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Preface

Seismic exploration is a method with deeper exploration capabilities and higher resolution than

potential geophysical methods, and has been widely used in the fields of oil and gas exploration,

mineral exploration, engineering, and environmental exploration. Seismic data processing imvolves

many conventional steps such as static correction, denoising, deconvolution, migration, and multiple

eliminations, all of which play an important role in improving the final imaging quality. This Special

Issue focuses on the development of advanced seismic data processing and imaging technologies and

their successful application, and it provides a platform for scientific researchers to display their latest

research results, which will provide a reference for practitioners engaged in oil and gas exploration,

mineral exploration, and engineering exploration to solve complex problems. We are grateful to all

authors who contributed articles to the Special Issue and to reviewers and editors who contributed to

the publication of these papers.

Guofeng Liu, Zhifu Zhang, and Xiaohong Meng

Editors
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Special Issue on Technological Advances in Seismic Data
Processing and Imaging

Guofeng Liu

School of Geophysics and Information Technology, China University of Geosciences (Beijing),
Beijing 10083, China; liugf@cugb.edu.cn

Seismic exploration is a geophysical method with deeper exploration capabilities and
higher resolution than potential geophysical methods [1], and has been widely used in
the fields of oil and gas exploration, mineral exploration, engineering, and environmental
exploration [2–4]. This Special Issue will focus on the development of advanced seismic
data processing and imaging technologies and their successful application.

There are a total of 23 papers presented in this Special Issue, and we divide them into
the following directions. In the seismic noise elimination section, five papers introduce
their new methods to deal with multiples, periodic noise, coherent noise, and ground roll.
Xiao et al. developed an iterative virtual event internal multiple suppression method for
post-stack data and used it with the Tarim data successfully. Wu et al. presented another
alternative based on sparse parabolic radon transform for multiple attenuation. Sun et al.
proposed a new method to attenuate periodic noise based on sparse representation. Based
on the multi-scale and multi-direction properties of the non-subsampled Shearlet transform,
Yu et al. proposed a seismic coherent noise removal method. Liang et al. applied multivari-
ate empirical mode decomposition to multi-component seismic data for the purposes of
attenuating ground roll, and this method is more robust than traditional empirical mode de-
composition. In the migration and inversion section, there are a total of seven papers about
new improvements and applications. Zhou et al. presented a modified inverse scattering
imaging condition in the reverse time migration to separate the effect of the impedance
and velocity perturbations from the reflectivity. Zhou et al. discussed the reverse time
migration imaging of compressional waves (P waves) and horizontally polarized shear
waves (SH waves) of seismic data, together with P- and SH shear wave-constrained velocity
model building, and the imaging quality of the Sanhu area in Qaidam Basin was greatly
improved. Zhou et al. used the combined compact difference scheme and the combined
super-compact difference scheme for the numerical simulation of the shear-wave reverse
time migration, which proved to be practical and effective. Song et al. reported a method
to improve insufficient illumination in reverse time migration in the presence of a shielding
effect on seismic waves caused by overburden rock. Li et al. proposed a new least square
migration method in the imaging domain to overcome unstable convergence and excessive
computational cost problems. Sun et al. proposed a method for establishing the initial
inversion model based on the velocity spectrum and Siamese network for the velocity in-
version. Rachman presented a case study that performed travel time tomography in order
to image the subsurface and approximate the Molucca Sea Plate subduction angle beneath
Sulawesi’s north arm. Gouda et al. reported a study that aims at estimating zero-offset
acoustic and shear impedances based on partial-stack inversion. There are also two papers
in this section that introduce the progress in passive seismic exploration. Fang et al. used
synchro-squeezed continuous wavelet transform to eliminate the automatic noise in the
Sichuan project. Liu et al. proposed a 3D method for passive reflection exploration, which
can reduce the computing intensity. Seismic wave propagation is always a hot topic for
research, and in this section, there are four papers about this field. Liu et al. discussed the
simulation of elastic wave propagations, and the Poisson disk node generation algorithm

Appl. Sci. 2023, 13, 11789. https://doi.org/10.3390/app132111789 https://www.mdpi.com/journal/applsci
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and the centroid Voronoi node adjustment algorithm were combined to obtain an even
and random node distribution to improve the accuracy of the simulation. Jin et al. stud-
ied seismic attenuation, focusing on accurately predicting the velocity dispersion at low
porosity and permeability. Yang et al. applied the multi-axis perfectly matched layer to the
wave-field simulations in anisotropic viscoelastic media to overcome instability. Sun et al.
simulated the seismic wave propagation of the translational and rotational motions in
two-dimensional isotropic and transverse isotropic media with a vertical axis of symmetry
media under different source mechanisms with the staggered-grid finite-difference method,
and also analyzed the characteristics. Artificial intelligence technology is also widely used
in seismic data processing and interpretation, and there are three papers on this field in this
Special Issue. Li et al. reported on velocity analysis, in which a modified U-Net framework
is proposed and applied directly to the seismic shot gathersto identify anomalies in the
early stage of velocity analysis and provide a suitable initial model. Wu et al. proposed
a modified U-Net architecture in fault interpretation. Zheng et al. reported a multi-task
deep learning solution for the impendence inversion when the number of logging curves is
limited. In this Special Issue, we also present a paper about near-surface structure imaging.
In order to realize a rapid, accurate, robust near-surface seismic imaging, a minimum
variance spatial smoothing beamforming method is proposed.

The research field on seismic data processing and imaging is very extensive. Although
we have published 23 articles in this Special Issue, there are still many interesting topics
that have not been discussed. We hope to have more opportunities to publish further
studies in the future, to foster further communication on this topic.
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Application of Iterative Virtual Events Internal Multiple
Suppression Technique: A Case of Southwest Depression
Area of Tarim, China
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zhangtao_xb@petrochina.com.cn (T.Z.); zhaoyuhe@petrochina.com.cn (Y.Z.);
wangyh0801@petrochina.com.cn (Y.W.)
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Abstract: The seismic records in the Cambrian southwest depression of the Tarim Basin exhibit
discrepancies when compared to the actual geological setting, which is caused by the presence of
multiples. Despite the application of the Radon transform, multiple interferences persist beneath the
Cambrian salt in the pre-stack data, with significant variations in energy and frequency across the
horizontal direction. In addition, other multiple suppression methods are also difficult to handle
this problem. To address this issue, we have developed an iterative virtual event internal multiple
suppression method for post-stack data. This novel algorithm extends the traditional virtual event
internal multiple suppression approach, eliminating the need for data regularization and avoiding
the problem of the traditional virtual events method requiring sequential extraction of primaries from
relevant layers, which greatly improves computational efficiency and simplifies the implementation
steps of the traditional method. Numerical experiments demonstrate the efficacy of our method in
suppressing internal multiples in both synthetic and field data while preserving primary signals.
When applied to real seismic data profiles, the iterative method yields structural characteristics
that align more closely with sedimentary laws and reduces disparities in energy and frequency of
multiples along the horizontal axis. Consequently, our method provides a robust foundation for
subsequent hydrocarbon source rock prediction.

Keywords: internal multiple suppression; virtual events; iterative; post-stack data; field data

1. Introduction

The increasing complexity of geological structures necessitates advancements in
oil and gas exploration and development technologies, making multiple suppression an
essential and challenging problem to address. The presence of multiples interferes with
the identification of primary reflections, reducing the signal-to-noise ratio of seismic
data, compromising the accuracy and reliability of seismic imaging, and potentially
leading to erroneous interpretations and source rock investigations. Consequently,
effective suppression of multiples is crucial for enhancing seismic data quality and
facilitating oil and gas exploration and development. In northwest China, there are
abundant resources of oil and natural gas. However, the complexity of its geological
features and strong reflective interfaces in underground media, such as rock mounds,
coal seams, basalt, etc., can generate strong internal multiples. The understanding

Appl. Sci. 2023, 13, 8832. https://doi.org/10.3390/app13158832 https://www.mdpi.com/journal/applsci
5



Appl. Sci. 2023, 13, 8832

of internal geological structures is constrained. Therefore, the demand for effective
suppression of seismic multiples is very urgent.

Seismic multiples are generally classified into two categories based on the location of
reflective layers: surface-related multiples and internal multiples. Surface-related multiples
exhibit relatively stronger energy, particularly in offshore seismic data. Consequently,
numerous researchers have focused on predicting and suppressing surface-related mul-
tiples, resulting in the maturation of suppression techniques for this category. In 1992,
Verschuur et al. employed the concept of series expansion to decompose the seismic wave-
field into primaries and multiples of all orders, effectively suppressing surface-related
multiples [1]. This method obviates the need for subsurface geological model information,
is a data-driven method, delivers superior results in field data processing, and exhibits high
computational efficiency. Many geophysicists have expressed interest in and conducted
research on this approach, leading to its widespread adoption in the exploration and de-
velopment field. In 2009, Van Groenestijn and Verschuur proposed using sparse inversion
to estimate primaries, eliminating the requirement for adaptive matched subtraction and
near offset extrapolation [2,3]. This advancement significantly optimized the traditional
surface-related multiple elimination (SRME) methods. In 2015, Ma et al. developed a
suppression method for 3D surface-related multiples [4]. This technique assumes that the
multiple contribution trace set corresponding to each seismic record in 3D seismic data
is hyperbolic, enabling multiple predictions and suppression in 3D seismic data through
sparse inversion. In 2022, Zhu et al. introduced a least squares datum continuation method
for suppressing surface-related multiples within the least squares inversion theoretical
framework [5]. This approach targets seafloor-separated up- and down-wave records, and,
without multiple separation or fractional extraction, iterative inversion yields pre-stack
seismic data from virtual observations on the seafloor, enhancing the resolution of effective
signals and improving seismic imaging quality.

In comparison to surface-related multiples, internal multiples exhibit smaller differ-
ences in frequency, stacking velocity, and normal moveout (NMO) correction, making
their suppression more challenging. In 1998, Jakubowicz introduced a data-driven
method for internal multiple suppression [6]. This approach directly employs surface
observed seismic data to construct internal multiples, enhancing computational effi-
ciency. However, the method necessitates the accurate selection of primary reflection
events from seismic data, which is difficult to implement in complex field data. In 2005,
Berkhout and Verschuur proposed an internal multiple prediction method based on com-
mon focus technology, which is grounded in wavefield extrapolation [7,8]. This method
is better suited to complex geological conditions but relies on a velocity model, limiting
its application in field data. In 2006, Weglein et al. presented the inverse scattering series
method based on the point scattering model [9]. As a data-driven, wave equation-based
method, it does not require prior information such as velocity models. However, the
method involves substantial computation and is only effective for near offsets, making
it insufficient for current data processing demands. In 2013, Ypma and Verschuur in-
troduced an internal multiple suppression method based on sparse inversion [10]. This
approach minimizes the damage caused by adaptive matched subtraction to primary
signals and effectively protects effective waves. Nevertheless, the method still entails
considerable computation and yields unstable wavelets, complicating large-scale field
data processing. In 2015, inspired by Marchenko’s imaging method, Meles et al. pro-
posed a self-focusing-based Marchenko internal multiple suppression method [11]. This
technique does not require accurate velocity models, only an inaccurate macro velocity
model to forward direct waves. Subsequently, direct waves and original data are used
to construct the up- and down-going Green functions for relevant virtual source points,
generating the associated internal multiples. However, this method demands significant
computation due to the need for virtual source points at various depths, making it diffi-
cult to apply widely to large scale, complex structured seismic data. In 2018, Zhang and
Staring proposed a one-step internal multiple suppression method based on Marchenko’s
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self-focusing approach, also known as the data domain internal multiple suppression
method [12]. This technique does not require macro velocity models for direct wave esti-
mation and directly outputs primaries without internal multiples. However, this method
imposes high requirements on the observation system, and its large-scale application in
field data remains limited. In 2020, Zhang et al. applied the Marchenko internal multiple
suppression method to field seismic data processing, achieving favorable results [13].
Nonetheless, in low signal-to-noise ratio scenarios, energy may not be sufficiently fo-
cused, rendering the Marchenko internal multiple suppression method ineffective. In
2022, Zhang et al. compared the self-focusing-based Marchenko method for internal
multiple suppression with the data domain method [14]. In the same year, Zhang et al.
introduced a multiple suppression method based on self-attention convolutional auto
encoders [15]. This method can reduce artificial cost, reduce dependence on unknown
prior information, and improve data processing efficiency.

In 2006 and 2009, Ikelle proposed a virtual seismic event construction method to
predict internal multiples [16,17]. This approach does not require prior information, such
as velocity models or subsurface structures, enabling accurate internal multiple predictions.
However, this method requires sequential extraction of primaries to construct internal
multiples generated by relevant layers, which increase the computational complexity. In
2013, Wu et al. utilized a multi-channel L1 norm adaptive matching algorithm to sup-
press multiples, considering the differences in amplitude and phase between virtual event
method-predicted internal multiples and actual internal multiples, achieving favorable
results in model data [18]. In 2018, Liu et al. introduced an adaptive virtual event method
to address the excessive dependency on the matching algorithm in the traditional virtual
event method, enhancing internal multiple suppression capabilities [19]. Although re-
searchers have improved and modified the virtual event method to address various issues,
the traditional virtual event method still requires sequential internal multiple constructions
on subsurface interfaces, incurring high computational costs for seismic data derived from
complex structures and making primary extraction difficult. To overcome this challenge,
we propose an iterative virtual event method. Compared to the traditional virtual event
method, the iterative virtual event technique incorporates an iterative calculation process,
mitigates the influence of false frequencies generated by data space convolution on pre-
dicted multiple models, and significantly improves computational efficiency. When applied
to actual onshore post-stack seismic data from the southwest depression of the Tarim Basin,
our method effectively suppresses internal multiples that are challenging to eliminate in
pre-stack traces, emphasizes the energy of deep effective waves, and further enhances the
quality of seismic profiles.

The paper is organized as follows. After the introduction, we provide an overview
of the study region. Subsequently, we present the theory of virtual events for internal
multiple eliminations, followed by synthetic and field data experiments that validate the
effectiveness of our approach. Finally, we draw conclusions based on detailed analyses
and discussions.

2. The Overview of the Study Region

The Southwest Depression of the Tarim Basin, situated in the southwestern part of the
basin, is bordered by the South Tianshan orogenic belt to the north and the West Kunlun
orogenic belt to the south. Encompassing an area of approximately 100 × 100 km2, it is the
largest sub-basin within the Tarim Basin and a favorable area for oil and gas exploration in
Cambrian Ordovician carbonate rocks. The traps formed during the Himalayan movement
predominantly consist of effective hydrocarbon source rocks distributed in the Bachu fault
uplift and Maigaiti slope area (Qu et al., 2000) [20]. After extensive research, a consensus has
emerged concerning the Cambrian subsalt of the Maigaiti slope: the Maigaiti slope contains
Ordovician Carboniferous oil and gas sources, while drilling through the Cambrian south of
Bachu revealed no Cambrian source rock, indicating the development of Cambrian subsalt
source rock in the slope area. The Middle-Lower Cambrian serves as an important reservoir
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and regional cap rock for the area’s deep carbonate rocks and is a significant horizon for
hydrocarbon source rock development (Cui et al., 2017; Zhang et al., 2015) [21,22]. Its
seismic sequence features three strong reflective interfaces within the Middle Cambrian.
The energy at the bottom boundary of the Lower Cambrian is not strong, whereas the
bottom of the upper salt section displays a continuous and stable strong wave crest. A
noticeable phase change occurs at the bottom of the lower salt section, and the sedimentary
pattern from the Early Cambrian to Middle Cambrian exhibits significant changes.

The three strong reflective interfaces in the Middle Cambrian provide favorable con-
ditions for internal multiple formations. However, internal multiples can distort seismic
waveforms, decrease the signal-to-noise ratio, and affect effective wave identification,
thereby complicating seismic processing, diminishing seismic imaging authenticity and
reliability, influencing hydrocarbon source rock studies, and increasing the difficulty of oil
and gas exploration and development in the northwest region. To better understand and
identify the internal multiples in the study area, well-seismic calibration was performed
using existing seismic and logging information, as illustrated in Figure 1. The well-seismic
calibration results reveal that the bottom interface of the upper salt section at the Middle
Cambrian is stable. The lithology of the lower salt section of the Middle Cambrian com-
prises pure gypsum salt rock with a strong wave crest at the bottom, while the lower salt
section contains gypsum-bearing dolomite and exhibits a trough at the bottom boundary.
The bottom boundary of the Lower Cambrian primarily appears as a trough, and the time
thickness of the Lower Cambrian varies significantly across different drilling wells, as does
the mismatch between well synthetic records and seismic records. Subsequently, velocity
spectra were generated for multiple identification and confirmation, as depicted in Figure 2.
Figure 2 displays the velocity spectra of two distinct CMP gathers, revealing numerous
low-velocity energy clusters. Following NMO correction of CMP gathers using primary
velocity, downward-bending events indicate the presence of a large number of multiples in
the original seismic data, necessitating multiple suppression processing.

 
Figure 1. Well A synthetic record calibration and well seismic profile.

Considering the characteristics of multiples in the study area, we initially employed
the Radon transform to suppress internal multiples in the pre-stack data. However, the
Radon transform cannot entirely eliminate all internal multiples present in the data, and this
method can only suppress some long-period multiples. Multiples interference still exists
under the Cambrian salt, as shown by the red circle in the velocity spectrum in Figure 3.
Additionally, there are significant differences in energy and frequency of multiples in the
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horizontal direction. It is challenging to suppress short-path internal multiples in the
pre-stack data, necessitating the selection of an appropriate multiple suppression method
from the post-stack data for this purpose. The iterative method for suppressing internal
multiples based on virtual events is capable of accurately predicting internal multiples
without requiring prior information, such as velocity models and underground structures,
while maintaining high computational efficiency. Consequently, we opt for the iterative
method to suppress internal multiples in the seismic data for the study area.

  

Figure 2. Velocity spectrum of the different original CMP trace sets; (a) velocity spectrum of CMP1;
(b) velocity spectrum of CMP2.

  

Figure 3. Velocity spectrum of the different CMP gathers after multiple suppression by the Radon
transform (corresponds to Figure 2); (a) velocity spectrum of CMP1; (b) velocity spectrum of CMP2.

3. Internal Multiple Elimination Using the Theory of Virtual Events

The iterative virtual event internal multiple suppression approach extends the tradi-
tional virtual event internal multiple suppression method and avoids constructing internal
multiple from every layer, which greatly improves computational efficiency [23,24]. Seis-
mic virtual events are not directly recorded in standard seismic data acquisition, but their
existence can help us construct internal multiples with scattering points at the sea sur-
face [16,17]. Therefore, the total seismic wave field data P(xR, xS, ω) received from the
surface can be used to successfully construct internal multiples. The process of predicting
internal multiples mainly includes two parts. For the internal multiples related to the first
underground interface, it is necessary to first extract the primary event Pi(xR, xS, ω) of ith

interface and the primary
−
Pi(xR, xS, ω) generated by the interface below this interface. Then,
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correlating the primary
−
Pi(xR, xS, ω) generated by other interfaces below this interface with

the time reversal PH
i (xR, xS, ω) of the primary event Pi(xR, xS, ω) to build the virtual event

Piv(xR, xS, ω) of this interface (Figure 4a). Finally, the convolution operation is carried

out by using the constructed virtual event Piv(xR, xS, ω) and the primary
−
Pi(xR, xS, ω)

generated by the interface below this interface to construct the internal multiples about this
interface (Figure 4b). Namely,

Piv(xR, xS, ω) = ∑
x

−
Pi(x, xS, ω)PH

i (xR, x, ω) (1)

Mi(xR, xS, ω) = ∑
x

Piv(xR, x, ω)
−
Pi(x, xS, ω) (2)

where x represents any point on the surface, R is the receiver point, S is the source, H
represents complex conjugation, and ω represents angular frequency. The subscripts
represent the number of layers, namely, the lower subscript i in Formulas (1) and (2)
represents the ith layer. Piv(xR, xS, ω) represents the constructed post-stack virtual events.
Mi(xR, xS, ω) is the internal multiple of the constructed post-stack data.

 

=

RSV xxPRS
H xxPS RP x x−

=

RSV xxP S RP x x−
RSI xxM

Figure 4. Construction of the virtual events and the internal multiples; (a) construction of the virtual
events; (b) construction of the internal multiples. There pentagram represents convolution, the black
line and black arrow represent the actual detectable seismic wave paths, red line and red arrow is
used to assist in constructing virtual events and internal multiples.

Figure 4 shows the construction process of virtual events and related internal multi-
ples; constructing post-stack virtual events Pv(xR, xS, ω) for the correlation of delay wave
−
P(x, xS, ω) and lead wave PH(xR, x, ω). Then, the constructed virtual events and pri-
mary convolution is used to obtain the internal multiples of the post-stack-related layers
M(xR, xS, ω), where the red star represents the convolution operation.

Assuming that the median of seismic data does not include surface-related multiples
but only internal multiples, the effective wave after internal multiples suppression is
as follows:

P0(xR, xS, ω) = P(xR, xS, ω)− M(xR, xS, ω), (3)

where P0(xR, xS, ω) is the data of internal multiple suppression and P(xR, xS, ω) is the
original seismic data. According to the estimation of multiple scattering by iterative
inversion [25,26], the multiple can be written as follows:

M(xR, xS, ω) = P0(xR, xS, ω)}0 AP(xS, xR, ω) (4)

where A is the surface factor. Substituting Formula (4) into Formula (3):

P0(xR, xS, ω) = P(xR, xS, ω)− P0(xR, xS, ω)}0 AP0(xS, xR, ω) (5)
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In terms of the Neumann series, Formula (5) can be written as follows:

{P0(xR, xS, ω)}(n) = P(xR, xS, ω)− {P0(xR, xS, ω)}(n−1)
0 A(n)P(xR, xS, ω), (6)

where n represents the number of iterations and the expression of surface factor A is
as follows:

A(n) = ({P0(xR, xS, ω)}(n−1)
0 )

−1
(P(xR, xS, ω)

− {P0(xR, xS, ω)}n)(P(xR, xS, ω))−1 (7)

In order to obtain more abundant internal multiple information, the multiple iteration
theory can be used for multiple models. The multiples after iteration n + 1th can be
expressed as follows:

{M(xR, xS, ω)}(n+1) = {P0(xR, xS, ω)}(n)0 A(n)P(xR, xS, ω) (8)

The multiples after n iterations are expressed as follows:

{M(xR, xS, ω)}(n) = {P0(xR, xS, ω)}(n−1)
0 [{P0(xR, xS, ω)}(n−2)

0 ]−1

×(P(xR, xS, ω)− {P0(xR, xS, ω)}(n−1)
0 )

(9)

Bringing Formula (7) into Formula (9), the internal multiple model after n iterations is
as follows:

{M(xR, xS, ω)}(n) = {P0(xR, xS, ω)}(n−1)
0 ({P0(xR, xS, ω)}(n−1)

0 )
T

×[{P0(xR, xS, ω)}(n−2)
0 ({P0(xR, xS, ω)}(n−2)

0 )T ]−1

×(P(xR, xS, ω)− {P0(xR, xS, ω)}(n−1)
0 )

(10)

where T represents matrix transpose.
The primary focus of this article is on the suppression of internal multiples in post-

stack profiles. In the post-stack profile, firstly, we can employ the tracing of horizons
method to obtain the primary events. Secondly, by shifting the window up and down, we
can acquire the primary data volume and other primary data volume below this primary
used to construct the virtual events. Subsequently, we input the seismic data obtained, the
iterative virtual event internal multiple suppression technique initially utilizes the virtual
events internal multiple methods, such as Formulas (1) and (2), to construct the internal
multiple models for the corresponding layer. Finally, through iterative updates, such as
Formula (10), a more comprehensive multiple model is obtained, ultimately leading to the
suppression of the multiple results. This approach not only enhances the computational
efficiency, accuracy, and applicability but also reduces the requirements for the original
input data, thereby improving imaging accuracy, which can make it widely applicable in
the processing of field data.

4. Numerical Examples

To verify the effectiveness of the iterative virtual events internal multiple suppression
method, first of all, we use a simple horizontal layered model as a test case, with the
velocity model displayed in Figure 5. The velocity model size is 4000 m × 1600 m, and
forward modeling is carried out using the higher order finite difference method based
on the acoustic equation. An absorption boundary is applied at the top of the model. At
the acquisition surface, seismic data are modeled with 501 sources and 501 receivers on a
fixed spread with a spacing of 20 m, and the grid size is 2.5 m × 2.5 m. The source emits
a Ricker wavelet with a 25 Hz center frequency. The number of time sampling points is
1024, and the time sampling interval is 4 ms. Figure 6 shows the seismic record of one
shot, including primaries and internal multiples in forward modeling, with the direct wave
removed. Since the primary focus of this paper is the suppression of internal multiples in
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post-stack data, zero offset gathers are extracted from the forward shot records for internal
multiple suppression. The extracted zero offset gathers are shown in Figure 7a.

Figure 5. Velocity model.

 
Figure 6. Original seismic data with the internal multiple.

The iterative virtual event multiple suppression method is applied to suppress the
internal multiples, and the resulting zero offset gathers are displayed in Figure 7b. The
figure reveals that all internal multiples are essentially suppressed without damaging
the primaries, indicating that the iterative virtual event method can effectively suppress
stacked multiples in model data. Figure 8a displays the predicted initial internal multi-
ples model, while Figure 8b shows the internal multiples after iteration. The internal
multiple information after iteration is more abundant and matches the actual multiples
better. The suppression effect is sufficiently ideal, demonstrating that the iterative virtual
event multiple suppression method can effectively suppress the internal multiples in
synthetic data.
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Figure 7. Zero-offset data with the internal multiples suppression. (a) Original zero-offset data with
the internal multiples; (b) result after the internal multiples are suppressed.

  

Figure 8. The predicted internal multiple. (a) The predicted internal multiples using the traditional
virtual events method; (b) the predicted internal multiples after iterating.

5. Field Example

Per the interpreter’s request, the primary focus is on suppressing internal multiples
below 6 s to observe the original seismic profile more clearly. The seismic profile below
4 s is shown in Figure 9. From Figure 9a, it can be seen that the events below 6 s are
similar in wave shape to the strong energy primaries, and the energy and frequency
of these events are significantly different in the horizontal direction. Based on the
relevant characteristics of multiples and multiples identification methods, these events
are determined as internal multiples generated by the three sets of strong reflection
interfaces of Middle Cambrian. Proof by facts, these internal multiples are challenging
to suppress in pre-stack data using the filtering methods, such as the Radon transform
method. Therefore, on top of the pre-stack suppression of multiples, we suppressed
those internal multiples that are difficult to suppress in post-stack data using the iterative
virtual events internal multiples suppression method.
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Figure 9. Profile comparison before and after the internal multiple suppression. (a) Original stacked
profile; (b) stacked section after the internal multiple suppression.

Figure 9 shows the profile comparison before and after the internal multiple suppres-
sion. Figure 9a displays the partial stack profile before internal multiple suppression, while
Figure 9b shows the corresponding stack profile after the internal multiple suppression.
As seen in Figure 9b, the internal multiples below 6 s are mostly suppressed, and the
horizontal difference in energy and frequency of the events below 6 s is smaller after the
internal multiples are suppressed, particularly at the position indicated by the red arrow.
To more clearly observe the effect of internal multiple suppression before and after, the part
in the yellow box in Figure 9 is enlarged, as shown in Figure 10. In Figure 10, the event,
which is similar to the upper strong reflection waveform with the opposite phase, periodic
appearance, and significant lateral variation, is essentially suppressed. This is consistent
with the analysis and identification results of multiples discussed earlier (Figures 2 and 3).
The results demonstrate that the iterative virtual event multiple suppression method can
effectively suppress the internal multiples in field data.
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Figure 10. Part of profile comparison before and after the internal multiple suppression. (a) Original
stacked profile; (b) stacked section after the internal multiple suppression.

To further analyze the suppression effect and accuracy of internal multiples, some
sections before and after internal multiple suppression are selected for spectrum analysis,
as shown in Figure 11. Figure 11a is the partial superimposed section before internal
multiple suppression, Figure 11b is the partial superimposed section after internal multiple
suppression, and Figure 11c shows the frequency distribution curve before and after
internal multiple suppression. It can be seen from the figure that after suppressing internal
multiples, the frequency spectrum is significantly broadened, and the spectral energy of
the seismic profile is increased. This indicates that while using the iterative virtual event
technology to suppress the internal multiples, the effective wave is protected, and the
resolution of seismic data is improved. The method can provide reliable seismic data for
subsequent studies of hydrocarbon source rocks.
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(c) 

Figure 11. Spectrum analysis before and after the internal multiple suppression. (a) Partial stacked
sections before the internal multiple suppression; (b) partial stack section after the internal multiple
suppression; (c) frequency distribution curve before and after the internal multiple suppression.

6. Conclusions

The iterative virtual events method, when used to suppress internal multiples, in-
volves first using the traditional virtual events method to build the initial multiple models,
and then iterating the initial multiple models to complete the suppression of internal
multiples. This approach not only simplifies the process of multiple suppression and
improves computational efficiency and accuracy, but also obtains more abundant multiple
information. From the model test, field data processing, and profile and spectrum analysis
before and after processing, we can conclude the following:

(1) The internal multiples in the post-stack data are suppressed using the iterative virtual
event internal multiples suppression method, significantly reducing the number of
events close to the primary shape.

(2) After suppressing the internal multiples, the spectrum is significantly broadened, the
overall energy is raised, and the resolution is improved.

(3) The phenomenon of multiples’ energy and frequency varying greatly in the horizontal
direction is weakened. The obtained seismic profile is more conforming to the actual
geologic structure.
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These results indicate that this method can effectively suppress the internal multiples
in seismic data and can be widely used in the internal multiples suppression of field data.
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Abstract: The existence of multiple reflections brings difficulty to seismic data processing and inter-
pretation in seismic reflection exploration. Parabolic Radon transform is widely used in multiple
attenuation because it is easily implemented, highly robust and efficient. However, finite seismic
acquisition aperture of seismic data causes energy diffusion in the Radon domain, which leads to
multiple residuals. In this paper, we propose a sparse parabolic Radon transform with the nonconvex
Lq1 − Lq2 (0 < q1, q2 < 1) mixed regularization (SPRTLq1 − Lq2 ) that constrains the sparsity of pri-
mary and multiple reflections to overcome the energy diffusion and improve the effect of multiple
attenuation, respectively. This nonconvex mixed regularization problem is solved approximately by
the alternating direction method of multipliers (ADMM) algorithm, and we give the convergence
conditions of the ADMM algorithm. The proposed method is compared with least squares parabolic
Radon transform (LSPRT) and sparse parabolic Radon transform based on L1 regularization (SPRTL1)
for multiple attenuation in the synthetic data and field data. We demonstrate that it improves the
sparsity and resolution of the Radon domain data, and better results are obtained.

Keywords: multiple attenuation; parabolic Radon transform; Lq regularization; sparse inversion

1. Introduction

Multiple reflections are usually regarded as coherent noise in reflection seismic data
especially in marine exploration. The existence of multiple reflections brings difficulty to
seismic data processing [1]. It makes the structural illusion appear in the migrated-stacked
section, which can affect the accuracy of subsequent data interpretation [2]. The Radon
transform is a common method for multiple attenuation because of its high efficiency
and due that it is easily implemented [3,4]. Due to the kinematic differences between
primary and multiple reflections, most multiples are considered as coherent noise with low
velocity [5]. Therefore, the primary reflections are upturned or flat, and multiple reflections
are parabolic after normal movement correction with certain velocities in the CMP gather,
which provides a theoretical basis for multiple attenuation using Radon transform. In 1986,
Hampson [6] used the parabolic Radon transform to suppress multiples. The parabolic
Radon transform makes their seismic events of different curvatures projected in different
regions of the Radon domain, so as to separate primary and multiple reflections. However,
finite seismic acquisition aperture of seismic data causes energy diffusion in the Radon
domain, and it causes the smearing shown by the red arrows in Figure 1b. The energy
diffusion limits the effect of multiple attenuation. To improve the above problem, the
conception of optimization inversion is introduced into Radon transform [7,8].

When solving the inverse problems of Radon transform, the solution of inversion
Radon transform is not unique. That is to say, there will be multiple sets of different solutions
in the Radon domain, and these solutions do not describe the model function well.

Hampson [6] proposed the least squares inversion method, and the original data
are reconstructed by optimizing the data in the Radon domain. This method reduces
the smearing in the radon domain, but there are still some artefacts and data outside the
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offset that are not restricted. After Radon inverse transform, the data within a restricted
offset still consist of the original data, but they are different when the data are outside the
restricted range. In addition, the solution of the Radon domain is not optimal. Therefore, to
solve this problem, it is hoped that the solution of the Radon domain will be sparser [2].
In 1985, the Radon transform was considered as a sparse inversion problem by Thor-
son et al. [9]. However, a lot of computation is disadvantageous. Sacchi et al. [10] adopted
the method of Thorson to implement the sparse inversion Radon transform, and it is in
the frequency domain. A high-resolution Radon transform was proposed by Herrmann
to distinguish primary and multiple reflections, and it tackled the aliasing and resolution
issues of the Radon transform [11]. Trad et al. [12] discussed fast implementations for
the Radon transform in the time and frequency domains. With this sparse constraint,
the seismic events have better localization characteristics in the Radon domain and the
separation effect of primaries and multiples is guaranteed to a certain extent. Lu [13]
proposed iterative 2D model shrinkage to solve the sparse inverse problem of RT and
obtained the analogously sparse Radon model. Xiong et al. [14] established a mathematical
model to combine L2-norm and the adaptive multiple subtraction method on L1-norm by
weighted combination. This method can suppress the energy of multiples relatively better
than non-combination.

Figure 1. (a) CMP gather after NMO; (b) Radon domain data after parabolic Radon transform. The
red arrows indicate the smearing.

In order to further improve the separation effect, researchers use the regularization
methods of L-norm as the sparsity constraint condition that fully reflects the basic character-
istics of the seismic data [15–17]. We can obtain the high-resolution Radon transform, and
it is constrained sparsely, such as in L0 regularization, but it is generally not used because
it is hard to solve. Tisbshirani [18] proposed L1 regularization, and it provides an alterna-
tive. L1 regularization [19] is a convex optimization problem. This means that L1-norm
regularization is easy to solve. Donoho et al. [20] proved that sometimes the solution of
the L0 regularization is equivalent to that of the L1 regularization for the sparsity problem.
L2 regularization can avoid the overfitting of the model, but its solutions do not have the
sparse property. Moreover, some numerical experiments showed that sparse signals are
recovered from fewer linear measurements by Lq (0 < q < 1) regularization [21–24]. L1/2
regularization can be taken as a representative of the Lq (0 < q < 1) regularization, and it
has been proved that the solution of L1/2 regularization is sparser and more stable than the
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solution of L1 regularization [25]. However, the L1/2 regularization leads to a nonconvex,
nonsmooth and non-Lipschitz optimization problem that is difficult to solve quickly and
efficiently. Some scholars proposed corresponding solving methods. The reweighted itera-
tion algorithm [25], the iterative reweighted least squares method [26], the iterative half
thresholding algorithm [27] and the generalized iterated shrinkage algorithm [28,29] are
efficient methods for solving the L1/2 regularization.

Generally, sparse regularization constrains the sparsity of the whole seismic wavefield,
which means a unique regularization parameter for different wavefields. However, the
different wavefields have different amplitudes, and the same regularization parameter
setting easily causes signal damage or redundant residual information. Sparse regulariza-
tion for multi-tasking exploits differences in features of the data to demix the two distinct
components for constraining the sparsity. For the multiple attenuation case in the Radon
domain, primary and multiple reflections are distributed in different zones of the Radon
domain and have different amplitudes. The unique regularization parameter may limit the
performance of multiple attenuation.

In this paper, we propose a sparse parabolic Radon transform in the frequency domain
with the nonconvex Lq1 − Lq2(0 < q1, q2 < 1) mixed regularization (SPRTLq1 − Lq2 ) that
constrains the sparsity of primary and multiple reflections, respectively. In addition,
we use the alternating direction method of multipliers algorithm (ADMM) [30–32] to
approximately solve the multi-task regularization problem. Furthermore, conditions for
convergence [33–36] are indicated. The rationality and effectiveness of the proposed method
in multiple attenuation are verified by synthetic and real data. The method in this paper
is compared with least squares parabolic Radon transform (LSPRT) and sparse parabolic
Radon transform based on L1 regularization (SPRTL1) for multiple attenuation. This
method improves the precision and focusing ability of Radon transform, obtains a better
result of multiple suppression, reduces the loss of primary reflections, and improves the
interpretability of seismic data.

2. Methodology

2.1. Parabolic Radon Transform

The fundamental strategy of multiple suppression based on Radon transform is to
use the difference in kinematic features between primary and multiple reflections. The
velocity between primary and multiple reflections is used to perform normal movement
correction of the seismic data of CMP gather, and then the seismic events are more like
parabolas [6]. Therefore, after the parabolic Radon transform, the seismic events with
different curvatures can be mapped to different regions of the Radon domain to realize the
separation of primary and multiple reflections.

The sum trajectories of parabolic Radon transform follow a parabola, and its definition
is as follows:

m
(
τ, qj

)
=

Nx

∑
j=0

d
(

t = τ+qjx
2, x

)
(1)

d(t, x) =
Nq

∑
j=0

m
(

τ = t − qjx2, qj

)
(2)

where d(t, x) is seismic data, m
(
τ, qj

)
is Radon domain data after parabolic Radon trans-

form, x is offset distance, t is time, q is curvature parameter and τ is intercept time. The
meaning of parabolic Radon transform is that the seismic events having a parabolic shape
in the time domain are mapped to a point in the Radon domain.

For the sake of efficiency, Radon transform can be transformed via the time variable to
the frequency domain, as shown in Formulations (3) and (4):

M
(
qj, f

)
=

Nx

∑
k=1

D(xk, f )ei2π f qjx2
k (3)
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D(xk, f ) =
Nq

∑
j=1

M(qj, f )e−i2π f qjx2
k (4)

where f is frequency, k = 1, 2, · · · , Nx and j = 1, 2, · · · , Nq
The matrix vector form of Formulations (3) and (4) can be represented by

m = AHd (5)

d = Am (6)

where d is CMP gather and m is the matrix form of Radon domain data. The Radon
operators A and AH of forward and inversion transform are defined as

AH = ei2π f qjx2
k (7)

A = e−i2π f qjx2
k (8)

Due to the limited aperture and discretization leading to low resolution and aliasing,
Hampson [6] proposed the least squares inversion method, and the solution is presented as

m =
(

AHA
)−1

AHd (9)

The solution of Tikhonov regularization [37] is

m =
(

AHA + σI
)−1

AHd (10)

where σ is a stable factor and I is the identity matrix.
The least squares parabolic Radon transform improves the resolution of the Radon

domain data as well as the accuracy and focusing ability of the transformation. This
method limits partial energy diffusion and ensures the consistency of the reconstructed
data with the original data. However, for multiples and primaries with little difference
in the time difference of normal moveout, this method cannot separate them without
distortion, and there is still some energy overlap in the Radon domain. It is necessary
to improve the parabolic Radon transform to make the solution of the Radon domain
more sparse. Radon transform is regarded as a nonlinear inversion problem. The data
transformation error is constrained by L2-norm, and the model sparsity is constrained by
L-norm to improve the sparsity and resolution of the model. Therefore, L1 regulariza-
tion [20] and Lq regularization [25,27] are proposed to constrain data.

2.2. High-Resolution Sparse Parabolic Radon Transform

The regularization method of using L-norm as a penalty term can make the result
sparse and obtain a high-resolution parabolic Radon transform with sparse constraints.
Common regularization methods include L0 regularization, L1 regularization, L2 regu-
larization, Lq regularization and the unit sphere geometry diagram of L-norm, shown in
Figure 2. Since there are no corners in the constraint region of L0 regularization, and it is
difficult to have zero solutions, this method has sparsity. The constraint region of L2 regu-
larization also has no corners and it can avoid the overfitting of the model, but its solutions
do not have the sparsity property. The constraint region of L1 regularization is a square.
The L1 regularization is convex optimization problem, and it is sparse. It can be solved
using the iterative soft threshold algorithm (ISTA) [38] and the fast iterative shrinkage-
thresholding algorithm (FISTA) [39]. However, some numerical experiments [21] showed
that Lq (0 < q < 1) regularization has much better signal recovery capability than L1 regu-
larization minimization. As shown in Figure 2, the solution of Lq (0 < q < 1) regularization
is more likely to be at a corner, which proves its sparsity.
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Figure 2. Unit ball pictures for (a) L0, (b) L2, (c) L1 and (d) L1/2 regularization.

The multiple suppression based on the parabolic Radon transform problem can be
formulated as following minimization problem of Lq regularization:

min
m

{1
2
‖d − Am‖2

2 + α‖m‖q
q} (11)

where ‖m‖q=(∑N
i=1|mi|q)1/q

and α > 0 is the regularization parameter.
Lq (0 < q < 1) norm constrains whole seismic wavefield data to improve the inversion

accuracy. However, in order not to cause signal damage and noise residue, sparse con-
straints of primary and multiple reflections are considered, respectively, according to the
differences between them to achieve a better multiple suppression.

2.3. High-Resolution Parabolic Radon Transform with Lq1 − Lq2 Mixed Regularization

To suppress multiple m2 from d, we use Lq1 − Lq2 mixed regularization with 0 < q1, q2 < 1
for sparsity promotion and use the following formulation:

min
m1m2

{
1
β
‖A1m1 + A2m2 − d‖2

2 + μ‖m1‖q1
q1
+ ‖m2‖q2

q2

}
(12)

where μ is a positive parameter, β > 0 is a penalty parameter, A = A1 = A2 is the Radon op-
erator, m1 is primary and m2 is multiple. To determine q1 and q2, we explore the Lq(0 < q < 1)
regularization. Xu et al. [25] introduced Lq(0 < q < 1) regularization and proved that the Lq
regularization can obtain much sparser solutions than L1 regularization. Meanwhile, they
proposed L1/2 regularization, and it is the most representative regularization method for
Lq(0 < q < 1) regularization. The study shows that the L1/2 regularization is the sparsest
and the most robust among the Lq(1/2 ≤ q < 1) regularization, and when 0 < q < 1/2, the
Lq regularization has similar properties to the L1/2 regularization. Therefore, we select
q1 = q2 = 1/2 in this paper.

Lq1 − Lq2 mixed regularization is the nonconvex problem, and it is a very complicated
process to solve. In this paper, we use an improved alternative direction method of
multipliers algorithm (ADMM) to approximate the solution [34]. The ADMM algorithm can
be used to solve many high-dimensional problems and uses a decomposition-coordination
procedure to decouple the variables [34–36,40]. This algorithm enables the difficult global
problem to be properly solved. The Problem (12) can be formulated as

min
m1m2

{
‖A1m1 + A2m2 − d‖2

2 + βμ‖z1‖q1
q1
+ β‖z2‖q2

q2

}
(13)

where the auxiliary variables are z1 = m1, z2 = m2.
The augmented Lagrangian function is
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L(m1, m2, z1, z2, w1, w2)

= ‖A1m1 + A2m2 − d‖2
2 + βμ‖z1‖q1

q1
+ β‖z2‖q2

q2
+ 〈w1, m1 − z1〉+ 〈w2, m2 − z2〉

+ ρ1
2 ‖m1 − z1‖2

2 +
ρ2
2 ‖m2 − z2‖2

2
where ρ1 and ρ2 are positive penalty parameters and w1 and w2 are the dual variables. The
dual variables and z1, z2, m1, m2 are alternatively updated as follows:

zk+1
1 = argmin

z1
(βμ‖z1‖q1

q1
+

ρ1

2

∥∥∥∥∥mk
1 − z1 +

wk
1

ρ1

∥∥∥∥∥
2

2

) (14)

zk+1
2 = argmin

z2
(β‖z2‖q2

q2
+

ρ2

2

∥∥∥∥∥mk
2 − z2 +

wk
2

ρ2

∥∥∥∥∥
2

2

) (15)

mk+1
1 = argmin

m1
(
∥∥∥A1m1 + A2mk

2 − d
∥∥∥2

2
+

ρ1

2

∥∥∥∥∥m1 − zk+1
1 +

wk
1

ρ1

∥∥∥∥∥
2

2

) (16)

mk+1
2 = argmin

m2
(
∥∥∥A1mk+1

1 + A2m2 − d
∥∥∥2

2
+

ρ1

2

∥∥∥∥∥m2 − zk+1
2 +

wk
2

ρ2

∥∥∥∥∥
2

2

) (17)

wk+1
1 = wk

1 + ρ1(mk+1
1 − zk+1

1 ) (18)

wk+1
2 = wk

2 + ρ2(mk+1
2 − zk+1

2 ) (19)

Due to the proximity operator of Lq regularization, proxq,η(t) is defined as

proxq,η(t) = argmin
m

{
‖m‖q

q +
η

2
‖m − t‖2

2

}
(20)

where η > 0 is a penalty parameter.
When 0 < q < 1, it can be updated as [41]

proxq,η(t)i =

⎧⎪⎨⎪⎩
0, |ti| < τ

{0, sign(ti)β}, |ti| = τ

sign(ti)zi, |ti| > τ

(21)

for i = 1, · · · , n, where β = [2(1 − q)/η]1/(2−q) and τ = β + qβq−1/η,zi is the result of
h(z) = qzq−1 + ηz − η|ti| = 0. The exact solutions of m1 and m2 denote

mk+1
1 = (2AT

1 A1 + ρ1I)
−1

[2AT
1

(
d − A2mk

2

)
+ ρ1zk+1

1 − wk
1] (22)

mk+1
2 = (2AT

2 A2 + ρ2I)
−1

[2AT
2

(
d − A1mk+1

1

)
+ ρ2zk+1

2 − wk
2] (23)

The standard ADMM algorithm often fails to converge and converges under some
conditions. Therefore, the sufficient condition for the ADMM convergence is [34]

ρ1 >
16λ2

1
ρ1

+
16λ1λ2

ρ2
− 2ϕ1 (24)

ρ2 >
16λ2

2
ρ2

+
16λ1λ2

ρ1
− 2ϕ2 (25)

where λi = λmax(AT
i Ai) and ϕi = λmin(AT

i Ai), i = 1,2. The convergence condition of (24)

and (25) causes the sequence
{
(zk

1, zk
2, mk

1, mk
2, wk

1, wk
2)
}

generated by (14)–(19) to converge
to a critical point of the Problem (13).
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3. Synthetic Data Application

To validate the effectiveness of the proposed method (SPRTLq1 − Lq2 ), we used least
squares parabolic Radon transform (LSPRT) and sparse parabolic Radon transform based
on L1 regularization (SPRTL1) as the control group to perform a multiple attenuation test
on the noisy synthetic data. The velocity model of the synthetic seismic data is shown in
Figure 3a. Figure 3b is the CMP gather of a full wavefield. There are 750 sampling points in
the time direction, the sampling interval is 4 ms and the offset range is 0 to 2000 m with an
interval dx = 25 m.

Figure 3. (a) Velocity model; (b) CMP gather; (c) CMP gather after NMO.

In order to make the kinematic characteristics of seismic events closer to parabolas,
the CMP gather should be normal movement corrected first. The primary reflections are
flat and multiple reflections, which are parabolic because of inadequate correction after
normal movement correction with velocities of the primary reflections in the CMP gather,
as shown in Figure 3c.

After the Radon transform, the seismic events of primaries are mapped in the region
with a negative q value and q = 0, and the seismic events of multiples are mapped in the
region with a positive q value, as shown in Figure 4. In Figure 4a, due to the influence of the
noise, the seismic events do not converge to a point well in the Radon domain, and finite
seismic acquisition aperture causes severe smearing. In Figure 4b, although the smearing
is alleviated, the result fell short. Figure 4c shows the result of the SPRTLq1 − Lq2 method.
Because the primary and multiple reflections are sparsely constrained, respectively, only
the results of the primary seismic events are left in the Radon domain, and the mapping of
multiples is removed directly. There is almost no smearing in Figure 4c, and it has higher
resolution. The transformation accuracy and focusing ability are improved.
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Figure 4. Radon domain results: (a) LSPRT method; (b) SPRTL1 method; (c) SPRTLq1 − Lq2 method.

Figure 5b is the multiple attenuation result obtained by LSPRT; Figure 5c is the result
obtained by SPRTL1. Due to the overlapping energy of multiple and primary reflections in
the Radon domain, there are many artifacts at near offset. They still have some residual
multiple energy, especially at near offset. Figure 5d is the result obtained by SPRTLq1 − Lq2 .
There are almost no residual multiples at the arrow, and the reconstructed data have great
consistency with the original data. Figure 6 shows the difference between the suppression
results and those without multiple wavefield data. It is proved that the SPRTLq1 − Lq2

method is effective in suppressing multiples, especially at the near-offset position. In order
to quantitatively analyze the consistency between the reconstructed data and the original
data, the following formula is applied to calculate the reconstruction error [42]:

s =
‖m′ − m̂‖2

2

‖m′‖2
2

× 100% (26)

where m′ is no multiple wavefield data, m̂ is data after multiple attenuation and s is
reconstruction error.

Based on the examples of synthetic data, Table 1 lists the reconstruction error of
three methods. It is obvious that compared with the LSPRT and SPRTL1 methods, the
SPRTLq1 − Lq2 method is superior in reconstruction capability.

Table 1. Reconstruction error comparison.

Method LSPRT SPRTL1 SPRTLq1 − Lq2

Reconstruction error 11.2% 8.3% 7.6%
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Figure 5. Multiple attenuation result of the theoretical model data: (a) without multiple wavefield
data; (b) LSPRT method; (c) SPRTL1 method; (d) SPRTLq1 − Lq2 method. The red arrows indicate the
multiples suppression effect of the three algorithms, and there is no residual multiples in Figure 5d.

Figure 6. Difference image map: (a) by LSPRT; (b) by SPRTL1; (c) by SPRTLq1 − Lq2.

In order to verify whether the proposed method is suitable for seismic data with
missing traces, we randomly selected 30%, 50% and 70% seismic trace from the synthetic
seismic record containing noise and filled them with zero. We applied the proposed method
to suppress multiples of missing seismic trace data. As can be seen from Figure 7a,b, the
result of suppressing multiples is not affected, and there are also no residual multiples at the
near offset. With the increase in the percentage of missing traces, the reconstruction effect
becomes worse. When the percentage of missing traces reaches 70%, the phase distortion
appears in the suppression result. Based on the reconstruction results, it can be proved that
the SPRTLq1 − Lq2 method is also suitable for missing trace data.

27



Appl. Sci. 2023, 13, 2550

Figure 7. Multiple attenuation results of missing trace data by SPRTLq1 − Lq2: (a) 30% missing traces;
(b) 50% missing traces; (c) 70% missing traces.

4. Real Data Application

4.1. CMP Gather of Real Data Application

A marine CMP gather after normal movement correction was applied to further
examine the effectiveness of the SPRTLq1 − Lq2 method. We chose the time window of
3.2 s–4.8 s in the field data to process because there exists a large number of multiple
reflections, as shown in Figure 8a. The reason is that this part of the data has more
developed multiple waves, and the effect of suppression can be clearly seen in the final
result. There are 400 sampling points in the time direction and 92 offset traces. The sampling
interval is 4 ms. In addition, those multiple reflections cover the primary data and affect
the imaging effect of the primary reflections.

Figure 8 is the multiple attenuation results. Figure 8b,c show the multiple attenuation
results of the LSPRT and SPRTL1, and there are still some residual multiple reflections,
as indicated by the rectangle. The information of the primaries is masked, and it makes
the seismic events discontinuous. Shown in Figure 8d is the multiple attenuation result
obtained by SPRTLq1 − Lq2, and there are no obvious residual multiples. Because of the
sparsity of SPRTLq1 − Lq2, the multiples are suppressed effectively at both near and far
offsets. The primaries are highlighted, and the black arrows indicate that the continuity of
the seismic events are improved. In addition, we can obviously see that the CMP gather is
clear and clean.

In order to further compare the advantages of the proposed algorithm with respect
to the LSPRT and SPRTL1, we extracted three single trace amplitudes after multiple atten-
uation, and they were compared with single-channel amplitudes before suppression. As
shown in Figure 9, there is almost no disturbance in the original location of multiples after
multiple attenuation by SPRTLq1 − Lq2, and it is obvious at 4.4 s–4.6 s, and the red rectangle
marks the difference in this location. The amplitude of the primary reflection is intact
and not attenuated, as at 3.4 s and 3.6 s. The proposed method is effective in suppressing
multiples and achieves a better performance.
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Figure 8. Multiple attenuation result: (a) CMP gather of marine real data; (b) by LSPRT method;
(c) by SPRTL1 method; (d) by SPRTLq1 − Lq2 method. The black arrows indicate the continuity of the
seismic events are improved in the Figure 8d.

Figure 9. Comparison of single trace amplitude after multiple attenuation by three algorithms. The red
rectangle indicate that the amplitude of multiple decays more significantly in the proposed method.

4.2. Prestack Field Data

The SPRTLq1 − Lq2 method was further tested with multi-shot prestack field data. In
order to comprehensively evaluate the multiple suppression effect, we used a 3D method
to display the multi-shot data volume, then analyzed the effectiveness of the method from
the time slices, the common middle point gathers and the common offset gathers.

Figure 10a is original data, and multiples can be clearly seen at the arrow position in
the figure. Figure 10b,c are the multiple attenuation results obtained by the LSPRT and
the SPRTL1 methods; Figure 10d is the result obtained by the SPRTLq1 − Lq2. Overall,
all three methods suppress multiples, but the effects are different. In Figure 10b,c, it can
be obviously observed from the time slice that a certain amount of the primary energy
is lost when multiples are suppressed. In the CMP gathers the multiples of far offset are
sufficiently suppressed by SPRTLq1 − Lq2, as indicated by the arrow. In the common offset
gathers, the effectiveness of the SPRTLq1 − Lq2 method is demonstrated by the continuity
of the seismic events. This method has a sparser representation of the seismic data and fully
retains the characteristics and information of the primaries, so as to improve the continuity
of the seismic events.
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Figure 10. Multiple attenuation result: (a) pre-stack real data; (b) LSPRT method; (c) SPRTL1 method;
(d) SPRTLq1 − Lq2 method. The red arrows indicate the cleaner multiple attenuation in the Figure 10d.

Figure 11 shows the stack section after multiple attenuation by three methods. The
residual of multiples leads to the discontinuity of the events of the primaries (black rect-
angle), which increases the difficulty of subsequent interpretation. The continuity of the
seismic events is obviously enhanced in the stack sections using the method presented in
this paper, and the effect of multiple attenuation between 0.5 s and 1 s has a remarkable
effect. In addition, as can be seen by the black arrow region of Figure 11d, there is almost
no multiple energy compared to Figure 11b,c.
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Figure 11. Multiple attenuation result: (a) stacked real data; (b) LSPRT method; (c) SPRTL1 method;
(d) SPRTLq1 − Lq2 method. The black arrows indicate the continuity of the seismic events are
improved in the Figure 11d.

Therefore, the SPRTLq1 − Lq2 method has some advantages in suppressing multiple
reflections and retaining effective reflections.

5. Discussion

Multiple attenuation can provide a good foundation for subsequent data processing
and data interpretation. The traditional parabolic Radon transform is unable to separate
primaries and multiples without distortion. Sparse parabolic Radon transform based on
L1 regularization also does not achieve the desired effect of suppressing multiples. We
introduce the nonconvex Lq1 − Lq2(0 < q1, q2 < 1) mixed regularization sparse inversion
method. This method obviously improves the accuracy of inversion, suppresses multiples
and obtains clean seismic data. Moreover, the reconstructed primary data have higher
accuracy, which was verified by experimental data.

In this paper, L1/2 regularization is used to constrain primary and multiple waves
because it has many properties such as sparsity and unbiasedness and oracle properties [25].
Meanwhile, it is more stable and sparse than the L1 regularization, and easier to solve than
L0 regularization. In other practical applications, the values of q1 and q2 can be selected
according to the actual problem. For example, if the coefficients are not strictly sparse, a
moderate to large value of q can yield better results [34].

In complex geological conditions, the weak effective signals in the wavefield are easily
covered by noise. Therefore, the parameter setting needs to be more careful, otherwise it
may lose an effective signal because of noise suppression.

Since the proposed method introduced the L1/2-norm, the computation time is in-
creased when the sparsity of seismic signals is improved. Therefore, the computational
efficiency of this method has no advantage over the L1-norm sparse inversion method.

In future research, we propose three research directions that can be improved:

1. To solve the problem of the destruction of amplitude versus offset (AVO) signature in seis-
mic data, the proposed method is combined with the orthogonal polynomial transform.

2. The algorithm for solving nonconvex regularization is further improved to improve
the computational efficiency.

3. The proposed method is combined with other multi-wave suppression methods to process
seismic data with high efficiency and high quality under complex geological conditions.
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4. In addition, with the rapid development of deep learning, fields such as mechanics,
medicine and geophysics [43–45] have been actively combined with deep learning,
and more possibilities have been developed. Therefore, in future studies, we will
also combine multiple suppression with deep learning to solve problems such as
computational efficiency.

6. Conclusions

Multiple attenuation is an important problem in seismic data processing. The sup-
pression results directly affect the quality of stacked seismic data. Radon transform is
an efficient and low-cost method. In order to solve the problem of low resolution of
Radon transform, a sparse parabolic Radon transform in the frequency domain with the
nonconvex Lq1 − Lq2(0 < q1, q2 < 1) mixed regularization is proposed. This method has
higher sparsity, and it can restrict primaries and multiples, respectively. The mappings of
multiple seismic events are muted directly in the Radon domain. The theoretical data and
field data results show that the resolution of the parabolic Radon transform and reconstruc-
tion capability are improved when using SPRTLq1 − Lq2 (q1 = q2 = 1/2), especially at near
offset. The effectiveness of the sparse constraint method is demonstrated in the aspect of
seismic event continuity. This method greatly improves the effect of multiple attenuation
and reduces the unnecessary energy loss of useful signals, which provides high-quality
data for the subsequent primary imaging.

The proposed method can also be used in other processing methods, such as data
reconstruction, interpolation and dispersion curve extraction.
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Abstract: Periodic noise is a well-known problem in seismic exploration, caused by power lines, pump
jacks, engine operation, or other interferences. It contaminates seismic data and affects subsequent
processing and interpretation. The conventional methods to attenuate periodic noise are notch
filtering and some model-based methods. However, these methods either simultaneously attenuate
noise and seismic events around the same frequencies, or need expensive computation time. In this
work, a new method is proposed to attenuate periodic noise based on sparse representation. We use
a noise dictionary to sparsely represent periodic noise. The noise dictionary is constructed based on
ambient noise. An advantage of our method is that it can automatically suppress monochromatic
periodic noise, multitoned periodic noise and even periodic noise with complex waveforms without
pre-known noise frequencies. In addition, the method does not result in any notches in the spectrum.
Synthetic and field examples demonstrate that our method can effectively subtract periodic noise
from raw seismic data without damaging the useful seismic signal.

Keywords: periodic noise; notch; dictionary; sparse representation

1. Introduction

Noise decreases the signal-to-noise ratio (SNR) of seismic data and affects the quality
of subsequent processes [1,2]. There are six types of noise recorded using geophones [3],
in which periodic noise is a kind of noise caused by power lines, pump jacks [4], engine
operation [5], or other interferences, shown as monochromatic noise or multitoned noise.
Sometimes, periodic noise is so strong that seismic records are severely contaminated.
However, it is not easy to attenuate periodic noise, since it overlaps with seismic waves in
the time domain and the frequency domain.

For periodically monochromatic noise, the conventional method of attenuation is notch
filtering, which requires exact knowledge of the frequency of monochromatic noise [6].
Obviously, the notch filtering method can attenuate seismic waves at the cutoff frequency.
Model-based approaches [7–10] such as sinusoidal approximation are used to remove
power line noise, though this method requires accurate estimation of noise frequency and
needs significant computation time [11]. Henley [12] presented a spectral clipping method
to detect monochromatic noise automatically; however, it is not applicable to weak periodic
noise. Karsli and Dondurur [13] used an improved mean filtering method to attenuate
power line harmonic noise without noise frequency estimation; however, this requires
knowledge of the rough frequency band.

In recent years, following the application of wide-azimuth, broadband, high-density
seismic acquisition technology—including micro-seismic observation [14] and time-lapse
monitoring based on fiber sensing—the size of 3D seismic data is increasing, and the fre-
quency band of reflections is becoming wider. Besides monochromatic noises suppression,
recognition of multitoned noises and their automatic suppression are urgently needed.
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Methods based on sparsity representation, such as S-transform, singular spectrum analysis
and empirical mode decomposition, extend realization of automatic denoising [15–17]. Xu
et al. [4] proposed a method based on morphological diversity of monochromatic noise
and seismic waves, which assumed that the raw data are only composed of two kinds of
signals, the monochromatic noise and seismic waves. It is not applicable to seismic data
with strong white Gaussian noise or multitoned noise.

In this paper, a new method is proposed to attenuate periodic noise. The proposed
method is based on sparse representation using a noise dictionary. The novelty is the
construction of a noise dictionary, which can represent periodic noise sparsely. First, the
noise dictionary is constructed using ambient noise. Next, the noise dictionary is used to
sparsely represent periodic noise. Then, the de-noised data are obtained by subtracting
the periodic noise from the raw seismic data. The method is applied to synthetic and field
seismic data. The effectiveness of the proposed method is that it can subtract periodic
noise from raw seismic data without any notches in the spectrum compared with the notch
filtering method.

2. Method

Periodic noise is recurring in raw seismic data, and its amplitude is constant within the
recording time [6]. Based on these characteristics, we can differentiate and estimate periodic
noise from ambient noise. Because ambient noise, such as periodic noise, white Gaussian
noise and other non-stationary [1,18] random noise, is ubiquitous in seismic records before
the first arrivals, we can extract noise features and construct the noise dictionary from it.
The algorithm is outlined in the flow skeleton (Figure 1).

Figure 1. Flow skeleton of the proposed method.
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2.1. Noise Period Scanning

The waveform of periodic noise is similar in a single trace. Based on the similarity, we
scan the noise period from ambient noise, which exists in the records before the first arrivals.
First, given the scanned period interval [Tmin, Tmax], the noise period T is changed from
the initial scanned period Tmin to the final scanned period Tmax. The data Sj on the single
trace hj(j = 1, 2, . . . , m) are split into many time windows si(i = 1, 2, . . . , n), denoted as

Sj = [s1, s2, . . . , sn] (1)

where the length of time window si is equal to the scanned period T. The size of Sj is N × 1
(N ≥ nT). Next, the correlation coefficients for the adjacent two time windows si and si+1
are calculated:

Corr(si, si+1) =
Cov(si, si+1)√

Var(si)
√

Var(si+1)
(2)

where Cov(si, si+1) is the covariance of the two time windows and Var(s) is the variance
of s. For accuracy, we average the correlation coefficients to obtain a coefficient to evaluate
the similarity of all time windows.

C(T) =
1

n − 1

n−1

∑
i=1

Corr(si, si+1) (3)

Then, the scanned period T is increased and the former procedures are repeated until
all periods in the interval [Tmin, Tmax] are scanned. The period which matches the maximum
value of the correlation coefficients is our estimated period:

T̃ = argmax
T

{C(T)} (4)

where T̃ is the period of periodic noise on the trace hj.

2.2. Waveform Estimation by Stacking

The time window, whose length is T̃, is chosen and is represented as s̃i. The chosen
time window s̃i is approximated as the noise waveform; however, it is affected by white
Gaussian noise. A stacking method is widely used to improve the SNR of the seismic
profile [19], because it weakens white Gaussian noise and emphasizes seismic waves. We
stack the approximate waveforms for an accurate noise waveform:

wj =
n

∑
i=1

s̃i (5)

where wj is the noise waveform on the trace hj and its length T̃ is equal to that of s̃i. The
waveforms of different traces are similar to the near traces h1, h2, . . . , hm when the traces are
interfered with by the same noise source. Therefore, we can stack the similar waveforms
w1, w2, . . . , wm along different traces:

w =
m

∑
j=1

wj (6)

where w is the noise waveform estimated from the traces h1, h2, . . . , hm. We note that
waveforms w1, w2, . . . , wm obtained by Equation (5) are not in phase. Before stacking,
waveforms wj(j �= 1) need to be cyclically shifted to the same phase as w1 by scanning

the shift length in an interval
[
0, 1, . . . , T̃ − 1

]
. The suitable shift length corresponds to the

maximum correlation coefficient between wj(j �= 1) and w1.
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2.3. Periodic Noise Representation

Based on the stationarity of periodic noise, the basis function ϕ0 of periodic noise is
obtained by extending the waveform w iteratively to the length of seismic data on a single
trace and then energy-normalized:

ϕ = [w, w, . . . , w] (7)

ϕ0 =
ϕ

‖ϕ‖2
(8)

where ‖•‖2 is the l2 norm. The size of ϕ is N × 1, which is equal to that of Sj. The noise
dictionary is constructed by basis functions of different phases:

D =
[

ϕ0 ϕ1 ϕ2 · · · ϕTj−1

]
(9)

where ϕ1, ϕ2, . . . , ϕT̃−1 are obtained by cyclically shifting 1, 2, . . . , T̃ − 1 time samples. The
size of D is N × T̃. The dictionary provides a sparse representation of periodic noise.
In sparse representation theory [20], the signals can be efficiently explained as linear
combinations of prespecified basis functions, where the linear coefficients are sparse. Based
on sparse representation theory, the mathematical model of our noise representation is

Sj = Dx (10)

where Sj(j = 1, 2, . . . , m) is the actual periodic noise and x is its coefficient represented by
the dictionary D. The size of x is T̃ × 1. An approach to solve Equation (10) is using the
sparsity constraint via an L0 regularization term. Then, the periodic noise of multi-trace
seismic data is obtained by solving the following optimization problem:

S̃j = argmin
Sj

∥∥Sj − Dx
∥∥2

2 s.t.‖x‖0 ≤ 1 (11)

where S̃j(j = 1, 2, . . . , m) is the approximate periodic noise and x is its coefficient repre-
sented by the dictionary D. In the optimization problem, the sparsity of this representation
is 1. Because only one basis function corresponds to a single trace, the coefficient x has
only one non-zero component. This is the reason for the condition on the right in Equation
(11) ‖x‖0 ≤ 1. Equation (11) is solved by the matching pursuit algorithm, which entails
computing the inner products between the residual and the dictionary elements, updating
the coefficient, and updating the residual iteratively [20,21]. Finally, the de-noised data are
obtained by subtracting the periodic noise from the raw seismic data.

3. Synthetic Example

A synthetic dataset consisting of 21 traces is shown in Figure 2 with a 1 ms sampling
rate and a 10 m geophone interval. Multitoned noises of 40 Hz and 50 Hz are incorporated
to the noise-free data. In addition, a small amount of white Gaussian noise is added.
Figure 3 shows the contaminated seismic dataset and its frequency–wavenumber (f-k)
spectrum. The reflections are hardly identifiable owing to the strong periodic noise. The
contaminations in the seismic data appear as two horizontal bands at 40 and 50 Hz in the
f-k domain. The signal on the 11th trace (Figure 4a) shows the influence of multitoned
noise clearly. Its amplitude spectrum (Figure 4b) also shows high spikes at frequencies of
40 Hz and 50 Hz.
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Figure 2. Synthetic seismic data.
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(a) 

 
(b) 

 

Figure 3. Synthetic contaminated seismic data. (a) Contaminated seismic data in offset-time domain
and (b) its frequency-wavenumber (f-k) spectrum where the red rectangle marks the ambient noise
we used.
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(a) 

 
(b) 

Figure 4. Seismic signal on 11th trace. (a) Signal on the 11th trace in time domain and (b) its
amplitude spectrum.

The first 0.4 s of data is dominated by periodic noise marked by a red rectangle in
Figure 3a. In addition, it does not consist of seismic waves. Therefore, it is chosen to
construct the noise dictionary. The waveform estimated from the chosen data is shown in
Figure 5. After sparse representation, the result of noise attenuation is shown in Figure 6.
The main noise is attenuated and reflections can be clearly seen in Figure 6a. The eliminated
noise is periodic noise as shown in Figure 6b. Their spectra show that the multitoned noise
is attenuated and no seismic waves are eliminated. The de-noising result on the 11th trace
and the corresponding amplitude spectra are shown in Figure 7. The de-noised seismic
signal is close to the theoretical signal in both time sequence and amplitude spectrum,
except for weak white Gaussian noise.

 

Figure 5. Noise waveform estimated by the proposed method.
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(a) (b) 

  
(c) (d) 

Figure 6. De-noising result of the synthetic seismic data by the proposed method. (a) De-noised data
and (b) eliminated noise by the proposed method; and (c,d) their corresponding f-k spectra.
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(a) 

 
(b) 

  
(c) (d) 

Figure 7. De-noising result on the 11th trace. (a) De-noised signal and (b) eliminated noise on the
11th trace; and (c,d) their amplitude spectra. The red line corresponds to the de-noised signal and the
black line corresponds to the theoretical signal in (a,c).

A synthetic signal is shown in Figure 8a, where the main noise is stationary and
the waveform is recurring except for weak white Gaussian noise. The eliminated noise
and de-noised signal are shown in Figure 8b,c, respectively. Their amplitude spectra are
shown in Figure 9. Both the time sequence and amplitude spectrum of the de-noised signal
are consistent with the theoretical signal. Because the amplitude spectrum is complex,
it is hard to estimate its amplitudes, frequencies and phases, which are important for
model-based approaches [8,9]. Therefore, the proposed method can effectively attenuate
the multitoned noise and even periodic noise with a complex waveform but not influence
the seismic events.
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(a) 

 
(b) 

(c) 

Figure 8. De-noising result of the synthetic noisy signal. (a) Noisy signal, (b) eliminated noise and
(c) de-noised signal. The de-noised signal is shown as a red line and the theoretical signal as a black
line in (c).

 
(a) (b) 

Figure 9. Cont.
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(c) 

Figure 9. Amplitude spectra of the (a) noisy signal, (b) eliminated noise and (c) de-noised signal. The
de-noised signal is shown as a red line and the theoretical signal as a black line in (c).

4. Field Example

The proposed method was tested using field data. The field data are a land seismic
shot recorded with a 2 ms sample rate and a 40 m geophone interval, as shown in Figure 10a.
The data contain periodic noise which may be caused by power lines, engine operation
and other interferences. The noise is so strong that it affects the quality of the subsequent
processes, especially for the first 12 traces. As shown in Figure 10c, we cannot see any
waves after the time 1.5 s. There are three horizontal bands around the frequencies of 7
Hz, 14 Hz and 50 Hz in the f-k domain (Figure 10b). The periodic noise at the frequency of
approximately 14 Hz, highlighted in Figure 10b, is the weakest, and the periodic noise at
the frequency of 50 Hz is the strongest.

We use the ambient noise marked by a red rectangle in Figure 10a to construct the noise
dictionary. The estimated waveform is shown in Figure 11. The result of noise attenuation
by the proposed method is shown in Figure 12. The periodic noise is attenuated to a large
degree. The horizontal bands of the f-k spectrum are almost eliminated, except for weak
residual noise of about 7 Hz frequency. In addition, there are no spectral notches in the f-k
spectrum (Figure 12b).

The notch filtering method is applied to the field data for a comparison. The narrow
stop band of the notch filter is the frequency range [ f0 − Δ f , f0 + Δ f ], where f0 is the noise
frequency and 2 × Δ f is the noise bandwidth. The values of f0 for the three noise bands are
set to 7 Hz, 14 Hz and 50 Hz, respectively. The noise bandwidth is estimated to be 2 Hz and
Δ f = 1Hz is set. The f-k spectra of the filtering result are shown in Figure 13. The horizontal
bands around the frequencies of 7 Hz, 14 Hz and 50 Hz are separated from the seismic
data. However, the seismic waves are also eliminated at those frequencies. This causes
spectral notches of seismic waves (Figure 13a). To further show the effectiveness of our
method, the spectra of the single-trace de-noised signals by the two methods are compared
in Figure 14. For the notch filtering method, the spectral notch causes amplitude loss of
seismic events around the frequencies of 7 Hz, 14 Hz and 50 Hz. However, amplitude loss
does not occur using our proposed method. The eliminated noise (Figure 15a) is stationary.
This is consistent with the characteristics of periodic noise caused by the power lines or
engine operation. For comparison, the noise eliminated by the notch filtering method is not
stationary because it contains seismic signals.
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(a) (b) 

 
(c) 

Figure 10. Field data. (a) Field data in offset-time domain, (b) its f-k spectrum and (c) the signal on
the 8th trace, where the red rectangle marks the ambient noise and the red arrow points to the 14 Hz
weak noise.

 

Figure 11. Waveform estimated from the ambient noise.
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(a) 

  
(b) (c) 

Figure 12. Result of noise attenuation by our method: (a) de-noised data, (b) its f-k spectrum and (c)
the f-k spectrum of eliminated noise.

47



Appl. Sci. 2023, 13, 2835

  
(a) (b) 

Figure 13. Spectra of (a) the de-noising data and (b) the eliminated noise by the notch filtering
method.

 
Figure 14. Amplitude spectra of the de-noised signals on the 8th trace by the proposed method (the
red solid line) and the notch filtering method (the blue dash-dotted line).
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(a) 

(b) 

Figure 15. Eliminated noise by (a) the proposed method and (b) the notch filtering method.

5. Discussions

The proposed de-noising method is based on sparse representation of periodic noise.
The key to our method is the construction of the noise dictionary. Because ambient noise
contains no seismic waves but dominant periodic noise and other random noise, periodic
noise can be estimated without the influence of seismic reflections. Therefore, our method
is useful regardless of whether the seismic waves are strong or weak. A scanning method
is used to estimate the noise period. The accuracy of the noise period largely influences
our de-noising result. To obtain an accurate noise waveform, the waveforms in the time
domain and the space domain are stacked shown as the Equations (5) and (6), respectively.
It must be emphasized that our de-noising method is only applicable to stationary noise
with a constant period, waveform and amplitude. It can be used to attenuate power line
harmonic noise, pump jack noise and engine operation noise in land or oceanic seismic
exploration.

Based on the proposed method, ambient noise detection is urged for noise estimation.
However, ambient noise has not specifically been detected in oil exploration. Therefore,
we suggest that ambient noise should be acquired for one second before source excitation.
Long-term ambient noise will be helpful for building a perfect noise dictionary.

Wind- or water-induced noise is not strictly stationary, and the stationarity becomes
weak with increasing recording time [22,23]. Our method cannot be used to attenuate this
kind of noise. To broaden the method for non-stationary noise, higher-order statistics [24]
need to be considered further. In addition, methods of noise feature extraction from ambient
noise based on machine learning [25] will draw increased attention in the future.

6. Conclusions

A new method is proposed to attenuate periodic noise based on sparse representation.
The novelty is the construction of a noise dictionary based on ambient noise. Our method
can attenuate monochromatic or multitoned periodic noise automatically without pre-
known noise frequencies. The noise is assumed to be stationary noise with a constant
period, waveform and amplitude. Synthetic and field tests show the effectiveness of the
proposed method. Compared with the conventional notch filtering method, the proposed
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method can obtain de-noised data with no distortion in the time and frequency domains.
Therefore, our method can attenuate periodic noise without damaging the seismic events.
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Abstract: The technique of the source array based on the vibroseis can provide the strong energy
of a seismic wave field, which better meets the need for seismic exploration. The seismic coherent
noise reduces the signal-to-noise ratio (SNR) of the source array seismic data and affects the seismic
data processing. The traditional coherent noise removal methods often cause some damage to the
effective signal while suppressing coherent noise or cannot suppress the interference wave effectively
at all. Based on the multi-scale and multi-direction properties of the non-subsampled Shearlet
transform (NSST) and its simple mathematical structure, the seismic coherent noise removal method
of source array in NSST domain is proposed. The method is applied to both the synthetic seismic
data and the filed seismic data. After processing with this method, the coherent noise of the seismic
data is greatly removed and the effective signal information is greatly protected. The analysis of
the results demonstrates the effectiveness and practicability of the proposed method on coherent
noise attenuation.

Keywords: source array; NSST; seismic coherent noise removal; seismic data analysis

1. Introduction

The seismic exploration method is widely used in resource exploration and other fields,
and the seismic source, as an important part of the seismic data acquisition, directly affects
the exploration effect of the seismic exploration. With the rapid development of vibroseis
technology, vibroseis is gradually replacing the traditional dynamite source for seismic data
acquisition due to its advantages of safety, environmental protection, high quality, economy,
and efficiency. However, limited by its own structure and exploration environment, the
single vibroseis has the problems of small output force and limited exploration depth.
In order to meet the demand of seismic exploration, the source array based on vibroseis
technology is paid more and more attention. In the seismic data acquisition of source array,
there are generally more serious coherent noises, such as multiple refraction waves and
surface waves of strong energy, strong acoustic interference, and surface direct waves with
wide frequency bands, which greatly affect the quality of the seismic data. The removal of
coherent noise is essential for the exploration technique of the source array.

How to better remove the seismic noise and improve the SNR of the seismic data has
been a hot research topic in the seismic exploration field [1–3]. For coherent noise, scholars
of seismic exploration have presented many seismic denoising approaches to suppress it.
The traditional noise removal methods mainly suppress coherent noise according to the dif-
ference between effective signal and coherent noise in apparent velocity and frequency, such
as f-k filter [4,5], K-L transform [6,7], Radon transform [8,9], radial channel transform [10,11],
empirical mode decomposition (EMD) [12,13], and so on. Wavelet transform [14,15] is an
effective tool for seismic data processing, which has great advantages in one-dimensional
data processing, though this advantage cannot be simply extended to two-dimensional or
three-dimensional data. Therefore, multi-scale geometric analysis methods such as Ridgelet
transform [16,17], Curvelet transform [18,19], Contourlet transform [20,21] and Shearlet
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transform [22] have been proposed successively. At present, multi-scale geometric analysis
has been widely used in seismic data processing and achieved certain effect.

G. Easley, K. Guo, and D. Labate [23] proposed the Shearlet transform based on the
basic theory of wavelet transform and the multi-scale analysis theory. Shearlet transform
not only has good localization characteristics, scaling characteristics, direction sensitivity,
and near-optimal sparse representation performance, but also has a simple mathematical
structure and the transformed coefficients have a one-to-one correspondence with the
image points. Therefore, compared with other multi-scale geometric analysis methods,
Shearlet transform has a more delicate representation of the scale direction and the physical
significance of the transformed coefficients is clearer, which is more conducive to the
processing of the coefficients. In the process of the conventional Shearlet transform, the
subsampling operation is carried out, which leads to spectrum aliasing in the low frequency
and high frequency sub-bands decomposed by Shearlet transform. The spectrum aliasing
will cause the information of the same direction to appear in several different sub-bands at
the same time, which will weaken the direction selectivity. In addition, the subsampling
operation makes the Shearlet coefficient low redundancy, resulting in the lack of the
translation invariance. If it is used for image denoising, there will be an obvious ringing
effect. In order to overcome the shortcomings mentioned above and enhance the directional
selectivity and the translation invariance of Shearlet transform, the NSST came into being.
NSST is a non-orthogonal transform. The NSST abandons the subsampling operation
and combines the non-subsampled Laplacian pyramid transform (NSLP) with the non-
subsampled directional filter. After the NSST, the size of each direction sub-band at each
scale is the same as the original image, which greatly improves the image redundancy. The
enhancement of the image coefficient redundancy allows the NSST to have the translation
invariance. The NSST has been successfully applied in many fields.

In the field of image processing, the NSST has been widely used. Guo, et al. (2013)
proposed a new multi-focus image fusion algorithm based on the NSST [24]. Karami et al.
(2016) adopted the NSST and the fully constrained least squares unmixing (FCLSU) to the
denoising of hyperspectral images [25]. Priya et al. (2017) used the NSST based on the
multislice fusion to the edge enhancement of liver CT images [26]. Qu et al. (2018) pre-
sented an image enhancement method based on the NSST and the directional information
measurement [27]. Li et al. (2019) performed the enhancement of hyperspectral remote
sensing images based on improved fuzzy contrast in the NSST domain [28]. Ramakrishnan
et al. (2020) applied the NSST to the fusion of multiple exposure images [29]. Shen et al.
(2021) made a change detection in SAR images based on the improved NSST and the
multi-scale feature fusion CNN [30]. The NSST also has been increasingly applied in the
seismic exploration field in recent years. Liang et al. (2018) presented a denoising method
of microseismic data noise by the NSST based on singular value decomposition [31]. Sang
et al. (2018) applied the NSST to petroleum seismic exploration denoising [32]. Sang et al.
(2020) proposed a seismic random noise attenuation based on PCC classification in the
NSST Domain [33].

The existing traditional denoising methods have achieved certain effects in the process
of attenuating coherent noise but they also have some problems. For example, some
methods will produce some new interference and some will lead to uneven energy after
attenuating, even damaging the effective signal. Based on the coherent noise characteristics
of the vibrator seismic data and the multi-scale and multi-directional properties of Shearlet
transform, coherent noise removal of the source array in NSST domain is proposed in
this article. The method is applied in both the synthetic seismic data and the filed seismic
data. After processing with this method, the coherent noise in the seismic data is greatly
removed and the effective signal information is greatly protected. The analysis of the
results demonstrates the effectiveness and practicability of the proposed method on seismic
coherent noise removal.
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2. Theory and Method

2.1. Shearlet Transform

Shearlet transform is an asymptotically optimal sparse representation of multidimen-
sional functions constructed by a special form of affine systems with synthetic expansion,
which is composed of the Laplace pyramid transform and a set of directional filters.

When the dimension is two-dimensional, the scale matrix and the shear matrix are:

A =

[
j 0
0

√
j

]
, B =

[
1 −l
0 1

]
(1)

In Equation (1), A is the scale matrix, which can be divided into scales; j > 0, j is the
scale parameter; B is the shear matrix, which can be dissected into directions; and l is the
shear parameter.

The affine system with synthetic expansion is defined as:

ψAB(ϕ) =
{

ϕj,l,k(x) =
∣∣∣det A

∣∣∣j/2·
ϕ
(

Bl Ajx − k
)

: j, l ∈ R, k ∈ R2
} (2)

In Equation (2), ϕ ∈ L2(R2), ϕ is the shear wave function, L represents the productable
space, x is the data to be processed, det (·) is the determinant, and k is the translation parameter.

If ψAB(ϕ) satisfies the Parseval framework (the tight framework), that is, for any
function, it satisfies the following equation:

Cj,l,k = S{ f } =
〈

f , ϕj,l,k

〉
(3)

In Equation (3), Cj,l,k is the Shearlet domain coefficient, S is the Shearlet forward
transform, and 〈·〉 is the inner product. ψAB(ϕ) is called the composite wavelet. Parameters
j, l, k can control the division of the direction and the scale. By taking the inner product
of the function and the basis function f and the basis function ϕj,l,k of different scales,
directions, and positions, the Shearlet domain coefficients in the corresponding scale,
direction, and position can be obtained. This process essentially uses the basis function
after translation, expansion, and rotation to approximate the signal.

The frequency domain subdivision of the shear wave and its support interval are
shown in Figure 1. As can be seen from Figure 1, the support interval of any shear wave
element ϕj,l,k in the frequency domain is a trapezoidal region symmetric about the origin;
the direction is distributed along a straight line with the slope of l2−j. The size of the
trapezoidal region is about 22j × 2j.

Figure 1. Frequency domain subdivision and its support interval.
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2.2. Non-Subsampled Shearlet Transform

Because Shearlet transform does not have the translational invariance, it is easy to
generate the pseudo-Gibbs phenomenon near singular points when it is applied to image
fusing and denoising. The NSST with the translational invariance can solve this problem.
The discretization process of the NSST is composed of the multi-scale subdivision and the
direction localization:

(1) The multi-scale subdivision of the NSST is achieved by the non-subsampled pyramid
transform (NSP). The image is decomposed by the j-level of the non-subsampling
filters to obtain j + 1 sub-bands of the same size as the original image, including a
low-frequency image and j high-frequency images;

(2) The direction localization of the NSST is achieved by the improved shearing filter (SF).
The standard shearing filter is realized by the translation operation of the window
function in the pseudo-polarization grid; the subsampling operation is required
during the execution, so it does not have the translation invariance. However, the
NSST maps the standard shearing filter from the pseudo-polarization grid system to
the Cartesian coordinate system and then directly completes its operation through the
inverse Fourier transform and the two-dimensional convolution. Therefore, NSST can
avoid the subsampling operation and meet the translation invariance. Figure 2 shows
the multi-scale and multi-direction decomposition process of the NSST.

Figure 2. The decomposition process of the NSST.

2.3. The Denoising Method in NSST Domain

The NSST abandons the subsampling operation and combines the non-subsampled
Laplacian pyramid transform (NSLP) with the non-subsampled directional filter. After
the NSST, the size of each direction sub-band at each scale is the same as the original
image, which greatly improves the image redundancy. The enhancement of the image
coefficient redundancy makes the NSST have the translation invariance and avoid the
spectrum aliasing and the pseudo-Gibbs phenomenon. Therefore, the NSST has a stronger
data processing performance. The NSST has a more delicate representation of the scale
direction and the physical significance of the transformed coefficients is clearer, which is
more conducive to the processing of the coefficients. The NSST can transform the time-
space domain signal f(x) into the NSST domain (j, l, k), so the different signals can be
easily separated in the NSST domain. Each NSST coefficient has its own specific frequency,
direction, and position. The scale parameter j reflects the frequency difference; the direction
parameter l reflects the direction difference, that is, mainly reflects the apparent velocity
difference; and the position parameter k reflects the spatial location difference and the
amplitude difference.
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As shown in Figure 3, The specific steps of the coherent noise removal method of the
vibrator source array seismic data in the NSST domain in this article are as follows:

 
Figure 3. The flowchart of seismic coherent noise removal method in the NSST domain.

In this article, we choose the L2 norm to construct the threshold function.
The L2 norm of the NSST domain coefficient is:

ej,l =
√

∑ C2
j,l (4)

In Equation (4), ej,l is the L2 norm of the NSST coefficient in the j scale l direction.
The threshold function is the adaptive threshold changing with scale and direction,

which is expressed as follows:

Tj,l = λj
σ
√

2 ln N lg(j + 1)

lg
(

ej,l − min ej,l + 10
) (5)

In Equation (5), Tj,l is the threshold function; N is the total number of sampling points
for the seismic data; ej,l is the L2 norm of the NSST coefficient in the j scale l direction,

j = 1, 2, . . . , J, J is the total scale of the decomposition; σ = median(|C|)
0.6745 , σ is the noise

standard deviation, median( ) is a median value for all the elements in the data matrix;
min( ) is minimum value function; and λj is the test constant.
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3. Results

3.1. Synthetic Example

In order to verify the validity of the coherent noise removal method based on the NSST,
the synthetic data example is tested in this article. The synthetic seismic data is shown
in Figure 4a. The seismic data to be tested includes 100 channels, each channel contains
1000 sampling points, and the sampling interval is 1 ms.

Figure 4. The processing results of the synthetic seismic data by the proposed method. (a) The
original synthetic seismic data. (b) The removed noise. (c) The seismic data after the denoising.

As can be seen from Figure 4a, the effective signal with weak energy in the in-phase
axis of the seismic record is covered by the coherent noise, which brings the interference
to the subsequent processing of the seismic data. We apply the denoising method to the
synthetic seismic data. Among the process, the decomposition scale of the NSST is 2, and
the direction matrix is [12]. Figure 5 shows the coefficients after the decomposition of the
NSST. There is an overlap of the frequency band between the effective signal and the noise.
NSST can map the data into several sub-domains, which can represent the data sparsely,
so that the noise and the signal can be separated better and the processing effect is better.
Figure 4b shows the removed noise. Figure 4c is the result of the denoising method in
this article. This method removes most of the coherent noise. This method can not only
suppress the coherent noise but can also protect the effective signal to a great extent, restore
the in-phase axis of the seismic record, enhance the continuity of the seismic record, and
improve the SNR of the seismic record. The denoising results proves the feasibility of the
denoising method in this article.

3.2. Field Data Example

The above section has verified the feasibility and validity of the proposed method
using the synthetic data example. Now, we further verify the effectiveness and practicality
of the proposed method from the field data example.

In this article, the field seismic data of source array in Chaganhua area is selected.
The overview of the field exploration area is shown in Figure 6. The field exploration area
is located in a grassland near Chaganhua Town, Qianguerroth Mongolian Autonomous
County, Songyuan City, Jilin Province, China. The terrain of the exploration area is flat
and the diving surface of the exploration area is relatively shallow. Table 1 shows the field
seismic data parameters.
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Figure 5. The NSST coefficients after the decomposition of the NSST. (a) The approximate NSST
coefficients. (b) The detail NSST coefficients at scale 2, 2 directions. (c) The detail NSST coefficients at
scale 1, 4 directions.

 
Figure 6. The overview of the field exploration area.
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Table 1. Field seismic data parameters.

The Source Excitation Mode
The Simultaneous Excitation of the Four

Vibrators

the sweep frequency 5–120 Hz
the scanning duration 20 s

the receiving mode one-sided 120 channels
the sampling interval 1 ms

the trace interval 10 m
the recording length 5 s

the time window 0–3 s

Figure 7a shows the field seismic gather. From Figure 7a, we can see that the seismic
gather contains obvious coherent noise, including surface wave, acoustic wave, and direct
wave. The coherent noise seriously affects the SNR of the seismic gather and bring certain
difficulties to the subsequent seismic processing and interpretation. The SNR of the seismic
gather in this work area is low, which is suitable for testing the effectiveness and adaptability
of the proposed method in this article. We apply the method in this article to remove the
coherent noise from this seismic data. Among the processes, the decomposition scale of the
NSST is 3 and the direction matrix is [4 5 5]. Figure 8 shows the main NSST coefficients
containing the coherent noise after the decomposition of the NSST. Figure 7b shows the
removed noise. Figure 7c shows the seismic data after noise removal using the method
in this article. From the denoising results in Figure 7, the coherent noise in Figure 7a is
effectively removed by this method, and the effective information of the seismic data is
greatly protected. The coherent noise removed in Figure 7b is obvious, including surface
wave, acoustic wave, and direct wave. The SNR of the seismic data in Figure 7c is greatly
improved, the effective reflection signal is well recovered, and the seismic lineups becomes
very clear and continuous, which can provide the better basic data for the subsequent
seismic processing and interpretation. In order to show the ability of the proposed method,
we use the conventional coherent noise suppression method—FK filtering—to compare
with this method. As shown in the Figure 7d,e, FK filtering can cause certain damage to
the effective signal while suppressing the coherent noise and have certain noise residue.
To sum up, the method proposed in this article has a good effect on the removal of the
coherent noise in various kinds of the field seismic data.

We analyzed the average amplitude spectrum, the single-channel amplitude spectrum,
and the f-k spectrum of the original data and the denoised data after processing using this
method. The frequency spectrum of the original data and the denoised data in Figures 9
and 10 shows that the effective signal is distributed in the frequency range of 25–40 Hz and
the coherent noise is mainly distributed in the frequency range of 5–20 Hz, and 70–85 Hz.
The spectrum analysis in Figure 9 shows that the noise signal in the frequency range of
coherent noise is well suppressed after the denoising by this method. The deviation of the
signal waveform outside the coherent noise frequency range is very small compared with
the original signal. The spectral analysis of the f-k spectrum in Figure 10 also shows that the
coherent noise is significantly suppressed. The spectral analysis of Figures 9 and 10 further
illustrate that the proposed method in this article has good removal ability for coherent
noise and can protect the effective signal well.
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Figure 7. The processing results of the field seismic data using the proposed method. (a) The field
seismic data. (b) The removed noise by NSST. (c) The seismic data after the NSST. (d) The removed
noise by FK filter. (e) The seismic data after the FK filter.
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Figure 8. The main NSST coefficients containing the coherent noise. (a) The detail NSST coefficients
at scale 2, 2 directions. (b) The detail NSST coefficients at scale 1, 3 directions.
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Figure 9. Waveform and amplitude spectra of the seismic data. (a) The waveform of trace 80 of the
original seismic data (the green curve), the denoised seismic data by the NSST (the blue curve), and
the denoised seismic data by the FK filter (the red curve). (b) The amplitude spectra of trace 80 of the
original seismic data (the green curve), the denoised seismic data by the NSST (the blue curve) and
the denoised seismic data by the FK filter (the red curve). (c) The average amplitude spectra of the
original seismic data (the green curve), the denoised seismic data by the NSST (the blue curve) and
the denoised seismic data by the FK filter (the red curve).

 

Figure 10. The results of applying f-k transform in the original seismic data and the denoised seismic
data. (a) The original data. (b) The seismic data after the NSST. (c) The seismic data after the FK filter.

4. Discussion

As described in Sections 3.1 and 3.2, we used synthetic data examples and field data
examples to analyze the denoising performance of the proposed method in this article. We
mainly used the difference in the distribution of noise and signal in the scale and direction
through NSST, a multi-scale and multi-directional analysis method, to suppress the noise.
The denoising results show that this method can effectively remove the coherent noise
from the source array seismic data, especially surface wave, and it can greatly protect the
effective information of the seismic data from being lost and greatly improve the SNR of
the seismic data. The proposed NSST method is not only a method to suppress noise, but
also a beneficial tool for signal analysis. The accurate data analysis, targeted strategy, and
sparse representation make NSST have more desirable denoising results. There are some
limitations to the proposed method: we need to artificially select the scale, direction, and
threshold zone according to the seismic data, which is not adaptive enough, and then we
will study further to simplify the process.
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5. Conclusions

Coherent noise removal is very important for seismic data processing. The traditional
coherent noise removal methods often cause some damage to the effective signal while
suppressing coherent noise or cannot suppress the interference wave effectively at all. In
this removal, based on the multi-scale and multi-direction properties of the NSST and
its simple mathematical structure, a coherent noise removal method in NSST domain is
proposed which can effectively remove the coherent noise while ensuring the effective
signal is not damaged. The effectiveness and practicability of the proposed method on
coherent noise attenuation of the source array seismic data are fully proven using synthetic
examples and filed data examples. According to the processing results of the synthetic
seismic data and the filed seismic data, the denoising method proposed in thixs article
can effectively protect the effective signal, enhance the continuity of in-phase axis, and
effectively improve the signal-to-noise ratio and resolution of seismic data while removing
the coherent noise, which is of great significance to accurately identify the geological
information contained in seismic data.
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Abstract: Multicomponent seismic exploration provides more wavefield information for imaging
complex subsurface structures and predicting reservoirs. Ground roll is strongly coherent noise
in land multicomponent seismic data and exhibits similar features, which are strong energy, low
frequency, low velocity and dispersion, in each component. Ground roll attenuation is an important
step in seismic data processing. In this study, we utilized multivariate empirical mode decomposition
to multicomponent seismic data for attenuating ground roll. By adding extra components containing
independent white noise, noise-assisted multivariate empirical mode decomposition is adopted to
overcome the mode-mixing effect in standard empirical mode decomposition. This method provides
a more robust analysis than the standard empirical mode decomposition EMD method performed
separately for each component. Multicomponent seismic data are decomposed into different intrinsic
mode functions in frequency scale. According to different frequency scales of seismic reflection wave
and ground roll, intrinsic mode functions with low frequency are eliminated to suppress ground roll,
and the remaining are reconstructed for seismic reflection waves. Synthetic and field data tests show
that the proposed approach performs better than the traditional attenuation method.

Keywords: EMD; MEMD; ground roll; multicomponent seismic data

1. Introduction

Recently, multicomponent seismology has gained considerable attention due to pro-
viding more seismic wavefield information for imaging complex structures and predicting
reservoirs [1]. Generally, three-component (3C) geophones simultaneously record two
horizontal components and one vertical component of the incident seismic wave. Ground
roll is coherent noise with characteristics of strong energy, low frequency, low velocity
and elliptical polarization, which shield the seismic reflection wave from the middle-deep
layer in near offset. Ground roll attenuation is a key step in seismic data processing. An
adaptive matched filter is conventionally used to process each component separately for
attenuating ground roll. This method consists of a prediction step and a robust subtraction
step. Ground roll is predicted by data-driven interferometry method [2] or model-driven
semi-analytic modeling [3] methods. Then, an optimization subtraction operation is used
to adaptively separate the ground roll [2]. Filter methods in transform domain are also
commonly used, such as the frequency-wavenumber (F-K) filter, Radon transform [4],
Curvelet-domain filter [5] and time-frequency-domain filter [6], to attenuate the ground
roll based on the different characteristics of frequency, velocity and polarization between
the ground roll and seismic reflection waves. However, when the acquisition geometry is
under sampled in space, the aliasing problem can decrease the effect of these methods. In
land multicomponent seismic exploration, 3C seismic data are recorded and processed as a
vector, which provides not only a robust analysis of each individual component but also
valuable information about the coherency components [7,8].
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Empirical mode decomposition (EMD) proposed by Huang et al. [9] decomposes a
signal into a series of intrinsic mode functions (IMFs). Each IMF has a relatively local
constant frequency ranging from high frequency to low frequency. The EMD method
does not require predetermined base functions and can adaptively separate nonlinear and
non-stationary signals. EMD and its extensions have good performance on random and
ground roll attenuation [10–12]. Chen et al. [13] used complete ensemble empirical mode
decomposition (CEEMD) to improve the standard EMD method and obtained better results
when they were applied to attenuate the ground roll.

The standard EMD method is conventionally conducted on each component separately,
which results in misaligned IMFs for multicomponent data. The ground roll attenuation
based on the standard EMD method damages the vector coherence of seismic data. Com-
bining multiple components with a higher-dimensional signal could circumvent the mode
alignment problem caused by the standard EMD method [14]. Rehman and Mandic [15]
proposed a multivariate empirical mode decomposition (MEMD) method to process multi-
component signals and obtained the IMFs of aligned frequency range. These IMFs match
well in the frequency scale and number properties for each component of the multicom-
ponent data. In order to solve the mode mixing effect in standard EMD, extended EMD
methods [13,16] have been proposed. Rehman and Mandic [17] proposed noise-assisted
MEMD (NA-MEMD) to improve MEMD by adding extra components containing inde-
pendent white noise to the original multivariate signal. This method helps overcome the
mode-mixing problem existing in the extracted IMFs.

In this paper, we propose an alternative ground roll attenuation method for multicom-
ponent seismic data in time domain. First, we start this article with a description of the
MEMD and NA-MEMD methods. Then, we demonstrate the principle of the proposed
method for ground roll attenuation of multicomponent seismic data. Finally, the synthetic
and field seismic data tests demonstrate that the NA-MEMD method can effectively attenu-
ate the ground roll. Compared to the F-K filter method, the proposed method preserves
more low-frequency content of the seismic reflection wave and coherency information
between components.

2. MEMD Method

The EMD adaptively decomposes the original signal into a finite set of signals, called
intrinsic mode functions, abbreviated IMFs [9]. Each IMF represents different vibrational
modes embedded in the data, and also has a localized frequency content by preventing fre-
quency spreading because of asymmetric waveforms. Obtaining the IMFs with a frequency
range from high to low frequency is an iterative sifting procedure, as follows:

1. Compute the mean envelope mn = (envup
n + envdown

n )/2, where envup
n and envdown

n
are the upper and lower envelopes that pass through the maxima and minima of the
input signal sn, respectively;

2. Set the residue rn = sn − mn as the new input and repeat step 1.

This two-step iterative process is repeated until the stopping criterion is satisfied.
The resulting residue of this iteration can be regarded as the first IMF with the lowest
frequency content. In standard EMD, the local mean is computed by taking an average of
the upper and lower envelopes, and IMFs in turn are obtained between the local maxima
and minima. For multicomponent signals, the local maximum and minimum values are
not directly defined by the EMD. Rehman and Mandic [15] proposed to generate mul-
tiple n-dimensional envelopes by taking signal projections along different directions in
n-dimensional spaces. Cubic spline interpolations in different directions are adopted to
form multiple local envelops, and then these values are averaged. Later, the MEMD pro-
posed was used to process the nonlinear n-dimensional time-series signals. Let the sequence
{V(t)} = {v1(t), v2(t), . . . , vn(t)} represent a multivariate signal with n components, and
Xθk =

{
xk

1, xk
2, . . . , xk

n

}
denote a set of direction vectors along the directions given by angles
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θk =
{

θk
1, θk

2, . . . , θk
(n−1)

}
on an (n − 1)-dimensional sphere. The main steps of the MEMD

method are as follows,

1. Take advantage of Hammersley sequence sampling method, choose a suitable pointset
for sampling on an (n − 1)-dimensional sphere;

2. Calculate a projection set, denoted by
{

pθk (t)
}

, of the input signal {V(t)} along the
direction vector Xθk , for all k, which is the whole set of direction vectors, giving{

pθk (t)
}

as the set of projections;

3. Find the time instants
{

tθk

i

}
corresponding to the maxima of the set of projected

signals
{

pθk (t)
}K

k=1;

4. Interpolate
[
tθk

i , V
(

tθk

i

)]
to perform multiple spline interpolation and obtain multi-

variate envelope curves
{

eθk (t)
}K

k=1;
5. For a set of K direction vectors, the mean value m(t) of the envelope curves is calcu-

lated as m(t) = 1
K

K
∑

k=1
eθk (t);

6. Extract the ‘detail’ d(t) using d(t) = v(t)−m(t). If the ‘detail’ d(t) fulfills the stopping
criterion for a multivariate IMF, apply the above procedure to v(t)− d(t), otherwise
apply the above procedure to d(t).

Through a series of MEMD processes, like the EMD decomposition algorithm, the
n-dimensional multi-signal {V(t)} = {v1(t), v2(t), . . . , vn(t)} is decomposed into a series

of IMF components and a residue r(t) = V(t)−
q
∑

i=1
di(t), where q denotes the number of

IMF components.
The ability of MEMD which aligns to the intrinsic mode functions is demonstrated

in Figure 1. We tested the MEMD method on synthetic data using a three-component
signal s = [X, Y, Z] whose components are mixtures of a 16 Hz sinusoid common to all data
channels, a 64 Hz and 4 Hz tone in the X component, a 32 Hz tone in the Y component and
a 4 Hz tone in the Z components. We observed that all IMFs are three-dimensional and
scale-aligned; the 16 Hz tone present in all data channels is localized in a single IMF3, while
the 64 Hz, 32 Hz, and 4 Hz tones are localized in IMF1, IMF3, and IMF4, respectively. Such
a strict mode alignment cannot be achieved when applying the standard EMD channel
wise. Figure 2 shows that the different frequency scale modes exhibit the same IMF.
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Figure 1. IMFs of a synthetic signal obtained by MEMD.

 

Figure 2. IMFs of the synthetic signal in Figure 1 obtained by standard EMD.

3. NA-MEMD Method

To further reduce the mode-mixing effect in an MEMD, a noise-assisted MEMD
method, named NA-MEMD, was introduced by adding white noise. The method is
different from the ensemble EMD method in that multiple realizations of white noise are
added to the input signal before being decomposed via EMD [13]. The NA-MEMD method
adds extra multivariate channels, such as l dimensional independent white noise to the
original n dimensional multivariate signal, and then processes such an n + l dimensional
composite signal via MEMD. The NA-MEMD algorithm is described as follows:

70



Appl. Sci. 2022, 12, 2429

1. Create an l-dimensional independent Gaussian white noise series with the same length
as that of the input signal;

2. Generate an n + l-dimensional signal by adding the noise series created in Step 1 to
the n-dimensional input multivariate;

3. Process the resulting n + l-dimensional multivariate signal via the MEMD algorithm,
to obtain the multivariate IMFs;

4. Discard the l-dimensional IMFs corresponding to the noise and obtain a set of
n-dimensional IMFs corresponding to the original signal from the resulting (n + l)-
variate IMFs.

For adding Gaussian white noise, the NA-MEMD method has better binary filtering
characteristics than the MEMD method. Both the mode mixing and misalignment prob-
lems were significantly reduced. Figure 3 illustrates the benefits of noise-assisted MEMD
algorithms for reducing mode mixing via a bivariate signal example. The Z component
signal contains a 20 Hz sinusoid and two intermittent signals with frequencies 8 Hz and
80 Hz. The X component was generated by rotating the Z component 90 degrees on the
vertical direction. For convenience, we plotted only the IMFs of the Z component. We can
see that mode mixing in a single channel is obvious for the standard EMD in Figure 3a. A
single-frequency scale mode exists in both IMFs. In addition, different frequency modes can
also be seen in the same IMF. With two extra channels of white noise, the decomposition
of the same bivariate signal by the proposed NA-MEMD method is shown in Figure 3b.
This demonstrates that mode mixing is significantly reduced, and each IMF only contains a
single frequency mode.

 

Figure 3. The EMD decompositions of a 20Hz sinusoid contaminated with two 8 Hz and 80 Hz
intermittent signals: (a) IMFs of EMD method; (b) IMFs of the NA-MEMD method.
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4. Ground Roll Attenuation via NA-MEMD

This three-component geophones record two horizontal components and one vertical
component of the incident seismic data, which are an oscillation stack of different frequency
sub-bands. The ground roll, which is located in the low-frequency range, is different
from the reflection wave. The alignment of frequency sub-bands can be obtained from
different channels of the multivariate signal by inserting them into noisy channels via
the NA-MEMD method. As a result, the IMFs were aligned according to their frequency
content. Then, we can utilize the low oscillation property to separate the ground roll from
the reflection wave.

Attenuating the ground roll based on the NA-MEMD method includes two steps: The
first step is to use NA-MEMD to decompose multicomponent seismic data into a set of
IMFs. The IMFs of ground roll are present in high-index IMFs, and their amplitude spectra
are computed. A complete estimate of IMFs is reduced to identify these high-index IMFs in
that the ground roll is dominant. In the second step, we remove these high-index IMFs and
reconstruct the remaining low-index IMFs to obtain the seismic data without ground roll.
In this workflow, the key parameter is the number of IMFs of the high-index ground roll.
The number choice is a trade-off between less damage to the reflection waves and more
ground roll suppression.

4.1. Synthetic Data

In this section, we first test the proposed method on synthetic seismic data. The
dataset contains a sweep signal with a 2–20 Hz frequency band to represent the ground
roll and seismic wave simulated by finite difference for a three-layer model as shown in
Table 1 [3,18]. According to the polarization property of ground roll, the phase of the
horizontal component has a 90 degree lag compared to the vertical component. A 50 Hz
Ricker wavelet was used for the body wave with a time sample interval of 1ms. The number
of samples for each trace was 1001, and the number of traces for one shoot was 200. The
model parameters are presented in Table 1. Figure 4 shows the ground roll attenuation
results of the synthetic data obtained using the NA-MEMD method.

Table 1. Model parameters.

Layer Thickness (m) Poisson’s Ratio Vs (m/s) Vp (m/s) Density (kg/m3)

1 3000 0.253 1150 2000 2010
2 1000 0.251 1730 3000 2200
3 4000 0.250 2310 4000 2350

Figure 4a,d represents the horizontal and vertical components of the synthetic data,
respectively. Two noise-assisted signals are embedded into the synthetic data to help
overcome mode mixing when using the MEMD method. We decomposed the model data
into eight IMFs. According to the NA-MEMD principle, the first two IMFs are related to
noises; therefore, they are discarded. Owing to the low-frequency characteristic of ground
roll, the seventh and eighth IMFs dominated by the ground roll are directly subtracted
from the decomposition. We reconstructed the low-index IMFs and obtained the final data
with ground roll attenuation. Figure 4b,e displays the data after removing the ground roll
of the horizontal component in Figure 4a and the vertical component in Figure 4d. It can be
seen that the ground roll is well suppressed. From the ground roll separated in Figure 4c,f,
we can see that the residual energy of the reflection wave is weak. During the removal of
ground roll using the NA-MEMD method, the number of removed IMFs is a key parameter
for the suppression effect. Figure 5 shows the sensitivity for the seismic wave separation
with different numbers of subtracted IMFs. We find that the more high-index IMFs are
removed, the better ground roll suppression is achieved. Meanwhile, more damage occurs
to the reflected wave. The parameter choice of removed IMFs is a trade-off between less
damage to the reflection energy and more suppression for the ground roll.
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Figure 4. The ground roll attenuation results via NA-MEMD: (a) the horizontal component;
(b) attenuated result of panel (a); (c) ground roll separated from panel (a); (d) the vertical com-
ponent; (e) attenuated result of panel (d); (f) ground roll separated from panel (d).

   

   

Figure 5. Comparison of the number of IMFs for the vertical component: reconstructed result using
(a) the 3rd–7th IMFs; (b) The 3rd–6th IMFs; (c) the 3rd–5th IMFs; ground roll separated using (d) the
8th IMF; (e) the 7th and 8th IMFs; and (f) the 6th–8th IMFs.

4.2. Field Data

To further examine the ground roll attenuation performance of the NA-MEMD method,
we processed multicomponent seismic data from land seismic acquisition. The data in-
cluded two horizontal components and one vertical component. Figure 6a–c shows the
raw seismic data that are recorded X, Y, and Z components from left to right, respectively.
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It can be seen that seismic data in the near offset are contaminated by strong ground roll.
We added three noise-assisted signals and decomposed data into eight IMFs. The ground
roll with low velocity exists from the 112th to the 170th trace. Linear events with low
frequency also ruin reflection waves. For each trace, we removed different numbers of
IMFs. For the traces with ground rolls, we removed the first three highest index IMFs.
For the rest, we removed only the first two highest index IMFs. Figure 6d–f displays the
ground roll attenuation results via the NA-MEMD method for the raw three-component
data, respectively. Figure 6g–i shows the ground roll and linear events separated with
a low-frequency scale. From Figure 6d–f, we can see that the ground roll is successfully
suppressed from the original data in Figure 6a–c.

   

   

   

Figure 6. The ground roll attenuation results for field 3C data via NA-MEMD: (a–c) the raw data,
(d–f) the attenuated results, and (g–i) the separated ground roll of three-component seismic data,
respectively.

To further analyze the ground roll attenuation performance of the NA-MEMD method
on field data, we compared it with the F-K filter method. Figure 7a,b displays the atten-
uation results and differences using F-K attenuation method for the vertical component,
respectively. In Figure 6f,i, we can see that the ground roll is well attenuated by the NA-
MEMD method. However, the F-K method suppresses the ground roll by cutting operation
in the frequency-wavenumber domain, resulting in deletion of the low-frequency content
of the reflection wave. Therefore, some weak reflection event energy remains in the dif-
ference section, as shown in Figure 7b. Figure 8a,d displays the waveform and amplitude
spectra from the 90th and 135th traces, respectively. Although both methods successfully
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suppress the ground roll and linear interference, the NA-MEMD method preserves the
reflection wave better in the low-frequency range (<10 Hz), which is important for later
high-resolution imaging.

  
Figure 7. Attenuation results for vertical component in Figure 6c using F-K filter: (a) attenuated
result; (b) separated ground roll.

 

 

  

Figure 8. Waveform and amplitude spectra of raw data, FK and NA-MEMD attenuation: (a) 90th
trace; (b) 135th trace; (c) spectra of (a); (d) spectra of (b).

5. Conclusions

We applied the NA-MEMD method to attenuate ground roll for multicomponent
seismic data. The tests of the simulated multicomponent signal show that the NA-MEMD
aligns similar modes present across multiple components and reduces the effect of mode
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mixing by introducing extra channels of multivariate noise. The performance of the NA-
MEMD was analyzed for ground roll attenuation of multicomponent seismic data. We
demonstrate that the NA-MEMD method can suppress ground roll and interference if
low-frequency waves are present in different components of seismic data in the time
domain. Compared to the F-K method, the NA-MEMD method can preserve the reflection
wave better in low-frequency range. Synthetic and field seismic data examples show the
effectiveness of the proposed NA-MEMD method for ground roll attenuation.
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Abstract: Reverse Time Migration (RTM) is a preferred depth migration method for imaging complex
structures. It solves the complete wave equation and can model all types of complex wave propagation
with no dip limitation. Reverse time migration using the inverse scattering imaging condition
produces structural images with an amplitude approximate to the reflectivity, which is a composite
effect of the impedance and velocity changes in the acoustic media with variable velocity and density.
In this study, we present a modified inverse scattering imaging condition to separate the effect of
the impedance and velocity perturbations from the reflectivity. The proposed imaging condition is
designed to predict the relative impedance perturbation by selecting near-angle reflections during
common-shot RTM. We validate our approach on synthetic models and show that the proposed
method can estimate reliable impedance perturbation.

Keywords: reverse time migration; modified inverse scattering imaging condition; acoustic impedance;
inversion

1. Introduction

Conventional migration methods aim to create structural images of subsurface. Ad-
vances in the true-amplitude migration method further generate subsurface images with
an amplitude approximate to the reflectivity of the subsurface reflectors. For acoustic cases
with varying velocity and density, reflectivity is caused by the velocity and impedance
changes across the interfaces. Acoustic impedance of the subsurface can be used for the
direct interpretation of volume information, such as lithology and pore fill, allowing for
target delineation. Those inferred rock properties can provide additional information for
geologic interpretation and reservoir characterization, which may not be available from
conventional seismic images [1,2]. Furthermore, relating acoustic impedance derived from
seismic data to formation properties could have a significant impact on defining new
potential drilling locations and optimizing well placement [3].

Earlier studies on ray+Born migration/inversion [4–7] solved the forward problem
based on the Born approximation using Green’s functions computed by ray theory, and
implemented linearized inversion to recover the perturbed model parameters (velocity or
acoustic impedance perturbation in acoustic cases; P-wave and S-wave impedance pertur-
bations and density in elastic cases) from the observed data. However, ray-tracing based
asymptotic theory is fundamentally flawed in simulating low frequency wave propagation,
which is critical for an accurate estimation of media properties with blocky structures [8].
Bleistein et al. [9] extended the method by using more general Green’s functions, other than
the asymptotic forms. Zhang et al. [10] further developed the amplitude-preserving RTM
to predict both impedance and velocity perturbations from angle-domain common-image
gathers. However, RTM angle gathers for the purpose of impedance inversion can be com-
putationally expensive. Here, we propose a modified inverse scattering imaging condition
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for RTM, in order to output the relative impedance perturbation from the stacked images
without explicitly computing angle gathers.

In this paper, we first give an overview of model parameters estimation (relative
impedance and velocity perturbations) from the observed data using common-shot RTM,
in accordance with Zhang et al. [10]. Then we derive the modified inverse scattering
imaging condition for the relative impedance perturbation estimation for the acoustic case
with variable velocity and density. The conventional inverse scattering imaging condition
was designed to reduce RTM artifacts caused by the correlation of source and receiver
wavefields propagating in the same direction [11], such as backscattered and turning wave
energy. The proposed modified imaging condition employs an exponential weighting
function to the conventional inverse scattering imaging condition to select near-angle
reflections, from which the relative impedance perturbation can then be estimated. Finally,
we validate the proposed method on synthetic examples.

2. Relative Impedance Perturbation Estimation from RTM Using a Modified Inverse
Scattering Imaging Condition

We first describe the algorithm for velocity and impedance inversion using RTM, and then
propose a modified inverse scattering imaging condition for the relative impedance estimation.

2.1. Theory and Algorithm

In an isotropic acoustic medium, the wave equation is as follows [8,10]:⎧⎨⎩
(

1
v2

0

∂2

∂t2 − ρ0∇ 1
ρ0
·∇

)
p0(x; t; xs) = δ(x − xs)δ(t)

d(xr; t; xs) = p0(x = xr; t; xs)
(1)

where v0 and ρ0 are velocity and density, respectively; p0(x; t; xs) is the pressure wavefield
at any location of x due to a source located at xs; and d(xr; xs; t) is the recorded data, i.e.,
the measured value of the pressure wavefield at a receiver position x = xr.

For a second medium with small perturbations in velocity (δv) and density (δρ) com-
pared to the previous medium, the velocity and density are v0 + δv and ρ0 + δρ, respectively.
The pressure wavefield in the perturbed medium p0 + δp satisfied the same acoustic wave
equation as follows:⎧⎨⎩

(
1

(v0+δv)2
∂2

∂t2 − (ρ0 + δρ)∇ 1
ρ0+δρ ·∇

)
(p0 + δp) = δ(x − xs)δ(t)

δd(xr; t; xs) = δp(x = xr; t; xs)
(2)

where δp is the wavefield perturbation, and the observed data perturbation is represented
by δd.

Based on the Born approximation, the following equation for δp can be derived by
subtracting Equation (1) from Equation (2):(

1
v2

0

∂2

∂t2 − ρ0∇ 1
ρ0

·∇
)

δp(x; t; xs) ≈
(

2δv
v3

0

∂2

∂t2 −
(
∇ δρ

ρ0

)
·∇

)
p0(x; t; xs) (3)

By following Zhang et al. [10] and using the asymptotic approximation, we obtained
the ray-based relationship between δd, δv and δρ:

δd(xr; ω; xs) = −
∫ 2ω2

v0(x)
2

(
δv(x)
v0(x)

+ cos2θ
δρ(x)

ρ0(x)

)
× A(xs; xr; x)eiωT(xs ;xr ;x)dx (4)

where T(xs; xr; x) = τ(x; xs) + τ(xr; x) and A(xs; xr; x) = A(x; xs)A(xr; x) represent the
travertine summation and the amplitude product of the Green’s function from the source
location xs to the image point x and reflected back to the receiver location xr, respectively,
and θ is the subsurface reflection angle. Equation (4) represents the forward modeling
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formulation under a high-frequency assumption. The detailed derivations of Equations (3)
and (4) can be found in [10].

Following a similar method to [5] and [8], we can invert Equation (4) for the composite
model parameter perturbation, δv(x)

v0(x)
+ cos2θ

δρ(x)
ρ0(x)

. In 2D, the composite model parameter
perturbation can be described in terms of the perturbed wavefield as follows (detailed
derivation is given in Appendix A):

sin2θ δv
v0

+ cos2θ
δ(ρv)
ρ0v0

= −� � 32cos2θ′
|ω|

cosβr
v(xr)

cosβs
v(xs)

A(x; xs)A(xr; x)

×(θ′ − θ)δd(xr; ω; xs)e−iωT(xs ;xr ;x)dxrdxsdωdθ′
(5)

where βs and βr represent the takeoff angles at the source and receivers, respectively.
Within the framework of amplitude-preserving RTM, the asymptotic forms of pF(x; ω; xs)

and pB(x; xs; ω) for 2D acoustic case are given as follows [10,12]:

p*
F(x; ω; xs) = −2

cos βs

v(xs)

√
|ω|A(x; xs)e−iωτ(x;xs)−i( π

4 )sgn(ω) (6)

and

pB(x; ω; xs) = 2
∫ cos βr

v(xr)

√
|ω|A(xr; x)e−iωτ(xr ;x)−i( π

4 )sgn(ω)δd(xr; ω; xs)dxr (7)

Substituting Equations (6) and (7) for the terms on the right-hand side of Equation (5),
we can obtain:

sin2θ
δv
v0

+ cos2θ
δ(ρv)
ρ0v0

=
� 8cos2θ′

ω2 δ
(
θ′ − θ

)
p*

F(x; ω; xs)pB(x; ω; xs)dωdθ′dxs (8)

The left-hand side of Equation (8) is the composite form of relative velocity perturba-
tion and impedance perturbation. The right-hand side has the same form as RTM. This
shows that the composite parameter on the left-hand side can be estimated using the RTM
framework. In order to invert each individual parameter, Zhang et al. [10] pointed out that
the near-angle stacked image can output impedance perturbation, δ(ρv)

ρ0v0
, while the far-angle

stacked image can be used to estimate the velocity perturbation, δv
v0

. They separated the
effects of impedance and velocity by first generating RTM angle-domain common-image
gathers, and then using stacked images within different angle sections for velocity and
impedance estimations. However, it could be computationally expensive to compute RTM
angle gathers, especially in 3D.

Note that the right-hand side of Equation (8) shares a similar form as the true am-
plitude imaging principle proposed by Kiyashchenko et al. [13], where the cos2θ term is
approximated by the ray theoretical slowness vectors in the Fourier domain and computed
by applying the time derivatives and spatial gradients of wavefields. The time derivatives
and spatial gradients of wavefields were also utilized in the inverse scattering imaging
condition proposed by Whitmore and Crawley [11]. Next, we investigated the inverse
scattering imaging condition, and further proposed a modified inverse scattering imaging
condition to output the near-angle stacked images without computing the angles. Our
method can reduce the computational costs compared with the method using angle gathers,
and still utilize the imaging capabilities of RTM for the relative impedance estimation.

The inverse scattering imaging condition proposed by Whitmore and Crawley [11]:

I(x; xs) = I∇(x; xs) + B(x; xs)Idt(x; xs) (9a)

where
I∇(x; xs) =

∫
∇pF(x; t; xs)·∇pB(x; t; xs)dt (9b)
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and

Idt(x; xs) = −
∫ 1

v2(x)

∂pF(x; t; xs)

∂t
∂pB(x; t; xs)

∂t
dt (9c)

and where B(x; xs) is a weighting function to attenuate backscattered energy. Note that here
we used the backpropagated wavefields pB(x; t; xs) in terms of wavefield propagation time
t (instead of T − t, where T is the maximum extrapolation time), and used the relationship
∂pB(x;T−t;xs)

∂t = − ∂pB(x;t;xs)
∂t .

The relationship between the product of the time derivatives of pF and pB, and the
products of their spatial gradients is given by the following equation [11,14,15]:

−∂pF
∂t

∂pB
∂t

cos(2θ)A(x)

v2(x)
= ∇pF·∇pB(x; t; xs) (10)

where A(x) is the parameter to compensate for far field approximation. We can ignore it by
assuming far field approximation and obtain the following equations:

∇pF(x; t; xs)·∇pB(x; t; xs) ≈ −cos(2θ)

v2(x)

∂pF(x; t; xs)

∂t
∂pB(x; t; xs)

∂t
(11a)

− 1
v2(x)

∂pF(x; t; xs)

∂t
∂pB(x; t; xs)

∂t
+∇pF(x; t; xs)·∇pB(x; t; xs) ≈ −2cos2θ

v2(x)

∂pF(x; t; xs)

∂t
∂pB(x; t; xs)

∂t
(11b)

− 1
v2(x)

∂pF(x; t; xs)

∂t
∂pB(x; t; xs)

∂t
−∇pF(x; t; xs)·∇pB(x; t; xs) ≈ −2sin2θ

v2(x)

∂pF(x; t; xs)

∂t
∂pB(x; t; xs)

∂t
(11c)

Choosing B(x) = 1, Equation (9a) can be expressed in the frequency domain as:

I∇(x; xs) + Idt(x; xs)

=
∫ (

− 1
v2(x)

∂pF(x;t;xs)
∂t

∂pB(x;t;xs)
∂t +∇pF(x; t; xs)·∇pB(x; t; xs)

)
dt

≈ −∫ 2cos2θ
v2(x)

∂pF(x;t;xs)
∂t

∂pB(x;t;xs)
∂t dt

= −∫ 2ω2cos2θ
v2(x)

p*
F(x; ω; xs)pB(x; ω; xs)dω

(12)

Equation (12) is similar to the energy norm imaging condition proposed by Rocha et al. [16],
which was used to attenuate reflections with opening angles close to 180◦. Comparing
Equations (8) and (12), we can see that the composite parameter of the relative impedance
and velocity perturbation (sin2θ δv

v0
+ cos2θ

δ(ρv)
ρ0v0

) can be computed using the inverse scatter-
ing imaging condition (Equation (12)) after the proper preprocessing of source and receiver
wavefields. To estimate the impedance perturbation, we must further separate the effects
of impedance and velocity. Inspired by Rocha et al. [16], who proposed an exponential
weighting function to select far-angle reflections for the purpose of tomographic inver-
sion, we applied the following weighting function for Equation (12) to select near-angle
reflections [15]:

Ismall angle =
∫

w
(
− 1

v2
∂pF
∂t

∂pB
∂t

+∇pF·∇pB

)
dt, with w = e

−
α(− 1

v2
∂pF
∂t

∂pB
∂t −∇pF ·∇pB)

− 2
v2

∂pF
∂t

∂pB
∂t , α > 1 (13)

where the weighting term w is approximate to e−αsin2θ following Equation (11c). This
weighting function equals to 1 when θ = 0◦, and rapidly approaches 0 when θ increases,
which is designed to select small reflection angles. More details about this weighting
function and the choice of α are presented in the later section. Equation (8) shows that
small-angle reflection produces an estimate of the impedance perturbation. Therefore,
from Equations (8) and (13), we derived our proposed imaging condition for the relative
impedance estimation from RTM:
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δ(ρv)
ρ0v0

= −
�

4v2w
(
− 1

v2
∂p′F
∂t

∂p′B
∂t

+∇p′F·∇p′B
)

dtdxs, with w = e
−

α(− 1
v2

∂p′F
∂t

∂p′B
∂t −∇p′F ·∇p′B)

− 2
v2

∂p′F
∂t

∂p′B
∂t (14)

where p′F and p′B are forward and backward wavefields, respectively, scaled by 1/ω2 in the
frequency domain.

Figure 1 shows the workflow of our proposed method of estimating the relative
impedance perturbation from RTM using the modified inverse scattering imaging condition.
Compared with conventional RTM, the only difference is that we replaced the conventional
cross-correlation imaging condition with our proposed imaging condition in Equation (14).

Figure 1. Workflow of the proposed method.

2.2. Comparison of Imaging Conditions

To illustrate how the proposed imaging condition in Equation (13) attenuates large
angle reflections, we performed simple experiments on the prestack impulse response.
The synthetic data were generated by a two-reflector layered model. Figure 2a shows the
impulse response using Idt for a single trace at an offset of 4000 m, from which we can
see the image of two reflection events, as well as the backscattered events. The imaging
condition Idt + I∇ attenuated backscattered events, as shown in Figure 2b. By using the
proposed imaging condition in Equation (13), Figure 2c only preserved the small-angle
reflections. Figure 2d–f show the corresponding imaging comparison for a single trace
at an offset of 0 m (one source and one receiver, both at 0 m on the surface). Using our
proposed small-angle imaging condition, Figure 2f preserved all the zero-angle reflections
available in Figure 2d, while attenuating the backscattered energy, which is mostly notable
at location 0 m.

Figure 3 compares the imaging results of the single trace at zero offset using Equations
(13) and (14). From the comparison, we can see that the factor 1/ω2 in Equation (14) boosts
the low-frequency components in Figure 3b.
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Figure 2. Imaging results of a single trace (offset = 4000 m) showing (a) Idt; (b) Idt + I∇; and
(c) Ismall angle; Imaging results of a single trace (offset = 0 m) showing (d) Idt; (e) Idt + I∇; and
(f) Ismall angle.

Figure 3. Comparison of imaging results of a single trace (offset = 0 m) (a) using Equation (13) and
(b) using Equation (14).

3. Numerical Examples

In this section, we demonstrate the effectiveness of the proposed imaging condition for
the impedance perturbation estimation (Equation (14)) on synthetic data. The first example
was designed to demonstrate the effectiveness of the proposed method on a laterally
invariant model with uncorrelated velocity and density. Figure 4a,b show the velocity and
density model, respectively. Figure 4c shows the true relative impedance perturbation.
We used the velocity and density in the first layer as the background velocity and density,
respectively. We first subtracted the background impedance from the exact impedance
and then analytically calculated the relative impedance perturbation. Figure 5a,b show the
filtered true velocity and impedance perturbation, respectively. Figure 5c illustrates the
impedance perturbation estimated by our proposed method, which matches well with the
true results. Note that the depth errors in the estimated acoustic impedance are due to the
fact that we used a constant migration velocity.

84



Appl. Sci. 2023, 13, 5291

 
Figure 4. (a) Velocity model; (b) density model; and (c) true relative impedance perturbation.

Figure 5. (a) Filtered true relative velocity perturbation; (b) filtered true relative impedance perturba-
tion; and (c) estimated relative impedance perturbation.

Next, we demonstrated the acoustic impedance estimation on the Sigsbee2b model [17],
and focused on the sediment areas with fine impedance structure. We performed acoustic
finite difference modeling for synthetic data generation using a broadband source wavelet
( [ f 1, f2, f 3, f 4]= [0, 2, 56, 60] Hz). The exact velocity model is shown in Figure 6a, from
which the density model was generated using a predefined relationship of the two pa-
rameters. A V(z) velocity model and a constant density model were used for migration.
We analytically calculated the exact impedance perturbation and applied the band-pass
filtering to the exact result according to the bandwidth of input data. The filtered true
impedance perturbation is shown in Figure 6b. In comparison, Figure 6c illustrates the
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impedance perturbation results estimated by our proposed method. Figure 6d displays
the overlay of the two images (Figure 6b,c). The detailed comparison between Figure 6b,c
at the three different locations are shown in Figure 7. An amplitude calibration was per-
formed using reflections from the water bottom. In Figure 7, the filtered true impedance
perturbation is shown in red and the estimated impedance perturbation is shown in blue.
The numerical results demonstrate the overall good match between the estimated and the
true impedance perturbation.

Figure 6. (a) Velocity model for synthetic data generation; (b) filtered true impedance perturbation;
(c) impedance perturbation estimated by the proposed method; and (d) overlay plot of the two images
(red: true, blue: estimated).

 
Figure 7. Comparison of filtered true impedance perturbation (red) and estimated results (blue) at
three horizontal locations: 2000 m (a); 3500 m (b); and 5000 m (c).

In the third example, we demonstrated the proposed method on a 2D transition zone
model. The exact velocity model (labels show grid numbers) is illustrated in Figure 8a,
and the density model had similar structural characteristics (not shown here). As in the

86



Appl. Sci. 2023, 13, 5291

previous example, synthetic data were generated using a broadband source wavelet. A
smoothed version of the true velocity was used for migration, with the assumption of a
constant density. Figure 8b shows the filtered true impedance perturbation, while Figure 8c
illustrates the estimated results using the proposed method. Detailed trace comparisons
between the two are shown in Figure 9 at the three different horizontal locations (X = 1900,
2200, 3000). Figure 9b (at X = 2200) and Figure 9c (at X = 3000) show a slightly better match
than Figure 9a (X = 1900, inside the island) due to better illumination. The comparison
shows the true and the estimated results match quite well, demonstrating the effectiveness
of our method on complex models.

 
Figure 8. (a) A 2D transition zone velocity model; (b) true relative impedance perturbation after
band-pass filtering; and (c) estimated relative impedance perturbation computed using the pro-
posed method.
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Figure 9. Comparison of filtered true impedance perturbation (red) and estimated results (blue) at
three locations: (a) X = 1900; (b) X = 2200; and (c) X = 3000.

4. Discussion

In Equation (11b), we can see that the summation of the time derivative and the spatial
gradient images had an extra term of cos2θ compared to the time derivative image. When
we designed the small-angle imaging condition in Equation (13), we mentioned that the
exponential term approximated to e−αsin2θ . Since this exponential weighting was applied
at each time step, we can consider the proposed imaging condition as the time derivative
imaging condition weighted by the term cos2θe−αsin2θ . Figure 10 shows the analysis of this
term by choosing different parameter α, compared to the term cos2θ. In the figure, we can
see that a larger α attenuated the large reflections more rapidly than a small α; on the other
hand, the attenuation curve was smoother for a small α, which generated less artifacts than
a large α. In all our examples in the previous section, we empirically chose α = 5 based
on a compromise between the preservation of accuracy, and artifacts reduction. Figure 11
shows the sensitivity analysis of the inversion results using different α (α = 0, 5, 10, 20)
for the layered model (Figure 4). In the figure, we can see that for α = 0, the velocity
and impedance perturbation cannot be distinguished, while for a larger α (α = 10 and
α = 20), the shallow part is problematic. In future studies, we may consider the functions
of different forms to attenuate large reflections while still preserving the imaging quality.

Figure 10. Analysis of different angle-dependent functions.
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Figure 11. Estimated relative impedance perturbation for the layered model using different α in the
weighting function in Equation (14): (a) α = 0; (b) α = 5; (c) α = 10; and (d) α = 20.

In all our numerical examples, broadband sources were used for synthetic data gen-
eration. Broad bandwidth played an important role in seismic inversion. Increasing the
bandwidth at the high-frequency end improved seismic resolution, and adding more low
frequencies in the data reduced the side lobes of the seismic wavelet [18]. Figure 12 demon-
strates the impact of low frequencies on the inversion result. For the Sigsbee2b model, we
applied a band-pass filter ( f1 = 3 Hz, f2 = 5 Hz, f3 = 56 Hz, f4 = 60 Hz) to remove low
frequencies in the input data, and then estimated the impedance perturbation using our
proposed method. The estimated impedance perturbations with and without low frequen-
cies are shown in Figures 12a and 12b, respectively. Figure 12a is the same as Figure 6c, and
is repeated here for comparison. Figure 12c shows the trace comparison of Figure 12a,b at
the horizontal location of 3500 m. The results demonstrate that low frequencies in the data
affect the long-wavelength structures in the image. Low frequencies are crucial for both
velocity and impedance inversions [8], and retaining low frequencies in the recorded data
depends on broadband seismic acquisition and data processing.

Figure 12. Comparison of estimated impedance perturbation with (a) and without (b) low frequencies
in input data. (c) Trace comparison of estimated impedance perturbation with (blue) and without
(green) low frequencies at the horizontal location of 3500 m.
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As in conventional RTM, the proposed method assumes primaries only in the data, so
de-multiple is a necessary preprocessing step in the case of strong multiples in the data.
Even though our method was derived from the framework of amplitude-preserving RTM,
the inversion was based on the Born approximation (Equation (4)). Therefore, transmission
losses due to the overburden effects were also a challenge for our proposed method.
The proposed method could be extended to finite-frequency based inversion [19] or FWI
approaches [20] in the future work.

5. Conclusions

We proposed a weighted inverse scattering imaging condition for common-shot RTM,
which outputs an estimation of the relative impedance perturbation. The construction of
the weighting function was based on the two separate images from the conventional inverse
scattering imaging condition. The proposed imaging condition was designed to select
near-angle reflections during imaging, and therefore can separate the effect of impedance
perturbation from velocity perturbation, for acoustic cases with variable velocities and
densities. We demonstrated the effectiveness of the modified inverse scattering imaging
condition using synthetic examples and showed that our method can produce reliable
estimations of impedance perturbations.
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Appendix A Derivation of Equation (5)

Equation (4) describes the relationship between the perturbation in the data and the
perturbation in the model. Following [22], the inversion of the model perturbations from
Equation (4) can be written as follows:

δv
v0

+ cos2θ
δρ

ρ0
=

�
B(xr; ω; xs; x; θ)δd(xr; xs; ω)e−iωT(xs ;xr ;x)dxrdxsdω (A1)

where B is an inverse operator.
Substituting Equation (4) into Equation (A1), we have:

δv
v0

+ cos2θ
δρ
ρ0

= −�
B(xr;ω; xs; x; θ)×∫ 2ω2

v(x′)2

(
δv(x′)
v(x′) + cos2θ′ δρ(x′)

ρ(x′)

)
×A(xs; xr; x′)eiω(T(xs ;xr ;x′)−T(xs ;xr ;x))dx′dxrdxsdω

(A2)
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In 2D, we change the variables from (xr, xs, ω) to (k, θ) and rewrite Equation (A2)
as follows:

δv
v0

+ cos2θ
δρ
ρ0

= −�
B(xr;ω; xs; x; θ)δ(θ′ − θ)×∫ 2ω2

v(x′)2

(
δv(x′)
v(x′) + cos2θ

δρ(x′)
ρ(x′)

)
×A(xs; xr; x′)eik(x′−x)

∣∣∣ ∂(xs ,xr ,ω)
∂(k,θ)

∣∣∣dx′dkdθ′
(A3)

The inverse operator B(xr; ω; xs; x; θ) must satisfy the following equation according to
Equation (A3):

2ω2

v2 A(xs; xr; x)B(xr; ω; xs; x; θ)

∣∣∣∣∂(xs, xr, ω)

∂(k, θ)

∣∣∣∣ = −
(

1
2π

)2
(A4)

The Jacobian is derived in Appendix B. Substituting the Jacobian in Equation (A16)
into Equation (A4), we can obtain the following:

B(xr; ω; xs; x; θ) = −
(

1
2π

)2 v2

2ω2 × 64π2|ω||q|2 A(xs; xr; x)
cos βs
v(xs)

cos βr
v(xr)

= − 32cos2θ
|ω| A(x; xs)A(xr; x)

cos βs
v(xs)

cos βr
v(xr)

(A5)

By substituting Equation (A5) into Equation (A1), and by using the following relation:

δ(ρv)
ρ0v0

=
δv
v0

+
δρ

ρ0
(A6)

We can obtain the desired relationship in Equation (5):

sin2θ
δv
v0

+ cos2θ
δ(ρv)
ρ0v0

= −
� � 32cos2θ′

|ω|
cos βr

v(xr)

cos βs

v(xs)
A(x; xs)A(xr; x) (A7)

Appendix B Derivation of the Inverse of the Jacobian in Equation (A4)

In this appendix, we derive the inverse of the Jacobian
∣∣∣ ∂(xs ,xr ,ω)

∂(k,θ)

∣∣∣ following Appendix B
from [9].

From the definition of the vector q in Figure A1, we have q = ps + pr. The wavenum-
ber vector k is defined as k = ωq = ω(p s + pr). In the isotropic case, we have
|k| = 2|ω|cos θ

v , and |q| = 2cosθ
v , where θ is the reflection angle and v is the wave prop-

agation velocity at the image point. By using the polar representation (|k|, φ) for the vector
k, we obtain: ∣∣∣ ∂(k,θ)

∂(xs ,xr ,ω)

∣∣∣ = ∣∣∣ ∂(k,θ)
∂(|k|,φ,θ)

∣∣∣∣∣∣ ∂(|k|,φ,θ)
∂(xs ,xr ,ω)

∣∣∣
= |k|

∣∣∣ ∂(|k|φ,,θ)
∂(xs ,xr ,ω)

∣∣∣ = |ω||q|
∣∣∣ ∂(k)

∂(ω)

∣∣∣∣∣∣ ∂(φ,θ)
∂(xs ,xr)

∣∣∣ = |ω||q|2
∣∣∣ ∂(φ,θ)

∂(xs ,xr)

∣∣∣ (A8)

Using the relation: {
φ = αs+αr

2
θ = αs−αr

2
(A9)

We can have: ∣∣∣∣ ∂(φ, θ)

∂(xs, xr)

∣∣∣∣ = ∣∣∣∣ ∂(φ, θ)

∂(αs, αr)

∣∣∣∣∣∣∣∣∂(αs, αr)

∂(xs, xr)

∣∣∣∣ = ∣∣∣∣∂(αs)

∂(xs)

∣∣∣∣∣∣∣∣∂(αr)

∂(xr)

∣∣∣∣ (A10)

Plugging Equation (A10) into Equation (A11), we can obtain:∣∣∣∣ ∂(k, θ)

∂(xs, xr, ω)

∣∣∣∣ = |ω||q|2
∣∣∣∣∂(αs)

∂(xs)

∣∣∣∣∣∣∣∣∂(αr)

∂(xr)

∣∣∣∣ (A11)
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From Figure A1, we can see that the angle φ is fixed for a given image point x. Thus,
the angles θ and αs differ only by a constant angle: θ = αs − φ. So:∣∣∣∣ ∂θ

∂αs

∣∣∣∣ = 1 (A12)

∣∣∣∣ ∂θ

∂xs

∣∣∣∣ = ∣∣∣∣ ∂θ

∂αs

∣∣∣∣∣∣∣∣∂αs

∂xs

∣∣∣∣ = ∣∣∣∣∂αs

∂xs

∣∣∣∣ (A13)

The expression for the left-hand side of the above equation can be found in [9] as
Equation (7): ∣∣∣∣ ∂θ

∂xs

∣∣∣∣ = 8πA2(xs, x)
cos βs

v(xs)
(A14)

Similarly, we can have: ∣∣∣∣ ∂θ

∂xr

∣∣∣∣ = 8πA2(xr, x)
cos βr

v(xr)
(A15)

From Equations (A11) and (A14)–(A16), we have:∣∣∣ ∂(k,θ)
∂(xs ,xr ,ω)

∣∣∣ = |ω||q|2
∣∣∣ ∂(αs)

∂(xs)

∣∣∣∣∣∣ ∂(αr)
∂(xr)

∣∣∣
= |ω||q|2 × 8πA2(xs, x)

cos βs
v(xs)

× 8πA2(xr, x)
cos βr
v(xr)

= 64π2|ω||q|2 A2(xs, x)A2(xr, x)
cos βs
v(xs)

cos βr
v(xr)

(A16)

Figure A1. Coordinates of the 2D ray approximation. x is the image point, and xs and xr are the
source and receiver position, respectively; vectors ps and pr define the specular ray parameters at the
image point from the source and receiver, respectively; vector q is defined as the sum of the source
ray parameter ps and receiver ray parameter pr; in the specular cases, q coincides with the reflector
normal vector;αs, αr, and ∅ are the angles with respect to the vertical of the vectors ps, pr and q,
respectively; θ is the reflection angle with respect to the normal, and 2θ is the angle between ps and
pr; βs and βr are the takeoff angles at the source and receivers, respectively (figure adapted from [9]).
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Featured Application: Imaging through gas clouds using SH shear wave.

Abstract: In this paper, we discussed the reverse time migration imaging of compressional wave
(P-wave) and horizontally polarized shear wave (SH shear wave) seismic data, together with P- and
SH shear wave constrained velocity model building. In the Sanhu area in Qaidam Basin, there are
large areas of gas clouds, which leads to poor P-wave seismic imaging. The P and SH shear wave
seismic data of a co-located survey line with the same acquisition geometry were used to access their
imaging capability using reverse time migration. We first estimated the change in P-wave and SH
shear wave velocity ratio using pre-stack time migration (PSTM) for constraining the overall depth
domain velocity model. Additionally, we then used an eighth-order finite difference scheme for
P-wave reverse time migration on a variable grid and used the sixth-order combined compact
difference (CCD) wave field simulation method for SH shear wave reverse time migration on a
regular grid. The results show that the constrained velocity model produces a good match in
the overall geological structure shown in the P-wave and SH shear wave reverse time migration
results. However, in the gas cloud areas, SH shear wave reverse time migration has obvious imaging
advantages, which can clearly image the structure inside the gas clouds.

Keywords: shear wave; reverse time migration; numerical simulation; Sanhu depression; Qaidam Basin

1. Introduction

Currently, the main means of oil-gas exploration are mainly based on the P-wave
(compressional wave). A series of mature technologies developed for P-wave exploration,
including data acquisition, data pre-processing, pre-stack time migration, and pre-stack
depth migration, have made great progress and are still making progress. However, with
the extension of exploration to low permeability, deep and unconventional reservoirs and
the increasingly complex exploration targets, relying solely on P-wave technology is facing
more and more challenges. Through an analysis of the limitations of P-wave exploration
and the potential of shear wave exploration, Gou et al. [1] proposed the effectiveness and
applicability of SH shear wave (horizontally polarized shear wave) exploration technology
and conducted SH shear wave data acquisition and processing tests in an exploration area
in Western China [2].

Generally speaking, the resolution of seismic exploration is a quarter of the wavelength,
which depends on the velocity and frequency. As the wave velocity of subsurface media
is objective and certain, the resolution can only be improved by increasing the frequency.
In terms of tight reservoirs or deep carbonate reservoirs, the P-wave velocity can be
higher than 5000 m/s, and the effective frequency will be reduced to about 30 Hz with
the attenuation of deep high-frequency components, which is very unfavorable for the
identification of deep thin layers [3,4]. The further improvement of the effective frequency
band in the deep layer will face great challenges in source excitation. If the frequency band
is consistent, the wave speed of the shear wave is usually about half that of the P-wave,
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and the resolution can reach twice that of the P-wave. Shear-wave exploration is one of the
effective ways to improve the resolution [5–7].

In recent years, with the rapid development of computer calculation, reverse time
migration has gradually become an industrial applied imaging technology used to solve the
imaging of various complex structures. Compared with that of the P-wave, the shear wave
velocity is low and the frequency band is wide, such as carbonate rocks (Takougang et al.,
2020) [8], which can improve the resolution of the formation; the shear wave propagation
is only related to the rock frame, which can be used to accurately construct the subsurface
structure. In terms of the near offset, the shear wave has a higher signal-to-noise ratio
than the P-wave, so it has higher inversion precision [9–16]. To improve the accuracy and
efficiency of shear-wave pre-stack depth migration, it is necessary to apply a high-precision
finite-difference scheme to shear wave seismic imaging on the basis of the low-speed
characteristics of the shear wave, and this method needs to maintain good accuracy of
spatial difference and time difference under the condition of a large spatial grid and time
step. Thus, migration algorithm selection is one of the subjects discussed in this paper.

Since the mid-1990s, reverse time migration has been applied to multi-component
wave seismic data excited from an elastic-wave source [17–20], and it has overcome calcula-
tion problems and interference artifacts in P- and shear wave simulation. In recent years,
most studies have focused on the P- and shear wave decoupled method to separate P- and
shear waves [21–28]. In these studies, there is no case of the direct use of shear wave data
for reverse time migration, but the elastic wave field was used to separate P- and shear
waves or decoupled P- and shear wave fields obtained from the elastic-wave equation. This
paper will focus on the direct use of SH shear wave source data for reverse time migration
imaging and together with corresponding procedures for velocity analysis and velocity
model building.

The study area, Sanhu, referred to in this paper, is located in the Qaidam Basin. The
reservoir in the area is mainly consisted of thin sand-mudstone interbed and unconsol-
idated sandstone reservoirs, and this area is the largest Quaternary biogas production
area discovered in China. Affected by the reservoir gas, the reservoir imaging is seriously
blurred and distorted. To determine the characteristics of the study area, in this paper, the
SH shear wave velocity model in the depth domain is established by using the SH shear
wave data in the survey, and the subsurface reflecting interface in this area is imaged by
using the SH shear wave reverse time migration imaging technology [29,30]. During depth
domain velocity model building, we obtain the P-to-SH shear wave velocity ratio in the
area from the time domain P-wave and SH shear wave imaging results, which is used to
constrain the overall P- and SH shear wave depth domain velocity model building.

2. Application Background and Method Principles

2.1. Survey Background

The survey studied in this paper is from the Sanhu area of the Qaidam Basin, and
its surface is mostly composed of aeolian monadnock, sand dunes, sandbag, saline-alkali
land, hard-alkali land, salt marsh, etc. The Sanhu area is a biogas enrichment area. Af-
fected by subsurface gas, as shown in Figure 1 the energy and frequency absorption of
P-wave seismic data in the seismic anomaly area is serious, the data signal-to-noise ra-
tio is low, and the structure is distorted [31]. It is difficult to obtain reliable imaging of
low-relief structures.

At the same time, there are unique geological characteristics of the Quaternary system
in the Sanhu area, such as weak diagenesis, a thin sand-mudstone interbed, an indiscrimi-
nate hydrocarbon source and reservoir, as well as the succession and relay of gas generation.
Under this unique geological background, a high resolution is required for imaging the
structure in this area, and SH shear wave imaging has a high stratigraphic resolution due
to its low velocity and wide frequency band.
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Figure 1. Pre-stack time migrated P-wave seismic section in a gas-cloud region of Sanhu.

2.2. Principle of Reverse Time Migration

The principle of SH shear wave reverse time migration (RTM) used in this paper is
briefly introduced below:

Reverse time migration based on the solution of two-way wave equation is the most
advanced pre-stack depth migration imaging. After an accurate velocity model is ob-
tained, SH shear wave reverse time migration imaging (SH-RTM) generally includes three
steps [32]:

(1) The source wave field is obtained by using the source constructed manually or ex-
tracted from actual data, and the corresponding model is numerically simulated to
obtain the source wave field S(x, z, t), where x, z is the space vector.

(2) Using the seismic data obtained at the receiver, the reverse continuation propagation
passes through the same velocity model, and the corresponding receiver wave field
R(x, z, t) is obtained, where the position of the receiver is xr, zr.

(3) We can then apply appropriate imaging conditions, such as cross-correlation, we
obtain the I(x, z) (reverse-time migration image results):

I(x, z) =
∫ T

0
S(x, z, t)R(x, z, t)dt (1)

where S(x, z, t) is the source wavefield obtained by forward modeling, R(x, z, t) is
the receiver wavefield obtained by reverse continuation simulation at the same time
under the same velocity model, and t is the total propagation time.

It can be seen from Equation (1) that the final result of reverse time migration is affected
by the accuracy of the source wave field S(x, z, t) and the receiver wave field R(x, z, t).
Therefore, in order to obtain accurate imaging of the target area, it is necessary to make
good use of high-quality SH shear wave data and apply them to reverse time migration.

2.3. Depth Domain Velocity Model Building for SH Shear Wave Data

The depth domain velocity model building is very important for the effect of depth
domain imaging, and P-wave and SH shear wave data are simultaneously acquired in
this study area [33]. In depth-domain imaging, the reflector of the subsurface structure,
the P-wave and SH shear wave, should be matched [34]. Generally, in the case of the
combination of shear wave or converted wave and P-wave imaging, a priority will be given
to determine the P-wave velocity (VP) during the model establishment, and then a P-to-S
wave velocity ratio will be estimated and used together with the VP (P-wave velocity)
to establish the model of SH shear wave velocity (VS). In this study area, due to the gas
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clouds and the difficulty of obtaining effective signals of P-waves, it is difficult to establish
a velocity model of VP. While the pure SH shear wave can propagate through the rock
frame without being affected by gas and fluid, the pure SH shear wave data can be directly
used to establish a model of the SH shear wave velocity vs. (SH shear wave velocity).

First of all, we separately used the SH shear wave and P-wave velocity models. The
establishment of P-wave velocity model refers to the establishment of SH shear wave
velocity model since SH shear wave data in the region has a better signal-to-noise ratio in
the survey and is more credible in the absorption area. Then, the velocity ratios of the P- and
SH shear waves in this region are estimated, and the obtained ratios are taken as constraints.
In order to better match the imaging of the P-wave and SH shear wave in the depth domain,
we also need to estimate the change in the velocity ratio of the P-wave and SH shear wave
by using the pre-stack time migration image. There are many methods of depth domain
velocity model building, and we mainly use layer- and grid-based tomography. After the
establishment of the two models, the spatial P-wave-to-SH shear wave ratio mentioned
above is used to obtain the interlayer travel time in the depth domain model, calculate the
proportion of model correction, and apply it to the correction of the P-wave model. In the
actual constraint process, the velocity correction is about 1–3%, which can be attributed to
weak anisotropic media.

2.4. Principle of Combined Compact Difference Scheme

The combined compact difference (CCD) to suppress the numerical dispersion caused
by the spatial step size are enclosed in this paper to solve the problem of low SH shear
wave velocity; the formula is as follows [35,36]:⎧⎪⎪⎨⎪⎪⎩

a1
(

f ′i+1 + f ′i−1
)
+ f ′i + hb1

(
f ′′i+1 − f ′′i−1

)
= 1

h

n
∑

m=1
cm( fi+m − fi−m)

1
h a2

(
f ′i+1 − f ′i−1

)
+ f ′′i + b2

(
f ′′i+1 + f ′′i−1

)
= 1

h2

n
∑

m=1
dm( fi+m − 2 fi + fi−m)

(2)

In Equation (2), h is the grid spacing, a, b, c, d are the difference coefficient matrices;
f is the function value of node i; f ′i and f ′′i represent the first- and second-order derivatives
of node i, respectively; fi+m, fi−m represent the function values of node i successively m
nodes forward and m nodes backward; f ′ i+1, f ′ i−1 represent the first-order derivatives of
node i successively one node forward and one node backward, respectively; f ′′ i+1, f ′′ i−1
represent the second derivative of i node one node forward and one node backward. The
wave field of the SH shear wave can be simulated with the above method applied to
the numerical simulation of SH shear wave propagation under the condition of a two-
dimensional medium.

In this paper, we use the three-point sixth order format of Equation (2) for the SH
shear wave reverse time migration, that is, Formula (3).⎧⎨⎩

7
16
(

f ′i+1 + f ′i−1
)
+ f ′i − h

16

(
f ′′i+1 − f ′′i−1

)
= 15

16h ( fi+1 − fi−1)

9
8h
(

f ′i+1 − f ′i−1
)
+ f ′′i − 1

8

(
f ′′i+1 + f ′′i−1

)
= 3

h2 ( fi+1 − 2 fi + fi−1)
(3)

3. Analysis of Combined Compact Difference Scheme

In numerical simulations, if the size of the spatial grid is too large, it will cause large
solution errors and produce numerical dispersion [37,38]. The simple harmonic wave
solution is introduced to have the velocity ratio curve at different θ values in the isotropic
case; θ is the angle between the wave’s propagation direction and the x-axis. It is used
to compare the spatial dispersion suppression effects of CCD with the traditional finite
difference scheme. It is shown as follows:

In Figure 2, the ratio of numerical wave velocity to true velocity is defined as:

λ =
vnum

v
(4)
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where vnum is the numerical wave velocity, and v is the true wave velocity. It is shown in
Figure 2 that with the velocity ratio curves of the CCD, the other two different formats at
different θ values. The Courant numbers (α = vΔt/h) are 0.25, the horizontal axis ϕ ∈ [0, π]
is the product of the wavenumber and the spatial step, and the y-coordinate is the velocity
ratio λ, with 1 meaning that the numerical wave speed is consistent with the theoretical
wave speed and indicating that the numerical dispersion is low. It also indicates that CCD
has the best suppression effects.

Figure 2. Velocity ratio curves for different numerical simulation methods. The blue curve is the
traditional central difference scheme, the green curve is the traditional implicit difference scheme,
the red curve is the CCD difference scheme and the black line is the velocity ratio constant of 1:
(a) θ = 0, α = 0.25; (b) θ = π/6, α = 0.25; (c) θ = π/3, α = 0.25.

Additionally, the simulation error is calculated by simulating the two-dimensional
plane harmonic initial value problem to analyze and compare the numerical simulation
accuracy of the CCD and CFD (centered finite difference scheme).

In Figure 3, the simulation results show that the accuracy is relatively high for the SH
shear wave simulation results with the adoption of the CCD format, and the numerical
simulation of the seismic wave field with a large sampling time can be performed [39].

Figure 3. Relative errors of numerical simulation for different schemes and gird size: (a) Δx = 10 m,
Δt = 0.001 s; (b) Δx = 15 m, Δt = 0.001 s.

4. Real Data Application

4.1. Data Characteristics

Figure 4 shows a single-shot record of the P-wave source in the study area; theoretically,
the seismic records generated by P wave sources do not have shear wave fields. As shown in
Figure 4a, with the X-component wave field seismic record of the P-wave source, the wave
field is relatively complex, the converted wave signal is relatively weak and submerged in a
large amount of scattering noise, and there is obvious leaked pure shear wave information
in the near trace. The Y-component wave field seismic record is shown in Figure 4b; there is
basically no converted wave information in this component, and the near trace is dominated
by noise with weak pure shear wave information. The Z-component wave field seismic
record is shown in Figure 4c; the P-wave reflection hyperbola characteristics of the shallow
part are relatively obvious in this wave field, the near-trace is dominated by noise without
pure shear wave information, and the deep information is submerged in a large amount of
scattered noise. The reason why the converted wave signal of the P-wave field is relatively
weak and the effective information of the wave field is submerged in a large amount of
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scattered noise is likely due to the fact that the area is a biogas enrichment area in relatively
deep strata based on the geological characteristics of the area, which is also the reason why
the use of P-wave data for reverse time migration imaging in this area is not ideal.

Figure 4. (a) The X-component wave field seismic record of the P-wave source. (b) The Y-component
wave field seismic record of the P-wave source. (c) The Z-component wave field seismic record of the
P-wave source.

Figure 5 shows the corresponding single-shot record obtained from the SH shear wave
source (i.e., the y-direction concentrated force source) in this area. As shown in Figure 5a,
the X-component data, there should be no SH shear wave information in isotropic media,
but there is relatively weak SH shear wave signal leakage in actual data. The most likely
cause of SH shear wave signal leakage is due to shear-wave splitting, which is not the focus
of this article. The seismic record of the Z-component wave field in Figure 5c is dominated
by noise without SH shear wave information, which is consistent with the theory of the SH
shear wave propagation. In theory, the wave field obtained by concentrating force sources
in the y-direction only has wave field information in the Y-component in isotropic media.
Figure 5b is the seismic record of the y-component wave field, with a high signal-to-noise
ratio and obvious SH shear wave information. Overall, the resolution of SH shear wave
seismic records is higher than that of P-wave seismic record, comparing Figure 5b with
Figure 4c. SH shear wave source data can also have a high signal-to-noise ratio in the deep
gas cloud region due to its insensitivity to gas, and it has great advantages in geological
structure characterization and reverse time migration imaging research in this area.

Figure 5. (a) The X-component wave field seismic record of the SH shear wave source. (b) The
Y-component wave field seismic record of the SH shear wave source. (c) The Z-component wave field
seismic record of the SH shear wave source.
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It can be seen through the analysis of shot records that the data quality of the SH-
Y component is relatively good. This research focuses on imaging research on SH-Y
component data. This component is perpendicular to the survey line direction.

4.2. Depth Domain Imaging Matching and Velocity Model Building

The depth domain velocity model of the P-wave and SH shear wave have been
established, respectively, with a velocity model building workflow including layer- and
grid-based tomography. It is shown in Figure 6 with the depth domain velocity models
of the P-wave and SH shear wave, respectively, that they have a certain similarity in the
spatial variation of the velocity field; the velocity of the P-wave is relatively low at the
position of CMP (common middle point) 1200–2500, and it is relevant to the gas enrichment
in this area, which can also be seen in the pre-stack depth migration results shown later.

(a) 

 
(b) 

Figure 6. (a) The depth domain velocity model of the P-wave with a velocity model building workflow
including layer- and grid-based tomography. (b) The corresponding depth domain velocity model of
the SH shear wave.

The imaging of the reflector of the P-wave and the strong reflector of the SH shear
wave should be located at the same depth because the pre-stack depth migration images
show the wave impedance interface of subsurface media. It is very difficult to match the
depth domain imaging positions of the P-wave and SH shear wave in practical applications
due to the low signal-to-noise ratio of P-wave data, the possibility of anisotropy, and
various uncertainties in the area. A relatively easy-to-implement process has been designed
to attempt to match the imaging depth of the P-wave and SH shear wave. Our idea is to
constrain VP and vs. because the most significant factor affecting the imaging depth is the
velocity field. The specific method is that a set of strong reflectors in the survey are selected;
they are picked up in the migration images of the P-wave and SH shear wave, respectively;
and their average velocities are calculated from the surface to the reflectors. The specific
formula is V = ΔZ

∑ ti
, in which, for ∑ ti = ∑

i

2Δzi
Vi

, ΔZ = ∑ Δzi, similar calculations for both

the P-wave and SH shear wave have been made, the imaging position of the strong reflector
in the depth domain is determined by this average velocity, and the average velocity ratio
obtained should also be consistent with the P-wave and SH shear wave velocity in the
survey [40]. The existing depth domain velocity can be corrected if the velocity ratio of
SH shear wave and SH shear wave in the space of the survey is obtained. The pre-stack
time migration images have been used and the corresponding reflectors have been picked
up to solve this problem, the pre-stack time images of the P-wave and SH shear wave
approximately represent the vertical two-way travel time of the P-wave and SH shear wave
with zero offset, and the travel time ratio is obtained to further constrain the VS/VP ratio.
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Back to the first step, a corresponding proportional constraint has been made on the
P-wave velocity field with a correction of about 1–3%, and the weak anisotropy parameter
is utilized to solve the residual moveout of imaging caused by this correction. In fact, the
numerical model verifies that isotropic and anisotropic imaging profiles are close to each
other under weak anisotropy (<5%); therefore, anisotropy is ignored in this study [41]. In
Figure 7, the horizon selected for the P-wave and SH shear wave in the time domain is
used to calculate the P-wave and SH shear wave velocity ratio. Figure 8 shows the P-wave
and SH shear wave velocity ratio.

(a) 

(b) 

Figure 7. Pre-stack time migration (PSTM) sections: (a) P-wave and (b) SH shear wave.

For ease of understanding, we built a flow chart of velocity modeling, as shown in
Figure 9. Figure 9 is about the P wave and SH shear wave velocity modeling process
in this paper. In this figure, for the convenience of display, the S wave means SH shear
wave. We can see that, after the preliminary modeling, we need to go through layer-based
tomography and grid-based tomography, and the velocity ratio is obtained simultaneously
with the velocity modeling. After the velocity ratio is obtained, it is used to constrain the
velocity model of P wave to get the accurate velocity model.
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Figure 8. VS/VP ratio in the survey.

Figure 9. Velocity modeling flowchart.

4.3. RTM Results of P and SH Shear Wave

The reverse time migration of P-wave and SH shear wave data were carried out,
respectively; there are 1519 shots and 8472 detection points in this survey, and the same ac-
quisition geometry was adopted for both the P- and SH shear wave. The eighth-order finite
difference scheme with a variable grid was adopted for P-wave reverse time migration for
seismic wave simulation, the imaging condition is the cross-correlation imaging condition,
and we use Laplace filtering to remove the low-frequency noise of the imaging. The SH
shear wave reverse time migration was realized on a regular grid with the sixth-order CCD
(Formula (3)) wave field simulation method adopted, an interval of 2 m for the grid size in
the z-direction and an interval of 5 m for the grid size in the x-direction were adopted, and
Laplace filtering was adopted to remove the low-frequency noise of the imaging to ensure
stability and suppress alias frequencies in the wave field continuation process. Figure 10
shows the pre-stack depth migration images of the P-wave and SH shear wave. It can
be seen in the image that there is no clear reflector for the P-wave in the area of CMP
(common middle point) 1200–2500, which is due to the gas cloud in the area; the P-wave
is significantly absorbed and has difficulty in passing through the area and reflecting to
the surface when the compression wave goes through the area, but the SH shear wave can
propagate normally in the area because it propagates through the rock frame and is not
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affected by the gas. Therefore, SH shear wave reverse time migration can clearly image
through this area and has obvious imaging advantages in this area over P-wave.

 
(a) 

 
(b) 

Figure 10. Pre-stack depth migration sections using RTM: (a) the P-wave, Δx = 5 m, Δz = 2 m; (b) the
SH shear wave, Δx = 5 m, Δz = 2 m.

5. Conclusions

The depth domain pre-stack migration practice was performed for P-wave and SH
shear wave seismic data in the Sanhu area of the Qaidam Basin in Qinghai Province,
including depth domain velocity model building, P-wave to SH shear wave velocity ratio
estimation, and reverse time migration (RTM). The layer- and grid-based tomography
methods were used to build the depth velocity model. Additionally, the pre-stack time
migration results of the P-wave and SH shear wave were utilized to approximately calculate
the distribution of the P-wave and SH shear wave velocity ratio in the study area, and
the ratio was used to constrain the P-wave and SH shear wave velocity model building
so that the reflectors of the P-wave and SH shear wave pre-stack depth migration results
were matched in the depth domain. An eighth-order finite difference scheme was used for
P-wave RTM on a variable grid, and a sixth-order CCD was used for SH shear wave RTM
on a regular grid. The results showed that the SH shear wave results have obvious imaging
advantages compared with the P-wave results in the gas-cloud region, which verified the
accuracy of the SH shear wave RTM algorithm and demonstrated great potential in seismic
imaging application.
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Abstract: In this paper, the combined compact difference scheme (CCD) and the combined super-
compact difference scheme (CSCD) are used in the numerical simulation of the shear-wave equation.
According to the Taylor series expansion and shear-wave equation, the fourth-order discrete scheme
of the displacement field is established; then, the CCD and CSCD schemes are used to calculate
the spatial derivative of the displacement field. Additionally, the accuracy, dispersion, and stability
of the CCD and CSCD are analyzed, and numerical simulation analyses are carried out using 1D
uniform models. Lastly, based on the processing of artificial boundary reflection using PML boundary
conditions, shear-wave reverse-time migrations are carried out using synthetic data. The results
show that (1) CCD and CSCD have smaller truncation errors, higher simulation precision, and lower
numerical dispersion than other normal difference schemes; (2) CCD and CSCD can use the coarse
grid and larger time step to calculate, with less memory and high computational efficiency; (3) finally,
the result of the shear-wave reverse-time migration of the 2D synthetic data model show that the
reverse-time migration imaging is clear, and the proposed method for shear-wave reverse-time
migration is practical and effective.

Keywords: shear wave; reverse-time migration; combined supercompact difference scheme; combined
compact difference scheme; numerical simulation

1. Introduction

At present, reverse-time migration imaging simulation is an important means to
explore the morphology of underground media. As the reverse-time migration imaging
method is based on the two-way wave equation, which can accurately describe the dynamic
and kinematic characteristics of a seismic wavefield propagating underground, reverse-
time migration has no inclination angle limit and can adapt to the imaging of complex
structural areas, especially for structures with clear lateral velocity changes [1–4]. The
finite difference scheme is widely used in the numerical simulation of the elastic-wave
equation because of its simplicity and flexibility, high calculation efficiency, and small
memory requirement [5–13]. On the one hand, with the development of multicomponent
seismic exploration in recent years, particularly shear-wave seismic exploration, in order to
minimize computational costs, there is a need to increase the time and spatial steps used in
finite difference modeling while maintaining sufficient accuracy during numerical simula-
tion [14]. On the other hand, if the traditional finite difference scheme is used for numerical
simulation, small time and spatial steps are required to achieve sufficient accuracy. Com-
pared with the traditional difference scheme, the compact difference scheme has the same
accuracy and high stability. The development of compact difference schemes can be traced
back to 1989 when Dennis and Hudson (1989) first proposed spatial fourth-order compact
schemes for Navier–Stokes equations [15]. Lele (1992) studied the Pade scheme and pro-
posed a symmetric compact difference scheme for solving the first and second derivatives,
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and the accuracy of the scheme can reach that of the spectral method [16]. Chu et al.
(2000) used the combined compact difference scheme (CCD) for the convection–diffusion
equation [17].

Since the mid-1990s, reverse-time migration has been applied to multicomponent wave
seismic data excited from P-wave sources [18–20], having overcome calculation problems
and interference artifacts in P- and S-wave simulations. During reverse-time migration,
the P- and S-wave vectors of the source wavefield and the P- and S-wave vectors of the
receiver wavefield are obtained and then imaged. In general, P-and S-wave wavefields
are obtained either via the Helmholtz decomposition or by using the pled elastic-wave
equation. These approaches are all designed for P-wave and elastic-wave sources, focusing
mainly on how to retain the phase, amplitude, wavefield and vector characteristics of the
wavefield efficiently during wavefield separation [21–28]. In recent years, because of a
breakthrough in S-wave vibrator technology, pure S-wave seismic data can be obtained
via artificial excitation [29,30]. As the wavelet length of an S-wave is shorter than that
of a P-wave for the same frequency bandwidth, the resolution of its wavefield is higher,
and its advantage for imaging beneath gas clouds area is unmatched by a P-wave [31].
Using the S-wave wavefield generated by an S-wave source for reverse-time migration
imaging (RTM) is a key step for processing shear-wave data. Due to the characteristics of
shear-wave wavelength, higher accuracy is required in numerical simulation. To ensure
the accuracy of shear-wave RTM, a smaller time and spatial step than P-wave is needed,
which reduces the calculation efficiency.

To improve the accuracy and efficiency of shear-wave RTM, based on the characteristics
of the shear-wave velocity model, we used the combined compact difference (CCD) and
combined supercompact difference scheme (CSCD) for shear-wave (SH) RTM, with larger
spatial grid conditions. Wang Shuqiang (2002) applied the compact difference scheme
to the numerical simulation of seismic wavefields [32]. Most recent studies of the finite
difference scheme focus on the compressional wavefield from an explosion source, but few
have studied the finite difference scheme based on the shear wavefield of the shear-wave
source (SH-wave).

This paper aims at the problem of low shear-wave velocity by introducing the su-
percompact difference scheme to suppress the numerical dispersion caused by the large
spatial step. We introduce the basic concept of shear-wave reverse-time migration, followed
by the implementation methods of the combined compact difference scheme (CCD) and
combined supercompact difference scheme (CSCD); the numerical simulation accuracy
of CCD and CSCD is also discussed, and the accuracy of CCD and CSCD is compared
with the traditional finite difference scheme. Finally, the method is applied to synthetic
data to verify the accuracy and efficiency of the algorithm. Furthermore, extending the
present research to take into the viscoelastic behavior of media will have a great potential
for imaging oil and gas reservoirs [33].

2. Principle of RTM and Combined Compact Difference Scheme

2.1. Principle of RTM

The technique of reverse-time migration imaging (RTM) is composed of the following
three steps [34]:

(1) The source wavefield is obtained by using the source constructed manually or ex-
tracted from actual data, and the corresponding model is numerically simulated to
obtain the source wavefield S(x, z, t), where x, z is the space vector.

(2) Using the seismic data obtained at the receiver, the reverse continuation propagation
passes through the same velocity model, and the corresponding receiver wavefield
R(x, z, t) is obtained, where the position of the receiver is xr, zr.

(3) Applying appropriate imaging conditions, such as cross-correlation, we obtain

I(x, z) =
∫ T

0
S(x, z, t)R(x, z, t)dt (1)
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where S(x, z, t) is the source wavefield obtained via forward modeling, R(x, z, t) is
the receiver wavefield obtained at the same time via reverse continuation simulation
under the same velocity model, and t is the total propagation time.

It can be seen from Equation (1) that the final result of reverse-time migration is affected
by the accuracy of the source wavefield S(x, z, t) and the receiver wavefield R(x, z, t).
Notably, the method to improve the accuracy of the source wavefield S(x, z, t) can also be
applied to the receiver wavefield R(x, z, t). Thus, a high-precision finite difference scheme
is applied to generate the source and receiver wavefields S(x, z, t) and R(x, z, t), which will
give an ideal result of reverse-time migration. In this paper, we adopted cross-correlation
imaging conditions; in addition, the method in this paper can also be applied to some
imaging conditions developed by researchers in recent years [35–37].

2.2. Principle of Combined Compact Difference Scheme

For the construction of the compact difference scheme, Lele extended Hermite’s
equation in 1992 and created the compact difference scheme as follows:

c f ′i−1 + f ′i + c f ′i+1 = a2
fi+2− fi−2

4h + a1
fi+1− fi−1

2h

c f ′′i−1 + f ′′i + c f ′′i+1 = a2
fi+2−2 fi+ fi−2

4h2 + a1
fi+1−2 fi+ fi−1

h2

(2)

In Equation (2), h is the grid spacing, a, c are the difference coefficient matrices. f is
the function value of node i. f ′i and f ′′i represent the first- and second-order derivatives of
node i, respectively; fi+1, fi+2, fi−1, fi−2 represent the function values of node i successively
two nodes forward and two nodes backward; f ′i+1, f ′i−1 represent the first-order derivatives
of node i successively one node forward and one node backward, respectively; f ′′i+1, f ′′i−1
represent the second derivative of i node one node forward and one node backward,
respectively.

Following [38], the wave equation of a shear wave in a two-dimensional medium is

∂2Vy

∂t2 = (1 + 2 ∗ γ)vs0
2 ∂2Vy

∂x2 + vs0
2 ∂2Vy

∂z2 + ρFy (3)

where Vy(x, z) is the displacement component of the shear wave. vs0(x, z) is the shear-wave
velocity in the vertical direction, and ρFy is the shear-wave source, that is, the concentrated
force source excited in the y direction on the surface. If the input medium is isotropic, the
value of the anisotropic parameter γ = 0.

Expanding the above shear-wave equation to represent the time of n + 1 and n − 1,
we obtain

Vy
n+1
(i,j) = Vy

n
(i,j) + Δt

(
∂Vy

∂t

)n

i,j
+

(Δt)2

2

(
∂2Vy

∂t2

)n

i,j

+
(Δt)3

6

(
∂3Vy

∂t3

)n

i,j

+
(Δt)4

24

(
∂4Vy

∂t4

)n

i,j

+ O
(

Δt5
)

(4)

Vy
n−1
(i,j) = Vy

n
(i,j) − Δt

(
∂Vy

∂t

)n

i,j
+

(Δt)2

2

(
∂2Vy

∂t2

)n

i,j

− (Δt)3

6

(
∂3Vy

∂t3

)n

i,j

+
(Δt)4

24

(
∂4Vy

∂t4

)n

i,j

+ O
(

Δt5
)

(5)

By adding these two equations, omitting the higher-order term, and substituting it
into the shear-wave equation, the fourth-order accuracy difference scheme of displacement
field time can be obtained as follows:

Vy
n+1
(i,j) = 2Vy

n
(i,j) − Vy

n−1
(i,j) + (1 + 2γ)(Δtv)2

(
∂2Vy
∂x2

)n

i,j
+

(
∂2Vy
∂z2

)n

i,j

+(1 + 2γ)2 (Δtv)4

12

(
∂4Vy
∂x4

)n

i,j
+ (1 + 2γ) (Δtv)4

6

(
∂4Vy

∂x2∂z2

)n

i,j
+ (Δtv)4

12

(
∂4Vy
∂z4

)n

i,j

(6)
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Equation (6) can be used to advance the time step of the shear wavefield in a two-
dimensional medium. The equation contains the second and fourth derivatives of the
sum of displacement pairs in the horizontal and vertical directions, and the sum of dis-
placement pairs in the horizontal and vertical directions can be differentiated by the finite
difference scheme.

Chu (1998) and others constructed a combined compact difference (CCD) scheme with
higher accuracy as follows:⎧⎪⎪⎨⎪⎪⎩

a1
(

f ′i+1 + f ′i−1
)
+ f ′i + hb1

(
f ′′i+1 − f ′′i−1

)
= 1

h

n
∑

m=1
cm( fi+m − fi−m)

1
h a2

(
f ′i+1 − f ′i−1

)
+ f ′′i + b2

(
f ′′i+1 + f ′′i−1

)
= 1

h2

n
∑

m=1
dm( fi+m − 2 fi + fi−m)

(7)

Compared with CCD, the supercompact difference scheme needs fewer adjacent nodes
to obtain the high-order accuracy approximations of the first and second derivatives at the
same time step. The first and second derivatives in the above equation are coupled, which
can be obtained at the same time, increasing the fidelity of the waveform.

For the CCD scheme, it is assumed that the number of longitudinal and transverse
nodes of the model is m and n, and h is the size of the spatial grid. We use Equation (7) to
find the spatial partial derivatives ∂2Vy/∂z2 and ∂2Vy/∂x2 in Equation (3) and then express
the results as

AE = BVy, FC = VyD (8)

where A and C are the difference coefficient matrices at the left end of the CCD Equation (7),
and the sizes are 2m × 2m and 2n × 2n, respectively. E and F are the first- and second-order
derivative matrices of the displacement field space to be solved, and the sizes are 2m × n
and m × 2n, respectively. B and D are the difference coefficient matrices at the right end
of Equation (7), and the sizes are 2m × m and n × 2n, respectively. Vy is the displacement
field matrix, and the size is m × n. These matrices are expressed as

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 a1 b1h
0 1 a2/h b2
a1 −b1h 1 0 a1 b1h

−a2/h b2 0 1 a2/h b2
. . . . . . . . . . . .
a1 −b1h 1 0

−a2/h b2 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(9)

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
n
∑

m=1
cm/h

(−2
n
∑

m=1
dm)/h2 (

n
∑

m=1
dm)/h2

− n
∑

m=1
cm/h 0

n
∑

m=1
cm/h

(
n
∑

m=1
dm)/h2 (−2

n
∑

m=1
dm)/h2 (

n
∑

m=1
dm)/h2

. . . . . . . . .

− n
∑

m=1
cm/h 0

(
n
∑

m=1
dm)/h2 (−2

n
∑

m=1
dm)/h2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(10)
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C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 a1 −a2/h
0 1 −b1h b2
a1 a2/h 1 0

b1h b2 0 1
a1 a2/h

b1h b2
. . . a1 −a2/h
. . . −b1h b2
. . . 1 0
. . . 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11)

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 (−2
n
∑

m=1
dm)/h2 − n

∑
m=1

cm/h (
n
∑

m=1
dm)/h2

n
∑

m=1
cm/h (

n
∑

m=1
dm)/h2 0 (−2

n
∑

m=1
dm)/h2

n
∑

m=1
cm/h (

n
∑

m=1
dm)/h2

. . . − n
∑

m=1
cm/h (

n
∑

m=1
dm)/h2

. . . 0 (−2
n
∑

m=1
dm)/h2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(12)

E =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
∂Vy
∂z

)
1,1

(
∂Vy
∂z

)
1,2

. . .
(

∂Vy
∂z

)
1,n−1

(
∂Vy
∂z

)
1,n(

∂2Vy
∂z2

)
1,1

(
∂2Vy
∂z2

)
1,2

. . .
(

∂2Vy
∂z2

)
1,n−1

(
∂2Vy
∂z2

)
1,n

...
...

...
...

...(
∂Vy
∂z

)
m,1

(
∂Vy
∂z

)
m,2

. . .
(

∂Vy
∂z

)
m,n−1

(
∂Vy
∂z

)
m,n(

∂2Vy
∂z2

)
m,1

(
∂2Vy
∂z2

)
m,2

. . .
(

∂2Vy
∂z2

)
m,n−1

(
∂2Vy
∂z2

)
m,n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(13)

F =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
∂Vy
∂x

)
1,1

(
∂2Vy
∂x2

)
1,1

. . .
(

∂Vy
∂x

)
1,n

(
∂2Vy
∂x2

)
1,n(

∂Vy
∂x

)
2,1

(
∂2Vy
∂x2

)
2,1

. . .
(

∂Vy
∂x

)
2,n

(
∂2Vy
∂x2

)
2,n

...
...

...
...

...(
∂Vy
∂x

)
m−1,1

(
∂2Vy
∂x2

)
m−1,1

. . .
(

∂Vy
∂x

)
m−1,n

(
∂2Vy
∂x2

)
m−1,n(

∂Vy
∂x

)
m,1

(
∂2Vy
∂x2

)
m,1

. . .
(

∂Vy
∂x

)
m,n

(
∂2Vy
∂x2

)
m,n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(14)

Vy =

⎡⎢⎢⎢⎢⎢⎢⎣
Vy(1,1) Vy(1,2) · · · Vy(1,n−1) Vy(1,n)
Vy(2,1) Vy(2,2) · · · Vy(2,n−1) Vy(2,n)

...
...

...
...

...
Vy(m−1,1) Vy(m−1,2) · · · Vy(m−1,n−1) Vy(m−1,n)

Vy(m,1) Vy(m,2) · · · Vy(m,n−1) Vy(m,n)

⎤⎥⎥⎥⎥⎥⎥⎦ (15)

From Equation (8), E = A−1BVy, the odd number behavior is ∂Vy/∂z, and the even
number behavior is ∂2Vy/∂z2. Similarly, the sum can also be obtained from ∂Vy/∂x and
∂2Vy/∂x2 by transposing the displacement field.

At present, this method has been applied to acoustic forward modeling [39]. However,
for shear-wave reverse-time migration, it is necessary to adapt to the situation of low-
transverse wave velocity and take into account the accuracy and efficiency of calculations.
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Based on CCD, we introduce a combined supercompact difference scheme (CSCD), and its
equation configuration is as follows [40]:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f ′i + a11
(

f ′i+1 + f ′i−1
)
+ a12h

(
f ′′i+1 − f ′′i−1

)
+ a13h2

(
f ′′′i+1 + f ′′′i−1

)
+ a14h3

(
f (4)i+1 − f (4)i−1

)
= a1

h ( fi+1 − fi−1) +
a2
h ( fi+2 − fi−2) . . . + an

h ( fi+n − fi−n)

f ′′i + a21h−1( f ′i+1 − f ′i−1
)
+ a22

(
f ′′i+1 + f ′′i−1

)
+ a23h

(
f ′′′i+1 − f ′′′i−1

)
+ a24h2

(
f (4)i+1 + f (4)i−1

)
= b1

h2 ( fi+1 + fi−1 − 2 fi) +
b2
h2 ( fi+2 + fi−2 − 2 fi) . . . + bn

h2 ( fi+n + fi−n − 2 fi)

f ′′′i + a31h−2( f ′i+1 + f ′i−1
)
+ a32h−1

(
f ′′i+1 − f ′′i−1

)
+ a33

(
f ′′′i+1 + f ′′′i−1

)
+ a34h

(
f (4)i+1 − f (4)i−1

)
= c1

h3 ( fi+1 − fi−1) +
c2
h3 ( fi+2 − fi−2) . . . + cn

h3 ( fi+n − fi−n)

f (4)i+1 + a41h−3( f ′i+1 − f ′i−1
)
+ a42h−2

(
f ′′i+1 + f ′′i−1

)
+ a43h−1

(
f ′′′i+1 − f ′′′i−1

)
+ a44

(
f (4)i+1 + f (4)i−1

)
= d1

h4 ( fi+1 + fi−1 − 2 fi) +
d2
h4 ( fi+2 + fi−2 − 2 fi) . . . + dn

h4 ( fi+n + fi−n − 2 fi)

(16)

In this paper, we focused on the three-point format of Equation (16).
Using the CSCD scheme to calculate the spatial partial derivative of the equation

is similar to that of CCD, except for the difference coefficient matrix. The difference
coefficient matrix at the left end needs to be expanded, and its sizes are 4m × 4m and
4n × 4n, respectively. E and F are changed to the first-, second-, third-, and fourth-order
derivative matrices of the displacement field space to be solved, with the sizes of 4m × n
and m × 4n, respectively. B and D are the difference coefficient matrices at the right end of
the equation, and the size is changed to 4m × m and n × 4n.

3. Analysis of CCD and CSCD

3.1. Analysis of Truncation Error

In this section, the truncation errors of the second derivative calculated by these
schemes are compared. The results are shown in Table 1. α, β, a, b, c are the difference
coefficient matrices. It can be seen from Table 1 that, although the three methods can
achieve a certain order of spatial accuracy, the truncation error is relatively different.
The truncation error of the traditional difference scheme (central difference scheme) in
calculating the second-order partial derivative is greater than that of the CCD and CSCD.

Table 1. Truncation errors in various difference schemes for the second-order derivative calculations.

α β a b c Truncation Error

∂2u
∂x2

CFD 0 0 3/2 −3/5 1/10 ≈ 1.78 × 10−3(O(h6))
CD 2/11 0 12/11 3/11 0 ≈ −4.2163 × 10−4(O(h6))

CCD / −4.9603 × 10−5(O(h6))
CSCD / ≈ 4 × 10−8(O(h8))

3.2. Dispersion Analysis

In numerical simulations, if the size of the spatial grid is too large, it will cause large
solution errors and produce numerical dispersion [41,42]. Therefore, the analysis of the
dispersion relationship is not simply an important method to evaluate the advantages
and disadvantages of numerical simulation methods, but it is also an important way to
determine the size of the spatial grid [43].
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If we use a simple harmonic solution f n
i = Aexp[I(ihk − kv′nΔt)], we can obtain the

following equations for CCD:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
I[(a1 + a1) cos β + 1]β′ + [(b1 + b1) cos β](−1)(β′′ )2

=
n
∑

m=1
[(cm + cm) cos β]

2a2(I sin β)β′ + (1 − 2b2 cos β)(−1)(β′′ )2 =
n
∑

m=1
((dm + dm) cos β − 1)

(17)

and the following equations for CSCD:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(1 + 187
128 cos(β))β′ + 47

128 sin(β)β′′ − 6
128 cos(β)β′′′ − 2

768 sin(β)β(4) = 315
128 sin(β)

− 325
64 sin(β)β′ + ( 69

64 cos(β) + 1)β′′ + 11
96 sin(β)β′′′ − 1

192 cos(β)β(4) = 10(cos(β)− 1)
315
16 cos(β)β′ − 105

16 sin(β)β′′ + (1 + cos(β))β′′′ + 1
16 sin(β)β(4) = − 315

16 sin(β)
645

4 sin(β)β′ − 165
4 cos(β)β′′ − 5 sin(β)β′′′ + 1

4 (cos (β) + 1)β(4) = −240(cos(β)− 1)

(18)

where β = hk, β′ = hk′, β′′ = hk′′ , β′′′ = hk(3), β(4) = hk(4) Solving the equations of
CCD gives,

β
′′
CCD =

√
81 − 48 cos β − 33 cos 2β

48 + 40 cos β + 2 cos 2β
(19)

In this equation, β = kh, k is the wavenumber, h is the spatial gird size, and β
′′
CCD is

the second-order modified wavenumber of the CCD scheme.
If this is substituted into the two-dimensional shear-wave equation, Equation (20)

becomes

β
′′
CCD(x) =

√
81 − 48 cos βx − 33 cos 2βx

48 + 40 cos βx + 2 cos 2βx
β
′′
CCD(z) =

√
81 − 48 cos βz − 33 cos 2βz

48 + 40 cos βz + 2 cos 2βz
(20)

where βx = βcosθ, βz = βsinθ, and θ is the angle between the wave’s propagation direction
and the x-axis. The modified wavenumber of the corresponding derivatives of CSCD can
be solved by substituting the numerical solution into the Equation Group (18) obtained by
the simple harmonic solution without writing the corresponding analytical expression.

The modified wavenumber solution of the finite difference scheme can then be substi-
tuted into the finite difference scheme of the shear-wave equation, yielding.

2 cos(kvnumΔt) = 2 − (vΔt/h)2
[
(1 + 2γ)

(
β
′′
x
)2

+
(

β
′′
z
)2
]

+(vΔt/h)4
[
(1 + 2γ)2(β

′′
x
)4

+ 2(1 + 2γ)
(

β
′′
x β

′′
z
)2

+
(

β
′′
z
)4
]
/12

(21)

where vnum is the numerical wave velocity, v is the true wave velocity, Δt is the time step,
vΔt/h is the Courant number, and I =

√−1. Equation (21) shows that the dispersion
relationship for the shear-wave equation is related to the value of spatial step, propagation
speed, and time step. Based on the above dispersion relation, the corresponding kvnumΔt
can be solved after β is determined. The ratio of numerical wave velocity to true velocity is
defined as

λ =
vnum

v
=

kvnumΔt
kvΔt

=
kvnumΔt

k vΔt
h h

=
kvnumΔt

vΔt
h β

(22)

Ideally, if there is no numerical dispersion, then the velocity ratio λ is equal to one.
The larger the velocity ratio, the more serious the numerical dispersion. For comparison,
we calculate the dispersion relation between velocity ratio and kh for the central differ-
ence scheme (CFD), compact difference scheme (CD), CCD, and CSCD difference scheme.
Figure 1 shows the velocity ratio curve for different θ for the above four methods in the
isotropic (γ = 0) condition.
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(a) (b)

(c)

Figure 1. Velocity ratio curves for different numerical simulation methods. The blue curve is the
traditional central difference scheme, the green curve is the traditional implicit difference scheme, the
red curve is the CCD difference scheme, the blue curve is the CSCD difference scheme, and the black
line is the velocity ratio constant of 1: (a) θ = 0, α = 0.25; (b) θ = π/6, α = 0.25; (c) θ = π/3, α = 0.25.

Figure 1a–c show the velocity ratio curves for the CCD and CSCD schemes and the
other two difference schemes using different θ. The Courant numbers (α = vΔt/h) are 0.25,
the horizontal axis ϕ ∈ [0, π] is the product of the wavenumber and the spatial step, and
the vertical axis is the velocity ratio. A velocity ratio of one indicates that the numerical
wave velocity is the same as the theoretical wave velocity, which shows that the method can
suppress numerical dispersion better; otherwise, it indicates that the numerical dispersion
of the method is worse. It can be seen that the dispersion phenomenon of the four methods
is gradually intensified with the decrease in the number of spatial sampling points. The
numerical dispersion of CSCD, CCD, and CD schemes is smaller than that of the CFD
scheme, as their dispersion curves are closer to one. CSCD shows the best dispersion
suppression, followed by CCD.

3.3. The Numerical Simulation Accuracy Analysis

To compare the numerical simulation accuracy of the models, we calculate the simula-
tion error by simulating the two-dimensional plane harmonic initial value problem and
then compare the numerical simulation accuracy of the CCD, CSCD, and CFD schemes.
The initial value problem of the two-dimensional plane wave can be expressed as⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂2 psh(t,x,z)
∂t2 = v2 ∂2 psh(t,x,z)

∂x2 + v2 ∂2 psh(t,x,z)
∂z2

psh(0, x, z) = cos
(
− 2π f0

v · cos θ·x − 2π f0
v · sin θ·z

)
∂psh(0,x,z)

∂t = −2π f0 sin
(
− 2π f0

v · cos θ·x − 2π f0
v · sin θ·z

) (23)

where v is the plane wave velocity, θ is the angle between the propagation direction and
the x-axis, and f0 is the frequency of the simple harmonic plane wave.
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The analytical solution for the above initial value problem is

psh(t, x, z) = cos
[

2π f0

(
t − x

v/ cos θ
− z

v/ sin θ

)]
. (24)

To simulate the two-dimensional shear wavefield, we specify the following: f0 = 20 Hz
and θ = π/4, the wave velocity used is 1000 m/s, the length and depth of the model are
2000 m, the length of the vertical and horizontal grids are the same, and the sampling time
is 1 s. The relative error of numerical simulation is calculated under different spatial mesh
lengths and time steps, and it is defined as

Er(%) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

N
∑

i=1

N
∑

j=1

[
psh

(
tn, xi, zj

)]2

N

∑
i=1

N

∑
j=1

[
psh

n
(i,j) − psh

(
tn, xi, zj

)]2

⎫⎪⎪⎪⎬⎪⎪⎪⎭
1
2

× 100 (25)

where psh
n
(i,j) is the numerical solution, and psh

(
tn, xi, zj

)
is an analytical solution. We then

compare the relative error curves of the CCD, CSCD, CD, and CFD schemes under different
spatial steps (10 m, 15 m) and fixed time steps of 1 ms (Δt = 0.001 s), as shown in Figure 2. It
can be seen from Figure 2 that the relative error gradually increases with increasing spatial
grid length, time step, and simulation time. When the spatial step is 15 m and the time
step is 1 ms, the maximum relative error of the CCD scheme is 8%, which is much smaller
when compared with the maximum relative error of the CFD scheme (39%). When the
smaller spatial gird size (10 m) is adopted, the accuracy is significantly improved, and the
relative error is only 0.8%. The shear-wave simulation result using the CCD scheme has
high accuracy and can handle the numerical simulation of the seismic wavefield with long
sampling times. The simulation accuracy of the CSCD scheme is even higher than the CCD
scheme. For CSCD, when the spatial gird size is 15 m, and the time step size is 1 ms, the
maximum relative error is only 0.05%, further reducing to 0.0036% when a small spatial
step (10 m) is used.

(a) (b)

Figure 2. Relative errors of numerical simulation for different schemes and gird size: (a) Δx = 10 m,
Δt = 0.001 s; (b) Δx = 15 m, Δt = 0.001 s.

3.4. Comparison of Spatial Dispersion Suppression Effect

As the shear wave has the characteristics of low propagation speed, a one-dimensional
low-speed homogeneous medium is constructed below. The velocity of the homogeneous
medium model is 1000 m/s, the excitation position is located in the center of the model,
and the source is a 10 Hz Rayleigh wavelet. Different space steps are set with a time step of
1 ms, the seismic records of 6 s are recorded, and the results are shown in Figures 3–5. As
shown in Figure 3, the traditional CFD scheme has numerical dispersion when the gird size
is 9 m, and the dispersion increased substantially when the step increases to 10 m (Figure 5).
In contrast, as shown in Figure 4, the corresponding seismic record calculated with the
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CCD scheme shows no numerical dispersion, and there is still no numerical dispersion
when the gird size increases by 10 m (Figure 5).

(a)

(b)

Figure 3. (a) CFD is used to simulate the numerical simulation of seismic records in the 1D homoge-
neous medium model, Δx = 9 m; (b) CCD is used to simulate the numerical simulation of seismic
records in the 1D homogeneous medium model, Δx = 9 m.

(a)

Figure 4. Cont.
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(b)

Figure 4. (a) CFD is used to simulate the numerical simulation of seismic records in the 1D homoge-
neous medium model, Δx = 10 m; (b) CCD is used to simulate the numerical simulation of seismic
records in the 1D homogeneous medium model, Δx = 10 m.

(a)

(b)

Figure 5. (a) CCD is used to simulate the numerical simulation of seismic records in the 1D homoge-
neous medium model, Δx = 15 m; (b) CSCD is used to simulate the numerical simulation of seismic
records in the 1D homogeneous medium model, Δx = 15 m.

Figure 5a,b compare the numerical dispersion between the CCD and CSCD schemes
when the step increases to 15 m. As shown in Figure 5a, at the speed of 1000 m/s, when
the gird size continues to increase to 15 m, the CCD scheme shows dispersion, while the
CSCD scheme shows no numerical dispersion at the same step. This confirms that the
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CSCD scheme improves the compactness of the CCD scheme and can better suppress the
numerical dispersion so that a coarser grid may be used in the numerical simulation.

3.5. Time Dispersion Suppression Comparison

Seismic waves propagate in time and space. The numerical dispersion caused by grid
discretization includes both spatial dispersion and time dispersion. The accuracy of time
extrapolation of the traditional high-order difference (2 m, 2) scheme is only second order.
When a large time step is adopted, there will be obvious time dispersion.

We use the same model to evaluate time dispersion as used for spatial dispersion. To
evaluate time dispersion, it is necessary to eliminate the influence of numerical dispersion
caused by the spatial gird size. Therefore, the spatial grid size is set to 5 m, and we increase
the time step to 4 ms. The calculated seismic records of CCD and CFD are shown in
Figure 6a,b.

(a)

(b)

Figure 6. (a) CFD is used to simulate the numerical simulation of seismic records in the 1D homoge-
neous medium model, Δt = 0.004 s; (b) CCD is used to simulate the numerical simulation of seismic
records in the 1D homogeneous medium model, Δt = 0.004 s.

The seismic record simulated using the CFD scheme shows serious and obvious dis-
persion, while the result of the CCD scheme shows almost no such dispersion. As the CCD
scheme proposed in this paper uses the fourth-order difference operator to approximate
the time partial derivative, it has better stability than the CFD scheme, which can only use
the second-order difference operator to approximate the time partial derivative. The CSCD
scheme, by contrast, uses the same fourth-order difference operator to approximate the
time partial derivative, which shows even higher accuracy than the CCD scheme.
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Figure 7a,b compare the seismic records using the fourth- and second-order difference
operators to approximate the time partial derivative from the CCD scheme. It can be
seen that when using the same finite difference scheme to suppress the numerical disper-
sion caused by the spatial gird size, the fourth-order operators show smaller numerical
dispersion caused by increasing time step size than the second-order operators, which
provides a theoretical basis for the use of large spatial gird size and large time step size for
shear-wave simulation.

(a)

(b)

Figure 7. (a) CCD is used to simulate the numerical simulation of seismic records in the 1D homoge-
neous medium model with fourth-order accuracy in time, dt = 0.004 s; (b) CCD is used to simulate the
numerical simulation of seismic records in the 1D homogeneous medium model with second-order
accuracy in time, dt = 0.004 s.

4. Shear-Wave (SH) RTM

4.1. Implementation of SH-RTM

The steps of shear-wave reverse-time migration, similar to those of traditional reverse-
time migration, are as follows:

1. Forward extrapolating of the source wavefield: starting from a given or estimated
source wavefield, we solve the equation to forward propagate the source wavefield.
Thus, for a source emitting at source positions xs, zs,

Vy(xs, zs, t) = S(xs, zs, t) (26)

2. Shear-wave reverse continuation: For receiver wavefield propagation, we reverse the
R of the seismic receiver recorded in time and then set the initial receiver position
as the initial boundary condition. We then use the selected finite difference scheme
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to solve the shear-wave equation (Equation (5)) iteratively to obtain the receiver
wavefield. As shown in the following equation, where xr, zr is the position of the
source transmitter and receiver, and T is the total duration of forward propagation.

Vy(xr, zr, t) = R(xr, zr, T − t). (27)

3. Imaging conditions of shear-wave application: the last step is to use the cross-
correlation of source wavefield and receiver wavefield obtained in the previous two
steps to obtain the image of the underground structure.

I(x, z) =
∫ T

0
S(x, z, t)R(x, z, t)dt. (28)

4.2. Shear-Wave Reverse-Time Migration in Marmousi Models

A set of two-dimensional Marmousi models are set up, as shown in Figures 8 and 9,
where the S-wave velocity (Figure 9) is modified by the ratio of horizontal to vertical P-wave
velocity (Figure 8). The model size is 121 × 401 grid points, the spatial grid size Δx = 10 m,
the time step is 1 ms, the Ricker wavelet of 20 Hz is excited, and the sampling time is 4 s.
With these initial conditions, the reverse-time migration imaging is then carried out.

Figure 8. Marmousi model: acoustic velocity model.

Figure 9. Marmousi model: shear-wave velocity model.

We use the acoustic-wave equation and P-wave source loading method for the reverse-
time migration of the P-wave velocity (Figure 10), and the shear-wave equation and
shear-wave source loading method for the reverse-time migration of the S-wave velocity
(Figure 11). The result of using shear-wave velocity for reverse-time migration (Figure 11)
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has clearer structural definitions and higher resolution compared with the result of acoustic
reverse-time migration using P-wave velocity in Figure 10. We then continue with the SH
reverse-time migration imaging experiment, by increasing the spatial gird size, setting
Δx = 15 m, get new S-wave velocity Marmousi model (Figure 12) and the sampling time to
4000 ms. The images for different differential methods are then compared. The following
figures (Figures 13–15) show the reverse-time migration results of the Marmousi model in
the shear-wave equation using different finite difference schemes.

Figure 10. The reverse-time migration result with Marmousi acoustic velocity model.

Figure 11. The reverse-time migration result with Marmousi shear-wave velocity model.

Figure 12. Marmousi model: shear-wave velocity model.
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Figure 13. CFD is used for the reverse-time migration result with Marmousi shear-wave velocity
model, Δx = 15 m.

Figure 14. CCD is used to the reverse-time migration result with Marmousi shear-wave velocity
model, Δx = 15 m.

Figure 15. CSCD is used for the reverse-time migration result with Marmousi shear-wave velocity
model, Δx = 15 m.

As shown in Figures 13 and 14, the CCD scheme yields better imaging than the
CFD scheme, where the red boxes mark the area of improvement, due to higher accuracy
in accounting for numerical dispersion caused by the spatial gird size. Compared with
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Figures 13 and 14, the CSCD scheme produces the best imaging results of the Marmousi
model (Figure 15).

5. Conclusions

In this paper, we proposed a fourth-order time difference solution for the shear-wave
equation using the supercompact difference scheme and the combined supercompact
difference scheme. We carried out a detailed comparison of their accuracy in numerical
simulations and reverse-time migrations. Thus, we reached the following conclusions:

The combined compact difference scheme (CCD) has the characteristics of low nu-
merical dispersion, high stability, and simulation accuracy. It is suitable for the numerical
simulation of the seismic wavefield with large space and time steps. It provides an ef-
fective method for simulating shear-wave propagation and implementing shear-wave
reverse-time migration.

The combined supercompact difference scheme (CSCD) is extended and optimized
from the combined compact difference scheme (CCD). Compared with its prototype, the
supercompact difference scheme, the combined supercompact difference scheme further
suppresses the numerical dispersion caused by the increase in spatial step length and is
suitable for numerical simulation with even larger spatial step length.

Finally, we carried out the reverse-time migration imaging of the Marmousi model of
shear-wave velocity under isotropic conditions. The combined supercompact difference
scheme (CSCD) yields the best shear-wave imaging results of the Marmousi model when
compared with the other methods. These results reveal the potential for further extending
the supercompact difference scheme and the combined supercompact difference scheme
forward simulation of shear waves in complex media such as two-dimensional or three-
dimensional anisotropic media and viscoelastic media. It is worth highlighting that the
method presented in this paper is restricted to isotropic media at the moment. However,
these results reveal the potential for further extending the supercompact difference scheme
and the combined supercompact difference scheme forward simulation of shear-wave in
complex media such as two-dimensional or three-dimensional anisotropic or viscoelastic
media. Of course, the method in this paper also has its limitations, such as low computa-
tional efficiency, making it very challenging to apply to three-dimensional media, which is
also the focus of our subsequent research.
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Abstract: One of the most effective techniques to obtain PP and PS images is elastic reverse time
migration which employs multi-component seismic data. The two types of complementary images
play an important role in reducing blind spots in seismic exploration. However, the migration
image of deep structures is always blurred due to the shielding effect of overburden rock on seismic
waves. To overcome this issue, we develop an elastic reverse time migration approach for insufficient
illumination. This approach contains two crucial elements. The first is that we derive an elastic wave
equation to extract the wavefields associated with the exploration target using the staining algorithm.
Secondly, we develop an inner product imaging condition with a filter to mute migrated artifacts.
The filter, consisting of two vectors, determines which part of the wavefield is contributed to imaging.
Synthetic examples exhibit that the proposed elastic reverse time migration method can improve the
signal-to-noise ratio of PP and PS images of weakly illuminated structures.

Keywords: reverse time migration; stained elastic wave equation; weak illumination

1. Introduction

Elastic reverse time migration (ERTM) possesses the ability to reposition the multi-
component seismic data into underground structure information, thus providing a scientific
basis for further seismic interpretation and hydrocarbon development [1,2]. Particularly,
subsalt has become a significant hydrocarbon exploration target due to the appearance
of salt beds as regional overburden rock [3]. However, owing to the shielding effect
generated by the complex overburden rock on seismic signals, the imaging results of the
subsurface geological structure are often unsatisfactorily [4,5]. Therefore, it is essential
to apply the elastic migration technique for insufficient illumination areas. The wide-
azimuth measurement, illumination compensation and acquisition aperture correction
approaches have been developed to enhance the imaging quality of shadow regions [6–8].
In addition, the staining algorithm can highlight the wavefields associated with weakly
illuminated structures among the full wavefields [9–11], which is a powerful means to
realize target-oriented imaging within the ERTM framework.

ERTM images produced by multi-component seismic data always involve crosstalks
due to the reason that P- and S-waves are concurrently excited when the waves propagate
to a reflecting interface [12]. To suppress the crosstalk artifacts, the elastic wavefield should
be adequately decoupled before imaging. A common approach is to apply the curl and
divergence operators to the coupled wavefield [13]. However, the decoupled S-wave
presenting the polarity reversal phenomenon ultimately destroys the continuity of the
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reflection lineups of multi-shot stacked profiles. Du et al. [14] argued that the polarity
of the decoupled S-wave is reversed on both sides of the vertical incident direction of
the P-wave. With the assistance of the Poynting vector, a sign factor can be estimated
to correct the polarity of PS imaging [15]. However, the divergence and curl operators
will change the amplitude and phase of wavefields. As a consequence, it is difficult for
ERTM to obtain a definite physical meaning from the converted wave imaging profile. To
address this problem, the pure P- and S-wave can be effortlessly decoupled by solving the
vector-decoupled wave equation [16].

When applying the correlation imaging condition, the noises inevitably accompanying
valuable information will debase the quality of migration profiles, especially on the interface
where the velocity varies dramatically. Although the high-pass filter can suppress migration
noises, it alters the waveform of the original image [17]. Another image denoising approach
whereby the high angle information of the common imaging gathers in the angle domain is
eliminated has advantages in amplitude-preserving [18,19]. Liu et al. [20] first suggested
that the migration noises are related to the wave propagation path through the scattering
point, and finally proposed an imaging condition with wavefield decomposition to remove
the noises. Unfortunately, the initial wavefield decomposition method is realized in the
wavenumber-frequency domain, which may result in a huge burden in computation,
storage and input/output. Fei et al. [21] imported a cost-effective scheme to decompose
the wavefield based on the Hilbert transform. Further, Wang et al. [22] decomposed the
wavefield into several components according to the propagating directions. Particularly,
the Poynting vector can indicate the direction of energy transfer, thereby flexibly realizing
wavefield decomposition [23].

The paper is arranged as follows: after the introduction section, the vector-decoupled
wave equation is reviewed. On this basis, a novel equation is derived to extract the wave-
field associated with insufficient illumination. Next, an inner product imaging condition
with filters is described. Finally, some synthetic examples are employed to demonstrate the
effectiveness of our approach.

2. Methodology

2.1. Vector-Decoupled Wave Equation

The velocity-stress formula in 2D isotropic medium is expressed as,{
ρ ∂V

∂t = Lσ
∂σ
∂t = ρALTV

(1)

where ρ denotes the density of media, V = [vx, vz]
T is the particle-velocity vector, t signifies

the time variable, σ = [τxx, τzz, τxz]
T denotes the stress vector and L is a spatial partial

derivative operator expressed as:

L =

[
∂x 0 ∂z
0 ∂z ∂x

]
(2)

x and z, respectively represent the horizontal and vertical directions, and A is a
parameter matrix as shown below:

A =

⎡⎣ c2
P c2

P − 2c2
S 0

c2
P − 2c2

S c2
P 0

0 0 c2
S

⎤⎦ (3)

where cP and cS are P-wave and S-wave velocity in the propagation medium. Equation (1)
can be named as vector-coupled wave equation (VCWE).

When the wavefield is simulated according to Equation (1), the P- and S-waves
are coupled in the wavefield of particle velocity. If the coupled wavefield is directly
applied to the ERTM, the imaging profile will suffer from crosstalk. To tackle this problem,
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Wang et al. [24] introduced a scalar P-wave stress τP to decouple the wavefield, and the
formulation is written as, ⎧⎪⎪⎨⎪⎪⎩

∂τP

∂t = ρc2
P

(
∂vx
∂x + ∂vz

∂z

)
ρ ∂vP

x
∂t = ∂τP

∂x

ρ ∂vP
z

∂t = ∂τP

∂z

(4)

where vP
x and vP

z are the decoupled P-waves in x- and z-directions. The residual S-waves are
defined as vS

x = vx − vP
x and vS

z = vz − vP
z . The decoupled wavefield can preserve the same

physical properties as the coupled wavefield. The combination of Equations (1) and (4) is
the vector-decoupled wave equation (VDWE).

2.2. Stained VDWE

To extract the wavefield associated with the weakly illuminated structure, we establish
a governing equation. According to the principle of staining algorithm [9], the variables V,
σ and A in VDWE are extended to complex domain, and possess the following forms:

V = V + iṼ= [vx, vz]
T + i[ṽx, ṽz]

T , (5)

σ = σ+ iσ̃ = [τxx, τzz, τxz]
T + i[τ̃xx, τ̃zz, τ̃xz]

T , (6)

A = A + iÃ =

⎡⎢⎣ (cP + ic̃P)
2 (cP + ic̃P)

2 − 2(cS + ic̃S)
2 0

(cP + ic̃P)
2 − 2(cS + ic̃S)

2 (cP + ic̃P)
2 0

0 0 (cS + ic̃S)
2

⎤⎥⎦ (7)

where i =
√−1, variables with − and ∼ symbols, respectively, represent the real and imaginary

parts. Note that setting cP and cS is the core step in extracting the wavefield. cP and cS are consistent
with the P- and S-wave velocity. c̃P and c̃S are obtained by a dimensionless multiplied cP and cS near
the exploration target, while c̃P and c̃S are equal to 0 in the unconcerned area. The location where c̃P
and c̃S are non-zero is referred to as the stained target.

By substituting Equations (5)–(7) into the VDWE, we obtain,⎧⎨⎩ ρ
∂(V+iṼ)

∂t = L(σ+ iσ̃)
∂(σ+iσ̃)

∂t = ρ
(

A + iÃ
)
LT

(
V + iṼ

) (8)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂
(

τP+iτ̃P
)

∂t = ρ
(
cP + ic̃p

)2
(

∂(vx+iṽx)
∂x +

∂(vz+iṽz)
∂z

)
ρ

∂
(

vP
x+iṽP

x

)
∂t =

∂
(

τP+iτ̃P
)

∂x

ρ
∂
(

vP
z +iṽP

z

)
∂t =

∂
(

τP+iτ̃P
)

∂z

(9)

Taking the real parts of Equations (8) and (9), we acquire an equation expressed as,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ ∂V
∂t = Lσ

∂σ
∂t = ρ

(
ALTV − ÃLTṼ

)
∂τP

∂t = ρα
(

∂vx
∂x + ∂vz

∂z

)
− 2ρβ

(
∂ṽx
∂x + ∂ṽz

∂z

)
ρ

∂vP
x

∂t = ∂τP

∂x

ρ
∂vP

z
∂t = ∂τP

∂z

(10)

where α = cP
2 − c̃P

2 and β = cPc̃P. The real parts of S-waves are defined as vS
x = vx − vP

x and
vS

z = vz − vP
z . The imaginary parts of Equations (8) and (9) can be written as,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ ∂Ṽ
∂t = Lσ̃

∂σ̃
∂t = ρ

(
ALTṼ − ÃLTV

)
∂τ̃P

∂t = ρα
(

∂ṽx
∂x + ∂ṽz

∂z

)
+ 2ρβ

(
∂vx
∂x + ∂vz

∂z

)
ρ

∂ṽP
x

∂t = ∂τ̃P

∂x

ρ
∂ṽP

z
∂t = ∂τ̃P

∂z

(11)
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The imaginary parts of S-waves are defined as ṽS
x = ṽx − ṽP

x and ṽS
z = ṽz − ṽP

z . Equations (10) and (11)
jointly constitute the stained VDWE (SVDWE). According to Equation (11), we find that Ṽ is only
excited when V arrives at the stained target. The imaginary part Ṽ is named as stained wavefield.
The term ÃLTV can be considered as the source signature of Ṽ. Ã and β are dimensionless due to
the principle of c̃P and c̃S setting. It is evident that Equation (10) is approximately equivalent to
the VDWE.

2.3. Inner Product Imaging Condition with Filters
Imaging condition can convert seismic data into structure images through the focus of the source

and receiver wavefield. For the ERTM, the inner product imaging condition has an advantage in
terms of definite physical meanings. However, applying such imaging condition inevitably results in
migration artifacts because of backscatter. To suppress the unwanted seismic events in the migration
profile, we add filters to the imaging conditions. The final images can be expressed as:

ĨPP =
T

∑
t=1

(
FP

SoṼP
So

)
·
(

FP
ReṼP

Re

)
(12)

ĨPS =
T

∑
t=1

(
FP

SoṼP
So

)
·
(

FS
ReṼS

Re

)
(13)

where ĨPP and ĨPS are PP and PS images, the symbol · denotes the inner product operation. Ṽ
with the subscripts So and Re denotes the stained wavefields of seismic sources and receivers. The
superscripts P and S represent P- and S-wave, respectively. T is the maximum time of seismic records.
FP

So is a filter with the mathematical form shown below:

FP
So =

{
1, D̃P

So·nP
So > 0

0, D̃P
So·nP

So < 0
(14)

where D̃P
So =

(
d̃P

x ,d̃P
z

)
is the Poynting vector, nP

So is the direction vector. If the result of the inner

product between D̃P
So and nP

So is positive (negative), then the wavefield is retained (muted). Other
filters have a similar expression. The Poynting vector can be calculated by:⎧⎨⎩ d̃P

a = −τ̃PṽP
a

d̃S
a = −

[
τ̃ab − τ̃Pδ(a − b)

]
ṽS

b
(15)

where a and b are the x- or z-component of the Poynting vectors, and δ is the Dirac function. From
formula (15), the Poynting vector is 0 if either particle-velocity and stress is 0. There is a position
between the crest and the trough where the wavefield is 0, but the Poynting vector at that position
should not be 0. To improve the stability of equation (15), the local least squares strategy [25]
is applied.

3. Numerical Examples

In the first example, we employ a layered velocity model to probe the performance of the above
equations. The P-wave migration velocity model is sketched in Figure 1a. The S-wave migration
velocity is obtained using an empirical formula cS = cP/

√
3. The density is set as 2000 kg/m3. The

model is dispersed by 650 × 400 grid numbers, with a grid size of 10 × 10 m2. A Ricker wavelet
with the dominant frequency of 25 Hz is set as the source signature at the location of (1 km, 0).
The wavefields are simulated by the finite difference method with the second-order in time and
tenth-order in space. In addition, we add a perfectly matched layer around the simulated area to
absorb spurious reflections from the truncated boundary.

Based on the VCWE, the x-component of the particle-velocity is shown in Figure 2a, in which
the P- and S-waves are coupled together. When the coupled wavefield is extrapolated by solving
Equation (4), it can be completely decoupled into pure P- and S-waves (Figure 2b,c). Notably, the
seismic energy of the deep structure information is relatively weak in the decoupled wavefield.
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(a) (b) 

Figure 1. Migration model: (a) P-wave velocity; (b) Stained target.

   

(a) (b) (c) 

Figure 2. x-component of particle-velocity wavefield: (a) Coupled wave; (b) Pure P-wave; (c) Pure S-wave.

To reduce the shielding effect of the overburden rock on seismic waves, we simulate the
wavefield based on SVDWE. Here, the second interface is set as the stained target. c̃P is obtained
by cP multiplied 10−6 in the target area while is zero in other locations. The setting of c̃S is similar
to that of c̃P. Considering the similarity between c̃P and c̃S models, only one of them is shown in
Figure 1b. By solving SVDWE, the stained wavefield Ṽ is generated after the V hits the stained target.
The stained wavefield Ṽ only contains the reflection and transmission about the second interface
as exhibited in Figure 3. Consequently, we infer that imaging with the stained wave can reduce
interference from non-target structures.

  

(a) (b) 

Figure 3. x-component of the stained wavefield: (a) Pure P-wave; (b) Pure S-wave.

Furthermore, we utilize a contrastive approach to illustrate the adaptability of the ERTM for
different equations. We evenly deploy 10 shots and 650 receivers on the surface of the layered
velocity model. The total length of seismic records is 3 s, with a step time of 1ms. Figure 4 shows the
multi-shot stacked images based on VDWE. Moreover, we implement the ERTM using the SVDWE,
the PP and PS images are sketched in Figure 5. The settings of the stained target are the same as those
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of previous numerical experiments. Thanks to the stained wavefields, the primary information in
the images is the second interface. However, some unwanted migration artifacts may interfere with
subsequent interpretations.

  

(a) (b) 

Figure 4. ERTM image obtained based on the VDWE: (a) PP imaging; (b) PS imaging.

 

(a) (b) 

Figure 5. ERTM image based on the SVDWE: (a) PP imaging; (b) PS imaging.

Next, we demonstrate that the proposed imaging condition plays an important role in eliminat-
ing migration artifacts. The filters in the imaging condition need to be prepared in advance, and their
properties are determined by the direction vector and Poynting vector. For the snapshot shown in
Figure 3a, the Poynting vector (Figure 6) can be obtained using Equation (15). Here, we exhibit four
filtered wavefields (Figure 7) that, respectively, correspond to different direction vectors: nP

So = (1, 0),
nP

So = (−1, 0), nP
So = (0,−1), and nP

So = (0, 1).

  

(a) (b) 

Figure 6. Poynting vector: (a) x-component; (b) z-component.
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(a) (b) (c) (d) 

Figure 7. Filtered wavefield: (a) downgoing; (b) upgoing; (c) Leftgoing; (d) rightgoing.

For flat strata, images with fewer artifacts can be obtained in the inner product of the up-
going stained source wavefield and the down-going stained receiver wavefield (Figure 8). Figure 9
quantitatively compares PP and PS images, and the two sets of single-channel data are extracted from
Figure 8 (from 2 km to 3 km in depth), and then mapped to the wavenumber domain through the
Fourier transform. It is prominent that PS images are characterized by abundant high wavenumber
information, robustly confirming that PS images have a higher spatial resolution than PP images.
The basic reason for such a phenomenon is that S-wave travels slower than P-wave in the subsurface.
Namely, the converted S-waves possess a shorter wavelength.

 

(a) (b) 

Figure 8. ERTM profile with fewer artifacts compared with Figure 5: (a) PP imaging; (b) PS imaging.

(a) (b) 

Figure 9. Comparison between PP and PS images: (a) Single-channel data; (b) Wavenumber spectrum.

In this example, a salt model is applied to evaluate the efficiency of the proposed approach in
complex geologic regions. The true P-wave velocity model is exhibited in Figure 10a, and S-wave
velocity is also calculated using the previous empirical formula. The model size is 400 × 400 grids,
with a grid size of 10 × 10 m2 in both horizontal and vertical directions. A total of 40 sources are
evenly excited on the surface of the model. Each source has 400 receivers with a spacing of 10 m. The
maximum recording time is 6 s. Figure 11 shows the PP and PS images obtained by the conventional
ERTM, and it is obvious that the shallow structure and the salt boundary can be effectively identified.
However, the high-velocity overburden rock leads to insufficient illumination for the deep subsurface,
which ultimately blurs the subsalt image. We set the stained target in Figure 10b. Figure 12 displays
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the PP and PS images with the proposed imaging condition. We can see that the two complementary
images are favorable for the identification of subsalt faults.

(a) (b) 

Figure 10. Migration model: (a) True P-wave velocity; (b) Stained target.

  

(a) (b) 

Figure 11. ERTM images based on the VDWE: (a) PP imaging; (b) PS imaging.

  

(a) (b) 

Figure 12. ERTM images based on the SVDWE: (a) PP imaging; (b) PS imaging.

In the last experiment, a field data is utilized to confirm the effectiveness of our method.
Figure 13 displays the migration velocity model that has 940 × 300 grid points with a 20 × 20 m2

element. There are 240 sources unevenly distributed at the free surface. Figure 14 show some shot
gathers whose maximum recording time is 5 s. Since we only have the vertical component of the
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seismic record where P-wave information dominates, the valuable PS images are not obtained. The
PP images based on VDWE are sketched in Figure 15, from which we can see the main structures. To
enhance the quality of imaging in weakly illuminated areas, we set the box in Figure 13 as the stained
targets. By using the proposed method, the migration events (Figure 16) relevant to the stained
targets are highlighted, and the reflections of nontarget structures are muted.

 
Figure 13. P-wave velocity.

 

Figure 14. Two shot gathers.

Figure 15. PP imaging based on VDWE.
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Figure 16. PP imaging based on SVDWE.

4. Discussion

Our approach shows the satisfying performance for imaging weakly illuminated structures.
When an overall migrated profile is acquired, it is proper to achieve locally enhanced imaging by
artificially setting exploration targets in advance. Since the SVDWE contains two systems of equations,
the algorithm of such an approach is twice as computationally intensive as the conventional one. The
staining strategy is intrinsically related to the imaging results and is worthy of further investigation.
The filters in the inner product imaging condition screen different wavefields according to the
direction of wave propagation. Theoretically, it is possible to achieve wavefield decomposition in
an arbitrary direction. However, in this paper, we decompose the wavefield into up- and down-
going categories under the assumption that the target structure is relatively flat. To enhance the
imaging adaptability for complex geological situations, the wavefield screening method according to
stratigraphic dip angle needs to be persistently explored.

5. Conclusions

We have presented a new ERTM technique to produce the weakly illuminated structure. To
extract the elastic wavefield related to the target, a stained vector-decoupled wave equation is adopted.
The filter in the inner product imaging condition can suppress the migration artifact, improving the
resolution of ERTM results. Numerical results show that our method can generate better amplitude
for the weakly illuminated structure, providing possible technical support for reducing the risk of
hydrocarbon development.
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Abstract: The classical least-squares migration (LSM) translates seismic imaging into a data-fitting
optimization problem to obtain high-resolution images. However, the classical LSM is highly depen-
dent on the precision of seismic wavelet and velocity models, and thus it suffers from an unstable
convergence and excessive computational costs. In this paper, we propose a new LSM method
in the imaging domain. It selects a spatial-varying point spread function to approximate the ac-
curate Hessian operator and uses a high-dimensional spatial deconvolution algorithm to replace
the common-used iterative inversion. To keep a balance between the inversion precision and the
computational efficiency, this method is implemented based on the strategy of regional division, and
the point spread function is computed using only one-time demigration/migration and inverted
individually in each region. Numerical experiments reveal the differences in the spatial variation of
point spread functions and highlight the importance to use a space-varying deconvolution algorithm.
A 3D field case in Northwest China can demonstrate the effectiveness of this method on improving
spatial resolution and providing better characterizations for small-scale fracture and cave units of
carbonate reservoirs.

Keywords: least-squares migration; imaging domain; point spread function; global space-varying
deconvolution

1. Introduction

High-resolution seismic imaging is a critical tool to acquire information on under-
ground structures from observed seismic data [1,2]. Reverse time migration (RTM) has no
assumption for the high-frequency approximation in traditional ray methods and shows
good performance in lateral velocity varying media [3,4]. However, as the real data may
have limited borehole diameter for observation, irregular observation systems, and limited
wavelet frequency band, and thus images obtained from RTM have limited resolution and
poor amplitude fidelity, providing inaccurate estimates of underground reflectivity [5].

By using the reverse Hessian operator on the conventional migration, the least-squares
migration (LSM) allows for higher resolution, fewer migration artifacts, and better fi-
delity [6]. Since the Hessian matrix is too large in scale and the direct inversion process is
not realistic, the LSM method is always recast as a data-driven linear optimization prob-
lem. Due to the good performance on improving resolution, it has been investigated in
seismic imaging for acoustic-wave single component data [7–18] and elastic-wave multiple
component data [19–22]. Besides, the elastic least-squares migration is extended to obtain
multiparameter images, such as P- and S-wave velocity and density, to cope with the
trade-off effects [23,24]. However, since this data-domain LSM has a high dependency on
the accuracy of wavelet and velocity, most achievements for LSM are mainly obtained in
theoretical experiments. Furthermore, in 3D data processing in practice, this data-domain
LSM always suffers from unstable convergence and excessive computational cost, which
make it quite difficult in practical applications.
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In contrast, the imaging-domain LSM aims to find a reasonable approximation for the
Hessian instead of performing the expensive iterative data-fitting process. The diagonal
Hessian operator is commonly used to enhance the amplitude balance by considering the
illumination for observation, providing similar results as the classical amplitude-preserving
migration [25]. In horizontally layered media, the Green function for migration can be also
used as a deconvolution operator, thus processing the results from migration [26,27]. An
unsteady-phase filter can be estimated using the images from the front and rear iterations
in data-domain LSM thus replacing the inversion in Hessian matrix to calibrate and filter
the migration results [28–31]. Point spread function (PSF) from one scattering point is
consistent with a row of elements in the Hessian matrix, which physically describes the
impact of single-point-scattered energy on underground media, including local illumination
characteristics of the observation geometry, the space variation in velocity model, and the
band-limiting effect in seismic wavelet and received data [32,33]. These approximations for
Hessian in imaging domain LSM can be also used as preconditioners for the data domain
LSM, which, after multiple iterations, can more quickly approximate the real reflection
coefficient [34–37].

However, as PSFs are of significant space-varying characters, it is rough to apply a
space-invariant PSF from a single scattering point on the whole area. The novelty of our
method is that it introduces a regional division strategy in the image-domain least-squares
migration based on a global space-varying PSF. As a result, it can divide the global PSF
into sub-blocks, use a high-dimensional space-varying deconvolution in each sub-block,
and eventually perform the data reduction for all the sub-blocks. Since the continuity of
velocity model and illumination is much better in local sub-blocks, the proposed method
can provide high-resolution images and have computation efficiency.

2. Methodology and Principle

2.1. Basic Theory on LSM

The forward problem in the classical migration imaging can be expressed as:

d = Lm, (1)

where, L is the linear operator in the linear Born simulation, which expresses the relation
between underground reflectivity model m and seismic scattering data d. The migration
images can be obtained by projecting the adjoint Born operator LT into the seismic scattering
data d:

I = LTd. (2)

The adjoint Borning operators LT can correctly reverse the propagation effects on the
travel time and phase. However, due to problems such as limited observation apertures
and limited data frequency band, the adjoint operator is not a good approximation for the
inverse Born operators, which leads to unpreserved amplitude and low spatial resolution.

The LSM enables to provide high-fidelity images by minimizing the difference between
synthetic and observed data, and the misfit function of the least-squares migration can be
defined as,

C(m) =
1
2
||Lm − dobs||22. (3)

When the objective function reaches the minimum, the reflectivity model m satisfies
the following equation:

I =
(

LT L
)
= Hm. (4)

In this equation, H is the Hessian operator, which is the second derivative of the
misfit function (3). This equation is always named as the Newton normal equation, which
establishes the basic principle for the LSM in the imaging domain and physically reveals
that the migration image obtained by the conventional migration method is the Hessian-
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blurring version of the subsurface reflectivity model m. Thus, the seeking reflectivity model
can be realized using the generalized inverse under the sense of the norm L2.

m =
(

LT L
)−1

I = H−1 I. (5)

2.2. LSM in Imaging Domain
2.2.1. The Global Space-Varying Point Spread Function

According to the acoustic-wave equation, Hessian can be expressed in the frequency
domain as:

H(x1, x2, ω) = L(x1, ω; xs, xr)
T L(x2, ω; xs, xr), (6)

where xs, xr are the positions of shots and receivers, and L denotes the sensitivity kernel,
satisfying

L(x, ω; xs, xr) = f (ω)G(x, xs, ω)G(x, xr, ω), (7)

where, f (ω) is a seismic wave, G(x1, xs, ω) is the Green function excited from the shot
position xs.

The PSF is commonly used as the approximation for Hessian, including a row of
elements in the Hessian matrix x0.

K(x2, x0, ω) = L(x2, ω; xs, xr)
T [L(x0, ω; xs, xr)δ(x − x0)]. (8)

Here, K(x2, x0, ω) reflects the PSF of the perturbation at the point x0.
Substitute Equation (8) into Equation (6), mark the point spread function at xi as Ki,

and Hessian can be expressed as,

H =
[

K1 · · · Ki · · · Km
]T . (9)

Substitute the above equation into Equation (4) to obtain:

Ii = Kim. (10)

The reflectivity model can be obtained by

m =
Ii

(Ki + α)
, (11)

where α is the regularization parameter. The Equations (10) and (11) can be also expressed
in the space domain as:

Ii = Ki ∗ m, (12)

and:
m = Ii ⊗ Ki, (13)

where, ∗ and ⊗ represent the operation of convolution and deconvolution, respectively. It
reveals that, the migration image at xi is the superposition of the convolution of the global
reflectivity model and the point spread function at xi; on the contrary, the reflectivity model
at xi can be computed within a high-dimensional deconvolution of the corresponding point
spread functions.

2.2.2. Global Space-Varying Deconvolution

Equation (8) shows that the point spread function is exactly the image of the scattered
wave radiated from the scattering point, which has a limited distribution in the space. Thus,
the image-domain LSM can be based on the framework of the region division strategy,
where the global point spread function can be divided into n blocks and the real impact of
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each point spread function is constrained within local neighborhoods sn to the scattering
point xi, i = 1, . . . , sn,

K(xn, xi, ω) = L(xn, ω; xs, xr)
T [L(xi, ω; xs, xr)δ(x − xi)]. (14)

Furthermore, within the neighborhood, the media velocity and illumination conditions
are slowly varied, thus the PSFs for each position in sn can be assumed to be the same, and
the reflectivity model for the neighborhood can be expressed as

mn = ∑
i∈sn

Ii ⊗ Ki = In ⊗ Ki. (15)

Equation (15) means the regional reflectivity model for the neighborhood sn can
be obtained by performing local deconvolution of the regional RTM image and the point
spread function. The entire model can be obtained by stacking all the regional parts, and the
global space-varying PSF can be computed using only one-time demigration and migration.

3. Analysis of Numerical Experiments

This section focuses on analyzing the physical characteristics of the point spread
function. Figure 1 shows the global point spread function for the 2D Marmousi model.
We can find the variations of observation illumination, wave propagation, and limited
wavelet frequency-band at different positions. The propagation effect is mainly reflected in
amplitude performance. Compared to the PSFs in the shallow model, those in the deep
show much worse focusing with increasing attenuation radius. Since the RTM and PSF
results are computed under the same observation system, the deconvolution can remove
the influence of limited illumination angles in RTM results. Moreover, the seismic wavelets
should match the one in RTM as they may have a great influence on point spread functions
with respect to phase, amplitude, and attenuation radius.

(26,11) 

(26,1) 

Figure 1. The global point spread function in the 2D Marmousi model.

Figure 2 displays the inverted images using different point spread functions (red and
blue circles in Figure 1). Even with the same wavelet, the images using the PSFs show
significant variations in the space. The PSF at grid (26, 1) has wider illumination angles
and better focusing than the one at grid (26, 11), and thus it can more accurately reflect the
illumination characteristics of shallow structures in the model. As a consequence, the above
PSF allows for better descriptions of the shallow structures but provides inaccuracy in
the deep model. In contrast, due to limited illumination angle and wavefield propagation
effect, the image obtained by the PSF at grid (26, 11) is much closer to an RTM result.
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(a) (b) 

Figure 2. Results from LSM in imaging domain by using single point spread function. (a) the point
spread function at grid (26, 1), the shallow details are similar as reflectivity model; (b) the point
spread function at grid (26, 11), the image is much closer to RTM result.

4. Numerical Experiment

The method is tested on the 3D Overthrust model. The model is 16 km, 5 km, and 3 km
in size, and the migration velocity is obtained by Gaussian smoothing with a window of
40 m. The Ricker wavelet with the main frequency of 30 Hz is used in this experiment. As
shown in Figure 3, the RTM result has an insufficient spatial resolution, and the amplitude
of the reflectors attenuates rapidly as the depth increases.

Figure 3. The 3D data volume of RTM in the 3D Overthrust model.

Then we compute the PSF using the same wavelet. Based on the migration velocity, the
sampling interval (400 m, 400 m, 400 m) of the global PSF is set for the scattering model. To
give intuitive insight into PSF, we present the X-Z tangent plane for point spread functions
in Figure 4. As the geological structure and the illumination condition change, we can
easily find that the difference of global PSFs in morphology is not negligible.

Figure 5 shows the results from the proposed imaging-domain LSM. Compared with
the RTM results, the LSM results show higher resolution, fewer migration noise, more
balanced amplitude in deep and better focusing on diffracted structures (as shown in
Figure 6). To compare the spatial resolution between these results, we compute the vertical
wavenumber spectrum of Figures 3 and 5 for the whole model and present them in Figure 7.
From the vertical wavenumber spectrum, we can find that the result from the LSM method
has a broader frequency-band, especially for mid-high wave numbers. It means that the
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proposed LSM method can estimate the Hessian operator and remove those Hessian effects
on the RTM results, which thus provides a more accurate reflectivity model.

Figure 4. The 2D Display of the X-Z tangent plane of the point spread function.

Figure 5. Cont.
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Figure 5. The 3D data volume of LSM in the 3D Overthrust model.

Figure 6. The 2D display of the X-Z tangent planes results from (a) RTM; (b) LSM.

Figure 7. The comparison of vertical-wave-number spectrum between RTM (red) and LSM (blue)
from Figures 3 and 5. The unit of y-axis is decibel, and x-axis indicates the wavenumber component.
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5. Field Case

The target area is a part of the Tarim oil field in Northwest China, which is located in
the middle of the North Tarim Uplift Belt to the east of the Halahatang depression. It has a
large span, the target layer is deeply buried, the physical properties of the matrix are poor,
and the type and scale of fracture caves are seriously affected by karst weathering. From
the current development stage, the positioning accuracy of small and medium-sized karst
cave cannot meet the requirements of resolution analysis of venting leakage around the
well. In this work area, the geophone array recorded 33,000 shots at 5 m depth covering
an area of 81 km2. The main conundrum to be tackled in this work area is high-resolution
imaging of Ordovician carbonate fracture-cavity reservoirs, with the depth ranging from
5.5 to 8 km. The migration velocity is built by a 3D travel time tomography as shown in
Figure 8. The maximum cut-off frequency of the wavelet is 70 Hz.

Figure 8. Migration velocity for Tarim oil field.

Figure 9 shows the results from RTM and LSM at the inline index of 200. Compared
with the RTM results (Figure 9a), the LSM results (Figure 9b) provide higher spatial
resolution, finer reflection events, more balanced amplitude, better focus ability, and more
accurate fractured-cavity imaging. Figure 10 shows the zoomed region in Figure 9. We can
find that the LSM result provides finer descriptions of fractured-cavity imaging and the
boundaries between adjacent fractured-cavities, and the fractured-cavity bodies with small
sizes in Ordovician carbonatite can be presented with higher resolution. Moreover, the
deep fracture in the LSM result (Figure 10b) is better retrieved, which demonstrates that
the proposed method is effective in fracture description. Figure 11 shows the vertical wave-
number spectrum corresponding to the imaging results. The wave-number distribution
of the LSM result is much broader, which lifts up at the low and mid-high sides of wave
numbers. Besides, LSM can clearly provide information on cavities in the fracture zones,
provide a high-quality scientific basis to analyze the development of fracture-controlled
fractured-cavities and give guidance to the interpretation of reservoirs. To give an intuitive
sight of the caves in Figure 10 denoted by red arrows, we compute the amplitude attributes
from the RTM and LSM results and present a regional transverse section at the depth of
these caves in Figure 12. We can find that the LSM results can distinguish the adjacent
caves and provide better focusing, highlighting the proposed method can provide a high
resolution in the horizontal direction and give a great help for reservoir interpretation and
development. However, due to the limited observation aperture and shallow desert area,
conventional RTM cannot provide correct images. The logging result located at the arrows
in Figure 12 can also support the migration results, highlighting the effectiveness of the
proposed method.
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(a) (b) 

Figure 9. Comparison between migration results for CDP index of 1198. (a) results from RTM;
(b) results from LSM.

  
(a) (b) 

Figure 10. Locally zoomed-in reservoir sections marked in Figure 9. (a) results from RTM; (b) results
from LSM.
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Figure 11. Comparison in vertical-wave-number spectrum (RTM: red line; LSM: blue line). The unit
of y-axis is decibel, and x-axis indicates the wavenumber component.

  

(a) (b) 

Figure 12. Comparison between results of amplitude attributes. (a) zoomed results from RTM;
(b) zoomed results from LSM. The target caves are corresponding to the ones marked by red arrows
in Figure 10.

6. Conclusions

Utilization of the point spread function and the global space-varying high-dimension
deconvolution algorithm effectively solves the demand of excessive computation in the
iterative data-fitting process of classical least-squares migration and alleviates the high
dependency on the accuracy of seismic wavelet and velocity model. Both the theoreti-
cal analysis and the model experiment demonstrate that the global space-varying point
spread function can effectively approximate the Hessian and the high-dimensional spa-
tial deconvolution algorithm can replace the deburring effects from the Hessian operator.
The application on a field 3D data suggests that the method is effective in improving the
imaging resolution, especially for caves and fractures, and provide higher-quality seismic
images for ultra-deep fractured-cavity reservoirs.
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Abstract: The initial model plays an important role in seismic inversion. Generally, the initial model
is constructed by lateral extrapolation of parameters under horizons constraints. However, without
horizon data, initial modeling becomes a challenging task. Velocity spectrum is a 2D image that
can reflect the characteristics of the formations. We regard the problem of establishing the initial
model as the problem of similarity analysis of seismic lateral characteristics and propose a method of
establishing the initial inversion model based on velocity spectrum and Siamese network. Firstly,
the lateral variation of formation characteristics is tracked on velocity spectra generated by common
depth point (CDP) gathers. Then, the target tracking results at different CDP positions are obtained
with the triple Siamese network. Finally, the discrete inversion parameters are extrapolated along
the tracking paths to obtain the initial inversion model. The Siamese network can quickly obtain the
similarity of 2D images and does not need manual labels. The theoretical and practical results show
that our method can efficiently generate the initial model that conforms to the seismic structure and
stratigraphic characteristics without the constraint of interpreted horizon data.

Keywords: velocity spectrum; triple structure Siamese network; lateral automatic tracking; horizon
constraint framework; initial model of inversion

1. Introduction

Establishing the initial model is one of the necessary and key steps of the model-
based inversion method, which has a great impact on the inversion effect. Traditionally,
the method of generating the initial model is to extrapolate the inversion parameters
observed from the wells or vertical seismic profile (VSP) along the interfaces picked from
seismic profiles [1,2] or to extrapolate the seismic attributes [3–7]. In these methods, seismic
horizons are necessary and manual interpretations are required. Horizon picking is one of
the most time-consuming and labor-intensive steps [8]. Automatic horizon interpretation
technology has been developing. Many geophysicists have proposed a variety of algorithms
to improve the efficiency and accuracy of automatic horizons tracking [9–14], but these
methods still need some prior information, such as manually setting up seed points or
carrying out manual interpretation of large sets of strata. It is difficult to establish the
initial model directly without manual interpretation. In addition, seismic inversion usually
requires the initial model to cover the entire 3D region, but in practice, the automatic
interpretation of the entire data volume is difficult to achieve. Therefore, there is a need for
an efficient and accurate seismic extrapolation method to establish an initial model with
the condition of lack of horizons.

Neidall et al. [15] presented the concept of velocity spectrum. The seismic gathers are
automatically scanned with equal velocity intervals, and the velocity spectra are generated
by stacking energy or similarity coefficient. Compared with artificial horizon interpretation,
the velocity spectra are easier to generate. In conventional seismic data processing, stacking
or migration velocity is obtained by velocity analysis on velocity spectra. The hyperbolas
in the prestack seismic gathers reflect the characteristics of the interfaces, and the velocity
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spectrum contains the position and velocity information of each hyperbola in prestack
gathers. Compared with the gathers, the features on velocity spectrum are more focused.
The velocity spectrum is a 2D image, which can be used to identify the changes of the
lateral characteristics of the formation.

Deep learning technology has shown much better performance than traditional neural
network methods in speech and visual tasks, such as image classification [16], semantic
segmentation [17], and image segmentation [18]. This is mainly due to the strong feature
expression ability of deep networks such as convolutional neural network (CNN). In the
field of exploration geophysics, deep learning has been successfully applied to seismic
processing and interpretation [19,20]. However, most of the current applications need to
manually make and label samples first, and then extract the corresponding type of feature
information from the seismic images. For the establishment of the initial inversion model,
it is still unable to get rid of the dependence on horizons. Deep learning has the potential
to provide more global information. As an important part of computer vision, visual target
tracking technology has been developed rapidly. The Siamese network uses the idea of
similarity learning, describes the tracking problem as an object matching problem, and
judges the position of objects by comparing the similarity of objects [21,22].

In this paper, we transformed the parameter extrapolation problem in constructing
the initial inversion model into a 2D image tracking problem and proposed a method for
constructing the initial model based on velocity spectrum and Siamese network. Firstly,
the velocity spectra generated by CDP gathers were used to track the lateral variation
of formation characteristics. Then, the target tracking results at different CDP positions
were obtained by combining the similarity of the triple Siamese network analog velocity
spectrum. Finally, the discrete inversion parameters were extrapolated along the tracking
path to obtain the initial model. We proposed an improved triple Siamese structure, which
adds an update branch to solve the lateral variation of velocity spectrum characteristics
during target tracking. This improvement takes dynamic update into tracking. In order to
verify the applicability of the method, we carried out tests on theoretical and practical data.
The results show that it can automatically obtain the extrapolation paths and can be used
to establish the initial model of seismic inversion.

2. Materials and Methods

2.1. Velocity Spectrum

The velocity spectrum [15] is a 2D image generated by scanning and stacking (or
correlating) energy along different velocities on each CDP gather using the similarity
criterion. The x and y axes are the velocity and two-way travel time, respectively. The
velocity spectrum is composed of a series of energy clusters, and the velocity information
is determined according to the abscissa position of the energy clusters. Most of the current
research on velocity spectrum focuses on improving the resolution of velocity spectrum and
then improving the accuracy of velocity pickup [23–29]. The application of deep learning
in velocity analysis almost focuses on the automatic pickup of energy clusters in velocity
spectrum [30–32].

In addition to the position and velocity information that can be used for velocity
analysis in conventional seismic processing, velocity spectrum is also a 2D image that
can reflect formation characteristics. Velocity spectra also have advantages in identifying
lateral characteristics of formation. The reasons are as follows: firstly, the interference of
complex underground structures and noise always leads to incomplete, staggered, and
amplitude varying hyperbolas, while the velocity spectrum scans and superimposes the
events along the hyperbola, which can attenuate the non-hyperbolic noise to a certain
extent. Secondly, in most cases, the energy clusters in velocity spectrum corresponds to
the interfaces. Because the formation interfaces have relatively coherent structure in the
underground space, the velocity spectra of adjacent CDP points have similarity, and the
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characteristics of the formation interface can be obtained from the velocity spectra by this
similarity. The velocity spectrum Formula (1) is as follows:

S =
∑M

j=0

(
∑N

i=1 Ai,j

)2

I ∑M
j=0 ∑N

i=1
(

Ai,j
)2 (1)

where M is the length of the time window, N is the offset length, I is the number of seismic
traces in the CDP gather, and Ai,j is the amplitude at offset i and time j. According to
Formula (1), if all seismic traces are the same, S equals to 1. If each seismic trace is a
random value, S approaches 0. Only when the scanning velocity is equal to the normal
move-out (NMO) velocity, the waveforms of each trace are the most similar, in-phase
stacking is realized within the time window, and S is close to 1. Here, we use real seismic
data after conventional data processing and prestack migration to show the consistency
between energy clusters in velocity spectrum and formation interfaces. Figure 1a is the
common reflection point (CRP) gather at the location of CDP number 30 (CDP 30), which
has undergone NMO removal processing with v = 1500 m/s. Figure 1b is the velocity
spectrum generated from the gather shown in Figure 1a. The x and y axes are the velocity
and two-way travel time, respectively. The center of the energy clusters in velocity spectrum
corresponds to the maximum value of stacking energy. Figure 1c is the stack section. It
can be seen that the centers of the energy clusters correspond to the events on the seismic
section. Each energy cluster corresponds to an obvious formation interface. Figure 2a–c are
velocity spectra of CDP 32, CDP 34, and CDP 36, respectively. The three velocity spectra
have high similarity. With the similarity of the energy clusters in lateral, the positions of
the formation interfaces can be obtained by tracking the energy clusters.

  
(a) (b) (c) 

Figure 1. Consistency between energy clusters in velocity spectrum and formation interfaces. (a) CDP
gather at CDP 30; (b) velocity spectrum generated from the gather shown in (a); (c) stack section.

  
(a) (b) (c) 

Figure 2. Similarity of adjacent velocity spectra. (a) Velocity spectrum of CD P32; (b) velocity
spectrum of CDP 34; (c) velocity spectrum of CDP 36.
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2.2. The Triple Structure Siamese Network for Velocity Spectra Lateral Target Tracking

For lateral target tracking in velocity spectra, the prior materials are the images of
the energy clusters in the given windows. The tracking algorithm needs to overcome the
challenges of target deformation, background interference, scale change, and angle rotation,
and also needs to take into account the accuracy and efficiency. The Siamese network can
find a set of parameters, so that the similarity of input images is large when they belong to
the same category and small when they belong to different categories. Another advantage
of the Siamese network is that the input is a pair of images rather than an image, so it can
naturally increase the amount of training data and make full use of limited datasets to
train, which is very important in the field of target tracking. In this paper, we improved
the traditional Siamese network structure by adding an input update branch. A triple
structure Siamese network for velocity spectra lateral target tracking is presented. We set
the target area as a positive sample, and the background area and other morphological
energy clusters as negative samples. Firstly, the tracking algorithm extracts the features
of the target through a series of convolution operations and trains the classifier. Next,
the well-trained classifier is used to find the most similar region in the velocity spectra of
different CDP positions. Finally, the lateral extrapolation path of inversion parameters can
be obtained through the change trend of the target positions. The added update branch
can take the prediction result of the current position as an input and update the initial
target according to the current tracking result, so as to adapt to the lateral change of the
velocity spectrum.

2.2.1. Triple Siamese Network Structure

The traditional Siamese network always uses the initial image as the tracking target.
However, the velocity spectrum varies in the lateral direction. With the deepening of the
tracking process, the information contained in the initial sample is insufficient to track
the subsequent targets. We solve this problem by adding an update of target features in
the tracker. The velocity spectrum samples at the initial position provide the most basic
characteristics of the target and play a leading role in the tracking process. With the lateral
movement of the target position, tracking by fusing the previous position features is better
than using only the initial samples. Based on this consideration, we proposed a triple
structure Siamese network based on the traditional Siamese network. We added an update
branch of the current target and used the current prediction result as the target to track the
velocity spectrum of the next position. During the tracking process, the current target will
be updated with the result of target tracking. The structure of the triple velocity spectrum
tracking network is shown in Figure 3.

Figure 3. Structure of the triple velocity spectrum tracking network.

Different from the traditional Siamese network, the triple network consists of three
branches: an initial branch I with an initial target as an input, a search branch S with a
search area as an input, and an update branch U with a tracking result at the previous
location as an input. The backbone models in the three branches share the same CNN
architecture. Through the same network model, the responses of I, S, and U are ϕ(I),
ϕ(S), and ϕ(U), which are embedded into the feature space of subsequent tasks. I is the
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initial branch, and the specified initial velocity spectrum is used as the sample. I remains
unchanged throughout the tracking process. U is the update branch, that is, the previous
target tracking result. U will be updated with the tracking process. In order to embed
the information of these branches, we use the feature map of the updated branch and
the feature map of the search area to perform cross-correlation operations. Similar to the
traditional Siamese network, the triple network uses a full convolution network for feature
extraction, and each channel also generates a corresponding mapping response R. Since
there are three branches, the mapping results of two channels are generated, which are:

R1 = ϕ(S) ∗ ϕ(I) (2)

R2 = ϕ(S) ∗ ϕ(U) (3)

where ∗ represents a cross-correlation operation. R1 is the mapping result of the initial
branch and the search branch, and R2 is the mapping result of the update branch and the
search branch. In order to use the two-mapping information, the mapping results are fused
weighted R f :

R f = a1R1 + a2R2 (4)

where a1 and a2 are the weight coefficients, and a1 + a2 = 1.

2.2.2. Weight Coefficients

The weight coefficient is determined by the similarity between the current target image
and the previously saved image. Here, we use a perceptual Hash algorithm to judge the
similarity [33]. We know that the high-frequency information in an image can provide
details, and the low-frequency information can describe the frame. Hash algorithm is a
method to detect the similarity between images with the low-frequency information of
images. First, the image is down-sampled to 8 × 8 to remove high-frequency information
and discard the difference caused by different sizes. Next, the image is converted into a
gray-scale image, and its gray-scale average value is calculated. Further, the gray value
of each pixel in the image is compared with the average gray value. If the gray value is
greater than or equal to the average value, it is recorded as 1, and if the gray value is less
than the average value, it is recorded as 0. Finally, these 64 values are combined to form
the Hash fingerprint of this image. This method is fast and efficient and is not affected
by image size or scale. The main process of determining the weight coefficient with Hash
algorithm is as follows:

Step 1: calculate the Hash fingerprint of the initial target image and each predicted image.
Step 2: calculate the number Num of different points of the Hash fingerprint between

the target image and the predicted image.
Step 3: determine the weight coefficients a1 and a2 according to the value of Num.

There are several situations. If Num < 5, the current target is considered to be similar to the
initial target image, replace the initial target with the current target, and set a1 = 0, a2 = 1.
If 5 < Num < 10, perform image fusion and set a1 = 0.5, a2 = 0.5. If Num > 10, there is a
large difference between the current target and the initial target image, the current image is
discarded and set a1 = 1, a2 = 0, that is, the initial target image will not be updated. The
reasonable threshold (5 and 10 or other number) can be determined by manual test.

2.2.3. Loss Function and Network Parameters

In the mapping result, the points within the search area are positive samples, and
the points outside the area are negative samples. The loss function for each point in the
mapping result is:

Lp(x, s) = lg
(
1 + e−xs) (5)
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where s is the true value of the point, x is the label of the point, and x∈{+1, −1}. The overall
loss of the mapping result is the average of the losses of all points, that is:

LALL(x, s) = ∑
D

Lp(x(z), s(z)) (6)

where z is the position, x(z) is expressed as:

x(z) =
{

1 h|z − c| ≤ R
−1 others

(7)

where h is the step size of the network, c is the center point, and R is the radius of the
search area.

The weight coefficients of the similarity discriminant function are solved by the gradi-
ent descent method to minimize the error between the sample labels x and the similarity
discriminant function. The specific parameters of the network are shown in Table 1. The
maximum pooling layer is used after the first two convolution layers, respectively. The Relu
nonlinear activation function is used after each convolution layer except the last layer. The
batch normalization (BN) layer is embedded after each linear layer. There is no padding in
the network.

Table 1. Network parameters.

Network Layers Conv1 Pool1 Conv2 Pool2 Conv3 Conv4 Conv5

Convolution kernel 11 × 11 3 × 3 7 × 7 3 × 3 3 × 3 3 × 3 3 × 3

Step size 2 2 2 2 1 1 1

2.3. Workflow

After the initial target image on the velocity spectrum is given, all subsequent images
are compared with the initial target image for similarity. The Siamese network performs full
convolution on the search image. In order to find the position of the target in the searched
image, all possible positions can be tested exhaustively, and the image with the greatest
similarity to the target can be determined. The triple Siamese structure actually calculates
the cross-correlation between the two input branches and the search branch, determines
the weight coefficient of the branch fusion according to the similarity of the image, and
adapts to the lateral change of the velocity spectrum by updating the initial target. The
main implementation steps of the method are as follows:

Step 1: generate velocity spectrum images of all positions.
Step 2: extract the target image feature Hi at the specified position and within the

specified window by using the initial branch.
Step 3: extract the image feature Hc of the search area at the current position by using

the search branch.
Step 4: calculate the cross-correlation between the features Hi and Hc to obtain the

target response R1.
Step 5: extract the target image feature Hr at the specified position and within the

specified window by using the update branch.
Step 6: calculate the cross-correlation between the features Hr and Hc to obtain the

target response R2, and take R2 as the current position tracking result.
Step 7: determine the fusion weight coefficients a1 and a2, and obtain R f = a1R1 + a2R2

as the new input of the update branch.
Step 8: move the window, repeat steps 3–7 until the velocity spectrum of this position

is traversed, and then end the current position task.
Step 9: move the position, repeat steps 2–8 until the velocity spectra of all positions

are traversed, and then the whole task is completed.
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3. Model Test

In order to verify the feasibility of the method, we carried out tests on theoretical
model data and real seismic data. The lateral extrapolation path of inversion parameters is
obtained by tracing the lateral position of velocity spectrum according to the method in this
paper. In our tests, the interval velocity is used as the inversion parameter to check the ex-
trapolation result. The tests were carried out on a PC equipped with Intel (R) i7 12,700 CPU,
an RTX3060TI GPU, 16 GB RAM, and Ubuntu 19 operating system.

3.1. Theoretical Model

A theoretical model with four interfaces is designed to synthesize seismic data and
test the method. The depth of the model is 5500 m and the sampling interval is 5 m. The
width of the model is 1000 m, and 100 CDP points are set. The theoretical model of interval
velocity is shown in Figure 4. CDP gathers are obtained through forward modeling, with
the time length of 1 s and the maximum offset of 3100 m. Figure 5a–c are the CDP gathers
at positions of CDP 30, CDP 50, and CDP 70, respectively. For each CDP gather, NMO
removal processing is performed according to the root mean square velocity of 1500 m/s
and a velocity spectrum is generated. Figure 6a–c are the velocity spectra of CDP 30, CDP
50, and CDP 70, respectively.

Figure 4. Theoretical model of interval velocity.

  
(a) (b) (c) 

Figure 5. CDP gathers at different positions. (a) CDP 30; (b) CDP 50; (c) CDP 70.
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(a) (b) (c) 

Figure 6. Velocity spectrum. (a) CDP 30; (b) CDP 50; (c) CDP 70.

3.2. Model Training

The velocity spectrum of CDP 50 is used as the tracking target of the training dataset.
As shown in Figure 6b, there are four energy clusters. We take the energy cluster of
0.2–0.35 s (as shown in Figure 7a) as an example to explain the generation of a training
dataset. Based on the energy cluster of 0.2–0.35 s, 100 training samples labeled as positive
are generated by stretching, compression, and filtering. Figure 7b,c are examples of images
after deformation and stretching, and Figure 7d–f are examples of images after filtering.
The positive samples are set to 1.

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 7. Examples of positive sample. (a) Tracking target image; (b) image after 1.5 times stretching;
(c) image after 3 times stretching; (d) image after low-pass filtering; (e) image after bandpass filtering;
(f) image after high pass filtering.

The energy clusters of 0.1–0.2 s, 0.35–0.5 s, and 0.5–0.65 s in Figure 6b are stretched,
compressed, and filtered to generate 300 training samples marked as negative, as shown in
Figure 8. The negative samples are set to 0. The training process has 500 iterations, and the
learning rate is set to 0.0001. After this training process is completed, set the tracking target
as the energy cluster of 0.35–0.5 s, and set the energy clusters of 0.1–0.2 s, 0.2–0.35 s, and
0.5–0.65 s as the negative samples, and then repeat the same training process.
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Figure 8. Examples of negative sample.

3.3. Tracking Results

The velocity spectrum images of all 100 CDP points are sequentially tracked. The
tracking results of CDP 50 to CDP 55 are shown in Figure 9. The red rectangle is the tracking
target, and the yellow rectangle is the velocity spectrum tracking results of different CDPs.
The tracking path is formed by connecting the midpoint positions of the tracking results. As
shown in Figure 10, the four color lines are the paths of the energy clusters to track laterally.
It can be found by comparing Figure 4 that the four tracking paths are consistent with the
four interfaces in the model. By extrapolating seismic parameters along the tracking path,
the initial model conforming to the underground structure can be obtained.

 
Figure 9. The tracking results of CDP 50 to CDP 55.

Figure 10. Result of tracking paths.

3.4. Initial Velocity Model

The interval velocity curve is extracted at the theoretical velocity model CDP 30 to
simulate the data of a well. The layer velocity curve at CDP 30 is extrapolated under
the paths constraint shown in Figure 10 to obtain a interval velocity model, as shown in
Figure 11, which is consistent with the theoretical model shown in Figure 4. The vertical
difference is because the theoretical velocity model is in depth domain and the extrapolation
result is in time domain.
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(a) (b) 

Figure 11. (a) Interval velocity curve at CDP 30; (b) extrapolation velocity result under the paths constraint.

4. Real Data Applications

In the real data test, we used the land seismic data from eastern China. The CRP
gathers after prestack time migration were used to generate velocity spectra. The number
of CRP gathers was 500. The maximum offset was 2200 m. The longitudinal time was 2.5 s.
The sampling interval was 2 ms. The stack section is shown in Figure 12a. Figure 12b is the
CRP gather at CDP 203, and Figure 12c is the velocity spectrum at CDP 203.

  
(a) (b) (c) 

Figure 12. (a) Stack section; (b) CRP gather at CDP 203; (c) velocity spectrum at CDP 203.

The velocity spectrum at CDP 203 was used as the tracking target of the training
data set. Since there was no obvious boundary between the energy clusters in the velocity
spectrum in Figure 12, we used the sliding window to realize the target tracking. The time
window length is given as 250 ms. The tracking windows are shown in Figure 13a. The
real data samples were made in the same way as the theoretical data. The training process
had 500 iterations, and the learning rate was set to 0.0001. The position of the window was
changed and the same training process repeated until the tracking of the target in the whole
time range was completed. The tracking results of all CDP points were connected to form
the final tracking paths as shown in Figure 13b. Comparing Figure 13b with Figure 12a, the
tracking paths are consistent with the interfaces. The faults between CDP 200–CDP 350
and 1.3–1.8 s can be correctly identified on the tracking results. Along the tracking path,
the parameter to be inversed can be extrapolated from the well, and the initial inversion
model consistent with the structure can be obtained.
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(a) (b) 

Figure 13. (a) Tracking windows; (b) the result of tracking paths.

5. Discussions

This method also has some application limitations. Because the characteristics of the
energy clusters in the velocity spectrum are closely related to the reflection characteristics
of the formation, the method can obtain ideal tracking results when the reflection charac-
teristics from the same formation interface are relatively stable in lateral. In contrast, if
the reflection characteristics of the formation change dramatically in lateral, the velocity
spectrum tracking will be unstable and the results may be multi-solution. This requires
manual intervention or adding constraints to obtain reliable tracking results, such as lim-
iting the trend of the tracking path within a certain range or limit the maximum change
of the tracking results of adjacent traces. In addition, if the signal-to-noise ratio of real
seismic data is very low, the velocity spectrum features will not be significant, and it will
be difficult to extract features and track targets.

In the velocity spectrum tracking of real seismic data, there may be difficulties such
as unclear clusters features or background interference. In these cases, the accuracy of
target tracking can be improved by changing the window length. The tracking task can be
carried out with different window lengths, and the corresponding similarity results will be
output for each window length. The results with the highest similarity can be extracted
and combined as the final target tracking result.

The extrapolation path of geophysical parameters can be obtained by lateral tracking
of velocity spectrum, which can be used as a constraint framework to construct the initial
model. The essence of the method is the similarity of the characteristics of velocity spectrum
in lateral, that is, the invariable part of the velocity spectrum. In fact, the characteristics of
the velocity spectrum have certain changes in lateral, and this change also represents the
lateral changes of geophysical parameters to a certain extent. In the absence of gooddata,
how to make full use of the characteristics of velocity spectrum to provide more geophysical
information will be the next possible research direction.

6. Conclusions

A lateral tracking method of velocity spectrum based on a triple Siamese network
structure is proposed in this paper. With this method, the positions of the target image
on the velocity spectrum of each CDP can be tracked. The results of the tracking paths
can constrain the lateral extrapolation of seismic parameter to establish an initial inversion
model, for example, an initial velocity model for prestack depth migration or P-wave, S-
wave and density models for elastic parameters inversion. The method does not depend on
the interpretation horizons and manual annotation samples. The theoretical and practical
results show that the method can efficiently generate the initial model that conforms to
the seismic structure and stratigraphic characteristics without the constraint of interpreted
horizon data.
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Abstract: The Molucca Sea Plate, and Sangihe and Halmahera plates have a complex tectonic setting
and interact to create the Molucca Sea Collision Zone. We re-picked 1647 events recorded from
2010 to 2017 from 32 of The Agency for Meteorology, Climatology, and Geophysics (BMKG) stations
and obtained P- and S-arrivals of ~17,628 phases. Hypocenter locations were determined using
the software NonLinLoc. Then, we performed a travel time tomography in order to image the
subsurface and approximate the Molucca Sea Plate subduction angle beneath Sulawesi’s north arm,
the relationship subduction zone and volcanic activity in Halmahera, and depth comparison of the
Molucca Sea Plate. Our results show that (i) high Vp, high Vs, and low Vp/Vs are associated with
the Molucca Sea Plate beneath Sulawesi’s north arm, and the approximate subduction angle is ~40◦.
(ii) Low Vp, low Vs, and high Vp/Vs beneath the northern and southern Halmahera Volcanic Arc
are associated with a possible magma source. Volcanoes in the north have experienced eruptions
and are dormant in the south. This group of volcanoes is connected by partial melting above the
Molucca Sea Plate subducts to the east. (iii) High Vp, high Vs, and low Vp/Vs are interpreted as
double subduction of the Molucca Sea Plate. It is submerged deeper in the north compared with the
south, which is nearer to the surface.

Keywords: travel time tomography; Molucca Sea Plate; magma source; partial melting

1. Introduction

The Molucca Sea region is a very complex area where three main plates, the Eurasian,
Australian, and Pacific plates, interact and create a collision zone known as the Molucca
Sea Collision Zone [1–5]. The activity of these plates and the subduction of the Molucca Sea
Plate are the main factors causing the high level of seismicity in this area. Tectonic activity
is also increased by the Molucca Sea Plate which completely submerges the Halmahera
microplate [6] and the Sangihe microplate [7], as shown in Figure S1.

The Molucca Sea Collision Zone is located between the Halmahera microplate in
the east and the Sangihe microplate in the west with the Molucca Sea in the center. One
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collision resulted in the formation of a high ridge in the middle of the two microplates,
known as the Mayu-Talaud Ridge, which is characterized by intense, shallow earthquakes
and an low gravity anomaly [3,5,7,8]. The collision is ~250 km apart [4] and convergently
collides with the Molucca Sea Plate [4,9] at a movement of 1.5 cm/yr [9]. The Molucca Sea
Plate has an inverted U- or V-shape [2,8,10–13] and has slab subducting to the west under
the Sangihe Arc and subducts to the east under the Halmahera Arc. The subduction of
the Molucca Sea Plate in both eastern and western directions makes for arc volcanisms in
the Halmahera and Sangihe Arcs that run parallel to the subduction zone [8,13,14] with
its two Wadati–Benioff Zone active of mantle earthquakes [4,7,10]. The collision of the
Halmahera and Sangihe Arcs with the subduction of the Molucca Sea Plate remains active
today [15–18].

The Molucca Sea is one of the most seismically active areas in the world [19], as
shown in Figure 1. There are many seismic zones in this area, such as the seismic zone
concentrated in the central Molucca Sea at a depth of <60 km beneath the Mayu-Talaud
Ridge, the seismic zone beneath the Sangihe and Halmahera Arcs, the seismic zone around
the Gorontalo Basin, along the Minahasa peninsula, around Morotai Island, the Sulawesi
Sea, the Molucca-Sorong Fault, the Bacan-Sorong Fault, the Sula-Sorong Fault, the Sulawesi
slab in the northern part of Sulawesi’s north arm, and the area around the Philippine slab in
the eastern part of Halmahera Island. The red dots in Figure 1 indicate shallow earthquakes;
these are mostly concentrated in the central Molucca Sea area beneath the Mayu-Talaud
Ridge and the Gorontalo Basin; the brown dots indicate intermediate earthquakes that are
mostly concentrated beneath the Sangihe and the Halmahera Arcs; the yellowish blue dots
indicate deep earthquakes that are concentrated in the Sulawesi Sea area.

 
Figure 1. The horizontal distribution of seismic map of the research location around the Molucca
Collision Zone. SLW: Sulawesi island; ML: Molucca island; PA: Papua island; HLM: Halmahera
island; SNA: Sulawesi’s north arm; SS: Sulawesi slab; PS: Philippine slab; HT and ST: Halmahera and
Sangihe Trench; HA and SA: Halmahera and Sangihe volcanoes arc; CS: Celebes sea; MP: Minahassa
peninsula; GB: Gorontalo Basin; MS: Molucca Sea; MTR: Mayu-Talaud Ridge; BSF, MSF, and SSF:
Bacan, Molucca, and Sula Sorong Faults, respectively.
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Numerous studies on seismicity that relate to the structure and geometry of the
Molucca Sea Plate have been carried out by previous researchers. One such study covers
the two Benioff zones that lie in opposite directions and form a double subduction pattern
in the Molucca Sea Plate [5,7,8,10,13]. The subducted slab under the Sangihe Arc can
be identified as far down as the mantle transition zone layer at a depth of ~650 km; the
subducted slab under the Halmahera Arc reaches the solid upper asthenosphere layer at
a depth of ~250 km [8]. According to Cardwell et al. [10], the subducting slab to the east
under the Halmahera Arc subducts at an angle of ~45◦ and reaches a depth of ~230 km;
Hall and Spakman [20] show that it reaches depths of ~400 km, which is in line with recent
research [21] that used 3D earthquake data distribution plots from ISC-EHB to identify slab
configurations that were not modeled by slab2. Hutchings and Mooney [12] showed that
the subducted slab in the Sangihe Arc at depths of ~250 to 350 km has a seismic gap, while
the tomography image of the slab appears to be continuous.

Tomographic studies have been carried out by previous researchers, including
Puspito et al. [22] who used P-phase travel time data from ISC bulletins; their work
shows a high-velocity zone that forms a double subduction of the Molucca Sea Plate.
The slab is subducted to the west under the Sangihe Arc and reaches to the lower
mantle. Meanwhile, the slab that subducts to the east under the Halmahera Arc reaches
a depth of 400 km, which is conformable with the results of the study by Widiyantoro
and Hilst [23]. This research was later updated by Widiyantoro [24] who shows that
the subducted slab to the west reaches the lower mantle with a folded-looking slab.
Huang et al. [25] also detected a high-velocity zone in the form of bipolar subduction.
Meanwhile, Zhang et al. [26] showed that the Molucca Sea Plate has a positive velocity
anomaly with unique asymmetry. Fan and Zhao [27,28] showed that the subduction of
the Molucca Sea Plate ~5 Ma ago propagated from south to north; they were able to
detect the Molucca Sea Plate using anisotropic tomography. Zenonos et al. [29], using
data from ISC-EHB, show the high-velocity Vp and Vs of the double subduction of
the Molucca Sea Plate in which the high Vp reached a depth of ~700 km beneath the
Sangihe Arc and ~400 km beneath the Halmahera Arc. The high Vs reached a depth of
~500 km, which is in positive agreement with a study performed by Chen et al. [21] who
used only P-wave data. Zenonos et al. [30] showed that negative Vp/Vs anomalies can
reach ~160 km, and positive Vp/Vs anomalies can reach depth of ~200 km. Another
study by Cao et al. [31] observed the mantle flow using seismic anisotropy. Their study
shows that beneath the Halmahera Arc the sub-slab mantle flow is oriented oblique to
the Halmahera trench, while the sub-slab mantle flow beneath the Sangihe Arc runs in
a parallel direction to the Sangihe trench.

According to previous research, tomography is generally based on data from global
teleseismic earthquakes within a broad region, producing a tomographic image with a broad
resolution that displays only relatively large objects. Tomography around the Molucca
Sea region usually only shows the main features of the Molucca Sea Plate [22,23,26,29].
Several local researchers in the Molucca Sea area have used different methods [2,17,18].
However, their results extend only up to the layer of the Earth’s crust; the tomographic
results have not shown anomalies of 3D velocity structures due to volcanic activity in the
subduction zone. The research undertaken in this study made use of local and regional
data from BMKG (Figure 1) to obtain more detailed features of the Molucca Sea region,
especially the estimated subduction angle of the Molucca Sea Plate from south to north
beneath Sulawesi’s north arm; the relation between the subduction zone of the Molucca
Sea Plate subducts to the east and its volcanic activity in the Halmahera Volcanics Arc, and
the depth of submerged of the double subduction of the Molucca Sea Plate in the south
and north.

167



Appl. Sci. 2022, 12, 10520

2. Materials and Methods

2.1. Data

The earthquake data used in this research was obtained from the BMKG network of
broadband stations in the form of waveform data from three-component seismograms
(BHZ, BHN, and BHE) from 1 January 2010 to 31 December 2017. A total of 32 stations
were used, covering the area 4.8◦ S–4.25◦ N and 120.5◦ E–134.5◦ E (Figures 1 and 2).

 
Figure 2. Arrival times distribution of P-and S-wave for all stations. Colored inverted triangles
denote the number of phases per station.

Considering the distribution and locations of the regional stations, earthquakes with a
magnitude ≥ 4 were chosen to facilitate the identification of P- and S-wave arrival times.
A total of 1647 earthquake events have been recorded in the study area. Picking was
performed manually to obtain P- and S-wave arrival times using SeisGram2K version 7.0
software [32]. P- and S-wave arrival times were determined in pairs at each station; the
arrival times are clearly identified and recorded by at least four stations (Figure 3). The
arrival times of a total of ~17,628 P-waves and ~17,628 S-waves were identified. The highest
number of P- and S- phases were recorded in the southern part of the earthquake epicenter,
while a smaller number of phases were recorded in the eastern part of Seram Island.
The arrival times distribution for each station are shown in Figure 2, and its histogram
in Figure S2.
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Figure 3. Example of the 22 November 2017 event waveform from a three-component seismogram
(BHZ, BHN, and BHE) which was picked using SeisGram2K version 7.0 software [32]. The blue, green,
and red colors from each station represent the vertical component (BHZ), the north–south component
(BHN), and the east–west component (BHE). From top to bottom, the recorded seismograms are
shown at the KMSI, TMSI, GTOI, SMSI, SANI, TNTI, LBMI, and TOLI2 stations. The vertical P and S
lines show the picked arrival times for P- and S-waves, while Ts-Tp is the time difference between the
arrival times of the S- and P-waves.
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2.2. Methods

In NLLoc version 7.00 [33], the location algorithm adopts the inversion approach from
Tarantola and Valette [34], and the event location procedure from Tarantola and Valette [34],
Moser et al. [35], and Wittlinger et al. [36]. This algorithm generated the misfit function for
each sample cell, estimated the probability density function (PDF), and determined the
optimal hypocenter location. The location search process began by defining the search area
in 3D by setting the boundaries of the x, y, z regions and then applying the 1-D AK135
velocity model [37,38]. The optimal hypocenter location for each event was determined by
estimating the probability density function (PDF) using an oct-tree importance sampling.

The result of the hypocenter location from the NonLinLoc program with an equal
amount of P- and S-waves used to process the travel time tomography inversion was
performed using SIMULPS12 [39] to obtain the 3D structure of both Vp and Vp/Vs ratio
and simultaneously hypocenters relocation by using pseudo-bending ray tracing [40], as
shown in Figure S3. This program performs an inversion of Vp and Vp/Vs models from
P- arrival times and S-P times directly, not Vp and Vs separately, due to differences in
data quality between P- and S- arrival times [41,42]. The initial velocity model used in the
inversion process is a 3D regional-global seismic velocity model (Vp) beneath Indonesia
obtained from high-resolution tomographic imaging [23]. Meanwhile, the value of the
Vp/Vs ratio was obtained from the Wadati Diagram (Figure S4), which is 1.76 and is
consistently used for each layer.

We performed the inversion through three stages: Firstly, a damping analysis was
performed to obtain the optimum damping parameter input by making variations in the
data distribution, number, size, and grid nodes distance [41]. The damping value was
obtained by comparing the variance model (km2/s2) and the variance data (s2) for both
Vp and Vp/Vs values. The optimum value for Vp and Vp/Vs damping obtained was
150 and 130, respectively (Figure S5). This value was used to obtain a stable solution
when performing the tomographic inversion and a checkerboard resolution test (CRT).
Secondly, we ran a checkerboard resolution test using several grid spacings to define the
best model parameterization used in this study. We decided to use a 60 × 60 km grid and a
vertical grid size of 30 km after considering the results and dataset distribution. Thirdly,
we performed the tomographic inversion using the damped least square where the norm
of the perturbations model is weighted and combined with the misfit data squared. We
set high residual data < 10 s at the early inversion. It is automatically discarded if a value
greater than 10 s is found. We set the maximum number of iterations to 20 times and
stopped at 15 iterations. The weighted Root Mean Square (RMS) residual value decreases
each iteration until convergence. The stopping condition provided by an F-test indicates
that variance reduction is insignificant after more iterations [39].

2.3. Resolution

Several methods were used to determine whether the inversion results are reliable
for interpretation or not. Firstly, the Checkerboard Resolution Test (CRT) was used to test
the resolution of the tomography model by making a synthetic velocity model. The CRT
results showed a pattern of high and low-velocity anomalies relative to the 1D initial model,
which is ±10% relative to the 1D initial model. Secondly, the Derivative Weight Sum (DWS)
calculated the density of ray paths that pass through the grid nodes by giving them a
certain weight. A high DWS value represents a high-resolution zone (Figure S6). Thirdly,
the Ray Hit Count (RHC) was used to locate the number of ray paths that pass through
the grid nodes. An increased number of ray paths represents high resolution zones that
can be well-interpreted (Figure S7). Fourthly, the Diagonal Resolution Element (DRE) was
used, as shown in Figure S8, which relates to the resolution matrix R (damped least-squares
problems); these have an R-value between 0 and 1 [39,43,44].

The focus of this research on the vertical cross-section for the resolution test and
tomography inversion consisted of four areas in the north–south cross-section: profile A-A′
(longitude 123.80◦) and profile B-B′ (longitude 127.58◦), and the west–east cross-section,
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profile C-C′ (latitude 3.26◦) and profile D-D′ (latitude 1.10◦). The horizontal grid size used
in this study was 60 km × 60 km; the vertical grid size ranged from 30 km to a depth of
330 km, as shown in Figure 4.

 

Figure 4. The horizontal and vertical seismic map of the research location in the Molucca Collision
Zone. The bold black lines A-A′ (south–north), B-B′ (south–north), C-C′ (west–east), D-D′ (west–east)
denote the areas of the vertical cross-section tomography. The black plus sign represents the dis-
tribution of the grid nodes for tomographic inversion; the colored dots indicate the distribution of
earthquakes; the blue triangles are BMKG stations, and the black triangles signify volcanoes.

3. Results

Based on the re-picking phase and distribution of available BMKG stations, we deter-
mined the location of the hypocenter using the NonLinLoc Global mode. The estimated
mean error in x, y, and z directions using the covariances values are 10,198 km, 14,081 km,
and 19,035 km, respectively. The distribution frequency estimated error location in the x, y,
and z directions is shown in Figure S9. The distribution between the number of events and
the azimuthal gap is shown in Figure S10, and the epicentral distance distribution is shown
in Figure S11. We limit the value of travel time residuals in the range of −10 ≤ initial
travel time residuals (itr) ≤ 10 to control the quality of the input data for the tomographic
inversion process. The bad picks can be traced in unit 20 of simulps output file, as shown in
Figure S12. Before the inversion, the initial travel time residual values varied in the range
of −9.993 s to 9.858 s, with a mean value of −1.111 s. After inversion, the final travel time
residuals varied in the range of −7.148 to 6.197 s, with a mean value of 0.156 s, forming a
Gaussian distribution centered around 0 s. Tomographic inversion achieved the conver-

171



Appl. Sci. 2022, 12, 10520

gence after the 15th iteration with the weighted Root Mean Square (RMS) residual reduced
by 47%, initially from 0.82312 s down to 0.43871 s (Figure S13). The RMS residual before
the inversion ranged from 0.06 to 1.26 s with an average value of 0.54 s. After inversion,
the range of values was down to 0.04 to 0.83 s with a mean value of 0.36 s (Figure S14) or
reduced by about 33%.

The Interpretation of the tomogram becomes valid and has a high confidence level by
performing a resolution test of the seismic tomography model. Therefore, we present the
CRT results shown in Figure 5 for Vp and Vp/Vs of profiles A-A′, B-B′, C-C′, and D-D′ and
Figure S15 horizontal section for Vp and Vp/Vs with the recovered area is delineated by
dashed purple lines. The CRT positive recovery for A-A′ is beneath the Gorontalo Basin,
Sulawesi’s north arm, and the Celebes Sea up to a depth of 210 km. The CRT positive
recovery for the B-B′ profile is beneath the Halmahera Volcanic Arc up to a depth of 240 km;
for profile C-C′ the CRT positive recovery is shown beneath the Celebes and Molucca Seas,
and the Morotai Basin up to a depth of 210 km. For profile D-D′, the CRT positive recovery
is beneath Sulawesi’s north arm, the Molucca Sea, and Halmahera Island up to a depth
of 300 km. These results are consistent with the density distribution of P- and S-rays as
revealed by the DWS, RHC, and DRE results (Shown in Figures S6–S8); the highest Vp and
Vp/Vs values are listed in Table S1. The primary resolution test we used to interpret the
tomographic results was the CRT, supported by the DWS, RHC, and DRE results. Hence,
this research focused on the travel time tomography results in four areas in the subduction
zone beneath Sulawesi’s north arm, the subduction zone beneath the Halmahera Volcano
Arc, and the double subduction zone of the Molucca Sea.

 

  

Figure 5. Cont.
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Figure 5. The vertical cross-section of CRT profiles. Profile A-A′ (south–north), B-B′ (south–north),
C-C′ (west–east), and D-D′ (west–east) are vertical cross-sections of the CRT recovery model from
the inversion process. The purple dashed line is the positive CRT recovery area for tomographic
interpretation. The first column is Vp perturbation, the second column is Vp/Vs perturbation, and
the red triangles signify volcanoes.

Tomographic inversion results of cross-section A-A′, as shown in Figure 6 as follows:
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(a) Vp perturbation (b) Vs perturbation 

  
(c) Vp/Vs ratio (d) 3D visualization of the Vp perturbation 

 

Figure 6. Vertical cross-section of A-A′ (south–north) of the Molucca Sea Plate, crossing the Minahasa
Peninsula, Sulawesi’s north arm, and the Celebes Sea. The red color indicates low velocity and low
Vp/Vs ratio, and the blue color indicates high velocity and high Vp/Vs ratio. The A1 and A2 are
areas for the interpretation of tomographic inversion results. The black dots signify earthquakes
within a radius of 30 km ≤ A-A′ ≤ 30 km, and the yellow stars are significant earthquakes. The green
line and the green three-dimensional surface plot are the slab2 models of the Molucca Sea Plate. The
yellow line is the slab2 model of Sulawesi [45]. NST is the North Sulawesi Trench. The red triangles
signify volcanoes. The blurred area is an area that is not well-resolved.

Tomographic inversion results of cross-section B-B’, as shown in Figure 7 as follows:

174



Appl. Sci. 2022, 12, 10520

(a) Vp perturbation (b) Vs perturbation 

  
(c) Vp/Vs ratio (d) Vp/Vs ratio 

 

Figure 7. Vertical cross-section of B-B’ (south–north) crossing beneath the Halmahera Volcanic Arc.
The red color indicates low velocity and low Vp/Vs ratio. The blue color indicates high velocity and
high Vp/Vs ratio. The B1, B2, and B3 are areas for the interpretation of tomographic inversion results.
The green line and the green three-dimensional surface plot are the slab2 models of the Molucca Sea
Plate [45]. The black dots signify earthquakes within a radius of 30 km ≤ B-B′ ≤ 30 km. SeT: Seram
Trench; HT: Halmahera Trench; Bi: Bibinoi Volcano; Bs: Batusibela Volcano; Am: Amasing Volcano;
Br: Buku-Rica Volcano; Rr: Rogi-Rogi Volcano; Ja: Jailolo Volcano; To: Todoko-Ranu Volcano; Ga:
Gamkonora Volcano; Ib: Ibu Volcano; Tb: Tobaru Volcano. The blurred area is an area that is not
well-resolved.

Tomographic inversion results of cross-section C-C′, as shown in Figure 8 as follows:
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(a) Vp perturbation (b) Vs perturbation 

  
(c) Vp/Vs ratio (d) 3D visualization of the Vp perturbation 

  

Figure 8. Vertical cross-section of C-C′ (west–east) crossing the Celebes Sea, Sangihe Island, Molucca
Sea, and Morotai Basin. The red color indicates low velocity and low Vp/Vs ratio. The blue
color indicates high velocity and high Vp/Vs ratio. The C1, C2, and C3 are areas for the inter-
pretation of tomographic inversion results. The black dots signify earthquakes within a radius of
30 km ≤ C-C′ ≤ 30 km, and the yellow star is a significant earthquake. The green line and the green
three-dimensional surface plot are the slab2 models of the Molucca Sea Plate, and the brown line is
the slab2 model of the Philippines [45]. ST: Sangihe Trench; HT: Halmahera Trench; the blurred area
is an area that is not well-resolved.

Tomographic inversion results of cross-section D-D′, as shown in Figure 9 as follows:

176



Appl. Sci. 2022, 12, 10520

(a) Vp perturbation (b) Vs perturbation 

  
(c) Vp/Vs ratio (d) 3D visualization of the Vp perturbation 

  

Figure 9. Vertical cross-section of D-D′ (west–east) crossing Sulawesi’s north arm, the Molucca Sea,
and Halmahera Island. The red color indicates low-velocity areas and low Vp/Vs ratio, and the blue
color indicates high-velocity areas and high Vp/Vs ratio. The D1, D2, D3, D4, and D5 are areas for the
interpretation of tomographic inversion results. The black dots signify earthquakes within a radius of
30 km ≤ D-D′ ≤ 30 km, and the yellow star is the magnitude of a significant earthquake. The green
line and the green three-dimensional surface plot are the slab2 models of the Molucca Sea Plate; the
yellow line is the slab2 model of Sulawesi [45]. Thus, So: Soputan Volcano; ST: Sangihe Trench; the
reserve arrow is Tifore island; HT: Halmahera Trench; Ja: Jailolo Volcano; To: Todoko-Ranu Volcano;
Wa: Wato-Wato Volcano; the blurred area is an area that is not well-resolved.

Three-dimensional tomographic inversion results combine cross-section profile A-A′
and profile D-D′, as shown in Figure 10 as follows:

177



Appl. Sci. 2022, 12, 10520

 
Figure 10. The 3D visualization of the Molucca Sea Plate, combining vertical cross-section profile
A-A′ (south–north) and profile D-D’ (west–east) from the P-wave tomography inversion results. The
earthquake events follow the high Vp anomaly pattern. The red color indicates low-velocity areas
and low Vp/Vs ratio, and the blue color indicates high velocity and high Vp/Vs ratio. The white
dots signify earthquakes; the yellow stars signify earthquakes with significant magnitudes. The red
triangle is a volcanic arc located in Sangihe and Halmahera.

4. Discussion

4.1. Subduction Zone Beneath Sulawesi’s North Arm

Subducting slabs are usually indicated by high-velocity anomalies, which are caused
by denser material that has a lower temperature than its surroundings [25,46,47], along
with the presence of intermediate and deep earthquakes [48,49]. Based on the results of
the tomographic inversion, the section A-A′ (south–north) shows a velocity anomaly of
high Vp, high Vs, and low Vp/Vs at the A1 area, down to a depth of ~210 km (Figure 6).
These features are interpreted as double subduction of the Molucca Sea Plate, which
subducts westward beneath Sulawesi’s north arm and the Sangihe Islands with an angle
of subduction from south to north, an approximate angle of ~40◦. These results are
consistent with previous research performed in different locations [29,30,46,50], which
show that high Vp, high Vs, and low Vp/Vs can be identified as subducted slabs. It also
has positive agreement the slab model of Hayes et al. [45]. In addition, most earthquakes
are concentrated in a high-velocity area, these continued in the subduction zone as far
down as a depth of ~500 km due to the very active movement of the subduction plate.

Three major earthquakes with magnitude ≥ 6 are observed in this area between
January 2010 and June 2021. Two of these earthquakes (23 June 2020 and 19 January 2020
events) had a depth of ~100 km and were located in the South Bolaang Mongondow
Regency around the Minahasa Peninsula of Sulawesi. These earthquakes are associated
with the double subduction activity of the Molucca Sea Plate, which subducts to the west.
Meanwhile, one shallow earthquake with a magnitude of 6.1 is located near the Gorontalo
Basin and is associated with an active fault in the sea. The results of tomography inversion
and hypocenters horizontally for each depth section are shown in Figure S16.

The A2 area in Figure 6 and the D2 area in Figure 9 are located in the northern part of
Sulawesi’s north arm, precisely in the North Sulawesi Trench (NST) Zone. This area reveals
an anomalous pattern of high Vp, high Vs, and low Vp/Vs that can be interpreted as a slab
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of Sulawesi that subducts to the south with the structure above being the Molucca Sea Plate.
This result is consistent with previous studies conducted by Chou et al. [50], Zhao [46], and
Zenonos et al. [29,30], suggesting that high Vp, high Vs, and low Vp/Vs are associated
with the presence of subducted slabs. It is also consistent with Fan and Zhao [27] which
identified the slab of Sulawesi from P-wave tomography and is similar to the subduction
zone geometry model (yellow line) described by Hayes et al. [45]. The existence of this
slab is also followed by earthquake events, even though the level of seismic activity in this
cross-section is less than the earthquake activity that occurs in the A1 area of the Molucca
Sea Plate zone.

4.2. Subduction Zone Beneath Halmahera Volcano Arc

The subduction zone beneath the Halmahera Volcano Arc is shown in the vertical
cross-section of B-B′ (south–north) in Figure 7. The B1 area is located under three large
islands in the southern part of Halmahera: Bacan, Kasiruta, and Mandioli Islands. This
area is also crossed by the Bacan–Sorong Fault, which is a branch, or splay, of the Sorong
Fault that passes to the east [51], and is responsible for the seismicity in this region. Based
on historical records, there was a strong and destructive earthquake, magnitude 7.1, on
16 April 1963 with an intensity scale of VIII Modified Mercalli Intensity (MMI). The most
recent earthquake occurred on 26 February 2020, magnitude 5.2. The earthquake shocks
were felt to be quite strong and were estimated on the V MMI intensity scale. There are
several volcanoes on Bacan Island, consisting of the Bibinoi Volcano in the south, and
the Batusibela, Amasing, and Buku Rica (Meng) Volcanoes in the north; all of these are
stratovolcanoes. The tomographic inversion results show low-Vp, low-Vs, and high-Vp/Vs
anomalies, which can be interpreted as the possible source of this magmatic arc [25,52,53]
as also represented by Huang et al. [25] in the same region. These volcanoes have remained
dormant until the present and without any historical eruptions. However, these volcanoes
may possibly erupt in the future. This possibility is supported by the flow of fluids released
from partial melting (B3 area) at a depth of ~100 km above the Molucca Sea Plate that
subducts to the east under Halmahera Island [54].

The B2 area shown in Figure 7 is located beneath the northern arm of Halmahera
Island and belongs to the West Halmahera Regency. The vertical cross-section passes
through several active volcanoes: Jailolo, Todoku-Ranu, Gamkonora, Ibu, and Tobaru.
Jailolo is a stratovolcano [54] that has experienced several earthquake swarms [55,56], but
whose last eruption is unknown. Young lava flows have been found on the east side of
the volcano, indicating that there has been an eruption. There is also no information about
the last eruption of the Todoko–Ranu Volcano, which is a caldera volcano. Gamkonora, a
stratovolcano, experienced its last eruption in 2013. The Ibu Volcano, also a stratovolcano,
had its last eruption in 2012. The latest update was on 16 June 2021, in the form of a volcanic
ash advisory. The Tobaru Volcano, also known as the Lolodai Volcano, is a stratovolcano
and its last eruption is unknown [54].

The tomographic inversion results show low-Vp, low-Vs, and high-Vp/Vs anomalies,
which can be interpreted as possible sources of a magmatic arc [25,52,53]. This interpretation
is also supported by the ascending flow of fluid that originated from partial melting in
the B3 area at depths of ~50–70 km. The partial melting and the subducted Molucca Sea
Plate (the green line in Figure 7) are shallower in this area in comparison with the B1 area.
We suggest that the difference in fluid depth is probably caused by the higher activity of
volcanoes in the north of Halmahera compared with volcanoes in the south. However,
further and more detailed research is necessary to ascertain this.

The B3 area is located beneath the Halmahera Volcanic Arc at a depth of ~100 km
and above the Molucca Sea Plate that subducts to the east. The tomographic inversion
results show low-Vp, low-Vs, and high-Vp/Vs anomalies, indicating the presence of
fluids that promotes partial melting. Its good agreement with the previous studies by
Nakajima et al. [57] and Zhao [53], the low Vp, low Vs, and high Vp/Vs are interpreted
as partial melting materials. It is observed that the upwelling process is connected with
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zone B1 beneath the volcanic group located on Bacan Island, and zone B2 located beneath
the volcanic group on the northern arm of Halmahera. High Vp/Vs above the subduction
zone can be interpreted as slab dehydration, as shown by Chou et al. [50] who stated
that Vp/Vs is an effective indicator of hydration, or melting, on the mantle wedge. In
studies by Lin et al. [58] and Maruyama et al. [59], hydration is indicated by low Vp, Vs,
and high Vp/Vs.

4.3. Double Subduction of the Molucca Sea Plate

The double subduction zone of the Molucca Sea Plate is shown in the vertical cross-
section of C-C′ (west–east), crossing the Celebes Sea, Sangihe Island, Molucca Sea, and the
Morotai Basin (Figure 8); and the vertical cross-section D-D′ (west–east), crossing Sulawesi’s
north arm, the Molucca Sea, and Halmahera Island (Figure 9). Based on tomographic
inversion results in the C1 area, the high-Vp, high-Vs anomalies subduct to the west
and reach the asthenosphere layer at a depth of ~300 km. Based on the resolution test
(Figures S6–S8), the subduction pattern is shown to reach a depth of ~400 km (CRT result:
not good resolved areas), while a low Vp/Vs is seen in the partially molten asthenosphere
layer at a depth of ~210 km. High-Vp, high-Vs, and low-Vp/Vs anomalies subducting
eastward to a depth of ~200 km are also observed. This feature can be interpreted as
a double subduction of the Molucca Sea Plate, which subducts westward beneath the
Sangihe Islands and eastward beneath the Morotai Basin. This is also followed by the
presence of intermediate and deep earthquakes in the upper mantle layer that forms a
double subduction slab pattern, as indicated by high seismic velocity [53]. These results are
consistent with those of Chou et al. [50], Zhao [46], and Zenonos et al. [29,30] who suggest
that high Vp, high Vs, and low Vp/Vs can be associated with the feature of subducted
slab. Previous studies of P-wave tomography also identified a double subduction of the
Molucca Sea Plate [9,22–24,27,60] in which the plate subducting to the west can reach the
mantle transition layer at a depth of ~600 km. According to Fan and Zhao [27], the Molucca
Sea Plate is submerged deeper in the north than in the south. These studies also indicate
that the arch of double subduction of the Molucca Sea Plate has submerged into the upper
mantle at a depth of ~150 km. Based on the geometry model of slab2 (green line) from
Hayes et al. [45], the arch of the double subduction is closer to the surface in the uppermost
mantle layer.

The C2 area is located beneath the Sangihe Trench (ST), which is a collision zone of
the Sangihe continental crust that moves eastward with an overriding plate structure [26]
and the Molucca Sea Plate that subducts to the west. The tomographic inversion results
show that high-Vp, high-Vs, and low-Vp/Vs anomalies in the mantle crust can be inter-
preted as rock material that experienced micro-cracks that have since closed due to high
pressure [30,61–63]. The C3 area is located beneath the Halmahera Trench (HT), which
is a collision zone of the Halmahera continental crust that moves westward, having an
overriding plate structure [26] with the Molucca Sea Plate subducting to the east. The
tomographic inversion results show that low-Vp, low-Vs, and high-Vp/Vs anomalies in the
crust and mantle can be interpreted as highly fractured, water-saturated rock material [63].
Our results obtained beneath the Central Ridge of Molucca Sea, indicate a clear presence of
boundary between ST which has high-velocity anomalies and low Vp/Vs and HT, which
has low-velocity anomalies and high Vp/Vs. This boundary also has a signature of high
seismicity area. An earthquake of magnitude 6.2 occurred on 10 July 2021 on this boundary
that can be interpreted as a collision zone between fault planes or fractures [10]. The
boundary may represents material with different densities between the western and eastern
parts of the Central Ridge of the Molucca Sea which have upraised ophiolite bodies [17,18].

In the vertical cross-section D-D′ of area D1 (Figure 9), the results of the inversion
tomography show the presence of a double subduction of the Molucca Sea Plate indicated
by high-Vp, high-Vs anomalies. It subducts westward and eastward, reaching a solid
asthenosphere layer at a depth of ~300 and ~250 km, respectively. The Molucca Sea Plate
is not well-imaged as far as the Vp/Vs ratio, and there is a discontinuity in the slab that
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subducts westward at depths of ~100–150 km. On the other hand, the slab that subducts
to the east is well-imaged, as indicated by low Vp/Vs. The seismic pattern observed at
intermediate and deep depths had a high seismic velocity, which can be associated with
a double subduction slab [53]. This finding is consistent with Chou et al. [50], Zhao [46]
and Zenonos et al. [29,30]; i.e., high Vp, high Vs, and low Vp/Vs are interpreted as a
slab subduction. Previous studies of P-wave tomography have also identified a double
subduction of the Molucca Sea Plate to depths of ~600–650 km subducting to the west,
and depths of ~250–400 km subducting to the east [9,22–24,27,60]. The arch of double
subduction in this area is in the uppermost mantle layer near the surface, which is consistent
with the geometry of the slab2 model from Hayes et al. [45]. Fan and Zhao [27] showed
that the arch of the Molucca Sea Plate submerged shallower in the south than in the north.

The D3 and D5 areas are located in ST and HT which is a collision zone between the
continental crust and the denser, heavier oceanic crust. The ST area is the collision zone
between the continental crust of Sulawesi’s north arm located above the Molucca Sea Plate
that subducts to the west. The HT area is the collision zone between the continental crust
of Halmahera above the Molucca Sea Plate and subducting to the east [26]. According to
Puspito et al. [22], low velocity dominates the Molucca Sea collision zones and volcanic
zones. The results of tomography inversion in these two areas show high-Vp, high-Vs, and
low-Vp/Vs anomalies in the crust and mantle. This feature can be interpreted as rock mate-
rial that experienced micro-cracks that have since closed due to high pressure [30,61–63].
The D4 area, located beneath the island of Tifore in the Central Molucca Sea may corre-
spond to upraised ophiolite body [17,18] which has an active thrust fault [11,12]. The
tectonic activity in this area causes many earthquakes of both small and large magnitudes.
Tomographic inversion results in the Central Molucca Sea show low-Vp, low-Vs anomalies,
and high Vp/Vs in the crust and mantle which indicate the presence of highly fractured
brittle material and water-saturated rock [63]. In the west and east (ST and HT), we suggest
that the rock material is probably not water-saturated because the micro-cracks have been
covered by high pressure. However, further north (Figure 8, cross-section C-C’), the cracked
and water-saturated rock materials shift to the east (there is a clear boundary in the Central
Molucca Sea) and extend to HT.

Figure 10 shows a 3D visualization of the double subduction of the Molucca Sea Plate
beneath Sulawesi’s north arm, the Molucca Sea, and Halmahera Island based on P-wave
tomography inversion results. These results show that the Molucca Sea Plate subducts to
the west beneath Sulawesi’s north arm. In perspective from south to north, the state of the
slab field also dips north from the Minahasa Peninsula to the Celebes Sea, having numerous
earthquake events that follow the high-Vp anomaly pattern and is interpreted as a double
subduction of the Molucca Sea Plate. This is consistent with the green three-dimensional
surface plot of the slab2 models of the Molucca Sea Plate [45] in Figure 6.

5. Conclusions

In this research, we performed travel time tomographic inversion using an initial 3D
velocity model. These are obtained by manual re-picking of the same number of P- and
S-arrivals and simultaneous determination of the 3D structure for the Vp, Vs, and Vp/Vs
ratio, as well as relocating the hypocenter location. The results show a high Vp, high Vs,
and low-Vp/Vs anomaly beneath the Minahasa Peninsula, Sulawesi’s north arm, with
the Celebes Sea (cross-section A-A′, south–north) dipping to the north at a ~40◦ angle.
Beneath the Celebes Sea, Sangihe Island, Molucca Sea, the Morotai Basin (cross-section
C-C′, west–east), and Sulawesi’s north arm, the Molucca Sea, and Halmahera Island (cross-
section D-D′, west–east) can be interpreted as a double subduction of the Molucca Sea
Plate. The tomographic image beneath the southern part of the Halmahera volcanic arc
(Bacan Island) shows low Vp, low Vs, and high Vp/Vs, which indicates a possible magma
source; although the volcano has been dormant until the present. The tomographic image
beneath the group of volcanoes in the northern arm of Halmahera also shows low Vp, low
Vs, and high Vp/Vs, which can be interpreted as a possible magma source. Differing from
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volcanoes in the south, however, some volcanoes in this area have erupted and are emitting
volcanic ash. Both the volcanic groups on Bacan Island and the northern arm of Halmahera
are connected by partial melting, as indicated by low Vp, low Vs, high Vp/Vs above the
Molucca Sea Plate, which subducts to the east.

The upper curvature of the Molucca Sea Plate in the northern part is submerged deeper
into the upper mantle layer at a depth of ~150 km compared with the southern part. It was
also found that beneath the Central Ridge of the Molucca Sea, at latitude 1.10 ◦N, the low
Vp, low Vs, and high Vp/Vs in the crust and mantle can be interpreted as highly fractured
and water-saturated rock material; while high Vp, high Vs, and low Vp/Vs are observed in
the western (beneath the ST) and eastern parts (beneath the HT), which can be interpreted
as rock material that experienced micro-cracks that have since closed due to high pressure.
Further north, the low Vp, low Vs, and high Vp/Vs anomalies shift eastward and extend to
HT with a clear boundary between low and high velocity below the Central Ridge of the
Molucca Sea.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/app122010520/s1, Figure S1: Molucca Sea Plate profile overlaid with seismic
profile from 1959–1966 which forms a double subduction pattern was modified from [7]. NW: Northwest,
SE: Southeast. Sign ?: the length of the plate subduction to the west and east is not yet known. The black
dot denotes earthquakes.; Figure S2: Histogram of the number of phases per station; Figure S3: Horizontal
and vertical ray path coverage (West-East: below and North-South: right). The brown line is the ray path
connecting hypocenters locations with BMKG stations; Figure S4: Wadati diagram for all events used in
this study. Tp is arrival times of the P-wave and Ts−Tp is the difference between S- and P-waves arrival
times. The Gray dot is the picks of phase time from each station at a certain event, and the solid line is
the slope to determine the Vp/Vs value which is 1.76; Figure S5: Trade-off curve between data variance
and model variance. We chose damping parameters Vp and Vp/Vs to be 150 and 130, respectively. We
use this damping value to achieve a good compromise between data variance and model variance for
the inversion, both the real data and the checkerboard test; Figure S6: Vertical cross-section of Derivative
Weight Sum (DWS) on profile South-North: A-A’, B-B’ and profile West-East: C-C’, D-D’. The DWS is used
to find the number of ray paths that pass through a grid node. The first column is the Vp value, and the
second column is Vp/Vs value (logarithmic scale). The black color is the high-resolution zone, and the red
triangle is the volcanoes; Figure S7: Vertical cross-section of Ray Hit Count (RHC) on profile South-North:
A-A’, B-B’ and profile West-East: C-C’, D-D’ for making a thorough cut in a particular DWS. The first
column is the Vp value, and the second column is Vp/Vs value (logarithmic scale). The black color is the
high-resolution zone, and the red triangle is the volcanoes; Figure S8: Vertical cross-section of Diagonal
Resolution Element (DRE) on profile South-North: A-A’, B-B’ and profile West-East: C-C’, D-D’ which
concerning matrix resolution of R (damped least-squares problems), with an R-value between 0 and 1. The
first column is the Vp value, and the second column is Vp/Vs value. The black color is the high-resolution
zone, and the red triangle is the volcanoes; Figure S9: The distribution frequency estimated error location.
(A–C) are the x, y, and z directions; Figure S10: The distribution between the number of events and
the azimuthal gap; Figure S11: The distribution between P- and S-travel times and epicentral distance;
Figure S12: Histogram of travel time residual (black and yellow bars color are initial and final travel time
residual, respectively). The mean travel time residual decreased from −1.111 s to 0.156 s. The Binwidth
histogram is 0.2 s; Figure S13: The curve between the number of iterations and weighted RMS residual.
Tomography inversion became convergent after 15 iterations, and the weighted RMS residual decreased
by approximately 47%; Figure S14: Histogram of RMS Residual (initial: yellow bars color and final: black
bars color). The mean of RMS residual decreased by approximately 33%. The Binwidth histogram is 0.1 s;
Figure S15: The horizontal section of CRT profiles from a depth of 0 to 330 km. The purple dashed line
is an area that is good well-resolved. The blue color indicates positive perturbations, and the red color
indicates negative perturbations relative to the initial model. The first column is Vp perturbation, and the
second column is Vp/Vs perturbation; Figure S16: Horizontal tomographic inversion results for Vp, Vs,
dan Vp/Vs ratio from a depth of 0 to 330 km. The bright area is an area that good well-resolved, and the
blurred area is an area that was not well-resolved; Table S1: The highest value of Vp and Vp/Vs for the
DWS, RHC, and DRE resolution tests.
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Abstract: Seismic data are considered crucial sources of data that help identify the litho-fluid facies
distributions in reservoir rocks. However, different facies mostly have similar responses to seismic
attributes. In addition, seismic anisotropy negatively affects the facies predictors extracted from
seismic data. Accordingly, this study aims at estimating zero-offset acoustic and shear impedances
based on partial-stack inversion by two methods: statistical modeling and a multilayer feed-forward
neural network (MLFN). The resulting impedance volumes are compared to those obtained from
isotropic simultaneous inversion by using impedance logs. The best impedance volumes are applied
to Thomsen’s anisotropy equations to solve for the anisotropy parameters Epsilon and Delta. Finally,
the shear and acoustic impedances are transformed into elastic properties from which the facies and
fluid distributions are predicted by using the logistic regression and decision tree algorithms. The
results obtained from the MLFN show better matching with the impedance and facies logs compared
to those obtained from isotropic inversion and statistical modeling.

Keywords: anisotropy; rock physics; inversion; parameter estimation

1. Introduction

Seismic data have proved to be important quantitative tools that can bring valuable
information about rock properties, especially when being integrated with statistical tools.
For example, multiattribute transforms were used to predict log properties from seismic
data [1]. Another common approach is to invert seismic data into elastic properties and
then into petrophysical properties by statistical relationships obtained from logging data [2].
Porosity, lithology, and fluid properties were also estimated with the resampling of rock
physics constraints [3–5]. Russel used multivariate statistics and neural networks to predict
reservoir parameters from seismic attributes [6]. In addition, Bachrach inverted porosity
and water saturation by stochastic rock physics modeling [7].

Other methodologies consider reservoir parameter inversion based on Bayesian clas-
sification theory [8,9]. Moreover, a geostatistical inversion method was used to predict
reservoir properties in a higher certainty than that of deterministic methods [10]. In ad-
dition, some studies derived elastic properties from prestack seismic inversion to define
facies [11,12]. Another straightforward methodology is to combine petroelastic modeling
and stochastic inversion to predict hydrocarbon zones based on Bayesian theory [13]. A rock
physics model was postulated to derive the elastic rock properties from mineral parameters
and structure information [14]. Recently, rock properties were estimated from angle stack
seismic data by a Bayesian inversion based on the Gibbs sampling algorithm [15].

Machine learning (ML) tools have been widely used in reservoir characterization [16].
For instance, formation porosity and permeability were estimated from logging and core
data by using an artificial neural network (ANN) [17–19]. Other studies also used neural
networks to predict essential rock properties such as permeability [20–22] and shear wave
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velocity [23–26]. Neural networks can be combined with seismic attributes to predict
rock physics properties from seismic data [27–30]. In addition, facies distributions were
estimated by both supervised and unsupervised ML algorithms such as ANN [31,32], con-
volutional neural network (CNN) [33–35], support vector machine (SVM) [36–41], bagged
tree (BT) [42,43], relevance vector machine (RVM) [44], seed region growing (SRG) [45],
self-organizing map (SOM) [46,47], principal component analysis (PCA) [48–50], and gener-
ative topographic mapping (GTM) [51]. Some challenges are common in ML facies models
such as over-fitting and over-parametrization. Moreover, such models should consider the
limitations of seismic data to eliminate error as much as possible. One of the problems that
contributes to the uncertainty of seismic-derived methods is seismic anisotropy.

This study aimed at forecasting zero-offset P-impedance (ZP) and S-impedance (ZS)
by using statistical modeling and MLFN after applying a partial-log-constrained inversion
to the near, mid, and far angle stacks. The outputs of this objective were zero-offset
impedances that were more accurate than those obtained from isotropic simultaneous
inversion. Another objective was to compare the abilities of both statistical modeling and
neural networks to turn the randomness of the data into identified patterns. The next step
was to apply the best ZP and ZS volumes to Thomsen’s anisotropy equations to solve for
the anisotropy parameters, Epsilon and Delta, assuming a vertical transverse isotropic (VTI)
medium. Next, the zero-offset ZP and ZS were used as inputs to a facies model, which
predicted the distribution of three classes: gas sand, wet sand, and shale. The idea of the
facies model is to forecast the sand and gas probabilities by logistic regression [52] and then
use them as inputs for a decision tree to predict the distribution of each facies class.

The three offset stacks were converted into angle stacks, which were the inputs of
the partial-stack inversion, and angle gathers, which were the inputs of the simultaneous
isotropic inversion. The ranges of the near, mid, and far stacks were from 5° to 15°, 15°
to 25°, and 25◦ to 40°. The partial-stack inversion resulted in the ZP and ZS volumes at the
central angles, 10°, 20°, and 32.5°, from which the zero-offset properties were forecasted.
The target zone consisted of two gas-bearing shaly sand reservoirs in the Malay basin:
A and B. The training data of the Bayesian and MLFN models were gathered from the
wells (×1) and (×2); however, the facies log was only obtained at the well (×1) due to the
availability of the petrophysical cut-offs and oil-mud resistivity imaging data. Another
challenge was that the ZS log was only available at the well (×1), so it was estimated from
other log properties by the MLFN neural network at the well (×2).

The resulting ZP and ZS were compared to those obtained from isotropic inversion by
using the impedance logs. The MLFN resulted in the most accurate zero-offset impedances.
Therefore, the ZP and ZS volumes were applied to Thomsen’s anisotropy equations to
solve for the anisotropy parameters Epsilon and Delta. The ZP and ZS of MLFN and
isotropic inversion were transformed into the near and far elastic impedances, which
were the lithology predictors, and then into the Mu–Rho (MR) ratio, Lambda–Rho/Mu–
Rho (LR/MR) ratio, and Poisson’s ratio (PR), which are the fluid predictors. The litho-
fluid model was applied to the inverted elastic volumes to forecast the litho-fluid facies
distribution. The facies log was used to validate the predicted facies obtained from the
isotropic and anisotropic approaches.

2. Seismic Anisotropy

Seismic anisotropy is the dependence of the seismic velocity on the incident angle [53–55].
Wave propagation in anisotropic media has been discussed by various studies [53,56–58].
To understand the seismic anisotropy of the Earth’s subsurface, the relationship between the
internal forces (stress) and deformation occurring in the medium (strain) should be defined.
When an elastic wave propagates through the subsurface, the stress–strain relationship can
be obtained according to Hooke’s law as shown below [59]:

σij = cijklekl (1)
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where σij is the stress tensor, ekl is the strain tensor, and cijkl is the elastic (stiffness) tensor,
which is a fourth-order tensor with 81 independent components. Both the strain and stress
tensors are symmetric [60], resulting in:

cijkl = cjikl = cijlk (2)

The 81 independent components are accordingly reduced to 36 due to the symmetry
in the stress and strain tensors. Therefore, the elastic tensor (cijlk) is replaced with a 6 × 6
matrix (cαβ), where [61]:

α = ij = ji, β = kl = lk (3)

where α and β are the new indices of the elastic tensor. The resulting (6 × 6) notation matrix
is expressed as shown below:⎡⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13 C14 C15 C16
C12 C22 C23 C24 C25 C26
C13 C23 C33 C34 C35 C36
C14 C24 C34 C44 C45 C46
C15 C25 C35 C45 C55 C56
C16 C26 C36 C46 C56 C66

⎤⎥⎥⎥⎥⎥⎥⎦ (4)

There are several types of symmetry for the independent components that determine
the degree of anisotropy. The maximum anisotropy degree occurs at the lowest possible
symmetry, which is called “triclinic” symmetry and occurs when the (Cαβ) matrix has
21 different nonzero components, which is considered the maximum number of elements
required to describe an anisotropic medium [58]. On the other hand, the isotropic case
occurs at the highest symmetry case with a smaller amount of independent components.

The most realistic symmetry case of the Earth’s subsurface is polar symmetry, which
has a single pole of rotational symmetry (Z-axis) that is different from the other two axes (X
and Y) [61]. This anisotropy case is called transverse isotropy (TI), at which rock properties
are assumed invariant about an axis of symmetry. If the symmetry axis is vertical, this
means that the layers are considered horizontal and is hence called vertical transverse
isotropy (VTI). Another case is called tilted transverse isotropy (TTI), which is a more
realistic case because it follows the variations of the dip angles of layers. Polar symmetry
can be described by a matrix of five different independent components, as shown below:⎡⎢⎢⎢⎢⎢⎢⎣

C11 C11 − 2C66 C13 0 0 0
C11 − 2C66 C11 C13 0 0 0

C13 C13 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C66

⎤⎥⎥⎥⎥⎥⎥⎦ (5)

There are three anisotropy parameters that can define any anisotropy degree in terms
of the stiffness components of a TI medium [53]. The anisotropy parameters are called
Epsilon (ε), Delta (δ), and Gamma (γ). The weaker the anisotropy degree is, the closer these
parameters are to zero. The anisotropy parameters in the weak anisotropy case have values
less than 1.

Epsilon is the fractional difference between the vertical and horizontal P-wave veloci-
ties. It generally has a positive sign because rocks are less compressible along bedding than
across bedding. It can be obtained by the following equation:

ε =
VPH − VPV

VPV
=

C11 − C33

2C33
(6)

where ε is the anisotropy parameter Epsilon, VPH is the horizontal P-wave velocity, VPV is the
vertical P-wave velocity, and C11 and C33 are the stiffness components of the elastic tensor.
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The Delta parameter controls the near-vertical anisotropy and does not relate to the
horizontal velocity, so it can be positive or negative. Assuming weak anisotropy, the Delta
parameter refers to the stiffness components by the following equation:

δ =
(C13 + C44)

2 − (C33 − C44)
2

2C33(C33 − C44)
(7)

where δ is the anisotropy parameter Delta, while C13, C44, and C33 are the stiffness compo-
nents of the elastic tensor.

The Gamma parameter is the fractional difference between the vertical and horizontal
S-wave velocities and can be given as follows:

γ =
VSH − VSV

VSV
=

C66 − C44

2C44
(8)

where γ is the anisotropy parameter Gamma, VSH is the horizontal S-wave velocity, VSV is the
vertical S-wave velocity, and C66 and C44 are the stiffness components of the elastic tensor.

The P- and S-wave velocities can be defined in terms of the anisotropy parameters
based on the weak anisotropy assumption [53,61], as shown below:

VP(θ) = VP0
[
1 + δsin2(θ)cos2(θ) + εsin4(θ)

]
(9)

VSV(θ) = VS0
[
1 +

(
VP0

VS0

)2

(ε − δ)sin2(θ)cos2(θ)
]

(10)

VSH(θ) = VS0(1 + γsin2(θ)) (11)

where VP(θ) and VSV(θ) are the vertical P-wave and S-wave velocities, respectively, VSH(θ)
is the horizontal S-wave velocity, VP0 and VS0 are the zero-offset P-wave and S-wave
velocities, respectively, at θ = 0, and θ is the incident angle.

3. The Effect of Seismic Anisotropy on Seismic Data

Seismic anisotropy causes a misinterpretation of seismic data, which affects the final
reservoir model. For example, if seismic anisotropy is neglected, a target may be expected at
the wrong depth. Another problem is that seismic anisotropy affects the angle-dependent
reflectivity calculation, which is further used for prestack seismic applications such as
amplitude versus offset (AVO) and elastic impedance (EI). Figure 1 shows a comparison
between the isotropic and anisotropic assumptions, which yield significantly different
reflectivities at the top of the C-sand reservoir in the Sawan gas field [62]. In addition to
that, seismic anisotropy adds uncertainty to prestack seismic inversion, which results in
inaccurate rock properties.

A common workflow of anisotropic seismic inversion is to obtain the anisotropy
parameters and then process seismic data before the inversion process. The anisotropy
parameters can be obtained from various types of data. However, the most confident
sources of anisotropy quantification are core data. Traditional laboratory ultrasonic mea-
surements of intrinsic anisotropy [63] depend on a limited number of orientations, resulting
in inaccurate anisotropy measurements. On the other hand, more effective methods [64–67]
depend on many ray paths having various inclination angles to the bedding plane.

A numerical study was applied to ultrasonic measurements according to Markov
chain Monte Carlo simulation (MCMC) [68]. The idea of this study was to obtain the
probability distribution curves of the anisotropy parameters based on the layering effects
of five lithofacies: dry sandstone, wet sandstone, dry carbonate, wet carbonate, and shale.
Accordingly, the anisotropy parameters were simulated for each facies class. The Backus
averaging method helped calculate the harmonic means of the anisotropy parameters,
assuming a horizontally layered inhomogeneous medium [69].
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Figure 1. A plot of the reflection coefficient on the Y-axis versus the angle of incidence on the X-axis.
The blue and green lines represent the reflectivities obtained based on the isotropic and anisotropic
assumptions, respectively.

Another source of anisotropy information is the vertical seismic profile (VSP). For in-
stance, one study aimed at obtaining the horizontal slowness (Sx) as well as the vertical slow-
ness (Sz) and then combining them in the vector way to yield the scalar slowness [70,71].
This method results in accurate arrival time and depth values, but it assumes that layers
are homogeneous and horizontal, which is not realistic [61].

The Delta parameter was estimated by using both prestack time data and sonic
logs [72]. Moreover, a method, called The Empirical Relationship relates the anisotropy
parameters to the shale volume (Vsh) that causes the intrinsic anisotropy [73–75]. The vol-
ume fraction and degree of compaction are assumed to be the controlling factors of the
orientation of clay minerals and hence the anisotropy parameters. This method is conve-
nient for heterogeneous media because it solves for the intrinsic anisotropy components.
However, the problem of obtaining an accurate zero-offset velocity away from wells still
exists. Another study considered the intrinsic anisotropy in shale based on an orientation
distribution function [76]. This study aimed at modeling anisotropic elastic properties
based on two approaches. The first approach was to apply an anisotropic differential effec-
tive medium model (DEM) based on the textural information about the kerogen network
in kerogen-rich shale. The second approach was to use the DEM model with a compaction-
dependent orientation distribution function to study the anisotropy in laminated shaly
sand rocks.

The anisotropic elastic constants were estimated as functions of the fluid-filled porosity
and the aspect ratio of the inclusions [77]. Another study introduced an anisotropic dual
porosity (ADP) model to forecast the elastic properties of shaly sand rocks based on a
combination of the anisotropic formulations of self-consistent approximation (SCA), DEM,
and anisotropic Gassmann theory [78].

Kelter also estimated both Epsilon and Delta from synthetic modeling through some
algorithms such as neural networks and regridding inversion [56]. The idea of this method
is to model synthetics by using a PP and PS survey such that layer boundaries and material
properties are predefined, and then the survey is simulated by the ray tracing method
to generate a synthetic model from which the anisotropy parameters are forecasted. The best
parameter estimates are selected according to the comparison between the synthetic model
and the real seismic data. This method gives reliable results but only at well locations.

Another method was set by Liner and Fe [79], who estimated Thomsen’s parameters
from routine well logging data, following a theoretical framework which uses sonic logs
to provide a fine-layered isotropic elastic model that can be used to calculate anisotropy
parameters as functions of depth and seismic wavelength [80]. Thomsen’s parameters
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can be also estimated from the average velocity, obtained from sonic data, and the mean
inclination angles of deviated wells [81]. However, the results of that study were inaccu-
rate because most of the wells’ inclination angles were below 5◦, showing no anisotropy
effect on seismic data. The residual moveout analysis of diving waves has been used to
estimate anisotropy parameters by applying different parametrization scenarios [82]. This
method is reasonably accurate even for large values of velocity gradients, but it assumes
that the velocity increases linearly with depth, while the anisotropy parameters do not.
However, this assumption can only apply to homogeneous media.

The previous methods can be used to obtain the anisotropy parameters and then
process seismic data to obtain zero-offset images, which can be inverted into accurate rock
properties. However, a different approach is to transform the layer properties, obtained
from isotropic inversion, into zero-offset parameters based on Ruger’s reflectivity function
in horizontal transverse isotropy (HTI) media [83]. Another anisotropic prestack seismic
inversion [84] is based on the Markov random field (MRF), which can establish dependen-
cies between the spacial wave propagation field’s nodes based on prior constraints [85].
The weights of those constraints have been optimized by the anisotropic diffusion method
to remove the anisotropy effect in three different models: the symmetrical, vertical asym-
metrical, and asymmetrical models. This method has produced encouraging results for Vp,
Vs, and density.

Based on the elastic wave equation, the anisotropic elastic waveform inversion was
applied to invert for the P- and S-wave velocities, density, and Thomsen’s parameters [86].
The method is based on the idea of eliminating the error between the synthetic and field
seismic waveform data according to a misfit function [87]. The anisotropic inversion
outputs were successfully used to reduce the ground-roll noise in 2D seismic data.

Another methodology depends on multiscale phase inversion, assuming an anisotropic
medium [88]. The advantage of this method is that it avoids the nonlinearity of the misfit
functions [89] by adding wave-number details to the velocity model by a skeletonized in-
version. This method assumes a VTI medium with Delta equal to zero, while the zero-offset
P-wave velocity and Epsilon are inverted, resulting in more accurate results compared to
full-wave inversion.

It can be concluded that most of the previous methods have quantified seismic
anisotropy only at well locations. The interpolation of the anisotropy parameters be-
tween wells is challenging and should be further linked to the effect of the facies dis-
tribution. Therefore, the current study has improved a previous anisotropic inversion
approach [90] which solves for the zero-offset impedances and anisotropy parameters, Ep-
silon and Delta, based on partial-stack inversion and Thomsen’s anisotropy equations [91].
On the other hand, our study estimates ZP and ZS based on statistical modeling and MLFN
rather than calculating them empirically.

The advantage of ML algorithms is that they reduce the random error of partial-stack
inversion and result in accurate impedances that best match the logs.
Another contribution is that the facies model uses logistic regression to model litholo-
gies and fluids and then combines them using the decision tree algorithm. The integration
of two ML algorithms adds stability to the model and raises the chance of being applied to
other fields. Moreover, the model includes the depth variable, which acts as a trend factor
that highly affects the facies distribution.

4. Methodology

The study workflow, as shown in Figure 2, begins with inverting the angle gathers
into ZP, ZS, and density volumes and inverting the angle stacks into ZP and ZS volumes at
the near, mid, and far incident angles. Next, the partially inverted impedances are used to
forecast the zero-offset impedances by the statistical and MLFN models. The impedance
volumes are then compared to each other by using the impedance logs. The best ZP and
ZS volumes are applied to Thomsen’s anisotropy equations to solve for the anisotropy
parameters, Epsilon and Delta. The next step is to transform the impedance and density
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volumes into the elastic volumes, from which the sand and gas probabilities are estimated
by using the logistic regression model. These probabilities are then inserted into a decision
tree model to forecast the distribution of the facies classes: gas sand, wet sand, and shale.
The inversion processes in our study were carried out by using the Hampson–Russel
software provided by the CGG company.

Figure 2. A flow diagram showing the methodology of estimating the facies distribution from the
zero-offset acoustic and shear impedances, which are obtained from isotropic inversion, statistical
modeling, and MLFN.

This study is not applicable to poststack data. The impedance model’s accuracy
depends on the seismic data quality as well as the angle gathers’ range. The wider the
angle range, the more enhanced signal-to-noise ratio and hence the more accurate the
model. Moreover, both the P- and S-impedances should be available in order to solve
for the anisotropy parameters: Epsilon and Delta. The study assumes a VTI medium
which neglects some anisotropy-related factors such as the layers’ dip angles and fractures;
however, impedance modeling by MLFNs accurately solves for the zero-offset impedances
by normalizing the error and mitigating the anisotropy effect simultaneously. The study’s
facies model is only applicable to the three facies classes: gas sand, wet sand, and shale.
However, the model can be extended to include more classes. Moreover, the applicability
of the model to other fields can be enhanced if there are more facies data available from a
large number of wells.
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4.1. Isotropic Simultaneous Inversion

Simultaneous inversion is a prestack seismic inversion that simultaneously inverts
the angle gathers into the reflectivities of the ZP, ZS, and density based on the linear
relationships between the ZP and each of the ZS and density. The methodology used in
this study [92] directly inverted for the ZP, ZS, and density [93,94].

The Aki–Richards equation [95] is an approximation of the relationship between the
P-wave reflectivity between two media and the incident angle as follows:

R(θ) =
1
2
(ΔV/V + Δρ/ρ)− 2(W/V)2(2ΔW/W + Δρ/ρ)sin2θ +

1
2
(ΔV/V)tan2θ (12)

where R(θ) is the P-wave reflectivity at an incident angle (θ), while V, W, and ρ are the
average P-wave velocity, S-wave velocity, and density between the two media, respectively.
The idea of Fatti’s equation [93] is to re-express the Aki–Richards equation in (12) in terms
of the acoustic and shear impedances as follows:

R(θ) =
1
2

ΔI
I
(1 + tan2θ)− 4

(
W
V

)2(ΔJ
J

)
sin2θ −

[
1
2

(
Δρ

ρ

)
tan2θ − 2

(
W
V

)2(Δρ

ρ

)
sin2θ

]
(13)

where I is the acoustic impedance, J is the shear impedance, the term ( 1
2

ΔI
I ) is the zero-offset

P-wave reflectivity, and the term ( 1
2

ΔJ
J ) is the zero-offset S-wave reflectivity, such that:

1
2

ΔJ
J

=
1
2
(ΔV/V + Δρ/ρ),

1
2

ΔJ
J

=
1
2
(ΔW/W + Δρ/ρ) (14)

Fatti’s equation could be re-expressed by replacing the reflectivities by the rock prop-
erties as follows:

s(θ) =
1
2

C1Wθ Dln(ZP) +
1
2

C2Wθ Dln(ZS) + C3Wθ Dln(ρ) (15)

where s(θ) is the angle trace, W(θ) is the angle-dependent wavelet, D is a derivative
operator, ZP is the acoustic impedance, ZS is the shear impedance, ρ is the density, and θ is
the incident angle. The terms C1, C2, and C3 are given by:

C1 = 1 + tan2θ, C2 = −8
(VS

VP

)
tan2θ, C3 = −0.5tan2θ + 2

(VS
VP

)2sin2θ (16)

where C1, C2, and C3 are constants, θ is the incident angle, VS is the S-wave velocity, and VP
is the P-wave velocity.

Next, the terms ln(ZP), ln(ZS), and ln(ρ) were coupled by the following equations:

ln(Zs) = kln(Zp) + kc + Δln(Zs) (17)

ln(ρ) = mln(Zp) + mc + Δln(ρ) (18)

where k and m are the intercepts of the linear relations and kc and mc are constants, while
Δln(ZS) and Δln(ρ) are controlled by the deviations away from the best-fit lines of the
linear relationships. ΔLD and ΔLS are the displacements of ln(ρ) and ln(ZS) due to the
deviation from the best-fit lines.

The next step was to apply the derivative operator (D) to Equations (3) and (4):

D ln ZS = kDlnZP + DΔlnZS (19)

D ln ρ = mDlnZP + DΔlnρ (20)

where D is the derivative operator, while k and m are the intecepts of the linear relations.
Eventually, the algorithm was applied to an initial guess and then iterated until it reached
a solution at which the initial model matched the real data with the least-squared error.
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4.2. Partial-Log-Constrained Inversion

The separate inversion of angle stacks is based on a partial inversion approach that
obtains the zero-offset P- and S-wave velocities from the inverted P- and S-waves at different
angular ranges [90]. The idea is based on Thomsen’s equations in (9) and (10), which relate
the vertical P-wave (VP) and S-wave (VS) velocities to the anisotropy parameters, Epsilon
and Delta, in VTI media.

Partial-log-constrained inversion requires a wavelet to be extracted from each angle
stack so that the wavelet is centered at the average angle of the angle stack [90]. An ini-
tial model was created from logging data to guide the inversion. This method required
S-wave velocity logs in the initial model to constrain the inversion. Each partial seis-
mic volume was inverted into a velocity volume at the central angle of its angle range.
Next, the velocity-domain Thomsen’s equations in (9) and (10) were used to solve for the
zero-offset P- and S-wave velocities as well as the Epsilon and Delta parameters, as shown
in the following equations:⎡⎢⎢⎢⎣

1 sin2(θ1)cos2(θ1) sin4(θ1)
1 sin2(θ2)cos2(θ2) sin4(θ2)
...

...
...

1 sin2(θn)cos2(θn) sin4(θn)

⎤⎥⎥⎥⎦
⎡⎣ VP0

VP0δ
VP0ε

⎤⎦ =

⎡⎢⎢⎢⎣
VqP(θ1)
VqP(θ2)

...
VqP(θn)

⎤⎥⎥⎥⎦ (21)

where VP0 is the zero-offset P-wave velocity, ε and δ are the anisotropy parameters, VqP is the
quasivertical P-wave velocity, θ is the incident angle, and n is the number of partial stacks.⎡⎢⎢⎢⎣

1 sin2(θ1)cos2(θ1)
1 sin2(θ2)cos2(θ2)
...

...
1 sin2(θn)cos2(θn)

⎤⎥⎥⎥⎦
[

Vs0
V2

P0(ε−δ)
Vs0

]
=

⎡⎢⎢⎢⎣
VqSV(θ1)
VqSV(θ2)

...
VqSV(θn)

⎤⎥⎥⎥⎦ (22)

where VS0 is the zero-offset P-wave velocity, ε and δ are the anisotropy parameters, VqSV
is the quasivertical S-wave velocity, θ is the incident angle, and n is the number of the
partial stacks.

The log-constrained inversion of partial stacks was adopted from the nonlinear opti-
mization inversion [90], such that the objective function is obtained by:

f (V) =‖ S − D ‖→ min (23)

where V is the inverted P- or S-wave velocity, D is the angle-domain seismic data, and S
is the corresponding prediction, which can be expressed according to the convolution
model [96]. The reflectivity function is based on the Aki and Richard approximation of the
angle-dependent reflectivity [97], as shown below:

R(θ) = R(0) + Asin2(θ) + Btan2(θ) (24)

where R(θ) is the reflectivity at an incident angle θ, while R(0) is the zero-offset reflectivity,
which is given by:

R(0) =
1
2

(
ΔVP
VP

+
Δρ

ρ

)
(25)

A = −2
(

VS
VP

)2(2ΔVS
VS

+
Δρ

ρ

)
(26)

B =
1
2

(
ΔVP
VP

)
(27)
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where VP, VS, and ρ are, respectively, the average P-wave velocity, S-wave velocity, and den-
sity of the underlying and overlying layers, while ΔVP, ΔVS, and Δρ are the differences
between these properties at the underlying and overlying strata.

The term Δρ
ρ can be obtained by Gardner’s equation as follows [98]:

Δρ

ρ
=

1
4

(
ΔVP
VP

)
(28)

According to Equations (24)–(28), the reflectivity will be as follows:

R(θ) =
(

5
8
− 1

2
V2

S
V2

P
sin2θ +

1
2

tan2θ

)
ΔVP
VP

− 4
V2

S
V2

P
sin2θ

ΔVS
VS

(29)

After inverting the partial stacks separately into VP and VS volumes at the near, mid,
and far angles, the zero-offset velocities Epsilon and Delta were solved by Equations (21)
and (22).

The current study applied the same methodology to ZP and ZS by replacing the
velocities of Equations (9) and (10) by impedances, as shown below:

ZP(θ) = ZP0
[
1 + δsin2(θ)cos2(θ) + εsin4(θ)

]
(30)

ZS(θ) = ZS0
[
1 +

(
ZP0

ZS0

)2

(ε − δ)sin2(θ)cos2(θ)
]

(31)

Partial inversion is sensitive to the quality of seismic data because the magnitude of
the noise may be more than that of the anisotropy effect. Hence, the zero-offset impedances
were estimated from the impedances at the near, mid, and far incident angles by using
statistical modeling and MLFN. Seismic data consisted of three 3D volumes of angle
ranges, from 5◦ to 15°, 15◦ to 25°, and 25◦ to 40°. Accordingly, three partial stacks were
created at the near, mid, and far central incident angles: 10°, 20°, and 32.5°, respectively.
The advantage of impedance modeling is that it normalizes the error and reduces the
anisotropy effect simultaneously.

An important step prior to the modeling process is to calculate Epsilon and Delta at
the well locations in order to have an idea about the degree of anisotropy within the study
area and to specify the model’s assumptions accordingly. The anisotropy parameters were
calculated by the methodology of Liner and Fei [79], who calculated the layer-induced
stiffness parameters from the averaged properties of the isotropic elastic layers and then
obtained Epsilon and Delta as functions of those parameters. The stiffness parameters were
obtained from the following equations:

a = 〈 λ

λ + 2μ
〉

2
〈 1

λ + 2μ
〉
−1

+ 4〈μ(λ + μ)

λ + 2μ
〉 (32)

c = 〈 1
λ + 2μ

〉
−1

(33)

f = 〈 1
λ + 2μ

〉〈 1
λ + 2μ

〉
−1

(34)

l = 〈 1
μ
〉
−1

(35)

where 〈〉 is the Backus averaging symbol, μ is the shear modulus, and λ is Lame’s constant,
while a, c, f , and l are the stiffness parameters. Next, Epsilon and Delta were obtained from
the following equations:

ε =
a − c

2c
(36)
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δ =
( f + l)2 − (c − l)2

2c(c − l)
(37)

Another premodeling step is to explore the relations between the zero-offset impedances,
which are the ZP and ZS logs, and the angle impedances, which are the composite traces
obtained from the partial-stack inversion. Figure 3 shows a fair linear relationship based on
the data of wells (×1) and (×2), which consist of 1292 observations for ZP 1582 observations
for ZS.

(a) (b) (c)

(d) (e) (f)

Figure 3. Plots of the zero-offset P-impedance (ZP0) versus each of the partially inverted P-
impedances (a) Zp-Near, (b) Zp-Mid, and (c) Zp-Far, while the zero-offset S-impedance (ZS0) is
plotted versus each of the partially inverted S-impedances (d) Zs-Near, (e) Zs-Mid, and (f) Zs-Far.

The linearity between variables is proven visually through the best-fit lines (in blue).
In addition, the Pearson correlation coefficient (R-value) was calculated in Python using
NumPy. The R-values show strong positive correlations at the near and mid angles, while
the correlation is moderate at the far angle. This is matching with Thomsen’s equations
in (9) and (10), which consider a linear relationship between the zero-offset velocity and
the velocity at an angle theta.

Accordingly, a linear regression model was firstly created to forecast the zero-offset
impedance from the partially inverted impedances based on the MCMC simulation. As the
R-value between each of the P- and S-impedances and their far-angle impedances was
moderate due to the anisotropy effect, the MLFN was created to better estimate the zero-
offset impedances and turn the randomness in the data points into recognized patterns.

4.3. Zero-Offset Impedance Modeling
4.3.1. Statistical Modeling

The idea of the model is to fit a linear relationship between the zero-offset impedance,
which is the response variable, and the partially inverted impedances, which are the
explanatory variables. The output of the model consists of the posterior means of the
coefficients of the three partially inverted impedances. The general form of the model is:

Imp0 = b1 Impθ1 + b2 Impθ2 + b3 Impθ3 (38)
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where Imp0 is the zero-offset ZP or ZS, while b1, b2, and b3 are the model’s coefficients and
Impθ1, Impθ2, and Impθ3 are the impedances at the near, mid, and far angles, respectively.
The model’s parameters are estimated based on Bayesian theory and MCMC simulation.
The Bayesian model consists of three components: the likelihood, priors, and posterior.
The priors of the model were the parameters of the proposed distribution of the model
coefficients. The posterior component was considered the probability distribution function
of all realizations of the simulated coefficients.

The linear expression of the ZP0 model was obtained from Thomsen’s equation in (9),
which can be rewritten as follows:

ZP0 = bZP(θ) (39)

where:
b =

1
1 + δsin2(θ)cos2(θ) + εsin4(θ)

(40)

By substituting the near, mid, and far P-impedances, ZP1, ZP2, and ZP3, respectively,
to Equation (39), three equations were obtained as follows:

ZP0 = b1ZP1 (41)

ZP0 = b2ZP2 (42)

ZP0 = b3ZP3 (43)

By adding the three Equations (41)–(43), the linear expression will be as follows:

ZP0 = 0.33b1ZP1 + 0.33b2ZP2 + 0.33b3ZP3 (44)

Similarly, the linear expression of the ZS0 model was obtained based on Thomsen’s
equation in (10), which can be rewritten as shown below:

ZS0 = b.ZS(θ) (45)

where
b =

1

1 +
(

ZP0
ZS0

)2

(ε − δ)sin2(θ)cos2(θ)

(46)

After adding the three equations of the near, mid, and far angles, the linear expression
will be as follows:

ZS0 = 0.33b1ZS1 + 0.33b2ZS2 + 0.33b3ZS3 (47)

The likelihood function of the ZP or ZS models can be written as shown below:

Imp0|bj, (Impθ)i, σ2 ∼ N
([

b1(Imp1)i + b2(Imp2)i + b3(Imp3)i
]
, σ2) (48)

Given the coefficients vector b, the explanatory variables vector Impθ , and the variance
σ2, the zero-offset impedance Imp0 follows a normal distribution with a mean equal to the
linear expression of the covariates and coefficients, where (i) is the number of observations.

The next layer of the model is the coefficients vector bj, which consists of b1, b2,
and b3 such that the three coefficients follow a common normal distribution. The mean
and variance of this distribution were obtained from Equation (40) for the ZP model and
Equation (46) for the ZS model. Based on the weak anisotropy assumption, the mean
of the anisotropy parameters was considered zero and the standard deviation was 0.2.
Moreover, the squared ratio of ZP and ZS was set, according to the wells’ data, to have a
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mean equal to 6 and a standard deviation (SD) equal to 3. The prior function for the ZP
and ZS models can be written as follows:

bj ∼ N(μ, τ), j = {1, 2, 3} (49)

where μ and τ are, respectively, the mean and variance of the normal distribution of the
coefficients vector b, which has an index (j) from 1 to 3.

The variance of the model was assumed to follow an inverse gamma distribution,
which depends on the shape parameter α and the scale parameter β, which act as priors of
the parameter σ2. The distribution function of the σ2 is shown below:

σ2 ∼ IG(α, β) (50)

The idea of the model is to calculate the the zero-offset impedance by substituting
the posterior means of the coefficients to Equation (38). The MCMC was used to draw
multiple random realizations from the proposed normal distribution. Based on the law of
large numbers, the average of a random sample from a distribution converges to the true
mean of that distribution [99]. In other words, the Markov chains would converge to the
posterior means of the model’s coefficients. The advantage of the MCMC is that it can solve
for complicated posterior distributions which are difficult to be calculated mathematically.

Finally, the posterior means of the ZP and ZS models were substituted into
Equation (38) to solve for the zero-offset impedances. The final graphical representa-
tion of the impedance model is shown in Figure 4, where Imp0 is the zero-offset impedance,
Imp1, Imp2, and Imp3 are the impedances at the near, mid, and far angles, respectively,
i is the observation index that ranges from 1 to n, bj is the common distribution of the
coefficients which depends on the mean μ and variance τ, and σ2 is the variance of the
model which depends on shape parameter α and scale parameter β.

Figure 4. The graphical representation of the statistical ZP or ZS models.

4.3.2. Multilayer Feed-Forward Neural Network (MLFN)

Due to the availability of vast amounts of data in recent years, ANNs have become the
most common prediction methods [100]. One of the widely used ANNs is the multilayer
feed-forward neural network (MLFN) [101,102]. The MLFN consists of an input layer, one
or more hidden layers, and an output layer [103]. An activation function is used to map
the summation of the weighted inputs into the output layer [104]. The number of hidden
layers and number of neurons in each of them should be carefully determined because this
step controls the model’s accuracy [105].

The selection of appropriate activation functions has a high impact on a model’s
performance. There are various types of activation functions such as the sigmoid, or
logistic, function, which is commonly used in classification models. The current study
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considers a linear activation function to solve for the zero-offset impedance in a regression
model. The choice of linear function is based on the moderate-to-strong correlation between
the input and output variables as discussed earlier.

The connection between any two neurons is controlled by a random weight. A model’s
random weights are adjusted until reaching the least mean square error and the best
match between the predicted and actual output values. The backpropagation method is
commonly used to obtain the optimal set of weights and calculate the error in a repet-
itive way until reaching the best training accuracy [106,107]. The backpropagation pro-
cess involves an optimization algorithm such as stochastic gradient descent (SGD) [108]
and adaptive moment estimation (Adam) [109]. The algorithm used in our model is the
Levenberg–Marquardt (LMA) [110] due to its fast performance and ability to train MLFN
models [111].

A model’s error can be represented by various loss functions such as cross-entropy [112],
weighted binary cross-entropy (WCE) [113], and dice loss [114]. The loss function used in
our study is the mean squared error (MSE), which is one of the best unbiased estimators
used in regression models [115]. The MSE can be defined by the following equation:

MSE =
1
N

N

∑
i=1

(yi − ŷi)
2 (51)

where N is the number of samples and yi is the output variable at an observation (i).
The structure of the MLFN, in this study, consists of three layers: an input, a hidden,

and an output layer. Figure 5 shows the graphical representation of the MLFN models
for both ZP and ZS, where the input layer consists of three neurons, which are the near-,
mid-, and far-angle impedances, while the output layer consists of one neuron, which is
the zero-offset impedance. Several trials were performed in MATLAB to determine the best
number of neurons for the hidden layer. The best performance was observed at 20 neurons
for both the ZP and ZS models.

Figure 5. A graphical representation of the MLFN for both the ZP and ZS models. The input layer
consists of three nodes, which are the near, mid, and far impedances, the hidden layer consists of
20 nodes, and the output layer consists of one node, which is the zero-offset impedance.

4.4. Calculation of the Anisotropy Parameters: Epsilon and Delta

After comparing and validating ZP and ZS, obtained from the isotropic inversion,
statistical modeling, and MLFN, the best P- and S-impedance volumes were applied to
Thomsen’s anisotropy equations to solve for the parameters Epsilon and Delta. Both the par-
tially inverted impedances, zero-offset impedances, and central angles of the angle stacks
(10, 20, and 32.5 degrees) were applied to the impedance-domain Thomsen’s equations
in (30) and (31), yielding six equations, as shown below:

ZP1 = ZP0
[
1 + δsin2(10)cos2(10) + εsin4(10)

]
(52)

ZP2 = ZP0
[
1 + δsin2(20)cos2(20) + εsin4(20)

]
(53)

ZP3 = ZP0
[
1 + δsin2(32.5)cos2(32.5) + εsin4(32.5)

]
(54)

ZS1 = ZS0
[
1 +

(
ZP0

ZS0

)2

(ε − δ)sin2(10)cos2(10)
]

(55)
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ZS2 = ZS0
[
1 +

(
ZP0

ZS0

)2

(ε − δ)sin2(20)cos2(20)
]

(56)

ZS3 = ZS0
[
1 +

(
ZP0

ZS0

)2

(ε − δ)sin2(32.5)cos2(32.5)
]

(57)

where ZP1, ZP2, and ZP3 are the P-impedance volumes at the near, mid, and far angles,
respectively, while ZS1, ZS2, and ZS3 are the S-impedance volumes at the near, mid, and far
angles, respectively. ZP0 and ZS0 are the zero-offset P- and S-impedances, respectively,
and ε and δ are the anisotropy parameters.

By adding Equations (52)–(54) to each other and Equations (55)–(57) to each other,
two equations were obtained such that one of them related Epsilon and Delta to the ZP
volumes and the other one related Epsilon and Delta to the ZS volumes. Finally, the two
resulting equations were solved by MATLAB for the anisotropy parameters Epsilon and
Delta, as shown below:

Epsilon = 2.3(ZP0ZP1 + ZP0ZP2 + ZP0ZP3 + ZS0ZS1 + ZS0ZS2 + ZS0ZS3 − 3Z2
P0 − 3Z2

S0)/(Z2
P0) (58)

Delta = 2.3(ZP0ZP1 + ZP0ZP2 + ZP0ZP3 − 0.3ZS0ZS1 − 0.3ZS0ZS2 − 0.3ZS0ZS3 − 3Z2
P0 + 0.9Z2

S0)/(Z2
P0) (59)

4.5. Estimation of Facies Distribution

After obtaining the zero-offset P- and S-impedances, they were transformed into elastic
properties in order to forecast the lithology and fluid probabilities separately by two logistic
regression models. The lithology and fluid models were merged together to estimate the
distribution of gas sand, wet sand, and shale by using the decision tree algorithm. ZP and ZS
were firstly transformed into the lithology predictors: near and far elastic impedances [116].
Next, the fluid predictors, Mu–Rho, Lambda–Mu–Rho, and Poisson’s ratios, were calculated
based on the LMR theory [117]. The idea of the facies model is based on the combination of
the logistic regression [52] and decision tree algorithms.

Logistic regression is one of the linear regression models that deal with binary response
variables. The idea of logistic regression is to provide model estimates which lie between
zero and one [118]. These estimates can be considered the probabilities of occurrence of both
zero and one. Therefore, the likelihood of a logistic regression model follows a Bernoulli
distribution which takes on the value 1 with a probability φ and 0 with a probability (1 – φ),
as shown in the following equation:

Yi|φi ∼ Bernoulli(φi) (60)

where Yi is a binary event at an observation (i), while φi is the probability of the success of
this event at the observation (i). Instead of directly relating the expected value of Yi to the
model’s variables, it can be assigned to the value of φi, which can be related to the model’s
variables and coefficients by using a link function, as shown in the following equation:

logit(φi) = log
(

φi
1 − φi

)
= β0 + β1(X1)i + . . . βn(Xn)i (61)

where logit(φi) is the logarithmic function of the odds of φi, β0 is the intercept, β1 to βn
are the model’s coefficients, and (X1)i to (Xn)i are the model’s explanatory variables at an
observation (i). After simplifying the previous equation in (61), the φi can be obtained as
shown below:

E(Yi) = φi = (1/1 + e−(β0+β1(X1)i+...βn(Xn)i)) (62)

where E(Yi) is the expected value of Yi. Assuming a three-class medium, which consists of
gas sand, wet sand, and shale, the lithology model aims at predicting the sand probability
from the lithology predictors, while the fluid model aims at estimating the gas probability
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from the fluid predictors. Given the observations of the elastic attributes and the facies log,
the model’s coefficients can be obtained based on Bayes’s theorem [119].

The lithology model aims at predicting the sand probability from the near-EI and
far-EI attributes. On the other hand, the fluid model aims at estimating the gas probability
from the Mu–Rho, Lambda–Rho/Mu–Rho, and Poisson’s ratios. The posterior means of the
coefficients of the two models were obtained by MCMC simulation. The facies and fluid
models were merged together by using the sand and gas probabilities, along with depth
values, as inputs to a decision tree, which turned the probabilities into facies estimates.

A decision tree is a classification method that generates questions over training samples
and answers them using a set of statistical criteria for data classification [42]. There are
two types of decision trees, which are regression and classification trees. As the response
variable in this study was categorical, a decision tree was considered.

A decision tree begins with a root node where the samples are classified into two
branches such that if the answer to the question is “Yes”, the sample goes under the “Yes”
branch, while if the answer is “NO”, the sample goes under the “No” branch. A distinct se-
ries of questions and branches are set in the internal nodes until satisfying the stopping rule
in the last terminal of the tree, which is called the leaf node. According to the classification
rule [120], each leaf in a tree represents a class (A or B).

A popular method used to construct decision trees is called classification and re-
gression trees (CART) [121]. The CART method splits observations into two parts by
minimizing the relative sum of squared errors [122] between the two partitions, accord-
ing to the principle of binary recursive partitioning (BRP) [123]. The advantages of this
method are that it is nonparametric, free of significance tests, and has low sensitivity to
outliers [124].

The process of tree shortening is called pruning. Avoiding the large size of a tree is
crucial to eschew over-fitting. The size of a decision tree is controlled by many factors,
such as the minimum number of samples that should be left in a node to achieve split-
ting [125]. A pruned tree mostly leads to results which are close to those of the original tree.
However, the pruned tree may be more accurate than the initial one in some cases [126].

This study used the “rpart” package in R to model the three-class facies variable based
on the CART method. The inputs of the tree were the sand and gas probabilities that
had been estimated by logistic regression as well as the depth variable as trend factors.
The output of the tree was a categorical variable having three values, 1, 2, and 3, which
corresponded to the three litho-fluid classes: gas sand, wet sand, and shale, respectively.
The tree was assessed by calculating the correct classification rate (CCR), which is the
number of correctly classified observations over the total number of samples.

5. Results and Discussion

The wells were tied to seismic data by check shots of wells ×1 and ×2. A constant
wavelet was extracted from the wells to achieve the tie between the synthetic logs and
seismic traces. Next, three horizons were picked: A, B, and C, which appear as troughs in
seismic data, as shown in Figure 6.

Both the conventional well logs and oil-mud resistivity imager (OMRI) were inter-
preted at the well (×1) such that the zone of interest extended from 1300 m to 1480 m.
Firstly, the sand and shale could be preliminarily discriminated by using the shale volume
at the cut-off 0.3. The gas sand and wet sand were differentiated by VP/VS and water
saturation at the cut-offs 2.8 and 0.45, respectively. The thicknesses of the gas sand zones
were validated by the net pay thickness mentioned in the well report.

Figure 7 shows the OMRI-derived facies against the well-log-derived facies obtained
from the petrophysical cut-offs at the well (×1). Both facies logs confirm that the dominant
facies is a massive shale that corresponds to the high shale volume and water saturation
zones. The massive and planar-laminated sandstone layers correspond to the gas intervals
of the two reservoirs: A and B. Those gas zones appear as fining-upward cycles in the shale
volume (Vsh) log where VP/VS and water saturation are low. Minor siltstone zones appear
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in track (a) and coincide with some of the wet sand zones in track (b). The layers become
thinner as the depth increases, coinciding with abrupt changes in the well logs.

Figure 6. A seismic section extracted from the near-stack volume and tied to the wells ×1, ×2, and ×3,
where the horizons’ tops A, B, and C are in yellow, green, and cyan colors, respectively.

The top of the target zone (1300–1316 m) consists of massive shale, which can be
interpreted as a delta plain. The next interval extends from depth 1316 m to 1330 m, where
the A reservoir appears as a distributary channel that consists of fining-upward sediments.
The top of this interval is considered a fine-grained sandstone, which appears as wet
sand in track (b). The rest of the A reservoir consists of equal amounts of the planar and
cross-bedded gas-bearing sandstones, where VP/VS, Vsh, and water saturation are low.
A sharp contact is clear at the base of the channel at depth 1330 m due to the change from
sandstone to shale.

Figure 7. Well (×) facies and conventional logs: (a) OMRI-derived facies, (b) well-log-derived facies,
(c) well logs, and (d) well tops.

Another depositional cycle begins at depth 1330 m, where the massive and laminated
shales are interbedded with minor siltstone. The OMRI images show broad and spiral
bands in darker clay-rich portions. The shale extends until depth 1422 m, where another

203



Appl. Sci. 2022, 12, 7754

distributary channel appears within the B reservoir. This unit is dominated by massive-to-
weakly stratified porous sands. A sharp contact is defined at depth 1438 m, below which
the lower interval consists of laminated sandstone with low porosity. The depth interval
from 1452 m to 1481 m consists of interbedded sandstone, siltstone, and shale. The reservoir
quality in this zone is poor, with high water-saturation and shale-volume. This is matching
with the facies log in track (b), where the sandstone is wet.

The OMRI images are crucial for data filtering due to their high resolution relative
to the conventional well logs. For example, there is a possible streak of coal at depth
1316.8 m which could not be detected by the conventional logs, as shown in Figure 7.
Accordingly, all thin layers and coal streaks have been excluded from the facies model.
This data preparation step is essential to reduce misclassification. In other words, if the
OMRI images are not available, the collected training data cannot be accurate due to the
presence of coal streaks and thin layers which are below logging data resolution.

A group wavelet was extracted from the angle gathers such that it consisted of three
wavelets at the three central angles: 10°, 20°, and 32.5°. The initial model of the simulta-
neous inversion was created from wells ×1 and ×2 such that the target zone ranged from
two-way time 1000 to 1800 ms with a two-millisecond (ms) sample rate. A smoother was
applied to the modeled trace in the output domain after lateral interpolation. The in-
verted properties of the inversion were the P-impedance, S-impedance, and density.
Similarly, an initial model was created for each angle stack to invert for P- and S-impedances
at the near, mid, and far incident angles.

Figures 8 and 9 show the change in the P- and S-impedance values by changing
the incident angle for each facies class at the well (×1). The anisotropy effect appears
in the shale-dominated zones, as shown in Figure 8d. The P-impedance seems directly
proportional to the incident angle, especially in the black circles, where the values gradually
increase from the near to the far impedance sections. On the other hand, the gas sands of
the A and B horizons appear in green color and almost have the same impedance values at
the near, mid, and far angles.

Figure 8. The partially inverted ZP sections at the near, mid, and far incident angles (from (a–c),
respectively) against the facies log at well ×1 (d).

These results seem consistent with a previous study that calculates the P-wave velocity
for the Floyd shale by three different models, as shown in Figure 10 [127]. The first and
second methods, T_45 and T_60, are based on Thomsen’s model [53], where the Delta
parameter is obtained using the C13-component on the 45◦ and 60◦ plugs, respectively.
The third model, Vp_b, is based on the strong anisotropy assumption [128]. The three
models show that the P-wave velocity increases by increasing the incident angle due to the
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intrinsic anisotropy of shale. The results are confirmed by the ultrasonic measurements
applied to the core sample.

Figure 9. The partially inverted ZS sections at the near, mid, and far incident angles (from (a–c),
respectively) against the facies log at well ×1 (d).

Figure 10. A plot of the P-wave velocities vs. the incident angles for the Floyd shale.

A previous study shows the measurements of the P- and S-wave velocities in shale
core samples which indicate moderate intrinsic anisotropy, where the Epsilon (ε) is 0.16,
Delta (δ) is 0.08, and Gamma (γ) is 0.29 [129]. Figure 11 shows a plot of velocity versus
angle, where the quasivertical P-wave velocity (qP), quasivertical S-wave velocity (qSV),
and horizontal S-wave velocity (SH) increase by increasing the incident angle at the angle
range up to approximately 35°. These results are consistent with the current study that
claims that the P- and S-impedances increase by increasing angles, as shown in the black
circles of Figures 8 and 9.

An important note about seismic data is that the velocity change with angle may
be due to other reasons rather than seismic anisotropy, such as tuning effect and noise.
Accordingly, the next step is to estimate the zero-offset impedance from the partially
inverted volumes to normalize the random error and anisotropy effect simultaneously.
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Figure 11. A plot of the velocity versus incident angle, obtained from ultrasonic measurements on
shale cores.

The total data points collected for the ZP0 and ZS0 models are 1292 and 1582, respec-
tively. These data points were gathered from the Backus-averaged impedance logs of wells
×1 and ×2 and the depth-converted composite traces of the partially inverted impedances
at the wells’ locations. The data points were randomly divided into three parts such that
70% of them were used for training, 15% for testing, and 15% for validation.

Figures 12 and 13 show the trace plots of the Markov chains, which aim at estimating
the coefficients for both the ZP and ZS models, respectively. The number of iterations
is shown on the X-axis and the value of each coefficient is shown on the Y-axis. Each
coefficient was simulated in R by three chains, which appear in green, black, and red colors.
For both the ZP and ZS models, the chains reached their stationary distribution in less than
5000 iterations. However, the chains of the ZP model seem more converged than those of
the ZS model due to the high random error of the ZS inversion.

Figure 12. The trace plots of the Markov chains that simulate the coefficients of the variables for the
ZP statistical model: b1, b2, and b3.

The posterior means and standard deviations of the coefficients were finally obtained
for each model, as shown in Table 1. It is clear from the posterior means of the coefficients
that the rate of change of the zero-offset impedance with the angle of incidence is almost
constant at the near and mid incident angles (10◦ and 20°), while the rate of change
decreases at the far angle (32.5°). In other words, the zero-offset ZP changes with the far ZP
at a lower rate compared to the near- and mid-angle impedances.
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Figure 13. The trace plots of the Markov chains that simulate the coefficients of the variables for the
ZS statistical model: b1, b2, and b3.

Table 1. The statistical properties, mean (Mu) and standard deviation (SD), of the coefficients of the
zero-offset ZP and ZS statistical models.

Coefficient b1 b2 b3

Property Mu SD Mu SD Mu SD

ZP Model 0.3532 0.01 0.3555 0.01 0.286 0.01
ZS Model 0.3672 0.01 0.364 0.01 0.266 0.01

After applying the posterior means of the coefficients to Equation (38), the ZP and ZS
equations will be:

ZP0 = 0.3532ZP1 + 0.3555ZP2 + 0.286ZP3 (63)

Zs0 = 0.3672ZS1 + 0.364ZS2 + 0.266ZS3 (64)

The next step is to estimate the zero-offset impedances by the MLFN. The training,
testing, and validation data were the same as those used for the statistical model. Two
networks were trained for the ZP and ZS models by the Levenberg–Marquardt algorithm
such that the best performance was reached at 21 iterations for the ZP model and 58 for the
ZS model, as shown in Figure 14, where the number of iterations is on the X-axis and the
mean square error is on the Y-axis. The error reduction trends of the training, validation,
and testing data appear in blue, green, and red colors, respectively. The three trends are
close to each other, which means that there is no over-fitting.

The networks reached the least mean square error (MSE) error values at 92,840 for the
ZP model and 36,893 for the ZS model. In addition, the error values were plotted in a
histogram, as shown in Figure 15, where the errors of the training, validation, and testing
data appear in blue, green, and red colors, respectively. The error distribution for the ZP
and ZS models is centered around the zero-error (yellow) line.

The quality check of the resulting zero-offset ZP and ZS starts with color matching
with the impedance logs, as shown in Figures 16 and 17, respectively. It is clear that the
MLFN’s impedances (Figures 16c and 17c) better match the impedance logs at the wells
(×1) and (×2) than those of simultaneous inversion (Figures 16a and 17a) and statistical
modeling (Figures 16b and 17b). In addition, there are extreme impedance values shown
in isotropic inversion compared to the anisotropic methods that have more normalized
inversion error values.
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(a) (b)
Figure 14. The performance plots of the (a) ZP and (b) ZS MLFN models, where the number of
iterations is on the X-axis and the mean square error is on the Y-axis. The error reduction trends of
the training, validation, and testing data appear in blue, green, and red colors, respectively.

(a) (b)
Figure 15. The error histograms of the (a) ZP and (b) ZS MLFN models, where the error value is on
the X-axis and the error frequency (instances) is on the Y-axis. The errors of the training, validation,
and testing data appear in blue, green, and red colors, respectively.

Another visual comparison is made by the histogram plots of the inverted ZP for
the three models, as shown in Figure 18, where the ZP, obtained from the simultaneous
inversion, has extreme low and high values of impedance with relatively high standard
deviation (1445) and low mean (6195). The extreme values of simultaneous inversion
appear in purple and green colors in Figure 16a. On the other hand, the least standard
deviation (1068) belongs to the ZP of the MLFN. Moreover, the means of the anisotropic
models are higher than those of simultaneous inversion, which show extremely low ZP
values down to 2000 ((m/s)·(g/cc)).

Similarly, Figure 19 shows the histogram plots extracted from the the S-impedance sec-
tions, where the isotropic method has extremely low ZS values, down to 1000 ((m/s)·(g/cc)),
high values, up to 9000 ((m/s)·(g/cc)), and relatively high standard deviation (1671). On the
other hand, the statistical model and MLFN have lower standard deviations, which are 821
and 886, respectively.

Another comparison is to evaluate the residuals’ plots of all models by calculating
the difference between the impedance logs and the predicted impedance for each model.
Figure 20 shows the plots of the calculated residuals versus the observation indexes for the
ZP models (Figure 20a–c) and ZS models (Figure 20d–f). It can be noticed that the residuals
of the MLFN model are centered around zero and have low magnitude compared to those
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of the simultaneous inversion and statistical modeling. In order to determine the best ZP
model, the R-value was calculated for each model, as shown in the Table 2.

(a)

(b)

(c)

Figure 16. Arbitrary sections extracted from the zero-offset acoustic impedance volumes obtained
from (a) isotropic inversion, (b) statistical modeling, and (c) MLFN. The inserted curves are the
acoustic impedance logs of the wells ×1 and ×2.
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(a)

(b)

(c)

Figure 17. Arbitrary sections extracted from the zero-offset shear impedance volumes obtained from
(a) isotropic inversion, (b) statistical modeling, and (c) MLFN. The inserted curves are the shear
impedance logs of the wells ×1 and ×2.
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(a)

(b)

(c)
Figure 18. The histogram plots of the zero-offset P-impedance obtained from (a) isotropic inversion,
(b) statistical modeling, and (c) MLFN.

Table 2. The correlation coefficients of the predicted ZP and ZS obtained from isotropic inversion,
statistical modeling, and MLFN at the wells (×1) and (×2).

Property Isotropic Inversion Statistical Modeling MLFN

ZP 84% 88% 94%
ZS 73% 85% 92%

The simultaneous (isotropic) inversion shows low R-values for ZP and ZS (84% and
73%, respectively), which indicates high inversion errors. The statistical model has en-
hanced the correlations to be 88% and 85% for ZP and ZS, respectively.
However, the statistical models’ results are still close to the isotropic case because the
random error has been reduced by using only one value of each coefficient for the entire
volume. Therefore, the error normalization is not as much as desired. On the other hand,
the MLFN method has the highest R-values, 94% and 92% for ZP and ZS, respectively. This
shows how ML can reduce the randomness in the data and turn it into recognized patterns.

It can be concluded that the statistical model has resulted in more accurate impedance
volumes than the simultaneous inversion; however, the statistical model has only one
value for each coefficient, which is not enough to normalize the random error as desired.
The model can be more hierarchical if there are more facies data in several wells. On the
other hand, the MLFN model could estimate the zero-offset impedance efficiently by
turning the randomness in data into identified patterns.
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(a)

(b)

(c)
Figure 19. The histogram plots of the zero-offset S-impedance obtained from (a) isotropic inversion,
(b) statistical modeling, and (c) MLFN.

A previous method [90] aimed at calculating the zero-offset velocities and anisotropy
parameters empirically by inverting the partial stacks into velocities at different incident
angles and solving Thomsen’s anisotropy equations [61]. However, this method is applica-
ble to high-resolution seismic data. On the other hand, the current study uses statistical
modeling and neural networks (MLFN) to reduce the anisotropy effect and normalize the
error simultaneously.

Ma estimated the P- and S-impedances from the P- and S-wave reflectivities by using
a joint inversion [130]. The author reduced the nonuniqueness of the inversion output
by adding the VS/VP ratio as a lithology constraint. Compared to simultaneous inver-
sion, joint inversion follows the background lithology trend and hence yields more accurate
impedances. The current study also follows a lithology constraint by estimating the
zero-offset impedances from the impedances at different incident angles. In other words,
the impedances at non-normal angles add facies information to the model and yield a
unique solution for the zero-offset impedance.

The ZP and ZS volumes, obtained from the MLFN method, were applied to
Equations (58) and (59) in order to solve for the anisotropy parameters Epsilon and Delta.
Figure 21 shows the resulting Epsilon and Delta sections plotted against those obtained
from the methodology of Liner and Fei [79] at the well (×1).
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(a) (b) (c)

(d) (e) (f)

Figure 20. The residual plots of the isotropic inversion, statistical modeling, and MLFN for each of
the zero-offset ZP (a–c) and ZS (d–f), where the number of samples of each model is on the X-axis
and residuals are on the Y-axis.

(a) (b)

Figure 21. Cross-sections extracted from the anisotropy parameters’ volumes Epsilon (a) and Delta (b)
calculated by applying the MLFN-based ZP and ZS to the impedance-domain Thomsen’s anisotropy
equations. The inserted curves are the Epsilon and Delta calculated at the well (×1).
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Figure 22 shows the histograms of Epsilon and Delta sections, where the values of
Epsilon range from −0.2 to 0.2 with a mean value of 0.002, while the Delta ranges from
−0.075 to +0.075 with a mean value of 0.001. These values are within the weak-anisotropy
ranges, according to Thomsen’s model [53].

(a) (b)

Figure 22. The histograms of the anisotropy parameters (a) Epsilon and (b) Delta sections, which
were calculated by applying the MLFN-based ZP and ZS to the impedance-domain Thomsen’s
anisotropy equations.

The composite traces of the resulting Epsilon and Delta were extracted from their
volumes and plotted against the facies log at the well (×1), as shown in Figure 23. The tops
of the gas horizons, A and B, show high positive Epsilon values (blue rectangles) due to the
reduction in the P-wave velocity. The positive sign is reasonable because the vertical velocity
decreases relative to the horizontal velocity, which is in the same direction as the bedding.

Figure 23. The anisotropy parameters, Epsilon and Delta, against the facies log at the well (×1),
where A, B, C, and D are sand zones.
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Another observation is that the anisotropy degree is directly proportional to the
contrast of the elastic properties between layers. This phenomenon appears in the abrupt
change in facies, as shown in Figure 23, where the black rectangle shows high contrast
boundaries between layers coinciding with significant fluctuations in the Epsilon parameter.
The same conclusion is mentioned by Bandyopadhyay [76], who plotted the anisotropy
parameters, Epsilon and Delta, versus the depth for a laminated shaly sand succession,
as shown in Figure 24. The magnitude of the anisotropy is low for the water-saturated
sand (Figure 24a), which has Lame’s parameters that are similar to those of shale. On the
other hand, the Lame’s parameters of the gas-saturated sand (Figure 24b) and shale are
significantly different, resulting in a high magnitude of the anisotropy parameters.

(a) (b)
Figure 24. Plots of the anisotropy parameters, Epsilon (blue curve) and Delta (red curve), on the X-
axes versus the depth on the Y-axes, for both the water- and gas-saturated sand (a and b, respectively).
The depth range is divided into three zones, (A), (B), and (C), which are the shallow, compaction,
and diagenesis regimes, respectively [76].

Most of the previous studies stated that Epsilon is always positive or zero.
However, the resulting Epsilon, as shown in Figure 21a, has a negative sign in some
zones. This is matching with Bandyopadhyay’s study [76], which stated that Epsilon can
be negative in laminated shaly gas sand layers, as shown in the anisotropy–depth plot
(Figure 24b), where the depth interval is divided into three zones, (A), (B), and (C), which
are the shallow, compaction, and diagenesis regimes, respectively. Epsilon is significantly
fluctuating around zero in the gas-saturated sand such that it becomes negative at the
shallow and diagenesis zones.

The Epsilon and Delta sections are plotted in Figure 25, showing a strong positive
correlation between them. The color legend represents the two-way time value for each
observation. The best-fit line gives the following linear relationship between Epsilon
and Delta:

δ = 0.31ε + 0.004 (65)

Interestingly, the observed relationship is mostly similar to that obtained by Li [73],
who implemented the following equation:

δ = 0.32ε (66)
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The next step is to transform the ZP and ZS into the elastic properties from which the
lithology and fluid distributions should be forecasted. The facies integrated model was
firstly applied to logging data at the well (×1) for training and then used to predict the
facies distribution from the elastic volumes. The lithology model was postulated by using
R, based on logistic regression, to forecast the sand probability from the near and far elastic
impedances. Similarly, the fluid model was created to predict the gas probability from the
Mu–Rho, Lambda–Rho/Mu–Rho, and Poisson’s ratios [52]. Finally, the two models were
merged by a decision tree to obtain the distribution of each facies class.

Figure 25. A linear regression plot between Epsilon, on the X-axis, and Delta, on the Y-axis. The data
points were obtained from the Epsilon and Delta volumes, which were calculated by applying the
MLFN-based ZP and ZS to the impedance-domain Thomsen’s anisotropy equations.

The predicted sand and gas probabilities (Phi-sand and Phi-gas-sand, respectively)
of the training data were plotted versus the lithology and fluid variables, respectively,
as shown in Figure 26. As expected, the sand probability values are high where the
lithology variable is closer to 1, indicating sandstone, and low where the lithology variable
is closer to 0, indicating shale (Figure 26a). Like the sand probability, the gas probability is
high where the fluid variable is 1, indicating gas sand, and generally low where the fluid
variable equals 0, indicating wet sand (Figure 26b). The best cut-off values were selected to
differentiate between the sand and shale observations in the lithology model as well as the
gas sand and wet sand in the fluid model.

A decision tree was created to estimate the litho-fluid classes from the sand probability,
gas probability, and depth. The total data points are 1084, starting from depth 1300 m to
1851 m. According to the facies log of the well (×1), the data consist of 75 gas sand, 286 wet
sand, and 723 shale data points. The data were divided into three parts for training (80%),
testing, (10%), and validation (10%). The best minimum split value has been observed
to be 10, which leads to the best performance of the tree. Figure 27 shows the graphical
representation of the decision tree, which classifies the training data into gas sand in red,
wet sand in blue, and shale in green. The input variables are the gas probability (Pg), sand
probability (Ps), and depth (d).
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(a) (b)

Figure 26. (a) Plot of the sand probability (Phi-sand) versus the lithology (facies) variable. (b) Plot of
the gas probability (Phi-gas-sand) versus the fluid variable.

The accuracy of the tree was calculated for the training, testing, and validation data to
be 91%, 89%, and 90%, respectively, and the average accuracy is 91%. These results show
that the tree is accurate enough to be applied to the depth-converted seismic data. A func-
tion was created in R-Studio to transform the zero-offset ZP and ZS volumes, obtained
from the isotropic inversion and MLFN, into elastic properties and then into sand and gas
probabilities based on the facies model.

Figure 27. The graphical representation of the decision tree model, which classifies the training data
of the well (×1) into gas sand in red, wet sand in blue, and shale in green. The input variables are the
gas probability (Pg), sand probability (Ps), and depth (d).
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Eventually, the decision tree was applied to predict the facies classes from the proba-
bilities and depth. The composite traces of the facies volumes were extracted at the well
(×1) to compare the isotropic simultaneous inversion and the anisotropic MLFN outputs,
as shown in Figure 28, where the gas sand, wet sand, and shale are represented in the red,
blue, and green colors, respectively. The CCR was calculated for each litho-fluid class for
both the isotropic and anisotropic cases, as shown in Table 3.

Figure 28. The litho-fluid facies at the well (×1): (a) log facies, (b) simultaneous inversion facies,
and (c) MLFN facies.

Table 3. The correct classification rates of the litho-fluid classes for isotropic inversion and MLFN.

Method Gas Sand Wet Sand Shale All Facies

Isotropic
Inversion 51% 82% 55% 56%

MLFN 97% 83% 73% 77%

The CCR values of the gas sand are 51% and 97% for the isotropic and anisotropic
cases, respectively. This improvement is evident in Figure 28, where the gas sand is correctly
detected at the anisotropic case. Similarly, the CCR values of the shale are 55% and 73%
for the isotropic and anisotropic cases, respectively. The CCR values of the wet sand are
almost the same for the two cases, 82% and 83% for the isotropic and anisotropic cases,
respectively.

The average CCR value is 56% for the isotropic facies and 77% for the anisotropic
case. This means that the accuracy of litho-fluid detection has been enhanced by about 21%.
This improvement is not only due to the reduction in the anisotropy effect but also because
the MLFN has normalized the inversion errors due to the tuning effect.

These results seem comparable to those of another case study, from the Okoli field in
the Sava depression, which aimed at predicting clastic facies using neural networks [107].
Although the lithology was estimated based on various logs, the results showed correlation
levels ranging from 78.3% to 82.1%, which are close to the results of this study.

A recent study set various ML algorithms to estimate four facies classes from seismic
attributes [131]. The logistic regression showed encouraging success rates, up to 0.98,
compared to other algorithms, such as the Gaussian process, linear discriminant analysis,
and stochastic gradient descent. However, a high success rate does not indicate the model’s
stability, especially in heterogeneous fields. The advantage of the current study’s facies
model is that the litho-fluid probabilities as well as the depth variable are inserted into
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a decision tree which turns the probabilities into facies estimates. The integration of two
different algorithms guarantees the model’s stability and reduces the chance of over-fitting.

6. Conclusions

The zero-offset ZP and ZS volumes were obtained by an isotropic simultaneous inver-
sion and then by two anisotropic methods: statistical modeling and MLFN. The validation
of the P-impedance volumes shows that the MLFN model had near-zero residuals and a
high R-value (0.94) compared to simultaneous inversion and statistical modeling, which
had low R-squared values (0.84 and 0.88, respectively). Similarly, the MLFN resulted in a
high correlation for the S-impedance (0.92), while simultaneous inversion and statistical
modeling had lesser R-values (0.73 and 0.85, respectively).

The ZP and ZS volumes, obtained from the MLFN models, were applied to the
impedance-domain Thomsen’s anisotropy equations to solve for the anisotropy parameters:
Epsilon and Delta. The anisotropy magnitude was observed to be low in the shaly wet
sand successions, where the contrast of the elastic properties between layers was low, while
it showed higher magnitude in the shaly gas sand successions, which had high-contrast
fluctuations in the elastic properties.

The ZP and ZS volumes, obtained from the isotropic inversion and MLFN, were
converted into elastic properties from which the sand and gas probabilities were forecasted
by logistic regression. The predicted probabilities were inserted into a decision tree to
estimate the distribution of gas sand, wet sand, and shale classes within the target zone.
The predicted facies distributions were validated by the facies log at the well (×1), where the
MLFN showed a high average success rate (0.77) compared to the simultaneous inversion,
which had a low success rate (0.56).

Conventional inversion algorithms have proved to be misleading if seismic anisotropy
is neglected. On the other hand, statistical methods and ML are more efficient tools for
obtaining more accurate rock properties, especially when considering the dependence of
these properties on incident angles.

The decision tree of the facies model shows encouraging results due to the contribution
of the depth constraint. This proves that the trend factor is crucial for accurate reservoir
characterization. Therefore, the availability of geochemical data would be an added value
that links other properties, such as elastic properties and anisotropy parameters, to the
pressure regime and compaction profile.

The study considers that the subsurface follows the VTI assumption, which applies to
horizontal layers. However, the methodology can be extended to include more realistic
cases, such as the TTI and HTI assumptions, which can enhance the accuracy of zero-offset
parameter modeling. In addition, core data are needed to validate anisotropy measurement
and yield confident models.
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The following abbreviations are used in this manuscript:

MLFN Multi Layer Feed Forward
ML Machine Learning
ANN Artificial Neural Network
CNN Convolutional Neural Network
SVM Support Vector Machine
BT Bagged Tree
RVM Relevance Vector Machine
SRG Seed Region Growing
SOM Self-Organizing Map
PCA Principal Component Analysis
GTM Generative Topographic Mapping
EI Elastic Impedance
MR Mu-Rho
LR Lambda-Rho
PR Poisson’s Ratio
VTI Vertical Transverse Isotropy
TI Transverse Isotropy
TTI Tilted Transverse Isotropy
AVO Amplitude Versus Offset
MCMC Markov Chain Monte Carlo
VSP Vertical Seismic Profile
Vsh Shale Volume
DEM Differential Effective Medium
ADP Anisotropic Dual Porosity
SCA Self-Consistent Approximation
HTI Horizontal Transverse Isotropy
MRF Markov-Random Field
SD Standard Deviation
CCR Correct Classification Rate
OMRI Oil-Mud Resistivity Imager
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Abstract: Passive surface wave imaging based on noise cross-correlation has been a research hotspot
in recent years. However, because randomness of noise is difficult to achieve in reality, prominent
noise sources will inevitably affect the dispersion measurement. Additionally, in order to recover
high-fidelity surface waves, the time series input during cross-correlation calculation is usually very
long, which greatly limits the efficiency of passive surface wave imaging. With an automatic noise
or signal removal algorithm based on synchrosqueezed continuous wavelet transform (SS-CWT),
these problems can be alleviated. We applied this method to 1-h passive datasets acquired in Sichuan
province, China; separated the prominent noise events in the raw field data, and enhanced the
cross-correlation reconstructed surface waves, effectively improving the accuracy of the dispersion
measurement. Then, using the conventional surface wave inversion method, the shear wave velocity
profile of the underground structure in this area was obtained.

Keywords: passive seismic; noise separation; surface wave; dispersion curve

1. Introduction

Passive seismic methods do not require the excitation of explosives, vibroseis, etc.;
they simply require the placement of node geophones according to the active source
acquisition line and point spacing, and the data can be collected by continuously receiving
ambient noises. Then, by using seismic interferometry (SI), the responses of virtual sources
can be retrieved through the correlated responses on the two receivers [1–4]. The term
“interferometry” generally refers to the study of interference between signals in order to
obtain information through the differences between them. In the field of SI, it is used to
study the interference of seismic-related signals. Its basic operation steps are very simple,
mainly divided into two steps: the first step is cross-correlation calculation, which can be
understood as detecting the travel time difference of waves recorded between two receivers;
the second step is stacking—that is, integrating all actual sources.

Although the theory of SI is not limited to either body or surface waves [5,6], extracting
surface waves from the cross-correlation of ambient noise is quite robust and has become a
mature technology [7]. In contrast, it is much more difficult to extract body waves [8,9].
However, some studies have also shown its possibility at various scales [10–13]. Even so, in
most SI studies, retrieving surface waves is still one of the major applications. Surface waves
with different periods can be used to investigate the earth structure at different depths [14].
Generally speaking, most studies focus on frequencies lower than 1 Hz to provide images
of the structure of the crust and upper mantle [15,16]. However, some studies have proven
that structures tens to hundreds of meters underground can be imaged with frequencies
higher than 1 Hz, such as by using traffic noise to detect urban underground space [17,18],
which has attracted the attention of more and more engineering seismologists.
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Green’s function reconstruction of diffuse wavefield (i.e., waves arrive from all angles
with equal strength) observations in an open configuration is the basis for SI with passive
data [19]. However, it is not realistic to obtain a pure diffuse wavefield from observations.
Non-ideal source distributions such as limited azimuthal distribution or near-source ef-
fects [20] can significantly affect the reliability and interpretation of observations due to
the violation of the stationarity assumptions required by passive survey methods [21]. In
order to improve the accuracy of the dispersion measurement, some studies have begun
to consider how to attenuate the influence of noise sources with prominent directivity.
Aki [5] proposed a classical spatial autocorrelation method which used the mathematical
transformation of a symmetric receiving array (e.g., circle) to eliminate the azimuth factor
of the noise source. Park et al. [22] introduced a novel strategy for imaging dispersion of
passive surface waves with an active scheme based on phase-shift measurement, called
roadside passive multichannel analysis of surface waves. Scanning processes were im-
plemented along potential azimuthal directions of noise. Feuvre et al. [23] proposed a
cross-correlation-based beamforming average dispersion analysis method which effec-
tively restrained the directionality of noise and reduced the aliasing effect. Cheng et al. [24]
proposed a multichannel analysis of the passive surface (MAPS) wave method based on
long noise sequence cross-correlation to handle the azimuthal effects for directional noise
sources. Distinct from the above methods, Mousavi et al. [25] proposed a new and fast al-
gorithm for accurate noise removal/signal removal based on higher-order statistics (HOS),
general cross-validation (GCV), and wavelet hard thresholding (WHT) in synchrosqueezed
domains and tested the performance of the proposed algorithm with synthetic and real
seismic data. In addition, he indicated that it can also be an effective procedure in ambient
noise studies.

In this paper, we applied the noise or signal removal algorithm based on SS-CWT
proposed by Mousavi et al. [25] to a 1-h passive seismic dataset acquired in Sichuan, China,
and verified the effectiveness of this method in enhancing passive surface waves from short
time series. First, we used this method to preprocess the 1-hour passive seismic data in
Sichuan to remove the prominent noise events and used cross-correlation to produce virtual
shot gathers from the preprocessed noise records. Then, after cross-correlation, the method
was used as a post-processing step to denoise the virtual shot gathers, improving the signal-
to-noise ratio (S/N) of the virtual shot gathers and further improving the reconstructed
surface waves. Next, after preprocessing and post-processing, virtual shot gathers were
used for dispersion analysis with an active scheme based on the phase-shift measurement,
and inversion was conducted to obtain the underground shear wave velocity profile in this
area. Finally, the applicability and shortcomings of this method are discussed.

2. Methodology

The methodology used in this paper was proposed by Mousavi et al. [25]. We summa-
rized and sorted out their methods, mainly including the following three processing steps.

2.1. Preprocessing

For the passive seismic data y collected in the field, first, we carried out CWT and
calculated its coefficient Wy, which represents the finite energy of the data in a concentrated
time–frequency picture. CWT is a multiresolution transform method given by [26], as
shown in Equation (1):

Wy(a, τ) = 〈y, ψa,τ〉 =
∫ +∞

−∞
y(t)a−

1
2 ψ∗

(
t − τ

a

)
dt, (1)

where a and τ denote the scale and time shift, respectively; ∗ is the complex conjugate; y, ψ
denotes the inner product; and ψ is the mother wavelet.

Then, we used HOS and the kurtosis criterion to detect the scale of and remove the
pure Gaussian noise correlation coefficient from the time–frequency analysis (TFR), leaving
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the combination of noise and signal. The Kurt of N observation coefficients Wy can be
calculated by Equation (2):

Kurty =
∑N

n=1

(
Wyn−μWy

)4

Nσ4
Wy

− 3, (2)

where σWy and μWy are the estimated standard deviation and mean value of wavelet
coefficient Wy, respectively, and N denotes the sample sequence. HOS measure the degree
of Gaussianity, so they have been used as detectors of non-Gaussian signals in Gaussian
noise [27]. Equation (3) defines the HOS criterion, which is retained for the Gaussianity
measure for distinguishing Gaussian distributions from non-Gaussian distributions:

∣∣Kurty
∣∣ ≤ √

24/N√
1 − α

, (3)

where α is the level of confidence. Ravier et al. [28] estimated that the optimal value of α
is 90%.

2.2. Thresholding

After obtaining the processed coefficient Wy through the preprocessing steps, the syn-
chrosqueezed transform was performed according to Equation (4) to obtain the synchrosqu-
eezed-CWT (SS-CWT) coefficients Ty.

Ty(ω�, τ) = Δω−1 ∑
ak|ω(ak,τ)−ω�|≤Δω

2

Wy(ak, τ)ak
− 3

2 Δak, (4)

where ω is the discrete frequency and ω� represents the �th discrete frequency, ak rep-
resents the kth scale, τ is the time shift, and Δ represents the increment symbol, where
Δa = ak − ak−1.

Then, we used the hard threshold scheme (Equation (5)) proposed by Donoho et al. [29,30]
to provide a threshold for the SS-CWT coefficients Ty.

ηh
λ

(
Wy, λ

)
=

{
Wy ,

∣∣Wy
∣∣ > λ

0 ,
∣∣Wy

∣∣ < λ
, (5)

where λ is the selected appropriate threshold; η is the selected threshold rule, which can be
divided into a hard threshold and a soft threshold; ηh

λ represents the hard threshold rule;
and Wy represents the wavelet coefficients of observation y.

The optimal threshold λ was automatically determined by the GCV method, which
was proposed by Nason et al. [31]. The GCV function is defined as follows:

GCV(λ) =
1
N

‖Ty − T̃λ‖2

‖N0
N ‖2 , (6)

where T̃λ is the threshold coefficient using the threshold λ, and N0 is the number of
coefficients using the threshold λ to return to zero. This function simulated the error
between the estimated signal and the real signal, so its minimum value was used to select
an optimal threshold. By selecting thresholds for the main components of the signal, the
initial estimation of the signal was obtained using Equation (7):

yk(t) = 2C−1
ψ Re

⎛⎜⎝ ∑
l∈Lk(t)

Ty(ω�, t)

⎞⎟⎠, (7)
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where Lk(t) denotes a small frequency band around the ridge of the kth component in
the SS-CWT, the symbol Re represents the real part, and the constant Cψ is given by
Thakur et al. [32]:

Cψ =
∫ ∞

0
ξ−1ψ̂∗(ξ)dξ, (8)

where ∗ represents the complex conjugate; ψ is the mother wavelet, which is a square
integrateable function; ξ is the angular frequency; and ψ̂ is the Fourier transform of ψ.

2.3. Postprocessing

In the third step, a simple level-dependent wavelet threshold was applied to the signal
obtained in the thresholding steps; the initial estimation of the seismic signal was subjected
to CWT, shown in Equation (1); and thresholds of the coefficients of all scales were selected
step by step using the hard threshold rule again, as shown in Equation (5). However, the
threshold λ estimation used here was given by Donoho et al. [29], which was calculated
using Equation (9):

λ = σn
√

2 ln N, (9)

where σn = median
(∣∣Wy

∣∣)/0.6745. Finally, the signal in the original data was extracted by
applying an inverse CWT, as shown in Equation (10):

y(t) =
1

Cψ

�
Wy(a, τ)dτ

da
a2 . (10)

For the passive seismic raw records, the extracted signal y(t) represented the records
that contained unnecessary prominent noise events, and the uniform background noise
could be extracted by subtracting y(t) from the original data y.

3. The Field Data

The passive seismic data acquisition area is located in a mining area in Sichuan (as
shown in the blue square in Figure 1a), where Triassic feldspar quartz sandstone, Jurassic
marl-dolomite-feldspar quartz sandstone, Cretaceous purplish red mudstone-siltstone-
sandstone, and Quaternary strata are exposed. Figure 1b shows a diagram of the geological
structure of the mining area. The main structural direction of this area is north–northeast,
followed by nearly east–west. Magmatic rocks in the mining area are mainly gabbro
and diabase from the late Jinning period, which are exposed as rock masses and dikes of
different sizes. The wall rock alteration is developed, among which the wall rock alteration
related to mineralization mainly includes chloritization, silicification, and carbonization.

We arranged a two-dimensional passive seismic survey line, P18-P18′′, at the periphery
of the mining area (as shown by the red dotted line in Figure 1b). The passive seismic
data were continuously recorded for 4 days with a 1-millisecond sample interval using
120 node-type single-component geophone I-Nodal at 1-240 Hz natural frequency. The
distance between each geophone was 12.5 m, and the total length of the survey line was
1.5 km. In order to avoid surface wind noise, the geophones were buried at depths of about
20 cm.

The maximum elevation difference of the terrain in the test area was 100 m, and the
slope was gentle. The surrounding areas were sparsely populated and underdeveloped,
with one or two village-level roads. There were many rivers nearby, and there were mining
activities about 4 km northwest. Comprehensive analysis showed that the noise in this
area mainly came from rivers, traffic, and mining activities, and mining activities may be
the main source of prominent noise events. Figure 2 shows the daily noise data recorded
by a geophone.
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Figure 1. Location of the passive seismic survey line. (a) Location of mining area where data were
collected (blue square); (b) geological structure of the mining area. The red dotted line P18-P18′

indicates the passive seismic survey line.

Figure 2. Typical ambient noise data recorded by a geophone in the survey area.

There was very little noise from night to morning (0–6 h), with relatively low amplitude
and stable change, whereas during the day, due to activities such as surface mining, the
noise amplitude was relatively high and changed drastically, including some prominent
high-amplitude noise events (red arrows). Therefore, in order to satisfy the hypothesis of a
theoretical wavefield as much as possible, the original field data were processed.

4. Field Data Processing

4.1. Preprocessing for Raw Field Data

Raw field data will inevitably be affected by prominent noise events (e.g., mechanical
construction), which makes it impossible to satisfy the assumption of a diffuse wavefield.
Therefore, in order to reconstruct passive surface waves better, we first used the noise or
signal removal algorithm based on SS-CWT proposed by Mousavi et al. [25] to preprocess
the field data and separate the prominent noise events. Figure 3a shows an original
field record of 90 s on which several relatively prominent noise events (red arrows) are
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distributed. After noise and signal separation, the amplitude of the separated noise records
was relatively evenly distributed (as shown in Figure 3b). Figure 3c shows the removed
records containing prominent noise events (red arrows).

Figure 3. (a) Raw field data of 90 s. (b) Separated noise records. (c) Removed records. The red arrows indicate prominent
noise events.

Power spectral density (PSD) plots are useful for visualizing variations in the fre-
quency content of ambient data over time [33]. In order to further show the application
effect of the noise separation algorithm in preprocessing the field data, we also calculated
the PSD plots (as shown in Figure 4) corresponding to the three noise records in Figure 3.

Figure 4. PSD plots. (a) Raw field data. (b) Separated noise records. (c) Removed records. The white
dotted boxes indicate prominent noise events.

Figure 4a shows the PSD plots of the original field data, on which a prominent high-
energy event (white dotted box) can be seen. After noise separation, as shown in Figure 4b,
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the high-energy event in the white dotted box was attenuated, and the PSD of the whole
record was evenly distributed. Figure 4c shows the PSD of the removed noise record, which
was occupied by three prominent high-energy events (white dashed boxes). According
to the results of Figures 3 and 4, the noise or signal removal algorithm based on SS-CWT
could effectively remove the prominent noise events in the original passive seismic data.

4.2. Reconstruction of Virtual Shot Gathers by Cross-Correlation

After preprocessing the raw field data, one geophone served as a virtual source for
waves recorded by other receivers when using the cross-correlation calculation; thus, we
could obtain all virtual shot gathers from every receiver without using an active source.
In this paper, we showed the virtual shot gathered with the first receiver as the virtual
source. In addition, in order to better characterize the intensity of the surface waves on the
reconstructed virtual shot gathers, we used the dispersion curve image obtained by the
phase-shift measurement method as the visualization tool.

Figure 5a shows the virtual shot gather formed by the cross-correlation of raw passive
seismic data acquired in Sichuan for a certain hour. The surface waves (indicated by red
arrows) can be seen in the red box on the virtual shot gather but are concealed by the
energy of a strong transverse axis. The corresponding dispersion curve image is shown in
Figure 5b, and the dispersion curve (red part) is disordered and discontinuous.

Figure 5. (a) Virtual shot gather formed by cross-correlation of raw one-hour field data and (b) the corresponding dispersion
curve image.

After preprocessing the raw field data, the virtual shot gather formed by the separated
noise records is shown in Figure 6a. Compared with Figure 5a, the in-phase axis (indicated
by the red arrow) of the internal surface waves in the red box for the processed virtual shot
gather is clearer, but it is still concealed by the energy of the strong horizontal axis. The
corresponding dispersion curve image is shown in Figure 6b, where the curve (red part) is
clearer and more continuous than in Figure 5b.

By comparing the virtual shot gathers and their corresponding dispersion curve
images in Figures 5 and 6, we saw that the virtual shot gather formed by the separated
noises had clearer surface wave in-phase axes and dispersion curves, which proved that
the noise or signal removal algorithm based on SS-CWT could effectively enhance the
reconstructed surface waves after preprocessing the raw field data.
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Figure 6. (a) Virtual shot gather formed by cross-correlation of preprocessed separated noises and (b) the corresponding
dispersion curve image.

4.3. Post-Processing for Virtual Shot Gathers

Although preprocessing the raw field data before cross-correlation could effectively
enhance the surface waves, the surface waves on the virtual shot gather were still concealed
by the strong transverse axis energy. Determining how to eliminate the strong transverse
axis energy, improve the S/N of the virtual shot gather, and further enhance the surface
waves is of great significance for subsequent inversion and imaging.

Baig et al. [34] proposed several methods to improve the fidelity of noise cross-
correlation based on the discrete orthogonal S transform, which showed that time–frequency
denoising of correlograms (i.e., virtual shot gathers) can alleviate this problem. The noise
or signal removal algorithm based on SS-CWT proposed by Mousavi et al. [25] can also
be applied to the virtual shot gather after cross-correlation to denoise correlograms and
improve the S/N. Figure 7 shows the virtual shot gather (Figure 7a) and its dispersion curve
image (Figure 7b) after denoising the correlogram of Figure 5a using the noise or signal
removal algorithm based on SS-CWT. Comparing Figure 7a with Figure 5a, the strong
transverse axis energy on the correlogram was effectively eliminated, and the surface
waves were highlighted. The dispersion curve in Figure 7b (red part) is more concentrated
and continuous than that in Figure 5b.

Figure 7. (a) Virtual shot gather after denoising the correlogram of Figure 5a and (b) the corresponding dispersion
curve image.

The above research showed that the noise or signal removal algorithm based on
SS-CWT could effectively enhance the surface waves after preprocessing the raw field
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data. At the same time, the method could also denoise the correlogram to further enhance
the surface waves. Therefore, for the passive seismic datasets acquired in Sichuan, we
first preprocessed the raw field data, then used the separated noise records to perform
cross-correlation calculations to form the virtual shot gathers, and finally post-processed
the correlograms, thus obtaining the final virtual shot gather, shown in Figure 8a, and its
corresponding dispersion curve image (Figure 8b).

Figure 8. (a) Virtual shot gather after preprocessing and post-processing and (b) the corresponding dispersion curve image.

Comparing Figure 8 with Figures 5–7, we observed that the strong transverse axis
energy in the virtual shot gather (Figure 8a) was eliminated, and the surface waves were
richer and clearer; the information of the low-frequency part in the dispersion map shown
in Figure 8b is prominent, and the dispersion curve is clear and continuous.

4.4. Shear Wave Velocity Profile

According to the pre- and post-processing steps mentioned above, we obtained virtual
shot gathers with each receiver as the virtual shot point. We used phase-shift measurement
for dispersion analysis and then used the genetic algorithm [35] to invert the underground
shear wave velocity structure.

The genetic algorithm is an efficient, parallel, random global optimization search
algorithm based on biological genetic mechanisms and natural selection. It searches for the
optimal solution by giving a hypothetical solution and simulating the process of natural
evolution. This method has been widely promoted and successfully applied in many fields,
and it is also a commonly used Rayleigh wave dispersion curve inversion method. The
initial model parameters (i.e., hypothetical solution) and the inversion parameters are
shown in Table 1.

Table 1. Initial model parameters and the parameters used for inversion by genetic algorithm.

Parameters Used to Constrain the Initial Model Parameters Used for Inversion

Layer Number
Lower Limit of Shear
Wave Velocity (m/s)

Upper Limit of Shear
Wave Velocity (m/s)

Layer Thickness
(m)

Vp/Vs
Density
(kg/m3)

Number of
Iterations

1 200 400 10

2 2 10,000
2 400 500 20
3 500 600 30
4 600 800 50
5 800 1000 90

In Figure 9, we show the inversion result of the dispersion curve in Figure 8. Figure 9a
shows the initial picked dispersion curve (red dotted line) and the inverted dispersion
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curve (blue line), and Figure 9b shows the given upper and lower limits of the initial shear
wave velocity model (red dotted line) and the inverted underground shear wave velocity
structure (blue line). The high-frequency component of the surface wave mainly reflects
the shallow underground information, while the low-frequency component mainly reflects
the deep underground information. As there were few or no dispersion data recorded by
the passive seismic data in the low-frequency range (1–2.5 Hz), the inversion results of the
shallow part (0–200 m in Figure 9b) of the shear wave velocity structure are more accurate,
while the inversion results of the deep part (200–300 m in Figure 9b) are not necessarily
the same. Therefore, the depth range of the finally inverted shear wave velocity profile is
0–200 m underground.

Figure 9. The inversion result of the dispersion curve in Figure 8. (a) The initial picked dispersion curve (red dotted line)
and the inverted dispersion curve (blue line). (b) The given upper and lower limits of the initial shear wave velocity model
(red dotted line) and inversed shear wave velocity structure (blue line).

We then selected the virtual shot gathers at 30 receivers, used phase-shift measurement
for dispersion analysis, and obtained the inverse shear wave velocity structures of those
30 receivers. Finally, the shear wave velocity structure profile in this area was obtained
by Kriging interpolation [36], as shown in Figure 10; the red inverted triangle indicates
the position of the inverted shear wave velocity structure, and the section length of the
final inversion is 1300 m. As the data quality of the following (1300–1500 m) is poor, it
cannot avoid bringing errors to the whole inversion, so it was abandoned. Its underground
structure is clear, and there is a fault, F, at approximately 900 m.

Figure 10. Shallow shear wave velocity profile from passive surface wave inversion.

5. Discussion

Although the noise or signal removal algorithm based on SS-CWT proposed by
Mousavi et al. [25] has achieved outstanding results in this case study, there are still some
problems that need further discussion. In this section, we highlight two issues based on our
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experience of processing the Sichuan passive seismic dataset: (1) the applicability of this
method in other passive seismic datasets, and (2) the efficiency of this method in processing
passive seismic datasets.

5.1. The Applicability of This Method in Other Passive Seismic Datasets

Due to differences in collection environment and conditions, there are often great
differences between different passive seismic datasets. Therefore, in addition to testing the
passive seismic dataset in Sichuan, we also attempted to apply this method to a passive
seismic dataset acquired in Inner Mongolia [37] to enhance the surface waves but did not
achieve very obvious results. As the survey line arranged in the research area of Inner
Mongolia was located near a village, and it was the busy farming season, when farmers
used agricultural machinery to harvest corn in the field, the human activities were complex
and the interference was serious, so this method might not be able to completely eliminate
these complex noises. However, the study area in this paper is far away from the village,
with little human interference, and only the mining activities about 4 km northwest of the
survey line are prominent. Therefore, although this method had a good effect in processing
the Sichuan dataset, it may not have obvious effects on the datasets collected in different
environments (especially in areas where human activities are prominent).

5.2. The Efficiency of This Method in Processing Passive Seismic Datasets

The amount of passive seismic data was relatively large. Taking the Sichuan dataset
as an example, the amount of data collected by 120 geophones for 1 ms was approximately
40 GB a day. When we used this method to process the 1-h data selected by each receiver,
it took more than 20 min to preprocess each trace, and it took 40 h to complete the whole
1-h dataset of 120 receivers; thus, the calculation efficiency was relatively low. Therefore,
further improvement of this method for calculation efficiency is required before applying it
to larger passive seismic datasets.

6. Conclusions

We introduced an accurate noise or signal removal algorithm based on SS-CWT. The
performance of this algorithm was tested with actual passive seismic data acquired in a
certain area of Sichuan, China. The results show that this algorithm can not only eliminate
unnecessary prominent coherent noise events in the original passive seismic data but can
also denoise the correlogram formed after cross-correlation calculation, improve the S/N of
the restored Green function, and enable the reconstruction of a high-fidelity Green function
from short time series. However, the computational efficiency of this method is low, and it
may not be able to achieve good application results on datasets that are greatly disturbed
by human activities.
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Abstract: Passive-source exploration is a method of seismic exploration that has loose requirements
on the conditions of the surface, is cheap, and does not require excitation by an active source.
The ambient seismic signals collected from the field over an extended period of time can be used
to generate virtual-shot seismic records similar to those obtained from the seismic exploration of
an active source based on the relevant correlations, and this can in turn yield information on the
underground structure through a series of conventional methods of processing seismic data. Three-
dimensional (3D) processing can mitigate the influence of the azimuth of random noise to yield a
more representative underground structure, but requires intensive computation. In this paper, we
propose a 3D method to compute reflections of a passive source based on the geometry of seismic
exploration. Assuming a high quality of imaging, we use information on the predesigned geometry
to choose and correlate noisy synthetic data on the reflections by a seismic body to create virtual
shot data, and subsequently capture images of the 3D data on passive reflection. The use of the
predesigned geometry ensures that only the important and useful parts of the dataset are used for
correlation and imaging, where this reduces the cost of computation. The proposed method can thus
efficiently generate high-quality 3D synthetic data.

Keywords: correlation; direct migration method; generation of virtual shot records; geometric design;
passive seismic exploration

1. Introduction

Passive-source seismic exploration, which is based on seismic wave interferometry,
was developed by Schuster [1] and Bakulin and Calvert [2]. This method is different
from active-source seismic exploration in that it does not require excitation by an artificial
source or knowledge of the number and locations of the sources. Correlations can be used
to convert environmental seismic noise or micro-earthquakes into a determined seismic
response. The theory of seismic interferometry involves “perform[ing] correlations on the
seismic records received by receivers at two points on the surface, and the results can be
regarded as the records of the wave field of the active source, with one point as the receiver
and the other point as the source” [3,4]. Applying this calculation to all random signals of
the receiver can yield a group of virtual shot records of the passive source that are similar
to forward records of the active source in seismic exploration.

Methods of passive-source seismic exploration can be divided into techniques for
investigating passive-source surface waves [5–7] and passive-source body waves [3,8–11],
according to the types of seismic waves. Because the Earth absorbs body waves to a much
greater extent than surface waves, it is much more difficult to capture images of the former
than the latter [12]. Some researchers have retrieved reflections of waves from ambient
noise by using illumination-based diagnosis [13,14], while others have sought to improve
the quality of data on reflections of the passive source [15–19].

Methods of exploring reflections of the passive source have been applied in many
areas. Masatoshi et al. [20] calculated the velocities of the P-wave and the S-wave, the
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bundle factor of the P-wave, and other structural parameters based on seismic noise in
field data obtained from observation wells in Cold Lake, Alberta, Canada. Seismic wave
interference technology was used to investigate the presence of metal ores by Cheraghi
et al. [21]. Cheraghi et al. [22] applied passive source exploration to the four-dimensional
dynamic monitoring of carbon dioxide storage sites at an Aquistore facility. Eric et al. [23]
used data on underground activity in a mine and vibrations of the ventilation pipes in the
context of exploring mining resources, and Brenguier et al. [24] used the noise in waves
generated by a railway to monitor the shallow crust. Brenguier et al. [25] also used a
receiver array to monitor long-term seismic velocity and anticipate geological events.

According to the theory of passive seismic exploration, sources of random noise
are needed to evenly identify geological targets from all directions and obtain accurate
kinematical results. Artifacts may be obtained when the source is not located along the di-
rection of the receiver line [14]. Three-dimensional (3D) passive-source seismic exploration
can be used to obtain more uniform information and images of better quality than two-
dimensional (2D) passive seismic exploration. Draganov et al. [12] and Nakata et al. [26]
obtained the underground velocity from environmental noise by using seismic wave in-
terference technology and generated a corresponding 3D seismic profile. Chamarczuk
et al. [27] used the full-scale 3D seismic method of the virtual source survey to explore the
Kylylahti polymetallic mine in Finland and obtained geological information that could not
be obtained through active seismic exploration.

While 3D passive seismic reflections have delivered promising results, they require
intensive computations as well as a large storage space for the data obtained. Given these
issues, we propose a method to calculate images of 3D reflections based on the geometric
design of the area. We use information on the area, the surface, and the underground
structure to design a reasonable geometry for it, subsequently use that to screen for effective
data to obtain correlations, and finally generate an imaging profile with uniform folds
and azimuths. The passive-source direct migration method is another means to improve
computational efficiency. It was proposed by Artman [28] and has been applied to passive
seismic exploration [29–32]. The passive-source direct migration method does not generate
correlations to obtain virtual shot records, but directly performs migration imaging to
obtain records of random noise and improve computational efficiency.

2. Extracting 3D Virtual Shot Records Based on Geometry

2.1. Principle of Reflection of Waves from Passive Sources

Interferometry is the basis of calculations for passive seismic exploration and can be
derived from the equation of the acoustic wave according to the reciprocity theorem [31,32]:

2R{G(xA,, xB,ω)}S(ω) =
2

vρ
〈u(xA, ω)u(xB, ω)〉 (1)

where G(xA,, xB,ω) is Green’s function of the observation points xA and xB in the frequency
domain, ω is the angular frequency, S(ω) is a random source, and v and ρ are the velocity
and the density of medium, respectively. u(xA, ω) and u(xB, ω) are random signals received
by the receivers, 〈∗〉 represents the superposition of the results of the mutual interferometry
of different windows, and R{∗} is calculated by taking the real part.

Figure 1 shows that the above formula can be used to obtain virtual shot records
similar to those due to excitation by an active source, with one point as the source and the
other as the receiver, by performing interferometry on two points of the passive source. If
point A does not move, and point B is transformed, we can obtain virtual shot records with
point A as the source.
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Figure 1. Schematic diagram of reflection interferometry.

We use a 2D forward model of a passive source to illustrate the process of extraction
of the virtual shot records of the reflections by the passive source. We established a model
of velocity as shown in Figure 2a, with a length of 3000 m, a depth of 800 m, and a grid
spacing of dx = dz = 10 m. The lower, left, and right boundaries of the model were the
boundaries of absorption, and we set 31 absorption layers. The upper boundary was a free
boundary. The model contained three geological horizons with velocities of 1000, 2500, and
4000 m/s from top to bottom. A receiver was arranged after every 10 m on the surface,
with a total of 301 receivers. There were 2000 sources of random noise (Figure 2b), and
60 s of random noise records were obtained through forward modeling (Figure 3). The
source was made to continuously shake during acquisition, and its amplitudes and phases
were completely random. Each of the channels of random noise was related to the other
300 channels. That is, one channel of the seismic record of a virtual source was chosen as the
source, and the others were used as receivers (Figure 4a). The signal-to-noise ratios (SNRs)
of the near-offset data in the red box in the figure were high. The profile of migration
was obtained, as shown in Figure 4b, by calculating all 301 respective channels, using the
conventional method of processing seismic data.

 
(a) (b) 

Figure 2. (a) Model of velocity. (b) Distribution of the sources of random noise.

 

Figure 3. Random noise records lasting 60 s.
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(a) (b) 

Figure 4. (a) Virtual shot records (the source point x = 1500 m). (b) Migration profile obtained by
conventional processing.

2.2. Calculating 3D Virtual Shot Records of Passive Source Based on Geometry

The core of passive seismic reflection exploration is to obtain virtual shot records based
on correlations between a channel of ambient noise records and other channels. When the
length of the correlation is given, the ambient seismic records received over a long time need
to be divided into several windows according to this length, and can then be correlated and
stacked. To reconstruct a high-fidelity Green function, the time series of mutual correlation
among the seismic data is usually very long. This makes it necessary to increase the
number of folds to improve the quality of the Green function, which in turn reduces the
computational efficiency of imaging of the passive source. Therefore, the number of virtual
shot records, length of the ambient seismic records, length of the correlation window, and
number of seismic channels involved in the calculation all influence the time needed to
generate the virtual shot records.

Passive seismic exploration using reflections of waves from the source is based on
correlations between all channels of random signals, and the generated virtual shot records
are similar to those of an active source. They should also comply with the corresponding
requirements of geometric design in theory. An appropriate geometry can not only improve
the quality of imaging, but can also reduce the computational expense. Many seismic
channels are involved in correlation and stacking in the calculation of virtual shot records,
and the long time needed to record the ambient noise incurs a high computational intensity.
The range of seismic channels needed to obtain correlations in 2D calculations is usually
selected by setting the spacing and range of offset of points on the source. However, a rule is
required in case of 3D calculations to ensure the quality of the generated virtual shot records.
The data processing features uniform folds, wide azimuths, and other requirements that are
similar to those for active seismic exploration. The geometric design has been extensively
studied in the context of conventional seismic exploration, and exploration based on
reflections from a passive source can directly learn from the experience accumulated by this
research. We designed a method to compute the virtual shot records of reflections from a 3D
passive source based on the design of the geometry for active-source seismic data to ensure
a sufficient number of folds and quality of imaging while reducing the computational cost.

Before acquiring 3D data on the active source for seismic exploration, the geometry
required to determine how to position the sources and receivers can be designed according
to the known surface and the underground geological conditions of the given area. One can
then specify the location of each source and receiver and the corresponding relationships
between them. Following this, we must ensure that the collected data contain uniform
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folds, and then set the range of the offset distance and the azimuths. The geometric design
usually considers the geological target elements and cost of acquisition. The file containing
these geometric data is usually called the Shell Processing Support (SPS) Format for 3D
Land Survey, and is a standard file for recording information on the source and the receiver
as well as their relationship. The SPS file is mainly composed of a source-information file
(S file, Table 1), a receiver-information file (R file, Table 2), and a source–receiver relationship
file (X file, Table 3). The SPS file determines the unique physical location of the sources and
receivers in the working area as well as their relationships. In the context of correlations,
the SPS.S file stores information on the sources of all virtual shot records, and the SPS.X
file contains the range of the receivers in the SPS.R file that need to be correlated with
these sources.

Table 1. Key header words in the SPS.S (source) file.

Parameter Line Point Easting Northing Elevation

Byte range 2–11 12–21 30–37 47–55 66–71
Number of bytes 10 10 8 8 6

Table 2. Key header words in the SPS.R (receiver) file.

Parameter Line Point Easting Northing Elevation

Byte range 2–11 12–21 30–37 47–55 66–71
Number of bytes 10 10 8 8 6

Table 3. Key header words in the SPS.X (relation) file.

Parameter Field File Number Source Line Source Point From To Receiver Line From To

Byte range 8–15 18–27 28–37 39–43 44–48 50–59 60–69 70–79
Number of bytes 8 10 10 4 5 10 10 1

The difference between the geometry of the reflections from a passive source and
that used in conventional seismic exploration should be considered to formulate the geo-
metric design. Because each point representing a receiver in passive seismic exploration
can become a point representing a source through correlation, the density of the points
representing the source in passive seismic exploration may be much higher than that in
active seismic exploration. On the premise of satisfying the requirements related to the
number of folds and the SNR of the data, it is thus necessary to set an appropriate number
of passive sources and receivers to significantly reduce the cost of processing.

Based on the above requirements, we propose a method to generate virtual shot
records of 3D reflections from a passive source based on the above-mentioned geometry
file, as shown in Figure 5. The procedure is as follows: (1) Having collected random noise
records from the field, a geometry with a sufficient number of folds and uniform azimuths
should be designed by using a design software according to the known surface, information
on the underground structure, and geological targets, and should be stored in the SPS file.
(2) The information is obtained on the source and receivers from the SPS.X file. The length
of the correlation should be determined according to the conditions of the working area.
After completion of the generation of virtual data for a receiver from its related shots, the
initial data of this receiver are obtained for one correlation time. Then, we slide the time
window by a correlation time, and repeat the above process until the end of the random
noise records. By vertically stacking all of the correlation results, we can obtain the seismic
record of this receiver. Following this, the remaining receivers corresponding to the source
are calculated to obtain one shot of the virtual seismic records. (3) The entire SPS.X file is
read to obtain all of the virtual shot records according to the previous step, and the imaging
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section is then obtained by processing seismic records of reflections of waves from the
passive source according to the conventional method of processing.

Figure 5. Correlation processing using the SPS file.

2.3. Model Test

We designed a forward model to verify the theory of 3D passive seismic explo-
ration. The size of the model was 3000 m × 3000 m × 2100 m, and the grid spacing
dx = dy = dz = 30 m. The model consisted of four geological horizons with velocities of
1000, 1600, 2500, and 4000 m/s from top to bottom, as shown in Figure 6a. As we sought
to study reflections from the source in deep layers, we used the acoustic finite-difference
algorithm to generate data on ambient noise, and randomly set 160,000 sources in the
range of 200–1800 m from the model, as shown in Figure 6b. A survey line was arranged
every 30 m on the surface, and 100 receivers were arranged for each survey line. A total
of 10,000 receivers were thus set, that is, the distance between the receivers in both the x
and the y directions was 30 m. The seismic waves were stimulated at randomly distributed
sources, and a total of 200 s of seismic records were collected by the receivers on the surface
(shown in Figure 7). During acquisition, the source was made to continuously shake at
random amplitudes and phases. This was done to simulate the collection of noise records
of reflections from a passive source by the surface receivers.
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(a) (b) 

Figure 6. (a) A 3D model of velocity. (b) Distribution of sources of random noise in the model (blue dots).

Figure 7. Random noise records (200 s).

2.3.1. Conventional Forward Model

All data from each receiver are successively used according to the time window as
the source to obtain the correlations and stack them with data from the other receivers
to generate a group of virtual shot records in the conventional method. The proposed
geometry is shown in Figure 8. It is clear from the map of the folds that the maximum
number of folds of the virtual shot records was 10,000, and gradually decreased from
the center of the working area to the surrounding area. The 5050th source and receiver
lines 50–52 of the seismic records were extracted. We can clearly see the non-phase axial
morphology of the reflections and its conformance to the model as well as the low SNR
of the far-offset part. Figure 9 shows the results of processing one shot of the virtual shot
records. It yielded the imaging section that was stacked by using conventional seismic
processing, with 40 s as the time window of correlation.
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Figure 8. Folds of results of conventional correlation.

(a) (b) 

Figure 9. (a) Three shots of the conventional virtual shot records. (b) Imaging section of the conven-
tional correlation.

2.3.2. Forward Model with a Narrow Azimuth

According to the proposed scheme and the method for active seismic exploration,
we designed a geometry with a narrow azimuth: The maximum offset along the inline
direction was 1500 m, and that along the crossline direction was 300 m, that is, each shot
was recorded by 51 × 11 receivers at most, and the aspect ratio was 0.2. Figure 10a shows
the source point and the range of its corresponding receiver point, and Figure 10b shows
the folds of the geometry designed on the basis of this scenario. Figure 11a shows the
records collected by using this geometry at the center of the model, Figure 11b shows the
part of the shot records in the red box in Figure 11a, and Figure 12 shows the results of
migration imaging and stacking, performed by calculating shot records by extracting one
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line of every four, with 40 s as the time window of correlation. The velocities required for
migration and nmo were obtained from the model of velocity.

Figure 10. (a) Coverage of the folds of a source in the geometry with a narrow azimuth (the red point
is the position of the source, the green rectangle is the range of the receiver corresponding to the
source, east is the inline direction, and north is the crossline direction). (b) Folds of this geometry.

(a) (b) 

Figure 11. (a) Three-dimensional (3D) virtual shot records at the 5050th source in the case of a
geometry with a narrow azimuth (source at line 51, source point 5050); (b) 3D virtual shot records at
the 5050th source and receiver lines 50–52 in the case of a geometry with a narrow azimuth.
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Figure 12. Migration profile of 3D virtual shot records in the case of a geometry with a narrow azimuth.

2.3.3. Forward Model with a Wide Azimuth

We also designed a geometry with a wide azimuth: The maximum offsets along the
direction of the line and the direction vertical to it were both 1500 m, that is, each source
received data from 51 × 51 receivers at most, and the aspect ratio was one. Figure 13a
shows the source point and the range of its corresponding receiver point, and Figure 13b
shows folds of the geometry designed on the basis of this scenario. Figure 14a shows the
shot records collected by using this geometry at the center of the model, and Figure 14b
shows shot records depicted by the red box in Figure 14a. Figure 15 shows the results of
migration imaging and stacking, performed by calculating shot records by extracting one
line from every four with a time window of correlation of 40 s. The velocities required for
the migration and nmo were obtained from the model of velocity.

Figure 13. (a) Coverage of folds of a source in the geometry with a wide azimuth (the red point is the
source point, the green rectangle is the range of the receiver corresponding to the source point, east is
the inline direction, and north is the crossline direction). (b) Folds of this geometry.
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(a) (b) 

Figure 14. (a) Three-dimensional (3D) virtual shot records of the 5050th source in the geometry with
a wide azimuth (source at line 51; source point 5050); (b) 3D virtual shot records of the 5050th source
at receiver lines 50–52 in the geometry with a wide azimuth.

Figure 15. Migration profile of 3D virtual shot records in the geometry with a wide azimuth.

A comparison of the complete model (Figure 9b), narrow azimuth model (Figure 12)
and wide azimuth model (Figure 15) shows that the three methods generated similar
migration profiles by using a model-compliant geometry and the processing workflow of
conventional seismic exploration, and their results were consistent with the 3D model of ve-
locity in Figure 6a. This shows that the proposed method of generating virtual shot records
of a 3D passive source based on SPS files is accurate. Due to the geometric design, data
based on narrow and wide azimuths from all receiver points are not needed to participate
in the calculation of each source, which significantly reduces the computation time (narrow
azimuth model and wide azimuth model took about 1/20 and 1/4, respectively, of the time
taken to calculate the virtual shot records by using all of the receiver points) and ensures
uniform folds.
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3. Direct Migration of Reflections of 3D Waves from Passive Source Based
on Geometry

3.1. Principle of Calculation of Direct Migration

The principle of calculating random noise by direct migration can be expressed
as follows:

I(x) =
Ns

∑
k=1

∫ T

0
RA

K (x, t)RB
K(x, t)dt (2)

RA
K (x, t) and RB

K(x, t) are the wave fields from the kth (k = 1, 2, . . . , Ns) source at a
certain time, and are received by the receivers and on the surface. The two are extended
downward, and the underground image of the reflection I(x) can be obtained through
correlation (Figure 16). The final result of imaging is the sum of the results of correlation of
a series of sources and receivers in a series of time windows. Artman [27] summarized the
process of calculation of direct migration of data from a passive source as the extrapolation,
correlation, and summation of the wave field. All algorithms for migration imaging that
involve the extrapolation of the wave field and are conducive for use in the relevant imaging
conditions can apply the direct migration method

 
Figure 16. (a) Receivers A and B receive a single vibration from underground at a certain time. (b) The
image of the underground reflection is obtained by downward continuation. (c) Diagram of correlation.

We used the one-way wave pre-stack depth migration method to process the original
random noise records. It consisted of two steps: recursion of the source and receiver points
along the direction of the depth, and imaging [33] to satisfy the requirements of the direct
migration method.

The forward calculation of the 2D passive source by using direct migration was carried
out by using the models of velocity and random noise records described in Section 2, and
shown in Figures 2 and 3, to illustrate the process of imaging of the reflections by the passive
source. One of the random noise records was set as the source point, with the remaining
records used for one-way wave migration. All 301 data sources were calculated and stacked,
and the migration profile was obtained by using conventional seismic processing, as shown
in Figure 17.

One channel of the random noise records was set as the source point, and the other
300 channels were set as receiver points, that is, the range of geometry included all of the
data. Performing one-way wave migration and stacking for all 301 “sources” and models
of velocity yielded a direct migration profile (Figure 17b). The results were consistent with
those of migration imaging based on the conventional processing of the 2D passive source
in Figure 17a. That is, the direct migration imaging of reflections by a passive source was
accurate, and the proposed method is thus feasible.
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(a) (b) 

Figure 17. Comparison of (a) results of migration imaging of a 2D passive source using conventional
processing and (b) direct migration imaging.

3.2. Calculation of 3D Reflections from a Passive Source Using Direct Migration Based
on Geometry

The process of calculating the 3D reflection from a passive source by using direct
migration based on the geometry is similar to the method of generating virtual shot records
of reflections from a 3D passive source based on the relevant geometry file, as shown in
Figure 18:

1. Having collected random noise records from the field, the geometry that satisfies the
given requirements is designed by using a design software according to the known
surface and information on the underground structure as well as the geological targets,
and is stored in the SPS file.

2. A random noise record is set at a specified location as the noise record of the source
point according to the content of the SPS.S file. The range of the corresponding
receiver point is obtained from the SPS.X file according to the source point. The noise
records of all receiver points are read, the one-way wave offset is calculated, stacking
according to the time window is performed, and the information stored in the SPS.S
file and SPS.R files is inserted into the header.

3. All of the results of the migration of virtual shot records are calculated, and the
imaging section is obtained after processing the stack.

Figure 18. Processing flow of calculations of the direct migration method for 3D passive
seismic exploration.
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3.3. Testing the Model of Direct Migration

The model of velocity (Figure 6a) and the random noise records (Figure 7) described in
the previous section were used to conduct an experiment on the direct migration of random
reflection-induced noise. The process of calculation is shown in Figure 18. A geometry
with a wide azimuth was used, as shown in Figure 14. The maximum offset along the
inline direction and the crossline direction was 1500 m, that is, the signal from each source
was received by 51 × 51 receivers at most, and the aspect ratio was one. One line was
extracted from every four for the calculations. After reading the SPS.X file, the source
points of the data on the offset noise were placed in the channels described in the file, and
the corresponding seismic channels of the receiver point in the SPS.X file were extracted
to calculate the one-way wave migration with a time window of 20 s. The final migration
profile obtained by stacking all of the results of migration is shown in Figure 19b. The
velocities required for the migration and nmo were taken from the model of velocity. The
results obtained by the conventional method of passive seismic exploration were consistent
with those based on calculating the direct migration of reflections. The direct migration
method required less computational and storage-related resources, and was accurate.

 
(a) (b) 

Figure 19. (a) Migration profile of 3D virtual shot records obtained by using a geometry with a wide
azimuth. (b) Direct migration profile of reflection from a 3D passive source using a geometry with a
wide azimuth.

When the forward migration-based imaging is carried out by using a geometry with a
wide azimuth, there is no need for all sources or receivers to participate in the calculation;
this significantly reduces the time needed for computations and yields uniform folds. By
applying this geometry, we used only 1/4 of the source lines, and each source used only 1/4
of the near-offset receivers (the computational time was only about 1/16 of that incurred
when using the entire dataset). As shown in Figure 18, the 3D seismic records obtained by
the wide-azimuth geometry were processed by the direct migration method and yielded
results of imaging similar to those of the virtual shot records of reflections from a passive
source by using the migration method. This indicates that the proposed method can obtain
accurate migration profiles by omitting the correlation in the virtual shot records, and thus
requires less time and computational resources.

4. Conclusions

Seismic exploration based on reflections from a passive source uses the imaging of
background noise, is cheap, and can be used as an effective supplement to methods of
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exploring deep active seismic sources. However, its computational cost and storage-related
requirements constitute constraints on its further development.

Using a geometry based on the given geological structure can solve the above problem
in practice. A set of geometric parameters that are suitable for the given area can reduce the
cost of acquisition and the difficulty of data processing while improving their resolution.
In this paper, we used experience in processing data on seismic exploration based on
reflections from a 3D active source to design a reasonable and efficient geometry to obtain
data for a 3D passive source. On the premise of ensuring a high signal-to-noise ratio,
uniform folds, and reasonable azimuth, we used SPS files to guide the relevant correlations
and obtain the virtual shot records; this improved the computational efficiency. At the
same time, we obtained data on reflections of waves from the 3D passive source through
forward modeling, and generated a clear seismic profile by calculating according to the
above process.

In addition, we tested the feasibility of imaging based on direct migration using
random reflection-induced noise. The method of generating virtual shot records is similar
to the migration imaging algorithm based on correlation-based imaging conditions, that
is, this method of migration can omit the correlations in the virtual shot records, thus
reducing the requisite computational resources and storage space and improving efficiency.
After intercepting multiple, random time windows of noise for multiple folds, the results
also yielded images of high quality. The proposed method is thus efficient in terms of the
seismic exploration of a passive source based on reflections.

The proposed method can accelerate the calculation of reflections from a passive
source, and its many virtues can help promote the use of such technology on a large scale.
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Abstract: When the grid-based finite difference (FD) method is used for elastic wavefield forward
modeling, it is inevitable that the grid divisions will be inconsistent with the actual velocity interface,
resulting in problems related to the stepped grid diffraction and inaccurate travel time of reflected
waves. The generalized finite difference method (GFDM), which is based on the Taylor series
expansion and weighted least square fitting, solves these problems. The partial derivative of the
unknown parameters in the differential equation is represented by the linear combination of the
function values of adjacent nodes. In this study, the Poisson disk node generation algorithm and the
centroid Voronoi node adjustment algorithm were combined to obtain an even and random node
distribution. The generated nodes fit the internal boundary more accurately for model discretization,
without the presence of diffracted waves caused by the stepped grid. To avoid the instability caused
by the introduction of boundary conditions, a Cerjan damping boundary condition was proposed for
boundary reflection processing. The test results generated by the different models showed that the
generalized finite difference method can effectively solve the problems related to inaccurate travel
time of reflection waves and stepped grid diffraction.

Keywords: generalized finite difference method (GFDM); elastic wave modeling; centroid Voronoi;
Cerjan damping boundary condition

1. Introduction

Elastic wave numerical simulation is an important means by which to study the law of
seismic wave propagation within the ground, and it plays a vital role in the whole process
of seismic exploration, including data acquisition, processing, and interpretation. Many
numerical simulation methods, including the finite element [1,2], finite difference [3–5],
spectral element [6], and pseudo spectral [7] methods have been successfully applied to
elastic wave forward modeling. The staggered grid finite difference method (SGFD) is
widely used in the forward modeling of elastic wave equations owing to its high calculation
efficiency, high accuracy, and convenient implementation process. However, there are two
problems with SGFD. One is that the fixed grid step may discretize the interface to the
wrong depth, resulting in an inaccurate travel time for the reflected waves. The second is
that a stepped interface will appear when the undulating interface is discretized with a
regular grid, which will generate false diffracted waves. To eliminate grid diffraction, many
scholars have carried out extensive research, including using variable grid algorithms [8],
vertical grid mapping based on coordinate transformation [9], body fitted grids [10], and
other methods. These methods effectively suppress stepped diffraction to a certain extent,
but they also have problems. For example, the variable mesh algorithm essentially uses a
smaller mesh step size to discretize the undulating interface, so it cannot fundamentally
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eliminate the stepped diffraction; the difference method based on coordinate transformation
requires a corresponding transformation of the wave equation; and the implementation
process is relatively complex.

In recent years, the meshless method, which avoids mesh generation, discretizes the
solution area into a series of independent nodes and constructs approximate functions
on these discrete nodes to obtain linear equations [11]. Since the nodes change flexibly
with the velocity model, the meshless method can effectively avoid grid diffraction [12].
The generalized finite difference method is a meshless method with a simple principle,
flexible node arrangement, and high calculation accuracy, and it has been widely used
to solve a variety of mathematical and engineering problems [13–15]. Jensen (1972) first
used the Taylor series expansion of several adjacent nodes around a center point, based
on a distance function, to solve differential equations [16]. Later, Benito et al. (2001)
developed the explicit formula of the generalized finite difference method [17]. Based on
the Taylor series expansion and weighted least square fitting, the partial derivative of the
unknown quantity in the differential equation is expressed as a linear combination of the
function values of several adjacent nodes. Thus, the basic theory of the generalized finite
difference method was formed. Since then, many scholars have improved the theory of this
method and its implementation technology. For example, Benito and Ureña systematically
analyzed various factors that affect the accuracy of the GFDM calculations, such as node
generation [18,19], star of nodes shape [20], and weight function [17], and they pointed
out that as the discretization (cloud of nodes) becomes more regular, the results obtained
become more stable [21].

Ureña et al. (2011) first applied the generalized finite difference method to the forward
modeling of elastic wave equations, and proposed an adaptive method to minimize the
effect of the irregularity of node distributions on dispersion [22]; on this basis, Ureña et al.
(2012) discussed the dispersion and stability of elastic wave forward modeling using the
generalized finite difference method under regular and irregular node conditions [23].
Benito et al. (2013) further studied the generalized finite difference method for solving the
problem of determining seismic wave propagation in homogeneous isotropic media [24].
Benito et al. (2015) discussed the influence of node settings on simulation accuracy using
circular hole models with Dirichlet uniform boundary conditions and square hole model
scatterers with free boundary conditions [25]. Benito et al. (2017) applied the generalized
finite difference method (GFDM) to solve the problem of elastic wave propagation, and
analyzed the influence of the type of node clouds (regular and irregular) on discretiza-
tion [17]. Salete et al. (2017) put forward a generalized finite difference scheme to solve
the two-dimensional seismic wave propagation problem with a perfectly matched layer
absorption boundary, and discussed the stability of PML. They also pointed out that the
stability condition at the boundary of PML is stricter than that in the internal computational
domain [26].

In this study, the elastic wave equation was solved using the meshless generalized
finite difference method. This method first discretizes the solution area into a series of
independent nodes, and then constructs an approximate function for these discrete nodes
based on the Taylor series expansion and weighted least squares fitting. Finally, it solves
the linear system to obtain an approximate solution for the boundary value of the elastic
wave equation. An algorithm combining the Poisson disk node generation algorithm and
the centroid Voronoi node adjustment algorithm is suggested to improve the stability of the
node “star”. The Cerjan damping boundary condition is introduced to avoid the instability
caused by the absorbing boundary conditions. In some worked examples, the GFDM is
compared with SGFD, and analytical solutions based on homogeneous, horizontal layered,
undulating interface, and fault models are also tested.
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2. Methodology

2.1. Elastic Wave Equation

The two-dimensional elastic wave equation can be expressed as:{
ρ ∂2ux

∂t2 = (λ + 2μ) ∂2ux
∂x2 + (λ + μ) ∂2uz

∂x∂z + μ ∂2ux
∂2z + fx

ρ ∂2uz
∂t2 = μ ∂2uz

∂x2 + (λ + μ) ∂2ux
∂x∂z + (λ + 2μ) ∂2uz

∂z2 + fz
(1)

where t is the time, ρ is the density of the medium, λ and μ are Lame constants, λ =

ρ
(

v2
p − 2v2

s

)
, μ = ρv2

s , vp, and vs are the velocities of compressional and shear waves, ux

and uz represent displacement in the x and z directions, and fx and fz represent source
terms in the x and z directions.

2.2. Central Difference for Time Partial Derivative Approximation

The displacement at time t + Δt and t − Δt can be expanded at time t via the Taylor
series:

u(t + Δt) = u(t) + Δt
∂u(t)

∂t
+

(Δt)2

2!
∂2u(t)

∂t2 +
(Δt)3

3!
∂3u(t)

∂t3 + . . . (2)

u(t − Δt) = u(t)− Δt
∂u(t)

∂t
+

(Δt)2

2!
∂2u(t)

∂t2 − (Δt)3

3!
∂3u(t)

∂t3 + . . . (3)

Truncating the 2M-order obtains the central difference expression:

u(t + Δt) = 2u(t)− u(t − Δt) + 2
M

∑
m=1

Δt2m

2m!
∂2mu(t)

∂t2m + O
(

ΔtM
)

(4)

When M = 1, then:

u(t + Δt) = 2u(t)− u(t − Δt) + Δt2 ∂2u(t)
∂t2 + O

(
Δt2

)
(5)

The time partial derivatives ∂2ux(t)/∂t2 and ∂2uz(t)/∂t2 in Equation (1) can be con-
verted using Equation (5) into the following form:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ux(t + Δt) = 2ux(t)− ux(t − Δt)
+Δt2

[
λ+2μ

ρ
∂2ux
∂x2 + μ

ρ
∂2ux
∂2z + λ+μ

ρ
∂2uz
∂x∂z

]
+ fx(t + Δt)

uz(t + Δt) = 2uz(t)− uz(t − Δt)
+Δt2

[
λ+2μ

ρ
∂2uz
∂x2 + μ

ρ
∂2uz
∂2z + λ+μ

ρ
∂2ux
∂x∂z

]
+ fz(t + Δt)

(6)

2.3. GFDM for Spatial Partial Derivative Approximation

In the GFDM, through utilizing the Taylor series expansion and weighted least squares
fitting, the derivatives of unknown variables can be approximated by a linear combination
of function values of some neighboring nodes, which are located inside a star. First, a
regular or irregular cloud of points is generated in the computation domain and along the
boundary. For a given node i, which is denoted as a central node, the m nearest nodes
surrounding the node i will be found. The concept of the star refers to a group of established
nodes in relation to the central node, as shown in the black circle in Figure 1. Each node is
assigned an associated star.
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Figure 1. An irregular cloud of points and the selection of star via distance criterion.

If u0 is the function value at the central node x0 of the star and ui(i = 1, 2, · · · , m) is
the function value at one of the rest of the nodes, then the Taylor series expansion around
the central node can be expressed in the following form:

ui = u0 + hi
∂u0

∂x
+ li

∂u0

∂z
+

h2
i

2
∂2u0

∂x2 +
l2
i
2

∂2u0

∂z2 + hili
∂2u0

∂x∂z
+ · · · (7)

where the coefficients hi = xi − x0, li = zi − z0, and (x0, z0) are the coordinates of the
central node, and (xi, zi) are the coordinates of the node i in the star. By truncating the
Taylor series with the second derivative, the residual function B(u) can be defined by the
following equation:

B(u)2nd =
m

∑
i=1

[(
u0 − ui + hi

∂u0

∂x
+ li

∂u0

∂z
+

h2
i

2
∂2u0

∂x2 +
l2
i
2

∂2u0

∂z2 + hili
∂2u0

∂x∂z

)
wi

]2

(8)

By truncating the Taylor series with the fourth derivative, the residual function B(u)
can be defined by the following:

B(u)4th =
m
∑

i=1

[(
u0 − ui + hi

∂u0
∂x + li

∂u0
∂z +

h2
i

2
∂2u0
∂x2 +

l2
i
2

∂2u0
∂z2 + hili

∂2u0
∂x∂z

+
h3

i
6

∂3u0
∂x3 +

l3
i
6

∂3u0
∂z3 +

h2
i li
2

∂3u0
∂x2∂z +

hil2
i

2
∂3u0
∂x∂z2 +

h4
i

24
∂4u0
∂x4 +

l4
i

24
∂4u0
∂z4

+
h3

i li
6

∂4u0
∂x3∂z +

hil3
i

6
∂4u0
∂x∂z3 +

h2
i l2

i
4

∂4u0
∂x2∂z2

)
wi

]2
(9)

In Equations (8) and (9), wi = w(hi, li) represents the distance weight function of the
star. In all the examples considered in this paper, the weighting function was chosen as
per [27]:

wi =

⎧⎨⎩1 − 6
(

di
dmax

)2
+ 8

(
di

dmax

)3 − 3
(

di
dmax

)4
, di ≤ dmax

0, di > dmax

(10)

where di denotes the distance between nodes (xi, zi) and (x0, z0), and dmax is the distance
between the central node and the farthest node in the star. Let the following terms be
defined:

Du =

[
∂u0

∂x
,

∂u0

∂z
,

∂2u0

∂x2 ,
∂2u0

∂z2 ,
∂2u0

∂x∂z
, · · ·

]
(11)

pi =

{
hi, li,

h2
i

2
,

l2
i
2

, hili, · · ·
}

, i = 1, 2, · · · , m (12)
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P =

⎡⎢⎢⎢⎣
p1
p2
...

pm

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
h1 l1 · · · h1l1
h2 l2 · · · h2l2
...

...
. . .

...

hm lm
. . . hmlm

· · ·
· · ·
· · ·
· · ·

⎤⎥⎥⎥⎥⎦ (13)

The residual function defined in Equations (8) and (9) can be expressed in matrix form:

B(u) = (PDu + u0 − u)TW(PDu + u0 − u) (14)

where u = [u1, u2, · · · , um]
T , u0 = [u0, u0, · · · , u0]

T , and W = diag
(
w2

1, w2
2, · · · , w2

m
)
.

To minimize the residual function B(u) with respect to the unknown derivatives at
the central point (x0, z0):

∂B(u)
∂Du

= 0 (15)

yields the following linear equation system,

ADu=b (16)

and
A = PTWP (17)

b = PTW(u-u0) (18)

According to Equations (16)–(18), the partial derivative vector Du can be expressed as:

Du = A−1b = A−1PTW(u − u0) = −au0 +
m

∑
i=1

aiui (19)

where a =
m
∑

i=1
ai, a = [a1, a2, a3, a4, a5]

T , and
m
∑

i=1
ai =

[
m
∑

i=1
a1i,

m
∑

i=1
a2i,

m
∑

i=1
a3i,

m
∑

i=1
a4i,

m
∑

i=1
a5i

]T
.

Expanding the partial derivative vector Du, we can obtain:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u0
∂x = −a1u0 +

m
∑

i=1
a1iui

∂u0
∂z = −a2u0 +

m
∑

i=1
a2iui

∂2u0
∂x2 = −a3u0 +

m
∑

i=1
a3iui

∂2u0
∂z2 = −a4u0 +

m
∑

i=1
a4iui

∂2u0
∂x∂z = −a5u0 +

m
∑

i=1
a5iui

(20)

Substituting Equation (20) into the Equation (6), the discrete formula for solving the
elastic wave equation can be obtained:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

un+1
x,0 = 2un

x,0 − un−1
x,0 + Δt2

[
λ+2μ

ρ

(
−a3un

x,0 +
m
∑

i=1
a3iun

x,i

)
+ λ+μ

ρ

(
−a5un

z,0 +
m
∑

i=1
a5iun

z,i

)
+ μ

ρ

(
−a4un

x,0 +
m
∑

i=1
a4iun

x,i

)]
+ f n+1

x

un+1
z,0 = 2un

z,0 − un−1
z,0 + Δt2

[
λ+2μ

ρ

(
−a4un

z,0 +
m
∑

i=1
a4iun

z,i

)
+ λ+μ

ρ

(
−a5un

x,0 +
m
∑

i=1
a5iun

x,i

)
+ μ

ρ

(
−a3un

z,0 +
m
∑

i=1
a3iun

z,i

)]
+ f n+1

z

(21)

For the stability analysis, the aim is to construct a harmonic decomposition of the
approximated solution at the grid points at a given time level (n). The amplification factor
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must be less than or equal to one in order to determine the stability limit. This has been
studied by [23] and the condition for the stability of the star has been established as:

Δt ≤
√√√√ 4(

v2
p + v2

s

)
(|a3|+ |a4|) +

(
v2

p − v2
s

)√
(a3 − a4)

2 + 4a2
5

(22)

where vp and vs are the velocity of compressional and shear waves, respectively.

2.4. Node Generation Algorithm

Benito et al. (2017) pointed out that when the discretization (cloud of nodes) becomes
more regular, the obtained results become more logical [21]. Furthermore, to avoid the
diffraction caused by the difference between the node and the interface positions, it is
necessary to adjust the node position at the inner part of the interface and the boundary, so
that the nodes are located at the interface and the boundary. In this study, we proposed an
algorithm combining the Poisson disk node generation algorithm and the centroid Voronoi
adjustment algorithm, to obtain a reasonable node distribution according to the velocity
model.

(1) Randomly Distributed Node Generation

The Poisson disk node generation algorithm proposed by Fornberg et al. (2015)
was used [28]. In the two-dimensional case, the calculation steps for the random node
generation algorithm (Figure 2) are as follows:

(a) Set the horizontal positions (potential dot positions, PDPs) of the initial nodes, and
randomly set the vertical coordinates;

(b) Out of all the current PDPs, find the PDP closest to the bottom of the model, and
classify this PDP as the determined dot position (DDP). The newly determined DDP
is at the center of the circle, and the discrete distance set by the position model
parameters is the radius (noting the radius is a function of velocity [29]);

(c) No other center may appear inside the circle, so all PDPs except the DDP within the
circle are removed;

(d) Determine the two PDPs closest to the DDP at the circle center, make a circle through
these two PDPs with the DDP as the center, and select multiple (we used five) new
PDPs at equal angles on the arc between the two DDPs;

(e) Then, select the PDP closest to the bottom (excluding the cycled PDP and adding a
new PDP) and repeat steps (b)–(d) until the cycle for all points in the calculation area
is completed. At this point, uniformly and randomly distributed node coordinates
will have been obtained in the computing area.

Figure 2. Generation process for the Poisson disk algorithm [28]. The red solid point is the DDP, and
the black hollow points are PDPs.
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(2) Node Adjustment

To adjust the nodes, overlay the random nodes obtained in the previous step with the
interface and boundary nodes, and discard the nodes within a half radius of any boundary
node, as shown in Figure 3b. After the redundant nodes are discarded, the nodes at the
internal interface and the boundary will be unevenly distributed. Therefore, we propose a
node adjustment algorithm based on the centroid Voronoi structure. This algorithm divides
Voronoi polygons into multiple polygonal regions formed by the boundary and interfaces,
and uses the centroid point of the Voronoi polygon as the new node location. Since the
distribution of the nodes before adjustment is relatively uniform, only 10–15 iterations are
needed to evenly distribute the nodes near the interface. This method has good stability
and can obtain a more uniform node distribution, however, since the conventional Voronoi
polygon division is borderless, the Voronoi polygon division requires computing the
intersection of the Voronoi diagram and the irregular boundary, which leads to a high
computation cost. To solve this problem, GPU was used to accelerate the Voronoi polygon
division and the adjustment of the centroid points in the irregular boundary area.

Figure 3. Generation steps for the Voronoi element under the restriction of an irregular boundary
(step (a) and step (b)) [30]. Xi is the point to be adjusted, and X1-X5 are the five points surrounding Xi.

The algorithm takes the internal node and boundary node coordinates as its inputs,
and its main steps are as follows:

(a) Calculate the coordinates of the k points closest to each node, and connect the node
and the k points into a line segment Voronoi unit (see Figure 3);

(b) Calculate the intersection between each Voronoi element and the boundary polygon,
and trim the Voronoi diagram (see Figure 3);

(c) The centroid of the Voronoi element is calculated and used as the new node position;
(d) Repeat the above three steps 10–15 times to get the final node distribution.

Figure 4 shows the node generation steps for the two-layer simple model. It can be seen
from the figure that the algorithm first generates variable density nodes through Poisson
disks in the boundary region (Figure 4a). Then, the nodes that are too close to the interface
nodes are deleted, and nodes with an uneven distribution at the boundary are obtained
(Figure 4c). Finally, variable density internal nodes, and a uniform distribution of boundary
nodes, are obtained through the centroid Voronoi adjustment algorithm (Figure 4d). The
figure shows not only that the final node distribution is accurately arranged at the interface
location, but also that the overall nodes layout is evenly distributed across the different
regions.

263



Appl. Sci. 2023, 13, 1312

Figure 4. Node generation of two-layer model: (a) Variable density nodes; (b) Variable density nodes
overlap with boundary nodes and interface nodes; (c) Delete the nodes in (b) that are too close to the
interface or boundary; (d) Nodes after adjustment based on Voronoi centroid algorithm.

2.5. Boundary Condition

In practice, the seismic wave propagates in the underground infinite medium after be-
ing excited. When the elastic wave equation is used for seismic wave numerical simulation,
it is difficult to simulate the infinite medium, so it is necessary to control the size of the
model within a certain range to generate an artificial boundary. If the artificial boundary is
not treated with a numerical method, the elastic wave will be reflected when it propagates
to the boundary, and will interfere with the wavefield inside the model. For the generalized
finite difference method in the time domain, the damping attenuation boundary condition
does not involve the problem of stability. By selecting appropriate attenuation parameters,
a good absorption effect can be achieved.

The damping factor proposed by Cerjan [31] is as follows:

damp = exp
[
−α2(I − i)2

]
(23)

where I is the grid number of the attenuation boundary thickness, i = 1, 2, · · · , I, and
α is the absorption coefficient. It can be seen from the formula that the selection of the
absorption coefficient and the thickness of the attenuation boundary directly influence the
absorption effect. The generalized finite difference method discretizes the model into nodes
instead of into grids, so I represents the thickness of the attenuation boundary divided
by the exclusion radius, r; and i represents the distance between the node and the inner
boundary of the attenuation layer divided by the exclusion radius, r. The parameters used
in this study were referenced to those used by to Li (2014) [32]. Figure 5 compares the
wave field before and after adding the attenuation boundary. When there is no attenuation
boundary, the energy of the wave field is covered by the boundary reflection. After adding
45 layers of attenuation boundary, the boundary reflection can be effectively absorbed.
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Figure 5. Wave field computed by GFDM, (a) X component (without attenuation boundary); (b) Z
component (without attenuation boundary); (c) X component (45 layers of Cerjan boundary); (d) Z
component (45 layers of Cerjan boundary).

2.6. Source Term

The source term in Equation (1) is the product of the seismic wavelet and the source
spatial position function:

f (x, z; t) = s(t)ϕ(x, z) (24)

where s(t) is the seismic wavelet function, and ϕ(x, z) represents the impulse function.
Ricker wavelet [33] and Gaussian pulse functions are used in this paper:

s(t) =
[
1 − 2π2 fm

2(t − t0)
2
]

exp
[
−π2 fm

2(t − t0)
2
]

(25)

where fm is the dominant frequency of the wavelet, and t0 is the delay time Moreover:

ϕ(x, z) = e−[(x−x0)
2+(z−z0)

2] (26)

where (x0, z0) is the source position.

3. Examples

3.1. Homogeneous Model

To verify the correctness of the generalized finite difference method for solving
the elastic wave equation, a two-dimensional homogeneous medium model was set
(2400 m × 2400 m), with a P-wave velocity of 4000 m/s, an S-wave velocity of 2300 m/s and
a density of 2000 kg/m3. The dominant frequency of the Ricker wavelet was 20 Hz, and the
source was located at the center of the model. For comparison, all sources were loaded onto
the vertical component of the displacement. The generalized finite difference method was
compared with both the analytical solution and the staggered grid finite difference method
(SGFD). The node distribution was consistent with the rectangular grid of the staggered
grid finite difference method, and the spacing of the grid (nodes) was 10 m.

To ensure the stability of the simulation, the time step was set at 0.5 ms, and the
total computation time at 1.0 s. The forward modeling was performed using a 2nd-order
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precision 13 points GFDM, a 4th-order precision 21 nodes GFDM, and an 8th-order stag-
gered grid finite difference method. Figure 6 shows a comparison of the 400 ms wavefield
obtained by the different methods. The wavefront obtained by the GFDM is consistent with
the analytical solution, which proves the correctness of the GFDM. The dispersion energy
of the shear wave can be seen in Figure 6a,b, which was obtained through the 2nd-order
13 points GFDM. The results obtained using the 4th-order 21 nodes GFDM are almost the
same as those obtained from the SGFD method, without any visible dispersion. This shows
that improving the difference order can achieve a high calculation accuracy. In further
comparing the shot records (Figure 7), the same conclusion can be drawn. In extracting
the 80th trace from the shot record for comparison (Figure 8), little difference can be seen
between the 4th-order GFDM results and the analytical solution, and the overall calculation
accuracy is almost equivalent to that of the SGFD method. Therefore, it can be concluded
that the time domain GFDM for elastic wave simulation is correct and effective.

Figure 6. 400 ms wavefield of homogeneous model. (a) 2nd-order GFDM X component; (b) 2nd-order
GFDM Z component; (c) 4th-order GFDM X component; (d) 4th-order GFDM Z component; (e) SGFD
X component; (f) SGFD Z component; (g) Analytical solution for the X component; (h) Analytically
solved Z component.

Figure 7. Shot record of homogeneous model, (a) 2nd-order GFDM X component; (b) 2nd-order
GFDM Z component; (c) 4th-order GFDM X component;(d) 4th-order GFDM Z component; (e) SGFD
X component; (f) SGFD Z component;(g) Analytical solution for the X component; (h) Analytically
solved Z component.
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Figure 8. Comparison between the 80th trace of shot records: (a) X component; (b) Z component.

3.2. Two-Layer Model

When SGFD methodology is used for elastic wave simulation, the grid step is deter-
mined. If the interface is located at an integral multiple of the step, the grid can accurately
describe the interface; otherwise, it will cause an inaccuracy in the travel time of the
reflected wave. The GFDM can directly set the nodes at the interface, therefore it can
accurately describe the changes in the interface and can obtain more accurate travel time
simulation results. A two-layer horizontal model (2000 m × 2000 m) was designed to show
the advantages of the GFDM over the SGFD model. The P-velocity, S-velocity, and density
of the upper layer of the model were 4000 m/s, 2300 m/s, and 2.4 g/cm3, respectively,
and those of the lower layer were 6000 m/s, 3500 m/s, and 2.6 g/cm3, respectively. The
simulation time step was set at 0.5 ms, and the total computation time at 1.0 s. The source
was located at (1000 m, 0 m), and the dominant frequency of the Ricker wavelet was 20 Hz.
When the model is discretized, the SGFD model adopted a fixed grid step of 10 m. There-
fore, only when the interface was located at an integral multiple of 10 (for example, when
the interface was located at 1000 m), can the grid points accurately describe the interface.
However, when the interface is located between 1000 m and 1010 m, the results obtained
by SGFD are the same, and the travel time of the reflected wave will not change. When the
4th-order 21 nodes GFDM was used, the proposed node generation algorithm was applied
to discretize the model, using a node radius of 10 m for the first layer, and 12 m for the
second layer. The coordinates of the nodes change along with the real interface position,
so more accurate travel time information of the reflected wave can be obtained. When
the interfaces were located at 1002 m, 1005 m, and 1008 m, respectively, the GFDM and
SGFD results obtained are shown in Figure 9. The black and blue dotted lines represent the
seismic records obtained by SGFD when the interface depth was set as 1000 m and 1010 m,
respectively. The green, red, and blue solid lines correspond to seismic records obtained
by GFDM when the interfaces were located at 1002 m, 1005 m, and 1008 m, respectively.
Comparing the reflected wave information for the two algorithms, the SGFD can only
obtain the exact record time of interfaces located at 1000 m and 1010 m—when the interface
depths are 1002 m, 1005 m, and 1008 m, the record time will never change. In contrast, for
the GFDM results, the record time shifts with the interface depth, which is more consistent
with reality compared to the SGFD results. This shows that the GFDM can accurately
describe the changes in the interface, and can obtain more accurate travel time simulation
results.
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Figure 9. Seismic records at different interface depths: (a) X component; (b) Z component.

3.3. Undulating Interface Model

The SGFD model will cause false diffraction due to the stepped grid when dealing
with undulating interfaces. These diffraction waves will affect the accuracy of elastic
wave modeling. The GFDM can simulate an elastic wave based on nodes adapting to the
change of an undulating interface, so there will be no stepped grid diffraction. When the
undulating interface model, as shown in Figure 10, was used, the velocity and density of
the upper layer of the model were 4000 m/s, 2300 m/s, and 2.4 g/cm3, respectively, those
of the middle layer were 5000 m/s, 2800 m/s, and 2.5 g/cm3, and those of the lower layer
were 6000 m/s, 3500 m/s, 2.6 g/cm3. The time sampling interval was 0.5 ms, and the total
computation time was 1.0 s. The source was located at (1000 m, 0 m), and the dominant
frequency of the Ricker wavelet was 20 Hz. When the 4th-order 21 nodes GFDM was used,
the proposed node generation algorithm was applied to discretize the model, with the
node radius at 10 m, 12 m, and 15 m for the first, second, and third layers, respectively.
For comparison, the SGFD model was used based on regular grids with a grid spacing of
10 m. The local grid distribution of the SGFD model is shown in Figure 11a, in which the
stepped grid can be seen clearly, while the local node distribution of the GFDM is shown in
Figure 11b, in which the nodes are directly and accurately distributed on the interface. It
can be seen from the seismic records depicted in Figure 12a,b that there are a lot of diffracted
waves behind the primary reflected wave when modeled by SGFD, while diffraction waves
are practically non-existent in the GFDM record (Figure 12c,d). The results demonstrate
that the forward modeling using GFDM avoids the effect of stepped grid diffraction, and is
suitable for the forward modeling of a formation with undulating interfaces.

Figure 10. Velocity model of undulating interface: (a) longitudinal wave velocity; (b) shear wave
velocity; (c) density.
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Figure 11. Local grid (node) distribution: (a) staggered grid finite difference method, (b) generalized
finite difference method.

Figure 12. Shot record of undulating interface model: (a) SGFD X component; (b) SGFD Z component;
(c) 4th-order GFDM X component; (d) 4th-order GFDM Z component.

3.4. Fault Model

Fault zones are closely related to the genesis of many fossil deposits. Therefore, a
model with igneous rock (model parameters in gray) and fault zones, as shown in Figure 13,
was designed with an irregular boundary for elastic wave numerical simulation. The time
sampling interval was 0.5 ms, and the total computation time was 2.0 s. The source was
located at (1200 m, 10 m), and the dominant frequency of the Ricker wavelet was 10 Hz.
When the 4th-order 21 nodes GFDM was used, the proposed node generation algorithm
was applied to discretize the model. For comparison, the SGFD model was used based
on regular grids with a grid spacing of 10 m and with the irregular boundary extended to
a rectangular boundary. It can be seen from the seismic records obtained using the two
different methods that the direct and reflected wave events are essentially the same, but it is
noted that there were a number of scattered waves behind the reflection wave in the SGFD
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records (Figure 14a,b), while there are almost no scattered waves in the GFDM records
(Figure 14c,d). This shows that the method used in this study is suitable for application to
such complex models without any sharp lateral changes. Moreover, the GFDM method
does not require an extension of the irregular boundary to a rectangular boundary, as it can
calculate the wavefield by directly setting nodes on the irregular boundary.

 
                         (a)                                             (b) 

Figure 13. Fault model with irregular boundary: (a) model structure; (b) model parameters.

Figure 14. Shot record of fault model: (a) SGFD X component; (b) SGFD Z component; (c) 4th-order
GFDM X component; (d) 4th-order GFDM Z component.

4. Conclusions

In this study, the time partial derivative of the elastic wave equation was discretized
using the central difference scheme, and the spatial partial derivative was discretized using
a meshless GFDM. When realizing the elastic wave numerical simulation via the GFDM
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in the time domain, the Poisson disk node generation algorithm and the centroid Voronoi
node adjustment algorithm were combined to obtain an even and random distribution of
nodes, and the Cerjan damping boundary condition was introduced. Through numerical
calculation, the following understandings and conclusions were obtained:

(a) The GFDM is a meshless numerical calculation method based on scattered node
approximation; it overcomes the dependence of traditional methods on grids, and can
lay nodes in the simulation area in a flexible manner;

(b) When using the GFDM for forward modeling, the nodes can be rendered consistent
with the real velocity interface by generating a suitable distribution of nodes, so that
the velocity interface can be accurately depicted, avoiding the situation where the grid
and velocity interface cannot be aligned in the conventional finite difference forward
modeling; thus eliminating the diffraction problems due to a stepped grid, and the
record time error caused by an inaccurate description of the interface position;

(c) One of the main problems in the GFDM forward modeling is in how to best discretize
the model. The node discretization scheme used in this study is applicable to a model
with gentle changes in lateral velocity. For models with sharp changes in lateral
velocity, the simulation stability will be affected, so it would be necessary to explore a
more stable and applicable node discretization scheme;

(d) The 2nd-order GFDM has high computational efficiency, but low accuracy. The 4th-
order GFDM is unstable when using a “star” composed of fewer points (for example,
13 points), therefore it can only use a “star” composed of more calculation nodes (21
nodes were used in this study), causing the calculation efficiency to be greatly reduced.
To improve computing efficiency, high-performance computing can be considered to
enable better efficiency;

(e) Compared with SGFD, the GFDM requires some preprocessing before forward mod-
eling can be applied, including calculation of the node distribution and the difference
stencil, which makes GFDM more complicated in practical application.
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Abstract: Seismic wave attenuation is affected by wave-induced pore fluid dissolution. The mech-
anism of wave-induced pore fluid dissolution is the mutual dissolution between different fluids
caused by pore fluid pressure. Compared with the traditional WIFF (wave-induced fluid flow)
mechanism, the wave-induced pore fluid dissolution mechanism can predict the attenuation of the
seismic frequency band and can be used in well-to-seismic calibration. Conventional methods neglect
the velocity dispersion caused by the interaction between pore fluids, which will lead to errors in
attenuation prediction. In this paper, we focus on accurately predicting the velocity dispersion at
low porosity and permeability, which can be used in multi-scale data matching. The stretch between
the synthetic data by using logging data and seismic data needs to be calibrated for more accurate
interpretation. The kernel of well-to-seismic calibration is the knowledge of the velocity dispersion
between the logging frequency band and seismic frequency band. We calibrate the difference between
the two kinds of data by using the rock physical model. Both the model test and field data application
prove the feasibility and accuracy of the proposed strategy.

Keywords: rock physical model; upscaling model; pore fluid dissolution

1. Introduction

Wave-induced fluid flow (WIFF) is considered to be the main cause of seismic wave
dispersion and attenuation in fluid-saturated porous media [1,2]. Among many theories,
mesoscopic heterogeneity and microscopic heterogeneity are considered to be the main
mechanisms leading to WIFF. In addition, in most rocks, the coexistence of mesoscopic
heterogeneity and microscopic heterogeneity can cause a significant shift in fast p-wave
velocity, which means that the effects of both mechanisms on dispersion and attenuation
need to be considered simultaneously. The Squirt microscopic model mainly uses the squirt
mechanism of solid/fluid interaction to estimate velocity dispersion and attenuation in fully
saturated rocks [3]. Pride et al. proposed the two-pore theory to explain the corresponding
seismic waves in water-bearing and gas-saturated porous media, which can explain the
attenuation of magnitude 10−2 – 10−1 within the seismic frequency band. White’s model
describes the complex moduli of a partially saturated spherical gas encapsulated medium
and a layered medium composed of two heterogeneous porous media [4,5]. Johnson gener-
alized gas patches of arbitrary shape [6]. In recent years, under the condition of saturated
fluid and bubble phase in rock, it is believed that an obvious attenuation phenomenon will
occur at the low-frequency end of an earthquake, resulting in the corresponding mechanism
of gas dissolution and dissolution induced by seismic wave (pore fluid dissolution). The
dissolution of wave-induced gas exsolution–dissolution is used to explain the obvious
attenuation phenomenon of seismic waves [7–9], and these models reflect the meso-loss
mechanism. Chapman measured the attenuation of two Berea sandstone samples, and
the results show that compared with the WIFF mechanism, the pore fluid dissolution
mechanism can be closer to the measured attenuation data [10]. Moreover, as a seismic
wave attenuation mechanism, pore fluid dissolution can describe micron pores. It is more
suitable for shale reservoirs with low porosity and low permeability.
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Well logging data and seismic data are the two most basic forms of raw data in the
process of oilfield exploration and development, and they play an important role in detailed
reservoir description, including reservoir prediction. The reflected reservoir information
is inconsistent, resulting in multiple solutions for reservoir prediction and description.
Determining how to perform well-to-seismic matching has become an indispensable and
important part of predicting reservoir lithology, physical parameters and oil potential in oil
and gas exploration and development research. There are three main methods for velocity
matching and calibration of well-to-seismic data:

1. The Backus effective average method uses effective medium theory and a layered
method to achieve high-frequency to low-frequency velocity correction. [11] deeply
discussed the effect of Backus effective averaging on elastic scattering characteristics
in the medium; ref. [12] used Backus effective averaging to conduct in-depth research
on logging data scaling upscaling. The P and S wave velocities lead to rock physical
analysis conclusions comparable to seismic scales.

2. The multi-resolution analysis method stretches the signals between adjacent events of
the sonic logging synthetic seismic traces to align them with the corresponding events
on the side-well traces. Ref. [13] applied multi-resolution analysis technology to the
resampling of logging data and the matching of synthetic records and seismic traces,
and the matching accuracy was high.

3. The rock physical model calibration method combines velocity dispersion theory
and an absorption attenuation mechanism to achieve velocity calibration at different
scales. Based on the resonant Q model [14], many researchers [15] measured the sonic
logging velocity in different target blocks. Dispersion calibration was performed to
improve the well–seismic matching effect. Ref. [16] combined the DEM model and
the microscopic dispersion theoretical model to extrapolate the logging frequency
band velocity to the seismic frequency band for well–seismic matching and inversion
calculations and achieved good results in carbonate reservoirs.

In practical application, the Backus effective averaging method is simple and effective
but does not consider the attenuation effect. Multiresolution analysis is highly automated
but still requires accurate synthetic seismic record and stratigraphic correlation. The rock
physical model calibration method can directly match data of different scales. In order to
combine well logging and seismic data, it is necessary to select an appropriate rock physical
model for dispersion calibration, thereby improving the accuracy of well–seismic matching.

Because the parameters of a rock physical model are large, difficult to obtain and
have no actual physical significance, it is better to use a viscoelastic model instead of
a rock physical model. The Zener model can fit the mesoscale White model [17], the
Biot–Rayleigh model [18] and the dispersion and attenuation at two scales (meso and
micro) [19]. Some researchers feel that the Cole–Cole model can more accurately simulate
the acoustic properties of porous media than the rough approximation of Zener’s mechani-
cal model [20,21], but there are five parameters, which is relatively more, while the Power
Law model only needs two parameters [22], which makes it easier to use. Ref. [10] studied
the seismic attenuation in Berea sandstone saturated with bidirectional fluid, compared
the attenuation curves of the WIFF model and the pore fluid dissolution model under
different saturation and pressure, and used SLS model to fit, and they found that the fitting
effect with pore fluid dissolution is very good. Some scholars also compared multiple
viscoelastic models. Paul compared the attenuation and frequency relationship curves
of Maxwell Model, Voight Solid, Standard Linear, Burgers Solid and Power Law. It was
found that attenuation and elastic stiffness curves vary considerably with frequency, and
each model has a different variation law [23]. Toverud et al. compared eight models using
the zero-offset vertical seismic profile (VSP) dataset: the Kolsky–Futterman model, Power
Law model, Kjartansson model, Muller model, Azimi second model, Azimi third model,
Cole–Cole model and standard linear-solid-state model (SLS). It was found that in the same
depth region, the SLS model has the best results in simulating attenuation [24].
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2. Materials and Methods

Rock Physics Model Upscaling by Visco-Elastic Model

Pore fluid dissolution, as an attenuation mechanism of seismic waves, will lead to
dissolution and dissolution between gas and its surrounding liquid, which will lead to the
attenuation of seismic waves. In the sphere area of each bubble, the gas dissolution rate
can be expressed as [7]:

dn/dt = −4ΠrDw

(
Cw − Pf + 2γ/r

RTKH

)
(1)

where dn/dt is the dissolution rate of gas, r is the bubble radius, Dw is the diffusion co-
efficient, Cw is the concentration, Pf is the pressure in the fluid, γ is the surface tension
coefficient, R is the gas constant, T is the temperature, and KH is the Henry’s Law constant.

Rock physics models provide velocity dispersion between the seismic data and logging
data for specific rock properties. Attenuation curve Qrock(f) can be used for generating
synthetic seismic records:

u(t, ω) = u0exp(−iωt)exp
(
− ωt

2Qrock( f )

)
exp

(
iωt

πQrock( f )
ln
∣∣∣∣ ω

ωr

∣∣∣∣) (2)

Considering the explicit Q(f ) expression in rock physics model are unavailable, visco-
elastic models are upscaled with non-physical meaning parameters. Attenuation properties
can then be well modeled by solving the following problem by using least-squares objective
function [25,26]:

min∑
f

|Qrock( f ) − Qvisco( f )|2 (3)

SLS model can model most rock physics models [10], and the QSLS(f) can be
expressed by:

QSLS( f ) = 1 +
(2π f )2τσ

2

1 + ω(2π f )2τσ
2

τ/
(2π f )τσ

2

1 + (2π f )2τσ
2

τ (4)

where τσ is stress relaxation time, and τ is strain relaxation time. Combining Equations (2) and (3),
the upscaled Q(f ) by the SLS model can be derived:

min
τ,τσ ,L∑

f

∣∣∣∣∣Qrock( f )− (1 +∑L

l=1
(2π f )2τσ(l)2

1 + (2π f )2τσ(l)2
τ(l))/(∑L

l=1
(2π f )τσ(l)

1 + (2π f )2τσ(l)2
τ(l))2

∣∣∣∣∣ (5)

where L is relaxation mechanisms, and τ = τε
τσ

− 1, Qrock( f ) is the numerically modeled
attenuation curve based on the rock physics model. Here, we use the wave-induced gas
exsolution–dissolution (WIGED) model to calculate the Qrock( f ), and the parameters used
are listed in Table 1. The volumetric strain of the pore fluid is calculated, followed by the
modulus K, and attenuation can be obtained by Q( f )−1 = Im(K( f ))

Re(K( f )) .
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Table 1. Parameters used in three rock physics models: the pore fluid dissolution model, the SLS
model and the Pride model.

Parameter Symbol Value Unit

bulk modulus of oil KO 1.8 × 109 Pa
surface tension of gas Sigma 0.012 Pa·m

gas constant R 8.3144621 m3·Pa/K mol
Henry’s law constant of gas KHpc 4535 Pa·m3/mol

temperature T 350 K
gas diffusion coefficient in water DW 1.00 × 10−8 m2/s

gas solubility S1 4535 Pa·m3/mol
initial pressure Pi 2.00 × 107 Pa
delta pressure dP 100 Pa
water viscosity visc_f 1.00 × 10−3 Pa·s
CO2 viscosity visc_g 4.80 × 10−5 Pa·s
water density rho_w 840 kg/m3

gas density rho_g 119 kg/m3

CH4 viscosity visc_g 6.00 × 10−6 Pa·s
oil viscosity visc_f 8.00 × 10−4 Pa·s

high pressure Ph 2.00 × 107 Pa
initial radius of bubble r 5.00 × 10−6 m

water saturation Sat 1.50 × 10−3 unitless
porosity phi 6.00 × 10−2 unitless

mineral content of sand Sand 0.35 unitless
mineral content of clay Clay 0.65 unitless

Poisson ratio pois 0.14 unitless
bulk modulus of the gas Kg 1.00 × 104 Pa

permeability perm 1.00 × 10−12 m2

Well-to-seismic calibration based on rock physics model upscaling.
The misfit between the seismic data and the logging data can then be calibrated by

implementing the following procedures (Figure 1):

Figure 1. Procedures of the proposed well-to-seismic calibration method.

1. Rock physics modeling. Based on the geology, geochemistry and core data, a suitable
rock physics model is selected, and the parameters in the model are upgraded. The
WIGED model is used here for fluid, and the SCA model is used for rock matrix. Then,
the saturated rock is obtained by Gassmann substitution. The key parameters in the
WIGED model are the size of the bubble and diffusion length.

2. Attenuation curve calculation. Q(f) curve is then calculated from the rock physics
model. The explicit Q(f) expression can be derived through upscaling by visco-elastic
model. Here, we use the SLS model for upscaling, which yields best results compared
with other visco-elastic models, such as the power-law model.

3. Well-to-seismic data calibration. Based on the reflection coefficient and Q(f), the atten-
uated synthetic seismic data can be generated. By adjusting the Q related parameters
in visco-elastic model (strain relaxation time and stress relaxation time in the SLS
model), the optimal match between synthetic seismic data and field data can be found.

278



Appl. Sci. 2023, 13, 74

3. Synthetic Data Test

3.1. Rock Physics Modeling and Velocity Dispersion Analyzing

Here, three rock physics models, the pore fluid dissolution model, the SLS model
and the Pride model, are applied for P-wave velocity dispersion calculation, as shown in
Figure 2. Here, we consider rocks with micrometric pores, and gas micro-bubbles exist
in the pores with bubble radium 1 um. Other parameters used in the models are listed
in Table 1.

Figure 2. Comparison of velocity dispersion and attenuation calculated by three rock physics models.
(a) Pore fluid dissolution model, (b) Squirt model and (c) Pride model. The blue solid line is the P
wave velocity, and the red dash line is attenuation.

The corner frequency of the Squirt model is around 105 Hz, and the Pride model’s
around 109 Hz. Compared with the other two models, the pore fluid dissolution model
is suitable for description of this rock’s seismic frequency band, the corner frequency of
which occurs between 0.1 and 100 Hz. The maximum values of the attenuation curves
of the three models are similar. The Squirt model and the Pride model predict slightly
larger attenuation. For the velocity dispersion, the pore fluid dissolution model and the
Pride model share similar velocity range, with lower bound 2880 m/s and upper bound
3230 m/s. Although the lower bound is similar, the Squirt model yields a larger upper
bound of 3400 m/s. The blue solid line is the P_wave velocity, and the red dash line is
attenuation. In our model, the mobility of fluid is low due to the low porosity and low
permeability, which makes it impossible for the conventional WIFF model to be used. The
choice of a suitable rock physics model need to be tested by comparing the attenuation and
velocity dispersion curves, and the best one is that which can model the attenuation in the
seismic frequency range.

Considering that the constant Q assumption is always accepted for real data applica-
tion, conventional constant Q theory is then compared for showing the velocity dispersion
between logging frequency and seismic frequency. The results of velocity dispersion are
shown in Figure 3. The porosity ranges from 0.04 to 0.08, and gas saturation ranges from
0.15% to 0.25%. The SLS model yields almost the same results as the pore fluid dissolution
model, while the constant Q model yields a monotonous velocity curve, which contains
large difference from that of the pore fluid dissolution model. As shown in Figure 3a–c,
as the porosity increases, the velocity range decreases in the pore fluid dissolution model.
The upper bound decreases from 3500 m/s to 3000 m/s, and the lower bound decreases
from 3300 m/s to 2550 m/s. As shown in Figure 3d–f, as the gas saturation increases, the
velocity range shows little difference.
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Figure 3. Comparison of velocity dispersion calculated by using the pore fluid dissolution model, the
SLS model and the constant Q model. (a) Porosity 0.04 and gas saturation 0.25%, (b) Porosity 0.06 and
gas saturation 0.25%, (c) Porosity 0.08 and gas saturation 0.25%, (d) Porosity 0.08 and gas saturation
0.15%, (e) Porosity 0.08 and gas saturation 0.2%, (f) Porosity 0.08 and gas saturation 0.25%. The
two red solid curves are the results from the pore fluid dissolution model, the dash blue curves are
from the SLS model, and the other dash curves (orange curve and cyan curve) are from the constant
Q model.

The two red solid curves are the results from the pore fluid dissolution model, where
the bubble radius are 4 × 10−6 and 6 × 10−6, respectively. The dash blue curves are from
the SLS model. The other dash curves (orange curve and cyan curve) are from the constant
Q model, and the Q values are picked from the pore fluid dissolution model at 100 Hz.

The corresponding 1/Q curves are compared in Figure 4. The two curves in each
subfigure represent different bubble radii. As porosity increases, the attenuation becomes
larger, while the gas saturation increase influences little about the attenuation.

280



Appl. Sci. 2023, 13, 74

Figure 4. Comparison of 1/Q curves from the pore fluid dissolution model and the SLS model.
The red solid curve is the pore fluid dissolution model, and the dash blue curve is the SLS mode.
(a) Porosity 0.04 and gas saturation 0.25%, (b) Porosity 0.06 and gas saturation 0.25%, (c) Porosity
0.08 and gas saturation 0.25%, (d) Porosity 0.08 and gas saturation 0.15%, (e) Porosity 0.08 and gas
saturation 0.2%, (f) Porosity 0.08 and gas saturation 0.25%.

3.2. Velocity Variation from Logging Data to Seismic Data Based on Rock Physics Model and
Backus Averaging Method

In this section, logging data is used for demonstration of velocity difference between
upscaling by the pore fluid dissolution model and the Backus averaging method. Firstly,
the Backus averaging method is applied, and the velocity variation is shown in Figure 5.
Using different sizes of windows, the velocity results from the Backus averaging method
show different properties. As the size of the window becomes larger, the velocity curve
shows larger divergence from the real data. However, the velocity from all these three cases
varies in the same range as that of the real data.
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Figure 5. P_wave velocity calculated by using the Backus averaging method. The red solid curve is
the real data, and the blue dash curve is the result from the Backus averaging method. (a) 16 samples
in a window, (b) 8 samples in a window, (c) 4 sample in a window.

Then, the SLS model and the constant Q model are both applied to the real data for
velocity correction. The results are shown in Figure 6. Compared with that of the Backus
averaging method, the velocity upscaled by the SLS model and constant Q model contains
obvious variation from read data. Both the models result in smaller velocity values than
the real data. The SLS model always yields smaller velocity than the constant Q model in
these cases.

3.3. Velocity Dispersion Correction on Synthetic Seismic Data

The upscaled velocities from the SLS model, the constant Q model and the Backus
averaging method are all applied to the synthetic seismic data for velocity dispersion
correction. The synthetic seismic data are generated by convolution of the reflection
coefficient with the minimum phase wavelet. The original velocity used is that in the
logging band. The amplitude of the data is not changed, as different velocity is used, only
the phase. Firstly, the Backus averaging method is applied as shown in Figure 7. For
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windows with three different sizes, the synthetic data show little variation from the real
data. The event at around 0.7 s arrives earlier that of the real data.

Figure 6. Velocity variation from the pore fluid dissolution model and the constant Q model. The
orange area is the velocity range of the constant Q model. The cyan area is the velocity range of
the pore fluid dissolution model. (a) Porosity ranges from 0.04 to 0.08, gas saturation is 0.25%,
(b) porosity is 0.08, gas saturation ranges from 0.15% to 0.25%.

Figure 7. Comparison of synthetic seismic data by using upscaled velocity from three different sizes
of sample window using the Backus averaging method.
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Then, the constant Q model is applied for the velocity dispersion correction. The
results are shown in Figure 8. For the maximum velocity of the constant Q model, the
synthetic data are similar to the real data. For the minimum velocity, as the values are
smaller than those of logging velocity, the synthetic data stretch obviously, especially for
the data after 0.4 s.

Figure 8. Comparison of synthetic seismic data by using upscaled velocity from the maximum and
minimum velocity of constant Q model in Figure 6a.

The SLS model is then applied and shown in Figure 9. As the velocity shows much
smaller values in Figure 6a, the synthetic data show much more stretch than both the
constant Q model and the Backus averaging method. The stretch can be seen starting from
0.2 s, and it becomes larger at 0.4 s. The stretch is largest at 0.9 s. The whole length of the
data is 1.2 s.

Figure 9. Comparison of synthetic seismic data by using upscaled velocity from the maximum and
minimum velocity of the SLS model in Figure 6a.
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4. Real Data Application

The proposed method is then applied to field data acquired in northern China. The Q−1

results are calculated using logging data by the pore fluid dissolution model. Figure 10a
shows the Q−1 results at 60 Hz of this model in the depth from 1500 m to 2500 m. The
results match well with the Q−1 measurements from the core data. The velocity is then
upscaled by the SLS model. Figure 10b shows the well-to-seismic calibration before and
after using velocity dispersion results from the SLS method as guidance for stretching the
events. The event at 1900 ms is fixed, and the event at 1820 ms is stretched 5 ms. The
event at 1740 ms is stretched 8 ms with the event at 1820 ms fixed. The corresponding
velocity dispersion is calculated as roughly 7% and 4%, which is consistent with that of the
SLS model. The upscaled velocity is useful for well-to-seismic calibration and makes the
correction more reasonable.

Figure 10. (a) Comparison of Q−1 results by the WIGED model using logging data and data from core
measurements. (b) Well-to-seismic calibration before and after using Q−1 results from the WIGED
method as a guidance.

5. Discussion

The Squirt model and the Pride model are not suitable for predicting the attenuation
of rocks containing micro-pores at the seismic frequency band. The energy loss caused
by fluid flow is neglectable, and gas dissolution and exsolution become the dominant
attenuation mechanisms.

Although the conventional constant Q model is widely accepted, it will not predict
accurate velocity dispersion when the corner frequency occurs in the seismic frequency
band. For the same rock properties, the velocity range differs from that of the pore fluid
dissolution model. The Backus averaging method almost results in a similar velocity range
to that of real data. The size of the window chosen will not improve accuracy of velocity.
Neither of these two methods are suitable for upscaling. The SLS model is suitable for
upscaling the pore fluid dissolution model. The velocity dispersion and attenuation curve
can be well modeled by the SLS model for different porosity and gas saturation cases.
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Synthetic seismic data generated by using velocities calculated by these methods show
obvious difference. Due to similar velocity range from the Backus averaging method, the
events in the synthetic seismic data show little stretch. The constant Q model underesti-
mates the velocity dispersion, and thus, the synthetic seismic data show little stretch until
0.4 s. The attenuation becomes observable because of the accumulation of the attenuation
effect. The SLS model reasonably predicts the attenuation, and the synthetic seismic data
show obvious difference from the traces generated by using logging velocity. When choos-
ing a rock physical model for well-to-seismic calibration, one needs to consider the geology,
geochemistry, and core data analysis report, and then select the appropriate rock physics
model and update the parameters in the model.

6. Results

In this paper, an appropriate rock physical model is introduced, which can be used
in seismic-to-well calibration. For rocks contains micro-pores, the pore fluid dissolution
model is suitable for predicting the attenuation in the seismic frequency band. Compared
with conventional methods, such as the constant model and the Backus averaging method,
the SLS model can be chosen as the appropriate model for upscaling the pore fluid disso-
lution model. The introduced model can be used for seismic-to-well calibration. Both the
synthetic seismic data and the field data test demonstrated the feasibility and accuracy of
the proposed method.
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Abstract: Real sedimentary media can usually be characterized as transverse isotropy. To reveal
wave propagation in the true models and improve the accuracy of migrations and evaluations, we
investigated the algorithm of wavefield simulations in an anisotropic viscoelastic medium. The
finite difference in the frequency domain (FDFD) has several advantages compared with that in
the time domain, e.g., implementing multiple sources, multi-scaled inversion, and introducing
attenuation. However, medium anisotropy will lead to the complexity of the wavefield in the
calculation. The damping profile of the conventional absorption boundary is only defined in one
single direction, which produces instability when the wavefields of strong anisotropy are reflected on
that truncated boundary. We applied the multi-axis perfectly matched layer (M-PML) to the wavefield
simulations in anisotropic viscoelastic media to overcome this issue, which defines the damping
profiles along different axes. In the numerical examples, we simulated seismic wave propagation
in three viscous anisotropic media and focused on the wave attenuation in the absorbing layers
using time domain snapshots. The M-PML was more effective for wave absorption compared to
the conventional perfectly matched layer (PML). In strongly anisotropic media, the PML became
unstable, and prominent reflections appeared at truncated boundaries. In contrast, the M-PML
remained stable and efficient in the same model. Finally, the modeling of the stratified cross-well
model showed the applicability of this proposed algorithm to heterogeneous viscous anisotropic
media. The numerical algorithm can analyze wave propagation in viscoelastic anisotropic media.
It also provides a reliable forward operator for waveform inversion, wave equation travel-time
inversion, and seismic migration in anisotropic viscoelastic media.

Keywords: frequency-domain modeling; anisotropy; viscoelastic; edge-effect removing

1. Introduction

Regarding the numerical modeling of wave propagation in anisotropic media, numer-
ous studies have been implemented using finite difference and spectral methods in the time
domain [1–3] to obtain the numerical solution in discrete geological media. These media
may contain rocks with various properties, defined as acoustic, elastic, viscoelastic isotropic,
and anisotropic. With the flourishing development of computational technology and nu-
merical algorithms, wavefield simulation methods have played a crucial role in imaging
subsurface characteristics. Various imaging methods, such as tomography [4,5], reverse
time migration [6–8], and full-waveform inversion [9–11], require an efficient wavefield
simulation method to generate synthetic waveform data to match the observed data.

Accurately performing wavefield modeling with high efficiency in complex media,
which contains anisotropy and attenuation, is critical. In contrast to time-domain wavefield
modeling, although it is challenging to solve the sparse linearized matrix, multi-source
modeling can be performed efficiently, and attenuation can be easily introduced [12]. In
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addition, the physical parameters of the reservoir can be estimated by seismic inversion
and imaging methods within a limited number of frequency components [13]. Operto
et al. [14] developed frequency-domain finite-difference viscoacoustic wavefield modeling
in tilted transversely isotropic (TTI) media. Jeong et al. [15] used the finite element method
to simulate the frequency-domain wavefield of vertically transversely isotropic (VTI) media.
Zhou et al. [16] implemented seismic wave modeling in elastic anisotropic media using
the generalized stiffness reduction method. Yang et al. [17] developed a new version of
the generalized stiffness reduction method for anisotropic media and incorporated it into
the 2.5D spectral element method. Qiao et al. [3] derived attenuative anisotropic wave
equations involving fractional time derivatives and solved them using the pseudospectral
method. Reducing artificial reflections is still essential despite numerous frequency-domain
modeling methods.

Figure 1 shows a sketch of the absorbing boundary condition (ABC). The middle
area is the computational area, and the dashed-dot area is the truncated boundary. When
the wavefield propagates to the boundary, the ABC needs to attenuate the reflections
inwards. Since Berenger [18] developed a perfectly matched layer (PML) to reduce artificial
reflections of the electromagnetic wavefield, many studies have shown success in its
applications to acoustic and elastic wave modeling [19,20], and improvements have also
been made to the perfectly matched layer method [21]. The PML method has become
popular for wave modeling problems because it is applicable to first-order wave equations
in the time domain [22] and frequency domain [23]. However, it is not straightforward
how to implement it for second-order wave equations [24]. In addition, the most severe
problem of PML may exist in absorbing artificial reflections in elastic anisotropic media.
This is because PML can only function effectively when all slowness vector components
of the waves are parallel to their corresponding group velocity vectors [25]. As is known,
an elastic anisotropic wavefield generates multiple modes of waves and becomes more
complex when the PML becomes unstable in dealing with the edge-effect problem. Thus,
we need to replace PML in wavefield simulations of elastic anisotropic media.

 

Figure 1. Sketch map of the absorbing boundary condition (ABC). The square area in the mid-
dle is the computational area. The thick dashed-dot line represents the ABC applied outside the
computational area.

A multi-axial perfectly matched layer (M-PML) boundary condition was developed in
the time domain [26], and its stability has been verified in time-domain isotropic elastic
modeling [27,28]. In this paper, the M-PML boundary condition is applied to frequency-
domain finite-difference modeling in several elastic anisotropic media. The key point of this
method is based on a more general version of coordinate stretching for PML, where waves
are absorbed in all directions because the damping factor is specified in more than one
direction. Then, by adjusting the proportion coefficients of the damping factors according to
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a specific model, M-PML can be stably performed. Comparing the wavefield generated in
two homogenous media shows that PML, frequently used in the first-order wave equation,
has the disadvantage of removing artificial reflections. At the same time, the M-PML
performs well due to the damping profiles specified in multiple directions. Numerical
experiments conducted in a strongly anisotropic medium show that M-PML remains stable
in the frequency and time domains for viscoelastic anisotropic wavefield propagation. In
addition, the M-PML requires only a modification of the damping factors. Therefore, the
additional computational cost remains unchanged for techniques that rely on wavefield
simulation, such as wave equation migration and waveform inversion.

2. Theoretical Foundations

2.1. Frequency Domain Elastic VTI Equation

The 2D frequency-domain anisotropic elastic Equation [10] is given as:

ρω2ux + C11
∂2ux
∂x2 + C44

∂2ux
∂z2 + (C13 + C44)

∂2uz
∂x∂z + f (ω) = 0,

ρω2uz + C44
∂2uz
∂x2 + C33

∂2uz
∂z2 + (C13 + C44)

∂2ux
∂x∂z + g(ω) = 0,

(1)

where ρ is the density, f (ω) and g(ω) are Fourier components of horizontal and verti-
cal body forces, respectively; ux and uz are the horizontal and vertical displacements,
respectively; and ω is the angular frequency. The elastic stiffness is written as:

C11 = (1 + 2ε)ρv2
pr,

C33 = ρv2
pr,

C13 =
√

2δC33(C33 − C44) + (C33 − C44)
2 − C44,

C44 = C55 = ρv2
sr,

(2)

where vpr and vsr are the P-wave and the SV-wave velocity, respectively; ε and δ are
Thomsen’s anisotropic parameters [29].

The frequency-domain finite-difference method can easily introduce attenuation [30].
The constant-Q model is adopted here, and the complex velocity is given as:

1
vp(ω)

= 1
vpr

(
1 − 1

πQp
ln
∣∣∣ ω

ωr

∣∣∣) ·
(

1 − i
2Qp

)
,

1
vs(ω)

= 1
vsr

(
1 − 1

πQs
ln
∣∣∣ ω

ωr

∣∣∣) ·
(

1 − i
2Qs

)
,

(3)

where vp, vs is the complex p-wave and SV-wave velocity, respectively; and Qp, Qs is the
quality factor of the P-wave and SV-wave; ωr is the dominant frequency of the source
wavelet; i represents the imaginary unit. Substituting Equation (3) into Equation (2) yields
the viscoelastic anisotropic wave equation.

2.2. Absorbing Boundary Condition

In order to introduce the M-PML absorbing condition to process unwanted reflections,
the frequency-domain anisotropic elastic wave equation can be written as:
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ρω2ux +
1
ex

[
C11

1
ex

∂2ux
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∂x

(
1
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∂ux
∂x +C13

1
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+ 1

ez
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1
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ez
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∂z

(
1
ez

)
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]
+ f (ω) = 0,

ρω2uz +
1
ex

[
C44

1
ex
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1
ex
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∂uz
∂x +C44

1
ez

∂2ux
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∂x

(
1
ez

)
∂ux
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]
+ 1

ez

[
C13
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ex

∂2ux
∂z∂x + C13

∂
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(
1
ex

)
∂ux
∂x +C33

1
ez

∂2uz
∂z2 + C33

∂
∂z

(
1
ez

)
∂uz
∂z

]
+ g(ω) = 0,

(4)

where ex = 1 − i dx(x)
ω and ez = 1 − i dz(z)

ω , x and z are respectively the distance from the
inner boundary of the horizontal and vertical direction; dx(x) is the damping profiles,
given as:

dx(x) = 2πα0 f0

( x
L

)
, (5)

where x is the distance from the inner boundary of the horizontal direction; α0 is the
optimized parameter, and here α0 is given as 1.79 [30]; f0 is the dominant frequency of the
source wavelet and L is the thickness of the PML absorbing boundary condition. The new
vertical coordinate has a similar form to the horizontal one:

dz(z) = 2πα0 f0

( z
L

)
, (6)

where z is the distance from the inner boundary of the vertical direction.
Artificial boundary reflection can seriously affect the effect of numerical modeling.

Therefore, a frequency-domain multi-axial perfectly matched layer (M-PML) is exploited to
absorb the unwanted reflections.

In classical PML, unwanted waves are only attenuated in one direction (uniaxial).
Within the left and right boundaries, only the damping function along the x-direction is
nonzero and can be formulated as:

dx = dx
x(x), dz = 0. (7)

Similarly, within the bottom and left boundaries, only the damping function along the
z-direction takes effect and can be given as:

dx = 0, dz = dz
z(z). (8)

To attenuate unwanted reflections efficiently, M-PML was developed [26]. The basic
idea of M-PML is that the damping functions are proportional to each other. The damping
function along the x-direction can be defined as:

dx = dx
x(x), dz = p(z/x)dx

x(x), (9)

where p(z/x) is the proportion coefficient in either the right or left PML boundary.
Similarly, the damping function along the z-direction can be written as:

dx = p(x/z)dz
z(z), dz = dz

z(z), (10)

where p(x/z) is the proportion coefficient in either the bottom or top PML boundary. During
implementation, the proportions p(x/z) are between 0 and 1 [27].

2.3. Numerical Implementation

Introducing the finite differences and derivatives can be summarized as follows:
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∂ux
∂x ≈ 1

2Δx

[
ui+1,j

x − ui−1,j
x

]
,

∂ux
∂z ≈ 1

2Δz

[
ui,j+1

x − ui,j−1
x

]
,

∂2ux
∂x2 ≈ 1

Δx2

[
ui+1,j

x − 2ui,j
x + ui−1,j

x

]
,

∂2ux
∂z2 ≈ 1

Δz2

[
ui,j+1

x − 2ui,j
x + ui,j−1

x

]
,

∂2ux
∂x∂z ≈ 1

4ΔxΔz

[
ui+1,j+1

x − ui+1,j−1
x − ui−1,j+1

x + ui−1,j−1
x

]
,

(11)

where Δx and Δz are the horizontal and vertical grid sizes, respectively; and the value of
grid sizes must be small enough so that there are enough grid points per wavelength [10];
i and j are the indices of the horizontal and vertical grids. The finite differences of uz are
similar to the way of the horizontal one.

Using the finite-difference star stencil [10]:

M1 M4 M7
M2 M5 M8
M3 M6 M9

. (12)

Substituting the finite difference of derivatives and each grid point of Equation (12)
according to Figure 2 can be collected as follows:

Figure 2. The second-order finite-difference star stencil used to model the viscoelastic anisotropic
wave equation.

After using the finite difference method in the frequency domain, the final equation
can be written as Equation (14). Thus, for each frequency component, the matrix equation
can be given as:

M(ω)U(ω) = F(ω). (14)

The impedance matrix M(ω) can be obtained by Equation (13), U(ω) is the monochro-
matic wavefield, and F(ω) is the source term. The frequency-domain Ricker wavelet is
used in the following numerical examples, and LU decomposition is used to solve the
matrix Equation (14) to get the monochromatic wavefield.

293



Appl. Sci. 2022, 12, 4719

M1 =
(C13+C44)i,j

4ΔxΔz(exez)i,j

[
0 1
1 0

]
,
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(13)

3. Synthetic Examples

3.1. Comparative Analysis of the Stability of PML and M-PML

In this section, a medium of strong anisotropy was employed to test the stability
and performance of PML and M-PML. The material properties of the strongly anisotropic
medium are given in Table 1: medium 3. We performed wavefield simulations to test the in-
stability of the boundary conditions and confirmed that M-PML outperformed PML in this
strongly anisotropic medium. A square model was considered embedded in an absorbing
boundary of four sides. The computational model of medium 3, similar to the model used
in Meza-Fajardo [25], has a size of 720 m × 720 m, and it is discretized by 480 × 480 grids
with a grid size of 1.5 m. A boundary with a thickness of 120 grids is considered to observe
the phenomenon of wave propagating inside truncated boundary conditions. A vertical
source dominated by 15 Hz is located at the grid point (230 m, 230 m), which is close to
the artificial edge. The real parts of the monochromatic wavefields using classical PML
and M-PML, respectively, are given in Figure 3. In Figure 3, the monochromatic wavefield
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at 15 Hz was calculated using classical PML and M-PML, respectively. The asterisk in
Figures 3 and 4 is the vertical source. The black dashed line in the figure shows the onset of
the absorbing zone. From the results, it can be seen that the PML appears unstable at the
boundary intersection in the upper right corner. This phenomenon is due to the complexity
of the wavefield in the absorption boundary region, which leads to numerical instability of
the PML. Since the PML is a uniaxially defined damping profile, absorption incompleteness
is also observed in the other three corners. In the M-PML, however, since the damping
profile is multi-axial, the instability that appears in the upper right corner of the PML is
well resolved, and the attenuation of the waves is better in the corner regions.

Table 1. Model parameters used for numerical experiments.

Medium Density (kg/m3) Qp Qs Elastic Moduli (GPa)

Medium 1 3200 20 10 C11 = 16.70; C13 = 6.60;
C33 = 14.00; C44 = 6.63.

Medium 2 8900 20 10 C11 = 30.70; C13 = 10.3;
C33 = 35.80; C44 = 7.55.

Medium 3 1000 — — C11 = 4.000; C13 = 7.50;
C33 = 20.00; C44 = 2.00.

 

Figure 3. Real part of the horizontal component from the monochromatic wavefield at 15 Hz with
(a) classical PML and (b) M-PML.

Snapshots of the time-domain wavefield corresponding to Figure 3 are given in
Figure 4. The black dashed line in Figure 4 is the onset of the absorbing boundary condition,
and the source is indicated by an asterisk. Figure 4a,c,e,g are the wavefields calculated
by PML, and Figure 4b,d,f,h are the wavefields calculated by M-PML. The results show
that the PML-calculated wavefields display a significant instability because at 0.0818 s,
the wavefield has not yet propagated to the boundary, but strong energy reflections have
already occurred, and these reflections result from the instability remain almost constant
as the wavefield propagates. Therefore, PML is unstable in strongly anisotropic media.
In contrast, the results of M-PML in the right panel have no unstable reflections, and
the waves are successfully absorbed in the truncated boundary regions, so the M-PML
with multi-axial damping profiles solves the problem of instability of PML in strongly
anisotropic media.
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Figure 4. Snapshots of the horizontal component simulated with classical PML (a), (c), (e), (g) (left
panel) and M-PML (b), (d), (f), (h) (right panel) at 0.0818 s, 0.2636 s, 0.4455 s, and 1.3046 s.
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3.2. Comparative Analysis in Homogeneous Elastic Anisotropic Media

In the previous section, we verified that M-PML is superior to PML in terms of stability.
However, the absorption performance advantages of M-PML and PML were not compared.
Therefore, in this section, wavefield simulations are performed using M-PML and PML in
different anisotropic media to compare the absorption of the two boundary conditions by
observing the time-domain wavefield snapshots and comparing the energy curves. The
energy of the wavefield snapshot is the sum of the squares of the amplitude values of each
point in the wavefield. Then, the energy decay curve is obtained for each moment of the
wavefield snapshot and plotted as a curve with the horizontal axis of time and the vertical
axis of amplitude.

In the first test, the physical properties are given in Table 1: medium 1. We set the
model size to be 1.0 km × 1.0 km with a grid space of 2.5 m, and employed an explosive
Ricker wavelet source with a dominant frequency of 20 Hz. Figure 5 exhibits snapshots
of horizontal displacement and its corresponding analytical group velocity calculated
from medium 1. These snapshots were simulated using PML and M-PML, respectively,
at different times. Figure 5a,b are the snapshots computed inside the PML and M-PML
at 0.1667 s. The consistency between the wavefront calculated from the analytical group
velocity and the wavefront of snapshots can be observed in Figure 5c. Similar to the figures
above, Figure 5d–f are recorded at 0.2444 s. The wavefront of snapshots is almost the same
as the wavefront calculated from the analytical group velocity, and the absorptive capacity
of M-PML is superior to that of PML at four corners. Figure 5g,h are recorded at 0.7 s,
and the absorptive advantage of M-PML over PML can be observed. Figure 5i shows the
wavefield energy decay curves in the computational domain. These results show that the
absorption performance of M-PML is better than that of PML when both ABCs remain
stable, which can be verified by the comparative observations in Figure 5g,h. Because at
0.7 s, the effective wavefield has all propagated within the boundary, while the boundary
reflections observed in PML are stronger at this time, and that of M-PML is much weaker.
To further quantitatively compare the performance of the two ABCs, we gave the energy
curves of them, where the horizontal axis is time, and the vertical axis is the logarithm of
energy, and we can see that the energy of the waves of both ABCs becomes weaker as time
passes, but the energy of M-PML decays faster than that of PML. In addition, in order to
verify the absorptive capacity and reliability of M-PML in viscous media, the wavefield
snapshots of M-PML in viscoelastic anisotropic media are given in Figure 6. From these
results, we know that M-PML is still effective in viscous anisotropic media.

Regarding the verification of the results, we calculated the wavefront using the analyt-
ical group velocity in anisotropic media [31], and the results are displayed in Figure 5c,f,
where the fast propagating wavefront is the P-wave, and the slow one is the S-wave. It
can be seen that the wavefield snapshots at the corresponding moment also contain P-
waves and S-waves. The wavefront in snapshots can correspond well with the analytical
wavefront in Figure 5c,f, which illustrates the reasonableness and applicability of the
numerical results.

We further tested our algorithm with medium 2 in this test. The physical properties
are given in Table 1. We also set the model size to be 1.0 km × 1.0 km with a grid space
of 2.5 m and employed an explosive Ricker wavelet source with a dominant frequency of
20 Hz. Figure 7 shows snapshots of horizontal displacement and its analytical wavefront
calculated from medium 2. These snapshots are calculated within the PML and M-PML
boundary conditions, respectively. Figure 7a,b are the snapshots simulated inside the
PML and M-PML at 0.1222 s, respectively; Figure 7d,e are simulated inside the PML and
M-PML at 0.1889 s, respectively; and the wavefront calculated by the analytical group
velocity in Figure 7c,f are consistent with the wavefront of snapshots at 0.1222 s and
0.1889 s, respectively. Figure 7g,h are recorded at 0.6 s, and significant reflections can be
observed at the four corners in the snapshot of the PML; however, the M-PML does not.
Figure 7i shows the energy decay curves of the wavefield calculated from medium 2. This
numerical experiment was conducted to confirm that M-PML has superior absorption
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performance to PML in arbitrarily different anisotropic media. It can still be seen from
the results that the wavefront in the wavefield snapshots Figure 7a,b coincides with the
analytical wavefront [31] Figure 7c,f at the corresponding moment, verifying the rationality
and applicability of the numerical results. Similar to the previous section, viscosity is still
introduced in this medium, and its wavefield snapshots are displayed in Figure 8 to confirm
that M-PML can still maintain good absorptive properties and stability in different viscous
anisotropic media.

 

 

 

 

 

 

 

 

Figure 5. Comparison between snapshots of the horizontal displacement in medium 1 at 0.1667 s, 0.2444
s, 0.7 s (a), (d), (g) calculated by M-PML and (b), (e), (h) PML. Wavefront calculated from analytical
group velocity at (c) 0.1667 s and (f) 0.2444 s. (i) is the energy decay curve of PML and M-PML.
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Figure 6. Viscoelastic anisotropic wavefield of medium 1 calculated by M-PML at (a) 0.1667 s,
(b) 0.2444 s, and (c) 0.7 s.

 

 

 

 

Figure 7. Comparison between snapshots of the horizontal displacement in medium 2 at 0.1222 s,
0.1889 s, 0.6 s. (a), (d), (g) calculated by M-PML, and (b), (e), (h) PML. Wavefront calculated from
analytical group velocity at (c) 0.1222 s and (f) 0.1889 s. (i) is the energy decay curve of PML and
M-PML.
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Figure 8. Viscoelastic anisotropic wavefield of medium 2 calculated by M-PML at (a) 0.1222 s,
(b) 0.1889 s, and (c) 0.6 s.

Regarding absorption performance, observing the wavefield snapshots of PML and
M-PML shows that both ABCs are stable in this homogenous anisotropic medium, so it is
possible to compare their absorption performance visually. At 0.6 s, the effective wavefield
wholly left the working area, and we can see that the boundary reflections of PML are
strong at the four corners in Figure 7h, but those of M-PML are well attenuated. Further, in
Figure 7i, it is illustrated that the energy decay curve of M-PML is lower than that of PML,
which quantitatively displays the absorption advantage of M-PML over PML.

3.3. Wave Propagation in a Complex Anisotropic Medium

Finally, we used the frequency domain method based on M-PML to perform wavefield
simulation for a more complicated cross-well model. The cross-well model is shown in Figure 9.
The corresponding parameters selected are as follows: computing area, 0 ≤ x ≤ 108 m,
0 ≤ z ≤ 289 m; spatial step, h = Δx = Δz = 0.5 m; grid parameter, 578 × 216; the number
of M-PML layers, 30; dominant frequency of the source, 130 Hz, the location of the source:
(135 m, 0 m); receiver alignment positions: x = 108 m, 0.5 ≤ z ≤ 288.5 m; receiver interval,
2 m. The cross-well model has eight layers. There are numerical constants in red in Figure 8,
which label the layers in the figure. The red constants 1–8 in the figure correspond to layers
1–8 in Table 2, respectively. The asterisk in the figure represents the source. These anisotropic
medium parameters are taken from the true sedimentary and are available in the study of
Thomsen [28].

 

Figure 9. Multi-layer cross-well model with single-excited source well on the left and multiple-
received receiver well on the right, with red constants for medium numbers.
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Table 2. Physical parameters used for the cross-well model.

Layer Media Vp (m/s) Vs (m/s) Qp Qs ε δ ρ (kg/m3)

Layer 1 1875 826 10 10 0.225 0.100 2000
Layer 2 2202 969 10 10 0.015 0.060 2250
Layer 3 2868 1350 15 15 0.970 −0.090 1860
Layer 4 3368 1829 21 18 0.110 −0.035 2500
Layer 5 3688 2774 30 19 0.081 0.057 2730
Layer 6 3901 2682 38 25 0.137 −0.012 2640
Layer 7 4296 2471 42 35 0.081 0.129 2660
Layer 8 4529 2703 50 40 0.034 0.211 2520

Figure 10 shows the mono-frequency wavefield snapshots of elastic and viscoelastic
anisotropy obtained by the proposed method at 163.2 Hz, 329.8 Hz, and 429.5 Hz. Fur-
thermore, the time-domain snapshots at the time point of 0.0199 s, 0.0299 s, and 0.0399 s
computed by the proposed method are shown in Figure 11, respectively. It is easy to see
that there exist no artificial edge effects near the truncated boundary in either the elastic or
viscoelastic anisotropic wavefield. Then, we give the single-shot seismograms of the cross-
well model, which are shown in Figure 12, and we also see that there exist no numerical
dispersion or artificial edge effects in either elastic or viscoelastic anisotropic seismograms.
Thus, we may conclude that the M-PML for the finite-difference frequency domain is
suitable for wavefield simulation in a viscoelastic anisotropic and complicated medium.

 

 

 

 

 

 

Figure 10. Mono-frequency horizontal elastic anisotropic wavefield snapshots of different frequencies
for the cross-well model at (a) 163.2 Hz, (b) 329.8 Hz, (c) 429.5 Hz, and viscoelastic anisotropic
wavefield at (d) 163.2 Hz, (e) 329.8 Hz, and (f) 429.5 Hz.
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Figure 11. Time-domain horizontal elastic anisotropic wavefield snapshots for the cross-well model at
(a) 0.02 s, (b) 0.03 s, (c) 0.04 s, and viscoelastic anisotropic wavefield at (d) 0.02 s, (e) 0.03 s, and (f) 0.04 s.

Figure 12. Time-domain horizontal (a) elastic anisotropic and (b) viscoelastic anisotropic seismogram
corresponding to Figure 11.
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4. Conclusions

In this study, in order to solve the instability of the absorbing boundary conditions
caused by the frequency-domain algorithm for viscoelastic anisotropic wavefields, wave
propagation was simulated by the finite-difference frequency-domain, and the reliability of
the results was verified by combining the analytical wavefront obtained from the anisotropic
analytical group velocity. The multi-axis perfectly matched layer (M-PML) was introduced
in the frequency domain. We compared the wavefield snapshots and energy attenuation
curves of M-PML and PML in different elastic anisotropic media. Then, we gave the
viscoelastic anisotropic wavefield to demonstrate the reliability of M-PML in viscous media.
The results indicate that M-PML can still stably and effectively absorb reflections from the
truncated boundaries in strongly anisotropic and viscous media. Simulations in a complex
cross-well viscoelastic anisotropic model indicate the applicability of this algorithm to a
heterogeneous medium.

Moreover, the implementation of M-PML only needs to combine the damping profiles
of PML, which improves absorption performance and stability while maintaining computa-
tional efficiency. In practice, this algorithm can be used as a forward operator for seismic
migration, waveform inversion, and wave equation travel-time tomography. The frequency-
domain algorithm can also improve the inversion efficiency of multi-source problems. For
complex subsurface media, the proposed method can be applied for inversion of medium
anisotropy and attenuation properties. Although our proposed algorithm works well, it
has some limitations. Bad choices of p(z/x) and p(x/z) may lead to artificial reflections.
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Abstract: Under the assumptions of linear elasticity and small deformation in traditional elas-
todynamics, the anisotropy of the medium has a significant effect on rotations observed during
earthquakes. Based on the basic theory of the first-order velocity-stress elastic wave equation, this
paper simulates the seismic wave propagation of the translational and rotational motions in two-
dimensional isotropic and VTI (transverse isotropic media with a vertical axis of symmetry) media
under different source mechanisms with the staggered-grid finite-difference method with respect to
nine different seismological models. Through comparing the similarities and differences between the
translational and rotational components of the wave fields, this paper focuses on the influence of
anisotropic parameters on the amplitude and phase characteristics of the rotations. We verify that the
energy of S waves in the rotational components is significantly stronger than that of P waves, and
the response of rotations to the anisotropic parameters is more sensitive. There is more abundant
information in the high-frequency band of the rotational components. With the increase of Thomsen
anisotropic parameters ε and δ, the energy of the rotations increases gradually, which means that the
rotational component observation may be helpful to the study of anisotropic parameters.

Keywords: rotation; translation; isotropic medium; VTI

1. Introduction

It is well known that the six-component records of ground motion include three-
component translations and three-component rotations [1]. In the past two decades, with
the development of rotational seismometers, the observation of rotations has gradually
increased, and rotations caused by earthquakes have attracted increasing attention in
the scientific and seismic engineering fields, and great progress has been made in both
theoretical research and practical applications [2–6].

In order to study the mechanism of seismological rotations, many meaningful in-
quiries have been made by means of indirect calculation, direct observation, and numerical
simulation. Aiming at the Newport–Inglewood (NI) fault in America, Wang et al. [7] used
a finite-difference method to simulate several earthquakes with magnitude 7 in different
hypocenters, and found the influence of source and receiving geological conditions on
the rotations. They also found that the variations of the source produce a great effect on
the rotations. Therefore, rotational observations may contribute to the exploration of the
mechanism of NI earthquakes. Ferreira et al. [8] simulated the rotations recorded at the
fundamental mode of surface waves with the full ray theory (FRT) for laterally smooth
heterogeneous Earth models, and found that the synthetic seismograms showed good
agreement with the real ones. With the joint observations of rotation rates and accelerations,
the one-dimensional S-wave velocity at the observing locations can be obtained. Pham
et al. [9] calculated the amplitudes of rotational rates based on the Kelvin–Christoffel
equations and found that the rotational rates caused by anisotropies were large enough
in strong earthquakes to predict the underground structures and constrain anisotropic
parameters. Tang et al. [10] developed a new method, the generalized reflection and trans-
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mission coefficient method, which could obtain the translational and rotational synthetic
seismograms in VTI media.

Barak et al. [11] performed a synthetic seismic experiment on a simple two-layer model
of a water-covered seabed, where there were isolated high-velocity spheres different from
the background medium. They found that the energy of the Scholte waves on rotational
components was stronger than that on translational components, which would be helpful
to identify different modes of waves and separate the surface waves from the body waves.
More importantly, with seven-component seismic data, including the pressure components
recorded by hydrophones, displacements recorded by three-component geophones, and ro-
tations recorded by three-component rotational seismometers, their analyses presented the
possibility to recover the vector characteristics of wave fields. Additionally, we previously
discuss the differences between body waves and surface waves projected on the rotational
components in 2D isotropic media [12], and Zhang et al. [13] found that the responses
of the anomalies with a lower velocity were more obvious on the rotational components
than on the translational components, and the energy of the shear waves on rotational
components was stronger than that of P waves.

Although there is much research about rotations at present, the characteristics of
rotations in transverse isotropic media with a vertical axis of symmetry (VTI) have not yet
been clarified, and the influence of the anisotropic parameters on rotations is still unclear.
In order to study the characteristics of the rotations generated from different sources in VTI
media and explore the significance of rotations to the research of anisotropic parameters,
we simulate the seismic rotations and translations based on the first-order velocity-stress
equations using the staggered-grid finite-difference method in 2D VTI medium, analyze the
similarities and differences between translations and rotations, and focus on the influence of
the Thomsen parameters [14] on rotations so as to promote the relationship of the rotations
and the anisotropies of the media, which can be helpful for the wave–field separation,
inversion of the anisotropic parameters and the study of the earthquake source mechanism.

2. Theoretical Foundations

Ground motion includes not only three components of linear displacements but also
three components of rotation in three-dimensional Cartesian coordinates (Figure 1). The
rotation tensor, the curl of the displacement field, is expressed as:

→
ω =

1
2
∇×→

u (1)

where
→
ω is the rotation tensor and

→
u is the displacement tensor.

Figure 1. The translations and rotations.

In a two-dimensional plane, the seismic wave fields can be presented as two trans-
lational components, X and Z components, and a rotational component, ωy. In order to
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correlate with the general seismic velocity observation, the rotation rate vector Ry can be
expressed as:

Ry =
1
2
(

∂vx

∂z
− ∂vz

∂x
) (2)

where vx and vz are the X and Z components of the velocity, respectively; x and z are the
coordinates on the Cartesian system.

Using the staggered-grid finite-difference method [15], under the assumptions of
linear elasticity and small deformation, the one-order velocity-stress equations of the elastic
waves in 2D VTI medium can be expressed as:⎧⎨⎩

∂σxx
∂x + ∂σxz

∂z = ρ ∂vx
∂t

∂σzx
∂x + ∂σzz

∂z = ρ ∂vz
∂t⎧⎪⎪⎨⎪⎪⎩

∂σxx
∂t = c11

∂vx
∂x + c13

∂vz
∂z

∂σzz
∂t = c13

∂vx
∂x + c33

∂vz
∂z

∂σxz
∂t = c44(

∂vz
∂x + ∂vx

∂z )

(3)

where σxx, σzx and σzz are three stress components, t is time, ρ is density; c11, c13, c33 and
c44 are elastic coefficients, which can be calculated with [14]:

c11 = ρv2
p(1 + 2ε)

c33 = ρv2
p

c44 = ρv2
s

c13 = ρ

√[
(1 + 2δ)v2

p − v2
s

](
v2

p − v2
s

)
− ρv2

s

(4)

where vp and vs are the velocity of the P and S waves, respectively, and ε and δ are the
anisotropic parameters. We define different VTI models by giving different Thomsen
parameters to study the influence of anisotropic parameters on the translational and
rotational components. When ε = 0 and δ = 0, Equation (3) corresponds to an isotropic
medium.

Based on Equations (2)–(4), we simulate the seismic waves in discrete models with
the grids at second-order time and twelfth-order space differential approximations. In
addition, we use the Ricker wavelet with a 60 Hz central frequency to simulate the explosion
source, the radial concentrated force source, the vertical concentrated force source, and the
shear source, respectively. Furthermore, we utilize the splitting form of perfectly matched
absorbing layer boundary condition (SPML) [16] to weaken the boundary reflections.

3. Synthetic Examples

In order to study the influence of the source mechanism on rotations, we defined
model 1 as a 2D isotropic full-space homogeneous elastic medium, as illustrated in Table 1.
Since P waves theoretically do not generate rotational motion in isotropic media [9], we
compared the translational and rotational components generated from the concentrated
force and the shear source.

Table 1. Parameters of model 1.

Model vp (m/s) vs (m/s) ρ (kg/m3) ε δ

Model 1 2000 1200 2000 0 0

With a size of 200 m × 200 m, the shot in the center of the model, and the receivers
arrayed at a depth of 100 m with 1 m intervals, the translational and rotational components
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generated from different sources are shown in Figures 2–4, where the sample interval is
0.1 s and the total recording time is 0.1 s.

(a) 

(b) 

(c) 

Figure 2. The seismograms. (a) The radial concentrated force source. (b) The vertical concentrated
force source. (c) The shear source.
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Figure 3. Seismograms of the 30th trace.

(a) 

Figure 4. Cont.
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(b) 

(c) 

Figure 4. Snapshots of wave fields at 0.05 s. (a) Radial concentrated force source. (b) Vertical
concentrated force source. (c) Shear source.

In Figure 2, it is obvious that there are only S waves in the three components because
the model is isotropic and only S waves are produced by the shear source, while it can be
clearly seen that there are the first arrivals of P and S waves generated from the radial and
vertical concentrated force sources. The energy of the Ry component generated from the
concentrated force source is so weak that it needed to be magnified 10 times to be visible at
the same energy level with the other two components on the records. It can be found that
P waves are much stronger than S waves in the X component generated from the radial
concentrated force source, while S waves cause a stronger rotational motion, and P waves
are hardly visible in Ry components.

We extracted the 30th trace of the seismic records to make a further comparison
of translations and rotations, as shown in Figure 3. The influence of sources in the X
component and Ry component is much stronger than that in the Z component in the
far offset. The amplitude of P waves in the X component generated from the radial
concentrated force source is much stronger than that from the other two sources. However,
the amplitude of the S waves generated from the radial concentrated force source is weak
in all three components.

All these anomalies can be enhanced in the snapshots of different components gener-
ated from different sources (Figure 4), where there are only S waves in the Ry components.
In all snapshots, the shapes of the wavefronts in the X and Z components are round, which
is consistent with Zhang’s research [17]. It can be seen that the wavefront propagates with
reverse phase along the horizontal axis in the Ry component generated from the radial
concentrated force source, while it propagates with reverse phase along the vertical axis
in the Ry component generated from the vertical concentrated force source. However, it
propagates with the same phase around the circumference in the Ry component generated
from the shear force. The wavefronts in the X components and Z components are complex
and different from the Ry components.

Obviously, the energy of S waves is significantly stronger than that of P waves on the
Ry component, which means the Ry component may be helpful to identify different body
waves.

310



Appl. Sci. 2021, 11, 10845

4. Effects of Anisotropic Parameters on Rotations

In order to further explore the effects of anisotropic parameters on rotational motion,
we changed the Thomsen parameters δ and ε, based on the same seismic observation
system to simulate the three-component velocity fields. Eight different models are defined
as illustrated in Table 2: models 2–5 were mainly used to study the effects of ε on rotational
components by increasing ε from 0 to 0.3 as δ is constant, and model 4 and models 6–9 were
employed to explore the influence of δ by gradually increasing δ from −0.2 to 0.2 as ε is
constant. We first analyzed the simulation results under the explosion source in detail,
shown in Figures 5–12.

Table 2. Anisotropic parameters of different models.

Parameter Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9

E 0 0.1 0.2 0.3 0.2 0.2 0.2 0.2
Δ −0.2 −0.2 −0.2 −0.2 −0.1 0 0.1 0.2

Figure 5. Components generated from the expansion source in different models.
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Figure 6. Wave field snapshots of Ry generated from the expansion source at 0.05 s.

Figure 7. FK spectra of Ry generated from the expansion source in different models.
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(a) 

Figure 8. Cont.
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(b) 

Figure 8. Influence of ε on seismic records generated from the expansion source: (a) the seismic
records of the 30th trace; (b) the seismic records of the 90th trace.
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(a) 

Figure 9. Cont.

315



Appl. Sci. 2021, 11, 10845

(b) 

Figure 9. Influence of δ on seismic records generated from the expansion source: (a) the seismic
records of the 30th trace; (b) the seismic records of the 90th trace.
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(a) (b) 

Figure 10. Influence of anisotropy parameters on amplitude spectra of the 90th trace generated from
the expansion source: (a) when ε varies; (b) when δ varies.
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(a) (b) 

Figure 11. Influence of anisotropy parameters on phase spectra of the 90th trace generated from the
expansion source: (a) when ε varies; (b) when δ varies.

Figure 12. Influence of ε and δ on peak values of the 90th trace generated from the expansion source.

The seismic records, wave field snapshots, and FK spectra of different models are
shown in Figures 5–7. Figure 5 demonstrates that, contributed by the velocity anisotropy,
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both P and S waves existed in the components in the VTI media. The energy of S waves
became stronger with increasing ε, while the effects of δ were almost invisible.

The shape of wavefronts in Ry components became elliptical in VTI media, as seen in
Figure 6. The eccentricities of the ellipse gradually increased with increasing ε, while the
eccentricity of the ellipse gradually decreased with increasing δ.

There are obvious P- and S-wave energy groups in the rotational components in the
FK spectra (Figure 7). With the increase of ε, the energy of P waves decreased gradually,
but became more concentrated at the same time, while the energy of S waves gradually
increased. However, the FK spectra of rotational components were almost unchanged with
increasing δ.

We extracted and boosted the 30th and 90th traces’ waveforms to study the effects
of ε and δ on the amplitude and phase of seismic waves, which represented the far and
near offset traces, respectively, to analyze the dynamic characteristics in detail. With
the increase of ε, the amplitude and phase of the seismic waveforms showed obvious
variations, as illustrated in Figure 8. In the near offset, with the increase of ε, the X
components changed slightly. The peak values of Z components decreased gradually, while
those of Ry components increased gradually. However, in the far offset, the peak values of
Ry components increased slightly, while the phase varied widely with the increase of ε.

The effects of δ on waves’ dynamic characteristics are shown in Figure 9. The effects
of anisotropy on the X components were nearly negligible in the far offset, while the effects
on the Ry components were obvious. The Z components changed substantially with the
increase of δ in the near offset. The waves on the rotational components changed more
obviously than those on translational components with increasing δ.

Furthermore, the influence of ε and δ on different components is shown in the ampli-
tude and phase spectra (Figures 10 and 11). We can conclude that the rotational components
had more high-frequency information than the translational components, since the spec-
tra of X components were mainly in the frequency range 60–100 Hz, Z components are
mainly in the frequency range 70–110 Hz, and Ry components in the frequency range
80–120 Hz. The amplitude variation of the Ry components was much greater than that of
the X components with the variation of ε. On the Z components, the bandwidths of the
wave fields became smaller, and the central frequencies became lower as ε increased. In
addition, δ had less of an influence on the amplitude spectra of the three components than
ε. With the increase of δ, the amplitudes of the wave fields on the X components and the
Ry components increased slightly, while the amplitudes on the Z components showed a
greater increase in the high frequencies.

In Figure 11, there are barely visible variations in the phase spectra of the X compo-
nents with variation of ε, demonstrating that ε had a minor effect on the X components. The
Z components of the four models differed mainly in the frequency range 100–200 Hz, while
they were almost the same in the low frequencies. With the increase of ε, the phase spectra
of Ry components varied more greatly than the translational components. The effects of δ
variation on the phase spectra of three components were less pronounced than the effects
of ε variation. The phase variation of X components was weak except in the frequency
range 180–200 Hz, while it was more substantial in the frequency range 90–130 Hz for the
Z components. With the increase of δ, the phase spectra of Ry components differed slightly,
but they were significantly different from the isotropic condition. It can be deduced that
rotation observations may be preferable to the study of anisotropic parameters.

Peak values of the 90th trace in different models can be seen in Figure 12. We found
that the peak values of the rotational components increased gradually with the increase of
ε, while they were almost the same with increasing δ.

To demonstrate the influence of the source on rotation, the seismic synthetic data and
snapshots of wave fields at 0.05 s generated from different sources for different models
are shown in Figures 13 and 14. There are obviously P waves and S waves in the seismic
synthetic data generated from the radial concentrated force source, while there are few P
waves in the seismograms generated from the other sources. The energy of P waves in the
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Ry components generated from the radial concentrated force source was stronger than that
generated from the vertical concentrated force source and shear source. With the increase
of ε, the energy of P waves generated from the radial concentrated force source was much
more enhanced than that of S waves, which is completely opposite to the outcome observed
with increasing δ. Since S waves existed in the Ry components generated from the vertical
concentrated force and shear source, it can be seen that the energy of S waves gradually
increased with the increase of ε and δ.

(a) 

Figure 13. Cont.

320



Appl. Sci. 2021, 11, 10845

(b) 

Figure 13. Cont.
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(c) 

Figure 13. Seismograms. (a) Radial concentrated force source. (b) Vertical concentrated force source.
(c) Shear source.
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(a) 

(b) 

Figure 14. Cont.
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(c) 

Figure 14. Snapshots of wave fields at 0.05 s. (a) Radial concentrated force source. (b) Vertical
concentrated force source. (c) Shear source.

The shape of the wavefront was an ellipse in VTI media generated from the shear
source and concentrated force source in the Ry components, while the wavefront was
round in isotropic medium. The energy of P waves was much weaker than that of S waves,
although it could barely be seen in the snapshots of wave fields generated from the shear
source and vertical concentrated force source. With the increase of ε, the eccentricity of
the wavefronts gradually increased. However, with the increase of δ, the eccentricity of
the ellipse gradually decreased to near-circular. We conclude that the sources have a great
influence on the wave fields of the Ry component.

5. Conclusions

We simulated seismic waves in VTI media with different anisotropic parameters under
different sources and analyzed the similarities and differences between the translational
components and the rotational components, especially focusing on the effects of anisotropic
parameters on the rotational motions. We drew the following conclusions from these
synthetic examples:

1. The energy of S waves is significantly stronger than that of P waves in the rotational
components, and the rotational components have more high-frequency information.

2. The wave fields of rotations propagate with different phase distributions under
different source mechanisms in space, and the vertical concentrated force source and
shear source cause much stronger rotations than the others.

3. The amplitude and phase characteristics of the rotations are more complex in VTI
media, which is helpful to distinguish VTI media from isotropic media. With the
increase of ε and δ, the energy of the rotational components increases. With the
increase of ε, the eccentricity of the wavefronts gradually increases, while with the
increase of δ the eccentricity of the ellipse gradually decreases to near-circular.
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4. Rotations are influenced more significantly by anisotropic parameters than transla-
tions, which indicates that the response of the rotations to the anisotropy is more
sensitive.

From the simulations and comparisons introduced in this paper, we can deduce that
rotation will be beneficial to distinguish VTI media from isotropic media and to predict
their anisotropic parameters.
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Abstract: Accurate and efficient reconstruction of hidden geological structures under the surface is
the main task of high-resolution Velocity Model Building (VMB). The most commonly used methods
in practice are Tomography and Full Waveform Inversion (FWI), which rely heavily on the initial
model. Recently, deep learning types of methods have received widespread attention and have
performed well in many tasks such as image segmentation and classification. Therefore, it is of
great significance to introduce deep learning algorithms into the VMB procedure to accelerate the
production cycle, especially for the velocity anomalies detection, which is crucial for a high-resolution
initial model. In this paper, a modified U-Net framework is proposed and applied directly on the
seismic shot gathers to identify anomalies in the early stage of VMB, which can provide a suitable
initial guess for the following large-scale VMB procedures such as FWI. The numerical examples
show the power of the proposed method on synthetic data.

Keywords: velocity anomalies detection; deep learning; seismic data; geological structure; seismic
velocity analysis

1. Introduction

The main goal of the high-resolution Velocity Model Building process is to reconstruct
the subsurface structures, especially to capture potential geological bodies, such as shallow
gas clouds, salt bodies and fault plains. On the other hand, these complex geological
structures result in certain types of anomalies. Refs. [1,2] proposed different methods
to calculate velocity models. Particularly, gas clouds correspond to lower velocity and a
smaller Quality Factor (Q) [3], and some quantifiable techniques were proposed to identify
shallow gas pockets. A ray-based Q-tomography was developed by [4] and has been
applied to field data to estimate the effects of shallow gas by representing the pockets as
anomalous Q bodies [5]. One of the most crucial problems in the Q-tomography method
is how to predict the Q bodies masks accurately, which is used to indicate the location of
strong absorptions. Usually, several iterations were needed to improve the precision of
the location information, either by manual editing or introducing some attributes as pilot.
Refs. [6,7] show exciting Q-tomography results, employing the FWI model to produce
the masks for the subsequent anomalous Q-tomography process to evaluate the shallow
gas clouds. However, in the FWI guided Q-tomography flow, the accuracy of the masks
is strongly dependent on the FWI process, human intervention, and the initial Q-factor
model, which are extremely time-consuming and tedious. The initial Q-factor model can
be directly obtained from field data by applying sophisticated methods [8]. Furthermore,
the initial velocity model usually starts from a smooth one, which is based on manual
velocity analysis or vintage experience from that area only; the local detailed information is
excluded. Introducing accurate location information into velocity models automatically
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in the early stages will help to improve the quality of the VMB results and accelerate the
model building process significantly.

Since deep learning was proposed by [9], it has received widespread attention and
is widely used in computer vision, voice recognition, natural language processing, etc.
Recently, machine-learning based techniques were introduced into the seismic data pro-
cessing and interpretation community. Ref. [10] presented a supervised-learning-based
salt body detection algorithm. Three features—amplitude, second derivative and curve
length—were selected to characterize voxels of 3D seismic volume, and the algorithm uses
small fraction of the characterized voxels for training to predict the whole volume. Ref. [11]
developed a texture classification workflow using seismic attributes, clustering techniques
and segmentation by thresholds, followed by second step mathematical morphological
and basic operations between volumes to improve the detection. A major strategy of this
type of method is to apply data mining algorithms [12] on the post-migration volumes.
Ref. [13] developed a novel method based on machine learning techniques to automatically
identify and localize faults. The method was introduced in the initial stages of the VMB
process, when no seismic data had been migrated, which is different from other types of
post-migration methods that use processed seismic data or migrated images [14,15].

In the field of computer vision, it is well known that Fully Convolutional Networks
(FCNs) and U-Net perform well on image segmentation tasks. These two frameworks
were proposed by [16,17], respectively. U-Net is similar to FCN and has been widely
used in medical image segmentation. Compared with FCN, the first feature of U-Net
is that it is completely symmetrical, which means the left and right hand side are very
similar. However, the decoder of FCN is relatively simple, using only a deconvolution
operation. The second difference is skip connection: FCN uses summation, while U-Net
uses concatenation. The U-Net model modified and expanded the network on the basis
of FCN, so that it can use very few training images to obtain very accurate segmentation
results. In addition, an upsampling stage is added, which adds lots of feature channels,
allowing more texture information of the original image to spread in high-resolution layers.
U-net does not have a fully convolutional layer and uses valid for convolution throughout,
which ensures that the results of the segmentation are based on no missing context features.

In this paper, a two-step deep-learning based velocity anomalies detection workflow
is established. The workflow starts from the pre-migration shot gathers directly, justifiying
the presence of anomalies firstly and then predicting accurate location information of the
velocity anomalies prior to VMB process by employing a modified U-Net neural network.
A set of two-dimensional synthetic model tests are presented to evaluate the effectiveness
of the proposed workflow.

2. Materials and Methods

In this section, the flow chart of the proposed model is presented, including a 2-branch
U-Net and a post-processing step.

2.1. Seismic Data Preparation

Firstly, a set of two-dimensional layered velocity models with anomalies are generated;
the models include high or low speed anomaly regions. An acoustic wave equation forward
modeling scheme is employed for producing seismic data based on the generated velocity
models. The detailed settings are listed here.

• Background velocity can be simple layered model or including faults.
• Anomalies are simplified to some elliptical regions, with random center coordinates

and major/minor axis length.
• Masks for the designed anomalies are generated simultaneously.
• At most, two anomalies are located in each model, either inside one layer or crossing

multiple layers.
• Seismic data generated by different shots are recorded.
• All the data are separated into two parts for training and testing.
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2.2. Flow Chart

The flow chart of the proposed framework is presented in Figure 1.

Figure 1. Flow chart.

The pairs of generated seismic and the corresponding mask compose the training
dataset and feature label, as the input for the proposed U-Net neural network. The training
procedure is shown in Figure 2.

Figure 2. Training procedure.

After the training process, the testing data (not included in training) will be input to
the trained U-Net neural network, and the feature label set is predicted for verification
purposes, which is shown in Figure 3.
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Figure 3. Verification procedure.

2.3. Modified U-Net Neuron Network

U-Net is an efficient deep learning framework for image segmentation task. As Figure 4
shows, it can be divided into the front and latter part. The front is the downsampling
part for feature extraction, which is composed of convolution layer and pooling layer.
The latter one is the upsampling part for image reconstruction, which is composed of an
up-convolution layer and a convolution layer. It should be noted that the net concatenates
the front part and the latter part in each parallel layer, so that more information of feature
extraction can be reserved.

For the classical U-Net neuron network, suppose that Zi is the data obtained after
upsampling at the i-th layer, Yi is the data before upsampling, Xi is the data mapped from
the left side of the network at the i-th layer and C represents the upsampling process. Then
its mathematical formula can be expressed as

Zi = Xi + CYi. (1)

Our task is to invert seismic waveforms to generate velocity field and anomalies
locations. A modified U-Net is proposed with a different structure from the classical one.
Initially, the convolution operation starts from 1 pixel outside the edge of the seismic
image, which guarantees that the generated velocity field does not change the size while
acquiring the features of the original data. In addition, since it is found in the classical
U-Net experiments that the generated velocity fields are contaminated by the contour of
the seismic waveform, and the reason is that the classical U-Net transmits some parts
of the data to the output directly, we modify the classical U-Net structure and omit the
transmitted part. The structure of the modified U-Net is shown in Figure 4, and the dashed
line indicates the transmitting process in traditional U-Net. The corresponding formulation
is as follows: {

Zi = CYi, i f i = 1;
Zi = Xi + CYi, i f i > 1.

(2)

In addition, the upsampling process is divided into two branches, which are used to
predict the velocity field and the anomaly mask, respectively. Under this setting, which
is shown in Figure 5, the velocity and the anomaly mask can be generated from the
corresponding seismic waveform simultaneously.
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Figure 4. Architecture of the modified U-Net neuron network.

Figure 5. U-Net separated into 2 parts.

Velocity field image generation is a regression problem, and the MSE type of loss
function is often used. On the other hand, anomaly image generation is a classification
problem, where the BCE type of loss function should be employed. Classification and
regression problems cannot use the same loss function as the criterion. Therefore, we define
an ensemble loss function of the entire U-Net as a weighted summation of MSE and BCE
loss with a fine-tunable parameter α. The accuracy requirement of the model is that the
ensemble loss function is less than a threshold, so that the accuracy of two branches can be
guaranteed simultaneously. The ensemble loss function is defined as

Loss = αBCE + (1 − α)MSE (3)

2.4. Post-Processing

In practice of the Velocity Model Building, geophysicists usually apply a smoothing
post-processing step to obtain a more reliable background velocity field. Following this
traditional setting, we added two convolutional layers to the generated velocity field image
to achieve a smoothing effect. As shown in Figure 6, the velocity field with a post-processing
step has a more reasonable background and without touching the anomalies.
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Figure 6. Post-processing step.

3. Results

For an area, the seismic wave propagation speed of different geological structures
in the area is different, and there is a cavity in the geological structure (wave velocity is
different from other geological structures). In this algorithm, when the data of the velocity
field are given, a seismic waveform can be obtained by simulating the ground explosion.
The specific method is to input velocity field data and modeling parameters (including
shot position, parameters for recording wavefield snapshots, etc.) into the program. Then
the corresponding seismic data and seismic waveforms will be generated by using the
finite difference method. We made a comparison to the similar machine learning algorithm
proposed in [13]. The experiments were performed on a workstation with two 10 Core
Intel(R) Xeon(R) Silver 4210R CPU, 2 RTX A5000 GPU, 128GB RAM and an Ubuntu 20.04
operating system that implements Pytorch. The code of our algorithm has been uploaded
to GitHub (https://github.com/DavidDeadpool/Unet-seismic/tree/main/Unet-seismic,
accessed on 12 July 2022).

First, we generated a set of velocity models with anomalies distributed randomly and
also generated the masks to describe the location of the anomalies corresponding to each
velocity model. Then we modeled seismic shot gathers based on the generated velocity
models. Finally, we paired the shot gathers and the masks together as the input and output
of the training pairs of the U-Net network.

3.1. Velocity Models with Anomalies

We have generated various types of velocity models. The basic type is a velocity model
with one anomaly and no fault. Through the controlled variable method, the other velocity
fields are multiple (two) anomalies with no fault and one anomaly with fault. According to
the natural laws of geophysics, the velocity in the upper level (near the surface) is small,
and the velocity increases as the depth increases. The location and size of the anomalies are
randomly generated, and the default shape of the anomaly is an ellipse. The length of the
semi-axis of the ellipse is [20, 100]. Figure 7 shows the different types of velocity models.

Figure 7. Examples of velocity models.
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3.2. Seismic Waveforms

By using a 2D acoustic wave modeling algorithm [18], we calculated the reflection
seismic records and wavefield snapshots corresponding to different shot points. We assume
that the entire area is 5000 m wide, and the source and receiver position can be in this
5000 m area. The leftmost end of the image is set to X = 0 m, and the rightmost end is
X = 5000 m. We can collect one seismic waveform at each seismic wave launch location.
For convenience, for the input of multiple seismic waveforms, the experiment selects the
shots at locations of 500 m, 1500 m, 2500 m, 3500 m and 4500 m. Figure 8 shows the seismic
waveforms corresponding to different shot positions.

Figure 8. Seismic waveforms at different shot positions.

3.3. Results

In order to understand the influence of fault and the number of anomalies on the
experimental results, we conducted multiple sets of comparative experiments. In addition,
in order to determine the impact of the number of shot points on the accuracy of the
experiment, we conducted single shot point experiments (X = 2500 m) and multiple shot
point experiments (X = 500 m, 1500 m, 2500 m, 3500 m, 4500 m) and completed the
comparison in each set of comparison experiments.

3.3.1. One Anomaly without Fault

In this group of experiments, the velocity model is divided into five layers without
fault, and there is only one anomaly. We made predictions for a single shot point and
multiple shot points. The velocity field and anomaly images obtained through training are
shown in Figure 9. There is no obvious difference in the prediction of the velocity field. In
order to better view the prediction effect of the velocity field, we have produced vertical
velocity profiles, as shown in Figure 10. The prediction error of a single shot point at an
anomaly is smaller than that of a multi-shot-point prediction.
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Figure 9. Prediction for velocity field and anomaly in velocity model with one anomaly and no fault.

Figure 10. Vertical velocity profiles of velocity field with one anomaly and no fault.

3.3.2. One Anomaly with Fault

In this group of experiments, the velocity field is divided into three layers, with only
one abnormal point. We made predictions for a single shot point and multiple shot points.
The effect of predicting the velocity field and abnormal points is shown in Figure 11. There
is no obvious difference in the prediction of both velocity field and anomaly. In order to
better view the prediction effect of the velocity field, we have produced vertical velocity
profiles, as shown in Figure 12. The prediction error of a single shot point at an anomaly is
smaller than that of a multi-shot-point prediction.
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Figure 11. Prediction for velocity field and anomaly with one anomaly and fault.

Figure 12. Vertical velocity profiles of velocity field with one anomaly and fault.

3.3.3. Multiple Anomaly without Fault

In this group of experiments, the velocity field is divided into two layers, with two
anomalies. We made predictions for a single shot point and multiple shot points. The
effect of predicting the velocity field and anomalies is shown in Figure 13. There is no
obvious difference in the prediction of the velocity field, but the method of single-shot
prediction is more accurate for the prediction of anomalies. In order to better view the
prediction effect of the velocity field, we have produced vertical velocity profiles, as shown
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in Figure 14. The prediction error of a single shot point at an anomaly is smaller than that
of a multi-shot-point prediction.

In summary, the neural network algorithm based on U-Net can accurately complete
the process of predicting the velocity field and anomalies from the seismic waveform. Both
single shot point and multiple shot points have good prediction effects, but the effect of
multiple shot points is not necessarily better than single shot point.

Figure 13. Prediction for velocity field and anomaly with 2 anomalies and no fault.

Figure 14. Vertical velocity profiles of velocity field with 2 anomalies and no fault.
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4. Discussions and Conclusions

We generated simulated seismic data based on the finite difference method and used
the modified U-Net to successfully predict the underground velocity field and the location
of anomalies from seismic waveforms, and then used CNN to post-process the generated
images. Experimental results show that the effect of multi-shot-point prediction is not
necessarily better than that of single shot point. After numerical verification, the predicted
velocity field and abnormal point position have very little error with the ground truth. It
should be noted that traditional VMB normally needs weeks or months to reconstruct the
velocity model; however, our algorithm only needs days, which is shown as Table 1. Next,
we will use real seismic data to verify and refine our model.

Table 1. Time of calculation in one anomaly without fault experiment.

Experiment Time of Training Time of Prediction

Single shot point 95.3 h 5 min

Multiple shot points 109.3 h 5 min

There are still some problems with our model. First of all, as shown in Figures 10, 12 and 14,
as the depth increases, the error of the velocity prediction will gradually increase. In
addition, the data used in each of our experiments correspond to 1000 sets of artificially
generated information. It is necessary to increase the amount of information and use real
seismic data to improve the applicability of the model to the actual situation. Finally,
although U-Net can extract image features well and achieve the required training effects,
this processing is based on images and not directly obtained from seismic data training.
The image resolution will seriously affect the training effect. We will continue to find ways
to overcome these problems.
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Abstract: Fault imaging follows the processing and migration imaging of seismic data, which is very
important in oil and gas exploration and development. Conventional fault imaging methods are easily
influenced by seismic data and interpreters’ experience and have limited ability to identify complex
fault areas and micro-faults. Conventional convolutional neural network uniformly processes feature
maps of the same layer, resulting in the same receptive field of the neural network in the same
layer and relatively single local information obtained, which is not conducive to the imaging of
multi-scale faults. To solve this problem, our research proposes a modified U-Net architecture. Two
functional modules containing dilated convolution are added between the encoder and decoder to
enhance the network’s ability to select multi-scale information, enhance the consistency between the
receptive field and the target region of fault recognition, and finally improve the identification ability
of micro-faults. Training on synthetic seismic data and testing on real data were carried out using the
modified U-Net. The actual fault imaging shows that the proposed scheme has certain advantages.

Keywords: dilation rate; deep learning; data processing; receptive field

1. Introduction

Faults play a major role in lateral sealing of thin reservoirs and accumulation of the
remaining oil in conventional and unconventional reservoirs onshore in China [1]. Almost
all developed onshore oil and gas fields in China are distributed in rift basins which are
rich in oil and gas resources with highly developed and very complex fault systems [2–4].
At present, there are many kinds of fault recognition techniques with different principles,
but there are still great difficulties in fine fault imaging. This is because the rift basin
experienced a variety of external forces during its growth, and developed a variety of faults,
such as normal faults, normal oblique-slip faults, oblique faults, and strike–slip faults, etc.
According to their different combinations in plane and section, they also present many
forms such as broom shaped, comb shaped, goose row shaped, and parallel interlaced
in planes. In rift basins, the filling of sediments, the development and distribution of
sedimentary sequences, the formation, distribution and evolution of oil and gas reservoirs
(including the formation and effectiveness of traps, and the migration and accumulation
of oil and gas) are closely related to the distribution and activity of faults [5]. Therefore,
fine detection and characterization of faults in rift basins in China has become a key basic
geological problem for oil and gas exploration and development efforts and has become
the key topic of basin tectonic research [6].

Continuous and regular event breakpoints constitute faults in seismic imaging data.
However, because the accuracy, resolution and signal-to-noise ratio of seismic imaging
data cannot reach the theoretical limit and the geological situation is complicated, it is a
great challenge for petroleum engineers to describe the spatial distribution of faults from
seismic data. In the past, fault characterization has been regarded as an interpretative task,
followed by seismic data processing and imaging, because it requires extensive geological
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knowledge and experience. In recent years, researchers use convolutional neural network
to identify faults, focusing on the construction of network architecture, network parameter
debugging and optimization and model training. They are less and less constrained by
geological knowledge and personal experience, and the processing and mining of seismic
data are becoming more and more important. Therefore, it is very reasonable to attribute
fault identification via deep learning to the research field of seismic data processing and
imaging, and it is also the development trend in the future. Based on this concept, our
research employs seismic imaging data to realize the description of fault characteristics
through a new neural network model, that is, to realize fault imaging.

In the past 30 years, with the continuous development of computer hardware and
software, fault identification has made great progress in efficiency and accuracy. From the
perspective of method evolution, fault interpretation has experienced from the initial man-
ual interpretation to the emergence of various identification methods, such as coherence
method, curvature attribute method and ant colony algorithm, which describe faults by
calculating transverse discontinuities of seismic data. In the past five years, with the rapid
development of artificial intelligence [7–9], various fault identification methods based on
deep learning have gained remarkable achievements. In 2014, Zheng et al. [10] used deep
learning tools to conduct fault identification tests on prestack synthetic seismic records.
Araya-Polo et al. [11] applied machine learning and deep neural network algorithms to
automate fault recognition, which greatly improved the efficiency and stability of fault in-
terpretation. Waldeland et al. [12] and Guitton et al. [13] successively used a Convolutional
Neural networks (CNN) model to make progress in fault description. Xiong et al. [14] used
results of the skeletonized seismic coherent self-correction method as training samples to
train a CNN model to identify seismic faults. In 2019, Wu et al. [15] realized the identifica-
tion of small-scale faults by using U-Net network. Wu et al. [6] used a full-convolutional
neural network, FCN, to achieve a better characterization of faults. Among these networks,
the U-Net architecture is currently very popular, due to its shortcut operation which con-
catenates attribute maps from the low-level feature (shallow layer) to maps of high-level
feature (deep layer), and it can be seen as a special kind of CNN [16–18]. In addition, the
U-Net does not have strict requirements on the size of training sets, and smaller training
sets can also provide satisfactory results. However, most networks including the U-Net
uniformly process all feature maps of the same layer, resulting in the same receptive field of
the network in the same layer, thus obtaining relatively single local information. Moreover,
with the continuous down-sampling of the network and the convolution operation with
step size, the defect that only a single size information can be obtained at the same layer
becomes more and more obvious, resulting in the inaccurate identification of faults by the
neural network.

To address these issues, this paper introduces a new neural network model, which
takes U-Net as the basic network and uses inter-group channel dilated convolution module
(GCM) to connect each cross-connection layer between encoding path and decoding path,
and uses inter-group space dilated convolution module (GSM) to connect layers after
each deconvolution layer in decoding path. Both GCM and GSM use dilated convolution.
Dilated Convolution, also known as hole convolution or expanded convolution, is to inject
cavities into the standard convolution kernel to increase the reception field of the model.
In the CNN structure, convolution and pooling drive most layers, convolution performs
feature extraction, while pooling performs feature aggregation. For an image classification
task, this network structure has good feature extraction capability, among which the most
classical structure is VGGNet (a convolutional neural network was developed by the
University of Oxford’s Visual Geometry Group and Google DeepMind in 2014). However,
this structure has some problems for target detection and image segmentation. For example,
the size of receptive field is very important in target detection and image segmentation, and
the guarantee of receptive field depends on down-sampling. However, down-sampling
will make small targets difficult to detect. If down-sampling is not completed and the
number of convolutional layers is only increased, the computation of the network will
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increase. In addition, if pooling is not carried out for features, the final feature extraction
effect will also be affected, and there will be no change in the receptive field. In order
to solve these problems in CNN, this paper introduces dilated convolution to increase
the receptive field without sacrificing the size of the feature map. Compared with the
conventional convolution operation, dilation rate is added to the dilated convolution,
which refers to the number of intervals of points in the convolution kernel [19–21]. When
dilatation rate is 1, the dilated convolution will degenerate into conventional convolution.
The similarity between dilated convolution and conventional convolution lies in that the
size of convolution kernel is the same, that is, the number of parameters of neural network
remains unchanged [22,23]. The difference lies in that dilated convolution has a larger
receptive field and can preserve the structure of internal data [24,25].

2. Illustration of Dilated Convolution

We use a set of pictures to illustrate the principle of dilated convolution. Figure 1a is
the conventional convolution kernel, and the dilated convolution is obtained by adding
intervals to this basic convolution kernel. Figure 1b corresponds to the convolution of
3 × 3, with dilation rate of 2 and interval 1, that is, corresponding to 7 × 7 image blocks. It
can be understood that the kernel size becomes 7 × 7, but only 9 points have parameters,
and the rest have parameters of 0. Convolution calculation was performed for the 9 points
in Figure 1b and the corresponding pixels in the feature map, and the other positions were
skipped. Figure 1b,c are similar, except that the dilation rate is 4, which is equivalent to a
15 × 15 convolution kernel. As the convolution kernel becomes larger, the receptive field
becomes larger naturally.

Figure 1. The dilated convolution with dilation rate of 1, 2 and 4, respectively. (a) dilation rate = 1;
(b) dilation rate = 2; (c) dilation rate = 4.

In practical application, when the same dilation rate is used for all convolutional
layers, a problem called grid effect will appear. Since the convolution calculation points on
the feature map are discontinuous, for example, if we repeatedly accumulate 3 × 3 kernel
of dilation rate 2, this problem will occur.

The blue square in Figure 2 is the convolution calculation points participating in the
calculation, and the depth of the color represents the calculation times. As can be seen,
since the dilation rates of the three convolutions are consistent, the calculation points of
the convolution will show a grid expansion outward, while some points will not become
calculation points. Such kernel discontinuities, that is, not all pixels are used for calcu-
lations, will result in the loss of continuity of information, which is very detrimental for
tasks such as pixel-level dense prediction. The solution is to discontinuously use dilated
convolution with the same dilation rate, but this is not comprehensive enough. If the
dilation rate is multiple, such as 2,4,8, then the problem still exists. Therefore, the best
way is to set the dilation rate of continuous dilated convolution as “jagged”, such as 1,2,3,
respectively, so that the distribution of convolution calculation points will become like
Figure 3 without discontinuity.
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(a) (b) (c) 

Figure 2. The dilated convolution with the same dilation rate of 2, respectively. There are grid effects
in all three graphs. (a) the first convolution with dilation rate of 2; (b) the second convolution with
dilation rate of 2; (c) the third convolution with dilation rate of 2.

 
(a) (b) (c) 

Figure 3. The dilated convolution with dilation rate of 1, 2 and 3, respectively. (a) dilation rate = 1;
(b) dilation rate = 2; (c) dilation rate = 3.

3. The Architecture of the Modified U-Net

The proposed neural network adopts a U-Net of a 4-layer structure as the basic
network. In the coding path, feature maps of each layer are connected to the corresponding
decoding layer by GCM, in which each layer adopts two 3 × 3 convolution layers and
maximum pooling layer for feature extraction. Then, in the decoding path, feature maps of
each layer are connected to the corresponding decoding layer by GSM. Each layer adopts a
3 × 3 convolution layer, up-sampling layer and 1 × 1 convolution layer to restore, and the
output layer adopts a 3 × 3 convolution layer and 1 × 1 convolution layer to output. In this
modified U-Net, the batch regularization (BN) and modified linear units (ReLU) are added
to all convolution layers to correct data distribution, except for the output layer. GCM
and GSM modules play a key role in the modified U-Net, and their operation mechanism
is similar. GCM module can divide the input feature map into four groups on average,
and then carry out the dilated convolution operation with dilation rates of 1, 2, 3 and
5, respectively. In addition, the module extracts and outputs the features of the input
feature map through pooling, convolution, batch regularization, activation, softmax and
other conventional operations, and finally obtains the channel information of all groups.
For the GSM module, it can divide the input feature map into three groups on average,
and each group carries out the dilated convolution operation with dilation rates of 1, 2
and 4, respectively. This module carries out feature extraction and output in sequence by
down-sampling, convolution, batch regularization, activation, up-sampling, convolution,
batch regularization, activation and softmax, and finally obtains the spatial information of
all groups.
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Figure 4 shows the structure of GCM in the modified U-Net. This module divides
the input feature map into four groups evenly, and each group performs dilated convo-
lution operations with dilation rates of 1, 2, 3, and 5. The size of the target area of fault
identification determines the value of the dilation rate. After dilated convolution, four
groups of feature maps with different scales are obtained. Besides, four groups of channel
information are returned by softmax, which were taken as weights and multiplied by four
groups of feature maps with different scales obtained via dilated convolutions to acquire
new feature maps. The receptive field corresponding to the group with the largest weight
contributed the most to the final network prediction. Finally, the four groups of new feature
maps are spliced together and then a residual operation is performed with the input feature
map to obtain the final prediction result. The GCM module uses the idea of grouping and
realizes the automatic selection of inter-group multi-scale information under the guidance
of channel information.

 

Figure 4. The architecture of GCM.

Figure 5 shows the structure of GSM, which realizes the selection of multi-scale
information between groups in another way and enhances the consistency of receptive
field and target region recognition. In this module, the input feature map was divided into
three groups, and then three groups of feature maps with different scales are obtained by
the dilated convolution with dilation rates of 1, 2 and 4. At the same time, three feature
maps with spatial weights are cropped from the input feature map through a series of
conventional operations. In these operations, the purpose of down-sampling is to obtain
more global information, the purpose of up-sampling is to restore the size of feature maps,
and the purpose of softmax is to enable the module to automatically select multi-scale
information. Three feature maps with spatial weights are multiplied by three feature maps
of different scales obtained by dilated convolution to get three new feature maps. Finally,
after splicing the three groups of new feature maps, a residual operation is performed
with the input feature map to acquire the final prediction results. In summary, under the
guidance of spatial information, the GSM module can select multi-scale information among
a group of feature maps.
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Figure 5. The architecture of GSM.

The proposed neural network is based on the U-Net network and has two functional
modules, the GCM and GSM, which can finely describe faults of different scales. Its
architecture is shown in Figure 6. Due to the powerful multi-scale information selection
ability of GCM and GSM modules, this paper only uses a 4-layer U-Net based on a coding–
decoding structure as the basic network. In the coding path, only two 3 × 3 convolution
and maximum pooling are used to quickly obtain feature maps with different resolutions.
In the decoding path, multiple simple decoding blocks are used to quickly and effectively
recover feature maps with high resolution. In this neural network, the data distribution
after convolution is corrected by BN and ReLU, and the GCM module is placed at the
connection layer of the network to automatically select multi-scale information, which
makes up for the lack of transmitting single information to the decoder by the encoder of
conventional U-Net. At the same time, the GSM module between groups is placed in the
path of decoder to realize the function of multi-scale information selection, which makes
up for the disadvantage of losing global information in up-sampling process.

 
Figure 6. The architecture of the modified U-Net.

4. Loss Function

The neural network will produce deviation between prediction and reality during
training, and the deviation value is represented by loss function. During the training, the
stochastic gradient descent (SGD) algorithm is used to update the network parameters and
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reduce the value of the loss function, so that the prediction and the actual convergence
gradually, tend to be consistent [26]. The final result of neural network output is fault
probability body, where 1 represents fault and 0 represents non-fault. In this study, fault
recognition is regarded as a binary segmentation task. In the fault probability body, the
most part is non-fault, and the least part (less than 10%) has a value of 1. There are strong
data imbalance and uneven fault distribution area. In this case, the binary cross entropy loss
(BCE) function is most often used [6,27]. Dice loss function is commonly used to serve the
segmentation and recognition tasks of small-scale targets in medical research [28]. In this
research, BCE and Dice are combined to solve problems such as data imbalance, uneven
fault distribution area and insufficient accuracy in fault identification. The expression of
the combined loss function is as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

LBCE = − 1
N

N
∑
i
(gi log(pi) + (1 − gi) log(1 − pi))

LDice = 1 −
2

N
∑
i

pi gi+ε

N
∑
i

pi+
N
∑
i

gi+ε

L = λLBCE + LDice

where N is the total number of pixels in the input image. pi ∈ [0, 1] and gi ∈ [0, 1] represent
the prediction probability and label value of pixel, respectively, ε is the smoothing factor,
whose value range is (0.1,1). λ is the balance coefficient of Dice loss and BCE loss.

5. Training and Validation

In the neural network training, we randomly selected 1000 seismic images from an
open-source dataset [15] for training, and the corresponding label data were also completed
by manual marking in advance, marked as 1 in places with faults and 0 in places without
faults. The purpose of network training is to optimize the parameters of the whole network.
With each training, the deviation between the prediction and the actual represented by the
loss function will decrease until the prediction and the actual tend to be consistent.

Figure 7 shows randomly seismic data sets with their corresponding labels. We used
another 200 images as test and validation data, which were not included in the training. In
the process of training, SGD is used to optimize the network, and the number of images
sent into the network is 10 each time. The network model can be trained when the number
of epochs reaches 30 times. Figure 8a shows the change of training accuracy and validation
accuracy of the modified U-Net with the number of epochs. After 30 epochs, the accuracy
rate tends to be above 0.9. Figure 8b shows the changes of training loss and validation loss
of the modified U-Net with the number of epochs. After 30 epochs, the loss value tends to
0.01. After training, save the network parameters. In the process of training and validation,
in order to increase the diversity of training data sets and make the trained neural network
have better classification or recognition performance, data enhancement is used to improve
the diversity of training data sets. The data enhancement operation mainly includes data
reversal and rotation around the time axis.
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(a) (b) 

Figure 7. (a) Seismic data sets and (b) their fault labels.

 
(a) (b) 

Figure 8. (a) The training and validation accuracy both will increase with epochs, whereas (b) the
training and validation loss decreases with epochs.

6. Application

This paper used field data to verify the effectiveness of the trained network, and
the fault probability volume is shown in Figure 9. In order to facilitate the interpretation
of results, the opacity of the fault probability cube was adjusted and superimposed on
the original seismic image. At the same time, we used a trained U-Net to identify faults
of this data, and other parameters were completely the same except for GCM and GSM
modules. The study area is located in a sandstone oil field in China, and the faults are
mainly Y-shaped throughout the section and occur in almost every formation [29]. In the
700 ms–1500 ms time window, the number of faults is the largest, and the characteristics
of faults are the most complex [30]. As depth increases, the imaging accuracy of seismic
data decreases and the difficulty of fault imaging becomes more and more. On the plane,
the fault is affected by the tension and strike-slip stress mechanism, and the fault direction
is mainly NE and NW. This data set consists of 495 (lines) × 580 (CDPs) with a CDP
spacing of 25 m and a line spacing of 25 m. The data are sampled at 1 ms with a length of
2 s. The inline number and xline number are in the range of (2410,2905) and (3600,4180),
respectively. By using an NVIDIA TITAN Xp GPU, it takes about 110 min to calculate the
fault probability volume. The randomly selected vertical profiles and time slice are inline
2510, xline 4025 and time slice at 1540 ms, respectively. The fault imaging results of the
modified U-Net and U-Net are shown in Figures 10–12.
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Figure 9. (a) Original 3D seismic data volume and (b) its fault probability volume.
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Figure 10. Three seismic images are displayed with faults that are imaged using the trained modified
U-Net model. (a) Inline 2510; (b) Xline 4025; (c) a time slice at 1540 ms.
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Figure 11. (a) A seismic image is displayed with faults that are imaged using (b) the trained U-Net
model and (c) the trained modified U-Net model.
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Figure 12. (a) A time slice is displayed with faults that are imaged via (b) the trained U-Net model
and (c) the trained modified U-Net model.

Figure 10 represents three seismic images in different directions with different scales
faults that are imaged using the trained modified U-Net model. Figure 11b shows the fault
image predicted by the trained U-Net model and Figure 11c shows the modified U-Net
prediction results. The U-Net result (Figure 11b) is reliable enough to depict faults in this
seismic image, however, much of the detail is still missing compared to features predicted
by the modified U-Net (Figure 11c). Figure 12b,c illustrate fault imaging results of different
slices. We observe that most faults can be clearly imaged under the trained modified
U-Net model, and multiple groups of faults in different directions can be distinguished
on horizontal slices. Figure 12b is the result of U-Net prediction, some small fracture
information has not been portrayed. In summary, the field data example shows that the
proposed method based on the modified U-Net has superior performance in detecting
faults of multiple scales, and provides relatively high sensitivity and continuity.

7. Conclusions

We developed a modified U-Net-based method to automatically image faults in the
sandstone reservoirs in China. The proposed network containing GCM and GSM mod-
ules is designed and trained to enhance the ability of the network to select multi-scale
information. The GCM and GSM module can select multi-scale information obtained by
convolution of different dilation rates between groups, enhance the consistency of receptive
field and fault recognition target region, and jointly improve the recognition ability of
micro-faults. The field data applications demonstrate the effectiveness of this approach. For
sandstone oil and gas reservoirs in China with abundant faults, this method has great ad-
vantages in improving fault imaging accuracy, but further research is needed in improving
computational efficiency and optimizing network architectures.
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Abstract: Seismic inversion is a process to obtain the spatial structure and physical properties of
underground rock formations using surface acquired seismic data, constrained by known geological
laws and drilling and logging data. The principle of seismic inversion based on deep learning is
to learn the mapping between seismic data and rock properties by training a neural network using
logging data as labels. However, due to high cost, the number of logging curves is often limited,
leading to a trained model with poor generalization. Multi-task learning (MTL) provides an effective
way to mitigate this problem. Learning multiple related tasks at the same time can improve the
generalization ability of the model, thereby improving the performance of the main task on the same
amount of labeled data. However, the performance of multi-task learning is highly dependent on the
relative weights for the loss of each task, and manual tuning of the weights is often time-consuming
and laborious. In this paper, a Fully Convolutional Residual Network (FCRN) is proposed to achieve
seismic impedance inversion and seismic data reconstruction simultaneously, and a method based
on the homoscedastic uncertainty of the Bayesian model is used to balance the weights of the loss
function for the two tasks. The test results on the synthetic datasets of Marmousi2, Overthrust, and
Volve field data show that the proposed method can automatically determine the optimal weight of
the two tasks, and predicts impedance with higher accuracy than single-task FCRN model.

Keywords: seismic impedance inversion; fully convolutional residual network; multi-task learning;
homoscedastic uncertainty

1. Introduction

Reflection seismic exploration is used to detect changes in impedance in the subsurface
through an active seismic source. Seismic inversion refers to the process of estimating the
properties of underground rocks using surface acquired seismic data. Classical seismic
inversion methods usually start with a smooth model of underground properties, and then
perform forward simulation to generate synthetic seismic data. The differences between
the synthetic and actual seismic data can be used to update the model parameters [1].
Traditional inversion methods are usually physics-driven, which are limited by expensive
computational costs and physical theory/assumptions. Due to the increased complexity of
the subsurface structures, and the difficulty in obtaining a good initial model to converge
to the high-resolution target model for conventional methods, advanced techniques are
required for effective and efficient seismic inversion. More recently, with the successes of
deep learning in the computer vision community, time series forecasting [2], and natural
language processing, researchers have developed various data-driven seismic inversion
techniques. The amount of available seismic data is growing exponentially and the deep
learning methods are becoming integral components of geophysical exploration work-
flows [3], such as P-wave detection [4], seismic fault detection [5–8], seismic data noise
attenuation [9,10], seismic data interpolation [11–15], and seismic slope estimation [16].
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Deep neural networks are built by a composition of hierarchical linear and non-linear func-
tions (layers). The high-capacity networks trained using large datasets enable tasks beyond
traditional methods, such as high-resolution velocity model building [17]. At the same
time, seismic impedance inversion has also made many contributions using deep learning
methods. In 2019, Biswas et al. used Convolutional Neural Networks (CNNs) to estimate
acoustic impedance and elastic impedance from seismic data [18]. Das et al. used a Fully
Convolutional Neural Network (FCN) to invert P-wave impedance [19]. Alfarraj et al. [20]
introduced a Recurrent Neural Network (RNN) based on serial modeling to estimate
petrophysical properties and Mustafa et al. [21] introduced a Temporal Convolutional
Network (TCN) to estimate various rock properties from seismic data. Li et al. [22] used
geological and geophysical model-driven CNNs (GGCNNs) to estimate elastic properties
from pre-stack seismic data. Wu et al. proposed a Fully Convolutional Residual Network
(FCRN) combined with transfer learning for seismic impedance inversion [23], and then
extended their work to semi-supervised learning seismic impedance inversion based on a
Generative Adversarial Network (GAN) [24,25]. Wang et al. [26] proposed a novel seismic
impedance inversion method based on a Cycle-consistent Generative Adversarial Network
(Cycle-GAN). To fully explore the multichannel characteristics of the seismic data [27],
Wu et al. proposed a deep learning method for multidimensional seismic impedance
inversion [28].

These studies show that neural networks have great potential for seismic inversion.
All of these methods are based on learning the mapping from seismic data to well logging
data, and then using the learned mapping to estimate properties for off-well locations.
This approach usually requires a large amount of labeled training data to improve gen-
eralization performance. However, due to the high drilling cost, the number of wells in
most exploration operations is limited, leading to a trained model with poor generalization.
MTL provides an effective way to mitigate this problem [29,30]. Compared with single task
learning, multi-task learning network is in the fashion of “single input and multi output”,
with an incomparable advantage over a single task network [31]. Simultaneously learning
multiple related tasks can improve the model generalization ability, thus improving the
performance of the main task on the same amount of labeled data [32]. Meanwhile, multi-
task learning can help extract multi-scale texture information from datasets [33]. There are
two main ways to implement MTL: hard parameter sharing and soft parameter sharing.
Hard parameter sharing involves the hidden layer of a two-task sharing network, and uses
different output layers to complete different tasks. The soft parameter sharing method
means that each task has its own model and parameters, and the distance between model
parameters is then regularized to increase the similarity of models [34]. When there is a
high correlation between tasks, the hard parameter sharing method is more suitable, and
the higher the correlation between tasks, the greater the proportion of sharing layers in
hard parameter sharing [35]. Mustafa et al. proposed an example of multi-task learning
via representation sharing where multiple tasks (seismic impedance inversion and data
reconstruction) are learnt simultaneously in the hope that the network can learn more
generalizable feature representations leading to better performance in all tasks [1]. This
is especially the case when the tasks are highly related to each other. In this paper, we
propose a multi-task FCRN for simultaneous seismic impedance inversion and seismic
data reconstruction. The performance of hard parameter sharing deep learning is highly
dependent on the loss weight of each task, and the weighted linear sum of the loss for
each individual task is usually used for training. However, it is tedious to manually adjust
the weights for the loss of different tasks. It was found that the optimal weights for each
task are closely related to the task magnitude and ultimately depend on the task’s noise
level [36]. Therefore, in this paper, we propose an automatic weight adjustment method
for a multi-task loss function based on homoscedastic uncertainty for seismic impedance
inversion. The test results from the two synthetic datasets of the Marmousi2 and Over-
thrust model, and one field dataset of the Volve model, show that the proposed method can
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automatically determine the optimal weight of the two tasks, and generate higher accurate
impedance results than single-task model.

The remainder of this paper is organized as follows. Section 2 describes the method-
ology, which includes the network architecture and the theory of multi-task loss function
based on homoscedastic uncertainty. In Section 3, the three datasets and experimental
results are presented. We discuss the limitations of the proposed method in Section 4.
Conclusions are given in Section 5.

2. Methodology

2.1. Network Architecture

The single-task network used in this paper is a FCRN from Wu et al. [23], and the
multi-task network is a hard parameter sharing network developed from the single-task
FCRN. The multi-task network structure is shown in Figure 1. In order to better capture
the low-frequency characteristics of seismic data, the first convolution layer of FCRN has
16 kernels of size 299 × 1. After the first convolution layer, three residual blocks are stacked,
and each residual block is composed of two convolution layers. The first layer and the
second layer, respectively, have 16 convolution kernels of size 299 × 1 and 3 × 1. To enable
the network to complete multi-task inversion, two output channels are set after the residual
block. Each output channel contains two one-dimensional convolution layers, and each
one-dimensional convolution layer has a kernel of 3 × 1. The convolution step size is 1,
and zero-padding is used to all convolution layers to ensure the same input and output
sizes. Rectified linear unit (ReLU) and batch normalization (BN) are introduced into the
network to accelerate network training and convergence.

Figure 1. Architecture of the multi-task FCRN.

2.2. Multi-Task Loss Function Based on Homoscedastic Uncertainty

The performance of hard parameter sharing is highly dependent on the loss weight
of each task, and simply performing a weighted linear sum of the loss for each individual
task is usually undertaken to carry out training. Manual tuning of the weights is often
troublesome. Thus, a method based on homoscedastic uncertainty of the Bayesian model is
used to balance the weights of the loss function of multiple tasks.

In Bayesian modeling, there are two main types of uncertainty, i.e., epistemic and
aleatoric uncertainty. In a model, the aleatoric uncertainty captures the randomness of
the model prediction, which depends on the noise inherent in input observations, and
the epistemic uncertainty captures what a model does not know due to lack of training
data [37]. Aleatoric uncertainty can again be divided into two subcategories, heteroscedastic
uncertainty and homoscedastic uncertainty. Heteroscedastic uncertainty depends on the
inputs to the model, with some inputs potentially having more noisy outputs than others.
Homoscedastic uncertainty can be described as task dependent, which stays constant for
all input data and varies between different tasks [36]. In this paper, we derive a multi-task
loss function based on maximizing the Gaussian likelihood with homoscedastic uncertainty.
The derivation is as follows:
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(1) Given a dataset X = {x1, . . . , xN}, Y = {y1, . . . , yN}, we define f w(x∗) as the output
of a neural network with weights w on input x∗. For regression tasks, we define the
likelihood as a Gaussian distribution that takes the model output as the mean:

p(y∗| f w(x∗)) = N
(

f w(x∗), σ2
)

(1)

where σ is an observation noise scalar capturing how much noise is in the outputs.
When w and x∗ are determined, the establishment of a probabilistic model of observa-
tion is equivalent to the determination of epistemic uncertainty and heteroscedastic
uncertainty. Only homoscedastic uncertainty is considered in this paper. Different
tasks have different homoscedastic uncertainties.

(2) In maximum likelihood inference, we want to maximize the logarithmic likelihood of
the model, that is, to maximize the following equation:

log p(y∗| f w(x∗)) ∝ − 1
2σ2 ||y∗ − f w (x∗)||2 − logσ (2)

(3) Construct the maximum likelihood function for multi-task. There are two tasks in
our model: impedance prediction and data reconstruction. We use ypre and yrec
to denote the outputs of the two tasks and assume that ypre and yrec following a
Gaussian distribution:

p
(
ypre, yrec

∣∣ f w(x)
)
= p

(
ypre

∣∣ f w(x)
)

p(yrec| f w(x)) = N
(

ypre, f w(x), σ2
pre

)
N
(

yrec, f w(x), σ2
rec

)
(3)

(4) To maximize the logarithmic likelihood function, that is, to minimize the negative
logarithmic likelihood function, then the multi-task loss function is:

L
(
w, σpre, σrec

)
= −log p

(
ypre, yrec

∣∣ f w(x)
)

∝ 1
2σ2

pre
||ypre − f w (x)||2 + 1

2σ2
rec
||yrec − f w (x)||2 + logσpreσrec

= 1
2σ2

pre
Lpre(w) + 1

2σ2
rec

Lrec(w) + logσpreσrec
(4)

the process of minimizing the loss function is to learn the optimal weight of Lpre(w)
and Lrec(w) automatically according to the data. As σpre increases, the weight of task
impedance prediction decreases. However, with too great an increase in noise, the
data will be ignored, so the last term of the objective function logσpreσrec is the noise
term regularizer. When the loss function reaches its minimum, we can obtain the
corresponding σpre and σrec . We use wpre and wrec to denote the weights of the two
tasks; then, from Equation (4) we can obtain the optimal weight between the two
tasks as:

wpre : wrec =
1

2σ2
pre

:
1

2σ2
rec

= σ2
rec : σ2

pre (5)

Further processing makes the two weights add to 1; then, the final optimal weight is:

wpre : wrec =
σ2

rec
σ2

pre + σ2
rec

:
σ2

pre

σ2
pre + σ2

rec
(6)

3. Experiments

Two synthetic datasets and one field dataset were used in this study, which are
denoted as the Marmousi2 model, the Overthrust model, and the Volve model, respectively.
The three datasets were used to train the single-task network and the hard parameter
sharing multi-task network respectively, and then the trained networks were used for
impedance inversion.
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3.1. Experiment on the Marmousi2 Model

The impedance of the Marmousi2 model and its corresponding synthetic data are
the same as in [23], and are shown in Figure 2. For this model, 101 traces were selected
from the synthetic seismic data and impedance data as the training set through isometric
sampling, and 1350 traces were randomly selected from the remaining 13,500 traces as the
validation set and the whole 13,601 traces comprised the test set. The Adam optimization
method was adopted in this paper. The weight decay rate was set to 1 × 10−7. The learning
rate was set to 0.001. The number of epochs was set to 50, and the batch size was set to 10.
The above hyperparameters and network structure were decided from an ablation study
by adjusting the convergence of the training set and the validation set. The training of
the network was implemented under the PyTorch framework, and a GPU was applied to
accelerate the calculation.

Figure 2. Marmousi2 model dataset: (a) impedance; (b) synthetic seismic data generated by 30 Hz 0◦

phase Ricker wavelet.

The validation Mean Squared Error (MSE) of the two tasks with different weights
is shown in Table 1. The training/validation procedure was executed five times and the
average results were output for comparison. The performance of the model for a single
task is shown in the first and last rows. When the validation loss is minimal during the
50 epochs, the corresponding σpre = 0.890 and σrec = 0.759, then we can calculate that the
optimal weight for impedance prediction and seismic data reconstruction is 0.421:0.579 by
Equations (5) and (6). Figure 3 shows the variation at different epochs of σpre, σrec and
the corresponding wpre, wrec. Under this optimal weight, the validation MSE of the two
task is 0.0365 and 0.00054. Compared with results in Table 1, it can be seen that the MSEs
of the multi-task network of the two tasks under different weights are smaller than that
of the single-task network, and the optimal weight determined by the proposed method
makes the MSE smaller for both tasks, which proves the effectiveness of the method. The
training and validation loss curves of different tasks under the optimal weight are shown
in Figure 4. Figure 5 illustrates the profiles predicted by the single-task network (Figure 5a)
and the hard parameter sharing multi-task network (Figure 5b) with the optimal weight
for visual comparison. The MSEs of the profiles predicted by the single-task network
and the hard parameter sharing multi-task network are 0.0478 and 0.0353, respectively,
which proves the advantage of the hard parameter sharing multi-task network from a
quantitative perspective.
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Table 1. The validation MSEs of the two tasks with different weights on the Marmousi2 model.

Task Weights MSE of Validation

wpre (Impedance prediction) wrec (Data reconstruction) Impedance prediction Data reconstruction

0 1 / 0.00080
0.1 0.9 0.0411 0.00028
0.2 0.8 0.0412 0.00040
0.3 0.7 0.0407 0.00045
0.4 0.6 0.0397 0.00056
0.5 0.5 0.0372 0.00065
0.6 0.4 0.0374 0.00066
0.7 0.3 0.0397 0.00060
0.8 0.2 0.0385 0.00072
0.9 0.1 0.0375 0.00077
1 0 0.0446 /

 
Figure 3. The variation of (a) σpre, σrec and (b) wpre, wrec with epochs.

Figure 4. The training and validation loss curves of the Marmousi2 model: (a) impedance; (b) data
reconstruction.

To further demonstrate the effectiveness of the proposed method, Figure 6 shows the
results of impedance prediction for the 731st (Figure 6a) and 8991st (Figure 6b) trace data
points. We can see that the impedance predicted by the hard parameter sharing multi-
task network (green) matches the true impedance (red) better than that of the single-task
network (blue). The blue and green dotted lines in Figure 6 represent residuals between
the true impedance and the impedance predicted by the two networks. Table 2 shows the
Pearson Correlation Coefficient (PCC) between the predicted value and the truth. Under
the optimal weights, the PCC between the predicted value and the ground truth of the
731st and 8991st traces of the multi-task network (third column) are both higher. We also
tested the tolerance of the two networks to noise. We added six levels of Gaussian noise
with a signal-to-noise ratio (SNR) of 0, 5, 15, 25, 35, and 45 dB to the test dataset. The MSEs
between the prediction of different SNR data and the true impedance are presented in
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Table 3, and shows that the accuracy of the multi-task network is higher than that of the
single-task network under all six test datasets with different SNRs. This further proves the
superiority of the method in this paper.

Figure 5. Profiles of the Marmousi2 model predicted by (a) the single-task network and (b) the hard
parameter sharing multi-task network under the optimal weights.

 

Figure 6. Impedance traces’ prediction of the Marmousi2 model by the two networks: (a) trace 731;
(b) trace 8991.

Table 2. PCC between the traces’ predicted value and the ground truth of the Marmousi2 model.

Trace No. Single-Task Multi-Task (0.421:0.579)

731 0.9952 0.9956
8991 0.9805 0.9890

Table 3. The MSEs between the prediction of different SNR data and the true impedance of the
Marmousi2 model

SNR (dB) Single-Task Multi-Task (0.421:0.579)

0 1.1270 0.5948
5 0.2020 0.1260
15 0.0546 0.0379
25 0.0484 0.0355
35 0.0478 0.0353
45 0.0478 0.0353
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3.2. Experiment on the Overthrust Model

The impedance of the Overthrust model and its corresponding synthetic data are also
that same as in [23] and are shown in Figure 7. For this model, five traces were selected as
the training set from the synthetic seismic data and impedance data by isometric sampling,
39 traces were randomly selected from the remaining 392 traces as the validation set, and
the whole 401 traces were the test set. Due to the small amount of sample data, there
may be overfitting. Data enhancement methods are usually used to avoid overfitting.
In contrast to the Marmousi2 model test, we used cubic spline interpolation to generate
20 new impedance and seismic data traces between every two selected traces in this model.
Ultimately, we used 85 traces to train the network. The interpolation data are shown in
Figure 8. The frequency-wavenumber spectra of the original and interpolated seismic
data are shown in Figure 9 for comparison. The number of epochs was set to 1000 and
the other hyperparameters and network structure were same as those of the Marmousi2
model. The validation MSEs of the two tasks with different weights are shown in Table 4.
The performance of the model for a single task is shown in the first and the last rows.
When the validation loss is minimal during the 1000 epochs, the corresponding σpre = 0.192
and σrec = 0.120, then we can calculate that the optimal weight is 0.28: 0.72, and the MSE
of the two tasks under this weight is 0.0079 and 0.00001. Figure 10 shows the variation
with epochs of σpre, σrec and the corresponding wpre, wrec. It can be seen that the MSEs
obtained by the multi-task network under different weights for both tasks are all smaller
than that obtained by the single-task network, and the optimal weight minimizes the MSEs.
The training and validation loss curves of different tasks under the optimal weight are
shown in Figure 11. Figure 12 illustrates the profiles predicted by the single-task network
(Figure 12a) and the hard parameter sharing multi-task network (Figure 12b) with the
optimal weight. The MSEs of the predicted profiles are 0.0119 and 0.0063, respectively,
which also shows that the hard parameter sharing multi-task network outperforms the
single-task network. Similarly, we chose two traces to further demonstrate the performance
of the proposed method. Figure 13 shows the predicted results of impedance prediction
for the 99th (Figure 13a) and 316th (Figure 13b) traces, and their corresponding PCC
between the predicted value and the ground truth are shown in Table 5. It is clear that the
impedance predicted by the hard parameter sharing multi-task network (green) matches
the true impedance (red) better than that by the single-task network (blue). The blue and
green dotted lines in Figure 13 represent residuals between the true impedance and the
impedance predicted by the two networks. In addition, the MSEs between the prediction of
different SNR data and the true impedance are presented in Table 6. It shows that, with the
exception of 0 dB noise, the accuracy of the multi-task network is higher than that of the
single-task network under the other five testing data with different SNRs, which further
proves the advantage of the proposed method.

Figure 7. Overthrust model dataset: (a) impedance; (b) synthetic seismic data generated with 30 Hz
0◦ phase Ricker wavelet.
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Figure 8. Interpolated data of the Overthrust model. (a) impedance; (b) synthetic seismic data.

Figure 9. The frequency-wavenumber spectra of the original (a) and interpolated seismic data (b).

Table 4. The validation MSEs of the two tasks with different weights of the Overthrust model.

Task Weights MSE of Validation

wpre (Impedance prediction) wrec (Data reconstruction) Impedance prediction Data reconstruction

0 1 / 0.00005
0.1 0.9 0.0081 0.00002
0.2 0.8 0.0088 0.00003
0.3 0.7 0.0085 0.00001
0.4 0.6 0.0083 0.00002
0.5 0.5 0.0111 0.00004
0.6 0.4 0.0084 0.00003
0.7 0.3 0.0096 0.00001
0.8 0.2 0.0093 0.00006
0.9 0.1 0.0090 0.00007
1 0 0.0120 /

 

Figure 10. The variation of (a) σpre, σrec and (b) wpre, wrec with epochs.
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Figure 11. The training and validation loss curves of the Overthrust model: (a) impedance; (b) data
reconstruction.

Figure 12. Profiles of the Overthrust model predicted by (a) the single-task network and (b) the hard
parameter sharing multi-task network under the optimal weight.

 

Figure 13. Impedance traces prediction of the Overthrust model by the two networks: (a) trace 99;
(b) trace 316.

Table 5. PCC between the traces’ predicted value and the ground truth of the Overthrust model.

Trace No. Single-Task Multi-Task (0.28:0.72)

99 0.9964 0.9993
316 0.9960 0.9990
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Table 6. The MSEs between the prediction of different SNR data and the true impedance of the
Overthrust model

SNR (dB) Single-Task Multi-Task (0.28:0.72)

0 0.1300 0.2163
5 0.0295 0.0199
15 0.0128 0.0068
25 0.0120 0.0063
35 0.0119 0.0063
45 0.0119 0.0063

3.3. Experiment on the Volve Model

The field Volve data used in this paper are from the open-source code of Das et al. [19].
The Volve field shown in Figure 14a is located in offshore Norway and is a clastic reservoir.
There are 1300 labeled traces in this dataset, which were generated using the data augmen-
tation method in [19] based on the statistical characteristics of the well position log data
shown in Figure 14b. We randomly selected 750 traces as the training set and the remaining
550 traces were set to be the validation set. We used the single true well log data to test the
performance of the two networks. Unlike the previous two datasets, the kernel size was
set as 80 to adapt the 160 time sampling points of the Volve model. The number of epochs
was set to 500, and the other hyperparameters and network structure were set to be the
same as in the former two models. Similarly, when the validation loss is minimal during
the 500 epochs, the corresponding σpre = 0.829 and σrec = 0.828, then we can calculate that
the optimal weight for impedance prediction and seismic data reconstruction as 0.499:0.501.
Figure 15 shows the predicted results of impedance prediction by the single-task model
(blue) and the multi-task model (green) under the optimal weight. We can see that the
impedance predicted by the multi-task model under the optimal weight matches the true
impedance (red) better than the single-task model, especially in the time range between
40 and 50 ms. The blue and green dotted lines in Figure 15 represent residuals between
the true impedance and the impedance predicted by the two networks. The MSE of the
impedance predicted by the multi-task model under the approximate optimal weight is
0.0239, whereas the MSE predicted by the single-task model is 0.0352. In addition, the
PCC between the ground truth and the values predicted by the multi-task model and
the single-task model are 0.872 and 0.832, respectively. The above two metrics prove the
superiority of the multi-task model under the optimal weight. It is worth noting that the
test MSE and PCC in reference [19] are 0.0255 and 0.82, which is comparable with our
single-task model, but is slightly inferior to our multi-task model. The Volve field data
test shows that the proposed method in this paper improves the accuracy of impedance
prediction on real seismic data.
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Figure 14. (a) The Volve field, as shown on a map, is located in the offshore North Sea area and
(b) seismic data with a well trajectory from the Volve field (figure is from reference [19]).

Figure 15. Impedance predicted for the well location of the Volve model by the two networks.

4. Discussion

The proposed multi-task FCRN model was directly developed from the single-task
FCRN of Wu et al. [23]. However, this is an open framework, enabling many other networks
for seismic impedance prediction to also be explored. We believe seismic reconstruction is
a task that is not limited to impedance inversion, and other deep learning tasks such as seis-
mic fault interpretation can also benefit in similar way. Close inspection of Figures 3 and 4
indicates that the almost flat total loss variation range corresponds to a relatively large
range of

(
σpre, σrec

)
. This means that there maybe not a single optimal weighting for all

tasks, which was also an observation of Kendall et al. [36].
For the first two experiments, we attempted to add six levels of Gaussian noise, having

an SNR of 0, 5, 15, 25, 35, and 45 dB, to the test set to test the tolerance of the two networks
to noise. The test results of the Overthrust model show that the accuracy of the impedance
prediction of the multi-task network is lower than that of the single-task network under
the 0 dB noise. A possible reason for this is that when we add noise to the test dataset, we
should train the model again to obtain a new optimal weight for the two tasks.

5. Conclusions

In this paper, we propose a multi-task network for both impedance inversion and
seismic data reconstruction, and use a loss function based on the homoscedastic uncertainty
of a Bayesian model to determine the optimal weight of the two tasks in the loss function.
Test results from the Marmousi2, Overthrust, and Volve models show that: (1) the multi-
task model has better generalization performance than the single-task model when the
amount of labeled data is the same; and (2) the method proposed in this paper can be used
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to automatically determine the optimal weight of two tasks, and generates more accurate
impedance than the single-task model. The proposed method can be extended to other
multi-task learning approaches in a similar fashion.

In the future, we may apply the proposed method to high-dimensional seismic in-
version, pre-stack inversion, and additional kinds of neural networks to verify its applica-
tion value.
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Abstract: Erecting underground structures in regions with unidentified weak layers, cavities, and
faults is highly dangerous and potentially disastrous. An efficient and accurate near-surface ex-
ploration method is thus of great significance for guiding construction. In near-surface detection,
imaging methods suffer from artifacts that the complex structure caused and a lack of efficiency.
In order to realize a rapid, accurate, robust near-surface seismic imaging, a minimum variance
spatial smoothing (MVSS) beamforming method is proposed for the seismic detection and imaging of
underground geological structures under a homogeneous assumption. Algorithms such as minimum
variance (MV) and spatial smoothing (SS), the coherence factor (CF) matrix, and the diagonal loading
(DL) methods were used to improve imaging quality. Furthermore, it was found that a signal advance
correction helped improve the focusing effect in near-surface situations. The feasibility and imaging
quality of MVSS beamforming are verified in cave models, layer models, and cave-layer models by
numerical simulations, confirming that the MVSS beamforming method can be adapted for seismic
imaging. The performance of MVSS beamforming is evaluated in the comparison with Kirchhoff
migration, the DAS beamforming method, and reverse time migration. MVSS beamforming has a
high computational efficiency and a higher imaging resolution. MVSS beamforming also significantly
suppresses the unnecessary components in seismic signals such as S-waves, surface waves, and white
noise. Moreover, compared with basic delay and sum (DAS) beamforming, MVSS beamforming has
a higher vertical resolution and adaptively suppresses interferences. The results show that the MVSS
beamforming imaging method might be helpful for detecting near-surface underground structures
and for guiding engineering construction.

Keywords: near-surface; seismic imaging; beamforming; underground structure; reflection seismic

1. Introduction

Most underground geotechnical engineering is carried out near the surface. Unfortu-
nately, the near-surface geological conditions are highly complex due to the abundance of
joints, faults, boulders, caves, and so on. Encountering unexplored weak formations and
caves can cause a variety of geological disasters, such as uneven settlement or collapse,
which can inflict immense economic losses and even death [1,2]. According to the report [3]
of the current status of sinkhole collapses in the karst area in China, more than 1500 karst
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collapsing events have been recorded and these events formed more than 45,000 sink-
holes. More than 75% sinkholes were triggered by human activities. These activities are
mainly around the near-surface, including mine drainage, foundation engineering, and
tunnel constructions. Subsidence sinkholes result from both subsurface dissolution and
the downward gravitational movement of the undermined overlying material. These
sinkholes, which are invisible from the surface, are the most important from a hazard
and engineering perspective [4]. Hence, to provide guidance for construction and design
efforts, geophysical prospecting methods are often used in engineering to detect under-
ground structures as an important supplement to drilling and excavation. However, the
near-surface is complex and traditional migration imaging methods may suffer from types
of artifacts and interferences. High-precision prospecting in near-surface detection is quite
challenging since surface waves and S-waves are powerful near the surface. There is an
urgent need to deal with the artifacts and interferences. Furthermore, the detection capabil-
ity is limited by the construction site and time frame [5]. Therefore, the development of
accurate geophysical prospecting methods for near-surface detection is of great significance
to geotechnical engineering.

Seismic methods are among the most commonly used geophysical techniques for
near-surface detection with the advantages of a high efficiency, a high accuracy, and a low
cost; moreover, seismic techniques are nondestructive [6]. Seismic reflection is extensively
used in both academic and practical engineering [7]. One of the main goals of seismic
data processing is seismic imaging. For instance, seismic migration imaging [8] is used
to map underground structures. Although advanced imaging methods have emerged in
recent decades, such as reverse time migration [9,10] and Gaussian beam migration [11–13],
Kirchhoff migration [14] is still the most popular approach due to its ability to provide
an image of sufficient quality and at an affordable computational cost. Zhang et al. [15]
processed a model example and seismic field data to demonstrate the validity of prestack
Kirchhoff time migration. Yuan et al. [16] applied Kirchhoff prestack time migration to
seismic data of coal seam reflections and obtained better images than with poststack time
migration. Wang et al. [17] used tomographic travel-time inversion and prestack Kirchhoff
depth migration-based migration velocity analysis (MVA) and obtained a precise, high-
resolution migration velocity model. Liu and Zhang [18] proposed a novel approach that
attached a prediction shaping filter to Kirchhoff prestack time migration to mitigate the
stretching effect and demonstrated their method with a numerical example and field data.
Zhang et al. [7] applied Kirchhoff poststack migration to a case of seismic scattered wave
imaging and obtained reliable imaging results in both the synthetic data and field data.
Nevertheless, in near-surface seismic exploration, where the depth of the target area is
usually less than a hundred meters, Kirchhoff migration still suffers from the following
problems: (1) Kirchhoff migration relies on the preprocessing of signals to deal with noise
and interference such as white noise, S-wave signals, and multiples; (2) Kirchhoff migration
is affected by high-energy surface waves, which appear as massive artifacts in the imaging
results. The surface wave can be muted from the observed data, but it requires a manual
cost; and (3) Kirchhoff migration is limited by the degradation in the imaging resolution
that occurs when the wavelength is not much smaller than the size of the imaging area in
near-surface detection.

In the medical field, the widely applied ultrasound beamforming method, which
detects human body structures using acoustic properties, gives us another possible way
to acquire seismic signals and solve the abovementioned problems. The delay and sum
(DAS) beamforming algorithm is the most popular beamforming technique for imaging
human body structures because of its real-time imaging capability [19,20]. In recent
decades, various adaptive beamforming methods have been proposed to improve the
resolution and stability of beamformers in medical ultrasound imaging. The most common
approaches are based on the minimum variance (MV) beamformer devised by Capon [21],
and numerous MV beamforming algorithms have been developed to continue improving
the imaging quality [22–25]. Asl [26] proposed an MV beamforming method combined with
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adaptive coherence weighting and achieved an excellent performance in an application to
medical ultrasound imaging. Ma et al. [27] introduced the multiple delay and sum with
enveloping method to efficiently suppress sidelobes and artifacts. Most recently, Chen
et al. [28] proposed the multioperator MV adaptive beamformer to promote real-time
imaging. Accordingly, because the transmission and receiver concepts in medical imaging
and seismic reflection are similar, the medical beamforming method can be adapted for
seismic imaging.

In this study, we propose a minimum variance spatial smoothing (MVSS) beamform-
ing method for near-surface reflection seismic exploration in a homogeneous assumption.
Synthetic near-surface geological models are established to carry out a numerical simula-
tion, and the image quality of the proposed MVSS beamforming method is compared with
that of Kirchhoff migration and basic DAS beamforming. Moreover, the robustness to inter-
ferences and noise, robustness to other wave components and a delay time correction to
enhance the focus effect are presented. Finally, the computational efficiency, a comparison
between MVSS beamforming and RTM (one of the best imaging methods for seismic data),
and the potential application of the CF matrix in time domain prestack migration methods
are discussed.

2. Methods

The MVSS method was proposed in this paper to improve the signal-to-noise ratio
(SNR), to enhance the focusing effect, and to improve the resolution. The core concept
of MVSS beamforming is to assign a weight to each receiver. When higher weights are
assigned to receivers with higher SNRs, the imaging quality is improved. The receiver
array is divided into several subarrays to improve the robustness when obtaining the
weights. In each subarray, to improve the resolution of the image and increase the SNR, we
designed a weight for each receiver according to the covariance matrix of signals. After the
imaging results of each subarray are superimposed, the obtained image is multiplied by
the signal coherence matrix to reduce the influences of sidelobe interference and focusing
errors. The proposed method is based on a homogeneous subsurface assumption, and it is
a time domain raytracing method, which means the propagation path of waves is static.
Notably, MVSS beamforming reduces to basic DAS beamforming without spatial smooth-
ing, neglecting to calculate the weight of each receiver, and excluding the coherence factor
(CF) matrix. Though DAS beamforming and Kirchhoff migration are coded in different
ideas, they share similar principles, such as they are both prestack time migration and
raytracing methods. Background velocity plays an important role in Kirchhoff migration
and other migration methods, but it does not in DAS beamforming. DAS beamforming
can be understood as an extremely simplified Kirchhoff migration, in which we assume
that the wave propagates along a straight line and the subsurface is homogeneous.

2.1. MVSS Beamforming Imaging

Figure 1 shows the workflow of MVSS beamforming, which is divided into three parts:
(1) signal delay; (2) superposition with calculated weights from minimum variance matrix
in subarrays; and (3) imaging and processing, including time-depth conversion and shot
stacking. The detailed mathematics can be found in Appendix A.

First, the signal delay times are calculated according to the distance from the target
point to each receiver and the background velocity. At the top of Figure 1 is a target point
in the detection area. The waves reflected from the target point are received by the array,
which is arranged in a straight line. The signals recorded by the receivers have different
arrival times because the receivers are situated at different distances from the target point.
Thus, delay processing (τ1 . . . τ5) is applied to these signals so that the fluctuations from
this target point are aligned on the time axis.

Second, the signals from different receivers are superimposed with an MVSS beam-
former. Calculating the superposition (∑) with weights (ω1 . . . ω5) of the delayed signals
amplifies the signals from the target point while suppressing the reflections from other
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scattering points in the imaging area. The weights are calculated from a minimum variance
matrix of subarrays with diagonal loading to enhance robustness. The weights are designed
to minimize the output interference-plus-noise power while maintaining a distortionless
response to the target signal. Then, the CF is used as a weight matrix to enhance the image,
which can obviously amplify the reflection signals.

Figure 1. Workflow of MVSS beamforming imaging.

Finally, after performing time-depth conversion and stacking the images of all shots,
we obtained the beamforming result. Underground structures can be determined by the
amplitudes in the image, where a higher amplitude corresponds to a greater possibility of
a reflection interface or a stronger reflection.

2.2. A Simple Example

We took a circular cave model (Figure 2a) as an example to illustrate the workflow
of MVSS beamforming. The seismic data of the 10th shot obtained by finite-different
time-domain (FDTD) numerical simulations (Liu et al., 2018 [29]) are shown in Figure 2b.
The receivers were arranged from 0 m to 30 m with an interval of 0.2 m. There were
151 receivers in total.

For example, we took point A (16 m, 7 m) as the target point (Figure 2). The delay
time was calculated as Equation (A1), and the results are shown in Figure 3. The 151 black
dots represent the delay time of each receiver, and the 20 red circles represent the delay
time of each shot. The first source shared the same spatial position and delay time with the
36th receiver. We moved the target point and repeated the delay time calculation using
Equation (A1).

As per the definition of a subarray in Equation (A11), we divided the array of 151 re-
ceivers into 76 subarrays, and each subarray was composed of 75 receivers. Taking the
first subarray as an example, we calculated the weight of each receiver in the subar-
ray (Figure 4b) according to the DL and MV method using Equation (A13). We multi-
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plied the 75 delayed signals (Figure 4a) with the weight of each receiver (Figure 4b) and
then added them together to obtain the amplitudes on the axis line x = xA (Figure 4c).
Two reflection interfaces were observed from the curve. The delay time was reduced by
t = tm + tn = 0.0186 s to exclude the delay time of point A itself. Before the 0.0186 s was
excluded, the delay time is not absolutely correct. If we see point A as the target point, the
delay time of the receiver which is above point A should be 0. In delay time calculations
according to Equation (A1), the reference point is not point A (16,7) but it is the point on
x axis (16,0). This results in the 0.0186 s of delay time of point A itself. So, the 0.0186 s
should be excluded from the delay time and the correct time-axis position of point A can
be obtained. This can also be found in Equation (A3) as (t − τm). Then, we repeated the
process above with each subarray to obtain the amplitude curve on the axis line x = xA
(Figure 4d). In this certain case, the amplitude of a reflected wave was 0.005 times that of a
surface wave in seismic signal. Eventually, the amplitude was 0.05 times that of a surface
wave on the superposed curve for all subarrays. Then, we picked the peak amplitude and
the corresponding estimated time (0.0093 s) as the amplitude result of point A.

Figure 2. (a) Circular cave model. (b) Signal of the 10th shot with 20 stacked traces.

Figure 3. Time delay of each receiver and source.

We repeated the delaying, weighting, and superposition processes with the subarrays
at every point in the imaging area to obtain the preliminary image for this shot (Figure 5a).
Then, the CF (Figure 5b) was obtained according to Equation (A15). The CF matrix was
used as another weight to enhance the SNR by multiplying it with the preliminary image.
In this step, surface wave artifacts were suppressed because the adopted methods were
developed for reflected waves to only amplify the reflected signals with focus. Other
interferences were suppressed for the same reason. Then, we obtained the final image of
the 10th shot.
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Figure 4. Delayed signal and weighted superposition of point A. (a) Delayed signal of the 1st subarray. (b) Weight of each
receiver in the 1st subarray according to the MV method. (c) Superposed curve of weighted signals. (d) Amplitude curve on
axis line x = xA.

Figure 5. Preliminary image multiplied with the CF matrix to obtain the time-domain image of one shot. (a) Preliminary
image. (b) CF matrix. (c) Image result of the 10th shot.

The time-domain image was converted into a depth-domain image according to the
background velocity. The same processing scheme, including beamforming imaging and
time-depth conversion, was applied to the remaining shots. The final image was a stacked
result of all shots (Figure 6).

2.3. Related Works
2.3.1. Kirchhoff Migration

Kirchhoff migration was adopted as a related work in this paper. The methodology is
mainly from the authors of [30]. The involved work migrates a single shot record using
prestack time migration. The algorithm is a simple travel time path summation with
few options. Travel time from source to scatter point (also known as a target point in
beamforming methods) is approximated by a Dix equation using the RMS velocity from the
model at the lateral position halfway between the source and receiver and at the vertical
travel time of the scatter point. Similarly, from the scatter point to a receiver, a Dix equation
using the RMS velocity at halfway between the scatter point and the receiver is used. There

372



Appl. Sci. 2021, 11, 10827

is no topographic compensation. The source and receivers are assumed to be on the same
horizontal plane.

Figure 6. Stacked MVSS beamforming image of 20 shots.

2.3.2. Reverse Time Migration

Reverse time migration (RTM) is one of the best imaging methods for seismic data.
RTM is a depth migration method. It takes the seismic records as input and reconstructs the
underground wave field using the inverse time wave field continuation, then obtains the
image amplitude according to the cross-correlation with the source wave field. There is no
high-frequency approximation assumption of ray tracing methods or the angle limitation
of one-way wave migration. Thus, RTM has a high imaging quality but also costs more in
terms of computational resources.

RTM was adopted as a related work in this paper. The adopted reverse time migration
program involved was from the authors of [30]. The algorithm dose is a prestack reverse
time migration of a shot record. The migration computes the forward-in-time propagation
of the source field and the reverse-time propagation of the input shot (receiver field). Thus,
two wavefields (source field and receiver field) are simulated by finite-difference time
stepping. The migrated shot comes from the cross correlation of these two fields at equal
times. This requires that the source wavefield must be available at each time step of the
receiver field and this is a major complexity.
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3. Numerical Experiments

3.1. Numerical Experiments

Six synthetic models were used to validate the proposed imaging method. For this
purpose, we constructed an area with a height of 20 m and a width of 30 m (Figure 7) to sim-
ulate near-surface seismic exploration. The seismic data came from numerical simulations
based on staggered-grid finite differences in the time domain [29,31]. A perfectly matched
layer (PML) was used to absorb reflections on the left, right, and bottom boundaries of the
model. The upper boundary of the model was a free boundary.

Figure 7. Sketch map of the geological model.

According to the near-surface geological conditions, the background P-wave velocity
was set as 1500 m/s, the S-wave velocity was set as 700 m/s, and the density was set as
1.8 g/cm3. A 600 Hz Ricker wavelet was used as the source at the ground surface. Twenty
shots were deployed with an interval of 1 m, and 151 receivers were evenly arranged at a
0.2 m intervals across the top of the model.

The signal time length was 0.05 s. According to the size of the area and background
velocity, the estimated P-wave travel time of a vertically down and up path was 0.026 s
and the travel time associated with the far-right source, reflection at bottom left, and far-
right receiver pair was 0.045 s (Figure 8). Therefore, the target P-wave signal integrity was
guaranteed, which meant that a 0.05 s signal would be long enough to cover all the reflected
objectives and the reflection of most part of the area could be received by multiple receivers.

Figure 8. Illustration of travel time.
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All parameters in the numerical experiments are shown in Table 1. Note that the
sampling frequency was 2 × 105 which is consistent with the time step of the numerical
simulation. In the numerical experiments, adapting a shorter recorded signal can help save
computational resources. However, in real cases, the recorded signal can be longer in order
to obtain more information.

Table 1. Numerical experiment parameters.

Parameter Value

Receiver spacing interval 0.2 m
Source frequency 600 Hz

Sampling frequency 2 × 105 Hz
Background P-wave velocity 1500 m/s

Receiver array length 30 m
Number of receivers 151

Signal length 0.05 s

The receivers are velocity sensors that collect vibrations perpendicular to the ground
surface. The geological models are produced by a random near-surface model generation
algorithm (Figure 9). For example, horizontal parallel layers (1), folds (2), random fluctua-
tions (3), faults (4) and caves (5) were incorporated into the models. More details on the
model generation methods can be found in Appendix B.

Figure 9. Geological model generation workflow.

The structural details of each model are shown in Table 2. The models in group A
contained cave-type geological anomalies. The models in group B were composed of
multiple strata. The models in group C were combinations of cavities and multiple strata.
The medium parameters are shown in Table 3.

3.2. Imaging Results
3.2.1. Cave Models

The imaging results of model A-1 are shown in Figure 10. In the MVSS beamforming
imaging (Figure 10b), the cave roof and floor can be observed, but the right and left sides
of the cave are missing. A slight artifact caused by surface waves is observed at the top
of the image (Mark 1). The ceiling and floor can be observed, but the walls on both sides
are missing. The reason is that the roof is convex and reflects the waves to both sides.
Some of these reflected waves exceed the range of the receiver array, resulting in a lack
of information from the roof. In contrast, the concave floor can better reflect all arriving
waves toward the receiver array, forming a better image. The imaging results of the three
methods show that the imaged cave is slightly larger in the vertical direction than the cave
actually is.

Figure 10c shows the imaging result via Kirchhoff migration. There is a massive
artifact (Mark 1) at the top of the image caused by surface waves. Some minor artifacts can
be observed between the top of the image and the cave (Mark 2). Arcuate noise signals
caused by S-waves are present on both sides (Mark 4). The upper roof is formed as a dot
(Mark 3).
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Table 2. Model list.

Model
Geological

Structure Type
Caves

Cave Center
Location (m)

(Horizontal, Vertical)

Cave
Radius (m)

Map Description

A-1 - 1 15, 11 1.8 A circular homogeneous cavity.

A-2 - 2 13, 11 and 17, 11 1.8 A model with two horizontally
aligned caves.

A-3 - 2 15, 11 and 15, 16 1.8 A model with two vertically
aligned caves.

B-1 Syncline fold - - - Syncline model with a fold
depth of 4 m.

B-2 Fault - - -
Fault model with a dislocation

of 2 m and a great
angle (arctan1.5).

B-3 Fault - - - Fault model with a great angle
weak fault layer.

B-4 Fault - - - Fault model with a small angle
weak fault layer (arctan0.5).

C-1 Syncline fold 1 15, 11 1.8 Syncline model composed of
three layers with a cavity.

C-2 Fault 1 15, 11 1.8 Fault model composed of three
layers with a cavity.

Table 3. Elastic parameters of the model media.

Sequence P-Wave Velocity (m/s) S-Wave Velocity (m/s) Density (kg/m3)

Cave 1 1400 700 1600
Layer 1 1500 800 1800
Layer 2 1600 900 2000
Layer 3 1800 1000 2200

Figure 10d shows the DAS beamforming imaging result. The artifacts caused by
surface waves are still present at the top of the image (Mark 1). The roof of the cave is also
formed as a dot shape (Mark 3). The artifact caused by S-waves is again observed (Mark 4)
and is stronger than that in the Kirchhoff migration results.

Compared with RTM (Figure 10e), the advantage for suppressing the artifact caused
by the surface wave and S-waves remains in MVSS beamforming. The cave location in
MVSS beamforming is more accurate than that in RTM.

The imaging results of model A-2 are shown in Figure 11. In the MVSS beamforming
imaging result shown in Figure 11b, the locations of the two caves are well determined,
and the roofs and floors of both caves can be observed. In addition to the same surface
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wave artifacts detected in model A-1, some interferences were found beneath the floors of
the caves (Mark 1) due to the superposition of different S-waves.

Figure 10. Model A-1. (a) True velocity model. (b) Imaging result of MVSS beamforming. (c) Imaging result of Kirchhoff
migration. (d) Imaging result of DAS beamforming. (e) Imaging result of RTM.

Figure 11. Model A-2. (a) True velocity model. (b) Imaging result of MVSS beamforming. (c) Imaging
result of Kirchhoff migration. (d) Imaging result of DAS beamforming.

Compared with MVSS beamforming, in addition to the same interferences and artifacts
in model A-1, the two floors overlap (Mark 1) in the Kirchhoff migration result (Figure 11c).
This overlap appears again in the DAS beamforming result. This finding indicates that
MVSS beamforming has a higher horizontal resolution than the other two methods. These
imaging results further demonstrate that the imaging of these caves did not suffer from
signal interference because the propagation paths of the waves reflected from the cave
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boundaries do not overlap with each other. Besides, the S-wave artifacts appears in
Kirchhoff migration and DAS beamforming (Mark 2).

Compared with those in model A-1, the interferences in the Kirchhoff migration and
DAS beamforming results in model A-2 are more intensive due to the more complicated
structure (Mark 3). However, these interferences are still much weaker in the MVSS beam-
forming result, which means that MVSS beamforming exhibits better S-wave suppression.

The imaging results of model A-3 are shown in Figure 12, in which two caves are
aligned vertically in the middle of the area (a beaded cave model). The surface wave
artifacts and S-wave interferences are similar to those in model A-1 and model A-2. In
addition, there is some overlap between the roof of the shallower cave and the floor of the
deeper cave (Mark 1), which means that the three methods have similar vertical resolutions
in this cave model.

Figure 12. Model A-3. (a) True velocity model. (b) Imaging result of MVSS beamforming. (c) Imaging
result of Kirchhoff migration. (d) Imaging result of DAS beamforming.

Compared with the MVSS beamforming imaging result, the Kirchhoff migration
imaging result suffers from more intensive and complicated interferences on both sides of
the image caused by S-waves. These S-wave interferences are also relatively intensive in
the DAS beamforming result.

3.2.2. Layer Models

The imaging results of model B-1 are shown in Figure 13. In the MVSS beamforming
imaging result (Figure 13b), two interfaces can be clearly observed. There is some light
interference on both sides of the image (Mark 2) and between the interfaces (Mark 1).
Furthermore, some parts of the deeper interface are missing (Mark 3).

In the Kirchhoff migration imaging result (Figure 13c), the interfaces between the
layers can be observed clearly, but artifacts appear between the two layers and on both
sides of the image (Mark 1), and some arc-shaped interferences can be observed on both
sides of the image (Mark 2). The DAS beamforming imaging result is shown in Figure 13d;
the interfaces can be observed, but arc-shaped interferences and a massive surface wave
artifact at the top of the image can also be observed.
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Figure 13. Model B-1. (a) True velocity model. (b) Imaging result of MVSS beamforming. (c) Imaging
result of Kirchhoff migration. (d) Imaging result of DAS beamforming.

Comparing the three imaging methods reveals interferences between the different
interfaces in the Kirchhoff migration and DAS beamforming imaging results. In the
MVSS beamforming image, the amplitude of the surface wave artifact is weak, and the
interferences between the interfaces are suppressed. The thickness of the interface between
the two layers is approximately 0.4 m. The best resolution given the wavelength of the
wavelet is 0.24 m. In contrast, the interfaces are thicker (approximately 1.6 m on the deeper
interface) in the Kirchhoff migration and DAS beamforming images, which means that the
vertical resolution of MVSS is higher in this layer model. However, artifacts caused by the
superposition of S-wave energy still exist and caused interference between the interfaces.
Kirchhoff migration and DAS beamforming suffer from similar intersecting interferences
(Mark 4) caused by S-waves. However, at shallow depths, these intersecting interferences
are replaced by vertical bars in the Kirchhoff migration image.

Compared with the MVSS beamforming imaging results obtained for the cave models,
the interfaces can be readily determined, but the amplitudes of the interfaces in this layer
model seem weaker than the amplitudes of those in the cave models (using the same
imaging and display parameters in every model). In addition, the layers are missing on
two sides of the image because the shots range horizontally from 5 m to 25 m.

The imaging results of model B-2 are shown in Figure 14. Figure 14b shows the
imaging result of MVSS beamforming. The interfaces between the layers can be observed,
and the location of a fault can be inferred from the shapes of the interfaces, but the details
of the fault are difficult to discern. Lightly surface wave artifact can be observed (Mark
1).Dislocations in the shallow interface can be observed. For the deeper interface, although
the upper and lower stratigraphic boundaries can be seen, the dislocations cannot. Slight
interferences can be observed on the sides of the image and beneath the interface (Mark 2).

Figure 14c shows the imaging result of Kirchhoff migration. The artifact caused by
surface waves can be observed at the top of the image. At the same time, interferences can
be observed above the shallower interface and beneath the deeper interface.
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Figure 14. Model B-2. (a) True velocity model. (b) Imaging result of MVSS beamforming. (c) Imaging result of Kirchhoff
migration. (d) Imaging result of DAS beamforming. (e) Imaging result of RTM.

Figure 14d shows the imaging result of DAS beamforming. Likewise, the artifact
caused by surface waves can be observed at the top of the image (Mark 1). In addition,
artifacts caused by S-waves are present on both sides of the image. We also detected
interferences between the two interfaces and beneath the deeper interface. The interferences
above the shallower interface appear with different shapes in the Kirchhoff migration and
DAS beamforming imaging results (Mark 3).

Compared with the RTM (Figure 14e), there were less interferences beneath the
interfaces in RTM but MVSS beamforming showed a higher vertical resolution. Still, the
surface wave caused an intensive artifact at the top in the RTM result.

Compared the imaging results of the three methods, the artifacts caused by direct
waves and surface waves are weaker in the MVSS beamforming result. Similarly, the
artifacts on both sides of the image and beneath the deeper interface are also weaker.
The dislocations across the deeper interface are missing because the reflection angles
generated at such dislocations are large, and thus, the signal could not be recorded by the
receiver array.

In summary, compared with the imaging results in model B-1, the shallower interface
is complete, and the fault dislocation is well determined. However, the dislocation of
the deeper interface is missing because the reflected waves were not received by the
receiver array.

Both model B-3 (Figure 15) and model B-4 (Figure 16) contained low-velocity areas
near the dislocation. The imaging results of model B-3 are not very different from those
of model B-2. The weak layer results in more S-wave interferences above the shallower
interface (Mark 1). The reason is that when seismic waves arrive at the weak layer, the
reflected waves are not recorded by the receivers. Thus, because of the shadow created by
the weak fault layer, the layer beneath the shallower interface is distorted (Mark 2).

Compared with Kirchhoff migration and DAS beamforming, MVSS beamforming still
suppressed the S-wave interferences more effectively and provided a better contrast.

In model B-4, the fault angle is shallower than that in model B-3. The shallow part of
the weak layer can be observed, but the deep part could not because the imaging results
were disturbed by the weak layer. Arcuate interferences (Mark 1) and artifacts along the
fault (Mark 2) can be observed. Furthermore, the imaging results were disturbed by the
complicated structure due to the fault dislocation (Mark 2). However, the position of the
deeper interface was not influenced by the weak fault layer.
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Figure 15. Model B-3. (a) True velocity model. (b) Imaging result of MVSS beamforming. (c) Imaging
result of Kirchhoff migration. (d) Imaging result of DAS beamforming.

Figure 16. Model B-4b. (a) True velocity model. (b) Imaging result of MVSS beamforming. (c) Imaging
result of Kirchhoff migration. (d) Imaging result of DAS beamforming.

Comparing MVSS beamforming with Kirchhoff migration and DAS beamforming
reveals that the artifacts (Mark 2) in the latter two methods were more intensive than those
in the former. For the deeper interface, Kirchhoff migration provided a better contrast than
MVSS beamforming.

3.2.3. Cave-Layer Hybrid Models

The imaging results of model C-1 are shown in Figure 17. The imaging result of MVSS
beamforming is shown in Figure 17b. The shapes and locations of the interfaces and caves
can be clearly observed. There were some interferences between the layer interfaces and
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the cave boundaries. On both sides of the layer beneath the shallower interface, some
artifacts caused by S-waves can be observed.

Figure 17. Model C-1. (a) True velocity model. (b) Imaging result of MVSS beamforming. (c) Imaging result of Kirchhoff
migration. (d) Imaging result of DAS beamforming. (e) Imaging result of RTM.

The imaging result of Kirchhoff migration is shown in Figure 17c, indicating that
some interferences appeared near (Mark 1) and between (Mark 2) the layer interfaces.
The DAS beamforming imaging result is shown in Figure 17d, revealing multiple arcuate
interferences between the two interfaces (Mark 2) and above the shallow interface (Mark 3).

When the three imaging methods are compared, the imaging results of Kirchhoff
migration and DAS beamforming still exhibit artifacts of direct waves and surface waves,
and there are more interferences between the layers and near the interfaces. Nevertheless,
the MVSS method achieved the best resolution and most effectively suppressed the direct
and surface waves.

Compared with those for model B-1, the imaging results for model C-1 display more
interferences between the interfaces and on both sides of the caves because of the increased
stacking of S-waves from different reflection interfaces. In addition, compared with model
A-1, it can be noted that the image of the cave in model C-1 is more precise.

Compared with the RTM (Figure 17e), in the composed model of cave and fold, MVSS
beamforming still made a better vertical resolution. There was a strong artifact caused by a
surface wave in the RTM result.

Model C-2 comprises a combination of a fault, multiple layers, and a cave (model A-1
and model B-2). The imaging results are shown in Figure 18, where Figure 18b shows the
imaging result of the MVSS beamforming method. The shallower interface of the layer can
be clearly observed, and the cave between the layers can be detected as well. However, the
deeper interface is not complete at widths of 10 m to 20 m (Mark 4).

Comparing the three methods makes it evident that the artifacts caused by surface
waves are still noticeable in the Kirchhoff migration and DAS beamforming imaging results.
Furthermore, the incompleteness of the deeper interface is as notable as it is in the MVSS
beamforming imaging result, while the interferences between the layers and on both sides
of the image (Mark 2) are weaker in the MVSS beamforming imaging results. However, the
disturbances on the deeper interface (Mark 3) are similar among all three methods.
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Figure 18. Model C-2. (a) True velocity model. (b) Imaging result of MVSS beamforming. (c) Imaging
result of Kirchhoff migration. (d) Imaging result of DAS beamforming.

Compared with model B-2, a part of the deeper interface of the layer is blurred in
model C-2. There are two main reasons for this blurriness. The structure is particularly
complicated in the middle of the area due to the coexistence of the fault and cave, which
causes the wave to reflect back and forth between those structures; this produces many
multiples. Thus, the reflected waves from the deeper interface are seriously disturbed by
multiples from the complex structure in the middle of the model. Moreover, compared
with the features of model A-1, the cave’s roof and floor are not clear (Mark 1) because the
waves are disturbed by the fault.

3.3. Robustness to Other Wave Components

This numerical experiment was carried out based on elastic wave propagation theory,
in which the signals received contain various components, such as P-P, P-S, and S-S waves,
surface waves, and direct waves (Figure 19). For these imaging methods, we employed the
P-P signal. Other components in the signal were considered to be noise or interference in
imaging, and S-waves and surface waves were significant causes of imaging artifacts.

Figure 19. Components in a seismic signal.
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Figure 20 shows the normalized amplitude curves and Hilbert transforms at x = 15 m
in model B-2 (Figure 20a,b) and model A-3 (Figure 20c,d). The curves indicate the following:
(1) The amplitude in the shallow parts of the Kirchhoff curve and DAS curve is high (greater
than the reflection amplitude). This is the result of a surface wave. However, in the MVSS
curve, the surface wave amplitude is suppressed. The surface wave is suppressed because
the MVSS method amplifies the reflected wave by using the CF matrix. (2) From the Hilbert
transform, it can be noted that the MVSS beamforming method can recognize two close
interfaces, while the Kirchhoff and DAS methods might combine these interfaces as one.
Thus, MVSS beamforming has a better vertical resolution than the other two methods.
(3) In the MVSS curve, the reflection amplitudes are greater than those in the Kirchhoff
migration and DAS beamforming curves; this is also partly due to the suppression of
surface waves. This means that MVSS beamforming offers a better contrast than the other
two imaging methods.

Figure 20. Imaging amplitude curves at x = 15 m and the Hilbert transform of each. (a,b) model B-2; (c,d) model A-3.

Figure 21a shows the imaging result of Kirchhoff migration with all signal components.
The interfaces between the layers at depths of 5 m and 15 m are clear. However, massive
horizontal artifacts can be detected at the top of the image; in addition, artifacts obliquely
penetrate the shallower interface, and noise exists beneath the interface at a depth of
15 m. Likewise, Figure 21d shows the imaging result of DAS beamforming with all signal
components. The two interfaces are clear, but horizontal artifacts can again be observed at
the top of the image, and there are slight artifacts on both sides of the interfaces. Noise also
appears beneath the interface at a depth of 15 m. Figure 21g shows the imaging result of
MVSS beamforming with all wave components. The two interfaces are clear at depths of
5 m and 15 m. However, horizontal artifacts remain near the top of the image, and noise
can be observed beneath the deeper interfaces. Nevertheless, compared with the imaging
results of Kirchhoff migration and DAS beamforming, MVSS beamforming can suppress
both the horizontal artifacts caused by surface waves and the artifacts on both sides of the
image caused by S-waves.

These results confirm that the MVSS beamforming method can significantly suppress
artifacts caused by direct waves and surface waves. The suppression of surface waves in
reflection seismic exploration has long been a topic of interest [32]. Strong surface waves
are significant causes of artifacts in imaging. Hence, to determine how surface waves
impact the imaging results, we performed image processing by excluding direct waves and
surface waves and then compared the results with the original imaging results. Figure 21b
shows the Kirchhoff migration imaging results excluding direct waves and surface waves.
Compared with Figure 21a, the surface wave artifact at the top of the image disappears,
and the interference across the shallower interface is weaker. However, the artifacts on both
sides of the interfaces and beneath the deeper interface still exist. Figure 21e shows the
DAS imaging result excluding direct waves and surface waves. Compared with Figure 21d,
the surface wave artifact at the top of the image disappears, but the S-wave artifacts across
the interfaces still exist. Figure 21h shows the MVSS beamforming result excluding direct
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waves and surface waves. Compared with Figure 21g, the artifact at the top of the image
disappears, but the interferences beneath the deeper interface still exist. These comparisons
suggest that the main consequence of direct waves and surface waves is the presence of
artifacts at the top of the image.

Figure 21. Imaging results after eliminating either surface waves or S-waves. (a) Kirchhoff migration
result using the original signals. (b) Kirchhoff migration result using signals without surface waves.
(c) Kirchhoff migration result using signals with only P-waves. (d) DAS beamforming result using
the original signals. (e) DAS beamforming result using signals without surface waves. (f) DAS
beamforming result using signals with only P-waves. (g) MVSS beamforming result using the
original signals. (h) MVSS beamforming result using signals without surface waves. (i) MVSS
beamforming result using signals with only P-waves.

S-waves (or converted waves) are another main factor causing artifacts and interfer-
ence in seismic imaging. S-wave signals and converted waves (reflected S-waves converted
from P-waves at interfaces) have similar in-phase axes as P-wave signals. However, the
velocities of S-waves and converted waves do not match the estimated velocity (P-wave
velocity), so the use of S-waves (or converted waves) can cause errors. Figure 21c shows the
Kirchhoff migration imaging result ignoring S-waves. Compared with Figure 21a, artifacts
at the top of the image still exist, but the artifacts are thinner and weaker. Moreover, the
interferences across the shallower interface and beneath the deeper interface both disap-
pear. Figure 21f shows the DAS beamforming result ignoring S-waves. Compared with
Figure 21d, the artifacts at the top of the image still exist but are weaker, and the interfer-
ences beneath the deeper interface and on both sides of the shallower interface disappear.
Finally, Figure 21i shows the MVSS beamforming result ignoring S-waves. Compared
with Figure 21g, the artifacts at the top of the image still exist, albeit with weaker energy,
and the interference beneath the deeper interface disappears. In addition, compared with
Figure 21f, the artifacts on both sides of the interfaces disappear.

From this discussion, we have found the following:

1. The horizontal artifacts at the top of the images are caused by surface waves, while
the artifacts beneath the interfaces are caused by S-waves, probably P-S waves;

2. When S-waves are eliminated, the direct wave still exists, but the surface wave does
not. This greatly weakens the artifacts at the top of the image;
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3. The ability of MVSS beamforming to suppress surface wave artifacts at the top of the
image and the S-wave artifacts on both sides of the interfaces is superior. However,
the S-wave artifacts beneath the interfaces still affect MVSS beamforming as much as
they do the other methods.

3.4. Robustness to Random Noise

The signals in the numerical experiments were clear synthetic signals (Figure 22a).
The SNR is defined as follows, where Psignal and Pnoise are the power levels of the sig-
nal and noise, respectively, and Asignal and Anoise are the amplitudes of the signal and
noise, respectively:

SNR(dB) = 10 log10
Psignal

Pnoise
= 20 log10

Asignal
2

Anoise
2 (1)

Figure 22. Imaging result using the clear signal (a) and noisy signal (b). (c) Kirchhoff migration
imaging result using the clear signal. (d) DAS beamforming result using the clear signal. (e) MVSS
beamforming result using the clear signal. (f) Kirchhoff migration imaging result using the noisy
signal. (g) DAS beamforming result using the noisy signal. (h) MVSS beamforming result using the
noisy signal.
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We added Gaussian noise to the signal (Figure 22b) to make the SNR 0 dB (the power
of noise equals the power of the target reflection signals) and then generated images using
Kirchhoff migration, DAS beamforming, and MVSS beamforming.

In the Kirchhoff migration result with the noisy signal (Figure 22d), the interference
caused by white noise can be observed as dots in the image. In the imaging result of DAS
beamforming for the signal with Gaussian noise (Figure 22f), compared with the imaging
result containing clear signals (Figure 22e), the white noise in the signal is detectable in the
imaging result as well.

Figure 22h shows the MVSS beamforming result for the signal with Gaussian noise.
Compared with the Kirchhoff migration and DAS beamforming results, the influence of
white noise is much less apparent for the MVSS beamforming results. However, relative to
the imaging result with a clear signal (Figure 22h), although the noise is well suppressed,
the brightness of the reflection interface decreases. The reason is that the energy of all
signals increases when white noise is added, which narrows the energy gap separating the
reflection signal and other signals from empty space. As a consequence, the energy of the
reflective interface is relatively reduced. This phenomenon corresponds to the principle
of keeping the effective signal gain unchanged while minimizing the energy of the whole
image in the MVSS beamforming method.

3.5. Focus Enhancing by a Signal Advance Correction

In real-world applications, the velocity assigned to the background is inaccurate.
Although the phenomenon we discuss in this section was not apparent in our numerical
experiments, it does exist in practice. Therefore, another model was designed at a smaller
scale with a higher velocity to observe more obvious phenomena and to verify how MVSS
beamforming works when an inaccurate background velocity is provided. Figure 23
displays the imaging results when different background velocities were provided while the
true background velocity was 3000 m/s. When the background velocity reaches 2250 m/s,
MVSS beamforming can barely differentiate three different targets (dots) in the region and
loses focus. Interestingly, MVSS beamforming does not appear to work optimally under an
accurate velocity (3000 m/s), whereas it performs successfully under a velocity of 2750 m/s.
The reason is that unlike in oil and gas exploration, the shot wavelet length in near-surface
exploration cannot be ignored because the scale of the model is small.

Figure 23. Imaging results using different background velocities while the true velocity is 3000 m/s.
(a) True velocity model; (b) 2250 m/s; (c) 2500 m/s; (d) 2750 m/s; (e) 3000 m/s; (f) 3250 m/s.
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In the signals received in a near-surface situation, the time from zero to the first arrival
is t. However, t is not the most appropriate value to use because the time employed in the
algorithm is the peak-to-peak time or the time from first arrival to first arrival (Figure 24).
Thus, we fixed all signals by half a cycle to correct this phenomenon, called ‘defocusing’, to
match the wave peak times, and the signal was advanced by a quarter of a cycle, half a
cycle, and three-quarters of a cycle of the source wavelet, producing a set of images using
MVSS beamforming. The results show that the imaging algorithm works best when the
signal is advanced by half a cycle. However, the location of the objective becomes shallower
than the real location as a result.

Figure 24. Signal advance correction to match the peak time to the arrival time.

To better observe the signal correction described above, we implemented the imaging
algorithm in a model with smaller point anomalies and a high background velocity and
excluded both surface waves (direct waves) and S-waves. The results with no processing, a
1/4-cycle advance, a 1/2-cycle advance, and a 3/4-cycle advance are shown in Figure 25.
Upward-concave artifacts can be detected near the point target in the image without
processing; this is the phenomenon known as defocusing. The reason for this defocusing is
the mismatch between the delay information and the reflection signals. With an increase in
the signal correction amount, the best focusing effect was achieved when the correction
value was 1/2 of a cycle. When the correction value exceeds this value, the imaging
defocuses in the other direction (concave-downward); the reason for this is again the
mismatch between the delay information and the reflection signals.

Figure 25. Imaging after time advance corrections: (a) no processing; (b) 1/4-cycle advance; (c) 1/2-cycle advance;
(d) 3/4-cycle advance.

This phenomenon also appears in the 30 m × 20 m model, although it is not par-
ticularly obvious due to the lower frequency and slower wave velocity. The red line in
Figure 26 is a reference line at a depth of 5 m (Figure 26a), and the red box marks the
comparison of different time advance corrections. After the signal advance correction was
applied, the focusing effect improved, and the focusing effect was best when the correction
value was 1/2 of a cycle (Figure 26d). When the correction value increased to 3/4 of a
cycle (Figure 26e), the image began to defocus to the other side (shallower side). It is
worth noting that due to the signal advance correction, all the imaging targets moved to

388



Appl. Sci. 2021, 11, 10827

a shallower position. Therefore, this processing scheme will enhance the focusing effect
while causing the target position to be slightly shifted.

Figure 26. Imaging after applying a time correction in model B-2: (a) true velocity model; (b) no
processing; (c) 1/4-cycle advance; (d) 1/2-cycle advance; (e) 3/4-cycle advance.

4. Discussion

4.1. Computational Efficiency

In terms of the size of our numerical experiment (20 shots, 151 receivers, 1001 time
grids per signal), the calculation time needed to implement each imaging method ranged
from several seconds to minutes, as summarized in Table 4. DAS beamforming was the
most efficient method, with a fast imaging time of 3.9 s, followed by MVSS beamforming at
201.1 s, and Kirchhoff migration took the longest at 520.1 s. If the time delay was calculated
according to the background velocity and stored prior to imaging, the calculation times of
DAS and MVSS beamforming were further shortened. In the Kirchhoff migration adopted
in this paper, the travel times from source to scatter point and from scatter point to receiver
were approximated by a Dix equation using the RMS velocity. On the other hand, the
travel times were calculated based on the geometry relationship between the source, scatter
point, and receiver. To some extent, DAS beamforming is a simplified option of Kirchhoff
migration, which results in the computational efficiency difference. Conceivably, if the
condition of the medium at each point is known, the Kirchhoff migration method should
theoretically have the best imaging results. In this experiment, the geological information
was known approximately (background velocity), so the accuracy advantage of Kirchhoff
migration was almost negligible, but the efficiency advantage of beamforming persisted.
Beamforming methods assume that the wave propagates in a straight line and that the
seismic velocity in the area is the same. This assumption is also available for Kirchhoff
migration. However, in the adopted algorithm it still took time to estimate the travel time
by a Dix equation using the RMS velocity desired from a homogeneous background model.
This meant that the travel time was almost same as that in DAS beamforming, in which
the travel time was simply calculated according to geometry and background velocity, but
the calculation time was quite different. Therefore, the efficiency of DAS beamforming
was as high as 130 times that of Kirchhoff migration. For this reason, we would like to
apply beamforming imaging to detect underground anomalies in a scene with a single
background velocity. The computational efficiency and accuracy of an algorithm have
always been contradictory, but in near-surface exploration, the prior information is simple,
which is suitable for beamforming methods to improve efficiency.
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Table 4. Calculation time of each method.

Method Kirchhoff Migration DAS Beamforming MVSS Beamforming

Calculation Time (s) 520.1 3.9 201.1

4.2. Coherence Factor Matrix

As stated in 2.5, the coherence factor (CF) matrix is an effective method to reduce
artifacts and interferences in the image. The CF matrix is obtained in the delayed signal.
Since the CF matrix is used as a weight to amplify the reflection wave and suppress the
artifacts for each shot, it could be theoretically applied into other prestack time domain
migration methods. Figure 27 here presents the results when the CF matrix was applied
into Kirchhoff migration and DAS beamforming. The results shows that the CF matrix can
obviously reduce the artifact caused by surface wave and interference on two sides of the
images. However, there was also a contrast reduction at the lower floor in Kirchhoff. This
might be a result of different travel time (delay time) calculation algorithm between MVSS
beamforming and Kirchhoff migration.

Figure 27. Results when the CF matrix was applied into Kirchhoff migration and DAS beamforming.
Kirchhoff migration (a) without and (b) with CF matrix applied. DAS beamforming (c) without and
(d) with CF matrix applied.

5. Conclusions

This research introduced a medical imaging method, the minimum variance spatial
smoothing (MVSS) beamforming imaging method, for near-surface seismic detection to
achieve rapid and accurate imaging. To increase the robustness of the algorithm, the DL
method was employed to add spatial white noise to the recorded wavefield and to adjust
the weight calculation in the proposed method. The CF method was used to improve the
image quality by amplifying the amplitudes of points with a strong focusing effect and
depressing those with a weak focusing effect. We observed that reducing the delay time
by one-half of a wavelet cycle provided the best image focusing effect when the wavelet
length was not short enough for the imaging area in a near-surface situation. The method
was tested on multiple synthetic near-surface geological models and compared with DAS
beamforming, Kirchhoff migration, and reverse time migration. The results indicate that the
MVSS beamforming method has a high computational efficiency while maintaining a high
imaging quality, a high imaging resolution and a high contrast. The MVSS beamforming
method provides the superior suppression of artifacts caused by surface waves as well
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as other imaging artifacts or interferences caused by S-waves, surface waves, and white
noise. Meanwhile, we suggest that future works should focus on adapting inhomogeneous
velocity models into beamforming imaging.
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Appendix A. MVSS Beamforming Methodology

Appendix A.1. Signal Time Delay Calculation

The time delay τi of each receiver can be calculated by Equation (A1) in a 2D imaging
problem where c is the background velocity. By adding delayed signals together, the
amplitude at the target point can reveal whether the waves were reflected from the target
point. As shown in Figure A1, the waves produced by the shot source (xs, zs) arrive at
the scatter point

(
x f , z f

)
and are reflected; then, the reflected wave signals are received

by a receiver (xr, zr). Here, the time difference among the signals at different receivers is
caused by the position differences among the receivers and sources. The delay time of
each shot-receiver pair includes two parts: τn, the time from the source point (xs, zs) to the
target point

(
x f , z f

)
, and τm, the time from the target point

(
x f , z f

)
to the receiver (xr, zr):

τi = τs + τr =

√(
xs − x f

)2
+

(
zs − z f

)2

c
+

√(
xr − x f

)2
+

(
zr − z f

)2

c
(A1)

Figure A1. Time delay calculation.

Appendix A.2. Superposition with Weight Calculation

Superposition is a weighted averaging process that filters the receiver array signal in
the spatial domain. In this paper, instead of preset and constant weighting coefficients, the
adaptive weighting method was applied to obtain weights that cause different receivers to
have different influences on the imaging result.
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In signal superposition, we suppose that the number of receivers is M and that the
signal of the receiver array is x(t), which includes the signal from target point s(t) as well
as noise i(t) and interference v(t):

x(t) = s(t)a + i(t) + v(t) (A2)

where a is the direction vector of the beam and t is the time sequence of the signal. The
beamformer b(t) is defined as:

b(t) = wHy(t) =
M

∑
m=1

wm
∗xm(t − τm) (A3)

where w is the beamforming weight vector, H represents the conjugate transpose, and wm
∗

represents a conjugate matrix of wm.

y(t) = [x1(t − τ1) x2(t − τ2) . . . x3(t − τ3)] (A4)

is the signal of each receiver after a time delay. τm is the delay value of each receiver.
The signal is similar to a vertically incident plane wave at each receiver after time delay
processing. In this case, the direction vector a is a vector composed entirely of 1:

a = [1 1 . . . 1]T (A5)

where T represents matrix transposition. When w changes with the received signal to
improve the image quality, b(t) becomes an adaptive beamformer. The weight vector w
(Capon, 1969) [21] can be found from the maximum of the signal-to-interference-plus-noise
ratio (SINR) [33]:

SINR =
σ2

s
∣∣wHa

∣∣2
wH Ri+nw

(A6)

where σ2
s is the signal power, Ri+n(t) is the interference-plus-noise covariance, and a is

the direction vector in Equation (A5). The Maximizing Equation (A6) is equivalent to
minimizing the output interference-plus-noise power while maintaining a distortionless
response to the desired signal. In practice, the exact interference-plus-noise Ri+n(t) is
unavailable, so the sample covariance matrix R(t) is used in N receivers:

R(t) =
1
N

N

∑
n=0

y(t)yH(t) (A7)

Then, this issue can be equivalent to:

min
w

wH Rw , subject to wHa = 1 (A8)

By using the Lagrange multiplier method, the analytic formula is:

wMV =
R −1a

aH R−1a
(A9)

where wMV is the MV beamforming weight vector and a is a known vector according to
Equation (A5). The next step is to obtain the estimated covariance matrix R of the signal
data. The spatial smoothing method is used to obtain a good estimation. The receiver array
is divided into several overlapping subarrays, and the covariance matrix of these subarrays
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is averaged to obtain a robust covariance matrix estimation. This is also defined as spatial
smoothing processing [22]:

R̂(t) =
1

M − L + 1

M−L

∑
l=0

yl(t)yl
H(t) (A10)

where M is the total number of receivers and L is the length of the subarray. As shown in
Figure A2, there are M receivers in total, and they are divided into M − L + 1 subarrays.
Each of the subarrays is L receivers long. From left to right, subarray No. 1 to subarray
No. M − L + 1 covers all receivers.

Figure A2. Illustration of subarrays.

yl(t) is the delayed signal of No. l subarray:

yl(t) =

⎡⎢⎢⎢⎣
yl(t)

yl+1(t)
...

yl+L−1(t)

⎤⎥⎥⎥⎦ (A11)

The size of each subarray must satisfy L ≤ M/2 (Asl, 2009 [26]) to ensure that the
estimated covariance matrix is invertible (full rank). However, reducing L increases the
robustness but reduces the resolution, and setting L = 1 makes the beamformer a DAS
beamformer with uniform weights. Therefore, there is a trade-off between the robustness
and resolution. The critical value L = M/2 is taken to achieve the highest possible
imaging resolution.

Diagonal loading (DL) [34] is adopted to improve the robustness of the algorithm
by adding spatial white noise to the recorded wavefield and to adjust the weight calcula-
tion [25] using:

Rdl = R̂(t) + δ·trace
{

R̂(t)
}·I (A12)

to replace R̂(t), where δ represents the DL factor and I represents the identity matrix. The
DL factor should satisfy δ � 1/L. Then, we replace R in (8) with Rdl , and the weight of the
beamformer becomes:

wMV =
Rdl

−1a
aH Rdl

−1a
(A13)

The beamformer can be written as:

b(t) =
1

M − L + 1

M−L

∑
l=0

wH
MVyl(t) (A14)
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A weighting factor modified from the CF map is presented as:

CF(t) =

∣∣∣∑M−1
l=0 yl(t)

∣∣∣2
M ∑M−1

l=0 |yl(t)|2
(A15)

CF ranges from 0 to 1: when CF(t) = 1, it is a perfect focused point at time t, and
when CF(t) = 0, the signals of different receivers are not coherent. After multiplication by
the amplitude beamformer b(t), the final image of the Nth shot It(N) is obtained as:

It(N) = b(t)·CF(t) (A16)

Appendix A.3. Image Processing and Stacking

The result obtained by the beamformer is the imaging result in the time domain. We
estimated the depth of the reflection interface based on the background velocity and the
wave travel time, which is a conversion from time domain to depth domain. For each shot,
an image under a particular illumination angle is obtained. The final image is obtained by
stacking the amplitudes of each shot, where N is the total number of shots, Id is the final
image with all shots stacked together, and c is the estimated background velocity:

Id = c
Nmax

∑
N=1

It(N) (A17)

Appendix B. Near-Surface Model Generation Method

For an elastic wave numerical simulation, the model is established mainly to determine
the spatial distribution of the elastic parameters. It includes five parameters of the medium
involved: the P-wave velocity (vp), S-wave velocity (vs), density (ρ), Lame constant μ and
λ. The relation among these parameters can be given by:

νp =

√
λ + 2μ

ρ
, νs =

√
μ

ρ
(A18)

in which three of the five parameters must be chosen to determine the other two pa-
rameters. Here, we control vp, vs, and ρ and determine the Lame constant according to
these parameters.

Appendix B.1. Horizontal Layer Model

We start with a simple layered model with N layers and N − 1 interfaces. The P-wave
velocity map is used to describe the model. For each column in the area, the points are
filled with preset mediums using:

M(X, Y) = mu , yn < Y ≤ yn+1 , n = 0, 1, 2 . . . , N (A19)

where M(X, Y) is the elastic parameter of the point (X, Y), mk is the preset parameter of
medium u, yn and yn+1 are respectively the depth of the nth and (n + 1)th interface. The
three-layer (two-interface) model is shown in Figure A3.

Figure A3. Horizontal layered model.
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Appendix B.2. Fold

A Gaussian curve is used to form folds in the model because a Gaussian curve can
satisfactorily present folds when the PML layer and fault dislocation are cut (Figure A4).

yg(x) = ae−(x−b)2/2c2
(A20)

where a is the fold depth, b is the horizontal location of the fold and c is a parameter
controlling the width of the fold.

Figure A4. Gaussian curve used to control the fold shape.

The interfaces between the layers are often not totally smooth. The curve yg(x) is used
as a baseline to create fluctuations. The fluctuation y f is composed of random floating
values with 0 as the mean. Now, the interfaces yi between layers (Figure A5) can be
obtained by Equation (A20). Since the Gaussian curve and fluctuations are randomly
generated, the interfaces can be either parallel or nonparallel (Figure A5).

yi(x) = yn + yg(x) + y f (x) (A21)

Figure A5. Interface with fluctuations.

395



Appl. Sci. 2021, 11, 10827

Figure A6. Fold model (a) without and (b) with random fluctuations.

Appendix B.3. Fault

The fault is determined by the fault line and dislocation distance. The fault line
controls the position and inclination angle of the fault. The dislocation distance controls
the amount of fault displacement. We select a point (x0, y0) in the area as the reference
point and use a point-slope linear equation with a slope of k.

Y − y0

X − x0
= k (A22)

When the horizontal displacement Δx is determined, the fault can be generated as:

M(X, Y) = M(X + Δx, Y + kΔx), X < (Y − y0)/k + x0, (X, Y) ∈ Ω (A23)

Equation (A23) shows that the points on the left side of the fault line move along
the fault line by Δx in the horizontal direction and kΔx in the vertical direction. Fault
generation is also a random procedure. To ensure the stability of random processing and
the existence of sufficient space for the PML boundary after the fault slips, a 10 m-thick
layer is added around the model. As shown in Figure A7, blue represents the model area,
orange shows the PML boundary, red indicates the layer reserved for fault dislocation, and
light blue shows the simulation area after fault generation.

Figure A7. Fault generation illustration. (a) Model before fault displacement with the fault line and
reference point. (b) Generated fault model.

Appendix B.4. Cave

Caves filled with low-velocity materials (mc) are added into the model as anomalies
by simply controlling the cave center location (xc, yc) and radius rc:

M(X, Y) = mc, (X − xc)
2 + (Y − yc)

2 ≤ rc
2 , (X, Y) ∈ Ω (A24)
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Now, we can obtain a model with horizontal parallel layers, folds, random fluctuations,
faults, and caves incorporated (Figure A8).

Figure A8. Model with folds, random fluctuations, faults, and caves.

References

1. Li, L.; Lei, T.; Li, S.; Zhang, Q.; Xu, Z.; Shi, S.; Zhou, Z. Risk assessment of water inrush in karst tunnels and software development.
Arab. J. Geosci. 2014, 8, 1843–1854. [CrossRef]

2. Xue, Y.; Li, S.; Ding, W.; Fang, C. Risk Evaluation System for the Impacts of a Concealed Karst Cave on Tunnel Construction. Mod.
Tunn. Technol. 2017, 54, 41–47.

3. Lei, M.; Gao, Y.; Jiang, X. Current Status and Strategic Planning of Sinkhole Collapses in China. In Engineering Geology for Society
and Territory; Springer: Berlin/Heidelberg, Germany, 2015; Volume 5, pp. 529–533.

4. Gutiérrez, F.; Parise, M.; de Waele, J.; Jourde, H. A review on natural and human-induced geohazards and impacts in karst. Earth
Sci. Rev. 2014, 138, 61–88. [CrossRef]

5. Li, X.; Dou, S.E.; Qu, H. A View on Application and Development of Engineering Geophysical Prospecting and Testing in City.
Chin. J. Eng. Geophys. 2008, 05, 564–573.

6. Bakulin, A.; Silvestrov, I.; Dmitriev, M.; Neklyudov, D.; Protasov, M.; Gadylshin, K.; Dolgov, V. Nonlinear Beamforming for
Enhancement of 3D Prestack Land Seismic Data. Geophysics 2020, 85, 283–296. [CrossRef]

7. Zhang, J.; Liu, S.; Yang, C.; Liu, X.; Wang, B. Detection of urban underground cavities using seismic scattered waves: A case study
along the Xuzhou Metro Line 1 in China. Near Surf. Geophys. 2020, 19, 95–107. [CrossRef]

8. Bednar, J.B. A brief history of seismic migration. Geophysics 2005, 70, 3MJ–20MJ. [CrossRef]
9. Baysal, E.; Kosloff, D.D.; Sherwood, J.W.C. Reverse time migration. Geophysics 1983, 48, 1514–1524. [CrossRef]
10. Xue, Z.G.; Chen, Y.K.; Fomel, S.; Sun, J.Z. Seismic imaging of incomplete data and simultaneous-source data using least-squares

reverse time migration with shaping regularization. Geophysics 2016, 81, S11–S20. [CrossRef]
11. Hill, N.R. Gaussian-Beam Migration. Geophysics 1990, 55, 1416–1428. [CrossRef]
12. Hill, N.R. Prestack Gaussian-beam depth migration. Geophysics 2001, 66, 1240–1250. [CrossRef]
13. Yang, F.; Sun, H. Application of Gaussian beam migration to VSP imaging. Acta Geophys. 2019, 67, 1579–1586. [CrossRef]
14. Vidale, J. Finite-difference calculation of travel times. Bull. Seismol. Soc. Am. 1988, 78, 2062–2076.
15. Zhang, K.; Cheng, J.B.; Ma, Z.T.; Zhang, W. Pre-stack time migration and velocity analysis methods with common scatter-point

gathers. J. Geophys. Eng. 2006, 3, 283–289. [CrossRef]
16. Yuan, Y.; Gao, Y.; Bai, L.; Liu, Z. Prestack Kirchhoff time migration of 3D coal seismic data from mining zones. Geophys. Prospect.

2011, 59, 455–463. [CrossRef]
17. Wang, Y.; Xu, J.; Xie, S.; Zhang, L.; Du, X.; Chang, X. Seismic imaging of subsurface structure using tomographic migration

velocity analysis: A case study of South China Sea data. Mar. Geophys. Res. 2015, 36, 127–137. [CrossRef]
18. Liu, Q.; Zhang, J. Trace-imposed stretch correction in Kirchhoff prestack time migration. Geophys. Prospect. 2018, 66, 1643–1652.

[CrossRef]
19. Havlice, J.F.; Taenzer, J.C. Medical ultrasonic imaging: An overview of principles and instrumentation. Proc. IEEE 1979, 67,

620–641. [CrossRef]
20. Kollmann, C. Diagnostic Ultrasound Imaging: Inside Out (Second Edition). Ultrasound Med. Biol. 2015, 41, 622. [CrossRef]
21. Capon, J. High-resolution frequency-wavenumber spectrum analysis. Proc. IEEE 1969, 57, 1408–1418. [CrossRef]
22. Tie-Jun, S.; Kailath, T. Adaptive beamforming for coherent signals and interference. IEEE Trans. Acoust. Speech Signal Process.

1985, 33, 527–536. [CrossRef]
23. Mann, J.A.; Walker, W.F. A constrained adaptive beamformer for medical ultrasound: Initial results. In Proceedings of the IEEE

International Ultrasonic Symposium, Munich, Germany, 8–11 October 2002; pp. 1807–1810.
24. Sasso, M.; Cohen-Bacrie, C. Medical ultrasound imaging using the fully adaptive beamformer. In Proceedings of the IEEE

International Conference on Acoustics, Speech, and Signal, Philadelphia, PA, USA, 18–23 March 2005.

397



Appl. Sci. 2021, 11, 10827

25. Synnevag, J.F.; Austeng, A.; Holm, S. Adaptive Beamforming Applied to Medical Ultrasound Imaging. IEEE Trans. Ultrason.
Ferroelectr. Freq. Control. 2007, 54, 1606–1613. [CrossRef]

26. Asl, B.M.; Mahloojifar, A. Minimum Variance Beamforming Combined with Adaptive Coherence Weighting Applied to Medical
Ultrasound Imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2009, 56, 1923–1931. [CrossRef]

27. Ma, X.; Peng, C.; Yuan, J.; Cheng, Q.; Xu, G.; Wang, X.; Carson, P.L. Multiple Delay and Sum with Enveloping Beamforming
Algorithm for Photoacoustic Imaging. IEEE Trans. Med. Imag. 2020, 39, 1812–1821. [CrossRef] [PubMed]

28. Chen, J.; Chen, J.; Zhuang, R.; Min, H. Multi-Operator Minimum Variance Adaptive Beamforming Algorithms Accelerated with
GPU. IEEE Trans. Med. Imag. 2020, 39, 2941–2953. [CrossRef]

29. Liu, L.; Shi, Z.; Peng, M.; Liu, C.; Tao, F.; Liu, C. Numerical modeling for karst cavity sonar detection beneath bored cast in situ
pile using 3D staggered grid finite difference method. Tunn. Undergr. Space Technol. 2018, 82, 50–65. [CrossRef]

30. Margrave, G.F.; Lamoureux, M.P. Numerical Methods of Exploration Seismology: With Algorithms in MATLAB®; Cambridge University
Press: Cambridge, UK, 2019.

31. Graves, R.W. Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences. Bull. Ssmol. Soc.
Am. 1996, 86, 1091–1106.

32. Wang, D.-Y.; Ling, Y. Phase-shift- and phase-filtering-based surface-wave suppression method. Appl. Geophys. 2016, 13, 614–620.
[CrossRef]

33. Hudson, J.E. Introduction to Adaptive Arrays. Electron. Power 1981, 27, 491. [CrossRef]
34. Ning, M.; Goh, J.T. Efficient method to determine diagonal loading value. In Proceedings of the 2003 IEEE International

Conference on Acoustics, Speech, and Signal Processing, Hong Kong, China, 6–10 April 2003.

398



MDPI
St. Alban-Anlage 66

4052 Basel
Switzerland

www.mdpi.com

Applied Sciences Editorial Office
E-mail: applsci@mdpi.com

www.mdpi.com/journal/applsci

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are

solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s).

MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from

any ideas, methods, instructions or products referred to in the content.





Academic Open 

Access Publishing

mdpi.com ISBN 978-3-0365-9789-8


