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The rapid development of intelligence and automated technologies has provided
new management opportunities for agricultural production. In particular, the progress
of remote sensing equipment has allowed for vast improvements in the spatial, temporal,
and spectral resolutions of optical sensors. Such sensors are key in current agricultural
production management practices, with applications in areas that were previously explored
using field observations, including the monitoring of plant health, growth conditions, and
pest infestations.

The papers published in this Special Issue, “Novel Applications of Optical Sensors
and Machine Learning in Agricultural Monitoring”, present some of the most current
and novel results of scholars’ investigations on the applications of optical sensors and
machine learning in the field of agriculture. Table 1 summarizes the 16 peer-reviewed
articles included in this Special Issue. We found the guest editing for this exercise to be
very inspiring, with contents including:

(1) The application of machine learning techniques to examine the key physiological
development and production variables of crops.

(2) The use of datasets obtained from multiple sources and sensors to enhance crop
mapping.

(3) Advanced target recognition algorithm techniques for weed and disease identification.

The optical sensors used in the presented research include a digital RGB camera,
spectrometers, a 3D TOF sensor, a multispectral imaging sensor, and a satellite-based
multispectral sensor. The machine learning methods include conventional machine learning
techniques such as KNN, RF, SVM, and ANN, and deep learning techniques such as LSTM,
VGG, YOLO, and SSD.

The contributions to this Special Issue are summarized in the following.
Wang et al. [1] employed LAI as the input to four machine learning models (RF, SVR,

PLSR, and XGBOOST) and one deep learning model (LSTM) for winter wheat production
estimates in Henan Province, China, during 2016. The results indicated that the LSTM
performed better than the four traditional machine learning models, exhibiting the optimal
R2 and RMSE values. Kumar et al. [9] investigated the canopy cover of sugarcane and its
relationship with dry matter and yield, and analyzed the relationship between (a) canopy
temperature, chlorophyll fluorescence, SPAD index, and (b) yield. Luo et al. [13] fused
vegetation indices determined using a UAV with brightness, greenness, and moisture
indices estimated using tasseled cap transformation (TCT). The proposed approach was

Agriculture 2023, 13, 1970. https://doi.org/10.3390/agriculture13101970 https://www.mdpi.com/journal/agriculture
1



Agriculture 2023, 13, 1970

observed to enhance the accuracy of rice yield predictions and was able to avoid the
saturation phenomenon.

Table 1. Summary of publications featured in this Special Issue.

Article
Agricultural

Activities/Variables
Optical Sensors Platforms Machine Learning Methods

[1] Winter wheat yield
prediction MODIS Satellite LSTM, RF, SVR, PLSR, and XGBoost

[2] Land use/cover
classification Sentinel-2 MSI Satellite RF

[3] Wheat fusarium
head blight

Multispectral
imaging sensor UAV KNN, SVM, XGBoost

[4] Cropland spatial
distribution Landsat 8 OLI Satellite Blanket covering method

[5] Soybean FVC, LCC,
and maturity SONY DSC-QX100 UAV RF, PLSR, GPR, MSR

[6] Apple leaf diseases Canon Rebel T5i DSLR Field BTC-YOLOv5s, YOLOv5, SSD, R-CNN, Faster
R-CNN, YOLOv4-tiny, and YOLOx, YOLOx-s

[7] Crop classification Sentinel-2 Satellite 1D-CNNs, LSTM, 2D-CNNs, 3D-CNNs, and
ConvLSTM2D

[8] Dairy herd fatness 3D TOF sensor Field BCS

[9] Sugarcane dry matter
and cane yield Mobile phone camera Field Two-Way cluster

[10] Peanut southern
blight severity

ASD Field Spec3
VNIR-SWIR sensor Field SVM, DT, and KNN

[11] Corn diseases digital camera Field VGNet, VGG16

[12] Soil moisture content ASD Field Spec3
VNIR-SWIR sensor Field PCA, PCR, PLSR, and BP-ANN

[13] Rice yield Mini-MCA 1000 UAV TCT

[14] Weed detection in
peanut fields Fuji Finepixs4500 Field

YOLOv4-Tiny, YOLOv5s, Swin-Transformer,
Faster-RCNN, YOLOv6-Tiny, and

EM-YOLOv4-Tiny

[15]
Vegetation canopy
reflectance angle

normalization
GOCI Satellite SANM

[16] Soybean maturity SONY DSC-QX100 UAV SVM, RF, InceptionResNetV2, MobileNetV2,
Alexnet, ResNet50, and DS-SoybeanNet

Note: UAV, unmanned aerial vehicle; RF, random forest; TCT, tasseled cap transformation; SANM, synthetic angle
normalization model; PCA, principal component analysis; LSTM, long short-term memory; SVR, support vector
regression; PLSR, partial least squares regression; XGBoost, eXtreme gradient boosting; DT, decision tree; KNN,
K-nearest neighbor; SVM, support vector machine; GPR, Gaussian process regression; MSR, stepwise multiple
linear regression; YOLO, you only look once; SSD, single shot multi-box detector; CNN, convolutional neural
network; R-CNN, regions-convolutional neural network; BCS, body condition scoring; PCA, principal component
analysis; and BP-ANN, back propagation-artificial neural network.

In order to enhance the estimation accuracy of LULC models, Ibrahim [2] performed
RF-based feature selection using data obtained from Sentinel-1, -2, and the Shuttle Radar
Topographic Mission. The author revealed that integrating optical, radar, and elevation
information is key to increasing the precision of LULC models for agriculturally dominated
landscapes. Wang et al. [4] developed an information extraction method for the accurate
determination of the spatial distribution of crops by integrating spatiotemporal image
information using a fractal model. The authors demonstrated the ability of their approach
to determine key cropland variables for the effective monitoring, conservation, and de-
velopment of black soil. Li et al. [7] developed a 3D-CNN and ConvLSTM2D method
for the classification of crops across time. Five deep learning models were tested, namely
1D-CNNs, LSTM, 2D-CNNs, 3D-CNNs, and ConvLSTM2D. 3D-CNN and ConvLSTM2D,
which combine temporal, spectral, and spatial information, outperformed the other models
in terms of crop classification using time series images.
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Gao et al. [3] developed an approach based on UAV and multispectral imagery that
integrated the spectral and textural features of images to examine wheat fusarium head
blight (FHB) and estimate several Vis and Tis. The VIs, TIs, and combined VIs and TIs were
adopted as the inputs to KNN, PSO-SVM, and XGBoost to develop wheat FHB monitoring
models. The proposed approach was revealed to have potential for fast and nonintrusive
observations of wheat FHB. Guo et al. [10] proposed the Peanut Southern Blight Severity
method by combining hyperspectral data, continuous wavelet transform, and machine
learning. The machine learning methods SVM, DT, and KNN were tested and compared.
Fan et al. [11] developed a VGNet with the backbone set as VGG16, with the ability to
improve the recognition of corn with poor health in fields. In particular, there was a 3.5%
enhancement in the accuracy of the proposed VGNet compared to its predecessor VGG16.

Hu et al. [5] developed a soybean maturity recognition approach that combined UAV-
based LCC and FVC maps with an anomaly detection method, exhibiting total monitoring
accuracies greater than 98%. Zhang et al. [16] designed the novel CNN DS-SoybeanNet to
enhance UAV-based soybean maturity observations, with the ability to extract and employ
shallow and deep image features. The authors compared it with the widely used Alexnet,
InceptionResNetV2, MobileNetV2, ResNet50, SVM, and RF, revealing the high accuracy of
DS-SoybeanNet in soybean maturity classification.

Yurochka et al. [8] developed an approach for the automatic evaluation of dairy herd
fatness using a 3D TOF sensor and the body condition score (BCS). The proposed approach
was able to perform nonintrusive BCS evaluations of dairy herds throughout the lifetime of
the herd while meeting the requirements of the farm. The overall accuracy of the system
was estimated at 93.4%.

Jiang et al. [12] proposed an SMC estimation approach for mixed soil types based on
PCA and machine learning, with hyperspectral data as the input. The R2 and RMSE of the
optimal model were determined as 0.932 and <2%, respectively. This approach proved to
be valuable in extracting data on farm entropy prior to the sowing of crops on agricultural
land, and provides a basis for the use of hyperspectral imagery to calculate SMC.

Geostationary satellites are able to extract information on the daily variations in crop
canopy reflectance based on high-temporal-resolution imagery. Lin et al. [15] proposed the
synthetic angle normalization model (SANM), which uses vegetation canopy reflectance
as its input. The SANM makes use of the advantages of GSS imaging and is able to
quantitatively compare spatiotemporal remote sensing data.

Advanced target recognition algorithm techniques, such as YOLO-, Swin-Transformer-
, and Faster-RCNN-based models, have also been developed to identify weeds and diseases
for farmland management.

For example, Zhang et al. [14] introduced EM-YOLOv4-Tiny to identify weeds and
compared it with six other weed recognition deep learning models, namely YOLOv4-Tiny,
YOLOv4, YOLOv5s, Swin-Transformer, and Faster-RCNN. The proposed approach was
observed to outperform the majority of the models, with an mAP of 94.54%.

Li et al. [6] developed BTC-YOLOv5s based on YOLOv5s for the detection of apple leaf
disease. In particular, the inclusion of the transformer and convolutional block attention
modules decreased the background noise.

Intelligent agriculture can achieve information perception, quantitative decision-
making, and intelligent control throughout agricultural production by integrating infor-
mation technologies such as the Internet of Things, big data, artificial intelligence, and
intelligent equipment with agriculture. Therefore, interdisciplinary cooperation is nec-
essary for deepening the application of deep learning in intelligent agriculture. These
collaborations include expert-assisted data annotation, machine learning methods, the
design of agricultural-specific sensors, intelligent drones, intelligent robots, and more.
Optical sensors and deep learning are fundamental in data collection, information per-
ception, and decision analyses. Research on their combinations is crucial for promoting
the development of intelligent agriculture. Therefore, we hope this work can attract the
attention of the agricultural, electronic, and computer communities and promote more

3
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research on optical sensors and machine learning. The research published in this Special
Issue focus on a variety of machine learning methods, optical sensors, and platforms for
agricultural monitoring. The novel results and progress made by the papers will hopefully
stimulate further research in these areas.

Funding: This study was supported by the Henan Province Science and Technology Research Project
(232102111123) and the National Natural Science Foundation of China (grant number 42101362).

Institutional Review Board Statement: Not applicable.

Data Availability Statement: No new data were created or analyzed in this study.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: The automatic recognition of crop diseases based on visual perception algorithms is one of
the important research directions in the current prevention and control of crop diseases. However,
there are two issues to be addressed in corn disease identification: (1) A lack of multicategory corn dis-
ease image datasets that can be used for disease recognition model training. (2) The existing methods
for identifying corn diseases have difficulty satisfying the dual requirements of disease recognition
speed and accuracy in actual corn planting scenarios. Therefore, a corn diseases recognition system
based on pretrained VGG16 is investigated and devised, termed as VGNet, which consists of batch
normalization (BN), global average pooling (GAP) and L2 normalization. The performance of the
proposed method is improved by using transfer learning for the task of corn disease classification.
Experiment results show that the Adam optimizer is more suitable for crop disease recognition
than the stochastic gradient descent (SGD) algorithm. When the learning rate is 0.001, the model
performance reaches a highest accuracy of 98.3% and a lowest loss of 0.035. After data augmentation,
the precision of nine corn diseases is between 98.1% and 100%, and the recall value ranges from 98.6%
to 100%. What is more, the designed lightweight VGNet only occupies 79.5 MB of space, and the
testing time for 230 images is 75.21 s, which demonstrates better transferability and accuracy in crop
disease image recognition.

Keywords: VGNet; corn diseases; leaf detection; lightweight; transfer learning; agriculture

1. Introduction

Crop diseases can cause irreversible damage to crop growth and are considered one of
the main limiting factors for crop cultivation, and spraying pesticides is the main measure
to address crop diseases. Appropriate pesticide category selection and dosage regulation
can ensure effective crop disease resolution and avoid pesticide residues’ ecological impact.
Therefore, accurately identifying the types and degrees of crop diseases is a prerequisite
for achieving precise agricultural spraying [1–8]. In traditional methods, professionals
mainly detect and identify crop diseases based on their naked eyes and experience, but
it is time-consuming, laborious, and subjective. With the development of deep learning
(DL) and visual perception technology, visual feature learning methods based on deep
learning have become the mainstream of crop disease recognition, which realizes automatic
recognition of crop diseases by extracting and learning the pest and disease features of crop
images [9,10].

Deep learning is a branch of machine learning that mainly utilizes deep artificial neural
networks to extract multilayer visual features and fuse multigranularity features of input
images, thereby achieving high-level semantic learning of images [11]. Unlike traditional
machine learning methods, deep learning methods require significant computational re-
sources, because deep artificial neural network models optimize model parameters through
a large number of parameter calculations in the high-level semantic learning of images.

Agriculture 2023, 13, 1606. https://doi.org/10.3390/agriculture13081606 https://www.mdpi.com/journal/agriculture
5



Agriculture 2023, 13, 1606

With the rapid development of high-performance computing and image processing units,
deep learning methods have been successfully applied in various fields, which has turned
out to be very excellent in discovering intricate structures in high-dimensional data and is
therefore applicable to many domains of science, engineering [12–14], industries[15–17],
bioinformatics [18–20], and agriculture [21–26]. Concretely, deep learning has provided
many significant works in the field of plant stress phenotyping and image analysis for
detection [27–30], recognition [31–34], classification [35–38], quantification [39], and pre-
diction [40] in agriculture to tackle the challenges of agricultural production [41]. And the
convolutional neural network (CNN)-based approaches are arguably the most commonly
used [42].

Ferentinos developed a plant diseases detection model with a best performance of 99.5%
using 87,848 images under controlled conditions [43]. Liang et al. designed a deep plant
diseases diagnosis and severity estimation network (PD2-SE-Net) model to identify plant
species, diseases, and their severities with a final accuracy of 99% [44]. They utilized the
artificial intelligence (AI) Challenger [45] images for experiment data. The approach they
proposed reached an accuracy of 99.4%. Zhong et al. proposed an apple diseases classification
method based on dense networks with 121 layers (DenseNet-121) and 2462 apple leaf images
from AI Challenger, which achieved an accuracy of 93.71% [46]. He et al. proposed an
approach to detect oilseed rape pests based on SSD with an Inception module, which was
helpful for integrated pest management [47]. Zeng et al. introduced a self-attention mechanism
to a convolutional neural network, and the accuracy of the proposed model reached 98%
using 9244 diseased cucumber images [48].

Deep convolutional neural networks have a strong ability for feature learning and
expression. The above crop disease recognition methods based on CNNs have achieved
good accuracies or success rates. However, the accuracy and robustness of deep learning
models require training on a large amount of image data. There are two issues that need
to be addressed in crop disease identification. On the one hand, there is a lack of diverse
maize disease training datasets, as most of the crop disease images used in the existing
methods are created under controlled or laboratory conditions. On the other hand, the
complexity of existing corp disease models is high, making it difficult to meet the actual
detection needs of field scenarios, and their performance in identifying fine-grained corn
diseases is insufficient. Therefore, we introduced transfer learning and designed VGNet
to solve the above problems. Specifically, we first collected corn disease image data from
real field scenarios, covering nine types of corn diseases, which can be used for parameter
optimization of fine-grained corn disease recognition models. Afterwards, we designed
a relatively simple VGNet model based on the VGG16 model but with relatively high
accuracy in identifying crop diseases, which can meet the disease detection needs of actual
corn planting scenarios.

The reason why the VGG16 model is selected as the backbone network is that the VGG
network is a straight cylinder network structure, and its computing resource consumption
is significantly less than the residual network structure, which can satisfy the dual needs of
speed and accuracy in real-time crop disease detection. In the VGNet method, the structure
of VGG16 is modified by adding the BN, replacing two hidden fully connected layers
with a GAP layer, and adding L2 normalization. Through the comparative experiment
of different training methods, parameters, and datasets, the redesigned VGNet after fine-
tuning achieves an accuracy of 98.3%, which can achieve a 66.8% reduction in testing time
compared with the original VGG16 model. The following summary provides the main
contributions of this paper:

• A lightweight intelligent learning method, termed as VGNet, is proposed for multiple
categories of corn disease detection.

• Fine-grained corn disease images are collected and can be used for the parameter
optimization of corn disease recognition models.

• Evaluation results show that the accuracy of the proposed method in disease detection
reaches 98.3%, which can satisfy the detection requirements of practical scenarios.
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The remainder of this paper is organized as follows. Section 2 describes the materials
and methods. The experiment results of VGNet are detailed in Section 3. In Section 4,
the discussion of VGNet for fine-grained corn disease recognition is given. Finally, the
conclusions are drawn in Section 5. Further research directions are also proposed.

2. Materials and Methods

2.1. Image Samples
2.1.1. Images for Pretraining

In the field of crop disease recognition, many crop disease datasets have appeared,
among which the most commonly used ones are PlantVillage [49] and AI Challenger
datasets. PlantVillage contains open and free datasets with 54,306 annotated images and
26 diseases for 14 crop plants, and it was created by Mohanty et al. under controlled condi-
tions [50]. AI Challenger is provided by the Shanghai Science and Technology Innovation
Center as a new guest competition crop leaf image datasets, with 45,285 marked images,
containing 10 kinds of plants (apple, cherry, grape, orange, peach, strawberry, tomatoes,
peppers, corn, and potato), 27 kinds of diseases, and a total 61 categories. Both of these
datasets are open-source image datasets containing healthy plant leaves and diseased
leaves and have great similarity with the target disease image dataset in this research area.
ImageNet dataset [51] contains a large number of images from all aspects of life, and the
initial training of VGG16 was obtained through the ImageNet dataset, which has achieved
excellent results. These three different large open datasets were used for pretraining the
selected CNN structure. The properties of the three pretrained experimented datasets are
shown in Table 1.

Table 1. Properties of the pretrained experimented datasets.

Dataset Classes Samples Features Type Image Type

ImageNet 1000 14,197,122 coarse-grained RGB
PlantVillage 38 54,306 fine-grained RGB

AI Challenger 61 45,285 fine-grained RGB

2.1.2. Images for Parameter Optimization

In this experiment, the images used for recognition and fine-tuning training were
composed of symptom pictures of nine corn diseases caused by fungus. They were An-
thracnose (ANTH), Tropical Rust (TR), Southern Corn Rust (SCR), Common Rust (CR),
Southern Leaf Blight (SLB), Phaeosphaeria Leaf Blight (PHLB), Diplodia Leaf Streak (DLS),
Physoderma Brown Spot (PHBS), and Northern Leaf Blight (NLB) of corn. The images
were captured using a digital camera (Nikon D750) under natural field conditions at the
Western Corn Farm of Urumqi, Xinjiang, China. In order to make the collected images be
more representative, symptom images were obtained, respectively, in sunny, cloudy, and
windy weather conditions from different times in the morning, noon, and evening with
multiangle shooting. The shooting background was complicated, containing corn stalks,
soil, weeds, and blades covering each other, etc., to reflect the practical growth situation of
corn. There is a total of 1150 images obtained in a 3096 × 3096 pixel spatial resolution. The
sample numbers of various diseases are kept balanced relatively. The quantity distribution
of corn disease images is shown in Figure 1. Some image examples are shown in Figure 2.
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Figure 1. The quantity distribution of maize disease images with complex background.

Figure 2. Some examples of corn disease images with complicated backgrounds from a field:
(a) Northern leaf blight. (b) Common rust. (c) Anthracnose. (d) Diplodia leaf streak. (e) Phaeosphaeria
spot. (f) Physoderma brown spot. (g) Sourthern corn rust. (h) Sourthern corn leaf blight. (i) Tropi-
cal rust.

2.1.3. Data Preprocessing

Data preprocessing includes annotation, cropping, or zooming. Firstly, the CNN
model needs supervised training and learning; so, it is necessary to manually annotate the
disease images acquired in the field. After the images were confirmed by corn pathologists,
the LabelMe tool was used for annotation, and the annotated images were saved as PASCAL
VOC2007 format. Secondly, because the images from the corn field and public dataset
websites have different resolution and sizes, the size of each image is uniformly cropped
and resized to (224, 224, 3) channels.

2.2. Backbone Network
2.2.1. CNN and VGG16 Network

The CNN is one of the classical network algorithms of deep learning. A CNN consists
of input layers, convolutional layer, activation function, pooling layers (sampling layer),
fully connected layers, and classification layers. Several baseline architectures of CNN
have been developed for image recognition, including AlexNet, GoogLeNet, VGGNet,
XceptionNet, and ResNet et al. [52]. VGG Net was first devised by Simonyan and Zisserman
(2015) for the ILSVRC-2014 challenge. It has been proven to have excellent performance
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for image classification. The most significant superiority of VGG Net is the utilization of a
smaller convolution kernel and pooling window in the feature extractor, which can extract
fine-grained features from the input data. Figure 3 shows the basic structure diagram of
VGG16. VGG16 contains thirteen convolutional layers and three fully connected layers
with 4096, 4096, and 1000 dimensions, respectively. There are five maximum pooling
layers between the convolutional layers. During training, the input to VGG16 is a fixed
(224, 224, 3)-channel RGB image. Large receptive fields in VGG16 were substituted with
consecutive layers of 3 × 3 convolution filters. The convolutional stride was fixed to 1 pixel.
The padding of the convolution layer input was maintained as 1 pixel and max-pooling
was performed with a stride of 2 over a 2 × 2 pixel pooling window. The neuron activation
function used in VGG16 is the rectified linear unit (ReLU) function.

Figure 3. Structure diagram of original VGG16 convolutional neural network.

2.2.2. Proposed Approach and Processes

Figure 4 describes the main process of the VGNet with transfer learning for corn
disease recognition. The whole recognition process includes three parts. Part one is the
pretraining and parameters transfer process of original VGG16 using three different large
datasets, the aim of transfer learning is to shift the general knowledge of image classification
acquired by VGG16 from a large image dataset to the new corn leaf disease recognition
model. Part two is the establishment of VGNet, the remaining part is fine-tuning the
updated VGNet with a new image dataset. After acquiring the new images, they were
preprocessed and divided into training set and test set. The modification of the VGG16
network included adding a batch normalization layer to speed up fine-tuning training,
replacing the two hidden dense layers by a global average pooling layer to reduce feature
dimension, and integrating the L2 regularization algorithm to improve the ability of the
model to extract effective features from complex backgrounds. The last layer of the VGG
Net was changed by a 9-tag softmax classifier instead of the original softmax classifier with
1000 tags. Three large open datasets were used to obtain the model parameters and feature
extraction abilities in the pretraining process, and different training tactics in the parameter
tuning were utilized to optimize the VGNet model. After pretraining, the convolutional
layers and pooling layers remained unchanged. Their parameters were loaded to the newly
designed VGG16 Net and then they were frozen. The VGNet was fine-tuned through the
iteration of loss function to reoptimize the parameters of the remaining fully connected
layer and softmax function. Finally, the test process was executed by the designed model.
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Figure 4. Flowchart of corn disease image recognition method based on transfer learning and VGNet.

2.3. VGNet

As described in Section 2.2.1, the original VGG16 network has 13 convolutional layers,
5 pooling layers, and 3 fully connected layers, and it has 138 million parameters and large
amounts of computation, leading to the consumption of both memory and time. The
model will easily fall into an overfitting state and lower convergence. Thus, we redesigned
VGNet to improve the accuracy and real-time performance of the VGG-based network.
Normalization strategies were also adopted, including adding batch normalization (BN)
processing and the L2 normalization algorithm. The number of our class labels in the
softmax layer of VGNet is 9.

2.3.1. Batch Normalization

For the convolutional neural network, the normalization of datasets is required in
the gradient descent process, which can prevent gradient explosion and accelerate the
convergence of the network. Thus, batch normalization (BN) processing was applied to
normalize the feature map of each sample after the convolutional layers. The mean (μ) and
variance (σ) of the total number of pixels in the feature graph were obtained firstly; then,
the normalization equation was utilized to calculate the sample normalization values, and
the optimal value search data are converted into the standard normal distribution. The BN
layer can effectively solve the problem of the data distribution changes in the middle layer
during the training process of the model. BN can also accelerate convergence, improve
accuracy, and reduce the overfitting phenomenon. The calculation equations of mean (μ)
and variance (σ) of the feature maps are described as Equations (1) and (2).

μ =
1
n

n

∑
i=1

xi. (1)

σ =
1
n

n

∑
i=1

(xi − μ)2. (2)

where xi represent the value of the ith pixel in the image sample. n represents the total
number of pixels in the sample. The normalization equation is shown in Formula (3).
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x̄ =
xi − μ√
σ2 + ε

. (3)

where x represents the normalized pixel value of the ith pixel of the sample. ε is a small
constant value greater than 0 to ensure that the denominator in Equation (3) is greater than
0. According to the batch normalization algorithm in the training process, the average
value and variance of the data estimated based on each batch will be used to replace
the actual average value and variance, and the data will be converted to the standard
normal distribution according to the estimated average value and variance. The data of the
standard normal distribution will be restored by constantly updating the values of xi and u
during the training process. And then they are output by the model.

2.3.2. Replacing Fully Connected Layers by GAP Layer

Although the original VGG16 network structure has 16 weight layers, there is a large
number of parameters in the fully connected layer, which leads to excessive computation
in the training and testing process. Thus, we decided to compress its weight matrix using
a global average pooling (GAP) layer after the last convolutional layer, which outputs a
series of feature maps with a depth the same as the number of classes in the classification
problems. A GAP layer could enhance the relationship between feature map and category.
It has been proven that GAP layers can replace fully connected layers in a conventional
structure and thus reduce the storage required by the large weight matrices of the fully
connected layers [53]. Performing GAP on a feature map involves computing the average
value of all the elements in the feature map.

The principle of GAP is to shrink the parameter space to avoid overfitting and enable
precise adjustment of the dropout ratio, which can be treated as the process of dimension
reduction in a feature matrix. As shown in Figure 5, the output feature maps from CI ,
which is the last convolutional layer, are downsampled into f mGAP, which has a size of
1 × 1 × size f m after global average pooling. In GAP, the weight matrices of f1, W can be
adjusted as Equation (4) as follows:

W ′ =
j∗size2

f m

∑
l=(j−1)size2

f m+1

Wi,j. (4)

where size f m is the size of the input feature map, i, j is the index of the output neurons
and input feature maps, and W ′ is the modified weight matrix. As shown in Figure 5,
the corresponding weights of each feature map are summed up, and each matrix in W is
modified and reduced to a column vector composed of 1 × 1 × depth of f mGAP. Thus, the
dimension reduction in the feature matrix is realized. Instead of adding fully connected
layers on top of the feature maps, we take the average of each feature map, and the resulting
vector is fed directly into the softmax layer. One advantage of the GAP layer over the
fully connected layers is that it is more native to the convolution structure by enforcing
correspondences between feature maps and categories. Another advantage is that there
is no parameter to optimize in the GAP layer, thus overfitting is avoided at this layer.
Furthermore, the GAP layer sums out the spatial information, thus it is more robust to
spatial translations of the input.
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Figure 5. Flowchart of matrix dimension reduction by GAP layer feature.

2.3.3. L2 Normalization

The idea of L2 normalization is to add the regularization term (penalty term) to the
loss function, which prevents the model from arbitrarily fitting the complex background
and other noise information in the training set by restricting the most weight value ω in the
model. Suppose the original loss function in the training process is J0(ω, b), the utilization
of L2 normalization is to optimize J0(ω, b) + cλR(ω), and R(ω) is the regularization term
or penalty term, which describes the complexity of the model. Relative equations above
are illustrated in Equations (5)–(7).

J0(ω, b) =
1
m

m

∑
i=1

L(y′(i), y(i)). (5)

R(ω) = ‖W‖2 =
l

∑
j=1

ω2
j . (6)

J(ω, b) =
1
m

m

∑
i=1

L(y′(i), y(i)) +
λ

2m

l

∑
j=1

ω2
j . (7)

where, J0(ω, b) is the original loss function; ω is the weight in the neuronal transmission
process; relatively, ωj stands for the weight of the jth neuron and b represents the bias of
neuronal transmission process; m represents the size of the sample dataset; y′(i) represents
the actual output value; y(i) represents the expected output of a neuron; l is the number of
dense; k is the number of neurons; J0(ω, b) represents the new updated loss function; and λ
is the parameter of L2 normalization. From Equation (9), it can be seen that the realization
of L2 normalization is adding the sum of squares of the weight coefficients to the original
loss function. In this experiment, the λ parameter was set to 0.12.

2.4. Transfer Learning and Fine-Tuning

In the field of deep learning, it is often necessary to train the model with a large
number of datasets. However, in practical application, it is often difficult to obtain a large-
scale dataset in the target field. Therefore, the idea of transfer learning can be adopted,
and the image classification and recognition ability acquired by the deep convolutional
neural network model trained on a large dataset after full training can be used to transfer
the useful knowledge from the source domain to the new target domain. This makes
the utility and inference scope from learned models much wider than an isolated model
specific to individual plant species. Transfer learning also enables rapid progress and
improved performance in modeling subsequent tasks by fine-tuning training. The most
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commonly used transfer learning approach is parameter-based transfer learning, which
uses a model but, after fine-tuning, the partial parameters are based on the new dataset.
This process is often referred to as domain adaption. Thus, in the experiment, VGG16
was pretrained, and the parameters of the convolutional layers and pooling layers were
transferred to the newly designed VGNet. The internal weights of the newly designed
model are automatically updated by fine-tuning training. To obtain a preferable model for
this research, external factors containing training methods, regularization techniques, and
the value of the hyperparameters are considered in the fine-tuning process.

2.4.1. Parameter Fine-Tuning

In deep learning networks, making each network parameter learn automatically and
effectively with the input of training data is the key procedure to let the network training
converge towards the required direction. The learning rate defines the learning progress of
the proposed model and updates the weight parameters to reduce the loss function of the
network. Thus, learning rate is an important parameter in the training algorithm. Some
optimization strategies for network training parameters have been put forward [54], such
as SGD, AdaGrad, AdaDelta, RMSProp, Adam [55], etc. The SGD and Adam optimizer
are the most commonly used in image classification applications. In this experiment, we
compared performance with the fine-tuning training algorithm involving the SGD and
Adam optimizer to obtain better performance of the VGNet model.

2.4.2. Experimental Environment

All of the experiments were performed on Windows 7 (64-bit) operation system. The
RAM of the computer is 16 GB, with Intel(R) Xeon(R) CPU E5-2630 v4 @2.20GHz CPU. The
program platform was Anaconda 3.5.0, CUDA 8.0. CuDNN was the library for CUDA,
developed by NVIDIA, which provided highly tuned implementations of primitives for
deep neural networks. Python 3.5.6 was applied based on TensorFlow environment. The
image dataset of the fine-tuning process was divided into two parts: 80% of image data were
for training and the remaining 20% were for testing. Table 2 presents the hyperparameters
of the fine-tuning training process of VGNet.

Table 2. Specification of hyperparameters in the experiment.

Parameters Setting Values

Initial learning rate (SGD, Adam) 0.001, 0.005, 0.01
Momentum (SGD) 0.9

Small constant τ (Adam) 10−8

Weight decay (SGD, Adam) 0.00005
L2 normalization parameter λ 0.12

Iteration 5000

2.5. Evaluation of Proposed Method

The performances are graphically depicted for each model with accuracy and loss.
An overall loss score and accuracy based on the test dataset are computed and used to
determine the performance of the models. The accuracy is calculated on the testing dataset
in a regular interval with validation frequency of 25 iterations, and it is given as Equation (8).

Acc =
Predicted samples
Disease samples

. (8)

Meanwhile, categorical cross-entropy is used as the loss function, which has softmax
activations in the output layer, which is illustrated as Equation (9)

Loss =
N

∑
i=1

K

∑
j=1

tij ln yij. (9)
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where N represents the number of corn disease images, K is the number of diseases classes,
tij indicates that the ith disease image belongs to the jth disease class, and yij stands for the
output for sample i for disease class j. To evaluate the results of the disease recognition
and classification experiment in the confusion matrix intuitively, Pre (Precision) and Rec
(Recall) are calculated after testing the samples. They are used to measure how accurately
the results for each category are with respect to the corresponding ground-truth data. A
comprehensive evaluation index, the F1 score, is used as the evaluation value of Pre and
Rec. Equations for Pre, Rec, and F1 score are as follows in Equations (10)–(12).

Pre =
TP

TP + FP
. (10)

Rec =
TP

TP + FN
. (11)

F1 =
2PreRec

Pre + Rec
. (12)

where, the TP (true positive) is the amount of positive data that are correctly predicted
as positive. The FP (false positive) represents the amount of negative data points that are
wrongly predicted as positive. The FN (false negative) is the amount of negative data
that are misclassified as negative. Pre (Precision) is used to find the proportion of positive
identifications that are true. Rec is used to determine the proportion of actual positives that
were correctly identified. The F1 score reflects the number of instances that are correctly
classified by the learning models.

3. Results

In this study, an assessment of the appropriateness of VGNet with transfer learning
and fine-tuning training for the task of crop disease recognition was carried out. Our focus
was to pretrain the VGG 16 Network with different public datasets and to fine-tune the
newly designed VGNet model with different a training mechanism and parameters. Large
open datasets like ImageNet, PlantVillage, and AI Challenger were utilized to pretrain
the model; then, the weights and parameters of the convolutional layers and pooling
layers were transferred to the new model and frozen. After updating the structure of
VGNet, the parameters of the GAP layer, the remaining fully connected layers, and the
softmax layer were retrained and fine-tuned by the new dataset obtained from corn fields.
The performance of the proposed method was analyzed after five-fold cross-validation
experiments to acquire convincing results. K-fold cross-validation is a common method
used to test the accuracy of DL algorithms. To perform K-fold cross-validation on the
overall data, the image dataset C is divided into K parts for disjoint subsets. In order to
prevent data leakage, suppose the number of training samples in dataset C is M; then,
the number of samples in each subset is M/K. When training the network model, one
subset is selected each time as the verification set, and the other (K-1) subsets are selected
as the training set, and the classification accuracy of the network model on the selected
verification set can be obtained. After repeating the above process for K times, the average
of classification ac-curacy is obtained as the true classification accuracy of the model. In
our research, the K is set as 5, since the results of 5-fold validation and 10-fold validation
are the same in the previous experimental experience.

3.1. Effects of Fine-Turning Training Mechanism

The following sections analyze the effects on model performance with a different
training mechanism in the fine-tuning VGNet process, including different training methods
and initial learning rates. Table 3 shows the testing loss and accuracy of the different
training mechanism in the fine-tuning process.
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Table 3. Testing loss and accuracy of the method based on SGD or Adam with different learning
ranges.

Optimizer Initial Learning Rate Loss Accuracy (%)

SGD 0.01 0.103 85.6
SGD 0.005 0.089 89.1
SGD 0.001 0.061 93.0

Adam 0.01 0.074 91.3
Adam 0.005 0.058 94.4
Adam 0.001 0.035 98.3

From Table 3, it can be seen that six different experiments were carried out; their final
loss values and accuracies of testing vary with the training methods and initial learning
rate. Figures 6 and 7 show the loss and accuracy curves of two training methods with
initial learning rates of 0.01 and 0.001, respectively. As seen in Figures 6 and 7 and Table 3,
training methods and initial learning rate have great influence on the performance of the
model. By comparing experiment 1, 2, and 3 using the SGD method, it can be found that
the loss value decreases as the learning rate declines, while the accuracy increases with the
fall in learning rate. When the learning rate is set to 0.01, the loss value of the model test is
0.103, and the accuracy is only 85.65%. In this process, the performance is unstable, and
the loss and accuracy shake violently, which can be seen by the green curves in Figure 6.
When the initial learning rate drops to 0.001, the loss value of the model test decreases
to 0.061, and the accuracy is improved to 93.04%. At this time, the testing process has
fewer shocks, and the model can converge at about 4500 iterations, which is described by
green curves in Figure 7. Rows 4, 5, and 6 in Table 3 were fine-tuning-trained with the
Adam optimizer. Their variation in loss value and accuracy are consistent with former
experiments 1, 2, and 3. The reason is that with the aid of transfer learning, all the front
layers of the network obtained good training, and the weight parameters at the initial time
of training are close to the optimal state. If the initial learning rate is not set properly, the
training process will shock and even diverge. If a higher learning rate (0.01) is used in the
fine-tuning training phase, the model is likely to skip the optimal solution, resulting in
larger loss, lower accuracy, or severe oscillation. When the initial learning rate is 0.001, the
model is more stable, and its performances are much better. Therefore, when the transfer
learning mechanism is applied to the training of a convolutional neural network, the initial
learning rate in the fine-tuning training stage needs to be lower than that of the model
trained from scratch.

Figure 6. Comparison of loss and accuracy of two learning methods when the learning rate is 0.01.
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Figure 7. Comparison of loss and accuracy of two learning methods when the learning rate is 0.001.

Compare experiment 3 with experiment 6 in Table 3, where the initial learning rate
was set as 0.001 with the SGD algorithm and Adam optimizer, respectively. At this point,
the final performance of the model was different due to the different training methods. The
loss value of the model trained by the Adam optimizer is lower than that of the model
trained by SGD algorithm. Furthermore, the model trained by the Adam optimizer reaches
convergence first and becomes stable after 3500 iterations, which is illustrated by the red
curve in Figure 7. However, the model trained by the SGD method converges slowly, and
the final loss value after convergence is 0.061, which is higher than the model trained by the
Adam optimizer. Moreover, since the SGD training algorithm adjusts the weight for each
data point, the network performance fluctuates up and down a lot more than the Adam
optimizer during the learning process. The right part of Figure 7 shows the variation in the
accuracy of the two training methods. It can be found that the model retrained by the Adam
optimizer reached an accuracy of 98.26%, while the model retrained by the SGD algorithm
did not perform as well. Apparently, when the model is fine-tuned by the SGD algorithm, it
is always lower than when trained by the Adam optimizer. In general, the Adam optimizer
algorithm has the advantage of faster model convergence than the SGD training algorithm
and is more stable in the testing process. Therefore, the Adam optimizer in the fine-tuning
training stage of the model is more in line with the corn disease recognition model.

3.2. Effects of Transfer Learning on Multiple Datasets

To explore the impact of training mechanisms and different datasets in the pretraining
process, four completely selfsame VGNet models were utilized in the form of learning from
scratch and transfer learning, respectively. The scratched learning model only adopted
the image obtained from corn fields without pretraining. The other three models utilized
three different large open datasets for pretraining and parameter transfer learning. The
experimental results of applying four different learning types and datasets are listed in
Table 4. From Table 4, it can be seen that the accuracy of learning from scratch is the
lowest, reaching an accuracy of 69.57%. Under the condition of transfer learning and
fine-tuning learning, the model pretrained using the PlantVillage dataset has the best
performance, with an accuracy of 98.26%. Since training the VGNet model from scratch
needs more images and time to optimize network parameters, and the training dataset
only has 920 images, it is not enough for a deep convolutional neural network. This leads
to the nonideal classification effect. Pretraining and transfer learning make the VGNet
model acquire the ability of feature extraction and the knowledge of classification; thus,
it is easier to achieve higher accuracy than with the scratched learning model. Therefore,
transfer learning seems to be a better approach than learning from scratch when the dataset
is not big enough. Though the original VGG16 Net is a model with excellent performance
trained on ImageNet, a large public dataset, in general, the filter at the bottom of the model
can acquire different local edge and texture information through training, which has good
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universality for any image. However, the feature gaps between the ImageNet dataset from
source area and the corn disease images in this new area are too large, while the other two
datasets have much more similar features in color, texture, and shape to the corn disease
images. Thus, the accuracies of the models pretrained with PlantVillage and AI Challenger
are higher than the model pretrained with ImageNet. Images from PlantVillage are very
similar to those from AI Challenger, but the number of PlantVillage is bigger than that of
AI Challenger. Thus, the model pretrained with PlantVillage obtains a better learning effect,
and PlantVillage is more suitable for the pretraining in this research. This indicates that in
transfer learning, the source domain and target domain should have a high fitting degree
for better performance.

Table 4. Experiment results of different learning types and datasets for pretraining and fine-tuning.

Learning Types Pretrained Images
Accuracy on

Original Images (%)

Accuracy on
Augmented Images

(%)

Learning from
Scratch — 69.6 89.5

Transfer learning ImageNet 93.5 94.6
Transfer learning PlantVillage 98.3 99.4
Transfer learning AI Challenger 97.3 91.3

3.3. Effects of Augmentation

Data augmentation was applied here based on image transformations, such as geomet-
ric transformation, color changing, and noise adding, to generate new training images from
the original ones by applying such random image transformations. The size of the dataset
was enlarged from 1150 to 11,500. The ratio of the training dataset and testing dataset was
also 8:2. The effects of image augmentation for fine-tuning learning are also illustrated
in Table 4. It can be concluded that the effects of image data augmentation on different
training models are different. In the mode of learning from scratch, data augmentation
improves the accuracy by nearly 20%. Because the original dataset is too small, and the
structure of the network structure is deep, the overfitting phenomenon reduces the per-
formance of the network. When the image data are enlarged by data augmentation, the
number and diversity of the data are increased. Thus, data augmentation has a larger role
in avoiding overfitting and increasing accuracy when the model is learning from scratch. In
the transfer learning mode, the accuracy of the fine-tuned model trained with augmentation
is at least 2% higher than that of the model fine-tune-trained by original image data. This is
because the pretraining model has learned a lot of knowledge from the large image dataset,
which weakens the role of data augmentation. Hence, enlarging data plays a slight role in
improving the performance of model classification in transfer learning.

4. Discussion

4.1. Obfuscation Matrix Analysis and Quantitative Statistics

To clearly show the recognition precision and classification results based on the fine-
tuning training of the designed VGNet with augmented datasets, the confusion matrix
drawn on the basis of the model classification results is shown in Figure 8. ANTH, TR, SCR,
CR, SLB, PHLS, DLS, PHBS, and NLB, respectively, represent the abbreviations of nine types
of corn diseases. The values in darker diagonal lines in Figure 8 (left) illustrate the number
of correct classifications for each disease category, while the results of darker diagonal
lines in Figure 8 (right) represent the recognition accuracies of correct classifications. It can
be found that the recognition accuracies of nine corn diseases present some differences.
Relatively, the accuracy of ANTH (Anthracnose) is lower than others; this probably because
the sample number is fewer than other types. And the accuracy of SCR (Southern corn
rust) reaches 100%. On the whole, the accuracies are kept in the range of 98.6% and 100%,
which can be treated as a balanced result.
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Figure 8. Obfuscation matrix analysis of classification based on transfer learning and data aug-
mentation. The left is the obfuscation matrix, and the right is the normalized obfuscation matrix.

After the analysis and statistics of the confounding matrix, each parameter reflecting
the model performance is obtained, as shown in Table 5, which describes the more detailed
original and testing classification information of the proposed VGNet. It can be found
in Table 5 that the precision and recall values of each disease type are different, which is
related to the characteristic types and image numbers of each disease. The precision value
in Table 5 is between 98.1% and 100%. The recall value ranges from 98.6% to 100%. The F1
value ranges from 98.4% to 99.8%, with an average accuracy of 99.4%. This indicates that
the proposed method performs well in the established dataset after transfer learning and
fine-tuning training, which could be applied to the actual detection of crop diseases in the
field environment.

Table 5. Obfuscation matrix statistics for nine types of corn diseases with transfer learning and
augmentation.

Types ANTH TR SCR CR SLB PHLS DLS PHBS NLB

Samples 1070 1150 1300 1420 1500 1200 1160 1280 1420
Positive 214 230 260 284 300 240 232 256 284
Negative 2086 2070 2040 2016 2000 2060 2068 2044 2016

TP 211 229 260 283 299 237 230 255 283
FN 3 1 0 1 1 3 2 1 1
TN 2076 2058 2027 2004 1988 2050 2057 2032 2004
FP 4 1 1 0 2 2 3 0 0

Pre (%) 98.1 99.6 99.6 100.0 99.3 99.2 98.7 100.0 100.0
Rec (%) 98.6 99.6 100.0 99.7 99.7 98.8 99.1 99.6 99.7
F1 (%) 98.4 99.6 99.8 99.8 99.5 99.0 98.9 99.8 99.8

Acc (%) 99.4

4.2. Comparison with State-of-the-Art Methods

To further validate the effect of our method based on fine-tuning training and VGNet,
we compared the proposed method with the traditional machine learning classifiers and
state-of-the-art models (deep learning methods), respectively, under the same experiment
conditions as well as the same dataset. The total number of images was 1150. Traditional
machine learning methods include random forest (RF) classification algorithm, support
vector machine (SVM), and BP neural network. AlexNet, ResNet50, Inception v3, and the
original VGG16 Net are the selected deep convolutional neural networks for the compara-
tive experiment. For conventional machine learning methods, we preprocessed the corn
disease images, including image enhancement, segmentation, and feature extraction. After
removing background information, the disease spots with clear boundaries were obtained.
Then color histogram feature in HSV color space and the matrix characteristics in RGB color
space were extracted, respectively. The gray-level co-occurrence matrix was used for texture
features and a seven-hue invariant matrix was used for shape feature extraction. Then,
the extracted features were fused as input vectors of the BP, SVM, and RF classifiers. The
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learning experiments of AlexNet, ResNet50, Inception v3, the original VGG16, and VGNet
models adopt the method of transfer learning and fine-tuning mechanism. The experiment
parameters were consistent with the proposed method. After training, the models were
test tested and identification results were output. The accuracies obtained from different
traditional machine learning classifiers and deep learning methods are shown in Figure 9.
It can be seen in Figure 9 that the accuracies of traditional methods are generally lower
than 87%. In addition, conventional classifiers often require tedious preprocesses involving
image enhancement, segmentation, and extraction of features manually. In deep learning
methods, the accuracies are greater than 92%, and they vary because of the different deep
structures and abilities of feature extraction. The accuracy of AlexNet is the lowest among
the five deep architectures, because the structure of AlexNet is shallower than others, which
leads to the insufficient ability to extract the features of corn disease images. The accuracy
of the original VGG16 Net is 94.78%, the ResNet50 is 95.22%, and Inception v3 achieves an
accuracy of 96.96%. Experimental results indicate that deep learning methods are superior
to conventional machine learning. It can also be seen that our model reaches a highest
accuracy of 98.26%, which is improved by 3.48% compared with the original VGG16 Net.
The addition of BN, a GAP layer, and L2 normalization makes the VGG16 Net more robust
with higher accuracy. The improvement of our method based on the classical VGG16 Net
has the capability to learn more complex features, as more convolutional layers are in the
stack with smaller filter sizes compared with other deep learning models.

Figure 9. Comparison of accuracy between different models based on the same dataset.

Table 6 shows the comparative parameters and testing time of different deep learning
methods. From Table 6, we can see that the original VGG16 Net has the most parameters
and the longest testing time. AlexNet has eight weight layers and 58.3 million parameters;
the testing time of AlexNet is the shortest, only 50.14 s for 230 images. However, the
accuracy of AlexNet is the lowest (Figure 9). The parameters and testing time of ResNet50
and Inception v3 are slightly different. Our VGNet has 14 weight layers and 22.9 million
parameters after replacing huge hidden fully connected layers by a GAP layer, and it
only occupies 79.5 MB of memory space. The testing time of our model is only 75.21 s
for 230 images, which improves by 151.11 s compared with the original VGG16 Net. In
addition, the loss value of the designed VGNet is only 0.035, which is significantly smaller
than other models, such as VGG16 and ResNet50. The proposed method can achieve real-
time detection of corn diseases. In general, our proposed method has the best recognition
effect after transfer learning and fine-tuning. The utilization of the GAP layer realized
the feature dimension reduction. The parameters of the network were greatly reduced, as
well as the calculation amount. This means the network regularization in the structure to
prevent overfitting. The connections between each category in the feature map are more
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intuitive (compared with the fully connected layers), and it is easier for the feature map to
be converted into classification probability. Thus, the proposed VGNet is lightweight and
robust, which could obtain the best performance among the state-of-the-art models.

Table 6. Comparison of the classic convolutional neural networks and corresponding parameters.

Methods
Network

Layers
Parameters
(Millions)

Weights (MB) Times (s) Loss Value

AlexNet 8 60.9 224 50.14 0.912
ResNet50 50 25.5 102 88.78 0.587

InceptionV3 46 24.7 96 86.02 0.271
VGG16 16 138 533 226.32 0.196
VGNet 14 22.9 79.5 75.21 0.035

Actually, our method utilizes 1150 corn disease images from field conditions, and
the recognition accuracy reaches 98.3%, which is better than the models learning from
scratch. After data augmentation, the accuracy of the model improves slightly by 1.2%.
The dataset in this research is small compared with many deep convolutional models.
Actually, Ferentinos et al. collected 87,848 images of plant diseases to train a convolutional
neural network model, whose performance finally reached 99.5% accuracy [43]. In our
experiment, when the dataset is enlarged to 11,500, the accuracy of VGNet increases to
99.4%. Compared with the study of Ferentinos, our success rate is only 0.1% lower than
that of the model using 86,000 images. Thus, transfer learning seems to be an ideal method
for the CNN model to achieve better performance. With the aid of the parameters transfer
of the pretrained model, a more accurate model can be generated when fine-tuning several
layers for disease image classification.

Three types of open large datasets, including ImageNet, PlantVillage, and AI Chal-
lenger, were used, and the results show that the models pretrained with PlantVillage or
AI Challenger were better than that pretrained ones with ImageNet. The similarity of the
training data to the experimental data results in easier transferability. The SGD algorithm
and Adam optimizer are compared and analyzed in the fine-tuning phase. The experiments
prove that the Adam optimizer for training the VGG16 Net is more accurate and more
stable than the SGD algorithm. The initial learning rate is also an important parameter in
model training. In regard to the pretrained model, smaller learning rates for convolutional
nets are common, as network parameters should not be changed dramatically.

4.3. Feature Visualization

The ability of automatic feature extraction is an important factor to reflect the perfor-
mance of the model. To examine the effect of feature extraction on the proposed model, fea-
ture map visualization was carried out. Figure 10 illustrates the original input image and the
feature maps derived from the pooling layer of the model. From the right of Figure 10, we
find that the disease spots were abstracted high-dimensional features; the VGNet obviously
had high-quality feature extraction, which was beneficial for recognition and classification.

Figure 10. Obfuscation matrix analysis of classification based on transfer learning and data augmen-
tation. The left is the original image; the middle is the grey feature map; and the right is the color
feature map.

20



Agriculture 2023, 13, 1606

5. Conclusions

Data diversity and representativeness are the key elements to ensure the generalization
of the model. In this paper, we devised a VGNet which takes VGG16 as the backbone and
adds batch normalization, as well as replacing two fully connected layers with a GPA layer
and adding L2 normalization. The parameters of the convolutional layers and pooling
layers are transferred to the newly designed VGNet; then, the fine-tuning learning for
VGNet is studied to enhance the ability of recognizing corn disease images from real field
conditions.

Data augmentation has greater promotion of model learning from scratch than on
pretrained model, because the parameters of pretrained models are trained enough by open
large datasets. Compared with traditional machine learning methods and state-of-the-art
deep learning methods, the proposed VGNet has a stronger ability to identify a hierarchy of
features of corn diseases. The accuracy of VGNet is improved by 3.5% compared with the
original VGG16 Net, and the testing time for 230 images is reduced by 66.8%, with balanced
precision, recall, and F1 indexes. The parameters and memory occupation of the proposed
VGNet are reduced by 83.4% and 85.1%, respectively. The comparative experiments and
performance analysis illustrated the wide adaptability of the proposed method. In addition,
the proposed method could provide baseline architecture for other types of phenotypic
information recognition or interpretation with much fewer parameters and computation
time. In future work, we will focus on collecting multiple crop disease images from real
scenes and developing fine-grained disease detection methods that can be used for multiple
categories of crops.
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Abstract: Peanut southern blight has a severe impact on peanut production and is one of the
most devastating soil-borne fungal diseases. We conducted a hyperspectral analysis of the spectral
responses of plants to peanut southern blight to provide theoretical support for detecting the severity
of the disease via remote sensing. In this study, we collected leaf-level spectral data during the
winter of 2021 and the spring of 2022 in a greenhouse laboratory. We explored the spectral response
mechanisms of diseased peanut leaves and developed a method for assessing the severity of peanut
southern blight disease by comparing the continuous wavelet transform (CWT) with traditional
spectral indices and incorporating machine learning techniques. The results showed that the SVM
model performed best and was able to effectively detect the severity of peanut southern blight when
using CWT (WF770~780, 5) as an input feature. The overall accuracy (OA) of the modeling dataset
was 91.8% and the kappa coefficient was 0.88. For the validation dataset, the OA was 90.5% and
the kappa coefficient was 0.87. These findings highlight the potential of this CWT-based method for
accurately assessing the severity of peanut southern blight.

Keywords: peanut southern blight; reflection spectrum; spectral index; continuous wavelet transform;
machine learning

1. Introduction

Peanut southern blight, which is caused by the soil-borne fungus Sclerotium rolfsii
Sacc, is a fungal pathogen that significantly impacts global peanut production [1,2]. This
pathogen gradually turns peanut leaves brown or yellow, eventually leading to their
detachment. The fungus destroys the fleshy tissues within the stems. Noticeable white
mycelia appear on the roots, and at high temperatures, light brown spherical sclerotia
develop within the infected tissues. Ultimately, this can lead to complete crop failure [3].
Due to the rapid onset of peanut southern blight, current field surveys and control measures
are insufficient. Therefore, it is essential to explore the spectral response mechanism of
peanut southern blight in order to achieve precise prevention and control strategies [4].

In recent years, the majority of research efforts have focused on viruses, bacteria, fungi,
and nematodes, which have long been recognized as the main culprits behind infectious
diseases. The changes in a pathogen and in the interactions between plants and pathogens
can be reflected through variations in plant tissue color [5], leaf shape [6], transpiration rate,
and plant density. The physiological and biochemical changes that occur during this process
are inevitably reflected in certain spectral bands. Typically, healthy green plants exhibit
low reflectance in the visible (VIS) spectrum, high reflectance in the near-infrared (NIR)
spectrum, and low wide-band reflectance in the shortwave infrared (SWIR) spectrum [7]. In
recent years, there has been an increasing number of reports regarding pests and diseases
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affecting plant leaves [8–10]. With leaf infection, various spots or necrotic areas often
appear [11]. This leads to a reduction in leaf pigmentation and photosynthesis [12,13]. The
result is a typical red-edge “blue-shifting” phenomenon that can be observed in the visible-
light range [14]. Ray et al. pointed out that red-edge information becomes particularly
important when subtle structural changes occur [15]. At this point, the importance of
spectral resolution becomes clear, as a higher spectral resolution enables the more detailed
observation of spectral responses. Hyperspectral sensors contain hundreds to thousands of
useful narrow-band data [16], and they have been proven to detect the spectral response
mechanisms of plants under stress, such as wheat stripe rust [17,18] and rice blast [19].
However, few studies have used hyperspectral technology to investigate the spectral
response mechanisms of plants with peanut southern blight.

Currently, there are two main categories of methods for monitoring plants under
stress: empirical methods and physical methods [20]. Physical methods based on Radiative
Transfer Models (RTMs) have consistently attracted attention in the field of pest and dis-
ease monitoring [21,22]. The main advantage of this approach is that it does not require
parameterization [23]. Rather, it uses existing leaf or canopy spectra to simulate changes
in plant growth and developmental traits. For example, Saddik et al. [24] combined RGB
images and hyperspectral reflectance data with an RTM to differentiate spectra affected by
yellowness and esca infections. Although RTMs have model interpretability and mecha-
nistic modeling advantages, they rely on the calibration of the input feature set, and this
may limit their applicability in real-world scenarios [25]. Empirical methods can effectively
characterize spectral changes [26]. Some studies focus on developing crop-specific spectral
indices [27,28]. In addition, some studies have analyzed different spectral transformation
forms, such as logarithms, derivatives, and continuous wavelet transforms, to enhance
the separability of spectra under different severity levels [29,30]. In order to ascertain the
spectral response mechanism of plants with peanut southern blight, we have employed the
Continuous Wavelet Transform (CWT) technique. This method decomposes the reflectance
spectra of leaves into multiple scale components, amplifying the underlying spectral dif-
ferences [31]. Previous studies have used the CWT technique in various domains, such
as the study of vegetation [32], minerals [33], and inland water bodies [34]. Specifically,
wavelet analysis has been applied in the detection and assessment of plant physiological
stress [35]. Some authors have also utilized wavelet analysis in the study of airborne
imaging spectroscopy data to quantify forest structural parameters [36] and identify plant
species [37]. The use of the Standard Normal Variate (SNV) method and some previously
reported spectral indices has also been evaluated in detail and has been compared with the
CWT technique [38].

In recent years, the combination of Feature Selection (FS) methods and Machine
Learning (ML) algorithms has been widely applied in the field of remote sensing [39,40]. By
utilizing selected features as input, it is possible to significantly reduce model running time
and enhance model accuracy [41]. Wang et al. utilized Principal Component Analysis (PCA)
to reduce the dimensionality of features and combined it with the Backpropagation Neural
Network (BPNN) machine learning algorithm to analyze grape and wheat diseases [42].
Huang et al. employed the relief algorithm to extract wavelength information concerning
different diseases from wheat leaf spectral data and used machine learning modeling to
monitor various wheat diseases [10]. To evaluate the severity of peanut southern blight, we
applied the relief algorithm to determine the feature weights of the vegetation indices [43].
Through feature stacking, we identified the most sensitive features for the classification
task. In addition, we evaluated three classification models (Support Vector Machine (SVM),
decision tree, and K-Nearest Neighbors (KNN)) in combination with the selected features.

Different stress conditions caused by various pathogens have different effects on crop
growth and development [20]. Currently, hyperspectral remote sensing research mainly
focuses on aspects such as chlorophyll content, nitrogen content, and pest and disease
detection. For peanuts, most studies concentrate on diseases with obvious pathogenic
characteristics, such as leaf spot and stem rot. For instance, Guan et al. used portable spec-
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troradiometers and spectrophotometers to study the spectral characteristics of peanut leaf
spot disease [44]. Wei et al. used hyperspectral sensors and machine learning techniques
to identify the optimal wavelength features for detecting peanut stem rot [45]. However,
to the best of our knowledge, there have been no research reports on the remote sensing
monitoring mechanism of peanut southern blight. Whether the progress of previous work
is applicable to our research presents new challenges.

The overall objective of this study is to investigate the spectral response mechanism of
peanut southern blight and distinguish peanuts with different levels of severity. Specifically,
our goals are to address the following questions: (1) Can we extract the spectral response
mechanism of peanut southern blight from the hyperspectral remote sensing data? (2) Can
CWT be applied to our hyperspectral data to differentiate the severity of peanut southern
blight at the leaf level? (3) Is the combination of CWT and ML models more effective than
traditional spectral indices and spectral preprocessing methods?

2. Materials and Methods

2.1. Experimental Design

The peanut trial was conducted in 2021 and 2022 at the Wenhua Road Campus of
Henan Agricultural University. A laboratory pot was used to control the publication-
grade experiment manually. The experimental peanut variety was Yuhua 37, sown in the
greenhouse laboratory and managed regularly. The soil for peanut culture was a mixture
of matrix and vermiculite with a volume ratio of 3:1 after autoclaving. Peanut plants
with uniform size and healthy growth in the greenhouse for ten days were inoculated
with different concentration doses (namely benzovindiflupyr and thifluzamide). The
experimental concentrations of benzovindiflupyr were 50, 100, and 200 mg L−1, respectively,
and thifluzamide was used as the control agent with a concentration of 100 mg/L. Blank
control peanut plants were treated with distilled water, and 10 mL of each concentration
of fungicide was applied with a 5 mL pipettor to the stem base of the plant 48 h before
inoculation (preventive activity) or after inoculation (therapeutic exercise). This study
selected the inoculation strain for highly virulent Sclerotium rolfsii Sacc (ZMGD-2). Four
agar disks containing mycelium (5 mm in diameter) were placed around the root and stem
of each peanut plant and buried with the matrix. The inoculated plants were kept at 30 ◦C
and 80% relative humidity for seven days as far as possible. The data collection is shown in
Table 1.

Table 1. Sample inoculation and acquisition time.

Sample Inoculation Time Sample Acquisition Time Quantity

02 Nov. 2021 05 Dec. 2021 76
04 Dec. 2021 05 Jan. 2022 46
20 Mar. 2022 26 Apr.2022 53

2.2. Data Collection
2.2.1. Classification and Analysis of Disease Severity

The samples for the pot experiment were obtained through investigation conducted by
plant protection experts from Henan Agricultural University. The surveyed peanut plants
had an average height of approximately 10 cm. Samples were selected from peanut plants
treated with different chemicals and concentrations to assess the disease grade of southern
blight. Based on previous research on the genetic and phenotypic diversity of peanuts, the
severity of southern blight was defined as Grade 0 = healthy plants, Grade 1 = mild, and
Grade 2 = severe, as shown in Table 2 and Figure 1.

2.2.2. Reflectance Spectral Measurement

The spectral measurement instrument of this experiment adopted the ASD Field Spec3
spectrometer and the matching plant probe to collect the spectral data of peanut leaves.
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The dimensions of the equipment are 12.7 cm × 36.8 cm × 29.2 cm and its weight is 5.44 kg.
The wavelength range is 350–2500 nm, the sampling intervals are 1.4 nm (350–1000 nm) and
2 nm (1001–2500 nm), and the resampling interval is 1 nm. To avoid signal loss due to light
absorption by atmospheric water vapor at wavelengths between 1400 nm and 1800 nm, the
handheld Leaf Clip (ASD Leaf Clip) of the matching spectrometer was used to measure
the spectrum of peanut leaves in this experiment. The built-in standard whiteboard was
calibrated every 3 min to obtain a baseline close to 100% to ensure the accuracy of spectral
data during the experiment.

Table 2. Grading standard of peanut southern blight disease.

Disease Severity Symptom

Health (Grade 0) No apparent symptoms

Mild (Grade 1)
Most of the leaves exhibit yellowing and

wilting, while a significant amount of white
mycelium is observed at the plant’s root base.

Severe (Grade 2)
The entire plant exhibits complete wilting of
leaves, while brown spherical sclerotia are

present at the plant’s root base.

 

Figure 1. Experimental potted plant for peanut southern blight. (a,b) Healthy, (c) mild, (d) severe.

2.3. Data Analysis Methods
2.3.1. Continuous Wavelet Transform

CWT is a linear operation that transforms a reflectance spectrum f (λ) (λ = 1, 2, . . .,
n, where n is the number of spectral bands) into sets of coefficients at various scales
by using a mother wavelet function. The mother wavelet ψ(λ) is a small wave and
has an average value of zero, which can be shifted (translated) and scaled (stretched
or compressed) to produce a series of continuous wavelets ψa,b(λ) as follows (dyadic
numbers 21, 22, 23, . . ., 28 are denoted as Scale 1, Scale 2, Scale 3, . . ., Scale 8 for simplicity,
respectively) [44]. In Formula (1), a represents the wavelength and b represents the phase.
After spectrum decomposition, the complete wavelet coefficient matrix of different bands
and decomposition scales can be obtained:

ψa,b(λ) =
1√
a

ψ

(
λ − b

a

)
(1)

Wf (a, b) =
∫ ∞

−∞
f (λ)ψa,b(λ)dλ (2)
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where ψa,b(λ) denotes the inner products of wavelets and the input spectrum. The output
Wf (a, b) of a one-dimentional input spectrum comprises a two-dimentional wavelet power
scalogram. Each element of the scalogram is a wavelet feature or wavelet coefficient that
characterizes the correlation between a subset of the input spectrum and a scaled, shifted
version of the mother wavelet [45].

The wavelet transform has proven to be an effective technique for extracting spectral
information related to foliar chemistry and species composition from vegetation reflectance
spectra when applied to spectroscopic data in remote sensing [46,47]. The Continuous
Wavelet Transform (CWT) was utilized instead of the Discrete Wavelet Transform (DWT),
because CWT provides scale components that are directly comparable to the input re-
flectance spectrum on a band-by-band basis, making the results easier to interpret.

2.3.2. Standard Normal Variable Transformation Processing

The SNV transformation was used to eliminate the influence of diffuse reflectance
spectra caused by surface scattering and solid particle sizes during data collection. The
average value of the spectral data was subtracted from the initial spectral reflectance data
and then divided by its standard deviation [48]. The formula is as follows:

Xsnv =
X − x√

∑m
k=1(Xk−x)
(m − 1)

(3)

where x = ∑m
k=1 xk

m , m is the total number of wavelengths, and k = 1, 2. . ., m.

2.3.3. Spectral Index

After reviewing the previous research on spectral indices, 12 spectral indices related
to pest and disease stress were selected from the highly cited literature (Table 3). We then
analyzed their weights using the relief algorithm to retain the most sensitive features for
assessing their transferability.

Table 3. The spectral indices included in this study.

Index Formulation Reference

SIPI (R800 − R445)/(R800 + R680) [49]
R R700/R670 [50]
G R570/R670 [51]
B R450/R490 [51]

NRI (R570 − R670)/(R570 + R670) [52]
WI R900/R970 [53]

mNDI (R750 − R705)/(R750 − R705 − 2R445) [54]
HI (R739 − R402)/(R739 + R402) − 0.5R403 [10]

NSRI R890/R780 [55]
PSRI (R680 − R500)/R750 [56]
MSR (R750 − R445)/(R705 − R445) [54]

PSSRa R800/R675 [57]

2.3.4. Relief

The relief algorithm is a classic feature weight selection method that assigns weights
to different features based on their relevance to the target variable.

In the initial feature set, the relief algorithm randomly selects a sample, denoted as
“a”, and then searches for the nearest neighbor sample within the same class, known as
the “Near Hit”. It also searches for the nearest neighbor sample outside the same class,
referred to as the “Near Miss”. Feature weights are defined as follows: if the distance
between the feature of interest and the Near Hit (H) is smaller than the distance between
the same feature and the Near Miss (M), the weight is increased, which indicates that the
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feature effectively distinguishes different classes. Conversely, the weight is decreased for
the reverse case [58].

w = di f f (l, a, M)− di f f (l, a, H) (4)

di f f (l, a, b) =
|a − b|

max(l)− min(l)
(5)

where di f f (l, a, b) represents the distance between samples a and b for feature l, and max(l)
and min(l) represent the upper and lower bounds of feature l, respectively.

2.3.5. Machine Learning

In this study, three non-parametric machine learning algorithms, namely SVM, deci-
sion tree, and KNN, were employed to detect the severity of peanut southern blight.

The working principle of SVM is to create an optimal classification hyperplane using
the training dataset and achieve different sample classifications based on minimal errors. In
this study, we employed grid search to determine the best parameters, including the Radial
Basis Function (RBF) kernel and polynomial kernel functions, for SVM classification [59].
Decision tree is a supervised learning algorithm that learns from a labeled training dataset
to construct a root node and selects the best feature to further partition the data, aiming to
achieve the best classification for each data point at each step [60]. KNN is a non-parametric
classification method that assigns labels to data points based on the classification of K
similar training samples. It does not assume any specific distribution for the data [61].

2.3.6. Evaluation of Accuracy

In this study, a 5-fold cross-validation with 100 repetitions was performed to evaluate
the accuracy and robustness of all models. The first two sets of data (n = 122) were used to
build and validate the models, while the third set of data (n = 53) was used for independent
validation. The sample sizes for each severity level were approximately balanced across
the three sets. The OA and kappa coefficient were used to assess the performance of the
models. The formulas for calculating these two metrics are shown as Equations (6) and (7),
respectively. In the equations, N represents the total number of classes; n represents the
number of samples; akk represents the number of correctly classified samples; xii represents
the diagonal elements of the confusion matrix; and xij represents each element of the
confusion matrix.

OA =

(
∑N

k=1 akk
)

n
(6)

kappa =
N∑m

i=1 xii − ∑m
k=1

(
∑m

i=1 xij∑m
j=1 xij

)
N2 − ∑m

k=1

(
∑m

i=1 xij∑m
j=1 xij

) (7)

3. Results

3.1. Spectral Response of Peanut Southern Blight

The sample contained 175 healthy, mild, moderate, and severe peanut leaves. The
average spectral responses of each leaf type in different wavelength bands are shown in
Figure 2. The findings indicate that in the green-light wavelength band (530–580 nm),
healthy leaves exhibited the highest reflectance, while severely affected leaves showed the
lowest reflectance. In the red-light wavelength band (620–670 nm), although the differences
were not significant, some features were observed. Specifically, the spectral reflectance
followed the pattern of healthy leaves > mild leaves > severe leaves, with a relatively small
peak at 640 nm. In the red-edge wavelength band (700–780 nm), there were significant
differences between healthy and severely affected leaves. The reason for this difference is
attributed to the destruction of photosynthetic pigments, including chlorophyll, in infected
leaves. The absorption capacity in the blue-light wavelength band (centered at 450 nm) and
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red-light wavelength band (centered at 660 nm) weakened, resulting in relatively small
peaks. As chlorophyll continued to be destroyed and the photosynthetic ability weakened,
the reflectance in the green-light wavelength band (centered at 550 nm) decreased, with a
noticeable difference at 560 nm, due to changes in cell structure, loss of water content, and a
decrease in chlorophyll and photosynthetic intensity in leaf cells caused by the continuous
invasion of Sclerotium rolfsii in the intercellular space of the leaves. The hyperspectral
reflectance of southern blight was relatively low in the visible band (400–760 nm) and
relatively high in the near-infrared band (760–1350 nm). In comparison with healthy plants,
the red edge of the infected southern blight largely shifted toward shorter wavelengths,
indicating a “blue shift” phenomenon. In the overall analysis, the spectral reflectance of
infected leaves in the visible light and near-infrared wavelength bands showed a decreasing
trend with the increasing severity of the disease.

Figure 2. Spectral characteristics of leaves of southern blight with different disease degrees:
(a) 350–2500 nm; (b) 400–1000 nm.

3.2. Continuous-Wavelet-Transform-Sensitive Spectral Characterization

The spectral reflectance data of different severity levels collected in 2021 and 2022
were applied to CWT, and then the spectral results for each severity level were averaged,
as shown in Figure 3b. Compared to the original spectra, CWT amplified the spectral
differences in the red-edge range (700–790 nm) for different severity levels. Furthermore,
we generated a classification scale based on the data, as shown in Figure 3a. We evaluated
the accuracy of the machine learning models by incorporating the most sensitive wavelet
features for each scale separately. Ultimately, we found that the SVM model using CWT
(WF770~780, 5) performed best. The validation set OA was 90.5% and the kappa coefficient
was 0.87 (Table 4).

3.3. Standard Normal Variable Transformation Processing

Figure 4 shows the spectral curves after SNV preprocessing, which altered the shape
of the spectra compared to the original spectra (OR). SNV increased the separability of
the spectral curves for different severity levels in the range of 350–1200 nm. We employed
simple Linear Discriminant Analysis (LDA) to explore the sensitive bands of OR and
SNV. For OR, the 940–1300 nm range exhibited the best performance, with the 942 nm
band having the highest accuracy and an OA of 87.4%. For SNV, the 780–1300 nm range
demonstrated the best performance, with the 903 nm band having the highest accuracy
and an OA of 88.7%. Overall, both OR and SNV showed their highest accuracies in the
near-infrared (NIR) range, and SNV enhanced NIR spectral differences among different
severity levels (Figure 5).
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Figure 3. (a) The X-axis represents the spectral wavelength range from 350 to 2500 nm, and the Y-axis
represents the fourth to eighth wavelet scales. The grayscale brightness in the scale chart indicates the
magnitude of classification accuracy (brighter indicates higher accuracy). The red region corresponds
to the top 1% of the highest accuracy achieved. (b) CWT spectral curve.

Table 4. Accuracy evaluation using CWT machine learning models.

Features Model
Calibration Validation

OA (%) Kappa OA (%) Kappa

WF770~780, 5
SVM 91.8% 0.88 90.5% 0.87
KNN 85.2% 0.78 86.6% 0.79

Decision Trees 89.3% 0.84 86.8% 0.79

 
Figure 4. Analysis of spectral separability based on Linear Discriminant Analysis. (a) Original
spectrum, (b) SNV spectrum.
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Figure 5. SNV spectral curve.

3.4. Assessing the Transferability of Spectral Indices

To explore the spectral indices characterizing the severity of peanut southern blight, we
analyzed the weights of 12 spectral indices using the relief algorithm (Figure 6a). To further
evaluate the accuracy of these features, we performed the SVM modeling with different
combinations of the features and evaluated their performance, as shown in Figure 6b. The
highest OA was 74.9%, which was achieved by using 11 features. Notably, these features
exhibited complementarity in the model. Removing the NSRI feature resulted in a 2.9%
reduction in OA when the remaining 10 features were used. Likewise, removing the HI
feature resulted in a 5.7% drop in OA when using the remaining nine features. Removing
the G feature resulted in a 2.9% reduction in OA when using the remaining four features.
Finally, removing the SIPI features led to a 2.9% decrease in OA. Based on these findings,
we can conclude that the NSRI, HI, G, and SIPI features had a particular impact on the
performance of the model.

Figure 6. (a) Weights of VIS; (b) plot of OA of VIS-superimposed SVM model.

We further conducted an autocorrelation analysis on the four selected features (Table 5).
The correlation between each feature was found to be very low, indicating the absence of
multicollinearity among the features. We proceeded to evaluate the accuracy of different
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machine learning models (Table 6). Among them, the SVM model achieved the highest
performance on the training set, with an OA of 92.6% and kappa coefficient of 0.89. How-
ever, when applied to the independent validation data, the SVM model showed lower
performance, with an OA of only 62.3% and kappa coefficient of 0.43, indicating poor
robustness of the model.

Table 5. Correlation analysis of NSRI, HI, G, and SIPI.

NSRI HI G SIPI

NSRI 1
HI 0.330943 1
G −0.36627 0.340911 1

SIPI −0.05788 0.539683 0.202275 1

Table 6. Accuracy of different machine learning models.

Features Model
Calibration Validation

OA (%) Kappa OA (%) Kappa

NSRI, HI, G, SIPI
SVM 92.6% 0.89 62.3.% 0.43
KNN 86.9% 0.8 67.9% 0.51

Decision Trees 74.6.% 0.61 64.2% 0.47

4. Discussion

4.1. Spectral Response Mechanism of Peanut Southern Blight

Peanut southern blight is a highly contagious and extremely destructive soil-borne
fungal disease that occurs in most countries. It has become a key factor limiting peanut yield
and quality [62,63]. Currently, there are few reports on the spectral response mechanism of
peanut southern blight. In this study, we obtained spectral curves of samples with different
severity levels through variable-controlled experiments. Machine learning techniques have
been applied to hyperspectral data to enhance the detection capability of peanut southern
blight severity. The main focus in this regard is to explore the spectral response of southern
blight and obtain the optimal spectral features. These methods are consistent with previous
advancements in the field [64].

Previous research has indicated that when plants are under stress from pests and
diseases, their spectra tend to shift toward shorter wavelengths, and the amplitude of the
red edge decreases [65]. When peanut plants are infected with southern blight disease, their
photosynthesis is disrupted, resulting in a decrease in the absorption capacity of blue- and
red-light wavelengths and a decrease in reflectance. As the disease progresses over time,
it further damages the leaf structure, leading to the loss of chlorophyll and water content.
Therefore, samples with different severity levels exhibit significant differences in the red-
edge and near-infrared range (725–1200 nm). Infected samples generally show a decreasing
trend in spectral reflectance, accompanied by a red-edge shift toward shorter wavelengths.

4.2. Advantages of Wavelet Analysis in Pest and Disease Detection

CWT can perform spectral decomposition at continuous wavelengths and scales.
It effectively reduces noise interference, amplifies implicit weak spectral information,
and plays a significant role in eliminating spectral background differences. Moreover, it
enhances the sensitivity of spectra to the severity of peanut southern blight disease [66,67].

In this study, we conducted a comparative analysis using CWT at different scales, and
the results showed that CWT at five scales achieved the best performance. Additionally,
we found that the SVM model constructed using CWT (WF770~780, 5) outperformed the
models based on the SNV and the original spectra. The main reason for this improvement
is that CWT enhances the spectral response in the red-edge region, enabling effective
differentiation of different severity levels of peanut southern blight disease [68].
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4.3. Application of Spectral Index in Pest and Disease Detection

To assess the transferability of spectral indices under previous disease and pest stress,
this study selected 12 spectral indices that contain information in the red-edge region. These
indices were chosen based on current reports on the remote sensing of diseases and pests,
such as wheat stripe rust [69] and apple fire blight [70]. Furthermore, relief analysis was
employed to determine feature weights, and SVM models were evaluated by individually
incorporating each feature. We observed that the model’s accuracy significantly changed
when certain features were removed (Figure 6). This variation can be attributed to the
complementary nature of different features in the model. As a result, we identified and
confirmed four features as the final inputs for the model.

Although the SVM model achieved the highest accuracy on the training dataset, we
observed poor robustness when validating the model using independent data. This may be
attributed to the fact that the data from the final period were collected in spring, while the
training dataset consisted of data collected in winter (Table 1). The different growth stages
could have led to suboptimal model performance. However, we also identified several
spectral indices that are related to the severity of peanut southern blight, indicating that
spectral indices can rapidly detect the stress of plant diseases and pests, which is consistent
with previous findings. Moving forward, our future work will likely focus on exploring
additional vegetation indices that can accurately detect the severity of peanut southern
blight, thus providing feasibility analysis for large-scale remote sensing of this disease.

4.4. Implications for Future Applications

The study also found some complex challenges in the early monitoring of peanut
southern blight. The first problem is that the physiological interaction between fungal
pathogens and host plants depends on pathogenic fungi. So, more in-depth investigation is
needed to explore the interaction between different pathogens. Previously unconsidered
variations can be revealed as the original source of reflectance data. A non-imaging sensor,
to capture the average of healthy and diseased plant tissue parts, has been used to measure
the reflectance curve, which causes many typical single-point measurement problems [71].
The second challenge lies in the complexity of field environments, where phenomena
like spectral variations from the same object and the co-occurrence of multiple diseases
can occur. Our severity classification model for peanut southern blight built at the leaf
scale may be influenced by various factors. For example, in terms of spectral response,
peanut leaf spot disease shows a significant negative correlation between the disease index
and the spectral curve in the NIR range, which is very similar to the spectral response
of peanut southern blight [11]. In terms of plant structure, peanut stem rot disease also
exhibits yellowish-brown rotting signs at the base of the stem during the early stages of
infection [72]. However, without the presence of white mycelium and brown sclerotia at
the base, it can often lead to misinterpretation. Therefore, it requires the integration of field
meteorological data, agronomic background, and other relevant data for comprehensive
discrimination, which is a difficult task. The third challenge is to integrate multiple data
sources and enable data sharing of peanut southern blight between different provinces,
aiming to improve the model’s transferability. Our future focus is on integrating multi-
source remote sensing data to achieve data exchange between provinces and establishing a
dynamic monitoring platform for peanut southern blight. This platform aims to provide
technical support for disease prevention and control in peanuts.

5. Conclusions

This study analyzed the spectral response mechanism of different severity levels of
peanut southern blight. For the severity classification problem, we compared the machine
learning modeling using CWT with traditional spectral indices and spectral preprocessing
methods. The results showed that CWT was more effective and amplified the spectral
differences between different levels of severity. Furthermore, this study emphasized the
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potential of using hyperspectral sensors for monitoring peanut southern blight, which is an
exciting tool for disease management and control in peanuts.
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Abstract: Screening for elite sugarcane genotypes for canopy cover in a rapid and non-destructive
way is important to accelerate varietal/clonal selection, and little information is available regarding
canopy cover and leaf production, leaf area, biomass production, and cane yield in sugarcane crop.
In the present investigation, the digital images of sugarcane crop by using Canopeo software was
assessed for their correlation with the physiological and morphological parameters and cane yield
production. The results revealed that among the studied parameters, canopy coverage has shown
a significantly better correlation with the plant height (0.581 **), leaf length (0.853 **), leaf width
(0.587 **), and leaf area (0.770 **) in commercial sugarcane clones. Two-way cluster analysis has led
to the identification of Co 0238, Co 86249, Co 10026, Co 99004, Co 94008, and Co 95020 with better
physiological traits for higher sugarcane yield under changing climate. Additionally, in another field
experiment with pre-breeding, germplasm, and interspecific hybrid sugarcane clones, the canopy
coverage showed a significantly better correlation with germination, shoot count, leaf weight, leaf
area index, and plant height, and finally with biomass (r = 0.612 **) and cane yield (r = 0.458 **). It has
been found that the plant height, total dry matter (TDM), and leaf area index (LAI) had significant
correlation with the cane yield, and the canopy cover data from digital images act as a surrogate
for these traits, and further it has been observed that CC had better correlation with cane yield
compared to the other physiological traits viz., SPAD, total chlorophyll (TC), and canopy temperature
(CT) under ambient conditions. Light interception determined using a line quantum sensor had
a significant positive correlation (r = 0.764 **) with canopy coverage, signifying the importance of
determining the latter in a non-destructive way in a rapid manner and low cost.

Keywords: sugarcane clones; canopy cover; light interception; biomass; cane yield

1. Introduction

Sugarcane is one the most important industrial crops in global agriculture, and it has
emerged as a multiproduct crop benefiting producers and consumers [1]. Sugarcane is the

Agriculture 2023, 13, 1481. https://doi.org/10.3390/agriculture13081481 https://www.mdpi.com/journal/agriculture
41



Agriculture 2023, 13, 1481

second most important industrial crop after cotton in India, occupying about 5 million ha
of land with a sugar production of 32.38 metric tons [2]. The sugar industry is the second
largest agro-industry in India, and it contributes to 1.1% of the national GDP besides
providing for 4% of the population residing in rural areas [3]. Due to the burgeoning
population and other constraints (abiotic stress), Ref. [3] the cultivated area of sugarcane
will mostly remain static; hence, the only option for the increasing production is to go the
vertical way/enhance crop productivity. Sugarcane is a C4 crop that produces four carbon
compounds as the primary product in the carbon assimilation cycle, and it is commonly
grown from latitude 36.7◦ N to 31◦ S and from sea level to 1000 m of altitude, and generally
sugarcane grows slowly during the early part of its growing period compared to other
tropical gramineous crops, taking up to 4 months to produce a complete leaf canopy
which intercepts nearly all the incoming radiation [4–7], while maize (Zea mays) and pearl
millet (Pennisetum glaucum) normally produce a complete leaf canopy within 2 months
of sowing [8–10]. Owing to the slow production of a complete leaf canopy, dry biomass
production is slow in sugarcane during the early part of the growth period. A comparison
of sugarcane and maize made in Zimbabwe [11] showed that the growth in dry mass was
faster at 4 months after sowing. Sorghum (Sorghum bicolor) and maize grow at similar
rates [12], suggesting that sorghum grows faster than sugarcane. On the other hand, Bull
and Glasziou [4] showed that early growth in dry mass in sugarcane is slow in most of the
regions, and high yields produced by sugarcane are mainly due to an extended growth
period rather than superior photosynthetic efficiency.

Canopy cover is a useful trait for monitoring crop productivity [13], and canopy
photosynthesis is greatest when the crop reaches its maximum canopy cover to intercept
nearly most of the incident light and absorb the required photosynthetic radiation for
photo-biochemical processes and yield formation [14,15]. The most common method for
measuring canopy cover is by determining the light interception with a line quantum
sensor [16,17]. Shepherd et al. [13] reviewed the notion that this system would be time-
consuming and costly, as the measurements should be collected near solar noon [16,18].

Another method involves using drone-based digital image capturing and processing
to predict the canopy coverage. However, such a facility may not be equally accessible to
all in the scientific community.

In this context, a recently developed method of Oklahoma State University for mea-
suring canopy coverage, called Canopeo, which rapidly determines the canopy coverage (%)
using digital images, employs an application for iOS (Apple) and Android (Google) devices
and Matlab (Mathworks) [19]. Canopeo (Oklahoma State University App Center, Stillwater,
OK, USA) is an automatic colour threshold (ACT) image analysis tool that analyses pixels
based on the red-to-green (R/G) and blue-to-green (B/G) colour ratios and an excess green
index [13]. Canopeo was accurate and faster at computing canopy cover than other software
and is widely being used in many crops such as alfalfa, cover crops, soybean, sorghum,
wheat, potatoes, and turf grass (https://canopeoapp.com/, accessed on 10 July 2022).

Canopy cover (CC), leaf area, and biomass production are reported to be the most
important physiological components resulting in better cane yield in sugarcane; hence,
quantification of canopy cover, which is the primary factor for biomass production, is
highly essential, and the later requires a lot of labour, resources, and time through a leaf
area measurement by destructive sampling or by light interception method using line
quantum sensors or by the drone-based image capturing. Several reports are available
on various crops regarding canopy cover by Canopeo, and little information is available
regarding canopy cover, leaf production, leaf area, and biomass production in sugarcane
crop. The robustness of the Canopeo tool needs to be validated and compared with data
generated from line quantum sensor and leaf area measurements for light interception mea-
surements in sugarcane crop. The ICAR-Sugarcane Breeding Institute, Coimbatore, India, a
century-old historical institute known for the “Nobilization of cane”, has evolved more than
3500 sugarcane clones, and to sustain sugarcane production the canopy coverage (CC)
trait is highly essential for screening climate-resilient sugarcane clones. Therefore, the
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present investigation was carried out to (i) evaluate sugarcane canopy cover measured
with Canopeo and with the light interception method using a line quantum sensor to find an
association between two different methods and (ii) to analyse the canopy cover in sugarcane
including commercial, interspecific hybrids and germplasm clones and to establish its cor-
relation with physiological and morphological parameters, biomass, and cane yield traits in
field conditions.

2. Materials and Methods

2.1. Plant Material and Crop Management of Commercial Hybrids of Sugarcane Clones

Sugarcane clones of commercial hybrids types viz., CoM 0265, Co 86249, Co 99004,
Co 10026, Co 86010, CoC 671, Co 1148, Co 95020, Co 2001-13, Co 86032, Co 7717, Co740,
Co 62175, Co 8371, Co 0218, CoLK 8102, BO 91, Co 775, Co 0212, Co 91010, ISH 100,
Co 94008, Co 0238, Co 86011, Co 8338, Co 85019, Co 8208, Co 419, CoV 92102, Co 13006,
and Co 8021 (Table 1) were grown at the ICAR-Sugarcane Breeding Institute, Coimbatore
(11◦0′34′′ N, 76◦55′2′′ E, 430 m above mean sea level), Tamil Nadu, India. Two budded
sets, thirty-eight per row of 6.0 m, were planted, and a full dose of phosphorous (P2O5)
was applied in the furrows before planting as basal fertilization, while nitrogen (N) and
potassium (K2O) were applied in two equal measures at 45 days after planting (DAP) and at
full earthing-up (90 DAP). Detrashing of dried leaves was done at 5, 7, and 10 months after
planting for proper sunlight penetration. The crop stand was free from significant disease
or insect damage. The morpho-physiological data, viz., germination percent, leaf length,
leaf width, leaf number, leaf area, shoot thickness, and plant height, were determined by
following standard procedure.

Table 1. Sugarcane clones (source: Hemaprabha et al., 2018) [20].

No. Clone [a] Maturity Colour Sucrose (%)

1 BO 91 Mid late Yellow purple 16.40
2 Co 10026 * Early Pinkish yellow orange 19.42
3 Co 13006 Mid late Yellow orange 19.15
4 Co 0212 * Mid late Purple 19.67
5 Co 0218 Mid late Yellow purple 20.12
6 Co 0238 * Early Golden purple 19.25
7 Co 1148 Mid late Light purple 15.18
8 Co 2001-13 * Mid late Purple 19.03
9 Co 419 Mid late Dark purple 17.09
10 Co 62175 * Mid late Greenish purple 17.35
11 Co 740 Mid late Yellowish green 17.96
12 Co 7717 Early Purple 17.90
13 Co 775 Early Light purple 18.32
14 Co 8021 Mid late Purple 17.86
15 Co 8208 Early Purplish pink 17.86
16 Co 8338 Early Dark purple 18.82
17 Co 8371 Mid late Green yellow 18.18
18 Co 85019 * Mid late Purple 16.39
19 Co 86010 * Mid late Yellowish green 18.45
20 Co 86011 Early Purple 19.98
21 Co 86032 * Mid late Reddish pink 19.45

22 Co 86249 * Mid late Green yellow with
purple tinge 18.82

23 Co 91010 * Mid late Yellow green with
purple tinge 19.89

24 Co 94008 Early Purple 18.71
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Table 1. Cont.

No. Clone [a] Maturity Colour Sucrose (%)

25 Co 95020 Mid late Yellowish green 18.79
26 Co 99004 Mid late Yellowish green 20.00

27 CoC 671 Early Light purple to purple
yellow 21.00

28 CoLk 8102 Mid late Yellowish purple 18.00
29 CoM 0265 Mid late Green 19.33
30 CoV 92102 * Mid late Purple 19.80
31 ISH 100 Mid late Light purple green 18.20

[a] Asterisks (*) indicate clones suitable for drought conditions [1].

2.1.1. Germination%, Plant Height, and Shoot Thickness

The number of germinants/row was recorded at 30 DAP, and germination % was
derived. The plant height was measured from the base to the top most visible transverse
mark on the 60 DAP using a measuring tape and the shoot thickness with a digital vernier
calliper (Mitutoyo, Kawasaki, Japan) [21].

2.1.2. Leaf Traits

Leaf area (LA) was determined in a non-destructive manner by linear measurement
method as mentioned by Montgomery (1911):

LA = LBK
(

cm2
)

(1)

where L = maximum length of length, B = maximum breadth, and K = constant (0.75 based
on regression analysis).

2.1.3. Biomass

During the formative stage, the biomass samples were collected in a one-meter square
area, and all the samples were oven-dried (60 ± 5 ◦C) until a constant weight was reached.

2.1.4. Determination of Canopy Cover in Commercial Hybrids of Sugarcane Crop at Early
Formative Phase

The non-destructive method of canopy coverage was recorded at 60 DAP using
Canopeo software installed in Android mobile phone. Canopeo is an application for iOS
(Apple, Cupertino, CA, USA) and Android (Google, Mountain View, CA, USA) mobile
devices and Matlab (Mathworks, Natick, MA, USA) that can rapidly analyse canopy
cover (Figure 1a) from pictures [19]. The accuracy of the CC recorded through Canopeo
software is 91% (correctly classify pixels as green/true positive), and specificity is 89% (non-
green/true negative) as mentioned by the original author of the software from Oklahoma
State University [19]. The distance between the mobile and sugarcane plant while recording
the measurements is 80 cm. In order to facilitate easy CC recording, a 35-inch length selfie
stick was also used for a few taller clones.

The captured image was processed rapidly through the Canopeo software immediately
after image acquisition on an Android mobile device, and the derived canopy coverage
(%) was saved as a separate folder for further analysis. The canopy coverage image was
captured by keeping the mobile parallel to the soil [19]. However, in our study, another
method (keeping mobile perpendicular to the soil) was also followed along with the
standard method (keeping mobile parallel to the soil), and finally, both methods were
compared by correlation to identify the best method/position for capturing the image in
the sugarcane crop.
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(a) 

 
(b) 

Figure 1. (a) Representative figure of measuring canopy coverage in a sugarcane field. (b) Represen-
tative figure of measuring light interception in a sugarcane field.

The samples are recorded for the canopy coverage from 9.00 to 11.00 AM, and data are
recorded just opposite to the sunlight direction in order to avoid the shade of the observer.
The represented values are the average of four observations per replication, i.e., a total of
8 observations per treatment.

2.1.5. Determination of Light Interception in Commercial Hybrids of Sugarcane Crop at
Early Formative Phase

The light interception (LI%) was determined using line quantum sensor LI-191SA
(LICOR Inc., Lincoln, NE, USA) connected with the LI-1400 a multipurpose datalogger that
functions both as a data logging device and a multichannel, auto-ranging meter between
11.00 to 12.00 IST (Figure 1b). The intercepted photosynthetically active radiation (IPAR)
for a particular day was computed as the difference between incident PAR at the top and
the transmitted PAR received at the bottom of the canopy (the radiation reflected from the
crop and soil was also taken into account for deriving the LI%), and the correlation between
the CC% and LI % was conducted. Also, the radiation reflected by the soil surface was also
determined and finally incorporated for the LI% calculation.
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2.2. Plant Material and Crop Management of the Breeding Population, Interspecific Hybrids, and
Basic Species Clones of Sugarcane Clones

In order to determine the correlation between the canopy coverage with biomass and
cane yield, 38 sugarcane clones including improved breeding population clones (004-73,
04-423, 14-154, 07-520, 04-595, 04-472, 12-127, 97-77, 01-807, 20-158, 20-614, 20-335, 99-45,
98-290, WL 10-40, 14-161, 81 GUK 192, 81 GUK 527, 92 GUK 220, 97 GUK 111, 98 GUK
116, GUK 00-910, GUK 02-91, GUK 06-402, 88 GUK 072, 97 GUK 9, 97 GUK 74, 987 GUK
124, 20-191, 07-776, 99-19, 99-291, 06-013, and 01-803), interspecific hybrids (ISH 107 and
ISH 111), and germplasm clones (Kheli and Pathri) were planted in the randomized block
design in two replications at the experimental farm of ICAR-Sugarcane Breeding Institute,
Coimbatore, India (11◦0′34′′ N, 76◦55′2′′ E, 430 m above mean sea level) during the years
2021–2022. The canopy coverage was recorded at 60 DAP using Canopeo software and
analysed as mentioned in Experiment 1. The germination, shoot thickness, and plant height
were determined as mentioned in Experiment 1.

During the formative stage, the fresh biomass samples were collected in a one-meter
square area, and all the samples were separated into leaf, sheath, and stem parts and were
oven-dried (60 ± 5 ◦C) for determination of constant weight. The constant dry weight was
used for computing the overall dry matter production.

2.2.1. SPAD

Non-destructive chlorophyll estimation was recorded using a SPAD meter (Soil Plant
Analysis Development) (atLeaf, Wilmington, Delaware, NC, USA) that computes the
chlorophyll content of a leaf by recording the transmission of red light and infrared light at
660 nm and 940 nm, respectively, and converts the reading into a digital signal [1].

2.2.2. Canopy Temperature

The canopy temperature was measured with a thermal imaging infrared camera
(FLIR E6) between 11:30 a.m. and 12:00 noon on cloudless days. The image captured
was processed through FLIR software (FLIR Tools version 5.1.15036.1001), and the final
data were used. The thermal imaging camera was held to view the crop at a 30◦ angle
from horizontal at a 90◦ angle to the row, with the minimum exposure to the soil, and
the emissivity factor of 0.95 was used for the green canopy. Each canopy temperature
measurement was the average of three readings at different locations in each clone. Images
were registered in the Thermal MSX® mode (FLIR Systems, Wilsonville, OR, USA), and
files were saved in standard 14-bit JPG format.

2.2.3. Chlorophyll Fluorescence

Chlorophyll fluorescence (Fv/Fm) was measured in intact sugarcane leaves using a
chlorophyll fluorometer (model OS30p, Opti-Sciences, Hudson, NH, USA). The leaves were
dark-adapted for 15 min using leaf clips (Opti Sciences), and the (Fv/Fm) readings were
recorded by passing a saturating light:

Fv

Fm
=

Fm − Fo

Fm
(2)

where Fv/Fm = ratio of variable fluorescence to maximal fluorescence, Fm = maximal
fluorescence, Fo = minimal fluorescence, and Fv = variable fluorescence of photo-
system II [1].
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2.2.4. Sucrose, Cane Yield, and CCS

Sugarcane juice was extracted in a crusher with 65% extraction capacity, and the
juice quality was analysed as total soluble sugars (TSS) (Brix) and sucrose content (Pol%)
according to the standard method [22]. Cane yield was estimated at the 12th month of the
crop stage, and the middle 4 rows of canes were harvested and weighed for the plot yield,
and the yield per hectare was calculated and expressed as t ha−1. Commercial cane sugar
(CCS) was determined and expressed in percentage and t ha−1 according to Equations (3)
and (4), respectively [21].

CCS% =
Sucrose content × 1.022

TSS × 0.292
(3)

CCS (t/ha) =
CCS% × Yield

100
(4)

2.3. Statistical Analysis

Analysis of variance (ANOVA) was performed on the data following the method
of Gomez and Gomez (1984) [23], and the least significant difference (LSD) values were
calculated at the 5% probability level. Duncan multiple range test (DMRT) was performed
to separate significant genotypes, and alphabets were superscripted for easy view. The
Pearson-product-moment correlation coefficients (r) between leaf length, leaf width, leaf
number, leaf area, shoot thickness, plant height, germination percent, and canopy cover
were computed using SAS 9.3 (SAS Institute, Cary, NC, USA) [24]. The scatterplot matrix
showing the correlation and frequency counts among the studied parameter, i.e., canopy
coverage % (CC), cane yield (CY), dry biomass at formative phase (DWFP), shoot diameter
(SD), leaf area (3rd top visible dewlap), leaf area (cm2), leaf width (cm), leaf length (cm),
leaf number (L.No), and plant height (PH), was created using JMP genomics software
version 6.1. Two-way cluster analysis with the wards method showing the grouping of
sugarcane clones with the studied parameter was also conducted using JMP genomics
software. Regression analysis was carried out between the CC and biomass, cane yield,
and their corresponding slope (β), and significance was determined following “F” test at
0.05 probability. A correlation diagram displaying the correlation between the studied
parameters along with the p-value was conducted through R software version 4.1.3.

3. Results

3.1. Association between Sugarcane Canopy Cover Measured with Canopeo at Different Positions

The canopy cover (CC) data was determined at the early formative phase (60–150 DAP)
through Canopeo, and both digital images acquired parallel to the ground and perpendicular
to the ground were analysed for their association and relevance in sugarcane crop. Among
the four phases of the sugarcane crop, the formative phase which starts at 60 DAP is
reported to have high relevance to the cane yield; hence, the CC data were recorded at
60 DAP. The correlation between canopy coverage (%) from an image acquired parallel to
the ground and perpendicular to the ground is shown in Figure 2a. A significantly better
correlation of r = 0.870 ** was observed between the canopy coverage (%) data through
images acquired parallel to the ground and perpendicular to the ground of the sugarcane
crop. Canopy cover images were taken in properly weeded/weed-free fields to reduce
the data error; i.e., the background images of weeds mimic the crop, and this results in
an overestimation of CC data. The data revealed a significant linear relationship at 1%
probability level between the data captured through two positions.
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(a) 

 
(b) 

Figure 2. (a) Correlation between canopy coverage (%) image acquired parallel to the ground and
perpendicular to the ground. ** denotes significant at 1%. (b) Canopy coverage (%) images, i.e.,
original image (left) and classified image (right) of sugarcane clone.

3.2. Association between Sugarcane Canopy Cover Measured with Canopeo and with the Light
Interception by PAR (Photosynthetically Active Radiation) Line Quantum Sensor

The light interception (LI) data were recorded simultaneously while capturing the
canopy cover images through Canopeo using Android mobile. Light interception data were
acquired through multi-channelled PAR quantum sensors; i.e., one line quantum sensor
was placed diagonally between the rows of sugarcane crop, and another line quantum
sensor between and above the crop for measuring the transmitted PAR and reflected PAR
simultaneously. Incident PAR measurement was achieved through a point sensor for ease
of work.

Further, a significant correlation (r = 0.764 **) was observed between canopy coverage
(%) from images acquired in parallel to the ground, and light interception by a line quantum
sensor (Figure 3) confirms the accuracy of the CC data of Canopeo. A positive coefficient
indicates that as the value of the independent variable (canopy cover) increases, the mean
of the dependent variable (light interception) also tends to increase. The slope coefficient
or β value of the regression was 0.695, and the coefficient represents the mean increase of
LI% for every additional increment of CC. In the present regression equation, (Figure 3)
for every 0.695 increment in CC, a correspondingly one unit increment in LI was observed,
and the model was found statistically significant at 1% probability through the “F” test.
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Figure 3. Correlation between canopy coverage (%) image acquired in parallel to the ground and
light interception. ** denotes significance at 1%.

3.3. Canopy Cover in Sugarcane Crop, and Its Correlation with Morphological Parameters,
Biomass, and Cane Yield Traits in Field Conditions

The results for CC%, germination %, leaf area (cm2), leaf length (cm), leaf width (cm),
leaf number, plant height, and shoot thickness are shown along with LSD at 5% in Table 2.

Table 2. Variation in canopy coverage (CC), germination % (G), and leaf and shoot morphology in
sugarcane clones under field condition.

Genotypes CC% G% Leaf Area (cm2) LL (cm) L.No LW (cm) PH (cm) SD (mm)

BO 91 18.86 DEF 50.50 A 584.12 G 76.08 EF 6.00 1.70 F 20.50 EFG 10.33
Co 0212 31.71 ABC 44.95 ABCDE 878.93 BCDEFG 93.25 ABCD 5.83 2.15 E 23.00 BCDEF 11.00
Co 0238 27.80 BCDE 41.48 BCDE 1055.78 ABCD 92.00 ABCD 5.58 2.59 CDEB 21.33 DEFG 12.33

Co 10026 27.95 BCDE 45.00 ABCDE 1088.68 ABCD 93.91 ABC 5.50 2.80 AB 26.08 AB 12.33
Co 1148 18.56 DEF 41.71 ABCDE 818.78 CDEFG 77.83 DEF 6.00 2.30 CDE 19.08 FG 11.00
Co 13006 15.96 F 37.77 DE 772.62 CDEFG 83.16 BCDEF 5.33 2.19 E 21.41 DEFG 12.00

Co 2001-13 24.70 BCDEF 45.32 ABCDE 1031.05 ABCD 88.41 ABCDE 6.08 2.54 CDEB 20.91 DEFG 12.50
Co 62175 26.43 BCDEF 42.82 ABCDE 1000.48 ABCDE 89.33 ABCDE 5.91 2.42 CDEB 25.00 ABCD 12.50

Co 740 22.75 BCDEF 47.03 ABC 865.65 BCDEFG 79.33 CDEF 6.08 2.24 DE 21.25 DEFG 12.66
Co 8021 25.83 BCDEF 46.75 ABC 966.83 ABCDEF 89.25 ABCDE 5.75 2.46 CDEB 24.91 ABCD 12.16

Co 85019 26.03 BCDEF 44.30 ABCDE 1057.50 ABCD 87.08 ABCDE 5.83 2.72 BCD 23.08 BCDEF 13.50
Co 86010 28.71 BCD 41.43 BCDE 946.71 ABCDEFG 80.08 BCDEF 5.91 2.56 CDEB 23.33 BCDE 12.16
Co 86032 16.85 EF 46.52 ABCD 646.62 EFG 71.50 F 5.16 2.17 E 20.50 EFG 11.66
Co 86249 32.80 AB 50.50 A 1124.91 ABC 92.66 ABCD 5.83 2.74 ABC 24.16 ABCDE 12.00
Co 94008 31.25 ABC 49.30 AB 1266.71 A 92.75 ABCD 5.75 3.16 A 23.00 BCDEF 11.66
Co 95020 39.50 A 45.87 ABCDE 1215.46 AB 100.25 A 5.83 2.74 ABC 27.33 A 12.66
Co 99004 26.18 BCDEF 45.83 ABCDE 1144.82 ABC 91.41 ABCDE 5.75 2.70 BCD 25.66 ABC 11.66

CoLk 8102 22.16 BCDEF 38.19 CDE 627.051 FG 84.33 BCDEF 5.75 1.71 F 18.83 G 11.00
CoM 0265 30.88 ABC 37.50 E 912.43 ABCDEFG 95.41 AB 5.41 2.30 CDE 18.50 G 12.00
CoV 92102 20.45 CDEF 41.25 BCDE 720.83 DEFG 80.58 BCDEF 4.66 2.43 CDEB 21.66 CDEFG 11.00

Mean 25.77 44.21 936.3 86.9 5.7 2.4 22.5 11.9
LSD@5% 9.4 7.3 310.4 12.8 NS 0.4 3.4 NS

CC%: Canopy coverage %, G%: Germination %, LL: Leaf length, L.No: Leaf number, LW: leaf width, PH: Plant
height, SD: Shoot thickness. NS: Non-significant. n = 3 Values carrying the same letters as superscripts in each
column are not significantly different from each other treatment.
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3.3.1. Canopy Coverage

The mean canopy coverage (CC%) of the sugarcane crop was 25.7%, and the minimum
and maximum CC% were 15.9 and 32.8, respectively (Table 2). Among the studied clones,
Co 0212, Co 0238, Co 10026, Co 62175, Co 85019, Co 86010, Co 86249, Co 94008, Co 95020,
Co 99004, and CoM 0265 were recorded with better canopy coverage of more than 25%,
while Co 13006, BO 91, and Co 1148 indicated a poor CC% of less than 17%.

3.3.2. Plant Height

The mean plant height of the sugarcane crop was 22.5 cm, and the minimum and
maximum plant height were 18.5 and 27.33, respectively (Table 2). Among the studied
clones, Co 0212, Co 0238, Co 10026, Co 1148, Co 13006, Co 2001-13, Co 62175, Co 740,
Co 8021, Co 85019, Co 86010, Co 86032, Co 86249, Co 94008, Co 95020, and Co 99004 were
recorded with better plant height of more than the mean plant height (22.5 cm). The clones,
viz., Co 95020, Co 10026, Co 62175, and Co 99004, were observed with significantly better
plant height compared to other studied clones.

3.3.3. Germination Percentage

The mean data of germination % were 41.25, and the clones, viz., Co 2001-13, Co 86249,
Co 94008, Co 10026, CoV 92102, and BO 91, recorded significantly better germination %,
while the clones Co 13006, CoLk 8102, and CoM 0265 showed relatively less germination %
(<40%) (Table 2).

3.3.4. Leaf Area, Leaf Number, Leaf Length, and Leaf Width

The mean leaf length (3rd top visible dewlap) of the sugarcane clones was 80.58 cm,
and the clones, viz., Co 95020, Co 0212, Co 0238, Co 10026, Co 94008, Co 86249, Co 85019,
Co 8021, and Co 62175, were recorded with significantly better leaf length (>85 cm) than
other clones, while Co 86032, BO 91, Co 740, and Co 1148 observed with poor leaf length
(Table 2). The mean leaf no. per shoot was 5.7, and non-significant differences were
observed among the studied clones. The mean leaf width (3rd top visible dewlap) of
the sugarcane clones was 2.4 cm, and the clones, viz., Co 94008, Co 95020, Co 86249,
Co 86010, Co 85019, Co 10026, Co 99004, Co 2001-13, and Co 0238, exhibited better leaf width
(>2.4 cm), while BO 91 and CoLk 8102 recorded poor leaf width compared to other clones.

3.3.5. Shoot Thickness

The mean shoot diameter of the sugarcane clones was 11.9 mm, and the clones, viz.,
Co 85019, Co 740, Co 10026, Co 0238, Co 62175, and Co 95020, were observed with signifi-
cantly better shoot diameter, while BO 91, Co 0212, Co 1148, and CoLk 8102 recorded less
shoot diameter.

3.3.6. Scatterplot Matrix

The scatterplot matrix showing the correlation and frequency counts among the
studied parameter, i.e., canopy coverage % (CC), cane yield (CY), dry biomass at formative
phase (DWFP), shoot diameter (SD), leaf area (3rd top visible dewlap), leaf area (cm2), leaf
width (cm), leaf length (cm), leaf number (L.No), and plant height (PH), is shown in Figure 4.
The canopy coverage % data acquired through the image have shown a significantly better
correlation with plant height (0.581 **), leaf length (0.853 **), leaf width (0.587 **), and leaf
area (0.770 **).
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Figure 4. Scatterplot matrix showing the correlation, frequency counts among the studied parameter,
i.e., canopy coverage % (CC), dry biomass at formative phase (DWFP), shoot diameter (SD), leaf area
(3rd top visible dewlap) (LAI), leaf area (cm2) (LA2), leaf width (cm) (LW), leaf length (cm) (LL), leaf
number (L.No), and plant height (PH).

3.3.7. Two-Way Cluster Analysis

Two-way cluster analysis showing the grouping of sugarcane clones with the studied
parameter is shown in Figure 5. The results revealed three distinct clusters: Cluster I:
BO 91, CoLk 8102, Co 1148, Co 13006, Co 86032, and CoV 92102; Cluster II: Co 0212,
CoM 0265, Co 0238, Co 86249, Co 10026, Co 99004, Co 94008, and Co 95020; and
Cluster III: Co 2001-13, Co 85019, Co 62175, Co 86010, Co 8021, and Co 740. Among the
three clusters, Cluster I was recorded as relatively lesser in plant height (20.33 cm), leaf num-
ber (5.49), leaf length (78.9 cm), leaf width (2.1 cm), total leaf area (695 cm2), shoot diameter
(11.2 mm), dry biomass (510 g dry-weight m−2), and canopy coverage (18%), while Clus-
ter II was observed with better plant height (23.64 cm), leaf length (94 cm), leaf width
(2.65 cm), total leaf area (1085 cm2), and canopy coverage (31%). Cluster III was recorded
with better leaf number, dry biomass, and shoot thickness among the studied parameters.
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Figure 5. Two-way cluster analysis displaying the ward method grouping of sugarcane clones based
on the studied parameter.

3.4. Canopy Cover in Sugarcane Crop (Improved Breeding Population, Interspecific Hybrid, and
Basic Germplasm Clone) and Its Correlation with Physiological, Morphological, and Cane
Yield Traits

Canopy coverage:
The mean canopy coverage (CC%) of the sugarcane crop was 32.5%, and the minimum

and maximum CC% were 17.2 and 49.0, respectively (Table 2). Among the studied clones,
the 004-73, 04-423, 14-161, GUK 06-402, and 01-803 were recorded with better canopy
coverage of more than 40% (Figure 2b), while 04-595, 97 GUK 111, and 98 GUK 116
indicated a poor CC% of less than 20% (Figure 6).

 

Figure 6. The mean cane canopy (CC%) coverage, cane yield (t/ha), and total dry matter (TDM) of
various pre-breeding, germplasm, and interspecific hybrid sugarcane clones.
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Cane yield:
The mean, minimum, and maximum cane yield in sugarcane clones (improved breed-

ing population, interspecific hybrid, and basic germplasm) were 72.4, 37.3, and 123.8 (t/ha).
Among the studied clones, 07-520, 12-127, GUK 06-402, 987GUK 124, 99-291, Pathri, and
ISH 111 recorded better cane yield compared to other clones (Figure 6).

Distribution of the dry matter partitioning and physiological and morphological traits:
The distribution of the dry matter partitioning (LWT: leaf weight, SHWT: sheath

weight, STWT: stem weight, and TDM: total dry matter (g .dwt.m−2) and S.Hgt (cm)
in the studied sugarcane clones are shown in Figure 7a. The mean LWT, S.Hgt, SHWT,
STWT, and TDM were 349, 191, 251,579, and 1179 g .dwt.m−2. The distribution of the
SUC%: Juice sucrose, CC: Canopy cover, CCSY: commercial cane sucrose, CT: Canopy
temperature (◦C) (Figure 7b), CY: cane yield, GC: germination count, LAI: leaf area index,
NOC: number of canes, NOL: Number of leaves, SHC: shoot count, and SPAD: Soil Plant
Analysis Development ratios are shown (Figure 7b). The mean SUC%, CC, CCSY, CT, CY,
GC, LAI, NOC, NOL, SHC, and SPAD were 16, 32, 8.2, 33, 72.4, 12, 2.09, 8.2,77, 61, 23,
and 26, respectively. The distribution of the chlorophyll fluorescence (Fv/Fm) and total
chlorophyll (mg.cm−2) are shown in Figure 7c. The mean chlorophyll fluorescence (CFL)
and total chlorophyll (TC) were 0.609, and 0.0204, respectively.

 
(a) 

 
(b) 

Figure 7. Cont.
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(c) 

 
(d) 

Figure 7. (a) Box plot displaying (upper quartile, lower quartile, median, upper extreme, lower
extreme, whisker, outlier, and mean (horizontal green line) and the distribution of the dry matter
partitioning LWT: leaf weight, SHWT: stem weight: STWT, and TDM: total dry matter (g .dwt.m−2)
ratios) and S.Hgt: shoot height (cm). (b) Box plot displaying the distribution of the SUC%: Juice
sucrose, CC: Canopy cover (%), CCSY: commercial cane sucrose (ton/ha), CT: Canopy temperature
(◦C) CY: cane yield (ton/ha), GC: germination count/row, LAI: leaf area index, NOC: number
of canes/row, NOL: Number of leaves, SHC: shoot count/row, and SPAD: Soil Plant Analysis
Development ratios. (c) Box plot displaying the distribution of the physiological (CFL: Chlorophyll
fluorescence and TC: total chlorophyll content mg·cm−2 ratios). (d) Thermal image displaying the
canopy temperature (◦C) sugarcane crop.

3.5. Correlation between Physiological and Morphological with Canopy Coverage

The correlation between physiological and morphological traits and cane yield is
shown in Figure 8. Cane yield, SUC%, CCSY, and TDM had significant correlations with
canopy coverage (r = 0.46 **, 0.42 **, 0.51 **, 0.62 **, respectively). The germination count,
shoot count, initial plant height, and final plant height also had significant correlation
with CC (r = 0.46 **, 0.56 **, 0.60 **, and 0.35 *, respectively), while chlorophyll fluo-
rescence (Fv/Fm), canopy temperature (CT), SPAD, and total chlorophyll (TC) showed a
non-significant association with CC (r = −0.19, 0.00, 0.00, and −0.01, respectively). The
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leaf weight and stem weight also revealed a positive correlation (0.36 * and 0.65 **) with
CC. Also, the correlation between physiological traits, viz., chlorophyll fluorescence, SPAD,
total chlorophyll (TC), and canopy temperature (CT), with cane yield (CY) (r = −0.10 ns,
−0.23 ns, −0.23 ns, 0.01 ns, respectively). The leaf area index (LAI), plant height (PH), and
total dry matter (TDM) had significant correlations with CC (r = 0.44 **, 0.60 **, and 0.62 **,
respectively).

Figure 8. Correlation between various physiological and morphological traits with yield, viz., SPAD,
TC:total chlorophyll (mg/cm2), CT: Canopy temperature (◦C), NOC: number of canes/row, NOL:
number of leaves, S.Hgt: shoot height (cm) at final stage, SHWT: Sheath weight (g.m−2), LWT: leaf
dry weight (g.m−2), LAI: Leaf area index, GC: germination count, SHC: shoot count-early stage,
PH: plant height at early stage (cm), CC: canopy coverage (%), STWT: stalk weight (g.m−2), TDM:
total above-ground dry matter (g.m−2), SUC%: Juice sucrose%, CCSY: Commercial cane sugar
(t ha−1), and CY: Cane yield (t ha−1), *** denotes p < 0.001, ** denotes p < 0.01; * denotes p < 0.05;
and ns denotes non-significant p ≥ 0.05. The intensity of the colour indicates the strength of
the correlation.

Based on the canopy coverage data, the simple regression analysis has revealed the
prediction of cane yield and total dry matter (TDM) as per Equations (5) and (6) mentioned
below:

Cane yield = (33.00 + 1.213 CC%) (5)

Total dry matter = (198.18 + 30.204 CC%) (6)

These simple Equations (5) and (6) suggest the usefulness of the canopy coverage trait
in forecasting cane and total dry matter in sugarcane in a rapid and accurate way.
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4. Discussion

4.1. Position of the Camera and Comparison of Light Interception (LI) with Canopy Cover (CC)

This paper describes the methodology of canopy cover (CC) determination in sug-
arcane and its association with dry matter and cane yield. A significant correlation
(r = 0.870 **) was observed between canopy coverage (%) from images acquired paral-
lel to the ground and perpendicular to the ground (Figure 2). Also, the canopy coverage
(%) from images acquired parallel to the ground had a significantly better correlation with
the leaf area thus revealing that the parallel position of the camera for capturing the image
for CC% is suited for the sugarcane crop. A significant positive correlation coefficient
(0.764 **) between light interception (by line quantum sensor) and canopy cover cover-
age (by Canopeo) indicates (Figure 3) the similarity between both data. There is a strong
correlation between the canopy coverage (%) image acquired in parallel to the ground
and light interception (Figure 3) by a line quantum sensor which we have observed in
sugarcane crops also in the present investigation [13]. Similar to our findings, others have
also reported that the ground coverage values estimated from digital images taken above
the canopy have been correlated to light interception measurements which are limited
by the time of measurements and the presence of clouds [25]. The limitation of this light
interception method is that the measurements should be taken in unobstructed sunlight and
close to solar noon [26]. The canopy cover methodology for estimating light interception
in soybeans has been reviewed to have advantages over the above limitations [27]. In this
technique, ground area coverage was determined by digital images taken above the canopy.
The canopy coverage values were similar throughout the day and were correlated in a
one-to-one relationship with light interception measurements made with a line quantum
sensor at solar noon. Shepherd et al. (2018) [13] have also reported a linear relationship
between canopy cover measured with pictures (R2 = 0.94) and videos (R2 = 0.92) in Canopeo
and light interception.

4.2. Germination

Better germination of sugarcane sets in the field is often reported to be linked with the
early vigour. In our study, the mean germination % was 44.21, and the clones, viz., BO 91,
Co 10026, Co 740, Co 8021, Co 86032, Co 86249, Co 94008, CoV 92102, Co 95020, and
Co 99004, recorded a significantly better germination (>44) percentage. Several reports [28,29]
suggest that, due to the genetic nature and environment, there exists high variability in sett
germination percent in sugarcane varieties, and these reports corroborate our findings.

4.3. Leaf Length, Width, Leaf Number, and Leaf Area

The rate of leaf appearance is cultivar-dependent and determined mainly by tempera-
ture [30], but it can also be altered by water stress that decelerates expansive growth [31].
Our experiment also confirms the previous report [30] having greater variability in leaf
number which suggests that the variation is mainly due to clonal dependence at ambient
conditions. Differential thermal requirements for nine sugarcane cultivars to produce
the first leaves and the association of the rate of leaf appearance which has the poten-
tial for increasing yield [30] are determined by the extent of genetic variation apart from
environmental influence.

Leaf arrangement was associated with higher sugar/metric ton, and selection by
breeders for higher leaf area indices and for optimum leaf arrangement is suggested [32].
A significant positive correlation between leaf area index and ground cover in potatoes
(Solanum tuberosum) under different management conditions has been reported [33], and
this shows that the canopy coverage (%) image acquired non-destructively through Canopeo
software using simple android mobile will be useful in determining the leaf area of the
sugarcane crop at an early stage rapidly compared to the conventional destructive methods
which consume a lot of labour and other resources. Canopeo is faster at calculating a canopy
cover percentage and can be easily done while in the field. It took less than 1 min to take

56



Agriculture 2023, 13, 1481

three pictures or one video per plot, and with the line quantum sensor, data collection time
per plot was variable due to cloud cover.

4.4. Dry Matter Production or Biomass

Most of the better-performing sugarcane clones (Co 86010, Co 85019, and Co 10026)
identified in this study had a drought-tolerant parent [1], and, in addition to that, Co 62175,
Co 85019, and Co 10026 were high-biomass clones. The poor performance of the clones,
viz., BO 91, Co 1148, and CoLK 8102, might be plausibly due to their best suitability to
subtropical Indian areas rather than a tropical condition in India, while the clones Co 10026,
Co 86249, Co 99004, Co 94008, and Co 95020 are of high biomass type with better leaf area
production resulting in better canopy coverage.

4.5. Tiller Number and Plant Height

The variability (high tillering and shy tillering) in sugarcane tillering and its relation
to sugarcane productivity [34,35] have been widely discussed [36]. It was reported that the
number of tillers and plant height at six months after planting are highly correlated with
canopy cover (rg = 0.72) and canopy height (rg = 0.69), respectively [37]. Our results are in
line with the previous study of [38] which reported that early biomass had a high genetic
correlation with unmanned aerial vehicle (UAV)-derived canopy height (0.810) and canopy
cover (0.710). Capturing spectral reflectance by means of UAV at the whole canopy level
rather than at the individual leaf level has been an important contributing factor for the
high trait-yield correlation compared to individual leaf spot measurements which do not
represent whole-canopy dynamics [38].

Canopy cover is a useful trait related to crop growth, water use, and stalk number,
and cane yield is considered an important parameter in crop monitoring [37].

4.6. Canopy Temperature and Cane Yield

Canopy temperature, a surrogate trait for canopy conductance, has been previously
monitored in sugarcane, and it showed a significant genotypic variation and a strong
negative genetic correlation with biomass [39,40]. Our study (Figures 7b,d and 8) observed
similar findings (r = 0.04 ns, r = 0.01 ns between CT and TDM, CY, respectively) and
also corroborates the report [41] where canopy temperature has been reported as highly
negatively correlated with stalk productivity (r = −0.53 **) under drought stress, while
there is a non-significant correlation (r = −0.18 ns)). Under ambient conditions, the canopy
temperature is generally observed with less variability (poor r value with cane yield)
among the sugarcane clones, and the better expression of canopy temperature is observed
only under abiotic stress conditions where the deeper roots function in tapping of water
at deeper zones and support transpiration with subsequent higher canopy conductance,
canopy cooling, and better correlation with crop yield.

4.7. Chlorophyll Fluorescence vs. TDM and Cane Yield

Chlorophyll fluorescence is being reported to be one of the best traits for screening the
healthy crop under abiotic stress and in the present investigation (Figure 3) where the crop
responses under ambient conditions did not translate in the form of TDM (r = −0.24 ns) and
cane yield (r = −0.10 ns). The chlorophyll fluorescence exhibits a non-significant correlation
(r = 0.02 ns) with cane yield under ambient conditions, while a positive correlation of Fv/Fm
with stalk productivity (r = 0.56 **) under drought stress [41].

4.8. SPAD Index vs. TDM and Cane Yield

The SPAD index is a widely discussed trait for the rapid determination of chlorophyll
content, and it is also reported to have a significant correlation with crop yield. Chlorophyll
is the basic molecule that helps in the absorption of solar radiation and aids in the synthesis
of carbohydrates through photosynthesis and finally crop yield. In our experiment, a
non-significant correlation of r = −0.01 ns and r= −0.23 ns was observed between the TDM,
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cane yield, and SPAD (Figure 3). These findings corroborate the findings of conclusions of
Silva (2007) where the SPAD index has been reported to have a non-significant correlation
with stalk productivity (r = 0.19 ns) under ambient condition, while there is a significant
correlation (r = 0.36 **). Thus, it reveals that the SPAD index is a useful trait preferably under
abiotic conditions, where the stress leads to loss of chlorophyll and declined photosynthesis
and reduced synthesis of carbohydrates and finally crop yield.

4.9. Canopy Coverage vs. TDM and Cane Yield

Canopy cover is a valuable trait for monitoring crop productivity [13], and canopy
photosynthesis is greatest when the crop reaches its maximum canopy cover to intercept
virtually most of the incident light and absorbs the required photosynthetic radiation for
photo-biochemical processes and yield formation [14,15]. From the present study, it is clear
that the GUK clones had significantly better CC and cane yield compared to other clones.
The GUK clones have the parental genes of Erianthus sps which is fast growing, with more
leaf area, CC, biomass, and cane yield. It has been reported that Erianthus sps exhibits
vigorous growth, high biomass production, and high tillering ability and is suitable for
abiotic stress conditions [42]. Our experiment results (Figure 8) also confirm the previous
reports by displaying significant correlations of r = 0.46 **, 0.42 **, 0.51 **, and 0.62 **,
respectively, of CY, SUC%, CCSY, and TDM with canopy coverage. The germination count,
shoot count, initial plant height, and final plant height also had a significant correlation
with CC (r = 0.46 **, 0.56 **, 0.60 **, and 0.35 *, respectively). The leaf weight and stem
weight also revealed a positive correlation (0.36 * and 0.65 **) with CC (Figure 8). From the
overall discussion, it has been found that the plant height, total dry matter (TDM), and leaf
area index (LAI) had significant correlation with the cane yield, and the canopy cover data
from digital images act as a surrogate for these traits, and further it has been observed that
CC had better correlation (Figure 8) with cane yield compared to the other physiological
traits, viz., SPAD, total chlorophyll (TC), and canopy temperature (CT).

4.10. Summary of Key Findings, Advantages, and Limitations
4.10.1. Key Findings

In the present investigation, the canopy covering digital images of sugarcane crop
by using Canopeo software was evaluated for its correlation with the physiological and
morphological parameters and cane yield production. The results show that among the
studied parameters, canopy coverage had a significantly better correlation with the plant
height (0.581 **), leaf length (0.853 **), leaf width (0.587 **), and leaf area (0.770 **) in
commercial-type sugarcane clones (Figure 4).

Canopy cover data of sugarcane clones (improved breeding population, interspe-
cific hybrid, and basic germplasm) also revealed a significant correlation of r = 0.46 **,
0.42 **, 0.51 **, and 0.62 **, respectively, of cane yield (CY), juice sucrose (SUC%), com-
mercial cane sugar yield (CCSY), and total dry matter (TDM) with canopy coverage (CC).
The germination count, shoot count, initial plant height, and final plant height also had a
significant correlation with CC (r = 0.46 **, 0.56 **, 0.60 **, and 0.35 *), respectively, while the
chlorophyll fluorescence, canopy temperature, and SPAD index revealed a poor correlation
with TDM and cane yield. The leaf weight and stem weight also revealed a positive correla-
tion (0.36 * and 0.65 **) with CC (Figure 8). From the overall discussion, it has been found
that the plant height, total dry matter (TDM), and leaf area index (LAI) had a significant
correlation with the cane yield.

4.10.2. Advantages

The traditional light interception method for determining canopy coverage using a
line quantum sensor also had a significant positive correlation (r = 0.764 **) with canopy
coverage captured through Canopeo; thus, our results signify the importance of canopy
coverage determination by Canopeo in a rapid, non-destructive way and low-cost way.
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4.10.3. Limitations

The presence of weeds in the crop field background poses difficulty to classifying or
differentiating the crop and weed, and for measuring the canopy coverage, the crop should
be in a completely weed-free as well as also detrashed field (removal of senescence leaf)
which is more suitable to avoid overestimation of the canopy coverage. If the camera lens
were nearer to the crop, then the canopy few crop portions may be excluded in the analysis,
and on the other hand, extra sugarcane rows would have been included in the image if the
camera lens were positioned at a greater height above the top of the canopy. The vegetation
taller than about 2.5 m requires the use of aerial images or special equipment [19].

4.11. Future Research Direction

The canopy coverage data measurement through the drone/unmanned aerial vehicle-
based image and the utilization of pix4d software version 4.8.4 and other software are
an emerging trend for the determination of canopy coverage which is valuable for yield
forecasting in sugarcane and other crops.

5. Conclusions

The present investigation revealed that in commercial sugarcane clones the mean data
of canopy cover were 25.77%, and the clones, viz., Co 95020, Co 0212, CoM 0265, and
Co 86249, showed significantly better canopy cover % (>30%) compared to other clones,
while the clones Co 13006, BO 91, and Co 1148 were observed with poor canopy coverage
(<20%). Also, among the observed traits, canopy coverage % data acquired through image
have shown a significantly better correlation with the plant height (0.581 **), leaf length
(0.853 **), leaf width (0.587 **), and leaf area (0.770 **). Further, there is a significant correla-
tion (r = 0.585 **) between the canopy coverage (%) image acquired in parallel to the ground
and the light interception through line quantum sensors which consume more labour and
costly instruments/sensors. The canopy coverage (%) image acquired non-destructively
through using simple Android mobile will be useful in determining the leaf area of the
sugarcane crop at an early stage rapidly compared to the conventional destructive methods
which consume a lot of labour and other resources. Two-way cluster analysis revealed that
Cluster II comprising Co 0212, CoM 0265, Co 0238, Co 86249, Co 10026, Co 99004, Co 94008,
Co 95020 Co 0238, Co 86249, Co 10026, Co 99004, Co 94008, and Co 95020 was observed
with better plant height (23.64 cm), leaf length (94 cm), leaf width (2.65 cm), total leaf area
(1085 cm2), and canopy coverage (31%). In a second field experiment with diverse sugar-
cane clones (improved breeding population, interspecific hybrid, and basic germplasm), the
canopy coverage showed a significantly better correlation with biomass (r = 0.612 **) and
cane yield (r = 0.458 **), while the chlorophyll fluorescence, canopy temperature, and SPAD
index revealed a poor correlation with TDM and cane yield. Light interception determined
using a line quantum sensor had a significant positive correlation with canopy coverage
signifying the importance of canopy coverage determination in a non-destructive way.
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Abstract: The global recent development trend in dairy farming emphasizes the automation and
robotization of milk production. The rapid development rate of dairy farming requires new technolo-
gies to increase the economic efficiency and improve production. The research goal was to increase
the milk production efficiency by introducing the technology to automatically assess the fatness of
a dairy herd in 0.25-point step on a 5-point scale. Experimental data were collected on the 3D ToF
camera O3D 303 installed in a walk-through machine on robotic free-stall farms in the period from
August 2020 to November 2022. The authors collected data on 182 animals and processed 546 images.
All animals were between 450 and 700 kg in weight. Based on the regression analysis, they developed
software to find and identify the main five regions of interest: the spinous processes of the lumbar
spine and back; the transverse processes of the lumbar spine and the gluteal fossa area; the malar
and sciatic tuberosities; the tail base; and the vulva and anus region. The adequacy of the proposed
technology was verified by means of a parallel expert survey. The developed technology was tested
on 3 farms with a total of 1810 cows and is helpful for the non-contact evaluation of the fatness of a
dairy herd within the herd’s life cycle. The developed method can be used to evaluate the tail base
area with 100% accuracy. The hungry hole can be determined with a 98.9% probability; the vulva
and anus area—with a 95.10% probability. Protruding vertebrae—namely, spinous processes and
transverse processes—were evaluated with a 52.20% and 51.10% probability. The system’s overall
accuracy was assessed as 93.4%, which was a positive result. Animals in the condition of 2.5 to 3.5 at
5–6 months were considered healthy. The developed system makes it possible to divide the animals
into three groups, confirming their physiological status: normal range body condition, exhaustion,
and obesity. By means of a correlation dependence equal to R = 0.849 (Pearson method), the authors
revealed that animals of the same breed and in the same lactation range have a linear dependence of
weight-to-fatness score. They have developed an algorithm for automated assessment of the fatness
of animals with further staging of their physiological state. The economic effect of implementing
the proposed system has been demonstrated. The effect of increasing the production efficiency of
a dairy farm by introducing the technology of automatic evaluation of the fatness of a dairy herd
with a 0.25-point step on a 5-point scale had been achieved. The overall accuracy of the system was
estimated at 93.4%.

Keywords: dairy cows; body condition score; 3D TOF sensor; non-contact evaluation; recognize area
of interest

1. Introduction

Over the last few decades, the global trend in dairy farming has been to automatize and
robotize milking processes on commercial farms [1,2]. The common average production
period of dairy animals is 3.5 lactations [3]. Due to the rapid development of dairy farming,
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new technologies are increasingly required to achieve a higher economic efficiency and
achieve an improved production [4–6]. On the one hand, intensive production results in an
increased milk yield of a cow; on the other hand, intensive production leads to the rapid
deterioration of dairy cows—i.e., a reduction in the number of lactations [7]. The reduction
of the production life of dairy animals also depends on the premature culling of animals
that have a high or low body condition score. Lack of a normal body condition score
during lactation is primarily due to dietary deficiencies [7]. Another negative consequence
is culling of animals due to poor body condition because an increased body condition score
reduces fertility and thereby extends the service period.

A body condition score (BCS) evaluation is important in technological milk production.
First and foremost, the BCS score is used to place animals within productivity groups and
determine their status. In Russian dairy farm conditions, veterinarians and livestock
breeding technicians rotate animals into production groups once a month, provided the
milk production technology is well established. The body condition score helps make a
decision individually for each cow, based on her current physiological condition, rather
than simply on accepted technological norms. In intensive milk production, dairy cows are
divided into 5 main groups: group 1, the step-ladder milk yield increasing group, includes
new cows from 6 to 100 days after calving, and also cows with a daily milk yield of more
than 24 kg per head per day. The total productivity of this group of animals should not
be lower than 6000 kg per head per year. The main objectives of the group are: quality
feeding with full-fat mixes and good care to achieve the peak milk production by day 40–50;
elimination of post-calving complications to inseminate the animals on day 65. During this
period, the animals give up to 65–70% of their milk volume during the lactation period.
High-yielding cows are transferred to group 1 and should be in group 2, but they need
increased nutrition according to milk yield and body condition score. The typical fatness
score for group 1 is 3.5 to 3.25 from day 6 to day 30, and 3 to 2.75 from day 31 to day 100. The
normal decrease of the body condition score of cows in group 1 is due to an intensive milk
production, which requires a large amount of energy. The energy expended cannot be fully
compensated by the energy gained from feeding. Therefore, it results in a natural decrease
of the body condition score. Maria Ledinek et al., in a study [8], showed that during the
calving period, the body condition score decreases, and body fat reserves provide for an
increased milk production. By 40–65 days after lactation, animals should be milked as often
as possible, and the body condition score should not be reduced by more than 0.5. During
this period, the cow consumes up to 12 kg of high energy feed. Insemination takes place
when the animal is at peak production and consumes the highest amount of feed and the
fatness score is within 3 points. At the same time, the animal’s body condition score may
not deviate by more than ±0.25 points.

Group 2—milking cows from 101 to 305 days after calving with 24 to 16 kg of milk
per head per day. The main objective for the animals in this group is to ensure that the
milk yield does not fall by more than 9% per month, and to increase the body condition to
3–3.5 fatness points.

Group 3—milking cows from 101 to 305 days after calving with a milk yield below
16 kg/head/day. The main task for this group is to prevent diseases, correct body weight
to a fatness of 3.5–3.75 points and prepare the animals for drying off.

When animals are in the second and third physiological group, from 101 to 305 days
after calving, it is necessary to monitor their condition. A cow should have 3.5–3.75 by
the start of the dry period. If it is under-conditioned, it should be kept in the first or
second group and its milk production should be ignored. Otherwise, under-conditioning
can lead to complications during parturition or at the beginning of the next lactation [9].
Overconditioning of a cow above 3.75 will result in an increase in fetal weight. As the cow’s
weight increases, so does the calf’s weight. An increased calf weight at calving causes birth
complications and injuries that are equally detrimental to the cow and calf.
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Group 4—the first 45 days from day 306 after drying off. During this period, no
adjustment is made to the animal’s body condition score. It is assumed that the animal
already has a body condition score of 3.5–3.75.

Group 5 is the maternity group. The animals are kept 15 days before calving and
5 days after calving. During this period, no adjustment is made to the body condition score
of the animals.

The fatness assessment of dairy cows is not only a valuable indicator for evaluating the
quality of feeding and the response of the animal to feed, but is also an indirect indicator
of its reproductive function. Dairy performance correlates with feed intake. An increase
in milk production is associated with a decrease in fertility. During peak lactation, cows
require 3.5 times more protein and energy for milk synthesis than protein and energy for
life support, as lactation and calf feeding have a higher biological priority than body weight
gain and fecundity. At peak milk production, quit estrus and overcalving are the most
significant problems. A negative energy balance, which is also affected by decreased body
condition dynamics, results in a delayed onset of first heat and ovulation after calving
in underfed cows, reduced probability of conception after first insemination, negative
effects on follicle growth, corpus luteum function, oocyte quality, impaired intrauterine
development, and embryo survival and growth [10].

Cows with a body condition at day 60 of 3.25–2.75 have a 67% chance of conception,
and those with a body condition below 2.75 have a 44% chance [11].

Mohamed A.B. Mandour, in a study [12], found that high fatness in first-year heifers
increases the risk of ketosis to 3.71%, which is twice as high as in adult cows. The study
mentions that cows with a high body condition score consume less feed than cows with
a normal body condition score and have a high negative energy balance due to a higher
concentration of fatty acids in the plasma, which is associated with an increased risk of
ketosis.

Thinawanga Joseph Mugwabana et al., in a study [13], found no relationship between
the fatness of cows and the calving rate.

Wynnton C. Meteer [14] found in their study that animals given 70% of the required
feed energy had more embryos at the next insemination and a higher probability of insem-
ination than animals that received an energy excess of 130% of the norm. Changing the
level of feeding in animals in groups 4 and 5 (middle and late stage before calving) did not
significantly affect the amount of pregnancy hormones excreted in the blood.

These studies confirm the above information that the main management of feeding,
control, and changing the body condition score of cows should be done during lactation, in
animals in groups 1 and 2, to increase the probability of reproductive success in the next
insemination of animals.

Poczta W. et al., in their study [15], established a relationship between cow fatness
and the likelihood of subclinical ketosis, where cows with a fatness score ≥ 3.25 were more
susceptible to the disease than lean cows with a fatness score ≤ 3.

Vanholder T. et al., in a study [16], found a relationship between the body condition
score of dairy cows and weight loss within 30–40 days after calving. Of the 47 cows studied,
37 cows lost ≥ 0.75 BCS points at 14 days post calving, and 10 cows lost ≤ 0.75 BCS points.
Weight loss is associated with a negative energy balance in the cow after calving and
subsequent mobilization of body reserves for recovery.

In [17], the authors found a correlation between the propensity for metritis and the
BCS of cows ≤ 3. In [18], the authors evaluated the relationship between BCS points during
the transition period and the development of disease and changes in milk yield. A total of
232 cows were assessed and the fatness was scored from 1 to 5 in a 0.25 step. After a blood
test, a conclusion on the health of the animals was made. Changes in the body condition
of dairy cows using the BCS scale were measured at 21 days before calving and 21 days
after calving. The percentage of cows that increased BSC (fatness) during this period was
28%, lost BCS—22%, and retained BCS—50%. Additionally, 18% of the cows that lost BCS
during this period had health problems compared to the cows that retained the BCS points.

65



Agriculture 2023, 13, 1363

Furthermore, 28% of the cows that had an increased BCS were less likely to have subclinical
ketosis.

The results confirmed that developing ketosis can be detected in an automatic, non-
contact method. An alternative way of detecting ketosis is presented in studies [19–21],
where blood tests were required to detect disease. On large farms with more than 200 milking
herds, the continuous active assessment of animal health by blood testing is not possible,
due to the lack of specialists, the time-consuming process, and the need for laboratory
equipment. The BCS can be evaluated both manually and automatically.

Studies [18–22] describe the manual method of BCS evaluation. Study [23] gives a de-
tailed review of automatic systems for automatic BCS evaluation. Study [24] describes the
development of an automatic BCS evaluation system using a deep learning neural network
algorithm using a convolutional neural network. The researchers achieved a recognition
accuracy of 94% at a step of 0.5, and 78% at a step of 0.25. In [25], the authors used a convo-
lutional neural network (CNN) to evaluate BCS. The accuracy of the system was assessed
using the Kappa index and was within a moderate range (values between 0.41 and 0.60).
In [26], the authors also used a convolutional neural network (CNN) to evaluate BCS. The
accuracy of the results obtained in the study was 78%, indicating a successful real-time
classification. In [27], the authors used the point cloud method to evaluate BCS. Experi-
ments show that the proposed BCS evaluation model achieved an accuracy of 49, 80, and
96% within a deviation of 0, 0.25, and 0.50 points, respectively.

In [28], a dynamic background model (Gaussian Mixture Model, GMM) was used to
distinguish the cow from the background. Subsequent Image Processing Algorithms have
made it possible to automatically obtain reliable images, to find areas of interest, and to
extract image elements without any manual intervention. With 5-fold cross checking, the
model has achieved an average accuracy of 56% with a 0.125-point variance, 76% with a
0.25-point variance, and 94% with a 0.5-point variance.

Having studied the modern experience of the world community on the automation of
BCS evaluation, our team had set a goal and fully fulfilled the tasks on the development
of technology of an automatic system of BCS evaluation. The aim of the research was to
improve the production efficiency of dairy farms by implementing the technology of an
automatic BCS evaluation of a dairy herd with a 0.25-point step on a 5-point scale.

The main approach we used in developing the technology was to minimize the use
of neural network algorithms to find areas of interest. This decision was based on the
experience of the team [29,30]. Training neural networks was a labor-intensive and time-
consuming process. For example, a trained neural network for standardized breeds of
EU countries—Holstein, Brown Latvian, Swiss, etc.—will give a big error during a BCS
evaluation of Black-Motley Holstein, Kalmyk breeds, etc. To minimize the error, it was
necessary to retrain the neural network. The method we proposed is based on the study of
standardized breeds of EU countries to adjust the model and to carry out a further BCS
evaluation, avoiding the training of the neural network algorithm on each farm.

Thus, the research resulted in the development of a universal automatic system capable
of estimating the BCS of an animal with high accuracy (more than 90%) at a step of 0.25.
The developed system was intended for the implementation in automated and robotic
free-stall farms. The system was designed to evaluate the BCS (fatness) of animals and to
provide recommendations for a wider range of functions to be carried out by a specialist.

2. Materials and Methods

2.1. Farm, Field Data Collection

In earlier studies, we had already achieved a result of algorithmic evaluation, where
the system evaluated a fatness score between 2 and 4 with a 10% error, while scores 1 and
5 were evaluated with a 25% error (the results of the automatic evaluation were checked
against the results of an expert panel) [29,30]. In the study we conducted, the unsatisfactory
result that required further research was on the evaluation of the boundary body condition
scores 1 and 5. The difficulty lies in the fact that for the algorithm, cows with a body
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condition score of 1 and 2 and a score of 4 and 5 are similar. Therefore, in this study, we
focused our field data collection on animals with a body condition score of 1 to 3 and 4 to 5.

We selected 3 commercial farms with a total of 182 animals. On the selected farms,
all cows have similar traits, the animals are emaciated and of poor performance, and part
of the herd features are overweight. Data on animals were collected in the Moscow and
Yaroslavl regions.

Field data were collected between August 2020 and November 2022:

– The first farm has a herd of 570 forage cows, which is located in the Yaroslavl region
(Central Russia). On this farm, 118 animals were selected at 5–6 months of lactation
(from 151 to 180 days of lactation), with a body condition score of 1–4 points. The
average annual milk yield per cow per day is 16.8, with an average fat percentage of
3.7%. The animals are of the black-motley breed. The average body condition score of
the experimental animals was 2.75. The average weight of the tested animals is 467 kg.

– The second farm has a forage-fed herd of 50 heads, located in the Moscow region
(Central Russia). On this farm, we selected 18 animals of 5–6 months of lactation (from
151 to 180 days of lactation) with a body condition score from 2 to 5. The average body
condition score of the sample animals was 3.75. The average annual milk yield per
cow per day is 15 kg/milk. The average fat content in the milk is 5.2%. The animal
breed is the Holsteinized black-motley breed. The high fat content of milk of the
black-motley breed can be explained by the fact that additional local selection work
was done on this farm to increase the fat content of milk. The milk obtained from the
animals is used for cheese production. The average weight of the tested animals is
583 kg.

– the third farm has a herd of 1200 forage-fed animals and is located in the Moscow
region (Central Russia); 46 animals of 5–6 months of lactation (from 151 to 180 days
of lactation) and with a body condition score of 3–5 were selected on this farm.
Experimental animals had an average body condition score of 3.5. The breed of
animals were Holsteinized black and mixed breeds. A total of 36 animals were selected,
5–6 months of lactation, which predominantly had a borderline body condition score.
The average annual milk yield per cow per day was 28 kg/milk, and the average fat
content of the milk was 3.7%. The average weight of the studied animals was 571 kg.

All animals had two milkings per day. Expert panels were formed to assess the body
condition score by data collection site. The panel consisted of at least two independent
veterinarians and two trained specialists. The average body condition score obtained from
all experts was the benchmark value.

In addition, a weighing platform was used as an implement to further increase the
accuracy of the body condition score by comparing the values obtained.

The live weight of animals was collected, in particular, by the Klüver–Strauch method [31],
and the remaining animals were weighed on the platform. A disadvantage of the Klüver–
Strauch method is an error in measuring the live weight of up to 10%. In the experiment,
a discount of 1% of the actual weight was taken into account for bulk (mud adhered to the
animal), and a discount of 3% for the contents of the gastrointestinal tract, when animals were
weighed on the platform. Calculation of the live weight, including the discounts made, was
automatic.

Based on the Pearson’s correlation coefficient, we obtained proof of the representative-
ness of the animal samples and the relationship between the body condition score and live
weight of the animals.

2.2. Equipment and System

Images of the cows’ backs were collected on a 3D commercial camera, the O3D 303 3D
ToF camera. The system is powered by 220 V, the power supply converts to 24 V to ensure
the 3D sensor is operational. The sensor is mounted at a height of +2.2 m above the floor
level (Figure 1).
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(a) (b) (c) 

Figure 1. Demonstration of how the distance of the scanned surface varies with the inclination angle
of the sensor. (a) Position 1 of the optical module 03D “looks” vertically down relative to the back
of the cow; (b) position 2 of the optical module 03D “looks” at an angle of 5◦ from the vertical axis;
(c) position 3 of the optical module 03D “looks” at a 10◦ angle from the vertical axis.

The height and inclination angle of the three-dimensional sensor are based on four
parameters: cow height, cow length, minimum working distance between the camera and
the object, and the camera’s allowable error. The height of the animals under study ranged
between 1300 mm and 1500 mm, the minimum working distance of the camera between
the surface and the object under study was 300 mm. The signal from the identification
antenna of the animal’s RFID tag triggered the three-dimensional image production.

The inclination angle of the sensor taking into account the given 4 parameters is
chosen to be 5 degrees, as it can cover a sufficient area of the animal’s back under analysis,
while keeping the pixel spacing to 0.006 m as the point of interest moves away from the
3D camera. The distance of 0.006 m between pixels is the set distance on which the least
squares method is based when forming clusters of points related to areas of interest.

For the correct calculation of the required parameters between the camera and the
object under study (coordinates of the received Z-axis pixels), we performed angle normal-
ization (because the tilt angle of the 3D camera relative to the cow’s back was introduced),
presented in the expression using the R matrix:

where X, Y, Z—the areas of interest point coordinates, and J—the required distance
between the interest points areas.

The total dataset contained 546 images from 182 animals with body condition scores
from 1 to 5 with a step of 0.25 points (17 classes) (Table 1). Based on the earlier studies, it is
sufficient for this camera to take three pictures of each cow, then the images are combined
and the system starts determining the fatness.

Table 1. Number of images and proportion of cows for each body condition score.

Body Score Condition

№ 5 4.75 4.5 4.25 4 3.75 3.5 3.25 3 2.75 2.5 2.25 2 1.75 1.5 1.25 1

* 5 14 4 12 7 5 8 14 18 25 14 11 11 6 12 9 7

** 15 12 12 36 21 15 24 42 52 75 42 33 33 18 36 27 21

*—the number of animals; **—the number of images.

From the data collected, we can see that the predominant body condition scores are
4.75; 4.25; 3.25; 3; 2.5; 2.25; 2; 1.5. The distribution of animals by body condition score was
made by the expert panel, whose opinion is considered to be the benchmark (Figure 2).

The 3D camera is able to calculate and output Point Cloud as a multidimensional array
I × J × K, where I and J are camera resolution, e.g., 352 × 264, K is X, Y, Z coordinates.
Output of received data is in “dat” and “.h5” formats. The recording speed of the video
images is 5 fps. Due to this feature, we obtained 3 to 5 images of each cow in the initial
image. The images were collected according to the scheme shown in Figure 1. The camera
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error stated in the manufacturer’s specifications is ±0.01 m for each meter between the lens
and the object. Therefore, assuming that the working distance between the cow’s rump
(1.5 m) and the 3D camera lens (2.2 m) is 0.4 m, the error amounted to ≤0.01 m. The optical
module was installed at an angle of 5◦.

 
 

(a) (b) 

Figure 2. Developed installation used for field data collecting. (a) Scheme of the developed in-
stallation to determine the body condition score, height, and weight of dairy cows up to 1200 kg:
1—automatic gates; 2—weighing module; 3—03D 303 three-dimensional camera; 4—a single control
unit; (b) three-dimensional camera for the body condition score evaluation—03D 303 and software.

2.3. Assessment of the Body Condition Score and Analysis of the Results

We used our previously developed software [32] to process the obtained three-
dimensional maps and determine the body condition score and standard tools; excel
for primary data processing and formatting was used to process the study results.

The results were obtained automatically and those of an expert evaluation were
compared manually. The expert evaluation of the body condition score was a benchmark
value.

In terms of searching and determining the main areas of interest, the developed
software was based on the application of the least squares method (regression analysis) to
find the areas of interest.

As the camera was mounted on top of the animal and the points of the cow’s back were
presented to the data analysis, the points of greatest interest were those near the contour
and describing its perimeter. Using the spine of a cow as an example, we can consider the
basic expressions to identify it. The algorithm developed is based on the ordinary method
of least squares (LS).

The entire surface of a cow’s back is represented by an array of points without regard
to depth, after which the regression tool is applied. We represent the whole surface as a set
of points:

(y1, x1), (y2, x2), . . . (yn, xn) (1)

We can apply the method of least squares to minimize the sum of squares of RSS RRS
deviations:

RSS = ∑i (yi − (a + bxi))
2 (2)

69



Agriculture 2023, 13, 1363

To find fixed points for RSS, the following expressions are used:⎧⎪⎪⎨⎪⎪⎩
∂RSS

∂a
= ∑i 2(yi − a − bxi) = 0

∂RSS
∂b

= ∑i 2(yi − a − bxi) = 0
; (3)

⎧⎪⎨⎪⎩
∑
i

yi − na − b ∑
i

xi = 0

∑
i

xiyi − a ∑
i

xi − b ∑
i

x2
i = 0

(4)

{
y − a − bx = 0

xy − ax − bx2 = 0
(5)

{
a = y − bx

xy − (y − bx)x − bx2 = 0
(6)

⎧⎨⎩ a = y − bx

xy − x y + b
[
(x)2 − x2

]
= 0

(7)

Thus, the regression and refinement of the ridge line to the point cloud produces the
result shown in Figure 3.

 
(A) (B) 

Figure 3. Defining the spinal column axis with extracting the area of interest. 1—Filtered area; 2—
cow’s contour; 3—unspecified animal’s spinal column; 4—specified animal’s spinal column; 5—tail
head; 6—hips. (A) initial ridge line plotting by linear regression. (B) the ridge construction as a set of
points on each longitudinal axis.

Figure 3 showed the results of the regression method. Figure 3B showed the ridge
construction as a set of points on each longitudinal axis constructed. The lighter silhouette
shows the silhouette of the cow, represented as a cloud of points, disregarding the Z-axis.
Figure 3A is an initial ridge line plotting by linear regression.

To determine the cow’s height, it is necessary to estimate the coordinates (xyz) of each
point along the ridge line and find the extremum along the Z-axis. The point that is the
extremum is the withers from which the cow’s height is determined.

Table 2 shows the two approaches to BCS evaluation, the upper part was used for
BCS evaluation by the expert panel, the lower part of the table was used for automatic
evaluation. The numerical values were determined manually by analyzing the resulting
field database of animals. The numerical characteristics are the average values for each
body condition score and are relevant for the black-motley and the Holstein black-motley
breeds raised in Central Russia. For other breeds, the numerical characteristics described in
Table 2 may differ [32–34].
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When the system evaluates the spinous processes of the lumbar and back, and the
transverse processes of the lumbar and dorsum, the system first draws straight lines along
the ridge and parallel to the ridge lines in the area of the transverse processes of the lumbar
then measures the pixel height along the lines (Table 2, side view, node B, parameter h1).

In the hip’s area, the system assesses the angle: two lines are drawn along the protrud-
ing parts of the back and then the angle is assessed (Figure 4, fatness score 3). The angle at
136◦ is an indication of a body condition score of 3, and the angle 125◦> is a fatness score of
1.75 to 1.

 
Figure 4. Desired areas of interest.

The points for estimating the angle are plotted on the boundary of the protruding
parts of the body: the rump bone is A1, the hip protrusion is A2, and the first point at the
junction of the transverse processes is A3. To find the point A3, we applied neural network
tools with the preliminary training on 80 animals in the 5–6 months of lactation with a body
condition score of 1–3 points.

To determine the depth of the “hunger hallow“, the following procedure was used:
step 1—point XN1/3, which is 1/3 of the length of the segment XN; step 2—at 1/2 the
length of the segment BXN1/3, set point h2. Then, we compare the difference in height
between points h2. The depth of the “hunger hallow “ for a 5-point animal is 0.06 m and
for a 1-point animal the depth of the hunger hole is 0.12 m.

The h3 points are determined by the lowest point in the tail base and the highest tail
base.

As the last step before determining the fatness, the system checks all criteria and
determines the body condition score on a 5-point scale in 0.25-point steps.

Figure 5 shows three-dimensional images converted into the black-and-white format.
The pictures show animals with a body condition score from 1 to 5 on a 5-point scale and
an explanation of which area of the animal’s back is manipulated by the algorithm.
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Figure 5. Animals’ body condition scores and areas of interest. 1—Spinous processes of lumbar and
back/dorsum; 2—transverse processes of lumbar and hunger hollow area; 3—hips and pin bone;
4—head of tail; 5—vulva and anus area.

3. Results and Discussion

3.1. Results

To understand the developed system’s overall effectiveness, it was necessary to ana-
lyze and evaluate the effectiveness of each area of interest. All the resulting field data were
evaluated using the developed method. The results were compared with the experts’ eval-
uation. To understand the overall effectiveness of the developed system, it was necessary
to analyze the evaluation effectiveness of each area of interest. To this end, a graph was
plotted (Figure 6). The graph shows in the percentage terms the areas of interest and their
detection probability, where 0% was not detected in all animals and 100% was detected in
all animals.

  
(a) (b) 

Figure 6. Efficiency of the system when detecting the areas of interest in the studied animals.
(a) measurement efficiency of detecting the areas of interest; (b) difference in the BCS evaluation
between the automatic measurement of the developed system and the evaluation made by the expert
group and the difference between the obtained values.

The graph analysis results of Figure 7 show that the developed method can estimate
the tail base area with the 100% accuracy. The hunger hollow is determined with a 98.9%
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accuracy and the vulva and anus area with a 95.10% probability. Protruding vertebrae—
namely, spinous processes and transverse processes—are evaluated with a 52.20% and a
51.10% accuracy. The accuracy of 50% was explained by the fact that according to Figure 2,
these areas were not determined or were determined incorrectly in animals with a body
condition score ranging from 3.25 to 5. The overall accuracy of the system was estimated
by the experts at 93.4%, which was a positive result.

 

Figure 7. Distribution graph of the fatness of 5–6 month old animals obtained in an automatic
evaluation.

Additionally, Figure 6 showed that the evaluation of the system and that of the experts
have more discrepancies when the body condition score is 4–5, with the largest error of
1.25 and the smallest error of 0.25.

Figure 7 shows that animals with a condition score of 2.5 to 3.5 at 5–6 months are
healthy. The developed system gives reasons to divide the animals into three groups,
confirming their physiological status: normal range body condition, exhaustion, and
obesity. In this case, it is worth bearing in mind that the system has an accuracy of 93.4%.
Then, in this study, 4 animals with a body condition score of 3.75, and 15 animals with a
body condition score of 2.5 had a 6.6% probability of belonging to another physiological
status group. This is due to the fact that the system was wrong by 0.25. Errors caused
by other nutritional scores are not critical, as technologically, an animal is either healthy
and does not require any manipulation even though the system gave a nutritional score
of 3 ± 0.25, or it has exhaustion/obesity, which requires manipulation of the animal to
improve its physiological status.

In our observations, most of the animals with a fatness score of 3.75–5 were on the
second farm (percentage of the total herd when ranked by score) with an average annual
milk yield per cow per day of 15 kg/milk and a fat content of 5.1–6%. This farm was
financially sound, and the main activity was getting milk from the animals for cheese
production. When analyzing the cause of overweight animals, it was found that the farm
staff were disrupting the feeding ration and the animals were receiving more energy than
they needed; the animals were kept in loose housing.

On the second farm, a correlation was established between live weight and body
condition score for 32 animals (Figure 8). The correlation determined by Pearson’s method
is R = 0.849.
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Figure 8. Distribution graph of the fatness of 5–6-month-old animals obtained during an automatic
evaluation in 32 animals.

The Pearson correlation tool was chosen to determine if there was a relationship
between the live weight and body condition score of the cows under study, as the data
obtained have a normal distribution. Discussion of the data shows that part of the values
on the scale from 4 BCS points to 5 BCS points and a live weight above 525 kg have a
chaotic distribution. The Pearson correlation is R = 0.849, which does not guarantee 100%
correlation. This is explained by the following: the live weight of animals consists of
basic parameters—the amount of dirt accumulated on the animal, the amount of feed
eaten, and the month of pregnancy. Additionally, live weight was obtained using the
Klüver–Strauch method [33], where the method itself has a margin of error. This correlation
did not allow the evaluation of live weight by the fatness score, but is only an additional
signaling indicator that draws attention to live weight gain. Therefore, by analyzing the
data by the Pearson correlation, our main aim was to understand if there is a relationship
between obesity and weight gain. This was important for the purpose of additional animal
monitoring, where the developed software will signal if an animal is overweight, which in
turn negatively affects the probability of successful insemination. If it was detected that an
animal is gaining excessive live weight, it was therefore necessary to move the animal to
another housing group to change the feeding ration.

Studies [33] found that an optimal range of body weight for an increased performance
does exist due to the non-linear relationship between milk yield and body weight. Dairy
breeds respond more strongly to bodyweight range than dual-purpose breeds. Cows
with an average weight are the most productive in the population. Heavy cows (>750 kg)
produce much less milk. Special attention should, therefore, be paid to the daily ration, and
further increases in body weight of dairy cows should be avoided. Animals with a body
condition score of 1 to 2.5, in most cases, were found on a farm with an average annual milk
yield per cow per day of 16.8 kg/milk, and a fat content of 3.6 to 3.8%. After examining the
keeping conditions of the animals, several criteria influencing the emaciation of the animals
were observed. The main criterion was the feed ration. The animals under study received
mainly legume–grass hay with the addition of micro and macro nutrients in their diets. The
animals were continuously fed a complete daily ration consisting of 4 kg of legume–grass
hay, 15 kg of mixed grass silage, 6 kg of root crops, 5 kg of high energy mixed fodder, 1 kg
of barley powder, and 50 g of table salt. In addition, it was recorded that animals were
kept in concrete buildings, typical for buildings constructed in the 1980s, with a disturbed
microclimate and tethered housing without regular walks.

Based on the research results, the algorithm for the automatic evaluation of the animal
body condition (fatness), followed by the staging of their physiological condition, was
supplemented and modified. The algorithm was divided into two parts and is shown in
Figures 9 and 10. The second part of the algorithm is an integral part of the first one. The
algorithm was included in the software code of the developed software.
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Figure 9. First part of the BCS Algorithm.

Figure 10. Second part of the BCS algorithm.
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The explanation of Figure 9 starts with a three-dimensional map containing X, Y and
Z coordinates of each pixel, and then searches for points at height (in the range of 1–1.6 m
from the floor). When a cluster of points is detected, the algorithm determines the location
of the main features: the spine, the hips, the tail head, and the vulva region. The topography
of the spinous and transverse processes relief was then determined and the initial BCS
value was determined.

As for Figure 10, for the initial BCS of 2.25–5 with no scalloping of the spinous and
transverse processors and a low depression, the difference in tail head height was measured.
For the primary BCS values in the range 1–3 with spinous and transverse processes in relief
and a large hollow volume, the spinous and transverse processes of the lumbar and dorsum
were measured. Depending on the results, the algorithm outputs had three evaluation
options—‘normal BCS’, ‘obesity’, ‘exhaustion’.

The developed software gave information about the animal by scanning RFID tags:
date and time of the last measurement, sex, status, date of birth, actual weight, weight
excluding animal contamination (bulk), weight excluding GIT contents, animal height,
and the BCS value. The software developed for each animal provided more detailed
information, traced the dynamics of changes in physical parameters, kept the herd log, and
had service settings.

3.2. Research limitation

We refer to several factors as limitations of the research.
Factor 1 is the capability of the machinery and equipment and the environmental

conditions in which they were operated. Dairy cows were evaluated both indoors and in
the open field. Based on our experience with the equipment, we have found that 3D TOF
cameras with a 840 nm wavelength, when shooting animals outdoors in bright sunlight,
had noise that prevented effective fatness scoring. As such, 3D TOF cameras at 940 nm
may be considered for further research. According to the manufacturers (the study does
not specify a specific manufacturer), the 940 nm 3D cameras solve the problem of not being
able to produce 3D maps in bright sunlight. In this study, three-dimensional cameras based
on 940 nm were not tested.

Factor 2—while evaluating the body condition score of an animal, we could not
estimate the animal’s weight to an accuracy of 1 kg. We considered it possible to install
an additional 3D camera to measure the torso depth of the animal—automatically using
the Klüver–Strauch method [32] based on the digital data obtained for the torso depth,
height and body condition score. However, this method would also not give accurate
information about the animal’s live weight, as there was no information about the cow’s
pregnancy, degree of contamination, and gastrointestinal contents. Additional discounts
and coefficients relative to live weight would have to be introduced, but this may result in
a high margin of error.

Factor 3 is the use of artificial intelligence to find the areas of interest. The matter is that
if all fields of interest are calculated by means of artificial intelligence, then the exploitation
of the system with each new breed or farm will demand resources for additional training
of the system, which is not practical. Using the proposed research method for code
development is a more labor-intensive process than collecting a data array and training
artificial intellect. However, this method would definitely prove to be more practical,
because it covered dairy cattle breeds, which are bred in Russia.

Factor 4 is the use of specific equipment. For these studies, it was not the specific
manufacturer of the 3D cameras that was important, but their characteristics. It was
important to choose a 3D camera that has a wavelength of 840 nm and a resolution of
352 × 264, and the factory error rate of used cameras is not higher than 1 cm per 1 m
distance at a distance from the object in question.
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3.3. Economic Efficiency

The proposed technology will improve production efficiency on large dairy farms by
reducing animal stress, controlling animal nutrition when necessary, and early detecting
physical deviations (Table 3).

Table 3. Cost of implementing the technology using the example of the farms under study.

Criteria
Used Solutions Proposed Technology

1st Farm 2nd Farm 3rd Farm 1st Farm 2nd Farm 3rd Farm

The number of cows, heads 560 50 1200 560 50 1200

Milk yield, kg 16.8 15 28 40–50 40–50 40–50

Culling, % 7 7.5 6 4 4 4

Die, % 5.5 6 4 1.2 1.2 1.2

Feed consumption, t/day 16.8 3.3 54 28.2 2.5 60.4

Veterinary care costs,
rub/month 157,300 78,650 235,950 18,000 12,000 25,000

Veterinary care costs, rub/year 1,887,600 943,800 2,831,400
The system installation’s price

2,515,968 2,515,968 2,515,968

Number of calves, head 333 29 714 448 40 960

Calves for sale (80%), heads 266 23 571 358 32 768

Calves for sale (1 month, 60 kg),
profit, rub 2,397,600 208,800 5,140,800 3,225,600 288,000 6,912,000

Calves for sale (6 months,
140 kg), profit, rub 3,916,080 341,040 8,396,640 5,268,480 470,400 11,289,600

Calves for sale (12 months,
350 kg), profit, rub 4,195,800 365,400 8,996,400 5,644,800 504,000 12,096,000

Total profit, rub 8,358,180 −116,710 19,238,490 11,565,712 −1,269,068 27,672,632

The percentage of culling and mortality was planned to be reduced by adjusting the
ration and improving the general maintenance condition of the animals on the farms. We
also proposed to increase the actual milk yield per day.

Often, farms have in-house veterinarians, but with the introduction of the biometric
system, costs can be reduced, and external specialists can be called in only when necessary.
Feed costs would also be reduced, as feed rations for the animals can be monitored and
adjusted.

The main profit increase was expected to come from the improved life quality of the
cows, and as a consequence, the birth rate of calves will also increase.

Sales are planned by age groups. The distribution will be as follows: 80% of all calves
born on the farm during the year will be sold. Of these, 50% will be sold at the age of
1 month, 35%—6 months, and 15%—12 months.

As far as in the first year, Farm 1 and Farm 3 would make 38.4% and 43.8% more profit,
respectively, but this technology did not look profitable on the second farm. We recommend
that this biometric system should only be installed on large farms with 560 heads or more.

3.4. Technology Applicability

Having confirmed the cost-effectiveness of the developed BCS estimation technology,
we can now describe how we implement automatic BCS evaluation for milk production.

The automatic livestock monitoring system operated in two ways. The first way was
stationary, and the second way was mobile.

The stationary method consisted in the fact that on the farm, in the places of the daily
pass of the animals, for example, the system of BCS evaluation was mounted behind the
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milking parlor in the “gallery”. The system consisted of a three-dimensional camera and
data collection and processing unit, as well as an identification antenna, which read the ID
number of the cow. The data were sent to a server.

The mobile method implied bringing the system once a month to the box where a
group of animals was kept to scan the BCS score (Figure 11).

Figure 11. Schematic diagram of the installation of a mobile BCS evaluation system in a cubicle
housing a group of animals.

The system was brought in by a forklift or an ATV to the cubicle where the animals
were kept in a loose housing. Two staff members then turn the system around; they set
the fence in the desired position, pointing to one side or the other. Then, one employee
drove the animals in and out of the system, a second employee took care of reading the
cow number, assessed the body condition, and recorded the data. When the group was
finished, the system was assembled in the transport position and transported to the next
group of animals. The data were transferred on a flash drive to a server. This procedure is
done on a monthly basis. The advantage of the mobile system is that the fatness estimation
can be done while the animals are grazing in the fields.

On the basis of the data obtained, the developed software plots a graph—a diagram of
the change in the BCS score—and compares it with the set-required values for the current
physiological status of each cow. There were several applications of the technology. The
first situation was when we had an animal with an increased body condition score. The
system recorded that the BSC score was increased, then queried the following data from
the herd management software: current physiological status, which group the animal is
in, current milk production, day of lactation, insemination status, and specific ration. For
example, an animal was on day 75 of lactation, no conception had occurred, the BCS score
was 3.75, milk yield was 17 kg/day, and fatness was 3.7%. Then, an automatic decision
was made that the ration should be adjusted by reducing the amount of energy the animal
receives without changing the animal’s maintenance group, as the animal was at the peak
of lactation and its milking requirements should be met. When moving to the next group, a
gradual decrease in milking should be observed, accordingly. At the same time, we have to
monitor the animal’s condition so that by the end of lactation, the animal has a corrected
condition. For example, an animal on day 190 of lactation and the conception on day 110,
the BCS condition score was 2.5, milk yield 14 kg/day, and fat content 3.5%. In this case,
the animal should be moved from group 3 to group 1 or 2 in order to adjust the feeding
level to ensure an energy surplus.

The BCS evaluation system was needed as an additional tool to monitor feeding and
assist in decision making for each cow when moving them to different housing groups.
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The development of an automatic fatness estimation system will make it possible to collect
data sets and statistics for each animal. This will make it possible, when collecting data on
feeding, animal genetics, breeding material, and diseases, to form animal groups on farms
more effectively, revealing their genetic potential in terms of productivity.

4. Conclusions

The effect of increasing the production of dairy farms had been achieved by imple-
menting the technology of an automatic evaluation of the fatness of dairy herds (BCS) in a
0.25 step on a 5-point scale. The developed technology had been tested on 3 farms, with a
total herd of 1810 animals, and provided for a non-contact BCS evaluation of a dairy herd
required throughout the life of the herd within the farm. The overall accuracy of the system
was estimated at 93.4%. The study has demonstrated the economic effect of implementing
the proposed system.

Author Contributions: S.S.Y.—project management, methodology, natural data collection, writing—
editing. D.Y.P.—conceptualization, software development. I.M.D.—system development, writing—
analysis and editing. V.A.P.—visualization, rude preparation. A.A.S.—software testing. Y.A.P.—
natural data collecting, editing. I.Y.—natural data collecting, writing—editing. All authors have read
and agreed to the published version of the manuscript.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References

1. Brito, L.; Bedere, N.; Douhard, F.; Oliveira, H.; Arnal, M.; Peñagaricano, F.; Schinckel, A.; Baes, C.; Miglior, F. Review: Genetic
selection of high-yielding dairy cattle toward sustainable farming systems in a rapidly changing world. Animal 2021, 15, 100292.
[CrossRef] [PubMed]

2. Newton, J.E.; Nettle, R.; Pryce, J.E. Farming smarter with big data: Insights from the case of Australia’s national dairy herd milk
recording scheme. Agric. Syst. 2020, 181, 102811. [CrossRef]

3. Dallago, G.M.; Wade, K.M.; Cue, R.I.; McClure, J.T.; Lacroix, R.; Pellerin, D.; Vasseur, E. Keeping Dairy Cows for Longer: A
Critical Literature Review on Dairy Cow Longevity in High Milk-Producing Countries. Animals 2021, 11, 808. [CrossRef]

4. Alem, H. The Role of Technical Efficiency Achieving Sustainable Development: A Dynamic Analysis of Norwegian Dairy Farms.
Sustainability 2021, 13, 1841. [CrossRef]

5. Liu, D.; He, D.; Norton, T. Automatic estimation of dairy cattle body condition score from depth image using ensemble model.
Biosyst. Eng. 2020, 194, 16–27. [CrossRef]

6. Ledinek, M.; Gruber, L.; Steininger, F.; Fuerst-Waltl, B.; Zottl, K.; Royer, M.; Krimberger, K.; Mayerhofer, M.; Egger-Danner,
C. Analysis of lactating cows on commercial Austrian dairy farms: The influence of genotype and body weight on efficiency
parameters. Arch. Anim. Breed. 2019, 62, 491–500. [CrossRef] [PubMed]

7. Buonaiuto, G.; Lopez-Villalobos, N.; Costa, A.; Niero, G.; Degano, L.; Mammi, L.M.E.; Cavallini, D.; Palmonari, A.; Formigoni, A.;
Visentin, G. Stayability in Simmental cattle as affected by muscularity and body condition score between calvings. Front. Veter.
Sci. 2023, 10, 1141286. [CrossRef]

8. Ledinek, M.; Gruber, L.; Steininger, F.; Fuerst-Waltl, B.; Zottl, K.; Royer, M.; Krimberger, K.; Mayerhofer, M.; Egger-Danner, C.
Analysis of lactating cows in commercial Austrian dairy farms: Interrelationships between different efficiency and production
traits, body condition score and energy balance. Ital. J. Anim. Sci. 2019, 18, 723–733. [CrossRef]

9. Montagner, P.; Krause, A.R.T.; Schwegler, E.; Weschenfelder, M.M.; Maffi, A.S.; Xavier, E.G.; Schneider, A.; Pereira, R.A.; Jacometo,
C.B.; Schmitt, E.; et al. Relationship between pre-partum body condition score changes, acute phase proteins and energy
metabolism markers during the peripartum period in dairy cows. Ital. J. Anim. Sci. 2017, 16, 329–336. [CrossRef]

10. Weik, F.; Archer, J.A.; Morris, S.T.; Garrick, D.J.; Miller, S.P.; Boyd, A.M.; Cullen, N.G.; Hickson, R.E. Live weight and body
condition score of mixed-aged beef breeding cows on commercial hill country farms in New Zealand. N. Z. J. Agric. Res. 2021, 65,
172–187. [CrossRef]

11. Petrov, E.B.; Taratorkin, V.M. The main technological parameters of the modern technology of milk production at livestock
complexes (farms). In Recommendations.-M.: FGUNU “Rosinformagrotech”; 2007; p. 176, ISBN 978-5-7367-0616-7.

12. Mandour, M.A.; Al-Shami, S.A.; Al-Eknah, M.M. Body condition scores at calving and their association with dairy cow perfor-
mance and health in semiarid environment under two cooling systems. Ital. J. Anim. Sci. 2015, 14, 3690. [CrossRef]

80



Agriculture 2023, 13, 1363

13. Mugwabana, T.J.; Nephawe, K.A.; Muchenje, V.; Nedambale, T.L.; Nengovhela, N.B. The effect of assisted reproductive
technologies on cow productivity under communal and emerging farming systems of South Africa. J. Appl. Anim. Res. 2018, 46,
1090–1096. [CrossRef]

14. Meteer, W.C.; Wilson, T.B.; Keisler, D.H.; Cardoso, F.C.; Shike, D.W. Effects of prepartum plane of nutrition during mid- or late
gestation on beef cow body weight, body condition score, blood hormone concentrations and preimplantation embryo. Ital. J.
Anim. Sci. 2016, 15, 264–274. [CrossRef]
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Abstract: The combination of multi-temporal images and deep learning is an efficient way to obtain
accurate crop distributions and so has drawn increasing attention. However, few studies have
compared deep learning models with different architectures, so it remains unclear how a deep
learning model should be selected for multi-temporal crop classification, and the best possible
accuracy is. To address this issue, the present work compares and analyzes a crop classification
application based on deep learning models and different time-series data to exploit the possibility
of improving crop classification accuracy. Using Multi-temporal Sentinel-2 images as source data,
time-series classification datasets are constructed based on vegetation indexes (VIs) and spectral
stacking, respectively, following which we compare and evaluate the crop classification application
based on time-series datasets and five deep learning architectures: (1) one-dimensional convolutional
neural networks (1D-CNNs), (2) long short-term memory (LSTM), (3) two-dimensional-CNNs (2D-
CNNs), (4) three-dimensional-CNNs (3D-CNNs), and (5) two-dimensional convolutional LSTM
(ConvLSTM2D). The results show that the accuracy of both 1D-CNN (92.5%) and LSTM (93.25%) is
higher than that of random forest (~ 91%) when using a single temporal feature as input. The 2D-CNN
model integrates temporal and spatial information and is slightly more accurate (94.76%), but fails to
fully utilize its multi-spectral features. The accuracy of 1D-CNN and LSTM models integrated with
temporal and multi-spectral features is 96.94% and 96.84%, respectively. However, neither model
can extract spatial information. The accuracy of 3D-CNN and ConvLSTM2D models is 97.43% and
97.25%, respectively. The experimental results show limited accuracy for crop classification based
on single temporal features, whereas the combination of temporal features with multi-spectral or
spatial information significantly improves classification accuracy. The 3D-CNN and ConvLSTM2D
models are thus the best deep learning architectures for multi-temporal crop classification. However,
the ConvLSTM architecture combining recurrent neural networks and CNNs should be further
developed for multi-temporal image crop classification.

Keywords: crop type classification; deep learning; multi-temporal; remote sensing

1. Introduction

Detailed and accurate information on crop-type cultivation is essential for developing
economically and ecologically sustainable agricultural strategies in a changing climate,
and for satisfying human food demands [1]. Multi-temporal remote sensing (RS) images
acquired throughout the growing season provide an effective method for acquiring crop
cover information over large areas [1,2]. Multi-temporal images can be used to distinguish
crop growth states and the phenological characteristics of crops. In addition, they provide
enriched features that allow more complex and stable crop classification tasks. They have
thus seen wide use in the field of agricultural RS [3,4].

Two main strategies are available for multi-temporal crop classification. The first strat-
egy is to stack multi-temporal images by time sequence and classify them with classifiers

Agriculture 2023, 13, 906. https://doi.org/10.3390/agriculture13040906 https://www.mdpi.com/journal/agriculture
83



Agriculture 2023, 13, 906

such as support vector machine (SVM), random forest and maximum likelihood [5,6]. How-
ever, this approach does not model temporal correlations and uses features independently,
ignoring possible temporal dependencies [6,7]. Most classifiers such as SVM rely heavily on
features that are not designed for time-series data, making it difficult to exploit any inherent
time-series variability features. In addition, the stacked images increase redundancy and
lead to the dimensionality catastrophe with increasing time-series length, which negatively
affects classification performance [6,8]. The second strategy is to obtain new images from
reflectance images by using spectral indices, such as the normalized difference vegetation
index (NDVI) and the enhanced vegetation index (EVI), and then construct time-series
data to reveal the temporal pattern of the different features. With this method, crops and
other vegetation are classified with high accuracy. However, the classification results of
this method are limited strictly by the number of images in the time-series. If the number is
too small, then the temporal pattern has little effect on classification performance [8]. In
addition, manual feature engineering based on human experience and prior knowledge is
essential with this approach, which increases the complexity of processing and computa-
tion [7,9]. Moreover, the construction of VIs based on the specific spectral features ignores
other spectral bands, which in turn affects the classification performance.

Current multi-temporal RS images are multi-spectral, multi-temporal and multi-
spatial. In multi-temporal images, crops are represented via variations in temporal, spectral,
and spatial features. These features can be comprehensively included in four-dimensional
(4D: time, height, width, and band) data that require classification models to learn and
represent temporal, spectral, and spatial features. Multi-temporal images thus pose new
challenges to the models used for data processing, so integrating multi-temporal images
and continuously improving crop classification accuracy requires continued attention.

Deep learning is a breakthrough technique in machine learning that outperforms
traditional algorithms in terms of feature extraction and representation [5–7], which has led
to its application in numerous RS classification tasks [8–10]. Convolutional neural networks
(CNNs) produce more accurate results than other models in most RS image classification
problems [8,9,11]. The one-dimensional CNN (1D-CNN) model is commonly used to
extract spectral features from hyperspectral images or temporal features from time-series
images, providing an effective and efficient method for crop identification in time-series
RS images [12]. The CNN learning process is computationally efficient and insensitive to
data shifts such as image translation, allowing CNN models to recognize image patterns in
two dimensions (2D) [13]. Three-dimensional (3D) CNN models use the spatial, temporal,
and spectral information in multi-temporal images, and therefore are widely used in
multi-temporal crop classification [11,14]. Long short-term memory (LSTM), a variant of
recurrent neural networks (RNNs), is a natural candidate to represent temporal dependency
over various temporal periods with gated recurrent connections [9,15]. LSTM models
have been widely used for multi-temporal crop classification because they can analyze
sequential data [9,16,17]. For multi-temporal crop classification, both CNN and RNN
provide more accurate results than machine learning and traditional classification [5,9,11].
However, various deep learning architectures produce different results when applied to
multi-temporal crop classification, feature learning and representation of crop spectral,
spatial, and temporal information.

Convolutional LSTM (ConvLSTM) is a type of RNN with internal matrix multiplica-
tion replaced by convolution operations [18]. ConvLSTM, integrating both LSTM and CNN
structures, shows unexpected adaptability to multi-temporal images [19–21]. However,
due to the prevalence of CNNs and RNNs and the requirement for higher data dimen-
sions, the ConvLSTM model is less commonly used in multi-temporal crop classification.
Nevertheless, the potential of the ConvLSTM model deserves further exploration.

To summarize, multi-temporal images pose a new challenge to classification models
in terms of data processing and feature extraction, but also open new opportunities for
using data-driven deep learning to classify RS images. In this work, we use multi-temporal
Sentinel-2 RS images as input data, and analyze the advantages of using such data and the
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structural advantages of various deep learning models. This research investigates (1) the
possibility of using multi-temporal images for more accurately classifying crops; (2) the
contribution of spectral, temporal, and spatial information to multi-temporal crop classifi-
cation; and (3) the potential and requirements of using deep learning for multi-temporal
crop classification. We also (4) search for a feasible and suitable deep learning model that
provides optimum classification accuracy from multi-temporal images. Although such
deep learning models have long been used for RS applications, this work compares and
analyzes multi-temporal crop classification based on the deep learning architectures of
CNN, LSTM, and ConvLSTM.

2. Materials

2.1. Study Area

The study area, Norman county, is located in northwestern Minnesota (Figure 1),
which is a highly productive agricultural state in the United States. Minnesota is in the
Great Plains of the central United States, and agricultural land covers the vast majority
of the study area. The continental climate of the region is cold in the winter and hot and
humid in the summer, with 600 mm/year of precipitation. The highest temperatures occur
in July, and the lowest in January, with an average of 197 sunny days per year. The climatic
and temperature conditions make single-season crop cultivation the main cropping system.
The major crops in this region are corn, soybeans, sugarbeets, and spring wheat, which
are planted in about 89% of the study area. Corn begins being planted at the end of April,
matures in September, and is harvested through October. Soybeans are planted in May and
harvested from mid-September through the end of October. Spring wheat is sown in early
April and harvested from mid-July through August. Sugarbeets are planted in mid-April,
mature in September, and are harvested by the end of October.

Figure 1. False color image and the Cropland Data Layer (CDL) of study areas.

2.2. Data
2.2.1. Remote Sensing Images

Sentinel-2 images were downloaded from the Sentinel Hub (https://www.sentinel-
hub.com/ (accessed on 28 October 2022)). Cloud-free images from April 2021 to October
2021 were selected to encompass the entire crop growing season. A total of 13 Sentinel-2
images (Tables 1 and 2) were selected as the main input data of the experiment. Data
preparation involved stacking and resampling the 20 m spectral bands to 10 m and the
removal of the coastal band, water vapor, and the cirrus band, accomplished through the
Sentinel Application Platform (SNAP).
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Table 1. Spectral bands of Sentinel-2 images.

Band
Names

Spectral
Band

Central
Wavelength (nm)

Band
Names

Spectral
Band

Central
Wavelength (nm)

Blue B2 490 Red-Edge B7 775
Green B3 560 NIR B8 842
Red B4 665 NIR B8a 865

Red-Edge B5 705 SWIR B11 1610
Red-Edge B6 740 SWIR B12 2190

Table 2. Acquisition time of Sentinel-2 images.

Day of Year (DOY) Acquisition Time Day of Year (DOY) Acquisition Time

112 22 April 2021 230 18 August 2021
137 17 May 2021 235 23 August 2021
150 30 May 2021 242 30 August 2021
165 14 June 2021 257 14 September 2021
192 11 July 2021 270 27 September 2021
207 26 July 2021 295 22 October 2021
225 13 August 2021

2.2.2. Training and Validation Samples

The Cropland Data Layer (CDL) is a crop-type distribution product published by the
United States Department of Agriculture and the National Agricultural Statistics Service.
The 2021 CDL (Figure 1) for Norman County has a spatial resolution of 30 m, and was
obtained from the CropScape website portal (https://nassgeodata.gmu.edu/CropScape/
(accessed on 20 October 2022)). Although the CDL is not the absolute ground truth, it is
the most accurate crop-type product available, especially for corn and soybeans, with over
95% accuracy [22]. In Minnesota, the accuracies for several major crop types are close to
or above 95% [23]. Therefore, a result of visual interpretation of multi-temporal Sentinel-2
images based on CDL data was used to select the crop samples for training and testing our
crop classification model.

Based on the CDL, crop types in the study area were classified as corn, soybeans, sugar
beets, spring wheat, and “other.” The latter category (“other”) includes all surface cover
types except for the four major crops. To ensure the representativeness of the samples and
the data size requirements of the deep learning model, the samples are selected to ensure
that the sample points are distributed throughout the study area, that the central sample
pixel type is consistent with the type of surrounding pixels, and that the sample pixel type
is the dominant type in the local neighborhood. The sample points were created from a
function of randomly created points and labeled by visual interpretation. Table 3 details the
samples used for training the classification model and evaluating the accuracy. To train the
model, the training and validation samples in Table 3 are randomly divided into training
samples and validation samples in a ratio of 7:3.

Table 3. The five categories used in the present study for classification and the number of samples.

Sample Type
Training and Validation

Samples
Testing Samples

Corn 1481 4096
Soybeans 1487 4738

Spring Wheat 1445 4674
Sugarbeets 1471 4167

Others 1546 5210
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3. Methodology

3.1. Methodological Overview

The overall workflow of this study is shown in Figure 2. Firstly, we selected samples
as described in Section 2.2.2. Next, different time-series images were constructed for the
subsequent classification experiments (Section 3.2). Multiple deep learning models were
constructed (Section 3.5), in which random forest was used as benchmark model. Details of
the experiments can be found in Section 3.6. Finally, all classification results were validated,
compared and analyzed.

Figure 2. General workflow of this study.

3.2. Temporal Phenological Patterns

Two main strategies are available to represent the temporal patterns of crops for
multi-temporal image crop classification: (1) time-series VIs constructed from spectral
characteristics, and (2) time-series multi-spectral bands based on spectral stacking [5],
which means stacking multi-temporal images by time sequence. Both strategies have been
used to construct time-series data to represent the temporal characteristics of crops. Given
the sensitivity of the NDVI [24] and EVI [25] to the physiological state of vegetation and
their wide application [5,9], these indices have been used to construct time-series data.
Their formulas are as follows:

NDVI = (NIR − RED)/(NIR + RED) (1)

EVI = G × (NIR − RED)/(NIR + C1 × RED − C2 × BLUE + L), (2)

where G = 2.5, C1 = 6.0, C2 = 7.5, and L = 1.0. NIR, RED and BLUE represent the spectral
reflectance bands of B8(NIR), B4(Red) and B2(Blue) in Sentinel-2 (Table 1).

3.3. Deep Learning Models

A CNN is a multilayer feed-forward neural network. The advantages of local con-
nectivity and weight sharing not only decrease the number of parameters but also reduce
the complexity of the model and make CNNs more suitable for processing numerous
images [9,26]. CNNs may be one-dimensional (1D-CNN), two-dimensional (2D-CNN),
or three-dimensional (3D-CNN), by having convolution kernels of different dimensions.
Sequence data are fed into 1D-CNNs for learning and representing sequence relationships.
Patch-based 2D-CNNs can be used for learning and representing spatial and spectral fea-
tures in images. Cube-based 3D-CNNs correspond to the spectral, spatial, and temporal
features in multi-temporal images [12,14]. The LSTM solves the problems of vanishing
gradient, exploding gradient, and deficiencies in long-term dependency representation

87



Agriculture 2023, 13, 906

that appear in RNNs. In LSTM, the gate mechanisms, which include the input gate, output
gate, and forget gate, enhance or weaken the state of the data in the cell for information
protection and control [16,17]. The ConvLSTM model is an improvement and extension of
the LSTM model, wherein matrix multiplication in LSTM is replaced by a convolution at
each gate [20]. The ConvLSTM model combines the structural advantages of LSTM and
CNN, and not only captures the spatial context of the image, but also models the long-term
dependencies in the spectral domain. In addition, inter- and intra-layer data transfer
enables the ConvLSTM to extract features more efficiently than a CNN or LSTM [18,19].

3.4. Sample Dimensions

Limited by the size and dimensions of samples in multi-temporal RS images, classifi-
cation samples contain different spectral, temporal, and spatial information. This study
uses various deep learning models to learn and represent spectral, temporal, and spatial
information from multi-temporal images. The time-series classification data constructed
from VI have only temporal characteristics [9], and their samples are one-dimensional
vectors (Figure 3a). The time-series data constructed directly using multi-spectral, multi-
temporal images are two-dimensional matrices with the shape of (band, time) (Figure 3b).
The time-series data constructed from VIs including the spatial neighborhood are three-
dimensional matrices (Figure 3c) with the shape of (height, width, time). The multi-spectral
features combined with the spatial neighborhood in multi-temporal images produce four-
dimensional matrices with the shape of (time, height, width, band) (Figure 3d). The “time”
in three- or four-dimensional matrices means the number of temporals in time-series.

Figure 3. Time-series samples with different dimensions. (a) 1-D time-series, (b) 2-D time-series,
(c) 3-D time-series, (d) 4-D time-series.

3.5. Deep Learning Architectures

The main deep learning classification models used in the study are 1D-CNN, LSTM,
2D-CNN, 3D-CNN, and ConvLSTM2D. The temporal, spectral, and spatial information of
multi-temporal images can be learned and represented by different deep learning models
corresponding to different types of samples. Both 1D-CNN and LSTM models can represent
temporal features, and the model input corresponds to 1D and 2D samples (Figure 3a,b).
1D-CNN (Conv1D) models acquire the temporal patterns of sequence data through a 1D
convolution, and Conv1D layers learn local features by stacking in a shallow network,
whereas a deeper network synthesizes more pattern features within a larger receptive field.
The representation of sequence patterns by LSTM models at different temporal frequencies
is advantageous for analyzing the temporal characteristics within a crop growing season. 3D
times-series samples (Figure 3c) are used as 2D-CNN input, and the Conv2D layer captures
the crop temporal and spatial variations through convolution of the spatial domain and
through time sequences of the multi-temporal images. 3D-CNN convolves multi-temporal
images from different dimensions and represents features of shallow and deep temporal,
spatial, and spectral information of crops by stacking convolutional layers (Conv3D). Like
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LSTM, ConvLSTM2D is sensitive to temporal patterns, and convolutional operations inside
the ConvLSTM2D cell efficiently capture spatial information. The structure (ConvLSTM2D)
learns and represents temporal, spectral, and spatial information similar to that of the
3D-CNN models. Both 3D-CNN and ConvLSTM2D models use 4D time-series samples
(Figure 3d) as model input. Figure 4 shows the different network architectures.

  
(a) (b) 

 
(c) (d) 

 
(e) 

Figure 4. Architectures of (a) LSTM, (b) 1D-CNN, (c) 2D-CNN, (d) 3D-CNN, and (e) ConvLSTM2D.

Because of the versatility and complexity of deep learning architectures, no stan-
dard procedure exists to search for the optimal combination of hyperparameters and the
associated layers [18,19]. As a result, an extremely large number of potential network
architectures must be considered, making it impossible to try them all. In this paper, the
hyperparameter setting and optimization of model are based on strategies from the litera-
ture [8,9]. The hyperparameters of the deep learning models include the type and number
of hidden layers and the number of neurons in each layer. The layer channels are 16, 32, 64,
128, 256 and the sample sizes are 3, 5, 7, 9. The learning rate is 0.01 or 0.05. The length of
the time series is 13. The convolution kernel width is 3 [26,27]. Pooling layers are fixed as
max-pooling, with a window size of 2. Dropout with probabilities of 0.3, 0.5, and 0.8 is a
regularization technique that randomly drops neurons in a layer during training to prevent
the output of the layer from relying on only a few neurons. Each model contains two fully
connected layers at the output end. The last layer contains five neurons corresponding to
the probability of the five classes.

The hyper-parameters are selected and determined step-by-step, based on numerous
training experiments. Each deep learning model (Figure 4) is determined by stepwise
optimization and adjustment [9]. A large number of training experiments have shown
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that the epoch of 400 can meet the training requirements of the model. All deep learning
architectures are trained by a backpropagation algorithm, where the stochastic gradient
descent is used as the optimizer for model training. The parameters of the stochastic
gradient descent are decay = 10 − 5 and momentum = 0.99. The sample size of the
architectures is 9. The learning rate and batch size are 0.01 and 32, respectively. The
dropout probability in LSTM is 0.8. Binary cross entropy serves as the loss function. Deep
learning models were built using the Keras library and TensorFlow. Finally, the confusion
matrix and kappa coefficient from Scikit-learn are metrics for evaluating the accuracy of
crop classification. The calculation of VIs and the construction of time-series data are
implemented in Python.

3.6. Experiment Design

The multi-temporal images are divided into different experimental groups based on
the multiple sample types presented in Section 3.2, and the different deep learning models
are used to classify the crops based on multi-temporal images. Additionally, random forest
is used as a benchmark model in E1, E2, E3 and E6. See Table 4 for details. The B2348
(Table 4) corresponds to the four spectral bands in Table 1. The same applies to the other
features (Table 4).

Table 4. Experiment groups.

Number Features
Samples

Dimensions
Model

E1 NDVI
1-D time-series 1D-CNN LSTME2 EVI

E3 B2348

2-D time-series 1D-CNN LSTM
E4 B2348 + B11 + B12
E5 B2345678
E6 All Bands

E7 NDVI
3-D time-series 2D-CNNE8 EVI

E9 B2348
4-D time-series 3D-CNN ConvLSTM-2DE10 All Bands

E1 and E2 are time-series VI datasets with temporal features constructed from a single
VI. E3–E6 are multi-temporal images acquired with different spectral combinations. E3 is a
conventional spectral combination of red–green–blue and near-infrared bands. E4 and E5
add shortwave infrared (SWIR) and red-edge spectral bands to E3, respectively. E6 contains
the 10 spectral bands of Sentinel-2 images. 1D-CNN and LSTM models are used for crop
classification with different spectral combinations and to analyze how multi-spectral and
temporal information affect classification accuracy. E7 and E8 are used to classify crops
with a 2D-CNN model, and the comparison with E1 and E2 is designed to quantify the
contribution of spatial information in multi-temporal crop classification. E9 and E10 are
used to classify crops with 3D-CNN and ConvLSTM2D models; E9 uses conventional
spectral bands as input and E10 uses the 10 spectral bands of Sentinel-2 images. The
comparison and analysis of crop classification with the different experimental groups show
how temporal, spectral, and spatial information affect classification accuracy.

4. Results

The accuracy of crop classification via multi-temporal images mainly depends on three
factors: time-series data construction, feature extraction, and classification method. Our
experiments verify the contribution of time-series data and deep learning models. Various
time-series data are constructed based on the strategy presented in Section 3.2 and feed
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into the deep learning architectures (Figure 4) of Section 3.3 for different experiments. The
classification results and accuracies are given in subsequent sections.

4.1. Classification Based on VI Time Series

E1 and E2 in Figure 5 and Table 5 show the results of time-series crop classification
based on NDVI and EVI. The classification accuracies produced by the 1D-CNN (Figure 4b)
and LSTM (Figure 4a) models for E1 and E2 exceed 92%, and the kappa coefficient is greater
than 0.9. The highest overall accuracy (OA) for E2 (LSTM) is close to 94%. Compared
with random forest, deep learning models based on 1D-CNN and LSTM have higher
accuracy (Table 5) and better performance in local regions (Figure 5). These results show
that the 1D-CNN and LSTM models constructed herein are suitable for multi-temporal crop
classification based on VI. Compared with E1, the OA for E2 increases by 0.26% and 0.69%
for the 1D-CNN and LSTM models, respectively. This reflects the variability of different
VIs and the similarity of time-series VI for crop classification. Compared with the 1D-CNN
model, the LSTM model is more accurate; the OA improves by 0.75% and 1.18% for E1 and
E2, respectively. These results show that both the LSTM and 1D-CNN models can capture
temporal features, although the LSTM model is more accurate.

Figure 5. Crop classification results based on VI time-series (see red boxes for more detail).
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Table 5. Classification accuracy produced by various models with VI time series.

Number Model
Accuracy

OA Kappa

E1
RF 91.02 0.891

1D-CNN 92.50 0.906
LSTM 93.25 0.915

E2
RF 91.24 0.893

1D-CNN 92.76 0.909
LSTM 93.94 0.924

E7 2D-CNN 94.74 0.934
E8 2D-CNN 94.76 0.934

Differences in architecture also affect classification accuracy. Compared with the other
results in Figure 5, the RF-based results (Figure 5a,e) are worse locally, while almost no
salt-and-pepper noises appear in Figure 5c,h. Compared with E1 and E2, the accuracy of
E7 and E8 improved by 0.82% to 2.24%, and the improvement exceeds RF by 3.5%. E7 and
E8 classified by the 2D-CNN model (Figure 4c) produce a favorable overall classification
accuracy of above 94.7% and a kappa coefficient of 0.934, which is attributed to the effective
learning and representation of temporal and spatial information in patch-based time-series
VI data by 2D-CNN.

Figure 5 and Table 5 also show that the classification results based on deep learning
outperform the random forest. However, the misclassification of crop types in Figure 5
indicates that further optimization is still needed. Based on the same model, there is
no significant accuracy difference in E1 and E2. This indicates that improving accuracy
solely using time-series data (temporal features) constructed from a single VI is difficult.
However, the addition of spatial information not only improves crop classification accuracy
but also eliminates salt-and-pepper noise. In addition, the 1D-CNN and LSTM architectures
limit the possibility of exploiting spatial information in multi-temporal crop classification,
whereas the 2D-CNN model produces more accurate crop classification based on single VI
time-series data.

4.2. Classification Based on Multi-Spectral Time Series

Figure 6 and Table 6 show the classification results of E3–E6 based on the time-
series data constructed from multi-spectral, multi-temporal images. The crop classification
accuracy of the 1D-CNN model is less than that of the LSTM model applied to E3–E6,
which is similar to the results of the LSTM model. Therefore, hereinafter, we consider only
the crop classification results based on LSTM.

The input data in E3–E6 have both multi-spectral and -temporal features, differing
only in the number of multi-spectral bands, as explained in Section 3.4. Table 6 shows
that the accuracy of RF-based is lower than deep learning, and Figure 6 also shows that
results of deep learning are better in local areas. The OA of E3–E6 is 95.31%, 96.72%, 96.37%,
and 96.94%, respectively. Compared with E3, the addition of spectral bands, especially
red-edge bands (E5) or SWIR bands (E4), improves the crop classification accuracy, with
SWIR bands contributing slightly more than red-edge bands. Using the LSTM model
with E6 surprisingly remains the most accurate configuration, with the crop-classification
accuracy improving by 1.63% with respect to E3. This indicates that the advantage of the
number of spectral bands in multi-spectral images cannot be neglected. With the addition
of spectral bands, salt-and-pepper noise is eliminated to varying degrees, with the least
salt-and-pepper noise coinciding with the most accurate crop classification (Figure 6f),
indicating that the salt-and-pepper phenomenon is weakened but hardly eliminated by
using multi-spectral bands. Combined with the presentation in Section 4.1, these results
further demonstrate how spatial information affects multi-temporal crop classification.
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Figure 6. Crop classification results based on multi-spectral time series.

Furthermore, the addition of different spectral bands in E3–E6 increases the diversity of
input classification data. In the same experimental group, the accuracy difference between
1D-CNN and LSTM varies from 0.1% to 0.44%, with the minimum difference of 0.1%
presented in E6. However, in the different experimental groups, the accuracy difference of
the same model varies from 1.06% to 1.95%, with E6 showing an accuracy improvement
of nearly 2% compared to E3. In E9 and E3, the spatial information causes differences in
the input data. The accuracy difference between different deep learning models with the
same input data is small, ranging from 0.21% to 0.42%. In contrast, the accuracy difference
between the same models with different input data is larger, ranging from 1.88% to 1.25%.
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This indicates that increasing the diversity of input data is more important for improving
crop classification accuracy than using different deep learning models.

Table 6. Classification accuracy produced by various models and multi-spectral time-series data.

Number Model
Accuracy

OA Kappa

E3
RF 93.48 0.918

1D-CNN 94.89 0.936
LSTM 95.31 0.941

E4
1D-CNN 96.28 0.953

LSTM 96.72 0.959

E5
1D-CNN 96.02 0.950

LSTM 96.37 0.955

E6
RF 95.51 0.944

1D-CNN 96.84 0.960
LSTM 96.94 0.962

E9
3D-CNN 96.77 0.960

ConvLSTM2D 96.56 0.957

E10
3D-CNN 97.43 0.968

ConvLSTM2D 97.25 0.966

Figure 7 and Table 6 present the classification results of E9 and E10 using the 3D-CNN
(Figure 4d) and ConvLSTM2D (Figure 4e) models. The OA of 3D-CNN in E9 and E10 was
96.77% and 96.56%, respectively, with kappa coefficients of 0.960 and 0.957. The OA of
ConvLSTM2D in E9 and E10 was 97.43% and 97.25%, respectively, with kappa coefficients
of 0.968 and 0.966. The accuracy is slightly greater when using the 3D-CNN model than
when using the ConvLSTM2D model. The use of the 3D-CNN model on E10 produces
the greatest crop classification accuracy of 97.43%, which translates into an OA improved
by 3.69%, 2.67%, 0.49%, and 4.93% with respect to E2 (LSTM), E8 (2D-CNN), E6 (LSTM),
and E1 (1D-CNN), respectively. Compared with the E6 (LSTM), the salt-and-pepper noise
is eliminated in E9 and E10 (Figure 7b,d), although the improvement in accuracy is not
obvious. E10 produces more accurate results than E9 because it contains more spectral
bands in the input data.

The classification results of the different experiments verify the feasibility of the model
constructed herein (Figure 4) for multi-temporal crop classification. The comparison of
the results of the different experiments shows that both the construction of the time-series
data and that of the classification model influence the crop classification accuracy. The
LSTM model produces more accurate crop classification results than the 1D-CNN model.
However, when using time-series data constructed from VIs, the 2D-CNN model produces
more accurate results than the 1D-CNN and LSTM models after the elimination of the
salt-and-pepper noise. When using time-series data constructed by stacking spectral
bands, increasing the number of bands in the input data improves the crop classification
accuracy while somewhat reducing the salt-and-pepper noise. Additionally, the LSTM
model again produces slightly more accurate crop classifications than the 1D-CNN model,
which indicates that the LSTM model is more able to capture temporal features.

E10 treated by the 3D-CNN and ConvLSTM2D models (Figure 4) produces the most
accurate crop classification of all experiments. In addition, the architectures of the 3D-
CNN and ConvLSTM2D models lead to better learning and representation for multi-
temporal crop features, making these models more suitable for crop classification from
multi-temporal images.
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Figure 7. Crop classification results based on temporal, spectral, and spatial information.

Combined with the previous analysis of classification accuracy, VI time-series data
using only temporal information only slightly improves the crop classification accuracy.
The addition of multi-spectral data based on temporal information improves crop classifi-
cation accuracy, and the salt-and-pepper noise is more easily alleviated upon increasing
the number of spectral bands. As the number of input features increases, the contribution
of spatial information in improving classification accuracy decreases. However, the elim-
ination of salt-and-pepper noise through the use of spatial information remains a clear
advantage in crop mapping. Therefore, making full use of the temporal, spectral, and
spatial information is a more feasible strategy for multi-temporal crop classification. The
deep learning architecture fed with 4D data involving multi-temporal images is thus the
best model for accurate crop classification based on multi-temporal images.

5. Discussion

5.1. Analysis of Time-Series Profile

Figure 8 shows the temporal profiles of crops produced by VIs and spectra. The
buffer areas of crop profiles overlap throughout the growing season, despite the difference
in average reflectance or VI values. In the middle of the growing season, the spectral
overlap within the crop becomes smaller (~DOY 200–220) than in the early or late growing
season. During this period, the temporal curves of crops with one standard deviation
are more stable and distinguishable, which indicates that this feature should be useful
for differentiating between crops. In addition, the temporal windows always serve for
single-temporal crop classification [28]. However, the similarity and overlap of profiles
over the whole growing season make it difficult to distinguish crops such as corn and
soybeans based solely on single images [1,2].
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Figure 8. Time-series spectral band and vegetation indices are aggregated for crop fields. The buffers
indicate one standard deviation calculated from the fields.

The differences in the time series curves (Figure 8) between crops in different spectral
ranges and time periods make it possible to distinguish between crops [29]. For example,
the gap in B8 (Figure 8) during the middle growing season (≈DOY 180–220) makes it
possible to distinguish between spring wheat and sugar beets. Figure 8 shows that almost
no spectral overlap occurs between corn and soybeans in B11 and B12 during the period of
time (≈DOY 170–200). The gap observed in the profiles of sugarbeets and other crops in
bands B6-B8 and B8A, as shown in Figure 8, occurs during two periods of time, which are
around DOY 180–220 and 250–270. Spring wheat can be directly distinguished from profiles
in B2–B5 (Figure 8) around DOY 225 and in B11 and B12 in the period DOY 210–240. Corn
and soybeans can be differentiated with greater probability in the period DOY 170–200 in
B11 and B12. In addition, the overlap in temporal profile based on the NDVI is similar to
the other spectra in Figure 8. The profiles of corn and soybeans almost overlap over the
entire growing season, which explains the difficulty of distinguishing between these two
crops [3,4]. The profiles of sugarbeets and spring wheat clearly differ between DOY 260
and 170.

As previously mentioned, time-series images based on single VI or band are insuffi-
cient to accurately distinguish between different crops. However, different crops exhibit
spectral differences in the time-series curves of each spectral band (Figure 8), indicating the
potential of each spectral band to distinguish between different crops. Better utilization of
the advantages of multi-spectral bands has greater potential to improve the accuracy of
crop classification [30]. The addition of different types of spectral bands such as red-edge
and SWIR has reinforced this conclusion in classification experiments [9].

5.2. Effects of Temporal, Spectral, and Spatial Feature

The effects of temporal, spectral, and spatial information on crop classification are
revealed in the different time-series data. The crop classification results due to the different
time-series classification data are shown in Figures 5–7 and Tables 5 and 6. Using only
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temporal features may not be sufficient for accurate crop classification due to salt-and-
pepper noise (Figures 5 and 6), which can affect pixel-based classification. Fully exploiting
the abundant spectral and spatial information in multi-temporal images can be challenging
when using only VI, but it provides more possibilities for improving accuracy. [5,31] pointed
out that spatial features such as texture can lead to good classification performance, and a
similar result occurs for 2D-CNN classification (Figure 5). In addition, based on the analysis
in the previous sections, the contribution to the accuracy of spatial information such as
texture [9,32] decreases as the number of input features increases. Moreover, the spatial
information contributes significantly to the classification accuracy for a feature input of a
single VI. [8] also suggested that more information-dense data are required to improve the
crop-classification accuracy based on multi-temporal images. The diversity of information
and the differences in time-series data depicted in Figure 8 provide more possibilities for
accurate classification and can alleviate the salt-and-pepper phenomenon. Nevertheless,
spatial information remains a vital ingredient to eliminate salt-and-pepper noise.

5.3. Comparison of Deep Learning Models

The temporal dependencies in multi-temporal images are long term and complex,
and crops have unique temporal, spectral, and spatial features (Figure 8). Sufficient model
complexity and automated feature learning and representation satisfy the data-processing
needs of models in multi-temporal crop classification [9,12]. Differing from the result
that 1D-CNN accuracy is higher than that of LSTM [9], increasing the number of spectral
bands in this work causes the accuracy of 1D-CNN to be close to that of LSTM. This
indicates that input features and application scenarios (more crop types) may also affect
the accuracy of the classification. The architecture of 2D-CNN models is limited by their
structure, meaning that they can only accept time-series data constructed by a single VI
or spectral band as input. This prevents 2D-CNN models from exploiting multi-spectral
information. The analysis in Section 4 also points out that 2D-CNN models are less accurate
than 1D-CNN and LSTM models using multiple spectral bands. In contrast with 2D-CNN
models, both 3D-CNN and ConvLSTM2D models require 4D data that perfectly fit the
temporal, spectral, and spatial features. The classification results (Figures 7 and 9) of
3D-CNN and ConvLSTM2D models are also significantly more accurate and stable than
other comparative models. [30] also pointed out that models such as 3D-CNN should be
considered for crop classification from multi-temporal images.

Figure 9. The OA of different deep learning models.

As described in Section 3.5, each model is trained extensively to achieve the best
classification results. Therefore, the parameters of deep learning models in this work will
likely need to be adjusted to achieve satisfactory accuracy for other classification tasks.
Additionally, numerous model training experiments are necessary in this process.
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5.4. Potential of 3D-CNN and ConvLSTM2D for Crop Classification from Multi-Temporal Images

Crop classification from multi-temporal RS images often has a time lag due to data
acquisition [5,6]. However, time-series data can alleviate this issue, whereby different
objects have the same spectrum, and the same objects have different spectra in the back-
ground of relatively complex crop cultivations. Previous analyses also revealed that fully
exploiting the temporal, spectral, and spatial information in multi-temporal images should
be a major avenue to improve classification accuracy. 3D-CNN and ConvLSTM2D models
can integrate multi-temporal information and have advantageous structures not found
in other models such as 2D-CNN and SVM [11,19]. The best classification accuracies are
provided by 3D-CNN and ConvLSTM2D models, and exceed 97% (Table 6). Figure 10
shows the strong correlation between the results obtained herein and the CDL for the area
ratio of different crops. It also shows potential applications for crop classification based on
multi-temporal images.

 

Figure 10. Correlation of crop-area ratio. ((a–d) correspond to four experiments, as shown in the
vertical label. The scatter points mean the fraction of different crop over the study area. The red line
reflects the consistency of crop area between the classification results and the CDL.)

Different network structures in deep learning models such as inception [33], dropout [8],
and transformer [34] all enhance the feature learning and representation capabilities of the
network. Deep learning models (Figure 4) are constructed by simple stacking of modules,
so they lack special design for multi-temporal images and cannot treat scale effects [35]
in images. In addition, information redundancies (Figure 8) with high inter-band simi-
larity must be considered. Both architectures have inherent advantages for processing
multi-temporal images. Although ConvLSTM2D has fewer applications in multi-temporal
image crop classification than 3D-CNN [14], the results of this study show that this model
approaches the classification capability of 3D-CNN. References [13,36] pointed out that
3D-CNN is not suitable for establishing long-term dependencies of time-series data due
to locally computed convolutions, whereas ConvLSTM2D combines the sequence pro-
cessing capability of LSTM and the structure of CNN, which facilitates the addition of
multiple special structures and modules so that it can be exploited to classify crops from
multi-temporal images.

6. Conclusions

This paper constructs various time-series datasets based on Sentinel-2 multi-temporal
images by VI or spectral stacking, and develops deep learning models with different
structures for classifying crops from multi-temporal images. The results lead to the follow-
ing conclusions:

(1) Greater data diversity (temporal, spectral and spatial information) is effective in
improving crop classification accuracy. The temporal feature only provides limited
improvement in the accuracy of crop classification from multi-temporal images. As
more spectral information is added, the accuracy can be further improved, and the
impact of salt-and-pepper noise can be alleviated. The inclusion of spatial information
can eliminate salt-and-pepper noise, and its contribution to accuracy decreases as the
number of input features increases.
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(2) Various deep learning models have limitations in crop classification from multi-
temporal images. 1D-CNN and LSTM models cannot extract spatial features while
integrating temporal and spectral features. Additionally, a 2D-CNN is suitable for crop
classification of time-series data given a single feature such as a VI or band because
the multi-spectral advantages are hard to consider when combining temporal and
spatial information. The 3D-CNN and ConvLSTM2D models are the most accurate
for classifying crops and are more suitable for multi-temporal crop classification than
other deep learning models.

(3) The deep learning models based on Conv3D and ConvLSTM2D, which integrate
temporal, spectral, and spatial information, are the most accurate models for multi-
temporal crop classification. In addition, the advantages of incorporating RNN and
CNN and the more flexible structure mean that ConvLSTM should be investigated.

In this paper, smaller areas and simple crop types are used for deep learning multi-
temporal crop classification application studies. In future research, crop classification
based on deep learning is still needed for large-scale study areas and complex planting
systems, such as crop rotation and more crop types. In addition, the impact of clouds on
image acquisition is difficult to avoid. While the acquisition of synthetic aperture radar
(SAR) is not affected by clouds, which can also increase the diversity of classification data.
Therefore, research into crop classification by synergistic SAR and optical images with
different acquisition frequencies will be carried out. Additionally, the ConvLSTM model
will be used as the classification model to explore its potential in multi-source image crop
classification.
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Abstract: Aiming at the problem of accurately locating and identifying multi-scale and differently
shaped apple leaf diseases from a complex background in natural scenes, this study proposed an apple
leaf disease detection method based on an improved YOLOv5s model. Firstly, the model utilized
the bidirectional feature pyramid network (BiFPN) to achieve multi-scale feature fusion efficiently.
Then, the transformer and convolutional block attention module (CBAM) attention mechanisms
were added to reduce the interference from invalid background information, improving disease
characteristics’ expression ability and increasing the accuracy and recall of the model. Experimental
results showed that the proposed BTC-YOLOv5s model (with a model size of 15.8M) can effectively
detect four types of apple leaf diseases in natural scenes, with 84.3% mean average precision (mAP).
With an octa-core CPU, the model could process 8.7 leaf images per second on average. Compared
with classic detection models of SSD, Faster R-CNN, YOLOv4-tiny, and YOLOx, the mAP of the
proposed model was increased by 12.74%, 48.84%, 24.44%, and 4.2%, respectively, and offered higher
detection accuracy and faster detection speed. Furthermore, the proposed model demonstrated strong
robustness and mAP exceeding 80% under strong noise conditions, such as exposure to bright lights,
dim lights, and fuzzy images. In conclusion, the new BTC-YOLOv5s was found to be lightweight,
accurate, and efficient, making it suitable for application on mobile devices. The proposed method
could provide technical support for early intervention and treatment of apple leaf diseases.

Keywords: smart agriculture; detection of apple leaf diseases; YOLOv5; transformer; CBAM

1. Introduction

As one of the top four popular fruits in the world, apple is highly nutritious and
provides significant medicinal value [1]. In China, apple production has expanded, making
it the world’s largest apple producer. However, a variety of diseases hamper the healthy
growth of apple, seriously affecting the quality and yield of apple and causing significant
economic losses. According to statistics, there are approximately 200 types of apple diseases,
most of which occur in apple leaf areas. Therefore, to ensure the healthy development of
the apple planting industry, accurate and efficient leaf disease identification and control
measures are needed [2].

In traditional disease identification techniques, fruit farmers and experts rely on
visual examination based on their experience, a method which is inefficient and highly
subjective. With the advance of computer and information technology, image recognition
technology has been gradually applied in agriculture. Many researchers have applied
machine vision algorithms to extract features such as color, shape, and texture from disease
images and input them into specific classifiers to accomplish plant disease recognition
tasks [3]. Zhang et al. [4] processed apple disease images using HSI, YUV, and gray models;
then, the authors extracted features using genetic algorithms and correlation based-feature
selection, and ultimately discriminated apple powdery mildew, mosaic, and rust diseases
using an SVM classifier with an identification accuracy of more than 90%. However, the
complex image background and the feature extraction, dominated by strong experience,
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make the labor and time costs much higher, as well as makingthe system difficult to
promote and popularize.

In recent years, deep learning convolutional neural networks have been widely used
in agricultural intelligent detection, with faster detection speeds and higher accuracy
compared to traditional machine vision techniques [5]. There are two types of target
detection models; the first is the two-stage detection algorithm represented by R-CNN [6]
and Faster R-CNN [7]. Xie et al. [8] used an improved Faster R-CNN detection model
for real-time detection of grape leaf diseases, introducing three modules (Inception v1,
Inception-ResNet-v2, and SE) in the model, and mean average precision (mAP) achieved
81.1%. Deng et al. [9] proposed a method for large-scale detection and localization of
pine wilt disease using unmanned remote sensing and artificial intelligence technology,
and a series of optimizations to improve detection accuracy to 89.1%. Zhang et al. [10]
designed a Faster R-CNN (MF3R-CNN) model with multiple feature fusion for soybean leaf
disease detection, achieving an average accuracy of 83.34%. Wang et al. [11] used the RFCN
ResNet101 model to detect potato surface defects and achieved an accuracy of 95.6%. This
two-stage detection model was capable of identifying crop diseases, but its large network
model and slow detection speed made it difficult to apply in real planting industry.

Another type of target detection algorithm is the one-stage algorithm represented by
SSD [12] and YOLO [13–16] series. Unlike the two-stage detection algorithm, it does not
require the generation of candidate frames. By converting the boundary problem into a
regression problem, features extracted from the network are used to predict the location
and class of lesions. Due to its high accuracy, fast speed, short training time, and low com-
putational requirement, it is more suitable for agricultural applications. Wang et al. [17]
used the SSD-MobileNet V2 model for the detection of scratches and cracks on the sur-
face of litchi, which eventually achieved 91.81% mAP and 102 frame per second (FPS). In
the experiments of Chang-Hwan et al. [18], a new attention-enhanced YOLO model was
proposed for identifying and detecting plant foliar diseases. Li et al. [19] improved the
CSP, feature pyramid networks (FPN), and non-maximum suppression (NMS) modules in
YOLOv5 to detect five vegetable diseases and obtained 93.1% mAP, effectively reducing
missing and false detections caused by complex background. In complex orchard environ-
ments, Jiang et al. [20] proposed an improved YOLOX model to detect sweet cherry fruit
ripeness. In improving the model, mAP and recall were both improved by 4.12% and 4.6%,
respectively, which effectively solved the interference caused by fruit overlaps and shaded
branches and leaves. Li et al. [21] used the improved YOLOv5n model to detect cucumber
diseases in natural scenes and achieved higher detection accuracy and speed. While the
development of intelligent crop disease detection using one-stage detection algorithms has
matured, less research has been carried out for apple leaf disease detection. Small datasets
and simple image backgrounds pose problems for most existing studies. Consequently, it
is crucial to develop an apple leaf disease detection model with high recognition accuracy
and fast detection speed for mobile devices with limited computing power.

Considering the complex planting environment in apple orchards and the various
shapes of lesions, this study proposed the use of an improved target detection algorithm
based on YOLOv5s. The proposed algorithm aimed to reduce false detections caused
by multi-scale lesions, dense lesions, and inconspicuous features in apple leaf disease
detection tasks. As a result, the accuracy and efficiency of the model could be enhanced
to provide essential technical support for apple leaf disease identification and intelligent
orchard management.

2. Materials and Methods

2.1. Materials
2.1.1. Data Acquisition and Annotation

In this study, three datasets were used to train and evaluate the proposed model: the
Plant Pathology Challenge 2020 (FGVC7) [22] dataset, the Plant Pathology Challenge 2021
(FGVC8) [23] dataset, and the PlantDoc [24] dataset.
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FGVC7 and FGVC8 [22,23] consist of apple leaf disease images used in the Plant
Pathology Fine-Grained Visual Categorization competition hosted by Kaggle. The images
were captured by Cornell AgriTech using Canon Rebel T5i DSLR and smartphones, with a
resolution of 4000 × 2672 pixels for each image. There are four kinds of apple leaf diseases,
namely rust, frogeye leaf spot, powdery mildew, and scab. These diseases occur frequently
and cause significant losses in the quality and yield of apples. Sample images of the dataset
are shown in Figure 1.

Figure 1. FGVC7 and FGVC8 disease images. (a) Frogeye leaf spot; (b) Rust; (c) Scab;
(d) Powdery mildew.

PlantDoc [24] is a dataset of non-laboratory images constructed by Davinder Singh et al.
in 2020 for visual plant disease detection. It contains 2598 images of plant diseases in natu-
ral scenes, involving 13 species of plants and as many as 17 diseases. Most of the images in
PlantDoc have low resolution, large noise, and an insufficient number of samples, making
detection more difficult. In this study, apple rust and scab images were used to enhance
and validate the generalization of the proposed model. Examples of disease images are
shown in Figure 2.

Figure 2. PlantDoc disease images. (a) Rust; (b) Scab.

From the collected datasets, we selected (1) images with light intensity varying with
the time of day, (2) images capture using different shooting angles, (3) images with different
disease intensities, and (4) images from different disease stages to ensure the richness and
diversity of the dataset. Finally, a total of 2099 apple leaf disease images were selected. La-
belImg software was used to label the images with categories including disease type, center
coordinates, width, and height of each disease spots. In total, we annotated 10,727 lesion
instances, and annotations are shown in Table 1. The labeled dataset was randomly divided
into training and test sets at a ratio of 8:2. This dataset was called ALDD (apple leaf disease
data) and was used to train and test the model.

Table 1. Label distribution of ALDD.

Disease Type Number of Images Number of Labeled Instances

Scab 498 4722
Frogeye leaf spot 600 3091

Rust 502 2166
Powdery mildew 499 748

Total number 2099 10,727
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2.1.2. Data Enhancement

The actual apple orchard in a complex environment contains many disturbances and
the currently selected data is far from sufficient. To enrich the image dataset, mosaic image
enhancement [16] and online data enhancement were chosen to expand the dataset. Mosaic
image enhancement involves a random selection of 4 images from the training set, which
are finally combined into one image after rotation, scaling, and hue adjustment. This
approach not only enriches the image background and increases the number of instances,
but also indirectly boosts the batch size. This accelerates model training and is favorable
to improving small target detection performance. Online augmentation is the use of data
augmentation in model training, which ensures the invariance of the sample size and
the diversity of the overall sample and improves the model’s robustness by continuously
expanding the sample space. Mainly includes alterations to hue, saturation, brightness
transformation, translation, rotation, flip, and other operations. The total number of the
dataset is constant; however, the amount of data input to each epoch is changing, and it is
more conducive to fast convergence of the model. Examples of enhanced images are shown
in Figure 3.

Figure 3. Original and enhanced images. (a) Original; (b) Flip horizontal; (c) Rotation transformation;
(d) Hue enhancement; (e) Saturation enhancement; (f) Mosaic enhancement.

2.2. Methods
2.2.1. YOLOv5s Model

Depending on the network depth and feature map width, YOLOv5 can be divided
into YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x [25]. As the depth and width increase,
the number of layers of the network increases as well as the structure becomes more
complex. In order to meet the requirements of lightweight deployment and real-time
detection, reduce storage space occupied by the model and improve the identification
speed, YOLOv5s was selected as the baseline model in this study.

The YOLOv5s was composed of four parts: input, backbone, neck, and prediction.
The input section included mosaic data enhancement, adaptive calculation of the anchor
box, and adaptive scaling of images. The backbone module performed feature extraction
and consisted of four parts: focus, CBS, C3, and spatial pyramid pooling (SPP). There were
two types of C3 [26] modules in YOLOv5s for backbone and neck, as shown in Figure 4.
The first one used the residual units at the backbone layer, while the second one did not.
SPP [27] performed the maximum pooling of feature maps using convolutional kernels of
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different sizes in order to fuse multiple sense fields and generate semantic information. The
neck layer used a combination of (FPN) [28] and path aggregation networks (PANet) [29]
to fuse the image features. The prediction included three detection layers, corresponding
to 20 × 20, 40 × 40, and 80 × 80 feature maps, respectively, for detecting large, medium,
and small targets. Finally, the distance between the predicted boxes and the true boxes was
calculated using the complete intersection over union (CIOU) [30] loss function, and the
NMS was applied to remove the redundant boxes and retain the detection boxes with the
highest confidence. The YOLOv5s network model is shown in Figure 4.

Figure 4. YOLOv5s method architecture diagram.

2.2.2. Bidirectional Feature Pyramid Network

The YOLOv5s combines FPN and PANet for multi-scale feature fusion, with FPN
enhancing semantic information in a top-down fashion and PANet enhancing location
information from the bottom up. This combination enhances the feature fusion capability of
the neck layer. However, when fusing input features at different resolutions, the features are
simply summed and their contributions to the fused output features are usually inequitable.
To address this problem, Tan et al. [31] developed the BiFPN based on efficient bidirectional
cross-scale connections and weighted multiscale feature fusion. The BiFPN introduced
learnable weights in order to learn the importance of different input features, while top-
down and bottom-up multi-scale feature fusion was applied iteratively. The structure of
BiFPN is shown in Figure 5.

Figure 5. BiFPN network structure diagram, where (a) FPN introduces a top-down path to fuse
multi-scale features from P3 to P6; (b) PANet adds an additional bottom-up path on top of the FPN;
(c) BiFPN removes redundant nodes and adds additional connections on top of PANet.
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The BiFPN removes the node with only one input edge because it does not perform
feature fusion. The contribution to the network aim of fusing different features is minimal,
and so it is removed and the bidirectional network is simplified. Additionally, an extra
edge is added between the input and output nodes that are at the same layer to obtain
higher-level fusion features through iterative stacking. The BiFPN introduces a simple and
efficient weighted feature fusion mechanism by adding a learnable weight that assigns
different degrees of importance to feature maps of different resolutions. The formulas are
shown in (1) and (2):

Ptd
i = Conv

(
w1·Pin

i + w2·Resize
(

Pin
i+1
)

w1 + w2 + ε

)
(1)

Pout
i = Conv

(
w′

1·Pin
i + w′

2·Ptd
i + w′

3·Resize
(

Pout
i−1
)

w′
1 + w′

2 + w′
3 + ε

)
(2)

where Pi
in is the input feature of layer i, Pi

td is the intermediate feature on the top-down
pathway of layer i, Pi

out is the output feature on the bottom-up pathway of layer i, ω is
the learnable weight, ε = 0.0001 is a small value to avoid numerical instability, Resize is a
downsampling or upsampling operation, and Conv is a convolution operation.

The neck layer with BiFPN added a fusion of multi-scale features to provide powerful
semantic information to the network. It helped to detect apple leaf diseases of different sizes
and alleviated the network’s inaccurate identification of overlapping and fuzzy targets.

2.2.3. Transformer Encoder Block

There was a high density of lesions on apple leaves. In order to avoid the problem
that the number of lesions and background information increased after mosaic data en-
hancement, which caused the inability to accurately locate the area where the diseases, the
transformer [32] attention mechanism was added to the end of the backbone layer. The
transformer module was employed to capture global contextual information and establish
long-range dependencies between feature channels and disease targets. The transformer
encoder module used a self-attentive mechanism to explore the feature representation ca-
pability and an had excellent performance in highly dense scenarios [33]. The self-attention
mechanism was designed based on the principles of human vision and allocated resources
according to the importance of visual objects. The self-attentive mechanism had a global
sensory field, which modeled long-range contextual information, captured rich global
semantic information, and assigned different weights to different semantic information
to make the network focus more on key information [34]. It was calculated as (3), and
contained three basic elements: query, key, and value, denoted by Q, K, and V, respectively.

Attention(Q, K, V) = so f tmax
(

QKT
√

dk

)
V (3)

where dk is the number of input feature map channel sequences, using normalized data to
avoid gradient increment.

Each transformer encoder is composed of a multi-head attention and a feed-forward
neural network. The structure of multi-head attention mechanism is shown in Figure 6.
It differs from the self-attentive mechanism in that the self-attentive mechanism uses
only one set of Q, K, and V values, while it uses multiple sets of Q, K, and V values to
compute and stitch multiple matrices together. The different linear transformations feature
different vector spaces, which can help the current code to focus on the current pixels and
acquire semantic information about the context [35]. The multi-head attention mechanism
enhances the ability to extract disease features by capturing long-distance dependent
information without increasing the computational complexity and improves the model’s
detection performance.
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Figure 6. Structure of multi-headed attention mechanism.

2.2.4. Convolutional Block Attention Module

Determining the disease species relies more on local information in the feature map,
while the localization of lesions is more concerned with the location information. This model
used the CBAM [36] attention mechanism in the improved YOLOv5s to weight the features
in space and channels and enhance the model’s attention to local and spatial information.

As shown in Figure 7, the CBAM contained two sub-modules: the channel atten-
tion module (CAM) and the spatial attention module (SAM), for spatial and channel
attention, respectively. The input feature map F∈RC×H×W was first passed through the
one-dimensional convolution operation Mc∈RC×1×1 of the CAM, and the convolution
result was multiplied with the input features. The output result of CAM was then used as
input, the two-dimensional convolution operation Ms∈R1×H×W of the SAM was performed,
and then the result was multiplied with the CAM output to obtain the final result. The
calculation formulas are as (4) and (5).

F′ = Mc(F)⊗ F (4)

F′′ = Ms
(

F′)⊗ F′ (5)

where F denotes the input feature map, Mc denotes the one-dimensional convolution
operation of CAM, Ms denotes the two-dimensional convolution operation of SAM, and ⊗
denotes element multiplication.

Figure 7. Convolutional block attention module (CBAM).
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The CAM in CBAM focused on the weights of different channels and multiplied
the channels with the corresponding weights to increase attention to important channels.
The feature map F of size H × W × C was averaged and maximally pooled to obtain
two 1 × 1 × C channel mappings, respectively, and then a two-layer shared multi-layer
perception (MLP) operation was performed. The two outputs were summed element by
element, and then a sigmoid activation function was applied to output the final result. The
calculation process is shown in Equation (6).

Mc(F) = σ(MLP(AvgPool(F)) + MLP(MaxPool(F))) (6)

As shown in Equation (7), the SAM was more concerned with the location information
of the lesions. The CAM output was averaged and maximally pooled to obtain two
H’ × W’ × 1 channel maps. The final result was obtained by concatenating the two feature
maps, followed by a 7 × 7 convolution operation and a Sigmoid activation function.

Ms(F) = σ
(

f 7×7([AvgPool(F); MaxPool(F)])
)

(7)

2.2.5. BTC-YOLOv5s Detection Model

Based on the original advantages of the YOLOv5s model, this study proposed using
an improved BTC-YOLOv5s algorithm for detecting apple leaf diseases. While ensuring
the speed of the procedure, it improved the accuracy of identifying apple leaf diseases
in a complex environment. The proposed algorithm was improved mainly in three parts:
the BiFPN, transformer, and CBAM attention mechanism. Firstly, the CBAM module was
added in front of the SPP in the YOLOv5s backbone layer to highlight useful information
and suppress useless information in the disease detection task, thereby improving the
model’s detection accuracy. Secondly, the C3 was replaced with the C3TR module with
transformer and improved the ability to extract apple leaf disease features. Thirdly, we
replaced the concat layer with the BiFPN layer, and a path from the 6th layer was added to
the 20th layer. The features generated by the backbone at the same layer were bidirectionally
connected with the features generated by the FPN and the PANet to provide stronger
information representation capability. Figure 8 shows the overall framework of the BTC-
YOLOv5s model for this study.

Figure 8. BTC-YOLOv5s model structure diagram.
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2.3. Experimental Equipment and Parameter Settings

The model was trained and tested on a Linux system running under the PyTorch
1.10.0 deep learning framework, using the following device specifications: Intel(R) Xeon(R)
E5-2686 v4 @ 2.30 GHz processor, 64 GB of memory, and NVIDIA GeForce RTX3090
graphics card with 24 GB of video memory. The software was executed on cuda 11.3, cudnn
8.2.1, and python 3.8.

During training, the initial learning rate was set to 0.01, and the cosine annealing
strategy was employed to decrease the learning rate. Additionally, the neural network
parameters were optimized using the stochastic gradient descent (SGD) method, with a
momentum value of 0.937 and a weight decay index score of 0.0005. The training epoch
was 150, the image batch size was set to 32, and the input image resolution was uniformly
adjusted to 640 × 640. Table 2 shows the tuned training parameters.

Table 2. Model training parameters.

Parameters Values

Input size 640 × 640
Batch size 32

Epoch 150
Initial learning rate 0.01

Optimizer SGD
Momentum 0.937

Weight decay 0.0005

2.4. Model Evaluation Metrics

The evaluation metrics are divided into two aspects: performance assessment and
complexity assessment. The model performance evaluation metrics include precision,
recall, mAP, and F1 score. The model complexity evaluation metrics include model size,
floating point operations (FLOPs), and FPS, which evaluate the computational efficiency
and image processing speed of the model.

Precision is the ratio of the correctly predicted positive samples to the total number of
samples predicted as positive and is used to measure the classification ability of a model,
while the recall measures the ratio of the correctly predicted positive samples to the total
number of positive samples. The AP is the integral of precision and recall, and the mAP is
the average of AP, which reflects the overall performance of the model for target detection
and classification. F1 score is the harmonic mean of precision and recall, and it uses both
precision and recall to evaluate the performance of the model. The calculation formulas are
shown in Equations (8)–(12).

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)

where TP is the number of positive samples with correct detection, FP is the number of
positive samples with incorrect detection, and FN is the number of negative samples with
incorrect detection.

AP =
∫ 1

0
P(R)dR (10)

mAP =
∑n

i=1 APi

n
(11)

where n is the number of disease species.

F1 =
2 × Precision × Recall

Precision + Recall
(12)

111



Agriculture 2023, 13, 878

The model size refers to the amount of memory required for storing the model. FLOPs
is used to measure the complexity of the model, which is the total number of multiplication
and addition operations performed by the model. The lower the FLOPs value, the less
computation is required for model inference, and the faster model computation will be.
The formula for FLOPs is shown in Equations (13) and (14). The FPS indicates the number
of pictures processed per second by the model, which can assess the processing speed and
is crucial for real-time disease detection. Considering that the model can be implemented
on mobile devices with low computational cost, an octa-core CPU without a graphics card
was selected to run the test.

FLOPs(Conv) =
(

2 × Cin × K2 − 1
)
× Wout × Hout × Cout (13)

FLOPs(Liner) = (2 × Cin − 1)× Cout (14)

where Cin represents the input channel, Cout represents the output channel, K represents the
convolution kernel size, and Wout and Hout represent the width and height of the output
feature map, respectively.

3. Results

3.1. Performance Evaluation

The proposed BTC-YOLOv5s model was validated using the constructed ALDD test
set. Additionally, the same optimized parameters were used to compare results with
YOLOv5s baseline model. As shown in Table 3, the improved model achieved similar
AP scores for frogeye leaf spots as the original model, while significantly improving the
detection performance for the other three diseases. Notably, scab disease, with its irregular
lesion shape, was the most issue to detect, and the improved model achieved a 3.3% increase
in AP, which was the largest improvement. These results indicated that the proposed model
effectively detected all four diseases with improved accuracy.

Table 3. Comparison of detection results of YOLOv5s and BTC-YOLOv5s.

Models
AP(%) mAP@0.5(%)

Frog Scab Powdery Rust Spare Dense

YOLOv5s 93 60.3 88.8 88.7 85.6 80.7
BTC-

YOLOv5s 92.9 63.6 90.2 90.3 87.3 81.4

Figure 9 shows evaluation results of precision, recall, mAP@0.5, and mAP@0.5:0.95
for the baseline model YOLOv5s and the improved model BTC-YOLOv5s trained with
150 epochs.

In Figure 9, it is displayed that the precision and recall curves fluctuated within a
narrow range after 50 epochs, but that the BTC-YOLOv5s curve remained consistently
above the baseline model curve. From the mAP@0.5 curve, it can be seen that the mAP@0.5
curve of the improved model intersected with the baseline model at around 60 epochs.
Although the mAP@0.5 of the baseline model increased rapidly in the early stage, the
BTC-YOLOv5s model improved steadily in the later stage and showed better results. The
mAP@0.5:0.95 curve also demonstrated a similar behavior.

As apple leaf diseases were small and densely distributed, for further verification of
the BTC-YOLOv5s model’s accuracy, the test sets were divided into two groups based on
lesion density, namely sparse distribution and dense distribution of lesions. We compared
the detection results of the baseline model and the improved model. The mAP@0.5 of BTC-
YOLOv5s model for sparse and dense lesions images was 87.3% and 81.4%, respectively,
which was 1.7% and 0.7% higher than that of the baseline model.
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Figure 9. Evaluation metrics of different models, where (a) is a comparison of precision curves before
and after model improvement; (b) comparison of recall curves before and after model improve-
ment; (c) comparison of mAP@0.5 curves before and after model improvement; (d) comparison of
mAP@0.5:0.95 curves before and after model improvement.

As shown in Figure 10, yellow circles represent missed detections and red circles
represent false detections. It can be seen that, irrespective of whether the disease is sparse
or dense, the baseline model YOLOv5s missed small or blurred lesions (the first row of
images in Figure 10a,b). However, the improved model resolved this issue and detected
small lesions or diseases on the leaves that were not in the focus range (the second row of
images in Figure 10a,b). Additionally, the BTC-YOLOv5s model had higher confidence
levels. The baseline model also mistakenly detected the non-diseased parts such as apples,
background, and other irrelevant objects (Figure 10(a3,b1)), and there was a false detection
whereby the scab was mistakenly detected as rust (Figure 10(b5)). The improved model
could concentrate more on diseases and extract the gap characteristics between different
diseases at a deeper level to avoid the above errors. Furthermore, the lesions of frogeye
leaf spot, scab, and rust were small, dense, and distributed in different parts of the leaves,
while powdery mildew typically affected the whole leaf. This led to the scale of the model
detection box changing from large to small, and the proposed model was able to adapt well
to the scale changes of different diseases.

Therefore, the BTC-YOLOv5s model could not only adapt to the detection of different
disease distributions but could also adapt to the changes in apple leaf diseases with different
scales and characteristics, showing excellent detection results.
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Figure 10. Comparison of detection effect of lesion (sparse and dense) before and after model
improvement. (a) Sparse distribution; (b) Dense distribution. Where yellow circles represent missed
detections and red circles represent false detections. Lines 1 and 3 are the YOLOv5s baseline model,
and lines 2 and 4 are the improved BTC-YOLOv5s model. Numbers 1 and 2 are frogeye leaf spot,
numbers 3 and 4 are rust, numbers 5 and 6 are scab, and numbers 7 and 8 are powdery mildew.

3.2. Results of Ablation Experiments

This study verified the effectiveness of different optimization modules via ablation
experiments. We constructed several improved models by adding the BiFPN module (BF),
transformer module (TR), and CBAM attention module sequentially to the baseline model
YOLOv5s and compared the results on the same test data. The experimental results are
shown in Table 4.

In Table 4, the precision and mAP@0.5 of the baseline model YOLOv5s were 78.4%
and 82.7%. By adding three optimization modules, namely the BiFPN module, transformer
module, and CBAM attention module, both precision and mAP@0.5 were improved com-
pared to the baseline model. Specifically, the precision increased by 3.3%, 3.3%, and 1.1%,
respectively, and the mAP@0.5 increased by 0.5%, 1%, and 0.2%, respectively. The final
combination of all three optimization modules achieved the best results, with precision,
mAP@0.5 and mAP@0.5:0.95 all reaching the highest values, which were 5.7%, 1.6%, and
0.1% higher than those of the baseline model, respectively. By fusing cross-channel infor-
mation with spatial information, the CBAM attention mechanism focused on important
features while suppressing irrelevant ones. Additionally, the transformer module used the
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self-attention mechanism to establish a long-range feature channel with the disease features.
The BiFPN module fused the above features across scales to improve the identification
of overlapping and fuzzy targets. As a result of the combination of three modules, the
BTC-YOLOv5s model achieved the best performance.

Table 4. Results of ablation experiments.

Models
Precision

(%)
Recall

(%)
mAP@0.5

(%)
mAP@0.5:0.95

(%)

YOLOv5s 78.4 79.7 82.7 45.8
YOLOv5s + BF 81.7 78.4 83.2 45.3

YOLOv5s + CBAM 81.7 79.7 83.7 45.7
YOLOv5s + TR 79.5 78.9 82.9 45.6

YOLOv5s + BF + CBAM 81 81 84.3 44.9
YOLOv5s + BF + TR 83.5 77.6 83 45.1

YOLOv5s + BF + TR +
CBAM

(proposed)
84.1 77.3 84.3 45.9

Where BF and TR represent the BiFPN module and transformer module, respectively.

3.3. Analysis of Attention Mechanisms

In order to assess the effectiveness of the CBAM attention mechanism module, other
structures of the BTC-YOLOv5s model were retained as experimental parameter settings,
and only the CBAM module was replaced with other mainstream attention mechanism
modules, such as SE [37], CA [38], and ECA [39] modules, for comparison purposes.

Table 5 shows that the attention mechanism could significantly improve the accuracy
of the model. The mAP@0.5 of SE, CA, ECA, and CBAM models reached 83.4%, 83.6%,
83.6%, and 84.3%, respectively, which was 0.4%, 0.6%, 0.6%, and 1.3% higher than that of
YOLOv5s + BF + TR model. Each attention mechanism improved the mAP@0.5 to varying
degrees, with the CBAM model performing the best and reaching 84.3%, which was 0.9%,
0.7%, and 0.7% higher than that of SE, CA, and ECA models, respectively, and the mAP
@ 0.5: 0.95 was also the highest among the four attention mechanisms. The SE and ECA
attention mechanisms only took into account the channel information in the feature map,
while the CA attentional mechanism encoded the channel relations using the location
information. In contrast, the CBAM attention mechanism combined spatial and channel
attention, emphasizing the information on disease features in the feature map, which was
more conducive to disease identification and localization.

Table 5. Performance comparison of different attention mechanisms.

Attention
Mechanisms

mAP@0.5
(%)

mAP@0.5:0.95
(%)

Model Size
(MB)

FLOPs
(G)

SE 83.4 45.3 15.7 17.5
CA 83.6 45.1 15.8 17.5

ECA 83.6 44.8 15.7 17.5
CBAM 84.3 45.9 15.8 17.5

Moreover, the attention module did not increase the model size or FLOPs, indicating
that it was a lightweight module. The BTC-YOLOv5s model with the CBAM module
achieved improved recognition accuracy while maintaining the same model size and
computational cost.

3.4. Comparison of State-of-the-Art Models

The current mainstream two-stage detection model Faster R-CNN and the one-stage
detection models SSD, YOLOv4-tiny, and YOLOx-s were selected for comparison experi-

115



Agriculture 2023, 13, 878

ments. The ALDD dataset was used for training and testing, with the same experimental
parameters across all models. The experimental results are shown in Table 6.

Table 6. Performance comparison of mainstream detection models.

Models
mAP@0.5

(%)
F1

(%)
Model Size

(MB)
FLOPs

(G)
FPS

SSD 71.56 60.77 92.1 274.70 1.15
Faster R-CNN 35.46 35.83 108 401.76 0.16
YOLOv4-tiny 59.86 55.79 22.4 16.19 8.21

YOLOx-s 80.10 77.36 34.3 26.64 4.08
YOLOv5s 82.70 79.04 13.7 16.40 9.80

BTC-YOLOv5s 84.30 80.56 15.8 17.50 8.70

Among all models, the mAP@0.5 and F1 score of Faster R-CNN were lower than 50%,
with a large model size and computational effort, resulting in only 0.16 FPS, making it
unsuitable for real-time detection of apple leaf diseases. The one-stage detection model
SSD had an mAP@0.5 value of 71.56% and a model size of 92.1 MB, which did not meet the
detection requirements in terms of model accuracy and complexity. In the YOLO model
series, YOLOv4-tiny had an mAP@0.5 of only 59.86%, and the accuracy was too low. The
YOLOx-s achieved 80.1% mAP@0.5, but the FLOPs were 26.64 G, and there were only
4.08 pictures per second. Neither of them was not conducive to mobile deployment. The
proposed BTC-YOLOv5s model had the highest mAP@0.5 and F1 score among all models,
exceeding SSD, Faster R-CNN, YOLOv4-tiny, YOLOx-s, and YOLOv5s by 12.74%, 48.84%,
24.44%, 4.2%, and 1.6%, respectively. The model size and FLOPs were similar to the baseline
model, and FPS reached 8.7 frames per second to meet real-time detection of apple leaf
diseases in real scenarios.

As seen in Figure 11, the BTC-YOLOv5s model outperformed the other five models in
terms of detection accuracy. Additionally, the BTC-YOLOv5s model exhibited comparable
model size, computational effort, and detection speed to the other lightweight models. In
summary, the overall performance of the BTC-YOLOv5s model was excellent and could
accomplish accurate and efficient apple leaf disease detection tasks in real-world scenarios.

 

Figure 11. Performance comparison of different detection algorithms.

116



Agriculture 2023, 13, 878

3.5. Robustness Testing

In the actual production, the detection of apple leaf diseases may be interfered with by
various objective environmental factors such as overexposure, dim light, and low-resolution
images. In this study, the test set images were simulated by enhancing brightness, reducing
brightness, and adding Gaussian noise, resulting in a total of 1191 images (397 images per
case). We evaluated the robustness of the optimized BTC-YOLOv5s model under a variety
of interference environments to determine its detection effectiveness. Additionally, we
tested the model’s ability to detect concurrent diseases by adding 50 images containing
multiple diseases. Experimental results are shown in Figure 12.

Figure 12. Robustness test results under three extreme conditions. (a) Original; (b) Bright light;
(c) Dim light; (d) Blurry. Where first to fifth rows show results for apple frogeye leaf spot, rust, scab,
powdery mildew, and multiple diseases, respectively.

From the detection results, the model could accurately detect frogeye leaf spot, rust,
and powdery mildew images under all three noise conditions (bright light, dim light, and
blurry), with few missing detections. The scab disease was also correctly identified, but a
certain degree of missing detections occurred in dim light and blurry conditions. This is
mainly because the scab lesions appeared to be black, the overall background of the image
has similar color to the lesions under dim light conditions. As shown in the fifth row of
Figure 12, the model also demonstrated detection capabilities for images with concurrent
onset, although a few missing detections occurred in the blurry condition. The experimental
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results achieved more than 80% of mAP. Overall, the BTC-YOLOv5s model still exhibited
strong robustness under extreme conditions, such as blurred images and insufficient light.

4. Discussion

4.1. Multi-Scale Detection

Multi-scale detection is a challenging task in apple leaf disease detection due to
the varying sizes of the lesions. In this study, frogeye leaf spot, scab, and rust lesions are
typically small and dense, while powdery mildew is a whole lesion distributed over the leaf.
The size of the spots that need to be detected relative to the proportion of the whole image
can vary widely between images or even within the same image. To address this issue, this
study introduced the BiFPN into YOLOv5s based on the idea of multi-scale feature fusion
to improve the model’s ability. The BiFPN stacks the entire feature pyramid framework
multiple times, providing the network with strong feature representation capabilities. It
also performs weighted feature fusion, allowing the network to learn the significance of
different input features. In the field of agricultural detection, multi-scale detection has been
a popular research topic. For example, Li et al. [21] accomplished multi-scale cucumber
disease detection by adding a set of anchors matching small instances. Cui et al. [40] used a
squeeze-and-excitation feature pyramid network to fuse multi-scale information, retaining
only the 26 × 26 detection head for pinecone detection. However, the current study still
faces the challenge of significantly degraded detection accuracy for very large- or very
small-scale targets. Future studies will focus on exploring how models can be applied to
different scales of disease spots.

4.2. Attentional Mechanisms

The attention mechanism assigns weight to the image features extracted by the model,
enabling the network to focus on target regions with important information, while sup-
pressing other irrelevant information and reducing interference caused by irrelevant back-
grounds on detection results. The introduction of the attention mechanism can effectively
enhance the detection model’s feature learning ability, and many researchers have incorpo-
rated it to improve model performance. For example, Liu et al. [41] added the SE attention
module to YOLOX to enhance the extraction of the cotton boll feature details. Bao et al. [42]
added a dual-dimensional mixed attention (DDMA) to the detection model Neck, which
parallelizes coordinate attention with channel and spatial attention to reduce missed and
false detections caused by dense blade distribution. This study used the CBAM attention
mechanism to enhance the BTC-YOLOv5s model’s feature extraction ability. CBAM com-
prised two modules, SAM and CAM, and using the two submodules alone yielded an
accuracy of 83.2% and 83.1%, respectively, inferior to the performance of the model using
CBAM. As SAM and CAM are only spatial and channel attention modules alone, whereas
CBAM combines both, it considers useful information from both feature channels and
spatial dimensions, making it more beneficial for the model to locate and identify lesions.

4.3. Outlook

Although the proposed model can accurately identify apple leaf diseases, there are
still some issues that deserve attention and further study. Firstly, the dataset used in
this study only contains images of four disease types, whereas there are approximately
200 apple diseases in total. Therefore, future research will include images of more species
and different disease stages. Secondly, the accuracy of model is not good in case of dense
disease and decreases significantly compared to the performance in the sparse case. The
detection results showed that scab had the highest error rate, mainly due to its irregular
lesion shape and non-obvious border which interfered with the model detection. In the
future, scab disease will be considered as a separate research topic to improve the model’s
detection accuracy.
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5. Conclusions

This study proposed an improved detection model BTC-YOLOv5s based on YOLOv5s
aimed at addressing the issues of missing and false detection caused by different shapes
of diseased spots, multi-scale, and dense distribution of apple leaf lesions. To enhance
the overall detection performance of the original YOLOv5s model, the study introduced
the BiFPN module, which increases the fusion of multi-scale features and provides more
semantic information. Additionally, the transformer and CBAM attention modules were
added to improve the ability to extract disease features. Results indicated that the BTC-
YOLOv5s model achieved an mAP@0.5 of 84.3% on the ALDD test set, with a model size
of 15.8 M and detection speed of 8.7 FPS on an octa-core CPU device. Additionally,
it still maintained good performance and robustness under extreme conditions. The
improved model has high detection accuracy, fast detection speed and low computational
requirements, making it suitable for deployment on mobile devices for real-time monitoring
and the intelligent control of apple diseases.
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Abstract: Timely and accurate monitoring of fractional vegetation cover (FVC), leaf chlorophyll
content (LCC), and maturity of breeding material are essential for breeding companies. This study
aimed to estimate LCC and FVC on the basis of remote sensing and to monitor maturity on the basis
of LCC and FVC distribution. We collected UAV-RGB images at key growth stages of soybean, namely,
the podding (P1), early bulge (P2), peak bulge (P3), and maturity (P4) stages. Firstly, based on the
above multi-period data, four regression techniques, namely, partial least squares regression (PLSR),
multiple stepwise regression (MSR), random forest regression (RF), and Gaussian process regression
(GPR), were used to estimate the LCC and FVC, respectively, and plot the images in combination with
vegetation index (VI). Secondly, the LCC images of P3 (non-maturity) were used to detect LCC and
FVC anomalies in soybean materials. The method was used to obtain the threshold values for soybean
maturity monitoring. Additionally, the mature and immature regions of soybean were monitored at
P4 (mature stage) by using the thresholds of P3-LCC. The LCC and FVC anomaly detection method
for soybean material presents the image pixels as a histogram and gradually removes the anomalous
values from the tails until the distribution approaches a normal distribution. Finally, the P4 mature
region (obtained from the previous step) is extracted, and soybean harvest monitoring is carried
out in this region using the LCC and FVC anomaly detection method for soybean material based
on the P4-FVC image. Among the four regression models, GPR performed best at estimating LCC
(R2: 0.84, RMSE: 3.99) and FVC (R2: 0.96, RMSE: 0.08). This process provides a reference for the
FVC and LCC estimation of soybean at multiple growth stages; the P3-LCC images in combination
with the LCC and FVC anomaly detection methods for soybean material were able to effectively
monitor soybean maturation regions (overall accuracy of 0.988, mature accuracy of 0.951, immature
accuracy of 0.987). In addition, the LCC thresholds obtained by P3 were also applied to P4 for soybean
maturity monitoring (overall accuracy of 0.984, mature accuracy of 0.995, immature accuracy of 0.955);
the LCC and FVC anomaly detection method for soybean material enabled accurate monitoring of
soybean harvesting areas (overall accuracy of 0.981, mature accuracy of 0.987, harvested accuracy
of 0.972). This study provides a new approach and technique for monitoring soybean maturity in
breeding fields.

Keywords: UAV; chlorophyll; fractional vegetation cover; maturity monitoring; anomaly detection

1. Introduction

Soybean, the world’s most important source of plant protein, plays a vital role in global
food security [1]. Physiological parameters of soybean such as leaf chlorophyll content
(LCC), vegetative cover (FVC), and yield are closely linked [2,3]. In addition, soybean
maturity is a crucial indicator for harvesting, and harvesting too early or too late can also
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impact yield [4]. Therefore, it is essential to quickly and accurately estimate soybean FVC
and LCC information and monitor soybean maturity.

Crop maturity is a significant factor affecting crop seed yield and is an essential
indicator for agricultural decision makers in judging suitable varieties [5]. LCC is a crucial
driver of photosynthesis in green plants. Its content is closely related to the photosynthetic
capacity, growth and development, and nutrient status of vegetation [3,6–9]. FVC is the
percentage of vegetation in the study area, and can visually reflect the growth status of
surface vegetation [10,11]. As the crop matures, crop LCC gradually decreases due to
degradation, and leaves turn yellow and begin to fall off (FVC decline). The change in crop
LCC and FVC can be used to characterize the degree of maturity. Therefore, the crop’s
maturity can be quantified using LCC and FVC.

Traditional manual methods of measuring LCC and FVC are inefficient, costly, destruc-
tive [12,13], and challenging with which to achieve accurate estimation of LCC and FVC
over large areas. On the other hand, traditional manual discrimination of crop maturity
relies on its color and hardness. This process is time consuming and subject to human
bias [14]. Previous studies have shown that crop LCC, FVC, and maturity can be estimated
and monitored using remote sensing technology [15–21]. Remote sensing technology pro-
vides methods for crop monitoring on a large scale, especially satellite remote sensing [22].
However, satellite remote sensing images’ low resolution and long revisit time make them
unsuitable for accurately monitoring crops [23,24]. UAVs have received increasing attention
due to their ability to cover a large area in a short time while simultaneously performing
tasks at high frequency [25,26]. Additionally, UAVs are able to minimize measurement
errors caused by environmental factors [27,28].

In recent decades, many studies have been performed to estimate soybean LCC and
FVC on the basis of remote sensing techniques such as UAVs. The methods for estimating
LCC and FVC are as follows: (1) Physical modeling. This is based on the physical principles
of radiative transfer to establish a physical model such as PROSAIL [29,30]. However, the
various parameters in the physical model are usually not easily accessible, which limits the
practical application of the estimated crop parameters [31]. (2) Empirical methods. These
use parameters based on spectral reflectance, and the vegetation index (VI) acts on the
regression model. The emergence of machine learning (ML) provides superior regression
models such as GPR [32], RF [33], and ANN [34] to perform fast and accurate estimation of
crop parameters. (3) Hybrid methods. Hybrid models combine the first two techniques.
For example, Xu et al. [35] coupled the PROSAIL model and the Bayesian network model
to infer rice LCC. Although the hybrid method is able to improve the estimation accuracy,
the instability of the hybrid method is a critical problem, which requires the balance of
the interface between the inversion algorithm and the physical model to be addressed.
However, this can substantially increase the complexity of the work. Research work on
crop maturity monitoring and identification has also continued. These methods include
colorimetric methods [36], fluorescence labeling methods [37], nuclear magnetic resonance
imaging [38], electronic nose [39], and spectral device imaging [40]. Early spectral imaging
is widely used for crop maturity identification. For example, Khodabakhshian et al. [41]
created a maturity monitoring model for pears based on a hyperspectral imaging system in
the chamber. However, early spectral imaging devices are similar to colorimetry, among
other things, and are limited in their use, mainly being restricted to the laboratory. The
subsequent advent of UAVs has made it possible to accurately monitor crop maturity at
the regional scale in the field. The methods of crop maturity monitoring by UAV include
(1) those based on spectral indices and machine learning models, (2) those based on image
processing with deep learning (DL), and (3) those based on transfer learning. The former
mainly select the spectral indices related to maturity combined with machine learning
models to achieve maturity monitoring. Volpato et al. [42] input the greenness index (GLI)
into a nonparametric local polynomial model (LOESS) and a segmented linear model (SEG)
to monitor soybean maturity on the basis of RGB images acquired by UAV. In addition,
Makanza et al. [43] found a senescence index for maturity identification. Other machine
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learning models used in this context include the partial least squares regression model
(PLSR) [4] and the generalized summation model (GAM) [44]. Although these spectral
indices and machine learning models are simple and fast, they are unstable, and each crop’s
characteristic spectral indices differ. With respect to deep learning, Zhou et al. [45] used
YOLOv3 for strawberry maturity recognition, achieving a maximum classification average
accuracy of 0.93 for fully mature strawberries. In addition, deep learning for maturity
monitoring also includes BPNN [14] and VGG16 [46]. Compared with machine learning,
deep-learning-based monitoring of crop maturity can obtain higher accuracy. However, its
superior performance requires a large amount of sample image data to support it, which
increases the challenge of field data collection. Migration learning makes it possible to use
the original pre-trained model in other related studies. For example, Mahmood et al. [47]
performed migration learning using two deep learning pre-training processes, which was
eventually able to classify dates into three maturity levels (immature, mature, and overripe).
However, the migration of the pre-trained model is based on the premise that the target
domain needs to be highly relevant to it, which places a higher demand on the generality of
the data used to train the model. Although deep learning and transfer learning bring a new
aspect to crop maturity monitoring. However, their features originate from the original
images and ignore the potential of images of crop physiological parameters (e.g., LCC,
FVC). During crop maturation, LCC and FVC change accordingly. Especially in breeding
fields, early maturing lines lead to significant variations in overall FVC and LCC. These
early maturing lines are out of the population distribution and become outliers. Therefore,
crop maturity can be monitored based on the changes in the pixel distribution of crop FVC
and LCC images.

The objective of this study was to perform soybean maturity monitoring using FVC
and LCC. FVC and LCC were quickly estimated using spectral indices combined with
regression models. Soybean field data were obtained from RGB images of four periods
taken by UAV. The following objectives were identified, to be achieved using these data:
(1) to estimate FVC and LCC from image data and multiple regression models, and to
map them using the best model, and (2) to propose a new method for soybean maturity
monitoring by detecting soybean LCC and FVC anomalies.

2. Study Area and Data

2.1. Study Area

The study site is located in Jiaxiang County, Jining City, Shandong Province, China
(Figure 1a,b). Jiaxiang County is located at longitude 116◦22′10′′–116◦22′20′′ E and latitude
35◦25′50′′–35◦26′10′′ N. It has a continental climate in the warm-temperate monsoon region,
with an average annual temperature of 13.9 ◦C, an average daily minimum temperature
of −4 ◦C, and an average daily maximum temperature of 32 ◦C. The average elevation is
35–39 m, and the annual rainfall is about 701.8 mm. The trial site is a soybean breeding
field (Figure 1c), planted at a density of 195,000 plants ha−1 with 15 cm row spacing, and
532 soybean lines were grown.

2.2. Ground Data Acquisition

Ground data collection included four stages: pod set on 13 August 2015 (P1), early
bulge on 31 August 2015 (P2), peak bulge on 17 September 2015 (P3), and maturity on
28 September 2015 (P4). Forty-two sets of data were measured for each period. Twenty-
three data points were collected at P4, the harvest period when some of the early maturing
soybeans had already been harvested. During the data processing, we removed four
abnormal data. In addition, to reduce soil background’s influence on LCC and FVC
mapping, we added eight soil points. Finally, a total of 153 sampling points were retained
for this experiment.
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Figure 1. Study area and experimental sites: (a) location of the study area in China; (b) map of
Jiaxiang County, Jining City, Shandong Province; (c) UAV RGB images and actual data collection sites.
Note: The green ROI in (c) is the ground data collection area, and the 800 black boxes ROIs are used
for monitoring and evaluation (including the area where the ground data collection ROIs are located).

2.2.1. Soybean LCC Data

Soybean canopy chlorophyll content (LCC) was obtained using measurements from
portable Dualex scientific sensors (Dualex 4; Force-A; Orsay, France). The operation was
repeated five times in the center of each soybean plot, and the mean value was taken. The
results of the analysis of the soybean canopy chlorophyll data set are presented in Table 1.

Table 1. Results of soybean LCC field measurements (Dualex units).

Data (2015) Stage n Min Max

8.13 P1 41 20.99 28.92
8.31 P2 42 29.27 42.37
9.17 P3 41 6.52 38.28
9.28 P4 21 8.81 36.05

- P1–P4 149 6.52 42.37
n, min, and max represent the number of soybean plots measured and the minimum and maximum values of
LCC, respectively. Note: In this study, LCC was obtained with Dualex 4 device measurements, and by convention,
we replaced Dualex units.

2.2.2. Soybean FVC Data

In this experiment, soybean LAI was measured with the LAI-2200C Plant Canopy
Analyzer (Li-Cor Biosciences, Lincoln, NE, USA). Finally, the LAI was converted to FVC
using PROSAIL [48,49]. The conversion equation is shown as Equation (1). Table 2 shows
the results of the analysis of the FVC dataset in soybean fields. G is the leaf-projection factor
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for a spherical orientation of the foliage, Ω is the clumping index, LAI is the leaf area index,
and θ is the viewing zenith angle (in this experiment, G = 0.5, θ = 0, Ω = 1).

FVC = 1 − e−G×Ω× LAI
cos (θ) (1)

Table 2. Results of soybean FVC field measurements.

Data (2015) Stage n Min Max

8.13 P1 41 0.76 0.99
8.31 P2 42 0.68 0.99
9.17 P3 41 0.41 0.96
9.28 P4 21 0.64 0.96

- P1–P4 145 0.41 0.99

2.2.3. Soybean Maturity Survey

This work used visual interpretation of RGB images from drones to obtain soybean
maturity information, and the specific criteria are shown in Table 3.

Table 3. Criteria for determining the maturity of soybean plots.

Category Description

Harvested The soybean planting area has been harvested (Figure 2b).
Mature More than half of the upper tree crown and leaves are yellow (Figure 2c).

Immature More than half of the upper tree crown and leaves are green (Figure 2d).

 

Figure 2. Maturity information: (a) P3-RGB; (b) mature region; (c) immature region; (d) harvested
region. Note: Plot1, Plot2, and Plot3 in (a) correspond to (b,c), and (d), respectively.

2.3. UAV RGB Image Acquisition and Processing

In this work, the sensor platform used was an eight-rotor aerial photography vehicle,
DJI 000 UAV (Shenzhen DJI Technology Co., Ltd., Guangdong, China), equipped with a
Sony DSC-QX100 [50] high-definition digital camera for RGB image acquisition functions.
In addition, a Trimble GeoXT6000 GPS receiver was used to determine the test field ground
control point (GCP).

The soybean field UAV RGB images were acquired from 11:00 a.m. to 2:00 p.m. The
UAV required three radiation calibrations and flight parameter settings before takeoff. The
altitude was set to approximately 50 m (calculating a spatial resolution of approximately
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1.17 cm on the ground). The RGB images were obtained and stitched together using AgiSoft
Photoscan (AgiSoft LLC, St. Petersburg, Russia) to produce RGB digital orthophoto maps
(DOMS). ArcGIS and ENVI handled DOMS.

3. Method

3.1. Soy-Based Material LCC and FVC Anomaly Detection

The grayscale histograms of LCC and FVC ground measurements during P2, P3,
and P4 are shown in Figure 3. Because both the LCC and FVC values of soybean crops
are significantly lower at maturity. Additionally, both deviated from the original normal
distribution. Therefore, it is possible to evaluate mature and immature soybean samples by
analyzing the distribution of soybean LCC and FVC gray histogram.

 

Figure 3. Histograms of the measured LCC and FVC statistics for P2 and P3: (a) P2-LCC; (b) P3-LCC;
(c) P4-LCC; (d) P2-FVC; (e) P3-FVC; (f) P4-FVC. Note: The P4 partially mature soybeans had been
harvested, so the amount of ground data was different from that in the cases of P2 and P3.

This was undertaken as follows: (1) The soybean LCC image pixels were read and
presented as a frequency histogram (Figure 4a). (2) Groups that deviate from the normal dis-
tribution are distributed in the tails of the histogram. Removing the tail values normalizes
the histogram. Next, the absolute values of the kurtosis and the histogram skewness are
combined. The combination is used as a criterion to assess normality. Repeated iterations
remove the tails. When the combination reaches a minimum value, the histogram is con-
sidered to have reached the most normal distribution (Figure 4b). (3) The expected target
soybean region is obtained by extracting the threshold value corresponding to the most
normal distribution. The region below the threshold value in the P3-LCC mapping is the
mature soybean region (Figure 4c). In practice, since different soybean maturity categories
exist at different times, the soybean category corresponding to the histogram threshold
needs to be determined on a case-by-case basis. The above procedure was implemented in
the Python 3.8 environment.

128



Agriculture 2023, 13, 692

 

Figure 4. Soybean LCC and FVC anomaly detection methods: (a) P3-LCC image element histogram;
(b) iterative process; (c) final results.

3.2. FVC and LCC Remote Sensing Estimation
3.2.1. Color Index

Vegetation indices (VIs) provide a simple and effective measurement of crop growth.
They are widely used to estimate FVC and LCC. On the basis of previous relevant studies,
we selected 20 color-based VIs, the details of which are presented in Table 4.

Table 4. Vegetation index details.

Vegetation Index Formula Reference

DN value of Red Channel (R) R [51]
DN value of Green Channel (G) G [51]
DN value of Blue Channel (B) B [51]

Normalized Redness Intensity (r) R/(R + G + B) [52]
Normalized Greenness Intensity (g) G/(R + G + B) [52]
Normalized Blueness Intensity (b) B/(R + G + B) [52]

Red–Blue Ratio Index (RBRI) R/B [53]
Green–Blue Ratio Index (GBRI) G/B [53]
Green–Red Ratio Index (GRRI) G/R [54]
Blue–Red Ratio Index (BRRI) B/R [54]

Blue–Green Ratio Index (BGRI) B/G [54]
Normalized Red–Blue Difference Index (NRBDI) (R − B)/(R + B) [55]

Normalized Green–Red Difference Index (NGRDI) (G − R)/(G + R) [55]
Normalized Green–Blue Difference Index (NGBDI) (G − B)/(G + B) [55]

Excess Red Index (EXR) 1.4R − G [56]
Excess Green Index minus Excess Red Index (EXG-EXR) 2G − R − B − (1.4R − G) [57]

Visible Atmospherically Resistant Index Normalized blueness (VARI) (G − R)/(G + R − B) [58]
R + G R + G [59]

(G + B − R)/2B (G + B − R)/2B [54]
(R − G)/(R + G + B) (R − G)/(R + G + B) [54]

Note: R, G, and B in the formula in the table represent their corresponding DN values, respectively.

3.2.2. Regression Model

Partial least squares (PLS) is able to provide a more stable estimate than least squares,
and the standard deviation of the regression coefficients is smaller than that estimated
by least squares [60]. For example, suppose there are two matrices, X (VIs) and Y (LCC
or FVC). Usually, X and Y are normalized to find the projection of VI on the principal
components and maximize the covariance of p1 and q1, see Equations (2) and (3), and
solve the objective function to establish the regression equation. p1 is the first principal
component of X, and q1 is the first principal component of Y.

u1 = Xp1, v1 = Xp2 (2)

Cov(u1, v1) =
√

Var(u1)Var(v1)Corr(u1, v1) → Max (3)
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Soybean FVC and LCC are often associated with multiple VIs. This also means
that a dependent variable Y, corresponding to multiple independent variables X, often
accompanies such studies. The principle of stepwise multivariate analysis is to analyze,
in a stepwise manner, the contribution of all independent variables X to the dependent
variable [61]. If the contribution is significant, this variable is considered essential and is
retained, or, conversely, it is removed if the contribution is insignificant. Finally, a regression
model is built based on the analysis. Equation (4) is the regression equation of MSR, e is the
error term, and βn is the constant term regression coefficient corresponding to the nth VI.

Y = β0 + β1X1 + β2X2 + . . . + βnXn + e (4)

Random Forest is an extended variant of bagging. It builds bagging integration with
decision trees as learners and further introduces “random attribute selection” into the
training process to give it better generalization performance [62,63]. The final prediction
result of the random forest is the mean of the prediction results of all CART regression
trees. In addition, RF is able to calculate the out-of-bag (OOB) data prediction error rate
and replace other VIs in order to calculate the variable importance (VIM) during training
to build decision trees. The specific results are shown in Section 3.1. VI importance is
calculated using Equation (5), where j is some VI, and i is the ith tree.

VIM(OOB)
j =

∑n
i=1 VIM(OOB)

ij

n
(5)

GPR is usually used for regression problems with low and small samples, and is better
able to handle nonlinear problems [64]. GPR assumes that the learning data are sampled
using a Gaussian process (GP), and that the prediction results are closely related to the
kernel function (covariance function) [65]. The standard Gaussian kernel functions are the
radial basis function kernel, the rational quadratic kernel, the sine square kernel, and the
dot product kernel. In GPR, the kernel function can find a corresponding mapping, making
the data linearly separable in high-dimensional space. The probability density function of
GPR is given in Equation (6).

p(x1, x2 . . . , xn) =
1

2π
n
2 σ1σ2 . . . σn

exp

(
−1

2

[
(x1 − μ1)

2

σ2
1

+
(x2 − μ2)

2

σ2
2

. . . +
(xn − μn)

2

σ2
n

])
(6)

3.3. Technical Route and Accuracy Evaluation
3.3.1. Technical Route

This study focuses on estimating soybean LCC and FVC and producing a mapping of
two physiological parameters using four machine-learning techniques. Finally, soybeans
were monitored for early maturity and harvesting. The technical route is shown in Figure 5,
and the details of the study are as follows.

(1) Soybean FVC and LCC estimation and mapping. The FVC and LCC of soybean were
estimated using PLSR, MSR, RF, and GPR, and the best regression model was found
and used for FVC and LCC mapping.

(2) Soybean maturation monitoring. The soybean material LCC and FVC anomaly detec-
tion method was used to determine the LCC of P3. A threshold value was obtained
for the mature region for the monitoring of the LCC of the mature region. This
threshold was also used for soybean maturation monitoring at P4 (i.e., during the
maturity stage).

(3) Soybean harvesting monitoring. LCC and FVC anomaly detection of soybean material
was carried out for P4 mature plots. Complete the identification of the soybean
harvesting area where the mature plots of P4 were obtained from (2).
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Figure 5. Technical route.

3.3.2. Precision Evaluation

To ensure that the final model has a high generalization capability, the 153 data points
generated in this work were randomly divided into two groups (in a ratio of 7:3). We
evaluated the ability of PLSR, MSR, RF, and GPR to predict LCC and FVC by means of the
coefficient of determination (R2), and root mean square error (RMSE), with R2 values in
the range [0–1], whereby higher R2 values correspond to smaller RMSE. Smaller values of
RMSE represent higher accuracy in the values of LCC and FVC predicted by the models.
The calculation procedure is shown in Equations (7) and (8):

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (7)

RMSE =

√
∑n

i=1(yi − ŷi)
2

n
(8)

where n is the number of samples input into the model, yi represents the measured values
of LCC and FVC in the soybean field, y is the mean value of measured values, and ŷi the
predicted value.
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The experimental method was evaluated on the basis of the confusion matrix. The
Accuracy and the Precision were calculated. The higher of the two values corresponds to
the higher accuracy. Accuracy and Precision were calculated using Equations (9) and (10).

Accuracy =
TP + TN

TP + TN + FP + FN
(9)

Precision =
TP

TP + FP
(10)

4. Results

4.1. Vegetation Index Correlation and Importance Analysis

We initially selected 20 VIs. Then, calculate their Pearson coefficient and importance.
The different colors and sizes of the circles in Figure 6 represent different correlation coeffi-
cients. The results show that the correlation performance of VI with LCC and FVC differed
slightly. Among the 20 VI correlation studies with LCC, R had the highest correlation
coefficient with LCC (−0.72), followed by R + G (−0.68), EXR (−0.62), (R − G)/(R + G + B)
(−0.58), NGRDI (0.57), etc. Among the selected VIs correlation studies with FVC, GRRI
had the best performance (r = 0.81) and NGRDI (0.80). NGRDI (0.80), (R − G)/(R + G + B)
(−0.80), VARI (0.77), and EXR (−0.77) also showed high correlation coefficients.

Figure 6. Pearson correlation coefficients between soybean LCC, FVC, and VIs: (a) LCC-Vis;
(b) FVC-VIs.

To determine the feature inputs, we determined the importance of each of the Vis
using random forest (Figure 7). Using RF, it was possible to see that R contributed the
most to LCC, and VARI contributed the most to FVC, followed by (R − G)/(R + G + B).
Finally, in combination with the principal component analysis, it was decided to use
R, R + G, EXG-EXR as the characteristic inputs for estimating LCC and VARI,
(R − G)/(R + G + B), (G + B − R)/2B, EXG-EXR, EXR as the independent variables
for the FVC estimation model.

4.2. Soybean FVC and LCC Estimation and Mapping

The results of the prediction of LCC and FVC using PLSR, MSR, RF, and GPR are shown
in Table 5. The best results for the prediction of LCC (R2: 0.88; RMSE: 3.36 Dualex units)
during the modeling of estimated LCC were obtained using GPR. During the validation
phase of LCC estimation, R2, RMSE varied between 0.54 and 0.84, and 3.15 Dualex units and
6.07 Dualex units, respectively, where GPR still maintains the highest estimation accuracy
(R2: 0.84; RMSE: 3.99 Dualex units). With respect to FVC predictive modeling, GPR showed
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promising results (R2: 0.94; RMSE: 0.08). In the validation phase, R2 varied between 0.83
and 0.96. The GPR and RF techniques predicted the results most accurately.

 

Figure 7. Importance ranking of Vis: (a) LCC-VIs; (b) FVC-VIs. Note: Only the top nine VIs in the
importance ranking are shown here.

Table 5. LCC and FVC estimation results.

Dataset Methods
LCC FVC

R2 RMSE R2 RMSE

Calibration

PLSR 0.53 6.91 0.80 0.11
MSR 0.52 6.99 0.80 0.11
RF 0.86 3.72 0.92 0.09

GPR 0.88 3.36 0.94 0.09

Validation

PLSR 0.55 6.84 0.83 0.11
MSR 0.54 6.86 0.83 0.11
RF 0.82 4.32 0.96 0.08

GPR 0.84 3.99 0.96 0.08

Figure 8 shows the relationship between the predicted values and ground measure-
ments of LCC and FVC for soybean. Most points in Figure 8d are near the 1:1 line,
and the underestimation is more prominent in the soil point data (LCC minimum near
0.85 Dualex units). The results in Figure 8g,h indicate that GPR works best at predicting
FVC for soybean and soil data, so GPR was used as the regression model for the estimation
of LCC and FVC.

The spatial distribution of LCC and FVC is plotted in Figure 9. Most of the soybeans
were at peak growth during P1, and P2, so Figure 9b,e show a balanced distribution of LCC.
However, the images presented in Figure 9g indicate the beginning of differentiation in
soybean maturity, a change caused by the maturation of early maturing soybeans, and also
explain why the P3-P4 LCC mapping (Figure 9h,k) showed significant heterogeneity in the
same plots.
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Figure 8. Relationship between predicted and measured soybean LCC and FVC: (a) PLSR-LCC;
(b) MSR-LCC; (c) RF-LCC; (d) MSR-LCC; (e) PLSR-FVC; (f) MSR-FVC; (g) RF-FVC; (h) GS-FVC.

Figure 9. Full-period UAV RGB images with LCC and FVC spatial distribution maps: (a,d,g,j) RGB
images of the P1–P4 periods, respectively. (b,e,h,k) LCC spatial distribution maps of P1–P4, respec-
tively. (c,f,i,l) FVC spatial distribution maps of P1–P4, respectively.

134



Agriculture 2023, 13, 692

4.3. Soybean Maturity and Harvest Monitoring and Mapping
4.3.1. Soybean Population Canopy LCC Histogram Analysis and Maturity Monitoring

Figure 10a shows the grayscale histogram obtained from the detection of the P3-
LCC distribution using soybean LCC and FVC anomaly detection methods. The results
correspond to the measured data analyzed in Section 3.1 and confirm our hypothesis. The
red area of the histogram is the low threshold region that escaped the normal distribution,
i.e., the region of maturity caused by early maturing soybean strains, with a threshold
value of 18.89 Dualex units. Finally, the actual maturity of the soybean plots was compared
with the monitored maturity using a confusion matrix to calculate the results. The results
of this monitoring (Figure 10b) showed that LCC using P3 (non-maturity) could be used
to accurately monitor soybean, with a total accuracy of 0.988, an accuracy in the mature
area of 0.951, and an accuracy in the common area of 0.987. The results of the P3-LCC
monitoring visualization are shown in Figure 10f.

 

Figure 10. P3 soybean early maturity monitoring: (a) Histogram of P3-LCC anomaly distribution;
(b) P3 maturity monitoring accuracy; (c) P4 maturity monitoring accuracy; (d) P3-RGB; (e) P4-RGB;
(f) P3-LCC monitoring visualization results; (g) P4-LCC monitoring visualization results. Note: The
red boxed areas in (d,e) are the areas used for accuracy evaluation.

To further validate the applicability of the LCC threshold (18.89 Dualex units) for the
mature region extracted at P3 (immature stage), we applied this threshold to the LCC at P4
(mature stage) to perform soybean maturity monitoring. The overall monitoring precision
was 0.984, the precision in the mature region was 0.995, and the precision in the immature
region was 0.955 (see Figure 10c). The results of the monitoring visualization are shown in
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Figure 10g. The results indicate that the LCC maturity soybean thresholds obtained from
P3 are feasible for use in P4 soybean maturity monitoring.

4.3.2. Soybean Population Canopy FVC Histogram Analysis and Harvest Monitoring

In this section, the mature soybean regions monitored were extracted, as shown in
Figure 10d, and the harvest monitoring of soybean in these regions during the P4 period was
performed using FVC. The grayscale histogram of the FVC anomaly distribution is shown
in Figure 11a, and the red grayscale histogram on the left denotes the harvest monitoring
region, with a threshold of 0.609. The evaluation of the confusion matrix visualized under
this harvest threshold revealed the results presented in Figure 11c, with a total accuracy
of 0.981, a harvest accuracy of 0.972, and a maturity accuracy of 0.987. This indicates
the relative sensitivity of the harvest region when monitoring soybeans using FVC. After
validating the results, it was found that this error was caused by different soybean managers
leaving stubble on the lower part of the soybean stalk when performing harvesting.

 

Figure 11. Harvest monitoring results for P4 (mature) soybean: (a) histogram of FVC anomaly distri-
bution for P4; (b) P4-RGB; (c) P4 harvest monitoring accuracy; (d) P4-FVC threshold visualization
results. Note: This section discusses harvest monitoring in the mature soybean region only (i.e.,
containing the harvest and maturity regions), rather than the entire region, during the P4 period.

5. Discussion

5.1. Multi-Period LCC and FVC Estimation

In this study, four regression models were selected in order to predict soybean LCC
and FVC. GPR had the best stability and accuracy when predicting LCC and FVC in
soybean fields (see Table 5), and was superior to the three machine learning models, PLSR,
MSR, and RF. In previous studies using PLSR to predict crop parameters [66], PLSR showed
excellent prediction ability. However, Figure 8 shows that the LCC predicted using PLSR
deviated from the field survey data (RMSE: 6.80). This may be because the VI and LCC used
in our study were not purely linear. PLSR, as a linear regression method, cannot effectively
determine the nonlinear relationship between VI and LCC. Including the prediction results
of MSR for LCC in this experiment can explain this phenomenon more reasonably. The
results of FVC estimation showed that all four selected regression models showed good
predictive ability, and GPR still constituted the optimal regression model. In a related
study, Atzberger et al. [67] used hyperspectral data and regression techniques such as
PLSR to predict LCC. However, hyperspectral data are more expensive than RGB images
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and are not generalizable. In two other studies [68,69], the LCC and FVC were estimated
using the PROSALL physical model. Although good results were obtained, this method is
usually susceptible to the initial model parameters and requires a priori information. Liang
et al. [70] used a hybrid approach (i.e., the PROSALL model in combination with RF) to
predict LCC, obtaining a high accuracy. However, the stable coupling required to employ
this method remains a challenge. In contrast, the method for estimating FVC and LCC
reported in this paper is simple and accurate, and the results are within a reasonable range.

Our ultimate goal was to investigate the effectiveness of four regression techniques
for the estimation of soybean FVC and LCC and for monitoring soybean maturity using
soybean LCC and FVC anomaly detection methods. This requires us to consider the effects
caused by the harvesting area of soybean fields. That is, while exploring a high-precision
prediction model for vegetated areas, attention should also be paid to the estimation of
bare and near-bare areas (i.e., areas with small amounts of mature soybean stubble or areas
influenced by lateral branches of surrounding soybean plants). Although we have tried to
make the model converge as much as possible when constructing the GPR, there is still an
error of 0.85 Dualex units (LCC) and 0.10 (FVC) in the non-vegetated areas. Of course, this
does not exclude the shadows produced at noon on both sides of the soil, which cause the
pixel channels to affect the adjacent image elements. Nevertheless, the final results show
that GPR is an excellent prediction model for significant coefficients of variation in LCC
and FVC.

5.2. Soybean Maturity Monitoring Study Analysis

There is a vast difference in the soybean growth cycle in breeding fields. This
causes anomalies in the distribution of LCC and FVC in soybeans before and after the
growth period. Capturing such anomalies enables soybean maturity monitoring.
Castillo-Villamor et al. [71] used optical vegetation indices as input, then monitored crop
growth by anomaly detection and combined it with yield analysis. Although this method
has also been used in agriculture, its potential for crop maturity monitoring has been
overlooked. Hence, in this work, we detected soybean LCC and FVC distribution. As a
result, soybean maturity monitoring was achieved. In a previous study on crop maturity
monitoring, Yu et al. [72] achieved 93% accuracy using a novel random forest model to
monitor mature regions. However, such methods using spectral indices combined with
ML often provide erratic monitoring. Moeinizade et al. [1] achieved 95% accuracy in
monitoring soybean maturity using a CNN-LSTM model. Ashtiani et al. [73] used transfer
learning based on CNN to monitor mulberry maturity, achieving an overall accuracy of
98.03%. Although DL and transfer learning-based crop maturity monitoring perform better,
these methods require a large amount of sample image data for support, necessitating the
challenge of collecting data in the field. Moreover, the model automatically extracts the
original image features, ignoring the potential of crop FVC.LCC images for soybean matu-
rity monitoring. In contrast, our present work considered the maturity information brought
by the change in the distribution of soybean FVC and LCC images. The three monitoring
accuracies obtained in this study ranged from 98.1% to 98.8%, further demonstrating the
potential of the method for soybean maturity monitoring in breeding fields.

In this study, although we achieved high accuracy in monitoring soybean maturity.
However, there are still some limitations. For example, in the P3 period, even though
most of the early maturing soybeans were mature. However, there were still some unripe
early maturing strains of soybean. This is one of the reasons for the reduced monitoring
efficiency. The overall LCC of soybean gradually shifted to the left with time from P2 to
P3 until the early maturing region moved away from the normal distribution during P2.
This process is dynamic, and the optimal threshold does not necessarily arise at P2 but
perhaps 2–3 days before and after P2 (the same is true for the soybean harvesting area
monitored by FVC in this study). We monitored whether the soybeans had been harvested
in the mature area of P4 using the FVC and LCC anomaly detection methods. Although
we have achieved better identification results (Figure 11c), some things still need to be

137



Agriculture 2023, 13, 692

corrected. The different harvesting criteria of different soybean managers are the leading
cause of these errors. In our study, LCC and FVC of immature soybean showed a normal
distribution. Whether this is the case for all breeding field crops is worth exploring. In
addition, the environment of our experiment unfolded in a soybean breeding site with high
heterogeneity among soybean fields. Hence, the applicability of this method to monitor
crop maturity in specific fields needs to be further explored.

5.3. Future Work

Both parts of the work conducted in this study showed promising results. However,
these results are still influenced and limited by some uncertainty factors, including the
following: (1) Uncertainty of image acquisition: The study is centered on images. Therefore,
even though UAV images have high resolution and solid temporal reconstruction capability,
the effects of light changes and camera positions in the same space–time cannot be avoided
during the image acquisition process. (2) Uncertainty in the ground data environment:
From the P3 images, the presence of leaf stagnation following pod senescence in harvest
stubble areas is evident, leading to a reduction in the accuracy of monitoring using the
soybean LCC and FVC anomaly detection methods, and increasing the error in the harvest
and maturity areas. These uncertainties affect the study, such that these can be added to
the study to be performed as part of our follow-up work.

6. Conclusions

In this study, we completed a two-part experiment based on four regression techniques
for the rapid and accurate estimation of soybean FVC and LCC, and the monitoring of
maturity information based on methods for detecting LCC and FVC abnormalities in
soybean material. The experiment was conducted in a multi-strain soybean breeding field
covering four soybean growth stages (P1–P4). The results were as follows.

(1) The combination of low-altitude drone technology and machine learning regression
models can be used to furnish high-performance soybean FVC and LCC estimation
results. Soybean FVC and LCC were estimated using PLSR, MSR, RF, and GPR,
respectively, and GPR exhibited the best performance. The LCC prediction results
were as follows: R2: 0.84; RMSE: 3.36 Dualex units. The FVC prediction results were
R2: 0.96; RMSE: 0.08.

(2) The analysis of LCC and FVC anomalies detected in soybean material detection
can provide highly accurate monitoring results regarding the maturity of soybean
material. The total monitoring accuracies of P3 and P4 mature and immature soybeans
were 0.988 and 0.984, respectively. The monitoring accuracy for the P4 mature and
harvested area was 0.981.

(3) On the basis of the results of this research process, the frequency of image acquisition
between P3 and P4 will be increased with the aim of investigating the relationship
between the time interval of image acquisition and the maturity monitoring effect.
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Abstract: Accurate extraction of cropland distribution information using remote sensing technology
is a key step in the monitoring, protection, and sustainable development of black soil. To obtain
precise spatial distribution of cropland, an information extraction method is developed based on
a fractal algorithm integrating temporal and spatial features. The method extracts multi-seasonal
fractal features from the Landsat 8 OLI remote sensing data. Its efficiency is demonstrated using
black soil in Lishu County, Northeast China. First, each pixel’s upper and lower fractal signals are
calculated using a blanket covering method based on the Landsat 8 OLI remote sensing data in the
spring, summer, and autumn seasons. The fractal characteristics of the cropland and other land-cover
types are analyzed and compared. Second, the ninth lower fractal scale is selected as the feature
scale to extract the spatial distribution of cropland in Lishu County. The cropland vector data, the
European Space Agency (ESA) WorldCover data, and the statistical yearbook from the same period
are used to assess accuracy. Finally, a comparative analysis of this study and existing products at
different scales is carried out, and the point matching degree and area matching degree are evaluated.
The results show that the point matching degree and the area matching degree of cropland extraction
using the multi-seasonal fractal features are 90.66% and 96.21%, and 95.33% and 83.52%, respectively,
which are highly consistent with the statistical data provided by the local government. The extracted
accuracy of cropland is much better than that of existing products at different scales due to the
contribution of the multi-seasonal fractal features. This method can be used to accurately extract
cropland information to monitor changes in black soil, and it can be used to support the conservation
and development of black soil in China.

Keywords: cropland; multi-seasonal; fractal feature; feature extraction; accuracy evaluation; black soil

1. Introduction

Black soil, which is marked by black or dark black humus topsoil, is a valuable natural
resource and the most fertile soil in the world [1]. Due to the impact of global warming
and human activities, black soil has been exposed for a long time in some areas, and its soil
structure degrades as wind and water erosions intensify [2,3]. This poses a severe challenge
to the sustainable development of agriculture and food security in China. In response to
the urgency to protect black soil, the Action Plan for Conservation Tillage in Northeast
China (2020–2025) is jointly issued by the Ministry of Agriculture and Rural Affairs and
the Ministry of Finance. This action plan is issued to deploy comprehensive promotion
and application of conservation tillage in appropriate areas to ensure the sustainable
development of black soil. The quality of black soil has changed and degraded markedly
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due to frequent human activities on the global and regional scales. Accurately determining
the amount and spatial distribution of cropland on black soil is beneficial to the national
government when implementing special protection measures to reduce the loss of black
soil and improve the quality of black land. Information extraction is essential to implement
conservation measures for the spatial distribution of cropland in black soil areas.

Remote sensing technology is an efficient way to realize large-scale cropland monitor-
ing. Current research mainly focuses on extracting ground object information accurately.
The spectral features, temporal features, and spatial features of remote sensing data are
used for classification. Spectral features are the physical properties of natural materials,
which generally refer to the absorption, reflection, and transmission of electromagnetic
radiation of ground objects. Temporal features are the features that change in different time
phases. Spatial features refer to the laws of spatial relationships between ground object
pixels in remote sensing images through numerical operations. Classification methods
based on spectral features generally analyze the spectral curves of ground objects to classify
them. Machine learning-based algorithms, such as decision trees, support vector machines,
random forests, and deep learning-based algorithms, have been used broadly [4–9]. These
methods require mass training samples and significant time spent controlling the samples’
quality and adjusting complex model parameters to obtain the optimal results. Classifi-
cation methods based on temporal features mainly focus on the analysis of time series
to obtain the changes in the features of ground objects to reduce the influence of incom-
plete information brought by the use of a single temporal phase. However, the frequently
used low-resolution MODIS data have limitations for features with a more fragmented
distribution [10]. Moreover, it is necessary to reduce the influence of data redundancy of
long-time series of remote sensing images. Classification methods based on spatial features
are independent of mixed pixels and can directly extract the gray structure features of
images. Examples are the gray-level co-occurrence matrix [11], fractal analysis [12], Fourier
transform, wavelet transform, gray edge detection, variance function, and so on. How-
ever, there are some limitations in applying these methods to regions without directivity
and regularity of texture features of images, such as optical images of mining areas [13].
Regarding the selection of data sources, some studies use many high-resolution images
to obtain sufficient spatial features of their targets [14–16], such as planet 4, GF-2, and
WorldView-2. Compared to a single feature, numerous studies have begun to combine
multiple features to achieve higher accuracy. Combining spectral and temporal features
can use spectral diversity and improve recognition ability of changes in ground object
features [17,18]. Integrating temporal and spatial features can retain the law of ground
objects changing with time and reduce the influence of mixed pixels [19,20].

The distribution area of black soil in Northeast China, which comprises complex and
heterogeneous environmental conditions and vegetation growth environments, is not suit-
able for extracting information using traditional methods. However, the main crops in this
area have a concentrated growing period that differs significantly from natural vegetation,
which is appropriate for extracting cropland information using remote sensing images’
multi-seasonal features. Multi-seasonal remote sensing data are widely used for change
detection and information extraction. The fusion of multi-seasonal data can compensate
for the lack of information in single-temporal data so that the seasonal change information
of ground objects can be effectively used for improving accuracy. When combined with
various information extraction techniques, the feature information of ground objects is
enhanced, and the accuracy of information extraction is improved [21–23]. To reduce the
effect of mixed pixels, spatial feature classification methods, such as the fractal method,
can be combined with multi-seasonal features to improve extraction accuracy. Fractal is a
regional algorithm for the iterative processing of surface textures without selecting training
samples. The texture information of natural objects may show a certain degree of statistical
self-similarity within a limited range, which demonstrates that the fractal method can be
used for iterative processing when extracting information from ground objects to narrow
the scope and highlight the features of ground objects. Existing results suggest that the
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fractal method can reveal important differences in land use and land-cover types [12],
improve classification accuracy, and reduce computational time to some extent [24,25].
Various studies have been conducted using fractal algorithms based on large-scale data
with low spatial resolution [26]. However, for small-scale studies, the temporal variation of
cropland has been neglected [27].

In this study, the multi-seasonal features of the Landsat 8 OLI remote sensing data
were introduced into a fractal algorithm to improve classification accuracy, taking both
temporal and spatial features into account, and the developed method was developed
with existing products. The remainder of this paper is organized as follows: Section 2
introduces the data and the method used. The accuracy of the processing results was
evaluated and compared with existing products at different scales, and the results are
presented in Section 3. Section 4 discusses the applicability and uncertainty of the method
developed in this study, and Section 5 provides a summary of this study.

2. Materials and Methods

2.1. Study Area

Lishu County (Figure 1), which is located in the western part of Jilin province, China,
has a temperate humid and semi-humid monsoon climate with a low annual temperature,
with plains in the north and hills in the southeast. Many soil types in this area, mainly
including black soil, black calcium soil, light black calcium soil, and brown soil, belong
to the typical thin black soil area of Northeast China [28]. The main land-cover types
include cropland, forest, grassland, impervious surfaces, bare land, and water. This area
has a large cropland, accounting for more than 80% of the county. It is a veritable central
grain-producing area in this region and plays an irreplaceable role in ensuring China’s
food security. Maize, rice, and soybean are the main crops, and deciduous trees are the
main natural vegetation. The growth period of each crop is concentrated and different
from that of natural vegetation, which is suitable for extracting information from croplands
using multi-seasonal data. Since 2007, the national government has established a research
demonstration area in Lishu County in conjunction with various scientific research institutes
and put forward a black soil protection project named the Lishu Model, which is committed
to protecting the sustainable development of black soil. The complex spatial heterogeneity
of the region and frequent human activities lead to land cover changes in the area.

Figure 1. Location of the study area.
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2.2. Data and Data Processing
2.2.1. Remote Sensing Data

The Landsat 8 OLI data covering 2020 were freely downloaded from https://www.
gscloud.cn (accessed on 7 October 2021), a data cloud computing and product distribution
platform provided by the Geospatial Data Cloud site, Computer Network Information
Center, Chinese Academy of Sciences. The data used in this study were level 1T standard
terrain correction products, which were accurately corrected using ground control sites
and digital elevation model data. The principle of data selection was cloudless or partly
cloudy (<2%) to ensure monthly coverage as much as possible. According to Figure 2,
the main crops are planted from April to May. The peak growth period for the crops is
July to August, and the harvest period is September to October. Therefore, the Landsat 8
OLI satellite products on 1 April 2020, 22 July 2020, and 10 October 2020, were selected as
the basic data to represent the spring, summer, and autumn seasons, respectively. Seven
multispectral bands of the Landsat 8 data for each season were selected, and the detailed
information is shown in Table 1. A sequence dataset with 21 bands was obtained in the
order of spring, summer, and autumn, which was used for fractal processing.

 

Figure 2. The main crop periods in the study area.

Table 1. The remote sensing images selected in this study.

Acquisition Dates Season Satellite Sensors Band Name Bandwidth (μm) Resolution (m)

1 April 2020 Spring

Landsat 8 OLI

Band 1 Coastal
Band 2 Blue
Band 3 Green
Band 4 Red
Band 5 NIR
Band 6 SWIR 1
Band 7 SWIR 2

0.43–0.45
0.45–0.51
0.53–0.59
0.64–0.67
0.85–0.88
1.57–1.65
2.11–2.29

3022 July 2020 Summer

10 October 2020 Autumn

2.2.2. Reference Data

The reference data included a statistical yearbook, the vector data, the European Space
Agency (ESA) WorldCover data, and three land-cover products from the same period. The
statistical yearbook, the vector data, and the ESA WorldCover data were used for accuracy
evaluation, and the other three products were used for the comparative analysis in this
study. Detailed information of the selected data is shown in Table 2.

Table 2. Detailed information of the selected data for Lishu County in 2020.

Data Set Data Type Resolution/Scale Sensor

Statistical yearbook Text / /
Vector data Vector 1:100,000 Landsat

ESA WorldCover data Raster 10 m Sentinel-1 and Sentinel-2
Esri land cover dataset Raster 10 m Sentinel-2
GlobeLand30 dataset Raster 30 m Landsat 8/GF-1/HJ-1

CNLUCC Raster 1000 m Landsat 8
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(1) Statistical yearbook of Lishu County in 2020. The statistical yearbook was produced
by the Government of Lishu County and obtained through questionnaires, field visits, and
field measurements; thus, it provides highly suitable data for accuracy evaluation.

(2) Vector data of Lishu (2020). The vector data of cropland in Lishu County in 2020
were produced based on a human–computer interactive interpretation using the Landsat
images from the Institute of Geographic Sciences and Natural Resources Research, Chinese
Academy of Sciences, with a mapping scale of 1:100,000 and including 6 classes and
25 subclasses [29]. Standard quality control and integration checking for each dataset were
implemented using many field survey photographs and records during the same period to
ensure high-quality and consistent interpretation. Therefore, the vector data are the most
reliable and comparable data available in the area during the same period, and the data
had been widely applied to estimate the accuracies of different classification results [30,31].
The vector data (Figure 3) were used as the main reference data for the accuracy evaluation
of information extraction.

Figure 3. The distribution of cropland in the vector data.

(3) ESA WorldCover data (2020). The ESA WorldCover data provide a global land
cover map for 2020 at a 10 m resolution based on the Sentinel-1 and Sentinel-2 data [32],
The dataset contains 11 different land-cover classes, including tree cover, shrubland, grass-
land, cropland, built-up, bare/sparse vegetation, snow and ice, permanent water bodies,
herbaceous wetland, mangroves, moss and lichen, and achieves an overall accuracy of
74.4%. Figure 4 is the cropland distribution in the ESA WorldCover data for Lishu County,
and the data were used for accuracy evaluation.

(4) Esri land cover dataset (2020). A global land-cover map using the Sentinel-2 images
was produced by a deep learning model trained using over 5 billion hand-labeled Sentinel-
2 pixels and sampled from over 20,000 sites distributed across all major biomes of the
world, with a resolution of 10 m [33]. It provides a 10-class map of the surface, including
water, tree, grass, flooded vegetation, crop, built area, bare ground, shrub, snow/ice, and
clouds, and it achieves an overall accuracy of 85% across the ten classes. In this study, the
distribution of cropland (Figure A1) was used as a reference for the comparative analysis.
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Figure 4. The distribution of cropland in the ESA WorldCover data.

(5) GlobeLand30 dataset (2020). A global land-cover data product with a spatial reso-
lution of 30 m was provided by the National Geographic Information Centre of China [34],
which mainly includes ten land-cover types: cropland, forest, grassland, shrubland, wet-
land, water, tundra, artificial land, bare land, and glacier/permanent snow. The overall
accuracy of the GlobeLand30 dataset in 2020 was 85.72%, and the kappa coefficient was
0.82. This product (Figure A2) was also used for the comparative analysis of cropland
information extraction.

(6) China Land Use and Land Cover Dataset (CNLUCC) (2020). This dataset was
generated by the Resources and Environmental Science and Data Center (RESDC) of
the Chinese Academy of Sciences based on Landsat 8 images through manual visual
interpretation [35]. The land-cover types include cropland, woodland, grassland, water,
residential land, unused land, and 25 secondary classifications, with a spatial resolution of
1000 m. This dataset (Figure A3) was used as a reference for the comparative analysis.

2.2.3. Data Processing

The downloaded remote sensing data and reference data for the study area were first
converted by file formatting and re-projected into the UTM Zone 51 N with the WGS84
datum using nearest neighbor resampling. A spatial subset was extracted according to the
boundary of Lishu County. Next, all raster data were converted into vector data using the
Conversion Tools. Data processing was supported by ENVI 5.3 and ArcGIS 10.6, and the
fractal programming operations were performed using IDL 8.5.

2.3. Methods

Figure 5 shows the flowchart of the information extraction method developed in
this study. Firstly, data preprocessing was achieved, and fractal processing of the multi-
seasonal images was used to select the feature-scale image of cropland. Secondly, cropland
information was extracted using the degree of separation between cropland and other land-
cover types in the statistical curve of the feature-scale image. An accuracy evaluation of the
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information extraction results was conducted using overlay analysis. Thirdly, through the
comparison with other products, especially the local comparative analysis, the advantages
and disadvantages of the method were summarized.

 

Figure 5. Flowchart of the information extraction method.

This method was divided into four aspects, including the principle of the blanket
covering method, the feature-scale selection method, the information extraction method,
and the accuracy evaluation metrics.

2.3.1. Blanket Covering Method

The blanket covering method can be used in remote sensing for texture analysis,
pattern recognition, and image classification. The purpose of the method is to treat a remote
sensing image as a three-dimensional space, with the gray value of each pixel representing
the height of the three-dimensional surface, and then sandwich the terrain surface with
two blankets, with both the upper and lower blankets at a distance of ε from the terrain
surface. The fractal dimension can be calculated from the relationship between the area
of the blanket and the volume of the space surrounded by these two blankets [36]. This
study used a mathematical transformation iterative analysis from the perspective of signal
analysis to select the feature scales of different land-cover types. The fractal dimension of
each image’s element spectral curve was calculated from the mathematical relationship
between the area enclosed by the upper and lower two-dimensional curves and the lengths
of these two curves. The specific calculation details are shown in [36,37].

The spectral curve is formulated as a function of f (m) (m = 1, 2, 3, . . . , k, where k is
the number of samples in the band series selected), with two curves at a distance ε above
and below the curve, which are called the upper fractal curve (uε(m)) and the lower fractal
curve (dε(m)), respectively, and ε is the measurement scale.

uε(m) = max
{

uε−1(m) + 1, max
|n−m≤1|

uε−1(m)

}
(1)

dε(m) = max
{

dε−1(m) + 1, min
|n−m≤1|

dε−1(m)

}
(2)

where n is the value of discrete points in close proximity to m.
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According to the polygon area surrounded by these two curves and Mandelbrot’s
definition of curve length, the upper curve length Lu(ε) and the lower curve length Ld(ε)
can be calculated using the following formula:

Lu(ε) = su
ε − su

ε−1
= ∑

m
(uε(m)− f (m)) −∑

m
(uε−1(m)− f (m))

= ∑
m
(uε(m)− uε−1(m))

(3)

Ld(ε) = sd
ε − sd

ε−1
= ∑

m
( f (m)− dε(m)) −∑

m
( f (m)− dε−1(m))

= ∑
m
(dε−1(m)− dε(m))

(4)

where su
ε is the area of the upper curve enclosed by the proposed curve at measurement scale

ε, and su
ε−1 is the area of the upper curve enclosed by the proposed curve at measurement

scale ε − 1. Similarly, sd
ε is the area of the lower curve enclosed by the proposed curve at

measurement scale ε, and sd
ε−1 is the area of the lower curve enclosed by the proposed

curve at measurement scale ε.
According to Equations (3) and (4), the measurement scale ε (ε = 2, 3, 4, . . . , n) and

the left and right neighbors are taken from the upper and lower curves, respectively, and
three points (log(ε − 1), log(L(ε − 1))), (log(ε), log(L(ε − 1))), (log(ε + 1), log(L(ε + 1)))
are obtained. The slope of the line S(ε) is the fractal signal value of the current scale ε.
Finally, the upper and lower fractal signal values for each image are calculated to obtain
the upper and lower fractal images. The fractal signal of each pixel in the remote sensing
image is calculated using different measurement scales.

2.3.2. Feature Scale Selection Method

The fractal signal images and fractal signal variation curves were obtained at different
measurement scales. The signal value of each pixel in the fractal signal image reflects the
complexity of the variation of the time series curve comprising 21 bands of three seasons for
a certain measurement scale. The time series curve for ground objects with more complex
variation has a much higher fractal signal value.

The fractal signal images and the fractal signal variation curves were combined for a
comprehensive evaluation to select feature scales of different targets. The scale with a high
signal value of the land-cover type and a significant difference from other land-cover types
is the feature scale of this land-cover type.

2.3.3. Information Extraction Method

An appropriate threshold range for information extraction determines the accuracy of
the final extraction results. The feature-scale images selected can adequately distinguish the
target land-cover type from other land-cover types, so the steps of information extraction
based on the feature-scale images were carried out in this study. First, the rough distribution
interval of the fractal signal value of the target land-cover type was determined based on
the fractal signal curve of the sampling statistics and the feature-scale images. Second, all
pixels of the feature-scale images were counted to obtain a statistical curve, and the suitable
threshold value of image segmentation was selected according to the change characteristics
of the curve. Finally, by combining prior knowledge, information extraction was carried
out according to the determined threshold.

2.3.4. Accuracy Evaluation Metrics

This study measured the extraction accuracy using a spatial analysis algorithm. Firstly,
a spatial location analysis was carried out using the overlay analysis of the data to be
evaluated and the reference data. Secondly, the area’s similarity was compared, and the
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two indicators, including the point matching degree and the area matching degree, were
combined for a comprehensive evaluation.

The point matching degree refers to the degree to which the extracted results match
the reference data space. The extraction results and the reference vector data of cropland
were matched at the spatial boundary, and their intersection was obtained. The spatial
position attributes were counted and compared to the reference vector. The point matching
degree reflects the spatial relationship between the extracted results and the reference
vector. The higher the point matching degree, the higher the coincidence degree of the two
kinds of data.

The area matching degree refers to the similarity between the extracted results and the
reference data. The calculation method used was the ratio of the extracted area of cropland
to the cropland area in the reference data, in which the cropland area was calculated using
vector geometric statistics, as shown in Equation (5):

Sc = (1 −
∣∣∣∣St − Sz

Sz

∣∣∣∣)× 100% (5)

where St is the extracted area of cropland; Sz is the cropland area of the reference data; and
Sc is the area matching degree, which reflects the relationship between the extracted result
and the area value of the reference data. The higher the area matching degree, the closer
the area value of the two sets of data.

3. Results

3.1. Fractal Processing and Feature Analysis

According to the survey data and the land-cover classification products, six typical
land-cover types, including cropland, grassland, impervious surface, forest, water, and bare
land, were selected for the fractal feature analysis. Six pixels of each type were randomly
selected from the upper and lower fractal signal images, respectively. Their average was
considered as the fractal signal value of the variation curves in Figure 6. As shown in
Figure 6, the variation curves of the upper and lower fractal signal values of different
land-cover types with different scales were calculated, and the horizontal axis “scale” n
denotes the nth iteration based on Equations (1) and (2).

Figure 6. The variation curves of upper (a) and lower (b) fractal signals of different land-cover types
in Lishu County in 2020.
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The fractal features of different land-cover types were analyzed based on the variation
curves of the upper and lower fractal signals and have different change features.

(1) Both the upper and lower fractal signal values of different land-cover types are dif-
ferent at the same scale, and the fractal signal value of the same land-cover type significantly
differs at different scales.

(2) For the variation curve of the upper fractal signal, the variations are concentrated
at the third to tenth and fifteenth to eighteenth scales. The variations in the lower fractal
signal variation curve are mainly concentrated at the second to eighteenth scales.

(3) The fractals can selectively highlight the features of different land-cover types at
specific scales. Taking cropland as an example, cropland is reflected at the eighth and ninth
scales of the upper fractal signal curve, and at the ninth and tenth scales of the lower fractal
signal curve. According to the method of feature scale selection and significant differences
in fractal features for different land-cover types, the ninth scale of the lower fractal was
selected as the fractal feature scale of cropland, as depicted in Figure 7.

Figure 7. Lower fractal image at the ninth scale.

3.2. Cropland Information Extraction and Accuracy Evaluation

According to Figure 6b and the feature-scale image in Figure 7, the fractal signal values
of cropland and other land-cover types differ and have an obvious separation. Figure 6b
shows that the signal value of cropland is concentrated around 20, while those of other
land-cover types are concentrated around 2. However, the result of Figure 6b was calculated
based on the sampling sites and only represents the approximate range of signal values of
each land-cover type. Therefore, we plotted a statistical curve of the fractal signal values of
all pixels at the feature scale, which reflects the relationship between the fractal signal value
and the number of pixels, as shown in Figure 8. As the signal value increases, the number
of pixels shows the characteristics of sharp increase, sharp decrease, slow increase, and
slight decrease, and finally tends to be smooth. Specifically, the number of pixels reaches
the highest value at a signal value of 2 and decreases sharply to a trough at a signal value
of 7.30 (blue point in Figure 8). Then, the number of pixels starts to increase slowly with an
increase in the signal value and reaches a peak at a signal value of 17.68, which is generally
consistent with the result obtained for cropland, as shown in Figure 6b. Finally, the number
of pixels begins to decrease slowly. After the signal value of 21.58 (green point in Figure 8),
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the number of pixels begins to smooth again. Combined with the actual spatial distribution
of cropland in the remote sensing image, we determined that the signal segmentation
threshold of cropland is from 7.30 to 21.58 in the feature-scale image, and we extracted the
spatial distribution of cropland, as shown in Figure 9.

 

Figure 8. Statistical curve of the feature-scale image.

Figure 9. Spatial distribution of cropland based on fractal extraction. The subsets (blue and red boxes)
are used for detailed exhibition in Figures 10 and 11.
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Figure 10. Comparison of the fractal extraction results (a), vector data (b), ESA WorldCover data (c),
Google Earth image (d), Esri land cover dataset (e), GlobeLand30 dataset (f), and CNLUCC (g) located
in the blue box in Figure 9.

 

Figure 11. Comparison of the fractal extraction results (a), vector data (b), ESA WorldCover data (c),
Google Earth image (d), Esri land cover dataset (e), GlobeLand30 dataset (f), and CNLUCC (g) located
in the red box in Figure 9.

An accuracy assessment of the results was conducted using the vector data (Figure 3)
and the ESA WorldCover data (Figure 4) of cropland in Lishu County in 2020. The extracted
area of cropland based on the fractal method is 2759.86 km2, and the total areas of cropland
in the vector data and the ESA WorldCover data are 2659.10 km2 and 3304.54 km2, respec-
tively. Compared to the vector data and the ESA WorldCover data, according to Equation (5)
and the matching methods developed in this study, the calculated area matching degree of
cropland extraction is 96.21% and 83.52%, respectively, and the point matching degree is
90.66% and 95.33%, respectively. The extracted results show that cropland located in the
central, eastern, and northern plain areas has a high extraction accuracy, while cropland
located in the southeastern mountainous and hilly areas and northwestern plain areas has
a low extraction accuracy.

154



Agriculture 2023, 13, 486

3.3. Comparative Analysis of Fractal Extracted Results with Existing Products
3.3.1. Comparative Analysis for the Extracted Area of Cropland

A comparative analysis of this study and existing products was performed. The
existing products were selected, including the Esri land cover dataset, the GlobeLand30
dataset, and the CNLUCC, and the statistical yearbook, vector data, and ESA WorldCover
data of Lishu County were employed for evaluating the accuracies. The area matching
degree and point matching degree were used to evaluate the accuracy of the comparative
analysis, and the comparison results are shown in Table 3.

Table 3. Comparative analysis results.

Reference Data Data Set Area/km2 Area Matching
Degree/%

Point Matching
Degree/%

Statistical yearbook

Extracted data 2759.86 94.88 /
Esri land cover dataset 3074.49 82.89 /
GlobeLand30 dataset 3151.74 79.95 /

CNLUCC 3021.39 84.91 /

Vector data

Extracted data 2759.86 96.21 90.66
Esri land cover dataset 3074.49 84.38 98.74
GlobeLand30 dataset 3151.74 81.45 97.17

CNLUCC 3021.39 86.38 95.86

ESA WorldCover data

Extracted data 2759.86 83.52 95.33
Esri land cover dataset 3074.49 93.04 96.49
GlobeLand30 dataset 3151.74 95.38 94.02

CNLUCC 3021.39 91.43 89.55

For the statistical yearbook data, the cropland area is 2625.33 km2, and the cropland
areas of the extracted data and the other three products are 2759.86 km2, 3074.49 km2,
3151.74 km2, and 3021.39 km2, respectively. Compared to the cropland area of the statistical
yearbook, the area matching degree of the extracted data is 94.88%, which is much bigger
than other values, as shown in Table 3. For the vector data of Lishu County, the area
matching degrees of three products are lower than that of the extracted data (96.21%),
ranging from 81.45% to 86.38%. The area matching degree of the extracted data increases
by 9.83–14.76%. However, the point matching degrees of the three products are higher than
that of the extracted data (90.66%), ranging from 95.86% to 98.74%, because the existing
three products have excessive extraction results of the cropland, as shown in Table 3. For
the ESA WorldCover data, the area matching degrees of three products are higher than
that of the extracted data (83.52%), ranging from 91.43% to 95.38%. However, the point
matching degree of the extracted data has the second highest accuracy (95.33%) out of the
four datasets. Therefore, given both the area matching degree and point matching degree,
these three comparative results suggest that the extraction accuracy of cropland in this
study is better than that of existing products at different scales because of the contribution
of multi-seasonal fractal features.

3.3.2. Comparative Analysis for the Spatial Distribution of Cropland

The area matching degrees of the extracted results in this study are consistent with
the results of the statistical yearbook and the vector data. Still, the point matching degree
is slightly lower than that of existing products of different scales. The main feature of
fractal geometry can describe irregular or fragmented natural features [37]. Because of
multi-seasonal fractal features, many field ridges and roads were finely divided into other
land-cover types, leading to fragmentation of the spatial distribution of cropland in this
study. However, field ridges and roads are all classed as croplands in the vector data,
the ESA WorldCover data, and the existing three products, including the Esri land cover
dataset, the GlobeLand30 dataset, and the CNLUCC, as depicted in Figures 10 and 11.
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Two typical subsets were selected and analyzed. The first subregion in the blue box
in Figure 9 is comprised of cropland, forest, and impervious surface in Lishu County, as
depicted in Figure 10. According to Figure 10, the fractal algorithm clearly distinguishes
cropland, forest, and impervious surface, and field roads are also accurately identified. In
the CNLUCC, the delineations of cropland and other land-cover types need to be more
accurate due to their low resolution. The spatial distributions of cropland in the ESA
WorldCover data, the Esri land cover dataset, and the GlobeLand30 dataset, are relatively
consistent, but part of the forest land is misclassified as cropland. The limited accuracy for
these land-cover types might be attributed to the need for training samples in this area and
seasonal variations of vegetation used for remote sensing classification.

The second subregion, located in the red box in Figure 9, is mainly dominated by
greenhouses in Lishu County, as depicted in Figure 11. According to Figure 11, for the
spatial distribution of cropland, the fractal extracted results are much better than the results
of the CNLUCC, worse than the results of the vector data, the GlobeLand30 dataset, and
the Esri land cover dataset, and are relatively consistent with the ESA WorldCover data.
However, compared to the other products, the fractal method developed in this study
could extract cropland outside the greenhouses with high accuracy and clearly identify the
outline of the greenhouses according to the Google Earth image, as depicted in Figure 11a,d.

Therefore, the comparison experiments demonstrated that the fractal extraction method
based on multi-seasonal remote sensing data could better distinguish cropland and other
land-cover types.

4. Discussion

4.1. Theoretical Assumptions of the Fractal Method Proposed in this Study

The cropland information extracted by the fractal method based on multi-seasonal
remote sensing data developed in this study was effective. Firstly, fractal analysis methods
are sensitive to regional variations in land-cover types [38]. In fractal calculation, land cover
with more complex variation is easier to distinguish. The impact of a curve’s complexity is
embodied in the fractal calculation process. According to Equations (1) and (2), the upper
fractal curve tends toward a gradually narrowing trough and smoothing peak, while the
inverse is true for the lower fractal curve [39]. After fractal processing, different land-cover
types have different feature scales in the upper fractal or lower fractal. For example, water
is reflected at the seventeenth scale of the upper fractal signal curve, whilst cropland is
reflected at the ninth scale of the lower fractal signal curve in this study, which has been
determined by the change characteristic curves of different ground objects [40].

Secondly, Lishu County is mainly dominated by plains with flat terrain, which are
suitable for implementing various planting measures. Under the guidance of the “Lishu
mode”, the quality of black soil has been improved, which is reflected in the well growth
status of crops. The time divisions of sowing, heading, and maturity are obvious, and the
spectral curve and texture characteristics differ from those of natural vegetation. Compared
to the other land-cover types, cropland has more complex feature curve changes at different
time stages, and the corresponding texture information is richer. In the fractal calculation,
the boundary of cropland converges faster than the other land-cover types, and the fractal
features are much easier to distinguish [26].

Finally, by combining multi-seasonal remote sensing images with a fractal analysis
algorithm, the method proposed in this study can accurately obtain the spatial distribution
of cropland and reduce the time required to select samples. Moreover, the Chinese govern-
ments have attached great importance to the conservation of black soil in Northeast China
and clearly stated that effective measures should be taken to protect this precious resource.
Therefore, supported by the National Key Research and Development Program of China,
this method is being applied to extract cropland information for spatial and temporal
analysis to evaluate the effectiveness and sustainability of local government projects.
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4.2. Uncertainty Analysis of Fractal Method

Although the proposed method achieved satisfactory results, further improvement
can be conducted from three aspects. The first one is the spatial resolution of the remote
sensing images used. The Landsat 8 OLI data with a resolution of 30 m might have led to
additional uncertainty in this study. High-resolution data, such as GF-2 or WorldView-3,
should be integrated for the information extraction of cropland. Secondly, the inconsistency
of land use and land cover nomenclature for different remote sensing data products might
have affected the accuracy assessment of cropland extraction. Thirdly, although the main
reference data were obtained using the vector data with a scale of 1:100,000 and the ESA
WorldCover data at a 10 m resolution, systematic validations at different scales and regions
should be employed to enhance the suitability of the method developed in this study for
future implementation. In addition, the relation of the feature scale with a number of
sampling sites results in poor comparability for different remote sensing images that have
originated from different phases or sensors.

5. Conclusions

This study proposed an information extraction method of cropland based on multi-
seasonal fractal features, and its performance was demonstrated in a case study of Lishu
County, China. The results showed that fractals could reveal clear separations of different
land-cover types at different scales, and the ninth scale of the lower fractal signal was
selected as the fractal feature scale for cropland. Compared to the vector data and the ESA
WorldCover data, the point matching degree and the area matching degree of cropland
extraction based on multi-seasonal fractal features were 90.66% and 96.21%, and 95.33%
and 83.52%, respectively, which were highly consistent with the data derived from the
statistical yearbook. The extracted accuracy of cropland in this study was much better
than that of existing products at different scales. This method can accurately extract
cropland information and provide technical support for change monitoring, conservation,
and development of black soil in China.
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Appendix A

Figure A1. The distribution of cropland in the Esri land cover dataset.

Figure A2. The distribution of cropland in the GlobeLand30 dataset.
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Figure A3. The distribution of cropland in the CNLUCC.
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Abstract: Crop disease identification and monitoring is an important research topic in smart agricul-
ture. In particular, it is a prerequisite for disease detection and the mapping of infected areas. Wheat
fusarium head blight (FHB) is a serious threat to the quality and yield of wheat, so the rapid monitor-
ing of wheat FHB is important. This study proposed a method based on unmanned aerial vehicle
(UAV) low-altitude remote sensing and multispectral imaging technology combined with spectral
and textural analysis to monitor FHB. First, the multispectral imagery of the wheat population was
collected by UAV. Second, 10 vegetation indices (VIs)were extracted from multispectral imagery.
In addition, three types of textural indices (TIs), including the normalized difference texture index
(NDTI), difference texture index (DTI), and ratio texture index (RTI) were extracted for subsequent
analysis and modeling. Finally, VIs, TIs, and VIs and TIs integrated as the input features, combined
with k-nearest neighbor (KNN), the particle swarm optimization support vector machine (PSO-SVM),
and XGBoost were used to construct wheat FHB monitoring models. The results showed that the
XGBoost algorithm with the fusion of VIs and TIs as the input features has the highest performance
with the accuracy and F1 score of the test set being 93.63% and 92.93%, respectively. This study
provides a new approach and technology for the rapid and nondestructive monitoring of wheat FHB.

Keywords: unmanned aerial vehicle; multispectral imagery; fusarium head blight; texture indices;
machine learning

1. Introduction

Wheat is one of the three major grain crops in the world, and it is also the second-
largest grain crop in China [1]. It is also a staple food for about two-thirds of the world’s
population, which is of a great significance to ensure national food security [2,3]. Fusarium
head blight (FHB), also known as scab, is an economically destructive wheat disease mainly
caused by Fusarium graminearum, which mainly damages wheat ears [4]. The prevention
and control of FHB is extraordinarily important because FHB cannot only cause a serious
yield reduction but it can also lead to the deterioration of the wheat’s quality [5–7]. More
seriously, infected wheat will produce mycotoxins, especially deoxynivalenol (DON) and
zearalenone (ZEA), which are detrimental to humans and animals and can lead to acute
poisoning symptoms, the destruction of immunity, and even death [8]. Therefore, the
effective monitoring of FHB in time and space is particularly important in the investigation
of crop health and food security.

The traditional disease assessment and investigation is mainly based on a field visual
investigation, which is not only time-consuming and laborious but also has a certain
subjectivity and cannot ensure the authenticity and accuracy of the investigation data [9,10].
It is difficult to meet the current requirements for the rapid and accurate detection and
real-time monitoring of crop diseases in large-scale planting areas [11]. Remote sensing
technology has alleviated this problem to a certain extent, so more and more researchers
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are attempting to apply remote sensing technology to disease monitoring [12,13]. These
studies are based on the theory that disease infection will change the transpiration rate,
leaf color, chlorosis, and morphology of crops [13,14]. In particular, UAV remote sensing
technology has been widely developed in the field of agricultural monitoring because of its
high flexibility, low cost, fast image acquisition, and ability to carry multiple sensors [15].

Some studies have been conducted to use UAV images to retrieve the growth parame-
ters of different crops [16–19]. In recent years, multispectral imagery provides new concepts
and methods for crop disease monitoring. Compared with the traditional methods and
hyperspectral imagery, multispectral imagery has the advantages of relatively rich spectral
information, simple data processing, and a low computing cost in disease detection and it
has a certain potential in crop disease monitoring applications. In addition, it has a red-edge
(RE) band, which is located between the maximum red absorption and high reflectivity
in the near infrared (NIR) region. It is an important spectral feature of vegetation, where
the transformation from chlorophyll absorption to cell scattering takes place [3,20]. So far,
UAV multispectral images have been used to estimate the chlorophyll content, nitrogen
content, biomass, and leaf area index (LAI) [21–24]. In addition, they have been also used
by some scholars to monitor the diseases of different crops. Lei et al. [25] achieved the
severity monitoring of the yellow leaf disease of areca nut using VIs such as the normalized
difference vegetation index (NDVI) and normalized difference red-edge index (NDRE)
and using support vector machine (SVM) and decision trees algorithms. Zhao et al. [26]
used VIs to monitor rice sheath blight and the results showed that using multispectral
imagery was more accurate and sensitive (R2 = 0.624, RMSE = 0.801), which was better than
visible light imagery (R2 = 0.580, RMSE = 0.847). Rodriguez et al. [27] used five machine
learning algorithms, including random forest (RF) and a linear support vector classifier,
to monitor potato late blight based on UAV multispectral imagery. Ye et al. [28] used
artificial neural network (ANN), RF, and SVM classification algorithms to monitor banana
fusarium wilt using UAV multispectral imagery. These studies fully illustrate the potential
of using high-resolution UAV multispectral images in the agricultural field. Additionally,
the majority of studies on the disease monitoring of crops used the spectral information of
UAV images, but the inherent spatial information in the form of texture has not been fully
explored. Therefore, it would be promising to take full advantage of the textural feature for
the disease monitoring of crops.

Textural analysis is an image processing technique that is widely used for classification
tasks [29,30]. The textural feature reflects the visual roughness of ground objects through
gray spatial change and its repeatability, which can fully reflect the image characteristics.
Different objects generally show different texture types, which can be used to describe and
identify ground objects. The overall representation of the same category of characteristics
seems similar, but the local detail is different [31]. It has a certain effect on the recognition of
crop diseases and the improvement of their accuracy [32]. In recent years, textural analysis
has also been used for the estimation of crop biomass and LAI [33–35]. Zheng et al. [30]
compared the performance of VIs, raw textural features, the NDTI, and combinations of
VIs and the NDTI for estimating the aboveground biomass of rice using UAV multispectral
data and found that integrating the NDTI with VIs significantly improved the accuracy
compared to using spectral information alone. Li et al. [35] combined color indices and
textural features for estimating rice LAI and exhibited the best estimation accuracy when the
VIs and textural features were combined as the inputs. Some scholars have also introduced
primitive textural features for disease identification and monitoring [13,36]. These studies
all showed the potential of combining spectral information with textural information.

However, most of the studies used only raw textural features, and the contribution
of textural features did not reach satisfactory results. In addition, few research scholars
have focused on the potential of TIs for disease monitoring. So, in this study, we proposed
a method that integrated VIs and TIs to monitor wheat FHB. UAV multispectral imagery
was used to monitor wheat FHB. The specific work of this study is as follows: (1) 10
commonly used VIs (VARI, CIgreen, CIrededge, DVI, DVIRE, EVI, NDRE, NDVI NPCI,
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and RVI) were extracted. In addition, three types of TIs, which are NDTI, DTI, and RTI,
were constructed to make the most use of the textural information of the imagery. (2) The
obtained features were screened to obtain the features sensitive to wheat FHB. (3) Nine
wheat FHB monitoring models were constructed with VIs, TIs, and integrated VIs and
TIs as the input features to explore the effects of different feature inputs on wheat FHB
monitoring. (4) The best FHB monitoring models were applied to map the distribution of
wheat diseases in the study area and evaluate the potential of using UAV multispectral
imagery to monitor wheat diseases.

2. Materials and Methods

2.1. Study Area

The experiment site was conducted on May 18, 2021 at the experimental farm (34◦08′23′′ N,
113◦47′57′′ E) on the Xuchang Campus of Henan Agricultural University, Xuchang City,
Henan Province. At this time, the wheat was growing in the wheat field and it was at the
grain filling stage. Xuchang is located in the central part of Henan Province. It has a typical
temperate and continental monsoon climate. The annual average temperature ranges from
14.3 ◦C to 14.6 ◦C and the annual average precipitation is between 671 mm and 736 mm.

Figure 1 demonstrates the study area. The terrain of the experimental farm was
relatively flat and the soil belonged to loam. In the previous season, maize was the main
grain crop. The study area consisted of 60 experimental plots; they were divided into 3 rows
for planting and each row contained 20 experimental plots. The length of each experimental
plot was about 1.5 m and the width was about 1 m. During the period from 2019 to 2020,
the experimental wheat varieties were sown in autumn. The management measures, such
as irrigation and fertilization, in the experimental plots were all the same. At the early
stage of wheat flowering in April 2021, professionals randomly selected some wheat plants
in each experimental plot and used a micropipette to inject the spore suspension made
of fusarium oxysporum into the florets in the middle and upper part of the wheat ear.
The inoculated wheat ears were marked with awn cutting and bagged for 1~7 days. The
incidence mainly depended on an artificial drip and mutual infection.

Figure 1. Overview of the study area. (a) Location of Xuchang City in Henan Province; (b) distri-
bution and location of the study area in the experimental farm; (c) distribution and location of the
experimental plots.
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2.2. Field Data Acquisition and Preprocessing
2.2.1. Remote Sensing Image Acquisition and Preprocessing

In this study, the UAV remote sensing platform used was Phantom 4 Multispectral
(P4M). There are several built-in sensors in the P4M which make it a dedicated and cus-
tomized UAV for the detection and identification of plants or crops. Multispectral cameras
were available in the P4M and included six CMOS sensors, one of which was used for RGB
visible light imaging, and the other five monochrome sensors were used for multispectral
imaging (blue (B), green (G), red (R), RE and NIR). The UAV had a takeoff weight of 1487 g,
a maximum ascending speed of 6 m/s, a maximum descending speed of 3 m/s, and a flight
time of approximately 27 min. To detect millisecond errors in the camera imaging time, the
TimeSync time synchronization system was adopted. The remote sensing images of the
study area in five bands were obtained on 18 May 2021. The UAV remote sensing operation
was carried out on a sunny day with a low wind speed. The flight time was between 9:00
a.m. and 11:00 a.m., the flight altitude was 20.3 m, the heading overlap and the lateral
overlap were 80%, and the ground resolution was 1 cm.

Using Pix4Dmapper, the original images captured by the UAV were spliced together.
First, with the flight POS data, the same-named points were found and then the real
positions and splicing parameters of the original images were calculated through a space–
time measurement to establish the point cloud model. Finally, according to the calibration
ground panel used before and after the flight, the pixel values were converted into the
surface reflectivity of each spectrum and the imagery is automatically calibrated and
generated into orthophoto imagery by optimizing the image content and using the block
adjustment technology [37].

2.2.2. Selection of Survey Sampling Points

In this study, canopy images of 60 experimental plots were taken with mobile camera
equipment as the auxiliary data for the selection of the sample points. At a height of
about 1.2 m vertically above the canopy, images were acquired in bright weather, and each
image was taken on a vivo iQOO Neo3 mobile phone, which has 48 million pixels in the
rear camera. The images were taken with a fixed shooting direction to ensure that the
canopy images of each plot corresponded to the corresponding plot of the multispectral
imagery. Some of the typical experimental plots with the corresponding plots of the UAV
multispectral imagery are shown in Figure 2. Three categories of sample points were
selected: healthy, diseased, and background. In the diseased plots, 470 FHB-infected
sampling points were selected, and in the healthy plots, 450 healthy sampling points were
selected. In addition, 415 background sampling points were selected. These three types of
sample points were used for subsequent model training and verification.

 

Figure 2. Distribution of images of the canopy experimental plots with the plots corresponding to
the UAV multispectral imagery.
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2.3. Methods

Our research process was conducted in two sections (Figure 3). The first section was
a feature extraction to prepare the input features for the wheat FHB monitoring models
and the second section was the construction and validation of the wheat FHB monitoring
models; and the best feature combination and rapid wheat FHB monitoring method can be
found through the study of these two sections. The two sections are described below.

 

Figure 3. Workflow diagram for feature extraction and model construction and validation.
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Considering that the soil may affect the performance of the models, this study con-
ducted a series of studies based on multispectral imagery after removing the soil area. First,
the process of removing the soil area from the study area was as follows: the optimized
soil-adjusted vegetation index (OSAVI) was used to segment the soil area and wheat area
in the multispectral imagery by setting the suitable threshold [38], and the final threshold
range was determined through multiple adjustments to construct a binary mask image.
This mask was used to remove the soil region. The OSAVI was calculated as follows:

(NIR − R)/(NIR + R + 0.16) (1)

Subsequently, we calculated 10 commonly used VIs and extracted three TIs (NDTI, DTI,
and RTI). The correlation coefficient analysis was used to screen the sensitive classification
features to explore the impact of VIs, TIs, and integrated VIs and TIs on the model’s
accuracy. Then, three machine learning algorithms (KNN, PSO-SVM, and XGBoost) were
used for training and classification. The overall recognition effect of each classification
algorithm was analyzed and evaluated through the accuracy, precision, recall, and F1 score.
Finally, based on the UAV multispectral imagery, the optimal feature combination and
classification algorithm for the recognition of FHB in the farmland were obtained. The
pixel-level region recognition of FHB based on the best wheat FHB monitoring model was
realized. The overall research scheme is shown in Figure 3.

2.4. Feature Extraction
2.4.1. Extraction of VIs

The spectral information from UAVs is mainly used in the form of VIs [39]. VIs repre-
sent the mathematical transformation of reflectance of two or more bands to characterize
the canopy spectral characteristics of crops [39,40]. To obtain the desired classification
accuracy, a group of 10 VIs were calculated based on five spectral bands of UAV imagery
(Table 1). These varieties were selected because they may help to distinguish between
symptomatic and asymptomatic wheat. The formula and corresponding reference of the
selected VIs are given in Table 1. These VIs include the traditional VIs and the red-edge
VIs. The traditional VIs (NDVI, RVI, and DVI) are often used to monitor the growth status
of crops [41,42]. CIgreen, CIrededge, and NPCI are often used to estimate the chlorophyll
content of crops. The red-edge VIs include DVIRE and NDRE, which are similar to DVI
and NDVI, but the red band is replaced by the red-edge band. According to the literature
review, these VIs have been used to identify crop diseases [41]. In addition, VIs are simple
to calculate and their potential for disease monitoring has been discussed by many scholars.

Table 1. Formulas and sources of spectral VIs for monitoring wheat FHB.

VIs Name Calculation Formula Reference

Visible atmospherically resistant index (VARI) (G − R)/(G + R − B) [43]
Green chlorophyll index (CIgreen) NIR/G − 1 [44]

Red-edge chlorophyll index (CIrededge) NIR/RE − 1 [44]
Difference vegetation index (DVI) NIR − R [45]

Red-edge difference vegetation index (DVIRE) NIR − RE [46]
Enhanced vegetation index (EVI) 2.5(NIR − R)/(NIR + 6R − 7.5B + 1) [47]

Normalized difference red-edge index (NDRE) (NIR − RE)/(NIR + RE) [48]
Normalized difference vegetation index (NDVI) (NIR − R)/(NIR + R) [49]
Normalized pigment chlorophyll index (NPCI) (RE − B)/(RE + B) [46]

Ratio vegetation index (RVI) NIR/R [46]

2.4.2. Extraction of TIs

When wheat is infected with FHB, the ear of the wheat will turn yellow and dry and
certain brown spots will appear. With time, the brown spots will gradually expand and
eventually spread to the whole ear [3,13]. Wheat canopy infected by FHB and wheat canopy
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not infected by FHB have different textural characteristics. Therefore, using the textural
information reflected by the textural characteristics can effectively solve the problem
that characteristics are difficult to distinguish from spectral features and it can also can
effectively improve the classification accuracy.

Among several texture algorithms, the commonly used GLCM [50,51] was selected
to explore the potential of textural information for wheat FHB monitoring. In this study,
40 textural features of 5 spectral bands were extracted from UAV multispectral imagery.
Based on the GLCM, eight textural features of each band, including the mean, variance, ho-
mogeneity, contrast, dissimilarity, entropy, second moment, and correlation, were obtained.
Since wheat is a row planting crop, usually, the row spacing of wheat planting is about
0.2–0.3 m. Considering the spatial resolution of UAV multispectral imagery was 0.01 m,
this study used a 3 × 3 window size for the extraction of the textural features. The details
of the textural features are shown in Table 2.

Table 2. Calculation formulas of textural features.

Textural Features Calculation Formula

Mean ∑
i

∑
j

P(i, j)i

Variance ∑
i

∑
j
(i − mean)2P(i, j)

Homogeneity ∑
i

∑
j

P(i, j) 1
1+(i−j)2

Contrast ∑
i

∑
j

P(i, j)(i − j)2

Dissimilarity ∑
i

∑
j

P(i, j)|i − j|
Entropy −∑

i
∑
j

P(i, j)log(P(i, j))

Second moment ∑
i

∑
j

P(i, j)2

Correlation ∑
i

∑
j

(i−mean)(j−mean)×P(i,j)2

variance

Where P(i, j) represents the image element value of the image at the point (i, j).

To improve the correlation between the textural features and wheat FHB, three TIs
(NDTI, DTI, and RTI) were constructed following the thought of NDVI, DVI, and RVI.
Combining eight textural features from five spectral bands (40 features in total), all possible
combinations of the two textural features were constructed to explore their ability to identify
wheat FHB. Finally, 1560 combinations were obtained for each TI and the best combination
form was selected to constitute that TI. The three TIs were defined as follows.

NDTI = (T1 − T2)/(T1 + T2) (2)

DTI = T1 − T2 (3)

RTI = T1/T2 (4)

where T1 and T2 represent the textural feature values in five random bands.

2.5. Training and Evaluation of Machine Learning Models

Based on the three inputs of VIs, TIs, and VIs and TIs integrated, a total of 1335 sampling
points were selected, including 450 sampling points in the healthy area, 470 sampling points
in the FHB-infected area, and 415 sampling points in the background area (considering the
soil removal, the image was still disturbed by other external objects as well as shadows, so
the background sampling points were retained). The training and test set were randomly
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divided according to the ratio of 8:2, and the KNN, PSO-SVM, and XGBoost were used to
identify the infected FHB area.

2.5.1. KNN Model

The KNN is a typical supervised learning method and is widely used in classification
tasks [52]. The basic principle is to calculate the distance between the sample to be classified
as x and all the samples in the training set based on the distance metric, and the k samples
with the smallest distance from the sample to be classified are taken as the k nearest
neighbor samples of x. Finally, the classification category of x is determined based on the
vote. The selection of the k value has a significant impact on the classification result of the
KNN algorithm. If the value of k is too small, the phenomenon of overfitting will easily
occur and the prediction error will be large, leading to a wrong prediction; if the value
of k is too large, the phenomenon of underfitting will occur. So, this study used five-fold
cross-validation to select the k value to ensure that a more appropriate k value was chosen.

2.5.2. PSO-SVM Model

Particle swarm optimization (PSO) was first proposed by Eberhart and Kennedy in
1995 [53], which simulated the clustering behavior of insects, birds, and fish for global
optimization. SVM is a machine learning algorithm for supervised classification, which has
certain advantages in solving small samples, and nonlinear and high-dimensional pattern
recognition [54,55]. It first searches for a maximum marginal hyperplane and maps the
low-dimensional data to the high-dimensional space through the kernel function [56], so as
to turn the linearly inseparable samples into linearly separable samples, and introduces the
model penalty factor to improve the generalization of the classification model. However,
this method has a large workload and a low efficiency [57,58]. In addition, radial basis
function (RBF) was used in this study, in which the kernel function parameter gamma and
penalty factor c have a great impact on the accuracy of the model [58]. Therefore, PSO was
used to find the appropriate gamma and c to reduce the model’s complexity and accelerate
the model’s convergence.

2.5.3. XGBoost Model

XGBoost [59] is a novel gradient tree boosting method introduced by Chen and
Guestrin in 2016. It is an improvement of the gradient boosting algorithm for enhancing
the speed and performance of decision trees using gradients [60]. The thought of XGBoost
is to adopt a group of classification and regression trees as weak learners and subsequently
improve the performance of the trees by creating a cluster of trees that minimizes the
regular objective function.

The objective function consists of two parts: training loss and regularization. The
representation of the objective function is shown in the following equation.

obj(θ) = TL(θ) + R(θ) (5)

TL represents the training loss and R represents the regularization term. TL is used to
measure the predictive power of the model. Regularization has the advantage of retaining
the complexity of the model within the desired range, eliminating problems such as over-
stacking or over-fitting of data, and XGBoost can optimize the results by simply adding the
predictions from all trees formed from the dataset.

2.5.4. Model Performance Evaluation Metrics

In this study, the accuracy, precision, recall, and F1 score will be used to evaluate the
performance of the model. The calculation formulas are as follows.

Accuracy =
TP + TN

TP + TN + FP + FN
(6)
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Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall
(9)

where true positive (TP) and true negative (TN) represent the number of correctly classified
positive samples and the number of correctly classified negative samples; false positive
(FP) and false negative (FN) represent the number of misclassified positive samples and
the number of misclassified negative samples.

3. Results

3.1. Correlation between Different Modeling Features and Wheat FHB

Correlation analysis is also widely used in studies of pest and disease monitoring [42].
So, in the study, the correlation between the different modeling features and wheat FHB was
analyzed. In this study, Spearman correlation was adopted to measure the ability of VIs and
TIs to identify wheat FHB. Spearman correlation differs from Pearson correlation in that it
allows the variables to be categories and has a stronger robustness [61,62]. From Table 3,
it can be seen that the correlation coefficient R between VIs and wheat FHB was between
−0.580 and −0.882 and the vegetation index with the highest correlation coefficient was
EVI; the correlation coefficient R between TIs and wheat FHB was between −0.866 and
−0.893 and the textural index with the highest correlation coefficient was DTI. Compared
with VIs, only DTI was higher than EVI, which had the highest correlation coefficient. The
P value between the different features and wheat FHB was less than 0.01, indicating that the
extraction of VIs and TIs based on UAV multispectral imagery were significantly different
from wheat FHB. VIs and TIs can be used as input features for constructing wheat FHB
monitoring models.

Table 3. Correlation analysis result between different modeling feature and wheat FHB.

Feature R P Value

VARI −0.580 **
CIgreen −0.757 **

CIrededge −0.747 **
DVI −0.879 **

DVIRE −0.872 **
EVI −0.882 **

NDRE −0.757 **
NDVI −0.861 **
NPCI −0.805 **
RVI −0.807 **

NDTI −0.866 **
DTI −0.893 **
RTI −0.869 **

** indicates that the correlation is highly significant at the 0.01 levels.

3.2. Model Analysis and Evaluation

In this study, KNN, PSO-SVM, and XGBoost were used for the modeling. We selected
the three VIs (EVI, DVI, and DVIRE) with the highest correlation coefficients as the input
features for VIs, combined NDTI, DTI, and RTI as the input features for TIs (these three
TIs are made up of their respective best combinations), and integrated these VIs and TIs
as the input features to construct wheat FHB monitoring models, respectively. A total
of 267 sampling points were used for the test set, including 106 healthy sampling points,
82 sampling points infected with FHB, and 79 background sampling points. In KKN, a
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five-fold cross-validation was adopted to find the appropriate K value, and in PSO-SVM,
the PSO algorithm was utilized to optimize the parameters gamma and c of the model,
finding the best gamma and c in each different combination of features. ln XGBoost, the
parameters of the model were determined through several tuning attempts.

The accuracy, precision, recall, and F1 score were used to evaluate the effect of the
monitoring results of the three models and the final parameter setting of the monitoring
models are shown in Table 4. From Table 4, the accuracy of the training set and the test
set showed that there was no overfitting or underfitting of the models. It can be seen that
when VIs were used as the input, the accuracy of the models reached 84.64%–85.02% and
the F1 score reached 82.75%–83.09%. When TIs were used as the input, the accuracy of the
models reached 91.76%–92.51% and the F1 score reached 90.84%–91.68%. When VIs and
TIs were used as the inputs, the accuracy of the models reached 92.13%–93.63% and the F1
score reached 91.29%–92.93%. It can be seen that the models using only VIs as the input
performed the worst, lower than the other two forms of feature combinations. This result
indicated that TIs outperformed VIs under a single type of feature input, probably because
TIs were richer in showing the textural information of FHB-infected wheat, which was
different from the healthy wheat canopy. Under both types of feature inputs, the combined
use of the spectral and textural information of the imagery enhanced the performance of
the models compared with using only VIs or TIs as the inputs, with XGBoost showing the
highest performance and outperforming the other two models with an accuracy of 93.63%.
It was shown that the performance of wheat FHB monitoring could be improved by taking
full advantage of different features and suitable model.

Table 4. Evaluation metrics of wheat FHB monitoring models.

Features Models
Training Set Test Set

Parameters Accuracy/% Accuracy/% Precision/% Recall/% F1 Score/%

VIs
KNN K = 5 81.93 84.64 84.46 83.19 82.75

PSO-SVM Gamma = 0.14,
c = 9.31 82.11 84.64 84.63 83.20 82.77

XGBoost Estimators = 10, max
depth = 3 83.05 85.02 85.36 83.63 83.09

TIs
KNN K = 9 89.79 91.76 91.3 90.81 90.84

PSO-SVM Gamma = 0.15,
c = 3.70 90.63 92.13 91.80 91.22 91.25

XGBoost Estimators = 10, max
depth = 3 91.10 92.51 92.00 91.65 91.68

VIs+TIs
KNN K = 7 90.07 92.51 92.14 91.64 91.68

PSO-SVM Gamma = 1.64,
c = 7.53 91.85 92.13 91.52 91.25 91.29

XGBoost Estimators = 10, max
depth = 3 93.16 93.63 93.19 92.90 92.93

3.3. Analysis of Monitoring Effect

Figure 4 shows the confusion matrix of the three models with different inputs. From
the confusion matrix, it could be seen that the misclassified sampling points of the models
were basically concentrated between the sampling points infected with FHB and the
background, and the healthy sampling points were better classified, probably because the
healthy sampling points are more different from the sampling points infected with FHB
and the background sampling points, while the sampling points of FHB will gradually
show the symptoms of whitening and drying on the wheat canopy due to the infection by
FHB, thus causing a loss of pigment and being easily confused with the background area.

When only VIs were used as the input, the misclassification between FHB-infected
sampling points and the background sampling points was more serious, indicating that
the spectral information of the images alone could not monitor wheat FHB well. The
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misclassification was improved to some extent when only TIs were adopted as the input,
probably because the textural information of the canopy of wheat infected with FHB was
different from that of the background sample points, and the TIs improved the phenomenon
that the spectral features were difficult to distinguish detailed information. The integration
of VIs and TIs as the input further improved the misclassification of the samples and
enhanced the performance of the models, among which the XGBoost achieved satisfactory
results with only 17 misclassified samples, the least misclassified samples, and the model
also has the advantage of being fast, so it is well suited for the monitoring of wheat FHB.

Figure 4. Confusion matrix for the three models with different inputs.

In this study, different feature inputs as well as KNN, PSO-SVM, and XGBoost were
used for the monitoring of wheat FHB, and it was clear from the analysis that XGBoost
with VIs and TIs as the inputs achieved the best performance, so this model was used for
spatial distribution mapping of wheat FHB (Figure 5). The trained XGBoost was used to
perform a pixel-level classification of the UAV multispectral imagery. From Figure 5, we
can see that the overall FHB incidence in the study area was heavy, probably because wheat
FHB is a climatic disease, mainly affected by temperature and humidity, and the images of
the study area were acquired during the wheat grain filling stage, which was the peak of
the wheat FHB outbreak, making the incidence more serious. In addition, we could see that
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some background areas and areas infected with FHB were confused with each other, which
may be related to the gradual drying of FHB after its incidence. Despite this phenomenon,
XGBoost achieved satisfactory results and could be used to achieve the monitoring of wheat
FHB. This study provides a new approach for the rapid and nondestructive monitoring of
wheat FHB.

Figure 5. Mapping of the spatial distribution of FHB in wheat.

4. Discussion

Many previous studies, which have used multispectral images from UAVs for plant
or crop pests and diseases, have been conducted. Some research scholars have used
multispectral images from UAVs to try to monitor citrus huanglongbing (citrus greening)
by extracting VIs that were sensitive to the disease, combined with models such as KNN and
SVM [63,64]. Other research scholars have used multispectral images for monitoring other
diseases such as wheat yellow rust [65], potato late blight [27], and Flavescence dorée [66].
These studies well demonstrated the potential of low-altitude multispectral images for
the rapid monitoring of crop diseases. The traditional remote sensing monitoring of pests
and diseases, especially based on UAV images [67–69], mostly uses some VIs as the input
features. This method only considered the changes in the host conditions and neglects
the local detailed textural information of remote sensing images [70,71]. Textural features
in UAV remote sensing images can describe the spatial distribution of the brightness of
adjacent pixels and unique textural information and are increasingly used in the monitoring
of pests and diseases.

Therefore, this study used spectral information and textural information extracted
from UAV multispectral imagery to try to monitor wheat FHB. First, to reduce the influence
of soil on the monitoring results, OSAVI was used to construct a mask file and set an
appropriate threshold to remove the soil areas from the image. Second, we analyzed the
correlation of 10 commonly used VIs and three TIs on wheat FHB, and through correlation
analysis, we selected three VIs that were significantly correlated with FHB as the input
features for the models, which were EVI, DVIRE, and DVI. These VIs were all associated
with either NIR or RE, which may be related to the stress state of the crops or plants.
After being stressed by pests and diseases, crops will show differential absorption and
reflection characteristics in different bands, causing changes in the crops’ pigments, water,
morphology, and structure [72]. Wheat FHB mainly infects wheat ears, making wheat ears
yellow and dry, thus causing the loss of chlorophyll [73], and this symptom can be well
reflected by the red-edge band [74,75].

Considering that FHB-infected wheat canopies may present different structures and
textures from healthy wheat canopies as well as the background, to further enhance the
description of wheat FHB by the textural features, three TIs (NDTI, DTI, and RTI) were
constructed instead of the original textural features as the input features for the models.
It was found that the TIs were significantly correlated with wheat FHB, probably because
the constructed TIs were combinations of different textural features and better-utilized
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textural information to describe wheat FHB, where the correlation coefficient between DTI
and wheat FHB reached -0.893, which was better than VIs, indicating that TIs could also
be used as the input features for the wheat FHB monitoring models, and the performance
may be better than VIs. Finally, based on the multispectral imagery after the removal of
the soil, we used three VIs, three TIs, and integrated VIs and TIs as the input features and
selected KNN, PSO-SVM, and XGBoost to construct the wheat FHB monitoring models.
Through our analysis, we found that XGBoost, which integrated VIs and TIs as the inputs,
could better achieve wheat FHB monitoring with an accuracy of 93.63% and an F1 score as
high as 92.93%. The reason may be that XGBoost has the advantage of transforming weak
learners into strong learners, and its regularization parameters can ensure the accuracy
while avoiding the problem of over fitting. In addition, the model is faster, so the model
can be applied to the monitoring of wheat FHB.

In this study, multispectral imaging technology combined with machine learning has
achieved great results in wheat FHB monitoring, but there are still some problems that
need to be improved. Wheat FHB is one of the most harmful diseases. The infection of
wheat FHB will bring irreparable harm to the wheat’s quality. Therefore, the early detection
of FHB in wheat is particularly important. The research field of this study is relatively
single, and further research is needed in more fields to verify the spatial and generalization
capabilities of the models used. In addition, we should also consider using the images
of multiple stages and key growth periods to further explore the disease characteristics
of wheat FHB so as to achieve the goal of an early detection and control. At present,
deep learning technology also has a very broad application prospect in plant or crop pest
detection, thus the potential of deep learning technology in disease monitoring needs to be
further explored.

5. Conclusions

This research proposed a wheat FHB monitoring method combining VIs, TIs, and
an XGBoost model. First, based on the multispectral imagery obtained by UAV, OASVI
was used to reduce the interference of the soil area. Second, we made full use of the VIs
and TIs of UAV multispectral imagery and explored the ability of KNN, PSO-SVM, and
XGBoost to monitor wheat FHB under different feature combinations. Lastly, combined
with the accuracy evaluation index of the models, the XGBoost model with VIs and TIs as
the inputs had the best performance, with an accuracy of 93.63% and an F1 score of 92.93%.
The results showed that the fusion of VIs and TIs could improve the accuracy of the model,
and XGBoost could quickly and accurately monitor wheat FHB. This research provides
technical support and reference for the rapid and nondestructive monitoring of wheat FHB.
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Abstract: Land use and land cover (LULC) mapping can be of great help in changing land use
decisions, but accurate mapping of LULC categories is challenging, especially in semi-arid areas with
extensive farming systems and seasonal vegetation phenology. Machine learning algorithms are now
widely used for LULC mapping because they provide analytical capabilities for LULC classification.
However, the use of machine learning algorithms to improve classification performance is still being
explored. The objective of this study is to investigate how to improve the performance of LULC
models to reduce prediction errors. To address this question, the study applied a Random Forest (RF)
based feature selection approach using Sentinel-1, -2, and Shuttle Radar Topographic Mission (SRTM)
data. Results from RF show that the Sentinel-2 data only achieved an out-of-bag overall accuracy of
84.2%, while the Sentinel-1 and SRTM data achieved 83% and 76.44%, respectively. Classification
accuracy improved to 89.1% when Sentinel-2, Sentinel-1 backscatter, and SRTM data were combined.
This represents a 4.9% improvement in overall accuracy compared to Sentinel-2 alone and a 6.1%
and 12.66% improvement compared to Sentinel-1 and SRTM data, respectively. Further independent
validation, based on equally sized stratified random samples, consistently found a 5.3% difference
between the Sentinel-2 and the combined datasets. This study demonstrates the importance of the
synergy between optical, radar, and elevation data in improving the accuracy of LULC maps. In
principle, the LULC maps produced in this study could help decision-makers in a wide range of
spatial planning applications.

Keywords: land use; land cover; classification; random forest; Sentinel data; SRTM; random forest;
feature selection; accuracy; validation

1. Introduction

Earth-observing satellite sensor data can be used for land-cover mapping and monitor-
ing, which is essential for estimating land-cover change. The increase in land use and land
cover changes (LULC) in natural ecosystems has adversely affected carbon stocks, climate
change, and biodiversity, as well as the global climate over the past few decades [1–4]. It is
believed that deforestation due to urbanization and agricultural expansion is one of the
most critical threats to the environment in the 21st century [5]. The United Nations (U.N.)
sustainable development goal (SDG) 15 has emphasized measures to “protect, restore, and
promote sustainable use of terrestrial ecosystems, sustainably manage forests, combat desertification,
and halt and reverse land degradation and biodiversity loss” [6]. Priority is placed on combating
desertification, recovering degraded land and soil, particularly in areas affected by deser-
tification, drought, and floods, and combating land degradation by 2030. Satellite Earth
observation data offer one of the most reliable options for monitoring land degradation in
the context of the SDGs due to their consistency and repeatability at local and large spatial
scales. Information about the land cover of a country is an essential part of the planning and
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development process. It is useful for environmental reporting [7], assessing the impact of
land use on the natural environment [8], conserving biodiversity and habitats [9], mapping
population distributions [10], forecasting crops, studying urban heat islands, managing
insurance risks, planning telecommunications, and others [11–13].

Even though traditional methods (e.g., field surveying) yield accurate results, they
are expensive and inefficient in monitoring large and inaccessible areas. To overcome
these limitations, remote sensing scientists have developed analytical tools for detecting,
characterizing, parameterizing, and monitoring land variables based on space observa-
tions. Remote sensing has experienced rapid advances over the past 40 years. Based
on remote sensing technology, data are usually collected across different regions of the
electromagnetic spectrum at wide spatiotemporal scales (e.g., the recent Copernicus pro-
gram/Sentinel missions and the Landsat program/missions- which has been available for
over 40 years). Hence, remote sensing provides an interesting option for policymakers to
make informed decisions about our environment and also to improve the methodology of
assessing ecosystem vulnerability [14,15].

Over the past decades, the scientific community has fully recognized remote sens-
ing/Earth observation data from space for LULC monitoring. These data offer an unparal-
leled opportunity for large-area measurement and high temporal precision for land cover
mapping and monitoring. Today, a large number of global land cover maps are produced
(e.g., GLOBCOVER and MODIS land cover products). However, these products have their
limitations for regional as well as local assessments due to their low spatial resolution
(e.g., 1 km, 250 m), temporal frequency, and inconsistencies in their assigned thematic
classes [16]. These limitations primarily occur due to (1) the small number of training data
relative to the size of the area being mapped, (2) mismatch definitions/propriety in land
cover classification schemes, (3) and the need for a readily and automated algorithm to
handle large datasets. In this light, many regional governments have embarked on research
projects to provide high and medium-resolution (e.g., 30 m) land cover maps, which are
accurate and consistent with their local demands. For example, the operational land cover
databases (e.g., the National Land Cover Database for the United States of America (U.S.A.)
and the United Kingdom’s Land Cover product which is based on the European CORINE
land cover mapping scheme [11].

A widespread increase in anthropogenic activities, land use, and land cover changes
are occurring at an unprecedented rate, requiring policymakers and stakeholders to pay
greater attention to the measures to manage and control environmental degradation. In
Nigeria, the threat to environmental sustainability, for example, is encapsulated in the need
to ensure the quality of the environment is appropriate for good health and well-being,
as well as to protect and utilize the environment and natural resources for the benefit
of present and future generations. The policy encourages the compilation of detailed
land capability inventories, comprehensive land classifications, assessment of the current
land use practices, causes and extent of land degradation, and regulatory framework for
sustainable land use [17]. However, despite recent advancements in Earth observation and
remote sensing, there is no reliable land LULC for the country. Most of the previous global
land cover maps were not also developed based on adequate or training data sets covering
Nigeria. And their class labeling and definitions (e.g., International Geosphere-Biosphere
Programme) have mixed land cover classes, which are unsuitable for discerning LULC
characteristics in Nigeria. Conservation policies in Nigeria have emphasized undertaking
land capability classifications based on evolving methods of land evaluation suitable to
local conditions.

Land cover monitoring using remotely sensed data involves precise mapping of
complex land cover and land use categories, necessitating the employment of strong
classification systems [18]. Waske and Braun [19], who compare the ensemble classifiers
with approaches such as the maximum likelihood classifier for land cover classification
using C-band multi-temporal SAR data, observed that random forest (RF) outperformed
maximum likelihood by more than 10%. A comprehensive comparison of machine learning
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algorithms has been conducted by Lawrence and Moran (2015) using uniform procedures
and 30 distinct datasets. Their results showed that RF had the highest classification accuracy
of 73.19% than SVM, which had an accuracy of 62.28%. Of the total 30 classifications, RF
was the most accurate in 18 classification scenarios. Talukdar et al. [20] reviewed six
machine-learning classifiers for LULC classification using satellite observations. Based
on overall accuracy, results indicate that RF is the best machine-learning LULC classifier
(0.89, RMSE = 0.006), compared to support vector machine (Kappa = 0.86, RMSE = 0.11),
artificial neural network (Kappa = 0.87, RMSE = 0.09), fuzzy adaptive resonance theory-
supervised predictive mapping (0.85, RMSE = 0.17), spectral angle mapper (Kappa = 0.84,
RMSE = 0.23), and Mahalanobis distance (Kappa = 0.82, RMSE = 0.28). This makes the
machine learning algorithm suitable for LULC classification. Furthermore, a recent study
by Adugna et al. [21], who compare RF and SVM machine learning methods, found that
RF outperformed SVM, yielding overall accuracy (OA) of 0.86 and a kappa (k) statistic of
0.83, respectively, which is 1–2% and 3% higher than the best SVM model.

Nowadays, machine learning technology is used for feature selection to assist in
mapping LULC categories. The advantage of RF is its capability for feature selection, which
has been proven to improve classification accuracy in previous studies [22–24]. A study
by Balzter et al. [11], who developed a method for CORINE Land Cover mapping using
RFs, demonstrates the importance of variable selection using Sentinel-1A radar backscatter
coefficient at HH and HV polarizations (summer acquisitions) and VV and VH polarization
(winter acquisitions) and SRTM Digital Elevation Model Data. The classification out-of-
bag error rate was 52.5%, and kappa (κ) = 0.38 for the Sentinel-1 variables. When the
variables generated from the S.R.T.M. data were added, the quality of the classified map
was improved substantially, with an out-of-bag error rate of 31.6% (68.4% accuracy) and
κ = 0.63. R.F. clearly describes the benefits of including variable selection in the land cover
classification process in a complex environment [25].

The RF technique is well-established in land remote sensing today. Still, it has not been
adequately evaluated by the remote sensing community as compared to more traditional
pattern recognition algorithms. In addition, there have been observations about how
the importance of variables varies depending on the data and ecosystem in question,
necessitating further exploration [23,25,26]. To assist decision-makers in a variety of spatial
planning applications (e.g., cropland management, irrigated agriculture intensification,
flood vulnerability assessment, water management, or human settlement/resettlement
planning in floodplains), the thematic LULC classes were created to represent the local
characteristics of the semi-arid region, in Nigeria. Specifically, the objectives of this study
were; (1) to evaluate the applicability of an RF classification algorithm for LULC mapping
using local class definitions and training data sets in an agriculturally dominated landscape
in Nigeria; (2) to assess the contribution of an individual satellite band in the RF model;
(3) to improve model performance and reduce prediction errors of LULC maps based on
RF feature selection. The novelty of this study is the synergistic use of different sources of
satellite data to identify the most important variables to reduce prediction error. Therefore,
one of the most important contributions of the work is the methodology developed to
improve classification performance. The insights gained in this work to improve model
performance and reduce prediction errors not only support policymakers in applying
accurate LULC maps in spatial planning but also enrich the methodological system of
LULC assessment through machine learning.

2. Materials and Methods

2.1. The Study Area

This study was conducted in Kebbi state, the northwestern part of Nigeria
(Figure 1a,b). This area is located between latitude 4◦27′0′′–4◦54′0′′ N of the equator
and longitude 4◦19′12′′–4◦48′0′′ E of the Greenwich meridian (Figure 1a). This area falls
in the Argungu local government and parts of Augie, Birnin-Kebbi, and Gwandu local
government areas. The climate in the area is tropical continental, with two distinct seasons,
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dry and wet. This is caused by the presence of two contrasting air masses, the tropical
continental and the tropical maritime, which originate from the Sahara Desert and the
Atlantic Ocean, respectively. The wet season lasts from May to October. The dry season
lasts from November to April. The average rainfall is 800 mm. The average temperature is
27 ◦C which can rise to 40 ◦C in the summer. Sudan savannah is the predominant vegetation
type in the area [27–29]. Geologically, the area is composed of sedimentary rock, primarily
undifferentiated sands, gravels, clays (mostly in the upland areas), and floodplains that
surround riverine communities [30]. It is, therefore, possible to identify two types of soil
in the area: sandy soil for the upland area and clayey and hydromorphic soils for the
floodplain area (clay, clay-loam, sandy-loam, loamy sand). The area is mostly characterized
by lowland with a few highland areas of up to 344 m, dissected by large flowing rivers
(e.g., River Rima) (Figure 1a). The area is characterized by Sudan savannah vegetation
type. It includes trees/shrubs (Pilliostigma reticulatum, Combretum nigricans, Combretum
verticellatum, Guira senegalensis Azadirachta indica, Piliostima thonningii, Guira senegalensis and
grass species (Borroria scabra, Borroria radata, Pennisetum peicellatum, Pennistum peicellatum,
Corchorus fascicularis, Digitaria horizontalis, Lam (karangiya), Commelina forskalei, Eragrostis
gangetica, etc.) [28]. These species of plants have different phenological cycles (e.g., leaf
flush and senescence period). However, most of these species have their leaf-on up to the
end of November.

Figure 1. Study area (a) study area showing the elevation data based on SRTM data, (b) Map of
Nigeria showing Kebbi State and the location of the study area.

A large number of subsistence farmers use the floodplain area for irrigation activities
where rice, wheat, tomatoes, etc., are being cultivated. But the majority of the farmers
engaged in rice cultivation. In the upland areas, crops such as millet, guinea corn, legumes,
etc., are usually cultivated. The main harvest time for cereals (such as millet) is late
October, except for Guinea corn and legumes, which are usually harvested around mid-
November. However, most of the cultivated land in the upland region grows millet. The
main harvesting season for rice is November and December, depending on the type and
timing of planting. Rice grown in the rainy season is fed to some extent by the rain,
as it is strongly supported by irrigation activities. Approximately 75% of the people in
the area work as farmers and cultivate crops through rain-fed and irrigation practices in
the floodplain area [31]. The area is well-known for its contribution to rice production
and fishing in Nigeria. The river Rima in Argungu provides an opportunity for tourism-
the famous Argungu International Fishing and Cultural Festival on the one hand, and
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industrial development- the WACOT rice mill company-employing many thousands of
people as well as enhancing rice production in the region. Currently, land use patterns are
undergoing various transformations as a result of changing demographic and economic
characteristics in the area, creating a wide range of environmental problems. As the land
use system continues to undergo rapid changes, there is a need to develop an accurate
mapping framework so that an assessment of future land use patterns and the sustainability
of land resources may be well-studied.

2.2. Remote Sensing Data
2.2.1. Sentinel-1 Normalized Backscatter

Sentinel-1 is a C-band synthetic aperture radar (SAR) satellite mission of the European
Copernicus Program. In this study, the Sentinel-1 Analysis Ready Data (ARD) is one of the
remote sensing data used as input variables for feature importance selection with the RF
Classifier. The Sentinel-1 data were acquired on 4 October 2020, and were downloaded
from the Digital Earth Africa website (https://www.digitalearthafrica.org/, accessed on
15 August 2022. Because the wet season occurs from the end of May to the end of October,
the image acquisition period was found suitable to capture the phenology of plant species
and crops. The data are available in single polarization (VV) and double polarization (VH).
In addition, radiometric terrain correction (RTC) was applied to the normalized backscat-
ter [32]. To increase the number of variables in the RF model, two additional variables were
created from these polarizations. The mean and total sum of VV and VH were generated
and included in the RF model to assess whether these variables could contribute to model
performance. In general, data from SAR, such as those from Sentinel-1, provide different
and complementary information than that provided by optical remote sensing. A radar
signal can penetrate clouds and provide information about the Earth’s surface that optical
sensors cannot work due to topography, land cover structure, orientation, and moisture
characteristics.

2.2.2. Sentinel-2 Surface Reflectance

In addition to other remote sensing data, this study incorporates the Copernicus
sentinel-2 multispectral data to map the LULC of the study area. The Sentinel-2 ARD
for 17 October 2020, was downloaded from the Digital Earth Africa website at https:
//maps.digitalearth.africa/, accessed on 15 August 2022. The acquisition period of the
imagery was considered useful in capturing the phenology of woody plants, grasses, and
crops. The spectral bands used for this study include blue (band 2), green (band 3), red
(band 4), red edge (band 5), red edge (band 6), red edge (band 7), NIR (band 8), NIR (band
8a), SWIR1 (band 11) and SWIR2 (band 12). The spatial resolution of these data is 20 m.
The data were pre-processed and atmospherically corrected by the providers. Sentinel-2
has promise in LULC mapping in semi-arid/agriculturally dominant landscapes based on
RF feature selection [33,34].

2.2.3. SRTM Digital Model Data

It is a collaboration between the National Geospatial-Intelligence Agency and the
National Aeronautics and Space Administration (NASA) to provide elevation data at a
global scale to produce the most complete high-resolution digital topographic database of
Earth using radar data. The 30 m, ArcGRID format was used in this study and is available at
http://www2.jpl.nasa.gov/srtm/index.html (accessed on 15 August 2022). Three variables
were created from the data. These include elevation, slope, and aspect. This will be used
to represent the surface elevation of the study site. The 30 m DEM was upgraded to
20 m through the nearest neighbor interpolation techniques to make it compatible with
Sentinel data.
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2.3. Method
2.3.1. Workflow

This study identified the most critical spectral and topographic variables for enhancing
model performance using ARD sentinel data (1 and 2) and SRTM DEM. The RF classification
method was used to classify LULC types (river, wetland/flooded, irrigated land, barren,
built-up area, tree/shrubland, farmland, and grassland) in the area. The flowchart is shown
in Figure 2. The figure illustrates a high-level summary of the processes and procedures
employed in this study.

 
Figure 2. The workflow of the processes and approaches implemented in the study.

2.3.2. Resampling

The data used in this study are not on the same spatial resolution. For example, the
ARD Sentinel-2 data is 20 m, Sentinel-1 is 25 m, and STRM DEM is 30 m. This makes
it necessary to resample these datasets on the same spatial resolution. However, there
are different techniques of resampling that are used depending on the problem. The first
one is done as a result of a mismatch between the different raster datasets, while the
other type is when a raster dataset is converted into a different coordinate system. In this
study, the reason for resampling is due to the mismatch between the different data sets
mentioned earlier. Three resampling methods, including bi-linear, nearest neighbor, bicubic
or cubic convolutional interpolation, are commonly used for resampling raster data [35].
The nearest neighbor resampling approach was found to be more suitable and was therefore
used to resample the normalized sentinel backscatter data and data from DEM to 20 m.
The nearest neighbor assigns the DN (or another pixel value, like backscatter) based on the
input matrix’s nearest pixel. It has the advantage of computational simplicity and does
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not potentially change input pixel values [35]. Zheng et al. [36], who assessed the effects
of different spatial resolution unification schemes and methods on LULC classification,
discovered that nearest neighbor interpolation could satisfy the needs of local and regional
LULC applications.

2.3.3. Feature Importance Selection

Predictor variables were selected based on an understanding of how spectral re-
flectance varies across surface features and how it contributes to land surface characteriza-
tion. The electromagnetic spectrum offers a wide range of options for discriminating among
various objects. Even within a land cover category, there are variations in the spectral signa-
tures of different electromagnetic spectrum components. For example, in vegetation, light
absorption by leaf pigments dominates in the visible wavelength (400–700 nm), whereas leaf
pigments are transparent to NIR (700–1300 nm), and leaf absorption is small [37]. Sentinel-2
data, for instance, has 13 bands, each of which contributes differently to the differentiation
of the land surface. A unique characteristic of vegetation is its reflectance signature, which
is observed by active sensors such as microwaves (e.g., shortwave or longwave radar data).
Whether it is day, night, or cloudy, microwave sensors can image any part of the planet.
Through this, radar data complement passive optical data in mapping LULC types. Some
variables are more relevant for some phenomena than others, depending on the situation
at hand. In Figure 3a, normalized backscatter variability is shown for the 8 LULC types
being studied. Based on these spectral variations, the LULC types seem to be distinguished
across different polarizations (VV, VH, mean VV & VH, VV+VH). Figure 3b shows the
spectral curves of the 8 LULC types from Sentinel-2 multi-spectral data. In general, there is
a possibility that these classes could be well distinguished by the classifier based on their
emittance behavior (Figure 3a,b). The visible wavelengths, especially the blue and green
bands, do not discriminate between these LULC types. The LULC classes of red, NIR, and
SWIR 1 and 2, however, possess distinct spectral characteristics (Figure 3b).

The complexity of the environment makes it challenging to easily identify which
feature is most useful for predicting land cover categories. This is due to the uncertainty as
to which of the features will contribute most to the accuracy of classification. Additionally,
auxiliary features such as topographic variables are usually included in an RF feature
selection to complement spectral data. The ability to combine numerous variables to
enable feature selection to better predict outcomes is provided by the RF machine learning
feature selection [38,39]. Mean decrease accuracy (MDA) has been recognized as one of
the standard procedures for assessing feature importance, which is based on the OOB
estimates of the RF model [40,41]. The higher the value, the more important the variable is.
To find the most important features for enhancing model performance, sets of scenarios
with various features were established, which assessed these features based on individual
datasets and in combinations for this investigation (Table 1).

Table 1. Predictor variables for the RF feature selection.

S/No

Scenario 1 Scenario 2 Scenario 3 Scenario 4

Sentinel-2 Bands Sentinel-1 Bands SRTM Data
Combined (Scenario

1, 2 & 3)

1 Blue VV Elevation Blue
2 Green VH Aspect Green
3 Red Mean (VV & VH) Slope Red
4 NIR_8 VV+VH NIR_8
5 NIR_8a - - NIR_8a
6 SWIR1 - - SWIR1
7 SWIR1 - - SWIR1
8 Red edge_1 - - Red edge_1
9 Red edge_2 - - - Red edge_2
10 Red edge_3 - - - Red edge_3
11 - - - VH
12 - - - Elevation
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Figure 3. (a): Spectral curves of the LULC categories derived from the Sentinel-1 normalized
backscatter, (b) spectral curves of the LULC categories derived from the Sentinel-2 normalized
backscatter.

2.3.4. Training Data

A previous study evaluating the RF method found that classification accuracy increases
with increasing training data [40,41]. This means that accurate classification requires many
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training polygons. Therefore, this study digitized 430 polygons for the seven LULC classes
using an RGB composite derived from Sentinel-2 and Google Earth.

2.3.5. RF Classification

Breiman [24] explains that “RF classification is a combination of tree predictors such
that each tree depends on the values of a random vector sampled independently and with
the same distribution for all trees in the forest”. RF classification of images is based on
the principles that construct several decision trees. From the large collection of trees, each
tree in the RF splits out a class prediction, and model prediction is performed based on
the class with the most votes. This method relies on bootstrap and feature randomness
when generating each tree [24]. Liaw and Wiener [42] explain the basic steps in the RF
classification procedure as follows:

i. First, create n
tree bootstrap samples using the original data.

ii. Create an unpruned classification or regression tree for each of the bootstrap samples.
At each node, select the best split from a randomly selected subset of the predictors
rather than the best among all predictors.

iii. Assemble the predictions of the ntree trees to predict new data (i.e., majority votes for
classification, the average for regression).

In this study, the RF classification was implemented in R statistical software by ap-
plying the ‘RandomForest’ package [42] and other packages such as ‘raster’ [43], ‘sp’ [44],
‘rgdal’ [45], ‘sf’ [46], ‘gstat’ [47]. As explained earlier, the LULC in the study area was
classified into eight classes. For increased classification accuracy, all pixels in the training
data were used for each class. Four scenarios were established based on the predictor
variables to determine the most important features and accurate results. To evaluate the
performance of classifications, various input features were used:

i. In the first scenario, only the Sentinel-2 bands were considered as predictor variables.
ii. In the second scenario, Sentinel-1 normalized backscatter (VV, VH, VV+HH, and the

mean of VV and VH) were considered.
iii. In the third scenario, only the DEM variables (elevation, aspect, and slope) were considered.
iv. All of the variables considered in scenario 1 and most variables in the second and

third scenarios were utilized in the fourth scenario.

2.3.6. Out-Of-Bag Error Estimates

The accuracy of the classifications was assessed based on the Out-of-bag (OOB) con-
fusion matrix, which is usually computed internally by the model. The training data is
divided into 70%, which is used for the classification, while the remaining 30% is used for
the OOB estimation. An estimate of the error rate can be obtained, based on the training
data, by the following:

1. At each bootstrap iteration, predict the data not in the bootstrap sample (what Breiman
(2001) calls “out-of-bag”, or OOB, data) using the tree grown with the bootstrap sample.

2. Aggregate the OOB predictions (On average, each data point would be out-of-bag
around 30%, which aggregates these predictions). Calculate the error rate and call it
the OOB estimate of the error rate.

The OOB confusion matrix, kappa statistics, overall accuracy, and error rate were
presented. In addition, class errors were also presented as they can depict LULC type that is
more or less accurate and can therefore disentangle the uncertainty associated with overall
accuracy based on the classification performance [48].

2.3.7. Independent Validation

Researchers are concerned about the reliability of accuracy assessments. This is even though
OOB error calculated by the RF is widely recognized as a standard method of error reporting by
the scientific community [49,50], some scholars are still of the view that an independent test is
required due to bias nature of the RF accuracy assessment [51,52]. It was proposed that cross-
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validation can reduce the remaining bias [51]. A well-known phenomenon is RF’s preference for
predicting classes where the majority of training observations originate [53]. A stratified random
sampling of equal size was used for the selection of validation data in this study. The selection
of validation shapefile was carried out in R programming software using the ‘sp’ [44] and
‘raster’ [43] packages. One hundred points were extracted for each class from the classified maps.
However, further confirmation and verification of the individual points were done in QGIS
with the help of RGB composite and Google Earth so that the correct class could be assigned to
each point data. Similarly, the accuracy assessments of the classified maps were performed in
R programming software using the validation datasets created earlier. The same R packages
were used for accuracy assessments. This cross-validation aims to: (1) complement OOB error
estimates of the RF, (2) find out whether two validation results can maintain a consistent pattern,
and (3) find out whether sampling the same number of observations in each class could serve
as an alternative means of reducing bias.

3. Results

3.1. Feature Importance Selection

Based on the proposed scenarios for evaluating the feature importance, all variables
were put into the RF model, and the importance of each variable was calculated by the score
of the accuracy of their contribution to the RF classification (4a/d). The RF classification
algorithm is robust as it outputs the contribution of different variables in the model. The
feature analyses were carried out for each dataset (Sentinel-1, 2, and topographic variables)
separately, and the most important features were selected for the last scenario. Based on the
random nature of the model, different scores of importance were derived. The Sentinel-2
variables show the lowest out-of-bag error. Therefore, one of the most important features in
the second scenario (VH normalized backscatter) and the third scenario (SRTM elevation)
were selected to complement the Sentinel-2 data.

Figure 4a,d shows the mean decrease in accuracy of the model for the four scenarios
established and implemented in this study. The greater the accuracy, the more influential
the variable is for the classification. Figure 4a shows the mean decrease in accuracy of
the first scenario, which uses only the Sentinel-2 data. The mean decrease in accuracy
between these variables and for this specific scenario. This means that the difference
between the most and least important features is substantial. The blue band contributes
the most, followed by the SWIR1 band and the NIR band 8a, NIR band 8a, and SWIR2. In
this particular scenario, the red edge bands are the least important features (Figure 4a),
with mean decrease accuracy ranging from 40–75. In this scenario, the OOB error estimates
are less, meaning that all features have yielded the overall accuracy of the model. These
results point to the importance of spectral reflectance property variation and the role of the
interacting medium.

The feature importance for the second scenario is shown in Figure 4b. Only the
Sentinel-1 normalized backscatter was considered in this scenario. In this scenario, VH
normalized backscatter appears as the most important feature compared to VV, Mean, and
sum of VV and VH. And there is a wide gap between them. And the VH backscatter has the
highest contribution to the model. This does not, however, means that the Sentinel-1 data
outperformed the Sentinel-2 data when reference is made to the MDA scores. Although
the mean decrease accuracy shows the most important feature based on MDA, the scores
do not, however, determine the overall accuracy of the model, especially if two different
scenarios are being considered. Feature importance in an RF model depends to a large
extent on the combinations of the variables in the model. In the third scenario, only
topographic variables were assessed. In the third scenario, elevation has the highest scores,
followed by slope and the aspect, aspect. The gap between the elevation scores and that
of other topographic features is substantial. This suggests that elevation has an important
contribution in discriminating land cover/use categories. In the fourth scenario (Figure 4d),
12 features, selected from across the 1st, 2nd, and 3rd scenarios, were combined to optimize
the features and therefore ensure an increase in model performance. In this scenario,
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elevation is the most important feature and therefore has the greatest contribution to the
classification, followed by the blue band > VH > NIR_8a > SWIR1 > NIR_8 > SWIR2 >
green > red and then the red edge band as the least contributors in that order (Figure 4d).

(a) Sentinel-2 (b) Sentinel-1 

  
(c) SRTM DEM (d) Sentinel-1, -2 & SRTM elevation 

Figure 4. The important contribution of the RF feature importance selection-based MDA, (a) Scenario 1
(Sentinel-2 only), (b) Scenario 2 (Sentinel-1 only), (c) Scenario 3 (SRTM digital elevation model data only),
(d) Scenario 4 (Sentinel-2 bands, Sentinel-1 (VH backscatter) and SRTM elevation data).

3.2. Out-Of-Bag Error Estimates

Here, the study presented only the two most accurate classifications (based on Sentinel-2
data and based on a combination of Sentinel-1 VH, Sentinel-2 bands, and SRTM elevation data)
based on the most important features of the four classification scenarios explained above. As
earlier stated, the purpose of different scenarios implemented in this study was to find out the
most important feature for model optimization.
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3.2.1. Sentinel-2 (Scenario 1) Classification Results

The overall OOB error estimates show that Sentinel-2 bands have an overall accuracy
of 84.2%, an OOB error rate of 15.8%, and k = 0.4 (Table 2). Going by the overall accuracy,
one can infer that the classification results for these data are highly accurate. However, as
expected, and as it is most common to many classification results, there are omission as
well as commission errors in the classification results. The RF model provides an error rate
for each class of the land cover/use category. Irrigated land has the least class error (5.3%),
while grassland has the highest (21%), followed by tree/shrubland (18.30%) and then
farmlands (17.49%) (Table 2). This means that there is a probability that pixels classified
in these categories may not be the actual land cover on the ground. For example, the
spectral signatures of farmlands resembled that of grassland and farmland. This led to
confusion and misclassifications of these land categories. The misclassification is confirmed,
given that these classes recorded the highest errors. The river and the wetland were
overestimated, given the spatial resolution of the datasets. Barren and built-up areas
confuse each other with barren land in the floodplain region classified as built-up owing to
their spectral similarity.

Table 2. OOB confusion matrix for Sentinel-2 (Scenario 1) classification results.
Overall error rate = 15.8%, Overall accuracy = 84.2%, κ = 0.38.

LULC Category 1 2 3 4 5 6 7 8 Row Total Class Error (%)

River 1145 71 46 11 20 0 0 0 1293 11.45
wetland 84 776 1 6 11 0 1 0 879 11.72

irrigated land 9 0 443 1 0 14 0 1 468 5.34
Built-up 1 3 7 1263 29 0 20 0 1323 4.54
Barren 5 2 0 135 7516 374 187 9 8228 8.65

Tree/shrubland 0 0 108 2 56 1978 208 69 2421 18.30
Farmland 0 2 57 425 581 3702 32,745 2173 39,685 17.49
Grassland 2 0 3 0 0 15 21 147 188 21.81

Column total 1246 854 665 1843 8213 6083 33,182 2399 54,485

3.2.2. Sentinel-1 (Scenario 2) Classification Results

The overall OOB error estimates show that Sentinel 1 backscatter has an overall
accuracy of 83%, an OOB error rate of 17%, and k = 0.22 (Table 3). Going by the overall
accuracy, the result is encouraging. However, the RF’s class error shows otherwise. Only
farmland achieved a class error of less than 5%, while other classes recorded not less than
43%. The Sent1nel backscatter does not separate the different classes proposed in this study.

Table 3. OOB confusion matrix for Sentinel 1 (Scenario 2) classification results.
Overall error rate = 17%, Overall accuracy = 83%, κ = 0.22.

LULC Category 1 2 3 4 5 6 7 8 Row Total Class Error (%)

River 285 118 2 33 48 12 794 1 1293 77.95
wetland 80 496 0 56 7 0 239 0 878 43.50

irrigated land 0 1 109 2 67 5 283 1 468 76.70
Built-up 37 54 0 505 31 2 692 0 1321 61.77
Barren 11 5 14 16 5419 97 2663 3 8228 34.13

Tree/shrubland 8 0 5 3 222 703 1479 1 2421 70.96
Farmland 133 63 37 277 1034 299 37,826 15 39,685 4.68
Grassland 1 0 0 0 28 0 134 25 188 86.70

Column total 555 737 167 892 6856 1118 44,110 46 54,482

3.2.3. SRTM Elevation Data (Scenario 3) Classification Results

The overall OOB error estimates show that SRTM data (elevation, aspect, and slope)
have an overall accuracy of 76.44% and an OOB error rate of 23. 56%, and k = 0.10 (Table 4).
Going by the overall accuracy, the result is encouraging. On the contrary, the RF’s class
error shows otherwise. Only farmland achieved a class error of less than 4%, while other
classes recorded not less than 60%. The SRTM data do not separate the different LULC
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classes proposed in this study. However, it always shows a good result when it is combined
with other multi-spectral and radar data.

Table 4. OOB confusion matrix for SRTM data (Scenario 2) classification results.
Overall error rate = 23.56%, Overall accuracy = 76.44%, κ = 0.10.

LULC Category 1 2 3 4 5 6 7 8 Row Total Class Error (%)

River 476 152 34 12 404 1 114 1 1194 60.13
wetland 259 169 52 8 202 0 121 0 811 79.16

irrigated land 75 51 80 6 130 1 96 0 439 81.78
Built-up 62 28 19 125 184 14 830 1 1263 90.10
Barren 92 73 35 24 1881 14 5363 0 7482 74.86

Tree/shrubland 1 5 2 8 109 67 2039 0 2231 97.00
Farmland 39 52 50 46 960 45 36,109 0 37,301 3.20
Grassland 3 0 0 3 11 1 160 0 178 99.00

Column total 1007 530 272 232 3881 143 44,832 2 50,899

3.2.4. Sentinel-1, 2, VH Backscatter and SRTM Elevation Data (Scenario 4)
Classification Results

Table 5 presents the confusion matrix for the classification results in scenario 4. Re-
garding Sentinel-2 classification results, a consistent pattern has been maintained by the
combinations of Sentinel-1, -2, VH backscatter, and SRTM elevation data but with im-
provement in the classification accuracy (Table 5). The overall accuracy is 89.8% and a κ

value of 0.4 (Table 5). This show an increase of 4.9% and 5.3% compared to Sentinel-2 for
overall accuracy and kappa statistics, respectively. Similarly, grassland has the highest class
error (18.09%), which is still 3% lower than that of Sentinel 2. Grassland was followed by
wetland/flooded area (12.19%), farmland (11.8), and tree/shrubland (12.02%). The class
error for tree/shrubland is the lowest for this scenario and is 6.28% lower than that obtained
in scenario 2 (Table 5). Generally, the addition of the other two features (VH normalized
backscatter and elevation data) has improved the overall accuracy of the classification.

Table 5. Out-of-bag confusion matrix of the Sentinel-1, -2, VH backscatter, and SRTM elevation data
(Scenario 4) classification. Overall OOB error rate = 10.9%, Overall accuracy = 89.1%, κ = 0.4.

LULC Category 1 2 3 4 5 6 7 8 Row Total Class Error (%)

River 1178 50 37 11 17 0 0 0 1293 8.89
wetland 88 771 0 1 17 0 1 0 878 12.19

irrigated land 7 0 457 4 0 0 0 0 468 2.35
Built-up 1 3 8 1276 14 0 19 0 1321 3.41
Barren 0 0 1 64 7617 297 242 7 8228 7.43

Tree/shrubland 0 0 60 2 41 2130 156 32 2421 12.02
Farmland 0 0 18 451 682 2143 34,965 1426 39,685 11.89
Grassland 2 0 2 0 0 12 18 154 188 18.09

Column total 1276 824 583 1809 8388 4582 35,401 1619 54,482

3.3. Independent Validation

To complement the validation results obtained in an RF model (which uses 30% of
the training datasets), another independent validation was carried out to compare the two
scenarios (Tables 6 and 7).
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Table 6. Confusion matrix for Sentinel-2 accuracy assessment (Scenario 2) classification. Overall error
rate = 30.1%, Overall accuracy = 69.9%, κ = 0.66.

LULC Category 1 2 3 4 5 6 7 8 Row Total
Accuracy (%)

Producer’s User’s

River 91 20 16 6 0 0 0 0 133 90.1 68.4
wetland 10 79 1 26 0 1 0 0 117 79 67.5

irrigated land 0 0 72 0 0 16 0 0 88 72 81.8
Built-up 0 0 3 46 2 0 1 6 58 46.9 79.3
Barren 0 0 0 5 90 7 4 6 112 90.9 80.4

Tree/shrubland 0 0 6 0 5 66 20 22 119 64.7 55.5
Farmland 0 1 0 15 2 5 75 25 123 75 61
Grassland 0 0 2 0 0 7 0 39 48 39.8 81.2

Column total 101 100 100 98 99 102 100 98 798

Table 7. Confusion matrix for Sentinel 2, 1 (VH backscatter) and SRTM elevation data (Scenario 4)
classification. Overall error rate = 24.8%, Overall accuracy = 75.2%, κ = 0.71.

LULC Category 1 2 3 4 5 6 7 8 Row Total
Accuracy (%)

Producer’s User’s

River 93 13 13 6 0 0 0 0 125 92.1 74.4
Wetland 8 86 2 26 0 5 0 0 127 86 67.7

Irrigated land 0 0 75 0 0 7 0 0 82 75 91.5
Built-up 0 0 3 48 2 0 2 7 62 49 77.4
Barren 0 0 0 3 91 5 4 5 108 91.9 84.3

Tree/shrubland 0 0 3 13 5 78 13 12 124 76.5 62.9
Farmland 0 1 1 2 1 3 79 24 111 79 71.2
Grassland 0 0 3 0 0 4 2 50 59 51 84.7

Column total 101 100 100 98 99 102 100 98 798

3.3.1. Sentinel-2 Accuracy Assessments (Scenario 1)

The confusion matrix for the Sentinel-2 data classification (Scenario 2) is presented
in Table 6. In this validation, an equal-size stratified random sampling was used for the
selection of validation datasets (800 points, 100 points each for the eight land cover/use
categories) were used. The study reports an overall accuracy of 69.9%, an error rate of error,
and a κ value of 0.66. Except for grassland and built-up area, all LULC categories achieved
producer and user accuracy of more than 55%.

3.3.2. Sentinel-1, -2, VH Backscatter and SRTM Elevation Data (Scenario 4) Accuracy
Assessment

Table 7 indicates the accuracy assessment of the RF classification results conducted
based on an independent validation for Sentinel-1 and -2, VH backscatter, and SRTM
elevation data. In this scenario, the study observed an overall accuracy of 75.2% and a k-
value of 0.71. The study noticed an improvement in terms of model performance compared
to when Sentinel-2 only was used. In this scenario, all classes recorded the user’s accuracy
of at least 62%.

3.4. LULC Maps and Area Covered by Each LULC Category

Table 8 shows the area proportion as extracted from the LULC maps obtained from
the RF classifications for Sentinel-2 only (Figure 5a) and the combination of Sentinel-1, -2,
VH backscatter, and the SRTM elevation (Figure 5b), which are presented in Figure 5a,e, the
two most accurate LULC maps. Quantitatively, it is obvious that cultivated areas dominate
the landscape, with farmland occupying close to 3000 km2 of the land. On the other hand,
wetlands, rivers, and grassland constitute a smaller proportion. The maps show the types
of LULC categories that exist in the area. Visually, the maps show that cropland (upland
agriculture) predominates in the area. Despite the predominance of upland agricultural
land use, the RF model’s ability to discern across classes makes the maps even more
intriguing. LULC categories like river, wetland/flooded, irrigated land, and grassland

192



Agriculture 2023, 13, 98

are relatively modest in comparison to other LULC categories, but the amount of specific
information that comes from the classification is detailed and relatively accurate. The
floodplain area was clearly distinguished from the LULC in upland areas. This has been
achieved in both scenarios. Figure 5c,e shows a full-resolution comparison between the
two maps based on Sentinel-2 RGB color composite. In comparison to RGB, there is a clear
difference between how the two scenarios classified the LULC classes. Sentinel-2 only
seems to have observed more barren land than the combined datasets (Figure 5c,f). On the
other hand, the map produced from the combined datasets shows a more vegetated area.
These differences occur as a result of variations in the spectral reflectance signature of the
land categories. But the use of sentinel backscatter and elevation data has helped to adjust
the confusion between classes, which led to improved classification performance.

   

   

   

   

   

(e) 

(d) 

(c) 

(f) 

Figure 5. LULC maps (a) LULC map derived from Scenario 1 (Sentinel-2) (b) Scenario 4 (LULC
map derived from Sentinel-1, -2 and SRTM elevation data), (c–f) four areas extracted from the RGB
composite of Sentinel-2 and their corresponding locations in the two maps presented in (a) and (b).
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Table 8. Area proportion (km2) for each LULC category.

LULC Category Sentinel-2 Sentinel-1, -2 & SRTM Elevation

River 58.42 55.38
wetland 22.91 25.34
irrigated land 140.07 183.54
Built-up 110.67 142.28
Barren 481.55 425.56
Tree/shrubland 305.80 310.62
Farmland 2990.68 2964.54
Grassland 3.63 2.27

4. Discussion

This study reports on the production of LULC maps based on random feature selec-
tion to evaluate its application in an agriculturally dominated landscape in Nigeria. The
potential of using Sentinel-1 optical data, Copernicus Sentinel-1 c radar backscatter, and
SRTM topographic variables were investigated to ascertain whether this synergy could
improve classification accuracy. The general findings that emerged from this study suggest
that: (1) the application of RF classification appears promising in this ecosystem; (2) the use
of multiple remote sensing and environmental variables is an important contribution to
quantitative remote sensing applications; (3) feature selection methods can improve classifi-
cation accuracy; however, the evaluation of classification accuracy requires a thorough and
critical assessments.

The mapping performed in this study was guided by the RF feature selection procedure
based on the ranking of MDA as a function of OOB error estimates. The contribution of
each satellite band varies. Some bands make a better contribution than others. What
makes these results interesting is the procedure used to test each data set individually and
then in combinations. Interestingly, the most important bands also provide the largest
spectral differences between classes, except for the normalized backscatter polarizations,
where the spread between classes is not very large, but this is similar behavior observed
for the Sentinel-2 blue band (Figure 3a,b). Among the Sentinel-2 data variables, the blue,
SWIR1, and NIR bands were found to be the most important variables (Figure 4a). Similar
behavior for the SWIR1 and blue spectral bands of Sentinel-2 has been observed in previous
vegetation, tree species, and crop mapping studies [54,55]. ED Chaves et al. [56] have
explained that Sentinel’s two SWIR bands are very sensitive to chlorophyll content, which
allows them to distinguish different vegetation types and determine classification accuracy
for LULC. ED Chaves, CA Picoli, and D. Sanches [56] stated that Sentinel’s two SWIR bands
are very sensitive to chlorophyll content, allowing them to distinguish different vegetation
types and determine classification accuracy for LULC. In addition, visible and shortwave
infrared wavelengths are known for their spectral variations, which can explain variations
caused by chlorophyll content, soil type, and soil color [57].

Using the normalized backscatter, the VH polarization has the highest rank, which is
due to the combinations of the different polarizations (Figure 4b). For the topographic SRTM
variables, the elevation data had the highest rank (Figure 4c). The stand-alone classification
results for the Sentinel-1 data (Table 3), as well as for the topographic SRTM variables
(Table 4), achieved very low accuracy compared to the Sentinel-2 data (Table 2). Therefore,
the synergy between VH, elevation data, and Sentinel spectral bands was evaluated to see if
the accuracy of the model could be improved. The ranking of the most important variables
shows that elevation, blue band, VH, NIR8a, and SWIR1 are the five most important
variables (Figure 4d). Elevation makes the largest contribution to the classification. These
results are consistent with a recent study by Zhao, Zhu, Wei, Fang, Zhang, Yan, Liu, Zhao,
and Wu [57], the only difference being that they do not include radar backscatter as one of
their input variables. This study highlights the importance of altitude and radar backscatter
data with Sentinel-2 data to improve the classification accuracy of LULC.
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The accuracy of the classified maps in this study suggests that it is reasonable to use
different remote sensing data for LULC, as has been done in many previous studies. Based
on the OOB error estimates, two scenarios were considered the most important, so the
comparison is limited to these. The overall OOB classification results for Sentinel-2 data
show an overall accuracy of 84.2% and a κ of 0.38, with the lowest and highest class errors
for classification at 4.54% and 21.81% for built-up areas and grassland, respectively (Table 2).
This level of accuracy is achieved by the Sentinel-2 data alone, further emphasizing their
applicability in LULC mapping in this particular ecosystem. However, when the SRTM
elevation data and VH backscatter were added to the Sentinel-2 spectral bands, the overall
accuracy was 89.1%, and the κ value was 0.4, an increase of 4.9% in overall accuracy
(Table 3) compared to the Sentinel-2 data alone. The lowest classification error was found
in the irrigated areas, with only 2.15%, while the highest error occurred in the grassland
areas (18.09%), which in this case were reduced by 3.72%. The cultivated areas had a class
error of 3.41%, which is a further reduction of 1.13% compared to the Sentinel-2 data. For
trees and shrubland, the study found a 6.28% difference between the sentinel data and their
combination with elevation and VH backscatter data.

This is not independent of the role of the elevation and backscatter data in the overall
performance of the model. The topography of the area is heterogeneous, and some of the
classes are located in the floodplain, which is typically undulating compared to developed
and agricultural areas. Several studies have shown the importance of elevation data to
increase the accuracy of the classified map [11,26,40,58]. In the same vein, radar backscatter
was found to improve model performance because it can normalize or reduce the effects
of the atmosphere, topography, instrument noise, etc., to provide consistent spatial and
temporal comparisons [59]. The results from this study are consistent with Meneghini [60],
who evaluates the synergy between the Sentinel-1 and Sentinel-2 data for land cover classi-
fication. Their results show an overall accuracy of 74% and 78% for Sentinel-2 (Only) and in
combination with Sentinel-1 data, respectively. Similarly, several studies have reported the
importance of synergy between sentinel-1 and -2 data for increasing model performance
for biomass estimation [61], crop type classification [62], irrigation mapping [63], and land
cover mapping [64,65].

It has been observed that in a setting in which there is a strong interest in predicting
observations from the smaller classes, sampling the same number of observations from
each class for validation is a promising alternative [53]. Moreover, one of the objectives
of this study was to compare the validation of OOB error estimates of the RF normally
performed internally by the model with another independent validation (external) which
was performed based on equal-size random stratified sampling using 100 polygons for
each LULC category. The overall accuracy of the classification results were 69.9% and 75.2%
for Sentinel’s 2 data only and the combination of the same data with VH backscatter and
elevation data, respectively. The difference between the two is 5.3% which conformed to
the OOB estimates of errors even though the overall accuracy obtained from the OOB is
higher. The consistency of these two validation results manifested even within the class
error. Similar to OOB estimates of error, grassland had the lowest producer’s accuracy
with an 11.2% difference between the Sentinel’s data only and in combination with VH
and elevation data based on the independent validation. In this context, the estimates
from the OOB are, therefore, reliable since the two validation results have maintained a
consistent pattern. The only difference between the two is in kappa statistics, where the
external validation shows higher kappa (k = 0.71, Table 7) than the estimates from the RF
internal validation (k = 0.4, Table 3). This is one of the advantages of a balanced setting
for applying the equalized stratified random sampling for validation [66], but balancing
may not always be possible due to costs or other reasons [4]. But kappa is not a measure of
accuracy but of agreement beyond chance, and chance correction is rarely needed [67,68].
The comparison results obtained in this study are consistent with findings by Adelabu
et al. [69], who tested the reliability of the internal accuracy assessments of the RF for
classifying tree defoliation levels using different validation methods. One of the most
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important deductions that can be made in this context is that where only the RF approach
is applied to the LULC classification, independent validation is not necessary because
validation requires a large number of points, and therefore manual class labeling based
on external validation is tedious and time-consuming. The findings of this current study
provide insights into the reliability and applicability of OOB error estimates.

One of the limitations of this study is the lack of reference ground truth datasets from
a field campaign. Although this study relied on RGB composite images and Google Earth
data for the selection of training and validation datasets, it should be noted that such datasets
are well-acknowledged as a source of training and validation for land cover mapping [70,71].
Furthermore, a comparison of the quantitative and qualitative results showed that the LULC
categories are detailed and very accurate (Tables 2, 3 and 6–8 and Figures 4 and 5). The area
estimated from the two most accurate results shows that there is extensive agricultural land. The
two maps show slight differences for the area of different LULC categories. The study, however,
acknowledged the confusion between the barren land and the built-up areas, which occurred
primarily due to the presence of settlements in or near the floodplain areas, in addition to the
similarity of the spectral reflectance signatures of these LULC classes. Moreover, the difference
between the spectral reflectance signatures between the barren land on the upland and in the
floodplain probably led to the underestimation of barren land in the upland areas. However,
the class error for barren is minimal, as observed for the RF internal validation (7.43%) as well
as for independent validation (producer’s accuracy = 91.9% and user’s accuracy = 84.3%). From
these results, it is obvious that further research in this particular ecosystem may require the need
to incorporate vegetation (e.g., NDVI), bare soil indices (e.g., modified normalized difference
bare-land index), and water indices (e.g., Modified Normalized Difference Water Index) to
improve classification performance. The study also noted confusion between the river network
and wetlands. Earlier reports indicated that significant flooding occurred in the area on October
1 [72,73]. At this time, the volume of rivers usually increases, and flooding is easily possible
when the amount of rainfall is significant, and the dams along these rivers have been opened.
These floods have left many people homeless and severely damaged agricultural land and crops.
Future research could focus on flood vulnerability assessment based on change detection using
sentinel data. In this situation, flood vulnerability mapping can provide critical information to
assess flood risk in the region. Policymakers could be well informed about the risk and thus
develop appropriate mitigation strategies based on the severity of the impacts [74,75].

Similarly, the study observed confusion between the grassland and farmland. Mapping
LULC with Sentinel-2 data in the semi-arid region is quite promising [34] but challenging
because most crops are planted during the rainy season, and their growing season is in
July and August, during which the cloud cover is high in the area. And the reliance on dry
season imagery may not be feasible as there is a transition from cropland to barren land in
the area, especially from early November. Since cropland makes up most of the LULC in
the area, this is not the most appropriate time for LULC mapping. This study minimized
this problem by integrating Sentinel-1 and -2 data in early and mid-October. Van Tricht,
Gobin, Gilliams, and Piccard [63] demonstrate the importance of choosing phenological
cycles for crop mapping based on the synergy between the sentinel-1 and -2 data using an
RF classifier for increasing model performance. Similarly, many studies demonstrated the
importance of Sentinel-1 and -2 for rice mapping in a lowland area [76], mapping paddy
rice [77], and mapping Maize Areas in heterogeneous agriculture [78] based on RF. By
understanding this trade-off, the current study can help in the selection of datasets and
periods for LULC classification with specific applications to agricultural landscapes in
semi-arid regions. Although cloud cover may result in a lack of cloud-free imagery in
this region, a potential area for further research would be to examine crop and vegetation
phenological cycles and by incorporating more variables from the Sentinel-1 data during
the rainy season to minimize the challenge of cloud cover.
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5. Conclusions

This paper proposed LULC mapping by applying an RF classifier to Sentinel-1, -2, and
SRTM digital elevation data to evaluate its applicability based on local class definitions
and training datasets in an agricultural landscape in Nigeria. The main objective was to
develop a methodology to improve model performance and reduce prediction error in
LULC classifications. A feature selection method (RF) was implemented to evaluate the
contribution of individual bands based on a standard OOB error estimate (MDA). The
study showed that the combination of spectral bands, backscatter, and topographic features
could improve classification accuracy. The results show that among the variables in the
sentinel-2 data, the blue, SWIR1, and NIR bands are the most important variables. Using
the normalized backscatter, the VH polarization has the highest rank, which is due to
the combination of the different polarizations. For the SRTM topographic variables, the
elevation data had the highest rank. The ranking of the most important variables when
combining the different data sets shows that height, blue band, VH backscatter, NIR8a, and
SWIR1 are the five most important variables.

The overall OOB classification results for Sentinel-2 data show an overall accuracy
of 84.2%, with the lowest and highest class errors for classification of 4.54% and 21.81%
for built-up areas and grassland, respectively. This level of accuracy is achieved by the
Sentinel-2 data alone (scenario 1), further emphasizing its applicability in LULC mapping
in this particular ecosystem. On the other hand, the class errors for Sentinel-1 (scenario
2) and SRTM data (scenario 3) show high-class errors. However, when the Sentinel-1, -2,
and SRTM elevation data were added to the model, the overall accuracy was 89.1%. This
represents a 4.9% improvement in overall accuracy compared to Sentinel-2 alone and a
6.1% and 12.66% improvement compared to Sentinel-1 and SRTM data, respectively. The
lowest classification error was found in the irrigated areas at only 2.15%. In comparison,
the highest error occurred in the grassland areas (18.09%), which in this case were reduced
by 3.72% compared to the Sentinel data alone. According to the study, there was a 6.28%
difference between sentinel data and their combination with elevation and VH backscatter
data for trees and shrubland. The results of an independent validation based on an equal-
size random sampling of 800 points are consistent with OOB error estimates. The study
shows how the synergy of optical, radar, and elevation data can significantly improve
LULC map accuracy. Based on these results, LULC maps could be used in a broad range of
spatial planning applications.
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Abstract: Soybean breeders must develop early-maturing, standard, and late-maturing varieties for
planting at different latitudes to ensure that soybean plants fully utilize solar radiation. Therefore,
timely monitoring of soybean breeding line maturity is crucial for soybean harvesting management
and yield measurement. Currently, the widely used deep learning models focus more on extracting
deep image features, whereas shallow image feature information is ignored. In this study, we
designed a new convolutional neural network (CNN) architecture, called DS-SoybeanNet, to improve
the performance of unmanned aerial vehicle (UAV)-based soybean maturity information monitoring.
DS-SoybeanNet can extract and utilize both shallow and deep image features. We used a high-
definition digital camera on board a UAV to collect high-definition soybean canopy digital images. A
total of 2662 soybean canopy digital images were obtained from two soybean breeding fields (fields
F1 and F2). We compared the soybean maturity classification accuracies of (i) conventional machine
learning methods (support vector machine (SVM) and random forest (RF)), (ii) current deep learning
methods (InceptionResNetV2, MobileNetV2, and ResNet50), and (iii) our proposed DS-SoybeanNet
method. Our results show the following: (1) The conventional machine learning methods (SVM and
RF) had faster calculation times than the deep learning methods (InceptionResNetV2, MobileNetV2,
and ResNet50) and our proposed DS-SoybeanNet method. For example, the computation speed of RF
was 0.03 s per 1000 images. However, the conventional machine learning methods had lower overall
accuracies (field F2: 63.37–65.38%) than the proposed DS-SoybeanNet (Field F2: 86.26%). (2) The
performances of the current deep learning and conventional machine learning methods notably
decreased when tested on a new dataset. For example, the overall accuracies of MobileNetV2 for
fields F1 and F2 were 97.52% and 52.75%, respectively. (3) The proposed DS-SoybeanNet model
can provide high-performance soybean maturity classification results. It showed a computation
speed of 11.770 s per 1000 images and overall accuracies for fields F1 and F2 of 99.19% and 86.26%,
respectively.

Keywords: unmanned aerial vehicle; soybean; convolutional neural network; deep learning

1. Introduction

Soybeans are a high-quality source of plant protein and raw materials for the produc-
tion of hundreds of chemical products [1,2]. China’s soybean-growing areas include the
Northeast China Plain [3] and the North China Plain [4] (ranging from the north latitude of
30◦ to 48◦). Soybean breeders must develop early-maturing, standard, and late-maturing
varieties for planting at different latitudes to ensure that soybean plants fully utilize solar
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radiation. Therefore, timely and accurate monitoring of soybean breeding line maturity
can facilitate soybean breeding decision-making and agricultural management [5–8].

Traditional methods for measuring field breeding line maturity are time-consuming
and labor-intensive [7]. Meanwhile, the expertise and bias of the investigators can affect the
accuracy of field surveys. Breeding fields have thousands of breeding lines with different
maturation times. Manual surveys cannot quickly provide high-frequency breeding line
maturity information to meet harvesting and yield measurement scheduling requirements.
Unmanned aerial vehicle (UAV) remote sensing technology can be used to collect high-
resolution crop canopy images and has thus been widely used in precision agricultural crop
trait monitoring [9–12]. Compared with satellite and airborne remote sensing technologies,
UAV remote sensing technology is relatively inexpensive and flexible in its operation, and
it requires less space for landing and takeoff [13]. More importantly, the digital images
obtained by low-altitude UAVs have a high ground spatial resolution (centimeter-scale
or higher); thus, they contain rich crop-canopy surface information for crop phenotypic
research [14,15]. In recent years, UAV remote sensing technology has been widely used
to collect crop trait information [9–12,16,17]. UAVs equipped with high-definition digital
cameras can acquire soybean canopy ultrahigh ground spatial resolution digital images over
a field scale [14,15]. Many UAV-based methods have been proposed for monitoring various
types of crop trait information, including the leaf area index (LAI) [18], leaf chlorophyll
content [18–21], biomass [15,22], and crop height [23].

Machine learning has been successfully applied in several areas, such as image clas-
sification, target recognition, and language translation [24–26]. In recent years, machine
learning techniques have been widely used to recognize various crop traits based on remote
sensing images [27]. Gniewko et al. [28] used an artificial neural network (ANN), growing
degree days, and total precipitation to estimate soybean yields. Letícia et al. [29] conducted
a study to identify nematode damage to soybeans through the use of UAV remote sensing
and a random forest (RF) model. The results obtained by Eugenio et al. [30] and Paulo
et al. [31] indicated that machine learning techniques are efficient and flexible for remote
sensing monitoring of soybean yields. Abdelbaki et al. [32] conducted a study to predict
the soybean LAI and fractional vegetation cover (FVC) based on the RF model and UAV
remote sensing. Compared with traditional machine learning methods (e.g., SVM and
RF), deep learning methods such as long short-term memory (LSTM) [33,34], deep con-
volutional neural networks (CNNs) [26,35], and transformers [14] have been applied to
image recognition, medical image analysis, climate change, and Weiqi game analysis, where
they can provide results with similar or even higher precision than human experts. Deep
learning uses multiple layers to extract higher-level features from the raw input. In recent
years, deep learning techniques have been widely used to recognize various crop traits in
remote sensing images, e.g., in leaf disease identification, weed identification, and crop trait
recognition [1,26,33–37]. Wang et al. [34] developed an LSTM model by integrating MODIS
LAI data to predict crop yields in China. Khan et al. [37] used a YOLOv4 model to identify
apple leaf diseases in digital images captured by mobile phones. Zhang et al. [26] used
a YOLOv4 model to identify weeds in digital photos of a peanut field. Khalied et al. [38]
proposed a model based on MobileNetV2 for fruit identification and classification. Yonis
et al. [39] proposed a CNN model adopting the VGG16 architecture for seed identifica-
tion and classification. Notably, most of these widely used networks (e.g., YOLOv4 [40],
ResNet50 [41], MobileNet [42], VGG16 [39], and InceptionResNetV2 [43]) did not take full
advantage of shallow features. Shallow features derived from the shallow layers of CNNs
are rich in image details, which are generally used in areas such as fine texture detection or
small target detection [44,45]. Fusing the deep and shallow features of CNNs may improve
performance in soybean maturity classification [44–46].

The objective of this work was to monitor soybean maturity using UAV remote sensing
and deep learning. We designed a new convolutional neural network architecture (DS-
SoybeanNet) to extract and utilize both shallow and deep image features to improve
the performance of UAV-based soybean maturity information monitoring. We used a
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high-definition digital camera on board a UAV to collect high-definition soybean canopy
digital images from two soybean breeding fields. We compared the UAV-based soybean
maturity information monitoring performances of conventional machine learning methods
(support vector machine (SVM) and random forest (RF)), current deep learning methods
(InceptionResNetV2, MobileNetV2, and ResNet50), and our proposed DS-SoybeanNet
method. Our results indicate that the proposed DS-SoybeanNet method can extract both
shallow and deep image feature information and can realize high-performance soybean
maturity classification.

2. Materials

2.1. Study Area

The study area was located at the Shengfeng Experimental Station (E: 116◦22′10′′–
116◦22′20′′, N: 35◦25′50′′–35◦26′20′′, Figure 1) of the National Center for Soybean Improve-
ment, Jiaxiang County, Jining City, Shandong Province, China. Jiaxiang County is situated
on the North China Plain, with a warm continental monsoon climate, concentrated pre-
cipitation, and an average annual sunshine duration of 2405.2 h. The average annual
temperature is 13.9 ◦C.

 

Figure 1. Study area (a) and experimental soybean field (b).

2.2. UAV Flights and Soybean Canopy Image Collection

We used a high-definition digital camera on board an eight-rotor electric UAV to
collect high-resolution soybean canopy remote sensing images (Table 1). In the soybean
breeding experimental field, the size of each planting area was approximately 2.5 m × 5 m.
As shown in Figure 1, we selected two independent soybean planting fields (fields F1 and
F2) in the study area to obtain soybean canopy digital images and maturity information.

Table 1. Parameters of the UAV and digital camera used in this study.

UAV Parameter Camera Parameter

UAV name DJI S1000 Camera name SONY DSC-QX100
Flight height Approximately 50 m Image size 5472 × 3648
Flight speed Approximately 8 m/s Image dpi 350
Flight time >20 min Aperture f/11

Exposure 1/1250 s
ISO ISO-1600

Focal length 10 mm
Channels Red, green, blue

Ground spatial resolution 0.016 m
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For field F1, we conducted five UAV flights (29 July, 13 August, 31 August, 17 Septem-
ber, and 28 September 2015). A total of 2116 soybean canopy digital images and their
maturity information were obtained, which were used to calibrate the SoybeanNet model.
For field F2, we made only one observation on 30 September, 2015. There were immature,
near-mature, mature, and harvested soybean breeding lines in field F2 on 30 September.
A total of 546 planting areas were set up in field F2 for the mapping and independent
evaluation of the DS-SoybeanNet model.

The soybean image collection and image stitching process mainly included the follow-
ing three steps:

(1) Before the UAV took off, we set the flight route information according to the field size;
the heading and lateral overlap were set to 80%. Table 1 shows the digital camera
exposure parameters.

(2) During the UAV flight, the soybean canopy images and corresponding position and
orientation system (POS) information were collected using the digital camera, inertial
measurement unit, and global positioning system device on board the UAV.

(3) After the UAV flight, we imported the digital images and POS information into
PhotoScan software to stitch together the high-definition digital images collected by
the UAV. After the image stitching process, five soybean canopy digital orthophoto
maps (ground spatial resolution (GSD): 0.016 m) for field F1 and one soybean canopy
digital orthophoto map (GSD: 0.016 m) for field F2 were acquired.

2.3. Soybean Canopy Image Labeling

In this study, soybean maturity information was manually labeled. The labeling
method was based on the standards of soybean harvesting. The labeling method is de-
scribed in Table 2. For workers to customize schedules for harvesting soybean planting
plots, four categories were used: immature (L0), near-mature (L1), mature (L2), and har-
vested (L3). L2 plots have the highest harvesting priority and need to be harvested as soon
as possible, L1 plots have a high priority because the soybean will mature in less than a
week, L0 and L3 plots have a lower priority because L0 plots generally take longer to grow,
and no outdoor work is required for L3 plots.

Table 2. Standards used for labeling the soybean plots.

Label Priority Description

L0 Immature Low All upper canopy leaves are green or there are a
few yellow leaves.

L1 Near-mature High Approximately half of the upper canopy leaves
are yellow.

L2 Mature Highest The upper leaves of the canopy are yellow but
have yet to be harvested.

L3 Harvested Low The soybean planting area has been harvested.

Since different soybean breeding lines have different maturation times, the numbers
of images corresponding to the four labels varied between the two fields. Sixty percent of
the images of each type in the dataset were randomly chosen to train the model, and the
remaining 40% were used to evaluate the model’s accuracy. Table 3 shows the numbers of
samples used to train and validate the DS-SoybeanNet model. Figure 2 shows the soybean
images used for model calibration and validation.
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Table 3. Numbers of soybean images for model calibration and validation.

Label
Training Dataset

(Field F1)
Validation Dataset

(Field F1)
Independent Validation

Dataset (Field F2)

L0 542 318 64
L1 257 163 219
L2 70 52 198
L3 400 314 65

Total 1269 847 546

Enhancement 25,380 16,940 -

 

Figure 2. Examples of the four labels.

2.4. Data Enhancement

In this study, we produced a DOM for the entire area by mosaicking together the
digital images collected during each UAV flight. Since an orthoimage has a uniform scale,
the ground spatial resolutions and solar angles were the main differences between the five
DOMs. We used image rotation (four rotation angles: 0◦ (i.e., the original image), 90◦, 180◦,
and 270◦) and scaling (four scaling factors: 1.0 (i.e., the original image), 1.2, 1.5, 1.8, and 2.0)
to enhance the soybean canopy image dataset collected from field F1. Image rotation and
magnification helped us to obtain soybean canopy images with different resolutions and
angles; in addition, they helped prevent overfitting of the model due to the small number
of samples collected in the field.
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After data enhancement, the number of original soybean canopy images obtained
from field F1 was increased by 20 times. The number of independent validation datasets
obtained from field F2 was not increased. In this study we used the Python open-cv and
NumPy libraries to extract, rotate, and magnify the soybean canopy images.

3. Methods

3.1. Proposed DS-SoybeanNet

CNNs were originally proposed based on the receptive field mechanism in biology
and they are a widely used deep learning technology [47]. CNNs are designed to process
images with a lattice-like structure. The multilayer convolution, weight sharing, and
rotational-shift invariance of CNNs make them effective in image classification and feature
recognition. The deep and complex features extracted by CNNs are often used to effectively
describe differences between different image categories and can be used to quickly and
accurately complete classification tasks. Currently, widely used networks (e.g., ResNet50
and MobileNetV2) ignore shallow image feature information. We designed a network
structure (Figure 3) that considers both shallow and deep image features to enhance the
model’s generalization ability. The advantage of DS-SoybeanNet is that the shallow and
deep features are linked together by means of a concatenation module. Consequently, DS-
SoybeanNet can extract and utilize both shallow and deep image features to improve the
accuracy of soybean maturity information classifications. Figure 3 shows the architecture of
DS-SoybeanNet. DS-SoybeanNet contains five convolutional layers, five flattening modules,
one concatenation module, and four fully connected layers. The layers are described as
follows:

Figure 3. Architecture of DS-SoybeanNet.

(1) Input layer
The input data were collected via UAV remote sensing technology in the form of

soybean canopy orthophotos and were then manually labeled and cropped to produce
sample data. The sample size was 108 × 108 × 3, and the sample data were divided into
four types: immature, near-mature, mature, and harvested.

(2) Convolutional and pooling layers
The purpose of the convolution operation was to extract the different features of the

input images. DS-SoybeanNet was designed with five convolutional layers; each convolu-
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tional layer was combined with the ReLU activation function to achieve delinearization.
The pooling layers can reduce the dimensions of the feature maps by summarizing the
presence of features in patches of the feature map.

(3) Flattening and concatenation layers
A flattening layer can reshape the feature maps into the dimensions required for the

subsequent layers. A concatenation layer concatenates inputs along a specified dimension.
(4) Fully connected layers and output layer
Four fully connected layers were designed, and dropout layers were attached to the

first three layers to prevent overfitting and improve model generalization. The output of
the model was soybean maturity information derived from the input images.

3.2. Transfer Learning Based on InceptionResNetV2, MobileNetV2, and ResNet50

Transfer learning is a strategy for solving similar or related tasks using existing
methods and data. Many deep learning networks show effective performance in im-
age classification and target recognition from natural images (e.g., InceptionResNetV2 [43],
ResNet50 [41], and MobileNetV2 [42]). Using a pretrained model to extract the features of
remote sensing images can solve, to a certain extent, the problems involved with training
a network for remote sensing image scene classification when there is a lack of training
data. In this study, we used InceptionResNetV2, MobileNetV2, and ResNet50 as the pre-
trained deep learning models for transfer learning and performance comparisons with the
proposed DS-SoybeanNet model.

(1) ResNet50: The ResNet50 network contains 49 convolutional layers and a fully con-
nected layer. The core CNN components are the convolutional filter and the pooling
layer. ResNet50 is a CNN derivative with a core component skip-connection to cir-
cumvent the gradient disappearance problem. The ResNet structure can accelerate
training and improve performance (preventing gradient dispersion).

(2) InceptionResNetV2: The Inception module can obtain sparse or nonsparse features in
the same layer. InceptionResNetV2 performs very well, but compared with ResNet,
InceptionResNetV2 has a more complex network structure.

(3) MobileNetV2: MobileNetV2 is a lightweight CNN model proposed by Google for
embedded devices, such as mobile phones, with a focus on optimizing latency while
considering the model’s size. MobileNetV2 can effectively balance latency and accu-
racy.

Transfer learning requires a low learning rate for retraining because the feature extrac-
tion module of the model already has some ability to extract image feature information
after pretraining. An ideal learning rate can promote model convergence, whereas an
unsuitable rate can cause training oscillations or even directly lead to the “explosion” of
the loss value of the objective function. In addition to transfer learning methods based on
InceptionResNetV2, MobileNetV2, and ResNet50, we also tested the performance of the
AlexNet [48] and VGG16 [38] models to monitor soybean maturity.

3.3. SVM and RF

We also compared the soybean maturity information classification accuracy of our
proposed DS-SoybeanNet with those of conventional machine learning models (SVM and
RF). SVM is a generalized linear classifier that performs binary data classification in super-
vised learning [49]. Its decision boundary is the maximum marginal hyperplane solved
for the learned samples, which reduces the classification problem to a convex quadratic
programming problem. SVM has a low composition risk, its training is challenging to
implement on large samples, and it is not ideal for solving multiclassification problems. RF
is based on an integrated learning strategy, which combines multiple decision trees [50].
These decision trees are independent and unrelated to each other. Random forest uses the
bagging strategy and repeated sampling to generate multiple trees. Under the bagging
and bootstrap aggregation strategy, a subset of the samples are randomly selected from the
dataset for training, and voting is conducted to obtain the average value as the resulting
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output. This strategy significantly avoids incorrect sample data, and thus shows improved
accuracy.

3.4. Accuracy Evaluation

Figure 4 shows the experimental methodology used in this work. The canopy images
of field F1 were used to calibrate and validate the models, whereas all canopy images of
field F2 were used to validate the models.

 

Figure 4. Flowchart of the experimental methodology.

The confusion matrix is a widely used tool for model accuracy evaluations. Table 4
shows the confusion matrix for the binary classification problem. Accuracy and recall can
be obtained based on the confusion matrix. Generally, a higher accuracy and recall indicate
a higher classification accuracy.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Recall =
TP

TP + FN
(2)
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Table 4. Confusion matrix.

Type Predicted condition

A
ct

u
a
l

co
n

d
it

io
n Label Positive (P) Negative (N)

Positive (T) True Positive (TP) False Negative (FN)
Negative (N) False Positive (FP) True Negative (TN)

TP, TN, FP, and FN represent the true-positive, true-negative, false-positive, and false-
negative categories, respectively, in the confusion matrix (Table 4). Confusion matrices are
not limited to binary classification but can also be used for multiclass classification. In this
study, we used the confusion matrix, accuracy, and recall to evaluate the soybean maturity
classification accuracy of the proposed DS-SoybeanNet model.

4. Results and Discussion

4.1. Model Calibration and Validation Based on Field F1

We used the calibration dataset of field F1 to train the proposed DS-SoybeanNet,
AlexNet, VGG16, InceptionResNetV2, MobileNetV2, ResNet50, SVM, and RF models. Each
model was trained and validated three times, and the model with the highest performance
was saved. The learning rates were set to 0.0005, 0.0001, and 0.00001 for the transfer learning
models (InceptionResNetV2, MobileNetV2, and ResNet50), and the number of epochs was
set to 100. For DS-SoybeanNet, we analyzed the model accuracy with different convolution
window sizes.

4.1.1. Validation of AlexNet, VGG16, SVM, and RF

We tested the SVM and RF models for monitoring soybean breeding line maturity
(Table 5) based on the validation dataset from field F1. The L0, L1, and L3 classification
recall values were higher than 99% for the traditional machine learning models (SVM and
RF). The classification accuracies of SVM and RF were 92.31% and 94.23%, respectively. We
also tested the performance of the AlexNet and VGG16 models (Table 5). The performances
of AlexNet (99.44%) and VGG16 (97.99%) were higher than those of SVM (92.31%) and RF
(94.23%).

Table 5. Classification results of AlexNet, VGG16, SVM, and RF.

Label SVM RF AlexNet VGG16

L0 99.69% 99.06% 99.69% 98.74%
L1 100% 100% 99.39% 100%
L2 90.38% 90.38% 98.08% 84.62%
L3 99.04% 99.36% 99.36% 98.41%

Accuracy 92.31% 94.23% 99.44% * 97.99%
Note: * indicates the highest accuracy.

4.1.2. Validation of Transfer Learning Based on InceptionResNetV2, MobileNetV2, and
ResNet50

We also tested the performance of the three deep learning models using three learning
rates. Table 6 shows the accuracies of the models using different learning rates. The
performances of the three deep learning models (InceptionResNetV2, MobileNetV2, and
ResNet50) were similar when using different learning rates. Our results indicate that
the soybean maturity classification accuracy of traditional machine learning models (RF:
94.23%; SVM: 92.31%) was lower than that of InceptionResNetV2, MobileNetV2, and
ResNet50.

There were notable differences in recall among the four labels. For example, the L2
classification recall of InceptionResNetV2 was much lower than those of L0, L1, and L3
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when the learning rate was 0.0005. The same was observed for MobileNetV2 and ResNet50,
which had L2 classification recalls of 69.23% and 88.46%, respectively.

Table 6. Classification results of transfer learning based on InceptionResNetV2, MobileNetV2, and
ResNet50.

Label
InceptionResNetV2 MobileNetV2 ResNet50

Rate 1 Rate 2 Rate 3 Rate 1 Rate 2 Rate 3 Rate 1 Rate 2 Rate 3

L0 98.09% 100% 99.69% 100% 100% 99.69% 99.69% 100% 99.69%
L1 96.93% 100% 98.16% 95.09% 96.32% 92.02% 100% 96.93% 98.16%
L2 82.69% 98.08% 98.08% 69.23% 84.62% 82.69% 88.46% 96.15% 94.23%
L3 99.36% 98.73% 99.04% 99.36% 97.77% 97.77% 99.04% 98.73% 99.36%

Accuracy 97.41% 99.49% 99.09% 96.93% 97.52% 96.46% 98.93% 98.77% 98.97%

Note: Rate 1 = 0.0005; Rate 2 = 0.0001; Rate 3 = 0.00001.

4.1.3. Validation of the Proposed DS-SoybeanNet Model

We tested the proposed DS-SoybeanNet model in the monitoring of soybean breeding
line maturity. Table 7 shows the classification results of the DS-SoybeanNet model with the
convolution kernel size set to 3 × 3, 5 × 5, 7 × 7, 9 × 9, 11 × 11, 16 × 16, and 21 × 21. The
results indicate that there was little difference in performance among the seven convolution
kernel sizes (with classification accuracies ranging from 97.52% to 99.19%). The results
suggest that the model had the best soybean maturity classification accuracy when the
convolution kernel size was set to 5 × 5 (99.17%) or 7 × 7 (99.19%). Figure 5 shows the
training accuracy and loss curves of the DS-SoybeanNet with kernel sizes of 5 × 5 and
7 × 7. These results indicate that the model reached convergence at about 40 epochs.
Training the DS-SoybeanNet (5 × 5) for about 100 epochs could take about 40 min and
5 s. Tables A1 and A2 show the model architecture and parameter information of DS-
SoybeanNet with 5 × 5 and 7 × 7 kernels.

Table 7. Classification results of the proposed DS-SoybeanNet.

Label
DS-SoybeanNet

3 × 3 5 × 5 7 × 7 9 × 9 11 × 11 16 × 16 21 × 21

Recall

L0 100% 100% 100% 100% 100% 100% 100%
L1 96.93% 100% 100% 100% 99.39% 99.39% 99.39%
L2 92.31% 90.38% 90.38% 78.85% 88.46% 80.77% 75.00%
L3 99.36% 99.36% 99.68% 99.36% 99.68% 96.50% 97.77%

Accuracy 98.70% 99.17% * 99.19% * 98.47% 99.06% 97.40% 97.52%

Note: * indicates the highest accuracy.

Figure 5. Training accuracy (a) and loss (b) of the DS-SoybeanNet with kernel sizes of 5 × 5 and
7 × 7.
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4.2. Performance Comparison Based on Field F2

We used the 546 images from field F2 to test the performance of MobileNetV2, Incep-
tionResNetV2, ResNet50, SVM, RF, and the proposed DS-SoybeanNet model in monitoring
soybean maturity. Table 8 shows the confusion matrices of the soybean maturity classi-
fications of the eight models. Table 9 shows the classification results of the eight models
using the data from field F2. Our results (Tables 8 and 9) indicated that the proposed
DS-SoybeanNet model exhibited a higher classification accuracy than the other machine
learning models.

Table 8. Confusion matrices of MobileNetV2 (a), InceptionResNetV2 (b), ResNet50 (c), SVM (d), RF
(e), DS-SoybeanNet with kernel sizes of 5 × 5 (f) and 7 × 7 (g), AlexNet (h), and VGG16 (i).

(a) Predicted Condition (b) Predicted Condition (c) Predicted Condition
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Label L0 L1 L2 L3
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Label L0 L1 L2 L3
L0 52 0 4 8 L0 39 0 17 8 L0 46 16 1 1
L1 20 0 168 31 L1 5 18 184 12 L1 9 97 109 4
L2 1 0 17 25 L2 0 1 193 4 L2 0 3 191 4
L3 0 0 1 64 L3 0 0 10 55 L3 0 0 5 60

(d) Predicted Condition (e) Predicted Condition (f) Predicted Condition
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Label L0 L1 L2 L3
L0 64 0 0 0 L0 64 0 0 0 L0 59 5 0 0
L1 98 119 1 1 L1 89 94 33 3 L1 16 185 18 0
L2 2 85 102 9 L2 1 40 137 20 L2 0 27 171 0
L3 2 0 2 61 L3 0 0 3 62 L3 0 0 9 56

(g) Predicted Condition (5 × 5) (h) Predicted Condition (i) Predicted Condition
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Label L0 L1 L2 L3
L0 59 5 0 0 L0 51 11 0 2 L0 59 5 0 0
L1 13 179 25 2 L1 5 97 115 2 L1 25 169 19 6
L2 0 22 169 7 L2 0 3 192 3 L2 0 28 163 7
L3 0 0 12 53 L3 0 0 5 60 L3 0 0 7 58

Table 9. Classification results of eight models from field F2.

Model Rank
Precision

Accuracy
L0 L1 L2 L3

DS-SoybeanNet (5 × 5)
1

92.19% 84.47% 86.36% 86.15% 86.26%
DS-SoybeanNet (7 × 7) 92.19% 81.74% 85.35% 81.54% 84.25%

VGG16 2 92.19% 77.17% 82.32% 89.23% 82.23%
AlexNet 3 79.37% 43.89% 96.95% 92.31% 72.89%

ResNet50 4 71.87% 44.29% 96.46% 92.31% 72.16%
RF 5 100% 42.92% 69.19% 95.38% 65.38%

SVM 6 100% 54.34% 51.52% 93.85% 63.37%
InceptionResNetV2 7 60.93% 8.22% 97.47% 84.62% 55.86%

MobileNetV2 8 81.25% 0% 39.53% 98.46% 52.75%

The conventional machine learning models (SVM and RF) exhibited the highest classi-
fication recall (100%) in the classification of immature soybeans (L0) (see Table 9). AlexNet
(96.95%) showed the highest classification recall for mature soybeans (L2). As shown in
Tables 8 and 9, the conventional machine learning models (SVM and RF) and deep learning
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models (MobileNetV2, InceptionResNetV2, and ResNet50) showed lower recalls for near-
mature soybeans (L1), which led to lower overall classification accuracies for these models.
DS-SoybeanNet (84.47%) had the highest classification recall for near-mature soybeans (L1)
(see Table 9).

As shown in Table 9, the ResNet50 model exhibited a high classification accuracy of
72.16%. The RF (65.38%) and SVM (63.37%) models had similar classification accuracies.
The soybean classification accuracies of InceptionResNetV2 (55.86%) and MobileNetV2
(52.75%) were lower than those of the other five models. The accuracies of DS-SoybeanNet
based on 5 × 5 and 7 × 7 convolution kernels, namely, 86.26% and 84.25%, respectively,
were notably higher than those of the other models.

Note that the eight models’ performance decreased when using the field F2 dataset
to test the models (Tables 5–7 and 9). As shown in Table 9, the top 3 models were DS-
SoybeanNet, AlexNet, and VGG16 when monitoring soybean maturity using the field
F2 dataset. Recently, the AlexNet [48] and VGG16 [39] models have been used to detect
crop maturity by many researchers. Our results show that the new DS-SoybeanNet model
performed better than the AlexNet and VGG16 models in the classification of immature (L0)
and near-mature soybeans (L1). For the field F1 dataset, the recall of L0 for DS-SoybeanNet
was 100%, which is higher than that of AlexNet (99.69%) and VGG16 (98.74%). For the field
F2 dataset, the recall of L0 and L1 for DS-SoybeanNet was 92.19% and 84.47%, which was
notably higher than that of the AlexNet (L0: 79.37%, L1: 43.89%) model.

To further evaluate the fusion of deep and shallow CNN features and to explore the
efficiency of the proposed DS-SoybeanNet model, we set up three ablation experiments for
DS-SoybeanNet, as described below. Figure 6 shows the architectures of the CNNs used for
experiments 2 and 3. Each model was trained and validated three times, and the model
with the highest performance was saved.

• Experiment 1. DS-SoybeanNet (Figure 3);
• Experiment 2. DS-SoybeanNet with only shallow image features (Figure 6a); and
• Experiment 3. DS-SoybeanNet with only deep image features (Figure 6b);

Our results (Table 10) indicate that the soybean maturity classification accuracy in
experiment 2 (only shallow image features) and experiment 3 (only deep image features)
was lower than that in experiment 1. This further proved that fusing deep and shallow
CNN features [44–46] may improve the performance of the model in image classification
tasks.

4.3. Soybean Maturity Mapping

For soybean maturity mapping, the following three steps were carried out:

(a) A soybean canopy DOM of field F2 was obtained after the UAV flight and the image
stitching process. Then, all soybean breeding line plots (26 rows and 21 columns)
were manually labeled, and the soybean plot image coordinates (plot center) were
recorded.

(b) The soybean canopy images (108 × 108 × 3) were extracted automatically using the
image coordinates and soybean canopy DOM using a Python script. Then, we used
DS-SoybeanNet to classify these soybean canopy images.

(c) We then mapped the soybean maturity based on the soybean maturity information
and soybean plot image coordinates.

Figure 7 shows a true-color RGB image and the maturity maps calculated for field
F2 using DS-SoybeanNet with 5 × 5 and 7 × 7 convolution kernels. Our results indicate
that the estimated soybean maturity information for field F2 had a high accuracy. The
soybean maturity information obtained from the DS-SoybeanNet model with 5 × 5 and
7 × 7 convolution kernels was similar.
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(a) 

(b) 

Figure 6. Architecture of CNNs used for experiments 2 (a) and 3 (b).

Table 10. Classification results of three experiments with 5 × 5 and 7 × 7 kernels.

Label

Experiment 1 Experiment 2 Experiment 3

Validation
Dataset

(Field F1)

Independent
Validation

Dataset
(Field F2)

Validation
Dataset

(Field F1)

Independent
Validation

Dataset
(Field F2)

Validation
Dataset

(Field F1)

Independent
Validation

Dataset
(Field F2)

Recall

L0 100% 92.19% 100% 98.44% 100% 96.88%
L1 100% 84.47% 100% 74.89% 99.39% 83.11%
L2 90.38% 86.36% 84.62% 87.37% 69.23% 71.21%
L3 99.36% 86.15% 98.09% 75.38% 98.09% 87.69%

Accuracy 99.17% * 86.26% * 98.35% 82.23% 97.28% 80.95%

Recall

L0 100% 92.19% 100% 75.00% 100% 89.06%
L1 100% 81.74% 99.39% 78.08% 99.39% 81.74%
L2 90.38% 85.35% 86.54% 82.83% 78.85% 75.25%
L3 99.68% 81.54% 98.73% 92.31% 98.41% 81.54%

Accuracy 99.19% * 84.25% * 98.58% 81.14% 97.99% 80.22%

Note: Bold and * indicate the highest accuracy.
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(a)  

(b)  

(c)  

Figure 7. Maturity maps. (a) RGB true-color image; (b) DS-SoybeanNet (5 × 5); and (c) DS-
SoybeanNet (7 × 7). Note: The red rectangle indicates the soybean plot region.
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4.4. Advantages and Disadvantages of UAV + DS-SoybeanNet

As soybeans mature, the leaf chlorophyll level gradually decreases, contributing to a
slow change in the leaves’ color from green to yellow [51,52]. Crop leaf chlorophyll varia-
tion is asynchronous among layers of leaves [52]. For example, leaves in the top layer of a
soybean canopy tend to have a younger leaf age and thus turn yellow later than the leaves
in the bottom layer. Consequently, green and yellow leaves appear in the soybean canopy
when the soybeans are nearly mature (Figure 2). Breeding fields commonly have thousands
of breeding lines with different maturation times. Thus, timely monitoring of soybean
breeding line maturity is crucial for soybean harvesting management and yield measure-
ments [5–8]. UAV remote sensing technology can be utilized to collect high-resolution
crop canopy images and has been widely used in precision agricultural crop trait monitor-
ing [14,15]. Many studies have evaluated the crop parameter monitoring performance of
digital cameras and multispectral sensors on board lightweight UAVs [17–19]. In our study,
we attempted to evaluate the potential of using UAV remote sensing to monitor soybean
breeding line maturity. We developed DS-SoybeanNet, which can extract and utilize both
shallow and deep image features, and which thus helps to provide soybean breeding line
maturity monitoring that is more robust than that offered by conventional machine learning
methods. DS-SoybeanNet achieved the best accuracy of 86.26% (Table A1), which was
notably higher than those of the conventional machine learning models (SVM and RF).
However, DS-SoybeanNet has various disadvantages compared with conventional machine
learning methods, such as its long elapsed time and large size (Table 11). In machine learn-
ing, CNNs have a more complex network structure and higher computational complexity
than conventional machine learning models with larger model sizes.

Table 11. Models’ elapsed times and sizes.

Model Time (s)/1000 Samples Size

RF 0.003 24.1 KB
SVM 0.007 7.70 KB

MobileNetV2 6.607 53.3 MB
DS-SoybeanNet (5 × 5) 11.770 2616 MB

AlexNet 19.011 151 MB
DS-SoybeanNet (7 × 7) 22.955 2616 MB

ResNet50 36.099 306 MB
InceptionResNetV2 44.328 653 MB

VGG16 67.080 623 MB

Table 11 shows the time required to process 1000 samples using each model and the
models’ sizes. The computation times of the CNN models (ranging from 6.607 s to 67.080 s)
were notably higher than those of the conventional machine learning models, SVM and
RF (0.003 s and 0.007 s). In addition, a high-performance device is required to calibrate
CNN models. As shown in Table 11, the model sizes of DS-SoybeanNet, ResNet50, and
InceptionResNetV2 were more than 300 MB. The proposed DS-SoybeanNet model had
the largest size (2616 MB) compared to the other models. The DS-SoybeanNet model’s
large size may mean that it requires large storage when deployed on lightweight platforms
(e.g., Raspberry Pi) for stationary observations. Nevertheless, DS-SoybeanNet (5 × 5) had
approximately the same calculation speed as MobileNetV2 and a much higher monitoring
accuracy than the other deep learning models. Therefore, we consider DS-SoybeanNet a
fast and high-performance deep-learning tool for monitoring soybean maturity.

Many previous studies have used AlexNet, VGG16, Inception-V3, and VGG19 in
crop maturity classifications. Faisal et al. [53] compared the performance of pre-trained
VGG-19 (99.4%), Inception-V3 (99.4%), and NASNet (99.7%) in detecting fruit maturity.
Atif et al. [54] used AlexNet and VGG16 to classify the maturity levels of jujube fruits
(best: VGG16 = 99.17%). Sahil et al. [55] developed a method that used YOLOv3 to pin-
point the locations of tomatoes (94.67%) and used an AlexNet-like CNN model to classify
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their maturity levels (90.67%). In this work, we compared the results of conventional
machine learning models (SVM (92.31%) and RF (94.23%)) and six CNN machine learning
models (DS-SoybeanNet (99.19%), VGG16 (97.99%), AlexNet (99.44%), ResNet50 (98.97%),
InceptionResNetV2 (99.49%), and MobileNetV2 (97.52%)) in soybean maturity information
monitoring based on UAV remote sensing. The accuracy results reported in this study were
close to those of previous studies based on AlexNet, VGG16, Inception-V3, and VGG16.
Thus, our results further proved that deep learning is a good tool for crop maturity infor-
mation monitoring [48,53–56]. The combination of UAV remote sensing and deep learning
can be used for high-performance soybean maturity information monitoring. However,
our results indicate that selected machine learning models’ performance decreased when
using the field F2 dataset to test the models (Tables 5–7 and 9). We suspect that changes in
the UAV’s working environment—for example, varying sunlight intensity over time—led
to a direct decline in the models’ performance. This is perhaps not surprising because the
farmland environment is affected by varying cropland conditions (e.g., irrigation, wind).
Thus, future research should be focused on the factors influencing cropland images.

In this study, the performance obtained when using soybean canopy images captured
by the UAV’s remote sensing digital camera may have been limited by the varying sunlight
intensity over time. Since DS-SoybeanNet did not normalize the image differences due
to sunlight, a normalization module may improve its performance in soybean maturity
classification. Therefore, future studies need to develop a normalization module to weaken
the effect of the sun. Thus, more experiments with different varieties and regions of
soybeans are needed to improve the generalizability of the DS-SoybeanNet model. In this
study, the proposed DS-SoybeanNet was validated using only two breeding fields from a
single site; thus, further validation is required from additional fields and study sites.

5. Conclusions

In this study, we designed a network, namely, DS-SoybeanNet, to extract and utilize
both shallow and deep image features to improve the performance of UAV-based soybean
maturity information monitoring. We compared conventional machine learning methods
(SVM and RF), current deep learning methods (AlexNet, VGG16, InceptionResNetV2,
MobileNetV2, and ResNet50), and our proposed DS-SoybeanNet model in terms of their
soybean maturity classification accuracy. The results were as follows.

(1) The conventional machine learning methods (SVM and RF) had lower calculation
times than the deep learning methods (AlexNet, VGG16, InceptionResNetV2, Mo-
bileNetV2, and ResNet50) and our proposed DS-SoybeanNet model. For example, the
computation speed of RF was 0.03 s per 1000 images. However, the overall accuracies
of the conventional machine learning methods were notably lower than those of the
deep learning methods and the proposed DS-SoybeanNet model.

(2) The current deep learning methods were outperformed in terms of universality by the
DS-SoybeanNet model in the monitoring of soybean maturity. The overall accuracies
of MobileNetV2 for fields F1 and F2 were 97.52% and 52.75%, respectively.

(3) The proposed DS-SoybeanNet model was able to provide high-performance soybean
maturity classification results. Its computation speed was 11.770 s per 1000 images
and its overall accuracies for fields F1 and F2 were 99.19% and 86.26%, respectively.

(4) Furthermore, future studies are needed in order to develop a normalization module to
weaken the effect of the sun. Moreover, further validation is required using additional
fields and study sites.
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Appendix A

Figure A1 shows the attention regions of different models in the soybean canopy
images. Regarding interpretability, the top three models performed differently when
their attention regions were visualized by means of the Grad-CAM technique (Figure A1).
VGG16 models focused only on luxuriant leaves for all four categories (Figure A1). The
AlexNet model showed acceptable attention regions when dealing with L0 and L1 soybean
images, whereas it focused only on branches and leaves when analyzing L2 and L3 soy-
bean images (Figure A1). Compared with AlexNet and VGG16 models, DS-SoybeanNet
showed acceptable attention regions for the four categories (Figure A1). In most cases,
DS-SoybeanNet was able to differentiate among the soybean images accurately based on
the leaves, branches, and soil pixels, similarly to farm workers. Tables A1 and A2 show
the model architecture and parameter information of DS-SoybeanNet with 5 × 5 and
7 × 7 kernels.

Figure A1. The attention regions of the top 3 (Table 9) models in soybean canopy images.

217



Agriculture 2023, 13, 110

Table A1. Details of the proposed DS-SoybeanNet with 5 × 5 kernels.

Layer (Type) Output Shape Param Connected to

input_1 (Input Layer) [(None,108,108,3) 0
conv2d (Conv2D) (None,108,108,32) 2432 input_1 [0][0]

conv2d_1 (Conv2D) (None,108,108,16) 12816 conv2d [0][0]
max_pooling2d_1
(MaxPooling2D) (None,27,27,16) 0 conv2d_1 [0][0]

conv2d_2 (Conv2D) (None,27,27,32) 12832 max_pooling2d_1 [0][0]
conv2d_3 (Conv2D) (None,27,27,16) 12816 conv2d_2 [0][0]

max_pooling2d
(MaxPooling2D) (None,27,27,32) 0 conv2d [0][0]

max_pooling2d_2
(MaxPooling2D) (None,13,13,32) 0 conv2d_2 [0][0]

max_pooling2d_3
(MaxPooling2D) (None, 13,13,16) 0 conv2d_3 [0][0]

conv2d_4 (Conv2D) (None,27,27,16) 6416 conv2d_3 [0][0]
flatten (Flatten) (None,23328) 0 max_pooling2d [0][0]

flatten_1 (Flatten) (None,11664) 0 max_pooling2d_1 [0][0]
flatten_2 (Flatten) (None,5408) 0 max_pooling2d_2 [0][0]
flatten_3 (Flatten) (None,2704) 0 max_pooling2d_3 [0][0]
flatten_4 (Flatten) (None,11664) 0 conv2d_4 [0][0]

concatenate (Concatenate) (None,54768) 0

flatten [0][0]
flatten_1 [0][0]
flatten_2 [0][0]
flatten _3 [0][0]
flatten _4 [0][0]

dropout (Dropout) (None,54768) 0 concatenate [0][0]
dense (Dense) (None,4096) 224333824 dropout [0][0]

dropout_1 (Dropout) (None,4096) 0 dense [0][0]
dense_1 (Dense) (None,512) 4195328 dropout_1 [0][0]

dropout_2 (Dropout) (None,512) 0 dense_1 [0][0]
dense_2 (Dense) (None,4) 4100 dropout_2 [0][0]

Total params: 228,580,564
Trainable params: 228,580,564

Non-trainable params: 0
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Table A2. Details of the proposed DS-SoybeanNet with 7 × 7 kernels.

Layer (Type) Output Shape Param Connected to

input_1 (Input Layer) [(None,108,108,3) 0
conv2d (Conv2D) (None,108,108,32) 4736 input_1 [0][0]

conv2d_1 (Conv2D) (None,108,108,16) 25104 conv2d [0][0]
max_pooling2d_1
(MaxPooling2D) (None,27,27,16) 0 conv2d_1 [0][0]

conv2d_2 (Conv2D) (None,27,27,32) 25120 max_pooling2d_1 [0][0]
conv2d_3 (Conv2D) (None,27,27,16) 25104 conv2d_2 [0][0]

max_pooling2d
(MaxPooling2D) (None,27,27,32) 0 conv2d [0][0]

max_pooling2d_2
(MaxPooling2D) (None,13,13,32) 0 conv2d_2 [0][0]

max_pooling2d_3
(MaxPooling2D) (None, 13,13,16) 0 conv2d_3 [0][0]

conv2d_4 (Conv2D) (None,27,27,16) 12560 conv2d_3 [0][0]
flatten (Flatten) (None,23328) 0 max_pooling2d [0][0]

flatten_1 (Flatten) (None,11664) 0 max_pooling2d_1 [0][0]
flatten_2 (Flatten) (None,5408) 0 max_pooling2d_2 [0][0]
flatten_3 (Flatten) (None,2704) 0 max_pooling2d_3 [0][0]
flatten_4 (Flatten) (None,11664) 0 conv2d_4 [0][0]

concatenate (Concatenate) (None,54768) 0

flatten [0][0]
flatten_1 [0][0]
flatten_2 [0][0]
flatten _3 [0][0]
flatten _4 [0][0]

dropout (Dropout) (None,54768) 0 concatenate [0][0]
dense (Dense) (None,4096) 224333824 dropout [0][0]

dropout_1 (Dropout) (None,4096) 0 dense [0][0]
dense_1 (Dense) (None,512) 4195328 dropout_1 [0][0]

dropout_2 (Dropout) (None,512) 0 dense_1 [0][0]
dense_2 (Dense) (None,4) 4100 dropout_2 [0][0]

Total params: 228,625,876
Trainable params: 228,625,876

Non-trainable params: 0
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Abstract: High-frequency imaging characteristics allow a geostationary satellite (GSS) to capture
the diurnal variation in vegetation canopy reflectance spectra, which is of very important practical
significance for monitoring vegetation via remote sensing (RS). However, the observation angle
and solar angle of high-frequency GSS RS data usually differ, and the differences in bidirectional
reflectance from the reflectance spectra of the vegetation canopy are significant, which makes it
necessary to normalize angles for GSS RS data. The BRDF (Bidirectional Reflectance Distribution
Function) prototype library is effective for the angle normalization of RS data. However, its spa-
tiotemporal applicability and error propagation are currently unclear. To resolve this problem, we
herein propose a synthetic angle normalization model (SANM) for RS vegetation canopy reflectance;
this model exploits the GSS imaging characteristics, whereby each pixel has a fixed observation
angle. The established model references a topographic correction method for vegetation canopies
based on path-length correction, solar zenith angle normalization, and the Minnaert model. It also
considers the characteristics of diurnal variations in vegetation canopy reflectance spectra by setting
the time window. Experiments were carried out on the eight Geostationary Ocean Color Imager
(GOCI) images obtained on 22 April 2015 to validate the performance of the proposed SANM. The
results show that SANM significantly improves the phase-to-phase correlation of the GOCI band
reflectance in the morning time window and retains the instability of vegetation canopy spectra in
the noon time window. The SANM provides a preliminary solution for normalizing the angles for
the GSS RS data and makes the quantitative comparison of spatiotemporal RS data possible.

Keywords: angle normalization; vegetation canopy reflectance; geostationary satellite; path length
correction; Minnaert model; GOCI

1. Introduction

A geostationary satellite (GSS) is characterized by a wide coverage area and strong
maneuverability. It can realize minute-level high-frequency observations of specific areas,
which greatly improves the efficiency of remote sensing (RS) data acquisition in cloudy
and rainy areas [1]. Imaging sensors deployed on the traditional GSSs only have a single
channel with a wide band range in the visible and near-infrared range (VNIR), and the
spatial resolution is usually less than 1 km (e.g., the Fengyun-2 satellites [2] and the
GOES (Geostationary Operational Environmental Satellite) generations before the GOES-R
series). In recent years, imaging sensors deployed on GSSs have developed capabilities
with multiple channels in the VNIR, and spatial resolutions have increased to 50–500 m
(e.g., the COMS (Communication, Ocean, and Meteorological Satellite) [3], the Gaofen-4
satellite [4], the Fengyun-4 satellites [5], the Himawari-8 satellite [6], the GOES-R series,
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the INSAT (Indian National Satellite System) satellite [7], the ELECTRO-L satellite [8], and
the MTG (Meteosat Third Generation) satellite [9]). The optimized design of GSSs extends
its application area from traditional meteorological, communications, and broadcasting to
land-surface and ocean-water-color RS monitoring.

Vegetation is an important part of the Earth’s ecosystem, and vegetation monitoring
is the most complex part of land-surface RS monitoring. Vegetation has typical spectral
characteristics and has a different canopy morphology due to differences in organizational
structure, seasonal phase, and ecological conditions. Changes in canopy morphological
features such as LAI (Leaf Area Index) and LAD (Leaf Angle Distribution) lead to changes
in canopy porosity and extinction of cross-sectional size [10]. Therefore, it strongly in-
fluences the reflection and scattering characteristics in the optical and microwave bands,
and this influence is perturbed by the terrain, illumination conditions, and observation
geometry. Consequently, angle normalization should be urgently applied to RS moni-
toring of vegetation, which is better applied to monitoring land-surface phenology [11],
biomass estimation [12], and surface vegetation patterns [13]. However, taking LAI and
LAD as input parameters will reduce the usability of the angle normalization model: it
is difficult to obtain ground observation of these features for large areas; remote sensing
inversion products are obtained using remote sensing reflectance, and these products will
introduce iteration errors. Therefore, it is necessary to use a simplified representation of
BRDF (Bidirectional Reflectance Distribution Function).

The angle normalization of RS data, and of reflectivity in particular, consists of nor-
malizing a uniform solar zenith angle and observation zenith angle, usually involving
topographic correction (TC), solar angle correction or normalization (SAC), and detector
angle correction or normalization (DAC). The digital elevation model (DEM)-based TC
methods are the most widely used in the existing TC methods [14–16]. In recent years,
many scholars have introduced non-Lambertian models and vegetation canopy structure
parameters into TC methods to improve the accuracy of vegetation-canopy spectral to-
pographic correction [17,18]. The existing SAC models use the cosine of the solar zenith
angle as the main correction factor [19]. More complex algorithms introduced the intercept
and slope for SAC models to solve the problem involving ground radiation signals in
the presence of atmospheric scattering and refraction from the adjacent background, but
no direct sunlight [20]. As for the DAC, only the 16-day synthetic products of MODIS
(Moderate Resolution Imaging Spectroradiometer)/VIIRS (Visible Infrared Imaging Ra-
diometer Suite) involving albedo and BRDF are currently widely recognized and applied.
The spatial resolution of these products is 500 m, and the core of the production algorithm
is the solution of a kernel-driven model [21,22].

The viewing angle on a per-pixel basis is constant, while the sun angle of GSS RS data
changes from hour to hour, unlike those from sun-synchronous satellite sensors, and wide-
field imaging characteristics magnify this difference [1], so it is urgent to normalize angles in
the quantitative vegetation applications of GSS RS data. The operational BRDF and albedo
algorithm uses a multi-day period of cloud-free angular surface reflectance that adequately
samples the viewing geometry (at least seven observations) to fit an appropriate kernel-
driven, RossThick-LiSparse-Reciprocal semi-empirical bidirectional reflectance model for
the given surface location. However, the MODIS/VIIRS and sentinel-2A BRDF products
have a lower spatial or temporal resolution, their applications are faced with the problem
of spatial and temporal adaptability. Therefore, the research on angle normalization of RS
data remains a hot topic and is the focus of this paper.

In this paper, the high-frequency and wide-field imaging characteristics of GSS sensors
are fully exploited to propose a synthetic angle normalization model (SANM) for RS vege-
tation canopy reflectance. The GOCI (Geostationary, Ocean Color Imager) data obtained
from GSS COMS were used to construct and verify the proposed SANM while considering
the characteristics of diurnal variations in vegetation canopy spectra. The proposed SANM
can provide a reference for the production of angle-normalization products for GSS RS data
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and optimize the temporal resolution of angle-normalization products for RS vegetation
canopy reflectance, which has important applications and practical significance.

2. Materials and Methods

2.1. Synthetic Angle Normalization Model Overview

The SANM proposed herein is based on the definition of angle normalization for RS
data, using GSS RS data to get the normalized reflectance with the terrain slope, solar,
and detector zenith angle are all 0◦. The framework of the proposed model is presented
schematically in Figure 1; the order of three core steps (TC, SAC, and DAC) was designed
to satisfy the SAC and DAC models’ assumption that the ground objects are aligned
horizontally. Based on the literature research and comparison, the TC step uses the path-
length correction (PLC) model, the SAC step uses the cosine of the solar zenith angle as the
correction factor, and the DAC combines the imaging geometric coordinate rotation and
the Minnaert model.

Figure 1. Schematic showing the workflow of the proposed method.

These three core steps are described in detail in the following three subsections. The
angles and reflectance symbols used in each step and model application are described in
Table 1.

The cosine of the angle between any two directions cos(θ1−2) can be calculated as:

cos(θ1−2) = cos(θ1) cos(θ2) + sin(θ1) sin(θ2) cos(ϕ1 − ϕ2) (1)

where θ1 and θ2 are zenith angles, and ϕ1 and ϕ2 are azimuth angles.
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Table 1. Symbols used in the SANM.

Symbol Explanation

θS Solar zenith angle
ϕS Solar azimuth angle
θD Detector zenith angle
ϕD Detector azimuth angle
θT Slope
ϕT Slope aspect

θD−S
Angle from observation direction to the solar incidence direction;

derived from Equation (1)

θS−T
Angle from solar incidence direction to ground surface normal

(solar incidence angle); derived from Equation (1)

θD−T
Angle from observation direction to ground surface normal;

derived from Equation (1)
ρt Vegetation canopy reflectance observed by sensor

ρPLC Vegetation canopy reflectance after PLC model processing

ρpre
Vegetation canopy reflectance after PLC model and

SACM processing
ρMinnaert Vegetation canopy reflectance after Minnaert model processing

ρnom Vegetation canopy reflectance after SANM processing

2.2. Topographic Correction for Vegetation Canopies-PLC

Vegetation grows geotropically; the terrain affects only the angle of the vegetation
relative to the surface rather than the geometric relationship between the sun and the vege-
tation [23]. The TC method for vegetation canopies based on PLC [18] satisfies Assumption
I, in which the radiance collected by the sensor is only from single scattering from leaves
(i.e., the contributions from soil reflectance and from multiple scattering from leaves are
negligible). In order to reduce the influence of mixed pixels and meet this assumption as
far as possible, we select the mountainous area and field crop with full vegetation cover-
age to verify the algorithm. The relationship between ρt and ρPLC can be formulated as
follows [18]:

ρPLC = ρt
St(ϕS) + St(ϕD)

S(ϕS) + S(ϕD)
(2)

where S(ϕS) and S(ϕD) are the path lengths along the solar and viewing directions over
flat terrain, respectively, and St(ϕS) and St(ϕD) are their counterparts over sloping terrain.

The path length along the direction of gravity is unity under any terrain conditions.
The geometry of the extinction path at different angles is shown in Figure 2.

 
(a) (b) 

Figure 2. Path length of a (solar) beam through a canopy: (a) canopy on a horizontal surface;
(b) canopy on an inclined surface. Green bold lines represent the path length along the zenith
direction; it has unit magnitude. Red bold lines represent the path length along the direction normal
to the vegetation canopy; its magnitude is cos(θT). Black bold lines represent the path length (S) along
an arbitrary direction in the vegetation canopy.
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The path length in an arbitrary direction can be calculated as:

S(θ1, ϕ1, θT, ϕT) =
cos(θT)

cos(θ1−T)
=

1
cos(θ1)[1 + tan(θ1) tan(θT) cos(ϕ1 − ϕT)]

(3)

where θ1 is θD or θS, ϕ1 is ϕD or ϕS, and θ1−T is θS−T or θD−T.

2.3. Correction of Solar Angle

The solar angle includes the θS and the ϕS. The θS strongly influences the surface solar
irradiance, whereas the ϕS only affects the image detail [24]. Therefore, the existing SAC
models only involves the θS. Considering the BRDF characteristics of the land objects, we
use the ϕS to calculate θD−S as a comprehensive angle to carry out the alternative correction,
see section “Correction of Detector Angle” for details.

The classical SAC model (SACM) formula is usually expressed as [25]:

ρpre = ρPLC/ cos(θS) (4)

2.4. Correction of Detector Angle

After the TC and SAC steps, ρpre corrects for the influence of terrain and solar zenith
angle, it does not take into account the difference in BRDF caused by imaging geometric
differences between different phases. We rotated the coordinate to create an equivalent
condition where the observation zenith angle is 0◦ (see Figure 3). Specifically, each pixel is
simplified into a point object to ensure the BRDF character is unchanged; and finally, the
four imaging geometric angles are converted to θD−S in DAC.

(a) (b) 

Figure 3. Schematic diagram of (a) the real imaging geometry and (b) the equivalent imaging geometry.

The Minnaert function was proposed for the TC of non-Lambertian albedo [26], where
the k coefficient of the Minnaert function is the simplified representation of BRDF, and it
is a constant in a given area. Note that the traditional k coefficient was found by simply
applying a linear regression analysis with all types of objects in the Minnaert model early
used for a single RS datum, and the optimized k coefficient was solved by applying a
polynomial fit in the slope grading strategy in the modified Minnaert model to better
represent the terrain change. However, the above Minnaert model ignores the influence of
the ground object on the k coefficient. In this paper, the k coefficient is solved pixel by pixel
using the high-frequency imaging feature of GSS RS data.

The DAC formula based on coordinate rotation and the Minnaert model can be
expressed as:

ρMinnaert = ρpre cos(θT)/[cos(θT) cos(θD−S)]
k (5)
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The θT of each pixel has been corrected to 0º after the application of Equation (4), so
Equation (5) can be further reduced to:

ρnom = ρpre/[cos(θD−S)]
k (6)

Note that the diurnal variation in the vegetation canopy spectra based on field experi-
ments [27] and related studies [28] shows that the local time period before 11:00 (called the
morning time window) and after 13:30 (called the afternoon time window) are the periods
when the vegetation canopy spectrum itself is relatively stable; whereas the local time
period from 11:00 to 13:30 (called the noon time window) is when the vegetation canopy
spectrum changes drastically. Thus, to ensure that the vegetation canopy spectrum itself
is relatively stable for data screening, we find the k coefficient as a function of the time
window for each pixel.

2.5. Study Area and Data

The study area was located at the junction point of Jiangsu province and Anhui
province of China (117◦57′43′ ′ E~118◦38′13′′ E, 32◦09′43′′ N~32◦24′14′′ N) (see Figure 4a).
The study area spans in altitude from −52 to 392 m (see Figure 4b), and its slope ranges
from 0◦ to 30◦. The conventional crops include wheat, rice, rapeseed, soybean, etc., and
forests include poplar, Masson pine, etc.

  
(a) (b) 

Figure 4. (a) Geographic location and (b) DEM of the study area.

The GOCIs onboard the Communication, Ocean, and Meteorological Satellite (COMS),
observation area of 2500 × 2500 km is centered on the Korean Peninsula (130◦ E, 36◦ N)
and supports a spatial resolution of 500 m; the spectral features are shown in Table 2. The
GOCI is capable of producing images at hourly intervals and receives images eight times a
day from 08:15 to 15:45 CST (China Standard Time UT + 8:00).

Table 2. GOCI satellite band parameter information.

B1 B2 B3 B4 B5 B6 B7 B8

Band length (nm) 412 443 488 555 660 680 745 865
Band width (nm) 20 20 20 20 20 10 20 40

The GOCI images acquired on 22 April 2015 were used for model verification because
of the advantageous winter wheat growth cycle and the good spatial distribution of the
cloud coverage for the GOCI images. In the study area, 22 April 2015 was during the
jointing stage of winter wheat; the crops appeared to be growing well with full ground
coverage. However, the GOCI images received after 14:00 CST on 22 April 2015 suffered
from thin cloud coverage in the study area, so these two images were not used in the data
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processing and analysis. Subsequently, each image is represented by the imaging hour
in CST.

We first used the GDPS (the GOCI data-processing system) to process GOCI L1B data
to obtain the Rayleigh-corrected reflectance, the latitudes and longitudes of the four corner
points and the center point, the solar angles and observation angles of each pixel, etc. We
then subset the reflectance products according to the coordinate range of the study area.
Furthermore, for comprehensive considerations of the synchronous ground observation
experiment on winter wheat [29] and the GOCI pixel NDVI covering the samples, we
took 0.6 as the NDVI threshold and used LAND_NDVI products to screen the ground
object type, and the model was applied only to the 5292 selected vegetation pixels. Finally,
after projection conversion and resembling operations, the 90 m Chinese resolution digital
elevation data product was used to calculate the topographical factors (slope and aspect) of
each pixel of the GOCI reflectance products after geometric registration and resampling.

2.6. Method Evaluation Strategies

Numerous strategies have been used to assess the performance of topographic correc-
tion methods and solar normalization methods [18,30]. To obtain an objective evaluation,
we used three different methods:

(i) Correlation analysis between reflectance in different imaging periods. Because the
vegetation canopy spectrum is relatively stable in the morning time window, the
effective angle normalization model should strengthen the reflectance correlation of
different imaging phases in the morning time window and make the slope of the
linear regression equation closer to unity. Conversely, the vegetation canopy spectrum
changes drastically in the noon time window, so the effective angle normalization
model should weaken the reflectance correlation of different imaging phases and
make the slope of the linear regression equation further depart from unity.

(ii) Analysis of the correlation between the cosine of the imaging geometry angles and
reflectance. This is one of the most widely used quantitative evaluation methods. The
efficiency of the normalization methods can be quantified by using R2 and the imaging
geometry angles of the corresponding linear regression. The ideal normalization
method should make R2 approach zero [31].

(iii) Radiometric stability. Theoretically, the maximum (minimum) reflectance in the
original image before correction should appear in the sunny (shady) slope and will
decrease (increase) after topographic correction. Consequently, a successful correc-
tion method will reduce the reflectance range. Moreover, the median reflectance is
relatively stable and invariable after correction [30].

3. Results

According to the typical vegetation spectral characteristics, the bands 400–730 nm and
730–900 nm are two typical spectral bands in the winter wheat canopy spectrum [29]. GOCI
band 5 (650–670 nm) and band 8 (845–885 nm) are used to produce NDVI (Normalized
Difference Vegetation Index) products and were selected for model application analysis.

3.1. Correlation between Different Imaging Phases

To comprehensively compare how normalizing the angles affects the treatment of the
models of the GOCI reflectance bands, Table 3 shows the detailed regression results for the
band 5 reflectance and band 8 reflectance for different imaging hours.

Table 3 shows that the correlations for the band 8 reflectance between different imaging
phases are significantly better than for the band 5 reflectance in the corresponding phases,
which is consistent with the diurnal variation in the field-measured reflectance spectra of
the vegetation canopy [29]. The slope of the linear fit and R2 in Table 3 further indicates that
the normalization has no effect on the results of the PLC model for the GOCI reflectance
correlation between different imaging phases, the SACM suffers from over-correction, and
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the SANM not only significantly reduces the over-correction of the SACM but also preserves
the instability of the vegetation canopy reflectance spectra in the noon time window.

Table 3. Slope and R2 of fit for GOCI band 5 reflectance and GOCI band 8 reflectance between
different imaging times.

Imaging Hour Linear Fit
Band 5 Reflectance Band 8 Reflectance

Ori PLC SACM SANM Ori PLC SACM SANM

Morning
window

08–09
Slope 1.014 0.998 0.802 0.976 0.924 0.917 0.731 1.021

R2 0.768 0.767 0.771 0.889 0.901 0.900 0.901 0.951

08–10
Slope 1.144 1.116 0.785 1.008 0.857 0.848 0.589 0.994

R2 0.844 0.832 0.847 0.993 0.862 0.856 0.860 0.997

09–10
Slope 0.958 0.957 0.831 0.891 0.904 0.903 0.785 0.914

R2 0.792 0.794 0.793 0.833 0.906 0.906 0.906 0.925

Noon
window

11–12
Slope 0.804 0.808 0.797 0.786 0.877 0.878 0.871 0.814

R2 0.705 0.708 0.705 0.718 0.871 0.872 0.871 0.855

11–13
Slope 0.847 0.849 0.887 0.801 0.859 0.859 0.902 0.689

R2 0.324 0.327 0.328 0.368 0.798 0.799 0.798 0.703

12–13
Slope 0.848 0.849 0.890 0.846 0.962 0.962 1.016 0.860

R2 0.298 0.302 0.298 0.353 0.883 0.884 0.884 0.850

3.2. Sensitivity to Imaging Geometry Angles

Band 8 normalization has a consistent effect with band 5, but with higher reflectance,
so we take band 5 reflectance from 08:15 CST as an example; Figure 5 compares the cosine
of the imaging geometry angle with the reflectance before and after each normalization
model (i.e., the PLC model, the SACM, and the proposed SANM).

The correlation is extremely weak between the original band 5 reflectance with
cos(θS−T), cos(θD−T), and cos(slope): R2 for the linear fit is 2.88 × 10−4 (see Figure 5a),
0.001 (see Figure 5e), and 0.011 (see Figure 5i). These results are attributed to the small
difference in imaging geometry when the study area is small. The use of the PLC model
significantly improves the correlation between the band 5 reflectance and cos(θS−T) and
cos(θD−T): R2 for the linear fit increased to 0.038 (see Figure 5b) and 0.03 (see Figure 5f).
The use of the SACM significantly reduced the correlation between band 5 reflectance and
cos(θS−T) and cos(slope): R2 for the linear fit decreased to 1.402 × 10−4 (see Figure 5c) and
0.01 (see Figure 5k). The use of the SANM significantly improved the correlation between
band 5 reflectance and cos(θD−T): R2 for the linear fit increased to 0.015 (see Figure 5h) from
the original 0.001 (see Figure 5e); whereas the correlation is significantly reduced between
band 5 reflectance and cos(θS−T) and cos(slope): R2 for the linear fit decreased to 1.6 × 10−4

(see Figure 5c) and 0.004 (see Figure 5k). These results indicate that the normalization by
SANM proposed herein has a better effect on the solar angle of incidence and slope (i.e., a
lower R2); however, it presents a poor normalization effect on θD−T.

3.3. Radiometric Stability

Theoretically, after correction, the reflectance ranges should be contained in their
counterparts before correction [30]. Box plots of band 5 reflectance and band 8 reflectance
from the uncorrected and corrected images shows that each angle normalization for a given
model has the same effect on the reflectance of bands 5 and 8, and the reflectance distribu-
tion is more concentrated when the mean reflectance is lower (see Figure 6). Figure 6 also
shows that the PLC model did not change the distribution of the GOCI band reflectance
and the variations in the imaging phases: the SACM suffered from over-correction, which
increased with the solar zenith angle, and the SANM significantly improved the over-
correction problem of the SACM. The band reflectances were stable in the morning time
window and decreased in the noon time window after SANM processing, which is consis-
tent with the intraday variation of the field-measured reflectance spectra of the vegetation
canopy [28].
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(a) (b) (c) (d) 

   
(e) (f) (g) (h) 

    
(i) (j) (k) (l) 

Figure 5. (a) Density scatter plots between the original Rayleigh-corrected GOCI band 5 reflectance
(Band5-ori) at 08:15 CST and cos(θS−T), the red line is linearly fit to data; (b) Same as (a) except using
the GOCI band 5 reflectance after PLC correction (Band5-PLC); (c) Same as (a) except between the
GOCI band 5 reflectance after ASCM correction with Band5-ori as ρt (Band5-SACM); (d) Same as
(a) except between the GOCI band 5 reflectance after SANM normalization (Band5-SANM); (e) Same
as (a) except using the cos(θD−T); (f–h) Same as (e) except using Band5-PLC, Band5-SACM, and
Band5-SANM, respectively; (i) Same as (a) except using the cos(θT); (j–l) Same as (i) except using
Band5-PLC, Band5-SACM, and Band5-SANM, respectively.

Figure 6a shows that the mean original reflectance of band 5 increases from 08:15 to
11:15 CST, after which it decreases. After PLC processing, band 5 reflectance underwent
no significant change in range or distribution (Figure 6b) compared with Figure 6a and
retained the variations of band 5 reflectance for the various imaging phases. Figure 6c
shows that, because of the over-correction problem, large differences exist in the band 5
reflectance after SACM processing. The mean reflectance of band 5 after SACM processing
decreased along the imaging phase and increased up to the 04 phase. Figure 6d shows
that the band 5 reflectance in the 00 phase to the 03 phase are more similar after SANM
processing, and the band 5 reflectance in the 04 phase and 05 phase are lower than those for
the other phases after SANM processing. Since all selected pixels found almost no shadows,
the reduction in the reflectance range is inconspicuous.
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Figure 6. Box plots of (a) the original Rayleigh-corrected GOCI band 5 reflectance; (b) the GOCI band
5 reflectance after PLC correction (Band5-PLC); (c) the GOCI band 5 reflectance after ASCM correction
with Band5-ori as ρt (Band5-SACM); (d) the GOCI band 5 reflectance after SANM normalization
(Band5-SANM) in each imaging time for the morning time window and the double-peak time
window; (e–h) same as (a–d) correspondingly except using band 8 reflectance.

4. Discussion

With the help of GSS RS data, the proposed SANM can improve the time resolution of
angle-normalized products for RS reflectance from a vegetation canopy to the hourly level.
However, the following problems exist in the model-construction process:

In the TC step, the extinction path-length formula is derived as a hypothetical condition
for a dense canopy without considering the effects of a sparse canopy [32]. However, the
actual vegetation canopy structure usually has daily, quarterly, and annual variations and
regional differences, which strongly impact the BRDF and biomass retrieval [33]. In the
subsequent model optimization, we propose to introduce vegetation cover factor variables
to distinguish how a dense canopy versus a sparse canopy affects the reflectance spectrum
from a vegetation canopy [34,35].

In the SAC step, we used the simplest cosine correction model and did not consider
whether the fit to the reflectance and cosine of the solar zenith angle passes through the
origin, which depends on atmospheric scattering and refraction from adjacent pixels [36].
Subsequent research should introduce the intercept and slope into the SAC step for opti-
mization. However, the difficulty is the determination of the intercept, especially in the
case of large changes in solar angle caused by the wide field and high frequency of GSSs.

In the DAC step, we set the time window when solving for the Minnaert model
k coefficient. The given time window only considered few a diurnal variations of the
reflectance spectra from the vegetation canopy, which limited the effective data used for
calculating the k coefficient. In the follow-up study, a database will be created of the diurnal
variations of reflectance spectra from canopies of different types of vegetation through
literature research and field measurements so as to screen data to more accurately solve for
the k coefficient. In addition, the distribution of the k coefficient obtained herein exceeded
the conventional range of 0–1 (see Figure 7), which may be due to the GSS imaging regions
that are located in the backscattering area [26]. Subsequent research should study how the
scattering orientation affects the k coefficient and determine the range of the k coefficient
under the conditions of fixed observation angle.
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(a) (b) 

Figure 7. Density scatterplots between the slope and factor k in SANM for GOCI images band 5
(a) and band 8 (b) ground object reflectance.

5. Conclusions

By using the PLC model, the cosine model for solar-angle normalization, and the
Minnaert model, we herein establish a SANM for the reflectance of the GSS RS vegetation
canopy. GOCI images were used to test the SANM, and a multi-criteria analysis was used
in the evaluation. With the PLC model, normalization has no effect on the correlation
of the GOCI reflectance between different imaging phases. However, the correlation is
significantly improved between the band reflectance with the cosine of the solar angle of
incidence and the cosine of the angle from the observation direction to the ground surface
normal. The SACM significantly reduced the correlation between band 5 reflectance with
the cosine of the solar angle of incidence and slope, but it suffered from over-correction.
Whereas the SANM significantly improved the over-correction problem for the SACM and
also preserved the instability of the vegetation canopy spectra in the noon time window.
The use of the SANM significantly reduced the correlation between the band reflectance
with the cosine of the solar angle of incidence and the slope. For normalizing the angle of
the high-frequency GSS RS, the SANM outperformed all other methods, which indicates
that it has a strong potential for applications and for monitoring land-surface phenology,
estimating biomass, etc.
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Abstract: Yield estimation using remote sensing data is a research priority in modern agriculture. The
rapid and accurate estimation of winter wheat yields over large areas is an important prerequisite
for food security policy formulation and implementation. In most county-level yield estimation
processes, multiple input data are used for yield prediction as much as possible, however, in some
regions, data are more difficult to obtain, so we used the single-leaf area index (LAI) as input data for
the model for yield prediction. In this study, the effects of different time steps as well as the LAI time
series on the estimation results were analyzed for the properties of long short-term memory (LSTM),
and multiple machine learning methods were compared with yield estimation models constructed by
the LSTM networks. The results show that the accuracy of the yield estimation results using LSTM
did not show an increasing trend with the increasing step size and data volume, while the yield
estimation results of the LSTM were generally better than those of conventional machine learning
methods, with the best R2 and RMSE results of 0.87 and 522.3 kg/ha, respectively, in the comparison
between predicted and actual yields. Although the use of LAI as a single input factor may cause
yield uncertainty in some extreme years, it is a reliable and promising method for improving the
yield estimation, which has important implications for crop yield forecasting, agricultural disaster
monitoring, food trade policy, and food security early warning.

Keywords: winter wheat; yield estimation; LSTM; LAI; deep learning

1. Introduction

Wheat is an important crop in China, and its yield is directly related to the development
of the national economy. Timely, accurate, and wide-ranging monitoring and forecasting of
wheat yields is of great practical significance for national economic development and food
policy formulation [1,2]. Due to its large coverage area and short detection period, satellite
remote sensing provides a new technical tool for large-scale crop estimation and is rapidly
becoming the most widely used technology in crop estimation.

At present, the methods of crop yield estimation using remote sensing technology can
be broadly classified into three categories according to the characteristics of the models used:
(1) the empirical modeling method; (2) the mechanistic modeling method; and (3) the semi-
empirical (semi-mechanistic) modeling method. The empirical model directly uses spectral
vegetation indices or canopy remote sensing inversion parameters to establish relationships
with crop yields, which are characterized by their simplicity and ease, involving fewer
crop yield formation mechanisms, and the relationships are generally established using
conventional machine learning methods, such as support vector machine and random
forest, with NDVI or leaf area index (LAI) as input parameters [3–8]. Such relationships
are usually localized and difficult to generalize to other agricultural areas. Semi-empirical
models and semi-mechanical models are also known as parametric models, among which
the light energy utilization efficiency model is the most widely used [6,9–11], but some
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parameters are difficult to quantitatively simulate. Mechanical models fully consider the
mechanism of crop yield formation, but their solution process is complex and requires
more input parameters, and some necessary parameters in the operation are difficult to
obtain at a regional scale; meanwhile, most of these models estimate crop yields at the
field scale [12–15]. Although the models work well for archiving yields, the accuracy may
be reduced when scaled to the national level. Many a priori parameters are required in
regional estimation. Due to the heterogeneity of the ground surface, the accuracy of the
ground parameters is generally low, especially in the case of small farmland in China,
resulting in low regional accuracy. Moreover, the computational process is complicated
and requires many parameters, which can be limited in practical use.

In recent years, deep learning has been successfully applied to several fields, such as
image recognition and language translation [11,16–22]. Compared with traditional machine
learning methods, deep learning techniques often achieve better performance. CNN and
recurrent neural network (RNN) are more widely used models in neural networks and
have also been applied to crop yield estimation and prediction [19,23–29]. LSTM is a special
kind of RNN [30,31], due to its recursive structure and gating mechanism that regulates
the entry and exit of information into and out of cells, as well as its processing of sequential
data. The LSTM has feedback connections and can handle the input sequences of arbitrary
length and is often preferred in the classification, processing, and prediction based on time
series data. Several studies used LSTM for crop yield prediction with impressive results.
LSTM not only captures trends in the data but also describes the dependencies of the time
series data. Tian et al. built an LSTM model by integrating the meteorological data and
two remote sensing indices (vegetation temperature condition index (VTCI) and LAI) to
estimate wheat yield in Guanzhong Plain [32]. Jeong et al. used water-related indices and
the maximum temperature as inputs for rice yield prediction using an LSTM model, which
showed reliable early prediction accuracy [16]. Sun et al. used a CNN-LSTM model to
predict the end-of-season and in-season yields of soybean in the county. The input data for
the model included meteorological data and MODIS surface temperature (LST) [24]. The
LSTM model was shown to have high prediction accuracy for crop yield estimation, but all
of the above methods for estimating crop yield use multiple data as input parameters, and
it is difficult to obtain non-remote sensing data in some regions [33–35]. There are a large
number of mature remote sensing products for LAI data, so this study mainly considered
using LAI remote sensing products as single model input data and what kind of accuracy
could be achieved when using deep learning algorithms for yield estimation.

In this study, LSTM was used to estimate the winter wheat yield at the county scale
based on the relationship between time series LAI products and winter wheat yield. Con-
sidering the simplicity of obtaining LAI data, the model input parameters were only the
leaf area index to verify the accuracy that could be achieved under the influence of a
single factor. Moreover, the time step of the input remote sensing data of the model was
considered so as to determine the accuracy in different time data.

2. Materials and Methods

2.1. Study Area

Henan Province is located in eastern central China (31◦23′~36◦22′ N, 110◦21′~116◦39′ E).
Figure 1 is a schematic diagram of the location of the study area. Henan Province is located
between the warm temperate zone and the subtropical zone. The terrain of Henan Province
is high in the west and low in the east, with mountains above 1000 m above sea level in
the west and plains below 100 m in the east. Mountains and hills account for 44.3% of
the total area, and plains account for 55.7%. The total wheat output of Henan Province
ranks first in China, accounting for more than 28% of the country’s total wheat output.
The sowing time of wheat varies from north to south by nearly two weeks, and there is a
large gap in yield in different regions. The topography of Henan Province is complex and
diverse, the topography is low in the east and high in the west, with significant differences;
the surface morphology is complex and diverse. Due to the influence of landforms and
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monsoons, Henan Province has a wide variety of soil types and large differences in climate
resources, resulting in significant differences in crop yields in different regions. According
to the production conditions of producing areas and the climatic characteristics of the
wheat growth period, the wheat-growing areas in Henan Province can be divided into
five regions.

Figure 1. The geographic location of the study area and classification results (The red box on the left
is the location of Henan Province. (a)—false color composite with the MODIS09 data; and (b)—land
classification, green represents the winter wheat region).

1. The wheat area in Nanyang Basin, including Nanyang City and Biyang Countyin
Zhumadian, is a typical rainfed and semi-rainfed area due to the relatively poor field
supporting projects and irrigation conditions.

2. Rice stubble and wheat areas in southern Henan, including Xinyang, southern Zhu-
madian, and Nanyang Tongbai. The soil in this area is heavy, and the precipitation
during the wheat growth period is relatively high.

3. In western Henan, southwestern Henan, and northern Henan, dry wheat areas,
including Luoyang, Sanmenxia, Jiyuan, Pingdingshan, Anyang, and other shallow
hilly areas, drought, winter, and spring freezing damage, rust, and yellow dwarf
disease are the main factors affecting wheat yield.

4. The wheat area in north-central Henan Province, including Xuchang, Zhengzhou,
Luoyang, and the irrigated land north of the Yellow River, has good production
conditions and high production levels.

239



Agriculture 2022, 12, 1707

5. The wheat area in the central and eastern part of Henan Province includes the irrigated
land in the middle- and high-yield wheat areas in the north-central part of Zhumadian,
Luohe, Zhoukou, Shangqiu, and Pingdingshan Mountain.

The topography and climate within each of the above production areas are relatively
consistent; so, we developed a winter wheat yield model for each production area. The
actual yield data for winter wheat in this study were provided by the Henan Provincial
Bureau of Statistics.

2.2. MODIS LAI

LAI is defined as the area of unilateral green leaves per unit of ground area in a
broadleaf canopy and half of the total needle surface area per unit ground area in a
coniferous canopy. The LAI product selected for this study was MCD15A2H. MCD15A2H
is an 8-day composite product with a total of 46 scenes per year and a spatial resolution of
500 m. The inversion algorithm for the Moderate Resolution Imaging Spectroradiometer
(MODIS) LAI product was a look-up table constructed based on a three-dimensional
radiative transfer model. When the main algorithm failed, a backup algorithm using an
empirical relationship between NDVI and the canopy LAI was triggered to estimate the
LAI for each pixel, and the look-up table was used to compare whether the observed and
simulated canopy top BRFs were within a given biologically relevant range. All canopy/soil
patterns and corresponding LAI values that differed between the modeled and observed
BRFs within a given level of uncertainty were considered acceptable solutions. The product
used for this study was version 6, and the final result was the true LAI.

All satellite data are archived in HDF-EOS format, and the MODIS Reprojection Tool
(MRT) software provided by NASA enables the user to read the HDF-EOS format. This
software supports the performing geo-transformations to different coordinate systems
or cartographic projections and writing the output to other file formats (GeoTIFF). All
data are initially projected onto an integer sine wave (ISIN) mapping grid. These data
were corrected to UTM coordinates using MRT and resampled using the nearest neighbor
algorithm. Non-wheat fields were masked using a land cover classification, and then the
corresponding areas were cut out of the remotely sensed imagery using SHP data based
on the extent of each city. The MODIS LAI products include the quality control (QC)
information designed to help users make the best use of these data. Each QC layer has a
large amount of quality information associated with each pixel, whether the pixel is labeled
as cloudy, clear, or in cloud shadow. In a subsequent study, MODIS LAI selected high-
quality pixels derived using the master algorithm under cloud-free conditions. Figure 2
shows the time series results of the MODIS LAI for the entire winter wheat growing region
in Henan, and the maximum value of the LAI was approximately 2. Considering that LAI
is at a low level in the early and late stages of wheat growth, and that these growth stages
do not have a particularly strong influence on yield formation, we used LAI from flowering
to maturity each year as input data.

Figure 2. The mean curve of MODIS LAI in Henan Province from 2003 to 2016. The red line is the
error bars plotted using standard deviation; blue dots represent the mean; between the two green
dotted lines is the LAI for one year.
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2.3. Mapping of Wheat Distribution

This study focused on winter wheat, which first required the extraction of winter
wheat distribution areas from remote sensing images. We used the product produced by
Dong [36]. The product was produced by first synthesizing monthly NDVI maxima and
using FROM-GLC as a priori knowledge to obtain crop distribution information; then, we
used the standard seasonal growth curve of winter wheat combined with the time-weighted
dynamic time warping (TWDTW) to determine the area of winter wheat. The accuracy of
the final product was higher than 89.30% and 90.59% for producers and users, respectively.
To maintain consistency with the resolution of MODIS data, the classification results were
finally resampled to 500 m using the mode resampling method. Mode resampling selects
the value with the highest frequency of occurrence among all sampling points, and the
results maintain the real state of the ground surface to some extent. The classification
results are shown in Figure 1b.

2.4. LSTM

The recurrent neural network (RNN) is a type of neural network with short-term
memory capabilities. In a cyclic neural network, a neuron cannot only receive information
from other neurons but also its own information, forming a network structure with loops.
Compared with feedforward neural networks, recurrent neural networks are more in line
with the structure of biological neural networks. Recurrent neural networks have been
widely used in tasks such as speech recognition, language modeling, and natural language
generation. The parameter learning of recurrent neural networks can be learned by the
backpropagation algorithm over time. The backpropagation algorithm with time transmits
the error information step by step in the reverse order of time. When the input sequence
is relatively long, there will be the problem of gradient explosion and disappearance. In
order to solve this problem, people have made many improvements to the cyclic neural
network. The most effective means of improvement is to introduce a gating mechanism,
one of which is called a long short-term memory network (LSTM). LSTM is a variant of a
cyclic neural network, which can effectively solve the problem of gradient explosion or the
disappearance of a simple cyclic neural network.

The ingenuity of LSTM is that, by increasing the input threshold, the forgetting
threshold, and output threshold, the weight of the self-loop is changed. As such, when
the model parameters are fixed, the integration scale at different times can be dynamically
changed, thereby avoiding the problem of gradient disappearance or gradient expansion.

The LSTM network introduces a gating mechanism to control the path of information
transmission. The three “gates” are the input gate it, the forget gate ft, and the output gate
ot. The functions of these three gates are as follows:

(1) The forgetting gate ft controls how much information needs to be forgotten to
control the internal state ct−1 at the last moment;

(2) The enter gate it controls the candidate state c̃t at the current moment and how
much information needs to be saved;

(3) The output gate ot controls how much information of the internal state ct at the
current moment needs to be output to the external state ht.

When ft = 0 and it = 1, the memory unit clears the historical information and writes
the candidate state vector c̃t. However, the memory unit ct is still related to the historical
information at the previous moment. When ft = 1 and it = 0, the memory unit will copy the
content of the previous moment without writing new information.

Figure 3 shows the cyclic unit structure of the LSTM network. The calculation process
is: (1) first use the external state ht−1 at the previous moment and the input xt at the current
moment to calculate the three gates and the candidate state c̃t; (2) combine the forget gate
ft and the input gate it to update the memory unit ct; and (3) combine the output gate ot to
transfer the information of the internal state to the external state ht.
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Figure 3. Cyclic cell structure of the LSTM network.

By means of LSTM cyclic units, the whole network can be built up with long-distance
temporal dependencies. It can be succinctly described as⎡⎢⎢⎣
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In the LSTM network, a memory unit c can capture a key piece of information at a
certain moment and can store this key information for a certain time interval. The lifetime
of information stored in memory unit c is longer than that of short-term memory h but
much shorter than that of long-term memory. Figure 4 shows the workflow from LAI data
processing to LSTM model building and yield estimation.

Figure 4. Overall structure of the LSTM model for wheat yield estimation.
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2.5. Model Evaluation Metrics

We chose root mean square error (RMSE), coefficient of determination (R2), and mean
absolute percentage error (MAPE), the three metrics in Equations (4)–(6). To evaluate the
performance of the model, the difference between the predicted and actual statistical values
of the model was calculated. A smaller RMSE indicates a better performance of the model,
and a larger R2 indicates a higher regression accuracy of the model. The lower the value
of MAPE and RMSE, the higher the accuracy of the obtained predictive model. MAPE
measures the error in percentage and specifies the average percentage deviation between
the forecast value and the actual implementation [37]. Usually, the fit of the model is perfect
when the MAPE value is below 10% and when it is in the range from 10% to 20%, the model
fit is good. In the range of 20–30%, the error level is acceptable and when it exceeds 30%,
the model is a poor fit and should be rejected [38].

RMSE =

√
1
n ∑n

i=1(ŷi − yi)
2 (4)

R2 = 1 − ∑n
i=1(ŷi − yi)

2

∑n
i=1(yi − ŷi)

2 , (5)

MAPE =
100%

n

n

∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣, (6)

where yi represents the actual yield, ŷi is the predicted yield, and n is the sample size.

3. Results and Discussion

3.1. Yield Estimation under Different Time Steps and Input Combinations

We used winter wheat LAI time series data from 2003 to 2015 as training samples
and modeled them with LSTM to obtain the winter wheat yield prediction results for 2016
and compared the predicted yield with the statistical yield in 2016 to verify the prediction
accuracy of the model. Moreover, considering the characteristics of the LSTM model and
the requirements of the yield prediction task, the input data required for training were
processed as subsequently described, and the winter wheat growth data from March to the
end of May each year were selected so that the input data for one year had 12 LAI values
containing data from the flowering stage to the maturity stage. The fitted data of the model
changed at different input steps, which also had an impact on the accuracy of the prediction
results. To obtain the input step with the highest accuracy, the input steps from 1 to 6 were
compared. The overall RMSE for Henan Province under the six step-size scenarios is shown
in Figure 5. The solid red line in the figure is the 1:1 line, and the estimation results were
mostly evenly distributed on both sides with the solid line as the center, indicating that the
model had a good prediction for the yield. However, when the yield exceeded 7000 kg/ha,
the estimation accuracy of the model tended to decrease, and the yield prediction tended
to be underestimated, which is consistent with the systematic trend of underestimation at
high yields in previous studies, mainly due to the relatively low proportion of data from
high production areas in the sample. We first constructed LSTM models for five winter
wheat production areas and finally obtained the winter wheat yield estimation results for
the whole of Henan Province. A–E in Table 1 show the RMSE, R2 and MAPE of the five
grain-producing regions at different step sizes, and F shows the statistical results for the
whole Henan Province. Figure 6 shows the RMSE histograms of the LSTM model for the
five regions and the whole of Henan Province under different step lengths. When the step
size was short, the predicted yields of the LSTM model for different production areas had
great instability compared with the statistical yields in the field, but when the step size
increased to 3 and 4, the accuracy started to improve and stabilized. However, the accuracy
decreased again when the step size was 6. The LSTM model achieved optimal values of R2

and RMSE at a step size of 4, with results of 88% and 532.16 kg/ha, respectively, while the
value of MAPE was 4.44%, which was at a very high level of fit. Although the problem of
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LSTM was effectively solved in terms of gradient disappearance or explosion compared
with the general RNN networks, the winter wheat yields were not closely related to yields
from many years ago, and to some extent, were only strongly correlated with historical
yields from the last three or four years, and there may be a loss of accuracy if the current
results are fitted with data from a longer period of time ago.

Figure 5. Comparison of yield estimation results for LSTM models based on different time steps:
(A) one time step; (B) two time steps; (C) three time steps; (D) four time steps; (E) five time steps; and
(F) six time steps. The probability distributions of the statistical and estimated yields are plotted on
the right and top of the Y axis, respectively.

Table 1. The accuracy evaluation of the LSTM prediction model was compared between different
time steps when 12 LAI data were input.

Time
Steps

RMSE (kg/ha) R2 MAPE (%)

A B C D E F A B C D E F A B C D E

1 1039.93 436.63 350.59 386.97 687.70 563.38 0.40 0.79 0.95 0.92 0.01 0.87 12.33 5.01 4.28 5.19 7.29
2 468.29 548.72 831.34 699.47 219.07 632.77 0.86 0.73 0.74 0.81 0.27 0.83 7.82 7.72 10.57 12.40 2.31
3 604.58 589.19 635.35 767.26 583.36 637.88 0.86 0.78 0.87 0.82 0.03 0.85 10.17 9.29 8.79 12.63 5.90
4 530.79 461.56 568.10 667.68 396.56 532.08 0.83 0.78 0.87 0.90 0.38 0.88 7.56 7.24 8.02 11.75 4.44
5 393.49 549.11 635.34 699.27 713.08 637.27 0.90 0.74 0.80 0.70 0.00 0.78 6.99 8.70 9.40 13.01 8.45
6 795.51 414.61 770.62 548.72 674.49 678.36 0.86 0.80 0.78 0.81 0.24 0.80 13.41 6.96 12.04 9.17 7.95

The respective highest accuracy estimation results in different regions differed sig-
nificantly in time steps. For the whole of Henan Province, the overall accuracy may not
be optimal if the same step was used for yield estimation. The lowest value of RMSE can
be seen in Figure 6 in the southwestern production area, with an RMSE of approximately
400, and the highest in time steps was in southwestern Henan, with approximately 700.
There was a correlation between the winter wheat yield and time series LAI data, but the
interannual correlation was to some extent not a more accurate result by modeling with
more data, and there are many factors affecting the wheat yield, including variation in
variety, temperature, and topography, which can all cause yield fluctuations, although all
these factors can affect the LAI time series to some extent. However, when using time series
LAI data alone as input parameters, it is not better to use more data, and it is not better to
set a higher time step; these should be quantitatively and individually tested for different
regions and not generalized.
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Figure 6. The model performance (predicted RMSE) using different time steps for the whole growing
season. (A) one time step; (B) two time steps; (C) three time steps; (D) four time steps; (E) five time
steps; and (F) six time steps.

3.2. Yield Estimation with Different Input Time Series Data

In the process of winter wheat yield estimation, it is always desirable to predict the
yield as early as possible. Therefore, we considered shortening the time range of the LAI
data used and the used data from the plucking stage to the filling stage for modeling so that
their yield could be predicted 16 days before maturity. The LAI data used in this study were
only six per year, which halved the amount of data compared to previous studies, making
it easier to obtain the data, especially the high spatial resolution satellite data. The results
of the comparison between the predicted yield and the actual statistical yield are shown in
Figure 7, from which there was no significant decrease in the prediction accuracy for all of
Henan compared to the 12 data, and the accuracy of individual time steps increased. The
best time step for the overall accuracy occurred at 2, where the R2 and RMSE were 87%
and 522.32 kg/ha, respectively, while MAPE was 5.67%. A–E in Table 2 shows the RMSE,
R2 and MAPE of the five grain-producing regions at different step sizes, and F shows the
statistical results for the whole Henan Province; Figure 8 shows the histogram of RMSE.
However, it can also be seen that the value of RMSE gradually increased with increasing
step size. This may be due to the fact that LAI data were strongly correlated only in the last
two years, and the larger the time difference, the lower the correlation between LAI and
yield; moreover, the interannual LAI was not strongly correlated with early and late yield
formation, so in the process of yield estimation using time series LAI, a higher accuracy
was obtained by using data from the nodulation to filling stage. It has been shown that the
accumulation of dry matter in winter wheat is mainly concentrated at the nodulation and
gestation stages, and the LAI in this period was closely correlated with the yield formation
of winter wheat, which is also more consistent with the results of this study. It should also
be noted that the overall RMSE accuracy was the best except for the case of step size 2. The
RMSE of the remaining steps was significantly lower compared to the model with 12 data;
therefore, using as many growing period data as possible would also make the model more
robust when using time-series LAI for yield estimation.
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Figure 7. Comparison of the yield estimation results for LSTM models based on different time steps
(A) one time step; (B) two time steps; (C) three time steps; (D) four time steps; (E) five time steps; and
(F) six time steps. The probability distributions of the statistical and estimated yields are plotted on
the right and top of the Y axis, respectively.

Table 2. The accuracy evaluation of the LSTM prediction model was compared between different
time steps when 6 LAI data were input.

Time
Steps

RMSE (kg/ha) R2 MAPE (%)

A B C D E F A B C D E F A B C D E

1 1180.61 534.22 798.75 338.77 656.31 727.11 0.17 0.70 0.80 0.96 0.19 0.81 17.63 5.22 10.29 5.67 6.64
2 372.66 552.27 534.55 411.21 598.78 522.32 0.87 0.67 0.86 0.93 0.18 0.87 6.03 7.41 5.61 6.53 5.67
3 704.62 362.19 867.82 739.41 901.01 792.37 0.53 0.85 0.75 0.67 0.01 0.74 9.78 4.63 11.11 12.23 9.83
4 1010.14 789.28 800.46 850.57 978.56 876.48 0.18 0.31 0.74 0.63 0.00 0.67 14.36 12.82 11.30 12.37 12.99
5 743.15 591.05 928.28 743.79 1255.65 945.34 0.44 0.61 0.63 0.67 0.00 0.60 11.69 10.62 12.73 12.17 17.03
6 1052.22 1572.15 1170.50 1167.80 1954.85 1448.93 0.28 0.02 0.50 0.36 0.02 0.36 20.81 45.16 17.92 21.91 27.96

Figure 8. The model performance (predicted RMSE) using different time steps for only one period of
the growing season. (A) one time step; (B) two time steps; (C) three time steps; (D) four time steps;
(E) five time steps; and (F) six time steps.

3.3. Performance Comparison with Machine Learning Methods

Here, four machine learning methods (random forest, support vector regression, par-
tial least squares regression, and XGBoost) were used to construct county-level wheat yield
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models for each agroecological zone. Random forest (RF) is a supervised machine learning
algorithm based on integration learning [39]. Different subsets are randomly drawn from
the provided data and used to build several different decision trees and integrate the results
of one decision tree according to Bagging’s rules. Support vector regression (SVR) is a
regression algorithm that is a variant of SVM in regression analysis [40]. SVR also consid-
ers maximization intervals but considers points within the decision boundary so that as
many sample points as possible lie within the interval. The partial least squares regression
(PLSR) [41] algorithm is a regression modeling method for multiple dependent variables
Y on multiple independent variables X. The algorithm considers extracting as many prin-
cipal components as possible from Y and X in building the regression and maximizing
the correlation between the principal components extracted from X and Y, respectively.
XGBoost [42] is a scalable machine learning system that adds to the objective function of
each iteration regular term to further reduce the risk of overfitting, XGBoost is an all-in-one
machine learning algorithm.

The yield prediction of winter wheat in Henan Province was constructed using the
four methods mentioned above. The prediction model first used winter wheat LAI time
series data from 2003 to 2015, followed by yield prediction for 2016, and the R2 and RMSE
of the prediction results are shown in Table 3. For the whole of Henan Province, the best
performance among the four methods was the SVR with R2, RMSE and MAPE of 0.76,
725.8 kg/ha and 6.33%, respectively, and the worst was PLSR with R2, RMSE and MAPE
of 0.7 and 809.1 kg/ha and 7.74%, respectively. Compared with these machine learning
methods, the prediction results of the LSTM had better accuracy and performance both for
individual wheat growing areas and for the whole of Henan province.

Table 3. Accuracy evaluations comparison among different methods.

Model
RMSE (kg/ha) R2 MAPE (%)

A B C D E F A B C D E F A B C D E

RF 566.2 705.8 946.5 693.3 656.6 774.5 0.66 0.37 0.62 0.73 0.35 0.72 9.31 9.48 9.05 11.24 7.04
SVR 605.0 558.9 980.0 545.2 505.4 725.8 0.60 0.56 0.60 0.83 0.61 0.76 10.26 8.53 10.26 9.31 6.33
PLSR 627.7 680.4 1051.4 558.2 676.8 809.1 0.57 0.37 0.55 0.82 0.31 0.70 11.03 11.18 11.28 9.06 7.74

XGBOOST 579.2 659.4 976.4 737.8 638.1 785.8 0.62 0.45 0.60 0.69 0.38 0.72 8.62 10.40 10.12 11.60 6.98

The prediction accuracy of the four machine learning methods was the lowest in the
southwest Henan region, which is a mountainous and hilly area with complex topography, a
small winter wheat growing area, and large yield variation, and there may be a lack of yield
accuracy in this region using conventional methods to construct the model. Compared with
these, using LSTM model for winter wheat yield prediction had a superior performance.
Compared to algorithms such as SVR and RF, the accuracy of estimation was not sufficient,
because the ability to analyze complex nonlinear relationships between long time series
variables is not as good as LSTM, resulting in poor model performance. These machine
learning methods do not consider the time correlation between winter wheat yields in the
modeling process, and the estimation for each year’s yield is conducted independently,
while LSTM takes into account the time series correlation of yields and also can better
handle the nonlinear relationship, so it has higher accuracy compared to machine learning.
Overall, a better performance capability can be obtained using LSTM models for forecasting
time series data.

4. Conclusions

In this study, considering the complexity of data collection, we used LAI as a single
input variable and five models, including four machine learning models (RF, SVR, PLSR,
and XGBOOST) and one deep learning model (LSTM) to predict the winter wheat yield in
Henan Province in 2016. In general, the LSTM model had superior performance compared
with the machine learning models. Moreover, considering the characteristics of the LSTM,
the time step of the modeled data as well as the growth period data were analyzed, and the
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time step needs to be analyzed for different growth regions, while using only the necessary
growth period data can also obtain a high prediction accuracy; however, for the robustness
of the model, the more growth period data are used accordingly, the better. To date, winter
wheat yield prediction based on remote sensing images has been carried out at the county
level. However, the determination of crop yield remains a challenge because the variability
and uncertainty within the region is unknown. The results of our study on winter wheat
yield prediction at a regional scale using publicly available data, using LAI as an input
variable for determining crop yield, can potentially be applied to crop yield estimation in
regions with sparse observational data and worldwide.

Author Contributions: Conceptualization, J.W.; resources, Z.G.; writing—original draft preparation,
J.W.; writing—review and editing, J.W., L.S. and H.S. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (NO.42101362,
31501225); the Natural Science Foundation of Henan Province of China (NO.222300420463).

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Becker-Reshef, I.; Justice, C.; Sullivan, M.; Vermote, E.; Tucker, C.; Anyamba, A.; Small, J.; Pak, E.; Masuoka, E.; Schmaltz, J.
Monitoring global croplands with coarse resolution earth observations: The Global Agriculture Monitoring (GLAM) project.
Remote Sens. 2010, 2, 1589–1609. [CrossRef]

2. Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad.
Sci. USA 2011, 108, 20260–20264. [CrossRef] [PubMed]

3. Becker-Reshef, I.; Vermote, E.; Lindeman, M.; Justice, C. A generalized regression-based model for forecasting winter wheat
yields in Kansas and Ukraine using MODIS data. Remote Sens. Environ. 2010, 114, 1312–1323. [CrossRef]

4. Xie, Y.; Wang, P.; Bai, X.; Khan, J.; Zhang, S.; Li, L.; Wang, L. Assimilation of the leaf area index and vegetation temperature
condition index for winter wheat yield estimation using Landsat imagery and the CERES-Wheat model. Agric. For. Meteorol.
2017, 246, 194–206. [CrossRef]

5. Mkhabela, M.; Bullock, P.; Raj, S.; Wang, S.; Yang, Y. Crop yield forecasting on the Canadian Prairies using MODIS NDVI data.
Agric. For. Meteorol. 2011, 151, 385–393. [CrossRef]

6. Lai, Y.; Pringle, M.; Kopittke, P.M.; Menzies, N.W.; Orton, T.G.; Dang, Y.P. An empirical model for prediction of wheat yield, using
time-integrated Landsat NDVI. Int. J. Appl. Earth Obs. Geoinf. ITC J. 2018, 72, 99–108. [CrossRef]

7. Moriondo, M.; Maselli, F.; Bindi, M. A simple model of regional wheat yield based on NDVI data. Eur. J. Agron. 2007, 26, 266–274.
[CrossRef]

8. Wall, L.; Larocque, D.; Léger, P. The early explanatory power of NDVI in crop yield modelling. Int. J. Remote Sens. 2008, 29,
2211–2225. [CrossRef]

9. Chen, Y.; Zhang, Z.; Tao, F. Improving regional winter wheat yield estimation through assimilation of phenology and leaf area
index from remote sensing data. Eur. J. Agron. 2018, 101, 163–173. [CrossRef]

10. Franch, B.; Vermote, E.; Becker-Reshef, I.; Claverie, M.; Huang, J.; Zhang, J.; Justice, C.; Sobrino, J.A. Improving the timeliness of
winter wheat production forecast in the United States of America, Ukraine and China using MODIS data and NCAR Growing
Degree Day information. Remote Sens. Environ. 2015, 161, 131–148. [CrossRef]

11. Pantazi, X.E.; Moshou, D.; Alexandridis, T.; Whetton, R.L.; Mouazen, A.M. Wheat yield prediction using machine learning and
advanced sensing techniques. Comput. Electron. Agric. 2016, 121, 57–65. [CrossRef]

12. Huang, J.; Ma, H.; Sedano, F.; Lewis, P.; Liang, S.; Wu, Q.; Su, W.; Zhang, X.; Zhu, D. Evaluation of regional estimates of winter
wheat yield by assimilating three remotely sensed reflectance datasets into the coupled WOFOST–PROSAIL model. Eur. J. Agron.
2019, 102, 1–13. [CrossRef]

13. Huang, J.; Sedano, F.; Huang, Y.; Ma, H.; Li, X.; Liang, S.; Tian, L.; Zhang, X.; Fan, J.; Wu, W.; et al. Assimilating a synthetic Kalman
filter leaf area index series into the WOFOST model to improve regional winter wheat yield estimation. Agric. For. Meteorol. 2016,
216, 188–202. [CrossRef]

14. Huang, J.; Tian, L.; Liang, S.; Ma, H.; Becker-Reshef, I.; Huang, Y.; Su, W.; Zhang, X.; Zhu, D.; Wu, W.; et al. Improving winter
wheat yield estimation by assimilation of the leaf area index from Landsat TM and MODIS data into the WOFOST model. Agric.
For. Meteorol. 2015, 204, 106–121. [CrossRef]

248



Agriculture 2022, 12, 1707

15. Zhuo, W.; Huang, J.; Li, L.; Zhang, X.; Ma, H.; Gao, X.; Huang, H.; Xu, B.; Xiao, X. Assimilating soil moisture retrieved from
Sentinel-1 and Sentinel-2 data into WOFOST model to improve winter wheat yield estimation. Remote Sens. 2019, 11, 1618.
[CrossRef]

16. Jeong, S.; Ko, J.; Yeom, J.-M. Predicting rice yield at pixel scale through synthetic use of crop and deep learning models with
satellite data in South and North Korea. Sci. Total Environ. 2022, 802, 149726. [CrossRef] [PubMed]

17. Bolton, D.K.; Friedl, M.A. Forecasting crop yield using remotely sensed vegetation indices and crop phenology metrics. Agric. For.
Meteorol. 2013, 173, 74–84. [CrossRef]

18. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Commun. ACM 2017,
60, 84–90. [CrossRef]

19. Koirala, A.; Walsh, K.B.; Wang, Z.; McCarthy, C. Deep learning–Method overview and review of use for fruit detection and yield
estimation. Comput. Electron. Agric. 2019, 162, 219–234. [CrossRef]

20. Fischer, T.; Krauss, C. Deep learning with long short-term memory networks for financial market predictions. Eur. J. Oper. Res.
2018, 270, 654–669. [CrossRef]

21. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
22. Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [CrossRef] [PubMed]
23. Khaki, S.; Wang, L.; Archontoulis, S.V. A cnn-rnn framework for crop yield prediction. Front. Plant Sci. 2020, 10, 1750. [CrossRef]

[PubMed]
24. Sun, J.; Di, L.; Sun, Z.; Shen, Y.; Lai, Z. County-level soybean yield prediction using deep CNN-LSTM model. Sensors 2019, 19,

4363. [CrossRef]
25. Khaki, S.; Wang, L. Crop yield prediction using deep neural networks. Front. Plant Sci. 2019, 10, 621. [CrossRef]
26. Maimaitijiang, M.; Sagan, V.; Sidike, P.; Hartling, S.; Esposito, F.; Fritschi, F.B. Soybean yield prediction from UAV using

multimodal data fusion and deep learning. Remote Sens. Environ. 2020, 237, 111599. [CrossRef]
27. Cao, J.; Zhang, Z.; Luo, Y.; Zhang, L.; Zhang, J.; Li, Z.; Tao, F. Wheat yield predictions at a county and field scale with deep

learning, machine learning, and google earth engine. Eur. J. Agron. 2021, 123, 126204. [CrossRef]
28. Nevavuori, P.; Narra, N.; Linna, P.; Lipping, T. Crop yield prediction using multitemporal UAV data and spatio-temporal deep

learning models. Remote Sens. 2020, 12, 4000. [CrossRef]
29. Hara, P.; Piekutowska, M.; Niedbała, G. Selection of independent variables for crop yield prediction using artificial neural network

models with remote sensing data. Land 2021, 10, 609. [CrossRef]
30. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
31. Graves, A. Generating sequences with recurrent neural networks. arXiv Prepr. 2013, arXiv:1308.0850.
32. Tian, H.; Wang, P.; Tansey, K.; Han, D.; Zhang, J.; Zhang, S.; Li, H. A deep learning framework under attention mechanism for

wheat yield estimation using remotely sensed indices in the Guanzhong Plain, PR China. Int. J. Appl. Earth Obs. Geoinf. ITC J.
2021, 102, 102375. [CrossRef]

33. Liu, Y.; Wang, S.; Wang, X.; Chen, B.; Chen, J.; Wang, J.; Huang, M.; Wang, Z.; Ma, L.; Wang, P.; et al. Exploring the superiority
of solar-induced chlorophyll fluorescence data in predicting wheat yield using machine learning and deep learning methods.
Comput. Electron. Agric. 2022, 192, 106612. [CrossRef]

34. Zhang, L.; Zhang, Z.; Luo, Y.; Cao, J.; Xie, R.; Li, S. Integrating satellite-derived climatic and vegetation indices to predict
smallholder maize yield using deep learning. Agric. For. Meteorol. 2021, 311, 108666. [CrossRef]

35. Cai, Y.; Guan, K.; Lobell, D.; Potgieter, A.B.; Wang, S.; Peng, J.; Xu, T.; Asseng, S.; Zhang, Y.; You, L.; et al. Integrating satellite
and climate data to predict wheat yield in Australia using machine learning approaches. Agric. For. Meteorol. 2019, 274, 144–159.
[CrossRef]

36. Dong, J.; Fu, Y.; Wang, J.; Tian, H.; Fu, S.; Niu, Z.; Han, W.; Zheng, Y.; Huang, J.; Yuan, W. Early-season mapping of winter wheat
in China based on Landsat and Sentinel images. Earth Syst. Sci. Data 2020, 12, 3081–3095. [CrossRef]

37. Sharma, L.K.; Singh, T.N. Regression-based models for the prediction of unconfined compressive strength of artificially structured
soil. Eng. Comput. 2018, 34, 175–186. [CrossRef]

38. Peng, J.; Kim, M.; Kim, Y.; Jo, M.; Kim, B.; Sung, K.; Lv, S. Constructing Italian ryegrass yield prediction model based on climatic
data by locations in South Korea. Grassl. Sci. 2017, 63, 184–195. [CrossRef]

39. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
40. Chang, C.-C.; Lin, C.-J. LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. 2011, 2, 1–27. [CrossRef]
41. Wegelin, J.A. A Survey of Partial Least Squares (PLS) Methods, with Emphasis on the Two-Block Case; Technical Report; University of

Washington: Seattle, DC, USA, 2000.
42. Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794.

249





Citation: Luo, S.; Jiang, X.; Jiao, W.;

Yang, K.; Li, Y.; Fang, S. Remotely

Sensed Prediction of Rice Yield at

Different Growth Durations Using

UAV Multispectral Imagery.

Agriculture 2022, 12, 1447. https://

doi.org/10.3390/agriculture12091447

Academic Editors: Jibo Yue,

Chengquan Zhou, Haikuan Feng,

Yanjun Yang and Ning Zhang

Received: 10 August 2022

Accepted: 9 September 2022

Published: 13 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

agriculture

Article

Remotely Sensed Prediction of Rice Yield at Different Growth
Durations Using UAV Multispectral Imagery

Shanjun Luo 1, Xueqin Jiang 2,*, Weihua Jiao 3, Kaili Yang 1, Yuanjin Li 1 and Shenghui Fang 1,*

1 School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China
2 School of Information Science and Engineering, Shandong Agriculture University, Tai’an 271001, China
3 Center for Agricultural and Rural Economic Research, Shandong University of Finance and Economics,

Jinan 250014, China
* Correspondence: xueqinjiang@whu.edu.cn (X.J.); shfang@whu.edu.cn (S.F.)

Abstract: A precise forecast of rice yields at the plot scale is essential for both food security and
precision agriculture. In this work, we developed a novel technique to integrate UAV-based veg-
etation indices (VIs) with brightness, greenness, and moisture information obtained via tasseled
cap transformation (TCT) to improve the precision of rice-yield estimates and eliminate saturation.
Eight nitrogen gradients of rice were cultivated to acquire measurements on the ground, as well
as six-band UAV images during the booting and heading periods. Several plot-level VIs were then
computed based on the canopy reflectance derived from the UAV images. Meanwhile, the TCT-based
retrieval of the plot brightness (B), greenness (G), and a third component (T) indicating the state of
the rice growing and environmental information, was performed. The findings indicate that ground
measurements are solely applicable to estimating rice yields at the booting stage. Furthermore, the
VIs in conjunction with the TCT parameters exhibited a greater ability to predict the rice yields than
the VIs alone. The final simulation models showed the highest accuracy at the booting stage, but
with varying degrees of saturation. The yield-prediction models at the heading stage satisfied the
requirement of high precision, without any obvious saturation phenomenon. The product of the
VIs and the difference between the T and G (T − G) and the quotient of the T and B (T/B) was the
optimum parameter for predicting the rice yield at the heading stage, with an estimation error below
7%. This study offers a guide and reference for rice-yield estimation and precision agriculture.

Keywords: yield estimation; rice; unmanned aerial vehicle (UAV); tasseled cap transformation;
precision agriculture

1. Introduction

As the largest grain crop in the world and a staple food for over half of the global
population, the research on rice is of crucial importance for agricultural systems and food
production [1]. Rice-yield data are vital reference indicators for species selection and
breeding, determined by the combination of genes and the growth environment. The
accurate prediction of rice yields, and especially at the regional level, is of great relevance to
guaranteeing food security and sustainable agricultural development, and it is concerned
with the elaboration of major policies for national livelihoods [2].

The conventional methods for crop-yield estimates include field sampling [3] and the
crop-growth model [4]. The field survey is a devastating assessment method. Although
the accuracy of the results can be maintained through a comprehensive investigation, it is
undoubtedly a laborious and lengthy task [5]. Crop-growth models incorporate multiple
data sources and approaches, which greatly compound their complexity due to the many
model input parameters [6]. The remote estimation of yields is a technology that can be
used to develop a connection between crop spectra and yield data. Remote sensing (RS)
provides a convenient way to efficiently acquire spectral data of vegetation canopies in
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a nondestructive manner, which carries considerable valuable information regarding the
interaction between the canopy and solar radiation, such as the vegetation absorption
and scattering [7]. Vegetation-canopy spectra are intimately associated with crop growth,
and especially in the visible ranges affected by pigmentation and the near-infrared (NIR)
bands subject to the cell tissue and canopy structure [8]. Therefore, the vegetation indices
(VIs) derived from these bands have been frequently adopted to estimate the vegetation
phenotypic parameters, such as the leaf-area index (LAI), biomass, chlorophyll content,
and nitrogen content [9,10]. In general, remote estimates of crop yields using VI-based
methods have become mainstream [11].

As for the data source, it is an influential factor in crop-yield estimations. Yield
estimations using ground-based measurement spectra are hardly adequate for large areas,
and the real-time forecasting requirements and performance are regionally limited [12].
Satellite imagery can be appropriate and cost-effective data for crop monitoring at the
regional scale [13]. However, cloud coverage is pervasive during the pivotal crop-growing
season, and thus, sufficient spatial- and temporal-resolution data may not be available
for precision agriculture. The emergence and development of unmanned aerial vehicles
(UAVs) and lightweight sensors can be complementary between satellites and ground-
based sensors [14]. Because UAVs have easy access to dynamic data, they have enormous
potential to solve and refine strategies for the challenges encountered in agriculture. Despite
some shortcomings, such as the flight time, load capacity, and weather situation, UAVs are
expected to be applied with high frequency in agriculture from now on due to the valued
information gained and effective implementation [15]. The spectral information gained
from UAV-based multispectral or hyperspectral data has been broadly applied for crop-
growth monitoring and parameter estimation [16]. Moreover, multispectral images, free
from the information redundancy and complicated processing of hyperspectral data, have
a red-edge band that RGB digital images lack, and their centimeter-level spatial resolutions
make multispectral sensors preferred devices in precision agriculture [17].

The reproductive stages of rice can be divided into the tillering, jointing, booting,
heading, filling, and maturity stages. During the booting and heading stages, the rice
plant progressively accomplishes the conversion from nutritional to reproductive growth,
and the appropriate parameters for the yield estimation differ at different stages [18]. In
practical terms, it is imperative to access early and precise rice-yield data prior to harvest
for market decisions and policymaking. In the early stages of rice growth, the leaves are
not yet fully grown, and the variations in the later growth process make it difficult to
estimate the yield accurately. However, it may be too late to use data collected at the later
stages for yield estimation, as some effective measures need to be scheduled in advance.
Moreover, the appearance of rice spikes during mid-to-late growth can interfere with the
spectral characteristics of rice, as the color of the spikes eventually turns yellow, causing
the overall spectral pattern of the rice to deviate from the normal green vegetation. Zhou
et al. revealed that the presence of spikes increased the challenge of yield prediction in the
late reproductive stage of rice [19]. Duan et al. also noted that the reduced predictive ability
during the heading stage may be related to the uneven penetration of spikes into the sensor
field [20]. Hence, the booting and heading stages are suitable for rice-yield estimation, but
the heading stage needs to overcome the effect of the spikes.

The tasseled cap transformation (TCT), a viable pioneer of feature-detection algorithms,
is a linear-conversion technique that is commonly utilized in the areas of vegetation, soil,
and land-cover mapping [21]. The vast majority of the variations in the spectra of a single
scene can be interpreted in terms of the brightness, greenness, and humidity retrieved from
TCT [22]. Therefore, TCT was exploited to extract the brightness, greenness, and moisture
components of the rice fields to provide potentially valuable variables for yield estimation.

In our experiment, the canopy spectral data of the paddy field was remotely measured
from both the ground and UAV-mounted platforms, which had quite high spatial resolution,
and thus, well-reflecting variations of field. Meanwhile, the LAI and chlorophyll-content
data (SPAD) in the same period were obtained. Unlike previous studies, we compared the

252



Agriculture 2022, 12, 1447

yield-estimation performance of the ground and UAV-based parameters at different periods,
and we combined the TCT parameters to improve the accuracy of the rice-yield estimation
without saturation. With rice grown under different nitrogen-fertilizer treatments, our
objectives were: (1) to compare the ability of the rice-yield estimation at the booting and
heading stages; (2) to accurately estimate the rice yield by ground measurements and
UAV data; (3) to explore improving the VI-based approach for rice-yield estimation by
integrating the brightness, greenness, and wetness retrieval from TCT.

2. Materials and Methods

2.1. Study Area and Experimental Design

The study area was located in Wuxue City, Hubei Province, China (Figure 1a). It has
a humid subtropical monsoon climate with long plant production cycles and abundant
rainfall. It is suitable for the comprehensive development of agriculture, forestry, animal
husbandry, and fishing. As shown in Figure 1b, the identical rice variety was cultivated in
24 plots with different N-fertilizer-application levels, with a whole area of about 480 m2 and
a total of 7920 rice plants. The ridges between each plot were covered with white plastic
film to isolate the mixing of water in the field. There were eight N-fertilizer gradients, and
three replications, applying N0, N3, N5.5, N8.5, N11, N14, N16.5, and N19.5 (unit: kg/ha).
Two important growth periods (the booting and heading stages) were selected for the UAV
flight experiments. In the former period, no spikes appeared, and in the later period, almost
all spikes were clearly present. The conditions were strictly identically controlled, except
for differences in the amount of the nitrogen-fertilizer application. Field maintenance,
including weeding and pest control, was performed by professionals throughout the
growing season.

Figure 1. Study area and rice-plot settings: (a) experimental-area location; (b) nitrogen-gradient
layout of rice plots.

2.2. Ground-Data Acquisition

The LAI, canopy chlorophyll content (CCC), and canopy height (CH) are significant
indicators for characterizing crop yields [23,24]. Therefore, the SunScan canopy analysis
system (Delta Inc., Cambridge, UK) was applied to measure the LAI of each plot. The
five-point sampling method was performed at the four corners and center of each plot, and
the average value was taken as the canopy LAI of each plot. At each location where the LAI
was measured, three rice plants were selected, and the leaf chlorophyll was measured in the
upper, middle, and lower parts of the plant using the SPAD-502 chlorophyll meter (Konica,
Minolts Sensing Inc., Osaka, Japan); the mean value was recorded as the leaf chlorophyll
content of each plot. The CCC is generally expressed using the product of the LAI and
SPAD [25]. At each location where the LAI and SPAD were observed, three rice plants
were randomly selected, and the height of the rice was measured using a millimeter ruler;
the final CH was the mean value of all the readings. Rice seeds were collected by hand
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harvesting when the rice was fully mature. The seeds were then separated and left to dry
in the sun until there were no variations in their weights. All the sun-dried seeds in each
plot were weighed independently to obtain the rice yield of each plot.

2.3. Canopy Reflectance Derived from UAV Images

The UAV flights were implemented before the ground measurements. As shown in
Figure 2, a multirotor UAV (S1000, SZ DJI Technology Co., Ltd., Shenzhen, China) equipped
with a six-band MCA camera (Mini-MCA 6, Tetracam, Inc., Chatsworth, CA, USA) was
employed to collect multispectral images of the rice at the booting (13 August 2015) and
heading (29 August 2015) stages. The drone flights were conducted between 11:00 a.m.
and 1:00 p.m. local time, thus ensuring minimal variation in the solar zenith angle. The
multispectral camera has a center band of 490@10, 550@10, 670@10, 720@10, 800@20, or
900@20 nm. The UAV is also equipped with a three-axis gimbal to ensure that the camera
is always shooting vertically downward. Four gray plates (reflectances of 6%, 12%, 24%,
and 48%) were placed in the camera field of view for the radiometric calibrations to obtain
the reflectance data. To prevent reflectance errors caused by solar-illumination variations,
panoramic photographs of the entire study area were taken with a UAV flight altitude of
60 m and an image spatial resolution of approximately 0.03 m.

Figure 2. UAV reflectance-data-acquisition system: (a) UAV; (b) fixed reflectance grey plates for
radiometric calibration; (c) Mini-MCA 6 multispectral camera.

The classical linear-radiometric-calibration method was utilized to transform the DN
values of the multispectral images into reflectances to ensure the comparability of the data
from different periods [26]. The reflectance was computed as follows:

Ri = DNi × Gi + Oi (i = 490, 550, 670, 720, 800, and 900), (1)⎛⎜⎜⎝
0.06
0.12
0.24
0.48

⎞⎟⎟⎠ =

⎛⎜⎜⎝
DN0.06
DN0.12
DN0.24
DN0.48

⎞⎟⎟⎠× Gi + Oi (2)

where Ri represents the calculated reflectance of the ith band, DNi is the digital number
of the ith band in the original multispectral images, and Gi and Oi represent the gain and
offset values of the ith band, respectively.

254



Agriculture 2022, 12, 1447

For the 24 rice plots, we determined the maximum region of interest (ROI) suitable for
each plot (equal to 10,000 pixels), and then the plot-level reflectance was the average of all
the pixels in that rectangle.

2.4. VI Calculation Based on UAV Data

Several commonly available VIs obtained using combinations of visible, red-edge, and
NIR bands are shown in Table 1. These VIs were selected for their good performance in
crop-yield estimation and inversion of the phenotypic parameters.

Table 1. The common spectral indices selected in this paper.

Vegetation Indices Formulas References

Normalized Difference Vegetation Index (NDVI) (R800 − R670)/(R800 + R670) [27]
Red-Edge Chlorophyll Index (CIred edge) R800/R720 − 1 [28]
Green-Edge Chlorophyll Index (CIgreen) R800/R550 − 1 [28]

Two-Band Enhanced Vegetation Index (EVI2) 2.5(R800 − R670)/(1 + R800 + 2.4R670) [29]
Normalized Difference Red Edge (NDRE) (R800 − R720)/(R800 + R720) [30]

Wide-Dynamic-Range Vegetation Index (WDRVI) (αR800 − ρ670)/(αR800 + R670), α = 2 [31]
MERIS Terrestrial Chlorophyll Index (MTCI) (R800 − R720)/(R720 − R670) [32]

Soil-Adjusted Vegetation Index (SAVI) (1 + L)(R800 − R670)/(R800 + R670 + L), L = 0.5 [33]

2.5. Tasseled Cap Transformation

TCT, which is a quadrature conversion, provides the projection of feature messages,
such as the soil and vegetation in the spectral domain, into the tasseled-cap space, following
the structural characteristics of the distribution of ground information in multispectral
remote sensing [34]. After the TCT was performed, the spectral dimensions could be
reduced, and the information was concentrated in a few feature spaces. Its defining
equation is given in Equation (3):

y = Ax + b, (3)

where y is the vector after the TCT; A is the unit quadrature matrix and the coefficient
matrix of the TCT; x is the gray value of the image, or the apparent reflectance of the sensor;
b is served as an offset vector to avoid negative values after the transformation.

When TCT was performed on six-band UAV images, the results were composed of
three factors: the brightness (B), greenness (G), and third component (T). All three of
these variables are intimately associated with the surface landscape. The B component
represents the variation information of the reflectance, which is a weighted sum of six
bands and reflects the overall brightness variation of the surface object. The G component
is vertical to the B component, and it also shows the contrast between the visible band
(especially the red band) and NIR band, showing the variation in the greenness of the
ground vegetation, which is closely related to the ground-vegetation cover, LAI, and
biomass. The T variable reflects the moisture characteristics of the soil and vegetation.
Similar to calculating the plot-level reflectance, the plot-level TCT parameters were obtained
by defining a rectangle (ROI).

2.6. Accuracy Evaluation Using Leave-One-Out Cross-Validation

The yield-prediction model was assessed by employing the leave-one-out cross-
validation (LOO-CV) method to reduce the reliance on a single random fraction of the
calibration and validation dataset [35]. In this paper, the iterative process was repeated
22 times to ensure that each piece of data was engaged in the validation (the yields of two
plots were removed as a result of serious problems during harvesting). The adjusted R2,
RMSE, and MRE were selected as the final accuracy metrics [11].
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3. Results

3.1. Rice-Yield Estimation using Ground Measurements at Different Stages

In this study, the rice yield at the booting and heading stages was predicted based on
the plot-level LAI, CH, and CCC measured on the ground. Rice-yield data from 24 plots
were compared and analyzed, two of which were removed due to obvious errors, and
the remaining 22 yield data, along with the corresponding ground data, were applied for
modeling analysis. The Shapiro–Wilk test was chosen to check the normality of the data
before modeling the rice yield.

In Table 2, the ground measurements (yield, LAI, CH, and CCC) approximately
followed a normal distribution (p > 0.05). Then, the phenotypic parameters and yield of the
rice measured on the ground at the booting and heading stages were fitted by least-squares
regression (Figure 3). It was found that the LAI was a good fit for the yield at the booting
stage (R2 = 0.569), but relatively poor at the heading stage (R2 = 0.468).

Table 2. Data description and normality test.

Variable Growth Stage Min Max Mean p-Value CV

Yield – 2.70 4.34 3.57 0.89 11.17%

LAI
Booting stage 2.70 6.20 4.53 0.14 15.24%
Heading stage 2.50 6.40 4.66 0.31 17.13%

CH
Booting stage 0.70 1.03 0.91 0.08 12.36%
Heading stage 1.03 1.25 1.16 0.06 21.66%

CCC
Booting stage 87.66 201.74 148.61 0.07 23.14%
Heading stage 86.74 233.92 163.50 0.06 28.63%

Brightness Booting stage 0.34 0.49 0.44 0.17 9.44%
Heading stage 0.33 0.53 0.44 0.29 13.95%

Greenness
Booting stage 0.07 0.11 0.09 0.08 14.67%
Heading stage 0.05 0.13 0.10 0.49 21.14%

Third
Component

Booting stage 0.31 0.59 0.49 0.17 14.81%
Heading stage 0.30 0.59 0.46 0.98 16.73%

T − G
Booting stage 0.21 0.51 0.40 0.08 20.04%
Heading stage 0.20 0.51 0.37 0.43 22.62%

T/B
Booting stage 0.91 1.19 1.11 0.00 7.30%
Heading stage 0.85 1.27 1.06 0.26 11.63%

Figure 3. Fitting of ground data to yield at different growth stages: (a–c) booting stage; (d–f) heading stage.
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By comparing the yield-estimation performance of the CH, LAI, and CCC, the results
of a Pearson correlation analysis showed that the correlation (r) between the LAI and yield
was improved by integrating SPAD data at the booting stage (Table 3), and the yield fit
was significantly improved (R2 = 0.622 vs. 0.569) (Figure 3). However, at the heading stage,
the correlation decreased after combining SPAD data (R2 = 0.468 vs. 0.347). The yield
estimation with the CH was the poorest of the two periods, and especially at the heading
stage. Therefore, the ground-measured LAI and SPAD data (CCC) were not suitable for
predicting the yield of rice at the heading stage, but they had a good fit at the booting stage.

Table 3. Accuracy comparison of different regression models.

Growth Stage LAI CH
CCC

(LAI × SPAD)
Brightness Greenness

Third
Component

T − G T/B

Booting stage 0.754 ** 0.659 ** 0.789 ** 0.585 ** −0.648 ** 0.750 ** 0.787 ** 0.815 **
Heading stage 0.684 ** 0.527 ** 0.589 ** 0.343 ** −0.407 ** 0.739 ** 0.794 ** 0.702 **

** indicates that the correlation is significant at the 0.01 level (two-tailed).

3.2. Rice-Yield Estimation Using TCT Parameters

The change in rice from booting to heading is a process from nutritional to reproductive
growth. Spikes basically do not appear on the surface of the rice field during the former
period. In contrast, spikes progressively emerge after about two weeks. In addition to the
different apparent information, there is also significant spectral diversity in rice at these two
stages (Figure 4). The spectral characteristics of the rice at the booting stage were consistent
with those of typical green vegetation, but they changed significantly at the heading stage.
The reflectance of the rice canopy during the heading stage was significantly higher in
the visible–NIR range. The appearance of rice spikes has a great influence on the spectral
properties of rice.

Figure 4. Spectra and field photos of rice at different stages: (a) spectral curves of rice at different
stages; (b) actual view of rice at booting stage; (c) actual view of rice at heading stage.

Given the obvious change in the color and texture of the rice canopy caused by the
appearance of panicles, paddy-field images at the booting and heading stages were obtained
through a UAV equipped with a six-band Mini-MCA camera. Subsequently, the brightness,
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greenness, and third-component maps of the spectral-dimension reduction were retrieved
by TCT (Figure 5).

Figure 5. TCT-component images: (a) brightness at booting stage; (b) greenness at booting stage;
(c) third component at booting stage; (d) brightness at heading stage; (e) greenness at heading stage;
(f) third component at heading stage.

It can be noted that the TCT-component diagrams at the booting and heading stages
showed a similar variation pattern. The brightness-component maps showed the overall
variation in the rice reflectance throughout the experimental area, which was remarkably
brighter than the greenness and third-component ones. In a single growth stage, the
brightness of each plot varied with the different nitrogen-gradient conditions: the less
nitrogen fertilizer applied, the darker the image. The gray distributions of the greenness
and third-component images were contrary to that of the brightness-component image,
which showed that the more nitrogen application applied, the darker the image. On account
of the lighter color of the panicle compared with the leaf, the uneven occurrence of panicles
was reflected by different greenness performances during the same growth period. For the
third-component maps, the color at the booting stage was darker than that at the heading
stage, reflecting the water status of the paddy fields and rice.

After completing the normality test (Table 2), a strong correlation (r > 0.5) was shown
between the TCT parameters and rice yield during the booting period (Table 3). However,
in the latter stage, the correlation between the yield and the brightness and greenness
components was significantly lower. A linear fit of the yield and TCT parameters revealed
a satisfactory result for the third component at both stages (R2 values more than 0.5),
but saturation was present at the booting stage (Figure 6). Meanwhile, no saturation was
observed when using the brightness and greenness to predict the yield, but the performance
was poor (R2 values below 0.5 at the booting stage, and below 0.2 at the heading stage).
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Figure 6. Fitting of TCT parameters to yield at different growth stages: (a–c) booting stage;
(d–f) heading stage.

3.3. Rice-Yield Estimation Combining TCT Parameters and VIs

The correlation analysis of the yield vs. UAV-based VIs and TCT-based parameters
(VI × Brightness, VI × Greenness, and VI × Third Component) was performed to compare
the precision of the yield prediction at different growth stages (Figure 7). The results
suggested that there was a strong correlation between the VIs and the yield at the boot-
ing stage (r > 0.7), while at the heading stage, except for the EVI2, NDRE, and SAVI,
the correlation of the VIs vs. the yield decreased to some extent, and especially the
CIgreen vs. yield. Multiplied by the TCT parameters, some of the VIs had a stronger
correlation with the yield, which was more obvious at the heading stage. At the head-
ing stage, the brightness improved the correlation between the CIred edge, CIgreen, NDRE,
WDRVI, and MTCI and the yield. The greenness only improved the correlation of the
CIred edge and CIgreen vs. the yield, and the third component basically improved the
correlation between all the listed VIs and the yield. Based on the correlation analysis,
the yield estimation of the rice was carried out on 22 samples at the booting and head-
ing stages: (1) yield vs. Vis; (2) yield vs. VI × Brightness; (3) yield vs. VI × Greenness;
(4) yield vs. VI × Third Component. The adjusted R2 and RMSE were used to evaluate the
performance of the yield prediction.

The yield-estimation results of the rice at the booting stage are shown in Table 4. The
best-estimated yield parameter in the VIs was the WDRVI, with an adjusted R2 of 0.634.
The prediction results of the VI × Brightness and VI × Third Component were improved
to a certain degree. In contrast, the performance of the VI × Greenness was worse. After
combining the TCT parameters, the optimal yield-estimation variable was the CIgreen. Sev-
eral models with the best fitting effect were selected for analysis (shown in Figure 8).
Except for the CIgreen × Brightness, the other models (WDRVI, CIgreen × Greenness,
CIgreen × Third Component) were saturated with different degrees, of which the WDRVI
was the most obvious one.
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Figure 7. Correlation coefficients between parameters of VI and TCT combinations and yield
(** indicates that the correlation is significant at the 0.01 level).

Table 4. Yield-estimation models incorporating TCT parameters and VIs at the booting stage.

Evaluating
Indicators

Parameters NDVI CIred edge CIgreen EVI2 NDRE WDRVI MTCI SAVI

Adjusted R2

VI 0.628 0.614 0.591 0.553 0.624 0.634 0.606 0.558
VI × Brightness 0.406 0.622 0.638 0.449 0.614 0.532 0.620 0.441
VI × Greenness 0.345 0.562 0.568 0.016 0.152 0.019 0.565 0.062

VI × Third Component 0.575 0.624 0.637 0.545 0.633 0.604 0.622 0.550
VI × (T − G) 0.622 0.623 0.636 0.584 0.639 0.631 0.621 0.592
VI × (T/B) 0.665 0.620 0.603 0.635 0.637 0.662 0.614 0.645

RMSE

VI 0.254 0.265 0.273 0.283 0.261 0.254 0.268 0.281
VI × Brightness 0.334 0.264 0.257 0.321 0.265 0.290 0.265 0.323
VI × Greenness 0.342 0.281 0.278 0.426 0.407 0.428 0.280 0.411

VI × Third Component 0.277 0.264 0.258 0.289 0.259 0.266 0.265 0.286
VI × (T − G) 0.262 0.265 0.259 0.276 0.257 0.258 0.266 0.273
VI × (T/B) 0.245 0.263 0.269 0.256 0.256 0.245 0.266 0.252

Figure 8. Well-performing yield-estimation models incorporating TCT parameters and VIs at the
booting stage.
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The rice-yield-prediction results at the heading stage are shown in Table 5. Compared
with the booting stage, the parameters with the best fitting performance changed, indicating
that the sensitivity of the VIs to the yield varied after the emergence of panicles. The
VI with the best fitting performance in this period was the SAVI (adjusted R2 = 0.600).
Multiplied by the TCT parameters, the estimated result of the VI × Third Component had
a certain degree of improvement. However, the fitting effects of the VI × Brightness and
VI × Greenness were worse. Similarly, the models with good fitting effects were selected
for analysis (Figure 9). Except for the SAVI, the other models (WDRVI × Brightness,
CIred edge × Greenness, NDRE × Third Component) did not show significant saturation.
Therefore, the most appropriate parameter to predict the rice yield at the heading stage
was the NDRE × Third Component (Adjusted R2 = 0.612, RMSE = 0.272).

Table 5. Yield-estimation models incorporating TCT parameters and VIs at the heading stage.

Evaluating
Indicators

Parameters NDVI CIred edge CIgreen EVI2 NDRE WDRVI MTCI SAVI

Adjusted R2

VI 0.477 0.472 0.305 0.585 0.506 0.460 0.485 0.600
VI × Brightness 0.273 0.574 0.409 0.324 0.582 0.583 0.580 0.302
VI × Greenness 0.105 0.497 0.409 0.003 0.088 0.158 0.466 0.010

VI × Third Component 0.597 0.555 0.436 0.533 0.612 0.589 0.567 0.542
VI × (T − G) 0.634 0.546 0.436 0.583 0.604 0.581 0.558 0.595
VI × (T/B) 0.484 0.459 0.314 0.640 0.488 0.454 0.472 0.633

RMSE

VI 0.308 0.310 0.352 0.276 0.299 0.312 0.307 0.269
VI × Brightness 0.379 0.287 0.329 0.363 0.281 0.279 0.285 0.369
VI × Greenness 0.396 0.306 0.329 0.432 0.436 0.417 0.317 0.426

VI × Third Component 0.275 0.292 0.320 0.298 0.272 0.277 0.289 0.295
VI × (T − G) 0.264 0.295 0.320 0.283 0.275 0.280 0.291 0.279
VI × (T/B) 0.305 0.313 0.349 0.258 0.304 0.314 0.310 0.260

Figure 9. Well-performing yield-estimation models incorporating TCT parameters and VIs at the
heading stage.

The TCT parameters were transformed to further improve the accuracy of the rice-
yield estimation and reduce the model saturation. On the one hand, Figure 6 reveals that
the third component was the best fit for the yield at the booting and heading stages, while
the brightness and greenness components were poorly fitted for the yield. On the other
hand, the yield was positively correlated with the brightness and third component, and
negatively correlated with the greenness component. In addition, the fitting model of the
third component and the yield had an obvious saturation phenomenon at the booting
stage, which did not exist in the other components. Therefore, two new parameters of the
difference between the third component and greenness (T − G) and the quotient of the third
component and brightness (T/B) were constructed to fuse the various features of the TCT
parameters. The correlation between the new parameters and the yield was significantly
enhanced at the booting and heading stages (Figure 7). The rice-yield-prediction results
of the VIs incorporating the new TCT parameters are shown in Tables 4 and 5. At the
booting stage, the VIs incorporating T – G and T/B had high yield-estimation accuracy
(RMSE < 0.276 in the VI × (T − G) model, and RMSE < 0.269 in the VI × (T/B) model).
Figure 10 shows the yield-simulation models of the VIs incorporating the newly constructed
parameters, and there was high accuracy in all the models at both periods (R2 values are
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more than 0.6). Nevertheless, all the models at the booting stage had obvious saturation,
but none at the heading stage. This indicated that the VIs combining the information of the
brightness, greenness, and wetness had good suitability for estimating the rice yield at the
heading stage: high accuracy and low saturation.

Figure 10. Well-performing yield-estimation models incorporating TCT combination parameters and
VIs at different stages: (a–d) booting stage; (e–h) heading stage.

At length, the LOO-CV method was used to verify the model of the rice-yield estima-
tion at the heading stage, and the results are shown in Figure 11. The model estimation
errors of the NDRE × (T − G), NDVI × (T − G), SAVI × (T/B), and EVI2 × (T/B) were
less than 7%.

Figure 11. Accuracy-assessment results of the VI × (T − G) and VI × (T/B) models at the heading
stage: (a) NDRE × (T − G); (b) NDVI × (T − G); (c) SAVI × (T/B); (d) EVI2 × (T/B).

4. Discussion

The main purpose of this paper is to improve the accuracy of rice-yield estimation and
reduce the saturation of the models by using the information on the brightness, greenness,
and wetness obtained from TCT and combining the UAV-based VIs. The results demon-
strated that the VIs incorporating the TCT parameters had good potential to solve these
two problems. In crop-yield-estimation studies, an increasing number of parameters have
been used in conjunction with VIs. For example, variables such as the canopy texture [36],
canopy height [24,37], canopy coverage [24], and temperature [38] are frequently fused by
machine-learning methods to improve the crop-yield-estimation accuracy [39]. However,
this approach is too complex, and the models have limited robustness. In this paper, we
combine the advantages of the VIs and TCT parameters in a simple way through a quadratic
operation, which is both easy and has significant accuracy improvement.

The reason for selecting the research period of rice in this paper was that the morphol-
ogy was not completely stable at the tillering stage and jointing stage, and the leaves and
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stems changed greatly in a short time. Furthermore, the filling stage and ripening stage
were close to the harvesting stage, and thus the yield data obtained was of little value. At
the booting and heading stages, the rice gradually completed the transition from vegetative
growth to reproductive growth. At the booting stage, there were almost no panicles in
the rice canopy, while at the heading stage, with the continuous growth of the rice, the
panicles gradually appeared until they covered the whole canopy. Other than that, there
was no significant change in this stage relative to the booting stage (Figure 4b,c). Wang et al.
proposed that the single-growth-stage model (RNDVI) (880, 712) at the booting stage was
most suitable for the yield estimation of rice, with an R2 of 0.75 [18]. Duan et al. pointed
out a new method integrating UAV-based VIs and abundance information retrieved from
spectral mixture analysis to improve the yield-estimation precision of rice at the heading
stage [11]. Zhang et al. put forward that the estimation of the grain yield during the early
to mid-growth stages was significant for the initial diagnosis of rice and the quantitative
regulation of topdressing [40]. Kawamura et al. demonstrated that the booting stage might
be the optimum time for in-season rice-grain assessment [41]. Zhou et al. held that the
booting stage was determined as the optimal period for grain-yield estimation using Vls at
a single stage for both digital images and multispectral images [19]. Therefore, based on
the principle of prediction possibility and time advance, the optimum growth period for
rice-yield simulation was determined to be the booting stage, but the heading stage also
had great potential for high-precision estimation.

We tried to compare the effects of different data sources on the rice-yield estimation in
various stages by collecting the ground data (CH, LAI, and CCC) and UAV remote-sensing
images at the booting and heading stages. Peng et al. remotely predicted the yield of
oilseed rape based on LAI estimation, with good performance [42]. Hence, the rice yield
was first estimated by LAI data. The results showed that the predictive ability of the LAI
at the booting stage was significantly better than that at the heading stage (R2 = 0.569 vs.
0.468) (Figure 3). Liu et al. utilized the LAI integrated with SPAD (LAI × SPAD) data to
demonstrate the potential of estimating rice yields [25]. The LAI × SPAD data and rice
yield in this paper were also used for regression analysis, and the results showed that they
significantly enhanced the ability to predict the rice yield at the booting stage, with an
obvious improvement compared with the LAI (Figure 3). However, at the heading stage,
the CCC reduced the prediction ability of the rice yield, even worse than the simulation
ability of the LAI, which indicated that the appearance of panicles at the heading stage
weakened the predicted potential of the LAI and SPAD. Liu et al. also deemed that the
CCC completely derived from the green leaves of rice had a good correlation with the
yield [25]. Consequently, it was reasonable to speculate that the main reason for the decline
in the yield-estimation ability at the heading stage was the emergence of panicles because
the SunScan canopy analysis system was used in the LAI measurement. According to its
measuring principle, panicles and stems were also a part of the LAI output information,
which was probably unrelated to the yield estimation.

With the improvements in RS technology, more crop-canopy images with different
spatial scales can be obtained, including multispectral and hyperspectral images [17,43].
VIs calculated by the combination of different bands is one of the most used methods
for yield estimation [44]. The eight plot-level VIs (NDVI, CIred edge, CIgreen, EVI2, NDRE,
WDRVI, MTCI, and SAVI) were extracted from the multispectral images at the booting and
heading stages of rice. Then, the VIs and yield data were fitted by the least-squares method.
The results showed a good performance at the booting stage, with a minimum RMSE of
the WDRVI of 0.254 (Table 4). The simulation results of the other VIs listed at this stage
were also satisfactory (RMSE < 0.283). However, there was a most prominent problem of
vulnerability to saturation in the VI-based simulation models. The apparent saturation
phenomenon exhibited that most of the WDRVI values were concentrated around 0.75
(Figure 8). At the heading stage, the ability of the VIs to predict the yield decreased
significantly. Except for the SAVI and EVI2, the simulation accuracies of the rest of the VIs
were very poor (RMSE > 0.3) (Table 5). The CIgreen of the fitting model, in particular, had
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an adjustment R2 of 0.305. The calculation of the CIgreen combined with the reflectance of
the green band, and the appearance of panicles, largely reflected the green characteristics
of the rice, thus affecting the correlation with the yield. According to the simulation results
of the SAVI, the saturation phenomenon was still very distinct (Figure 9). In general,
whether it was the booting stage or heading stage, the rice yield simulated by the VIs was
inevitably saturated.

The appearance of panicles at the heading stage will lead to changes in the rice-
canopy color and other characteristics, which, in turn, have a direct impact on the canopy
reflectance. Therefore, the TCT method was used to extract the brightness, greenness, and
wetness information of the rice at the booting and heading stages to improve the yield-
estimation accuracy and eliminate the saturation. It was found from the TCT-component
maps (Figure 5) that the brightness image at the booting stage was darker than that at the
heading stage, while the greenness and wetness images at the heading stage were darker
than those at the booting stage. This is because the reflectance of the rice canopy at the
heading stage was significantly higher than that at the booting stage, and the brightness
map was a direct mirror of the reflectance. Due to the appearance of panicles, the greenness
of the rice-canopy leaves at the heading stage was replaced by the light color of some of the
panicles, resulting in a decrease in the greenness. According to the water requirement of
rice, it is necessary to irrigate enough water at the booting stage, and at the heading stage,
the water in the paddy fields should be drained off irregularly. Thereby, the wetness of rice
fields at the heading stage would decrease. A correlation analysis and regression analysis
were performed on the TCT parameters and yield data—(Table 3 and Figure 6). The results
showed that the brightness and greenness had poor simulation effects on the yield, while
the wetness had a better effect. However, the saturation appeared in the simulation model
of the wetness at the booting stage, but it did not exist at the heading stage. In a word,
the direct use of the brightness, greenness, and wetness information was not enough to
accurately simulate the rice yield.

Combining the different advantages of the VIs and TCT parameters to simulate the rice
yield (high precision and low saturation), the method of VIs multiplied by TCT components
was employed in this paper. Although some of the parameters were well simulated, the
simulation accuracy of the VI × Greenness models at the booting stage, the VI × Brightness,
and the VI × Greenness models at the heading stage were lower than those of the VI models.
Moreover, there were different degrees of saturation in the fitting models at the booting
stage, but none at the heading stage. In combination with the characteristics of different
TCT parameters (correlation and saturation), VI × (T − G) and VI × (T/B) were established
to estimate the yield of rice at different stages. The models at the booting stage were still
saturated, while the simulation models at the heading stage showed high precision with
no obvious saturation, and estimation errors below 7%. Consequently, the VIs, which
combined the information of the brightness, greenness, and wetness, were suitable for
estimating the rice yield at the heading stage.

In this paper, we developed a new approach to estimating rice yields at the booting
and heading stages using the integration of VIs and the brightness, greenness, and wetness
information retrieved from UAV multispectral images. This method is simple and feasible,
but it has crucial reference significance for the yield estimation of rice and similar crops.
Moreover, the theoretical and technical support was provided for the crop-yield estimation
with evident changes in the canopy over time. In the future, we will further set up more
dense nitrogen-fertilizer gradients to explore the best nitrogen-application amount for rice.
In terms of the LAI measurement, some new instruments (for example, the LI-3100C table
leaf-area meter, LI-COR, USA) will be used to avoid the impact of the panicles and stems on
the output of the LAI, and more realistic LAI data will be obtained to improve and validate
the accuracy of rice-yield estimations by ground-measurement data. Concurrently, this
method will be applied to satellite data and other crops to enable the rapid, nondestructive,
and high-precision estimation of crop yields over larger areas.
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5. Conclusions

In this study, we developed a technique to improve the estimation of rice yields at the
booting and heading stages using UAV-based VIs and TCT-based parameter data. The ground-
measurement data could only be used to predict the rice yield at the booting stage, and the
prediction ability was lost at the heading stage due to the uneven occurrence of panicles. The
UAV-based VIs had similar prediction performances to the ground measurements. Although
the accuracy was high at the booting stage, the yield-estimation models were seriously
saturated. To improve the prediction accuracy and reduce the saturation of the models,
TCT was applied to eliminate the effect of the panicle emergence at the heading stage on
the yield estimation. The TCT-component images at the booting and heading stages of the
paddy fields were produced based on the six-band UAV images, including the brightness,
greenness, and third component (wetness). It was more accurate to use the integration of
the plot-level VIs and TCT-parameter information to estimate the rice yield than using VIs
alone. Among all the parameters, the CIgreen × (T − G), NDRE × (T − G), WDRVI × (T/B),
and NDVI × (T/B) at the booting stage, and NDRE × (T − G), NDVI × (T − G), SAVI
× (T/B), and EVI2 × (T/B) at the heading stage, were the most accurate indicators for the
rice-yield estimation under different nitrogen-fertilizer treatments, with estimation errors
below 7%. The VIs, which combined the brightness, greenness, and third component, were
more suitable for estimating the rice yield at the heading stage, with their advantages of high
accuracy and low saturation. This paper can provide theoretical and technical support for
crop-phenotype-parameter extraction and precision agriculture.
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Abstract: The accurate identification of weeds in peanut fields can significantly reduce the use
of herbicides in the weed control process. To address the identification difficulties caused by the
cross-growth of peanuts and weeds and by the variety of weed species, this paper proposes a weed
identification model named EM-YOLOv4-Tiny incorporating multiscale detection and attention
mechanisms based on YOLOv4-Tiny. Firstly, an Efficient Channel Attention (ECA) module is added
to the Feature Pyramid Network (FPN) of YOLOv4-Tiny to improve the recognition of small target
weeds by using the detailed information of shallow features. Secondly, the soft Non-Maximum
Suppression (soft-NMS) is used in the output prediction layer to filter the best prediction frames
to avoid the problem of missed weed detection caused by overlapping anchor frames. Finally, the
Complete Intersection over Union (CIoU) loss is used to replace the original Intersection over Union
(IoU) loss so that the model can reach the convergence state faster. The experimental results show
that the EM-YOLOv4-Tiny network is 28.7 M in size and takes 10.4 ms to detect a single image,
which meets the requirement of real-time weed detection. Meanwhile, the mAP on the test dataset
reached 94.54%, which is 6.83%, 4.78%, 6.76%, 4.84%, and 9.64% higher compared with YOLOv4-Tiny,
YOLOv4, YOLOv5s, Swin-Transformer, and Faster-RCNN, respectively. The method has much
reference value for solving the problem of fast and accurate weed identification in peanut fields.

Keywords: weed identification; YOLOv4-Tiny; attention mechanism; multiscale detection; precision
agriculture

1. Introduction

Peanut is one of the leading oil crops in the world and is vital to global oil produc-
tion. However, weed competition [1] is an essential factor restricting peanut production,
reducing peanut production by 5–15% owing to annual grass damage. Research has shown
that peanut production in farmlands with 20 weeds per square meter is 48.31% less than a
no-weed control group. In addition, weeds facilitate the breeding and spread of diseases
and insect pests, resulting in the frequent emergence of peanut diseases and insect pests [2].
The conventional weeding method of spraying pesticides incurs a significant amount of
pesticide waste and causes irreversible pollution to the farmland. Owing to the develop-
ment of precision agriculture [3], the investigation of site-specific weed management [4]
for weed prevention and control has intensified gradually. An efficient detection and
identification method for peanuts and weeds is necessary to achieve accurate weed control
and management in the farmland.

Currently, many methods are proposed for weed detection, including remote sensing
analysis [5], spectral identification [6], and machine vision identification [7]. The equipment
required for remote sensing analysis and spectral identification methods is expensive and
difficult to promote in agricultural production. The machine vision identification method
has been widely used in weed identification because of its low cost and high portability.
Bakhshish et al. [8] used Fourier descriptors and invariant moment features to form a
shape feature set and implemented weed detection based on artificial neural networks.
Rojas et al. [9] extracted the texture features of weeds using the gray-level co-occurrence
matrix. They used principal component analysis to reduce the dimensionality of the
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features and finally used a support vector machine algorithm to complete the classification.
Although these methods achieve the identification of crops and weeds, they rely excessively
on the manual design and selection of image features, are susceptible to environmental
factors such as lighting, and have poor stability and low recognition accuracy.

The development of deep learning technology [10] has enabled convolutional neural
networks to reveal deeper features in images, which possess stronger generalization ability
than manually selected features. Gai et al. [11] proposed an improved YOLOv4 model
for fast and accurate detection of cherry fruit in complex environments. Khan et al. [12]
established a weed identification system for pea and strawberry fields based on an im-
proved Faster-RCNN, whose maximum average accuracy for weed recognition was 94.73%.
Sun et al. [13] used YOLOv3 to identify Chinese cabbages in a vegetable field. They em-
ployed image processing methods to tag plants around Chinese cabbages as weeds. To
detect weeds in a carrot field, Ying et al. [14] incorporated deep separable convolutions and
an inverted residual block structure into YOLOv4 and replaced its backbone network with
MobileNetV3-Small, which improved the recognition speed of the model; however, the
average recognition accuracy was only 86.62%. The studies mentioned above indicate that
although deep learning can solve the problem of manual feature design in conventional
image processing methods, the following issues remain: 1) although using a deep-seated
network model for weed detection improves the recognition accuracy, the recognition
speed cannot satisfy real-time requirements owing to its large volume; 2) improving the
recognition speed by trimming the model network renders the model insensitive to smaller
target recognition and reduces its recognition accuracy.

In this study, peanuts and six types of weeds were used as recognition objects, and
a weed recognition model based on the improved YOLOv4-Tiny [15] was developed to
address the issues above. First, based on YOLOv4-Tiny, CSPDarkNet53-Tiny [16] was used
as the backbone network of the model to ensure real-time detection performance; next, a
multiscale detection model was implemented by introducing the detailed information of
shallow-layer features in an FPN [17] to improve the ability of smaller target recognition.
In addition, an ECA [18] module was used to calibrate the effective feature layer to enhance
key information pertaining to weeds in the image. Finally, the soft-NMS [19] function
was used in the output prediction layer to replace the NMS [20] function to filter the
prediction box.

2. Materials and Methods

2.1. Materials
2.1.1. Data Acquisition

The weed images used in this study were obtained from peanut fields in more than
20 areas in Henan Province, China. A Fuji Finepixs4500 camera was used to capture
artificial images with a resolution of 2017 × 2155 in JPG format; 855 images were obtained,
including those of a single weed, sparsely distributed weeds, and overgrown weeds.
The images were captured at 7:00, 13:00, and 17:00 via high-angle overhead shots from
approximately 70 cm relative to the ground. Based on investigation and screening, the weed
types selected were Portulaca oleracea, Eleusine indica, Chenopodium album, Amaranth
blitum, Abutilon theophrasti, and Calystegia. No imbalance was indicated between any
two types of weeds. The shape and color of the six weeds are shown in Figure 1.
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Figure 1. Shape and color of six weeds. (a) Portulaca oleracea, (b) Eleusine indica, (c) Chenopodium
album, (d) Amaranth blitum, (e) Abutilon thophrasti, (f) Calystegia hederacea.

2.1.2. Data Enhancement and Annotation

Overfitting in the training set caused by excessively small data sizes was prevented
using the following methods: image horizontal and vertical flip, brightness increase and
decrease (randomly increase or decrease the original brightness by 10%–20%), and Gaussian
noise addition (variance σ = 0.05) for random image enhancement [21]. Figure 2 shows an
example of the effect of data enhancement. The data enhancement method was only used in
the training set. The expanded dataset contained 3355 images. Information regarding weeds
and peanuts in the image was annotated using the LabelImg software. The annotation
format was Pascal VOC2007, and the file type was .xml. The dataset was categorized into
training and test sets. The number of pictures in each dataset is shown in Table 1.

Figure 2. Data enhancement.
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Table 1. Dataset after data enhancement.

Dataset Train Test Total

Original Images 700 155 855
Flip Horizontally 500 0 500

Flip Vertically 500 0 500
Brightness Increase 500 0 500
Brightness Decrease 500 0 500

Gauss Noise 500 0 500
Total Number 3200 155 3355

2.2. Methods
2.2.1. EM-YOLOv4-Tiny Network

YOLOv4-Tiny comprises four components: an input layer, a backbone network, an
FPN, and an output prediction layer. The images received were uniformly scaled to a size
of 416×416. The features were extracted from CSPDarkNet53-Tiny and then sent to the
FPN for feature fusion. The location and category information of the target was obtained
in the output prediction layer. CSPDarkNet53-Tiny primarily comprises a CBL module
and a cross-stage partial (CSP) module [22]. The CBL module comprises a convolutional
layer, batch normalization, and a Leaky Relu [23] activation function in series. It is the
smallest module in the overall network structure and is used for feature control splicing and
sampling. The CSP module is an improved residual network structure that can segment
the input feature map into two components: the main component stacks the residual, and
the other is fused in series with the main component after some processing. CSPDarkNet53-
Tiny contains three CSP modules: CSP1, CSP2, and CSP3. As the dimensions of the output
feature map are reduced, the location information in the CSP module becomes increasingly
vague, the detailed information becomes increasingly scarce, and the ability to detect smaller
targets is gradually weakened. To solve these problems, a path connected to the CSP2 layer
in the FPN was added, while the output characteristics of the CSP2 layer were fused with
the upsampling results in the channel dimension to form an output focused on the detection
of smaller targets. The EM-YOLOv4-Tiny network structure is shown in Figure 3.

Figure 3. EM-YOLOv4-Tiny network Structure, where Conv is convolution, BN is batch normaliza-
tion, Leak Relu is activation function, Maxpool is maximum pooling, ResUnit is the residual unit,
Upsample is upsampling, ECA is efficient channel attention module, Contact is the feature fusion
method of adding channel numbers, Yolo Head is the prediction anchor, CBL is series fusion module
of Conv, BN, and Leak Relu, and CSP is cross-stage partial module.
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To further improve the detection accuracy, the ECA module was used repetitively to
process the effective features in the FPN. The attention module suppressed the background
information in the image and enhanced the key information through weight calibration [24].
Regarding the predicted output, the EM-YOLOv4-Tiny network yielded three outputs of
different scales, namely 13 × 13, 26 × 26, and 52 × 52.

2.2.2. ECA Attention Mechanisms

Multiscale prediction for hierarchical detection was utilized in this study to detect
smaller targets. Although shallow features have smaller receptive fields, which can enable
better detection of smaller targets, they result in considerable irrelevant noises, thus affect-
ing the network’s ability to assess the importance of information obtained from an image.
By introducing the ECA attention module into the neck section of YOLOv4-Tiny, the weed
features in the image could be further enhanced while irrelevant background weights were
suppressed.

In the ECA network, the input features were first pooled globally, and a single nu-
merical value was used to represent the characteristics of each channel. Next, a fast
one-dimensional convolution [25] of size k was performed to assign weights for each
channel to realize information exchange between channels. Finally, the weight proportion
of each channel was generated using the sigmoid function [26], and features with channel
attention were obtained by merging with the original input features. More details about
the ECA network can be found in Appendix A.

2.2.3. Use of Complete Intersection over Union Loss

Owing to the scale invariance and non-negativity of the IoU [27], the latter is typically
set as the bounding box loss function in conventional target detection networks. Specifically,
IoU refers to calculating the ratio of the prediction box and the real box, which can better
reflect the quality of the regression box. However, using IoU as the loss function still
has some problems. On the one hand, when the positions of two bounding boxes do not
intersect (IoU = 0), the loss function will become non-differentiable. On the other hand,
when the overlap rate of prediction frames is the same, IoU cannot accurately reflect the
location information of both.

Therefore, the CIoU [28] was used in this study as the loss function for training.
Additionally, the overlap degree and the distance between the prediction and real boxes
were considered comprehensively, and the aspect ratio of the prediction box was added
as a penalty term to stabilize the regression results. More details about CIoU loss can be
found in Appendix B.

2.2.4. Soft-NMS Algorithm for Filtering Prediction Boxes

For the output and prediction of YOLOv4-Tiny, the NMS algorithm filters redundant
prediction boxes around the target to be detected. The NMS algorithm deletes prediction
boxes whose confidence is below the preset threshold, filters boxes that belong to the same
category, and obtains the highest score in a specific area; hence, it effectively eliminates
redundant bounding boxes. However, in cases involving dense weed growth or severe
mutual occlusion between weeds and peanuts, the NMS algorithm deletes prediction boxes
that belong to other targets, thus resulting in missed detections. To solve this issue, the soft-
NMS instead of the original NMS was used in this study. When multiple prediction boxes
appeared around a weed, their scores were multiplied by a weighting function to weaken
those that overlapped with the box with the highest score. In this regard, the Gaussian [29]
function was used as the weighting function, and the calculation is as follows:

Scorei= Scorei·e
−IoU(Ci,B)

σ (1)

where Scorei represents the score of the current box, Ci represents the current bounding
box, and B represents the prediction box with the highest score. The greater the overlap

273



Agriculture 2022, 12, 1541

between the prediction box and the box with the highest score, the stronger the weakening
ability of the weighting function and the lower the score assigned to it.

2.2.5. Model Performance Evaluation Indices

In this study, indices typically used in multiclass target detection models, such as
precision, recall rate, mean average precision (mAP), and F1 value, were used to evaluate
the model performance.

Precision indicates the proportion of correct detections in all the prediction boxes, and
Recall indicates the proportion of correctly detected label boxes in all label boxes.

Precision =
TP

TP + FP
, (2)

Recall =
TP

TP + FN
, (3)

where TP represents the number of correctly detected weeds; FP represents the number of
incorrectly detected weeds; and FN represents the number of missed detections of weeds.

AP represents the average precision of a class of detected objects, and mAP is the
mean average value of AP for all classes.

AP =
∫ 0

1
Precision d Recall, (4)

mAP =
1
N

N

∑
1

AP(k) (5)

The F1 value can be regarded as a harmonic mean of Precision and Recall, as follows:

F1 = 2 ×Precision × Recall
Precision + Recall

(6)

The evaluation indices selected in this study were calculated based on a threshold
of 0.5. In the follow-up experiments, the mAP was used as the primary performance
evaluation index of the model.

2.2.6. Model Training

The software and hardware environment of model training and testing are shown in
Table 2. In order to further improve the recognition accuracy of the model, this study used
a transfer learning method to initialize the weights of the model. Before model training, the
EM-YOLOv4-Tiny network was pretrained with the Pascal VOC dataset, and the weight file
with the highest map in the training results was used as the pretraining weight to initialize
the model. Meanwhile, the K-means [30] algorithm was used to cluster the anchor boxes in
the dataset, and a total of 9 anchor boxes with different sizes were obtained: (19, 31), (56, 62),
(90, 82), (103, 158), (149, 125), (175, 217), (250, 171), (241, 291), and (320, 335). This makes the
true size of the anchor frame closer to the size of the weed to be detected. During training,
the number of samples in each batch was set to 16, and the loading of the entire training
set was considered an iteration. The adaptive moment estimation algorithm was used to
optimize the model, the initial learning rate was set to 0.001, and the cosine annealing
algorithm was employed for attenuation. After 150 iterations, the model converged.
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Table 2. Training and test environment configuration table.

Configuration Parameter

Operating System Ubuntu 18.04.1 LTS
CPU Intel(R) Xeon(R) Silver 4114 CPU @ 2.20GHz
GPU NVIDIA Tesla T4

Accelerate Environment CUDA10.2 CuDNN7.6.5
Pytorch 1.2
Python 3.6.2

3. Results

3.1. Performance Evaluation of EM-YOLOv4-Tiny

Based on the standard of the MS COCO dataset provided by Microsoft, weeds with
a resolution lower than 32×32 were defined as smaller targets. Several types of weeds
exist in peanut fields, with some being smaller in morphological appearance than others.
The standard YOLOv4-Tiny network tends to misdetect when identifying smaller targets.
Based on the comparison results of EM-YOLOv4-Tiny and YOLOv4-Tiny using the same
test set as shown in Table 3, the recognition precision rates of the EM-YOLOv4-Tiny for
smaller targets and all targets were 89.65% and 94.54%, respectively, which surpassed the
precision rates of the original network by 10.12% and 6.83%, respectively. The improved
network combined the location and detailed information of the shallow-layer feature and
improved the ability to identify smaller weeds via the addition of a channel attention mech-
anism, which suppresses the abundant noise in smaller receptive fields. The recognition
performances before and after the network improvement are shown in Figure 4. The EM-
YOLOV4-Tiny network included a new scale output in the neck section while the backbone
network structure of the model remained unchanged, and the average inference time of
each image increased to only 4.4 ms, indicating that the proposed network maintained a
high inference speed while improving the recognition precision.

Table 3. Comparison of detection results of YOLOv4-Tiny and EM-YOLOv4-Tiny.

Models
mAP/%

Volume/MB Time/ms
Small Targets All Targets

YOLOv4-Tiny 79.53 87.71 22.4 6
EM-YOLOv4-Tiny 89.65 94.54 28.7 10.4

Figure 4. Comparison of detection results of YOLOv4-Tiny and EM-YOLOv4-Tiny, where (a–c) repre-
sent the recognition effect of the YOLOv4-Tiny model, and (d–f) represent the recognition effect of
the EM-YOLOv4-Tiny model.

275



Agriculture 2022, 12, 1541

3.2. Performance Comparison of Improved Methods

To further demonstrate the effectiveness of the improved method in enhancing the
model performance, different modules were benchmarked against the original YOLOv4-
Tiny target detection network. The results are shown in Table 4.

Table 4. Influence of different improved modules on YOLOv4-Tiny network.

Method Precision/% Recall/% mAP/% F1/% Time/ms

YOLOv4-Tiny 87.60 75.60 87.71 0.80 6.0
YOLOv4-Tiny + K-Means 91.80 74.80 88.90 0.82 6.0
YOLOv4-Tiny + K-Means+

Soft-NMS 88.16 84.91 90.37 0.86 6.0

YOLOv4-Tiny + K-Means+
Soft-NMS + scale3 95.40 82.90 93.72 0.89 9.0

YOLOv4-Tiny + K-Means+
Soft-NMS + scale3 +

ECA(EM-YOLOv4-Tiny)
96.7 85.90 94.54 0.90 10.4

scale3 represents an improved strategy for employing multiscale detection in the network.

After obtaining the anchor box using the K-means clustering algorithm, the mAP and
F1 values of the model were 1.2% and 2% higher than the original values, respectively,
indicating a better match in size between the anchor box and the target to be detected.
When using the soft-NMS algorithm to filter the prediction box, the recognition precision
decreased. Still, the recall rate increased by approximately 10%, indicating the effectiveness
of soft-NMS in improving missed detections. When a new functional layer was added
to focus on detecting smaller targets, the detection time increased slightly, but the mAP
and F1 values increased by approximately 3%. When the ECA attention mechanism was
introduced into the network, the noise caused by shallow features was reduced, and
Recall increased by 3%. In general, the proposed methods improved the weed detection
performance of the network.

3.3. Performance Comparison of Different Attention Mechanisms

To further verify the advantages of the channel attention mechanism used in this study,
under the same experimental conditions, the SE attention mechanism and CBAM attention
machine were used as controls at the same location as the network. The experimental
results are shown in Table 5.

Table 5. Performance comparison after using different attention modules.

Method Precision/% Recall/% mAP/% F1/% Time/ms

Base-SE 96.3 79.6 92.32 0.87 11
Base-CBAM 97.5 80.8 93.15 0.88 12

Base-ECA(EM-
YOLOv4-Tiny) 96.7 85.9 94.54 0.90 10.4

Base represents the combined model obtained by using methods of K-Means, multiscale strategy, and soft-NMS,
and its result can be found in Table 4.

Compared with the ECA attention network, the SE network uses a full connection
to realize information exchange between channels, which increases the computational
load and causes feature loss due to dimensionality reductions. The CBAM network is a
convolutional block attention module that introduces location information in the channel
dimension using the global maximum pool. However, it is limited to local range information
instead of long-range dependent information. As shown in Table 5, after different attention
mechanisms were added, each performance index improved compared with those of the
original model. Among them, the ECA attention module outperformed the others; its mAP
was higher than those of the other two attention modules by 2.22% and 1.39%, respectively,
implying that the ECA network is more suitable for the model used in this study.
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Similarly, in order to further explore the impact of the attention module on the weed
detection model, the grad cam method was used in this study to visually analyze the
features of the networks before and after adding the attention mechanism. From the
detection results in Figure 5, we know that when the attention mechanism module is not
added, the network will appear to pay attention to the background information when
performing the detection. In contrast, the network incorporating the attention mechanism
pays more attention to the information of the object to be detected through the recalibration
of the weights. Comparing the feature visualization results of the three attention networks,
the ECA network used in this study shades darker on the small target weeds in the images,
indicating more attention to the information of small targets.

Figure 5. Visual heat map of attentional mechanisms, where (a) represents the original image;
(b) represents the results of using the base model; (c) represents the results of using the base model and
the SE attention mechanism; (d) represents the results of using the base model and the CBAM attention
mechanism; (e) represents the results of using the base model and the ECA attention mechanism.

3.4. Comparison of Performance with Different Network Models

To verify the efficiency and practicability of the proposed model, several classical
target detection models, such as YOLOv4, YOLOv5s, and the Faster-RCNN, were used to
test the efficiency of weed detection. In the comparison experiments, strict control was
exerted over the parameters. Specifically, 416×416 images were used uniformly as the
input to the training network, and identical training and test sets were used throughout the
experiments. The results are shown in Table 6.

Table 6. Performance comparison results of multiple target detection networks.

Model mAP/% F1/% Time/ms Volume/MB Parameter/×106

Faster-RCNN 84.90 0.78 121 111.4 28.3
YOLOv4 89.76 0.80 25.2 234 64.0
YOLOv5s 87.78 0.86 15 27.1 7.1

Swin-Transformer 89.70 0.89 20.4 117.8 30.8
DETR 95.3 0.92 32.7 158.9 41

EM-YOLOv4-Tiny 94.54 0.90 10.4 27.8 6.8

As shown in Table 6, the average recognition accuracy of all types of networks for
weeds exceeded 85%. The mAP of the EM-YOLOv4-Tiny network proposed herein was
94.54%, and its F1 value was 0.9, which is higher than those of the other four target detection
networks. Because the test set contained a few smaller target weeds, the Faster-RCNN
network did not construct an image pyramid and was insensitive to the detection of smaller
targets, resulting in a low Recall and a mAP of only 87.71%. Compared with YOLOv4, the
proposed network introduced multiscale detection and the attention mechanism based on
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YOLOv4-Tiny, whose mAP and F1 were 4.78% and 10% higher than those of the YOLOv4
network, respectively. Moreover, the volume and number of parameters of the proposed
model were much smaller than those of the original YOLOv4 network, indicating that
the improved network preserved the merit of lightness. The lightweight YOLOv5s and
EM-YOLOv4-Tiny exhibited similar model volumes and testing times; however, the mAP
of YOLOv5s was only 87.78%, which was similar to that of the original YOLOv4-Tiny.
Although the lightweight network had a simple structure, it was susceptible to overlooking
occluded and smaller targets during detection.

Transformer-based target detection networks like Swin-Transformer and DETR were
also trained and tested on the dataset in this study. The recognition accuracy is generally
better than that of the CNN-based network. Still, the size of the model and the slow
detection speed is not conducive to the deployment and development of embedded devices.
It is worth mentioning that the Transformer structure is on an unstoppable trend to overtake
the CNN structure in the existing studies. In future research, this study will also consider
incorporating the Transformer structure into EM-YOLOv4-Tiny, working to improve the
accuracy of the model further.

3.5. Comparison of Performances under Different Scenarios

To evaluate the robustness of the model in different scenarios, three different datasets
were prepared based on the different growth densities of peanuts and weeds: single weed,
sparsely distributed weeds, and overgrown weeds. The test results obtained using the
proposed network on the three datasets are shown in Table 7 and Figure 6. The experimental
results show that the proposed model performed favorably in terms of weed detection
under different growing conditions and accurately located peanuts and various weeds
via boundary box regression. The average recognition accuracies of the three datasets
mentioned above were 98.48%, 98.16%, and 94.3%, respectively, with a mean value of
96.98%. When the density of peanuts and weeds was high, the model accurately identified
occluded weeds while demonstrating excellent recognition of small target weeds.

Table 7. Performance comparison results of models in different scenarios.

Scenarios Precision/% Recall/% mAP/% F1/%

Single Weed 94.67 96.03 98.48 0.95
Sparsely Distributed 95.97 93.21 98.16 0.94

Vigorous Growth 90.24 89.52 94.30 0.90
Mean 93.62 93.01 96.98 0.93

Figure 6. Effect of model recognition under different scenarios.
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4. Discussion

4.1. Deep Learning for Weed Detection

In this study, the target detection technology based on deep learning was used to
detect weeds in peanut fields and achieved good results. In similar weed detection work,
many researchers [31,32] used unmanned aerial vehicles (UAVs) with intelligent sensors
to detect weeds in the field. The UAV can cover a large area in a short time and generate
a weed map of the field to guide the weeding device to the designated area for weeding.
However, producing a weed map is very challenging due to the similarity of the crops and
the weeds. In contrast, deep learning technology can automatically learn the discriminant
characteristics between crops and weeds through a deep convolution neural network, which
can better solve the problem of weed detection in a complex environment. Hussain [33]
used the improved YOLOv3-Tiny network model to detect two kinds of weeds in the
wild blueberry field, and the F1 values of the two kinds were 0.97 and 0.90, respectively.
This also shows the great potential of the deep learning method in the field of weed
detection. However, the actual agricultural production environment is often changeable
and uncontrollable. The proposed method may also have certain limitations when the
application scenario changes, such as a large increase in weed species and extreme weather.
Although deep learning technology has a strong learning and adaptive ability, it must be
combined with many other technologies to contribute to agricultural development.

4.2. Challenge of Small Target Detection

Small target detection has always been a research hotspot in the field of target detection.
Multiscale detection and feature fusion are the most commonly used methods to solve
the problem of small target detection. In this study, the idea of multiscale detection
and the attention mechanism were introduced into YOLOv4-Tiny, which improved the
recognition ability of the model for small target weeds. The multiscale feature learning
method improves the sensitivity of the original network to small target detection by fusing
the details of shallow features. The attention module recalibrates the input features with
weights, which makes up for the defect that the receptive field of shallow features is
small and easily produces noise. However, the existing feature fusion methods, such
as concatenation, cannot fully take into account the feature information of the context,
which also leads to the model missing or falsely detecting weeds on some small targets. In
agricultural production, many application scenarios for small target detection will also exist.
The pests are too small and mostly have protective colors, making pest detection a challenge
in the pest control process. The accurate identification and positioning of small fruits and
vegetables is also key to fruit and vegetable picking. Therefore, small target detection
remains a more significant challenge in agriculture. Fortunately, the detection regarding
small targets has been ongoing. Wei et al. [34] used a Path Aggregation Feature Pyramid
Network (PAFPN) structure to fuse the multiscale features obtained by the Attention
Mechanism Network to get high-level multiscale semantic features. The global feature
fusion method, like PAFPN, is better than the local feature fusion method in small target
detection. Therefore, in subsequent research we will consider adding appropriate feature
fusion algorithms to our own networks to further improve the recognition ability of the
model for small targets.

4.3. Limitations and Shortcomings

Although the network proposed in this study can better identify weeds in peanut
fields, some noteworthy problems still need further research. First of all, the data in this
study only include weeds in the peanut seedling stage, and the collected area is only in
Henan Province, China. Future research will focus on collecting weed data in peanuts
in other growth stages and will cover as many regions as possible. Secondly, although
the network in this paper improves the recognition accuracy of the model compared with
the original YOLOv4-Tiny network, it also increases the volume of the model to a certain
extent. Zhang et al. [35] used the deep separation convolutional network to replace the
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original convolutional network, which not only improved the accuracy of the model but
also reduced the number of parameters and calculations of the network. In subsequent
research, we plan to introduce this method into the network of this paper. Finally, the
improvement strategy of the multiscale detection and the attention mechanism has been
proved to be highly practical in this study. Still, other advanced research continues, such as
on the Transformer [36], the Generative Adversarial Network [37], and so on, which have
attracted more and more attention. It is worth further exploring the introduction of these
technologies into our own network and improving the detection performance of the model.

5. Conclusions

To rapidly and accurately identify various types of weeds in peanut fields, a weed
recognition method named EM-YOLOv4-Tiny was proposed. Based on YOLOv4-Tiny,
multiscale detection and the attention mechanism were introduced, the CIoU was used as
the loss function for training, and the soft-NMS method was used to screen the prediction
box to improve the model performance in identifying small targets. The proposed model
shows better recognition accuracy than Faster-RCNN, YOLOv5s, YOLOv4, and Swin-
Transformer. In addition, the volume of the EM-YOLOv4-Tiny model was 28.7 M, and the
single detection time was 10.9 ms, which rendered the model suitable for the embedded
development of intelligent weeding robots.

In future work, this research will transplant the constructed model to a suitable
embedded device for testing and select an intelligent spraying device to complete the
precise weeding in the peanut field. In addition, the model will also be used in applica-
tions on smartphones so that farmers can better understand field information and make
timely decisions.
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Appendix A

The ECA network structure is shown in Figure A1. In the ECA network, a fast
one-dimensional convolution with a convolution kernel k was performed to realize local
cross-channel interactions, which reduced the computational workload and complexity of
the entire connection layer. A positive interaction occurred between the channel dimension
C and the convolution kernel size k, i.e., a larger C resulted in a larger k. The relationship
between the two can be expressed as follows:

C =∅(k) (A1)

C is typically measured in an exponential multiple of 2. Therefore, the relationship
between the two can be more reasonably expressed as follows:

C =∅(k)= 2(γ×k−b), (A2)
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Here,

k = ϕ(C) =

∣∣∣∣ log2(C)

r
+

b
γ

∣∣∣∣
odd

, (A3)

where |n|odd represents the odd number closest to n, with γ and b being 2 and 1, respectively.

Figure A1. ECA network structure, where C is the channel dimension of the input data, H is the
height of the input data, and W is the width of the input data. GAP denotes global average pooling,
and k denotes the size of the convolution kernel using fast one-dimensional convolution.

Appendix B

As shown in Figure A2, the CIoU bounding box regression loss function directly
minimizes the normalized distance between the predicted box and the real target box,
taking into account the overlapping area of the detection box as well as the distance from
the center point of the detection box. The measurement parameter of the consistency of the
aspect ratio between the detection frame and the real target frame is also added to make
the model more inclined to optimize in the direction of the dense overlapping area.

Figure A2. CIoU diagram, where r represents the center point distance d of the two detection boxes,
and d represents the distance between the diagonals of the smallest rectangle containing the two
detection boxes.

The loss function of the CIoU is calculated as follows:

CIoULoss= 1 − CIoU = 1 − IoU +
ρ2(b, c)

d2 + av (A4)
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where d represents the distance between the diagonals of the smallest rectangle containing
the two boxes; b and c represent the coordinates of the central points of the real and
prediction boxes, respectively; ρ2(b, c) is the function for solving the Euclidean distance
between the two mentioned points; and av is the penalty term for border scale.

The a in Equation (7) is the parameter used to balance the ratio, and v is the parameter
that measures whether the ratio of the true frame is consistent with the predicted frame.
The calculation of both is as follows:

v =
4

π2

{
arctan

wc

hc −arctan
wb

hb

}2

(A5)

a =

{
0 , if IoU < 0.5

v
(1−IoU)+v , if IoU ≥ 0.5

, (A6)

where wc and hc represent the width and height of the prediction box, and wb and hb

represent the width and height of the real box.
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Abstract: Soil is one of the most significant natural resources in the world, and its health is closely
related to food security, ecological security, and water security. It is the basic task of soil environmental
quality assessment to monitor the temporal and spatial variation of soil properties scientifically and
reasonably. Soil moisture content (SMC) is an important soil property, which plays an important role
in agricultural practice, hydrological process, and ecological balance. In this paper, a hyperspectral
SMC estimation method for mixed soil types was proposed combining some spectral processing
technologies and principal component analysis (PCA). The original spectra were processed by
wavelet packet transform (WPT), first-order differential (FOD), and harmonic decomposition (HD)
successively, and then PCA dimensionality reduction was used to obtain two groups of characteristic
variables: WPT-FOD-PCA (WFP) and WPT-FOD-HD-PCA (WFHP). On this basis, three regression
models of principal component regression (PCR), partial least squares regression (PLSR), and back
propagation (BP) neural network were applied to compare the SMC predictive ability of different
parameters. Meanwhile, we also compared the results with the estimates of conventional spectral
indices. The results indicate that the estimation results based on spectral indices have significant
errors. Moreover, the BP models (WFP-BP and WFHP-BP) show more accurate results when the same
variables are selected. For the same regression model, the choice of variables is more important. The
three models based on WFHP (WFHP-PCR, WFHP-PLSR, and WFHP-BP) all show high accuracy
and maintain good consistency in the prediction of high and low SMC values. The optimal model
was determined to be WFHP-BP with an R2 of 0.932 and a prediction error below 2%. This study
can provide information on farm entropy before planting crops on arable land as well as a technical
reference for estimating SMC from hyperspectral images (satellite and UAV, etc.).

Keywords: soil moisture content; spectral processing technology; hyperspectral; principal component
analysis; feature parameters extraction

1. Introduction

Soil moisture content (SMC) is the carrier of material and energy cycle in the soil
system, which has an important influence on soil characteristics, vegetation growth and dis-
tribution, and the regional ecosystem [1,2]. Meanwhile, the SMC is related to soil nutrient
contents by facilitating organic matter decomposition [3], enhancing carbon sequestra-
tion [4], and resulting in an increase in crop yield [5]. In agriculture, a timely and effective
grasp of the distribution and future trend of soil moisture in the field is of great significance
to effectively save water resources, improve the utilization efficiency of agricultural water
and sustainable utilization of water and soil resources, and effectively monitor and control
farmland drought in real time [6,7].

Agriculture 2022, 12, 1188. https://doi.org/10.3390/agriculture12081188 https://www.mdpi.com/journal/agriculture
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The traditional artificial SMC measurement method, which is based on point and
laboratory measurement, has high precision but the limited scope, a large workload, low
efficiency, and high cost, and is difficult to meet the actual needs of SMC monitoring [8,9].
Remote sensing and satellite data have been widely used in monitoring soil and crop
systems, such as soil organic matter [10], crop evapotranspiration [11], water stress [12],
and yield monitoring [13]. In the case of soil moisture, researchers have reported that
hyperspectral imagery has more advantages over regular satellite-based multi-spectral
imagery owing to the higher information level stored in the hyperspectral images [14].
Accordingly, hyperspectral remote sensing (HRS) technology has been widely used in
SMC monitoring research due to its advantages of large area, non-contact, and timeliness,
making up for the shortcomings of traditional methods [15]. HRS can be used for large-scale
non-destructive monitoring by analyzing the spectral variation characteristics of different
soil properties, which is more suitable for assessing and mapping the spatial variation of
soil properties [16]. As a robust stoichiometric means, soil spectroscopy has been proven to
be an effective alternative to wet chemistry in soil environmental quality monitoring [17].
However, there are obvious spectral noise and serious scattering phenomena in the original
soil spectral data obtained by HRS [18]. There is inevitably noise unrelated to SMC in
the soil hyperspectral, which will increase the detection difficulty of SMC. In addition,
HRS contains huge amounts of data. Therefore, more thorough denoising and variable
optimization become the key to establishing a model with higher accuracy [19].

In the aspect of hyperspectral data preprocessing, many studies have been carried
out, such as reciprocal, logarithm, and first differential studies [20–22]. Because the soil
spectral curve is the comprehensive expression of the interaction and superposition of
various substances, the determination of characteristic bands is not only difficult, but
also has a high degree of uncertainty and weak denoising. Subsequently, scholars used
spectral denoising methods to process hyperspectral data, such as Savitzky–Golay filtering,
median operation, moving average, etc. However, for white noise, especially random
and low-frequency signals, these methods are difficult to remove noise without affecting
the effective signal [23]. The wavelet packet transform (WPT) can compress the signal
while retaining the original information and has been gradually used in the estimation
of soil properties and achieved certain results. For example, Gu et al. found that the
high-frequency coefficient generated by wavelet transform and random forest algorithm
can be used to invert soil organic matter content [24]. Given the above spectral pretreatment
technologies, some new methods for estimating SMC still need to be explored.

In the study of SMC estimation, the estimation accuracy of SMC depends on the selec-
tion of characteristic variables and the estimation model. At present, there are two kinds
of models for estimating soil composition based on soil spectral properties: the physical
model based on mechanism information and the statistical model based on experience.
In the mechanism model method, the quantitative change mechanism of soil reflectance
caused by different water content is very complex, and its inversion effect and adaptability
of results are limited [8]. However, the widely used statistical model has the advantages
of being simple and direct and can obtain accurate and stable results. At present, the
estimation of soil characteristics by soil spectra mostly adopts stepwise multilinear re-
gression [25,26], principal component regression [27], neural network regression [16,28],
support vector machine regression [17,29], and partial least squares regression [30,31]. The
relationship between SMC and soil hyperspectral is complex and has great nonlinearity
and randomness. Its spectral characteristics are difficult to be explained by several bands.
Therefore, the simple regression model has certain deficiencies in dealing with nonlin-
ear, heteroscedasticity, multicollinearity, and other complex problems, and it is difficult
to obtain good estimation accuracy [32]. In SMC estimation, these methods inevitably
lead to missing or redundant information, which directly affects the results. There is a
need to explore approaches that can overcome these obstacles, such as machine learning.
The neural network model has a strong nonlinear approximation ability, can effectively
establish the global nonlinear mapping relationship between input and output [33–35], and
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has advantages in data fitting, function approximation, and other aspects [36,37]. Good
results have been achieved by using the neural network model to estimate soil composition.
For example, Pellegrini et al. obtained satisfactory results by using the artificial neural
network in estimating soil microbial biomass [16].

In this paper, the hyperspectral data of different types of soils were measured to
analyze the variation trend of reflectance with different SMC. Meanwhile, some spectral
processing technologies and PCA were employed to extract characteristics variables for
estimating SMC of mixed soils. This non-destructive estimation technique is simple, fast,
and time efficient. Finally, the PCR, PLSR, and back propagation (BP) regression models
were constructed and compared with the spectral-index models. The use of machine learn-
ing makes full use of its nonlinear learning characteristics to achieve accurate estimation of
SMC under different conditions. Our objectives are (1) to compare the role of characteristic
parameters obtained by different spectral processing techniques in estimating SMC, (2) to
compare the performance of different regression algorithms in estimating SMC, and (3) to
compare the importance of the selection of characteristic variables with the selection of
regression models and to construct the SMC high-precision prediction model suitable for
mixed soil scenarios.

2. Materials and Methods

2.1. Study Area

The study area is located in Hengshan County, Northern Shaanxi Province, China.
As shown in Figure 1, the sampling areas are located in the Loess Plateau of Northern
Shaanxi, adjacent to the Mu Us Desert in the north and the Loess hill in the south. The
region has a temperate semi-arid continental monsoon climate with a year-round average
daily temperature of 8.6◦, and the general characteristics of temperature and rainfall are
large inter-annual and inter-monthly variations. The soil types mainly include sandy and
loessial soil (SS and LS). The sampling points of different soil types are evenly distributed in
the whole study area as far as possible. The main tributaries in the area include the Wuding
River, Dali River, etc. Due to these geographical factors, the experimental area is not only
rich in soil types, but also has great differences in SMC, which is of great significance for
the study of SMC estimation.

 
Figure 1. Study region and soil sampling area (the blue dots show the sampling areas).

2.2. Soil Spectral Measurement

The collected soil samples are quickly measured for spectral data in the laboratory.
The soil spectral reflectance was measured using the ASD Field Spec FR spectrometer (Ana-
lytical Spectral Devices, Inc., Boulder, CO, USA), with a wavelength range of 350–2500 nm.
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The soil samples were placed in a black vessel (with a diameter of 8 cm and a depth of
2 cm) in turn, and their surface was scraped flat. A 50 W halogen lamp was used as the
light source, and the distance between the light source and the experimental sample is
0.5 m. The distance between the spectrometer probe and the soil sample was 0.2 m. Before
each spectral measurement, the diffuse reflection standard reference plate was used for
calibration. Four spectral curves were collected for each soil sample, and their arithmetic
mean value was taken as the spectral data of the soil sample.

2.3. Determination of SMC

To obtain more accurate and regionally representative SMC data, the destructive
sampling approach was recommended [38]. The areas with flat terrain, exposed surface,
and no shelter were selected as the sampling areas. About 20 sampling points were
determined in total in the sampling areas (Figure 1). In addition, different soil types were
considered in sampling, and a total of 84 soil samples were collected. The soil samples
were collected from the surface soil with a depth of 0.2 m. They were brought back to the
laboratory through aluminum boxes to avoid water evaporation. The soil samples placed
in the aluminum box were dried in the oven (105 ◦C) until the weight did not change, and
the SMC was measured by the drying method. The calculation formula is as follows:

SMC =
M1 − M2

M2 − M3
× 100%, (1)

where M1 is the total weight of the aluminum box and soil before drying, M2 is the total
weight of the aluminum box and soil sample after drying, and M3 is the weight of each
aluminum box after drying.

2.4. Spectral Indices Construction

Since the strong absorption of water leads to changes in reflectance, spectral indices
with some physical significance calculated from the reflectance of different bands have
been proposed for predicting SMC. Due to the unambiguous physical significance, some
spectral indices have been proposed to predict SMC. However, these parameters inevitably
remain somewhat regional and generalized. To compare with the method presented in this
study, we selected some common two- and three-band spectral indices (Table 1).

Table 1. The common spectral indices selected in this paper.

Spectral Indices Formula Reference

EVI 2.5(R1828−R630)
R1828+6R630−7.5R450+1

[39]
TVI 0.5[120(R666 − R834) − 200(R794 − R834)] [38]
DSI R1760 − R1715 [40]

NDMI R2027−R1878
R2027+R1878

[41]
SARVI 1.5(R1820−R670)

R1820+R670+0.5
[39]

2.5. Spectral Processing Technologies

Spectral preprocessing is very useful for feature extraction and noise removal [30].
For example, WPT can perform a more detailed decomposition and reconstruction of high
and low-frequency information of hyperspectral data [19]. This information processing
result has no redundancy or omission, which is more conducive to spectral information
noise reduction and original information retention, so it is widely used. In this research, the
decomposition and reconstruction of the spectral data by WPT were performed according
to the following steps.

(i) Wavelet packet analysis. The wavelet master function used in the study was Db10 [42],
by which the noise-bearing spectra were decomposed.
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(ii) Determination of the optimal wavelet packet basis. The calculation of the optimal
wavelet packet basis was based on the least-cost principle.

(iii) Wavelet packet coefficient thresholding. This process required quantization of the
wavelet packet coefficients, which was based on a soft threshold “s” of good continuation.

(iv) Spectral reconstruction. The results in (ii) and (iii) were applied to reconstruct the
spectral information, and finally, the noise-reduced spectra were obtained.

Spectral measurements are susceptible to factors, such as observation angle and
illumination, making the signal-to-noise ratio of spectral data comparatively poor. After
differential processing, not only can the influence of changes in illumination conditions on
the target spectra be reduced, but also the background can be partially eliminated, thus
better strengthening the spectral variance and highlighting the target characteristics. The
first-order differential (FOD) treatment can improve the spectral sensitivity and eliminate
the influence of the partial environmental background to reveal the spectral characteristics
of the soil interior. The FOD was calculated as follows.

Ref’(λi) = [Ref(λi+1) − Ref(λi−1)]/(λi+1 − λi−1), (2)

where λi−1, λi, and λi+1 are the wavelengths of adjacent bands and Ref is the first-order
differential value.

However, none of these traditional methods can obtain robust and noiseless character-
istic variables. Harmonic decomposition (HD) transforms hyperspectral data from the time
domain to the frequency domain in the form of sine and cosine phase superposition, and
finally obtains parameters such as residual term, amplitude, and phase. The calculation
method is shown in Figure 2. These variables can reveal the average value and variation of
the energy, and the position of the maximum value in different bands of the spectra.

 
Figure 2. Illustration of the harmonic decomposition algorithm in pseudo-code.
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2.6. Model Construction and Validation

After the correlated characteristic variables (WF and WFH) were obtained by spectral
processing technologies (WPT, FOD, and HD), they need to be dimensionally reduced
to remove redundancy. The principal component analysis (PCA) method can recombine
original variables into a group of new comprehensive variables unrelated to each other
to achieve feature extraction and dimension reduction [43]. When performing PCA, the
components whose cumulative variance contribution rate exceeds 95% of the variable is
taken as the new characteristic variable in this study.

It is very important to determine the regression model based on the relationship
between independent and dependent variables for accurate estimation of SMC. Princi-
pal component regression (PCR) is one of the common methods to solve the problem of
collinearity in logistic regression analysis [44]. It integrates the information of variables
with high correlation into the principal component with low correlation through princi-
pal component transformation and then replaces the original variable to participate in
regression calculation. Partial least squares regression (PLSR) is more commonly used as a
linear multiple regression analysis method [45]. By analyzing the relationship between the
prediction matrix X (independent variable) and the response matrix Y (dependent variable),
the initial input data are projected into a potential space, and then many potential variables
are extracted by using orthogonal structure, and the linear relationship between these new
variables and Y is found. This method does not directly consider the regression modeling
of the dependent variable and independent variable, but comprehensively screens the
information in the variable system, and selects several new components with the best
explanatory ability for the system for regression modeling. Through such information
screening, the noise that has no explanatory effect on the dependent variable is eliminated.
Backpropagation (BP) neural network is a widely used nonlinear modeling method in the
artificial neural network, which is suitable for data prediction [46]. The learning process is
composed of forwarding propagation and backpropagation. In the forward propagation
process, input data are gradually processed from the input layer to the output layer through
the hidden layer. If the data error obtained by the output layer is not within the allowed
range, the error is backpropagated and the weight of each neuron is adjusted layer by layer
by the gradient descent method. Until the error meets the specified requirements, it has a
better estimation effect for complex nonlinear prediction. In this paper, we choose these
three methods to conduct regression modeling for spectral characteristic parameters and
SMC and compare their advantages and disadvantages.

Hyperspectral estimation of SMC based on spectral processing technologies and PCA
mainly includes the following four steps (Figure 3):

(i) Data collection: preliminary investigation, spatial layout planning of soil sampling
sites, and laboratory spectroscopy and SMC measurements were included.

(ii) Data processing: the original hyperspectral data were processed by WPT, FOD, and
HD, and the characteristic variables were obtained by PCA dimensionality reduction.

(iii) Data set partitioning: 54 groups were randomly selected from 84 groups of sample
data as training samples, and the other 30 groups were used as validation data to form
the training and validation datasets. The SMC data description is shown in Table 2.

(iv) Modeling and validation: PCR, PLSR, and BP were used to construct the estimation
models of SMC. The coefficient of determination (R2), root mean square error (RMSE),
and mean absolute error (MAE) were used to evaluate the model accuracy. Related
calculations are shown as follows.

RMSE =

√
∑n

i=1
(yi − ŷi)

2

n
, (3)

MAE =
1
n

n

∑
i=1

∣∣∣yi − ∧
yi

∣∣∣, (4)
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where yi is the true value, ŷi is the predicted value, and n is the number of samples.

Table 2. Descriptive statistics of SMC in soils.

Soil Types Samples
SMC (%)

Min Max Mean SD CV(%)

Loessial soil 51 3.36 58.43 9.65 8.05 83.40
Sandy soil 33 0.46 38.65 12.09 11.03 91.18

Training data 54 2.09 58.43 10.99 10.02 91.14
Validation data 30 0.46 34.83 10.72 8.87 82.74

Mixed soil 84 0.46 58.43 10.89 9.62 88.34

 
Figure 3. Flowchart indicating experimental methodology (WPT: wavelet packet transform; FOD: first-
order differential; HD: harmonic decomposition; WFP: WPT-FOD-PCA; WFHP: WPT-FOD-HD-PCA).

3. Results

3.1. Comparison of Hyperspectral Characteristics of Soils with Different SMC

Some spectral curves over the whole moisture content range were randomly selected
for comparison. Hyperspectral curves of different soil types (LS, SS, and MS) are shown in
Figure 4. The spectral curves of different soil types have similar shapes and the absorption
characteristics of water at 1450 nm and 1960 nm dominate the spectral characteristic curves
of soil. For LS, the reflectance of all observation bands generally decreases with the increase
of SMC (Figure 4a). However, for SS and MS, the variation of spectral reflectance with SMC
does not show a consistent variation law (Figure 4b,c). For these three different soil types,
the sensitivity of spectral reflectance to SMC is low in visible and near-infrared bands,
and the change is more obvious in other bands. Moreover, the characteristic of mineral
absorption at 2200 nm is obvious when SMC is low but disappears gradually with the
increase of SMC.
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Figure 4. Hyperspectral curves of different soil types: (a) LS; (b) SS; (c) MS.

3.2. Estimation of SMC by Conventional Spectral Indices

The SMC data in the calibration set were adopted as the dependent variables, and
five commonly available spectral indices (EVI, TVI, DSI, NDMI, and SARVI) were applied
as independent variables to construct the inverse models using linear regression and the
PLSR method, and the validation results were shown in Figure 5. The results showed that
the selected spectral indices had limited accuracy in predicting the SMC of mixed soil types.
Except for TVI, the remaining four indices exhibited varying degrees of overestimation
or underestimation at different SMC. Although TVI did not demonstrate overestimation
or underestimation (the regression line was close to the 1:1 line), the model errors were
large and the points deviating from the 1:1 line were more clustered. Compared with the
individual spectral indices inversion results, the PLSR model based on five indices had a
higher accuracy (R2 over 0.8 and error below 4%). In addition, the model did not exhibit
local overestimation or underestimation.

3.3. Correlation Analysis between Spectral Data and SMC

The correlation analysis between the original spectral data and the processed data
of the original spectra (including WPT, FOD, and HD) and SMC was performed. The
results are shown in Figure 6. SS, LS, and MS indicate the Pearson correlation coefficient (r)
between the original spectra of different soil types (LS, SS, and MS) and the corresponding
SMC. WO and WF represent the correlation between the WPT of original spectral data and
FOD after WPT and SMC, respectively. The original spectral reflectance of SS is highly
correlated with SMC except for the visible bands (|r| > 0.6, p < 0.01). The correlation
between LS and SMC becomes much weaker (|r| < 0.5, p < 0.01). For MS, the correlation
is between SS and LS (about 0.5, p < 0.01). Therefore, for the estimation of SMC of MS,
parameters with higher correlation need to be extracted. Compared with the original
spectra, WO does not significantly improve the correlation with SMC. Although WF cannot
improve the correlation with SMC in all bands, it can produce parameters with a strong
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correlation in many characteristic bands. Finally, 180 characteristic bands were selected
from WF data with |r| > 0.6 to estimate SMC.

 

Figure 5. The comparison of measured and estimated SMC: (a) EVI; (b) TVI; (c) DSI; (d) NDMI;
(e) SARVI; (f) PLSR model of five spectral indices.
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Figure 6. The Pearson correlation coefficient between spectra and SMC.

3.4. Harmonic Characteristic Parameter Acquisition

The feature parameters of harmonic spectra (WFH: remainder, amplitude, and phase)
were acquired by decomposing the selected WF data of MS. The correlation between these
extracted components and SMC was computed. To keep consistent with the number of
characteristic parameters of the selected WF data, the number of harmonic decomposi-
tions was determined to be 180. Figure 7 demonstrates the correlation between harmonic
characteristic parameters and SMC of MS.

 

Figure 7. The Pearson correlation coefficient between harmonic characteristic parameters and SMC.

The result of correlation analysis reveals that the variables at the beginning and
end of the decomposition numbers have a strong correlation with SMC (|r| close to 0.8,
p < 0.01). The figure is roughly symmetrical in the center. Furthermore, the correlation
coefficient shows a periodic change of alternating positive and negative values. Except for
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the beginning and the end, the correlation between other characteristic parameters close
to the middle and SMC is weak (|r| < 0.5, p < 0.01). Since the correlation of characteristic
parameters is periodic, half of the parameters (A0/2, Ah=1,2,4, Bh=1,2,3, C h=1,2,3, and ϕh=1)
with high correlation with SMC (|r| > 0.7) were selected.

3.5. Dimension Reduction of Characteristic Parameters Based on PCA

After extracting the characteristic parameters through a series of spectral processing
techniques (including WPT, FOD, and HD), WF and WFH data were obtained. Since many
relevant characteristic parameters are included (180 of WF and 11 of WFH), it is necessary
to simplify these parameters. To reduce the redundancy of variables and the input of the
models, WF and WFH were processed by the PCA method, and the first five variables of
the PCA results (PCA1-5) were chosen as the input characteristic variables of the SMC
estimation models. The results of PCA are shown in Table 3.

Table 3. The PCA results in eigenvalue and variance contribution rate.

PCA
Eigenvalue Variance Contribution (%) Accumulative Contribution (%)

WF WFH WF WFH WF WFH

PCA1 927.6 × 10−8 0.0756 89.742 94.279 89.742 94.279
PCA2 40.8 × 10−8 4.613 × 10−8 3.216 3.457 92.958 97.736
PCA3 16.55 × 10−8 1.572 × 10−9 1.762 1.253 94.720 98.989
PCA4 10.17 × 10−8 1.396 × 10−10 0.965 0.102 95.685 99.091
PCA5 9.36 × 10−8 1.631 × 10−10 0.230 0.056 95.915 99.147

It turns out that the contribution rates of cumulative variance of the first five principal
components of WF and WFH were 95.915% and 99.147%, respectively. The PCA perfor-
mance of WFH data is better than that of WF data. PCA1-5 of WFH data roughly includes
the harmonic characteristic variable information before processing, which not only retains
a large amount of original data information, but also effectively compresses the original
data. According to all PCA results, two characteristic variables were established: WFP
(PCA of WF) and WFHP (PCA of WFH).

3.6. SMC Estimation and Model Validation Using Spectral Processing Technologies and
Harmonic Indicators

Three regression estimation models (PCR, BP, and PLSR) were selected to explore the
validity of characteristic variables and the accuracy of the soil moisture estimation models.
Based on the modeling of WFP and WFHP, six SMC prediction models were established:
WFP-PCR, WFHP-PCR, WFP-BP, WFHP-BP, WFP-PLSR, and WFHP-PLSR. For the BP
neural network model, the topology of the model was finally determined as 5-3-1 after
several debugging. That is, the number of nodes in the input layer is 5, the number of
hidden layers is 5, and the output result layer is 1. Meanwhile, the times of iterations,
adaptive learning rate, momentum factor, and the learning error were set as 3000, 0.01, 0.9,
and 0.001, respectively. The precision and error of the modeling set and validation set are
shown in Table 4. The WFHP has better performance than WFP for the PCR, PLSR, and BP
models in calibration and validation datasets. For the same regression model, BP neural
network has the highest accuracy than PCR and PLSR. In all similar models, the accuracy
of the validation set is slightly lower than that of the modeling set.

To further observe the effect of different variables and different methods on the
estimation of different SMC, the scatter diagram of the estimated and measured value of
SMC in the validation dataset is shown in Figure 8. Each row represents different regression
models of similar characteristic variables (WFP or WFHP), and each column represents
the same regression model of different characteristic variables (PCR, PLSR, or BP). The red
dotted line indicates the 1:1 line. It can be found that the WFP-based models are prone to
underestimation when the SMC exceeds 10% (below the 1:1 line), while the WFHP-based
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models can accurately estimate SMC in the whole range (almost overlaps with the 1:1 line).
For the same characteristic variable, the effect of PLSR and BP is significantly better than
that of PCR (closer to the 1:1 line).

Table 4. Accuracy comparison of different regression models.

Model
Calibration Validation

R2 RMSE (%) MAE (%) R2 RMSE (%) MAE (%)

WFP-PCR 0.812 3.693 3.363 0.763 4.261 3.771
WFHP-PCR 0.851 3.279 2.819 0.836 3.523 2.902
WFP-PLSR 0.882 2.977 2.632 0.863 3.086 2.759

WFHP-PLSR 0.902 2.673 2.601 0.907 2.826 2.583
WFP-BP 0.917 2.504 2.132 0.909 2.626 2.286

WFHP-BP 0.945 2.115 1.653 0.932 2.311 1.834

 

Figure 8. The comparison of measured and estimated SMC: (a) WFP-PCR; (b) WFP-PLSR; (c) WFP-BP;
(d) WFHP-PCR; (e) WFHP-PLSR; (f) WFHP-BP.

Compared with the traditional spectral indices prediction results (Figure 5), the valida-
tion accuracy of all models, except the WFP-PCR model, was higher with an error below 3%
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(Table 4 and Figure 8). This indicated that there was a great potential for spectral variables
based on spectral processing techniques upon SMC estimation for mixed soil types.

4. Discussion

Traditional soil moisture measurements using neutron scattering, drying method,
and resistance method have been part of many agricultural studies [47–49]. While these
measurements provide accurate results, they are tedious, time consuming, and laborious,
making it difficult to scale in large areas [50]. Compared with traditional soil moisture
monitoring methods, remote sensing has incomparable advantages such as a large area and
being a macroscopic, real-time, and dynamic method [30]. The hyperspectral sensor can
detect the subtle changes in surface characteristics, and hyperspectral quantitative inversion
provides an effective technical means for dynamic monitoring of regional SMC [9,19].
However, obtaining the best characteristic variables of SMC estimation of mixed soil
types has always been difficult in modeling. In SMC estimation, the original soil spectral
reflectance data contain much noise and a lot of redundant information, which cannot
be used directly to estimate SMC. There are many differences in spectral characteristics
of different soil types. For example, in SS spectral analysis, the reflectance of all bands
decreases with the increase of SMC overall (Figure 4), showing a strong negative correlation
(Figure 5). In LS, except for SMC, the variation rule of reflectance is not obvious due to the
difference in organic matter content, grain size distribution, mineral composition, and soil
color [51], thus reducing the correlation with SMC. However, the small content of these
substances in SS has a small impact on reflectance. Therefore, it is difficult to establish
a general SMC estimation model. In most cases, it is necessary to carry out the spectral
transformation on the original soil spectral reflection data, such as reciprocal, logarithm,
FOD, etc. to extract characteristic bands or parameters to obtain feature variables [52].
However, these methods have a low noise reduction function and cannot deal with data
background and noise well, which directly affects the accuracy of subsequent estimation.

In this paper, the results of several traditional spectral indices for estimating SMC
showed that both univariate linear regression models and multivariate PLSR models had
significant errors. Therefore, it is necessary to explore the variables and methods for SMC
estimation in mixed soil types.

Through correlation analysis, it can be found that the correlation between WF and SMC
is significantly higher than that of the original spectra and SMC (Figure 6). It shows that
the FOD spectra can eliminate some effects of background and atmosphere, but still cannot
achieve satisfactory results. In this paper, the HD method was adopted. The soil spectra
were converted to frequency spectra to obtain harmonic characteristic parameters based
on Fourier transform theory to effectively reduce the uncertainty of spectral parameter
calculation. Furthermore, harmonic parameters can better reflect soil spectral changes
caused by subtle changes in soil internal components. Compared with traditional spectral
parameters, harmonic characteristic parameters (remainder, amplitude, and phase) are
more correlated with SMC (Figure 7). Finally, 11 harmonic characteristic parameters with
high correlation (|r| > 0.7) were selected. Based on the FOD and HD, the PCA method
was applied to reduce the dimensionality of data and two kinds of feature parameters were
gained: WFP and WFHP.

In parameter estimation studies using empirical models, PLSR, BP, and PCR all showed
good effects [16,28,30]. To explore the applicability of the two types of characteristic parame-
ters extracted in this paper (WFP and WFHP), these three models were used for comparison
of estimation. The results show that WFPH is superior to WFP in SMC estimation in these
three models (Table 4 and Figure 8). When selecting the same characteristic parameters
(WFP or WFHP), the effects of PLSR and BP models are significantly better than PCR. The
advantage of the PLSR model is that it can strengthen the error convergence ability of the
model when the sample size is not particularly sufficient, while BP is a nonlinear distribu-
tion that can better reflect SMC and is mainly good at nonlinear prediction. Soil spectra
are a comprehensive reflection of various soil properties, and the selection of estimation
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model alone cannot effectively solve the problem of accurate estimation of SMC. Therefore,
it is necessary to explore some common and stable characteristic parameters to establish a
more robust and suitable SMC inversion model. The harmonic characteristic parameters
constructed in this paper can transform complex signals in the time domain into simplified
signals in the frequency domain, which can not only suppress or eliminate ground object
background noise, but also highlight the spectral characteristics of the ground object with
low order harmonic components to achieve the effect of data compression. Therefore, the
SMC prediction ability of the three models (BP, PLSR, and PCR) was effectively improved.
Moreover, the advantage of harmonic variables in predicting SMC also reflects that they can
accurately predict different SMC, including low and high values, while WFP parameters
are underestimated at high values of SMC (Figure 8).

To further check the performance of the optimal model (WFHP-BP) in this paper for
SMC estimation in different soil types, the validation models for single soil types are shown
in Figure 9. It can be found that the estimation accuracy of SMC is better than that of
mixed soil types in both SS and LS, and neither of them shows local overestimation and
underestimation. This may be because single soil types are more consistent physically or
chemically and thus receive less interference from other factors. Since the BP neural network
model has a nonlinear learning capability, the estimated values of SMC for different soil
types did not appear to be overestimated or underestimated.

 

Figure 9. The comparison of measured and estimated SMC of different types of soil.

This study provided effective parameters and methods for nondestructive estimation
of SMC in mixed soil types, and future research should be devoted to using satellite imagery
as an alternative to ground-based measurements because of its large area, economy, time
savings, and high temporal resolution, which can provide a data source for real-time field
SMC mapping.

5. Conclusions

In this paper, a feature extraction method based on spectral processing technologies
(WPT, FOD, and HD) and PCA was proposed, and three regression prediction methods
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(PCR, PLSR, and BP) were combined to compare the accuracy and applicability of SMC
estimation for mixed soil. It is observed that for SS with less impurity, the variation of
spectral reflectance can well describe the difference in SMC. However, for LS and MS, the
spectral reflectance cannot be directly used to predict the SMC due to the influence of
organic matter content, grain size distribution, mineral composition, and soil color. After
WPT and FOD transformation using the original spectral data, two sets of data can be
obtained after HD: WF and WFH. Meanwhile, the PCA method was utilized to reduce the
dimensionality of these two datasets to obtain two sets of characteristic parameters: WFP
and WFHP. The results of three regression models (WFP-PCR, WFHP-PCR, WFP-PLSR,
WFHP-PLSR, WFP-BP, and WFHP-BP) indicated that the WFHP-based models showed
better performance than that of WFP-based models. Among the different regression
methods, BP neural network has the highest accuracy as a result of its nonlinear prediction
ability. The best prediction model is WFHP-BP (R2 = 0.932, RMSE = 2.311, MAE = 1.834
for the validation dataset). Moreover, harmonic variables have advantages in predicting
SMC values in a larger range. This study can provide a theoretical basis and technical
support for establishing SMC inversion models suitable for various types and a large
range of soils. Future research should focus more on the use of satellite remote sensing
data and on proposing physical or chemical indicators of soils that are more suitable for
SMC estimation.
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