB)

≥ max{min{N+
A , N−B }, min{N−A , N+

B }},

then A ∩R B is also an ECIS in X.

Theorem 10. Let A = 〈MA/αA, NA/βA〉 and B = 〈MB/αB, NB/βB〉 be two ICISs in X. If

(αA ∧ αB) ≤ max{M−
A , M−

B }

(βA ∨ βB) ≥ min{N+
A , N+

B },

then A ∪R B is an ECIS in X.

Theorem 11. Let A = 〈MA/αA, NA/βA〉 and B = 〈MB/αB, NB/βB〉 be two ICISs in X. If

(αA ∨ αB) ≥ min{M+
A , M+

B }

(βA ∧ βB) ≤ max{N−A , N−B },

then A ∩R B is ECIS in X.

4. MCDM Method Based on Cubic Intuitionistic Sets

In this section, we will apply the proposed operations to deal with the MCDM prob-
lems using CISs.

Let A = {A1, A2, . . . , Am} be a set of alternatives, C = {C1, C2, . . . , Cn} be a set of
criteria, and E = {e1, e2, . . . , eK} be a set of experts. Suppose each alternative Ai(i =
1, 2, . . . , m) is assessed by the expert ek(k = 1, 2, . . . , K) with respect to the criteria Cj(j =
1, 2, . . . , n) using CISs. The proposed MCDM method is based on the following steps.

Step 1 Construct the decision matrices Rk = (rk
ij)m×n based on the assessed values of

expert ek(k = 1, 2, . . . , K) in the form of CISs rk
ij.

Step 2 Calculate the aggregated decision matrix R = (rij)m×n by using the proposed
operations as discussed in Definition 12 where rij = ∪P

k=1,2,...K
rk

ij or rij = ∪R
k=1,2,...K

rk
ij.

Step 3 Calculate the score value of each rij of the aggregated decision matrix R by using
Definition 9.

Step 4 Calculate the preference values of each alternative Ai(i = 1, 2, . . . , m) where P(Ai) =

∑m
i=1 ∑n

j=1 rij.

Step 5 Generate the ranking order of alternatives according to the non-increasing order of
the preference values.

139



Mathematics 2023, 11, 1190

An Application Example

Let us suppose that a technical committee composed of three technicians/experts
E = {e1, e2, e3}wishes to select the best available washing machine on the market. Suppose,
there are four types of washing machines A = {A1, A2, A3, A4} available in the market and
the experts are requested to select the best one amongst the four with respect to the criteria
set C = {C1 = eco-friendly, C2 = capacity, C3 = price}. Suppose the expert ek(k = 1, 2, 3)
assessed each alternative Ai(i = 1, 2, . . . , 4) under the criteria Cj(j = 1, 2, 3) by using the
CISs. We will now proceed with the following steps.

Step 1 According to the expert’s opinion, the individual decision matrices R1, R2, R3 are
constructed, which can be seen in Tables 4–6.

Table 4. Decision matrix R1 provided by expert e1.

Alt. C1 C2 C3

A1 〈[0.7, 0.8]/0.35, [0.1, 0.2]/0.6〉 〈[0.5, 0.6]/0.5, [0.2, 0.3]/0.2〉 〈[0.6, 0.7]/0.4, [0.1, 0.2]/0.7〉
A2 〈[0.2, 0.3]/0.25, [0.3, 0.4]/0.7〉 〈[0.3, 0.4]/0.65, [0.5, 0.6]/0.2〉 〈[0.2, 0.3]/0.7, [0.4, 0.5]/0.2〉
A3 〈[0.8, 0.9]/0.7, [0.05, 0.1]/0.3〉 〈[0.7, 0.8]/0.2, [0.1, 0.2]/0.4〉 〈[0.6, 0.7]/0.3, [0.2, 0.3]/0.6〉
A4 〈[0.5, 0.6]/0.5, [0.1, 0.2]/0.3〉 〈[0.6, 0.7]/0.3, [0.2, 0.3]/0.4〉 〈[0.4, 0.5]/0.6, [0.2, 0.3]/0.2〉

Table 5. Decision matrix R2 provided by expert e2.

Alt. C1 C2 C3

A1 〈[0.6, 0.7]/0.3, [0.1, 0.2]/0.5〉 〈[0.45, 0.5]/0.6, [0.25, 0.35]/0.3〉 〈[0.5, 0.6]/0.7, [0.2, 0.3]/0.2〉
A2 〈[0.25, 0.4]/0.5, [0.4, 0.5]/0.4〉 〈[0.4, 0.5]/0.6, [0.3, 0.4]/0.3〉 〈[0.3, 0.4]/0.4, [0.5, 0.6]/0.6〉
A3 〈[0.7, 0.8]/0.8, [0.1, 0.2]/0.1〉 〈[0.8, 0.9]/0.7, [0, 0.1]/0.3〉 〈[0.5, 0.6]/0.8, [0.1, 0.2]/0.2〉
A4 〈[0.4, 0.5]/0.4, [0.1, 0.2]/0.5〉 〈[0.5, 0.6]/0.4, [0.2, 0.3]/0.6〉 〈[0.5, 0.6]/0.5, [0.2, 0.3]/0.4〉

Table 6. Decision matrix R3 provided by expert e3.

Alt. C1 C2 C3

A1 〈[0.6, 0.7]/0.7, [0.2, 0.3]/0.2〉 〈[0.55, 0.6]/0.8, [0.2, 0.3]/0.1〉 〈[0.65, 0.7]/0.6, [0.2, 0.3]/0.3〉
A2 〈[0.2, 0.3]/0.5, [0.4, 0.5]/0.4〉 〈[0.3, 0.4]/0.6, [0.4, 0.5]/0.1〉 〈[0.25, 0.3]/0.4, [0.5, 0.6]/0.5〉
A3 〈[0.7, 0.85]/0.6, [0.1, 0.15]/0.2〉 〈[0.75, 0.8]/0.6, [0.1, 0.2]/0.3〉 〈[0.6, 0.7]/0.8, [0.1, 0.2]/0.2〉
A4 〈[0.5, 0.6]/0.7, [0.2, 0.3]/0.2〉 〈[0.5, 0.6]/0.5, [0.2, 0.3]/0.4〉 〈[0.4, 0.5]/0.7, [0.1, 0.2]/0.1〉

Step 2 The aggregated decision matrix R = (rij)4×3 is calculated with the help of the
proposed operation (P-union) as introduced in Definition 12 where rij = ∪P

k=1,2,3
rk

ij.

The aggregated decision matrix R is shown in Table 7.

Table 7. Aggregated decision matrix R by applying the P-union operation.

Alt. C1 C2 C3

A1 〈[0.7, 0.8]/0.7, [0.1, 0.2]/0.2〉 〈[0.55, 0.6]/0.8, [0.2, 0.3]/0.1〉 〈[0.65, 0.7]/0.7, [0.1, 0.2]/0.2〉
A2 〈[0.25, 0.4]/0.5, [0.3, 0.4]/0.4〉 〈[0.4, 0.5]/0.65, [0.3, 0.4]/0.1〉 〈[0.3, 0.4]/0.7, [0.4, 0.5]/0.2〉
A3 〈[0.8, 0.9]/0.8, [0.05, 0.1]/0.1〉 〈[0.8, 0.9]/0.7, [0, 0.1]/0.3〉 〈[0.6, 0.7]/0.8, [0.1, 0.2]/0.2〉
A4 〈[0.5, 0.6]/0.7, [0.1, 0.2]/0.2〉 〈[0.6, 0.7]/0.5, [0.2, 0.3]/0.4〉 〈[0.5, 0.6]/0.7, [0.1, 0.2]/0.1〉

Step 3 By using Definition 9, we will calculate the score value of each rij of the aggregated
decision matrix R. The matrix of the score values of the elements of R is shown in
Table 8.
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Table 8. Score values of the aggregated decision matrix.

Alt. C1 C2 C3

A1 0.5667 0.4500 0.5167
A2 0.0167 0.2500 0.1000
A3 0.7500 0.6667 0.5333
A4 0.4333 0.3000 0.4667

Step 4,5 Finally, the preference value P(Ai), i = 1, 2, ..., 4 of each alternative is calculated
where P(Ai) = ∑4

i=1 ∑3
j=1 rij. The preference values of alternatives by using the

P-union operation are given below:

P(A1) = 0.5111, P(A2) = 0.1222, P(A3) = 0.6500, P(A4) = 0.4000.

We can see that the ranking order of alternatives according to the non-increasing
order of their preference values is A3 � A1 � A4 � A2. Similarly, the preference
value of each alternative by using the R-union operation is calculated and given as
follows:

P(A1) = 0.2778, P(A2) = −0.0444, P(A3) = 0.4389, P(A4) = 0.2333

In this case, the ranking order of alternatives is A3 � A1 � A4 � A2.

We can observe that the ranking order of alternatives by using the R-union operation is
exactly the same as that obtained with the help of the P-union operation, which shows the
robustness of the proposed approach. We can easily see that by using the P-intersection and
R-intersection operations as discussed in Definition 12, the ranking order of alternatives
will lead to the reverse order of the raking orders obtained in the P-union and R-union
operations, respectively.

5. Conclusions

In this research work, we introduced a new modified form of CIS and discussed some
of its related properties. We further introduced two types of CISs, i.e., ICIS and ECIS.
The P-(R-) order, P-(R-) union, P-(R-) intersection of CISs, and some useful properties
were also discussed with necessary examples. As a supplement, we proved that the P-
union and P-intersection of ICISs are also ICISs. Some conditions for the P-(R-) union
and P-(R-) intersection of two ECISs to be ICISs were also provided in this paper. We also
provided a few conditions for the P-(R-) union and P-(R-) intersection of two ECISs to be
ECISs. To check the effectiveness and validity of the proposed operations, we provided an
application example at the end by solving a MCDM problem.

In future work, more research can be conducted regarding the intuitionistic cubic soft
set and its application in information science and knowledge systems. We intend to apply
the intuitionistic cubic soft sets to algebraic structures.
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Abstract: Uncontrolled heap memory consumption, a kind of critical software vulnerability, is utilized
by attackers to consume a large amount of heap memory and consequently trigger crashes. There
have been few works on the vulnerability fuzzing of heap consumption. Most of them, such as
MemLock and PerfFuzz, have failed to consider the influence of data flow. We proposed a heap
memory consumption guided fuzzing model named MemConFuzz. It extracts the locations of
heap operations and data-dependent functions through static data flow analysis. Based on the data
dependency, we proposed a seed selection algorithm in fuzzing to assign more energy to the samples
with higher priority scores. The experiment results showed that the MemConFuzz has advantages
over AFL, MemLock, and PerfFuzz with more quantity and less time consumption in exploiting the
vulnerability of heap memory consumption.

Keywords: fuzzing; memory consumption; data flow; taint analysis

MSC: 90C70

1. Introduction

Fuzzing is a kind of random testing technique and is widely used to discover vulner-
abilities in computer programs. Blind samples mutation fuzzing models and coverage-
guided fuzzing models fail to select interesting seeds and waste testing time. Many fuzzing
models are currently guided by exploring ways to improve path coverage. It is believed
that the more code blocks that can be covered, the more likely potential vulnerability
will be triggered. Many state-of-the-art fuzzing models typically use information from
the programs’ control flow graph by the program under test (PUT) to determine which
samples would be selected as seeds for further mutation. Although there has been a lot
of research work on memory overflow vulnerability, most of these methods have mainly
exploited memory corruption vulnerabilities, such as stack buffer overflow, use-after-free
(UAF), out-of-bounds reading, and out-of-bounds writing, etc. Memory corruption occurs
when the contents of memory are overwritten due to malicious instructions or normal
instructions with unexpected data beyond the program’s original intention. For example, a
buffer overflow occurs when a program tries to copy data into a variable whose required
memory length is larger than the target. When corrupted memory contents are later used,
the program triggers a crash or turns into a shellcode. Most fuzzing models of memory
corruption vulnerability depend on the control flow, and seldom on the data semantics.

Memory consumption is a different kind of memory vulnerability in contrast to
memory corruption, which is more like a logical vulnerability potentially existing in the
action sequence of memory allocation and deallocation. With one goal of making more
efficient use of the memory, different code segments in general are stored in different
memory areas, among which the stack area and heap area are the two most important types
of memory areas. In the process of a program running, the stack area grows up or down
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by calling subfunctions. It contains local variables, stack register ebp of parent function,
return address, and parameters from the parent function. Generally, the heap areas are a
series of memory blocks allocated and freed by the programs, which can be used by the
pointer of heap blocks. Memory consumption occurs in the process of heap allocation and
release. When a program triggers instructions for heap memory allocation enough times
without deallocating unused memory in time, it would likely lead to a crash. Uncontrolled
heap memory consumption is therefore a critical issue of software security, and can also
become an important vulnerability when attackers control execution flow to consume large
amounts of memory, and thus, launch denial-of-service attacks.

To solve the problems in vulnerability fuzzing of heap consumption, we propose a
heap memory consumption-guided fuzzing model named MemConFuzz in considering
the data flow analysis. This paper makes the following contributions:

(1) A novel algorithm is proposed to obtain locations of heap memory operations by taint
analysis based on data dependency. The relation of data dependency is deduced from
CPG (Code Property Graph). The location serves as an important indicator for seed
selection.

(2) A new algorithm for prioritizing seed selection is proposed based on data dependency
for discovering memory consumption vulnerability. Input samples covering more
heap operations and data-dependent functions will be assigned high scores, and they
are chosen as seeds and assigned more energy in the fuzzing loop.

(3) A novel memory consumption guided fuzzing model, MemConFuzz, is proposed.
Compared with AFL [1], MemLock [2], and PerfFuzz [3], MemConFuzz has a sig-
nificant improvement in discovering memory consumption vulnerability with more
quantity and lower time cost.

The rest of the paper is organized as follows. Section 2 introduces related work.
Section 3 presents the algorithm for extracting locations of heap operations through taint
analysis based on data dependency. In Section 4, the proposed MemConFuzz model is
described. In Section 5, the experimental process and the results are discussed. Finally, we
conclude the paper in Section 6.

2. Related Work

Methods of discovering vulnerability are divided into static techniques and dynamic
techniques. Static methods are used to make classification between the target program and
known CVE (Common Vulnerabilities and Exposures) code based on structural similarity
or statistical similarity by artificial intelligence technology. Dynamic methods include
generation fuzzing, coverage-guided fuzzing, and symbolic execution.

Generation fuzzing adopts a generator to create required samples by mapping out all
possible fields of the target program. The generator then separately mutates each of these
fields to potentially cause crashes. In the generating process, those methods may result in a
large number of invalid samples being rejected by the program as they do not follow the
correct format. Coverage-guided fuzzing models integrate instrumentation into the target
program before tracing the running information. To discover the special target areas in the
program, a directed greybox fuzzing is proposed. Symbolic execution analyzes the target
program to determine what inputs cause each part of this program to execute. Through
symbolic execution, the required samples that execute the constraint code path to reach the
target basic block are solved by an SMT (Satisfiability Modulo Theories) solver.

2.1. Static Techniques Based on Artificial Intelligence

During the research of discovering the vulnerability, the bottlenecks are related to
how to generate good samples, how to improve path coverage, and how to provide more
knowledge support for dynamic methods. Artificial intelligence has been used in the field
of vulnerability discovery in recent years.

Machine learning is the most important technology of artificial intelligence, which
attains knowledge about features obtained by analyzing an existing vulnerability-related
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dataset. This knowledge can be used to analyze new objects and thus predict potentially vul-
nerable locations in static mode. Machine learning methods can be divided into traditional
machine learning, deep learning, and reinforcement learning.

Rajpal [4] used neural networks to learn patterns in past samples to highlight useful
locations for future mutations, and then improved the AFL approach. Samplefuzz [5]
combined learn and fuzz algorithms to leverage learned samples’ probability distribution
to make the generation of grammar suitable samples by using past samples and a neural
network-based statistical machine learning. NEUZZ [6] leveraged neural networks to
model the branching behavior of programs, generating interesting seeds by strategically
modifying certain bytes of existing samples to trigger edges that had not yet been executed.
Angora [7] modeled the target behavior, treated the mutation problem as a search problem,
and applied the search algorithm in machine learning, which used a discrete function
to represent the path from the beginning of the program to a specific branch under path
constraints, and thus used the gradient descent search algorithm to find a set of inputs that
satisfied the constraint and make the program go through that particular branch. Cheng [8]
used RNNs to predict new paths of the program and then fed these paths into a Seq2Seq
model, increasing the coverage of samples in PDF, PNG, and TFF formats. SySeVR [9]
proposed a systematic framework for using deep learning to discover vulnerabilities.
Based on Syntax, Semantics, and Vector Representations, SySeVR focuses on obtaining
program representations that can accommodate syntax and semantic information pertinent
to vulnerabilities. VulDeePecker [10] is a deep learning-based vulnerability detection
system, which has presented some preliminary principles for guiding the practice of
applying deep learning to vulnerability detection. μVulDeePecker [11] proposed a deep
learning-based system for multiclass vulnerability detection. It introduced the concept
called code attention to learn local features and pinpoint types of vulnerabilities.

However, most of these works are computationally intensive. The cost is very high
because deep learning requires a large amount of data and computing power. The quality
and quantity of the training data set have a direct impact on the accuracy of the training
model, and there is also a key challenge to accurately locate the instructions where the
vulnerability occurs.

2.2. Dynamic Execution Fuzzing Technique

Fuzzing has gained popularity as a useful and scalable approach for discovering
software vulnerabilities. In the process of dynamic execution, that is, the fuzzing loop,
the fuzzer generally uses the seed selection algorithm to select favorable seeds based on
the feedback information of PUT execution, and then performs seed mutation according
to a series of strategies to generate new samples and explore paths of the target program.
Fuzzing is widely used to test application software, libraries, kernel codes, protocols, etc.
Furthermore, symbolic execution is another important approach that can create a sample
corresponding to a specific constraint path by the SMT solver. The following mainly
introduces several popular dynamic technologies and methods in fuzzing.

A. Coverage-guide fuzzing
Coverage-guide greybox fuzzing (CGF) is one of the most effective techniques to

discover vulnerabilities. CGF usually uses path coverage information to guide path explo-
ration. In order to improve the coverage of fuzzers, researchers have focused on optimizing
the coverage guide engine, which is the main component of fuzzers.

LibFuzzer [12] provided samples into the library through a specific fuzzing entry
point, used LLVM’s SanitizerCoverage tool to obtain code coverage, and then performed
mutations on the sample to maximize coverage. Honggfuzz [13] proposed a genetic algo-
rithm to efficiently mutate seeds. AFL [1] is a coverage-based fuzzing tool that captures
basic block transitions by instrumentation and records the path coverage, thereby adjusting
the samples to improve the coverage and increase the probability of finding vulnerabilities.
OSS-FUZZ [14] was a common platform built by Google to support fuzzing engines in
combination with Sanitizers for fuzzing open source programs. GRIMOIRE [15], Supe-
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rion [16], and Zest [17] leveraged the knowledge in highly structured files to generate
well-formed samples and traced the coverage of the program to reach deeper levels of code.
Therefore, branch coverage was increased. CollAFL [18] proposed a coverage-sensitive
fuzzing scheme to reduce path conflicts and thus improve program branch coverage. Ten-
sorFuzz [19] used the activation function as the coverage indicator and leveraged the
algorithm of fast-approximate nearest neighbor to check whether the coverage increases
to accordingly adjust the neural network. PerfFuzz [3] generated input samples by us-
ing multi-dimensional feedback and independently maximizing execution counts for all
program locations. Fw-fuzz [20] obtained the code coverage of firmware programs of
MIPS, ARM, PPC, and other architectures through dynamic instrumentation of physical
devices, and finally implemented a coverage-oriented firmware protocol fuzzing method.
T-fuzz [21] used coverage to guide the generation of input, and when the new path could
not be accessed, the sanity check was removed to ensure that the fuzzer could continue to
discover new paths and vulnerabilities.

Most coverage-based fuzzers treat all codes of a program as equals. However, some
vulnerabilities hide in the corners of the code. As a result, the efficiency of CGF suffers and
efforts are wasted on bug-free areas of the code.

B. Symbolic execution
Symbolic execution is a technique to systematically explore the paths of a program,

which executes programs with symbolic inputs. When used in the field of discovering
vulnerabilities, symbolic execution can generate new input samples that have a path
reaching target codes from the initial code by solving path constraints with the SMT solver.
It can also be said to deduce input from results under constraints.

Driller [22] leveraged fuzzing and selective concolic execution in a complementary
manner. Angr [23], which is based on the model popularized and refined by S2E [24]
and Mayhem [25], was used by Driller to be a dynamic symbolic execution engine for
the concolic execution test. Driller uses selective concolic execution to only explore the
paths deemed interesting by the fuzzer and to generate inputs for conditions that the
fuzzer cannot satisfy. SAGE [26] is equipped with whitebox fuzzing instead of blackbox
fuzzing, with symbolic execution to record path information and constraint solvers to
explore different paths. QSYM [27] adopted a symbol execution engine for a greybox
fuzzing approach to reach deeper code levels of the program. SAFL [28] augmented the
AFL fuzzing approach by additionally leveraging KLEE as the symbolic execution engine.

However, the disadvantage of symbolic execution is that the increased analysis process
leads to the program running overhead. In addition, as the depth of the path increases,
the path conditions will become more and more complex, which will also pose a great
challenge to the constraint solver.

C. Directed greybox fuzzing
Directed Greybox Fuzzing (DGF) is a fuzzing approach based on the target location

or the specific program behavior obtained from the characteristics of a vulnerable code.
Unlike CGF, which blindly increases path coverage, DGF aims to reach a predetermined
set of places in the code (potentially vulnerable parts) and spends most of the time budget
getting there, without wasting resources emphasizing irrelevant parts.

AFLgo [29] and Hawkeye [30] used distance metrics in their programs to perform
user-specified target sites. A disadvantage of the distance-based approach is that it only
focuses on the shortest distance, so when there are multiple paths to the same goal, longer
paths may be ignored, resulting in lower efficiency. MemFuzz [31] focused on code regions
related to memory access, and further guided the fuzzer by memory access information
executed by the target program. UAFuzz [32] and UAFL [33] focused on UAF vulnerability-
related code regions, leveraging target sequences to find use-after-free vulnerabilities,
where memory operations must be performed in a specific order (e.g., allocate, free then
store/write). Memlock [2] mainly focused on memory consumption vulnerabilities, took
memory usage as the fitness goal, and searched for uncontrolled memory consumption
vulnerabilities, but did not consider the influence of data flow. AFL-HR [34] triggered
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hard-to-show buffer overflow and integer overflow vulnerabilities through coevolution.
IOTFUZZER [35] used a lightweight mechanism based on IoT mobile device APP, and
proposed a black-box fuzzing model without protocol specifications to discover memory
corruption vulnerabilities of IoT devices.

However, these works focus more on specific measurement strategies. When looking
for the optimal path, it is easy to get stuck in local blocks of the program and ignore other
paths that may lead to vulnerabilities, thus making the fuzzing results inaccurate.

D. Data flow guided fuzzing
Data flow analysis increases the knowledge set of the fuzzer and semantic information

of the PUT by adding data flow information, and thus essentially makes the code charac-
teristics and program behavior clear. Data flow analysis methods, such as taint analysis,
can reflect the impact of the mutation on samples that could help optimize seed mutation
strategy, input generation, and the seed selection process.

SemFuzz [36] tracked kernel function parameters on which key variables depend
through reverse data flow analysis. SeededFuzz [37] proposed a dynamic taint analysis
(DTA) approach to identify seed bytes that influence the values of security-sensitive pro-
gram sites. TIFF [38] proposed a mutation strategy to infer input types through in-memory
data structure identification and DTA, which increased the probability of triggering mem-
ory corruption vulnerabilities. However, data flow analysis, especially DTA, often increases
runtime overhead and slows down the program while obtaining accurate data information
of PUT. Fairfuzz [39] and Profuzzer [40] all adopted lightweight taint analysis to find the
guiding mutation solution and obtain the variable taint attributes. GREYONE [41] equipped
fuzzing with lightweight Fuzzing-Based Taint Inference (FTI) to carry out taint calibration
for the branch jump variables of the program control flow. In the process of fuzzing, they
mutate the specific bytes of samples and observe the changes of tainted variables to obtain
the data dependency relationship between seed bytes and tainted variables.

However, it is impossible to understand the semantics of control flow by simply using
data flow for vulnerability discovery, and detailed data flow analysis will increase overhead
and reduce fuzzing efficiency. Usually, it can only be used as an important supplementary
method of vulnerability discovery based on control flow analysis.

In summary, data flow analysis has become a future research trend, as more addi-
tional information of PUT can be obtained for better guidance of fuzzers. Therefore, the
performance of the fuzzer can be better played for different vulnerabilities.

3. Enhanced Heap Operation Location Based on Data Semantics

In order to focus on discovering heap vulnerability, we first analyze the program
in static mode to identify the locations of heap operation. We not only try to obtain the
subsequence of heap operation, but also deduct the relations of heap operation based
on data semantics. To achieve this goal, we build CPG including CFG and DDG (Data
Dependency Graph). CFG is used to describe the sequence of operations, while DDG is used
to point out the relationship between heap pointers. Based on data dependency deduced
from CPG, we propose an algorithm to extract the locations of suspected dangerous heap
operation code areas.

3.1. Examples of Memory Consumption Vulnerability

If an attacker can control the allocation of limited software resources and use a large
number of system resources, the attacker may consume all available resources and then
trigger a denial of service attack, which belongs to the category of resource consumption
vulnerability CWE-400. This kind of vulnerability may prevent authorized users from
accessing the software and have harmful effects on the surrounding memory environment.
For example, a memory exhaustion attack could render software or even the operating
system unusable. Therefore, we focus on the heap memory consumption vulnerability of
code blocks, which is divided into two types named uncontrolled memory allocation and
memory leaks.
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Definition 1. Memory consumption is defined as a vulnerability occupying process memory
resources by triggering data storage instructions several times, which affects the normal running of
the process and leads to a denial-of-service attack.

Definition 2. Uncontrolled memory allocation is defined as a vulnerability related to heap
memory allocation and release, which allocates memory based on untrusted size values, but does not
validate or incorrectly validate the size, and allows any amount of memory to be allocated. Its CWE
number is CWE-789.

Definition 3. Memory leak is defined as a vulnerability also related to heap memory allocation
and release, in which the program does not adequately track and free the allocated memory after
allocation, and thus slowly consumes the remaining memory. Its CWE number is CWE-401.

Compared with non-memory consuming vulnerabilities, uncontrolled memory allo-
cation vulnerability and memory leak vulnerability are more difficult to discover because
their conditions of triggering crashes are stricter.

CVE-2019-6988 is a public CVE, and this vulnerability occurs in the opj_calloc function.
This vulnerability is formed because the program code lacks the detection of the allocated
amount and the security mechanism for specially crafted files. In Figure 1, the code snippet
related to an uncontrolled memory allocation vulnerability (CVE-2019-6988) exists in the
executable program OpenJPEG version 2.3.0. In the source code project, the function
opj_tcd_init_tile in file tcd.c is called when the OpenJPEG is running to decompress the
“specially-crafted” images. This vulnerability allows a remote attacker to attempt too
much memory allocation by function opj_calloc in the file opj_malloc.c, which calls the
system function calloc to allocate a large amount of heap memory and ultimately results in
a denial-of-service attack due to a lack of enough free heap memory.

 
Figure 1. Code snippet from tcd.c/tgt.c in OpenJPEG v2.3.0.

As shown in Figure 2, the code snippet concerning memory leaks vulnerability exists
in a program case of Samate Juliet Test Suite. This case is a memory leak vulnerability
caused by allocating heap memory without release. Specifically, the case uses the function
malloc on line 5 to allocate memory and checks whether the allocation is successful or not
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on line 7. However, at the end of the function, the allocated memory data is not effectively
released, eventually resulting in a heap memory leak.

 
Figure 2. Code snippet from Samate Juliet Test Suite.

3.2. Location of Heap Operation Code Based on Data Semantic

In order to directionally discover heap-memory-consumed vulnerabilities, how to
obtain the locations of suspected heap operations is the first essential goal. Once the
locations are identified, they will be used as a guided factor to optimize the guidance
strategy of vulnerability fuzzing, which is our second essential goal.

We first construct CPG based on the static analysis tool Joern. Then, a scheme is
proposed to deduce the explicit and implicit semantic relations between heap pointers
based on data flows from CPG. In addition, based on the semantic relations between
heap pointers, we analyze the abnormal sequence of heap memory operation concerning
allocation and release, and thus demarcate the heap operation code areas with suspected
heap consumption. These locations will serve as an important indicator for selecting seeds
from input samples during the fuzzing procedure.

3.2.1. Construct CPG

CPG is a graph combining multi-level code information where the information at
each level can be related to each other. CPG can be obtained by combining AST (Abstract
Syntax Trees), CFG, DDG, and CDG (Control Dependency Graph). Compared with other
structures, CPG contains much richer data and relational information, which enables more
complex and detailed static analysis of the program source code.

The CPG is composed of nodes and edges. Nodes represent the components of
PUT, including functions, variables, etc. Each node has a type, such as a type METHOD
representing a method, PARAM representing a parameter, and LOCAL representing a local
variable. The directed edges represent the relationship between nodes, and the label is the
description of the relationship, such as a label DDG from node A to node B represents B’s
data dependency on A.

The program files can be parsed using the source code analysis tool Joern to obtain
the CPG. In order to show what useful data can be obtained from CPG for data relation-
ship derivation, we analyze OpenJPEG v2.3.0 containing CVE-2019-6988 introduced in
Section 3.1. Due to the huge number of codes, we only show the partial CPG shown in
Figure 3. Figure 3a is the full CPG of the opj_calloc function, in which the calloc method
is the partial zoom shown as Figure 3b. From Figure 3b, we can find the calloc method is
dependent on the parament t_nmemb and t_size. We also find the parament t_nmemb
and t_size are dependent on the return method. Combined with CFG, we can derive the
potential dependent relationship between the calloc function and the calloc function and the
return function.
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(a) CPG of opj_calloc method. 

 
(b) CPG of calloc method. 

Figure 3. CPG of OpenJPEG v2.3.0 opj_calloc and calloc methods.

Therefore, after constructing the CPG of the program, we analyze data dependencies
using taint analysis on CPG and determine the location of heap operations.

3.2.2. Location Extraction Based on Data Dependency

Current research faces the challenge of finding accurate locations for code areas related
to heap operations. In this section, we introduce how to obtain the data dependency by taint
analysis. Taint analysis is an effective technology for data flow analysis. In our research
work, we use a lightweight static taint analysis method to locate potentially vulnerable
code areas.

Because CFG can reflect the jump of code and show all branches, most state-of-
the-art fuzzers use CFG as an analysis object. Meanwhile, the data flow can reflect the
direct relationship between variables and the function parameters, so some fuzzers also
consider data flow as the analysis object. The data flow and the dependence on data
semantics can provide positive help for understanding the real behavior of CFG, so we
use these advantages to better serve the seed selection for discovering our required types
of vulnerabilities. Using CPG for program analysis has many advantages. After using
Joern to parse the source code into CPG, it does not need to be further compiled. CPG will
be loaded into memory, and we can perform traversal queries, evaluate function leakage
problems, perform data flow analysis, etc.

Dynamic taint analysis usually increases program runtime overhead. To this end, we
use a lightweight static data flow analysis method to obtain the suspected locations in
the target program, thereby reducing the impact on the program runtime overhead. We
mainly focus on data dependencies in CPG during static taint analysis. We analyze the CPG
to obtain relevant function points that have data dependencies between program input
and memory allocation, that is, taint attributes information, and record them. Specifically,
we use a static taint analysis approach to obtain the location of functions including heap
operation.

Algorithm 1 is proposed to extract location by taint analysis based on data dependency.
The static taint analysis is used to track the data flow of heap operation functions such as
malloc, calloc, realloc, free, new, delete, and their deformation functions. The source set of the
algorithm is the parameter of all the program methods and all the called functions of the
program, and the sink set is the function arguments. In the process of data flow analysis, all
relevant nodes from source to sink are traversed, and we use Joern’s built-in functions, such
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as reachableBy and reachablebyFlows, to query the paths from all sources to the sink points in
its CPG. Finally, matched functions are obtained, and duplicated ones are removed.

Algorithm 1: Taint analysis approach for locating potentially vulnerable functions

Input: CPG of program under test P 
Output: Set of dataflow functions Setfuncs 

1  Setfuncs = ; 
2  Target heap functions funcs  {malloc, calloc, free...}; 
3  for f in funcs do 
4 Source = called functions, methods’ params of P in CPG; 
5 Sink = args of f in CPG; 
6 if Sink dataFlowReachable by Source then 
7     Nodesrelated = ; //nodes which are data related; 
8     Nodesrelated   Nodesrelated Traverse(CPG of P); 
9     paths = Query(Nodesrelated, CPG); //dataflow paths of heap opreations; 

10 for p in paths do 
11     (statements, line num, funcsp, source locations)  regularMatch(p); 
12     if funcsp not   then 
13         Remove duplicate items in funcsp; 
14         Setfuncs   Setfuncs funcsp; 

15 return Setfuncs; 

Figure 4 shows the partial data flow of the heap memory allocation function obtained
through static taint analysis in OpenJPEG v2.3.0, which is a data flow path to the parameter
value of the standard library function malloc. Each path contains four aspects of informa-
tion. Among them, the tracked column contains the statements in the queried nodes, the
lineNumber column contains the line number in the source code file, the method column
displays the method names where the statements are located, and the file column displays
the locations of the source code file. To construct the source set, we mark the parameters
of all methods and call all functions in the CPG into the source set. We find all call-sites
for all methods in the graph with the name malloc and mark their arguments into the sink
set. After identification, we obtain a data flow path to malloc in our query of OpenJPEG’s
CPG. Eventually, we collect dataflow-related functions jpip_to_jp2, fread_jpip, and opj_malloc,
which were obtained in the dataflow path after the static taint analysis.

 

Figure 4. OpenJPEG v2.3.0 partial data flow path.

In summary, the proposed algorithm 1 analyzes the data flow related to heap memory
allocation and release in the program, and obtains the locations, variables, and parameters
related to heap operation, which guide seed selection in the following fuzzing process.
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4. MemConFuzz Model

After analyzing the CPG in the static analysis stage, we obtain the function locations
related to the data flow of the heap memory allocation and release functions and quantita-
tively record the sizes of the memory block allocated and released by the heap operations.
We feed these back to the fuzzer to prioritize the detection of relevant vulnerable code areas
in the fuzzing loop.

The prioritizing discovery of consumption-type vulnerabilities is a novel contribution
to this paper. Through the calibration of suspected heap memory-consuming instructions,
the priority discovering of them is realized. Through investigating the existing vulnerability
discovery models, we found that there are few studies on the discovery of heap memory
consumption vulnerabilities. At the same time, the existing methods for discovering such
vulnerabilities have many deficiencies, such as the lack of the important data flow analysis
related to heap operations. Therefore, we propose our model, which has benefits for our
purpose of focusing on heap consumption vulnerabilities discovery, while taking into
account the discovery of other vulnerabilities.

4.1. Overview

To address problems mentioned in the previous sections, we propose a memory
consumption-guided fuzzing model, MemConFuzz, as shown in Figure 5. The main
components of MemConFuzz contain a static analyzer, an executor, fuzz loop feedback, a
seed selector, and a seed mutator. In MemConFuzz, the static analyzer marks the dataflow-
related edges and records the trigger value for each edge by scanning the source code and
then inserts code fragments to update the value in the running program. The executor
executes the instrumented program. Fuzz loop feedback is used to record and update
related information to guide the seed selector after the program execution. The seed selector
adopts a priority strategy to select seeds according to the different scores of the seed bank.
The seed mutator mutates the selected seed to test the program in the fuzzing loop.

 
Figure 5. MemConFuzz model.

MemConFuzz contains two main stages: the static analysis stage and the fuzzing
loop stage. Dark colors indicate optimized changes to the original AFL approach. Static
analysis performs taint position identification and memory function identification for
instrumentation. We use lightweight instrumentation to capture basic block transitions,
heap memory function locations, and data-flow-dependent function locations at compile-
time, while gaining coverage information, heap memory size, and data-flow-dependent
information during runtime.
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In the static analysis stage, we instrument all the captured target locations and then
recompile to obtain an instrumented file. In the main fuzzing loop, the seed is selected for
mutation and delivered to the instrumented file for execution. The model continuously
tracks the state of the target program and records the cases that cause the program to crash.
At the same time, the recorded feedback information is continuously submitted to the seed
selector for priority selection, which helps to discover more heap memory consumption
vulnerabilities.

4.2. Code Instrumentation at Locations of Suspected Heap Operation

In order to record the execution information in the fuzzing process, the bitmap of AFL
records the number of branch executions, and the perf_bits of Memlock records the size of
the heap allocation. The MemConFuzz also adopts a shared memory and incrementally
adds dataflow_shm to store the numbers of the data-dependent functions triggered.

The MemConFuzz is derived from AFL. MemConFuzz adds two shared memory areas
in AFL and mainly expands the afl-llvm-rt.o.c and afl-llvm-pass.so.cc files for instrumen-
tation. The instrumented contents include branch coverage information, heap memory
allocation functions, and data-dependent functions.

The first shared memory perf_bits records the size of the memory allocation and release
during runtime. In the static analysis stage, we use LLVM [42] to obtain the function Call
Graph (CG) and CFG of the program. Through traversing CG and CFG, we search the
locations of basic blocks related to heap memory allocation and release functions, including
malloc, calloc, realloc, free, new, delete, and their variant functions, and locate the call-sites of
heap functions for instrumentation. During the fuzzing loop, perf_bits records the amount
of consumed heap memory.

As shown in Figure 6 below, there are four basic blocks A, B, C and D representing
nodes in the CFG of the program. The program will first go to B or C according to a branch
condition. Once the branch condition for block C is met, the variable size is initialized, and
then the memory allocation operation is performed in the block D. We traverse branches
of the basic block described by IR language from the beginning of the program. Once we
find a match among all our target heap functions, we locate the potential block D and
instrument it.

Figure 6. An example of basic block transition.

Meanwhile, we add the second shared memory dataflow_shm to record the numbers
of data-dependent functions. We traverse the basic blocks of the program to search the
locations that belong to Setfuncs, and then complete instrumentation. Specifically, after
using these locations to analyze the program, we instrument the code of increasing count
in dataflow_shm. In the fuzzing loop stage, MemConFuzz can increase the count value
in dataflow_shm corresponding to triggered data-dependent functions when the target
program executes an input sample. Thus, we can get the coverage information of heap
operation when the execution of an input sample is completed.
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In the instrumentation pass file, we declare a pointer variable, DataflowPtr, pointing
to the shared memory area dataflow_shm. Then, the values of dataflow_shm are changed
based on the number of data-dependent functions triggered. We inject instrumentation
codes into the program during compilation. The approximate formulas for instrumentation
are shown below, where Formula (1) marks the ID of the current block with a random
number cur_location, Formula (2) shows that by applying the XOR operation on two IDs of
the current block and previous block as the key, the corresponding value in dataflow_shm
is updated by adding dataflowfunc_cnt to self-value, where the shared_mem[] array is our
dataflow_shm, the size of which is 64 Kb, and dataflowfunc_cnt is the count of data-dependent
functions triggered on this branch, and, in Formula (3), in order to distinguish the paths in
different directions between two blocks, the cur_location is moved to the right by one bit as
the prev_location to complete the marking of these two blocks.

cur_location = <COMPILE_TIME_RANDOM> (1)

shared_mem[cur_location ˆ prev_location] + = dataflowfunc_cnt (2)

prev_location = cur_location >> 1 (3)

We instrument the program based on static analysis to get the instrumented program.
Therefore, we prioritize guidance to the suspected heap operation areas in the fuzzing loop
stage to realize our directed fuzzing on the heap consumption vulnerability.

4.3. Strategy of Seed Priority Selection

This model proposes a fine-grained seed priority strategy for discovering heap memory
consumption vulnerabilities. Seeds are mainly scored by the following indicators:

(1) We use dataflow_funcs as the metric, which is instrumented during the static analysis
stage to record the number of data-dependent functions triggered during execution.
The more related functions that are triggered, the higher the seed priority.

(2) Like Memlock, we record the size of the allocated heap memory; the larger the heap
memory that is allocated, the more power this input sample gets. The input samples
with more power at the top of the queue are selected as seeds. We use new_max_size
as a flag which represents the maximum memory newly consumed on the heap in
history. When the flag is triggered, we increase the score of this seed and enlarge its
mutation time.

(3) In addition, when no data-dependent function has triggered and the new maximum al-
located memory has not been reached, MemConFuzz still retains AFL’s path-coverage-
based seed prioritization strategy to cover as many program branches as possible.

The first two strategies will help the fuzzer trigger more potential heap memory
consumption vulnerabilities.

Principle 1. During execution, the more data dependent functions that are recorded, the greater the
coefficient increase. In the end, the seed score increases and the energy obtained increases.

Principle 2. The original scoring strategy of AFL should also be taken into account. The final score
of the seed should not be too large, because the execution process may be trapped in local code blocks
of the program.

According to the above two seed selection formula design principles, and in order
to evaluate the excellence degree of each input sample, a scoring formula is proposed,
in which the more data-dependent functions are recorded, the larger the coefficients are
increased, and the higher scores are achieved. In addition, we set the parameters 1.2 and
1/5 according to the design principle, making sure to set the multiplier factor of the increase
to the maximum value of 1.2, so that the evaluating strategy does not have too much impact
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to avoid missing out on other good samples, which are not used for discovering memory
consumption vulnerability, but can be used for non-memory consumption vulnerability.

Priority_score(samplei) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Pa f l(samplei)·

(
1.2− 1

5 e−data f low_ f uncs
)

, data f low_ f uncs
∣∣∣∣∣∣ new_max_size

Pa f l(samplei) , otherwise

(4)

Equation (4) shows the seed priority strategy adopted by MemConFuzz. Specifically,
for each samplei in the sample queue, when the data-dependent function is triggered or the
new maximum memory is reached, we multiply the original AFL score value Pafl(samplei)
by our formula and then obtain different seed scores under different numbers of data-
dependent functions. The dataflow_funcs is the total number of data-dependent functions
triggered by the sample during the fuzzing loop. Otherwise, we adopt the original AFL
strategy, which is to perform sample scoring according to the execution speed and length
of the samples. At last, we choose some samples with high Priority_score values from the
sample queue as seeds.

In summary, every time the program executes, we detect code coverage, memory usage,
and data-dependent functions triggered. For the impact of heap operations, we adopt two
equations for different cases. The samples that trigger more data-related functions, allocate
larger heap memory sizes, and have higher program path coverage are preferentially given
higher power. Furthermore, we set up a maximum time in the havoc mutation phase to
prevent wasting too much test time.

4.4. Proposed Model

We implement a directed fuzzing model MemConFuzz to discover heap memory con-
sumption vulnerabilities. Unlike AFL, our model first performs a static analysis approach
to analyze program data flow, and then uses the data flow information as a guide in discov-
ering heap memory consumption vulnerabilities. Algorithm 2 describes the workflow of
MemConFuzz.

The current vulnerability discovery models are faced with the challenge of not being
able to prioritize the discovery of heap memory consumption vulnerabilities, and there is a
problem of inaccurate static analysis caused by a lack of data flow information. Algorithm 2
is the pseudo code of our proposed fuzzing model, which is improved based on AFL, and
we have optimized and improved the seed selection.

In the seed queue Queue, we select a seed q based on our seed priority strategy and
then assign energy to the mutation. Meanwhile, we record the hashes, memory size, and
data-dependent functions in each running process. If the q’ causes the program to crash,
add it to the crash set. Otherwise, we select those seeds that can trigger a new path, more
heap memory allocation, or trigger more data-dependent functions, set them as interesting
samples, and add them to the seed queue for the mutation of the next loop. Finally, the
collection set of seeds that trigger heap memory consumption vulnerabilities and cause
crashes is obtained.
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Algorithm 2: Memory Consumption Fuzzing

Input: Instrumented program P, Initial seed input S 
Output: Set of crash outputs Setcrash 

1  Setcrash = ; 
2  Queue  S; 
3  while time and resource budget do not expire do 
4  if Queue not  then 
5      q = ChooseNext(Queue); // Our Modifications; 
6      e = AssignEnergy(q); 
7      if i from 1 to e then 
8          q’ = Mutate(q); 
9          (tracebitsi, memoryi, dataflowfuncsi)  Run(q’, P); 
10          hashi = Hash(tracebitsi); 

11          if q’ triggers crash then 
12              Setcrash  Setcrash  q’; 
13          else 
14              if NewCoverage(q’) then 

15                 Queue  Queue  q’; 
16              if NewMaxSize(q’) then 

17                 Queue  Update(q’, memoryi[hashi]); 
18              if DataflowFuncs(q’) then 

19                 Queue  Add and Prioritize(q’, dataflowfuncsi); 

20 return Setcrash; 

5. Experimental Results and Discussions

We implement the MemConFuzz based on the AFL-2.52b framework. We mainly write
additional codes for LLVM-mode (based on LLVM v6.0.0) to realize our program static
analysis approach related to memory consumption based on data flow and modify afl-fuzz.c
to support our interaction module with instrumentation information and the fine-grained
seed priority selection strategy.

We chose popular open source programs OpenJPEG v2.3.0, jasper v2.0.14, and readelf
v2.28 with heap memory consumption vulnerabilities as test datasets, and compared them
against AFL, MemLock, and PerfFuzz. Our experiments were performed on Ubuntu
LTS 18.04 with a Linux kernel v4.15.0, Intel(R) Xeon(R) CPU E7-4820 processor, and 4GB
RAM. The experiment results show that MemConFuzz outperforms the state-of-the-art
fuzzing techniques, including AFL, MemLock, and PerfFuzz, in discovering heap memory
consumption vulnerabilities. MemConFuzz can discover heap memory consumption CVEs
faster and trigger a higher number of heap memory consumption crashes.

5.1. Evaluation Scheme

During the experiment, since the fuzzer heavily relies on random mutations, there
may be performance fluctuations between different experiments on our machine, resulting
in different experimental results each time. We have taken effective measures to configure
experimental parameters and have taken two measures to mitigate the randomness caused
by the properties of the fuzzing technology. First, we conduct a uniform long-term test of
the experimental process of each PUT performed by each fuzzer until the fuzzer reaches
a relatively stable state. Specifically, our stable results are obtained after a uniform 24-h
period during every fuzzing execution. Second, we add the -d option to all fuzzers in the
experiment to skip the deterministic mutation stage, so that more mutation strategies can
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be performed in the havoc and splicing stages to discover heap memory consumption
vulnerabilities.

Due to factors such as different computer performance and randomness of mutation,
the results of each experiment will be different. For the experiments in the comparison
model, such as Memlock, we reproduced them on the same machine in order to ensure that
each model is based on the same initial experimental conditions. We give the definition of
“relatively stable state”.

Definition 4. Relatively Stable State is defined as a state in which test data smoothly changes.
On the same machine, after a certain period of time, the results of multiple experiments are relatively
stable compared to the growth rate in the initial stage, and then the test results reach a “relatively
stable state”.

Figure 7 below is an experimental record of fuzzing readelf; the ordinate shows the
number, and the abscissa shows the time. We mainly focus on the changes in the number of
unique crashes. It shows that the growth rate is the fastest in the first 2 h, and the growth
rate slows down after about 22 h, which fully meets the definition of a “relatively stable
state”. The other tests also meet the definition of a “relatively stable state” around 24 h.
We consulted a large number of vulnerability discovery studies and methods, and many
studies also selected 24 h as the test standard. In addition, MemConFuzz, Memlock, and
PerfFuzz are all improved based on AFL, so if the time is too long, when almost no heap
consumption vulnerabilities can be found in the end, it will gradually degenerate into
AFL’s general vulnerability discovering, and the discovery efficiency for heap consumption
vulnerability cannot be demonstrated at this time. In order to comprehensively ensure
accuracy and efficiency, we uniformly select 24 h as our test standard, which can reflect the
ability of vulnerability discovering and also reduce unnecessary time overhead.

Figure 7. Experimental record of fuzzing readelf.

We enable ASAN [43] compilation of the source program file, and set the alloca-
tor_may_return_null option so that the program will crash when the heap memory allocation
fails due to the allocation of too much memory, which is convenient for us to observe and
analyze. In addition, we used LeakSanitizer to detect memory leak vulnerabilities and
conduct subsequent analyses.

5.2. Experimental Results and Discussions

We perform fuzzing on the selected real-world program datasets and record the
experimental data according to the evaluation metrics.

To demonstrate our work, we compare against some fuzzing techniques, recording the
number of triggering heap memory consumption vulnerabilities and the time of triggering
real-world CVEs. We select large-scale programs with tens of thousands of lines, which are
continuously maintained in the open source community and have high popularity. These
programs are from the comparison model. The name and version of the test software are
mentioned by Memlock and some other fuzz testing tools. They contain heap consumption
vulnerabilities and other types of vulnerabilities as interference items to comprehensively
evaluate the models. Because we use the analysis method of source code and semantic
heap operation code, other corresponding open-source source codes are difficult to find.
There are very few fuzzing research works related to this type of vulnerability. In order to
better evaluate the horizontal performance of the model, we choose these programs and
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ensure that these softwares are publicly available for download. The download link has
been added. Additionally, the source code of MemConFuzz will be available for request.

Table 1 shows the crashes related to memory consumption vulnerabilities obtained by
fuzzing the programs jasper, readelf, and openjpeg. UA stands for uncontrolled-memory-
allocation vulnerabilities, ML stands for memory leak vulnerabilities, and SLoC stands for
Source Lines of Code. For each 24-h fuzzing experiment, we use Python to analyze the
obtained crashes and automatically reproduce them. We classify the crashes according to
the obtained Address Sanitizer function call chain and its output summary information of
vulnerability types, and then obtain the memory consumption-related vulnerabilities we
need, that is, the number of UA and ML. Among them, most of the crashes triggered by
jasper are ML, while the crashes triggered by other programs are UA. The results show that
MemConFuzz has an improvement of 43.4%, 13.3%, and 561.2% in the discovery of heap
memory consumption vulnerabilities compared with the advanced fuzzing techniques
AFL, MemLock, and PerfFuzz, respectively.

Table 1. Number of heap memory consumption vulnerabilities.

Program Version SLoC Type MemConFuzz AFL MemLock PerfFuzz

jasper 2.0.14 44k
UA 5 1 2 0
ML 208 212 190 28

readelf 2.28 1844k UA 219 86 182 39
openjpeg 2.3.0 243k UA 11 10 17 0

Total Unique Crashes (Improvement) 443
309

(+43.4%)
391

(+13.3%)
67

(+561.2%)

The test programs [44–46] selected are all historical versions. After our automated
crash analysis, the discovered vulnerabilities are all historically reported vulnerabilities.
Our experimental comparison mainly focuses on the number and speed of discovering
heap memory consumption vulnerabilities. We may consider discovering and analyzing
additional new vulnerabilities in future research.

The AFL framework shows that vulnerabilities with the same crash point belong to the
same vulnerability. Vulnerabilities are divided into many types. Since we are targeting heap
consumption vulnerabilities, the only thing we need to confirm is whether the discovered
vulnerabilities belong to heap consumption vulnerabilities. We wrote automated crash
analysis scripts and compared the crash function stacks reported by ASAN. Through the
ASAN report, the function call relationship, and the location of the crashed code, we spent
a lot of time confirming that the vulnerability mentioned in this experiment belonged to
the heap consumption vulnerability.

Furthermore, we also recorded the time of triggering real-world CVEs. In order to
facilitate experimental comparison, we conducted a 24-h test for each test, and T/O stands
for a timeout during the 24-h test. Table 2 shows the time of real-world CVEs triggered after
we fuzzed on our dataset. Likewise, we used ASAN to reproduce crashes to detect memory
error information. We did not use Valgrind because it slows the program down too much,
while ASAN only slows the program down about 2×. We use Python to automatically
analyze crashes and search the crash points, and compare the obtained Address Sanitizer
function the call chain and crash point with the function location described by the real-world
CVE information, therefore gaining the time of the first matching crash. Our experimental
results show that MemConFuzz has significant time reduction compared to the state-of-
the-art fuzzing techniques AFL, MemLock, and PerfFuzz, respectively. Among them,
CVE-2017-12982 has more obvious advantages, which can make the program allocate
large heap memory faster and trigger the vulnerability faster. The reason is that the
proposed model focuses on the location of functions that are data-dependent on memory
consumption, and pays attention to the size of allocated memory, which is more targeted
for memory consumption vulnerabilities than other fuzzing models.
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Table 2. Trigger time of real-world vulnerability.

Program Vulnerability Type
MemConFuzz AFL MemLock PerfFuzz

Time (h) Time (h) Time (h) Time (h)

jasper CVE-2016-8886 UA 2.6 10.2 1.5 T/O
readelf CVE-2017-9039 UA 0.1 0.1 0.1 0.1

openjpeg CVE-2017-12982 UA 2.2 12.8 5.5 T/O
CVE-2019-6988 UA 12.5 T/O 14.8 T/O

Average Time Usage (Improvement) 4.35
11.78

(2.71×)
5.48

(1.26×)
18.03

(4.14×)

6. Conclusions and Future Work

In this paper, we propose a directed fuzzing approach MemConFuzz model based on
data flow analysis of heap operations to discover heap memory consumption vulnerabilities.
The MemConFuzz uses the coverage information, memory consumption information, and
data dependency information to guide the fuzzing process. The coverage information
guides the fuzzer to explore different program paths, the memory consumption information
guides the fuzzer to search for program paths that show increasing memory consumption,
and the data information guides the fuzzer to explore paths with increasing dependencies
on heap memory data flow. Experimental results show that the MemConFuzz outperforms
the state-of-the-art fuzzing technologies, AFL, MemLock, and PerfFuzz, in both the number
of heap memory vulnerabilities and the time to discovery.

In the future, we plan to enhance the heap memory consumption vulnerability dis-
covery capabilities and vulnerability coverage of our approach with more efficient and
more complete data flow analysis. Furthermore, we will add support for binaries to our
proposed vulnerability discovery methodology. We will disassemble the binary code to
obtain the instruction code set, complete the analysis of the control flow and the data flow,
and discover the heap memory consumption vulnerabilities of the binary program more
effectively.
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AFL America Fuzzy Lop
PUT Program Under Test
UAF Use-After-Free
CPG Code Property Graph
CVE Common Vulnerabilities and Exposures
SMT Satisfiability Modulo Theories
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CGF Coverage-guide Greybox Fuzzing
DGF Directed Greybox Fuzzing
DTA Dynamic Taint Analysis
FTI Fuzzing-Based Taint Inference
DDG Data Dependency Graph
AST Abstract Syntax Trees
CDG Control Dependency Graph
CG Call Graph
CFG Control Flow Graph
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Abstract: Multi-criteria decision-making (MCDM) assists in making judgments on complex problems
by evaluating several alternatives based on conflicting criteria. Several MCDM methods have been
introduced. However, real-world problems often involve uncertain and ambiguous decision-maker in-
puts. Therefore, fuzzy MCDM methods have emerged to handle this problem using fuzzy logic. Most
recently, the method based on the removal effects of criteria using the geometric mean (MEREC-G)
and ranking the alternatives based on the trace to median index (RATMI) were introduced. However,
to date, there is no fuzzy extension of the two novel methods. This study introduces a new hybrid
fuzzy MCDM approach combining fuzzy MEREC-G and fuzzy RATMI. The fuzzy MEREC-G can
accept linguistic input terms from multiple decision-makers and generates consistent fuzzy weights.
The fuzzy RATMI can rank alternatives according to their fuzzy performance scores on each criterion.
The study provides the algorithms of both fuzzy MEREC-G and fuzzy RATMI and demonstrates
their application in adopted real-world problems. Correlation and scenario analyses were performed
to check the new approach’s validity and sensitivity. The new approach demonstrates high accuracy
and consistency and is sufficiently sensitive to changes in the criteria weights, yet not too sensitive to
produce inconsistent rankings.

Keywords: fuzzy MEREC-G; fuzzy RATMI; fuzzy logic; hybrid; MCDM

MSC: 03E72; 90B50

1. Introduction

Multi-criteria decision-making (MCDM), a major subdiscipline of the operations
research domain, assists in making judgments in complex real-world challenges. It allows
for formulating problems comprising several alternatives in a structured format to find the
best ranking or select the best alternative based on multiple conflicting criteria. The criteria
are conflicting in the sense of being benefit criteria and non-benefit criteria to reflect their
roles in maximizing or minimizing the alternatives, respectively. Moreover, the criteria are
weighted to represent the problem better and make the best decision on the alternatives.
Several MCDM methods have emerged, with different characteristics and purposes, with
broad applications in many disciplines [1,2]. The two primary components of MCDM are
weighing the criteria and ranking the alternatives.

The first component of MCDM, weighting the criteria, entails designating importance
or preference values to each criterion. Depending on whether the weights are based on
quantified qualitative inputs from the decision-maker’s judgments using a predefined
scale (i.e., subjective data) [3–5], based on quantitative data (i.e., objective data) [6–10], or a
combination of both (i.e., a mix of subjective and objective data) [11–13], there are various
MCDM methods for weighting criteria. Methods like the analytic hierarchy process (AHP),
analytic network process (ANP), and best-worst method (BWM) are examples of subjective
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methodologies for finding the weights of criteria [4,5]. These pairwise-based methods
compare criteria using a scale of preferences to quantify qualitative inputs. Entropy and
criteria importance through inter-criteria correlation (CRITIC) are examples of objective
methods [14]. These data-based methods use mathematical algorithms to calculate the
weights based on the information entropy, the correlation coefficients, or the compromise
ranking of the alternatives. However, fuzzy AHP, fuzzy ANP, and fuzzy BWM accept a
combination of subjective and objective data for finding the criteria weights. These methods
base the calculations of weights in a fuzzy environment to account for uncertainty and
ambiguity in decision-makers’ inputs [15].

The second component of MCDM, ranking the alternatives, entails the performance
scoring of each alternative on each criterion and finding the best ranking or choice ac-
cordingly. Various techniques for ranking alternatives based on multiple criteria have
been developed. Such methods include outranking algorithms like “élimination et choix
traduisant la realité” (ELECTRE), which translates to elimination and choice translat-
ing reality, and the preference ranking organization method for enrichment evaluations
(PROMETHEE) [16–18], to mention two. These methods compare alternatives pair-wisely
using measures of concordance and discordance between them on each criterion.

However, fuzzy MCDM alternative ranking methods have been developed and ap-
plied to enable them to handle the uncertainty and ambiguity of decision-makers’ sub-
jective scoring inputs. Such methods are the fuzzy BWM [19–26], fuzzy additive ratio
assessment (ARAS) [27–29], fuzzy measurement alternatives and ranking according to
compromise solution (MARCOS) [30–32], fuzzy technique for order preference by sim-
ilarity to ideal solution (TOPSIS) [24,33,34], fuzzy multi-attributive border approxima-
tion area comparison (MABAC) [35–38], fuzzy VlseKriterijumska Optimizacija I Kompro-
misno Resenje (VIKOR) [39–42], fuzzy multi-attributive ideal–real comparative analysis
(MAIRCA) [43–47], and, most recently, the fuzzy multiple criteria ranking by alternative
trace (MCRAT) [48]. Several investigators applied the two components of MCDM in
different fields [49–63].

Two of the most recent MCDM methods for weighting the criteria and ranking the
alternatives are the method based on the removal effects of criteria (MEREC) [64–66] and
ranking the alternatives based on the trace to median index (RATMI) techniques [67]. The
MEREC was developed as an objective method for weighting the criteria. In 2023, an
updated and enhanced version of the MEREC, labeled as the method for removal effects of
criteria with a geometric mean (MEREC-G), was developed to enable it to process objective
and subjective data [65]. Also, fuzzy extension and modification of the MEREC method
were recently developed, enabling it to process subjective data using linguistic term judg-
ments by decision-makers [68,69]. However, to date, there is no fuzzy extension to the
enhanced MEREC-G. Additionally, in 2022, the RATMI was developed as an alternative
ranking method. RATMI bases the ranking algorithm on the trace to median index, which
combines ranking alternatives based on median similarity (RAMS), and the MCRAT meth-
ods, using a majority index and the concept of the VIKOR method [67]. In addition, despite
this, the RATMI method is a relatively new alternative ranking method; it has proven its
efficacy in real-world applications [70,71]. However, to date, there is no fuzzy extension to
the RATMI method.

Therefore, this study aims to first develop a fuzzy MEREC-G as a weighting criteria
method and a fuzzy RATMI as an alternative ranking method. Secondly, it proposes a
new hybrid MCDM approach based on the developed fuzzy MEREC-G and fuzzy RATMI.
The proposed new hybrid MCDM approach will provide advancements in that the fuzzy
MEREC-G can accept linguistic input terms from multiple decision-makers, handle their
ambiguous judgments on a complex problem, and produce consistent fuzzy weights of
the criteria when converted to crisp values. This, in turn, will enable the use of the
produced fuzzy weights from the fuzzy MEREC-G in the fuzzy RATMI, which will be able
to accept and process fuzzy ranking scores of each alternative for each criterion and rank
them accordingly.
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The new proposed hybrid MCDM approach is provided in the following section. In
the subsequent sections, along with a discussion, a numerical application of the proposed
approach is provided to compare its results with other fuzzy MCDM methods to check its
validity and sensitivity. Finally, the last section of this paper provides a conclusion to the
proposed approach and some future research directions.

2. Preliminaries of Fuzzy Sets

Definition 1 ([69]). ã = (k, l, m) is a representation of a triangular fuzzy number (TFN). The
μã(z) membership function of a TEN, ã, has the definition given by Equation (1).

μã(z) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, i f z < k,

z−k
l−k , i f k ≤ z < l,
m−z
m−l , i f l ≤ z ≤ m,

0, i f z > m,

(1)

Definition 2 ([72]). Let x̃ = (a1, b1, c1) and ỹ = (a2, b2, c2) be two non-negative TFNs.
According to the extension principle, the arithmetic operations are defined as follows:

• x̃⊕ ỹ = (a1 + a2, b1 + b2, c1 + c2);
• x̃� ỹ = (a1 − c2, b1 − b2, c1 − a2);
• α x̃ = (α.a1, α.b1, α.c1);

• x̃−1 ∼=
(

1
c1

, 1
b1

, 1
a1

)
;

• x̃⊗ ỹ ∼= (a1 × a2, b1 × b2, c1 × c2);
• x̃ c ỹ ∼= (a1/c2, b1/b2, c1/a2).

3. The Proposed Hybrid Fuzzy MEREC-G and Fuzzy RATMI Methods

Figure 1 illustrates the proposed fuzzy MEREC-G and fuzzy RATMI methods in three
main phases. The first phase involves defining the problem under study by specifying the
alternatives and criteria with their objective. The decision-maker invites the experts who
will provide their initial fuzzy decision matrices between the alternatives and criteria. The
second phase applies the fuzzy MEREC-G method to assign weights to each criterion based
on the information from the first phase. The third step uses the fuzzy RATMI method to
rank the alternatives according to the weighted fuzzy criteria obtained in the second phase.
The following sections explain these phases in more detail.

3.1. Phase 1: Formulate the Problem Using the MCDM Model

Step 1.1: The decision-maker identifies “m” possible alternatives, “n” relevant crite-
ria, and the nature of each criterion (i.e., whether it is a benefit criterion that should be
maximized or a non-benefit criterion that should be minimized) for the problem at hand.

Step 1.2: The decision-maker determines “k” experts who have knowledge and experi-
ence about the problem to participate in the decision-making process by providing either
subjective or objective input data represented by triangular fuzzy numbers (TFNs).

Step 1.3: The experts, E = {E1, E2, . . . , Ek}, will provide a realistic evaluation of each
alternative in A = {A1, A2, . . . , Am} based on each criterion in C = {C1, C2, . . . , Cn},
which is represented by the fuzzy number xu

ij =
(

au
ij, bu

ij, cu
ij

)
, i = 1, . . . , m; j = 1, . . . , n; u =

1, . . . , k. The fuzzy decision matrix, Xu, for each expert, “u”, can be constructed using
Equation (2).

Xu =
[

xu
ij

]
mxn

=

⎡⎢⎢⎢⎢⎢⎣
A/C C1 C2 . . . Cn
A1 xu

11 xu
12 . . . xu

1n
A2 xu

21 xu
22 . . . xu

2n
...

...
...

. . .
...

Am xu
m1 xu

m2 . . . xu
mn

⎤⎥⎥⎥⎥⎥⎦ (2)
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Step 1.4: Construct the combined fuzzy decision matrix, X̃, using Equation (3).

X̃ =
[
x̃ij

]
mxn (3)

where
x̃ij =

(
aij, bij, cij

)
, aij = mink

(
ak

ij

)
, bij =

1
k

(
∑k

u=1 bu
ij

)
, and cij = maxk

(
ck

ij

)
.

Figure 1. The framework of the proposed hybrid fuzzy MEREC-G and fuzzy RATMI methods.

3.2. Phase 2: Fuzzy MEREC-G Method

Step 2.1: Normalize the combined fuzzy decision matrix to reduce the disparity
between the magnitude of alternatives and dimensions, with a normalized value within
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[0, 1]. The component of a normalized matrix, ẽij, will be produced by the triangular fuzzy
number (TFN) according to [69] using Equation (4) for benefit criteria and Equation (5) for
non-benefit criteria.

ẽij =
(

rl
ij, rm

ij , ru
ij

)
=

(
aij

cmax
j

,
bij

cmax
j

,
cij

cmax
j

)
∀ i ∈ [1, . . . , m] , ∀ j ∈ [1, . . . , n] (4)

ẽij =
(

rl
ij, rm

ij , ru
ij

)
=

(
amin

j

cij
,

amin
j

bij
,

amin
j

aij

)
∀ i ∈ [1, . . . , m] , ∀ j ∈ [1, . . . , n] (5)

Step 2.2: Calculate the fuzzy overall performance value, P̃i, of the alternatives using
the geometric mean of the fuzzy normalized matrix, as presented by Equation (6).

P̃i =
(

n
√

∏n
j=1 rl

ij,
n
√

∏n
j=1 rm

ij , n
√

∏n
j=1 ru

ij

)
∀ i ∈ [1, . . . , m] (6)

Step 2.3: This step considers the core of the classical MEREC-G [65], in which the
changes in the overall performance value of the alternatives will be calculated by removing
the effect of each criterion from the overall performance. This step can be calculated
for the fuzzy MEREC-G using Equation (7) to find the changes represented by the fuzzy
number, t̃ij.

t̃ij =

⎛⎜⎝ n

√√√√∏n
j=1 rl

ij

rl
ik

, n

√
∏n

j=1 rm
ij

rm
ik

, n

√
∏n

j ru
ij

ru
ik

⎞⎟⎠ ∀ i ∈ [1, . . . , m] , k �= j (7)

Step 2.4: Find the removal effect, Ẽj, using Equation (8) to obtain the final fuzzy
weights, w̃j, of each criterion using Equation (9) and Equation (10).

Ẽj =
(
∑m

i=1 t̃l
ij , ∑m

i=1 t̃m
ij , ∑m

i=1 t̃u
ij

)
∀ j ∈ [1, . . . , n] (8)

w̃j =

(
∑m

i=1 t̃l
ij

∑n
j=1 Ẽu

j
,

∑m
i=1 t̃m

ij

∑n
j=1 Ẽm

j
,

∑m
i=1 t̃u

ij

∑n
j=1 Ẽl

j

)
∀ j ∈ [1, . . . , n] (9)

w̃j =
(

wl
j , wm

j , wu
j

)
∀ j ∈ [1, . . . , n] (10)

Step 2.5: To obtain the crisp weights, w∗j , of the criteria, the obtained fuzzy weights,
w̃j, are converted using Equation (11). The sum of the crisp weights equals one.

w∗j =
wl

j + 4wm
j + wu

j

6
(11)

3.3. Phase 3: Fuzzy RATMI Method

Step 3.1: The values in the combined fuzzy decision-making matrix will be normalized
by the Equations (4) and (5) that are used for the fuzzy MEREC-G technique.

Step 3.2: The fuzzy weights of the criteria are multiplied by the fuzzy normalized
values to obtain fuzzy weighted normalized values using Equation (12).

g̃ij =
(

gl
ij, gm

ij , gu
ij

)
= w̃j × ẽij =

(
wl

j × rl
ij, wm

j × rm
ij , wl

j × ru
ij

)
(12)

Step 3.3: Determine the fuzzy optimal alternative using Equations (13) and (14).
Then, decompose the fuzzy optimal alternative into two components using Equations (15)
and (16), followed by decomposing the other alternatives into two components using
Equations (17) and (18).

q̃j = max
(

g̃ij|1 ≤ j ≤ n
)

(13)
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Q̃ = {q̃1, q̃2, . . . , q̃n} (14)

Q̃ = Q̃max ∪ Q̃min (15)

Q̃ = {q̃1, q̃2, . . . , q̃k} ∪ {q̃1, q̃2, . . . , q̃h}; k + h = j (16)

Ṽ = Ṽmax ∪ Ṽmin (17)

Ṽ = {ṽ1, ṽ2, . . . , ṽk} ∪ {ṽ1, ṽ2, . . . , ṽh}; k + h = j (18)

Step 3.4: Calculate the fuzzy magnitude of optimal alternative components using
Equations (19) and (20) and the fuzzy magnitude of other alternative components using
Equations (21) and (22).

Q̃k =
(

ql
k, qm

k , qu
k

)
=

(√(
ql

1
)2

+
(
ql

2
)2

+ . . . +
(
ql

k
)2,

√(
qm

1
)2

+
(
qm

2
)2

+ . . . +
(
qm

k
)2,

√(
qu

1
)2

+
(
qu

2
)2

+ . . . +
(
qu

k
)2
)

(19)

Q̃h =
(

ql
h, qm

h , qu
h

)
=

(√(
ql

1
)2

+
(
ql

2
)2

+ . . . +
(
ql

h
)2,

√(
qm

1
)2

+
(
qm

2
)2

+ . . . +
(
qm

h
)2,

√(
qu

1
)2

+
(
qu

2
)2

+ . . . +
(
qu

h
)2
)

(20)

Ṽk =
(

vl
k, vm

k , vu
k

)
=

(√(
vl

1
)2

+
(
vl

2
)2

+ . . . +
(
vl

k
)2,

√(
vm

1
)2

+
(
vm

2
)2

+ . . . +
(
vm

k
)2,

√(
vu

1
)2

+
(
vu

2
)2

+ . . . +
(
vu

k
)2
)

(21)

Ṽh =
(

vl
h, vm

h , vu
h

)
=

(√(
vl

1
)2

+
(
vl

2
)2

+ . . . +
(
vl

h
)2,

√(
vm

1
)2

+
(
vm

2
)2

+ . . . +
(
vm

h
)2,

√(
vu

1
)2

+
(
vu

2
)2

+ . . . +
(
vu

h
)2
)

(22)

Step 3.5: In this step, the alternatives will be ranked twice. The first uses the fuzzy
MCRAT [48], and the second uses fuzzy RAMS as a part of the proposed fuzzy RATMI.
Ranking by fuzzy MCRAT uses the following sub-steps:

Step 3.5.1: Create the matrix, Ỹ, composed of the optimal alternative component, as
shown in Equation (23).

Ỹ =

[
Q̃k 0
0 Q̃h

]
(23)

Step 3.5.2: Create the matrix, B̃i, composed of the alternative’s component using
Equation (24).

B̃i =

[
Ṽik 0
0 Ṽih

]
(24)

Step 3.5.3: Create the matrix, Z̃i, using Equation (25).

Z̃i = Ỹ× B̃i =

[
z̃11;i 0

0 z̃22;i

]
(25)

Step 3.5.4: Then, the fuzzy trace of the matrix, Z̃i, can be obtained using Equation (26).

tr
(
Z̃i
)
= z̃11;i + z̃22;i =

(
zl

11,i + zl
22,i, zm

11,i + zm
22,i, zu

11,i + zu
22,i

)
(26)

In Equation (26), tr
(
Z̃i
)
=

(
Zl

i , Zm
i , Zu

i

)
indicates the fuzzy trace of the Zi matrix, and

the value is defuzzied to obtain tr(Zi) by using Equation (27). Here, rank the alternatives
in descending order of the tr(Zi) values.

Zi =
Zl

j + 4Zm
j + Zu

j

6
(27)

Ranking by fuzzy alternatives median similarity (RAMS) uses the following sub-steps:
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Step 3.5.5: Determine the fuzzy median of similarity of the optimal alternative using
Equation (28).

D̃ =
(

dl , dm, du
)
=

(√
Q̃2

k + Q̃2
h

)
/2 (28)

Step 3.5.6: Determine the fuzzy median of similarity of the alternatives using
Equation (29).

D̃i =
(

dl
i , dm

i , dl
i

)
=

(√
Ṽ2

ik + Ṽ2
ih

)
/2 (29)

Step 3.5.7: Calculate the fuzzy median similarity, ms
(

M̃i
)
, which represents the ratio

between the perimeter of each alternative and the optimal alternative using Equation (30).

ms
(

M̃i
)
=

D̃i

D̃
=

(
dl

i
du ,

dm
i

dm ,
du

i
dl

)
(30)

In Equation (30), ms
(

M̃i
)
=

(
Ml

i , Mm
i , Mu

i

)
indicates the median similarity of the Mi

matrix, and the value is defuzzied to obtain ms(Mi) by using Equation (31). Here, rank the
alternatives in descending order of the ms(Mi) values.

Mi =
Ml

j + 4Mm
j + Mu

j

6
(31)

Step 3.6: If v is the weight of fuzzy MCRAT’s strategy, and (1− v) is the weight of
RAMS’s strategy, then the majority index, Ei, between the two strategies can be calculated
using Equation (32). Then, find the final rank of the alternatives in descending order of Ei.

Ei = v
(tr(Zi)− tr∗)
(tr− − tr∗)

+ (1− v)
(ms(Mi)−ms∗)
(ms− −ms∗)

(32)

where
tr∗ = min(tr(Zi), ∀i ∈ [1, 2, . . . , m]);
tr− = max (tr(Zi), ∀i ∈ [1, 2, . . . , m]);
ms∗ = min (ms(Mi), ∀i ∈ [1, 2, . . . , m]);
ms− = max(ms(Mi), ∀i ∈ [1, 2, . . . , m]);
v is a value from 0 to 1. Here, v = 0.5.

4. Applications and Results

This section applies the proposed hybrid fuzzy MEREC-G and fuzzy RATMI methods
using the data from Ulutaş et al. [48] to purchase a forklift that laborers can use in the
warehouse. The following is an application of the three phases previously mentioned to
rank the alternatives based on weighted criteria.

4.1. Phase 1: Formulate the Problem Using the MCDM Model

Following step 1.1, the decision-maker determined eight criteria and six forklifts as
alternatives. The criteria for assessment of the forklifts were C1 (purchasing price), C2
(lifting height), C3 (lowering speed), C4 (loading capacity), C5 (lifting speed), C6 (movement
area requirement), C7 (image of the manufacturer company), and C8 (supply of spare
parts). Only two criteria (C1 and C6) were non-benefit, and the others were benefit criteria.
Using steps 1.2, 1.3, and 1.4, the decision maker determined six experts to evaluate the
performance of the forklifts under each criterion using the linguistic phrases shown in
Stanković et al. [31]. The experts’ assessments were transformed into fuzzy values using
those linguistic phrases and aggregated using Equation (3). The combined fuzzy decision
matrix, as given by Ulutaş et al. [48], is presented in Table 1.
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Table 1. The combined fuzzy decision matrix [48].

Alternatives C1 C2 C3 C4

A1 (4.0000, 5.6670, 6.0000) (5.3330, 6.3330, 7.3330) (2.0000, 3.0000, 4.0000) (5.6670, 6.6670, 7.6670)
A2 (5.0000, 5.6670, 7.0000) (5.3330, 6.3330, 7.3330) (3.6670, 5.0000, 5.6670) (4.0000, 5.0000, 6.0000)
A3 (5.6670, 7.3330, 7.6670) (6.6670, 7.3330, 8.6670) (4.0000, 5.6670, 6.0000) (5.6670, 6.6670, 7.6670)
A4 (5.6670, 7.3330, 7.6670) (5.6670, 6.6670, 7.6670) (4.0000, 5.6670, 6.0000) (5.6670, 6.6670, 7.6670)
A5 (5.0000, 6.0000, 7.0000) (5.6670, 6.6670, 7.6670) (4.0000, 5.6670, 6.0000) (4.0000, 5.0000, 6.0000)
A6 (5.0000, 6.0000, 7.0000) (5.6670, 6.3330, 7.6670) (4.0000, 5.6670, 6.0000) (4.0000, 5.0000, 6.0000)

Alternatives C5 C6 C7 C8

A1 (4.3330, 5.3330, 6.3330) (5.3330, 6.3330, 7.3330) (5.3330, 6.0000, 7.3330) (4.6670, 5.6670, 6.6670)
A2 (4.3330, 5.3330, 6.3330) (6.3330, 7.3330, 8.3330) (6.0000, 6.6670, 8.0000) (5.6670, 6.0000, 7.6670)
A3 (6.0000, 7.0000, 8.0000) (6.3330, 7.3330, 8.3330) (6.0000, 7.0000, 8.0000) (5.0000, 6.0000, 7.0000)
A4 (6.0000, 7.0000, 8.0000) (6.3330, 7.3330, 8.3330) (5.3330, 6.0000, 7.3330) (4.6670, 5.6670, 6.6670)
A5 (4.3330, 6.0000, 6.3330) (5.3330, 6.3330, 7.3330) (5.6670, 6.0000, 7.6670) (5.0000, 6.0000, 7.0000)
A6 (4.3330, 5.6670, 6.3330) (5.0000, 5.6670, 7.0000) (5.0000, 5.6670, 7.0000) (5.6670, 6.3330, 7.6670)

4.2. Phase 2: Application and Results of the Fuzzy MEREC-G Method

Equations (4) and (5) of step 2.1 have been used to determine the fuzzy decision matrix
with normalization. Table 2 presents the results obtained from this step.

Table 2. The normalized fuzzy decision matrix.

Alternatives C1 C2 C3 C4

A1 (0.6667, 0.7058, 1.0000) (0.6153, 0.7307, 0.8461) (0.3333, 0.5000, 0.6667) (0.7391, 0.8696, 1.0000)
A2 (0.5714, 0.7058, 0.8000) (0.6153, 0.7307, 0.8461) (0.6112, 0.8333, 0.9445) (0.5217, 0.6521, 0.7826)
A3 (0.5217, 0.5455, 0.7058) (0.7692, 0.8461, 1.0000) (0.6667, 0.9445, 1.0000) (0.7391, 0.8696, 1.0000)
A4 (0.5217, 0.5455, 0.7058) (0.6539, 0.7692, 0.8846) (0.6667, 0.9445, 1.0000) (0.7391, 0.8696, 1.0000)
A5 (0.5714, 0.6667, 0.8000) (0.6539, 0.7692, 0.8846) (0.6667, 0.9445, 1.0000) (0.5217, 0.6521, 0.7826)
A6 (0.5714, 0.6667, 0.8000) (0.6539, 0.7307, 0.8846) (0.6667, 0.9445, 1.0000) (0.5217, 0.6521, 0.7826)

Alternatives C5 C6 C7 C8

A1 (0.5416, 0.6666, 0.7916) (0.6818, 0.7895, 0.9376) (0.6666, 0.7500, 0.9166) (0.6087, 0.7391, 0.8696)
A2 (0.5416, 0.6666, 0.7916) (0.6000, 0.6818, 0.7895) (0.7500, 0.8334, 1.0000) (0.7391, 0.7826, 1.0000)
A3 (0.7500, 0.8750, 1.0000) (0.6000, 0.6818, 0.7895) (0.7500, 0.8750, 1.0000) (0.6521, 0.7826, 0.9130)
A4 (0.7500, 0.8750, 1.0000) (0.6000, 0.6818, 0.7895) (0.6666, 0.7500, 0.9166) (0.6087, 0.7391, 0.8696)
A5 (0.5416, 0.7500, 0.7916) (0.6818, 0.7895, 0.9376) (0.7084, 0.7500, 0.9584) (0.6521, 0.7826, 0.9130)
A6 (0.5416, 0.7084, 0.7916) (0.7143, 0.8823, 1.0000) (0.6250, 0.7084, 0.8750) (0.7391, 0.8260, 1.0000)

Steps 2.2 and 2.3 have been applied with the help of Equations (6) and (7), respectively,
to calculate the overall performance of alternatives in the fuzzy decision matrix and then
calculate the changes in this overall performance by removing each fuzzy number. Table 3
shows the results of Equation (7) of step 2.3.

Table 3. The changes in the overall performance of alternatives.

Alternatives C1 C2 C3 C4

A1 (0.6231, 0.7428, 0.8718) (0.6294, 0.7396, 0.8902) (0.6795, 0.7755, 0.9171) (0.6151, 0.7237, 0.8718)
A2 (0.6585, 0.7653, 0.8892) (0.6524, 0.7620, 0.8830) (0.6530, 0.7496, 0.8709) (0.6660, 0.7729, 0.8917)
A3 (0.7331, 0.8544, 0.9599) (0.6984, 0.8088, 0.9190) (0.7110, 0.7977, 0.9190) (0.7019, 0.8060, 0.9190)
A4 (0.7018, 0.8223, 0.9294) (0.6823, 0.7877, 0.9035) (0.6806, 0.7677, 0.8898) (0.6719, 0.7757, 0.8898)
A5 (0.6662, 0.7981, 0.9049) (0.6551, 0.7840, 0.8936) (0.6535, 0.7641, 0.8800) (0.6738, 0.8003, 0.9074)
A6 (0.6701, 0.7981, 0.9122) (0.6589, 0.7890, 0.9008) (0.6573, 0.7641, 0.8871) (0.6777, 0.8003, 0.9147)
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Table 3. Cont.

Alternatives C5 C6 C7 C8

A1 (0.5999, 0.7178, 0.8839) (0.5805, 0.7006, 0.8628) (0.5824, 0.7058, 0.8656) (0.5900, 0.7073, 0.8721)
A2 (0.6251, 0.7427, 0.8757) (0.6160, 0.7403, 0.8761) (0.5967, 0.7194, 0.8470) (0.5979, 0.7259, 0.8470)
A3 (0.6659, 0.7808, 0.9080) (0.6874, 0.8092, 0.9392) (0.6659, 0.7808, 0.9080) (0.6793, 0.7934, 0.9199)
A4 (0.6335, 0.7474, 0.8751) (0.6540, 0.7745, 0.9051) (0.6442, 0.7640, 0.8860) (0.6526, 0.7656, 0.8927)
A5 (0.6335, 0.7599, 0.8934) (0.6130, 0.7544, 0.8721) (0.6096, 0.7599, 0.8694) (0.6169, 0.7553, 0.8754)
A6 (0.6377, 0.7661, 0.9017) (0.6130, 0.7425, 0.8721) (0.6248, 0.7661, 0.8889) (0.6100, 0.7495, 0.8721)

Equations (8)–(10) from step 2.4 have been used to calculate the fuzzy criteria weight
of each criterion. Then, Equation (11) from step 2.5 was used to calculate the crisp value of
each criterion. Table 4 shows the results of these calculations.

Table 4. Resulting effect and weights of the fuzzy MEREC-G.

Removal effect

Ẽ1 Ẽ2 Ẽ3 Ẽ4

(4.0527, 4.7810, 5.4674) (3.9764, 4.6710, 5.3902) (4.0348, 4.6188, 5.3640) (4.0064, 4.6790, 5.3944)

Ẽ5 Ẽ6 Ẽ7 Ẽ8

(3.7955, 4.5147, 5.3378) (3.7639, 4.5214, 5.3273) (3.7236, 4.4961, 5.2648) (3.7467, 4.4970, 5.2792)

Fuzzy weights

w̃1 w̃2 w̃3 w̃4

(0.0946, 0.1300, 0.1758) (0.0929, 0.1270, 0.1733) (0.0942, 0.1256, 0.1725) (0.0936, 0.1272, 0.1735)

w̃5 w̃6 w̃7 w̃8

(0.0886, 0.1228, 0.1716) (0.0879, 0.1229, 0.1713) (0.0869, 0.1222, 0.1693) (0.0875, 0.1223, 0.1697)

Crisp weights

w*
1 w*

2 w*
3 w*

4

0.1317 0.1290 0.1282 0.1293

w*
5 w*

6 w*
7 w*

8

0.1252 0.1252 0.1242 0.1244

4.3. Phase 3: Application and Results of the Fuzzy RATMI Method

The fuzzy MEREC-G method is used to determine the fuzzy criteria weights, which
are then combined with the decision matrix to form the decision-making matrix. The fuzzy
RATMI method is applied to this matrix to rank the alternatives. From step 3.1, the fuzzy
decision-making matrix is normalized using Equations (4) and (5), which are the same as
those used in the fuzzy MEREC-G. The fuzzy weighted decision-making matrix is obtained
using Equation (12) from step 3.2 and shown in Table 5.

First, the fuzzy optimal alternatives are determined using Equations (13) and (14),
and then they are decomposed into their components using Equations (15) and (16). Next,
Equations (17) and (18) are used to decompose the alternatives into their components.
Finally, the fuzzy magnitude of the components is calculated using Equations (19) and (20).
The values of the fuzzy magnitude of components are shown in Table 6.

The same process is performed for the alternatives using Equations (21) and (22). Then,
with Equations (23)–(25), the values of z̃11;i and z̃22;i, which are the elements of the Z̃i, are
found. Equation (26) is used to obtain the fuzzy trace, tr

(
Z̃i
)
, of the matrix, Z̃i. Finally, this

fuzzy value is defuzzified using Equation (27). Table 7 shows these values and the results
of the fuzzy MCRAT method.
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Table 5. The fuzzy weighted decision-making matrix.

Alternatives C1 C2 C3 C4

A1 (0.0631, 0.0918, 0.1758) (0.0571, 0.0928, 0.1466) (0.0314, 0.0628, 0.1150) (0.0691, 0.1106, 0.1735)
A2 (0.0541, 0.0918, 0.1406) (0.0571, 0.0928, 0.1466) (0.0576, 0.1047, 0.1629) (0.0488, 0.0830, 0.1357)
A3 (0.0494, 0.0709, 0.1241) (0.0714, 0.1075, 0.1733) (0.0628, 0.1186, 0.1725) (0.0691, 0.1106, 0.1735)
A4 (0.0494, 0.0709, 0.1241) (0.0607, 0.0977, 0.1533) (0.0628, 0.1186, 0.1725) (0.0691, 0.1106, 0.1735)
A5 (0.0541, 0.0867, 0.1406) (0.0607, 0.0977, 0.1533) (0.0628, 0.1186, 0.1725) (0.0488, 0.0830, 0.1357)
A6 (0.0541, 0.0867, 0.1406) (0.0607, 0.0928, 0.1533) (0.0628, 0.1186, 0.1725) (0.0488, 0.0830, 0.1357)

Alternatives C5 C6 C7 C8

A1 (0.0480, 0.0818, 0.1359) (0.0599, 0.0971, 0.1606) (0.0580, 0.0917, 0.1552) (0.0533, 0.0904, 0.1476)
A2 (0.0480, 0.0818, 0.1359) (0.0527, 0.0838, 0.1352) (0.0652, 0.1019, 0.1693) (0.0647, 0.0957, 0.1697)
A3 (0.0665, 0.1074, 0.1716) (0.0527, 0.0838, 0.1352) (0.0652, 0.1070, 0.1693) (0.0571, 0.0957, 0.1550)
A4 (0.0665, 0.1074, 0.1716) (0.0527, 0.0838, 0.1352) (0.0580, 0.0917, 0.1552) (0.0533, 0.0904, 0.1476)
A5 (0.0480, 0.0921, 0.1359) (0.0599, 0.0971, 0.1606) (0.0616, 0.0917, 0.1622) (0.0571, 0.0957, 0.1550)
A6 (0.0480, 0.0870, 0.1359) (0.0628, 0.1085, 0.1713) (0.0543, 0.0866, 0.1481) (0.0647, 0.1010, 0.1697)

Table 6. The fuzzy magnitude of components’ values.

Components Magnitude

Q̃k (0.1633, 0.2665, 0.4205)
Q̃h (0.0890, 0.1421, 0.2455)

Table 7. Results of the fuzzy MCRAT method.

Alternatives Ṽik Ṽih z̃11;i z̃22;i

A1 (0.1324, 0.2192, 0.3594) (0.0870, 0.1336, 0.2381) (0.0216, 0.0584, 0.1511) (0.0077, 0.0190, 0.0584)
A2 (0.1404, 0.2295, 0.3774) (0.0755, 0.1243, 0.1951) (0.0229, 0.0612, 0.1587) (0.0067, 0.0177, 0.0479)
A3 (0.1605, 0.2646, 0.4147) (0.0722, 0.1098, 0.1835) (0.0262, 0.0705, 0.1744) (0.0064, 0.0156, 0.0451)
A4 (0.1517, 0.2529, 0.3983) (0.0722, 0.1098, 0.1835) (0.0248, 0.0674, 0.1675) (0.0064, 0.0156, 0.0451)
A5 (0.1392, 0.2378, 0.3748) (0.0807, 0.1301, 0.2135) (0.0227, 0.0634, 0.1576) (0.0072, 0.0185, 0.0524)
A6 (0.1395, 0.2341, 0.3754) (0.0829, 0.1388, 0.2216) (0.0228, 0.0624, 0.1578) (0.0074, 0.0197, 0.0544)

Alternatives tr
(
Z̃i
)

tr(Zi) Rankings

A1 (0.0294, 0.0774, 0.2095) 0.0914 6
A2 (0.0296, 0.0788, 0.2066) 0.0919 5
A3 (0.0326, 0.0861, 0.2194) 0.0994 1
A4 (0.0312, 0.0830, 0.2125) 0.0960 2
A5 (0.0299, 0.0819, 0.2100) 0.0946 4
A6 (0.0302, 0.0821, 0.2122) 0.0952 3

Another ranking will be obtained by the fuzzy RAMS method. In this method, the
alternatives are ranked based on the median similarity between the optimal alternatives
and other alternatives by applying Equations (28)–(31). This was followed by finding the
majority index between the fuzzy MCRAT and fuzzy RAMS methods using Equation (32)
with v = 0.5. The results of these calculations are shown in Tables 8 and 9, along with the
alternative rankings according to the fuzzy RATMI method.
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Table 8. Results of the fuzzy RAMS technique.

Alternatives

Max Min Median Median similarity

Q̃k Q̃h D̃ ms
(
M̃i

)
(0.1633, 0.2665, 0.4205) (0.0890, 0.1421, 0.2455) (0.0930, 0.1510, 0.2434)

Ṽik Ṽih D̃i

A1 (0.1324, 0.2192, 0.3594) (0.0870, 0.1336, 0.2381) (0.0792, 0.1284, 0.2155) (0.3254, 0.8500, 2.3175)
A2 (0.1404, 0.2295, 0.3774) (0.0755, 0.1243, 0.1951) (0.0797, 0.1305, 0.2124) (1.4031, 2.2837, 15.0859)
A3 (0.1605, 0.2646, 0.4147) (0.0722, 0.1098, 0.1835) (0.0880, 0.1432, 0.2268) (1.5398, 2.4381, 16.5554)
A4 (0.1517, 0.2529, 0.3983) (0.0722, 0.1098, 0.1835) (0.0840, 0.1379, 0.2193) (1.4822, 2.3577, 15.9359)
A5 (0.1392, 0.2378, 0.3748) (0.0807, 0.1301, 0.2135) (0.0804, 0.1355, 0.2157) (1.4571, 2.3188, 15.6662)
A6 (0.1395, 0.2341, 0.3754) (0.0829, 0.1388, 0.2216) (0.0811, 0.1361, 0.2180) (1.4634, 2.3434, 15.7337)

Alternatives ms(Mi) Rankings

A1 1.0071 6
A2 1.0113 5
A3 1.0989 1
A4 1.0591 2
A5 1.0398 4
A6 1.0470 3

Table 9. Alternatives rankings according to the fuzzy RATMI method.

Alternatives

Fuzzy MCRAT Fuzzy RAMS Majority Index Rankings

tr∗ = 0.0914 ms∗ = 1.0071

Eitr− = 0.0094 ms− = 1.0989

tr(Zi) ms(Mi)

A1 0.0914 1.0071 0.0000 6
A2 0.0919 1.0113 0.0538 5
A3 0.0994 1.0989 1.0000 1
A4 0.0960 1.0591 0.5670 2
A5 0.0946 1.0398 0.3742 4
A6 0.0952 1.0470 0.4502 3

Another application of the proposed fuzzy MCDM approach was conducted using
two other problems [61,62] that are demonstrated in Table 10. The computations of these
two examples are attached in the Supplementary Materials as Table S1 for Example 1 and
Table S2 for Example 2.
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5. Discussion

The numerical application of the proposed hybrid MCDM approach based on fuzzy
MEREC-G and fuzzy RATMI methods in this research study showed that it can generate
alternative rankings. However, ensuring its validity and checking how those generated
alternative rankings compare with rankings of other fuzzy MCDM methods is essential.
Moreover, it is also necessary to check the sensitivity of the proposed model. Therefore, the
validity and sensitivity analyses are provided in the following subsections.

5.1. Validity Analysis of the Proposed Approach

The validity of the resulting alternative rankings from the fuzzy MCRAT, fuzzy RAMS,
and fuzzy RATMI methods presented in Tables 7–9, respectively, are checked. This was
done by comparing these rankings from the proposed methods in this study with those
resulting from multiple fuzzy MCDM methods presented in Table 11. Those other MCDM
methods are the fuzzy ARAS, fuzzy MARCOS, fuzzy TOPSIS, fuzzy MABAC, fuzzy
VIKOR, and fuzzy MAIRCA. It is worth mentioning that the researchers who created these
fuzzy MCDM methods applied criteria with established fuzzy weights. In contrast, in
this research study, the fuzzy weights were unknown and determined by the proposed
MEREC-G method. The nonparametric correlation coefficients of ranked data, Spearman’s
rho, and Kendall’s tau_b, which might be better for smaller samples [73], were found as
shown in Tables 12 and 13, respectively. The correlation analyses show high correlations
with statistical significance levels between the resulting alternative rankings from the fuzzy
MCRAT, fuzzy RAMS, and fuzzy RATMI methods and those resulting from the other
fuzzy MCDM methods. This result indicates high accuracy and consistency between the
alternative rankings of the proposed hybrid MCDM approach based on fuzzy MEREC-G
and fuzzy RATMI methods in this research study and the other fuzzy MCDM methods.
Therefore, the proposed approach is deemed valid.

Table 11. Alternative rankings resulted from multiple fuzzy MCDM methods.

Alternatives
Fuzzy

ARAS *
Fuzzy

MARCOS *
Fuzzy

TOPSIS *
Fuzzy

MABAC *
Fuzzy

VIKOR *
Fuzzy

MAIRCA *
Fuzzy

MCRAT **
Fuzzy

RAMS **
Fuzzy

RATMI **

A1 5 6 6 5 6 5 6 6 6
A2 6 5 5 6 5 6 5 5 5
A3 1 1 1 1 1 1 1 1 1
A4 2 2 2 2 2 2 2 2 2
A5 4 4 4 4 4 4 4 4 4
A6 3 3 3 3 3 3 3 3 3

* Alternative ranking adopted from [48]. ** Alternative ranking based on Tables 7–9.

Table 12. Spearman’s rho correlation coefficients between alternative rankings resulted from multiple
fuzzy MCDM methods.

Fuzzy
ARAS

Fuzzy
MARCOS

Fuzzy
TOPSIS

Fuzzy
MABAC

Fuzzy
VIKOR

Fuzzy
MAIRCA

Fuzzy
MCRAT

Fuzzy
RAMS

Fuzzy
RATMI

Fuzzy ARAS 0.943 0.943 1.000 0.943 1.000 0.943 0.943 0.943
Fuzzy MARCOS 1.000 0.943 1.000 0.943 1.000 1.000 1.000
Fuzzy TOPSIS 0.943 1.000 0.943 1.000 1.000 1.000
Fuzzy MABAC 0.943 1.000 0.943 0.943 0.943
Fuzzy VIKOR 0.943 1.000 1.000 1.000

Fuzzy MAIRCA 0.943 0.943 0.943
Fuzzy MCRAT 1.000 1.000
Fuzzy RAMS 1.000
Fuzzy RATMI

Note: All Spearman’s rho correlation coefficients are significant at the p ≤ 0.01 level (2-tailed).
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Table 13. Kendall’s tau_b correlation coefficients between alternative rankings resulted from multiple
fuzzy MCDM methods.

Fuzzy
ARAS

Fuzzy
MARCOS

Fuzzy
TOPSIS

Fuzzy
MABAC

Fuzzy
VIKOR

Fuzzy
MAIRCA

Fuzzy
MCRAT

Fuzzy
RAMS

Fuzzy
RATMI

Fuzzy ARAS 0.867 * 0.867 * 1.000 ** 0.867 * 1.000 ** 0.867 * 0.867 * 0.867 *
Fuzzy MARCOS 1.000 ** 0.867 * 1.000 ** 0.867 * 1.000 ** 1.000 ** 1.000 **
Fuzzy TOPSIS 0.867 * 1.000 ** 0.867 * 1.000 ** 1.000 ** 1.000 **
Fuzzy MABAC 0.867 * 1.000 ** 0.867 * 0.867 * 0.867 *
Fuzzy VIKOR 0.867 * 1.000 ** 1.000 ** 1.000 **

Fuzzy MAIRCA 0.867 * 0.867 * 0.867 *
Fuzzy MCRAT 1.000 ** 1.000 **
Fuzzy RAMS 1.000 **
Fuzzy RATMI

* Correlation is significant at the p≤ 0.05 level (2-tailed). ** Correlation is significant at the p≤ 0.01 level (2-tailed).

5.2. Sensitivity Analysis of the Proposed Approach

The sensitivity of the proposed MCDM approach in this study is checked by analyzing
the effect of different criteria weights on the resulting rankings of alternatives (A1–A6)
from the fuzzy RATMI. The sensitivity analysis was performed by calculating different
fuzzy criteria weights of each of the eight criteria (C1–C8) based on a range of 10% to
90% with 10% increments and equally distributing the remainder of the 100% on the
reset of criteria in each scenario. This has created a total of 72 run scenarios of the fuzzy
RATMI algorithm (i.e., nine sets of criteria weights × eight criteria = 72 run scenarios).
This procedure enabled comparing the effect of different weights of each criterion on the
resulting alternative rankings.

Figure 2 shows the resulting alternative rankings from the sensitivity analysis. As
shown in Figure 2a, criterion C1 demonstrated its sensitivity in most of the alternative
rankings in the 10% and 20% scenarios and provided consistent rankings for the 30% to 90%
scenarios. Figure 2b shows that criterion C2 changed the rankings of the alternatives A3 and
A4 only in the 10% scenario and showed consistent alternative rankings in the 20% to 90%
scenarios. For criterion C3, the analysis shows that it gave consistent alternative rankings
for the whole range of scenarios from 10% to 90%, as presented in Figure 2c, indicating that
changing its weight does not influence the decision-making problem. Figure 2d shows that
criterion C4 changed the rankings of the alternatives in the 10%, 80%, and 90% scenarios
and gave consistent alternative rankings in the 20% to 70% scenarios. Figure 2e shows
that criterion C5 changed the rankings of the alternatives A2, A3, and A4 only in the
10% scenario and showed consistent alternative rankings in the 20% to 90% scenarios.
Figure 2f shows that criterion C6 changed the rankings of the alternatives in the 10% and
20% scenarios while giving consistent alternative rankings in the 30% to 90% scenarios.
Figure 2g shows that criterion C7 changed the rankings of the alternatives in the 10%,
20%, and 70% scenarios while giving consistent alternative rankings in the other scenarios.
Finally, Figure 2h shows that criterion C8 changed the rankings of the alternatives in
the 10%, 20%, and 30% scenarios and gave consistent alternative rankings in the 40% to
90% scenarios. These results indicate that the proposed approach is sensitive enough
to changes in the criteria weights and reflects those changes on the alternative rankings,
yet not too sensitive and capable of producing consistent rankings based on alternatives’
performance scoring.
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(a) (b) 

 
(c) (d) 

 
(e) (f) 

 
(g) (h) 

Figure 2. Sensitivity analysis of alternative rankings resulted from using different criteria weight
percentages for (a) C1; (b) C2; (c) C3; (d) C4; (e) C5; (f) C6; (g) C7; and (h) C8.
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6. Conclusions

Decision-making can be challenging when faced with multiple conflicting criteria and
uncertain or vague information. Fuzzy logic can model the uncertainty and ambiguity in
the decision process and provide a framework for fuzzy MCDM methods. These methods
help decision-makers assign weights to the criteria and rank the alternatives systematically.
This paper introduces a new hybrid fuzzy MCDM approach that combines two novel
methods: fuzzy MEREC-G for criteria weighting and fuzzy RATMI for alternative rankings.
The new approach was tested with real-world problem data adopted from Ulutaş et al. [48]
and compared with other MCDM methods: fuzzy ARAS, fuzzy MARCOS, fuzzy TOPSIS,
fuzzy MABAC, fuzzy VIKOR, and fuzzy MAIRCA, fuzzy MCRAT, and fuzzy RAMS.
The validity and sensitivity of the proposed hybrid MCDM approach were evaluated.
The validity was measured using the nonparametric Spearman’s rho and Kendall’s tau_b
correlation coefficients of ranked data. The correlation coefficients were 0.943 and 1.00
using Spearman’s rho methodology, while they were 0.867 and 1.00 using Kendall’s tau_b
methodology. These figures indicate that the proposed approach was valid and can be
applied to different real problems with fuzzy data, such as supplier selection [49,52] and
selecting pandemic hospital sites [55]. The sensitivity was checked by analyzing how
different criteria weights affected the alternative rankings from the fuzzy RATMI, which
showed that the approach was sensitive enough to reflect the changes in the criteria weights
on the alternative rankings, but not too sensitive and able to produce consistent rankings
based on the alternatives’ performance scorings. Therefore, this study’s new hybrid fuzzy
approach is deemed valid.

There are always opportunities for further studies in any new approach. The following
are possible future directions to extend the study on the proposed hybrid fuzzy MEREC-G
and fuzzy RATMI approach:

• Using the proposed fuzzy hybrid approach for different problems in multi-disciplines
can further ensure its effectiveness in solving research and industrial decision-making
problems.

• Conduct comparative studies between the new hybrid fuzzy approach and different
hybrid fuzzy methods in the literature or to be developed in the future.

• Study the efficacy of the proposed fuzzy hybrid approach when the number of decision
criteria increases.

• Apply other variations and extensions of traditional fuzzy set theory, such as intuition-
istic, hesitant, and Pythagorean fuzzy, in the developed method, which might better
handle the uncertainty and vagueness of inputs in decision-making problems.

• For further comparative analyses, the proposed fuzzy hybrid approach could apply to
other studies, such as the recent study presented by Görçün et al. [63].
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//www.mdpi.com/article/10.3390/math11173773/s1, Table S1: Example 1; Table S2: Example 2.

Author Contributions: Conceptualization, A.A.M. and R.M.S.A.; data curation, A.A.M. and R.M.S.A.;
formal analysis, A.A.M. and R.M.S.A.; investigation, A.A.M. and R.M.S.A.; methodology, A.A.M.
and R.M.S.A.; project administration, A.A.M. and R.M.S.A.; resources, A.A.M. and R.M.S.A.; soft-
ware, A.A.M. and R.M.S.A.; supervision, A.A.M. and R.M.S.A.; validation, A.A.M. and R.M.S.A.;
visualization, A.A.M. and R.M.S.A.; writing—original draft, A.A.M. and R.M.S.A.; writing—review
and editing, A.A.M. and R.M.S.A. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

180



Mathematics 2023, 11, 3773

References

1. Azhar, N.A.; Radzi, N.A.; Wan Ahmad, W.S.H.M. Multi-criteria decision making: A systematic review. Recent Adv. Electr. Electron.
Eng. Former. Recent Pat. Electr. Electron. Eng. 2021, 14, 779–801. [CrossRef]

2. Taherdoost, H.; Madanchian, M. Multi-Criteria Decision Making (MCDM) Methods and Concepts. Encyclopedia 2023, 3, 77–87.
[CrossRef]

3. Robert, M.X.; Yongwen, W. Which objective weight method is better: PCA or entropy? Sci. J. Res. Rev. 2022, 3, 1–4. [CrossRef]
4. Singh, M.; Pant, M. A review of selected weighing methods in MCDM with a case study. Int. J. Syst. Assur. Eng. Manag. 2021, 12,

126–144. [CrossRef]
5. Odu, G.O. Weighting methods for multi-criteria decision-making technique. J. Appl. Sci. Environ. Manag. 2019, 23, 1449–1457.

[CrossRef]
6. Mukhametzyanov, I. Specific character of objective methods for determining weights of criteria in MCDM problems: Entropy,

CRITIC and SD. Decis. Mak. Appl. Manag. Eng. 2021, 4, 76–105. [CrossRef]
7. Keshavarz-Ghorabaee, M.; Amiri, M.; Zavadskas, E.K.; Turskis, Z.; Antucheviciene, J. Determination of Objective Weights Using

a New Method Based on the Removal Effects of Criteria (MEREC). Symmetry 2021, 13, 525. [CrossRef]
8. Beed, R.S.; Sarkar, S.; Roy, A. Hierarchical Bayesian approach for improving weights for solving multi-objective route optimization

problem. Int. J. Inf. Technol. 2021, 13, 1331–1341. [CrossRef]
9. Krishnan, A.R.; Kasim, M.M.; Hamid, R.; Ghazali, M.F. A Modified CRITIC Method to Estimate the Objective Weights of Decision

Criteria. Symmetry 2021, 13, 973. [CrossRef]
10. Xing, J.; Wenshuo, Z. The optimization of objective weighting method based on relative importance. In Proceedings of the 2020

5th International Conference on Mechanical, Control and Computer Engineering (ICMCCE), Harbin, China, 25–27 December
2020; pp. 1234–1237. [CrossRef]

11. Chang, K.-H. Integrating Subjective–Objective Weights Consideration and a Combined Compromise Solution Method for
Handling Supplier Selection Issues. Systems 2023, 11, 74. [CrossRef]

12. Paramanik, A.R.; Sarkar, S.; Sarkar, B. OSWMI: An objective-subjective weighted method for minimizing inconsistency in
multi-criteria decision making. Comput. Ind. Eng. 2022, 169, 108138. [CrossRef]
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