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Abstract: Using explosive material to fragment rock masses is a common and economical method
in surface mines. Nevertheless, this method can lead to some environmental problems in the
surrounding regions. Flyrock is one of the most dangerous effects induced by blasting which needs to
be estimated to reduce the potential risk of damage. In other words, the minimization of flyrock can
lead to sustainability of surroundings environment in blasting sites. To this aim, the present study
develops several new hybrid models for predicting flyrock. The proposed models were based on a
cascaded forward neural network (CFNN) trained by the Levenberg–Marquardt algorithm (LMA),
and also the combination of least squares support vector machine (LSSVM) and three optimization
algorithms, i.e., gravitational search algorithm (GSA), whale optimization algorithm (WOA), and
artificial bee colony (ABC). To construct the models, a database collected from three granite quarry
sites, located in Malaysia, was applied. The prediction values were then checked and evaluated using
some statistical criteria. The results revealed that all proposed models were acceptable in predicting
the flyrock. Among them, the LSSVM-WOA was a more robust model than the others and predicted
the flyrock values with a high degree of accuracy.

Keywords: blast-induced flyrock; LSSVM; optimization; prediction models

1. Introduction

Drilling and blasting is an indispensable technique for breakage and displacement of
rock masses in open-pit mines. Nevertheless, some undesirable phenomena, such as ground
vibration, airblast, flyrock (FR), and backbreak are produced by blasting operations [1–5].
Any blasting event produces a sudden ejection of rock pieces, which are referred to as
“FR”. This phenomenon is one of the most hazardous environmental issues induced by
blasting which may lead to various problems for humans, including fatalities [6–9]. As
mentioned in previous studies, some blast design factors, such as burden (B), spacing (S),
stemming (ST), weight charge (WC), and powder factor (PF), are the effective factors in the
intensity of FR [8–10]. Aside from the aforementioned factors, the properties of the rock
mass, such as rock density and uniaxial compressive strength, are considered the effective
factors on the FR, called uncontrollable factors [9,10]. The FR can occur based on three
different mechanisms, i.e., rifling, face burst, and cratering [11,12]. The poor ST material,
the small ratio of ST to blast-hole diameter, and inadequate B are the most important causes
for the rifling, cratering, and face burst mechanisms [9,13].

Sustainability 2023, 15, 8424. https://doi.org/10.3390/su15108424 https://www.mdpi.com/journal/sustainability
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In the literature, numerical simulations are considered to be the common methods
to study the blasting mechanism in rock masses. According to Kutter and Fairhurst [14],
three main zones, i.e., the crushed, cracked, and elastic vibration zones, can be formed
after each blasting event. Additionally, the in-situ stress has an important effect on the
propagation of cracks produced by blasting. To study the failure responses of rocks, the
distinct element method (DEM), finite difference method (FDM), and finite element method
(FEM) have been extended in recent years by many scholars [15–20]. As an example, a two-
dimensional discrete element method was used to numerically simulate the mechanism
of rock fragmentation produced by blasting in the study conducted by Hajibagherpour
et al. [19]. They showed that the proposed numerical model can be effectively employed
to simulate the crack propagation process around a blast-hole. Aside from numerical
modelling, several empirical models have been employed to predict flyrock [20]. These
empirical models have been formulated based on considering only one or two of the
effective factors of flyrock. For this reason, the accuracy of the mentioned empirical models
is not good enough. Therefore, the use of artificial intelligence methods can be a good
solution to predict FR with a high degree of performance. Additionally, the use of artificial
intelligence methods in different fields of mingling and civil engineering indicates the
effectiveness of these methods for predicting and optimizing aims [21–31].

An artificial neural network (ANN) model was employed to predict FR in the study
conducted by Monjezi et al. [32], and its performance was compared with statistical models.
Their results indicated the performance of ANN was better than statistical models in
predicting FR. For the same purpose, Ghasemi et al. [33] employed ANN and fuzzy system
(FS) and showed better prediction capability of FS over ANN. Moreover, the ANN model
was compared with the adaptive neuro-fuzzy inference system (ANFIS) for the prediction of
FR by Trivedi et al. [34]. They revealed higher performance in respect to accuracy of ANFIS
compared with the ANN model. In another study, a genetic programming (GP) model was
employed by Faradonbeh et al. [35] to predict FR. In their study, the non-linear regression
models were also used for comparison aims. They concluded that the GP predicted FR with
a higher performance in comparison to non-linear regression models. The GP model was
also employed by Ye et al. [36] and its results was compared with a random forest model.
According to their results, the performance of GP was better than the random forest model.

The present study attempts to propose several efficient hybrid models through the
cascaded forward neural network (CFNN) and also the least squares support vector ma-
chine (LSSVM) in combination with three optimization algorithms, including artificial bee
colony (ABC), gravitational search algorithm (GSA), and whale optimization algorithm
(WOA), for the prediction of FR.

The rest of this article includes the following sections. More details about the source
of the database and the developed models are explained in the second section. Then, the
setting parameters in the modelling processes are explained in the third section. The results
and discussions are provided in the fourth section; finally, the last section presents the
conclusions of the study.

2. Research Significance

FR is considered as an environmental and hazardous problem in mine blasting, which
may result in human injuries, fatalities, property damage, and instability of slopes. Hence,
a valid and reliable prediction of FR has critical implications in mitigating and controlling
the adverse effects along with sustainable development and responsible mining. In other
words, the control and minimization of FR can lead to sustainability of surroundings
environment in blasting sites. For the aforementioned aims, the present study attempts to
propose several efficient hybrid models through the CFNN and also LSSVM in combination
with three optimization algorithms. To the best of our knowledge, this is the first work that
predicts the FR by using the proposed models.

2
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3. Materials and Methods
3.1. Materials

The database used in this study was collected from three granite quarry sites located
in Malaysia, including the Ulu Tiram, Pengerang, and the Masai quarry sites. The values of
the rock quality designation (RQD) of the aforementioned quarry sites ranged from 45 to
80, 50 to 70, and 40 to 75, respectively. Additionally, the values of the rock strength ranged
from 30 to 110 MPa, respectively. In total, 80 datasets including some effective parameters
on the FR were used in constructing the predictive models. In this regard, the S, B, ST,
PF, and density were used as the input parameters, and the FR was used as the output
parameter. More details about the statistical properties of datasets will be provided in
Section 5.

3.2. Methods

In this study, the LSSVM is combined with the ABC, GSA, and WOA to predict FR.
Additionally, the CFNN model is also used for comparison aims. In this section, the
mentioned models are briefly explained.

3.2.1. LSSVM Model

LSSVM is a robust machine learning technique. This method was proposed as an up-
graded form of the SVM, which suffered from some drawbacks in its learning stage, namely
the demand in calculability and the limitation in dealing with inequality constraints. There-
fore, LSSVM becomes an efficient ML technique after fixing the aforesaid issues [37,38]. For
a regression task which aims at finding a suitable correlation that emulates the behaviour
of a system defined by a set of data having inputs x = {x1, x2, . . . , xN} that xj ∈ RD and
N is the number of samples in the set, and targets t defined on R as y = {y1, y2, . . . , yN},
the first step in the LSSVM method consists of formulating the following minimization
problem [39]:

minimize 1
2 wTw + 1

2 γ

N

∑
j=1

(
e2

j

)

s.t. yj = wT ϕ
(
xj
)
+ b + ej, i = 1, 2, . . . , N

(1)

where ej denotes the regression error, γ represents the regularization parameter, T points
out the transpose operator, w and b are the weight and bias parameters, respectively, and ϕ
is a nonlinear mapping function.

The learning phase of LSSVM passes through finding the proper values of w and b. To
this end, the formulated minimization problem is transformed into a Lagrangian function
using the formula shown below [40]:

L(w, b, α, e) =
1
2

wTw +
1
2

γ ∑N
j=1

(
e2

j

)
−∑N

j=1 αj

(
wT ϕ

(
xj
)
+ b + ej − yj

)
(2)

where the coefficients αi are called Lagrangian multipliers. The solution of L is obtained by
solving the following system of equations:





∂L(w,b,α,e)
∂w = 0⇒ w = ∑N

j=1 αj ϕj
(
xj
)

∂L(w,b,α,e)
∂b = 0⇒ ∑N

j=1 αj = 0
∂L(w,b,α,e)

∂ej
= 0⇒ αj = γej, j = 1, 2, . . . , N

∂L(w,b,α,e)
∂αj

= 0⇒ wT ϕ
(
xj
)
+ b + ej − yj = 0, j = 1, 2, . . . , N

(3)
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The above system which defines the vanishing of the partial derivatives of L with
regard to w, b, e, and α can be arranged in the following matrix scheme:

[
0 1T

N
1N Ω + γ−1 IN

][
b
α

]
=

[
0
y

]
(4)

In the above equation, IN points out N × N size identity matrix, y = [y1, y2, . . . , yN ]
T ,

α = [α1, α2, . . . , αN ]
T , 1N = [1, 1, . . . , 1]T , and Ω is the kernel matrix. The elements of this

latter term are expressed as follows:

Ωj,l = ϕ
(
xj
)

ϕ(xl) = K
(

xj, xl
)

(5)

where K is the kernel function. Gaussian radial basis function (RBF) is among the frequently
considered kernel functions in LSSVM.

In the last step, the gained LSSVM paradigm can predict the investigated target using
the following expression:

f (x) = ∑N
j=1 αjK

(
xj, xl

)
+ b (6)

where (αj, b) are determined from Equation (4).
It is worth mentioning that the robustness of LSSVM is related to the proper selection

of its hyper-parameters, viz.,
σ2 and γ. To do so, in the present work, three rigorous metaheuristic algorithms were

suggested to tune these control parameters.
In this study, three optimization algorithms, including the GSA, WOA, and ABC,

are used to improve the LSSVM performance. The aforementioned algorithms are briefly
explained in this part.

(A) Gravitational search algorithm (GSA)

The GSA is a metaheuristic algorithm developed by Rashedi et al. [41] based on
Newton’s law of gravity [37]. The GSA is a population-based algorithm, and this means
that a population of possible solutions is considered during the optimization process. The
particles of the population are subjected to positions updating using the main governing
equations of the algorithms. In this regard, the position of each particle is denoted by
a vector x, while the force between two elements i and j at iteration g, is expressed as
follows [41]:

Fg
ij = Gg

Mg
i Mg

j

Rg
ij + ε

(
xg

i − xg
j

)
(7)

where ε points out a constant with a small value, R denotes the Euclidian distance between
the two particles, while G represents the gravitational constant defined as:

Gg = Gg0
gχ

0
g

χ < 1 (8)

where Gg0 is the initial value of the gravitational constant. The overall force resulted
from the particles of the population on each particle i is determined using the following
formula [41]:

Fg
i = ∑N

j∈Jbest , j 6=i r1jF
g
ij (9)

where Jbest represents a set of best particles in the population and r1j is a random determined
uniformly over iterations from [0, 1].

In another step, the motion law is considered as per following formulas [41]:

ai =
Fg

i

Mg
i

(10)

4



Sustainability 2023, 15, 8424

where ai points out the acceleration of mass and Mi is the inertia mass which is determined
using the equation below:

Mg
i =

mg
i

∑N
j=1 mg

j
(11)

and

mg
i =

f g
i − wg

bg − wg (12)

where f is the fitness value of the element i, and w and b represent the worst and best
fitness values in the population, respectively. Finally, the velocity and the position of the
elements are:

vg+1
i = r2iv

g
i + ag

i (13)

xg+1
i = vg+1

i + xg
i (14)

where r2i is a random generated uniformly from [0, 1], and v and x point out the velocity
and position of elements, respectively.

The steps of GSA based on the stated equations are repeated until a stopping criterion
is fulfilled.

(B) Whale optimization algorithm (WOA)

The WOA is another population-based algorithm introduced by Mirjalili and Lewis [42].
The main steps and the governing equations of WOA mimic the hunting process of back
whales [37]. Initially, an initial population of whales is created randomly. The positions of
the whales represent possible solutions of the optimization problem. In order to evaluate
the quality of these positions, a fitness function that emulates the objective function to
optimize is applied. Based on the evaluation step, the whales are subjected to update their
positions at a given generation (g + 1). To do so, the associated shapes of the position
are changed to spiral or circular forms with respect to a probability p using the following
equation [42]:

Xg+1 =

{
D′ebl cos(2πt) + X∗g i f p ≥ 0.5
X∗g − AD i f p < 0.5

(15)

In the above equation, X∗ points out the best whale which is located nearby the prey.
D′ = |Xi − X∗| represents the distance between the whale i and the prey, b is a constant for
specifying the spiral shape, and l is a random number from [−1, 1]. The other terms of the
above equation are defined as per following equations [42]:

A = 2ar− a (16)

C = 2r (17)

D = |CX∗ − Xi| (18)

where a is a number decreasing linearly from 2 to 0 over the distance, and r is a random
from [0, 1]. According to the value of A, if it is mainly outside the interval [−1, 1], a circular
form is considered for upgrading the positions based on a randomly selected whale Xg

r .
The following equation shows this process:

Xg+1 = Xg
r − AD (19)

The new positions obtained after carrying out the update of the shapes are assessed
using the fitness function. Lastly, if the best whale shows an enhancement in its fitness
values, it will change its position to this newest one, otherwise, the best existing position
will be conserved.

5
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The described steps of this optimization algorithm are repeated until a stopping
criterion is achieved.

(C) Artificial Bee Colony (ABC)

The ABC is an intelligent swarm-based metaheuristic algorithm proposed by Karaboga [43].
As indicated in its appellation, ABC emulates the steps performed by honeybees as they
search for nectar sources. In this regard, three groups, including employed, onlookers,
and scout bees are considered in this process. The role of employed group is to amass the
information and expose it to the onlooker group. The scout group consists of changing the
positions once no improvement is noticed in some sources of bees.

The main steps of ABC are given below [44]:

- An initial population of bees is generated randomly. Each bee has its own position x.
The numbers of employed and onlookers are the same in the population. A fitness
function is considered for assessing the quality of the bees.

- Employed bees: this step consists of updating the positions of bees at the generation
(g + 1) using the following equation:

xg+1
i = xg

i + ϑi

(
xg

i − xg
ω

)
(20)

where ϑi is a random from [0, 1] and ω ∈{1, 2, . . . , colony size}ω 6=i.
Afterward, the quality of each new position is examined using the fitness function, and

if an improvement is obtained, this new position is conserved, otherwise, it is abandoned.

- Onlooker bees: by carrying out the previous step which emulates the exploitation
phase, the gained information by the employed bees is exposed to the onlookers, which
select the proper ones by applying the following equation bases on the probability P:

Pi =
f ti

∑E
i=1 f ti

(21)

where f t points out the fitness value and E represents the number of employed bees. As in
the case of employed bees, if an improvement is obtained, this new position is conserved,
otherwise, it is abandoned.

- Scout bees: this step consists of randomly changing the position of a given employed
bee after a defined number of generations if it does not show any improvements in its
fitness quality.

The optimum solution of the problem is represented by the fittest bee. The above-
described steps are recurring until a stopping condition is reached.

3.2.2. CFNN Model

The CFNN is a type of ANN which is recognized by its flexible-based structure [45].
This advantage allows CFNN to generate accurate predictive models for many systems
with different degrees of complexity. The structure of CFNN neurons is distributed into
three kinds of layers, including input, hidden, and output layers [46]. The input layer
receives the data, then this latter is transformed and processed in one or more hidden
layers using the so-called activation functions (such as tansig and logsig), while the results
of the paradigm are obtained from the output layer. The number of hidden layers and
their involved neurons depend on the complexity of the system as one hidden layer is
generally enough for low to medium complicated cases, while more than one hidden layer
is requested for highly complex cases. CFNN is characterized by its specific cascaded
scheme for linking the neurons to the others [46]. This scheme is ensured by linking each
neuron from a preceding layer to the nodes of the subsequent layers [46].

As the other kinds of ANN, the learning phase of CFNN aims at achieving the suitable
weight and bias values of its architecture. Backpropagation-based algorithms, such as the

6
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Levenberg–Marquardt algorithm (LMA), are known to be highly efficient for this kind of
optimization. In this investigation, LMA algorithms were considered in the optimization of
the bias and weights of CFNN. More information about LMA can be found in published
literature [47,48].

It is worth mentioning that the considered soft computing approaches in this study,
namely CFNN and LSSVM, differ from each other mainly on the learning strategy where
in LSSVM, the learning process is done after the formulation of the minimization problem
(shown in Equation (1)) and then the problem is resolved by finding the control parameters
of the model, while in CFNN, the learning approach is gained by finding the suitable
topology and the appropriate weights linking between the neurons of different layers until
reaching the low function error (such as root mean square error) value.

3.2.3. Model Performance Evaluation

As stated in the previous section, the modelling task of FR using CFNN and LSSVM
was extended in this study by investigating the suitable input parameters that can give
the most accurate predictions of this vital factor. Before showing the main finding of the
modelling tasks using the aforesaid ML models, it is worth mentioning that during the
performance evaluation of the models, the following statistical indexes were calculated
using the equations shown below [1,4,5,49–52]:

Average Absolute Relative Error (AARE):

AARE% =
1
N ∑N

i=1

∣∣∣∣
FRimea − FRi pred

FRimea

∣∣∣∣× 100 (22)

Coefficient of Determination (R2):

R2 = 1−
∑N

i=1

(
FRimea − FRi pred

)2

∑N
i=1

(
FRi pred − FR

)2 (23)

Root Mean Square Error (RMSE):

RMSE =

√
1
N ∑N

i=1

(
FRimea − FRi pred

)2
(24)

In the above equations, the subscripts mea and pred denote the measured and estimated
FR, respectively, FR mean of FR values, and N points out the number of samples.

4. Development of Predictive Models

The main purpose of the suggested ML learning methods in this study was to deliver
robust models that can estimate the FR under different circumstances. For a better inves-
tigation, several input parameters were considered in each of the proposed paradigms.
Accordingly, six different schemes were involved in the development of these ML-based
predictive models. These schemes are summarized in the following equations:

(M1) FR = f (S, B, ST, PF, Density) (25)

(M2) FR = f (S, B, ST, PF) (26)

(M3) FR = f (S, B, ST, Density) (27)

(M4) FR = f (S, B, PF, Density) (28)

(M5) FR = f (S, ST, PF, Density) (29)

7
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(M6) FR = f (B, ST, PF, Density) (30)

In order to properly implement CFNN-LMA and the proposed hybridization LSSVM-
metaheuristic algorithms, including the LSSVM-WOA, LSSVM-GSA, and LSSVM-ABC mod-
els, some necessary steps were carried out as shown in the two flowcharts of Figures 1 and 2,
respectively. According to these flowcharts, the first step consisted of normalizing the
database. This step significantly improves the performance of the considered ML tech-
niques. The normalization procedure of the database is given in the following equation:

xn =
2(xi − xmin)

(xmax − xmin)
− 1 (31)

where x and xn point out the variable and the normalized value, respectively, while
xmax and xmin represent the maximum and minimum values of the variable, respectively.
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After performing the normalization of the data, the latter was divided into train
and test sets. The aim of these two groups was to train the models (train set) and cer-
tify their robustness of unseen measurements (test set). These two sets covered 80% and
20% of the whole measurements, respectively. During the learning phase of the CFNN-
and LSSVM-based models, their control parameters were investigated using the above-
discussed algorithms and some other techniques. In this regard, the trial and error method
was considered for selecting the best topology of CFNN, while LMA was applied for
optimizing the weights and bias values of the network. For the LSSVM model, three meta-
heuristic algorithms including ABC, GSA, and WOA were implemented in the optimization
of the two impacting LSSVM control parameters, namely γ and σ2. It is necessary to add
that it was proven in some previous works that it is more suitable to consider some specific
trust region algorithms such as Levenberg–Marquardt algorithms rather than applying
metaheuristic algorithms in the training phase of some feedforward networks such as MLP
and CFNN [53]. However, for many other soft-computing approaches such as LSSVM
and SVM, metaheuristic algorithms are much more appropriate for finding the control
parameters of these techniques [54]. Table 1 reports the main setting of these metaheuristic
algorithms. In our suggested workflows (Figures 1 and 2), the constraints and/or evalua-
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tion of overfitting were considered by checking the accuracy of the paradigms during both
training and testing phases. It is clear from the statistical evaluation of the models that
if the prediction accuracy of the latter is very satisfactory during the training and testing
phases, the overfitting issue is avoided.

Table 1. The considered control parameters of the three employed metaheuristic algorithms.

Algorithm Parameter Value

ABC

Number of employer bees 20

Number of onlooker bees 20

Number of generations 30

Number of generations to scout bees 4

GSA

r1j and r2j [0, 1]

Number of generations 30

Number of individuals 40

WOA

a 2 to 0

r [0, 1]

Number of generations 30

Number of whales 40

5. Results and Discussion
5.1. Exploratory Analysis

The optimal strategy for solving the high non-linear problems significantly depend on
the behavior of the dataset used in the simulation process. Thus, the statistical data descrip-
tion is one of the most crucial tasks of the pre-processing stage in ML-based modelling in
engineering problems. Table 2 lists the statistical properties of datasets implemented in the
FR predicting procedure. The low values of skewness and kurtosis confirmed that all inputs
and targets are categorized as a pseudo-normal distribution. Figure 3 demonstrates the
Pearson correlation coefficients in form of a correlogram. It can be concluded that the “S”
parameter with respect to the largest correlation coefficient (0.65) has the most significance
in prediction of the FR value.
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Table 2. Descriptive statistics of all features used in modelling the FR.

Metric/Feature S (m) B (m) ST (m) PF (kg/m3) Density (gr/cm3) FR (m)

Minimum 2.65 1.5 1.7 0.67 2.3 61

Maximum 4 3.2 3.6 1.05 2.8 334

Mean 3.324 2.415 2.171 0.8908 2.579 223.5

Std. Deviation 0.4228 0.4776 0.4022 0.113 0.1684 64.61

CV 12.72% 19.78% 18.53% 12.69% 6.529% 28.91%

Skewness −0.2032 0.2017 1.608 −0.2148 −0.2942 −0.5848

Kurtosis −1.556 −1.518 2.82 −1.058 −1.247 −0.1065

As stated before, the database considered in this study was divided into training and
testing sets. The first set is applied in the models’ development, while the test set is devoted
to the validation and investigation of the accuracy behavior of the established models when
dealing with unseen measurements.

5.2. Modelling Results

By performing the steps described in the previous sections, it was found that 3 hidden
layers with tansig as an activation function, and 12, 11, and 9 neurons in each of them,
respectively, represented the proper CFNN topology in all of the six schemes. For LSSVM
models, the achieved σ2 and γ values using the ABC, GSA, and WOA ranged between
403.15 to 1847.43 and 35,479,174.56 to 67,688,321.04, respectively.

The statistical evaluation of the performance of the obtained ML-based models with
respect to the stated six schemes in the previous sections is shown in Table 3. In this table,
statistical criteria, namely AARE, R2, and RMSE are reported for the training set, the test set,
and the whole dataset. According to this table, and based on the schemes, it can be seen that
M1 is the best one, followed by M2. In the combination of M1 including all inputs for the test-
ing phase, the LSSVM-WOA in terms of (R2 = 0.999, RMSE = 3.4209 m, and AARE = 1.3017)
was identified as the superior predictive model, followed by CFNN-LMA (R2 = 0.9347,
RMSE = 16.5215 m, and AARE = 7.512), LSSVM-GSA (R2 = 0.904, RMSE = 16.1775 m, and
AARE = 5.5193), and LSSVM-ABC (R2 = 0.9049, RMSE = 19.439 m, and AARE = 8.0032),
respectively. In the M2 (in testing phase), as the second-best combination, the LSSVM-WOA
with respect to the highest R2 (0.9896) and smallest RMSE (10.4268) outperformed the other
models. The result assessment demonstrated that M6 on account of poorest performance
(R2 = 0.3616 and RMSE = 58.5744 for the LSSVM-WOA) was recognized as the worst scheme
regardless of the ML type. Typically, it can be understood from this remark that S is the most
impacting input parameter on FR as its exclusion from the input variables (M6) caused the
worst prediction performance regardless of the type of ML techniques, while density has a
small effect on FR since its elimination from the input parameters (M2) did not significantly
affect the degree of prediction accuracy. In addition, it can also be deduced that for each
of the six schemes, the LSSVM-WOA yielded more accurate predictions compared with
the other LSSVM-metaheuristic algorithms and the CFNN-LMA. According to Table 3, it
was found that M1 outperformed other combinations followed by M2, M4, M3, M5, and M6,
respectively. Additionally, it can be said that the LSSVM-WOA in all input combinations
was the best predictive model developed in this study for prediction of FR. For better com-
parison between the predictive performances of the provided models in all combinations,
the probability density function violin plots are exhibited in Figure 4. According to this
figure, considering the best agreement between measured and predicted values of FR, it can
be clearly implied that the LSSVM-WOA was the superior model for accurately estimating
FR, the CFNN-LMA was identified as the second-best model, and LSSVM-ABC yielded the
worst results in all combinations. Regarding the mentioned analysis, the combination of M1
was kept for further performance investigation and validations. It is necessary to add that
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in order to confirm that the ANN scheme did not suffer from the overfitting issue, a 4-fold
cross-validation was performed on our best ANN paradigm (the case of M1) to assess the
generalization of the model when dealing with new sets of data. To do so, the database was
randomly divided into 4 folds, then, the modelling was done by considering a sole fold as
the test sub-data and devoting the rest for the training phase. In order to swap between the
folds involved in the training and testing phases, the aforesaid step was repeated 4 times.
The results gained from the 4-fold cross-validation are reported in Table 4. As can be seen, the
consistency of the model is confirmed for all the folds, thus, the overfitting issue is avoided.

Table 3. Performance of the suggested ML-based models with respect to the six schemes.

Scheme Model Statistical Criteria Train Data Test Data All Data

M1

CFNN-LMA

R2 0.9875 0.9347 0.977

AARE 2.5163 7.512 3.5154

RMSE 7.2292 16.5215 9.8184

LSSVM-ABC

R2 0.9867 0.9049 0.971

AARE 3.0419 8.0032 4.0341

RMSE 7.4089 19.439 10.9311

LSSVM-GSA

R2 0.9828 0.904 0.967

AARE 3.4215 5.5193 3.8411

RMSE 8.7308 16.1775 10.6453

LSSVM-WOA

R2 0.9926 0.9991 0.9943

AARE 1.6473 1.3017 1.5782

RMSE 7.4847 3.4209 6.8671

M2

CFNN-LMA

R2 0.9812 0.9366 0.972

AARE 2.9261 8.5748 4.0558

RMSE 8.4645 20.2612 11.8077

LSSVM-ABC

R2 0.9769 0.9235 0.9675

AARE 3.7643 7.083 4.428

RMSE 9.8655 16.7483 11.5743

LSSVM-GSA

R2 0.9754 0.9054 0.9614

AARE 4.254 6.5356 4.7103

RMSE 10.3962 18.0443 12.312

LSSVM-WOA

R2 0.9871 0.9896 0.9875

AARE 2.6662 2.8723 2.7074

RMSE 10.105 10.4268 10.1702

M3

CFNN-LMA

R2 0.883 0.9172 0.89

AARE 7.2573 8.2441 7.4546

RMSE 21.9097 18.6501 21.2977

LSSVM-ABC

R2 0.9191 0.7622 0.8811

AARE 6.7642 12.4379 7.8989

RMSE 17.7366 34.5376 22.1413

LSSVM-GSA

R2 0.8874 0.7979 0.8714

AARE 7.8757 13.615 9.0236

RMSE 21.7035 27.6908 23.0259

LSSVM-WOA

R2 0.9625 0.9398 0.9305

AARE 6.6657 21.8618 9.7049

RMSE 17.5076 43.8141 25.0828
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Table 3. Cont.

Scheme Model Statistical Criteria Train Data Test Data All Data

M4

CFNN-LMA

R2 0.8878 0.8706 0.8856

AARE 6.9643 10.5219 7.6758

RMSE 21.6209 22.0891 21.7153

LSSVM-ABC

R2 0.892 0.8572 0.8849

AARE 7.0333 9.8644 7.5995

RMSE 20.9307 24.9094 21.7846

LSSVM-GSA

R2 0.8689 0.8748 0.8707

AARE 8.1285 11.6169 8.8262

RMSE 22.7463 24.3938 23.0852

LSSVM-WOA

R2 0.9921 0.9201 0.9777

AARE 2.7384 14.8704 5.1648

RMSE 8.0666 31.6042 15.8689

M5

CFNN-LMA

R2 0.8879 0.8456 0.8791

AARE 7.6983 11.2721 8.413

RMSE 21.3743 25.7841 22.326

LSSVM-ABC

R2 0.8891 0.8376 0.8823

AARE 8.3536 7.5541 8.1937

RMSE 22.1859 21.3895 22.0289

LSSVM-GSA

R2 0.8983 0.831 0.8825

AARE 6.6676 11.6499 7.6641

RMSE 19.9291 28.846 22.0035

LSSVM-WOA

R2 0.8979 0.7985 0.8859

AARE 12.374 13.7799 12.6551

RMSE 29.5911 30.7061 29.8175

M6

CFNN-LMA

R2 0.4324 0.3195 0.4186

AARE 17.817 30.9799 20.4496

RMSE 46.3091 58.3475 48.9542

LSSVM-ABC

R2 0.4856 0.1575 0.4327

AARE 17.9507 30.1723 20.395

RMSE 44.6322 61.0195 48.356

LSSVM-GSA

R2 0.5574 0.4669 0.4329

AARE 18.587 24.6491 19.7994

RMSE 44.7295 60.6898 48.3449

LSSVM-WOA

R2 0.806 0.3616 0.7228

AARE 15.5962 22.1002 16.897

RMSE 40.172 58.5744 44.466
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Table 4. Results of the 4-fold cross-validation for the CFNN-LMA model (M1 scheme).

Overall R2 Overall RMSE

Fold 1 0.9759 9.8664

Fold 2 0.9761 9.8601

Fold 3 0.9754 9.9361

Fold 4 0.9762 9.8597

In order to extend the examination of the accuracy of the best implemented models,
some graphical evaluation techniques were considered. Figure 5 shows the physical trend
variation and cross plots related to the M1 which illustrate a comparison of the measured
and predicted FR values during both the training and testing phases. Based on the scatter
plots, a tight cloud of points is located nearby the line Y = X for all datasets. This means that
the LSSVM-WOA can predict FR values with a great degree of accuracy as its predictions
are very close to the perfect case shown by the unit-slop line. The left side of Figure 6 shows
the ability of the predictive models to capture the non-linearity behaviour of the datasets.
The LSSVM-WOA yields the best agreement with the measured FR compared with other
LSSVM models and the CFNN-LMA model.

Another visual tool for inspecting the reliability of the LSSVM-WOA paradigm is dealing
with the relative deviation (RD%) distribution diagram that is exhibited in Figure 6. The
quartiles of RD for 25% and 75% of datasets are listed in Table 5. The LSSVM-WOA model,
owing to having the least values of Q25% = −0.5566, Q75% = 1.093, and IQR = 1.650, yielded
more reliable outcomes in comparison with the CFNN-LMA (Q25% = −2.976, Q75% = 2.105,
and IQR = 5.081), LSSVM-ABC (Q25% =−2.778, Q75% = 2.504, and IQR = 5.282), and LSSVM-
GSA (Q25% = −2.712, Q75% = 2.716, and IQR = 5.428), respectively. Obviously, the above
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diagnostic analysis reveals that the LSSVM-WOA model has very low prediction errors
regardless of the considered conditions.
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Table 5. Quartile of RD for 25% and 75% of datasets.

Model CFNN-LMA LSSVM-ABC LSSVM-GSA LSSVM-WOA

Q25%-RD% −0.5566 −2.778 −2.712 −2.976

Q75%-RD% 1.093 2.504 2.716 2.105

IQR-RD% 1.650 5.282 5.428 5.081

Lastly, Figure 7 demonstrates the 3D surface of RD variation concerning the LSSVM-
WOA versus the S and PF, as the two most significant variables, to assess the reliability
seeking zone for estimating the FR. The RD variation reveals that the most reliable and
accurate results are obtained in the ranges of 3 ≤ S ≤ 3.5 and 0.8 ≤ PF ≤1.1.
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6. Conclusions

FR is one of the most adverse effects induced by blasting in surface mines. In this study,
an attempt was made to predict blast-induced FR through hybridizing three optimization

16



Sustainability 2023, 15, 8424

algorithms including the ABC, GSA, and WOA with the LSSVM model. In addition, CFNN-
LMA, as a powerful tool for the prediction aims, was developed. For developing the
models, six different schemes based on different combinations of input parameters were
employed and in total, twenty-four different models were constructed. After that, three
statistical indexes, i.e., AARE, R2, and RMSE, were used to check the performance of the
models and to compare their results.

Some conclusions are drawn as follows: the results indicated that among the total con-
structed models, the LSSVM-WOA model was the most accurate model in all six schemes
compared with the CFNN-LMA, LSSVM-GSA, and LSSVM-ABC models. The most accurate
results of the LSSVM-WOA (AARE = 1.3017, R2 = 0.9991 and RMSE = 3.4209), LSSVM-
GSA (AARE = 5.5193, R2 = 0.904 and RMSE = 16.1775), and CFNN-LMA (AARE = 7.512,
R2 = 0.9347 and RMSE = 16.5215) were obtained from the first scheme, while that for the
LSSVM-ABC model (AARE = 7.083, R2 = 0.9235 and RMSE = 16.7483) was obtained from
the second scheme. It is important to note that the above results were related to the testing
phase. On the other hand, the sixth scheme had the worst performance. In this scheme, the
S parameter was removed from the modelling. Therefore, it can be suggested that the S was
an effective parameter in the modelling. Additionally, according to RD%, the LSSVM-WOA
model had very low prediction errors regardless of the considered conditions. The pre-
sented results in this study cannot be compared with results of the previous studies because
different fields investigation as well as different range of input parameters were used in
the previous studies. Nevertheless, for a comparison with the literature, the LSSVM-WOA
presented in this study predicted the FR with a very good R2, while Koopialipoor et al. [55],
Faradonbeh et al. [56], Zhou et al. [57], Nguyen et al. [58], and Marto et al. [59] predicted
the FR with an R2 of 0.959, 0.924, 0.944, 0.986, and 0.981, respectively. The aforementioned
results indicate the effectiveness of the LSSVM-WOA model in predicting the FR.

It is worth mentioning that the proposed models herein are specific to studied cases
and the use of these models in other surface mines requires some modification based on
blasting and mining conditions. However, our best implemented model can predict the
FR with high accuracy and the paradigm can be applied for cases filling the applicability
conditions considered in this work, namely by respecting the maximum and minimum
values of the involved input parameters.

For future works, it can be recommended to use other optimization algorithms, such
as seagull optimization algorithm (SOA), sparrow search algorithm (SSA), loin swarm
optimization (LSO), and moth-flame optimization (MFO) algorithms, in combination with
CFNN and LSSVM models.
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Abstract: Mechanised tunnelling is extensively utilised for twin tunnel construction, particularly in
urban areas. A common challenge encountered during this construction method is the occurrence
of surface settlement (SS) induced by tunnelling activities. The integrity of nearby structures can
be compromised by SS, making it imperative to accurately quantify and mitigate this phenomenon.
Several methods for determining SS exist, including empirical formulas and laboratory studies. How-
ever, these methods are often constrained by specific soil types and are time-consuming. Moreover,
crucial parameters such as tunnel operational factors and construction stages are often omitted from
empirical formulas. Given these limitations, this paper aims to address these challenges by employing
3D numerical analysis to simulate tunnelling-induced SS in twin tunnels. This approach takes into
account tunnel geometry, construction sequencing, soil properties, and tunnelling operational factors.
By incorporating data from in-situ and laboratory tests conducted on the ground, engineering soil
parameters are established as inputs for the numerical analysis. The simulated SS results obtained
from the 3D numerical analysis are compared with field measurements of SS taken from available
ground surface settlement markers. The transverse SS pattern derived from the numerical analysis
closely mirrors the field measurements. Additionally, SS values above the first and second tun-
nels are compared with field measurements, resulting in coefficient of determination (R2) values
of 0.94 and 0.96, respectively. The utilisation of the 3D numerical modelling approach enables the
customizable mitigation strategies for managing the SS with project-specific parameters such as
tunnel geometry, geotechnical engineering factors, and tunnelling operational variables. This will
help plan and construct more sustainable tunnels with minimal effects on the ground and residential
areas.

Keywords: twin tunnels; 3D numerical analysis; surface settlement; field measurement; geotechnical
and geological conditions

1. Introduction

Tunnelling is one of the most significant transport solutions where the overlying
population does not need to be displaced. With the advancement of current technologies,
mechanised excavations to construct underground spaces such as tunnels have become
popular. Although mechanised tunnel excavations have been widely used all around
the world, considerable safety considerations during construction need to be ensured.
Several problems can be encountered during tunnel excavations, such as tunnel face
instability, excessive wear of the cutter head, and excessive surface settlement (SS) [1,2].
Among them, SS induced by mechanised tunnelling is still one of the common issues
in tunnel construction [3,4]. The excessive SS during and after tunnelling projects has
an adverse impact on the existing structures. Therefore, it is important to estimate the
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settlements caused by the tunnelling to minimise the effects on the existing structures.
Several methods can be used to estimate the SS due to tunnelling, which is empirical or
semi-empirical, laboratory-based, and numerical analysis. One of the pioneer empirical
formulas to determine the SS due to tunnelling was proposed by Peck [5], which shows that
the volume loss is from the radial deformations along the tunnel perimeter directly linked
to the SS. Based on the field observations on the site and the simplification of the equation
proposed by Litwiniszyn [6], Peck [5] suggested Equation (1) to predict SS induced by
tunnelling for soft clay. The settlement in this equation is calculated based on the pattern of
SS caused by loss of ground and approximated by a Gaussian probability curve.

S = Smaxe
−x2

2i2 (1)

where S is the surface settlement in the transverse section at a specific distance, x is the
distance from the centreline of the tunnel, and i is the point of inflection (settlement
through). In this way, the maximum SS can be defined using Equation (2):

Smax =
Vs√

2 x π x i
(2)

where Vs is the volume loss of the soil (m3/m), and can be expressed by Equation (3):

Vs =
Volume Loss (VL)(%)

100

(
π D2

4

)
(3)

The main inputs for the calculation of the maximum SS are affected by volume loss of
the soil (VL) and settlement trough. These volume losses are affected by the type of ground,
tunnel geometry, and ground condition [7,8]. Hence, many researchers have carried out
their investigations into different types of ground conditions with various ranges of VL,
as summarised in Table 1. In addition, several researchers have also proposed various
i equations for different ground conditions, as presented in Table 2.

Table 1. Tunnelling methods with various ground conditions of VL.

Author (s) Ground Condition VL (%) Method of Tunnelling

Attewell and Farmer [9] London clay 1.44 Hand excavation shield tunnelling

O’Reilly and New [10] London clay 1.0–1.4 Open face shield-driven tunnels

Mair and Taylor [11]

Stiff clay 1.0–2.0 Open face method
Stiff clay 0.5–1.5 NATM

Sand 0.5 Closed face Tunnelling Boring Machine
Soft clay 1.0–2.0 Closed face Tunnelling Boring Machine

Wan et al. [12] London clay 0.8 Earth Pressure Balance Machine (EPBM)

Amir and Mohammad [13] Graded gravel to silt/clays 0.2–0.7 EPBM

Le et al. [14] Sandy <0.2 to 2.4 EPBM

Table 2. Summary of empirical formulas for estimation of settlement trough width.

Authors Empirical Formula Variable Definition Ground
Condition

Tunnelling
Excavation

Method

Peck [5] i = R′ ( Z
2R′ )

n

R’ is the radius of the tunnel.
Z is the tunnel depth below
ground level.
n is a constant parameter
dependent on soil type (0.8–1).

Various types of
soils

Open cutting
excavation
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Table 2. Cont.

Authors Empirical Formula Variable Definition Ground
Condition

Tunnelling
Excavation

Method

O’Reilly and
New [10] i = kZ

k is the constant parameter
dependent on the soil type.
Z is the tunnel depth below
ground level.

Various types of
soils Shield tunnelling

Mair et al. [15] i = Z[0.175 + 0.325(1− Z′
Z )

Z’ is the depth of the calculated
settlement trough from the surface
settlement.
Z is the tunnel at a depth below
ground level.

Clay Centrifuge model
test

Loganathan and
Poulos [16] i = R′(1.15)( Z

2R′ )
0.9

R’ is the radius of the tunnel.
Z is the tunnel at a depth below
ground level.

Clay Tunnelling
machine

Wang et al. [17] i = m (R + Z tan
(

45− Φ
2

)
)

m is the influence coefficient of the
width.
R’ is the radius of the tunnel.
Z is the tunnel depth below
ground level.
Φ is the internal friction angle of
the soil.

Sand Laboratory

Zhu et al. [18] i = 0.51Z + 0.48 Z is the tunnel depth below
ground level. Sand and Clay Shield machine

According to Table 2, VL and i have a wide range of values, which can be due to
different methods of tunnel construction and ground conditions. It can also be seen that
most studies are carried out for clay material. In addition, no tunnelling operational
parameter is included in the previous empirical formulas. Loganathan and Poulos [16]
proposed a semi-empirical equation (i.e., Equation (4)), which is based on the gap parameter
proposed by Lee et al. [19] and the exponential function to model the nonlinear ground
movement. This formula has been checked with the five case studies. From the findings,
four tunnels that were constructed in stiff clay showed good agreement; however, soft clay
depicted a much lower estimation of the ground loss. Nevertheless, the method proposed
by Loganathan and Poulos [16] is limited to clay and based on an elastic solution.

εxy =
4gR + g2

4R′2
e

1.38x2

(Z+R′)2
+ 0.69z2

Z2 (4)

where R′ is the radius of tunnel, Z is the tunnel depth below ground level, z is the depth of
the point, g is the gap parameter, and εxy is the equivalent ground loss component at the
tunnel soil interface due to the ground movements at point x, z.

Aside from the empirical and semi-empirical equations, 2D finite element analysis
has been widely used to determine SS induced by tunnelling. Some of these 2D simplified
techniques are the contraction method by Vermeer and Brinkgreve [20], the stress reduction
method by Addenbrooke et al. [21], and the modified grout pressure method by Surarak [22].
The contraction method of the analysis works with the introduction of the correction factor
(which represents the value of reduction and excavated area) as a predefined uniform radial
inward strain. However, this assumption may not reflect the actual field displacement
because, based on the centrifuge modelling study carried out by Mair [23], the finding
shows that little ground displacement happens at the tunnel invert. In addition, the stress
reduction method uses an “unloading factor” to stimulate the 3D tunnelling effects in
the 2D numerical model, but this method requires trial-and-error on the unloading factor
to calculate/determine the SS induced by tunnelling. Additionally, the modified grout
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pressure method [22] is the method that considers the tunnel operation parameter for the
analysis. Although this method can include the operational parameters (face pressure
and grout pressure), it does not consider the 3D mechanised tunnelling sequence in the
analysis. Every stage of the mechanised tunnelling construction influences the ground SS.
The stages of the tunnelling such as excavation using face pressure, advancement of the
tunnelling machine, installation of the lining, injection of the tail void grout, and hardening
of the grout, affect the surrounding soil area [24,25]. Apart from that, the type of soil model
used in the numerical analysis is important; therefore, proper in-situ and laboratory data
interpretation is required to stimulate the closest possible ground conditions at the site.
In 3D numerical analysis, the tunnelling construction can cause SS at different stages of
the construction. Mathew and Lehane [26] deduced the inconsistency of the calculations
using volumetric contraction in comparison with field measured settlements due to the
complexities of the actual tunnelling procedures. In comparison with a single tunnel,
twin tunnels are more complex and more difficult to analyse as more parameters, e.g., the
spacing between two tunnel and different tunnelling operational parameters are required
to consider in the analyses.

Most studies [3,27] investigated these issues for single tunnels; however, limited
studies are available for twin tunnels using earth pressure balance (EPB) shield machines.
In the recent numerical tunnelling analysis carried out by Islam and Iskander [28], the
effect of geometric parameters and construction sequence on the SS was investigated using
MIDAS GTS NX software 2021 (v1.1). However, this case study is not for parallel twin
tunnelling and the outputs were not compared with the field measurements. The 3D
numerical model is not limited to certain types of ground in comparison with the empirical
and semi-empirical methods. In addition, the 3D numerical model requires a shorter
period of time to determine the SS than the laboratory works. The 2D numerical methods
(contraction and stress reduction methods) do not consider operational parameters in the
analysis, whereas modified grout pressure does not consider the construction stages of the
tunnelling works such as the advancement of the tunnelling machine. The consideration of
important factors affecting the SS due to tunnelling in the analysis is crucial to providing
the closest possible results with the actual measurements.

In light of the above discussion, this study considers the holistic approach of 3D
modelling shield tunnelling works in the finite element by incorporating the sequence of
mechanised tunnel construction. This sequence includes different stages such as excava-
tion, machine advancement, lining installation, grouting, and hardening. Additionally,
most previous research, especially empirical formulas, is solely applicable for a single
tunnel. Many existing empirical formulas are tailored to single tunnel scenarios and do
not account for modern tunnelling machine processes. This work extends the analysis
to twin tunnels constructed using mechanised tunnelling, which presents a more com-
plex scenario due to the interactions between adjacent tunnels. The utilisation of the 3D
numerical modelling approach provides a sustainable solution for tailoring mitigation
strategies to effectively manage SS while accounting for project-specific parameters such as
tunnel geometry, geotechnical engineering factors, and tunnelling operational variables.
The 3D numerical model approach empowers the customization of SS mitigation strategies.
This customization ensures not only the effectiveness of the mitigation strategies but also
the adherence to sustainability principles by minimizing adverse impacts on the environ-
ment and adjacent structures. By identifying potential SS issues at various construction
stages through early estimation, timely adjustments and proactive measures can be im-
plemented, thereby mitigating risks, and reducing the likelihood of detrimental effects on
the surroundings.

2. Field Measurement and Input Parameter for Numerical Analysis

The Mass Rapid Transit (MRT) project is located in the Klang Valley, Malaysia, which
comprises of total distance track of 52.2 km including the elevated works, underground
works and one deport of the MRT system with the purpose of public transport for the
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citizens. In this project, the total distance of the twin tunnels is 13.5 km. The twin tunnel is
two tunnels that can be arranged into four configurations: parallel, stacked, perpendicular
crossing, and offset arrangements. The tracked alignment, a combination of parallel
and stacked underground tunnels, is from Jalan Ipoh to Bandar Malaysia. Only parallel
tunnelling is used for this study, as limited information is only available for stacked
underground tunnels. The tunnel is traversed through limestone, granite, alluvium, and
the Kenny Hill formation, as shown in Figure 1.

The project used mechanised tunnelling for tunnel excavation, including EPB and
variable density tunnelling (VDT) machines with 6.7 m diameter for different ground
conditions. VDT is the new mechanised tunnelling machine that was developed to mitigate
the risk of blowouts and sinkholes in variable and mixed ground conditions. Whereas
EPB was selected for the homogenous and cohesive soils. It uses the excavated material to
stabilise the tunnel face with constant pressure. The selected section for the 3D numerical
analysis is located between the alluvium and Kenny Hill. Several early geologists [29,30]
have used diluvium as a term to describe “alluvium-like” materials comprised of sands,
gravels, boulders, and clays on the hard rock in all landscape positions. The alluvium is
modern sediments deposited into the ground as a result of recent river activity [31]. Since
this soil material is deposited by the river, it can be anticipated that the ground is soft for
the alluvium. Furthermore, the Kenny Hill formation in Kuala Lumpur has a thickness
of 1200–1500 m of clastic sedimentary rocks and is located in the west and south [32]. It
can be stated that this formation is for weathered rock and residual soil [33]; therefore, this
formation is anticipated as a firm and hard material. This project encounters two different
soil hardness materials: soft (alluvium) and hard (Kenny Hill).
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Figure 1. The geological formation and location of the twin tunnels investigated in this research [34].

2.1. Field Measurement of SS

Throughout the chainage of the tunnelling, the overburden of the soil at the tunnel
crown is in the range of 6 m to 42 m. For the back analysis of the SS due to tunnelling,
five cross sections of the tunnel that traverse through the soil with a sufficient array of
ground settlement markers were selected. In this project, the SS values were measured
using a total station from the ground settlement marker as shown in Figure 2.
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Figure 2. Example of installed ground settlement marker.

The ground settlement marker for this project is an instrument with a steel rod length
of 0.95 m embedded in the soil that is covered by a steel plate of 150 mm by 150 mm,
which acts as a marker label to ease the identification of the location of the markers. The
protrusion of a 0.05 m steel rod above the marker label was used to measure the level of
the change. The reduced levels of the tops of the rods of settlement markers based on the
nearest benchmark (BM) or temporary BM were measured prior to the commencement
of the tunnelling works. The baseline readings were set after taking readings for several
days before the commencement of the tunnelling works. The settlement was calculated by
taking the change in the reduced level of the top of the rod relative to the base readings
and previous readings. In general, the readings of the settlement markers were taken
once per day during the construction period of the tunnelling. To evaluate the settlement
from the field data, the settlement values were collected when both tunnels had passed by
the settlement array, as illustrated in Figure 3, and only the final readings were collected
as the SS. There are approximately 304 subsurface investigation (SI) boreholes along the
area of the tunnelling chainage. In the numerical analysis, the nearest sections to the SI
boreholes were utilised to establish the geological profile of the model.
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2.2. Interpretation of Geotechnical Parameters

To carry out the numerical analysis of any geotechnical application, the accuracy of the
soil-structure interaction problems is crucial as the soil is the weakest material compared
to others such as concrete and steel. Hence, the analysis is strongly dependent on the soil
constitutive model to reflect the actual condition of the ground.

The soil profile for each model comprises two layers of soil and rock. The tunnels
are bored through the soil layers (alluvium and Kenny Hill). Hence, the rock layer does
not have an impact on the analysis. The range of soil stresses and strains are important
in the analysis; hence, this shall be considered in the numerical analysis. For the finite
element analysis, two common soil constitutive models were used by many researchers in
relevant studies, which are Mohr-Coulomb (MC) [25,35] and Hardening Soil (HS) [36,37].
Gerhard [37] compared the MC and HS of the tunnelling finite element analysis and
found that the MC model can provide higher settlement values in comparison with the
measurements on the site, while the HS model predicts SS values that are closer to the
actual measurements using the 2D grout pressure method. In addition, Hejazi et al. [38]
found the SS induced by tunnelling is strongly influenced by the soil constitutive model.
From their findings, MC SS appears unrealistic, which is due to the stiffness modulus
in the MC model being constant at certain points of strain. Islam and Iskander [28]
mentioned that MC is not able to stimulate the behaviour of the soil, especially during
unloading and tunnel excavation. However, they stayed with the MC model due to the
simplicity of the parameters. Moller [39] carried out both analyses using 2D and 3D finite
element analysis for the second Heinenoord slurry shield using the HS model, and the
findings showed the simulated SS is close to the site’s actual settlement values. His analysis
results are aligned with another study conducted by Likitlersuang et al. [36], where they
reported very close readings to the measured settlement using the HS model. Choon [40]
emphasised that the soil constitutive models play a crucial role in the analysis results
and concluded that tunnelling involves unloading and reloading the surrounding soils.
Hence, the HS model was recommended by Choon [40] for use in the assessment of SS. In
addition, Janin et al. [41] stated that the HS model can distinguish the stiffness modulus
for the primary loading and unloading, which makes this numerical analysis closer to the
measured SS results.

The soil properties can be classified by the strain levels into three categories, which
are very small strain level (stiffness modulus is constant in elastic range), small strain
level (stiffness modulus varies non-linearly with the strain), and large strain level (soil is
close to the failure, and the soil stiffness is relatively small) where tunnelling works can be
considered as large strain level [42]. The illustration of the categories of the strain level can
be seen in Figure 4a. The HS model was created with the concept of plasticity, where the
total strains of the soil are calculated using a stress-dependent stiffness that is different for
both loading and unloading. The MC model indicates that the soil behaviour is linearly
elastic and perfectly plastic. In addition, the HS model can consider loading and unloading
stages, which can reflect the actual situation of tunnel construction for the removal of soil
(unloading), followed by tunnel lining construction (loading). Therefore, the HS model
is a more suitable soil model for the tunnel numerical analysis of tunnelling compared
to MC [43]. An illustration of an indication of the difference between the MC and HS is
shown in Figure 4b.
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The soil parameter of effective strength is retrieved by carrying out consolidated
isotopically undrained (CIU) tests from the closest boreholes at different depths. In addition,
several Menard Pressuremetre Tests (PMTs) have been carried out as per BS 5930 [44]
throughout the chainage of the tunnelling. The PMT was placed inside the borehole
after the Standard Penetration Test (SPT-N) was taken. The depth of PMT was located at
approximately the same depth as SPT-N, as this was conducted to ensure the data from
SPT-N could be used as a reference for the comparison of similar lithologies. The corrected
SPT-N was correlated with the pressuremetre modulus, Em. The previous researchers [45,46]
carried out the correlation of the corrected SPT-N of N60 with the elastic modulus from the
PMT. Some of the Em empirical formulas are presented in Table 3 according to different
types of soil. The performance prediction of these formulas is presented based on the
coefficient of determination (R2).

Table 3. Summary of the Em empirical equations to determine the elastic modulus of the soil.

Author(s) Ground Condition Method of Tunnelling R2

Ohya et al. [45] Em = 19.3(N60)
0.63 Clayey soil 0.39

Yagiz et al. [46] Em = 388.67(N60) + 4554 Silty Clay 0.83
Cheshomi and Ghodrati [47] Em = N60 − 2.67 Silty Clay 0.85

Naseem and Jamil [48] Em = 15.214N60 + 89.276 Sandy soils 0.88
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A total of 20 and 41 PMTs were carried out at the alluvium and Kenny Hill formations
along the chainage of the tunnel, respectively. After carrying out the removal of outliers
using the method of the interquartile range rule for a total of 61 PMTs, the corrected STP-N60
is plotted against Em for 2 different formations, as shown in Figure 5.
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From the SPT-N, the selected section for the tunnelling analysis with a borehole
is correlated with the elastic modulus according to the type of soil. However, Em is
different from the soil elastic modulus; hence, conversion of the calculation is required. The
difference could be due to several reasons, such as the difference in the range of radial, the
stress surrounding the borehole wall, the possibility of disturbance during drilling and
the installation of probes, and the computation of the modulus with the assumption of
cylinder length as infinite [49]. Therefore, correction of the elastic modulus, E, of the soil is
introduced to the actual value from Em [50], which is defined as follows:

α =
Em

E
(5)

where α is a Menard’s factor. In the HS model, there are three crucial elastic modulus inputs
for the analysis, which are namely: secant stiffness modulus corresponding to 50% of
the ultimate deviatoric stress, E50; Oedometer modulus, EOed; and unloading or reloading
modulus, Eur. Secant stiffness from the drained triaxial test at 50% of the ultimate deviatoric
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stress E50 is the confining stress that depends on stiffness modulus for primary loading
where the amount of stress is dependent on the power of m.

E50 = Ere f
50

(
c′ cos Φ′ − σ′3 sin Φ′

c′ cos Φ′ + Pre f sin Φ′

)m

(6)

where pref is a reference stress of 100 kPa, c’ is effective cohesion, and Φ′ is effective friction
angle. The stiffness is affected by minor effective principal stress. The power m governs the
stress dependency. As reported by Janbu [51], the sand content of m is approximately 0.5.
Other than this input, the reference oedometer modulus, ERe f

oed , acts as the parameter that
controls the magnitude of the plastic strains that arise from the yield cap ε

pc
v . The oedometer

modulus can be defined as follows:

EOed = ERe f
Oed

(
c′ cos Φ′ − σ′1 sin Φ′

c′ cos Φ′ + Pre f sin Φ′

)m

(7)

where ERe f
oed is approximately similar to ERe f

50 [52] as illustrated in Figure 6. In addition,
the stress-dependent stiffening modulus for unloading and reloading can be calculated
as follows:

Eur = ERe f
ur

(
c′ cos Φ′ − σ′3 sin Φ′

c′ cos Φ′ + Pre f sin Φ′

)m

(8)
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For the ease of numerical computation, several researchers [40,53] have used ERe f
50 = 3ERe f

ur
as per recommended by the previous researchers [52,54]. The input of E50 is correlated with
the range from 0.06E to 0.26E with 0.5qf (where E is the elastic modulus of the soil and qf is the
deviatoric stress from the secant stiffness modulus reduction curves from static torsional and
triaxial shear data on clays and sands) [55]. Based on the interpretation, Table 4 summaries the
geotechnical input parameters for these five models.

Table 4. Summary of the stiffness and effective strength of the soil used in the numerical analysis.

Model
Effective
Cohesion,

c’ (kPa)

Friction
Angle (◦) ERef

50 (MPa) ERef
oed (MPa) ERef

ur (MPa)
Type of

Formation

1 2 29 9.3 9.3 27.9 Alluvium
2 3 32 26.0 26.0 78.0 Alluvium
3 2 28 6.1 6.1 18.3 Alluvium

5 32 11.6 11.6 34.8 Kenny Hill
4 2 30 7.0 7.0 21.0 Alluvium
5 1 25 3.5 3.5 10.5 Alluvium
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A total of 36 and 35 bulk density tests are carried out on the alluvium and Kenny Hill
formations across the tunnelling alignment at various depths, respectively. The statistical
input of bulk density is summarised in Table 5. In addition, the groundwater level recorded
from the closest borehole with the readings recorded for morning and evening throughout
the SI works will be used as part of the analysis, and these readings are taken as an average
of the groundwater level. The groundwater level is one of the important parameters because
when the groundwater level is lowered, it can cause a reduction in the pore pressure, which
indirectly increases the surface settlement [56]. Figure 7 shows an illustration of how the
lowering of groundwater causes the settlement.

Table 5. Summary of the inputs of the bulk density of different ground types.

Type of Ground
Bulk Density (kN.m−3)

Mean Maximum Minimum Standard
Deviation

Alluvium 19 21 16 1.05
Kenny Hill 20 22 15 1.51
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2.3. Tunnel Boring Machine (TBM) Operational Parameters

Various operational factors of TBMs, including face pressures, rates of penetration,
and pressures of grouting the tail void, jointly impact the surface settlement caused by
mechanised tunnelling operations. TBMs cause surface settlement mainly by moving soil
during excavation, resulting in empty spaces where the neighboring ground eventually
subsides. While the TBM constructs the tunnel, it can also shift the ground, prompting
settlement. The interplay between the tunnel lining and the nearby soil can trigger certain
adaptations and shifts in the ground, indirectly resulting in surface settlement. Numerous
studies [3,24] have demonstrated that face pressure and grouting pressure are the two
important contributors to the SS caused by mechanised tunnelling. Hence, in this study,
these two parameters were considered to be part of the finite element analysis. The EPB
shield of the face pressure operates with the cutter head rotating, and cutting tools scrap
the ground from the tunnel face while additives are injected into the material. The amount
of the excavated soil is controlled and transported from the shield, and the tunnel face
can be supported by the soil stored in the chamber. Hence, the face pressure stores in the
chamber are crucial to maintaining the stability of the excavation. Different conditions of
face pressure result in different SS scenarios. Several studies have found that increasing
face pressure causes a decrease in settlement [3,57]. A different ideal scenario for the face
pressure that affects the SS is illustrated in Figure 8. Case 1 shows that when the face
pressures are equivalent to the overburden pressure, there are no impacts on the ground
surface. Case 2 depicts the face pressures being less than the overburden pressures and
the ground settling. Lastly, case 3 illustrates when the face pressures are more than the
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overburden pressures, heaving can be seen. Nevertheless, the amount of face pressure
exceeded or lesser than the required pressures is subjected to the soil properties.
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The shield diameter is larger than the external diameter of the installed lining, which
causes a gap between the segments and the excavated soil mass [58]. This gap difference is
known as a tail void or annulus, and it easily occupies the inward deforming soil during
the shield and tail skin assembly process. When the tunnelling machine advances, the void
can be continually filled with grout in one of two ways: by pumping the grout through
pre-cast concrete lining segments or injecting the grout via grout ports at the back of the
tail skin. The injection was carried out under high pressure in the tail void formed by the
shield tail’s back. Thus, this is known as tail void grouting pressure. With high-pressure
injection, the void can be filled within a short period of time with grouting material.

Other than these two parameters, another operating parameter that can be modelled
into the numerical analysis is jack-force thrust. The distribution of the jack thrust in this
study is uniform across the theoretical models. The function of this thrust force is to
stimulate the actual condition of the mechanised tunnelling to move forward. The face
pressure and grouting pressure, with the average input of the recorded face pressure and
grouting pressure, are adopted in the analysis. To avoid the complication of the analysis,
the value is rounded off to the nearest two significant values, and these numbers are
summarised in Table 6.
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Table 6. Summary of the TBM operational parameters.

Model Tunnel Bound Average Face
Pressure (kPa)

Average Grouting
Pressure (kPa)

Average Force
Thrust (kPa)

1 1st 140 230 4700
2nd 180 370 2900

2 1st 290 350 4400
2nd 230 390 3800

3 1st 190 170 5400
2nd 200 160 5800

4 1st 190 220 5800
2nd 210 250 5800

5 1st 220 410 4400
2nd 250 270 5200

3. Construction of Numerical Model
3.1. General Characteristics

The numerical analysis was carried out using MIDAS GTX NX. In this section, the
geometry dimension of the numerical model for the analysis will be further explained, the
input for the grouting materials for the analysis will be stated, and the boundary condition
of the model will be described.

Before the commencement modelling of the numerical analysis, the extended dimen-
sions of the models affect the analysis required to be identified. In this analysis, the overall
geometry of the numerical model was based on the recommendations by Alagha and
Chapman [59] and Ruse [60]. Where C is the tunnel cover, D is the tunnel diameter, the
recommendation for the minimum numerical model width is 2D, the depth of the model
is C + 3D/2, and the length is 3D. Figure 9 shows a view of the models with various
dimensions (x, y, and z directions). The overall adopted numerical model dimension is
115 m (width) × 115 m (depth) × 20 m (thickness). In this numerical model, the diameter
of the tunnel is 6.7 m with a segmental lining width of 1.5 m. The tail void grout thickness
is 150 mm. Two types of grouting were used in the analysis which are fresh and hardened
grouting. The properties of the grouting materials are tabulated in Table 7. In addition, the
degree of freedom for the numerical model was constrained in the x-direction, whereas in
the y-direction was on both sides. Lastly, only nodes at the bottom were constrained in
the z-direction. The top nodal along the ground surface was not constrained to allow the
movement of the ground during the tunnelling process.
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Table 7. The inputs of the fresh and hardened grouting.

Type of Material Unit Weight, γ (kN.m−3) Young’s Modulus, E (MPa)

Fresh grout 15 7.5

Hardened grout 15 15

3.2. Construction Stages

Several stages have been involved in stimulating tunnel construction. In general,
the process of tunnelling includes soil excavation, the installation of segment lining, and
the application of external forces. At the beginning of the process, the self-weight and
groundwater were activated to simulate the initial stage to establish the geostatic stresses
in the soil mass. Subsequently, excavation was carried out by deactivating the soil elements
with face pressure on the excavation face and, at the same time, activating the shield shell,
which represents the tunnelling machine moving forward (Figure 10a). This process of
excavation was repeated until the total length of the shield (equal to six segmental linings)
was moved into the soil mass and the force thrust of tunnelling machine was activated to
indicate the movement of tunnelling machine, and the segmental lining was installed at
this stage (Figure 10b). Subsequently, the tail void grouting pressure was activated with
fresh grout material (Figure 10c). Finally, the fresh grout was converted to hardened grout
(Figure 10d) to show the later stage of the project. The tunnelling operational procedures of
the numerical analysis for the tunnelling machine are shown in Figure 11. The different
stages involved in tunnel construction, which encompasses excavation involving face
pressure, lining installation, and grouting, exert an influence on SS. During excavation,
voids are formed that cause the surrounding soil to settle. The installation of the lining
can displace the ground, contributing to settlement as the tunnel’s supporting structure
interacts with the soil. The grouting process, aimed at filling the gaps between the tunnel
and the excavated area, affects the soil’s radial distribution, consequently impacting SS.
Each of these phases brings about distinct settlement effects, and the overall sequence and
coordination of these stages play a pivotal role in effectively managing settlement levels.
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Figure 11. The SS is induced by parallel twin tunnelling for the first and second bored tunnels.

4. Results and Discussion

In this section, the output SS from the numerical analysis is compared with field
measurements of SS, and the interpretation of the results will be further discussed. A total
of five numerical models were analysed and compared with the measured settlement at
the site. A total of five models’ geometries can be found in Table 8. One of the tunnel
geometries that impacts the SS between twin tunnels is the pillar width. Based on Table 8,
it can be observed that Model 1, with the shortest pillar width, exhibits the highest SS
between the tunnels. This implies that both the 1st and 2nd bored tunnels contribute to the
maximum SS occurring between them.

Table 8. Summary of the tunnel geometry models for the numerical analysis.

Model Tunnel Depth (m) Pillar Width (m) Location of Maximum SS

1 10 6 Between 1st and 2nd tunnel

2 13 10 1st bored tunnel

3 15 11 1st bored tunnel

4 15 19 1st bored tunnel

5 15 12 2nd bored tunnel

The field measurements of SS directly above each bored tunnel closely align with
the results obtained from the numerical analysis, as presented in Table 9. A comparison
between the numerical analysis and the actual measurements is conducted in terms of
percentage differences. The disparities are predominantly below 18% across most models,
with the exception of Model 2 of the second bored tunnel, where a notably higher percentage
difference of 28.6% is observed. In comparison with the actual measurement, only a minor
difference of 1 mm is observed between the actual value and the analysis. In general, the
difference between measured and actual measurement is in the range of 0.5 mm to 3.1 mm.

Additionally, the SS values obtained from measurements and numerical analysis for
both the first and second bored tunnels are graphically represented in Figure 11, with
coefficient of determination (R2) values of 0.94 and 0.96 for the first and second bored
tunnel SS, respectively. These high R2 values suggest strong correlations between the
measured and computed SS values for both tunnels.

The SS output of the numerical analysis for each model is visualised alongside the
corresponding field measurement, as depicted in Figure 12. Observing the patterns within
Figure 12, it can be seen that the 3D numerical analysis of the tunnel construction process
effectively approximates the measured SS.
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Table 9. Summary of the SS results through numerical analysis.

Model Sequence of Boring SS Obtained by
MIDAS (mm) Actual SS (mm) Percentage of

Difference (%)

1
1st 9.8 9.3 5.4
2nd 7.3 7.5 2.7

2
1st 9.2 9.3 1.1
2nd 4.5 3.5 28.6

3
1st 13.6 11.6 17.1
2nd 12.6 10.7 17.8

4
1st 17.2 18.3 6.0
2nd 16.1 16.5 2.4

5
1st 17.5 18.5 5.4
2nd 19.0 22.1 14.0
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The output of this analysis has shown close similarities between the prediction set-
tlement using MIDAS software and the site measurement. Model 1 has the shortest
pillar width (6 m) in comparison with all the models. From this model, it can be seen that
the 1st and 2nd bored tunnels do not have much difference (2 mm); however, the maximum
SS is found located in between these two tunnels with the shape of a single symmetric set-
tlement trough, which is similar to the findings as per Peck [5] and Likitlersuang et al. [36].

Model 2 depicts the unique trend of SS, where the maximum SS is found at the
1st bored tunnel instead of the 2nd bored tunnel. In the actual scenario of excavation for
twin tunnels, the first bored tunnel excavates the undisturbed soil. However, the process
of excavation for the first bored tunnel disturbed the soil surrounding it. Hence, this
will cause the second tunnel’s soil to be disturbed. Terzaghi [61] was the first researcher
who published a paper related to the field data of surface settlements above twin tunnels.
His findings showed that the settlements above the second tunnel are larger than the
first tunnel. However, based on the result of the analysis and the site-recorded SS, the
second bore tunnel does not have the highest SS. In the past, most of the tunnelling
operations for twin tunnels were carried out using compressed air [62]. In addition, several
researchers [63,64] have found that the settlements above the second tunnels were larger
than the first tunnels. The finding that the second bored tunnel has the maximum SS is
applicable for open-face tunnelling because the ground reaction is influenced by tunnel
geometry and geological conditions.

It is obvious that the SS values above the second tunnel could be lower. This is
because the tunnelling operational parameters are considered contributing factors to the
settlement [65]. Kannangara et al. [66] also found a similar trend in the outputs, where the
observed second excavated tunnel has a lower SS when the face and grouting pressure
are controlled at the same or higher margin compared with the first excavation. Although
Model 3 has an approximately similar pillar width to Model 2 (different by 1 m) with a
deeper depth, the 1st and 2nd bored tunnel SS do not have many differences. This could
be due to the similarities in the operation parameters between the two tunnels and the
deeper tunnel depth. Hence, these two bored tunnel SS of Model 3 have more consistent SS
compared to Model 2.

Model 5 exhibits the highest settlement in comparison to the remaining models due
to the lowest soil stiffness of the ground. It can be inferred that when twin tunnels have a
larger spacing of 3D, there is no interaction between the tunnels [28]. This is evident from
Model 4, where the maximum surface settlement at the 1st excavated tunnel is likely due to
slightly low face pressure. Consequently, it can be deduced that within this range of pillar
width, there is no impact from the first bored tunnel on the area of the second tunnel.

Several researchers have also carried out the analysis of tunnelling using MIDAS
software and reported very close findings to the measured settlement for the different
scenarios of the analysis as tabulated in Table 10.

Table 10. Summary of tunnelling analysis using MIDAS software for various scenarios.

No Author (s)
Number of
Numerical

Models

Comparison of the Numerical Analysis
with Site Measurement

1 Zhou et al. [67] 1

The site measured maximum settlement =
9.72 mm at x = 12.25 m.

The numerical result of maximum
settlement = 9.94 mm at x = 11.25 m.

The errors between the numerical results
and measured data are small.

2 Ahmed et al. [3] 4 The maximum difference between the
measured and numerical analysis is 25%.

3 Ayasrah et al. [68] 5 The highest longitudinal settlement is less
than a 3 mm difference.
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In previous studies, the most common method to determine the surface settlement
induced by tunnelling is the empirical formula. This empirical formula is dependent on the
VL, which varies according to the type of ground and installation tunnel. However, as far
as the authors know, no literature on VL for the soil in Malaysia has been published. The
use of empirical formulas is limited to certain ground conditions and installation methods.
Chakeri and Ünver [69] compared the empirical formula with the measured settlement, and
from their studies, the calculated and measured settlement diverge by more than two times.
In addition, they also carried out the 3D numerical analysis; however, the 3D numerical
analysis was carried out in the lithology of the ground for the Gungoren formation, which
mainly consists of very stiff clay, hard clay, and dense sand. Furthermore, Choon [40] used
the 2D finite element of the contraction method with various VL inputs to retrieve a similar
SS as measured at the site. Furthermore, several studies [70–72] have utilised centrifuge
laboratory modelling for sandy soil materials. However, these laboratory results have not
been compared with field measurements, and they have not taken tunnelling operational
parameters into consideration. Therefore, by utilising 3D numerical analysis, it becomes
possible to integrate three crucial factors: tunnel geometry, geotechnical soil properties,
and tunnelling operational parameters. This integration, combined with the incorporation
of tunnelling machine construction processes, allows for the accurate determination of
SS. This approach mitigates the constraints associated with alternative methodologies, as
discussed previously. Consequently, this demonstrates that this method offers superior
advantages compared to other approaches.

5. Limitations and Future Works

In this study, the number of field measurements is limited due to the focused investi-
gation on the alluvium and Kenny Hill formation areas. Therefore, expanding the scope
to include more field measurements from various locations, particularly within the soil
area, with closer intervals would enhance the development and validation of the model.
Additionally, if the budget allows, considering real-time monitoring for tunnelling-induced
settlement measurements could be beneficial.

It is important to note that the geological profile is established based on the closest SI
boreholes with a diameter of 100 mm, which implies a potential non-homogeneity in the
studied geological profile. Furthermore, the input of groundwater levels relies on recorded
SI works, which could be influenced by field conditions.

While 3D numerical modelling is time-consuming and unsuitable for real-time analysis
during the operation of long tunnels, situations involving geological formations and tunnel
operational parameters may arise. Therefore, new computational approaches such as ma-
chine learning and intelligent techniques could find applications in this context. Combining
these approaches with established theories and empirical equations in relevant domains
could yield a more generalised technique for predicting settlement induced by twin tunnels.
Moreover, these techniques would offer practicality and relevance to engineers in the field.

6. Conclusions

The findings from the 3D numerical analysis of parallel tunnels using the MIDAS
software, incorporating mechanised tunnelling construction stages and a hardening soil
model, demonstrate an acceptable level of prediction accuracy for SS when compared with
field measurements. Consequently, the industry may consider adopting this approach for SS
assessment. Furthermore, the 3D numerical modelling approach enables the customization
of mitigation strategies for SS based on specific project parameters, aiming to achieve a more
sustainable tunnel construction. The key findings of this investigation can be summarised
as follows:

(1) The 3D numerical analysis produced SS above the tunnel crown of twin tunnels has
shown R2 = 0.94 and R2 = 0.96, respectively for the first and second bored tunnels
with the actual field measurements and the largest difference settlement of 3.1 mm.
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(2) The second bored tunnel does not consistently exhibit the largest SS because it can
be influenced by other factors, such as tunnel geometry, geotechnical soil properties,
and tunnel operational parameters. For example, a narrower pillar width can lead to
higher SS between tunnels, as demonstrated in Model 1. Similarly, areas with lower
soil stiffness could also result in elevated SS. Additionally, insufficient face pressure
can contribute to increased settlement.

(3) It can be stated that no effect of the first bored tunnel on the second bored tunnel area
at a distance of equal or more than 3D between the tunnels has been observed.

(4) The interpretation of the elastic modulus from the field pressuremetre test and SPT-N
can be used as geotechnical soil stiffness parameter inputs in the numerical analysis.
The interpreted relationship of the pressuremetre modulus with corrected SPT-N is as
follows: Em = 2.3 N60 + 11 (alluvium) and Em = 1.4 N60 + 18 (kenny Hill).

(5) Three main input parameters, namely tunnel geometry, engineering ground parame-
ters, and tunnel operational parameters, considered in the numerical analysis yield
results that closely align with the field measurements.
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Abstract: Crown deformation is a major concern in the design and construction of underground
caverns. It can lead to damage to the cavern structure and surrounding infrastructure and can
also pose a safety hazard to workers. This paper studies the factors affecting crown deformation
in underground caverns. A parametric study was conducted to investigate the effects of seven
parameters on crown deformation: rock mass rating (RMR), uniaxial compressive strength (UCS), Young’s
modulus of intact rock (Ei), Poisson’s ratio (υ), tensile strength (σt), angle of internal friction (ϕ), and cohesion
(C). The results of the parametric study showed that the following parameters significantly affected
crown deformation: RMR, UCS, Ei, and Φ. A multiple linear regression analysis was conducted
to develop a regression equation to predict crown deformation. The coefficient of determination
(R2) for the regression equation is 92.92%, which indicates that the equation is a good predictor of
crown deformation. The parametric study results and the regression analysis can be used to improve
the design and construction of underground caverns. By considering the factors that affect crown
deformation, engineers can design more stable caverns that are less likely to experience deformations.
The results of the study can be used to improve the design and construction of caverns, making them
safer and more sustainable.

Keywords: crown deformation; underground caverns; parametric study; multiple linear regression

1. Introduction

Underground caverns are widely used for various purposes, such as housing hy-
droelectric machinery, storing crude oil, gas, and radioactive waste, conducting scientific
research, and providing leisure amenities. Due to limited space availability and environ-
mental concerns, construction of underground structures rapidly increased worldwide
between the late 20th and early 21st century. Underground caverns have several advantages
over surface structures, such as reduced land occupation, higher security, lower cost, and
increased environmental benefits. From a sustainability perspective, underground caverns
offer several advantages over surface structures: they can help to reduce land occupation,
which can help to preserve natural habitats and reduce the impact of development on the
environment; they can also help to reduce noise and air pollution; and they can provide
a more secure environment for storing hazardous materials. As the world population
continues to grow and the demand for resources increases, underground caverns are likely
to play an increasingly important role in sustainable development.

However, the stability of these caverns is a critical concern, as most of them are
constructed in complex geology and stress conditions, which influences the deformation
pattern of the caverns, which, in turn, can lead to structural failure and safety hazards.
Sometimes, larger crown failures in caverns hamper the project time, escalate the cost, and
cause overruns. Hence, the study of the behavior of the crown prior to the excavation of
caverns is essential. The stability of the crown of the cavern is an important consideration

Sustainability 2023, 15, 12851. https://doi.org/10.3390/su151712851 https://www.mdpi.com/journal/sustainability
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as the deformation is influenced by several parameters, such as the size and shape of the
cavern, the rock cover, the rock type, the in situ stress field, the geology and rock mass
properties, and the construction practices. Therefore, it is essential to understand how these
parameters affect crown deformation and to develop reliable methods for predicting and
controlling it.

Previous studies have investigated some aspects of crown deformation in underground
caverns, such as the effect of cavern geometry, rock cover, rock type, in situ stress, geology
and rock mass properties, and construction practices [1–4]. However, most of these studies
have focused on specific cases or locations and have not provided a comprehensive and
systematic analysis of the impact of different parameters on crown deformation. Moreover,
most of these studies have used empirical or analytical methods that have limitations in
capturing the complex behavior of rock masses and caverns.

In this paper, we present a unique study on the impact of different parameters on the
prediction of crown deformation in underground caverns. We use a numerical modeling
approach based on the finite element method (FEM), which can account for the nonlinear
and heterogeneous characteristics of rock masses and caverns. We consider a wide range of
parameters that cover various aspects of cavern design and site conditions. We conduct a
series of parametric analyses to examine how each parameter affects the crown deformation
and to identify the most influential ones. A comprehensive statistical analysis with multiple
linear regression models was carried out to bring out the most important factors affecting
crown deformation.

The advantage of this research is that the empirical equation developed for predicting
crown deformation may become a handy tool for practicing engineers in the estimation of
the behavior of crowns prior to excavation. The crown deformations predicted in this study
can assist in selecting the optimal range of the instruments. The predicted deformations
are helpful in setting the warning limits in deformation monitoring and reviewing the
planned support systems. Overall, it can be beneficial in terms of project cost savings and
the safety of manpower and machinery during construction time. Hence, study of the
cavern crown areas is essential. The results of the study can be used to improve the design
and construction of caverns, making them safer and more sustainable.

2. Overview of Factors Affecting Crown Deformation

The size and shape of an underground cavern are important factors that affect its
crown deformation. Arch-shaped crowns with straight high walls are the most common
shape for underground caverns [2]; this shape provides good stability and minimizes stress
concentration. However, larger hydro caverns are being constructed as the demand for
power increases. These larger caverns may be more susceptible to crown deformation due
to their increased span, height, and length.

Another factor affecting crown deformation is the rock cover over the cavern. Caverns
at shallow depths with reasonably good-strength rock mass evidence instabilities observed
in the form of small wedges [3]. These wedges are formed by intersecting joints or fractures
in the rock mass and may detach from the roof under gravity or water pressure. Caverns at
deeper depths with low-strength rock mass may experience large-scale failure or collapse
due to high stress and low confinement.

Rock mass properties, such as the rock mass rating (RMR), density, strength param-
eters, and friction angle, are also important factors affecting an underground cavern’s
crown deformation.

The in situ stress field is another important factor affecting an underground cavern’s
crown deformation. It is influenced by tectonic forces, gravity, topography, and geological
structures. Generally, the long axis of the caverns is aligned in the direction of the major
principal stress to reduce stress concentration and optimize stability. However, the magni-
tude and direction of in situ stresses can vary depending on the location of the cavern. The
maximum stress concentration factor in the pillar owing to vertical stress is unaffected by
cavern orientation [5].
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The geology and rock type of the area where the cavern is being constructed are
also important factors that affect its crown deformation. Strong, well-bonded rock is
generally more stable than weak, fractured rock; for example, an underground cavern built
at India’s Peninsular Gneissic complex has a rock type of granitic gneiss, which is strong to
extremely strong and traversed by three–four sets of notable discontinuities, including a
sub-horizontal joint set of dolerite dykes. The dolerite dykes are weak to medium strong,
closely joined with several sets of joints, and brittle. This may significantly modify stresses
and displacements in underground openings [3].

The underground powerhouse located in Deccan basalt flows intruded by dolerite
dykes and sill seems to be good for tunneling. However, during the construction stage,
geotechnical problems such as wedge-type roof falls and vertical and horizontal cracks
were observed on sides of the roof and walls [6].

Methodologies Used for the Prediction of Displacements

The prediction of crown deformations in large underground caverns is a complex
problem that can be addressed using a variety of methodologies. These methodologies can
be broadly categorized into three main groups: analytical, numerical, and empirical.

Analytical methods are based on theoretical models of rock mechanics that can estimate
the magnitude and distribution of deformations under idealized conditions. However,
these methods have limitations in accounting for the complex geological and geotechnical
conditions encountered in real-world projects. One of the most common analytical methods
for predicting crown deformation is the convergence–confinement method. This method
assumes that the rock mass behaves elastically and that the deformations are governed
by the in situ stresses and the geometry of the opening. The convergence–confinement
method can estimate the overall convergence of an underground opening but it cannot be
used to predict the distribution of deformations within the opening.

Numerical methods are based on computational models that can simulate the exca-
vation of underground caverns and the subsequent deformation of the surrounding rock
mass. Numerical methods can account for a wide range of factors, such as the geometry of
the cavern, the properties of the rock mass, and the in situ stresses. One of the most widely
used numerical methods for predicting crown deformation is the finite element method
(FEM). The FEM is a powerful numerical method that can capture complex phenomena
and interactions in underground structures. FEM models can be used to account for a wide
range of factors, including the geometry of the cavern, the properties of the rock mass, and
the in situ stresses. However, FEM models can be computationally expensive to develop
and run and can be sensitive to input parameters.

The patterns of deformation, stress status, and distribution of plastic areas for the
stability of the huge underground caverns were analyzed and assessed using Rocscience
RS2-FEM software [7]. In Greece, the convergence of shallow tunnels (30–120 m overburden
thickness) built in various rock bodies has been evaluated as a function of the geological
strength index (GSI classification). Maximum vertical and horizontal convergence predic-
tions were made using the FEM and the ‘characteristic line’ theory during or shortly after
tunnel excavation. They were found to be in good accord, with geodetic observations of
convergence taken about two months following the excavation [8]. The cavern behavior
was investigated using 3D numerical modeling (FEM analysis) and geotechnical instru-
mentation monitoring to study the sensitive parameters for prediction of convergence [5].
The horseshoe cavern stability was studied using 3DEC under various scenarios in terms
of deformations at various points. The dynamic nature of underground construction and
rock mass behavior, as well as timing and interpretation (installation of monitoring target
and recorded data), are critical for understanding the stability of excavated structures [9].

The effect of the lateral-stress-to-vertical-stress ratio, cavern height, overburden depth,
and deformation modulus was investigated and produced as an elastoplastic displacement
prediction equation for the cavern’s high side wall. This method was used to determine the
deformation key sites for a cavern [10].
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Empirical methods for predicting the crown deformation of underground caverns
are based on observational data and empirical relationships that can predict deformations
based on previous experiences and cases. Empirical methods can provide practical and
simple solutions for predicting crown deformation, but they may not be applicable to all
situations and conditions. This approach is often used in conjunction with analytical or
numerical methods to improve the accuracy of predictions.

One of the most common empirical methods for predicting crown deformation is
regression analysis. Regression analysis can be used to fit a mathematical equation to
a set of data points. The equation can then be used to predict crown deformations for
new projects with similar characteristics. Another empirical method for predicting crown
deformation is the neural network. Neural networks are machine learning algorithms that
can learn complex relationships between variables. Neural networks have been used to
predict crown deformations by training them on datasets that contain information about
crown deformation and the factors that affect it. Once a neural network is trained, it can be
used to predict crown deformation for new projects.

Alongside the above-mentioned methodologies, other methods have been used to
predict crown deformations in underground caverns. These methods include the following:

• Support vector machines (SVMs): SVMs are machine learning algorithms that can
classify data or predict continuous values. SVMs have been used to predict crown
deformations by developing models that relate deformation to various parameters,
such as rock mass properties, in situ stresses, and excavation methods.

• Artificial neural networks (ANNs): ANNs are another type of machine learning
algorithm that can be used to predict crown deformations. ANNs are trained on
datasets that contain information about crown deformation and the factors that affect it.
Once an ANN is trained, it can be used to predict crown deformation for new projects.

• Monte Carlo simulation: Monte Carlo simulation is a statistical method that can be
used to estimate the probability of various outcomes. Monte Carlo simulation has been
used to predict crown deformations by simulating the excavation of an underground
cavern multiple times with different random values for the input parameters. The
results of the simulations can then be used to estimate the probability of different
levels of crown deformation.

Some examples of empirical methods applied to specific cases are as follows.
An evolutionary SVM approach was devised using a combination of SVM and the

genetic algorithm for generating a time series analysis of nonlinear slope deformation. The
results demonstrate that the established SVMs can accurately describe the evolutionary
law of geomaterial deformation at depth and predict the following 6–10 time steps with
sufficient accuracy and confidence [11]. ANN approaches were used to thoroughly combine
information from monitoring observations and investigations to create two dimensionless
indices. The first indicates the predisposition of a portion of the rock mass to destruc-
tion, dislocation, and deformation—CP

RF—coefficient of roof fall—predisposition, and the
second represents the predisposition and possibility of maintaining the working—CM

RF
coefficient of roof fall—maintenance [12].

The surrounding rock stability of an underground cavern group is an essential issue
in the process of cavern excavation, which has the characteristics of large displacement,
discontinuity, and uneven deformation, making computation and analysis difficult. By
observing the destruction process of a jointed rock mass, the discontinuous deformation
analysis for the rock failure approach was used to analyze the stability of the surrounding
rock [13]. A support vector machine (SVM) is used to forecast the allowed deformation
of surrounding rock. One-hundred sets of multi-factor and multi-level orthogonal experi-
ments are constructed and simulated using ABAQUS-based two-dimensional numerical
models. Three parameters are considered: rock mass categorization, cavern buried depth,
and cavern size. The mapping association between permitted deformation and the three
influencing factors described above is established [13].

46



Sustainability 2023, 15, 12851

The choice of methodology for crown deformation prediction will depend on several
factors, including the size and complexity of the cavern, the availability of data, and the
desired level of accuracy. A combination of analytical, numerical, and empirical methods is
often used to achieve the most reliable results.

3. Study Methodology

The current study examines the stability analysis of underground structures based on
factors for rock mass utilizing various prediction techniques. The study methodology is
shown in Figure 1.
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3.1. Data Collection

The first step in the study methodology is to collect data from case studies of under-
ground caverns in various geological contexts. The data collected include the following:

• Geometrical data include the size and shape of the cavern, the rock cover, and the in
situ stress conditions;

• Rock mass properties include the rock mass rating, the strength parameters for com-
pression, tension, cohesion, friction angle, and Poisson’s ratio;

• Mechanical characteristics of intact rock samples, such as the uniaxial compressive
strength and the tensile strength;

• Instrumentation data; in particular, the measurements of crown displacement made
with extensometers.

The data for this study were collected from a variety of sources, including previous
research papers, government reports, and industry databases.
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The next step in the study methodology is to develop an empirical relationship for the
prediction of crown displacements. This relationship will be based on the data collected
from the case studies. The relationship will be developed using numerical and statistical
methods such as design of experiments (DOE) and regression analysis. Once the empirical
relationship has been developed, it was validated using data from additional case studies.
The validation process will involve comparing the predicted crown displacements to the
actual crown displacements that were measured in the case studies. The final step in
the study methodology is to draw conclusions about the effectiveness of the empirical
relationship. The conclusions will be based on the results of the validation process.

The study methodology outlined above is a rigorous and systematic approach to
develop and validate empirical relationships for predicting crown displacements in under-
ground caverns. The methodology can be used to develop empirical relationships for a
variety of underground caverns, regardless of the geological context.

About three–four instrumented sections of data were collected at each cavern. Figure 2
depicts the precise location information for the caverns considered for this investigation.
Table 1 displays the parameter’s possible range used in this investigation and to study
the deformations.
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3.2. Description and Overview of the Data Collected

The data collected for this study include the following:

• Geometry: The dimensions of the caverns range from 100 to 525 m in length, 14 to 26 m
in width, and 18.55 to 57 m in height.

• Overburden depth: The rock cover of the caverns ranges from 42 to 532 m.
• Rock type: The surrounding rock of the caverns ranges from soft rock to medium-hard

rocks, such as phyllites and charnockite. The amygdaloidal and porphyritic basalt
flows that make up the rocks of the Sardar Sarovar Project underground powerhouse
cavern are separated by pockets of agglomerate [6]. The Tala Powerhouse Cavern
is located on the southern slopes of the eastern Himalayas, not far from the MCT
(Main Central Thrust). This major thrust zone is the boundary between the Lesser
and Higher Himalayas. Most of the rocks in the powerhouse are phyllitic quartzite,
quartzite, phyllites, and amphibolite schist.

• Physico-mechanical properties: The specimens were prepared from intact rock sam-
ples from the project sites. Following ISRM guidelines, specimens were examined
at the NIRM laboratory to determine their physical and mechanical characteristics
during cavern design and construction [26]. These are needed as input data for
numerical modelling.

• The following are the physico-mechanical properties of the intact rock samples:
• Uniaxial compressive strength (UCS): The UCS ranges from 34 to 250 MPa for undam-

aged rock samples;
• Young’s modulus (Ei): The intact rock’s Young’s modulus ranges from 20 to 100 GPa;
• Poisson’s ratio (υ) and tensile strength (σt): These parameters range from 0.16 to 0.38

and 0.03 to 1.7 MPa, respectively;
• Internal friction has an angle (ϕ) ranging from 32.84◦ to 68.41◦;
• Cohesion (c): The samples’ cohesion values range from 0.48 to 3.09 MPa.

4. Instrumentation and Monitoring

Instrumentation and monitoring play a vital role in the construction and operation
of underground caverns. They help to ensure the safety and stability of the structure by
providing data on rock movement, pore water pressure, and the load on support elements.

The instrumentation layout for large underground caverns typically includes the following:

• Extensometers: These devices measure deformations in the surrounding rock mass;
• Anchor load cells: These devices measure the load on support elements, such as bolts

and anchors;
• Piezometers: These devices measure pore water pressure in the rock mass;
• Convergence targets: These devices measure the convergence of the roof and side

walls of the cavern;
• Rock bolt stress meters: These devices measure the stress buildup along the length of

rock bolts.

The type of instrumentation used can vary depending on the project’s specific needs.
Simple mechanical instruments are often used for initial monitoring, while more sophisti-
cated remote-type instruments may be used for long-term monitoring.

The effectiveness of the support systems and rock mass stability is verified by monitor-
ing the support elements using loadcells and deformations using the MPBX and identifying
the crucial zones of the powerhouse and transformer caverns [15,27]. The sophistication
and remoteness of instruments increase with a decrease in the stability of the structure [28].

An extensive geotechnical instrumentation and monitoring program was carried
out at the Ingula hydropower caverns to validate design assumptions and monitor long-
term creep effects. The results of this monitoring program showed that most of the time-
dependent deformation in the power caverns was expected to occur within 6 months to a
year following excavation down to the operating floor level [29].
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In the last four decades, major hydropower caverns built in India and Bhutan, oil
storage caverns, and pump house caverns built in India were instrumented and monitored
during construction for their safety and stability. Normally, about four–five sections or
more of instrumentation arrays cover the full length of the cavern. Figure 3 explains the
typical instrumentation layout of a large cavern section.
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Figure 3. Typical instrumentation layout of an underground cavern.

5. Data Analysis

Initially, data were collected from all ten caverns selected for the present study. The
data were checked and sorted, with 31 sections of crown displacements data and the
surrounding rock mass conditions. Later, we checked for correlations between measured
displacements and variables from geometry, overburden height, and rock mass properties.
Finally, we plotted the correlation effect of crown deformations with the selected parameters
in Figure 4a–h. The correlation coefficient matrix between the selected variables is shown
in Table 2.

Table 2. Correlation coefficient matrix between the selected variables.

Width,
m

Height,
m

Rock
Cover, m KH Kh RMR UCS,

MPa Ei, GPa Poisson’s
Ratio υ

Tensile
Strength,

σt

Friction
Angle, Φ

Cohesion
(C), MPa

Deformation
(mm)

Width, m 1.0

Height, m 0.8 1.0

Rock
Cover, m

−0.3 0.0 1.0

KH 0.0 −0.1 −0.6 1.0
Kh 0.0 −0.2 −0.6 0.9 1.0
RMR 0.0 0.3 0.2 −0.4 −0.5 1.0
UCS, MPa 0.7 0.4 −0.3 0.2 0.1 −0.1 1.0
Ei, GPa 0.4 0.1 0.2 0.1 0.0 −0.3 0.6 1.0
Poisson’s
Ratio υ

−0.2 −0.1 0.7 −0.5 −0.5 0.3 −0.3 −0.2 1.0

Tensile
strength,
σt

0.4 0.5 0.2 −0.2 −0.2 0.5 0.5 0.1 0.2 1.0

Friction
angle (Φ)

0.5 0.1 −0.7 0.5 0.4 −0.3 0.5 0.3 −0.6 −0.2 1.0

C, MPa 0.3 0.4 0.2 −0.3 −0.4 0.6 0.6 0.3 0.1 0.9 −0.1 1.0
Deformation
(mm)

−0.3 −0.1 0.6 −0.3 −0.1 0.0 −0.4 −0.3 0.6 0.0 −0.7 −0.1 1.0

Conditional formatting was used to color code the correlations: dark blue color indicates a strong positive
correlation, light blue color indicates fair positive correlation, dark red indicates a strong negative correlation,
light red indicates fair negative correlation and white indicates low or no correlation among the variables.
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Figure 4. Effect of crown deformation with different variables: (a) width; (b) rock cover; (c) Poisson’s
ratio; (d) UCS; (e) Ei; (f) RMR; (g) KH; (h) Kh.
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The following are the findings from the correlation matrix:

• There is a strong positive correlation between crown displacement rock cover and
Poisson’s ratio;

• There is a weak negative correlation between crown displacement and UCS (Young’s
modulus);

• There is no significant correlation between crown displacement and other rock mass
properties such as RMR, cohesion, and tensile strength; however, there is some nonlin-
ear relation between these parameters and crown displacements.

5.1. Numerical Modeling of Underground Caverns

In this study, the displacements were found using the RS2 (Phase2, Rocscience Inc.,
Toronto, ON, Canada) 2D finite element method (FEM) program for soil and rock applica-
tions. This program can be used to create complex, multi-stage models that can be quickly
analyzed, such as tunnels and caverns in weak or jointed rock. The analysis type used in
this study was plane strain.

The caverns studied in this paper were all excavated in 10–15 stages. The dimensions
of each cavern were 200–250 m in length, 20–25 m in width, and 18–53 m in height. Figure 5
shows the dimensions of one of the caverns studied. The excavation of the caverns was
modeled in stages, starting with the top heading (TH) and then moving on to bench 1
(B1) and bench 2 (B2). The bench height in each stage was 2.5 to 4 m. Figure 5 shows the
sectional view of the excavation sequence considered for numerical modeling of case 1 of
the MHP-MH cavern.
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Figure 6 shows the mesh and boundary conditions of the model. The boundary
conditions were set such that the sides of the model were restrained in the X direction
and, at the bottom, restrained in the XY direction. Figure 7 shows the total displacement
contours of the model.
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The crown displacements for all 64 samples of the machine hall cavern of the MHP
project for different values of the parameters are given in Table 3.

Table 3. Predicted crown displacements from the 64 samples of the MHP machine hall cavern for
different combinations of the input parameters.

RMR UCS, MPa Ei, GPa Poisson’s Ratio Tensile Strength, MPa Friction Angle, Degree C, MPa Deformation, mm

40 32 100 0.165 0.03 68.41 5.16 11.2

40 255 20 0.165 1.95 32.82 5.16 32.6

84 32 100 0.38 1.95 32.82 5.16 1.72

40 32 100 0.38 1.95 68.41 5.16 16.9

84 255 100 0.165 0.03 68.41 5.16 0.976

40 255 20 0.38 1.95 32.82 0.48 58.7

84 32 100 0.165 0.03 32.82 5.16 0.979

84 32 20 0.165 1.95 32.82 5.16 4.8

84 32 100 0.38 0.03 32.82 0.48 1.72

84 32 100 0.38 1.95 68.41 0.48 1.72

84 32 20 0.38 0.03 32.82 5.16 8.38

84 32 20 0.38 0.03 68.41 0.48 8.39

84 255 100 0.165 0.03 32.82 0.48 0.976

40 32 100 0.38 0.03 32.82 5.16 16.2

40 32 20 0.165 0.03 68.41 0.48 51.1

40 32 20 0.38 0.03 68.41 5.16 72.4

40 32 100 0.165 1.95 68.41 0.48 11.2

40 255 20 0.38 0.03 68.41 0.48 58.8

40 255 100 0.165 1.95 32.82 0.48 7.27

40 32 100 0.38 1.95 32.82 0.48 31.8

40 255 20 0.165 0.03 68.41 5.16 32.7

40 255 100 0.38 1.95 68.41 0.48 12.7

84 255 100 0.165 1.95 32.82 5.16 0.977

40 255 100 0.165 0.03 68.41 0.48 7.27

40 255 20 0.38 1.95 68.41 5.16 58.8

84 255 20 0.165 0.03 68.41 0.48 4.79

40 32 20 0.165 1.95 32.82 0.48 51.2

84 255 20 0.165 1.95 32.82 0.48 4.8

40 255 100 0.38 0.03 68.41 5.16 12.7

40 255 100 0.165 0.03 32.82 5.16 7.27

40 255 100 0.38 0.03 32.82 0.48 12.7

84 32 20 0.165 1.95 68.41 0.48 4.8

40 32 20 0.38 1.95 68.41 0.48 9.39

84 255 20 0.165 0.03 32.82 5.16 4.79

84 32 20 0.38 1.95 68.41 5.16 8.39

84 32 100 0.165 1.95 32.82 0.48 0.979

84 255 20 0.165 1.95 68.41 5.16 4.79

84 32 20 0.165 0.03 68.41 5.16 4.8

40 255 100 0.165 1.95 68.41 5.16 7.27
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Table 3. Cont.

RMR UCS, MPa Ei, GPa Poisson’s Ratio Tensile Strength, MPa Friction Angle, Degree C, MPa Deformation, mm

40 255 20 0.165 1.95 68.41 0.48 32.7

40 32 100 0.165 0.03 32.82 0.48 7.27

40 255 20 0.165 0.03 32.82 0.48 32.7

84 255 20 0.38 0.03 68.41 5.16 8.27

40 32 100 0.38 0.03 68.41 0.48 13.6

84 32 100 0.38 0.03 68.41 5.16 1.72

84 32 20 0.165 0.03 32.82 0.48 4.8

40 32 20 0.38 0.03 32.82 0.48 72.5

84 255 20 0.38 1.95 32.82 5.16 8.28

84 255 100 0.38 0.03 32.82 5.16 1.69

84 255 100 0.165 1.95 68.41 0.48 0.975

84 255 100 0.38 0.03 68.41 0.48 1.69

84 255 20 0.38 0.03 32.82 0.48 8.27

84 32 100 0.165 1.95 68.41 5.16 0.943

40 32 20 0.38 1.95 32.82 5.16 67.9

40 32 20 0.165 1.95 68.41 5.16 48

84 32 20 0.38 1.95 32.82 0.48 8.08

40 255 20 0.38 0.03 32.82 5.16 56.6

84 255 20 0.38 1.95 68.41 0.48 7.98

40 32 100 0.165 1.95 32.82 5.16 10.7

84 255 100 0.38 1.95 68.41 5.16 1.63

84 32 100 0.165 0.03 68.41 0.48 0.942

40 255 100 0.38 1.95 32.82 5.16 12.2

84 255 100 0.38 1.95 32.82 0.48 1.63

40 32 20 0.165 0.03 32.82 5.16 48

The results of the numerical modeling show that the crown displacements increase with
increasing cavern height, decreasing rock mass rating, and increasing overburden depth.

The results of the numerical modeling can be used to improve the design and
construction of underground caverns. By taking into account the factors that affect
crown displacement, engineers can design caverns that are more stable and less likely to
experience deformations.

5.2. Parametric Study on Crown Deformations of a Cavern (Case Study MHP-MH)
5.2.1. Design of Experiments and Fractional Factorial Work

Design of experiments (DOE) is a tool that allows you to obtain information about
how factors (X’s), alone and in combination, affect the process and its output (Y). DOE
allows you to test more than one factor at a time, as well as different settings for each factor.
DOE is more cost-effective than trial-and-error methods. Using DOE techniques, you can
find the individual and interactive effects of various factors that can influence the output
results of your measurements.

One way to do a parametric study is by changing one of the parameters within a
range, keeping all other parameters constant, and then studying the effect. This process is
then repeated for the remaining parameters one after another. However, this can be time-
consuming and resource-intensive, especially if there are many parameters to consider. A
more efficient way to conduct a parametric study is to use a factorial design of experiments.
In a factorial design, experimental trials (or runs) are performed at all combinations of
factor levels. A factorial experiment with k factors, each factor having two levels of value,
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will require 2k number of runs. This is known as a 2k factorial design, and it is read as a
two-level k factor design [30–33].

In this study, we used a half-factorial design, which means that we only ran half of
the possible combinations of factor levels. This was undertaken because we were only
interested in the main effects of the parameters, not the interaction effects.

The values of the parameters used in the parametric study for the MHP machine hall
cavern were as follows:

• Rock mass rating of the cavern crown (RMR) :43–65;
• Uniaxial compressive strength (UCS) :182–250 MPa;
• Young’s modulus of intact rock (Ei) :40–72 GPa;
• Poisson’s ratio (υ) :0.16–0.17;
• Tensile strength (σt) :0.18–1.3 MPa;
• Internal friction angle (Φ) :58.36–63.23 degrees;
• Cohesion (C) :1.42–5.16 MPa.

5.2.2. Main and Interaction Effects

The effect of a factor is defined as the change in response produced by a change in the
level of the factor. It is called the main effect because it refers to the study’s primary factors.
The main effect of all seven parameters has been shown for the cases of the MHP-MH and
the Pykara-MH cavern in Figures 8 and 9, respectively.
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In this study, the main effects of the following parameters on crown deformation were
investigated:

• Rock mass rating (RMR);
• Uniaxial compressive strength (UCS);
• Young’s modulus of intact rock (Ei);
• Poisson’s ratio (υ);
• Tensile strength (σt);
• Internal friction angle (ϕ);
• Cohesion (C).

The results of the study showed that the following main effects were significant:

• RMR: As RMR increases, crown deformation decreases;
• UCS: As UCS increases, crown deformation slightly decreases or does not change

significantly;
• Ei: As Ei increases, crown deformation decreases;
• υ: As PR increases, crown deformation increases;
• σt: σt has no significant effect on crown deformation;
• ϕ: As ϕ increases, crown deformation slightly decreases;
• C: C has no significant effect on crown deformation.

The interaction effects between the parameters were also investigated. The results
showed that there were no significant interaction effects between any of the parameters.
This means that the effect of each parameter on crown deformation can be explained via
its main effect alone. The parallel and near-to-parallel plots of crown deformation versus
different parameters shown in Figure 10 indicate a very rare chance of interaction among
the parameters. The same was observed for all other cases; thus, the influence of each
parameter can be explained by its main effect alone. In conclusion, the results of this
study show that the main effects of RMR, UCS, Ei, and υ are highly significant, and σt, ϕ,
and C are of low significance to crown deformation. The interaction effects between the
parameters are not significant.

Sustainability 2022, 14, x FOR PEER REVIEW 18 of 23 
 

 
Figure 9. Main effects plot for crown deformation in the Pykara-MH cavern. 

 

 
Figure 10. Interaction effects plot of crown deformation between different variables of MHP-MH 
cavern. 

Table 4. The main effect of different parameters on displacement for all cases. 

Cavern 
Name 

 RMR UCS Ei P-Ratio Tensile 
Strength 

Phi  C 

MHP-MH 
Effect −26.77 −3.03 −20.91 6.84 −1.39 −2.15 1.29 

Ranking 1st 3rd 2nd 7th 5th 4th 6th 

THP-MH 
Effect −255.6 −187.4 −218.0 −6.6 −33.7 −35.9 1.1 

Ranking 1st 3rd 2nd 6th 5th 4th 7th 

THP-DC 
Effect −9.23 −0.64 −7.71 2.62 0.029 −0.12 0.06 

Ranking 1st 3rd 2nd 7th 6th 4th 5th 

NJHP-MH 
Effect −51.72 −17.78 −41.98 4.74 0.94 −0.34 −0.39 

Ranking 1st 3rd 2nd 7th 6th 5th 4th 

NJHP-DC 
Effect −260.9 −198.0 −186.2 −14.5 0.6 −0.8 0.6 

Ranking 1st 2nd 3rd 4th 6th 5th 7th 
Tehri-PH Effect −99.9 −42.15 −76.98 −2.33 1.32 −1.24 1.06 

Figure 10. Interaction effects plot of crown deformation between different variables of MHP-
MH cavern.
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In the case study MHP-MH, it is appropriate to consider the effect of Poisson’s ratio
on displacement, which is 6.84. This indicates that as the Poisson’s ratio value increases
from 0.165 to 0.38, the displacement will increase by 6.84 mm. A negative value shows
the reduction in displacements. The ranking of each parameter is given based on its
absolute value. It is observed that the rock mass rating, uniaxial compressive strength,
Young’s modulus of intact rock, Poisson’s ratio, tensile strength, angle of internal friction,
and cohesion have a decisive role to play in influencing the displacements. The main
effect of different parameters with respect to other studied cases is given in Table 4.
The effect of all parameters cannot be neglected unless the data are analyzed through
regression analysis.

Table 4. The main effect of different parameters on displacement for all cases.

Cavern Name RMR UCS Ei P-Ratio Tensile Strength Phi C

MHP-MH
Effect −26.77 −3.03 −20.91 6.84 −1.39 −2.15 1.29

Ranking 1st 3rd 2nd 7th 5th 4th 6th

THP-MH
Effect −255.6 −187.4 −218.0 −6.6 −33.7 −35.9 1.1

Ranking 1st 3rd 2nd 6th 5th 4th 7th

THP-DC
Effect −9.23 −0.64 −7.71 2.62 0.029 −0.12 0.06

Ranking 1st 3rd 2nd 7th 6th 4th 5th

NJHP-MH
Effect −51.72 −17.78 −41.98 4.74 0.94 −0.34 −0.39

Ranking 1st 3rd 2nd 7th 6th 5th 4th

NJHP-DC
Effect −260.9 −198.0 −186.2 −14.5 0.6 −0.8 0.6

Ranking 1st 2nd 3rd 4th 6th 5th 7th

Tehri-PH
Effect −99.9 −42.15 −76.98 −2.33 1.32 −1.24 1.06

Ranking 1st 3rd 2nd 4th 7th 5th 6th

SSP-PH
Effect −8.49 −0.041 −7.66 4.71 −0.63 −0.84 0.68

Ranking 1st 5th 2nd 7th 4th 3rd 6th

SLBHP-MH
Effect −60.2 −24.82 −46.7 2.59 0.09 0.02 0.10

Ranking 1st 3rd 2nd 7th 4th 5th 6th

KLIP-P8-PH
Effect −58.93 −0.03 −4.83 1.40 −0.001 −0.08 0.08

Ranking 1st 4th 2nd 3rd 5th 6th 7th

PYKARA-MH
Effect −85.86 −28.94 −69.32 11.80 −1.27 −1.20 −1.21

Ranking 1st 3rd 2nd 7th 4th 6th 5th

5.3. Development of Regression Equation

A multiple linear regression analysis was conducted to develop a regression equa-
tion for predicting crown deformation. The twelve variables considered in the regression
analysis were as follows: width and height of the cavern, rock cover, horizontal stress coeffi-
cient (KH), vertical stress coefficient (Kh_1), rock mass rating (RMR), uniaxial compressive
strength (UCS), Young’s modulus of intact rock (Ei), Poisson’s ratio (υ), tensile strength
(σt), angle of internal friction (ϕ), and cohesion (C).

A log-linear form of the regression is considered here for analysis. With the twelve vari-
ables, in logarithmic form, the linear equation in general can be written in the following form:

Log (Deformation) = a1 + a2 × Log (Width) + a3 × Log (Height) + a4 × Log (Rock Cover) + a5 × Log (KH) − a6 × Log (Kh)
− a7 × Log (RMR) − a8 × Log (UCS) − a9 × Log (Ei) + a10 × Log (Poisson’s ratio) − a11 × Log (Sigma t)

− a12 × Log (Phi) + a13 Log (C).
(1)

This equation can be simplified as follows:
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Log (Deformation) = log 10a1 + Log Widtha2 + Log Heighta3 + Log Rock Covera4 + Log KH
a5 − Log Kh

a6 −
Log RMRa7 − Log UCSa8 - Log Eia9 + Log Poisson’s ratioa10 − Log Sigmata11 − Log Phia12 + Log Ca13,

(2)

where a1 to a13 are the constants and are obtained in linear regression analysis. The
constants are substituted in Equation (2):

Log (Deformation) = 5.448 + 0.091 Log(Width) + 0.535 Log(Height) + 1.0084 Log(Rock Cover) + 0.180 Log(KH) −
0.4060 Log(Kh) − 3.1223 Log(RMR) − 0.1888 Log(UCS) − 0.9818 Log(Ei) + 0.3619 Log(Poisson’s ratio)

− 0.00282 Log(Sigma t) − 0.0704 Log(Phi) + 0.0145 Log(C).
(3)

Taking the antilog on both sides in Equation (3), the resulting equation for deformation
will have the following form:

Deformation(mm) = 105.448 (Width0.091 Height0.535 Rock Cover1.0084 KH0.18 Poisson’s ratio0.3619 C0.0145)/(Kh_10.406 RMR3.1223

UCS0.1888 Sigma t0.00282 Ei0.9818Phi0.0704); R2 = 92.92%
(4)

The coefficient of determination (R2) for the regression equation is 92.92%, which
indicates that the equation is a good predictor of crown deformation.

The regression equation shows that the most significant factors affecting crown
deformation are RMR, UCS, Ei, and Poisson’s ratio. The width and height of the cavern,
rock cover, and the stress ratios also have a significant effect on crown deformation. The
results of the parametric study and the regression analysis can be used to improve the
design and construction of underground caverns. By considering the factors that affect
crown deformation, engineers can design caverns that are more stable and less likely to
experience deformations.

5.4. Validation of the Equation

Validating the equation is necessary for the validation of any empirical relationship
developed. One way of validating the equation is to plot the deformation values observed
through monitoring the crown deformations and predicted deformation obtained from
the empirical equation. The exercise was conducted, and we found that the correlation
coefficient (R2) is 0.84, indicating the level of confidence in the prediction of the crown
deformations. Figure 11 depicts the correlation of deformation.

A correlation coefficient of 0.84 indicates a strong positive correlation between the
observed and predicted deformations. This means that the predicted deformations are
very close to the observed deformations. The high correlation coefficient suggests that the
developed equation predicts crown deformation well.

The results of the validation exercise show that the developed equation can be used to
predict crown deformation with a high degree of accuracy. This can be used to improve
the design and construction of underground caverns. By considering the factors that
affect crown deformation, engineers can design more stable caverns that are less likely to
experience deformations.

Here are some additional details about the validation exercise:

• The exercise was conducted for ten caverns;
• The observed deformations were measured using monitoring instruments;
• The predicted deformations were obtained using the developed equation;
• The correlation coefficient (R2) of deformation was calculated for each cavern;
• The average correlation coefficient for all ten caverns was 0.84.

The high correlation coefficient of 0.84 suggests that the developed equation is a good
predictor of crown deformation for many caverns. This can be used to improve the design
and construction of underground caverns.
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6. Discussion and Conclusions

In this study, a parametric study using DOE and a multiple linear regression analysis
were conducted to investigate the factors affecting crown deformation in underground
caverns. The results of the study showed that the following factors have a significant effect
on crown deformation:

• Rock mass rating (RMR);
• Uniaxial compressive strength (UCS);
• Young’s modulus of intact rock (Ei);
• Poisson’s ratio;
• Angle of internal friction (Φ);
• Width of the cavern;
• Height of the cavern;
• Rock cover;
• KH (horizontal stress coefficient);
• Kh_1 (vertical stress coefficient).

A regression equation was developed to predict crown deformation, given below:

Deformation(mm) = 105.448 (Width0.091 Height0.535 Rock Cover1.0084 KH0.18 Poisson’s
ratio0.3619 C0.0145)/(Kh_10.406 RMR3.1223 UCS0.1888 Sigma t0.00282 Ei0.9818Phi0.0704).

The equation was validated using monitoring data from ten caverns. The results of
the validation exercise showed that the developed equation can be used to predict crown
deformation with a high degree of accuracy. The results of this study can be used to
improve the design and construction of underground caverns. By considering the factors
that affect crown deformation, engineers can design caverns that are more stable and less
likely to experience deformations.

Here are some additional conclusions that can be drawn from the study:

• The most significant factors affecting crown deformation are RMR, UCS, Ei, and
Poisson’s ratio;
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• The width and height of the cavern, rock cover, and stress ratios also significantly
affect crown deformation;

• The developed equation can be used to predict crown deformation with high accuracy
for a wide range of caverns;

• The fractional factorial of designs in design of experiments (DOE) is very useful in
building the models and no complication calculations are needed;

• The rock mass parameters’ combinations were taken in models using fractional facto-
rial analysis to cover all types of rock mass conditions;

• The results of this study can be used to improve the design and construction of
underground caverns;

• The prediction values agreed well with the measured values, and the largest relative
error was 15–20%;

• Since the behavior of the rock mass conditions are site-specific and all parameters are
available by the time of construction, these are to be included in deformation prediction;

• Based on the study, the main influential parameters in crown deformations are rock
mass rating, Young’s modulus, uniaxial compressive strength of the intact rock sam-
ples, and the shear strength parameters;

• The predicted deformations can be used for optimal range selection for the extensome-
ters and other deformation measurement instruments;

• The predicted deformations can be used for Setting the warning/alert signals;
• Finally, the prediction capability of the regression model may further improve with

the addition of a greater number of case studies.
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Abstract: This work compares the mechanical properties of two geomaterials: forsterite and mag-
nesite. Various physical conditions are considered to investigate the evolution of stress–strain
relationships for these two polycrystals. A molecular-scale study is performed on three-dimensional
models of forsterite and magnesite. Three different temperatures (300 K, 500 K, and 700 K) and strain
rates (0.001, 0.01, and 0.05 ps−1) are considered to initiate deformation in the polycrystals under
tensile and compressive forces. The polycrystalline structures face deformation at lower peaks at high
temperatures. The Young’s modulus values of forsterite and magnesite are found to be approximately
154.7451 GPa and 92.84 GPa under tensile forces and these values are found to be around 120.457 GPa
(forsterite) and 77.04 GPa (magnesite) for compressive forces. Increasing temperature reduces the
maximum strength of the polycrystalline structures, but forsterite shows higher ductility compared
to magnesite. Strain rate sensitivity and the effect of grain size are also studied. The yield strengths
of the forsterite and magnesite drop by 7.89% and 9.09% when the grain size is reduced by 20% and
15%, respectively. This study also focuses on the changes in elastic properties for different pressures
and temperatures. In addition, from the radial distribution function (RDF) results, it was observed
that the peak intensity of pairwise interaction of Si–O is higher than that of Mg–O. Finally, it is found
that the formation of magnesite, which is the product of mineral carbonation of forsterite, is favorable
in terms of mechanical properties for the comminution process.

Keywords: mineral carbonation; comminution energy; stress–strain relationship; elastic properties;
radial distribution function

1. Introduction

Carbon mineralization is an emerging approach to storing CO2 in the form of carbonate
minerals, particularly in calcium, magnesium, and silicate-rich rocks/geomaterials such as
olivine, wollastonite, and serpentine. This process occurs naturally during the weathering
of these rocks/geomaterials [1,2]. The major pathways and kinetics of storing enriched
CO2 in carbonate minerals have been described frequently in the literature to discuss the
potential and required cost of this process. Researchers have not only focused on the
potential of carbon mineralization in minimizing greenhouse gas emissions and assuring
storage is non-toxic and permanent, but they have also been searching for emulating and
accelerating the spontaneity as well as the balance of this process within the Earth’s deep
interior [3–5].

Mineral carbonation is a process of reacting carbon dioxide (CO2) with alkaline and
alkaline earth-bearing (magnesium and silicate-rich) minerals to form stable carbonate
minerals [6]. A variety of silicate mineral groups containing Ca2+, Mg2+, and Fe2+ ions
present in nature for targeting mineral carbonation are olivine, serpentine, pyroxene, mica
group, and clay minerals. However, past work has claimed that olivine-group minerals,
particularly forsterite (Mg2SiO4), are the best potential feedstock for the carbon mineral-
ization process and form stable carbonate minerals (MgCO3). Forsterite is abundant in
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the Earth’s crust and comprises the upper mantle. It is a common mineral in ultramafic
rocks and formed as a result of the cooling and solidification of magma and it is much
more stable at high temperatures and pressure. Furthermore, forsterite has a high surface
area-to-volume ratio, making it highly reactive with CO2 [7,8]. It has a CO2 sequestration
potential of around 2014.7–1896.3 kg/m3 (Table 1). Magnesite, on the other hand, is a
carbonate-rich mineral found in tectonically active regions and comprises the Earth’s lower
mantle and is less stable at higher temperatures and pressure. Figure 1 shows a schematic
view of the 3D atomic and crystalline structures of forsterite and magnesite. Both forsterite
and magnesite are polycrystals, with forsterite crystalizing in orthorhombic systems and
magnesite crystalizing in cubic systems. A consideration of crystal orientation and lattice
parameters is provided in the next section.

Table 1. CO2 sequestration potential of major rock-forming minerals [9].

Mineral Name Formula Potential CO2 Fixed, kg/m3 Mineral

Olivine group (forsterite) Mg2SiO4-Fe2SiO4 2014.7–1896.3
Pyroxene group (enstatite) (Mg, Fe)2 Si2O6 1404
Serpentine Mg3Si2O5(OH)4 1232
Wollastonite CaSiO3 1097.1
Amphibole group
(hornblende) Ca2Na0-1(Mg,Fe(II)3-5(Al,Fe(III)2-0[Si6-8Al2-0O22](O,OH)2 1000.4

Mica group (biotite) K2(Mg,Fe(II))6-4(Fe(III),Al)0-2[Si6-5Al2-3O20](OH)4-2 671
Plagioclase
(anorthite) Ca[Al2Si2O8] 436.4

Clay Minerals
(smectite) (1/2Ca,Na)0.7(Al,Mg,Fe)4(Si,Al)8O20(OH)4.nH2O 161.2
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The mineral carbonation reaction between forsterite and CO2 is expressed as follows:

Mg2SiO4 + CO2 → MgCO3 + SiO2 (1)

As mentioned before, mineral carbonation occurs in naturally occurring silicate rocks
(alkaline/alkaline earth minerals) when a high concentration of CO2 is brought into contact
with them. This carbonation process can happen through both in situ and ex situ carbon-
ation, which differ based on the time scale and contact of CO2 [10]. In situ carbonation
involves the injection of CO2 into the geological formation containing silicate minerals
(forsterite) to form solid carbonate minerals (magnesite) [11,12], while ex situ carbonation
involves reacting silicate minerals with CO2 in a controlled environment above ground.
If the silicate minerals are brought from industrial wastes in the form of fly ash, cement
kiln dust, steel slag, etc., they can sequestrate around 200–300 Mt of CO2 annually [3,13,14].
This process sequestrates a large amount of CO2 and produces reusable, valuable, and
stable carbonate minerals for different industrial purposes [10]. However, both in situ and
ex situ mineral carbonation processes are part of carbon-negative solutions and have a
great potential to reduce the effects of CO2 on the environment (Figure 2).
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The comminution process is a physical pre-treatment method in mineral processing
that involves reducing the size of ore particles through crushing, grinding, and breaking the
minerals into smaller/finer particles. It is a critical component for separating valuable min-
erals from waste rocks and requires significant energy input [16]. During the comminution
process, factors such as the formation of minerals, mineral structure, presence of defects,
mechanical strength, and grain size play a great role. The comminution process requires
significant energy input to break rocks during crushing and grinding. CO2 mineralization
can reduce the comminution energy, as silicate-rich minerals require more energy for size
reduction than carbonate [17]. Mineral carbonation can also change the surface chemistry
of minerals, affecting the efficiency of both froth flotation and separation processes [18].
However, this study does not focus on explaining the reactive phenomena in the flotation
process from a chemical point of view.
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Comminution, froth flotation, and other mineral processes are affected by changes in
the hardness and mechanical strength properties of minerals, which depend on crystalline
structure, 3D arrangement of atoms, and interatomic behavior. Mineral carbonation alters
these crystalline and interatomic structures. Few studies have been performed on the
strength properties of forsterite and magnesite individually. Holyoke et al. [19] performed
experiments on two different types of magnesite aggregation (coarse and fine grains) to
determine the triaxial deformation over a wide range of temperatures (400–1000 ◦C) and
strain rates (2 × 10−7 s−1 to 2 × 10−4 s−1). In both aggregation types, the strengths of the
magnesites at higher temperatures were reduced. Both fine- and coarse-grained magnesites
showed little chance of recovery at the plastic stage. The study also mentioned that magne-
site is more stable at low temperatures [19]. In another study, Liu et al. [20] carried out an
atomic simulation (using a transferable empirical interatomic potential) to investigate the
structural and elastic properties of magnesite over a wide range of pressure (based on the
Earth’s mantle’s conditions). The simulation work found that magnesite shows anisotropic
behavior at lower mantle depths but shows significant change with increasing depth. The
percentage anisotropy in the shear and compressibility were calculated for a pressure range
from 0 to 150 GPa and it was observed that, at higher pressure (≥120 Gpa), both shear
and compressibility values were close to 1 (0 means isotropic and 1 means anisotropic).
This result means that magnesite is less stable at higher temperatures [20]. Yao et al. [21]
worked on the impacts of pressure and temperature on magnesite using local-density ap-
proximation. All of the pressure and temperature values were in lower-mantle conditions.
They found that the elastic and thermodynamic properties of magnesite were influenced
by zero-point motion (the motion or vibration of the atoms at absolute zero temperature)
and increasing temperatures. They also noticed a change (around 4.0%) in the shear and
bulk modulus from static to ambient conditions (300 K and 0 Gpa). The authors considered
0 Gpa to indicate that the experiment was performed for Earth surface conditions, without
any external pressure [21]. Gonzalez et al. [22] investigated the structural, dielectric, and
vibrational spectroscopic properties of the amorphous form of forsterite. The work was con-
ducted using two approaches: classical molecular dynamics (MD) for structural evolution
using the empirical charge-based rigid ionic model and density functional theory (DFT) for
measuring electronic structure using quantum mechanics. The radial distribution function
(RDF) calculations for Mg–O and Si–O show broader profiles in increasing temperatures,
which indicates the loss of crystallinity of forsterite. This work also analyzed the degrees of
freedom for disordering in the crystal structure at higher temperatures (400 K to 2000 K).
The increasing temperatures accelerated the dynamics of melting of forsterite and at some
point (above 1800 K), the system became unstable for the disorganization of the interatomic
positions [22]. In 2019, Gouriet et al. investigated the mechanical deformation of the or-
thorhombic structure of forsterite under applied strains. They determined the energy–strain
curves and linear elastic regimes to ascertain the ultimate instability of the crystal structure.
The maximum stress values from stress–strain curves were found to be approximately 15.9,
12.1, and 29.3 Gpa along the different [001], [010], and [100] directions, respectively. They
also observed a similar change in features in ideal shear stress evolution in each direction.
The shear stress increased initially, then decreased for a percentage of strain (around 10%)
due to the bond divergence between Mg–O. But with the reduction of bond distance be-
tween Mg–O, the shear stress as well as stiffness increased again with increasing strain [23].
In addition, Choudhary et al. (2020) studied the mechanical stability and degradation of
forsterite and noted that increasing content of forsterite increased the mechanical strength
of a composite compared to calcium phosphates and calcium silicates [24]. Several studies
also worked on generalizing the relationship between the compressive strength of materials
and the grain size of the materials and stated that there is a growing trend of mechanical
strength with increasing grain size [25,26]. These studies investigated the petrophysical
and mechanical properties of carbonate minerals for different grain sizes and claimed that
decreasing the average grain size reduces the strength properties of materials.
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Until now, no studies have investigated and compared the mechanical properties of
forsterite and magnesite in various conditions (temperature, pressure, and applied forces).
This present work focuses on the evolution of the stress–strain relationship according to
changes in physical properties. The effects of temperatures, loading rates, and grain sizes
on the maximum stress values of two different polycrystals were studied. In addition,
polycrystals highly sensitive to the applied forces are also measured. Changes in pressure
and thermal effects induced on the elastic properties are observed for the two polycrys-
tals. Later, the radial distribution function is also evaluated for measuring the pairwise
interaction between Si–O and C–O bonds. This study compares the strength properties and
microstructure of the two polycrystals under the same conditions, to assess the effect of
mineral carbonation on comminution energy for mineral processing.

2. Molecular Modeling and Simulation Method

Molecular dynamics (MD) simulation provides a basic representation and interpre-
tation of molecular interaction modeling of any material with detailed information and
underlying governing mechanisms. It is a powerful tool for studying particle movement,
mechanical behavior, and other properties according to the materials’ physical characteris-
tics and chemical reaction kinetics [27]. Using MD, deformation, elasticity, diffusion, yield,
and other physical behaviors of materials at the atomic level can be measured. MD can
predict the dynamics of materials’ behavior under different temperatures and loading con-
ditions by performing computational experiments. The benefits of using MD are flexibility
in working with different sizes of materials and visualization of the molecular interaction
at the atomic scale which might not be possible in experiments. The fundamental theory of
molecular dynamics simulation is to observe the dynamic trajectory of an atomic system
and analyze the atomic interactions among the respective atoms by solving Newton’s equa-
tion of motion. Prior works on different materials using molecular dynamics simulation
have offered reliable outputs for illustrating their mechanical properties.

Here in this paper, a molecular dynamics simulation study on forsterite and magnesite
polycrystals is performed using the Large-scale Atomic/Molecular Massively Parallel
Simulator (LAMMPS) (9 October 2020) software package [28].

Better performance of molecular dynamics simulation depends on the implementation
of a suitable and successive potential for polycrystals. Since the model’s reliability and
validation directly depend on this selected potential, using the right forcefield parameters to
obtain accurate results and configuration is important. The accessibility of the interatomic
potential to the size of the system is a governing factor for the numerical integration of the
above model. Here, in this study, an empirical potential model named the ‘Buckingham’
potential is used for simulating the atoms of both polycrystals [29]. This potential is freely
available with the LAMMPS library package. It considers long-range electrostatic terms
with classical Coulombic energy, a short-range repulsive term, and a three-body harmonic
term. This potential is a bond-order and short-range interaction-based potential which is
attributed to the partial charge of the atoms. Several prior studies have used this potential
to reproduce the structural properties of both forsterite and magnesite polycrystals [30,31].
The Buckingham potential can be expressed as follows:

E = Aij.e
−

rij
ρij − Cij

r6
ij

(2)

E =
Cqiqj

εrij
(3)

where E is the potential energy, A is energy units, e is the elementary charge, ρij is the
hardness parameter of repulsive energy (indicates the characteristic length scale that
determines the range over which the potential decays exponentially), C is the coefficient of
dispersive energy, rij is the interatomic distance between two atoms i and j (i and j being
Mg, Si, C, and O), and qi and qj are the atoms’ partial charges. Though the Buckingham
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potential seems simple, this potential considers the pair’s ion charges, thermal expansion,
heat capacity, and long-range coulombic interaction to illustrate the short-range interaction
between the paired atoms. For this reason, this potential works slowly compared to other
interatomic potentials used mainly for silicate and carbonate molecules. The performance
of this potential depends on some forcefield parameters of the forsterite and magnesite. The
crystal structures for forsterite and magnesite are considered orthorhombic and trigonal,
respectively, and the crystal orientations are made with specified lattice constants. The
volume of the simulation models for forsterite and magnesite are 125 nm3 and 117.65 nm3.
The initial configuration and forcefield parameters are shown in Tables 2 and 3, respectively.

Table 2. Selected materials and atomic model properties.

Material Type Dimension (Å) Potential Number of Atoms Atomic Bond Type Lattice Constant
(Å) Crystal System

Forsterite
(Mg2SiO4) 50 × 50 × 50 Buckingham 4480 Ionic–Covalent

a = 4.787
b = 10.272
c = 6.023

Orthorhombic

Magnesite
(MgCO3) 49 × 49 × 49 Buckingham 4250 Ionic–Covalent

a = 4.64
b = 4.64
c = 14.93

Trigonal

Table 3. Forcefield parameters used in this study.

Buckingham Potential

Ion Pairs A(eV) B(Å) C(eVÅ6)

Mg-O 1428.5 0.2945 0
Si-O 473.2 0.4157 0
O-O 22,764.30 0.149 60.08
C-O (Morse) 4.71 3.8 1.18

Harmonic 3-Body Term

k(eV rad−2) Θ0 (degrees)
O-Si-O 2.09 109.47
O-C-O 1.69 120

Charges

Mg +2.00
Si +4.00
C +1.135
O (for forsterite) +0.84819
O (for magnesite) −1.632

In this study, Moltemplate was used to generate all-atom molecular models for
forsterite and magnesite [32]. Moltemplate is a cross-platform text-based molecular builder
(for both all-atom and coarse-grained molecular models) made for LAMMPS. The sim-
ulation models of these two polycrystals were made with random orientations of the
polycrystals as well as by using the Voronoi method including random seeds. The con-
jugate gradient (CG) algorithm was used to optimize the initial structure and position of
the atoms. This minimization algorithm adds the force gradient to the previous iteration’s
information to compute the new direction perpendicular to the previous search iteration.
The Verlet algorithm was used with a timestep of 1 fs to calculate the dynamic trajectories
of the particles. The long-range Coulombic interaction was calculated using the Ewald
summation method. Two different systems approached a specified temperature (300 K)
using an NPT ensemble under zero pressure. A Nose–Hoover thermostat and barostat were
used successfully to control the temperature and pressure. Periodic boundary conditions
were applied in each direction of the simulation box. The tensile force was applied to the
polycrystals by using incremental homogeneous strain, which indicates the displacement
of the atomic layers along the tensile direction. The components of stress tensors were
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brought to zero at each deformation state so that the atoms received enough time for relax-
ation. Before the measurement of the stress–strain properties, in all cases, the polycrystal
structures were optimized for equilibrium purposes.

3. Results and Discussion

Stress–strain behavior of the forsterite and magnesite
Multiple multiscale approaches have been developed to determine the strength prop-

erties of materials, but the determination of the stress–strain relationship for different
thermodynamic conditions is one of the most reliable options among relevant approaches.
These material properties should be determined by allowing deformation in the designed
microscale models under uniaxial tensile or compression tests as these properties are con-
siderably changed by different strain rates and temperatures. The definition and idea of
continuum Cauchy stress in atomistic simulation are slightly different but equivalent to
the definition of Virial stress [33]. For stress calculation, the per-atom pressure tensor is
computed for each atom in the group.

Here, both uniaxial tensile and compression tests are performed to study and compare
the stress–strain behavior of these two polycrystals for different strain rates and temper-
atures. Three different temperatures (300 K, 500 K, and 700 K) for a constant strain rate
of 0.01 ps−1 and three different strain rates (0.01 ps−1, 0.03 ps−1, and 0.05 ps−1) for a
constant temperature at 300 K are considered during deformation under uniaxial tensile
and compression tests. For both polycrystals, the evolution of the stress values as a function
of strain values is studied along the [100] plane in the x direction.

3.1. Stress–Strain Behavior of the Geomaterials for Different Temperatures

Figure 3a shows a typical example of a Young’s modulus-based stress–strain curve
used to study the mechanical properties of the two geomaterials. The curve depicts that the
ultimate strength/stress point is the maximum stress for any material before failure occurs
under tensile or compression load. The elongation of the elasticity of materials depends
on the values of this maximum stress point. Before reaching this point, the loading stress
increases with increasing strain, but after the peak point, the material faces deformation. In
this region, the stress values usually decrease with increasing strain values. Figure 4a,b
represents such types of stress–strain relationships of the studied polycrystals (forsterite
and magnesite, respectively) under a constant tensile load for temperatures 300 K, 500 K,
and 700 K, at a strain rate of 0.01 ps−1. As expected, a parabolic evolution of the stress
values corresponding to the initial linear portion of the stress–strain curves is observed for
both polycrystals. For forsterite (Figure 4a), the ultimate strength point is near 26 GPa at
300 K, and the Young’s modulus value is around 154.7451 GPa, and this value was validated
using the result of the Young’s modulus (153.2 GPa) calculated by Gouriet et al. (shown
in Figure 3b) [23]. Again, at 500 K and 700 K, the corresponding ultimate strength values
are found to be near 21.79 GPa and 17.92 GPa, respectively. The increasing temperatures
from 300 K to 500 K and 700 K initiated considerable drops in the maximum stress of
forsterite by 16.15% and 31.07%. More importantly, increasing temperature also increased
the maximum strain values needed to obtain the maximum stress point. For instance,
at 300 K, the maximum stress point was achieved for a strain value of 0.168, whereas at
500 K and 700 K, maximum stress points were obtained at the strain values of 0.181 and
0.199, respectively.
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Figure 4. (a) The stress–strain curve of forsterite for different temperatures under tensile test (at a
strain rate of 0.01 ps−1). (b) The stress–strain curve of magnesite for different temperatures under
tensile test (at a strain rate of 0.01 ps−1).

From Figure 3c, the ultimate strength point for magnesite is found near 13.90 GPa
(at 300 K) with a corresponding value of Young’s modulus of 92.84 GPa. This value was
validated using the calculated result (ultimate strength of 13.70 GPa at 300 K) of Yao et al.
(shown in Figure 3c) [21]. Then, at 500 K and 700 K, the ultimate strength values are
decreased by 19.42% and 34.46%, respectively. In addition to that, as opposed to those of
forsterite, the maximum strain values for magnesite are decreased by 10.06% (for 500 K)
and 13.42% (for 700 K) as the temperature is changed from 300 K. This behavior indicates
that at elevated temperatures, forsterite tends to show more ductility than magnesite.
Table 4 provides information on the Young’s modulus values of forsterite and magnesite
for different temperatures.

73



Sustainability 2023, 15, 12156

Table 4. Ultimate strength and Young’s modulus of forsterite and magnesite under tensile force.

Ultimate Strength (Gpa) Young’s Modulus (Gpa)

300 K 500 K 700 K 300 K 500 K 700 K

Forsterite 26.00 Gpa 21.80 Gpa 17.92 Gpa 154.74 120.79 89.98

Magnesite 13.90 Gpa 11.20 Gpa 9.12 Gpa 92.84 83.58 70.67

Figure 5a,b shows the stress–strain curves of forsterite and magnesite under the
uniaxial compression test, respectively, under the same conditions as for the uniaxial tensile
test. The stress–strain relations under this compressive force represent a trend similar
to that under tensile force at different temperatures. Since compressive force usually
provides more strain energy to materials, the ultimate stress loading stage occurs earlier
than in the case of tensile force. This increasing strain energy results in the material
entering the plastic stage. For forsterite (Figure 5a), the ultimate stress point is observed
at 17.28 GPa, at 300 K, and at a strain value of 0.143; the calculated Young’s modulus is
about 120.457 GPa. Increasing the temperature to 500 K and 700 K reduces the maximum
stress point to approximately 15.12 GPa and 13.45 GPa, respectively. These results indicate
that the effect of temperature on stress–strain properties under compressive forces is
similar to those for tensile forces. The only difference is that, due to the contraction under
compressive forces applied to the crystal material, the elastic stage ends sooner compared
to the elongation for tensile forces. For example, under compressive stress at 300 K, the
elastic stage comes to an end at a maximum stress point of 17.28 GPa (Figure 5a), whereas,
for tensile stress, it reaches 26 GPa (Figure 4b). In magnesite (Figure 5b), the increasing
stress loads (up to a strain value of 0.107) cannot provide any significant change in the
elastic stage under compressive force for each temperature studied (300 K, 500 K, and
700 K). However, the maximum values of the stress load of the magnesite are lower for
increasing temperature. This behavior of the crystals under tensile and compressive forces
has indicated that increasing temperature (300 K) results in deformation for both crystals
as high temperatures contribute to initializing local stress for propagation/stretching out
of the crystals. However, the results also show that increasing the temperature from 300 K
to 500 K and 700 K under compressive force reduces the Young’s modulus of forsterite
(from 120.457 GPa to 79.98 GPa, respectively) more than magnesite (from 77.04 GPa to
60.88 GPa, respectively).

The effect of increasing temperature is the same for both polycrystals under two
different loading velocities. In both cases, increasing temperature leads to smaller peaks of
stress, but with higher ductility (for forsterite) and lower ductility (for magnesite) up to the
failure point of the polycrystals. Forsterite shows more ductility at elevated temperatures
than magnesite. The results obtained from the uniaxial tensile and compressive force tests
for the two polycrystals at a fixed temperature (600 K) are shown in Figure 6 Table 5. In
addition, Figure 7a,b shows the evolution of strain energy as a function of strain for a
constant temperature (at 600 K) to understand the change in energy during the application
of force. As seen in Figure 7b, the strain energy of the microstructure (after the relaxation
period) changes with strain values. For both polycrystals, each curve has an inflection
point indicating the maximum strain energy the minerals can tolerate. This peak represents
the polycrystals’ maximum stress point (ultimate strength). After crossing the peak, the
system starts dissipating energy which results in the deformation of the polycrystals.
This dissipation of energy moves the strain energy curve in the downward direction for
additional strain values. Similar findings have been noted in the strain energy curve.
Forsterite shows higher ductility and elastic properties for both types of applied forces
(strain energy ranges from 12.02–15.05 meV/A3) compared to magnesite.
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Figure 5. (a) The stress–strain curve of forsterite for different temperatures under compression test
(at a strain rate of 0.01 ps−1). (b) The stress–strain curve of magnesite for different temperatures
under compression test (at a strain rate of 0.01 ps−1).
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Table 5. Comparison of the obtained results at 600 K for two different applied forces.

Material Type Temperature Maximum Stress Reduction from
Tensile Force to Compressive Force (%)

Strain Variation in Achieving
Maximum Stress Loading Capacity

for Different Applied Forces (%)

Forsterite 600 K 25.01 11.18
Magnesite 600 K 20.12 13.26
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3.2. Stress–Strain Behavior of the Geomaterials for Different Strain Rates

In this section, different strain rates are considered to study the impact of loading ve-
locity on the mechanical deformation of both polycrystals. For this purpose, three different
loading rates (0.001, 0.01, and 0.05 ps−1) are applied under both tensile and compressive
forces. The effect of different loading rates has been studied previously on different crystals
using molecular dynamics simulation. It should be noted that the polycrystals were in a
relaxation state before applying both tensile and compressive forces. Therefore, the stress
values as a function of strain values start from the undeformed state of the polycrystal (at a
strain value of zero) either for increasing or decreasing loading velocities. Figure 8a,b shows
the stress–strain curves for forsterite and magnesite at a constant temperature of 300 K
(under tensile force), respectively, for the three abovementioned loading rates. According to
the results demonstrated in the figures, increasing strain rate increases the maximum stress
points for both polycrystals. Particularly, the elastic stage is increased for increasing strain
rates with negligible impact on the plastic stage. The yield points are only changed for dif-
ferent loading velocities. In addition, the strength of non-viscoelastic materials like crystals
greatly depends on the loading rate; a higher strain rate indicates a higher strength of the
material. For forsterite (Figure 8a), increasing the strain rate from 0.01 ps−1 to 0.05 ps−1

increases the maximum stress point by 10.71%, and decreasing the strain rate to 0.001 ps−1

decreases it by 11.43%. For magnesite (Figure 8b), the maximum stress point moves to
15.21 Gpa for the loading rate of 0.05 ps−1, whereas the peak stress point is decreased by
18.30% to 0.001 ps−1 when the strain rate decreases. Under application of compressive
force, the changes in the stress–strain relationship follow a similar trend for both materials
like the tensile force. Figure 9a shows the results for forsterite, whereas the changes for
magnesite are shown in Figure 9b.
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Figure 8. (a) The stress–strain curve of forsterite for different strain rates under tensile test (at 300 K).
(b) The stress–strain curve of magnesite for different strain rates under tensile test (at 300 K).

Here, for higher strain rates, the values of strain energy increase for both forsterite
and magnesite to initiate plastic deformation. This is contradictory to the case of higher
temperatures. The higher strain rate provides a smoother trend of the stress–strain rela-
tionship (more linear) which leads to shortening the breaking time during deformation.
This higher strain rate makes the elastic region more linear, which is also described by
Hooke’s law [34]. This required energy is higher for tensile forces than for compressive
forces. Hence, forsterite shows more strength at a higher strain rate compared to magnesite.
The results of the stress–strain relationship between these two polycrystals obtained under
both types of forces are compared for a constant strain rate (at 300 K and a strain rate of
0.03 K) and are shown in Figure 10.
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Figure 9. (a) The stress–strain curve of forsterite for different strain rates under compression test (at
300 K). (b) The stress–strain curve of magnesite for different strain rates under compression test (at
300 K).
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Figure 10. The stress–strain curves for a constant strain rate under different tests.

3.3. Strain Rate Sensitivity

The strain rate sensitivity (SRS) measures the change in yield pressure for different
strain rates. Sometimes, applied force alters the characteristics of the material which can be
understood by SRS calculation. This is a relationship wherein a material’s tensile strength
depends on different loading rates. Based on the conditions of a steady-state process, the
SRS of a material in loaded tension can be demonstrated (as a differential form) by Hart [35]
as follows:

m =
∂log(σ)
∂log(έ)

(4)

where m is the strain rate sensitivity, σ is the tensile strength, and έ is the strain rate.
Hence, Equation (4) states that the SRS values can be obtained from the slopes of

the logarithmic plot of tensile stresses and corresponding strain rates. Hart [35] exhibited
that stress rates are proportional to strain rates up to the ultimate/maximum strength
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point, and during plastic deformation, the material is less sensitive to the extra load. This
sensitivity impacts the material’s stability during deformation due to strain localization.
The SRS shows the ability of a material to resist necking and maintain its stability during
deformation. However, higher temperatures reduce the SRS of materials, and the higher
the values of SRS are, the higher the strength of materials is. For higher SRS, materials
are able to distribute force more evenly through their structure, rather than localizing it in
one area.

Here, simulations were performed for three different temperatures (300 K, 500 K,
and 700 K) and three different strain rates (0.001, 0.01, and 0.05 ps−1) to determine and
compare the obtained SRS results for forsterite and magnesite. Here, steady strain rate
sensitivity is considered, where the strain rate sensitivity coefficient m is computed using
the above-mentioned equation for different strain rates. The negative sign is neglected here
in the obtained values of m. The stability of the material is proportional to the strain rate
sensitivity. A higher value of m indicates a large change in the flow stress for a change
in strain rate. Figure 11a,b shows the variation in m values with strain rates for forsterite
and magnesite, respectively, for different temperatures and strain rates. For forsterite and
magnesite (Figure 11a,b), at a constant strain rate (0.01 ps−1), increasing the temperature
from 300 K→ 500 K→ 700 decreases the m value from 0.70764 to 0.66992, followed by
0.62671 and from 0.5716 to 0.52972 and followed by 0.47712. Both forsterite and magnesite
become less stable at higher temperatures. On the other hand, for a constant temperature
(300 K), when the strain rates increase, the m values increase, for both forsterite and
magnesite (known as strain rate hardening). Hence, both materials show high sensitivity to
increasing strain and more stability for higher strain rates. In short, higher temperatures
decrease the sensitivity of materials to strain rate and decrease the yield strength.

From the above results, it has been found that forsterite shows higher sensitivity than
magnesite, which means that magnesite is comparatively less stable. The comparison of the
results for both polycrystals is shown in Figure 12. At a constant temperature (500 K), the
SRS values of forsterite and magnesite are 0.43128 and 0.32405, 0.66922 and 0.52972, and
1.0473 and 0.8618 for the strain rates of 0.001 ps−1, 0.01 ps−1 and 0.05 ps−1, respectively.
However, despite having a lower strain rate effect at lower temperatures, the effect of
temperature on SRS is significantly stronger for lower strain rates as the sensitivity arises
from the inertness of the defective structure evolution of materials for lower strain rates [36].
Since the strength of the materials is proportional to the SRS, both polycrystals are prompted
to deform earlier when the SRS values are lower for corresponding temperatures and strain
rates. The impact of temperature is found to be higher in tensile strength for magnesite
than forsterite which agrees with the stress–strain curves in the previous section. In short,
less sensitivity to applied forces makes magnesite weaker than forsterite.

3.4. Effect of Grain Size

The impact of grain size on both polycrystals is studied here. Polycrystals are com-
prised of multiple grains, and these grains are bounded by some interfacial defects in
the grain boundaries of those polycrystals. These grains’ structure and energy provide
microscopic insight into the mechanical deformation of the polycrystals. Particularly, the
morphology, size distribution, and nature of these grains and grain boundaries are im-
portant features of the polycrystals [37–39]. Also, the grain size and boundaries resist the
elongation of the polycrystals and reduce the yield strength and ductility of the materials.
However, there is a significant correlation between grain size and the mechanical strength
properties of minerals (particularly in sedimentary rocks) which has been proven by pre-
vious studies [40]. Studies on grain size microstructure provide insights into materials’
toughness, corrosion resistance, thermal conductivity, and magnetic susceptibility.
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Figure 11. Strain rate sensitivity of (a) forsterite and (b) magnesite, for different temperatures (300 K,
500 K, and 700 K) and strain rates (0.001 ps−1, 0.01 ps−1, and 0.05 ps−1).

Since there is a relationship (nonproportional) between grain size and density of the
materials, in this study, the number of atoms is increased for both minerals to study the
impact of grain size. This is because a greater number of atoms are more closely packed
and result in higher densities of materials, manifesting as smaller grain sizes [41]. Here,
the grain size is calculated by measuring the average distance from the two adjacent
peaks in the radial distribution function for both studied polycrystals. Figure 13 shows
the yield strengths of both forsterite and magnesite at a constant strain rate (0.01 ps−1)
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for 5600 atoms and 4850 atoms, respectively. This figure shows that the polycrystals are
more deformative for growing numbers of atom. The yield strengths of the forsterite and
magnesite dropped by 7.89% and 9.09% compared to the initial systems. These results
show an opposite correlation between compressive strength and number of atoms. From
the figure, it is observed that the grain size also impacts the Young’s modulus values of
the two polycrystals (dropped to 15.92 and 9.17 GPa, respectively). In the case of the
two studied polycrystals, the only components bearing the applied stress are grains. In
addition, the distribution of the grains becomes uniform for higher numbers of atoms,
hence the deformation of the polycrystals occurring earlier under pristine conditions with
a low number of atoms. Shear velocity, wave velocity, relatively low energy, and partial
double-bond character in Si–O and C–O bonds also cause a reduction in strength properties
for lower grain sizes; however, these discussions are not part of our current study.
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3.5. Elastic Properties

Elastic properties are crucial parameters of Earth’s minerals utilized in geophysics and
geochemistry to understand and explain the interior information of the Earth. These prop-
erties are indispensable for characterizing the rheology of geotectonics and constructing
seismic acoustic waves in solid-state physics. The elastic properties represent the ability of
materials to deform for a small change in stress. The crystal structure, composition, and
microstructure of any material can be illustrated from these properties. Based on these
properties, compositional changes, as well as elongations in materials, can be observed.

The elastic constant is the ratio of the second derivative of energy density concerning
the strain and can be expressed simply as in Equation (5) [42].

Cij =
1
V

∂2E
∂εi∂εj

(5)

where Cij is the stiffness coefficient, V is the volume of the unit cell, E is the energy, and ε is
the strain.

Here, for calculating the elastic constants, a three-dimensional fourth-order Voigt
notion model was used which considers the basis of Hooke’s law, finite element analysis,
and diffusion MRI [42]. This model is convenient for providing elastic constants of a
material as a 6-by-6 matrix based on pressure tensors. Here, only three pressure- and
temperature-dependent elastic stiffness constants (C11, C33, and C44) for both forsterite and
magnesite polycrystals have been considered to study the mechanical deformation of the
minerals. These C11, C33, and C44 coefficients are known as the pressure tensors (part of the
6-by-6 matrix) and represent the specific components of the stress and strain relationship.
C11 represents the elastic stiffness in the direction parallel to x axis, C33 in the direction
parallel to z-axis, followed by C44 in the y–z plane (shear stiffness).

Figures 14 and 15 show the pressure- and temperature-dependent elastic constants for
both forsterite and magnesite polycrystals. The obtained results agree well with those of
previous works. For both forsterite and magnesite, the elastic constant values of C11, C33,
and C44 at 1 GPa and 300 K are validated with results from previous works in Table 6 [21,43].
As can be seen in Figures 14 and 15, the pressure and temperature changes noticeably
affect the elastic constants of the two polycrystals. For forsterite (Figure 14a), the changes
in pressure from 1 GPa to 100 GPa increased the values of C11, C33, and C44 to 344.73,
620.59, and 859.89 GPa, respectively. On the other hand, these values were found to be
approximately 220.61, 347.25, and 462.89 GPa, respectively, for magnesite (Figure 15a). So,
it can be observed that the elasticity is linearly dependent on the applied pressure. At
higher pressures, both forsterite and magnesite undergo a phase transition to a denser
crystal structure. Also, Young’s modulus values for these minerals are higher. Further,
the higher pressure changes the bonding between the atoms. These phenomena cause the
elastic properties of the minerals to be higher. In short, higher pressure and elasticity result
in higher tensile strength for the two minerals.

However, increasing temperature increases the atomic vibration through the crystal
structure and continues until it reaches a value where the atomic bonds become weak. This
causes disorder and irregularity in the crystal lattice. As a result, the elastic properties of
the minerals decrease and the minerals become less resistant to deformation. Hence, the
temperature increasing from 300 K to 700 K decreases the values of C11, C33, and C44 for
forsterite by 35.94%, 45.33%, and 49.10% (Figure 14b) and for magnesite by 41.98%, 30.76%,
and 47.09% (Figure 15b), respectively. Consequently, the temperature is reversely correlated
to the elasticity of the materials. The reason is at the higher temperature, the higher the
thermal vibration the materials have to go through which increases thermal expansion
inside the materials but reduces the tensile strength and corresponding lattice constants.
The study of these elastic properties for different pressures and temperatures is essential
for investigating the phase transition of minerals (including mineralogy and geology). This
phase transition is very helpful in interpreting the geophysical data and design of the
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studied minerals for their desired properties. This study can give insights into developing
a model of the studied minerals for predicting behaviors under extreme conditions.
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Table 6. Elastic stiffness coefficients at 300 K.

Forsterite Magnesite

C11(GPa) C33(GPa) C44(GPa) C11(GPa) C33(GPa) C44(GPa)

MD work (current study) 345.0 256.1 82.52 275.85 101.79 60.81

Experimental work [21,41] 342.0 253.1 79.49 272.38 102.55 58.81

3.6. Radial Distribution Function

The radial distribution function (RDF) of any bonded simulated system is calculated
mainly to determine the pairwise interaction and coordination number between groups
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of nearest-neighbor atoms. The RDF represents the probability of finding a particle at a
specific distance (r) from a reference particle in the mineral. Particularly, this function
determines the distribution of neighboring particles around a center particle. The RDF for
any bonded system can be expressed as follows:

g(r) =
ρ(r)

ρ
(6)

where ρ(r) is the average local number density of particles at a distance r, and ρ is the bulk
density of the particles.

The histogram form represents the RDF calculation by binning pairwise interactions
into a distance of several bins. This distance is specified as the pair cutoff distance r for a
particular potential field. The RDF is counted only for the specified cutoff distance, and the
coordination of any atoms beyond this distance is out of consideration. The RDF function
shows better results (with multiple peaks in the histogram) if the system is uniform and
well equilibrated. If the system is neither uniform nor well equilibrated, there is a sharp
change in the coordination of the atoms with one single peak due to less interaction.

Here, Figure 16 shows the pair of RDFs for the disordered structures of both forsterite
and magnesite polycrystals. Only the pairwise interactions between Si–O and C–O atoms
are considered for this RDF calculation since the bonded interactions of these atoms are the
most contributing factors for providing strength in the respective polycrystals. Even though
several peaks can be seen in the figure, only the sharp peak is considered the strongest
interaction between the pairs of atoms. The red curve is for the Si–O atoms whereas the
black curve is for C–O atoms. These two RDF curves are obtained from the trajectories
of the coordination numbers of their bonded atoms. The highest peak of the first curve is
found around 2.54 angstrom which indicates the strongest interaction between the bonded
Si–O atoms. On the other hand, the highest peak position is seen at 3.26 angstrom for
bonded C–O atoms. In addition, the densities of both bonded Si–O and C–O atoms are
higher at those peak points of the curves. These two curves’ peak intensity indicates that the
oxygen atoms usually attract the Si atoms more strongly than the C atoms. However, from
the RDF calculation for these two polycrystals, it is observed that the weaker interaction
between the carbon and oxygen atoms compared to the silicon and oxygen atoms makes
magnesite less strong than forsterite.
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4. Conclusions

At the microscale, the presence of many mineral phases as well as microstructural de-
fects distinguishes geomaterials, which are known to be heterogeneous and discontinuous.
In summary, this study examines the changes in mechanical properties of forsterite and
magnesite polycrystals using molecular dynamics simulation under different conditions. A
direct comparison can be made between each computation as the MD simulation allows
for the splitting of energy data calculations into individual parts such as surface energy,
elastic energy, and plastic energy. In this work, the effects of strain rate and temperature on
the stress–strain properties of the polycrystal models are studied.

The highlights of this research are listed below:

– The Young’s modulus values of forsterite and magnesite are found to be approximately
154.7451 GPa and 92.84 GPa under tensile force, while these values are found to be
around 120.457 GPa (forsterite) and 77.04 GPa (magnesite) under compressive force.
Increasing temperature reduces the maximum strength of the polycrystals. For higher
temperatures, forsterite shows higher ductility than magnesite;

– Higher strain rates require higher strain energy to initiate plastic deformation in the
polycrystals. This effect is the opposite for the case of increasing temperature;

– According to the strain rate sensitivity results, magnesite shows less sensitivity to
applied force than forsterite. At 300 K and a strain rate of 0.01 ps−1, the SRS values of
forsterite and magnesite are found to be approximately 0.70764 and 0.5716, respectively.
The results also state that the impact of temperatures on SRS is higher for lower
strain rates;

– Decreasing grain size (or increasing numbers of atoms) reduces the mechanical
strength properties of the polycrystals. The yield strengths of the forsterite and
magnesite dropped by 7.89% and 9.09% compared to the initial systems;

– Increasing pressure induces phase transition and increases the elastic properties of
the polycrystals. On the other hand, increasing the temperature increases the atomic
vibration through the crystal structure and this causes disorder and irregularity in the
crystal lattice;

– In addition, from the RDF results, it is observed that the peak intensity of pairwise
interaction between Si–O is higher than that for Mg–O.

Finally, this study has found that magnesite, which is the product of mineral car-
bonation of forsterite, is a favorable rock type for comminution. Magnesite shows less
ductility at higher temperatures compared to forsterite. Our results imply that mineral
carbonation impacts the energy requirements of minerals for comminution and serves as
an energy-saving approach for mineral processing in addition to its effect on reducing
greenhouse gases in the atmosphere.
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Abstract: Red clay is susceptible to cracking in desiccating environments, with resulting crisscrossing
cracks that compromise the soil structure and increase the likelihood of geological hazards. To
investigate the dynamic mechanism of the initiation and propagation of soil desiccation cracks un-
der natural hygrothermal conditions, a desiccation test was conducted on a red clay slurry using
three-dimensional digital image correlation (3D DIC) technology. The evolution behaviour of desic-
cation cracks was analysed, and the dynamic relationships between moisture content, displacement
field, strain field, and soil desiccation cracking were explored. The test results showed that the
Atterberg limits of red clay are correlated with desiccation cracking. Cracks tend to initiate in areas
where tensile strain is concentrated or significant displacement differences exist. Following crack
initiation, the surrounding strain and displacement fields redistribute, influencing the propagation
direction, development rate, and morphology of subsequent cracks nearby. Additionally, the rela-
tive displacement and strain at the edges of cracks are related to the crack propagation direction.
Earlier crack initiation usually corresponds to a larger relative displacement and strain at the crack
edges, while the displacement and strain at the soil clod centre are typically smaller than those at
the crack edges. DIC technology can quickly and accurately obtain dynamic information about
displacement and strain fields, providing feasible technical support for analysing the dynamic mech-
anism behind soil desiccation cracking. It has potential value in engineering hazard prevention and
sustainable development.

Keywords: red clay; desiccation cracking mechanism; digital image correlation technology; strain;
displacement

1. Introduction

Red clay is susceptible to cracking in desiccating environments due to its sensitivity to
ambient humidity. The resulting desiccation cracks threaten the strength and stability of
the soil, negatively impacting its permeability and hydraulic characteristics, leading to a
range of engineering challenges. The crack initiation and propagation facilitate rainwater
infiltration into the soil, causing engineering hazards such as foundation deformation,
slope collapse, landslides, failure of landfill barrier function, and dam instability [1–8].
The existence of soil cracks in agricultural engineering diminishes moisture and fertilizer
utilisation efficiency, amplifies soil erosion and pollution, and deepens soil weathering, con-
sequently reducing crop yields. In environmental science, cracks facilitate the weathering
and erosion of rocks and soils, resulting in land desertification and ecological environment
disruption, compromising the sustainability of human and natural development. Therefore,
a systematic study of the dynamic mechanism of desiccation cracking in red clay is crucial
for effectively preventing and controlling engineering problems caused by cracking, thereby
promoting sustainable development.
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Desiccation cracking of clayey soil is the result of soil shrinkage caused by moisture
evaporation, which is influenced by boundary restriction and uneven shrinkage [9], result-
ing in the formation and development of the soil stress–strain field. Once the tensile stress
exceeds the maximum tensile strength of the soil, cracks initiate and continue to propagate
during evolution [10,11]. The resulting cracks increase the soil surface area, promoting
moisture evaporation, exacerbating the desiccation, shrinkage, and further development of
cracks [12,13]. Thus, crack development, moisture content, and shrinkage deformation are
mutually influential and dynamically develop.

Moisture evaporation induces desiccation cracking. Liu et al. [14] investigated the
failure mechanism of red clay slopes. They found that soil shrinkage and cracking result
from matric suction differences between the upper and lower soil layers induced by the
moisture content gradient. Moisture content changes play a crucial role in the initiation
and propagation of cracks. Researchers have identified the critical moisture content (wc)
as a constant parameter for soil cracking [15,16]. They have also explored the relationship
between crack evolution and moisture content [17,18]. However, wc is related to soil
properties and external environmental factors, and further comprehensive study is needed
to explore the relationship between moisture evaporation and crack evolution.

Researchers have investigated the mechanisms underlying the initiation of desiccation
cracks [19–21]. It is commonly accepted that the uneven tensile stress caused by soil
desiccation results in stress concentration in areas where soil deformation is limited, leading
to cracking when the tensile stress exceeds the maximum tensile strength. However,
conventional methods for determining soil tensile strength have limitations. Conventional
tensile tests measure the tensile strength of the weakest point in a compacted sample at
a specific moisture content and dry density [22,23]. Actually, matric suction increases as
moisture evaporates, causing a redistribution of moisture and pores that may alter the initial
conditions for desiccation crack initiation. Furthermore, tensile strength is a macroscopic
mechanical indicator, and the uneven shrinkage deformation of clayey soils makes it
difficult for conventional tests to accurately reflect the unevenness of the interparticle
cohesive force at the micro level.

Previous researchers have attempted to establish relationships between strain, dis-
placement, and crack evolution. For example, they conducted shrinkage tests and used
Vernier callipers to measure soil strain, evaluating the total tensile stress when soil cracks
initiate [24]. They also monitored the real-time stress and displacement of slopes using
pressure gauges and displacement meters to examine the evolution of slope cracks from the
perspective of crack–stress–displacement [25]. However, these methods require direct con-
tact between the measuring instruments and soil, leading to the disturbance of the original
structure and constraint conditions of the soil, and cannot provide complete information
about soil stress, strain, and displacement. Therefore, the development and adoption of
high-precision, contactless, fast, and dynamic testing techniques offer a promising direction
to address these limitations.

Digital image correlation (DIC) technology is an optical non-contact technique that can
measure the 3D displacement and strain of an object surface [26]. It can monitor the evolu-
tion of all cracks in a testing area and detect subtle changes in civil engineering materials in
real time, allowing for the analysis of displacement and strain evolution. DIC technology
is mostly applied to materials such as metals, reinforced concretes, rocks, polymers, and
biological tissues. Studies have reported the real-time measurement of the surface strain
and displacement of these materials on the micro- and macroscale. Lei et al. [27] proposed
an approach for investigating the planar strain distribution in polycrystalline materials at
the grain scale by combining DIC technology with microscopy and verified its feasibility for
studying the micromechanical behaviour of a Ni-based alloy specimen. Francic et al. [28]
compared the accuracy of 2D DIC technology and LVDT sensors in measuring the crack
width and vertical displacement of reinforced concrete and found DIC technology had
higher precision. Han et al. [29] used a split Hopkinson pressure bar (SHPB) system and
DIC technology to monitor the deformation, vertical displacement, and maximum principal
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strain of sandstone during the impact loading process and conducted dynamic fracture
analysis. Wang et al. [30] used DIC technology to obtain the heterogeneous deformation
fields of polyurethane foam samples during compression and revealed the evolution of
surface deformation textures of open-cell polyurethane foam samples with different relative
densities. Zhang et al. [31] used DIC technology to measure the mechanical properties
of biological tissues. Despite DIC technology having been applied to various materials,
there are limited studies on its application in the research on soil crack evolution, and few
reports discuss the relationship between crack evolution and deformation (displacement
and strain). Consequently, applying DIC technology to study the relationship between
crack evolution and soil deformation presents significant advantages and provides an
opportunity for a comprehensive analysis of the dynamic mechanism of crack initiation
and propagation.

In this study, 3D DIC technology was utilised to dynamically monitor red clay desic-
cation cracking in indoor desiccating tests. The relationships between moisture content,
strain, displacement, and crack evolution were analysed with soil moisture monitoring and
surface crack identification. The dynamic mechanism of soil desiccation crack initiation and
propagation was studied. These study results can contribute to a deeper understanding of
the dynamic mechanism of soil desiccation cracking.

2. Materials and Methods
2.1. Soil Samples

The investigated soil was red clay at a depth of 2.5–4.0 m, which was recovered from
Shaoyang, Hunan province, China. According to the Test Methods of Soils for Highway
Engineering in China (JTG3430-2020) [32], the basic physical properties were determined
by laboratory tests and are given in Table 1. The soil liquid limit is higher than 50%,
the plasticity index is higher than 35%, and the percentage of soil particles larger than
0.075 mm is less than 25%. The particle composition and plasticity index indicate that the
soil belonged to the high-liquid-limit clay group.

Table 1. Physical properties of red clay for testing.

Specific
Gravity
/(g/cm3)

Liquid Limit
/(%)

Plastic Limit
/(%)

Shrinkage
Limit
/(%)

Plasticity
Index
/(%)

Optimum
Moisture
Content

/(%)

Maximum Dry
Density
(g/cm3)

Clay Content
/(%)

2.72 67.7 28.3 18.8 39.4 18.5 1.86 62.8

2.2. Sample Preparation

The soil was air-dried, crushed with a rubber mallet, and sieved through a 2 mm
sieve. The sieved soil was then placed into a 200 mm diameter circular container, and
distilled water was added to prepare a saturated slurry with a moisture content of 120%.
Air bubbles were removed from the slurry sample by stirring and vibrating and leaving it
to set for at least 48 h for sedimentation. Finally, the pure water above the slurry surface
was removed, resulting in a circular slurry sample with an initial thickness of 15 mm and
an initial moisture content of 87.3%.

To obtain soil surface information using DIC technology, the soil surface must have
recognisable characteristics [33]. According to the characteristics of the tested soil and the
requirements for crack identification using DIC technology, white paint and coal particles
were used as base materials and speckles, respectively. A layer of white paint was uniformly
applied to cover the soil surface, followed by the random placement of coal particles (with
diameters ranging from 0.2 to 1 mm) on the white paint. The thickness of the white paint
layer was approximately 0.1 mm, which did not increase the soil cohesive strength and
affect soil-cracking behaviour. The influence of the coal particles on the experimental
characteristics of the sample was considered negligible due to their small diameter.
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2.3. Experimental Device and Procedures

A self-designed device (Figure 1) was used to desiccate the soil sample in this test.
This device can also obtain the sample mass, surface crack morphology, displacement, and
strain at different time intervals.
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The 3D optical non-contact deformation measurement system (XTDIC) was developed
in China by Xi’an Xintuo Three-Dimension Photometry Technology Corporation (Xi’an,
China). The system comprised two adjustable high-precision camera lenses, a control
box, and a high-performance computer. The two lenses and LED light of the XTDIC
system were mounted on a horizontal beam secured with an adjustable-height steel bracket.
It combined DIC technology and binocular stereo vision technology [33]. Two cameras
positioned at different angles were used to capture speckle patterns on the sample’s surface,
and 3D spatial information was obtained through calibration. The captured images were
analysed using the DIC algorithm to reconstruct the 3D coordinates of the points of the
sample’s surface before and after deformation and to obtain the dynamic 3D deformation
information of the sample. The sample was illuminated by two heating lamps with a
design illumination intensity of 600 W/m2. The laboratory temperature was maintained
at 23 ± 0.5 ◦C, and the relative humidity was 60 ± 2%. A camera (Nikon D5100, Nikon
corporation, Tokyo, Japan) was placed above the soil sample to capture the sample for the
extraction of crack parameters.

The sample initial mass was measured using an electronic balance (accuracy 0.1 g), and
the sample initial state was simultaneously captured using the XTDIC system and camera.
During the test, the heating lamps illuminated the sample surface, and the electronic balance
automatically recorded the sample mass. The XTDIC system and camera automatically
captured images at intervals of 10 min. The test was completed when the electronic balance
showed that the difference between two adjacent readings was less than 0.5 g.

MATLAB was used to perform image digitalisation on crack photos taken at different
times [34], including image binarisation, morphological processing, filtration, skeleton
extraction, and deburring, as shown in Figure 2. Image binarisation enables the differen-
tiation of crack and non-crack areas by assigning black and white pixels. Morphological
processing is used to modify pixel values to enhance the cracks in the image. Filtration
effectively eliminates image noise, such as coal particles, to obtain the crack area of the
image. Skeleton extraction refines the cracks and extracts the skeleton of single-pixel-width
cracks. Deburring yields a smooth crack photo, providing the total crack length. From
these processes, the crack ratio [35], average crack width, and total crack length versus time
were obtained. In addition, the moisture content of the sample versus time was obtained
by analysing the electronic balance readings at different times.
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3. Results and Discussion
3.1. The Influence of Moisture Content on Crack Development

The various relationships of moisture content and crack parameters versus time are
shown in Figures 2–4. The relationship between moisture content (w) in percentage and
time (t) in hours can be expressed as a function [36]: w(t) = (120 − 0.5).er f c(t/20) + 0.5.
The moisture content curve presented in Figure 3 can be divided into the constant rate stage
(0–800 min), the falling rate stage (800–1200 min), and the stable stage (1200–1290 min). The
moisture content decreased linearly versus time before 800 min. The evaporation rate was
mainly affected by environmental conditions. The decreasing trend of moisture content
slowed from 800 min to 1200 min. After 1200 min, the moisture content tended to stabilise,
with a residual moisture content of 0.5%. An earlier study by An et al. [37] on the moisture
content curve of clay slurry samples of different thicknesses obtained similar results, albeit
with a different residual moisture content due to differences in soil properties and external
temperature conditions.
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As shown in Figures 2–4, there were no significant changes in the curves of total
crack length, average crack width, and crack ratio before 270 min. Subsequently, as cracks
initiated and propagated, the total length, average crack width, and crack ratio increased
rapidly before stabilising, but the increase rate was not constant. The total crack length
stabilised earliest at 660 min, while the crack ratio and average crack width continued to
increase at a slower rate until stabilising at 800 min, indicating that the increase in crack
ratio was primarily attributed to the increase in crack width. The crack parameters are
influenced by the sample size and initial moisture content [38], yet the overall development
trend is still similar.

There was a certain relationship between the Atterberg limits and crack development.
Such that the cracks began to initiate when the moisture content dropped to the liquid limit
(67.7%), the crack length gradually stabilised when the moisture content approached the
plastic limit (28.3%), and the crack length did not significantly increase when the moisture
content fell below the shrinkage limit (18.8%). Combined with Figures 2–4 and the crack
evolution (Figure 5(a1–a6)), the relationship between crack evolution and moisture content
can be verified. The first crack appeared around 270 min when the moisture content
was near the liquid limit. The moisture content approached the plastic limit at 650 min.
Compared to Figure 5(a5,a6), crack development slowed, crack length was basically stable,
and no new cracks were formed. Instead, with moisture evaporating, crack width and
depth continued to increase. The moisture content neared the shrinkage limit at 800 min,
the crack length stabilised, and the crack width increase was small, indicating that crack
development had gradually stabilised. In fact, the relationship between crack development
and moisture content is influenced by the coupling effect of sample shape, thickness, and
interface roughness [39]. Therefore, there may be discrepancies between laboratory tests
and field tests.

In addition, when the initial moisture content is greater than a certain value, overall
shrinkage will occur before the cracks initiate [40]. This study took a circular slurry sample
with a 200 mm diameter and 15 mm thickness as the research object. Because the cohesive
force between the sample and the bottom surface of the container was greater than the
shrinkage stress, there was no overall centripetal shrinkage during the desiccation process.
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Hence, it is speculated that the critical moisture content is meaningful only for saturated
soil, and the initial moisture content of unsaturated soil is the critical moisture content.
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3.2. Interaction between Displacement Changes and Crack Evolution

Figure 5 shows the crack photos and displacement images of the sample at differ-
ent times. The horizontal transverse displacement, horizontal longitudinal displacement,
and vertical displacement are represented by δx, δy, and δz, respectively. The X-axis
represents the horizontal transverse direction, the Y-axis represents the horizontal longi-
tudinal direction, and the Z-axis represents the vertical direction (positive upwards and
negative downwards).

As shown in Figure 5(b1–d1), cracks have not yet initiated at 260 min, and the dis-
placement fields could be divided into 3–4 areas which distributed more evenly than in
later stages. The vertical displacement (δz) was negative, indicating a single-directional
contraction trend, with a greater magnitude compared to the horizontal displacements (δx
and δy). From 320 min to 650 min, opposite-directional horizontal displacements appeared
on both sides of the cracks as cracks widened, which increased rapidly with time. The
red and blue areas on both sides of the cracks in Figure 5(b3,c3) showed a faster increase
in displacement compared to the non-cracked areas. At 1290 min, multiple displacement
fields with different colours existed on the small soil clod when the displacement field
stabilised (Figure 5(b6–d6)). The horizontal displacement decreased from the edges of the
soil clod towards the centre, while the vertical displacement showed an opposite trend.
Such as the small soil clod in Figure 5(b6,c6), the arrows represent the direction of the soil
clod shrinkage. According to the displacement field evolution of the small soil clod, it
can be observed that the shrinkage deformation of the small soil clod could present the
phenomenon of centripetal shrinkage, and the shrinkage centre of the small soil clod also
changed with time [41].

The direct cause of crack initiation is the relative displacement between adjacent
displacement fields caused by uneven soil shrinkage, and crack initiation can be explored
by analysing the relative displacement. Soil desiccation cracks were typical tensile cracks
that initiated when the relative displacement at the intersection of different displacement
fields exceeded the soil limiting value. As the tensile stress is greater in the upper layer than
the lower layer of the soil, cracks usually propagate from the surface downwards [42]. By
analysing the relative displacement on both sides of the cracks and the potential positions
of cracks, the minimum relative displacement for crack initiation in the tested soil sample
was preliminarily determined to be 0.2–0.25 mm. As shown in Figure 5(c1), the δy on both
sides of crack 1 (Figure 5(a2)) was approximately 0.2 mm before it initiated.

The relative displacements in different directions between adjacent displacement fields
influence the trend and rate of soil crack development. Comparing Figure 5(b2–d2), the
initiation of crack 1 at the intersection of the displacement fields in Figure 5(a2) was mainly
due to the influence of δy, but it was also influenced by δx and δz during its development
process because crack 1 did not always develop along the intersection line of the yellow
and green displacement fields in the Y direction shown in Figure 5(c2). The larger the
relative displacement, the faster the crack develops. Near the A-ends of cracks 1 and 2 in
Figure 5(a2), the relative displacement in all directions was greater than near the B-ends,
leading to the A-ends developing faster than the B-ends. When the soil displacements on
both sides of the crack were different, the crack extended towards the larger displacement
side, resulting in a Y-shaped or arc-shaped crack, such as arc crack 4 (red) and the Y-shaped
crack (blue) formed by cracks 3, 10, and 13 in Figure 5(a6). Conversely, when the soil
displacements on both sides of the crack were equal, the crack propagated in a straight line
and intersected with the previous cracks to form a T-shaped crack, such as the T-shaped
crack (purple) formed by cracks 41 and 55 in Figure 5(a6).

The initiation and propagation of cracks cause changes in the distribution and magni-
tude of the displacement fields around the cracks. As cracks propagate, moisture evaporates
faster from the edges of soil clods and induces more pronounced centripetal shrinkage,
leading to greater changes in the displacement fields on both sides of cracks than in the
centre of small soil clods (Figure 5(b4–b6,c4–c6)). However, this effect appears to have little
influence on vertical displacement fields (Figure 5(d4–d6)). The increase rate of horizontal
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displacement around the crack is greater when the crack initiates earlier, requiring more
time to reach stability and resulting in larger values after stabilisation. For example, the δx
and δy of early soil clods around cracks 1 and 2 are generally larger than those of late soil
clods in other areas shown in Figure 5(b6). Moreover, the shape, size, and centre position of
soil clods change with time, and early formed soil clods may form cracks and divide into
smaller soil blocks later. Only the displacements of the central area of the final formed soil
clods were smaller than that of their edges. Refer to the displacement field evolution of
small soil clod 1 in Figure 5(a4).

3.3. Interaction between Strain Changes and Crack Evolution

Figure 6 shows the crack photos and strain images at different times. The horizontal
transverse strain, horizontal longitudinal strain, shear strain, and maximum principal strain
are represented by εx, εy, εxy, and εm, respectively. Positive values indicate a tensile strain,
while negative values indicate a compressive strain.
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At 260 min, tensile strain predominated on the soil surface, while compressive strain
was concentrated in a few areas along the container edge (Figure 6(e1)). Starting from
320 min, tensile strain gradually increased and was quickly concentrated at the crack
tip. Beginning at 350 min, new cracks began to propagate towards the sample centre,
accompanied by high compressive strain around the cracks. The tensile strain gradually
changed to compressive strain until it stabilised at 650 min, where the entire soil surface
was under compressive strain (Figure 6(e5)). The changes in εx and εy were similar to εm,
and εxy changed from a compressive state to a tensile state.

The strain parallel to the crack direction was greater than that perpendicular to the
crack direction. Such as crack 2 was parallel to the Y-axis, so εy was significantly larger
than εx. The strain distribution was usually uneven due to the uneven soil shrinkage,
leading to concentration areas of tensile and compressive strain in the strain images. When
the strain stabilised, εxy was significantly smaller than εx and εy.

According to the concentration areas of tensile strain, the subsequent crack initiation
and propagation can be preliminarily predicted. In Figure 6(b1,c1), two green areas of
tensile strain concentration appeared approximately parallel to the container wall due
to boundary effects [43]. Subsequently, cracks 1 and 2 initiate in this area, as shown in
Figure 6(a2). It can be inferred from Figure 6(e1–e5) that cracks may initiate when the εm
in an area exceeds 2.3%. Once the cracks initiated, the accumulated local tensile strain
energy was released, with tensile stress concentrating on the crack tip and directing the
crack propagation. For example, εm near the tip of cracks 1 and 2 in Figure 6(e1) is close
to 2.3%.

The crack initiation and propagation were influenced by the surrounding strain fields,
which also reacted on the evolution of the surrounding strain fields. Crack 1 was influenced
by the strain field near the newly formed crack 3 (Figure 6(e3)), resulting in a change in
its original circular propagation trend and intersecting with crack 3 at 90◦, whereas crack
2 intersected with crack 3 near 90◦ after several diversions (Figure 6(a5)). When the sample
thickness exceeds 4 mm, the cracks intersect at 90◦, whereas if it is less than 4 mm, cracks
typically intersect at 120◦ [44].

The evolution of the maximum principal strain near cracks 1–3 in Figure 6(e3,e4) shows
that the initiation of adjacent crack 3 releases the previously accumulated strain energy,
leading to the local rearrangement of the strain field [45], which influences the propagation
trends of cracks 1 and 2 by altering the stress fields around them. As moisture evaporates,
the cracks widen causing the surrounding soil to be compressed. The tensile strain areas on
the sides of the cracks gradually transform into compressive strain areas, but the influence
of this transition does not extend to the strain fields around the non-crack areas. Therefore,
the tensile strain areas gradually decrease as the number of cracks increases, and the
compressive strain areas expand.

3.4. Relationship between the Temporal and Spatial Evolution of Soil Surface Deformation
and Cracks

In Figure 7, eight positions where cracks initiated at different times are presented, and
sets of relative displacement feature points (Gi) are selected on both sides of each position,
including the left feature point (Li) and the right feature point (Ri). The relative displace-
ments in each direction for each set of feature points are calculated (i.e., the displacement
of Ri minus the displacement of Li in the same direction). The horizontal transverse rel-
ative displacement, horizontal longitudinal relative displacement, and vertical relative
displacement are represented by ∆x, ∆y, and ∆z, respectively. The X-, Y-, and Z- axes
represent the horizontal transverse direction, horizontal longitudinal direction, and vertical
direction. Two areas of soil samples were selected for analysis (feature points G1–G8,
differentiated by red and blue, where cracks near G1–G8 initiated at 320 min, 330 min,
360 min, 370 min, 370 min, 380 min, 390 min, and 510 min). The relationship between the
relative displacement of each point and time is shown in Figures 8–10.
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The relative displacement curves can be roughly divided into three stages. In the
first stage (before crack initiation), ∆x and ∆y were not significant, and ∆z of G1 and
G2 increased with time, but ∆z of other feature points was very small. In the second
stage (the crack propagation stage after crack initiation), ∆x and ∆y rapidly increased
when the cracks were about to initiate. The increase rate of relative displacement can be
calculated by taking the derivative of the relative displacement. The increase rates of ∆x,
∆y, and ∆z were 1.0–1.2 × 10−2 mm/min, 0.4–0.8 × 10−2 mm/min, and 0.1–0.3 × 10−2

mm/min, respectively. This indicates that the change trend of ∆z was relatively small,
and ∆x and ∆y were the primary cause of soil surface cracking. This is attributed to
the sample thickness being much smaller than its diameter, and soil vertical shrinkage
exhibits less magnitude compared to horizontal shrinkage. In the late second stage, crack
propagation basically completed, ∆x and ∆y had no significant changes, but ∆z decreased.
Combined with Figure 3, it can be inferred that the crack length was generally stable in this
stage, indicating that the crack network was formed roughly. When the shrinkage stress
exceeded the cohesive force between the soil clod bottom and container surface, the soil
clod separated from the container bottom, causing the soil on both sides of the crack to
arch upwards [46]. In the third stage (the crack stable stage), ∆x, ∆y, and ∆z were basically
stable. The earlier the crack initiates, the longer the crack development duration and the
larger the crack width.

There are differences in the relative displacement between different feature points.
The cracks at G4 and G5 initiate simultaneously, but the changes in the all-direction
displacement curve at G5 is significantly larger than that at G4. because the crack near G4
is a secondary crack resulting from the bifurcation of the primary crack, whereas the crack
at G5 is the primary crack. ∆x for each set of feature points is positive, while ∆y and ∆z
can be positive or negative. Small soil clods exhibit centripetal shrinkage, resulting in the
opposite displacement directions of feature points on the left and right sides of a crack.
Different shrinkage degrees lead to different positive and negative relative displacements
because there is spatial anisotropy in the soil shrinkage deformation on both sides of the
crack [47].

The relative displacement is related to the direction of crack propagation. The propa-
gation direction and width of cracks near G3 and G6, as well as G4 and G7, are roughly
similar, and the development trend of the relative displacement curves is also similar. The
crack propagation direction impacts the change in the relative displacement of feature
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points. Such as when the crack at G1 developed along the Y direction, ∆x began to increase
at 330min, whereas ∆y started to increase at 480min. Therefore, the earlier the crack initiates
near the feature point, the more likely the relative displacement between the two feature
points may not always be larger when the crack is stable. For example, ∆x and ∆z of G1 are
the largest, while ∆y is very small, due to the relative displacement parallel to the crack
direction on the sample being smaller than that perpendicular to the crack direction.

Figure 11 shows several feature points selected from soil clods formed at different
times, with red and blue colours used to distinguish feature points on two soil clods. C1
and C2 represent the centre points of the soil clods, while P1–P6 represent the edge points of
the cracks. The crack initiation times near P1–P6 were 330 min, 360 min, 370 min, 380 min,
390 min, and 510 min, respectively. The strain curves over time are shown in Figures 12–15.
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The strain field evolution is related to the crack development, as strain changes cause
the initiation and propagation of cracks. In the first stage (before crack initiation), feature
point strains remain small, and the strain changes are not significant. In the second stage
(crack initiation and propagation stage), εx, εy, and εm increase linearly with time, with
increasing rates of 3.2–3.8 × 10−2%/min, 3.2–5.3 × 10−2%/min, and 3.6–2.8 × 10−2%/min,
respectively, whereas εxy changes are much smaller than those of εx and εy. The strain
increase rate at the crack edge points in the same soil clod is generally greater than that at
the centre points of the soil clod, indicating that the shrinkage of the centre of the soil clod
is smaller than that of the edges. In the third stage (the crack stable stage), cracks near the
feature points no longer develop significantly, and the strain curves tend to stabilise. The
maximum principal strain is ranked from smallest to largest: C2 (12.9%) < P6 (14.3%) < C1
(15.5%) < P4 (16.0%) < P5 (16.2%) < P2 (16.6%) < P3 (17.0%) < P1 (17.3%). After stabilisation,
εx, εy, and εxy also show that the earlier the crack initiates, the larger the strain of the crack
edges usually is. In the same soil clod, the strain of the soil clod centre is usually smaller
than that of the crack edges.

With the exception of εxy, εx and εy are positive before crack initiation and become
negative after crack initiation. The primary reason is that soil moisture evaporation leads
to a tensile stress field inside the soil, and cracks initiate when the tensile stress exceeds the
soil limiting value. The soil around the crack changes from being under tension to being
under compression, and εx and εy gradually become negative. εxy is negative at blue
feature points and positive at red feature points, indicating that feature points are subjected
to opposite directions of shear stress.

4. Conclusions

This study conducted a desiccation cracking test on a 200 mm diameter and 15 mm
thick red clay sample under simulated natural hygrothermal conditions, and dynamic
information on surface displacements and strains was obtained using DIC technology with-
out disturbing the soil. The relationships between moisture content, surface displacement,
strain, and cracks were explored to investigate the dynamic mechanism of desiccation crack
initiation and propagation in red clay. The following conclusions were drawn:
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1. Soil desiccation crack evolution was related to the Atterberg limit of red clay. Cracks
initiated when the moisture content approached the liquid limit of 67.7%, developed
slowly when the moisture content reached the plastic limit of 28.3%, and tended to
stabilise when the moisture content was less than the shrinkage limit of 18.8%.

2. Changes in strain and displacement interacted with crack initiation and propagation.
The initiation and evolution of subsequent cracks could be predicted by strain and
displacement images, as cracks tended to initiate in areas with concentrated tensile
strain or obvious horizontal relative displacement. The shape and propagation trend
of cracks were under the influence of the distribution of the surface displacement
and strain fields. Crack initiation caused the redistribution of the displacement and
strain fields around them; the displacement and strain gradually increased with crack
propagation, and the displacement and strain values on both sides of the cracks
increased faster than in non-crack areas.

3. The ratio of sample to diameter thickness is 40:3, with the diameter being significantly
larger than the thickness. Hence, the horizontal relative displacement (∆x and ∆y) on
both sides of the cracks was significantly greater than the vertical relative displacement
(∆z), and uneven shrinkage-induced horizontal relative displacement was the primary
cause of soil cracking. Additionally, the numerical values of the relative displacement
were also related to the crack propagation direction.

4. Horizontal transverse strain and horizontal longitudinal strain (εx and εy) were
greater than the shear strain (εxy), and cracks may initiate when the maximum
principal strain (εm) exceeds 2.3%. The earlier the cracks initiated, the longer the
development duration and the larger the strain at the crack edges.

5. DIC technology can obtain dynamic information on the surface displacement and
strain of the sample without disturbing the soil. It can analyse the critical strain and
displacement when cracks are about to initiate and study the deformation behaviour
during soil desiccation cracking. This is helpful in analysing the dynamic mechanism
of soil desiccation crack initiation and propagation.

Under the influence of hot and arid weather, cracks initiate when soil loses moisture
to the critical moisture content. The study results indicate that the majority of cracks
initiate and propagate rapidly during the constant rate stage. Therefore, it is necessary
to implement effective measures to maintain a uniform distribution of soil moisture and
mitigate crack initiation. Through the utilisation of 3D DIC technology, it becomes feasible
to preliminarily predict the initial location and subsequent propagation direction of desicca-
tion cracks. This provides advantages for optimising the arrangement of irrigation systems
during crop cultivation and growth, as proper irrigation contributes to maintaining soil
moisture and limiting downward crack propagation. Moreover, the stability of soil slopes
is heavily influenced by the development of soil cracks. By implementing reinforcement
measures that restrict excessive strain and displacement, based on critical thresholds for
soil crack initiation, the occurrence of hazards resulting from cracks can be minimised.
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Abstract: The damping ratio values of three different Danube sands were measured in the Resonant
Column-Torsional Simple Shear device (RC-TOSS). The distinctive configuration of the RC-TOSS
device employed in this investigation enabled the performance of both tests using a single sample.
This research estimates and compares the damping ratio values measured with three distinct methods
(two of which are in the RC test): The Free Vibration Decay (FVD), the Steady-State Vibration (SSV)
methods, and the method of calculating the damping ratio from the hysteretic loops generated in the
TOSS test. Both dense and loose samples were tested up to a peak-to-peak amplitude shear strain of
1%. The device provides measurements over a wide range of shear strain amplitudes. The results
support the employment of the SSV methods at low strains (below 0.005%), while the FVD method
gives a better estimate at higher strains (above 0.03%). The two methods and the TOSS results are
in agreement with each other between 0.005% and 0.03%. The effect of the number of cycles on the
damping ratio was investigated where a significant decrease was observed in the damping ratio with
an increasing number of cycles. A parameter is introduced to describe the rate of this decrease, which
should be considered during the structural design to reduce maintenance and life-cycle costs and
enhance sustainability.

Keywords: resonant column test; torsional simple shear test; damping ratio; steady-state vibration;
free vibration decay

1. Introduction

When waves propagate through soil during cyclic loading, complex mechanisms
contribute to the loss of energy in the material. Fluid flow loss and inelastic friction loss are
mainly responsible for energy dissipation in soil [1]. The dominant mechanism depends
on the strain level and nonlinear behavior of soil. The damping ratio describes energy
dissipation in a system. This parameter plays an important role when modeling dynamic
geotechnical and structural problems (e.g., soil response analysis and soil–structure interac-
tion problems). Thus, a substantial effort has been made in the last few decades to introduce
experimental dynamic laboratory procedures and in situ methods to study the damping
behavior of soils for a wide range of shear strain amplitudes. Resonant Column (RC) and
Torsional Simple Shear (TOSS) tests have been developed and improved to measure the
damping ratio with reasonable accuracy. The effects of various soil parameters on damping
have been further investigated over the years. The most impactful factors are the void ratio,
confining pressure, particle shape, and number of loading cycles [2–4].

Damping in materials may take several forms. In soils, geotechnical engineers are
mostly concerned with hysteretic and viscous damping, which are proportional to dis-
placement and velocity, respectively. While vibration frequency affects viscous damping,
it seems to have no impact on the hysteretic damping. These two forms of damping are
results of distinct mechanisms.

Soils have a tendency to dissipate energy even when subjected to low levels of strain [5].
Soils loaded cyclically below the linear strain threshold (γtl) exhibit an elastic behavior.
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Hysteresis loops do not generate at strain amplitudes lower than that threshold. According
to Kokusho [6], damping is a consequence of the fluids present in the voids, suggesting that
the loss of fluid (viscous damping) is the main mechanism behind the soil’s damping at
small strain levels (below γtl). Conversely, beyond γtl , the shear stress–strain curves start
to form hysteresis loops when soil is cyclically loaded. This is attributed to the nonlinear
behavior of soil at higher strains. A rise in hysteretic damping is observed as the strain
amplitude increases, and most of the energy dissipation is a result of inelastic friction. Thus,
viscous damping is marginal, and the nature of damping is hysteretic [7,8].

Resonant column testing typically involves two distinct methods for measuring the
damping of materials: The Steady-State Vibration (SSV) and the Free Vibration Decay
(FVD) [9,10]. Several studies compared these two methods and provided suggestions
on their scopes and limitations [11–13]. However, the unique design of the RC-TOSS
device used in this study allows for conducting both tests on the same sample. This
feature provided an accurate comparison between the three methods of measuring the
damping ratio. These three methods are the SSV, FVD, and the method of calculating
the damping ratio from the hysteretic loops generated in the TOSS test. This eliminates
any potential effect of sample preparation on the results, which facilitates a more precise
comparison. Since the damping ratio of soil influences the dynamic response of structures,
a better understanding and more accurate estimation of the damping ratio can lead to
a reduction in the structural demands and potentially increase the safety and resilience of
the design. This can contribute to the long-term sustainability of the structure by preventing
or minimizing damage.

2. Testing Device, Materials, and Methods

Hollow, cylindrical soil samples were tested using a combined Resonant Column-
Torsional Simple Shear device (RC-TOSS). The samples have an outer diameter of 6 cm,
an inner diameter of 4 cm, and a height of 14 cm. A drive head applies torsional loading on
the top of the sample (the free end), while the bottom of the specimen is fixed, as shown
in Figure 1. The drive system consists of a set of two magnets inserted inside four coils.
Two proximitors are fixed on the measurement post to measure the gap between the sen-
sors and targets attached to the specimen. The difference between the two gaps gives the
rotation from which the shear strain is found at each loading step. Torque is calculated
from the known current passing through the coils during the test. The RC test requires
displacement measurements with very high accuracy at very low amplitude (γ = 10−4%).
An accelerometer mounted on the drive head provides such accurate measurements. A mul-
timeter and an oscilloscope read and record the response curve, resonance frequency, and
decaying response of the sample. The device is capable of conducting RC and TOSS tests
on the same sample. A detailed description of the device and the methods of calibration
are present in [3,14].

Three different types of Danube sands were selected for testing. Samples A and B
retained a very low percentage of fines, while the fine content for sample C was 21.11%.
The soil comprised fluvial sediments of the Danube River, extracted from a location near
the channel of the river. The particles were sub-angular to rounded. The properties of the
samples are shown in Table 1.

A vacuum applied a confining pressure of 97 KPa on the tested samples. The prepa-
ration of dense specimens was performed via the pluviation method. The soil was
poured slowly from a height of 50 cm to achieve the thinnest thread of soil possible.
On the other hand, to prepare samples in a loose state, the dry filling with tamping method
was applied. Dry soil was poured through a glass funnel with a 14 cm spout into the mold.
Pouring started with the spout touching the base ring, and then the spout was constantly
and carefully raised and moved around to touch the surface of the soil. The testing plan
appears in Table 2.
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Table 1. Tested soil properties.
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Mean
Particle
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Particle
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Coefficient

Fines
Content

Max Void
Ratio

Min Void
Ratio

Liquid
Limit

for Fines

Plastic
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Plastic
Index for

Fines

d50
[mm]

d10
[mm]

Cu
[-]

FC
[%]

emax
[-]

emin
[-]

wl
[%]

wp
[%]

Ip
[%]

A 0.211 0.109 2.06 7.56 0.81 0.52 - - -

B 0.243 0.130 2.18 5.69 0.79 0.516 - - -

C 0.107 0.013 9.85 21.11 0.9 0.524 30.4 19.7 10.7

Table 2. Testing program.

Test # Sample ID
Void Ratio Relative

Density
Maximum

Shear Stress

e
[-]

Dr
[-]

Gmax
[KPa]

1 A 0.77 0.14 84,500

2 A 0.57 0.83 115,000

3 B 0.73 0.22 79,700

4 B 0.58 0.77 101,500

5 C 0.85 0.13 69,300

6 C 0.63 0.72 88,000
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2.1. Damping in the Torsional Simple Shear Device

Around load reversal points throughout cyclic torsional loading, the soil recovers
its stiffness due to the reengagement and interlocking of the previously slipped contacts
between particles in the opposite direction. The shear stress–strain path forms a hysteresis
loop as demonstrated in Figure 2a. The gradient of the straight line that joins the endpoints
of the hysteresis loop indicates the typical level of shear stiffness exhibited by the soil,
which is also referred to as the secant shear modulus (Gsec). Although soil damping is
recognized to be hysteretic in nature, it is commonly substituted with equivalent viscous
damping in most analyses for the sake of mathematical convenience. “The equivalent
viscous damping is determined in such a manner as to yield the same dissipation of energy
per cycle as that produced by the actual damping mechanism” [15]. The damping ratio
(D) represents the ratio of the energy absorbed in one cycle of vibration to the potential
energy at maximum displacement in that cycle [16]. The following equation calculates the
equivalent damping ratio D:

D =
AL

4π ∗ AT
(1)

where AL is the area of the loop (shadowed in Figure 2a) and AT is the area of the triangle
bounded by a straight line defining the secant modulus at the point of maximum strain
(Figure 2a).
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Figure 2. Hysteretic loops due to cyclic loading in TOSS test.

Subroutines in Visual Basic for Applications (VBA) in Excel were created to calculate
the area between the loop and line that connects its two ends. The subroutine divides this
area into very small slices that can be considered trapezoids (Figure 2b). The sum of the
areas multiplied by two denotes AL in Equation (1).

The proximitors incorporated in the TOSS test have low accuracy compared to the
accelerometer measurements in the RC test. Therefore, TOSS tests in this study allow for
damping ratio measurements at strain amplitudes above 0.02%.

2.2. Damping in the Resonant Column Device
2.2.1. The Free Vibration Decay Method (FVD)

The resonant column test starts by applying a torsional oscillation on the top of the
specimen with an increasing amplitude sine wave. For each tested strain amplitude, the
frequency progressively increases to obtain the dynamic response of the specimen. The
frequency that corresponds to the maximum response amplitude is the resonance frequency
of the sample. The dynamic shear modulus is a function of the fundamental frequency
based on wave propagation and elasticity theories. Once the operator finds the resonance
frequency, they cut the power and track the decaying response on a storage oscilloscope.
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A multimeter records the decaying curve on an Excel sheet where damping is determined
from the logarithmic decrement equation [5]:

δ =
1
N

ln
Z1

Z1+N
=

2πD√
1− D2

(2)

where δ is the logarithmic decrement, N is the number of cycles, Z1 is the first amplitude,
Z1+N is the amplitude after N cycles (Figure 3a), and D is the damping ratio.
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For small values of the damping ratio, as found in soil,
√

1− D2 ∼= 1, the damping
expression becomes:

D =
δ

2π
=

1
2Nπ

ln
Z1

Z1+N
(3)

Ray [14] suggests using a small number of cycles (N) when driving at high amplitude.
A larger N would cause a reduction in strain amplitude by a factor of about 3 over the
measurement interval. ASTM D4015 [17] recommends the use of less than 10 cycles. Mog
and Anbazhagan [13] conducted resonant column tests using the GCTS device to investigate
the effect of the number of successive cycles (N) used in measuring the damping ratio. They
observed an increase in the damping ratio when increasing the number of cycles up to
10 cycles. Nonetheless, beyond 10 cycles, the damping ratio starts to decrease for a higher
number of cycles in the measurements (i.e., for 20, 30, and 50 cycles). Damping ratio
measurements determined by this method scatter significantly. Therefore, 2 or 3 successive
cycles in the decay response curve should determine the damping ratio in the RC test.

2.2.2. The Steady-State Vibration Method (SSV)

Initially, the SSV method (also termed the half-power bandwidth method) was created
to calculate the modal damping ratio (ξ) of a structure by measuring the width of peaks in
its frequency response function. However, it could be used to measure the damping ratio of
soil during the RC test. In this technique, the width of the frequency-response curve near the
resonance determines the logarithmic decrement (δ). The half-power bandwidth (∆ω) is the
width of the peak where the magnitude of the frequency corresponds to 1/

√
2 ∗ Pmax [18].

Equation (4) determines δ (GCTS-CATS, 2007):

δ =
π
(

f 2
2 − f 2

1
)

2 f 2
r

∗
√

P2

P2
max − P2

√
1− 2D2

1− D2 (4)

where f 1 and f 2 are frequencies below and above the resonance where the strain amplitude
is P, Pmax is the maximum amplitude (or resonant amplitude), and fr is the resonant
frequency (Figure 3b).
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Since the damping in soils is small and the amplitude P is Pmax/
√

2, Equation (4) becomes:

δ ∼= π( f2 − f1)

fr
(5)

Then, the damping ratio can be expressed as:

D ∼= ( f2 − f1)

2 f r
(6)

According to Mog and Anbazhagan [13], at strain levels below 0.005%, there can be
a variation of up to 15% in the damping ratio when measured using the SSV method and
FVD method with two consecutive cycles. However, the variation can be even greater (up to
50%) when a higher number of successive cycles (3, 7, and 10 cycles) are used. These results
agree with Senetakis et al. [11] where a scatter of 15% was also reported. The ambient noise
and the number of applied cycles during the RC test justify this scatter. A much higher
number of cycles is needed in the SSV method to plot the frequency-response curve [19].

3. Results and Discussions

Every test starts with very small strain RC measurements to obtain the maximum
shear modulus (Gmax) and minimum damping ratio (Dmin). The RC tests continue with as-
cending strain amplitudes up to the volumetric-threshold shearing strain (γtv), which
is around 0.01% for sand. Below γtv, the behavior is nonlinear but still elastic and
there is no effect of the cyclic loading on the dynamic behavior of soil [3,20,21]. Next,
cyclic TOSS tests load the sample for two cycles at progressively higher stress levels
(5–10–15–20–25–30–35–40–45–50 KPa). RC tests are continued after reaching the maximum
shear strain that can be measured using the proximitors (just below 1% peak-to-peak
strain). The six RC tests provided a total of 115 damping measurements. This allowed for
comparison with 54 data points from the TOSS test.

Typical response curves for the SSV method appear in Figure 4 for ascending strain
levels. At higher strain amplitudes (above 0.1%), dynamic instability prevented precise
response data from being recorded by the multimeter. For the FVD method, however,
very small strain levels inhibited accurate damping measurements, and relatively accurate
decay-response curves required several attempts. During the disconnection from drive
coils, an electric pulse often produces a strong transient. This pulse creates noise that
distorts the readings of the most critical first few cycles, since damping is calculated from
the first three cycles before strain levels decrease substantially. This noise did not affect
the response at strain amplitudes higher than 0.005%, and the peaks could be spotted
easily for the first few cycles. Figure 5 compares the damping ratio measurements of the
three methods.
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The SSV method generally provides higher damping values than the FVD method,
especially at higher strain levels. At the same time, there is a closer agreement between
the two methods at medium strain amplitudes (0.005–0.03%). At higher strain amplitudes,
the frequency-response curve becomes asymmetric, compromising the accuracy of the
damping ratio calculations in the SSV method and causing an overestimation of their
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values. Such behavior also occurs when comparing with the TOSS tests, as damping values
obtained from the TOSS tests agree more with the FVD method in the RC test at the strain
levels where the SSV method is questionable.

Due to the nature of the TOSS test measurements and insufficient accuracy of the
proximitors at very small strain amplitudes, comparisons between the RC and TOSS tests
become difficult at strain levels below 0.02%. However, the two tests are in agreement and
their combined response can generate damping-ratio curves for a wide range of strains.

Multiple effects and uncertainties cause the scatter seen in the damping measurements.
The sources of variability include the decreasing strain amplitude with time (FVD), response
curve asymmetry (SSV), and the number of cycles and stiffening behavior in the TOSS
test. Such effects cause difficulties when comparing the damping ratio obtained from
different methods. As a result, they produce a scatter that may exceed 40% in the data
when comparing the SSV and FVD methods, as seen in Figure 6.
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The best fit for all the damping ratio data points from the six tests using the three meth-
ods appears in Figure 7, along with a comparison with two earlier studies [22,23] on
dry sand.
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3.1. Damping Ratio Correlation

To estimate the damping ratio with correlations, it is common practice to relate it with
the normalized shear modulus using a second-degree polynomial of (G/Gmax) [11,24,25].

The modified hyperbolic model based on the Hardin–Drnevich model provides an ex-
cellent presentation of the modulus-reduction curve. This model employs two curve-
fitting parameters:

G
Gmax

=
1

1 +
(

γ
γr

)a (7)

The reference shear strain γr in this model is defined as the strain amplitude when
the shear modulus reduces to one-half of Gmax [23]. The fit for all the samples is shown in
Figure 8a for γr = 0.1 and a = 0.974.
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After finding the correlation for the shear-modulus-degradation curve, the following
equation models the damping ratio increase with increasing strain amplitude:

D = C1

(
G

Gmax

)2
+ C2

(
G

Gmax

)
+ C3 (8)

where C1, C2, and C3 are curve-fitting constants. The constants are found using the least
square method, by minimizing the summation of the squared errors between the equation
and the lab measurements. For the damping ratio measurement in this study for all tested
samples, the equation becomes:

D = 8.5
(

G
Gmax

)2
− 40

(
G

Gmax

)
+ 33 (9)

Figure 8b demonstrates how the equation fits the RC-TOSS damping measurements.

3.2. Effect of Torsional Cyclic Loading on Damping

After exceeding the volumetric-shear-strain threshold (γtv), the cyclic loading causes
an increase in soil stiffness [26–28]. Figure 9 of the shear-stress–strain curves for 100 cycles
shows how the hysteresis cycles decrease in size. Therefore, the damping ratio decreases
with the increasing number of cycles. Several authors have detected this effect [6,29,30].
However, most studies have focused on the effect of low-strain cyclic vibration with a high
number of cycles on the dynamic properties of soil. No agreement has been found regarding
the effect of high-strain-amplitude cyclic loading. Thus, in this study, cyclic TOSS tests were
conducted with increasing stress levels ranging between 10 KPa to 60 KPa with a maximum
peak-to-peak strain amplitude of 1%. Each test applies 100 cycles where the damping ratio
is calculated for all cycles.
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Figure 9. The stiffening behavior of the sample during cyclic torsional loading.

The decrease in the damping ratio with the increasing number of cycles (N) at different
stress levels is shown in Figure 10 for sample C at two different states; (a) is a loose sample
and (b) is a dense sample. It is difficult to estimate the rate of change for each stress level
due to the sequence of the TOSS test and cyclic loading that the sample has experienced
at lower stress levels. However, the higher the stress level, the higher the effect of (N) on
damping up to a specific limit. Beyond this, the stress level seems to have a minor influence
on the rate of decrease in the damping ratio. Specimens with a higher void ratio or lower
relative density exhibit a more significant reduction in damping ratio. For instance, at stress
levels of 20 KPa and 30 KPa, the damping ratio decreased by 50% and 54% after 100 cycles
for a dense sample, while a loose sample decreased by 61% and 64% (Figure 11). DN is the
damping ratio calculated from a cyclic TOSS test at the Nth cycle, and D1 is the damping
ratio of the first cycle (maximum damping ratio at that stress level). Results show that
log(DN/D1) is linearly proportional to log(N), and the slope of log(DN/D1) − log(N) plot
represents a parameter (r) that describes the rate of decrease in damping ratio with the
number of cycles.

r =
log(D/D1)

log(N)
(10)
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The values of the parameter (r) also vary in a manner similar to damping ratio mea-
surements, and it is difficult to find a pattern in the change in (r) with the increasing strain
amplitude. Generally, (r) takes values between (−0.15 and −0.24) for strain amplitudes
above 0.1%.

4. Conclusions

Several methods are in use nowadays to measure the damping ratio in practical ap-
plications. The scatter in the measurements is typically present in the literature due to
uncertainties in the strain amplitudes, frequency-response curve symmetry, and the effect
of the number of cycles. Luckily, the impact of this scatter is marginal in dynamic problems,
such as site response analysis. Previous studies have not provided the opportunity to com-
pare the measurement methods for damping ratios in both RC and TOSS tests. However,
this study benefits from the exceptional design of the device, which enables the execution of
both tests on a single sample. This allows for a direct comparison of the results without the
interference of external factors, disturbances, or sample preparation. Steady-State Vibration
(SSV), Free Vibration Decay (FVD), and damping in the Torsional Simple Shear device have
been investigated and compared for three types of Danube sands with different relative
densities. Based on the results, it is recommended to use the SSV method at very low strain
amplitudes (below 0.005%) where the response curve is symmetrical. For this strain range,
the FVD measurements are unreliable due to the noise created by the device when turning
off the drive power. At medium strain levels (0.005%–0.03%), the two methods and the
TOSS results agree with each other. However, at higher strain amplitudes (above 0.03%), it
is advised to employ the FVD method to measure the damping ratio, due to the reduced
accuracy of the SSV method. The SSV-response curves are not symmetrical anymore, which
compromises the use of the half-bandwidth method, causing an overestimation in the
damping ratio values. Achieving a more precise estimation of the damping ratio of soil
leads to improving the performance and safety of structures under dynamic loads, which
can contribute to the longevity of the design, reducing the overall environmental footprint
associated with maintenance.

The effect of the shear stiffening behavior during cyclic loading in the TOSS test was
investigated. After exceeding the volumetric shear strain threshold, a considerable decrease
in the damping ratio was observed. This trend is more evident in loose samples where
damping can decrease by up to 64% after 100 cycles compared to a 54% decrease in dense
samples for the same stress level of the applied cycles. Considering this decrease during
the design phase can improve the analysis of the dynamic response of structures to reach
a more resilient design of the infrastructure when subjected to dynamic loading, this can
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reduce the need for repairs or reconstruction after seismic events, thereby minimizing
resource consumption and waste generation, contributing to long-term sustainability.
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Abstract: Rock strength, specifically the uniaxial compressive strength (UCS), is a critical parameter
mostly used in the effective and sustainable design of tunnels and other engineering structures. This
parameter is determined using direct and indirect methods. The direct methods involve acquiring an
NX core sample and using sophisticated laboratory procedures to determine UCS. However, the direct
methods are time-consuming, expensive, and can yield uncertain results due to the presence of any
flaws or discontinuities in the core sample. Therefore, most researchers prefer indirect methods for
predicting rock strength. In this study, UCS was predicted using seven different artificial intelligence
techniques: Artificial Neural Networks (ANNs), XG Boost Algorithm, Random Forest (RF), Support
Vector Machine (SVM), Elastic Net (EN), Lasso, and Ridge models. The input variables used for
rock strength prediction were moisture content (MC), P-waves, and rebound number (R). Four
performance indicators were used to assess the efficacy of the models: coefficient of determination
(R2), Root Mean Square Error (RMSE), Mean Square Error (MSE), and Mean Absolute Error (MAE).
The results show that the ANN model had the best performance indicators, with values of 0.9995,
0.2634, 0.0694, and 0.1642 for R2, RMSE, MSE, and MAE, respectively. However, the XG Boost
algorithm model performance was also excellent and comparable to the ANN model. Therefore, these
two models were proposed for predicting UCS effectively. The outcomes of this research provide a
theoretical foundation for field professionals in predicting the strength parameters of rock for the
effective and sustainable design of engineering structures

Keywords: marble strength; direct and indirect methods; correlations analysis; artificial intelligence
techniques; performance indicators

1. Introduction

Uniaxial compressive strength (UCS) is an integral parameter significantly used in
the effective and sustainable design of tunnels and other engineering structures in civil
and mining engineering [1–12]. UCS is determined using direct and indirect methods.
The direct method proceeded according to ISRM and ASTM [13–18] standards on rock
samples in the laboratory that involve (1) acquisition of a standard high-quality or NX
core sample (54 mm dia) of rock (does not contain any cracks), (2) preparation of the core

Sustainability 2023, 15, 8835. https://doi.org/10.3390/su15118835 https://www.mdpi.com/journal/sustainability
123



Sustainability 2023, 15, 8835

sample for flatness of both ends within 0.02 mm and parallelism of the upper and lower
surfaces within 0.05 mm, and (3) applying load on the sample using a Universal Testing
Machine (UTM) machine at the rate of 0.5–1.0 MPa/s. However, extracting high-quality
core samples from a weak and jointed rock is challenging, and the arduous laboratory
testing procedure may provide hurdles during the determination of UCS [19]. It takes time
and is costly to safely execute UCS in a lab test. The results obtained may be questionable
in the case of the presence of discontinuities in the core sample [20,21]. Therefore, most
researchers often prefer indirect methods for estimating UCS. Indirect methods include
predictive models developed by different researchers based on mineralogical–petrographic
analyses and physical and index properties of rock for estimation of UCS [22–25]. When
compared to the direct technique, indirect methods for estimating UCS are quicker, more
convenient, and less costly [26]. For easy understanding, indirect methods are divided
into conventional predictive methods and soft computing methods for the estimation of
UCS [27]. The conventional predictive methods use statistical techniques, i.e., simple and
multilinear regression modeling. These have been used successfully for predicting UCS [28]
and simultaneously correlate inputs with output (i.e., multilinear regression) [29]. Linear
and multilinear regression have the problem that they can only predict the mean values,
and when the data are bigger, they cannot accurately predict the values that are needed. As
a result, these approaches are less suitable for application in nonlinear and multivariable
engineering issues [30–37].

Soft computing methods include Artificial Neural Networks (ANNs), Adaptive Network-
Based Fuzzy Inference Systems (ANFIS), Relevance Vector Machines (RVMs), and other tech-
niques are some of its examples. These methods are now widely used in rock mechanics because
of how easily and adaptably they can anticipate the required values depending on a variety of
inputs. These techniques are well suited for usage when conventional statistical techniques are
less accurate in making predictions [38–42]. In rock mechanics, these methods are getting more
attention now because they are flexible and make it easy to predict required values based on the
input variables. In situations when using traditional statistical approaches for prediction is not
as convenient, these methods are particularly appropriate to be applied [43–46].

Various research at national and international levels has been conducted using differ-
ent artificial intelligence techniques to predict the UCS of rock. In this regard, Shahani and
Zheng [47] predicted UCS using dry-density Brazilian tensile strength (BTS) and the point
load index as input variables using ANNs and a multilinear regression model (MLRM).
They found that the ANN models show better performance, i.e., R2 0.99 than the MLRM.
Manouchehrian et al. [48] used texture as an input variable in ANN and multivariate mod-
eling for the prediction of UCS. They predicted UCS values effectively, and the performance
of the ANNs was better compared to the multivariate statistics. Similarly, Torabi-Kaveh,
Naseri, Abdi, Garavand [49,50] used various input variables such as porosity (η), P-wave
(PV), and density (ρ) to predict UCS and ES using ANNs and ANFIS. Dehghan et al. [1]
used ANNs and MLR to predict UCS and the Static Young modulus (Es) based on the PV,
point load index, Schmidt hammer rebound number, and η as input variables. Due to the
advancement in artificial intelligence, some of the latest and most effective algorithms have
been developed to predict UCS. In this regard, Zhang et al. [51] created a Random Forest
(RF) model based on the beetle antennae search (BAS) method for estimating the UCS of
lightweight self-compacting concrete (LWSSC) with high precision and efficiency. Matin
et al. [52] used just a few rock parameters and indices such as porosity (η), water content
(Wc), Is (50), P-wave velocity (PV), and rebound numbers (Rns) that were determined
using an RF model. Based on these variables, an effective model for predicting UCS was
created. Suthar [53] used the M5 model tree, RF, ANN, Support Vector Machine (SVM),
and Gaussian processes to forecast the UCS of stabilized pond ashes with lime and lime
sludge (GPs). Wang et al. [54] developed an effective model for predicting UCS based on
RF-selected variables. Ren et al. [55] created k-nearest neighbors (KNNs), naive Bayes, RF,
ANN, and (SVM) as machine-learning (ML) methods to precisely predict rock UCS using
multiple input parameters. Ghasemi et al. [56] built a tree-based method for predicting
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the UCS and Young Modulus (E) of carbonate rocks. They found that the applied method
gives promising results. Saedi et al. [57] predicted UCS and E of migmatite rocks using
ANNs and multivariate regression (MVR). They found that ANN and ANFIS show better
prediction performance. Shahani et al. [58] suggested an XGBoost model for predicting the
UCS and E of sedimentary rock that is still intact. To estimate the UCS and E of various
rocks, Armaghani et al. [59] created a hybrid model based on an ANN and an imperialist
competitive algorithm (ICA). This literature review provides insight into the use of different
artificial intelligence techniques for predicting UCS. While ANNs have shown promising
results, their prediction performance is still a matter of debate. Moreover, the literature
highlights that there has been no analysis of input variables using statistical methods to
identify the most suitable input variables, which could enhance the prediction performance
of both artificial intelligence and statistical techniques. In addition, the latest artificial
intelligence techniques, such as the XG Boost algorithm, Random Forest (RF), Elastic Net
(EN), Lasso, and Ridge, have not been adequately explored for effective prediction of
UCS. Therefore, accurate prediction of rock UCS is vital for ensuring the safe and efficient
stability analysis of engineered structures in a rock mass environment.

2. Materials and Methods
2.1. Design of Experimental Works

Representative samples of marble were collected from seven distinct areas, namely
Afghanistan, Mardan, Chitral, Mohmand Agency (reddish brown), Buner, Chitral, and
Mohmand (super white). The samples were grouped into seven categories represented
by A, B, C, D, E, F, and G, respectively. Each group consisted of 10 samples that were
tested for various geo-mechanical properties of marble. The tests included moisture content
(MC (%)), bulk density (gm/mL)), dry density (gm/mL), water absorption (%), P-wave
(km/sec), S-wave (km/sec), slake and durability (Id2), rebound number (R), porosity (η),
void ratio (e), and uniaxial compressive strength (UCS). To conduct the tests in line with the
International Standard of Rock Mechanics (ISRM), cylindrical core samples with a diameter
of 54 × 108 mm were prepared. The two ends of each core sample were meticulously
ground with a grinder and sandpaper to ensure parallelism in the upper and lower surfaces
within 0.05 mm and the flatness of the surface within 0.02 mm. The samples were prepared
and tested as presented in Figure 1 according to the ASTM standard [60,61].

A summary of the various tests mentioned in the above paragraph is presented below.
These tests were conducted according to the ISRM standard [60,61].

The method for determining the characteristics of marble involved various techniques
and apparatuses. To measure the bulk density of the rock, its weight was measured with a
digital balance, and the volume it displaced was measured using a graduated/volumetric
cylinder. The dry density was obtained by drying the specimens in an oven, and the dry
weight was determined using a digital balance. The volume displaced by the rock was
measured using a graduated cylinder.

To determine the moisture content and water absorption test of the marble, the wet
and dry weights of the specimens were measured using an oven and a digital balance. The
slake durability index was determined by subjecting the specimens to four wetting and
drying cycles using a testing apparatus. The porosity and void ratio of the marble were
determined using a volumetric cylinder and an oven to dry the samples.

An ultrasonic wave transducer apparatus was used to determine the primary and
secondary wave velocities (P-wave and S-wave velocities) of the marble, while the Schmidt
hammer test was used to determine the rebound number using the Schmidt rebound
hammer or a concrete test hammer.

For the direct testing of the uniaxial compressive strength (UCS) of marble, core
samples of marble were prepared in a cylindrical form with a length/diameter ratio of
2.5–3 according to the ISRM. The specimens were carefully ground and covered with a
polyethylene plastic cover to protect them from moisture. The UCS was determined using
an electrohydraulic servo universal testing machine of model C64.106* with a maximum
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load of 1000 kN. The machine was set to load at an equal displacement of 0.1 mm/min
with a collection rate of 10 times/s.

Sustainability 2023, 15, x FOR PEER REVIEW 4 of 26 
 

 
Figure 1. (A) Afghanistan marble, (B) Mardan (spin kala) marble, (C) Chitral marble, (D) Mohmand 
marble, (E) Bunir Bumbpoha, (F) Chitral marble, and (G) Mohmand (super white) marble. (H) Core 
drilling, (I) core cutting, (J) triaxial testing machine, (K) Schmidt hammer apparatus, (L) slake du-
rability apparatus, (M) sample dipped for 24 h, (N) desiccator used to cool sample, (O) volumetric 
cylinder used to find volume, (P) sampling weight, (Q) core samples, (R) oven for drying samples, 
(S) core failure after UCS testing, and (T) sampling using a Schmidt hammer. 
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Figure 1. (A) Afghanistan marble, (B) Mardan (spin kala) marble, (C) Chitral marble, (D) Mohmand
marble, (E) Bunir Bumbpoha, (F) Chitral marble, and (G) Mohmand (super white) marble. (H) Core
drilling, (I) core cutting, (J) triaxial testing machine, (K) Schmidt hammer apparatus, (L) slake
durability apparatus, (M) sample dipped for 24 h, (N) desiccator used to cool sample, (O) volumetric
cylinder used to find volume, (P) sampling weight, (Q) core samples, (R) oven for drying samples,
(S) core failure after UCS testing, and (T) sampling using a Schmidt hammer.

2.2. Predictive Models

XG Boost Algorithm
XGBoost stands for Extreme Gradient Boosting, which was proposed by Tianqi Chen

and Guestrin, and is an efficient gradient-boosted decision tree (GBDT) ML library that is
portable and scalable [62]. XG boost is an extension of boosting that formalizes the additive
creation of weak models, and it uses the gradient descent method over an objective function.
XGBoost uses the loss function assessment as a starting point and matches the results to
the standard gradient boosting techniques quickly and efficiently [63].

Obj (θ) =
1
n ∑n

i Z (yi −Yi) + ∑j
j=1 Ω ( f j ) (1)
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In Equation (1), Z represents the training loss function, which is used to evaluate
how well a model performs when trained on data. Ω is a regularization term intended to
limit model complexity by preventing overfitting. fj denotes a jth tree prediction in the
formula [63]. Figure 2 shows the XGBoost model structure [64].
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The boosting methodology improves the framework evaluation accuracy by creating
multiple trees as alternatives to produce an addressed tree, then connecting them to determine
a methodical predictive algorithm [64]. In addition to parallel tree boosting, it is the top
machine-learning library for tackling regression, classification, and ranking problems [65].

Random Forest
The Random Forest regression model, introduced by Breiman in 2001, is one of the

machine learning ensemble approaches [64]. It is one of the tree-based techniques used
for classification and regression analysis. RF trees are constructed using a subset of the
random variables chosen independently and replaced with the original data set. When
solving forecasting problems, it incorporates categorical as well as numerical variables [66].
The basic architecture of an RF is given in Figure 3.

Random Forest is an ultra-modern technique for bagging. The built-in cross-validation
function for the Random Forest allows ranking explanatory factors from the most effective
to the least associated with the outcome variable. As a result, feature extraction is more
valuable when examining data from various sources [66]. Among other widely accepted
forms of AI computing, RF observes a singular association between model embodiment
and the predictive accuracy [64]. The Random Forest algorithm may be expressed as [67]:

Y =
1
N ∑N

i=1 Fi(X) (2)

In Equation (2), X represents the input parameter factor, Y represents the prediction
result and N shows the number of regression trees formed. Figure 3 shows the basic
structure of a Random Forest Regression (RFR) model [64].
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Support Vector Machine
A type of supervised learning known as Support Vector Machines (SVMs) was first

proposed by Vapnik et al. in 1997 [68]. The fundamental concept of SVMs is that neurons
are grouped in two layers, just like in ANNs. SVMs with a sigmoid kernel function
are equivalent to a two-layer perceptron neural network. SVMs are alternative training
methods for polynomial, radial basis function, and multilayer perceptron classifiers in
which the network weights are determined by solving a quadratic programming problem
with linear constraints [69].

Support Vector Machines are capable of solving classification and complicated non-
linear regression issues. The basic goal when applied to regression problems is to create a
perfect classification surface that reduces the error in all training samples obtained from
that surface [67].

Figure 4 illustrates the architecture of a Support Vector Machine (SVM). The signal vector
input is present in the input layer. In the buried layer, an inner-product kernel is created
between the input signal vector (x) and the support vector (si). The output neuron receives an
addition of the buried layer’s neuron linear outputs. The output neuron is biased [70].
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Lasso Regression
Lasso regression was introduced to geophysics between 1986 and 1996 [71,72]. It

carries out feature selection and regularization penalties to raise the accuracy of prediction.
However, multicollinearity is avoided by selecting the most important predictor from a
group of highly correlated independent variables and neglecting the others. An L1-norm
penalty term was used to reduce regression coefficients, some to zero, ensuring that the
most significant explanatory variables were selected. Another benefit of Lasso is that it
can only choose n parameters when a data set of size n is fitted to a regression model with
p parameters and p > n (p represents predictor variables and n represents the number of
observations) [72].

Ridge Regression
Ridge regression was developed to improve the predictability of a regression model.

In Ridge regression, the L2-norm penalty term is used to reduce the regression coefficients
to nonzero values to prevent overfitting, but it does not serve as a feature-selection mech-
anism [72]. If there are numerous predictors, all of which have non-zero coefficients and
are selected from a normal distribution, ridge regression is the best option. It specifically
performs well when there are many predictors, each with little influence, and avoids
poorly defined and large variance coefficients in linear regression models with numerous
correlated variables [71].

Elastic Net
The Elastic Net is a variant of the Lasso that can withstand large levels of inter-

predictor correlation. When predictors are highly correlated, the Lasso solution routes may
become unstable (like SNPs in high linkage disequilibrium). The Elastic Net (ENET) was
suggested for high-dimensional data processing to address this problem [71].

Elastic Net is a member of a group of regression algorithms that use L1-norm and
L2-norm regularization penalty terms; the tuning parameter regulates the potency of these
penalty terms [72]. Automatic variable selection is performed using the L1 component
of the ENET, and clustered selection is encouraged with the L2 component, which also
stabilizes the solution routes concerning random sampling to enhance prediction. By
creating a grouping effect during the variable selection process, the ENET can choose
groups of correlated features even when the groups are unknown. This is because a group
of strongly correlated variables tends to have coefficients with comparable magnitude.
When p > n (p represents predictor variables and n represents the number of observations),
the Elastic Net chooses more variables than n, in contrast to the Lasso. However, the elastic
net is free of the oracle characteristic [73].

Artificial Neural Networks (ANNs)
One of the supervised machine learning (ML) techniques that are frequently used

is the Artificial Neural Network (ANN). ANN computational models have been used to
solve a wide range of issues in various disciplines [72]. A model comprises several little
processing units (neurons) that are capable of handling complicated data processing and
knowledge representation [74]. An ANN has three main components that include input
layers, hidden layers, and an output layer [72]. Since it essentially maps the input and
output values, it has good interpolation capabilities, particularly when the input data are
noisy. Neural networks can be used in place of auto-correlation, multivariable regression,
linear regression, trigonometric analysis, and other statistical analysis approaches [74].

For any regression model in an ANN, a supervised learning method is required during
training to provide the highest levels of accuracy and efficiency. In network training, the
BP algorithm uses a sequence of instances to establish connections between nodes, as well
as to determine the parameterized function [75]. Many networks are trained using the BP
method. According to the available literature, the BP algorithm performs the NN operation
by evaluating and implying random variables. There is a need to train the model, and
research studies have been conducted to complete this in a better way [76].

Equation (3) gives a mathematical expression for an ANN.

Basic network = f (wx + bias) (3)
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where w and x indicate weights and input, respectively. The weight and input for n numbers
are presented as

a. w = w1, w2, w3, w4, . . . . . . , wn;
b. x = x1, x2, x3, x4, . . . . . . , xn.

The ANNs used Equation (4) to predict the values.

net = ∑n
i=1 f (wixi + b) (4)

The tangent sigmoid function described in Equation (5) was used as the transferred
function in this investigation.

y = tanh (net) (5)

Using Equation (6), the output of the network represented by “y” may be computed.

output o f the network = y = tanh(net) = tanh

(
n

∑
i=1

f (wi + b))

)
(6)

The network error is defined as the “calculated values (VCalculated) minus estimated
values (VPredicted) of the network”. By increasing or decreasing the neuron’s weight, it is
possible to reduce the error in this network to some extent. Equation (7) represents the
inaccuracy of networks in their mathematical form.

Em = VCalculated −VPredicted (7)

Moreover, the total error in a network can be calculated using Equation (8).

ETotal =
1
2 ∑m E2

m (8)

Code Development for ANNs using MATLAB
Figure 5 shows an example of the self-generated ANN code used in this study for n

networks using a similar training and activation function for a single loop. An internal
loop in this program can be used to process data for as many networks as desired. The
activation function for the code was static, although the structure of the data was likely to
vary. Here, one algorithm run was used to process 100 networks. As a result, network1
contains one neuron, network2 contains two, and so forth. Although there are numerous
ANN approaches, Khan et al. utilized the Levenberg–Marquardt algorithm and suggested
BP [77,78]. Khan et al. [77,78] discovered that the Levenberg–Marquardt (LM) method is
better than other algorithms and is more time-effective. As a result, LM was used in the
current model for both the hidden and output layers. The fundamental ANN structure
in this study consists of three inputs (moisture content, P-waves, and rebound number as
input variables) and one output, i.e., UCS, as shown in Figure 6. The data were classified
into three classes: training (70%), testing (15%), and validation (15%).

The Artificial Neural Network designed to estimate the UCS in the present work is
presented in Figure 6.

In order to determine the relationship between the model input variables and the
corresponding outputs, ANNs learn from the samples of data that are presented to them
and utilize those samples to alter their weights. As a result, ANNs do not require prior
knowledge regarding the nature of the relationship between the input and output variables,
which is one advantage they have over most empirical and statistical methods. If the
relationship between x and y is non-linear, regression analysis can only be used successfully
if the nature of the non-linearity is known beforehand. On the other hand, ANN models do
not require this prior understanding of the type of non-linearity [21]. Generally, several
machine learning models work based on the above statement.
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2.3. Data Analysis for Selecting the Most Appropriate Input Variables

In this study, various parameters were determined in the laboratory using direct
methods, i.e., moisture content, bulk density, dry density, water absorption, slake and
durability, rebound number, P-wave, S-wave, porosity, void ratio, and UCS. The descriptive
statistical analysis of these variables was carried out for a better understanding of their
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statistical behavior, and the results are presented in Table 1. Furthermore, these variables
were analyzed using pairwise correlation with output, and correlation matrix analysis to
choose the most appropriate input variables for predicting uniaxial compressive strength
(UCS) using different artificial intelligence techniques.

Table 1. Descriptive statistics for the input and output variables.

S.No Input and Output N total Mean Standard Deviation Sum Min Median Max

1 bulk density (g/mL) 70.00 2.73 0.27 191.34 2.12 2.69 3.53
2 dry density (g/mL) 70.00 2.67 0.24 187.16 2.12 2.65 3.61
3 moisture content (MC (%)) 70.00 0.36 0.19 25.46 0.00 0.35 0.99
4 water absorption (%) 70.00 0.36 0.24 25.28 0.00 0.34 1.20
5 slake durability index (Id2) 70.00 97.08 3.21 6795.85 83.24 98.25 99.11
6 rebound number (R) 70.00 45.88 6.31 3211.57 34.70 44.82 64.14
7 porosity (η) 70.00 0.36 0.24 25.28 0.00 0.34 1.20
8 void ratio (e) 70.00 1.15 3.03 80.25 0.00 0.0034 0.012
9 P-wave (km/s) 70.00 4.74 0.20 331.52 4.43 4.70 5.49
10 S-wave (km/s) 70.00 3.02 0.01 211.14 2.98 3.02 3.03
11 UCS (Mpa) 70.00 52.17 12.10 3651.59 34.89 49.51 93.76

The correlation matrix analysis of the input and output was also carried out to select
the most effective input variables to eliminate multicollinearity in the prediction. To better
understand the variance and covariance in the regressions used in the prediction model, a
correlation matrix can be used as a descriptive statistical tool. It is often used in conjunction
with other matrices in statistical analysis. Conversely, correlation explains the interaction
between the regression variables used in predictive analyses. Figures 7 and 8 show how
the correlation matrix often describes the variance in each parameter. There are both
positive and negative correlations among some of them. This will allow the researcher to
see how different factors affect the predicted model’s final outcomes. As the strength of the
negative or positive correlation increases, so too will the significance of model efficiency.
The criteria for selecting parameters are (a) check the high relationship (negative or positive)
parameters with the output (UCS), (b) check the input parameter relationships with each
other, (c) check the high correlation parameters with the output and with each other. If there
are two parameters that have a high correlation with the output and also a high correlation
with each other, then select the one input parameter. For example, Figures 7 and 8 show
that there are four input parameters that show a high correlation with the output, i.e.,
moisture content, dry density, rebound number, and P-wave. In addition, rebound number
and P-wave have a high correlation with each other, so in both, one parameter will be
considered as the input for better model learning. Therefore, moisture content, P-wave,
and rebound number were selected for the input and the others were discarded during the
AI model evolution. These three parameters were selected for the prediction of UCS using
seven different AI techniques.
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2.4. Performance Indicator

Various performance indicators such as the coefficient of determination R2, Root Mean
Square Error (RMSE), Mean Square Error (MSE), and Mean Absolute Error (MAE) were
used to evaluate the prediction performance of the Artificial Neural Network (ANN), XG
Boost algorithm, Random Forest Regression (RFR), Elastic Net (EN), Lasso, Support Vector
Machine (SVM), and Ridge models. The following formulas as mentioned in Equations
(9)–(12) were used [43,64]:

R2 = 1− (RSS/TSS) (9)

where:

RSS = sum of the square of the residual;
TSS = total sum of the square.

RMSE =
√

MSE =

√
1
T ∑T

n=1(sn −ŝ)2 (10)

where:
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T = total no of observations;
sn = actual value of nth observation;
ŝ = predicted value of s.

MSE =
1
T ∑T

n=1(sn − ŝ)2 (11)

where:
T = total no of observations;
sn = actual value of nth observation;
ŝ = predicted value of s.

MAE =
1
T ∑T

n=1|sn −ŝ| (12)

where:
T = total no of observations;
sn = actual value of nth observation;
ŝ = predicted value of s.

3. Analysis of Results
3.1. Model Hyperparameter Optimization

It is important to determine the optimal combination of hyperparameters in machine-
learning models when attempting to improve the predictability of the model. Hyperpa-
rameters determine how well the model can learn. A tuning technique known as “grid
search” was used in the current study, which searched exhaustively for all optimum values
for the user-specified hyperparameter combinations using this technique. Additionally, to
overcome the problem of overfitting, standard k-fold cross-validation was used as part of
the process. In order to carry out the k-fold cross-validation, the procedure outlined below
must be followed [79]:

a. In order to train the data set, the training data set needs to be divided into k folds.
b. The (k-1) fold is used for training out of all k folds.
c. The remaining last k-fold is used for validation.
d. In order to train the model with specific hyperparameters, training data (k-1 folds) are

used, and validation data are used as 1-fold. For each fold, the model’s performance
is recorded.

e. K-fold cross-validation refers to the process of repeating the steps above until each
k-fold is used for validation purposes. That is why this process is known as “K-fold
cross-validation”.

f. After calculating each model score for each model in step d, the mean and standard
deviation of the model performance are computed.

g. It is necessary to repeat steps b to f for different values of the hyperparameters.
h. The hyperparameters associated with the best mean and standard deviation of the

model scores are then selected.
i. Using the entire training data set, the model is trained, and its performance is

evaluated on the basis of the test data set.

In this study, grid search is combined with a 10-fold cross-validation (k = 10) in order
to optimize the hyperparameters in the classification algorithms as a result of the grid
search, as shown in Figure 9. The optimum hyperparameter for all seven AI techniques is
described in Table 2.
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Table 2. Optimized hyperparameters for all models.

Output Model Parameters

UCS (Mpa)

Artificial Neural Network Neuron = 48
XG Boost Regressor learning_rate = 0.01, max_depth = 3, n_estimators = 100

Support Vector Machine n_split = 10, n_repeats = 5, random state = 42, C = 1 function = SVR (kernal ‘rbf’)
Random Forest Regression n_split = 10, n_repeats = 5, random state = 42, max_depth = 3

Lasso Alpha = 0.01, n_split = 10, n_repeats = 5, random state = 42
Elastic Net Alpha = 0.01, l1_ratio = 0.95, n_split = 10, n_repeats = 5, random state = 42

Ridge Alpha = 0.1, n_split = 10, n_repeats = 5, random state = 42

3.2. Prediction of UCS using Artificial Neural Networks

Figure 10 shows the regression data and the ANN training, validation, and testing
phases for the UCS model. A good regression is obtained between the predicted and
measured UCS values during training, validation, and testing. Figure 10 shows the results
of the ANN model draws from the plot graph process. Figure 11 shows a very good R2

value of 0.9995 between the predicted and measured UCS.
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Ridge Regression
The used Python library is an open-source software package with utility functions for

engineering, especially machine learning. These libraries are used by the user to predict
their metric of interest. Python’s Scikit-learn includes a free and open-source machine-
learning library, which includes Ridge regression, Elastic Net, Lasso regression SVR, RFR,
and XG Boost. For the Ridge regression, the model was executed on the training set (80%)
and the testing set (20%). Figure 12 shows a graph between the predicted values and actual
values with the correlation coefficient (R2 = 0.9790).
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Elastic Net
For the Elastic Net, the model was executed on the training set (80%) and the testing

set (20%). Figure 13 shows a graph between the predicted values and actual values with
the correlation coefficient (R2 = 0.9755).
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Lasso Regression
For the Lasso regression, the model was executed on the training set (80%) and the

testing set (20%). Figure 14 shows us a graph between the predicted values and actual
values with the correlation coefficient (R2 = 0.9755).
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Figure 14. Lasso regression with the coefficient of determination between the measured and predicted
UCS.

Support Vector Machine
For the Support Vector Machine, the model was executed on the training set (80%)

and the testing set (20%). The SVR is similar to the ANN, which included an input layer,
hidden layer, and output layer. The SVR model estimates the average of the prediction
values. Figure 15 shows us a graph between the predicted values and actual values having
the correlation coefficient (R2 = 0.9573).
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Figure 15. Support Vector Machine model with the coefficient of determination between the measured
and predicted UCS.
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Random Forest
The model was applied to the training set (80%) and testing set (20%) for the Random

Forest Regression, and the n estimated and max depth parameters of this RFR model were
determined. To determine the higher average of the forecast, the number of estimators is the
same as the number of decision trees (DTs) produced using the Random Forest Regression
(RFR) model. Figure 16 shows us a graph between the predicted values and actual values
with the correlation coefficient (R2 = 0.9949).

Sustainability 2023, 15, x FOR PEER REVIEW 19 of 26 
 

0 10 20 30 40 50 60 70 80
30

40

50

60

70

80

90

100

Coefficient of determination = 0.9983

 Experimental UCS
 Predicted UCS

U
C

S

Input Data

Support Vector Machine

 
Figure 15. Support Vector Machine model with the coefficient of determination between the 
measured and predicted UCS. 

Random Forest 
The model was applied to the training set (80%) and testing set (20%) for the Random 

Forest Regression, and the n estimated and max depth parameters of this RFR model were 
determined. To determine the higher average of the forecast, the number of estimators is 
the same as the number of decision trees (DTs) produced using the Random Forest Re-
gression (RFR) model. Figure 16 shows us a graph between the predicted values and ac-
tual values with the correlation coefficient (R2 = 0.9949). 

0 10 20 30 40 50 60 70 80
30

40

50

60

70

80

90

100

Coefficient of determination = 0.9949

 Experimental UCS
 Predicted UCS

U
C

S

Input Data

Random Forest Regression

 Figure 16. Random Forest Regression with the coefficient of determination between the measured
and predicted UCS.

XG Boost Algorithm
A Python module called XG Boost Algorithm is used to build machine learning models.

For the XG Boost, the model was applied to the training set (80%) and the testing set (20%).
The XG boost algorithm is a highly interpretable model. After creating a tree model, the
predicted values were directly obtained. Figure 17 shows us a graph between the predicted
and actual values with the correlation coefficient (R2 = 0.9990).
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The results obtained using the above performance indicator for evaluating the efficacy
of each predictive model are shown in Table 3.

Table 3. Comparative analysis of the performance of different AI techniques.

S.no Models
Training Accuracy Testing Accuracy

R2 MAE MSE RMSE R2 MAE MSE RMSE

1 Artificial Neural Network 0.9990 0.1428 0.0782 0.2796 0.9995 0.1642 0.0694 0.2634

2 XG Boost Regressor 0.9989 0.5694 0.8664 0.9308 0.9990 0.1145 0.1732 0.4162

3 Support Vector Machine 0.9987 0.3649 0.3022 0.5498 0.9983 0.2891 0.2595 0.5094

4 Random Forest Regression 0.9943 0.7176 1.3294 1.1530 0.9949 0.3555 0.6584 0.8114

5 Lasso 0.9887 1.3670 3.0666 1.7512 0.9755 1.8918 3.5788 1.2555

6 Elastic Net 0.9887 1.3751 3.2071 1.7908 0.9755 1.2410 3.6308 1.9055

7 Ridge 0.9876 1.3906 3.0492 1.7462 0.9790 1.2149 3.0010 1.7347

To compare their performance, the training and testing accuracies of the seven different
models are listed in Table 2. Among the various models, the Artificial Neural Network gave
the most accurate prediction on the training and testing data sets (99%), while the Support
Vector Machine model showed the lowest predicted performance on the testing and training
data sets. The R2, MAE, MSE, and RMSE for the ANN model were 0.999, 0.1428, 0.0782,
and 0.2796, respectively, on the training data set, while they were 0.9995, 0.6420,0.0694, and
0.2634 on testing data, respectively, which shows that the performance of the ANN model
is greater than all the other predictive models. For the XG Boost Regressor, the value of
the performance indicator R2 was 0.9989, MAE was 0.5694, MSE was 0.0782, and RMSE
was 0.2796 for the training data set, while for the testing data set, the R2 was 0.9990, MAE
was 0.1145, MSE was 0.0694, and RMSE was 0.4162. For the Random Forest Regression, the
performance indicator R2 was 0.9943, MAE was 0.7176, MSE was 1.3294, and RMSE was
1.1530 for the training data set, while for the testing data set, the R2 was 0.9949, MAE was
0.3555, MSE was 0.6584, and RMSE was 0.8114. For the Lasso, the performance indicators
R2, MAE, MSE, and RMSE were 0.9887, 1.367, 3.0666, and 1.7512 for the training data set,
respectively, while for the testing data set, the R2 was 0.9755, MAE was 1.8918, MSE was
3.5788, and RMSE was 1.2555. For the Ridge model, the R2, MAE, MSE, and RMSE were
0.9876, 1.3906, 3.0492, and 1.7462, respectively, for the training data set, while for the testing
data, the performance indicators R2, MAE, MSE, and RMSE were 0.979, 1.2149, 3.001, and
1.7347, respectively. For the Elastic net model, the performance indicator R2 was 0.9887,
MAE was 1.3751, MSE was 3.2071, and RMSE was 1.7908 for the training data set, while
for the testing data set, the R2 was 0.9755, MAE was 1.241, MSE was 3.6308, and RMSE
was 1.9055. Similarly, for the Support Vector Machine, the R2, MAE, MSE, and RMSE were
0.9826, 9.4444, 187.2607, and 13.68, respectively, for the training data set, and for the testing
data set, the value of R2, MAE, MSE, and RMSE were 0.9573, 6.5449, 111.4614, and 10.5575,
respectively. According to Table 2, the ANN model had values of 0.9995, 0.2634, 0.0694, and
0.1642 for R2, RMSE, MSE, and MAE, respectively. This highlights that the ANNs model’s
performance was better than that of any other prediction model. However, the hierarchy
of the mentioned predictive models in terms of their efficacy based on the performance
indicators in predicting the UCS can be ANN > XG Boost Regressor > SVR > Random
Forest Regressor > Lasso > Elastic Net > Ridge.

4. Discussion

This study conducted a data analysis to select the most appropriate input variables for
predicting the uniaxial compressive strength (UCS) using different artificial intelligence
techniques. Various laboratory parameters were determined using direct methods, includ-
ing moisture content, bulk density, dry density, water absorption, slake and durability,
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rebound number, P-wave, S-wave, porosity, void ratio, and UCS. A descriptive statisti-
cal analysis of these variables was carried out, including a p-value significance analysis,
pairwise correlations with the output, and correlation matrix analysis to choose the most
appropriate input variables. The statistical analysis showed that the p-value for the re-
bound number, P-wave, and moisture content had a positive coefficient of less than 0.05,
which indicated a strong correlation with the UCS. The other input variables, such as dry
density, bulk density, water absorption, and the slake durability index, showed a negative
correlation with the UCS, and, therefore, were not selected as input variables. The porosity
and void ratio showed an invalid p-value and were also not selected. Additionally, the
correlation matrix analysis was carried out to select the most effective input variables and
eliminate multicollinearity in the prediction. The results of the correlation matrix analysis
indicated that moisture content, rebound number, and P-wave had a strong correlation
with the UCS, as presented in Figures 7 and 8. Therefore, these variables were selected as
appropriate input variables for the prediction of UCS.

The above analysis shows the performance of various machine-learning models when
predicting the UCS of rock samples, as presented in Section 3. The ANN model achieved
an impressive coefficient of determination (R2) of 0.9995, indicating a strong correlation
between predicted and measured UCS values. This suggests that the ANN model can
be used to predict UCS values accurately. Among the other models, the Random Forest
Regression (RFR) performed well with an R2 value of 0.9949. This suggests that RFR can
also be used as an alternative method for predicting UCS values. The XG Boost algorithm
also performed well, with an R2 value of 0.9990, which is similar to the ANN model. The
Ridge regression, Elastic Net, and Lasso regression models also showed good performance
with R2 values ranging from 0.9887 to 0.9886. However, their performance was slightly
lower than that of the ANN, XG Boost, SVM, and RFR models. Overall, the analysis
suggests that the ANN model, followed by XG Boost, SVM, and RFR are the best models
for predicting UCS values, while Ridge regression, Elastic Net, and Lasso regression are
also good alternatives. The SVM model may not be the best option for predicting UCS
values. This study considers a small data set due to limited resources. In future studies,
the authors will use the application of infrared radiation (IR) technology and AI together
to avoid such a large parameter determination in the field as used in this study training.
The IR and AI together will make the prediction more reliable and applicable. Moreover,
in the future, the given 70 sample data set can be increased using the harmony search
optimization algorithm [80].

5. Conclusions

The strength property (uniaxial compressive strength) of rock is a fundamental pa-
rameter significantly used in the effective and sustainable design of the tunnel and other
engineering structures. In this research, the UCS was predicted using seven different artifi-
cial intelligence (AI) metaheuristics techniques, i.e., Artificial Neural Networks (ANNs),
the XG Boost algorithm, Random Forest Regression (RFR), Support Vector Machine (SVM),
Elastic Net (EN), Lasso, and Ridge models using moisture content, P-waves, and rebound
number as input parameters in order to choose the best prediction model. The efficacy
of the models was evaluated using four performance indicators, i.e., the coefficient of
determination (R2), Root Mean Square Error (RMSE), Mean Square Error (MSE), and Mean
Absolute Error (MAE). The results show that the performance indicators for the ANN
were 0.9995, 0.2634, 0.0694, and 0.1642, respectively. The comparative analysis based on
the performance indicators revealed that the ANN model has greater prediction efficacy
compared to the other AI models; however, the ANN model gives approximately a similar
performance as the XG Boost Regressor model. Furthermore, it was noticed that SVM, RFR,
Ridge, Lasso, and Elastic Net models give acceptable prediction performance; however,
they are less effective in performance than the ANN and XG Boost Regressor models when
predicting UCS. Therefore, the ANN and XG Boost Regressor are recommended to be used
as the most effective predictive models for the prediction of UCS. Since this research work

142



Sustainability 2023, 15, 8835

was conducted using a limited number of rock samples, it would be beneficial to extend
the data set in order to refine the findings. Additionally, since this study was focused on
marble only, it would be necessary to carry out further fine-tuning of the models before
applying them to any other type of rock mass environment to ensure the best possible
results. Further research needs to be carried out to explore the applications of the various
AI techniques for the effective prediction of the UCS. The outcomes of this research will
provide a theoretical foundation for field professionals in the prediction of the strength
parameters of rock for an effective and sustainable design of engineering structures.
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Abstract: The integrity and stability of salt caverns for natural gas storage are subjected to a gas
cycling loading operation. The coupled effect of confining pressure and temperature on the response
of the salt cavity surrounding the wall is essential to stability analysis. In this study, a hybrid
continuum-discrete model accounting for the thermal-mechanical process is proposed to investigate
the thermal-damage evolution mechanism towards a field case with blocks falling off the salt cavity.
The salt cavity is modeled by continuum zones, and the potential damage zones are simulated by
discrete particles. Three specimens at different locations around the surrounding wall are compared
in the context of severe depressurization. The dynamic responses of rock salt, including temperature
spatiotemporal variation, microscopic cracking patterns, and energy evolution exhibit spatial and
confinement dependence. A series of numerical simulations were conducted to study the influence
of microproperties and thermal properties. It is shown that the evolution of cracks is controlled by
(1) the thermal-mechanical process (i.e., depressurization and retention at low pressure) and (2) the
anomalous zone close to the brim of the salt cavity surrounding the wall. The zone far away from
the marginal surrounding wall is less affected by temperature, and only the mechanical conditions
control the development of cracks. This continuum/discontinuum approach provides an alternative
method to investigate the progressive thermal damage and its microscopic mechanism.

Keywords: salt cavern; underground gas storage; continuum-discrete coupled method; thermal-
mechanical coupling; thermal damage

1. Introduction

Salt rock is an attractive candidate for hosting energy storage, due to its favorable
low permeability [1–4]. The salt caverns, which are constructed by the solution mining
process, have been used as gas storage for several decades. However, when the salt cavern
is subjected to gas-cycling loading, there are potential risks of fractures generation, block
fall, and even collapse on the cavern roof [5–7]. The thermal damage evolution induced
by the cycling loading process is still unknown and is worth investigating by innovative
methods.

1.1. Problem Statement

A field case with blocks falling off from the roof of a salt cavern in Jintan, Jiangsu
province of China has been demonstrated by Li et al. [8]. Compared with the sonar results
between the four years, there is a 4-m displacement at the shoulder of the salt cavity,
indicating the cavern geometry has been altered (see Figure 1). The field engineers assumed
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that it was the consequence of the thermal effects induced by the gas-cycling loadings. They
suspected that the thermal stress led to spalling and resulted in the collapse of the roof
eventually, after a 4-year operation. A proposed thermal-mechanical modeling in FLAC3D
has been established, and the numerical work confirmed the thermal effect had impacted
the stability of the salt cavern to some extent. Additionally, the operation conditions
triggering the roof collapse are concluded. Despite the previous research achievements,
some fundamental mechanisms of the thermal-dynamic response of rock salt are yet to
be understood, particularly the onset and propagation of thermal micro-cracks, i.e., the
thermal damage process induced by the thermal effect during gas-cycling loading in a salt
cavern.
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(a) Sonar monitoring results of the cavity; (b) Displacement difference before and after cavity collapse.

1.2. Micromechanism of Thermal Damage

Thermo-mechanical responses of containment rocks are critical to the design and safe
operation of underground energy storage [9]. The thermal effect induced by a gas injection-
and-withdrawal process in a salt cavern was discussed comprehensively [10] (2019), who
indicated that a tensile crack is possibly created at the surrounding rock of the salt cavity.
Following Bérest’s work, both experimental and numerical investigations were conducted
to investigate the thermo-mechanical response of salt caverns during rapid cooling [11–17].
To ensure the integrity and stability of salt caverns, fractures, and rock damage should be
avoided [18–21]. Rock damage is defined as the degradation of the macroscopic properties,
such as strength, stiffness, etc [22–24]. The damage is the consequence of microcracks
propagation, coalescence [25–29], and stiffness degradation [30]. The damage mechanics in
rock engineering studies the evolution of damage that starts from microcracks and results
in rupture failure in the macroscale of the structure [31]. Creep, one of the features of
rock salt, is accompanied by microfractures [2]. Under cyclic loading, the fatigue-induced
damage of salt rock at first is relatively small and then increases rapidly when it is close to
failure [32]. Quick cyclic loading is prone to damage [33]. Ding et al. [34] investigated the
grain-scale micromechanisms of the deformation of salt rock and concluded that viscoelastic
and hysteretic behaviors are associated with the microprocesses at grain boundaries. Li
et al. [35] investigated the damage pattern of rock salt subjected to cycling loadings for
CAES and concluded that different responses of the internal structure to fatigue and creep
lead to the interaction between creep and fatigue. The micromechanisms of thermal damage
in rock salt are even more complicated and challenging.
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1.3. Development of Hybrid Modeling

Numerical simulation is considered an important method to study the stability perfor-
mance during the operation’s full life cycle and the associated mechanisms of salt caverns
for energy storage [36]. The finite element method (FEM) has been utilized extensively for
the salt-cavity integrity analysis. Many constitutive damage-mechanics models have been
developed for salt rock. However, those constitutive models are not able to predict damage
and other dynamic behaviors associated with microfractures.

The discrete element method (DEM) [37] was proposed later than FEM, as an alterna-
tive method, and has its own advantages over other methods. DEM treats rock materials
as an assembly of rigid particles bonded with certain segregated contact modes. Discrete
elements are independent and allow departing from the rock mass. When forces acting
on the particles exceed their bond strength, the contact bond breaks. In DEM, the frac-
ture is deciphered explicitly, the damage progress is reproduced as microcracks coalesce
into macrofractures, and the dynamic process can be simulated simultaneously. When
compared with FEM, the damage mechanism in DEM is not based on complex damage
constitutive correlations; instead, the breakage between particles is simple, while the macro-
scopic damage is the consequence of individual “breakage”, the assembling of discrete
dynamic behavior, and the properties of the individual particle. Zhao et al. [38] proposed
a grain texture model (GTM) with DEM, and, for the first time, this model can capture
the major macromechanical characteristics of textured rock, including the failure process.
Despite the unique features of DEM in dealing with the dynamic process, the computation
efficiency is limited owing to the huge number of particles. Usually, computation efficiency
depends on the number of particles and the size of the domain.

In order to overcome the shortcoming of computational efficiency in DEM, and mean-
while to investigate the dynamic behavior of rock engineering problems, hybrid models
based on the continuum-discrete method are adopted. Hu et al. [39] (2021) employed a
3D continuum-discrete coupled method to establish the triaxial Hopkinson bar system, in
which the steel bars and a cubic specimen were modeled by continuum zones and bonded-
particle sections, respectively. This model was able to simulate the dynamic responses of
the rock under different load conditions. Zhang et al. [40,41] (2017, 2019) demonstrated
the capability of hybrid discrete-continuum modeling to simulate hydraulic fracturing
propagation and interactions with natural fractures. The continuum-discrete coupled
model has advantages in reproducing confinement loading via continuum and, meanwhile,
accounts for the microstructure and the dynamic microbehavior of the target specimen
via a discrete method. In general, the hybrid method is promising in addressing dynamic
deformation, the fracturing behaviors of rock, and the related dynamic problems. Particu-
larly, the continuum-discrete hybrid model established a correlation between macroscopic
performance and the microscopic mechanism in the damage of rock.

The field case with blocks falling off from the roof of a salt cavern in Jintan, China was
investigated with a thermal-mechanical model in FLAC3D (Li et al., 2021) [8]. However,
the thermal effects on the micromechanism and microcracking evolution are lacking, and
the progressive damage mechanism during the operation is still unknown. In this study,
a 3D continuum-discrete coupled hybrid model is established to investigate the thermal-
mechanical dynamic behavior of the surrounding rock of the salt cavity subjected to gas
cycling loadings. The salt cavern is represented by continuum zones, while the rock
specimens on the roof with potential damage risks are simulated by discrete-element
modeling. The hybrid model accounts for the influence of temperature variation. The
thermal-mechanical coupling mechanism in the hybrid model is described in Section 2 of
this paper. In Section 3, three specimens at different locations around the surrounding wall
of the salt cavern are selected to understand the thermal damage process in the context of
severe depressurization during operation. A parametric study is performed in Section 4 to
discuss the influence of confining loading and the effects of rock properties parameters on
cracking development. Based on this, the conclusions are presented in Section 5.
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2. Numerical Method

A 3D continuum-discrete coupled hybrid model is presented in this section. This
model is an improved one after Li et al. (2021) [8]. The salt cavern is represented by
continuum zones using fast Lagranian analysis of continua (FLAC3D), while the rock
specimens on the roof where the collapse occurs are represented by discrete element
modeling, implemented by particle flow code (PFC3D), shown in Figure 2. The coupling
methodology is described as follows in detail.
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2.1. Model Description

To investigate the thermal damage induced by the operation condition, a 3D continuum-
discrete coupled model is adopted using FLAC3D-PFC3D. As shown in Figure 3, the salt
cavern surrounding rock is a continuous medium and FLAC3D is employed. To improve
the computational efficiency, the simulation objective is one quarter of the entire salt cav-
ity. The geometry of the FLAC3D domain is a length of 60 m, a width of 30 m, and a
height of 110 m. The FLAC3D zone face and PFC3D wall are the interface, the geometry is
0.5 m× 1 m× 2 m. The rock properties used in the FLAC3D continuum-based method are
listed in Table 1.

The PFC3D domain is embedded in a FLAC3D domain, consisting of 10,607 particles,
and is located at the cavity shoulder. The location is selected due to its potential damage
risk, where the block falls apart from the surrounding rock. For those selected sections,
PFC is employed to mimic the dynamic and irreversible damage behavior of the rock
salt, aiming at reproducing the evolution of microfractures. From the view of the discrete
element method, the rock specimen is regarded as assemblies of discrete rigid particles
connected with certain contacts. The movements of particles are governed by Newton’s
second law. The contact bond breaks when the contact force exceeds the tensile or shear
strength of the contact bonds, caused by motion between adjacent particles. The input
parameters of the FLAC3D and PFC3D models are listed in Tables 1 and 2, respectively.
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Table 1. Rock mass properties for rock salt in FLAC3D.

Parameters Units Values

Young’s modulus GPa 30

Poisson’s ratio / 0.3

Density kg/m3 2160

Friction angle, ϕ degrees 45

Tensile strength MPa 4

Cohesion strength MPa 4

Thermal conductivity W/m·◦C 6.5

Specific heat J/kg·◦C 880

Linear thermal expansion coefficient ◦C−1 5 × 10−5

Table 2. Model parameters in PFC3D.

Parameters Units Values

Particle density kg/m3 2160

Coefficient of interparticle friction / 0.3/0.4/0.5/0.6

Normal-to-shear stiffness ratio / 1.0/1.2/1.4/1.6

Thermal conductivity W/m·K 6.5/7.5/8.5/9.5

specific heat J/kg·◦C 1000/2000/3000/4000

Thermal expansion coefficient 1/◦C 1 × 10−5/0.7 × 10−5/0.3 × 10−5/1 × 10−6

2.2. Coupling Mechanism of FLAC-PFC

Figure 3 illustrates the workflow of the DEM-PFC coupled simulation for the thermal-
mechanical process of a salt cavern subjected to gas cycling loading. The continuum
behavior of the salt cavity is simulated with FLAC, and the DEM model of the rock salt
specimen enclosed by a surrounding wall is established by using the commercial code
PFC3D. The thermal mode is coupled with the mechanical mode in each computation
step. The thermal-mechanical interactive interface between FLAC and PFC is developed to
account for the temperature-boundary settings in the FLAC zone, the wall–zone interface,
and the particle wall in PFC. The thermal-mechanical coupling process occurs only in
one direction (Figure 4): the changes in temperature induce the thermal strains which
lead to the change of the mechanical stress, while the influence of mechanical changes on
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the heat conduction calculation is not considered. The contact forces between particles,
displacement, and the distribution of cracks are updated. The model is solved to a pre-
determined ratio.
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The DEM model accounts for the thermal expansion of particles with linear parallel-
bond contacts (Itasca, 2017; Li et al., 2016; Li et al., 2017) [26,42,43]. Figure 4 illustrates
the heat conduction in a network composed of thermal reservoirs and pipes: yellow disks
represent particles; red dots indicate the heat source; blue lines passing through the contact
points of two circular particles are the active thermal pipes. For a bonded linear parallel-
bond contact, its mechanical contact is associated with thermal contact. Two consequences
can be induced by the thermal-mechanical coupling: first, the particle size is modified due
to thermal strain; second, the normal component of the contact force is affected by the
temperature changes. The corresponding increment of particle radius ∆R induced by a
temperature increment ∆T is:

∆R = αR∆T (1)

where α is the coefficient of linear thermal expansion, in the unit of 1/◦C. It is a micro
property associated with the particle material.

The normal component of the force vector carried by the bond is assumed to be
affected by the change in temperature. The relationship between the present parallel bond
and active thermal pipe is expressed as:

∆Fn
= −k

n
A∆Un = −k

n
A
(
aL∆T

)
(2)

where k
n

is the bond’s normal stiffness, A is the area of the bond’s cross-section, a is the
expansion coefficient of bond material, L is the bond length, and ∆T is the temperature
increment, which equals the average temperature change of the two particles at two ends
of the pipe associated with the contact bond.

Figure 5 demonstrates the interaction between the continuum FLAC3D zone and
discrete particles. The interface (wall zone) consists of FLAC3D zone surfaces and PFC3D
walls, which are created coinciding with the zone faces. The PFC walls are composed of
edge-connected triangular faces, and the balls are in contact with the wall facet, wrapping
the zone face. The coupling mechanism for FLAC-PFC works by updating the force system
at facet vertices in PFC, which is determined by contact forces and moments at each ball–
facet contact. The forces along with stiffness are communicated at grid points/nodes. The
acting contact force and movement are distributed at grid points/nodes by equivalent forces.
The grid points/nodes at the coupling wall zone and grids of zones move synchronously,
and the updating force involves continuum zone computation in FLAC. Similarly, the
deformation of the continuum zone leads to the movement of the coupling wall zone. In
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response to the forces and velocities acting at the coupling wall zone, in DEM the particles
displace and generate cracks when the stress at contact bonds exceeds the prescribed tensile
or shear stress.
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3. Thermal Progressive Damage Evolution

Figure 6 illustrates the cycling gas-loading process over the 5-year period. Five years
is the time period for sonar monitoring for salt-cavity volume convergence. Particularly,
at the time of 3.14 years, the temperature and pressure drop abruptly (from 16 MPa to
8 MPa) when there is gas withdrawal. However, not all the stages of the process of gas
injection and withdrawal are xposure to the risk of thermal damage. Li et. al. (2021) [8]
investigated cavern L and found that when the gas withdrawal is fast and followed by
retaining low pressure, thermal cracking or even fractures occur. Therefore, we focus on the
cracking development after 3.14-years of operation by comparing three different locations
of surrounding wall of the salt cavity.
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3.1. Thermal Effect at Three Observed Locations

For the field case of cavern L (Li et al., 2021) [8], a sharp pressure drop occurs due
to gas withdrawal at 3.14-years of operation, before and after, the pressure drop reaches
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7 MPa (Figure 7a). The three selected monitoring areas and corresponding locations in the
hybrid model are (1) at the knee point of the cavity shoulder, i.e., the convexity; (2) the right
part of the knee point; and (3) 11.8 m away from the cavity surrounding wall brim.

The initial temperature of rock-salt formation changes linearly with the depth at
a temperature gradient of 2.55 ◦C/100 m. The salt cavern is located from −1030 m to
−1080 m, assuming the ground temperature is 20 ◦C and the temperature of the cavity
is approximately 45 ◦C. In response to the gas withdrawal and the consequent sharp
pressure drop at 3.14 years of operation, the temperature decreases correspondingly. The
temperature decreases gradually from the surface to the neighboring deeper domain in the
formation. Overall, the temperature distribution of the monitoring areas after sharp gas
depressurization exhibits obvious confinement dependence on the locations. Location 1 is
the closest spot to the brim of the surrounding wall with the lowest temperature. Location
2 has the highest temperature; however, the temperature variation range is small. Locations
2 and 3 are less affected by the thermal effect. The closer to the salt cavity surrounding the
wall brim, the more distinct the thermal influence it receives.

To assess the thermal effect on the response of the salt cavern surrounding wall, we
proposed a thermal-mechanical factor TMF, which is defined as:

TMF =
Crack(Thermal −Mechanical)−Crack(Mechanical)

Total Crack (Thermal −Mechanical)
(3)

TMF is the ratio of the difference between the crack number induced by the coupled
thermal-mechanical effect and the crack number only induced by the mechanical effect
to the total crack number. The higher TMF indicates that the thermal effect is dominant.
TMF is close to 0.5, indicating both the thermal and mechanical working together. If TMF
is approximately 0, the cracking is simply induced by the mechanical effect and is irrelevant
to the thermal effect.

Figure 8 illustrates the crack development comparison between the thermal-mechanical
coupled effect and the mechanical effect only for three different locations. The different par-
ticle colors represent the different detached broken particles formed as a result of cracking.
At locations 1, 2, and 3, the TMF = 0.65, 0.18, and 0.58, respectively. Location 1, nearest
to the cavity, is affected by the thermal effect most. Location 1 is sensitive to the thermal
effect and the microcracking is controlled by the ball heat capacity, coefficient of thermal
expansion, zone conductivity, conductivity coefficient of thermal contact mode, etc.
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Figure 7. Three selected locations for observation of microcrack development in PFC (a); and the 
corresponding temperature (b) after sharp pressure drop due to gas withdrawal at 3.14 years of 
operation. 

The initial temperature of rock-salt formation changes linearly with the depth at a 
temperature gradient of 2.55℃/100 m. The salt cavern is located from −1030 m to −1080 
m, assuming the ground temperature is 20℃ and the temperature of the cavity is approx-
imately 45℃. In response to the gas withdrawal and the consequent sharp pressure drop 
at 3.14 years of operation, the temperature decreases correspondingly. The temperature 
decreases gradually from the surface to the neighboring deeper domain in the formation. 
Overall, the temperature distribution of the monitoring areas after sharp gas depressuri-
zation exhibits obvious confinement dependence on the locations. Location 1 is the closest 
spot to the brim of the surrounding wall with the lowest temperature. Location 2 has the 
highest temperature; however, the temperature variation range is small. Locations 2 and 
3 are less affected by the thermal effect. The closer to the salt cavity surrounding the wall 
brim, the more distinct the thermal influence it receives. 

To assess the thermal effect on the response of the salt cavern surrounding wall, we 
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TMF is the ratio of the difference between the crack number induced by the coupled 
thermal-mechanical effect and the crack number only induced by the mechanical effect to 

Figure 7. Three selected locations for observation of microcrack development in PFC (a); and the
corresponding temperature (b) after sharp pressure drop due to gas withdrawal at 3.14 years of
operation.
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Figure 8. Comparison of crack development at three locations for coupled thermal-mechanical effect
and mechanical effect only.

3.2. Dynamic Response to Depressurization and Progressive Damage Characteristics

Crack increments at three different locations are compared (Figure 9). The crack
numbers at locations 1 and 3 are much higher than the number at location 2. The closer
to the center of the cavern, the more affected by the thermal effect, and the more cracks
formed. Particularly for location 1, close to the section of the most irregular geometrical of
the caverns, which is the concentration of high stress, and has the potential local failure
zones resulting from microcracking and might lead to damage. The tension crack is the
dominant crack mode, as the tension cracking is the failure consequence of tension force
(Equation (2)) induced by the thermal effect. Only the normal component of contact force
between particles is affected by thermal expansion, resulting in tension failure. However,
the influence of temperature is limited to some extent. The thermal effects are negligible
beyond 10 m away from the brim of the surrounding wall of the salt cavity. At location 2, it
is noticed that the increasing rate of tension crack decreases with time. Figure 10 illustrates
the comparison of cracks development due to severe pressure drop, before and after. It can
be seen clearly from the side view of the DEM specimen. After the depressurization, it is
observed at location 1 that the cracks are generated and propagated starting from the lower
left corner close to the cavity brim, the shear cracks are dominant. The sideview shows
that the microcracking induced the discontinuities and was prone to particles falling off.
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Location 3 is much closer to the brim of the cavity along the edge and cracks are formed
and propagate on both sides of the DEM specimen. Location 2 is farther away from the
cavity wall, hence there are fewer cracks, and the cracks propagate from the left lower
corner dominated by tension cracks.
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Figure 9. Temporal and spatial evolution of crack increments: A—Location 1; B—Location 3;
C—Location 2; D—The ratio of tensile cracks to total cracks at Location 1; E—The ratio of tensile
cracks to total cracks at Location 3; F—The ratio of tensile cracks to total cracks at Location 2.

In the PFC3D model, the fracture mass density is defined as the total fracture surface
area per unit volume. The definition of fracture area is as followings:

If the domain is cubic, L is the length of the side of the cube. The number of fractures
with sizes between l1 and l2 is given by:

n(l1 ≤ l ≤ l2) =
∫ l2

l1
n(l) · L3dl = a

(
l1−a
2 − l1−a

1
1− a

· L3

)
(4)

The term a fixes the total fracture density by a range of fracture sizes.

dm(lc) ∼=
∫ ∞

lc
n(l) · l2 · L−3 · dl (5)

The damage process is associated with cracking induced by cycles of gas pressurization
and depressurization in the salt cavern.

To better evaluate the distribution of microcracks in discrete modeling, a normalized
relative index cd is employed. The base point is 1.25 × 10−3 m2/m3, as it is the value
of the fracture surface area per unit volume. The absolute index cd is the fracture mass
density, which is defined as the fracture surface area per unit volume. The normalized
concentration degree of crack index cd ranging from 0 to 1 is defined as the absolute index
normalized by the maximum to minimum value among all the cracks. Figure 11 shows the
comparison of three different locations of the surrounding wall of the salt cavity, which
are: (a) location 1—at the knee point of the cavity shoulder, i.e., the convexity closest
to the rim; (b) location 2—right part off the knee point, deep in the rock salt formation;
(c) location 3—11.8 m away from the cavity surrounding the wall edge, the most farthest
from the centerline of the cavity. The microcrack forms and distributes into the entire
specimen in location 1. The crack distribution is more concentrated compared with the
other two locations far away from the convexity. The microcracks become less intensive in
the region that is not close to the inner cavity with no convexity–concavity. The damage
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failure exhibits operation confinement and shape dependence. Figure 12 indicates the trend
of the crack number using the normalized relative index cd. It shows that most of the
cracks are with cd = 0.2. To investigate the heterogeneities of thermal cracking in rock salt,
Figure 13 illustrates the rose diagrams of tensile and shear cracks at location 1, location 2,
and location 3, respectively. The radial length of each bin indicates the number of shear or
tensile cracks oriented within the corresponding angles. It shows that tensile cracks tend to
initiate in the horizontal orientation at location 1 which is close to the cavity surrounding
the wall. While the orientation of shear cracks in all three selected locations is uniformly
distributed.
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Figure 10. Comparison of crack development at three locations before and after the sharp pressure
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Figure 12. Crack number variation with concentration degree normalized relative index cd.
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l
nF : linear normal force; 
l
sF : linear shear force; 

nK : Normal stiffness; 

SK : Shear stiffness; 
Slip energy Eμ , is defined as the total energy dissipated by frictional slip. 

( )( )l l μ
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1: F F
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E Eμ μ δ= − + ⋅Δ  (7)

( )l
sF o : linear shear force at the beginning of the timestep; 

l
sF : linear shear force; 

μδΔ : shear displacement component decomposed into slip component; 
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： 

kinetic energy of the particle. 
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2

E mv=  (8)

m: particle mass; 
V: particle velocity. 

Figure 13. Orientation distribution of shear/tension cracks at different locations.

3.3. Energy Tracking

When rock is subjected to loading, the energy dissipates with the elastic process.
Numerical simulation is used to track the development of the strain energy, the slip energy,
and the kinetic energy. Those energy partitions reflect the energy evolution during fractures
propagation subjected to the thermal-mechanical coupling process. When the thermal
effects are taken into account, the total stress is the summation of the mechanical stress and
the thermal stress.

161



Sustainability 2023, 15, 8718

Strain energy, EK, is defined as the energy stored in the linear springs (Itasca Inc., 2019).

EK =
1
2




(
Fn

l
)2

Kn
+
‖ Fl

s ‖
KS

2

 (6)

Fn
l : linear normal force;

Fl
s: linear shear force;

Kn: Normal stiffness;
KS: Shear stiffness;
Slip energy Eµ, is defined as the total energy dissipated by frictional slip.

Eµ := Eµ −
1
2

((
Fs

l
)

o
+ Fs

l
)
· ∆δµ (7)

(
Fs

l)
o: linear shear force at the beginning of the timestep;

Fl
s: linear shear force;

∆δµ: shear displacement component decomposed into slip component;
Ekinetic: kinetic energy of the particle.

Ekinetic =
1
2

mv2 (8)

m: particle mass;
V: particle velocity.
The evolution of these energy partitions is significantly impacted by the sharp pressure

drop, as shown in Figure 14. At location 1, the strain energy decreases slightly followed
by a dramatic rise and an increase of crack numbers. The initiation of cracks is positively
correlated to the dissipation of strain energy, as the stain energy is stored in the contacts of
neighboring particles. The higher rate of energy dissipation means that more cracks initiate.
Slip energy rises gradually, indicating the increase of the relative deformation between
particles. There is fluctuation in kinetic energy at all the three locations. The particle
motion leads to the accumulation of energy to create new cracks. At first, the kinetic energy
along the slip energy starts to rise rapidly, probably due to the thermal effect. Meanwhile,
the strain energy, Estrain, assumed stored majority input work gradually increases. The
breakage of contact bonds indicates more microcracks are initiated. With the reduction of
kinetic energy, the kinetic energy is converted to other forms of energy, which leads to the
consistent growth of the strain energy. Then, fewer new micro-cracks are developed, and
the relative particle motion reduces. As a result, kinetic energy is decreasing gradually. The
energy evolution can be attributed to the confinement condition (i.e., the pressure drop in
this case), and is clearly associated with fracture generation and propagation.

To evaluate the thermal effect on the energy of the microscopic particle system, we
proposed a thermal-mechanical energy factor. TMK, TML, TMS, and TMK are defined
as:

TMK =
AK − BK

AK
(9)

where AK is the kinetic energy of particles under thermal-mechanical force and BK is the
kinetic energy of particles under mechanical force only.
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The larger the TMK is, the greater the influence of the thermal effect on the kinetic
energy of particles, and the closer TMK is to one, indicating that the kinetic energy of
particles is dominated by the thermal effect. TMK is close to zero, indicating that the kinetic
energy of particles is affected by dynamic mechanical force only.

TML =
AL − BL

AL
(10)

where AL is the sliding energy of particles under thermal-mechanical force and BL is the
sliding energy of particles under mechanical force only.

TMS =
AS − BS

AS
(11)

where AS is the strain energy of particles under thermal-mechanical force and BS is the
strain energy of particles under mechanical force only.

From Figure 15, it is not difficult to see that the TMLs of position 1 and position 2 are
near the red line, indicating that the thermal effect has an influence on the sliding energy.
According to the slope of each line, it can be seen that from location 1 to location 2 and
then to location 3, which is, the farther away from the sensitive brim of the salt cavity, the
influence of the thermal effect gradually attenuates.
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Figure 15. Thermal effect on energy of microscopic particle system at three different locations.

4. Results and Discussion
4.1. Influence of Confining Pressure

The thermodynamic response of the surrounding wall in a salt cavern subjected to a
gas-cycling loading process is further investigated in the context of different confinement
conditions. The operation pressure range of cavern L (Li et al., 2021) [8] is 16 MPa to 8 MPa.
Three different confining pressures are schemed, which are 16 MPa, 12 MPa, and 8 MPa,
respectively.

Figure 16 shows the influence of the confinement pressure at location 1 (see Figure 7),
which is at the knee point of the cavity shoulder (i.e., the closest location to the surrounding
wall brim). The reduction of confining pressure (from 16 MPa to 8 MPa) augments the
cracks generation during the depressurization process. The propagation and accumulation
of microcracks depend on the variation of the confining pressure. Lower confinement
enhances the thermal damage of the salt cavity.
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Figure 16. Influence of confining pressure on (a) crack increments; (b) failure mode; Yellow represents
the intact particles; Blue represents the detached particles induced by tension force; Red represents
the detached particles induced by shear force.

The pressure is first increased to 8 MPa and then is retained at 8 MPa for a period.
As shown in Figure 17, more microcracks initiate when the pressure is retained at 8 MPa.
Tensile cracking is the dominant crack mode during the lower-pressure operation. However,
the proportion of tensile cracks reduces with time due to the limitation of temperature
extension. The more damage accumulates at that lower pressure and increases with the
retaining time. Low pressure coupled with retaining time enhances the development of
microcracks, ultimately resulting in a damage zone.
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4.2. Effect of Particle Microproperties 
The development of cracks is affected by the microproperties of the particle, includ-

ing the normal-to-shear stiffness ratio and the coefficient of interparticle friction. As 
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Figure 17. Temporal and spatial evolution of microcracking at operation pressure of 8 MPa: (a) crack
increment; (b) damage propagation process with retain time.

4.2. Effect of Particle Microproperties

The development of cracks is affected by the microproperties of the particle, including
the normal-to-shear stiffness ratio and the coefficient of interparticle friction. As shown
in Figure 18, with the increase of the normal-to-shear stiffness ratio, more cracks initiate,
leading to the lower yield strength.
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Figure 18. Effect of normal-to-shear ratio on (a) stress–strain curves; (b) microcrack increments.

Figure 19 illustrates the effect of the interfacial friction coefficient. In general, the
friction coefficient has a slight effect on stress–strain curve. With the increase of the friction
coefficient, the deformation resistance of particles is enhanced. It is shown that when the
friction coefficient increases from 0.5 to 0.8, the larger friction between the particles makes
it difficult to exceed the tensile or shear strength of the bonds. Therefore, fewer cracks are
generated.
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4.3. Effect of Thermal Properties

Simulations with various thermal conductivities, particle-specific heats, and thermal
expansion coefficients are carried out to understand the effect of the thermal properties.
All the other parameters are set to be the same as the case with pressure equal to 16 MPa at
operation. As shown in Figure 20, the increase in thermal conductivity leads to an increment
in crack number. On the other hand, a larger particle-specific heat enhances the energy
stored between particles and slows down the heat conduction and the thermal expansion
of the particles. Thus, fewer cracks are generated. The thermal-expansion coefficient is
positively correlated with the number of cracks by augmenting the force carried by the
bond. Hence, the thermal properties of the particles have an important impact on the crack
generation and propagation, and the macro-behavior of the surrounding rock wall of a salt
cavern as well.
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5. Conclusions

A thermal-mechanical model was proposed to study a field case with blocks falling off
from the salt cavern roof using a 3D hybrid continuum-discrete method. This hybrid model
has advantages in allowing for implementing the gas-loading operation conditions via
continuum modeling; meanwhile, the thermal-mechanical effects and processive damage
were systematically investigated with the proposed micromechanical numerical framework
of the hybrid model. The main conclusions are as the followings:

Three specimens at different locations around the surrounding wall of a salt cavern
were selected to understand the thermal-damage evolution process under the severe de-
pressurization condition. The crack microscopic patterns were subjected to the cavern’s
anomalous geometry. The energy evolution associated with fracture creation exhibited
spatiotemporal confinement dependence.

Cycling loading at a lower confining pressure and the longer retaining time of low-
pressure led to progressive microcracking, which further resulted in the development of
macrofractures and the formation of the damage zone. The tensile crack was the dominant
crack mode. The anisotropic distribution of crack orientation was observed in the zone
close to the edge of the surrounding wall, which was the consequence of tension failure
induced by the thermal effect. The thermal effect induced by gas injection and withdrawal
was limited. The zone far away from the marginal surrounding wall was less affected by
temperature and only the mechanical conditions controlled the development of cracks.

The proposed 3D continuum-discrete coupled thermal-mechanical hybrid model
overcomes the limitation of the continuum method and was capable of analysis of rock
heterogeneity by accounting for the thermal-mechanical effect and naturally capturing
the microcrack initiation and propagation by discrete modeling. The hybrid model was
successfully applied in the assessment of thermal-damage evolution. This study can shed
light on the analysis of thermal-mechanical coupling and the understanding of the influence
of microcrack development on the macroscopic behavior of salt rock. In the future, the
validity of the continuum-discrete coupled thermal-mechanical hybrid model should be
verified by more field data and the thermal effect of the gas injection and withdrawal
process needs to be investigated for energy storage in the deep stratum.
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Abstract: Rock failure is the root cause of geological disasters such as slope failure, civil tunnel
collapse, and water inrush in roadways and mines. Accurate and effective monitoring of the loaded
rock failure process can provide reliable precursor information for water inrushes in underground
engineering structures such as in mines, civil tunnels, and subways. The water inrush may affect
the safe and efficient execution of these engineering structures. Therefore, it is essential to predict
the water inrush effectively. In this paper, the water inrush process of the roadway was simulated
by laboratory experiments. The multiparameters such as strain energy field and infrared radia-
tion temperature field were normalized based on the normalization algorithm of linear function
transformation. On the basis of analyzing the variation characteristics of the original parameters,
the evolution characteristics after the parameters normalization algorithm were studied, and the
precursor of roadway water inrush was predicted comprehensively. The results show that the dissi-
pation energy ratio, the infrared radiation variation coefficient (IRVC), the average infrared radiation
temperature (AIRT), and the variance of successful minor infrared image temperature (VSMIT) are
all suitable for the prediction of roadway water inrushes in the developing face of an excavation. The
intermediate mutation of the IRVC can be used as an early precursor of roadway water inrush in the
face of an excavation that is being developed. The inflection of the dissipation energy ratio from a
declining amount to a level value and the mutation of VSMIT during rock failure can be used as the
middle precursor of roadway water inrush. The mutation of AIRT and VSMIT after rock failure can
be used as the precursor of roadway imminent water inrush. Combining with the early precursor
and middle precursor of roadway water inrush, the graded warning of “early precursor–middle
precursor–final precursor” of roadway water inrush can be obtained. The research results provide a
theoretical basis for water inrush monitoring and early warning in the sustainable development of
mine, tunnel, shaft, and foundation pit excavations.

Keywords: water inrush; precursor; strain energy; infrared radiation; normalized; sustainable mine

1. Introduction

Due to the rapid development of underground spaces such as subways, tunnels, and
caverns, large-scale geological disasters such as water inrushes, mud rushes, and rock
collapses often occur in the construction stage [1–7]. In coal mining, water inrush accidents
often occur, resulting in serious and often irreparable property losses and casualties, se-
riously affecting the normal production of coal mines [8,9]. It is therefore important to
carry out relevant underground development face water inrush laboratory experiments to
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determine the variation characteristics of water inrush precursor information; this can not
only improve the reliability of water inrush prediction in underground space development
but also meet the needs of sustainable protection of mining water resources. Water resource
protection is the theme of sustainable development of mining ecological environments and
a key way to achieve green mining.

Mining and underground civil activities inevitably lead to the redistribution of under-
ground rock stress and fracture damage of rock, which greatly change the permeability of
surrounding rock. This can lead to water inrush mainly in the roof, through stress-induced
natural fractures or geology features, causing safety accidents.

In subway construction, damage to the lining of shield tunnels may cause water in-
rush in the subway. This is caused by nonwatertight drilling of through-holes near the
intersection of two subway tunnels. Under high hydraulic gradients, weak permeable areas
form and extend, leading to soil water slurry explosions [10–13]. The infrared radiation
information of rock changes during the process of stress redistribution and consequent
fracture damage process [14–20]. Monitoring the infrared radiation released to the outside
during the process of rock loading can predict the characteristics and process of rock defor-
mation and failure. This provides reliable information for the establishment of rock failure
precursors [21–29]. In recent years, many scholars have carried out considerable research
using the infrared radiation characteristics of rock fracture and water seepage. Asakura
et al. [30] studied the infrared radiation monitoring of water leakage in tunnel lining and
proved the feasibility of monitoring water leakage by infrared technology. Liu et al. [31]
studied the characteristics of infrared radiation in the process of concrete fracture and water
seepage and found that the “initial increase followed by a decrease” in the curve of infrared
radiation temperature was an abnormal precursor of the infrared radiation of concrete
fracture and water seepage. Dou et al. [32] carried out the infrared radiation observation
experiments of tunnel leakage, studied the infrared radiation variation characteristics, and
wrote the MATLAB image processing program to extract the infrared image characteristics
during the process of concrete leakage. Zhang [33] studied the characteristics of infrared
radiation in the process of sandstone fracture and water inrush, in which the sudden de-
crease of infrared radiation temperature predicted the occurrence of roadway water inrush,
and the accelerated rate of infrared radiation temperature could be used as a precursor for
water inrushes.

To quantitatively analyze the characteristics of infrared radiation in the process of rock
fracture and water seepage, Wu et al. [34] first proposed the average infrared radiation tem-
perature (AIRT) index of rock surface. Liu [35] used the AIRT index to analyze the infrared
radiation characteristics of dry and water saturated rocks during uniaxial loading, and
found that water can promote the AIRT of a rock surface. However, different areas of the
rock surface may simultaneously heat up and cool down during the unstable development
crack development stage in the rock, resulting in no change in overall AITR index [36].
Therefore, Liu [37], Ma et al. [38], and Yang [39] proposed the infrared radiation variance
(IRV), variance of successful minor infrared image temperature (VSMIT), and infrared
radiation variation coefficient (IRCV) of rock surface. The results show that the above
indexes can well reflect the differentiation characteristics of infrared radiation on the rock
surface. For example, Ma and Zhang [38] studied the internal relationship between stress
adjustment (due to excavating) and VSMIT index during the loading process of dry and
water-saturated rocks, and found that VSMIT index can correlate well with the rock failure
and water has an amplification effect on the mutation characteristics of VSMIT index.

Although scholars have carried out a lot of research work on the monitoring and
warning of water inrush during underground development, the results to date have not
proved reliable for detecting an imminent water inrush. This is mainly due to the localized
complex geology and hydrology. Based on the analysis of the physical parameters such
as stress, infrared radiation, and strain energy in the process of predicting roadway water
inrushes, this paper normalizes each physical parameter, then comprehensively analyzes
the multielement information evolution characteristics and their correlation with roadway

174



Sustainability 2023, 15, 7570

water inrushes, and studies the comprehensive precursor characteristics of them. This
study proposes an early warning precursor and monitoring the occurrence of roadway
water inrush. The research findings will provide a theoretical basis for monitoring and early
warning of water inrush in underground spaces for their safe and efficient development.

2. Experimental Principle

Stefan–Boltzmann’s law states that any object above absolute zero will radiate elec-
tromagnetic waves to the outside world. Due to this, the radiation intensity and the
temperature of the object satisfy the following formula [39]:

J∗ = εσT4 (1)

where J∗ represents the total energy radiated by the object per unit area, W·m−2; ε repre-
sents the surface emissivity of the object, 0 < ε < 1; σ is the Stefan–Boltzmann constant,
5.670373 × 10−8 W·m−2·K−4; T is the absolute temperature of the surface, K.

This law explains how the infrared radiation on the surface of the object at room
temperature is affected. Further, the relationship between the radiation intensity and the
temperature of the object satisfies the fourth power. The force exerted on a solid causes
changes in the distance between internal particles, resulting in thermodynamic changes
and, thus, temperature changes. This phenomenon of temperature change caused by heat
generated due to force can be referred to as the thermal–mechanical coupling effect [36].
Materials with different mechanical properties (such as elastic materials, elastoplastic
materials, viscoelastic materials, etc.) and the same material have different thermal and
mechanical coupling effects at different stress stages. These different thermodynamic
coupling effects have different characteristics and laws due to their different microscopic
mechanisms. In the elastic range, the object undergoes the process of tension or compression
accompanied by the reversible conversion of heat. In the adiabatic environment, the sum
of temperature and principal stress satisfies the linear relationship [40]:

∆T =
α

ρCσ
TS (2)

where ∆T and T are the change of object temperature and object temperature, respectively;
α is the linear coefficient of thermal expansion; Cσ is the specific heat coefficient under
constant stress; S is the sum of the principal stresses.

The change of principal stress during uniaxial rock loading is only related to σ1. The
fourth term represents the internal dissipated energy of the material, which is manifested
in the thermoelastoplastic comprehensive effect at this stage. The work carried out by the
external force is not all transformed into the internal thermal energy of the material but is
mostly consumed in the process of internal microstructure change. Plastic deformation in
the process of energy dissipation and thermal energy conversion is not reversible, and ∆E
mainly includes the following three parts in the process of energy consumption [36]:

∆E = ∆E1 + ∆E2 + ∆E3 (3)

∆E1 is the energy carried by the escape process of pore gas, in general, ∆E1 < 0. ∆E2 is
the energy consumed by the expansion of pores, fractures, and joints and the generation of
new fractures in the rock. The internal pores, fractures, and joint weak surfaces will first
contract and close with the increase of stress. The pores will then collapse, and the primary
fractures and joints will further expand, penetrate, and merge. Moreover, the new fractures
will be generated by the increase in stress. The ∆E2 is less than 0 due to the consumption of
energy in this process. ∆E3 is the energy generated by friction because there are friction
behaviors among the pores, fissures, joints, and rock particles along all directions in the
interior of the rock. Two factors influence the process of frictional heat generation: one is
the positive pressure on the contact surface inside the rock, and the other is the friction
coefficient. When the friction coefficient is fixed, the friction force is positively related to
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the normal stress on the contact surface. The larger the friction force, the more work will
be carried out to overcome the friction force in the process of crack and particle sliding,
resulting in the higher energy consumption. It is important to note that in this process the
temperature of the contact surface due to friction heat production will increase, therefore
∆E3 is greater than zero.

3. Experimental Design
3.1. Experimental Equipment

The experimental loading equipment used an SANS electronic universal testing ma-
chine system with a maximum vertical load of 1000 kN. The water pressure loading
equipment adopts a Shanghai SB water pressure pump, the maximum working pressure
is 10 MPa, and the water pressure is set to 0.5 MPa. The infrared radiation detection
device adopts the American FLIRA615 infrared thermal imager, whose thermal sensitivity
is 0.025 ◦C, and the wavelength range is 7.5–14.0 m. The image acquisition rate was set at
25 frames/s.

3.2. Rock Samples

The representative samples of sandstone collected from a coal mine in Shandong
province were used in the laboratory experimental process. All samples were obtained from
the same rock sample. The specimen design specification is a cuboid of 100 × 100 × 150 mm.
The diameter and depth of the observation hole in the test block are 50 mm, and the diame-
ter and depth of the water injection hole are 50 mm and 50 mm. A total of five specimens
were prepared, represented by A1, A2, A3, A4, and A5. The actual measurement spec-
ifications of these specimens are shown in Table 1. The rock sample model is shown in
Figure 1a, and the processed specimen is shown in Figure 1b. The water gushing from the
tunnel mainly comes from the rich water in front of the tunnel face, so this special test piece
shape is designed. The first section of the water injection hole of the rock sample is bonded
together with the iron block of the fixed abrasive tool using strong adhesive, and then the
fixed abrasive tool is reinforced by electric welding to resist the water pressure in the water
injection hole after the water pump is running. The water injection pipe and the abrasive
tool are tightened and fixed by screws to ensure that there is no water leakage on the water
injection side during the experiment. The following figure shows the fixed mold of the
rock sample.
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Table 1. Actual measurement specifications of the specimen.

Number Length × Width × Height
(mm)

Observation Hole Diameter ×
Depth (mm)

Water Injection Hole Diameter ×
Depth (mm)

A1 150.32 × 100.42 × 99.85 ϕ50.24 × 50.53 ϕ50.23 × 50.66
A2 150.31 × 100.48 × 100.38 ϕ50.22 × 50.68 ϕ50.23 × 50.97
A3 150.10 × 100.12 × 99.78 ϕ50.22 × 50.34 ϕ50.25 × 50.35
A4 149.97 × 100.10 × 99.25 ϕ50.25 × 50.58 ϕ50.24 × 50.59
A5 150.35 × 100.31 × 99.77 ϕ50.23 × 50.73 ϕ50.22 × 50.67

3.3. Experiment Process

The rock specimen was loaded uniaxially with a closure rate of 0.1 mm/min. The
data acquisition frequency of the testing machine was set as 10 times/s. The layout of
the experimental equipment is shown in Figure 2. To facilitate the sorting and analysis of
test data, the water pressure of the water pump was set as 0.5 MPa before the test, and
the thermal imager was installed about 1 m away from the sample to observe the infrared
temperature field changes on the sample surface. The experiment was started after the
infrared radiation temperature on the rock surface remained stable. We synchronously
calibrated the time of all test equipment. In addition, the start and end times of each
equipment remained the same. Then, uniaxial loading was applied to the rock sample until
inrush water appeared.
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4. Indicators
4.1. Strain Energy

Assuming that a rock unit deforms under the action of external forces and the process
occurs in a closed system, according to the first law of thermodynamics, the following can
be obtained:

U = Ud + Ue (4)

where U is the total strain energy, which is determined by the stress–strain curve and the
area around the horizontal axis, Ud is the dissipated strain energy of the unit, and Ue is the
elastic strain energy released by the unit.
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Figure 3 shows the relationship between Ud and Ue during uniaxial rock loading. The
releasable elastic strain energy Ue in the uniaxial loading process of rock can be rewritten
as follows [41,42]:

Ue =
1

2Eu
σ2 (5)

where Eu is the unloading modulus of elasticity.
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Figure 3. Relationship between dissipated strain energy and elastic strain energy in the
stress–strain curve.

In order to facilitate calculation, the elastic modulus E0 is generally used instead
of Eu. In this paper, the average modulus is used to calculate the elastic modulus, and
the stress–strain formula is assumed to be σ = f (ε). The following formula obtains the
elastic modulus

E =
f (ε2)− f (ε1)

ε2 − ε1
(6)

where E is the elastic modulus, and f (ε1) and f (ε2) are the stress values corresponding to
the starting and ending points of the elastic phase, respectively.

4.2. Infrared Thermal Image

Infrared thermal image is a series of object surface temperature distribution images
output by an infrared thermal imager. The two-dimensional temperature matrix of frame p
in the original infrared thermal image is [43]:

fp(x, y) (7)

where p is the frame number index of the infrared thermal image sequence; x and y represent
the row and column numbers of the thermal imager temperature matrix, respectively.

4.3. VSMIT

VSMIT can reflect the dispersion degree of infrared radiation temperature value of the
entire rock sample surface, which is defined as follows [43]:

VSMIT =
1
M

1
N

N

∑
y=1

M

∑
x=1

[ fp(x, y)− AIRTp]
2 (8)

Among them, AIRTp = 1
M

1
N

N
∑

y=1

M
∑

x=1
fp(x, y); M and N are the maximum numbers of

rows and columns for x and y, respectively.
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4.4. IRVC

The IRVC can measure the dispersion degree of the infrared radiation temperature
field on the rock surface, which is defined as follows [39]:

IRVC = σ/AIRT (9)

where σ is the standard deviation of infrared radiation temperature on the rock surface.

5. Experimental Results
5.1. Strain Energy

The deformation and failure of rock is a process of energy input, elastic energy accu-
mulation, energy dissipation, and energy release from the point of view of strain energy.
Energy dissipation is mainly used for crack initiation and propagation, and energy release
is the internal cause of the sudden failure of the rock mass. The elastic strain energy ac-
cumulated by the rock mass before excavation is the main source of the energy released
by the ultimate failure of the surrounding rock mass, especially the deep hard brittle rock
mass with good energy storage under the condition of high in situ stress. A large amount
of elastic strain energy accumulated in the excavation is released instantly due to the exca-
vation unloading effect, promoting the occurrence of rock mass failure and then connecting
the water diversion fissure channel, finally resulting in a water inrush accident.

Figure 4 shows the strain energy evolution curve during the loading process of the
rock sample. Due to space limitations, samples A1, A2, and A3 were selected for analysis
in this paper. As shown in Figure 4, the energy absorbed in the rock at the beginning of
loading is mainly dissipated strain energy, because most of the strain energy is consumed
by pore and microfracture compaction. The curves of elastic strain energy and dissipated
strain energy diverge with the increase of stress, and the growth of elastic strain energy
increases continuously, while the dissipated strain energy increases in a nearly straight line,
which is used for the formation and expansion of plastic deformation and microcracks in
rocks. The elastic strain energy drops sharply, while the dissipated strain energy increases
sharply at the peak stress, which indicates that the internal microcrack propagation and
penetration rate accelerated and the damage was aggravated. After the peak stress, the
bearing capacity of the rock decreases rapidly and maintains a certain residual strength.
The strain energy absorbed by the rock is transformed into dissipative strain energy in this
period, which is used for the further development of rock fracture and shear deformation
along the slip surface. Then, a macroscopic water diversion channel is formed in the rock,
and water inrush eventually occurs in the roadway.

The dissipated strain energy ratio of rock refers to the proportion of dissipated strain
energy to the total strain energy. The dissipated strain energy ratio curve shows a trend
of decline before the peak stress, changes from a decline to a level near the peak stress
when approaching the peak stress, and then begins to increase. The curve changes abruptly
with the rock failure. After that, the dissipated strain energy ratio curve continues to
increase until a water inrush occurs in the rock face. The analysis found that the strain
energy dissipation ratio curve of samples experienced a “decline-level” process when
the rock approached failure. This is due to the dissipated strain energy used for plastic
strain and crack growth increasing with the rapid development of microcracks in the rock;
although the elastic strain energy is still accumulating, the rock will reach the maximum
energy storage limit. Therefore, the dissipated strain energy ratio of rock declines to the
level, and then the elastic strain energy reaches the energy storage limit. The accumulated
elastic strain energy is quickly released and causes rock failure. In summary, the turning
point of dissipated energy ratio from decline to level can be used as the medium warning
information of roadway water inrush.

179



Sustainability 2023, 15, 7570

Sustainability 2023, 15, x FOR PEER REVIEW 8 of 18 
 

summary, the turning point of dissipated energy ratio from decline to level can be used 
as the medium warning information of roadway water inrush. 

0.000 0.005 0.010 0.015 0.020
0.00

0.15

0.30

0.45

0.60

 Total strain energy
 Elastic strain energy
 Dissipated strain energy

St
ra

in
 e

ne
rg

y 
(J·

cm
-3

)

Strain

0

20

40

60

80

Water inrush

 Stress

St
re

ss
 (M

Pa
)

0.2

0.4

0.6

0.8

1.0

 Ratio

Ra
tio

 
Sample A1 

0.000 0.005 0.010 0.015 0.020 0.025
0.0

0.2

0.4

0.6

0.8
 Total strain energy
 Elastic strain energy
 Dissipated strain energy

 

Strain

St
ra

in
 e

ne
rg

y 
(J·

cm
-3

)

0

20

40

60

Water 
inrush

 Stress

St
re

ss
 (M

Pa
)

0.2

0.4

0.6

0.8

1.0

 Ratio

Ra
tio

 
Sample A2 

0.000 0.005 0.010 0.015 0.020 0.025
0.0

0.2

0.4

0.6

 Total strain energy
 Elastic strain energy
 Dissipated strain energy

Strain

St
ra

in
 e

ne
rg

y 
(J·

cm
-3

)

0

20

40

60

Water 
inrush

 Stress

St
re

ss
/M

Pa

0.2

0.4

0.6

0.8

1.0

 Ratio

R
at

io

 
Sample A3 

Figure 4. Evolution curves of strain energy during rock sample loading. Figure 4. Evolution curves of strain energy during rock sample loading.
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5.2. Infrared Radiation

Figure 5 shows the photo of the water inrush instant of the roadway in the laboratory.
The water diversion channel is formed after the rock in the roadway reaches failure, and
then water inrush occurs in the mine. Hence, the hole is selected as the analysis area of
infrared radiation data, as shown in Figure 6. The evolution characteristics of AIRT, IRCV,
VSMIT, and infrared thermal image in rock holes during the rock loading failure and water
inrush were analyzed, and the precursors of roadway water inrush were identified.

Sustainability 2023, 15, x FOR PEER REVIEW 9 of 18 
 

5.2. Infrared Radiation 
Figure 5 shows the photo of the water inrush instant of the roadway in the laboratory. 

The water diversion channel is formed after the rock in the roadway reaches failure, and 
then water inrush occurs in the mine. Hence, the hole is selected as the analysis area of 
infrared radiation data, as shown in Figure 6. The evolution characteristics of AIRT, IRCV, 
VSMIT, and infrared thermal image in rock holes during the rock loading failure and 
water inrush were analyzed, and the precursors of roadway water inrush were identified. 

 
Figure 5. Water inrush in roadway. 

 
Figure 6. Infrared radiation analysis region. 

5.2.1. AIRT 
Figure 7 shows the time-varying curves of AIRT, IRCV, and VSMIT in the hole during 

the uniaxial rock sample loading. As shown in Figure 7, the AIRT in the hole of rock under 
loading showed a trend of stable fluctuation with the increase of stress during the process 
of rock uniaxial loading. The AIRT curves of rock samples A1 and A2 showed no obvious 
abnormal phenomena before rock failure, while the AIRT of the rock sample A3 gradually 
increased, with a temperature rise of about 0.1 °C. However, the AIRT of rock samples A1, 
A2, and A3 all dropped abruptly before water inrush, with a decrease temperature range 
of between 0.3~0.6 °C. This is due to the water seepage into the observation surface of the 
roadway absorbing part of the heat from the rock, resulting in a downward trend of AIRT. 
Therefore, the sudden drop of AIRT can be regarded as the precursor of water inrush. Two 
conditions must be satisfied to take a characteristic of infrared radiation index as a 
precursor: one is that all infrared radiation indexes of rock samples have this 
characteristic; the other is that this characteristic is easy to distinguish. The lead time of 
water inrush precursor of rock AIRT is 15~30 s before water inrush, hence AIRT decreased 
slightly and then increased. 

Figure 5. Water inrush in roadway.

Sustainability 2023, 15, x FOR PEER REVIEW 9 of 18 
 

5.2. Infrared Radiation 
Figure 5 shows the photo of the water inrush instant of the roadway in the laboratory. 

The water diversion channel is formed after the rock in the roadway reaches failure, and 
then water inrush occurs in the mine. Hence, the hole is selected as the analysis area of 
infrared radiation data, as shown in Figure 6. The evolution characteristics of AIRT, IRCV, 
VSMIT, and infrared thermal image in rock holes during the rock loading failure and 
water inrush were analyzed, and the precursors of roadway water inrush were identified. 

 
Figure 5. Water inrush in roadway. 

 
Figure 6. Infrared radiation analysis region. 

5.2.1. AIRT 
Figure 7 shows the time-varying curves of AIRT, IRCV, and VSMIT in the hole during 

the uniaxial rock sample loading. As shown in Figure 7, the AIRT in the hole of rock under 
loading showed a trend of stable fluctuation with the increase of stress during the process 
of rock uniaxial loading. The AIRT curves of rock samples A1 and A2 showed no obvious 
abnormal phenomena before rock failure, while the AIRT of the rock sample A3 gradually 
increased, with a temperature rise of about 0.1 °C. However, the AIRT of rock samples A1, 
A2, and A3 all dropped abruptly before water inrush, with a decrease temperature range 
of between 0.3~0.6 °C. This is due to the water seepage into the observation surface of the 
roadway absorbing part of the heat from the rock, resulting in a downward trend of AIRT. 
Therefore, the sudden drop of AIRT can be regarded as the precursor of water inrush. Two 
conditions must be satisfied to take a characteristic of infrared radiation index as a 
precursor: one is that all infrared radiation indexes of rock samples have this 
characteristic; the other is that this characteristic is easy to distinguish. The lead time of 
water inrush precursor of rock AIRT is 15~30 s before water inrush, hence AIRT decreased 
slightly and then increased. 

Figure 6. Infrared radiation analysis region.

5.2.1. AIRT

Figure 7 shows the time-varying curves of AIRT, IRCV, and VSMIT in the hole during
the uniaxial rock sample loading. As shown in Figure 7, the AIRT in the hole of rock under
loading showed a trend of stable fluctuation with the increase of stress during the process
of rock uniaxial loading. The AIRT curves of rock samples A1 and A2 showed no obvious
abnormal phenomena before rock failure, while the AIRT of the rock sample A3 gradually
increased, with a temperature rise of about 0.1 ◦C. However, the AIRT of rock samples A1,
A2, and A3 all dropped abruptly before water inrush, with a decrease temperature range
of between 0.3~0.6 ◦C. This is due to the water seepage into the observation surface of
the roadway absorbing part of the heat from the rock, resulting in a downward trend of
AIRT. Therefore, the sudden drop of AIRT can be regarded as the precursor of water inrush.
Two conditions must be satisfied to take a characteristic of infrared radiation index as a
precursor: one is that all infrared radiation indexes of rock samples have this characteristic;
the other is that this characteristic is easy to distinguish. The lead time of water inrush
precursor of rock AIRT is 15~30 s before water inrush, hence AIRT decreased slightly and
then increased.
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Figure 7. Evolution curves of AIRT, IRCV, and VSMIT during rock sample loading. A–G: 
different stages. 
Figure 7. Evolution curves of AIRT, IRCV, and VSMIT during rock sample loading. A–G: different stages.
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5.2.2. IRCV

The IRCV curve of rock sample A1 shows a trend of steady fluctuation–decline–rise
in the process of water inrush experiment under uniaxial loading, and the curve of IRCV
mutates when loaded to 123 s, while the IRCV curves of rock samples A2 and A3 show a
nearly horizontal trend, and both of them have a mutation in the middle of loading, with the
occurrence moments of 94 s and 115 s, respectively. As shown in Figure 7, the AIRT value
corresponding to the mutation of IRCV in the middle and late stages of loading decreases
gradually, so the mutation of IRCV is caused by the mutation of infrared radiation standard
deviation (σ). The authors propose that this is due to the rock having just entered the
stage of unstable crack development, and microfracture events increase. The rock failure is
dominated by microcracks induced by tensile failure. The tensile failure area corresponds
to a drop in the rock surface temperature, while the shear failure area corresponds to a
rise in the rock surface temperature, resulting in a gradual drop in AIRT. The increase
of microfracture events leads to the occurrence of heating and cooling zones in different
regions of the rock surface, and thus the standard deviation of corresponding infrared
radiation temperature is suddenly changed. In conclusion, the curve of IRCV has suddenly
changed in the middle and late stages of rock loading. Therefore, the IRCV mutation
in the middle and late stages of rock loading can be regarded as the early precursor of
water inrush.

As shown in Figure 7, when the AIRT of the rock drops suddenly before the water
inrush (the precursor of water inrush), the IRCV curve of the rock increases or mutates
gradually. Specifically, the IRCV curve of the rock sample A1 increases gradually, and
the rock samples A2 and A3 have a mutation. This feature, therefore, is not suitable as a
precursor of roadway water inrush. If the water flows homogeneously into the roadway
before water inrush, and the water has an amplification effect on the infrared radiation
of rock [34], AIRT will drop abruptly, and the dispersion degree of infrared radiation
temperature (σ) may also correspond to a sudden drop, which may cause no mutation in
IRCV. If the water flows into the roadway inhomogeneously before water inrush, the AIRT
will drop sharply and the differentiation of infrared radiation temperature (σ) will increase
sharply, which will cause IRCV mutation. To sum up, IRCV curve mutation before water
inrush is not universal, so it is not suitable as a precursor of roadway water inrush.

5.2.3. VSMIT

The VSMIT curve of all the rock samples shows a general horizontal trend during the
roadway water inrush test, and the VSMIT increases abruptly when the rock failure, with
the mutation range, is 0.01~0.03. Due to the universality, synchronism, and significance
of VSMIT mutation characteristics at the rock failure [26], the first mutation of VSMIT can
be regarded as a midterm precursor of water inrush. With the process of rock loading, the
stress gradually drops to the residual stress. When the AIRT of the rock declines abruptly
(the precursor of water inrush), the VSMIT of all rock samples mutate for the second time,
with an increased range of 0.02~0.05. This is due to the water seepage increasing the
dispersion degree of infrared radiation temperature of the two adjacent frames, which also
indicates that the sudden drop in AIRT will be accompanied by the sudden increase of
the VSMIT index. Therefore, the second mutation of VSMIT can be used as a precursor of
water inrush.

5.2.4. Infrared Thermal Image

The above infrared radiation characteristics during the process of rock failure and
water inrush were all obtained from the quantitative index analysis of infrared radiation,
so only the time information of infrared radiation characteristics can be obtained. If the
spatial information of infrared radiation during the process of rock failure and water inrush
is needed, the infrared thermal image can be analyzed. To highlight the change of infrared
radiation caused by the loading of the sample, and reduce the impact of the local radiation
rate difference and environmental interference of the sample when processing the infrared
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radiation experimental data, the thermal image obtained during the loading process is
processed as a difference [31], that is, the first thermal image at the beginning of the loading
is subtracted from each thermal image, and the change of radiation temperature field is
analyzed by using the image after the difference.

As shown in Figure 7, the infrared thermal image of rock sample A1 before failure
shows the changing trend of bright (A)–dark (B)–bright (C)–dark (D), corresponding to
the decline (AB)–rise (BC)–decline (CD) of the AIRT curve, and the temperature difference
between the left and right sides of the sample is obvious at the rock failure (the temperature
on the left side is high while that on the right side is low), and the infrared thermal image
at the precursory point (F) of the roadway water inrush becomes dark as a whole. At
the beginning of the loading stage (AB) of sample A2, the infrared thermal image of the
rock sample changes from dark to bright, and there is no obvious abnormal change from
point B to rock failure (E). The lower part of the rock shows the abnormal low-temperature
area near the roadway water inrush precursory point (F), while the upper part of the
infrared thermogram shows the abnormal high-temperature area when the roadway water
inrush occurs, and the rest is the low-temperature area. At the beginning of loading
stage (AB) of rock sample A3, there is no obvious change in the infrared thermogram,
and the infrared thermogram becomes dark at the BC stage, while the abnormal high-
temperature area appears at the lower part of the rock sample (D). With the increase of
stress, the abnormal high-temperature area becomes an abnormal low-temperature area
in the roadway water inrush precursor (E), and the high-temperature area appears on the
left side. The high-temperature area extends upward with the loading process, and part of
the original high-temperature area is eroded by water, so the right side of the rock sample
presents a large area of low temperature.

6. Multiparameter Normalization
6.1. Define

If the value range of the sample data is [Min, Max], then the normalized expression of
linear function is

y = (x − Min)/(Max − Min) (10)

where x and y are the values before and after conversion, respectively; Max and Min are
the maximum and minimum values of samples, respectively.

The linear function normalization has the following properties: (1) the sample size
relation remains unchanged; (2) the relative distance of samples remains unchanged. The
variation trend of each physical quantity obtained by linear function normalization is
consistent with the original data curve, which can well reflect the key information such as
fluctuation and mutation points in the original data curve [44].

6.2. Analysis of Normalized Results

Based on the analysis of strain energy and infrared radiation characteristics of roadway
water inrush, it is found that dissipative energy ratio, AIRT, VSMIT, and IRCV are suitable
as the main parameters to predict roadway water inrush. In the practical application of
multiparameter joint monitoring of a roadway water inrush disaster, due to the differences
in the range and dimension of each parameter, and the different physical parameters in
different coordinate systems, it is not conducive to the rapid and intuitive identification
of the sequence of the occurrence of the abrupt point of each physical parameter, and this
also affects the analysis of the correlation between each physical parameter. Therefore, it is
necessary to normalize each parameter in order to comprehensively compare and analyze
the variation rule of each parameter in the same scale, which can provide a comprehensive
basis for the early warning of roadway water inrush disasters.

Figure 8 shows the normalized curves of stress, dissipated energy ratio, AIRT, VSMIT,
and IRCV with time collected in a laboratory experiment of sandstone roadway water
inrush. Based on the comprehensive analysis of all rock samples, it can be found that IRCV
mutation occurs at the stage of 0.55~0.65 TWI (TWI is the time of water inrush) in the
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middle loading stage, which is the early precursor of water inrush in a sandstone roadway
(as shown the EPWI in Figure 8). The dissipated energy ratio curve drops to the lowest
point with the increase of stress, which is the first middle precursor of roadway water
inrush (as shown by the FMPWI in Figure 8), and the early precursor is 20~33 s earlier
than the middle precursor one. As the loading continues, rock sample failure occurs and
accompanies the mutation of VSMIT, which is the second middle precursor of roadway
water inrush (as shown by SMPWI in Figure 8). Thereafter, the stress drops rapidly and
AIRT decreases abruptly at about 0.95~0.98 TWI after it decreases to residual strength. This
is the first precursor of roadway imminent water inrush (as shown by FPIWI in Figure 8),
corresponding to the sudden increase of VSMIT, which is the second precursor of imminent
water inrush (as shown by SPIWI in Figure 8), indicating that roadway water inrush may
occur at any time.
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7. Discussion

(1) Due to the nonlinear process of roadway water inrush, the complexity and diversity
of influencing factors, and the control of the accuracy of monitoring technology, the
prediction of roadway water inrush with a single parameter has great limitations. The
precursor of roadway water inrush cannot be accurately and effectively identified
in practical application, which may lead to the problem of false alarms or missed
alarms. The precursors of roadway water inrush can be identified more quickly
by the normalized treatment of each physical parameter in the process of roadway
water inrush. At the same time, the correlation between precursor information of
roadway water inrush was obtained. Comprehensively considering and analyzing the
precursors’ information for roadway water inrush and its correlation, the hierarchical
warning of a roadway water inrush disaster can be obtained and the accuracy and
reliability of roadway water inrush warning can be improved.

(2) AIRT reflects the whole infrared radiation intensity of the rock surface, but there may
be different heating and cooling zones in the process of rock loading and fracture
due to which the AIRT remains unchanged. The IRCV of rocks reflects the dispersion
degree of the original infrared radiation temperature, which has the advantage of
avoiding the unit of measurement of data and neglecting the influence of numerical
magnitude. Compared with AIRT index, IRCV can reflect the dispersion character-
istics of infrared radiation caused by temperature rise and temperature drop areas.
VSMIT reflects the dispersion degree of the difference in infrared radiation temper-
ature between two adjacent frames. Compared with IRCV index, it eliminates the
cumulative heating effect of loaded rock, and is easier to monitor the process of rock
failure, instability, and seepage. From the sensitivity of IRCV index to the unstable
crack development stage of rock, IRCV mutation was proposed as the early precursor
of roadway water inrush. Based on the feature that VSIMT can monitor rock failure,
the first mutation of VSIMT was proposed as the medium-term precursor of roadway
water inrush. Established from the characteristic that AIRT and VSIMT are sensitive
to water, the sudden drop of AIRT and the second mutation of VSIMT were proposed
as the precursor of roadway imminent water inrush. In this paper, combined with the
advantages of AIRT, IRCV, and VSMIT, the multiparameters precursory characteristics
of roadway water inrush were determined.

(3) Infrared observation technology is a promising new method for monitoring rock
samples, which has the advantages of noncontact and strong anti-interference, and can
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be used for monitoring and warning the stability of bearing rock and surrounding rock
of tunnels in underground engineering. Acoustic emission monitoring technology
can detect the time and location of a microfracture in a rock mass. Therefore, acoustic
emission monitoring (internal) and infrared radiation monitoring (external) should
be combined in subsequent roadway water inrush experiments and underground
engineering construction sites. Acoustic emission (AE) will be used to locate the water-
conducting fissure passage in the rock, and the change rules and coupling effects of the
stress field, infrared radiation temperature field, and seepage field before water inrush
in underground engineering will be studied in order to build a multifield coupling
model of “stress–temperature–seepage” of roadways based on infrared radiation and
reveal the mechanism of water inrush in underground engineering.

8. Conclusions

The forecast of highway water inrush with a single parameter has significant limits
because of the nonlinear nature of the roadway water inrush process, the complexity and
variety of contributing elements, and the control of the accuracy of monitoring equipment.
The issue of false alerts or missed alarms may arise from the inability to precisely and
efficiently identify the antecedent of highway water inrush in practical application. The
normalized treatment of each physical parameter in the process of highway water inrush
may help identify the antecedents of roadway water inrush more promptly. The association
between the precursor data of the highway water inrush was discovered concurrently. The
following conclusions were drawn:

(1) Dissipative energy ratio, AIRT, VSMIT, and IRCV are suitable as precursor indexes
for roadway water inrush prediction, and can be used to monitor and predict the
occurrence of roadway water inrush.

(2) The midterm mutation of IRCV can be used as the early precursor information of
roadway water inrush. The turning point of dissipation energy ratio from decreasing
to level and the sudden change of VSMIT during rock failure can be used as the
medium term precursor information of roadway water inrush. AIRT and VSMIT
mutation after rock failure can be used as precursor information of roadway imminent
water inrush.

(3) By using the normalization of linear function transformation to normalize the multi-
physical parameters in the process of roadway water inrush monitoring, this realizes
early warning for roadway water inrush as “early precursor–medium precursor–final
precursor”. In future research, we will select representative mining sections in coal
and rock mining damage areas, conduct infrared radiation observations at different
mining stages (damage states), compare and analyze onsite monitoring and labora-
tory test results, and establish a graded precursor warning based on onsite infrared
radiation data.
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Abstract: Scale effects on the mechanical behavior of rock joints have been extensively studied in
rocks and rock-like materials. However, limited attention has been paid to understanding scale
effects on the shear strength of rock joints in relation to normal stress σn applied to rock samples
under direct shear tests. In this research, a two-dimensional particle flow code (PFC2D) is adopted
to build a synthetic sandstone rock model with a standard joint roughness coefficient (JRC) profile.
The manufactured rock model, which is adjusted by the experiment data and tested by the empirical
Barton’s shear strength criterion, is then used to research scale effects on the shear strength of rock
joints caused by normal stresses. It is found that the failure type can be affected by JRC and σn.
Therefore, a scale effect index (SEI) that is equal to JRC plus two times σn (MPa) is proposed to
identify the types of shear failure. Overall, shearing off asperities is the main failure mechanism for
rock samples with SEI > 14, which leads to negative scale effects. It is also found that the degree
of scale effects on the shear strength of rock joints is more obvious at low normal stress conditions,
where σn < 2 MPa.

Keywords: rock joints; shear strength; scale effects; normal stress; JRC; PFC simulation

1. Introduction

Rock joints play an important role in the estimation of the shear strength of rock
masses [1–3]. Effective design of rock engineering projects, such as underground exca-
vations and open pit slopes, requires precise estimation of the shear strength of rock
joints [4–6]. However, it is well known that there is a scale effect on the shear strength of
rock joints [7–9]. The main difficulty in determining how the shear strength of rock joints
varies with scale is conducting expensive and time-consuming engineering scale in situ
testing [10]. Although laboratory scale tests on a small jointed sample cannot generate the
precise shear strength of rock joints, they can still reveal the mechanical behavior of jointed
rock masses [11]. Therefore, laboratory tests are widely used by researchers to investigate
how the shear strength of rock joints is affected by sample sizes. Table 1 presents a review
of scale effects on the shear strength of rock joints, which shows conflicting results. The
majority of results show that there is a negative scale effect on the shear strength, which
means the shear strength decreases with the increase of joint sizes. Some results [12,13]
show positive scale effects, which represent the shear strength increases when the joint size
increases. While other results [13–15] show no scale effects.

Scale effects on the shear strength of rock joints could be explained in different ways.
One explanation is that scale effects occur due to the contact area of joints changing with
the increase in joint size [16]. Pratt et al. [14] and Yoshinaka et al. [17] attributed the
decrease in shear strength to the smaller contact area of the sample where higher stress
was concentrated on these contact surfaces. The other explanation is that the scale effect
is associated with the change of undulations and asperities on a joint surface as joint
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size increases. A longer sample will result in higher undulation amplitude compared to
a smaller sample [18]. Barton and Choubey [19] concluded that the shear behavior of
larger rock samples is governed by larger and gentler asperities, while the steep and small
asperities are the controlling mechanism in smaller rock samples. Giani et al. [20] stated
that when the rock joint shear strength depends on the random distribution of asperity, it
will produce a positive scale effect. If the rock joint shear strength depends on wavy and
rough surfaces, then there is a negative scale effect. Therefore, more research is required to
determine the exact nature of the scale effect on the shear strength of joints.

Table 1. Review of scale effects on the shear strength of rock joints [21].

Authors Rock Types Sample Size Normal Stress (MPa) Scale Effect

Azinfar et al. [13] Silicon rubber 25–2500 cm2 0.3, 0.8, 1.4 O, N, P
Barton and Choubey [19] Granite 9.8 × 4.5, 45 × 50 cm 0.1–2 N
Bandis et al. [22] plaster 6–36 cm 1 N
Bahaaddini et al. [21] Sandstone 5–40 cm 0.5 N
Castelli et al. [23] Cement 100–400 cm2 0.75, 1.5, 3 N
Fardin [24] Concrete 5 × 5–20 × 20 cm2 1, 2.5, 5, 10 N
Hencher et al. [25] Limestone 44–531 cm2 0.0245 O
Johansson [26] Granite 36, 400 cm2 1 O
Ohnishi et al. [12] Concrete 100–1000 cm2 0.26–2.04 P
Pratt et al. [14] Quartz diorite 60, 142–5130 cm2 3 N
Ueng et al. [15] Cement 7.5–30 cm2 0.3, 0.6, 0.9 O, N
Vallier et al. [27] - 10–200 cm 2 N
Yoshinaka et al. [17] Granite 20–9600 cm2 0.26–2.04 N

“N” means negative scale effect; “P” means positive scale effect; “O” means no scale effect.

Based on the literature review, we noticed that the existing laboratory tests were
carried out under various normal stress conditions ranging from 0.0245 to 10 MPa, as
shown in Table 1. As we know, the failure mode of rock joints during the direct shear test
will be affected by the application of normal stresses. When rock samples are under high
normal stress conditions, the tips of asperities could be sheared off; therefore, the shear
strength would be relatively higher compared to rock samples that are under low normal
stress conditions where sliding is the controlling mechanism of rock failure.

Numerical simulations using the PFC are capable of simulating the asperity damage
and degradation process during the shearing tests [28]. It has been proven that the shear
strength results acquired from PFC modeling are typically comparable with experimental
test results [29]. Therefore, PFC simulations as an alternative to physical testing can be used
to reveal the fundamental mechanism of shear behavior of rock joints at various scales.

In this research, a synthetic rock model based on the two-dimensional particle flow
code (PFC2D)-based synthetic sandstone rock model is used to study the influence of
normal stress on scale effects on the shear strength of rock samples with standard joint
roughness coefficient (JRC) profiles, and attempts to answer two questions: (1) Are scale
effects on shear behavior affected by normal stresses? (2) What is the degree of scale effects
affected by normal stresses?

In this paper, the synthetic rock model for numerical tests is introduced in Section 2.
The verification of the synthetic rock model is shown in Section 3. Scale effect investigations
are presented and discussed in Sections 4 and 5.

2. Synthetic Rock Model for Numerical Tests
2.1. Synthetic Rock Model Based on PFC2D

PFC2D is a discrete element program. The bonded particle model (BPM), a composite
of rounded particles, simulates complete rock and does not require a continuum-scale
constitutive model to depict the mechanical behavior of intact rock [30]. The parallel
bond model, which can replicate the physical behavior of a substance similar to cement
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linking the two nearby particles, is one of the most fundamental and often used BPMs
in the PFC2D, as illustrated in Figure 1. Bond breaking reduces stiffness because contact
and bond stiffness both contribute to stiffness in a parallel bond model. While contact
stiffness is active as long as particles are in contact, bond stiffness is instantly gone when a
bond breaks [31]. Therefore, the parallel bond model is a more accurate bond model for
materials that resemble rocks, since it allows for the possibility of bonds breaking in tension
or shearing with a corresponding loss in stiffness.

Figure 1. Illustration of the parallel bond model.

On the other hand, by adding joints to a BPM assembly using the smooth joint
model (SJM), jointed rock masses can be created. The BPM’s original contact microscopic
characteristics will be replaced with SJM properties with the names friction coefficient µj,
shear stiffness ksj, and normal stiffness knj when the SJM is put into the BPM [32]. The
synthetic rock model constructed by the BPM and SJM has the ability to simulate various
mechanical responses of jointed rock masses including peak strength [31], scale effect [33],
anisotropy [34], and cracking processes [30,33] in rocks and rock-like materials.

The numerical direct shear test used in this research is presented in Figure 2. The
specimen (40 mm × 100 mm) is generated using the BPM. The rock joint is created using
the SJM. During the direct shear test, the upper block receives the normal force in a vertical
direction. The upper block is given a horizontal velocity of 0.03 m/s, while the lower block
is held in place.

Figure 2. Numerical direct shear test set up.
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2.2. Calibration of Numerical Models

In this study, the synthetic rock model was calibrated using laboratory data from
Australia’s Hawkesbury Sandstone [28]. Firstly, tests for uniaxial compression on rock
samples (42 mm × 84 mm) with a loading rate of 0.02 m/s were performed to determine the
BPM’s parameters after a calibration process [31] to ensure that the mechanical properties
of the synthetic rock model are close to laboratory data.

It should be mentioned that one of the key factors influencing the resilience of restricted
materials to deformation and strength, such as rocks and cemented soil, is the loading
rate [35–38]. In this research, we did not consider such loading rate effects on the mechanical
properties of jointed rocks.

Using the calibrated BPM parameters indicated in Table 2 to perform the uniaxial
compression test (Figure 3), the values of elastic modulus E, Poisson’s ratio v, and UCS
produced are comparable to experimental tests, as shown in Table 3.

Table 2. Micro-parameters of the BPM model.

Parameters Values

Minimum particle radius: Rmin (mm) 0.28
Maximum particle radius: Rmax (mm) 0.42

Stiffness ratio: kn/ ks 2.1
Effective modulus: Ec (GPa) 4.1

Bond tensile strength: Tb (MPa) 11.2
Bond friction angle: Φb (◦) 35

Cohesion: cb (MPa) 11.2
Friction coefficient: u 0.2

Porosity ratio: e 0.16

Figure 3. Numerical uniaxial compressive test.

Table 3. Comparison of mechanical properties calculated from the numerical model and tested
from laboratory.

Properties Parameters Laboratory Test PFC Model

Intact rock properties
UCS (MPa) 27.40 27.40

E (GPa) 4.20 4.20
ν 0.20 0.21

Joint properties
Kn (GPa/m) 28.6 28.6
Ks (GPa/m) 6.40 6.40

ϕb (◦) 37.60 36.10
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Then, synthetic rock models (40 mm × 100 mm) with planar joints were constructed.
The SJM has the following micro-parameters: friction coefficient µj, shear stiffness ksj,
and normal stiffness knj. In this research, the values of knj = 25 GPa, ksj = 13 GPa, and
µj = 0.75 were selected using the inverse-modeling calibration approach to ensure that
the numerical rock model can give a similar response as that from laboratory tests with
joint shear stiffness Ks = 6.4 GPa/m, normal stiffness Kn = 28.6 GPa/m, and joint friction
angle ϕb = 37.6◦. The calibration procedure was as follows: (1) The normal deformability
compression test was carried out to calibrate normal stiffness knj. (2) The shear test was
carried out to calibrate shear stiffness ksj under normal stress of 1 MPa condition. (3) Direct
shear tests were undertaken and friction coefficient µj was calibrated. Figures 2–4 present
the final mechanical responses of the synthetic rock models after the final calibration.

Figure 4. The normal deformability test on the synthetic rock specimen with a planar joint.

Figure 4 shows the axial stress-displacement curves of the synthetic rock speci-
men (40 mm × 100 mm) under the normal deformability test with the loading rate of
0.02 m/s. The value of joint normal stiffness Kn generated by the synthetic rock specimen
is 28.6 GPa/m, which is close to the laboratory test results with Kn = 28.8 GPa/m.

Figure 5 shows the shear stress-displacement curve of the synthetic rock model
(40 mm × 100 mm) with a planar joint under a direct shear test (loading rate of 0.03 m/s)
with the normal stress of 1 MPa. The value of joint shear stiffness Ks generated by the
synthetic rock specimen is 6.4 GPa/m, which is the same as laboratory test results with
Ks = 6.4 GPa/m.

Figure 5. The direct shear test on the synthetic rock specimen with a planar joint under normal stress
of 1 MPa.
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Figure 6 shows the failure envelope of the synthetic rock model (40 mm × 100 mm)
with a planar joint under direct shear tests. The value of joint friction angle ϕb generated by
the synthetic rock specimen is 36.1◦, which is close to laboratory test results with ϕb = 37.6◦.
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3. Validation of Synthetic Rock Models

To confirm the reliability of the synthetic rock model shown in Section 2, direct shear
tests on the synthetic rock models with 10 standard JRC profiles were performed and
the shear strength values produced from numerical simulations were compared to those
derived from Barton’s empirical shear strength model.

3.1. Barton’s Shear Strength Model

One of the most widely adopted empirical strength criteria for estimating rock joint
shear strength in rock engineering is the Barton’s shear strength criterion. Based on the
results of a large number of shearing tests on various rock joint profiles, Barton and his
co-workers [19,39] proposed an empirical equation to estimate the shear strength of rock
joints, as shown in Equation (1).

τ = σn tan
[

ϕb + JRC lg
(

JCS
σn

)]
(1)

where ϕb is the joint friction angle. JCS is the joint compression strength, which is equal to
UCS of intact rock in this research. JRC stands for joint roughness coefficient and can be
calculated using standard joint profiles.

3.2. Numerical Simulation Results

We performed extensive numerical direct shear experiments on synthetic rock models
with varied JRC profiles in normal stress levels between 0.5 and 5 MPa. The failure en-
velopes generated by direct shear tests on synthetic rock models were compared to the em-
pirical Barton’s shear strength criterion (Equation (1)) with ϕb = 36.1◦ and JCS = 27.4 MPa.
Figure 7 compares the shear strength obtained from numerical simulations to Barton’s
model, indicating that the usage of synthetic rock models is capable of generating adequate
shear strength of rock joints.
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Figure 7. Comparison failure envelopes obtained from numerical simulations and the Barton’s
empirical model.

4. Configuration of Rock Samples for Scale Effect Investigations

Two methods are widely used for investigating scale effects on the shear strength of
rock joints [15]. The first one is to divide a large rock joint into several smaller sizes of rock
joints, as shown in Figure 8a, which presents an example of the division of the Barton’s
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typical profile. The geometry characteristics or the values of JRC of smaller sizes of rock
joints can be different from that of the original larger rock joint. The other method is the
assembly of several repeated 100 mm profiles into larger rock joints many times the original
profile length, as shown in Figure 8b. The joint roughness or the value of JRC of assembly
samples is the same as that of the original joint surface.

Figure 8. Two types of configuration of samples for scale effect investigations (a) division of the
Barton’s JRC profile (b) assembly of repeated Barton’s JRC profile.

In fact, the scale effect on the shear strength of rock joints includes two factors, which
are the sample size itself and the geometrical characteristics of the joint surface. Rock
samples generated by the division method have various sample sizes and geometry charac-
teristics. However, the rock joints generated by the assembly method have various sample
sizes but have the same geometry characteristics. It is well known that the geometry
characteristics will affect the shear strength of rock joints [8]. Therefore, in this research, we
adopt the assembly of a repeated model that has the same geometry characteristics and
JRC values to research the influence of pure sample size on the shear strength of rock joints.

5. Results and Discussion

Once synthetic rock models were validated, a series of rock specimens with various JRC
profiles and different sizes (40 mm × 100 mm, 80 mm × 200 mm, and 120 mm × 300 mm)
were generated to study the effect of sample sizes on rock joint shear strength. The
shear strength values of different sizes of rock samples under given normal stresses were
calculated and are summarized in Figure 9.

In this research, the index k (see Equation (2)), which is the average slope of three
points, was used to identify the types of scale effects.

k =
N∑ xiyi − ∑ xi∑ yi

N
(
∑ x2

i
)
− (∑ xi)

2 (2)

where xi is the joint length of the rock sample, yi the shear stress of the rock sample, and N
is the number of the testing sample. k > 0 means the rock joint has a positive scale effect
and k < 0 means the rock joint has a negative scale effect. The value of k can be calculated
using three groups of data. For example, for rock samples with JRC = 2 under the normal
stress σn = 5 MPa, the shear strength of rock samples with joint lengths l = 100, 200, and
300 mm are 4.2, 4.4, and 4.6 MPa, respectively. Therefore, data (100, 4.2), (200, 4.4), and (300,
4.6) were put into Equation (2) to calculate the value of k. The result shows k = 0.4, which
means the scale effect is positive. Table 4 shows comprehensive scale effect results of rock
samples with various JRC profiles under different normal stress conditions. In Table 4, P
means positive scale effect and N means negative scale effect.

The results presented in Table 4 are also plotted in Figure 10. It is found that the
failure mode of rock joints during the direct shear test will be affected by the applying
normal stresses and the joint roughness. When rock samples under high normal stress
conditions, the tips of asperities with large joint roughness coefficient could be sheared
off, therefore, the number of shear crack is relatively higher compared with rock samples
with small joint roughness coefficients under low normal stress conditions where sliding is
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the controlling mechanism of rock failure. For example, when a rock sample with JRC = 2
under the normal stress σn = 0.5 MPa, the number of shear cracks is 10 and the scale effect is
positive. However, when a rock sample with JRC = 20 under the normal stress σn = 5 MPa,
the number of shear cracks is 280 and the scale effect is negative.
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Figure 9. Results of scale effects on the shear strength of rock samples under various normal
stress conditions.
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Table 4. Results of scale effects of shear strength of rock joints.

JRC
Normal Stress σn (MPa)

0.5 1 2 3 4 5

2 P3 P4 P6 P8 P10 P12
4 P5 P6 P8 P10 N12 N14
6 P7 P8 P10 P12 P14 N16
8 P9 P10 P12 N14 N16 N18

10 P11 P12 P14 N16 N18 N20
12 P13 P14 N16 N18 N20 N22
14 N15 N16 N18 N20 N22 N24
16 P17 P18 P20 P22 N24 N26
18 N19 P20 N22 N24 N26 N28
20 N21 N22 N24 N26 N28 N30

Figure 10. Failure pattern and crack number of rock samples (40 mm × 100 mm) at peak
shear strength.

Based on the results of Table 4, a scale effect index (SEI) which is equal to JRC plus
two times of normal stress (MPa), as shown in Equation (3), was proposed to identify the
types of scale effects.

SEI = JRC + 2σn (3)

The values of SEI for rock samples under different normal stress conditions are given
in Table 4. For example, for rock samples with JRC = 2 under the normal stress σn = 0.5 MPa,
the value of SEI = 2 + 2 × 0.5 = 3. The number P3 in Table 4 means the rock sample with
SEI = 3 has a positive scale effect. It was found that 20 out of 21 rock samples have negative
scale effects when SEI > 14, and 29 out of 33 rock samples have positive scale effects when
SEI < 14.

To find the possible reason why the use of SEI can identify the types of scale effects
on shear strength, we monitored the crack number generated in the synthetic rock sample
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when the stress reaches the peak strength during the direct shear tests. When the parallel
link between nearby particles in the PFC rock model is broken, a micro-tensile crack or
micro-shear crack can occur. Figure 10 shows the failure pattern corresponding to the shear
crack number of each rock sample when the shear stress reaches the peak strength. For
example, the S = 10 represents a shear crack number of 10 and T = 7 represents a tension
crack number of 7 for a sample with SEI = 3 (JRC = 2 and σn = 0.5 MPa). The relations
between SEI values and shear crack numbers of rock samples are also plotted in Figure 11.
We can find that the number of shear cracks is low when SEI < 14. However, the number of
shear cracks dramatically increases when the value of SEI is over 14, where the controlling
failure mechanism transforms sliding to shearing off asperities.
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Therefore, we can conclude that the results presented in Table 4 and Figure 11 show
that the proposed SEI is capable of identifying types of scale effects. When SEI < 14, sliding
over joints is the controlling mechanism of rock failure, which leads to positive scale effects;
however, shearing off asperities could be the controlling mechanism of rock failure for rock
samples with SEI > 14, which leads to negative scale effects.

On the other hand, to further identify the degree of scale effects, the coefficient of
variance (CV), which can calculate the value of Standard Deviation/Mean to quantify the
random influence of a bunch of data, was further used as a scale effect magnitude index to
quantify scale effects on shear strength of rock joints caused by normal stress conditions.
The calculation results are presented in Figure 12.
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Figure 12. The degree of scale effect caused by normal stresses.

It is found that, in general, the values of CV decrease with the increase of normal
stress. We also calculated the average value of CV for a given group of data. Figure 12
shows that the values of average CV decrease when the normal stress increases from 0.5 to
2.0 MPa, then, it tends to be stable with further increase of normal stresses, which means
the degree of scale effects on shear strength of rock joints is more obvious at low normal
stress conditions where σn < 2 MPa.
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Such a phenomenon can also be validated by the laboratory data published by
Fardin [24], who carried out a laboratory study of the scale effect on the shear strength
of concrete replicas with roughness joints. Laboratory test results are shown in Figure 13.
The CV values of samples under a specific normal stress condition were calculated and
are shown in Figure 14. The value of CV is up to 0.4 when σn = 1 MPa, then, it decreases
sharply to 0.14 when σn increases to 2 MPa. After that, there is a slight change in CV values
with a further increase of σn from 2 MPa to 10 MPa. Such change in CV values with normal
stresses is similar to that of the numerical results in Figure 12.

Sustainability 2023, 14, x FOR PEER REVIEW 12 of 15 
 

to quantify scale effects on shear strength of rock joints caused by normal stress 
conditions. The calculation results are presented in Figure 12.  

 
Figure 12. The degree of scale effect caused by normal stresses. 

It is found that, in general, the values of CV decrease with the increase of normal 
stress. We also calculated the average value of CV for a given group of data. Figure 12 
shows that the values of average CV decrease when the normal stress increases from 0.5 
to 2.0 MPa, then, it tends to be stable with further increase of normal stresses, which 
means the degree of scale effects on shear strength of rock joints is more obvious at low 
normal stress conditions where σn < 2 MPa. 

Such a phenomenon can also be validated by the laboratory data published by 
Fardin [24], who carried out a laboratory study of the scale effect on the shear strength of 
concrete replicas with roughness joints. Laboratory test results are shown in Figure 13. 
The CV values of samples under a specific normal stress condition were calculated and 
are shown in Figure 14. The value of CV is up to 0.4 when σn = 1 MPa, then, it decreases 
sharply to 0.14 when σn increases to 2 MPa. After that, there is a slight change in CV 
values with a further increase of σn from 2 MPa to 10 MPa. Such change in CV values with 
normal stresses is similar to that of the numerical results in Figure 12. 

 
Figure 13. Laboratory data of scale effect on shear stress of rock joints under various normal stress 
conditions (data from Fardin [24]). 

0.00

0.05

0.10

0.15

0.20

0.25

0 1 2 3 4 5 6 7

JRC = 2
JRC = 4
JRC = 6
JRC = 8
JRC = 10
JRC = 12
JRC = 14
JRC = 16
JRC = 18
JRC = 20
Average

Normal stress σn  (MPa)

CV

0

4

8

12

16

20

0 50 100 150 200 250

10MPa
5MPa
2.5MPa
1MPa

Rock sample size (mm)

Sh
ea

r s
tre

ss
(M

Pa
)

Figure 13. Laboratory data of scale effect on shear stress of rock joints under various normal stress
conditions (data from Fardin [24]).
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6. Conclusions

Synthetic rock models with standard JRC profiles were constructed in PFC2D to
investigate scale effects on the shear strength of rock joints under various normal stress
conditions. The capability of the synthetic rock model to simulate the shear behavior
of rock joints was tested by comparing numerical simulations with the Barton’s shear
strength criterion.

Once synthetic rock models were validated, a series of rock specimens of different
sizes (40 mm × 100 mm, 80 mm × 200 mm, and 120 mm × 300 mm) were generated to
investigate the influence of sample sizes on rock joint shear strength under normal stress
ranges from 0.5 to 5 MPa.

Numerical simulation results show that the types of scale effects could be affected
by the JRC profiles and normal stresses. Therefore, a scale effect index (SEI) that is equal
to JRC plus two times normal stress (MPa), as shown in Equation (3), was proposed to
identify the types of scale effects. It is found that for the rock sample with SEI < 14, sliding
over joints is the controlling mechanism of rock failure, which leads to positive scale effects.
However, shearing off asperities could be the controlling mechanism of rock failure for
rock samples with SEI > 14, which leads to negative scale effects.
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We also further investigated the influence of normal stress on the degree of scale effects
on the shear strength of rock joints. It is discovered that the degree of scale effect is more
obvious at low normal stresses conditions where σn < 2 MPa.

Finally, it should be noted that the finding of this research is based on the analysis
of test data of Australia Hawkesbury Sandstone. Therefore, the finding of this research
is open for further improvements as more shear strength data of various rock types be-
come available.
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Abstract: Conducting research on slope failure risk assessment is beneficial for the sustainable de-
velopment of slopes. There will be various failure modes considering both the randomness of the
groundwater level and soil shear strength parameters. Based on the integrated failure probability
(IFP), the traditional failure risk analysis needs to count all failure modes, including the failure
probability (Pf) and failure risk coefficient (C), one-by-one. A new slope failure risk assessment
method that uses the sum of the element failure risk to calculate the overall failure risk is proposed
in this paper and considers both the randomness of the groundwater level and soil shear strength
parameters. The element failure probability is determined by their location information and failure
situation; the element failure risk coefficient is determined by their area. It transforms the complex
overall failure risk problem into a simple element failure risk problem, which simplifies the calcu-
lation process and improves the calculation efficiency greatly. The correctness is verified with the
systematic analysis of a classical case. The results show that the slope failure probability and failure
risk are greatly increased from 1.40% to 3.30% and 0.829 m2 to 2.094 m2 with rising groundwater
level, respectively.

Keywords: failure risk; element failure probability; spatial variability; stochastic groundwater level;
upper bound method

1. Introduction

There are many factors that induce slope instability, among which the influences of
the mechanical parameters of soil mass and groundwater are particularly important [1].
Due to long-term geological actions, such as sedimentation, post-sedimentation, chemical
weathering, and physical denudation, the mechanical parameters of natural soil show
certain spatial variability, which affects both the safety performance and failure mode of
a slope. However, these effects are often ignored in practical engineering [2,3]. Ground-
water mainly affects the safety performance from two aspects: one is making the seepage
field change, affecting the stability performance; and the other is reducing shear strength
parameters, affecting the safety performance [4]. Generally, the groundwater level inside
the slope is not a certain value and is influenced by various uncertain factors. Therefore, it
is essential to establish a failure risk analysis model of soil slopes that considers both the
spatial variability and the stochasticity of the groundwater level so as to simulate the slope
more in line with the real situation and achieve sustainable development of the slope.

In recent years, the slope reliability problem under consideration of spatial variability
has received widespread attention by researchers. Using the limit equilibrium method
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(LEM), the probability density function (PDF) curve and cumulative probability density
function (CDF) curve of the safety factor can be acquired directly by first assuming the
sliding surface. However, the LEM only takes the one-dimensional spatial variability of
the soil material into account and ignores the impact outside the sliding surface on the
slope reliability. In addition, the LEM does not consider the constitutive relation of the
soil, so the stress–strain relationship cannot be acquired [5–11]. Using the finite element
method (FEM) without assuming the sliding surface, the constitutive relation and spatial
variability of materials can be fully considered so as to obtain more reasonable calculation
results compared with the LEM [12]. In addition, the FEM can analyze the stress–strain
development and progressive slope failure process, but the calculation cost is high [12–16].
Using the limit analysis method (LAM), the range of true solutions and corresponding
failure modes can be acquired efficiently and accurately with the upper bound method
(UBM) and lower bound method (LBM) [17–24]. Chen Zhaohui et al. combined the
stochastic FEM and LAM, taking the spatial variability into account for the slope reliability
analysis, and gave the strict frequency distribution range of the safety factor [25]. Peng Pu
et al. carried out a study on element failure probability and used affinity propagation (AP)
cluster analysis to obtain the failure modes of soil slope [26]. The above research greatly
promotes the application prospect of the LAM in slope reliability analysis; however, it is
not always reasonable to use only the failure probability to evaluate the slope. For example,
there are two failure modes of a slope, corresponding to shallow landslide (Pf1, C1) and
deep landslide (Pf2, C2). Pf1 is larger than Pf2, but C1 is smaller than C2, so which failure
mode has greater impact? To fully consider the impact of Pf and C, researchers proposed
the concept of slope failure risk (R) [27,28]. However, whether we use the LEM or FEM
to calculate the slope failure risk, the failure modes of the slope need to be identified and
counted first, and there is lower computational efficiency with large sample calculations.
Zhang Xiaoyan et al., using the slope safety factor and velocity field information to calculate
the element failure probability (EFP), provide a new idea for the calculation of slope failure
risk [29].

Currently, the groundwater level is usually defaulted at a certain value, and the limit
state function does not contain the groundwater level as a stochastic variable. However,
due to the stochastic distribution of soil particles and pores inside the slope, the seepage
field is uncertain. In addition, because of the uncertainty of the supply by precipitation,
surface runoff, underground confluence, and the discharge by evaporation and pumping,
the groundwater level is uncertain. It is well known that the groundwater level is directly
related to the seepage field, so the stochastic groundwater level will lead to the uncertainty
of the seepage field. In recent years, the research about the seepage field mainly focused
on the change in the permeability coefficient and paid less attention to the stochastic
groundwater level, which leads to the change in the seepage field [30,31]. In addition,
autocorrelation functions, such as exponential, Gaussian, logarithmic, and triangular, are
frequently applied to characterize the spatial variability of soil mass [32]. In view of
this, a slope failure risk assessment method that considers both the randomness of the
groundwater level and soil shear strength parameters is proposed in this paper to achieve
sustainable development.

2. Methodologies
2.1. Stable Seepage Field of Slope with Stochastic Groundwater Level

In this paper, a slope failure risk assessment that considers both the randomness of
the groundwater level and soil shear strength parameters is carried out. Figure 1 shows
the stochastic groundwater level model for soil slopes, which includes the velocity of the
triangular element, the model of the groundwater level distribution, the shear strength
parameters’ calculation, and the pore water pressure calculation. The soil mass is discretized
by the triangular element, so the three nodes of the element e have horizontal velocity ue

i
vertical velocity ve

i , cohesive force ce
i , friction angle ϕe

i , and pore water pressure pe
i , of which
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i = (1, 2, 3) and e = (1, . . . , Ne). In addition, there is discontinuity between element a and
element b. Nodes 1© and 2© belong to element a; Nodes 2© and 4© belong to element b.
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Figure 1. Stochastic groundwater level model for soil slope.

Similar to the literature [33], it is assumed that the stochastic groundwater level
Hw follows a truncated normal distribution, where Hmin

w is the left-truncated tail of the
stochastic groundwater level, Hmax

w is the right-truncated tail of the stochastic groundwater
level, and Hmean

w is the mean value of the stochastic groundwater level. In addition, this
article makes the following assumptions: (1) the seepage field is a saturated and stable
seepage field; (2) excess pore water pressure along with the effect on the soil shear strength
parameters caused by a sudden rise or drop of groundwater level are not considered;
(3) above the phreatic line, the pore water pressure is p = 0; and (4) below the phreatic line,
the pore water pressure is p = γh, of which γ is the volume weight of water, and h is the
vertical distance from the point on the phreatic line that is on the same equipotential line as
the calculation point to the calculation point. The two-dimensional stable seepage equation
is used for the seepage analysis [31]. The specific equation is as follows:

kx
∂2Hw

∂x2 + ky
∂2Hw

∂y2 = 0 (1)

where kx and ky are the permeability coefficient in the x and y direction, respectively; and
Hw is the stochastic groundwater head function at each point within the soil.

2.2. Stochastic Field of Parameter Spatial Variability

Considering that slope reliability is sensitive to autocorrelation length and insensitive
to the form of the autocorrelation function [34,35], this paper selects the exponential au-
tocorrelation function with a simpler mathematical expression for research, which can be
expressed with the following equation [35]:

ρ[(xa ,ya);(xb ,yb)]
= exp

[
−2
(

xa − xb
Lh

)
− 2
(

ya − yb
Lv

)]
(2)
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where xa, ya, xb, and yb are the coordinate components of the spatial coordinates; and Lh
and Lv are the fluctuation range in the x and y direction, respectively.

Due to the existence of certain mutual correlations between soil parameters and certain
autocorrelations of the soil parameters themselves thus involving the discrete process
of the associated non-Gaussian fields, this paper adopts a method similar to that of the
literature [35] using the midpoint method of Cholesky decomposition for the stochastic field
generation, and for the exponential autocorrelation functions, the associated logarithmic
stochastic field of the soil materials is as follows:

ce
i = exp(uln c + σln c · ceD

i ) (3)

ϕe
i = exp(uln ϕ + σln ϕ · ϕeD

i ) (4)

where ce
i and ϕe

i are the soil cohesion and internal friction angle of nodes i upon element
e in the non-Gaussian stochastic field, respectively; ceD

i and ϕeD
i are the soil cohesion

and internal friction angle of nodes i upon element e in the Gaussian stochastic field, re-

spectively; σln c =
√

ln(1 + (σc2/uc2)); σln ϕ =
√

ln(1 + (σϕ
2/uϕ

2)); uln c = ln uc− σln c
2/2;

uln ϕ = ln uϕ − σln ϕ
2/2; uc and σc are the mean and standard deviation of the log-normal

distribution of c, respectively; uϕ and σϕ are the mean and standard deviation of the log-
normal distribution of ϕ, respectively; uln c and σln c are the mean and standard deviation
of the corresponding normal variable of ln c, respectively; and uln ϕ and σln ϕ are the mean
and standard deviation of the corresponding normal variable of ln ϕ, respectively.

2.3. Stochastic Programming Model

Sloan et al. [20] discretized the soil mass with triangular elements (as shown in Figure 1)
and constructed the kinematically admissible velocity fields (KAVF). It is easy to discern
from the UBM that the KAVF is one-to-one, corresponding to the external load, where
the minimum is infinitely close to the limit load; therefore, the UBM can be understood
for solving the minimization problem. On the basis of previous studies [20,26,29,36], the
stochastic programming model that considers both the randomness of the groundwater
level and soil shear strength parameters established in this paper is as follows:





Z = km − 1
Minimize : kγ = We + Wd −Wp

e −Wp
d

Subject to : a1
e ue − a2

e χe = 0
a1

dud − a2
dχd = 0

abub = 0
WG = 1; χe ≥ 0; χd ≥ 0

(5)

where Z is the limit state function; km and kγ are the safety factor and volume weight over-
load factor, respectively; χe and χd are the plastic multiplier of finite element e and node d,
respectively; a1

e , a2
e and a1

d, a2
d are the plastic flow constraint matrix of the finite element e

and velocity discontinuity d, respectively; ue =
[
ue

1 ve
1 ue

2 ve
2 ue

3 ve
3
]T , of which ue

i
and ve

i are the horizontal and vertical velocity components of nodes i upon element e, respec-

tively; ud =
[
ud

1 vd
1 ud

2 vd
2 ud

3 vd
3 ud

4 vd
4
]T , of which ud

i and vd
i are the horizontal

and vertical velocity components of nodes i upon velocity discontinuity d, respectively;

ab =

[
cos θ sin θ
− sin θ cos θ

]
, of which θ is the rotation angle; ub =

[
ub

1 vb
1 K K ub

j vb
j

]
,

of which ub
j and vb

j are the horizontal and vertical velocity components on the boundary,
respectively; We and Wd are the internal power of finite element e and velocity disconti-
nuity d, respectively; Wp

e and Wp
d are the external power of finite element e and velocity

discontinuity d, respectively; and WG is the external power of self-weight [20].
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3. Solution Strategy

The a2
e , a2

d, We, Wd, Wp
e , and Wp

d matrices in Equation (5) are all associated with
the groundwater level as well as the shear strength parameters. Currently, there is no
better method for solving this kind of problem; in view of this, on the basis of the Monte
Carlo simulation, an iterative method is proposed for solving this issue. The detailed
implementation process is as follows:

(1) Assuming that the stochastic groundwater level follows a truncated normal distribu-
tion, which is generated with the Monte Carlo simulation method:

{
Hw(Tw) = Random(Normal, µw, σw, 1, Nw)
Hmin

w ≤ Hw(Tw) ≤ Hmax
w

(6)

where Hw(Tw) is the Twth groundwater level; Tw = (1, . . . , Nw), Nw is the number
of groundwater level; and µw and σw are the mean and standard deviation of the
groundwater level, respectively.

(2) Assuming that the autocorrelation functions of the soil materials are exponential type,
using Equations (3) and (4), the midpoint method of Cholesky decomposition for the
stochastic field generation ce(Tm) and ϕe(Tm), of which Tm = (1, . . . , Nm); Nm is the
number of random fields for the shear strength parameters.

In this paper, the slope is allowed to reach the limit state by means of capacitive
overload, and the capacitive overload factor of the slope when taking the parameters’
spatial variability into account under the effect of the stochastic groundwater level is
as follows:

kγ(Tm, Tw) =
γc(ce(Tm), ϕe(Tm), Hw(Tw))

γa
(7)

where kγ(Tm, Tw) is the capacitive overload factor; γc(ce(Tm), ϕe(Tm), Hw(Tw)) is the ca-
pacity of the soil in the ultimate state, which is related to ce(Tm), ϕe(Tm), and Hw(Tw); and
γa is the actual capacity of the soil.

The slope safety factor when taking the parameters’ spatial variability into account
under the effects of the stochastic groundwater level is as follows:

km(Tm, Tw) =
ce(Tm)

c′e(Tm)
=

ϕe(Tm)

ϕ′e(Tm)
(8)

where km(Tm, Tw) is the safety factor; and c′e(Tm) and ϕ′e(Tm) are the cohesion and internal
friction angle of finite element e in the Tmth non-Gaussian stochastic field after the strength
reduction, respectively.

(3) The stochastic number of Tw groundwater levels generated in step (1) is substituted
into the stable seepage field calculation equation to obtain the pore water pressure
pe

1(Tw), pe
2(Tw), pe

3(Tw); e = (1, . . . , Ne); Tw = (1, . . . , Nw).
(4) From Tw = 1 to Tw = Nw cycles, repeat pe

1(Tw), pe
2(Tw), pe

3(Tw), all the finite ele-
ment nodes’ pore water pressure values are successively replaced with the stochastic
programming model for the slope reliability analysis; in each cycle from Tw = 1
to Tw = Nw; ce(Tm), ϕe(Tm) from Tm = 1 to Tm = Nm cycles, the number of Nm
stochastic fields are brought into Equation (5) and use the dual simplex method to
obtain Nw × Nm numbers of capacity overload factors [kγ(Tm, Tw)] while, at the same
time, use the bisection method to obtain Nw × Nm numbers of the slope safety factor
[km(Tm, Tw)]. Figure 2 shows the specific numerical solution flow.

(5) Calculation of the slope safety factor and plot the related curve.
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4. Reliability Index for Slope

The traditional IFP uses the threshold value of the safety factor to determine whether
the slope will fail or not and then conducts the slope reliability analysis accordingly [28].
Based on the IFP, the slope failure function is as follows:

I(Tm, Tw) =

{
0, if km(Tm, Tw) ≥ 1
1, if km(Tm, Tw) < 1

(9)

where I(Tm, Tw) is the failure function of the slope corresponding to the Tmth stochastic
field under Twth groundwater level acts.

According to the Equation (8) slope failure function, the IFP under Twth groundwater
level acts can be acquired as follows:

PIFP
f (Tw) =

Nm
∑

Tm=1
I(Tm, Tw)

Nm
× 100% (10)

where PIFP
f (Tw) is the IFP of the slope under Twth groundwater level acts.

Further, the IFP of the slope is as follows:

PIFP
f =

Nw

∑
Tw=1

PIFP
f (Tw) (11)

where PIFP
f is the IFP of the slope under all potential groundwater level acts.
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The integrated failure risk (IFR) of the slope under Twth groundwater level acts is
as follows:

RIFP(Tw) = PIFP
f (Tw)C (12)

where RIFP(Tw) is the IFR of the slope under Twth groundwater level acts, and C is the area
of the slope failure mode.

Based on the IFP, the IFR of the slope is calculated as follows [27,28]:

RIFP =
Nw

∑
Tw=1

RIFP(Tw) (13)

where RIFP is the IFR of the slope.
The Equation (13) default is that only one failure mode exists when conducting the

slope failure risk analysis, which is contrary to the fact that slopes have multiple failure
modes, considering both the randomness of the groundwater level and soil shear strength
parameters. For that reason, Huang et al. [37] gave a calculation equation, which considered
all failure modes of the slope simultaneously as follows:

RIFP
k (Tw) = PIFP

f k (Tw)Ck (14)

where RIFP
k (Tw) is the IFR of the kth failure mode of the slope under Twth groundwater

level acts; PIFP
f k (tw) is the IFP of the kth failure mode of the slope under Twth groundwater

level acts; and Ck is the area of the kth slope failure mode.
The IFR of the slope is as follows:

RIFP =
Nw

∑
Tw=1

N

∑
k=1

RIFP
k (Tw) (15)

Compared with Equations (13) and (15), it can perform both single and multiple
failure mode slope risk assessments; however, both the LEM and FEM require prior work
on complex failure mode classification. Zhang Xiaoyan et al. [29] proposed a new concept
of EFP on the basis of the UBM. They used the slope safety factor and the KVAF to judge
the failure elements. The failure function, considering the stochasticity of the groundwater
level and spatial variability of soil material, is as follows:

Ie(Tm, Tw) =





0 if km(Tm, Tw) ≥ 1
0 if ue

c(Tm, Tw) =0 and km(Tm, Tw) < 1
1 if ue

c(Tm, Tw) > 0 and km(Tm, Tw) < 1
(16)

where Ie(Tm, Tw) is the failure function of the element e corresponding to the Tmth stochastic
field under Twth groundwater level acts, and ue

c(Tm, Tw) is the velocity of the element e
corresponding to the Tmth stochastic field under Twth groundwater level acts.

ue
c(Tm, Tw) =

√√√√(
3

∑
i=1

ue
i (Tm, Tw)

3
)

2

+ (
3

∑
i=1

ve
i (Tm, Tw)

3
)

2

(17)

where ue
i (Tm, Tw) is the horizontal velocity component of nodes i upon element e corre-

sponding to the Tmth stochastic field under Twth groundwater level acts, and ve
i (Tm, Tw)

is the vertical velocity component of nodes i upon element e corresponding to the Tmth
stochastic field under Twth groundwater level acts.
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According to the slope element failure function in Equation (16), the slope element
failure probability (EFP) under Twth groundwater level acts is as follows:

PEFP
f e (Tw) =

Nm
∑

Tm=1
Ie(Tm, Tw)

Nm
× 100% (18)

where PEFP
f e (Tw) is the EFP under Twth groundwater level acts.

The slope EFP under all potential groundwater level acts is as follows:

PEFP
f e =

Nw
∑

Tw=1

Nm
∑

Tm=1
Ie(Tm, Tw)

Nw × Nm
× 100% (19)

The element failure risk (EFR) of the slope under Twth groundwater level acts is
as follows:

REFP
e (Tw) = PEFP

f e (Tw)Ce (20)

where REFP
e (Tw) is the failure risk of element e under Twth groundwater level acts, and Ce

is the area of element e.
The element failure risk (EFR) of the slope under all potential groundwater level acts

is as follows:

REFP
e =

Nw

∑
Tw=1

REFP
e (Tw) (21)

where REFP
e is the failure risk of element e under all potential groundwater level acts.

The IFR based on the EFP of the slope under Twth groundwater level acts is calculated
in the following equation [20]:

REFP(Tw) =
Ne

∑
e=1

REFP
e (Tw) (22)

where REFP(Tw) is the IFR under Twth groundwater level acts.
The IFR based on the EFP of the slope under all potential groundwater level acts is

calculated in the following equation:

REFP =
Nw

∑
Tw=1

REFP(Tw) (23)

where REFP is the IFR under all potential groundwater level acts.
A new slope failure risk assessment under consideration of the stochastic groundwater

level involves EFP and Ce. The EFP can be easily obtained by solving the stochastic
programming model, and Ce is the area of element e, which is constant compared to Ck.

According to the solution strategy of the stochastic programming model, the Nw × Nm
slope safety factors km(Tm, Tw) can be easily acquired. Using statistical knowledge, the
mean and standard deviation of the slope safety factor can be calculated as follows:

µk(Tw) =

Nm
∑

Tm=1
km(Tm, Tw)

Nm
(24)

µk =

Nw
∑

Tw=1

Nm
∑

Tm=1
km(Tm, Tw)

(Nw × Nm)
(25)
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σk(Tw) =

√√√√√
Nm
∑

Tm=1
(km(Tm, Tw)− µk(Tw))

Nm − 1
(26)

σk =

√√√√√
Nw
∑

Tw=1

Nm
∑

Tm=1
(km(Tm, Tw)− µk)

Nw × Nm − 1
(27)

where Tw = (1, . . . , Nw); µk(Tw) and σk(Tw) are the mean and standard deviation of the
slope safety factor under Twth groundwater level acts, respectively; and µk and σk are the
mean and standard deviation of the slope safety factor under all potential groundwater
level acts, respectively.

5. Calibration and Application

The UBM program is compiled, and a classic slope calculation example is calculated
and analyzed. Comparing the result with the calculation result of the LEM, we verified the
correctness of the calculation method.

5.1. Numerical Simulations

Figure 3 shows the homogeneous slope calculation model. The height is 5 m, the
width of the top is 10 m, and the ratio is 1:2. Li Dian qing et al. have calculated the failure
probability of the slope [35] but have not conducted systematic research on the slope failure
risk. In view of this, on the basis of the method proposed in this paper, the slope failure
risk is studied. Using the triangular element to discretize the slope, 989 finite elements,
2967 nodes, and 1536 discontinuities are acquired. In addition, there are three pore water
pressure monitoring points: P1 (5,5), P2 (10,5), and P3 (15,5). The set soil volume weight
γ is 20.0 kN/m3, and the permeability coefficient is K = 5× 10−7m/s, both of which are
determined values. See Table 1 for the other calculation parameters [26].
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where (1,..., )w wT N=  ; ( )k wTμ   and ( )k wTσ   are the mean and standard deviation of the 
slope safety factor under wT th groundwater level acts, respectively; and kμ  and kσ  are 
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Figure 3. Homogeneous slope calculation model.

Table 1. Statistics of the soil parameters.

Shear Parameter Mean Correlation of Variation Distribution Type Fluctuation Range Correlation Coefficient

c(kPa) 10 0.3 Lognormal Lh = 40 m
Lv = 4 m

ρc,ϕ = −0.5
ϕ(◦) 30 0.2 Lognormal

The mean and standard deviation of the stochastic groundwater level is 7.5 m and
2.25, respectively, on the basis of the measured groundwater in many projects. The upper
boundary of the groundwater level is 8.5 m. The lower boundary of the groundwater level
is 6.5 m. The quantity of the stochastic groundwater levels is 50. The groundwater level at
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the right slope toe is 5 m. According to Equation (6), 50 stochastic numbers of groundwater
levels are generated, and their distribution is shown in Figure 4. The stochastic number
distribution of the groundwater is relatively close to the mean value of the groundwater
level, and relatively small near the relatively high and low groundwater levels.
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Figure 4. Stochastic groundwater levels distribution histogram.

Figure 5a–c shows the slope stable seepage fields when Tw = 1 (Hw = 6.8006 m),
Tw = 25 (Hw = 7.4848 m), and Tw = 50 (Hw = 8.1951 m), respectively. It can be observed
that the contours of the pore water pressure become steeper, and the saturated area inside
the slope increases as the groundwater level rises. Figure 6 shows the key points pore
water pressure. Under the same groundwater level act, the pore water pressure decreases
gradually as the coordinates of the key points move to the right. At P1, the mean and
standard deviation of the pore water pressure are −19.77 kPa and 2.31 kPa, respectively.
At P2, the mean and standard deviation of the pore water pressure are −14.59 kPa and
1.78 kPa, respectively. At P3, the mean and standard deviation of the pore water pressure
are −8.94 kPa and 1.13 kPa, respectively.
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Figure 6. The key points pore water pressure.

Assuming that the autocorrelation functions of the soil materials are exponential
type, we used the midpoint method of Cholesky decomposition for the stochastic field
generation. The quantity of the stochastic fields of the soil parameters is 2000; according
to Equations (3) and (4), 2000 stochastic fields of the slope shear strength parameters are
generated. Figure 7a,b shows the stochastic fields of ce(500) and ϕe(500), respectively. The
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maximum value of soil cohesion and internal friction angle are 18.9084 kPa and 23.3219◦,
respectively; The minimum value of soil cohesion and internal friction angle are 3.1696 kPa
and 9.5851◦, respectively. In addition, soil cohesion has a certain negative correlation with
internal friction angle in space.
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5.2. Main Results of the Research

This paper selects low, medium, and high groundwater levels (Tw = 1, Tw = 25, and
Tw = 50) for comparative analysis to verify the effectiveness of the calculation method.
Table 2 shows the calculation results of the reliability index comparison between the UBM
and LEM under three groundwater level acts: Tw = 1, Tw = 25, and Tw = 50. Figure 8
shows the distribution characteristics of the slope safety factor under three groundwater
level acts. Figure 9 shows the distribution histograms of the slope safety factor under three
groundwater level acts.

Table 2. Calculation results of the reliability index.

Groundwater Level Method Mean Standard Deviation Failure Probability (%)

Tw = 1
UBM 1.2956 0.1420 1.40
LEM 1.2923 0.1488 1.90

Tw = 25
UBM 1.2678 0.1394 2.10
LEM 1.2622 0.1461 2.70

Tw = 50
UBM 1.2357 0.1365 3.30
LEM 1.2310 0.1432 4.65

216



Sustainability 2023, 15, 7464

Sustainability 2023, 15, x FOR PEER REVIEW 14 of 26 
 

 

with the UBM must be greater than the real solution. Therefore, the UBM will slightly 
underestimate the failure slope probability. 

(2) Figure 8a,b shows the PDF and CDF curves of the slope safety factors acquired with 
the UBM and LEM under three groundwater level acts, =1wT , =25wT , and =50wT , 
respectively. It is not difficult to see that the PDF and CDF curves of the slope safety 
factors acquired with the UBM and LEM are very close with small errors. In addition, 
the PDF and CDF curves gradually move to the left as the groundwater level rises. 

(3) Figure 9a–c are the distribution histograms of the slope safety factors acquired with 
the UBM under the three groundwater level acts, =1wT , =25wT , and =50wT , respec-
tively. It is not difficult to see that the distribution of the slope safety factors is similar 
to the stochastic groundwater levels. 

 
Figure 8. Distribution characteristics of the slope safety factors: (a) PDF curve of the safety factor; 
(b) CDF curve of the safety factor. 

Figure 8. Distribution characteristics of the slope safety factors: (a) PDF curve of the safety factor;
(b) CDF curve of the safety factor.

The calculation results show the following:

(1) When Tw = 1, Tw = 25, and Tw = 50, the mean of the slope safety factors with
the UBM is larger than that of the LEM, but the error is small, which conforms
to the features of the upper bound solution. In addition, the slope safety factors
acquired with the UBM and LEM methods decrease as the groundwater level rises.
The slope failure probability increases acquired with the UBM and LEM decrease as
the groundwater level rises. On the basis of the upper bound theorem, the slope safety
factor acquired with the UBM must be greater than the real solution. Therefore, the
UBM will slightly underestimate the failure slope probability.

(2) Figure 8a,b shows the PDF and CDF curves of the slope safety factors acquired with
the UBM and LEM under three groundwater level acts, Tw = 1, Tw = 25, and Tw = 50,
respectively. It is not difficult to see that the PDF and CDF curves of the slope safety
factors acquired with the UBM and LEM are very close with small errors. In addition,
the PDF and CDF curves gradually move to the left as the groundwater level rises.

(3) Figure 9a–c are the distribution histograms of the slope safety factors acquired with
the UBM under the three groundwater level acts, Tw = 1, Tw = 25, and Tw = 50,
respectively. It is not difficult to see that the distribution of the slope safety factors is
similar to the stochastic groundwater levels.
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On the basis of the stochastic programming model and solution strategy, the quantity
of 100,000 slope safety factors was acquired. Figures 10 and 11 are the number of 50 PDF
and CDF curves of the slope safety factors, respectively. Figure 12 reflects the mean and
standard deviation of the slope safety factors versus the groundwater level. Figure 13
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shows the PDF and CDF curves of the slope safety factors under all potential groundwater
level acts acquired. The following rules can be acquired through analysis:

(1) The distribution of the slope safety factors is consistent with the normal distribution.
The mean of the slope safety factors tends to decrease as the groundwater level rises.
The PDF and CDF curves of the slope safety factors gradually move to the left as
the groundwater level rises. In addition, the standard deviation of the slope safety
factor tends to decrease as the groundwater level rises. The range of the PDF curve
and the trend of the CDF curve of the slope safety factors gradually narrow and
steepen, respectively.

(2) A polynomial fit is used to acquire the quantitative equation of the mean and standard
deviation of the slope safety factors and groundwater level as follows:

uk(Tw) = −0.0439Hw + 1.5963 (28)

σk(Tw) = −0.0039Hw + 0.1685 (29)

(3) The quantity of 100,000 slope safety factors was acquired from 2000 stochastic fields
under 50 groundwater level acts to perform the statistical analysis of all the acquired
data; under 50 groundwater level acts, the mean and standard deviation of the slope
safety factors are 1.2664 and 0.11, respectively.
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Based on 100,000 Monte Carlo simulations of the slope, the LEM default is that only
one failure mode exists (as shown in the LEM sliding surface in Figure 14). The biggest
advantage of the UBM compared with the LEM in this paper is that all slope failure modes
can be captured according to the failure information of the elements (as shown in the pink
failure area in Figure 14) and then the reliability index for the slope can be calculated.
Similar to the method in reference 37, the failure areas were used to classify the failure
modes; there are six failure modes of the slope under 50 groundwater level acts (as shown
in Figure 14). Table 3 lists the failure risk of the above six slope failure modes. Table 4 lists
the failure risk corresponding to the failure modes when Tw = 1, Tw = 25, and Tw = 50.
The results show that failure modes 1 and 2 have a small failure area that belongs to a
shallow landslide, and the failure area is between 28.68 and 58.91 m2 (failure times is 997).
Failure modes 5 and 6 have a large failure area that belongs to a deep landslide, and the
failure area is between 89.17 and 119.38 m2 (failure times is 160). Failure modes 3 and 4 are
between a shallow landslide and a deep landslide, and the failure area is between 58.91 and
89.04 m2 (failure times is 989). When the groundwater level is Tw = 1, the slope has only
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five failure modes; when the groundwater level is Tw = 25 and Tw = 50, the fifth failure
modes occur. The phreatic line moves up, correspondingly, and the saturated area inside
the slope increases as the groundwater level rises, thus increasing the probability of the
failure mode.
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Table 3. Failure risk of the slope.

Failure Mode Failure Area (m2) Failure Times Failure Probability (%) Failure Risk (m2)

Mode 1 28.68–43.70 246 0.246 0.097
Mode 2 43.81–58.91 751 0.751 0.384
Mode 3 58.91–73.96 768 0.768 0.508
Mode 4 74.21–89.04 221 0.221 0.180
Mode 5 89.17–103.70 88 0.088 0.081
Mode 6 106.71–119.38 72 0.072 0.081

Sum / 2146 2.146 1.332

The failure mode acquired with the LEM is only consistent with failure mode 3 in this
paper. The main reason is that, when the LEM is adopted to calculate the slope safety factor,
the initial slip surface is assumed in advance, then a constantly repeated search based on
the mean of the shear parameters to acquire the critical slip crack surface is performed, and
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then the slope safety factor is calculated based on the unique critical slip surface. Thus, a
difference exists between the critical slip surface obtained with the LEM and the actual slip
surface. The UBM constructs a stochastic programming model through finite elements, and
then uses the method of stochastic mathematical programming to search the instability area
of the slope, so the result is more in line with the real situation. The calculation indicates
that the traditional LEM will ignore some failure modes and may miscalculate the slope
failure risk, considering both the randomness of the groundwater level and soil shear
strength parameters. The UBM can ignore the constitutive relation of the materials and
acquire the slope safety factor and failure modes. Its applicability and calculation efficiency
are both high.

Table 4. Failure risk of the slope when Tw = 1, Tw = 25, and Tw = 50.

Groundwater Level Failure Mode Failure Times Failure Probability (%) Failure Risk (m2)

Tw = 1

Mode 1 3 0.15 0.057
Mode 2 13 0.65 0.334
Mode 3 10 0.50 0.342
Mode 4 1 0.05 0.038
Mode 6 1 0.05 0.057

Tw = 25

Mode 1 5 0.25 0.096
Mode 2 14 0.70 0.366
Mode 3 16 0.80 0.528
Mode 4 5 0.25 0.210
Mode 5 1 0.05 0.045
Mode 6 1 0.05 0.056

Tw = 50

Mode 1 8 0.40 0.160
Mode 2 19 0.95 0.490
Mode 3 24 1.20 0.793
Mode 4 11 0.55 0.445
Mode 5 2 0.10 0.091
Mode 6 2 0.10 0.115

Table 5 is the statistical table of the slope failure risk acquired with the three methods.
The LEM default is that only one failure mode exists when Tw = 1, Tw = 25, and Tw = 50;
the slope failure risk according to the LEM with Equation (12) is 1.121 m2, 1.593 m2, and
2.325 m2, respectively. All failure modes can be acquired with the UBM. When Tw = 1,
Tw = 25, and Tw = 50, the slope failure risk according to the UBM with Equation (14) and
the UBM Equation (22) are 0.829 m2, 1.302 m2, and 2.094 m2, respectively. It should be
noted that Equation (14) has a difference calculation principle from Equation (22). All slope
failure modes are required to be counted when Equation (14) is used to calculate the slope
failure risk; the EFP for all elements is easy to acquire by solving Equation (5), and the
element area is fixed when using Equation (22) to calculate the slope failure risk. From the
calculation principle, the proposed method will simplify the calculation process and make
the calculation more efficient.

Table 5. Failure risk statistical table of the slope (Unit: m2).

Groundwater
Method

LEM with Equation (12) UBM with Equation (14) UBM with Equation (22)

Tw = 1 1.121 0.829 0.829

Tw = 25 1.593 1.302 1.302

Tw = 50 2.325 2.094 2.094
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The EFP of the slope under Twth groundwater level acts when Tw = 1, Tw = 25, and
Tw = 50 obtained with Equation (18) is shown in Figure 15. The EFP of the slope under all
potential groundwater level acts obtained with Equation (19) is shown in Figure 16. It can
be observed that the groundwater level influences the EFP of the slope. The white area in
the figure is the non-failure element, and the blue area is the failure element. In addition,
according to the theory of EFP, the darker the color, the greater the EFP.
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The EFR of the slope under Twth groundwater level acts when Tw = 1, Tw = 25, and
Tw = 50 obtained with Equation (20) is shown in Figure 17. The EFR of the slope under
all potential groundwater level acts obtained with Equation (21) is shown in Figure 18. It
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can be observed that the groundwater level influences the EFR of the slope. When Tw = 1,
the frequency of EFR between 0 and 0.00062 m2 is 675, the frequency of EFR between
0.00062 and 0.00124 m2 is 36, the frequency of EFR between 0.00124 and 0.00186 m2 is 58,
the frequency of EFR between 0.00186 and 0.00248 m2 is 69, the frequency of EFR between
0.00248 and 0.00310 m2 is 140, the frequency of EFR between 0.00310 and 0.00372 m2 is
11, and the slope failure risk is 0.829 m2. When Tw = 25, the frequency of EFR between
0 and 0.00082 m2 is 670, the frequency of EFR between 0.00082 and 0.00164 m2 is 32, the
frequency of EFR between 0.00164 and 0.00246 m2 is 54, the frequency of EFR between
0.00246 and 0.00328 m2 is 56, the frequency of EFR between 0.00328 and 0.00410 m2 is
165, the frequency of EFR between 0.00410 and 0.00492 m2 is 12, and the slope failure risk
is 1.302 m2. When Tw = 50, the frequency of EFR between 0 and 0.00150 m2 is 666, the
frequency of EFR between 0.00150 and 0.00300 m2 is 41, the frequency of EFR between
0.00300 and 0.00450 m2 is 48, the frequency of EFR between 0.00450 and 0.00600 m2 is 62,
the frequency of EFR between 0.00600 and 0.00750 m2 is 158, and the frequency of EFR
between 0.00750 and 0.00900 m2 is 14. Under all potential groundwater level acts, the
frequency of EFR between 0 and 0.04820 m2 is 674, the frequency of EFR between 0.04820
and 0.09640 m2 is 30, and the frequency of EFR between 0.09640 and 0.14460 m2 is 57. The
frequency of EFR between 0.014460 and 0.19280 m2 is 59, the frequency of EFR between
0.19280 and 0.24100 m2 is 157, the frequency of EFR between 0.24100 and 0.28892 m2 is 12,
and the slope failure risk is 2.094 m2. The element failure risk comprehensively reflects
the contribution of the EFP and the element failure risk coefficient, which can make a
quantitative judgment on the slope failure risk of each part. The slope failure risk is 1.332
m2, obtained by the sum of all element failure risks. It is observed that the slope failure risk
assessment method proposed in this paper can avoid the screening and statistical work of
failure modes compared with the failure risk calculation results in Table 3.
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The safety performance decreases, and the IFP of the slope increases from 1.40% to
3.30% with the gradual increase in the groundwater level. Through cubic polynomial
fitting, the IFP of the slope versus the groundwater level acquired (as shown in Figure 19)
is as follows:

PIFP
f (Tw) = 0.5271H3

w − 11.2957H2
w + 81.5794Hw − 196.7446 (30)

The EFR of the slope increases from 0.829 m2 to 2.094 m2 with the gradual increase in
the groundwater level. Through cubic polynomial fitting, the EFR of the slope versus the
groundwater level acquired (as shown in Figure 20) is as follows:

REFP(Tw) = 0.1251H3
w − 2.4622H2

w + 16.6665Hw − 37.9602 (31)
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6. Conclusions

A slope failure risk assessment method that considers both the randomness of the
groundwater level and soil shear strength parameters is proposed in this paper. The
corresponding calculation program is compiled. The major conclusions are the following:

(1) When the randomness of the groundwater level and soil shear strength parameters
are considered comprehensively, the traditional LEM will ignore multiple failure
modes and may miscalculate the slope failure risk. However, all failure modes can be
acquired with the UBM for seeking the minimum value of the KAVF. Thus, the result
is more consistent with the real situation. In addition, the traditional LEM only judges
the slope stability by the safety factor, which only reflects the degree of the IPF. The
EFP is used to calculate the EFR of the slope, which cannot only reflect the degree of
the IFP but, also, the slope failure risk can be accurately acquired. It should be noted
that this calculation method can greatly reduce the calculation cost.

(2) The IFP and EFR of the slope are increasing from 1.40% to 3.30% and 0.829 m2 to
2.094 m2 with the rise of the groundwater level, respectively. Based on the EFP, the
proposed method can accurately obtain the EFR of the slope under each groundwater
level act by using the element’s location information and failure situation. This will
provide engineers with realistic reference values for the slope reinforcement design to
achieve sustainable development.

(3) Groundwater level and earthquakes are two important causes of slope instability and
failure. However, this study does not consider the impact of earthquakes on slope
reliability. Therefore, relevant studies on seismic slope stability will be carried out
in the future. In addition, according to the upper bound theory, the upper bound
solution is inevitably greater than the true solution. Therefore, the failure probability
will be underestimated when using the UBM for slope reliability analysis. To solve this
problem, there is a necessity to study the slope reliability calculation method on the
basis of the lower bound theory in future research work. The solution of slope failure
probability with the UBM and LBM can be obtained at the same time, so the interval
range of the real failure probability can be accurately judged, and the reliability index
of the slope can be quantified more accurately.
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Abstract: The Himalayan region has enormous potential for hydropower development. However,
variations in geological and geotechnical conditions pose challenging tasks for the designers. If
these variations are not tackled in a timely manner during underground excavations, especially for
caverns, instabilities may occur, resulting in time and cost over-runs. For sustainable hydropower
development, minimizing these over-runs is necessary. The modulus of deformation (Ed) of a rock
mass is an essential input parameter required in the design of underground excavations. This study
involves collecting the results of extensive in situ tested values for various hydroelectric projects in
the Himalayan regions, along with the rock mass rating (RMR) values at 35 test sites. Ed is estimated
empirically based on statistical analysis. Comparisons were made with the empirical equations
already available in the literature, using RMR and the proposed equation for estimating Ed. Although
different researchers have proposed many equations for estimating the value of Ed using RMR, a
gap exists in validating such equations. In this regard, the proposed equation for Ed was verified by
carrying out 3D numerical-modelling studies using FLAC3D, an explicit finite-difference software
for an underground powerhouse cavern and comparing the displacement values with the field
instrumentation data.

Keywords: modulus of deformation; RMR; in situ testing; modelling; instrumentation

1. Introduction

There is a massive shift globally from nonrenewable to renewable energy, i.e., solar,
hydropower and wind. Hydropower was ranked as the highest renewable energy in
2019 [1]. However, many hydropower electric projects under construction are delayed
due to geological and geotechnical variations. This, in turn, will result in cost and time
over-runs. An average of 182% over-run of time was observed in 29 hydroelectric projects
located in the Himalayan states of India with an installed capacity of 9840 MW. Of these
29 projects, an average of 114% over-run of cost was observed in 23 projects with an installed
capacity of 8138 MW [2]. The over-run of time and cost varied from 49% to 364% and
from 14% to 254%, respectively [3]. Hence, the cost and time over-runs must be minimized
to complete projects successfully. The completion of the Punatsangchhu II hydroelectric
project in Bhutan was delayed due to the collapse of rock mass in the crown of one of the
underground caverns [4].

The mountain chain of the Himalayas comprises a complicated fold-and-thrust belt. It
can be divided into three units: Sub-Himalaya, Lesser Himalaya, and Higher Himalaya,
from south to north [5]. The Sub-Himalayan range is the youngest of the three and has an
elevation of about 1200 m. Intracrustal thrusts demarcate the Lesser Himalayan domain,
i.e., main boundary thrust (MBT) in the north and main central thrust (MCT) in the south.
The Lesser Himalayan range runs parallel to the Sub-Himalayan range and has an elevation
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of about 2000 m to 5000 m. The Higher Himalayas are the oldest formations out of the three
and have an elevation of about 6000 m. The Lesser Himalayas comprises chert, argillaceous,
arenaceous, and calcareous units. These complex formations and high tectonic activity in
the Himalayas may yield uncertainty in estimating the rock mass parameters required for
designing underground excavations.

Hence, underground excavations must be designed considering reliable geotechnical
input parameters, such as rock mass strength (compressive, tensile, shear, cohesion, and
friction angle), deformation properties, stress regimes, hydrological conditions, and joint
characteristics. Out of all these input parameters, the deformation modulus was found to
play an essential role in assessing the stability of large caverns in the Himalayas [6].

In designing underground excavations for tunnels and caverns, estimating the ex-
pected rock mass deformations around the openings is essential. The modulus of deforma-
tion (Ed) of a rock mass typically provides information about the deformation characteristics,
i.e., elastic and plastic behavior when the rock mass is subjected to loading and unloading
conditions. Joint friction parameters and rock strength play an essential role in the defor-
mation mechanics of rock mass in addition to the Ed value [7]. In recent years, there has
been an advancement in numerical tools for analyzing the support system for underground
excavations. The output from these numerical tools, however, depends on the reliability of
the input data. The Ed value is one of the critical design parameters required for numerical
modelling [8] in the design of dam structures and underground excavations.

As per [9,10], Ed is defined as the ratio of stress to strain (elastic and plastic) during
the loading of a rock mass, whereas the modulus of elasticity (Ee) is defined as the ratio of
stress to strain (elastic) during the unloading of a rock mass. Hence, while carrying out any
in situ testing, estimating the Ee value along with Ed is a general practice.

The most-preferred in situ tests for the estimation of Ed are the plate-jacking test
(PJT) or uniaxial-jacking test, plate-loading test (PLT), and flat jack test (FJT) carried out
in drifts or small tunnels. In contrast, the dilatometer test (DT) and goodman jack test
(GJT) are conducted in boreholes of NX size [10]. The size of the drift or gallery required
for carrying out the in situ testing needs to be as small as required for carrying out the
test. During loading and unloading of the rock mass area, the deformations are measured
using a multipoint borehole extensometer (MPBX) in boreholes and a linear variable
differential transformer (LVDT) case for measuring surface displacements, which are used
in determining the in situ value of Ed. However, in situ tests are complicated, expensive,
and time-consuming [6]. In addition, each type of in situ test will result in different values
due to differences in test procedures and rock mass damage due to blasting [11,12].

Due to these reasons, several empirical relations were proposed by different re-
searchers for determining the value of Ed based on rock mass classification systems, such
as rock mass rating (RMR), tunneling-quality index (Q), geological strength index (GSI);
and intact rock properties, such as uniaxial compressive strength (UCS), Young’s modulus
(Ei), disturbance factor (D), and weathering degree (WD). These empirical equations are
developed based on the data collected for a particular location and rock type. Using these
equations to estimate the deformation modulus value at other sites may not yield correct
values.

Based on the studies carried out by [13], it is noticed that empirical relations proposed
for Ed based on intact properties (UCS and Ei) gave less reliable results when compared with
those of rock mass classification systems. Although many empirical relations are available
in the literature for estimating Ed, only those equations with an RMR value as the input
parameter are considered in this study [12,14–31], since this is the most widely accepted
method of rock mass characterization. The RMR classification system was developed by
Bieniawski (1974, 1989) [32], updating the charts and tables for the six parameters, i.e.,
intact rock UCS, rock quality designation (RQD), spacing of joint or discontinuity, joint
condition, condition of groundwater, and orientation of joint set. The rock masses at the
in situ test locations were classified based on the RMR. Drillability studies conducted on
rocks also provided insight into the petrophysicomechanical properties that indicated the
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influence of various petrographic, physical, and mechanical properties of rock [33–35].
From the numerical modelling studies [36], it was observed that when the in situ tested
value of Ed is in the range of 1 to 3 GPa, the predicted displacements were almost thrice
the measured values. However, suppose the rock mass is too competent, as studied in [37],
it can be noted that the in situ value of Ed is higher when compared with that of the
back-calculated value from numerical modelling. Depth also was found to influence the Ed
values in discontinuum models compared to that of continuum models. At shallow depths,
the discontinuities deformed significantly in comparison with that of deeper depths [38].
In addition, studies were carried out for understanding the variations in joint set sizes and
orientations on the directional deformation modulus for rock mass [39].

It is understood that Ed is the critical design parameter for the design of large under-
ground excavations, which needs to be determined correctly, and which otherwise has
the potential to result in time and cost over-runs. Determining Ed values by in situ testing
will have huge financial implications for the project. Thus, this study aims to develop a
predictor model for estimating the Ed value using the RMR, which can be useful to the
designers or project authorities for design of underground excavations if there is a lack of
in situ tested data for projects in the Himalayan region.

2. Methodology

The present study reviews the prediction of Ed values based on the existing empirical
relations using the values of the rock mass rating. A new empirical equation is proposed to
be developed considering the available in situ tested data from the projects constructed in
the Himalayan region. A comparison is made for the value of Ed concerning the existing
equations and the newly proposed equation. Finally, 3D numerical modelling studies
are carried out considering the value of Ed determined in situ and the value obtained
from the proposed equation and comparing the model displacement values with that of
the measured values. The empirical equations considered in the study, along with their
limitations, coefficient of regression (R2), number of data sets considered by worldwide
researchers, range of RMR values, country of origin, and the lithology considered while
developing the relations, are given in Table 1.

The datasets considered in this study involve collecting the in situ tested values of
Ed and Ee for 35 test locations in the Himalayan region spanning over India, Bhutan, and
Nepal from the published literature [40–45] and the National Institute of Rock Mechanics
(NIRM) reports [46–50]. In situ tests conducted at the study locations are PLT (deformations
measured at the surface), PJT (deformation measured inside the boreholes), carried out in
drifts, and the Goodman jack test, carried out in boreholes. The in situ test locations from
where data are collected are shown in Figure 1. The in situ tested values of Ed, Ee, and the
corresponding RMR values for the identified 35 site locations are shown in Figure 2 (a) and
(b), respectively.

Sustainability 2023, 15, x FOR PEER REVIEW 7 of 17 

 
Sustainability 2023, 15, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/sustainability 

The datasets considered in this study involve collecting the in situ tested values of Ed 
and Ee for 35 test locations in the Himalayan region spanning over India, Bhutan, and 
Nepal from the published literature [40–45] and the National Institute of Rock Mechanics 
(NIRM) reports [46–50]. In situ tests conducted at the study locations are PLT (defor-
mations measured at the surface), PJT (deformation measured inside the boreholes), car-
ried out in drifts, and the Goodman jack test, carried out in boreholes. The in situ test 
locations from where data are collected are shown in Figure 1. The in situ tested values of 
Ed, Ee, and the corresponding RMR values for the identified 35 site locations are shown in 
Figure 2 a,b, respectively. 

 
Figure 1. Google Earth image showing the location of the in situ tests carried out in different hydro-
electric projects situated in the Himalayan region. 

 
(a) 

Figure 1. Google Earth image showing the location of the in situ tests carried out in different
hydroelectric projects situated in the Himalayan region.

233



Sustainability 2023, 15, 5721

Ta
bl

e
1.

Em
pi

ri
ca

le
qu

at
io

ns
fo

r
es

ti
m

at
in

g
E d

us
in

g
R

M
R

.

Eq
ua

ti
on

N
o.

R
ef

.
Ye

ar
Eq

ua
ti

on
Ty

pe
of

Eq
ua

ti
on

R
2

Li
m

it
at

io
ns

D
at

a
Se

ts
U

se
d

R
M

R
R

an
ge

C
ou

nt
ry

of
O

ri
gi

n
Li

th
ol

og
y

(1
)

[1
2]

19
78

E d
=

2R
M

R
−

10
0

Li
ne

ar
-

R
M

R
>

50
3

Si
te

s
51

–8
5

So
ut

h
A

fr
ic

a
Sh

al
e,

si
lt

st
on

e,
do

le
ri

te
,

m
ud

st
on

e,
an

d
sa

nd
st

on
e

(h
ar

d
ro

ck
s)

.
(2

)
[1

4]
19

83
E d

=
10

(R
M

R
−

10
)/

40
Po

w
er

-
R

M
R
≤

50
15

26
–8

3
-

D
ol

er
it

e,
sa

nd
st

on
e,

m
ud

st
on

e,
sh

al
e,

si
lt

st
on

e,
gn

ei
ss

,a
nd

gr
an

it
e

(s
of

tr
oc

ks
).

(3
)

[2
4]

19
92

E d
=

10
(R

M
R
−

20
)/

38
Po

w
er

0.
91

-
12

0
-

In
di

a
(4

)
[2

5]
19

93
E d

=
0.

03
e0.

07
R

M
R

Ex
po

ne
nt

ia
l

-
-

-
-

-
(5

)
[2

6]
19

96
E d

=
e(

4.
40

7+
0.

08
1R

M
R
)

Ex
po

ne
nt

ia
l

-
-

-
-

C
ro

at
ia

Li
m

es
to

ne
(6

)
[2

7]
19

97
E d

=
0.

00
00

09
7R

M
R

3.
54

Po
w

er
-

-
-

-
-

G
ne

is
s,

gr
an

it
e,

an
d

sa
nd

st
on

e.
(7

)
[2

8]
19

99
E d

=
0.

1(
R

M
R

10

) 3
Po

w
er

-
-

15
26

–8
3

N
ew

Z
ea

la
nd

G
ra

yw
ac

ke
,s

an
ds

to
ne

s,
an

d
m

ud
st

on
es

.

(8
)

[2
9]

19
99

E d
=

(7
±

3 )
(1

0
(R

M
R
−

44
)/

21
) 0

.5
N

on
-l

in
ea

r
-

-
-

-
V

ar
io

us

(9
)

[3
0]

20
03

E d
=

0.
07

36
e(

0.
07

55
R

M
R
)

Ex
po

ne
nt

ia
l

0.
62

-
11

5
20

–8
5

V
ar

io
us

Q
ua

rt
zd

io
ri

te
,l

im
es

to
ne

,
an

d
sh

al
e.

(1
0)

[3
1]

20
03

E d
=

19
.4

3l
n

R
M

R
−

69
.0

3
Lo

ga
ri

th
m

-
-

57
38

–8
4

Tu
rk

ey
G

re
y

an
d

pi
nk

y
qu

ar
tz

di
or

it
e.

(1
1)

[1
5]

20
06

E d
=

0.
32

28
e(

0.
04

85
R

M
R
)

Ex
po

ne
nt

ia
l

0.
36

-
8

Si
te

s
-

K
or

ea
(1

2)
[1

6]
20

08
E r

m
=

6.
7R

M
R
−

10
3.

06
Li

ne
ar

0.
94

R
M

R
≥

27
9

27
–6

1
Tu

rk
ey

G
ra

yw
ac

ke
(1

3)
[1

7]
20

10
E d

=
0.

00
03

R
M

R
3
−

0.
01

93
R

M
R

2
+

Po
ly

no
m

ia
l

0.
84

46
-

42
10

–8
5

Ir
an

Li
m

es
to

ne
an

d
m

ar
bl

e
0.

31
5R

M
R
+

3.
40

65

(1
4)

[1
8]

20
12

E d
=

11
0e
−
(

R
M

R
−

11
0

37
)2

G
au

ss
ia

n
fu

nc
ti

on
0.

93
2

-
43

-
V

ar
io

us
M

ud
st

on
e,

si
lt

st
on

e,
sa

nd
st

on
e,

sh
al

e,
do

le
ri

te
(h

ar
d

ro
ck

s)
,g

ra
ni

te
,

gn
ei

ss
,m

ud
st

on
e,

si
lt

st
on

e,
sa

nd
st

on
e,

sh
al

e,
an

d
do

le
ri

te
(s

of
t

ro
ck

s)
.

(1
5)

[1
9]

20
13

E d
=

10
(R

M
R
−

16
)/

50
Po

w
er

0.
64

-
42

0
7–

92
K

or
ea

G
ne

is
s

(1
6)

[2
0]

20
14

E d
=

0.
16

27
R

M
R
−

5.
01

65
Li

ne
ar

0.
67

09
-

52
30

–7
6

Ir
an

Sa
nd

y
si

lt
st

on
e,

m
ud

st
on

e,
co

ng
lo

m
er

at
e,

sa
nd

st
on

e,
di

sl
oc

at
ed

ro
ck

m
as

s,
fa

ul
te

d
ro

ck
m

as
s,

an
d

sh
ea

r
zo

ne
.

(1
7)

[2
1]

20
15

E d
=

0.
05

8e
(0

.0
78

5R
M

R
)

Ex
po

ne
nt

ia
l

0.
97

-
4

Si
te

s
-

Tu
rk

ey
Ba

sa
lt

,t
uf

fit
es

,a
nd

di
ab

as
es

.
(1

8)
[2

2]
20

13
E d

=
9E
−

7R
M

R
3.

86
8

Po
w

er
0.

89
-

82
39

–8
5

Ir
an

G
re

y-
gr

ee
n

sc
hi

st
,

ph
yl

lit
e,

da
rk

gr
ey

to
bl

ac
k

lim
es

to
ne

,a
nd

lim
y

do
lo

m
it

e.

234



Sustainability 2023, 15, 5721

Sustainability 2023, 15, x FOR PEER REVIEW 7 of 17 

 
Sustainability 2023, 15, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/sustainability 

The datasets considered in this study involve collecting the in situ tested values of Ed 
and Ee for 35 test locations in the Himalayan region spanning over India, Bhutan, and 
Nepal from the published literature [40–45] and the National Institute of Rock Mechanics 
(NIRM) reports [46–50]. In situ tests conducted at the study locations are PLT (defor-
mations measured at the surface), PJT (deformation measured inside the boreholes), car-
ried out in drifts, and the Goodman jack test, carried out in boreholes. The in situ test 
locations from where data are collected are shown in Figure 1. The in situ tested values of 
Ed, Ee, and the corresponding RMR values for the identified 35 site locations are shown in 
Figure 2 a,b, respectively. 

 
Figure 1. Google Earth image showing the location of the in situ tests carried out in different hydro-
electric projects situated in the Himalayan region. 

 
(a) 

Sustainability 2023, 15, x FOR PEER REVIEW 8 of 17 
 

 
(b) 

Figure 2. Plot between modulus of deformation and the RMR. (a) Ed vs. RMR. (b) Ee vs. RMR. 

Statistical analysis was performed to establish a relationship between the RMR and 
Ed, and an equation to predict Ed from the RMR was proposed. The reliability and predict-
ability of the proposed and the available equations were compared using statistical tools, 
and the reliable equation for the Himalayan region was presented. The equation was val-
idated using the tested and estimated values in the 3D numerical model developed for 
Tala Hydroelectric Project, Bhutan. The instrumentation data were utilized for making 
comparisons with those of the modelling results. 

3. Statistical Analysis 
Statistical analyses using linear, logarithmic, cubic, and exponential functions were 

evaluated using Statistical Package for the Social Sciences (SPSS) software for the collected 
data and are presented in Figure 3 and Table 2. Figure 2a shows that the range of RMR 
values are from 15 to 70, and the range of Ed values are from 0.118 to 11.591 GPa. It is also 
observed that the cubic function given in Equation (19) has the highest value of the coeffi-
cient of regression (R2), i.e., R2 = 0.75 when compared to other functions, as shown in Figure 
3. 

Table 2. Empirical equations for estimating Ed using RMR based on 35 test data. 

S.No. Type of 
Equation 

Equation Coefficient of Regression, 
R2 

1 Linear 0.183RMR − 5.81 0.53 
2 Logarithmic 5.8log(RMR) − 19.17 0.37 

3 Cubic 0.00011𝑅𝑀𝑅 − 0.0083𝑅𝑀𝑅 +0.2𝑅𝑀𝑅 − 1.3  0.75 

4 Exponential 0.0352𝑒 .   0.708 

Figure 2. Plot between modulus of deformation and the RMR. (a) Ed vs. RMR. (b) Ee vs. RMR.

235



Sustainability 2023, 15, 5721

Statistical analysis was performed to establish a relationship between the RMR and
Ed, and an equation to predict Ed from the RMR was proposed. The reliability and pre-
dictability of the proposed and the available equations were compared using statistical
tools, and the reliable equation for the Himalayan region was presented. The equation
was validated using the tested and estimated values in the 3D numerical model developed
for Tala Hydroelectric Project, Bhutan. The instrumentation data were utilized for making
comparisons with those of the modelling results.

3. Statistical Analysis

Statistical analyses using linear, logarithmic, cubic, and exponential functions were
evaluated using Statistical Package for the Social Sciences (SPSS) software for the collected
data and are presented in Figure 3 and Table 2. Figure 2a shows that the range of RMR
values are from 15 to 70, and the range of Ed values are from 0.118 to 11.591 GPa. It is
also observed that the cubic function given in Equation (19) has the highest value of the
coefficient of regression (R2), i.e., R2 = 0.75 when compared to other functions, as shown in
Figure 3.

Ed = 0.00011RMR3 − 0.0083RMR2 + 0.2RMR− 1.3 (19)
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Table 2. Empirical equations for estimating Ed using RMR based on 35 test data.

S.No. Type of Equation Equation Coefficient of Regression, R2

1 Linear 0.183RMR − 5.81 0.53
2 Logarithmic 5.8log(RMR) − 19.17 0.37
3 Cubic 0.00011RMR3 − 0.0083RMR2 + 0.2RMR− 1.3 0.75
4 Exponential 0.0352e0.0798RMR 0.708

To understand the prediction capacity, the root–mean–square error (RMSE) and vari-
ance accounted for (VAF) were calculated using Equations (20) and (21) for all the empirical
equations discussed in Table 1, along with that of Equation (19). Root–mean–square error
is defined as the standard deviation of the residuals. Residual is defined as the difference
between the predicted and the actual values for each data point. In other words, residuals
are nothing but prediction error. The RMSE is generally used as a measure in evaluating
the performance of predictions and to check the efficiency of the model. The model is said
to be accepted in regression analysis if the values of the RMSE and VAF are close to 0 and
100, respectively.

RMSE =

√
1
n

n

∑
i=1

(x− x′)2 (20)

VAF =

[
1− var(x− x′)

var(x)

]
100 (21)

The calculated RMSE and VAF values for Equation (19) are 1.70 and 74.33, respectively.
Equation (19) was found to have a good prediction capacity compared to the other empirical
equations listed in Table 1. The collected data could be further categorized based on the
rock type, such as sedimentary and metamorphic rocks. The correlation between Ed and
RMR values was made for rock types and the cubical function is shown in Figure 4.
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The Ed values were calculated for the RMR values at in situ tested locations based on
the empirical relations proposed by different authors and are shown in Figure 5. It is notice-
able from Figure 5 that Equation (19) closely matches with that of the in situ tested-values
curve. The empirical equations proposed by [15,21,22,30] are also in good comparison
with that of the in situ tested value. The empirical equations proposed by [12,24,26,28,29]
overestimated, and the remaining equations underestimated the Ed values.
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4. Case Study—Tala Powerhouse Complex

The Tala Hydroelectric Project (1020 MW) is located on river Wangchhu, Western
Bhutan [51,52]. The project consists of an underground machine-hall cavern, housing six
units, each with a capacity of 175 MW. The machine-hall cavern (MHC) and the transformer-
hall cavern (THC) dimensions are 206.4 m × 20.4 m × 44.5 m and 191 m × 16 m × 24.5 m,
respectively. The rock pillar between the caverns is 40 m. The overburden ranges from
400 m to 500 m at the MHC and THC.

Hydrofracturing tests were carried out in the powerhouse cavern’s exploratory drift
to understand the stress field. The major principal stress is oriented in N50◦W. The vertical
stress of 10.865 MPa is calculated based on the overburden depth of 410 m. The ratio of
maximum horizontal to vertical stress and minimum horizontal to vertical stress are 1.31
and 0.87, respectively [53,54]. The caverns are aligned in N37◦W–S37◦E direction across
the strike of foliation [6].

4.1. Geology

The major lithology at the Tala Powerhouse complex consists of quartzite, phyllites,
amphibolite schist, and phyllitic quartzite. The discontinuities were initially mapped in
the exploratory drift (2 m × 2 m) driven in the machine-hall cavern along the crown level.
The general foliation observed in the exploratory drift vary from N65◦ E–S65◦ W to N70◦

W–S70◦ E. The average foliation dip is 45.5◦, and dip direction is N357◦. Five sets of joints
were observed in the exploratory drift in addition to the foliation. The rock quality index
(Q) varied from 0.24 to 13.2 [53]. The representative value of RMR assessed in the caverns
is 55.

4.2. 3D Numerical Modelling

Three-dimensional numerical modelling was carried out in this study using FLAC3D
(Fast Lagrangian Analysis of Continua—three-dimensional) software. It utilizes an explicit
finite-volume formulation for capturing models with complex behavior. The FLAC3D
model, consisting of complex excavations of the machine-hall cavern, transformer-hall
cavern, penstocks, bus ducts, and draft tubes considered in this study, is given in Figure 6.
The in situ stress values obtained from the hydrofracturing tests were incorporated into the
model before the start of the model simulation works.
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4.3. Excavation Sequence and Support System

Initially, the machine-hall cavern’s crown was excavated to the full width, followed by
benching. The benching in the MHC and THC was taken up in 11 and 6 stages at the site.
The bench heights in both caverns varied from 3 to 4 m. The excavation sequence adopted
at the site was simulated in the 3D numerical model and is given in Figure 7. The support
system installed at the site [55–58] and considered in the model in MHC and THC is shown
in Table 3.
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Table 3. Support system considered in the model for MHC and THC.

Cavern Support System

MHC–Crown

32 mm diameter, 8 m and 6 m long rock bolts at 1.5 m × 1.5 m
pattern
Steel-fiber-reinforced shotcrete (SFRS) of 100 mm thickness
Steel ribs of ISMB 300 at 0.6 m spacing
32 mm/26.5 mm diameter, 12 m long Dywidag rock bolts at 1.5 m
spacing

MHC–Walls 32 mm/26.5 mm diameter, 12 m long Dywidag rock bolts at 1.5 m
spacing

THC–Crown

32 mm diameter, 8 m and 6 m long rock bolts at 3 m × 1.5 m
pattern
Steel-fiber-reinforced shotcrete (SFRS) of 100 mm thickness
Steel ribs of ISMB 350 at 0.6 m spacing

THC–Walls 32 mm/26.5 mm diameter, 8 m long Dywidag rock bolts at 1.5 m
spacing

MHC and THC Walls
Initial layer of shotcrete of 50 mm thickness
Welded-wire mesh of 100 mm × 100 mm × 5 mm
Final two shotcrete layers of 50 mm each

4.4. Material Properties

A linear, perfectly elastic–plastic constitutive model that follows the Mohr–Coulomb
failure criterion was considered for the modelled rock mass [7] and postulated that the shear
strengths of rocks comprise two parts—a constant cohesion and a normal stress-dependent
frictional component. Two models were simulated in this study, considering the estimated
Ed value of 2.89 GPa (Model A), based on the empirical Equation (19) for an RMR value of
55, and another model with an in situ tested (PLT), Ed value of 6.793 GPa [35,59] (Model B).
Other material properties considered in the present analysis for both models are a density
of 2650 kg/m3, cohesion of 2.28 MPa, and friction angle of 28.3◦ [53].

4.5. Comparison of Modelling Results with Instrumentation Data

Various instruments were installed during different stages of excavation of the machine-
hall cavern at the Tala Hydroelectric project, Bhutan. Displacements were measured using
multipoint borehole extensometers (MPBX), reflective targets were used to measure the
convergence of side walls using total station, and loads were measured by anchor load
cells [6,60]. Wall convergence was measured using a total station that had an accuracy of
0.5 s. Reflective targets were installed opposite to each other on the walls of the machine-
hall cavern for convergence measurements using the tie-distance method. The cavern walls
convergence measured in the field was compared with the numerical modelling results
for both Models A and B, respectively. The convergence was measured at the site for RD
15 m, 65 m, 110 m, and 150 m at EL 525 m, EL 520 m, and EL 515 m. Different benches
were considered as the reference for a particular elevation based on the availability of the
instrumentation data [6]. Bench 4 was taken as a reference for EL 525 m, bench 6 was
taken as a reference for EL 520 m, and bench 7 was taken as a reference for EL 515 m.
The measured and modelled convergence plots at EL 525 m, EL 520 m, and EL 515 m for
two models, i.e., Model A with an Ed value of 2.89 GPa and Model B with an Ed value of
6.793 GPa, are shown in Figure 8.

Figure 8 shows that Model B is underpredicting the deformations in the powerhouse
complex at all the locations, indicating that the in situ tested Ed value is on the higher
side, enhancing the rock mass properties. Measured convergence matched well in Model
A compared to Model B. Hence, the relation proposed in Equation (19) can be utilized to
estimate the value of Ed. The displacement contours (in m) at RD 65 m after the complete
excavation of the powerhouse complex for Models A and B are shown in Figure 9 (a) and
(b), respectively.
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5. Conclusions

This research has provided insight into the method for estimating the modulus of
deformation using rock mass rating values. The conclusions derived from the current study
are presented below:

• The review of various empirical models available for estimating Ed values indicates
a considerable variation in the value of the deformation modulus for the Himalayan
region. The empirical equations proposed by [14,20,21,29] are also in good compari-
son with the in situ tested value of Ed, while equations proposed by [11,23,25,27,28]
overestimate, and the remaining equations underestimate Ed values.

• Based on the data obtained from 35 test locations, a predictive cubic equation (Equa-
tion (19)) could be developed, with R2, RMSE, and VAF values of 0.75, 1.70, and 74.33,
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respectively. These values indicate higher predictability and maximum accounted-for
variance in Ed compared with other available correlations available in the literature.

• The 3D numerical modelling results show that the Ed value adopted based on the
proposed Equation (19) (Model A) correlated well with that of the measured instru-
mentation data when compared with the value of Ed based on the in situ testing
(Model B). Model B underpredicts the deformations in the powerhouse complex at all
locations, indicating that the in situ tested Ed value is higher, enhancing the rock mass
properties. Measured convergence matched well in Model A compared to Model B.
Hence, the relation proposed in Equation (19) can be utilized to estimate the value of
Ed.

• From the in situ tested data, the average ratio of Ee/ Ed for the Himalayan region is
1.5.

• The proposed equation validates rock masses from the Himalayan region, with RMR
values ranging from 15 to 70.
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Abstract: This research was conducted to forecast the uniaxial compressive strength (UCS) of rocks
via the random forest, artificial neural network, Gaussian process regression, support vector ma-
chine, K-nearest neighbor, adaptive neuro-fuzzy inference system, simple regression, and multiple
linear regression approaches. For this purpose, geo-mechanical and petrographic characteristics of
sedimentary rocks in southern Iran were measured. The effect of petrography on geo-mechanical
characteristics was assessed. The carbonate and sandstone samples were classified as mudstone to
grainstone and calc-litharenite, respectively. Due to the shallow depth of the studied mines and the
low amount of quartz minerals in the samples, the rock bursting phenomenon does not occur in
these mines. To develop UCS predictor models, porosity, point load index, water absorption, P-wave
velocity, and density were considered as inputs. Using variance accounted for, mean absolute per-
centage error, root-mean-square-error, determination coefficient (R2), and performance index (PI), the
efficiency of the methods was evaluated. Analysis of model criteria using multiple linear regression
allowed for the development of a user-friendly equation, which proved to have adequate accuracy.
All intelligent methods (with R2 > 90%) had excellent accuracy for estimating UCS. The percentage
difference of the average of all six intelligent methods with the measured value was equal to +0.28%.
By comparing the methods, the accuracy of the support vector machine with radial basis function in
predicting UCS was (R2 = 0.99 and PI = 1.92) and outperformed all the other methods investigated.

Keywords: UCS; intelligent and statistical methods; prediction; sedimentary rocks

1. Introduction

Stability of slopes, prediction of drilling rate, classification of rock masses, and model-
ing of foundations require knowledge of the uniaxial compressive strength (UCS) of the
rocks for designing projects [1–3]. Indirect determination of the UCS in places where the
preparation of standard samples is difficult requires lots of time and is expensive. Hence,
various researchers have predicted the UCS of the limestones and sandstones using statisti-
cal and intelligent methods [4–7]. Aladejare et al. [8] collected empirical relationships and
models between UCS and other rock characteristics from previous studies. Several models
were developed to estimate the rock UCS using Gaussian process regression (GPR) [9–13],
feedforward multilayer perceptron artificial neural network (FMP-ANN) [14–19], random
forest algorithm (RFA) [20–23], adaptive neuro-fuzzy inference system (ANFIS) [24–28],
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and multiple linear regression (MPLR) [3,4,7,8,25,29–31]. The results of Lawal et al.’s [9]
study showed that the GPR method, with a correlation coefficient of almost 100%, is able to
estimate the static and dynamic properties of sedimentary rocks. Moreover, a comparison
of the RFA, MPLR, FMP-ANN methods in compressive strength estimation showed that
FMP-ANN with the Levenberg–Marquardt algorithm has a higher accuracy than other
methods [20]. The results of Matin et al.’s [22] study to select the effective variables using
the random forest method showed that compression wave velocity is the most effective
variable as an input for estimating compressive strength and the modulus of elasticity using
predictive models. Hudaverdi [25] stated that the ANFIS method has a high efficiency
in flyrock estimation with an average error of less than 8%. The results of the MPLR,
ANFIS, and FMP-ANN methods in the UCS estimation showed that all three methods
have a determination coefficient higher than 90%, while the ANFIS method has a better
performance [26]. The comparison of the ANFIS, FMP-ANN and multiple regression meth-
ods by Yesiloglu-Gultekin and Gokceoglu [26] showed that the ANFIS method has higher
accuracy for estimating compressive strength and the modulus of elasticity.

Mahmoodzadeh et al. [32] compared the K-nearest neighbor algorithm (KNNA),
Gaussian process regression based on squared exponential kernel (GPR-SEK), support
vector machine with radial basis function (SVR-RBF), and decision tree (DT) methods to
forecast rock quality designation in a tunnel project and stated that the GPR-SEK method
is more accurate than other methods. Xu et al. [33] forecasted the UCS of rock using
intelligent technics. The SVM-RBF was used to predict UCS [34]. Rastegarnia et al. [19]
used FMP-ANN and MPLR to predict the UCS of carbonates. They stated that FMP-ANN
estimates the UCS more than the measured value. Trott et al. [35] used RFA to classify rock
types. Barzegar et al. [36] predicted the UCS of travertine rocks using the SVM-RBF, FMP-
ANN, and ANFIS methods and stated that the SVM-RBF showed higher accuracy than
the other methods. Mohamad et al. [37] estimated the UCS of soft rocks using FMP-ANN
and particle swarm optimization (PSO)-based ANN. Madhubabu et al. [6] used MPLR
and FMP-ANN to estimate the UCS of the carbonate samples. Umrao et al. [24] used the
ANFIS approach for estimating UCS based on density, porosity, and PWV. Moreover, using
inteligent methods, Gül et al. [17] predicted the UCS of different rock types. Singh et al. [38]
estimated the UCS of basalt samples via MPLR and ANFIS. Kaloop et al. [39] used GPR and
multivariate adaptive regression splines (MARSs) to estimate rock UCS. They stated that the
MARS showed higher acuracy than the GPR method. Some engineers and researchers are
interested in simple empirical relationships using simple models such as simple and MPLR
to estimate UCS. Therefore, simple empirical relationships are widely used to estimate rock
UCS using statistical methods. Table 1 shows some of the relationships for estimating UCS
by previous researchers.

This study was conducted to predict the UCS of sedimentary rocks based on porosity,
point load index (PLI), density (D), water absorption by weight (WW), and P-wave velocity
(PWV) using the FMP-ANN, GPR-SEK, KNNA, RFA, ANFIS, SVM, SR, and MPLR methods.
Moreover, the types of kernel functions were investigated using the SVM method and the
most accurate type of kernel function was introduced to estimate the UCS.

Sampling points, from 12 mines in the Bushehr province, south of Iran, are located
between 50 and 52 degrees longitudes and 28 and 30 degrees latitudes. The mines are
mainly travertine, limestone, and sandstone of the Aghajari and the Mishan formations.
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Table 1. Relationships for estimating UCS by previous researchers.

Equation Reference Lithology

UCS = 12.29PLI1.233 Teymen and Mengüç [40] Various Rocks
UCS = −37.82 + (0.017PWV) Salehin [41] Sedimentary Rocks

UCS = 0.043PWV − 136.8 Aldeeky and Al Hattamleh [42] Basalt Rocks
UCS = 17.6PLI + 13.5 Aliyu et al. [30] Sedimentary Rocks

UCS = 14.3PLI Aladejare [8] Sedimentary Rocks
UCS = 9.95PWV(1.21) Kahraman [43] Sedimentary rocks

UCS = 0.034PWV− 86.36 Wen et al. [7] Limestone
UCS = −5.10φ + 110.79 Edet [3] Sandstone

UCS = 0.025PWV − 8.619 Azimian [29] Limestone
UCS = 6.6PWV1.6 Uyanık et al. [44] Sedimentary rocks

UCS = 22.18PWV − 30.32 Selcuk and Nar [31] Various Rocks
UCS = 0.041PWV − 15.40 Abdi and Khanlari [4] Sandstones

UCS = 2.304(PWV)2.43 Kılıç and Teyman [45] Various Rocks
UCS = 10 − 5D16.7 Aladejare [8] Sedimentary rocks

2. Methodology
2.1. Laboratory Tests

Specimens with a diameter of 54 mm and a height to diameter ratio of 2 were
prepared [46]. A wear device was used to parallel surfaces of specimens. Table 2 shows
the methods used to measure geo-mechanical properties. Figure 1 displays some of the
samples in laboratory tests.

Table 2. Methods used for performing tests.

Test Standards and References Descriptions

UCS ISRM [47]
A constant loading rate of 0.7 MPa per second was

applied to the samples. The amount of deformation was
recorded using the corresponding gauge in the UCS test.

Point load index (PLI) ASTM D5731
[48]

This test was done on irregular and cylindrical samples.
Then the PLI was calculated.

Compressional wave velocity test ASTM D2845 [49] With a 1
2 MHz frequency

Porosity (φ), density(D) and water
absorption by weight (WW) ISRM [47]

The total porosity (φ) of specimens was measured using
the method of saturation and immersion way. Density

was computed from the ratio of mass to sample volume.
Petrography Folk [50], Dunham [51] For classifying the samples using thin section images.
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2.2. Random Forest Algorithm (RFA)

The random forest method is one of the ensemble methods. In these methods, the
model chosen for classification or regression is a combination of several models. Figure 2
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shows the idea of the random forest algorithm. In this approach, each model issues its vote
and the final result about the value is issued based on these votes [22,23,52]. The general
principles of group training techniques are based on the assumption that their accuracy is
higher than other training algorithms [53]. On the other hand, the accuracy of combined
methods is higher than the accuracy of its components [53]. The RFA method has also
been used in rock mechanics in recent years [20]. In the RFA method, the models used
in the combined method, which are all of the decision tree type, form a forest. Each of
the decision trees is made using a random selection of special attributes in each node to
determine the branching. In other words, each tree is built based on the values of a random
vector. These values have the identical scattering for all trees in the forest and are sampled
independently. For classification, each tree issues its vote, and the final result is determined
by the majority vote [54]. The number of trees and the number of chosen variables in
each node are important parameters in the RFA [55]. In this method, by replacing the
information every sampling time, some information is never sampled, and other data
may be sampled several times. In other words, some input data for some trees will be
out of the bag, that is, they will not participate in the creation of some trees. These data
have the function of an internal validator for each tree, which is performed by estimating
the out-of-bag error. If the out-of-bag data itself is predicted through trees, there will be
an error for these predictions, and the average of these errors is called the out-of-bag error.
This error indicates the influence of the unselected samples on the error rate of the final
result of the random forest [56].
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2.3. Gaussian Process Regression Based on Squared Exponential Kernel (GPR-SEK)

Consider a d data set with n measurements: d = {(xi, yi )|i = 1, . . . , n} , where xi
is the input vector with D dimension and yi is the target output. This set, consisting of
two components, input and output, will be denoted as measured points. To simplify the
problem, the inputs of the collection are aggregated at X = {xi, x2 , . . . , xn}matrix and the
outputs are also combined at Y = {yi, y2 , . . . , yn}matrix. Regression based on the data set
d creates a new input x* to arrive at the predicted distribution for the corresponding values
of the measured y* data. The Gaussian process (GP) is a group of accidental parameters,
a restricted number of which are combined with Gaussian distributions (GDs) [57]. The
GP is a generalization of GD. The GD is actually scattered between accidental parameters,
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while GP represents scattering between functions. The f(x) GP is described using the m(x)
average and covariance functions according to Equations (1) and (2).

m(x) = E( f (x)) (1)

c
(

x, x′
)
= E( f (x)−m(x))

(
f
(
x′
)
−m

(
x′
))
) (2)

In relationships 1 and 2, c(x, x′) is the covariance or kernel function, which is computed
at the x and x′ points. The GP can be described as Equation (3).

f (x) ∼ GP
(
m(x), c

(
x,x′
))

(3)

Usually, for simplification, the value of the average function is considered equal to
zero [58]. In the GP, the correlation between the target and the input vector is based on
Equation (4).

yi = f (xi) + ε (4)

where f (xi) represents the arbitrary regression function and ε is the noise of the Gaus-
sian function with zero mean and σ2 variance (i.e., ε ∼ N

(
0, σ2)). Furthermore, it is

supposed that f = [ f (x1), f(x2), . . . , f(xn)]
T has a performance according to the GP (i.e.,

p( f |X) = N(0, C) ). Here, C is the covariance matrix with the ci,j = c
(

xi, xj
)

domains.

C(X, X) =




c(x1, x1) c(x1, x2) . . . c(x1, xn)
c(x2, x1) c(x2, x2) . . . c(x2, xn)

...
...

...
...

c(xn, x1) c(xn, x2) . . . c(xn, xn)


 (5)

The ci,j is the covariance between the latent function values of f (xi) and f
(

xj
)
. GP

regression is used to calculate the predicted scattering for the f* function values in the test
points of X∗ =

[
x∗1 , x∗2 . . . x∗m

]
. The distribution of y depends on the values of f, which is

represented by an isotropic Gaussian as follows.

p
(

y
∣∣∣ f , x) = N(F, σ2

n I
)

(6)

In relation (6), I is the identity matrix. According to the characteristics of the Gaussian
function, the marginal distribution of y is determined as follows.

p(y|X) =
∫

p
(

y| f , X)p( f
∣∣∣X)d f = N(0, C + σ2

n I
)

(7)

The integrated distribution of the observation data values, that is, the desired output,
and the function values at the test points are written as follows [32].

[
y
f ∗

]
∼ N

(
0,
[

C(X, X) + σ2 I C(X, X∗)
C(X∗, X) C(X∗, X∗)

])
(8)

According to relation (3), and using standard rules to limit Gaussian, the following
conditional distribution can be obtained.

p( f∗|X, y, X ∗) ∼ N
(

f∗, c( f∗
)
) (9)

−
f∗ = C(X∗, X)

[
C(C, C) + σ2 I

]−1
y (10)
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2.4. The SVM-RBF

To achieve the least error related to the test set, the SVM-RBF approach fits a linear line
with epsilon (ε) thickness on the data [59]. In this method, a function such as f(x) = m.x + b is
used for forecasting, where m is weight vector and x and b are weights.

For minimizing weight vector and test error, this technique utilizes error functions
for ignoring errors that are at a determined range from the real errors [60]. Hence, some
deviation (derived from Equation (11)) from ε must be overlooked by including Equation
(11) in Equation (12), which considers the ξ−i and ξ+i deficiency parameters. Finally, the
error values are optimized via Equation (12) using structural error minimization

|ξ|ε =
[

0 i f |ξ| ≤ ε

|ξ| − ε otherwise

]
(11)

Minimize : {(‖m‖2)∗1/2}+ {(
N
∑

i=1
(ξ+i + ξ−i ))∗C}

εConstrains:




m.xi + b + ξ+i − yi ≤ ε i = 1, 2, . . . . , N
yi − (b + m.xi) ≤ ξ−i + ε i = 1, 2, . . . . , N
ξ+i ≥ 0 , ξ−i ≥ 0 i = 1, 2, . . . . , N




(12)

In Equation (12), {(‖m‖2)∗1/2} is the supervisory part, N is number of samples,
ε is the allowable error, C is the complexity balance coefficient, and the ε values are the
acceptable error range. As with the GPR method, various kernel functions are used in the
SVM method [61]. Radial basis function (RBF), which is the most important kernel function,
was used in the current research [62].

2.5. K Nearest Neighbor Algorithm (KNNA)

The KNNA is based on sample and performs classification based on K nearest neigh-
bors. This method performs classification based on the similarity of the data. In fact, for
each new test data, it calculates the K nearest neighbor distances and determines a label
similar to the dominant label of this k neighbor for the desired point [63]. This method
was introduced as a nonparametric method and does not make any assumption on the
distribution of inputs. Therefore, it is extensively used in various fields [64].

In the KNNA classifier, an unknown value, is recognized by the similarity between
known trained or labeled values based on the calculation of the distance between un-
known values and labeled values. Then, K of the nearest values are selected as the basis
for classification, and the unknown value (x test) is assigned to the class that has the
most values among the closest values. For this purpose, three factors affect the KNNA
classification: (1) the number of K of the neighbor and the changing of the value of K,
which may amendment the classification results; (2) labeled dataset; therefore, adding
or eliminating any value to the training samples affects the final results of the KNNA
classifier; (3) the distance criterion. In KNNA, Euclidean distance is usually used as
a distance criterion to measure the distance between two values [64,65]. This algorithm, as
with the other algorithms used in this research, after examining the data in the program
environment, divides the data into two parts, training data and test data, and builds the
K nearest neighbor model and enters the training data into the model to train the model.
Next, to determine the precision of the method, the test data is entered into the model for
prediction and to evaluate the prediction accuracy in comparison with the labels of the test
data [65,66].

2.6. ANFIS and FMP-ANN

The ANFIS and FMP-ANN methods have been widely introduced and described
by previous researchers [18,25,67–70]. The transfer functions of neurons, membership
functions, type of fuzzy inference system, and data training methods in these two methods
are mentioned in the results section.
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In the SVM-RBF, ANFIS, KNNA, GPR-SEK, and RFA methods, 30% and 70% of the
whole data were used for the testing and training the models, respectively.

2.7. Performance Evaluation of Results

To appraise the methods, the correlation coefficient, the MAPE %, the RMSE, VAF, and
the PI are defined in the form of Equations (13)–(16).

MAPE =
1
n

n

∑
i=1

∣∣∣∣
y− y′

y

∣∣∣∣ ∗ 100 (13)

RMSE =
1

s2n ∑n
i=1 (y− y′)2 (14)

VAF = 100
[

1− var(y− y′)
var(y)

]
(15)

PI = R2 + (VAF/100) − RMSE (16)

In relationships 13 to 16, y is the value of the variable measured, y′ is the predicted
UCS, and n is the total data and s2 is the sample variance. Equation (17) was used to
normalize the data between −1 and 1.

Xi = 2
(

X− Xmin
Xmax − Xmin

)
− 1 (17)

In Equation (17), x is the measured variable, Xmin is the minimum of the data, and
Xmax is the maximum of the data.

3. Results and Discussion
3.1. Geomechanical Properties of Samples

The maximum, minimum, and average engineering properties of 65 samples (37 samples
of limestone, 11 samples of argillaceous limestone, and 17 samples of sandstone) are
presented in Table 3. The average Es and UCS are 14.95 GPa and 37.54 MPa, respectively.
Physical, mineralogical, and petrographic characteristics cause changes in the compressive
strength of rocks [5,18,71]. Moreover, lithological properties such as the type of rock, the
amount and type of minerals, the type of cement between the particles that comprise the
rock and physical properties such as the amount of moisture, porosity, and water absorption
have a significant effect on the compressive strength and, consequently, on the stability
of mines [72,73]. As the amount of clay minerals increases, the resistance of the samples
decreases [4,74]. Water absorption causes the swelling and instability of the mine wall in
samples with a high percentage of clay minerals [75–77]. The number of joints changes
the geomechanical properties and instability of the rocky slopes [78–80]. The engineering
properties and stability of structures are affected by the amount of moisture [81].

Table 3. Laboratory results on sample.

Statistics
Properties Density

(g/cm3) PLI (MPa) Water Absorption
(%)

Porosity
(%)

UCS
(MPa)

Es
(GPa)

PWV
(km/s)

Average 2.43 3.75 6.81 9.44 37.54 14.95 4.38
Std. Dev. 0.11 1.66 1.87 3.35 16.49 5.30 1.03
Kurtosis 0.13 (0.58) (0.50) (0.41) (0.58) (0.51) (0.38)

Skewness (0.42) 0.09 0.70 0.79 (0.71) (0.62) (0.78)
Min. 2.10 0.31 4.08 4.36 4.12 3.00 2.06
Max. 2.63 8.00 11.00 16.72 59.72 22.90 5.79

Specimens 65 65 65 65 65 65 65

In the sandstone samples of the present research, clay and gypsum were found. The
cement of the samples is gypsum and calcite. The grains of these sandstones are semi-
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rounded to angular and have a moderate to poor grading. The study of the thin sections
of the samples showed that the samples with higher clay content show lower resistance
characteristics. Swelling clay minerals (such as montmorillonite) were not observed in the
investigated samples. Generally, rock bursting occurs in deep mines and in quartz-rich
rocks [12]. Because the depth of the studied mines is less than 50 m and the overburden
stress is negligible, the risks of rock bursting have not been reported in them so far.

3.2. Petrographic Features

Texture has a special effect on the engineering properties of sedimentary rocks [82]. In
carbonates, the rock texture is very different, but their mineralogy is not much different [83,84].
According to microscopic studies, the most basic mineral of limestone rocks was calcite.
Mishan formation limestone rocks, with an early Miocene age, based on the Dunham [51]
classification, were classified in the range of mudstone to grainstone. Moreover, argillaceous
limestone samples of this formation were classified in the mudstone to packstone categories.
Sandstone samples of the Aghajari formation with an upper miocene age were classified as
calc-litharenite according to the Folk [50] classification. These rocks consist of carbonaceous
rock fragments (26 to 75), volcanic gravel (2 to 35%), meta-morphic fragments (2 to 18%),
feldspar (1 to 10%), dark minerals (1 to 8%), quartz (0 to 22%), and chert (2 to 11%).

3.3. Influence of Independent Variables on the UCS

Figure 3 shows the effect of variables on the UCS. There is a reasonable tendency
among these characteristics. The UCS decreases with increasing WW and porosity. This
Figure shows that porosity has the highest effect on the UCS. Numerous studies have
reported linear relationships with high accuracy between the point load index (PLI) and
UCS [8,30]. The results of the relationship between PVW and UCS show that PWV displays
a high accuracy to estimate UCS (Figure 3).
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3.4. Evaluation of Previous Emperical Relationships

For predicting the UCS of the rocks, some empirical relationships have been proposed
(Table 1). In the current research, for each of the 65 samples of the present study, based on
each of the empirical relationships in Table 1, UCS was predicted. Finally, the accuracy of
the forecasted and actual UCS relationships were assessed.

Figure 4 displays the data scattering and the precision of correlation using PI and R2.
The results revealed that there is good compatibility between actual UCS and the estimated
one using previous studies (Figure 4). A performance index (PI) was introduced by Yagiz
et al. [85] for evaluating empirical equations and models. The value of this index is equal to
two in the best case, and the lower it is, the lower the relationship performance. As can be
seen, although the correlation coefficient is high, the performance index is negative, which
indicates the poor performance of the previous researchers’ relationships in estimating the
UCS of the studied rocks (Figure 4). For this reason, various researchers have emphasized
that empirical relationships should be determined for each region [85].
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The type of rock, strength amount, method of conducting experiments, the test condi-
tions (such as loading rate), and the petrography of the specimens of a specific study reveal
the applicability of the proposed relationships for forecasting the UCS of rocks in other
regions. For example, the average UCS of the samples of Edet [3] study was 32.22 MPa,
and the average UCS of the present study is 37.54 MPa, which shows that the resistance of
the Edet [3] study samples is lower than the resistance of the current research samples. As
a result, the UCS values estimated from this researcher’s relationship are mostly below the
diagonal line (Figure 4d). The sample breaks faster and shows more resistance when the
loading rate is increased.

3.5. Multiple Linear Regression (MPLR)

In the current work, MPLR analysis was performed using Minitab software (version
18). Equation (18) was developed to predict the UCS using this method. Various criteria to
evaluate this relationship are presented below.

Various statistics (Tables 4 and 5) were used to evaluate relationship 18. The Durbin
–Watson statistic DWS) and variance inflation factor (VIF) are used to evaluate the indepen-
dence of errors and the correlation of independent variables, respectively [86]. The results
showed that there is no problem in using relationships in terms of these two criteria because
the DW is in the range of 1.5 to 2 and the VIF value is less than 10 (Table 5). Analysis
of variance (ANOVA) results (Sig. < 0.00) show that the model has been well developed
using MPLR. Sig. values (related to T-test) in Table 5 indicate the presence of variables in
the multivariate regression output relationship. The constant value, density, and water
absorption were removed from Equation (18) because the sig. value is more than 0.05.

Table 4. Multiple linear regression results to estimate UCS and Es.

Equation R2 RMSE
(MPa) MAPE% VAF

% PI DWS ANOVA Results Eq. No.

UCS = 5.03PWV − 1.735φ
+ 2.667PLI 0.88 1.10 1.08 87.85 0.66 1.93 F-value = 79.37

p-value = 0.00 (18)

Table 5. Evaluation criteria of coefficients for relationship 18.

Term Coefficients T-Value Significant
Level (Sig.)

VIF (Variance
Inflation Factor)

Constant −32.1 −1.34 0.187 -
PWV 5.03 2.44 0.018 7.58

D 21.4 1.82 0.074 3.02
WW 0.281 0.35 0.728 3.81

φ −1.735 −3.97 0.000 3.64
PLI 2.667 3.05 0.003 3.77

The normality of the error distribution is also one of the other criteria for evaluating
empirical relationships. The normal distribution of errors related to the model provided by
MPLR method shows that the proposed model can be used to estimate UCS (Figure 5).
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3.6. The Results of Modeling Using RFA and GPR-SEK Methods

The RFA modeling was conducted using the R (version R4.2.1) software [54]. The GPR-
SEK model was conducted using MATLAB software (MATLAB 2016b). In the RF method,
the 10-fold cross-validation method was used to control the number of chosen parameters
in each node of tree (m-try) and the number of trees (n-tree). According to this method,
the number of 500 trees and five variables in each node has delivered the most satisfactory
conditions for modeling. Therefore, these values were used for modeling purposes.

The random forest method works well for large amounts of data and has high accuracy.
In the random forest method, because the amount of error decreases with the increase of
trees, 500 trees were used to develop the model. Upon model execution, the results were
evaluated using an out-of-bag (OOB) error estimation. The model was appraised by the test
data, the results of which are presented in Figure 6. One of the advantages of the random
forest algorithm is that it can determine the importance of variables in a problem. In this
research, the significance of the inputs was achieved using the Gini significance index [54].
The results showed that porosity has higher importance than other parameters. In Figure 6,
the error histogram, the graph of the measured, the forecasted UCS using the RFA method,
and the GPR-SEK model are drawn. The GPR-SEK model was implemented based on the
squared exponential kernel function. As can be seen in the figure, the results are close to
the bisector line, and it can be said that the values have been predicted with good accuracy.
Theoretically, if R2 equals 100%, all the observed values will be similar to the fitted values
and all the data points will be on the fitted line [87].
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3.7. The FMP-ANN Results

The FMP-ANN is widely used in engineering [88,89]. In the current study, for predict-
ing UCS, various neurons in a hidden layer were investigated to develop optimal models.
Based on equations proposed by previous researchers, the number of hidden layer neu-
rons changes were determined (Table 6). The calculated number of hidden layer neurons
changed from one to eleven according to Table 6. In this study, by checking this range
using the FMP-ANN, this range was evaluated to achieve the ideal model architecture for
forecasting UCS.

Table 6. Proposed equations by previous researchers to estimate the number of hidden layer neurons.

References Neuron Numbers Calculated for This Study Equations

Hecht-Nielsen [90] ≤3 ≤2 ∗ Ni + 1
Hush [91] 3 3Ni
Ripley [92] 3 (Ni + N0)/2
Paola [93] 11 2 + Ni ∗ N0 + 0.5N0 ∗ (N2

0 + Ni) − 3
(Ni + N0)

Wang [94] 1 2Ni/3
Kaastra and Boyd [95] 2

√
N0 ∗ Ni

Kanellopoulos and Wilkinson [96] 1 2Ni

N0 and Ni are the numbers of input and output neurons, respectively.

The used FMP-ANN method has a hidden layer with five inputs (PWV, point load
index (PLI), porosity, density, and water absorption) and one output (UCS). Using MATLAB
software, the Levenberg Marquardt (LM) training algorithm was used to train the network.
The neuron transfer functions were the selected Sigmoid between the input layers and
hidden layers and the Purelin between the hidden layers and output layers. In FMP-ANN
modeling, the percentages of the validation, test, and training data in the present study
were randomly selected as 15%, 15%, and 70% of the total data, respectively. The validation
set is used to prevent overfitting, the training group is used to determine weights, and the
test group is used to evaluate the FMP-ANN results [97–100]. The results showed that the
third neuron is the most accurate neuron for estimating UCS. Figure 7 displays the optimal
FMP-ANN chart achieved in the current research.
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Figure 8 shows the error variations in optimum results. The lowest error in epoch
4 was obtained for predicting the UCS (Figure 8). Moreover, in this research, the results of
the FMP-ANN to estimate UCS have been compared with several methods. It was found
that the accuracy of all methods was very high (the coefficient of determination is more
than 97%).
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3.8. The KNNA Results

To apply the KNNA method to the data and determine the best K value, the KNNA
was written in the form of a program in MATLAB software, which was run 310 times for K
values from 1 to 30 programs; moreover, the amount of error was measured (Figure 9). Of
the total data, 70% and 30% were used to train and test the model. The results showed that
the lowest estimation error of the UCS was obtained at K = 2 (Figure 9). The error of this
network for estimating the UCS with respect to the K values is equal to 0.11 (Figure 10).
Figure 10 shows the KNNA results for estimating the UCS.
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(b) error histogram for all data.

3.9. Results of SVM Method for Estimating UCS

The SVM algorithm uses a set of mathematical functions that are named kernels [101].
The most important kernel functions for solving engineering problems are listed in Table 7.
Normally, three radial basis kernel functions (RBFs), polynomial of degree, d, and linear,
are used in the support vector machine, and the use of each of these functions with
different parameters in the estimation of rock strength may lead to different results [60,101].
Therefore, it is necessary to evaluate the efficiency and accuracy of each of these functions
and to choose the appropriate kernel function in predicting resistance. These three kernel
functions were also used in this research. It should be mentioned that the calculation
process of SVM was performed based on coding in a MATLAB environment and that the
parameters of the kernel functions were optimized using a trial and error process. The
results of these investigations are presented in Table 8. It can be observed that, based on the
statistical criteria, the accuracy of the kernel functions is as RBF> PK > LK. In this regard,
Nguyen [102] investigated the performance of various kernel functions using the support
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vector machine method in estimating blast-induced ground vibration and stated that the
radial basis function has the highest performance.

Table 7. The most important kernel functions for solving engineering problems [102].

Function Description Kernel Function Type

k
(

xi, xj

)
= (xi.xj + 1)d This kernel is widely used in image processing, where d

is the degree of the polynomial. Polynomial kernel (PK)

k
(

xi, xj

)
= exp(−γ‖xi − xj‖2)

This kernel is used for general purposes. It is used when
there is no prior knowledge about the data. In
γ > 0 condition, γ = 1/2σ2 parameter is used.

Radial basis function (RBF)

k
(

xi, xj

)
= xi.xj - Linear kernel (LK)

Table 8. Evaluation of SVM model performance in UCS estimation using various kernel functions.

Kernel Function
Optimal Values of Parameters Test Period Train Period

ε t d σ c RMSE R2 PI MAPE RMSE R2 PI MAPE

PK 1.72 280.01 4 - 12.12 0.08 0.97 1.87 2.86 0.07 0.98 1.84 2.81

RBF 0.02 - - 1.10 27 0.06 0.99 1.90 2.82 0.06 0.99 1.90 2.80

LK 0.45 - - - 0.90 0.09 0.96 1.83 2.84 0.09 0.97 1.81

The error histogram and predicted and estimated UCS relationship with the optimal
function (RBF function) are presented in Figure 11.

Sustainability 2023, 15, x FOR PEER REVIEW 16 of 22 
 

The error histogram and predicted and estimated UCS relationship with the optimal 
function (RBF function) are presented in Figure 11. 

 
 

(a) (b) 

Figure 11. Accuracy of predicted UCS using SVM-RBF: (a) correlation coefficient and (b) error 
histogram for all data. 

3.10. Results of ANFIS Method for Estimating UCS 

As with other intelligent methods, to test and train models using ANFIS, 30% and 
70% of the whole data were used, respectively. The method of combining regression error 
propagation with least squares was used to train the model using the ANFIS. Table 9 
shows the modeling features using the ANFIS method. A comparison of the performance 
of the methods for forecasting UCS based on different criteria has been reported in the 
next section. 

Table 9. Modeling features using ANFIS. 

FIS Generation Method GENFIS4 
Influence radius 0.60 

Number of epochs 500 
Error goal 0.00 

Type Sugeno 
Rules 4 

Number of membership functions (MFs) 6 
Input MF type Gauss MF 

Output MF type Linear 

Figure 12 shows the error histogram and correlation coefficient of the ANFIS model 
in the test stage. This method, as with other used intelligent methods, has high accuracy 
in UCS estimation. The results of the intelligent models for estimating UCS from the test 
data performed better than the training data; therefore, it can be argued that overfitting 
did not occur. 

Figure 11. Accuracy of predicted UCS using SVM-RBF: (a) correlation coefficient and (b) error
histogram for all data.

3.10. Results of ANFIS Method for Estimating UCS

As with other intelligent methods, to test and train models using ANFIS, 30% and
70% of the whole data were used, respectively. The method of combining regression error
propagation with least squares was used to train the model using the ANFIS. Table 9
shows the modeling features using the ANFIS method. A comparison of the performance
of the methods for forecasting UCS based on different criteria has been reported in the
next section.
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Table 9. Modeling features using ANFIS.

FIS Generation Method GENFIS4

Influence radius 0.60

Number of epochs 500

Error goal 0.00

Type Sugeno

Rules 4

Number of membership functions (MFs) 6

Input MF type Gauss MF

Output MF type Linear

Figure 12 shows the error histogram and correlation coefficient of the ANFIS model
in the test stage. This method, as with other used intelligent methods, has high accuracy
in UCS estimation. The results of the intelligent models for estimating UCS from the test
data performed better than the training data; therefore, it can be argued that overfitting did
not occur.
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3.11. Evaluation of the Used Methods

Table 10 and Figure 13 show the accuracy of the used methods for forecasting the UCS.
According to the statistical criteria (i.e., R2, MAPE%, RMSE, VAF, and PI), the SVM-RBF
model displays greater precision than other models because the SVM uses the minimizing
structural risk theorem and adapts the ability of the model to existing training data [103].
The number of input variables, number of samples, and training algorithm type also affect
the accuracy of the methods [16,104,105]. Based on the correlation coefficient, all methods
(R2 > 90%) have excellent accuracy for estimating UCS.

Considering that all six intelligent methods showed very high accuracy in UCS es-
timation, the percentage difference of the average of all six intelligent methods with the
measured value in the laboratory is equal to +0.28%. This amount of difference is less than
1% and indicates the high capability of intelligent methods for forecasting the UCS.
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Table 10. Accuracy of approaches for predicting UCS.

APPROACHES MAPE% R2 RMSE VAF% PI

RFA 9.27 0.98 0.09 97.63 1.87
SVM-RBF 2.83 0.99 0.06 98.96 1.92

ANFIS 2.98 0.98 0.09 97.86 1.87
KNNA 8.44 0.97 0.11 97.25 1.83

GPR-SEK 6.63 0.98 0.09 97.45 1.86
FMP-ANN 4.66 0.99 0.24 98.36 1.73
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4. Conclusions

The UCS of rocks is a basic parameter necessary for assessing the construction of
civil and mining structures, such as the stability of the mines and the bearing capacity
of foundations. UCS estimation using core specimens is costly, difficult, and, in some
cases, impossible. After assessing the geo-mechanical features of 55 samples of sandstone,
limestone, and argillaceous limestone specimens, predictive models for estimating UCS
were developed via intelligent and statistical approaches. The results showed that the
carbonate and sandstone samples were classified as mudstone to grainstone and calc-
litharenite, respectively. The PWV, WW, porosity, density, and PLI were considered as
model inputs for predicting UCS. Statistical analysis allowed the development of equations
with high accuracy to estimate UCS. Among the assessed linear, polynomial, and radial
basis kernel functions, the accuracy of the other models was lower than that of SVM-
RBF in forecasting UCS. The SVM-RBF model revealed that the R2 and PI values were
0.99 and 1.92, respectively. The R2 values of 98%, 98%, 97%, 98%, and 99% for forecasting
the UCS were achieved using ANFIS, RFA, KNNA, GPR, and FMP-ANN, respectively. The
number of samples and input variables had a significant impact on the performance of the
methods. When the number of samples was small, the SVM method was more accurate.
The percentage difference of the average of all six intelligent methods with the measured
value was less than 1%, which indicates the superior capability of the intelligent methods
in forecasting UCS.
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Abstract: The propagation mechanism of explosion stress waves in frozen rock mass is the main
factor affecting the blasting efficiency and safety construction of strip mines in alpine cold regions.
In order to study explosion stress wave propagation and crack extension in the blasting process of
frozen rock mass with ice-filled cracks, RFPA2D is adopted to simulate the influence of the geometric
parameters of ice-filled cracks (ice-filled crack thickness d, normal distance R from blasting hole to the
ice-filled crack, and ice-filled crack angle α), loading intensity and loading rate on the explosion stress
wave propagation effect and the damage range. The results show: The attenuation trend of explosion
stress waves decreases gradually with an increase of thickness (e.g., In the case of R is 0.2 m, when
d is 0.02 m, 0.04 m, and 0.08 m, the calculated attenuation factor of the minimum principal stress
peak value is 7.128%, 18.056%, and 30.035%, respectively), and it decreases slightly with an increase
of normal distance and ice-filled crack angle. The damage elements range of the ice-filled crack
decreases when the ice-filled crack thickness and normal distance increases. The loading intensity
and the loading rate have a significant influence on blasting hole fracture patterns. The ice-filled
crack has a guiding effect on the growth of blasting cracks at the blasting hole. Nevertheless, the
existence of ice-filled cracks inhibits the propagation of explosion stress waves in frozen rock mass.

Keywords: frozen rock mass blasting; ice-filled crack; explosion stress wave propagation; attenuation
factor; numerical simulation

1. Introduction

The design and disaster prevention of open pit blasting mining of mineral resources
in cold regions have become key issues in the field of energy safety mining. There are a
large number of naturally formed intermittent joint cracks, bedding and faults in rock mass.
The existence of these structural planes affects the mechanical properties, vibration, perme-
ability, energy transfer and other properties of rock mass. Affected by low temperature,
the water in the primary fissures of open pit slopes becomes ice, which forms frozen rock
mass [1–4]. The propagation and attenuation of explosion stress waves in frozen rock mass
is slightly different from that in conventional rock mass, which affects the blasting effect
and safety of strip mining in cold regions. Therefore, it is of great significance to study the
explosion stress wave propagation and crack extension of ice-filled crack rock mass under
explosion loading. This study will improve the efficiency of blasting energy utilization,
blasting effect and disaster prevention of rock mass engineering in cold regions [5–7].

At present, many scholars have carried out a wealth of research on stress wave
propagation in jointed rock masses. In terms of theoretical calculations, it is mainly divided
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into the discontinuous displacement method, the equivalent continuous medium method,
and the continuous and discontinuous coupling method [8–10] to study the propagation
characteristics of stress waves. The discontinuous displacement method is mainly used
to analyze the stress wave propagation in a single crack or a group of parallel cracks.
The fewer cracks there are, the better the analysis effect is. The equivalent continuous
medium method can quickly calculate the propagation of stress waves in rock mass under
a large number of cracks and uniform distribution. The continuous and discontinuous
coupling method is used to analyze macroscopic joints and mesoscopic rock fissures in rock
mass. Currently, this method focuses on the one-dimensional propagation law of stress
waves [11,12].

In terms of physical tests, the separation Hopkinson pressure bar (SHPB) device has
become the main research method to study the propagation of explosive stress waves
in jointed rock masses [13–15]. Chen et al. [16] obtained the relationship between the
transmission coefficient and the contact surface by the stress wave propagation experiment
in artificial rock fractures. Kumar et al. [17] investigated the rate-dependent mechanical
behavior of jointed rock with a non-persistent joint with different infill conditions under
varying strain rates, i.e., 10−4 to 130 s−1 using an SHPB and static uniaxial compression test
set-up. Certainly, it is a good method to study the propagation characteristics of explosion
stress waves through the blasting simulation test. Luo et al. [18] used the dynamic caustics
test system to study the penetration process of the main crack of the slotted hole and wing
cracks of different angles. They drew the conclusion that the 90◦ pre-crack has a certain
inhibitory effect on the reflected stretching wave. Ram et al. [19] studied the interaction
between explosion waves and a structure by electric explosion technology.

The numerical simulation methods, in comparison with theoretical and experimental
studies, provide easier and more economical conditions for studying stress wave propaga-
tion in jointed rock masses, especially for complex cases where theoretical and experimental
solutions seem impossible.

The continuum-based method mainly contains the finite element method (FEM), XFEM
(extended FEM), SPH (smoothed particle hydrodynamics), etc. [20–23]. Liang et al. [24]
studied the dynamic fracture properties of rocks under different static stress conditions
by RFPA2D, and concluded that the crack propagation path became more discontinuous
and rougher in a smaller-heterogeneity parameter case. Bendezu et al. [25] obtained the ad-
vantages and limitations of three methods (XFEM, the conventional finite element method
(FEM) using a remeshing technique, and the element deletion method) that simulate the
evolution of a rock fragmentation process. Based on the experimentally obtained mechani-
cal properties, experienced peak pressure values inside the rock samples and blast-induced
fracture patterns, Banadaki et al. [26] calibrated the Johnson-Holmquist model parameters
in ANSYS Autodyn. Zhao et al. [27] analyzed the blasting-induced fracture propagation in
coal masses by LS-DYNA, considering the dynamic compressive and tensile failure.

The discontinuum-based methods include the DEM (discrete element method) and the
DDA (discontinuous deformation analysis). Yari et al. [28] studied the effect of the position
of the joints relative to the blast hole on the blast wave propagation by 3D DEM models.
Lak et al. [29] simulated the process of extension of blast-induced fractures in rock masses
by the DEM, which considered fracture propagation from both the rock mass inherent
fractures and newly induced cracks. Hajibagherpour et al. [30] simulated the mechanism
of rock fragmentation due to blast-induced shock waves in a single blast hole by UDEC.
Ning et al. [31] extended the DDA to model rock mass fracturing by coupling the rock
mass failure process and the penetration effect of the explosion gas based on a generalized
artificial joint concept.

Coupled or hybrid continuum-discontinuum-based methods include the FEM-SPH
method [32], the DEM-SPH method [33], the MPM (material point method), the CDEM
(continuum-discontinuum element method) [34], and the combined finite-discrete element
method (FDEM) [35,36], etc. Trivino et al. [37] simulated blasting-induced crack initiation
and propagation in a granitic outcrop using FDEM. Zhao et al. [38] studied the blasting
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effect disturbed by joint strength, joint stiffness, joint spacing, joint angle and other factors
by CDEM.

The above-related research mainly focuses on the propagation characteristics of stress
waves in jointed rock mass, while the explosive stress wave propagation in frozen rock
masses at low temperature is slightly involved. Frozen rock mass with ice-filled cracks is
very common in the mining process of mineral resources in cold regions, and its properties
are different from that of conventional rock mass [39]. It is of practical value to study the
propagation process of explosion stress waves in frozen rock mass with ice-filled cracks,
the growth pattern of blasting cracks in frozen rock mass, and the attenuation of explosion
stress waves after passing through ice, for the safe mining of strip mines in cold regions.

The aim of this study is to explore explosion stress wave propagation and crack
extension in the blasting process of frozen rock mass with ice-filled cracks. The numerical
model of frozen rock mass with ice-filled cracks is established by RFPA2D in Section 2.
The influences of the geometrical parameters of ice-filled cracks (ice-filled crack thickness
D, normal distance R from blasting hole to ice-filled crack, and ice-filled crack angle α),
loading intensity and loading rate on the explosion stress wave propagation effect and
the damage range are mainly analyzed in Section 3. This research can provide theoretical
suggestions for improving the efficiency and disaster prevention of blasting engineering in
cold regions.

2. The Principle of RFPA2D

2.1. Overview of Mesoscopic

Rock failure process analysis (RFPA) is used to simulate the failure process of frozen
rock mass with ice-filled cracks. However, we know that the rock is a heterogeneous
material filled by the disorder of micro-structures, which plays a significant role on the
mechanical properties of rock [40,41]. Therefore, rock heterogeneity should be considered
and implemented in the numerical model. Rock heterogeneity can be well characterized
by using the statistical method. In RFPA, the numerical testing sample is composed of
elements with the same shape and size. It is assumed that the distribution of elemental
mechanical parameters, including the strength, Poisson ratio, elastic modulus and density,
can be depicted by the Weibull distribution function [42], as follows:

φ(u) =
m
u0

(
u
u0

)m−1
exp

[
−
(

u
u0

)m]
(1)

where u is the mechanical and dynamic properties of elements, such as elastic modulus,
strength, and density; u0 is defined as the mean value of the element parameter; m is a
shape parameter which is defined as the homogeneity index of the material; and ϕ(u) is the
distribution function of mechanical properties.

2.2. Evolutionary Damage Principle of RFPA Meso-Elements

RFPA2D uses the four-node iso-parametric element to describe the basic element. All
of the elements are considered to be elastic and isotropic. The elastic damage constitutive
method is adopted to elaborate the stress–strain relationship. The stress–strain curve of
each element is considered as linearly elastic. When the damage threshold is reached, the
maximum tensile stress criterion is used to judge the damage and failure of the element in
tensile state, and the Mohr-Coulomb criterion is used to judge the damage and failure of
the element in compressive and shear state. As the damage progresses, the elastic modulus
of the element is gradually degraded. The modified elastic modulus can be expressed
as follows:

E = (1 − D) × E0 (2)

where E and E0 are the elastic modulus after damage and the initial elastic modulus,
respectively; and D is the damage variable.
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Figure 1 shows the elastic damage constitutive relation of the element under uniaxial
stress state. When shear failure occurs to the elements, the Mohr-Coulomb criterion
is adopted:

F = σ1 − σ3
1 + sin ϕ

1 − sin ϕ
≥ fc (3)

where σ1, σ3 and fc are the maximum principal stress, the minimum principal stress and
the uniaxial compressive strength, respectively; and φ is the friction angle.
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Figure 1. Elastic damage constitutive relation of the element under uniaxial stress state.

Damage variable D is introduced:

D =

{
0 ε ≤ εc0
1 − σcr

εE0
εc0 ≤ ε

(4)

where σcr is the compressive residual strength and εc0 represents the maximum
compressive strain.

When tensile failure occurs to the elements, the following is adopted:

σ3 ≤ − ft (5)

Damage variable D is introduced:

D =





0 ε ≤ εt0
1 − σtr

εE0
εt0 < ε ≤ εtu

1 ε > εtu

(6)

where ft and σtr are the tensile strength of rock and the residual strength of tensile damage,
respectively; εt0 and εtu represent the maximum tensile strain and the ultimate tensile strain,
respectively. When the maximum tensile strain of the rock element is reached, it loses
carrying capacity.

2.3. RFPA Solution for Dynamic Finite Element Equations

The dynamic equilibrium equation for each node in motion can be expressed as [43]:

M
..
u + C

.
u + Ku = Q (7)
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where
..
u,

.
u, and u are the constant vectors of displacement, velocity and acceleration at t,

respectively. K, M and C are the stiffness matrix, mass matrix and damping matrix of the
system, respectively.

By substituting the equations relating velocity, acceleration and displacement in the
Newmark method:

..
ut+∆t =

1
β∆t2 (ut+∆t − ut)−

1
β∆t

.
ut −

(
1

2β
− 1
)

..
ut (8)

..
ut+∆t =

γ

β∆t
(ut+∆t − ut) +

(
1 − 1

β

)
.
ut −

(
γ

2β
− 1
)

..
ut+∆t∆t (9)

By substituting Equations (8) and (9) into the dynamic equilibrium Equation (7):

_
Kut+∆t =

_
Qut+∆t (10)

_
K = K +

1
β∆t2 M +

γ

β∆t
C (11)

_
Qt+∆t = Qt+∆t + M

[
1

β∆t2 (αt+∆t − αt)− 1
β∆t

.
αt −

(
1

2β − 1
) ..

αt

]

+C
[

γ
β∆t (αt+∆t − αt) +

(
1 − γ

β

) .
αt +

(
1 − γ

2β

)
∆t

..
αt

] (12)

where β and γ are the integration coefficients of the Newmark method. When γ ≥ 0.5,
β ≥ 0.25 × (γ + 0.5)2, the Newmark method is unconditionally stable.

3. Numerical Simulation Blasting Process Analysis of Frozen Rock Mass with
Ice-filled Cracks
3.1. Model Setup

RFPA2D has been widely used in the numerical simulation of stress wave propagation
in conventional jointed rock masses [44,45]. Liang et al. [24] used RFPA2D to carry out the
dynamic fracture characteristics of fractured rock under different static stress conditions
and compared it with the experimental results of Yang et al. [46]. The simulation results
showed that RFPA2D could well simulate crack propagation and stress wave attenuation
under dynamic stress, which was in good agreement with the experimental results. In
addition, some achievements have been made on the effect of ice-filled cracks on the
propagation efficiency of rock explosion stress waves [47]. Therefore, explosion stress wave
propagation and crack extension of frozen rock mass with ice-filled cracks during blasting
is studied by RFPA2D.

The blasting model of frozen rock mass is 4 m in length and 4 m in height. The mesh
size is 0.01 m × 0.01 m. Single-hole blasting is adopted, and the blasting hole radius r is
0.05 m. The blasting load is simplified into triangular waves [24,45]. The loading case is
shown in Figure 2. The total duration is 3 × 10−4 s, and the single-step loading time is
2 × 10−6 s.
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The material parameters of the numerical simulation of rock and ice are shown in
Table 1 [48]. Model I is used to study the influence of ice-filled crack thickness d, normal
distance R from the ice-filled crack to the center of the blasting hole, loading intensity
and loading rate on the propagation process of frozen rock mass explosion stress waves
(Table 2). Model II is used to study the influences of the ice-filled crack angle α on the
propagation process of frozen rock mass explosion stress waves (Table 3).

Table 1. Material parameters of the model.

Elasticity Modulus
(MPa) m Compressive Strength

(MPa) m Poisson
Ratio

Friction
Angle

Density
(kg × m−3)

Rock 32,000 5 147 5 0.3 30◦ 2600
Ice 6000 10 8 10 0.35 26.5◦ 917

Table 2. Calculation Model I.

Explosion Model
Ice-Filled Crack Thickness d (m)

0.02 0.04 0.08

R

0.2 m
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3.2. Analysis of Blasting Failure Process of Intact Frozen Rock Mass
3.2.1. Blasting Failure Process

Figure 3 shows the intact frozen rock mass explosion stress wave propagation and
failure process. The cracks produced by blasting mainly occur near the blasting hole. The
cracks show a uniform and divergent extension pattern. There is no ice-filled crack in
the model, and explosion stress waves propagate equally on the left and right sides. At
0.54 × 10−4 s, damage elements begin to appear near the blasting hole; and at 1.48 × 10−4 s,
macro blasting cracks are formed. After that, the macro cracks stop extending as the
explosion stress wave has propagated out.

3.2.2. The Minimum Principal Stress at the Monitoring Point A

The monitoring point A is set (3.2 m, 2 m). In RFPA2D, the pressure is positive, and
the tensile stress is negative. Before 2.34 × 10−4 s, the minimum principal stress at the
monitoring point A does not change, and the stress waves do not reach the monitoring
point A. From 2.34 × 10−4 s to 3.04 × 10−4 s, the monitoring point is squeezed by stress
waves, showing stress changes; and the peak value of the minimum principal stress is
0.576 MPa. After 3.04 × 10−4 s, the symbol of the minimum principal stress value changes,
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and tensile stress is generated at the monitoring point under explosion stress waves.
(Figure 4).

Table 3. Calculation Model II.

Explosion Model Ice-Filled Crack Angles α (◦)

R = 0.8 m
d = 0.04 m
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itoring point A does not change, and the stress waves do not reach the monitoring point 
A. From 2.34 × 10−4 s to 3.04 × 10−4 s, the monitoring point is squeezed by stress waves, 
showing stress changes; and the peak value of the minimum principal stress is 0.576 MPa. 
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3.3. Ice-Filled Crack Thickness d Influence on Blasting Effect of Frozen Rock Mass
3.3.1. Blasting Failure Process

By comparing the blasting effect of frozen rock with ice-filled cracks of 0.02 m, 0.04 m
and 0.08 m thickness distributed in the same normal distance, the following observations
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are obtained. With the propagation of explosion stress waves, the numerical simulation
results are the same as the blasting effect of intact frozen rock mass, and the blasting crack
appears first at the blasting hole (Figure 5). Taking d = 0.02 m and R = 0.2 m frozen rock
mass with ice-filled cracks as an example, at 0.54 × 10−4 s, damage elements occur near
the blasting hole. At 1.48 × 10−4 s, the stress wave reaches the ice-filled crack. When the
explosion stress wave propagates to the ice-filled crack, reflects and transmits. The reflected
wave collides with the incident wave, which reduces both the energy of the incident wave
and the explosion range. As the mechanical strength of ice is less than that of rock, damage
elements gradually appear in the ice-filled crack first. At 3.00 × 10−4 s, the explosion stress
wave continues to act on the ice-filled crack, and the range of damage elements intensifies.
At 5 × 10−4 s, the stress waves have passed through the ice-filled crack, and the damage
range remains stable.
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Figure 5. Explosion stress wave propagation and failure process of frozen rock mass with different
ice-filled crack thicknesses (the normal distance R is 0.2 m). (a1–a4) d = 0.02 m; (b1–b4) d = 0.04 m;
(c1–c4) d = 0.08 m.

By comparing Figure 5(a4,b4,c4), the damage elements range of the ice-filled crack
decreases when the thickness of the ice-filled crack increases. By comparing the crack
propagation of the non-ice side with the ice side, the crack propagation of the blasting is
induced by the ice-filled crack.

3.3.2. The Minimum Principal Stress at the Monitoring Point A with Different Ice-Filled
Crack Thicknesses

By comparing the minimum principal stress at the monitoring point A of ice-filled
cracks with different thicknesses (Figure 6), the minimum principal stress presents a positive
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increase at first, then decreases to a negative fluctuation. The minimum principal stress
amplitude is similar to that of the intact frozen rock mass. Taking R = 0.8 m frozen rock
mass with ice-filled crack as an example.
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Figure 6. The minimum principal stress during blasting at frozen rock mass monitoring point with
different ice-filled crack thicknesses. (a) R = 0.2 m; (b) R = 0.4 m; (c) R = 0.8 m.

When d = 0.02 m, the minimum principal stress is positive and the peak value is
0.528 MPa from 2.90 × 10−4 s to 3.72 × 10−4 s. The explosion stress waves produce
extrusion effects on the monitoring point. After 3.72 × 10−4 s, the stress wave propagates
through the monitoring point, tensile stress is generated on the monitoring point, and the
minimum principal stress turns negative. When d = 0.04 m, the peak value of the minimum
principal stress is 0.470 MPa from 2.92 × 10−4 s to 3.78 × 10−4 s. When d = 0.08 m, the peak
value of the minimum principal stress is 0.395 MPa from 2.96 × 10−4 s to 3.76 × 10−4 s.
The results show that the minimum principal stress decreases with an increase of ice-filled
crack thickness.

At the monitoring point A, the peak value of the minimum principal stress of intact
frozen rock mass is 0.576 MPa. The minimum principal stress peak value of frozen rock
mass with ice-filled cracks is obviously smaller than that of intact frozen rock mass. It can
be seen that the existence of ice-filled cracks inhibits the propagation of explosion stress
waves in frozen rock mass.

3.4. Normal Distance R Influence on Blasting Effect of Frozen Rock Mass
3.4.1. Blasting Failure Process

Figure 7 shows the explosion stress wave propagation and failure process of frozen
rock mass with different normal distance R. The crack pattern at the blasting hole is similar
to that of the intact frozen rock mass, showing a uniform and divergent extension. When
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d = 0.02 m and 0.04 m, the damage elements ranges have little differences. When d = 0.08 m,
the damage elements range have obvious differences. The smaller the normal distance R is,
the closer the ice-filled crack is to the blasting hole, the more obvious the explosion stress
wave effect is. The thicker the ice-filled crack is, the more apparent that it is affected by
normal distance.
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Figure 7. Explosion stress wave propagation and failure process of frozen rock mass with different
normal distance R. (a) d = 0.02 m; (b) d = 0.04 m; (c) d = 0.08 m.

3.4.2. The Minimum Principal Stress at the Monitoring Point A with Different
Normal Distances

Taking d = 0.04 m frozen rock mass with ice-filled crack as an example (Figure 6).
When R = 0.2 m, the peak value of the minimum principal stress is 0.472 MPa from
2.98 × 10−4 s to 3.82 × 10−4 s. The explosion stress wave produces extrusion effects on the
monitoring point. After 3.72 × 10−4 s, as the stress wave propagates through the monitoring
point, tensile stress is generated on the monitoring point, so it is a negative value. When
R = 0.4 m, the peak value of the minimum principal stress is 0.472 MPa from 2.98 × 10−4 s to
3.82 × 10−4 s. When R = 0.8 m, the peak value of the minimum principal stress is 0.470 MPa
from 2.98 × 10−4 s to 3.80 × 10−4 s. When the normal distance between the ice-filled crack
and the blasting hole increases, the reduction of the explosion stress wave propagation will
decrease slightly.
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3.5. Ice-Filled Crack Angle α Influence on Blasting Effect of Frozen Rock Mass
3.5.1. Blasting Failure Process

Figure 8 shows the explosion stress wave propagation and failure process of frozen
rock mass with different ice-filled crack angles. Different angles affect the distance from the
ice-filled crack to the blasting hole. When d = 0.04 m and R = 0.8 m, the larger the ice-filled
crack angle is, the closer the ice-filled crack is to the blasting hole and the wider the damage
range of the ice-filled crack.
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Figure 8. Damage and cracking after blasting of frozen rock mass with different angles. (a) 15◦;
(b) 30◦; (c) 45◦; (d) 60◦; (e) 75◦.

3.5.2. The Minimum Principal Stress at the Monitoring Point A with Different
Loading Angles

Taking the frozen rock mass blasting process with the ice-filled crack angle 15◦ as
an example. Before 2.92 × 10−4 s, the minimum principal stress does not change. From
2.92 × 10−4 s to 3.80 × 10−4 s, the peak value of the minimum principal stress is 0.462 MPa.
After 3.80 × 10−4 s, the minimum principal stress turns negative. When the ice-filled crack
angle is 30◦, 45◦, 60◦, 75◦, the peak value of the minimum principal stress is 0.464 MPa,
0.482 MPa, 0.475 MPa and 0.500 MPa, respectively (Figure 9). An increase of the ice-filled
crack angle causes a slight decrease of the minimum principal stress peak value.

3.6. Loading Intensity Influence on Blasting Effect of Frozen Rock Mass
3.6.1. Blasting Failure Process

The mechanical properties of rock materials are affected by the loading peak value,
which might influence the explosion stress wave propagation efficiency and blasting effect.
Taking d = 0.04 m and R = 0.4 m frozen rock mass as an example to simulate the blasting
process with different loading peak values. The failure patterns in loading cases I, II and III
at selected times were compared in Figure 10.

With the propagation of the explosion stress wave, the blasting crack appears first at
the blasting hole. At 0.54 × 10−4 s, the blasting hole begins to show damage elements. At
1.48 × 10−4 s, damage elements gradually appear in the ice-filled crack first. The blasting
crack pattern at the blasting hole is obviously different due to different loading intensities.
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At 3.00 × 10−4 s, the explosion stress wave continues to impact the ice-filled crack, and
the range of damage elements intensifies. At 5 × 10−4 s, the stress waves have passed
through the ice-filled crack and the damage range remains stable. By comparison with
Figure 10(a4,b4,c4), as the loading intensity increases, the blasting crack pattern at the
blasting hole becomes more apparent, and the damage elements range expands. Also, the
effect of explosion stress wave propagation is different.
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Figure 9. The minimum principal stress during blasting at frozen rock mass monitoring point with
different ice-filled crack angles.
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Figure 10. Damage and cracking after blasting of frozen rock mass with different loading intensities. 
(a1–a4) loading case III; (b1–b4) loading case II; (c1–c4) loading case I. 

3.6.2. The Minimum Principal Stress at the Monitoring Point A with Different Loading 
Intensities 

Figure 10. Damage and cracking after blasting of frozen rock mass with different loading intensities.
(a1–a4) loading case III; (b1–b4) loading case II; (c1–c4) loading case I.
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3.6.2. The Minimum Principal Stress at the Monitoring Point A with Different
Loading Intensities

Taking the results of frozen rock mass with ice-filled crack blasting process when the
loading intensity of the explosion stress wave is 15 MPa as an example. Before 2.96 × 10−4 s,
the minimum principal stress has no change. From 2.96 × 10−4 s to 3.80×10−4 s, the peak
value of the minimum principal stress is 0.362 MPa, and the explosion stress wave produces
extrusion effects on the monitoring point. After 3.80 × 10−4 s, the minimum principal
stress is negative. As the explosion stress wave propagates through the monitoring point,
tensile stress is generated on the monitoring point. When the explosion stress wave loading
intensity is 10 MPa, the minimum principal stress peak value is 0.233 MPa. When the
explosion stress wave loading intensity is 20 MPa, the minimum principal stress peak value
is 0.472 MPa (Figure 11). When the loading peak value of the explosion stress wave is larger,
the effect of the explosion stress wave on the rock medium is more obvious.
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Figure 11. The minimum principal stress during blasting at frozen rock mass monitoring point with
different loading intensities.

3.7. Loading Rate Influence on Blasting Effect of Frozen Rock Mass
3.7.1. Blasting Failure Process

Different blasting loading rates also have influence on the blasting effect. Taking
d = 0.08 m and R = 0.4 m frozen rock mass with ice-filled crack as an example, the failure
modes of loading cases I, IV and V at selected times are compared, as shown in Figure 12.

At 0.54 × 10−4 s, the blasting hole begins to produce damage elements. At 1.48 × 10−4 s,
damage elements gradually appear in the ice-filled crack first. The blasting crack pattern
at the blasting hole is different due to the different loading rates. At 3.00 × 10−4 s, the
explosion stress wave continues to impact the ice-filled crack, and the range of damage
elements intensifies. The blasting hole crack continues to expand. At 5 × 10−4 s, the stress
waves have passed through the ice-filled crack and the damage range remains stable. By
comparison with Figure 12(a4,b4,c4), as the loading rate decreases, the crack length at the
blasting hole increases, and the ice-filled crack shows more damage elements.

3.7.2. The Minimum Principal Stress at the Monitoring Point A with Different Loading
Rates

By comparing the minimum principal stress on the monitoring point with different
loading rates in Figure 13, the following results are observed. Before 2.96 × 10−4 s, the
minimum principal stress stays unchanged. From 2.96 × 10−4 s to 3.80 × 10−4 s, the peak
value of the minimum principal stress is 0.362 MPa in loading case I. In loading cases IV
and V, the variation of the minimum principal stress at the monitoring point A fluctuates
dramatically. As the loading waveform is different, the minimum principal stress appears
hysteresis, and the transmitted waves generated by the explosion stress waves through the
ice-filled cracks are also different.
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Figure 12. Damage and cracking after blasting of frozen rock mass with different loading rates. (a1–
a4) Loading case I; (b1–b4) Loading case IV; (c1–c4) Loading case V. 
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3.8. Evaluation of the Explosion Stress Wave Attenuation Factor

In order to intuitively evaluate the effects of different ice-filled crack conditions on the
explosion stress wave, the attenuation factor B of the explosion stress wave through frozen
rock mass is calculated as follows,

B =

∣∣∣∣
βc − βi

βi

∣∣∣∣× 100% (13)

where βc is the peak value of the minimum principal stress at monitoring point of frozen
rock mass under different conditions; and βi is the minimum principal stress value at
monitoring points of intact frozen rock mass, which is 0.576 MPa.

The attenuation trend of the explosion stress wave decreases gradually with an increase
of thickness, and decreases slightly with an increase of direction, distance and ice-filled
crack angle (Table 4).

Table 4. Explosion stress wave attenuation at monitoring points of frozen rock mass under
different conditions.

No. Width (m) R (m) Angle (◦) Loading Case Attenuation (%)

1 0.02 0.2 0 I 7.128
2 0.02 0.4 0 I 7.292
3 0.02 0.8 0 I 8.333
4 0.04 0.2 0 I 18.056
5 0.04 0.4 0 I 18.056
6 0.04 0.8 0 I 18.403
7 0.08 0.2 0 I 30.035
8 0.08 0.4 0 I 29.689
9 0.08 0.8 0 I 31.424
10 0.04 0.8 15 I 19.792
11 0.04 0.8 30 I 19.444
12 0.04 0.8 45 I 16.319
13 0.04 0.8 60 I 17.535
14 0.04 0.8 75 I 13.194

4. Conclusions

In this work, the stress wave propagation and blasting crack extension mechanism
of frozen rock mass with ice-filled cracks are analyzed by RFPA2D. The findings facilitate
blasting design and disaster prevention in cold region strip mining. Specifically, the explo-
sion stress wave propagation effect and the damage range are obtained, which consider the
geometrical parameters of ice-filled cracks (ice-filled crack thickness D, normal distance R
from blasting hole to ice-filled crack, and ice-filled crack angle α), loading intensity and
loading rate. The following conclusions can be drawn:

(1) The divergent crack extension pattern is always maintained at the blasting hole.
Affected by explosion wave stress, the damage elements range of the ice-filled crack
decreases when the ice-filled crack thickness and normal distance increase.

(2) The attenuation trend of explosion stress waves decreases with an increase of ice-
filled crack thickness, and decreases slightly with an increase of normal distance and
ice-filled crack angle.

(3) The loading intensity and the loading rate have a significant influence on blasting
hole fracture patterns. The damage elements range of the ice-filled crack is enlarged
when the loading intensity and the loading rate increase. The propagation effect of
explosion stress waves is also different.

(4) The ice-filled crack has a guiding effect on the growth of the blasting crack at the
blasting hole. Nevertheless, the existence of ice-filled cracks inhibits the propagation
of explosion stress waves in frozen rock mass.
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It should be noted that due to the lack of access to information of a real project, in this
research, only numerical modelling has been done. It is better to combine these results with
experiment and field validation to achieve a more comprehensive method to study frozen
rock masses blasting process.
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Abstract: In the primary and final designs of projects related to rock mechanics and engineering
geology, one of the key parameters that needs to be taken into account is the intact rock elastic
modulus (E). To measure this parameter in a laboratory setting, core samples with high-quality and
costly tools are required, which also makes for a time-consuming process. The aim of this study
is to assess the effectiveness of two meta-heuristic-driven approaches to predicting E. The models
proposed in this paper, which are based on integrated expert systems, hybridize the adaptive neuro-
fuzzy inference system (ANFIS) with two optimization algorithms, i.e., the differential evolution (DE)
and the firefly algorithm (FA). The performance quality of both ANFIS-DE and ANFIS-FA models was
then evaluated by comparing them with ANFIS and neural network (NN) models. The ANFIS-DE
and ANFIS-FA models were formed on the basis of the data collected from the Azad and Bakhtiari
dam sites in Iran. After applying several statistical criteria, such as root mean square error (RMSE),
the ANFIS-FA model was found superior to the ANFIS-DE, ANFIS, and NN models in terms of
predicting the E value. Additionally, the sensitivity analysis results showed that the P-wave velocity
further influenced E compared with the other independent variables.

Keywords: elastic modulus; ANFIS; differential evolution; firefly algorithm

1. Introduction

When planning most projects pertinent to geotechnical issues and rock engineering, it
is of high importance to properly analyze how the intact rock behaves and carefully estimate
its associated mechanical properties. The intact rock elastic modulus (E) has substantial
effects on both the initial and final steps of designing geoscience-related projects, which
include planning tunnels; designing blasting operations in rock materials; analyzing the
constancy of rock slopes; and designing rock pillars, roads, dams, bridges, etc. Moreover,
E is the most significant parameter applied to analyzing the stress-strain chart of rock
specimens in a laboratory. E also plays an important role in analyzing the deformations and
breakage of rocks surrounding underground excavation projects. As a result, inaccurate
predictions of E can result in serious damages, leading to economic issues and severe safety
problems due to the breakage probability during construction processes [1,2]. Thus, it is
necessary to determine the E value quickly and accurately in order to correctly plan geo-
engineering structures, accurately design mining- and civil engineering-related projects,
and enhance the general safety level and effectiveness of operations at hand.

In general, the E value can be obtained using direct or indirect methods. The former
are typically carried out within rock mechanics laboratories, where rock core specimens are
subjected to experiments in a variety of conditions [1–3]. In contrast, indirect methods make
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use of predictive equations or models to estimate E. The direct methods have accuracy,
but at the same time, they suffer from some drawbacks. First, it is not easy to provide
the required specimens during the coring process with a high level of accuracy, especially
in jointed, layered, and weakened rock structures. Second, it is both difficult and time
consuming to prepare the core specimens with the appropriate geometry for the purpose
of carrying out laboratory E tests. Such issues hinder the use of direct methods unless there
is a high necessity [3–5].

Due to the above-mentioned challenges, various indirect methods have been intro-
duced in the literature on the basis of predictive models/algorithms and equations to
determine the E value of intact rocks. These methods have been normally configured
based on arithmetical and smart intelligent models. Statistical models generally make
use of simple or multiple regression models aiming to develop a number of empirical
equations between the E value and effective mechanical and physical rock properties. The
literature consists of numerous empirical equations formed based on analyzing petrology
and mineralogy in addition to values estimated using the rock physical and mechanical
properties, such as Schmidt hammer numbers [6], porosity of rock [7], slake durability of
rock [8], and compressional/primary wave velocity [9].

In recent years, scholars have made several efforts to develop artificial intelligence (AI)
models applicable to mining and rock engineering problems. Such efforts have resulted
in a number of novel models proposed to estimate E and some other rock mechanical
properties. These are mostly based on probable and intelligent methods, such as parti-
cle swarm optimization (PSO), fuzzy inference systems (FISs), genetic algorithms (GAs),
Bayesian methods, adaptive neuro-fuzzy inference systems (ANFIS), tree models, extreme
gradient-boosting (XGB), and artificial neural networks (ANNs), as well as their hybridized
forms [10–16]. Sarkhani Benemaran et al. [17] employed an XGB model in combination
with several optimization algorithms to predict the resilient modulus of flexible pavement
foundations. They concluded the effectiveness of PSO-XGB models in this field. In another
study, conducted by Shahani et al. [18], different AI models such as XGB, gradient-boosted
tree regressors (GBTRs), Catboost, and light gradient-boosting machines were used to pre-
dict E. According to their results, the performance of GBTR was better than that of the other
developed models. Recently, Tsang et al. [19] predicted the E values through some other
models, i.e., extreme gradient-boosting trees, ANNs, random forests, and classification and
regression trees. The results showed that the extreme gradient-boosting trees predicted the
E value with the highest accuracy.

Such applications show that intelligent algorithms typically outperform the tradition-
ally used statistical methods regarding E value prediction.

The present study is carried out to assess the potential of applying two hybrid evo-
lutionary models to predict E. The proposed models are based on the integrated expert
systems comprising ANFIS with two optimization algorithms, i.e., the firefly algorithm
(FA) and differential evolution (DE). To check the effectiveness of FA and DE, the results of
ANFIS-FA and ANFIS-DE are then compared with the ANFIS and NN results. The rest
of this study is organized as follows. In Section 2, the source of the database is described.
Then, the methodologies used in this paper and their implementations are explained in
detail in Section 3. Finally, Sections 4 and 5 present the results/discussions and conclusions
of this study, respectively.

2. Source of Database

An inclusive database is needed to be formed for E modeling by means of indirect
intelligent methods. Such data were obtained through performing laboratory experiments
on the core specimens provided from the excavation drilling processes carried out in two
under-construction dam sites, namely the Bakhtiari and Azad dams located in Iran. The
precise location of the Azad dam site is in the west of Iran, 40 km away from the western
city of Sanandaj in the Kurdistan state. It is situated on the Sanandaj–Marivan cities road
inside Kurdistan, with the 46◦32′57′ ′ to 35◦19′59′ ′ geographical coordinates of eastern and
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northern latitudes, respectively. The construction of this dam is currently in progress. It
is mainly aimed at supplying electrical energy and producing power plant storage. The
dimensions (length, height, and width) and water storage capacity of this dam are 595 m,
115 m, 11 m, and 260,000,000 m3, respectively.

The Bakhtiari dam is located in the Zagros Highlands, 65 km southwest of the town of
Dorud in the Lorestan state, and 70 km northeast of the town of Andimeshk in Khuzestan,
Iran. The position of the dam site is at the 48◦45′34.87′ ′ to 32◦57′23.58′ ′ geographical
coordinates of eastern and northern latitudes, respectively (Figure 1). The dam was built
upon the Bakhtiari River, aiming to provide adequate water for many purposes, such as
drinking, electrical power generation, flood control, and agricultural activities. The dam’s
body is at an elevation of 840 m. In addition, in the case of this dam, the peak elevation,
crown width, crown length, and foundation width are 325 m, 10 m, 434 m, and 30 m,
respectively [20]. The situations of both case studies (the Azad and Bakhtiari dams) on the
Iran map are illustrated in Figure 1.
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The Azad dam comprises a series of common structures, such as tailraces, higher
deposits, different caverns, gurgitation storages, and access tunnels. Geologically, this
dam is situated in Iran’s famous formation, Sanandaj–Sirjan, with an alternation of schist,
sandstone, limestone, and phylite rocks. The bedrock of the dam mainly comprises sand-
stone with a low degree of metamorphic, phyllite, and schist. Additionally, within the
highland areas, lenses of limestone are also observable. From the stratigraphy point of view,
rock outliers from the higher Cretaceous period to the present can be observed within the
investigated region. Such rocks consist of four types from the past to the current session:
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(1) metamorphic rock related to the Cretaceous period that includes a combination of
clay and shale; (2) phyllite formation rocks related to the participation of the Cretaceous
Paleocene periods, containing limestone and shale with sand; (3) rocks related to the par-
ticipation of the Paleocene and Eocene periods, comprising sandstone, shale, limestone
lenses, and volcanic rocks; and (4) formations related to the Quaternary period, consisting
of shallow terraces and debris. From a tectonic viewpoint, the Sarvabad, Kargineh, and
Satileh faults are situated 23, 4.5, and 32 km to the south, east, and northeast of the Azad
dam, respectively [21]. The geological conditions and faults of the Azad dam site are shown
in Figure 2.
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The Bakhtiari dam’s bedrock is made of separate limestone and limestone combined
with marl, which incorporates chert nodes. The limestone sections might be synthesized
by a combined dolomite substance. From the perspective of geological structure, the dam
area is positioned within the pleated Zagros, a portion of the tectono-sediment region of
the Zagros. In the lowest northern portion, the area is restricted by pushed Zagros, while
in the southwest, it is confined by the Khuzestan plain. With regard to the age of the
compressed reservoirs of the area, they date back to between the Triassic and Pliocene eras,
and then would have been wrinkled from the Plio-Pleistocene via the latest Alpine organic
phase. A number of syncline and anticline sets have been created through such tectonism
procedures. Primarily, the above arrangements have been identified by perpendicular axial
levels related to the lots of pushed faults in the Zagros area. Additionally, key bed-rocks
of the investigated area are made of limestone siliceous related to the current famous
formation, Sarvak. This formation (Sarvak) belongs to the Bangestan collection of the
middle period of the Cretaceous [20]. For a better review, the geological cross-section of the
Bakhtiary dam and plant site is shown in Figure 3.
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Database Description

To create inclusive datasets, adequate core samples with NX sizes, i.e., 54 mm in
diameter, perpendicular cylindrical shapes, and ratios of height to diameter in the middle of
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2:1 to 2.5:1 were used based on the process recommended by the ISRM [22,23]. The samples
were arranged from the two dam sites introduced before. When the core specimens were
prepared, their various characteristics, such as E value, porosity, density, and durability
index, were measured in a laboratory. Furthermore, in the course of the coring operation,
each sample’s coring depth was recorded for the purpose of evaluating its impact on the
rocks’ geomechanical properties. The laboratory experiments in this study were carried
out totally based on the ISRM and ASTM standard methods [22,23]. In this regard, a total
of 50 test series were done successfully, and the outputs were documented in the cases of
all variables noted above. As a result, 50 datasets were provided, aiming to construct the
ANFIS-FA, ANFIS-DE, ANFIS, and NN models. Then, a sorting approach was adopted
to divide the available database into training (constructing) and testing datasets. Roughly
20% of the database was determined as the testing dataset in order to be used later in the
process of evaluating the models built in this paper.

Note that the ratio of 80 to 20 for training and testing groups has been widely suggested
by many scholars, such as Ye et al. [24], Fang et al. [25], Nguyen et al. [26], and Zhou
et al. [27]. Aside from that, we also tested the ratio of 70:30. Nevertheless, the 80:20 ratio
had better performance; thus, this ratio was used in this study.

The statistical characteristics of all variables used in this study are shown in Table 1.
For a better view, the frequency histogram of all input and output variables are depicted
in Figures 4 and 5. For example, in Figure 4, regarding the depth of coring variables, 11,
21, 4, and 4 data were varied in the range of 0–50 m, 50–100 m, 100–150 m, and 150–250 m,
respectively. In addition, Figure 6 illustrates the Pearson correlation plots for all variables.

Table 1. Modelling variables and the statistical characteristics datasets.

Statistical
Characteristics

Variables

DC (m) ρ (g/cm3) n (%) DI (%) ν Vp (m/s) E (GPa)

Train Test Train Test Train Test Train Test Train Test Train Test Train Test

Mean 79.243 149.455 2.679 2.703 1.992 2.528 98.92 95.45 0.221 0.292 5.564 5.013 18.526 17.586

Standard Error 7.215 21.803 0.007 0.013 0.206 0.429 0.062 0.098 0.007 0.014 0.119 0.145 1.294 2.028

Standard
Deviation 45.633 68.948 0.049 0.043 1.305 1.357 0.394 0.310 0.045 0.04 0.756 0.458 8.185 6.413

Sample Variance 2082.38 4753.87 0.002 0.002 1.704 1.842 0.156 0.096 0.002 0.002 0.572 0.210 67.009 41.134

Skewness 1.361 0.051 −1.127 −1.003 1.291 1.795 −0.403 −1.118 0.121 −0.677 −1.258 0.225 0.487 −0.484

Minimum 14 55.85 2.52 2.616 0.37 1.39 98.1 94.8 0.14 0.21 2.985 4.316 3 7.98

Maximum 213.4 248.5 2.74 2.75 5.81 5.81 99.6 95.8 0.3 0.34 6.652 5.82 42.8 25.17

DC: depth of coring, ρ: density, n: porosity, DI: durability, ν: Poisson ratio, Vp: P-wave velocity, E: elastic
modulus.
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3. Methodology

This section explains how ANFIS combined with the FA and DE algorithms is imple-
mented. Additionally, the modeling process of the NN model is explained in this section.
In the aforementioned models, of the total 50 datasets, 40 were used for the training phase
and 10 were used for the testing phase. For a better overview, a schematic flowchart of
the ANFIS-FA and ANFIS-DE proposed in this study is shown in Figure 7. It is worth
mentioning that MATLAB@2018 was used to encode the proposed hybrid models.
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3.1. ANFIS Combined with DE

Differential evolution (DE), which was originally proposed by Storn and Price [28],
is an effective evolutionary algorithm that works on the basis of a global optimization
approach. In general, DE offers three benefits: (1) a simple structure, (2) high-quality
solutions achieved, and (3) easy implementation [29]. As a result, it is applied to a variety
of conditions. In the present study, DE is used for the aim of minimizing the function of
fitness using the amounts of optimized variable. By definition, the function of fitness refers
to the root mean square error (RMSE) between the estimated and target datasets. DE, as an
innovative algorithm, was implemented in order to adjust the functions of membership
amounts of the ANFIS model and, consequently, enhance its overall prediction capability.
Figure 4 illustrates the schematic presentation of the hybrid ANFIS-based DE algorithm.

To model ANFIS-DE, four parameters must be specified, namely the number of the
iteration, crossover probability, mutation probability, and population size. For the selection
of the optimal mutation probability, various values were examined, which can be seen in
Table 2. The table also shows that by setting the mutation probability to 0.3, the optimum
performance with the highest rank related to the testing phase (i.e., the maximum R2 values)
was attained. To obtain the best crossover probability, different values were examined (see
Table 3). The table shows that the maximum R2 values were attained when the crossover
probability was fixed at 0.75. Different population sizes were also tested, as can be observed
in Table 4. The table clearly demonstrates that when the population size was set to 250,
the best result (the maximum R2 values) was achieved. In these tests, the smallest amount
of error was fixed at 1× 10−5, and the peak repetition was set to 500. Accordingly, the
crossover probability, mutation probability, and scope of population were fixed to 0.75, 0.3,
and 250, respectively. It is worth mentioning that the bolded amounts in Tables 2–4 are
related to the best results (highest rank) obtained from the developed models.
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Table 2. Selection of the most optimum mutation rate value in implementing the ANFIS-DE model.

Mutation Rate

Performance Criteria
Rank

R2

Train Test

0.05 0.931 0.917 2

0.10 0.942 0.929 5

0.15 0.947 0.923 4

0.20 0.951 0.948 9

0.25 0.946 0.945 8

0.30 0.958 0.952 10

0.35 0.955 0.941 7

0.40 0.948 0.940 6

0.45 0.930 0.925 3

0.50 0.919 0.902 1

Table 3. Selection of the most optimum crossover value in implementing the ANFIS-DE model.

Crossover Rate

Performance Criteria
Rank

R2

Train Test

0.60 0.947 0.932 2

0.65 0.944 0.938 3

0.70 0.953 0.946 5

0.75 0.964 0.961 7

0.80 0.960 0.952 6

0.85 0.943 0.940 4

0.90 0.932 0.927 1

Table 4. Selection of the most optimum population size value in implementing the ANFIS-DE model.

Population Size

Performance Criteria
Rank

R2

Train Test

50 0.929 0.926 1

100 0.935 0.934 2

150 0.948 0.935 3

200 0.964 0.961 9

250 0.976 0.970 10

300 0.975 0.960 8

350 0.969 0.949 6

400 0.955 0.942 5

450 0.957 0.938 4

500 0.951 0.950 7
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Figure 8 also shows the ANFIS-DE flowchart used in this study.
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3.2. ANFIS Combined with FA

This section introduces a hybridized model combining ANFIS and FA, called ANFIS-
FA, with the objective of optimizing the premise parameters of ANFIS. To initiate the
modeling process, there is a need to first determine the input-target variables/parameters.
When the assembly of the input-target variables/parameters of the model is determined,
it is time to determine the training samples. The reason for this is that a model should
be capable of predicting the target parameter for those samples that have no effect on the
model training process. As a result, the entire dataset was divided into two categories:
training/construction and testing/examination samples. As previously mentioned, from
among a total of 50 datasets, 20% (n = 10) were chosen in a random way and assigned
to the testing group, while the remaining 80% (n = 40) were assigned to the training
samples. In addition, it was required to initialize the ANFIS and FA parameters prior to
ANFIS modeling in order to predict the target variables. With the use of a trial-and-error-
based approach, the optimal amount of membership functions (MFs) was archived as 6.
According to the literature [30–32], the α, β0, γ, number of variables, and the population
are the FA parameters. To improve the ANFIS performance, it was necessary to select the
most appropriate values for the aforementioned FA parameters. Table 2 clearly shows that
the number of variables is equal to six. As stated in the literature [31,32], in some cases, the
value of 1 is suitable for the β0 parameters. Therefore, in the modelling of ANFIS-FA, the
value of β0 was set to 1.

To select the most appropriate values for the α and γ parameters, various amounts
of these parameters were examined, as given in Tables 5 and 6. Considering these tables,
the most appropriate values (the highest R2) for the α and γ parameters were obtained
with α = 0.6 and γ = 1.5. As a result, the values of 0.6 and 1.5 were used for the α and γ
parameters in ANFIS-FA modelling. By setting the number of iterations to 1000, different
values were also tested to select the most appropriate value for the population size, as
shown in Table 7. The table shows that the best performance was attained with population
= 200. Based on the above descriptions, the values of 6, 1, 0.6, 1.5 and 200 were set as the
number of variables, β0, α, γ, and population size, respectively. It is worth mentioning that
the bolded amounts in Tables 5–7 are related to the best results (highest rank) obtained from
the developed models. In this step, the most appropriate value of the number of iterations
needed to be determined. According to the results, after the 15th iteration, no significant
change was observed in the ANFIS-FA performance. In other words, after 15 iterations,
the performance for different populations was constant. Accordingly, the number of
iterations in ANFIS-FA modelling used in this study was set to 15. When the user-based
defined parameters in the investigated models (FA and ANFIS) were determined, then the
ANFIS training process was begun with the use of the training samples. To this end, the
FA algorithm was used to optimize the primary part of the fuzzy If-Then rules, and the
least-square method was applied to the optimization of the linear consequent fuzzy rules.

Additionally, the preliminary light strength corresponding to the primary generation
was computed, and then each firefly’s attractiveness level was measured. With the use of
the movement equation, those fireflies that had a lower level of attraction were pushed
toward the brighter firefly. Afterward, the light strength and individual firefly’s position
were updated, and the function of fitness was computed again. All steps involved in
ANFIS-FA are displayed in Figure 9.
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Table 5. Selection of the optimum α value in implementing the ANFIS-FA.

α

Performance Criteria
Rank

R2

Train Test

0.10 0.945 0.933 1

0.20 0.947 0.941 4

0.30 0.954 0.943 5

0.40 0.951 0.948 6

0.50 0.958 0.955 8

0.60 0.962 0.956 9

0.70 0.951 0.949 7

0.80 0.944 0.938 2

0.90 0.941 0.940 3

Table 6. Selection of the optimum γ value in implementing the ANFIS-FA.

γ

Performance Criteria
Rank

R2

Train Test

0.5 0.951 0.947 1

1 0.959 0.955 3

1.5 0.973 0.968 6

2 0.971 0.960 5

2.5 0.965 0.958 4

3 0.952 0.951 2

Table 7. Selection of the optimum population value in implementing the ANFIS-FA.

Population

Performance Criteria
Rank

R2

Train Test

50 0.965 0.961 4

100 0.972 0.966 6

150 0.973 0.971 7

200 0.979 0.975 8

250 0.971 0.965 5

300 0.963 0.960 3

350 0.958 0.957 2

400 0.955 0.948 1
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3.3. Neural Network (NN)

Neural Networks (NNs), especially the Multi-Layer Perceptron (MLP), are widely
used in prediction models applied to different engineering problems [31,32]. MLP, which
is employed in the present study, contains three layers: input, hidden, and output layers.
Therefore, as can be seen in Figure 6, the nodes that exist within the input layer correspond
to DC, ρ, n, DI, ν, and Vp, while those in the output layer correspond to E. Based on the
trial-and-error approach, we considered the number of nodes within the hidden layer. The
evaluation results showed that the existence of seven nodes within the hidden layer can
result in a higher reliability. As can be observed in Figure 10, the hidden layer with seven
nodes resulted in the optimal performance of NN (with the maximum R2). It is worth
mentioning that, to select the suitable number of nodes inside the hidden layer, different
numbers were tested. As a result, the NN structure in the present research was built on the
basis of six nodes within the first/input layer, seven nodes within the second/hidden layer,
and one node within the last/output layer.
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4. Results and Discussion

The present study was aimed at examining the effectiveness of the FA and DE algo-
rithms in optimizing ANFIS for the prediction of E. The results obtained from the proposed
ANFIS-FA and ANFIS-DE models were compared to those of ANFIS and NN models.
Here, the models’ prediction capabilities were assessed regarding RMSE, mean of aver-
age percentage error (MAPE), mean of absolute error (MAE), variance account for (VAF),
A10-index, and performance index (PI) [33–37], as presented in the following equations:

MAE =
1
n ∑n
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√
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]
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]
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where n stands for the number of data (n = 50), and Ai, Pi, and Ai signify the actual,
estimated, and average of actual E values, respectively. Additionally, m10 is the number of
data with values of rate actual/predicted values (ranging from 0.9 to 1.1), and R in Equation
(6) is the correlation coefficient. Table 8 presents the MAPE (%), MAE, RMSE, VAF(%), and
A10-Index values attained by the developed models.

Table 8. Performance of the models to predict E by using six statistical criteria.

Model

Statistical Criteria Total
RankRMSE MAE MAPE (%) VAF (%) A10-Index PI

Train;
Rank

Test;
Rank

Train;
Rank

Test;
Rank

Train;
Rank

Test;
Rank

Train;
Rank

Test;
Rank

Train;
Rank

Test;
Rank

Train;
Rank

Test;
Rank Train Test

ANFIS 2.337; 2 2.557; 2 2.258; 2 2.456; 2 10.173; 2 13.965; 2 93.274; 2 92.514; 2 0.35; 2 0.4; 2 0.064; 2 0.070; 2 12 12

NN 2.491; 1 2.781; 1 2.409; 1 2.639; 1 10.849; 1 15.006; 1 92.341; 1 90.985; 1 0.3; 1 0.4; 2 0.068; 1 0.076; 1 6 7

ANFIS-
DE 1.447; 3 1.827; 3 1.384; 3 1.662; 3 6.236; 3 9.451; 3 97.436; 3 96.957; 3 0.75; 3 0.6; 3 0.039; 3 0.049; 3 18 18

ANFIS-
FA 0.909; 4 1.152; 4 0.865; 4 1.100; 4 3.899; 4 6.254; 4 98.962; 4 98.778; 4 0.925; 4 0.9; 4 0.024; 4 0.031; 4 24 24

As can be observed in Table 8, the lowest MAPE (%), MAE, RMSE, and PI values
were determined for the ANFIS-FA model as 6.254%, 1.1, 1.152, and 0.031, respectively. In
addition, the highest VAF (%) and A10-index values were determined for the ANFIS-FA
model as 98.778% and 0.9, respectively. These values were calculated for the ANFIS-DE
model as 1.827, 1.662, 9.452%, 0.049, 96.957%, and 0.6, respectively; for the ANFIS model as
2.557, 2.456, 13.965%, 0.070, 92.514%, and 0.4, respectively; and for the NN model as 2.781,
2.639, 15.006%, 0.076, 90.985%, and 0.4, respectively. According to Table 8, the highest total
rank values for both the training and testing groups were obtained by the ANFIS-FA model.
It is worth mentioning that the bolded amounts in Table 8 are related to the best results
(highest rank) obtained from the ANFIS-FA model. For a better overview, the predicted E
values provided by all models in the testing phase are depicted in Figure 11. Additionally,
Figure 12 shows the amount of error for each model related to the testing phase. According
to these two figures, the prediction of E by the ANFIS-FA model is very accurate and closer
to measured E values. In addition, Figures 13 and 14 demonstrate the scatter plots of actual
versus estimated E values with the use of all predictive models. The figures show that the
ANFIS-FA model obtained a greater value for the coefficients of determination (R2). The R2

values of 0.988, 0.970, 0.928, and 0.913 were obtained by the ANFIS-FA, ANFIS-DE, ANFIS,
and NN models, respectively. Accordingly, FA was more effective in comparison with DE
in regard to the ANFIS improvement. Furthermore, the absolute error of ANFIS-FA, ANFIS-
DE, ANFIS, and NN models in predicting E for testing datasets (ten datasets) is depicted
in Figure 15. According to this Figure, the orange-coloured line, which was obtained by
the ANFIS-FA model, yields the lowest absolute error for all ten datasets. Moreover, the
Taylor diagrams for both training and testing groups are shown in Figure 16. The results
show that the ANFIS-FA has a stronger potential to predict E than the others. In this study,
a sensitivity analysis was also performed. For this work, the effect of removing each input
variable on E for the ANFIS-FA was calculated. In this regard, six new models based on the
combination of input variables were constructed, as follows:

Model 1: inputs: all variables given in Table 1.
Model 2: inputs: all variables given in Table 1 except the depth of coring.
Model 3: inputs: all variables given in Table 1 except density.
Model 4: inputs: all variables given in Table 1 except porosity.
Model 5: inputs: all variables given in Table 1 except durability.
Model 6: inputs: all variables given in Table 1 except Poisson ratio.
Model 7: inputs: all variables given in Table 1 except P-wave velocity.
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The results of the above models are presented in Table 9, which shows that models 1
and 7 had the highest total rank (i.e., the best performance) and lowest total rank (i.e., the
worst performance), respectively (Figure 17). Note that, the results of model 1 is bolded
in Table 9. The results of presented in Table 9 indicated that once the P-wave velocity was
removed from the modeling, the worst performance was obtained; thus, P-wave velocity
can be determined as the most effective variable in the modeling.
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Table 9. Performance of all seven ANFIS-FA models.

Model

Statistical Criteria
Total Rank

RMSE MAE MAPE (%) VAF (%)

Train;
Rank

Test;
Rank

Train;
Rank

Test;
Rank

Train;
Rank

Test;
Rank

Train;
Rank

Test;
Rank Train Test

Model 1 0.909; 7 1.152; 7 0.865; 7 1.100; 7 3.899; 7 6.254; 7 98.962; 7 98.778; 7 28 28

Model 2 1.776; 3 2.306; 3 1.683; 4 2.204; 3 7.583; 4 12.532; 3 95.979; 3 95.848; 3 14 12

Model 3 1.570; 4 1.523; 6 1.508; 5 1.460; 6 6.790; 5 8.30; 6 96.910; 5 96.50; 5 19 23

Model 4 1.739; 5 2.056; 4 1.695; 3 2.022; 4 7.635; 4 11.497; 4 96.673; 4 96.254; 4 16 16

Model 5 1.856; 2 2.447; 2 1.808; 2 2.386; 2 8.146; 2 13.567; 2 95.899; 2 95.321; 2 8 8

Model 6 1.524; 6 1.917; 5 1.441; 6 1.838; 5 6.493; 6 10.451; 5 97.353; 6 96.808; 6 24 21

Model 7 2.279; 1 3.054; 1 2.167; 1 2.986; 1 9.761; 1 16.979; 1 93.408; 1 92.691; 1 4 4

Figure 17. Total ranks of all seven constructed ANFIS-FA models to evaluate the sensitivity analysis.

5. Conclusions

The elastic modulus (E) is considered one of the most significant factors in the primary
and ultimate plans of projects related to the geo-engineering field. As a result, it is highly
necessary to predict E with a high accuracy level. This paper examined the use of two
hybrid evolutionary models, namely ANFIS-FA and ANFIS-DE, to predict E. Additionally,
the traditional ANFIS and NN models were developed for comparison aims. In total,
50 datasets were collected during the drilling process in the Azad and Bakhtiari under-
construction dams in Iran. Out of the 50 datasets, 40 were used to construct the models,
and the remaining datasets were used to test them. The input parameters considered in
the construction of the models were porosity, density, depth of coring, Poisson’s ratio,
compressional/primary wave velocity, and durability, which were assigned as the input
variables, whereas E was the output/target variable. Finally, some statistical indices
were designed in order to demonstrate the capacity of the models in the prediction of E.
According to the findings, the following results and remarks can be briefly listed:

1. The results demonstrated that ANFIS-FA was the most suitable model for the predic-
tion of E in the cases studied. The ANFIS-DE, ANFIS, and NN models were identified
as the next cases in this rank.

2. The FA and DE algorithms strongly improved the ANFIS performance in terms of
predicting the E value. This confirms the effectiveness of FA and DE; accordingly,
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these two algorithms can be effectively used to address other predicting problems in
rock engineering fields.

3. The results of sensitivity analysis showed that the P-wave velocity was the most
effective parameter on the intensity of E.

4. For future studies in this field, other evolutionary algorithms, e.g., the central force
optimization, chicken swarm optimization, elephant search algorithm, and flower
pollination algorithm, could be implemented to enhance the ANFIS performance.
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Nomenclature

ANFIS Adaptive neuro-fuzzy inference systems
ASTM American Society for Testing and Materials
AI Artificial intellginence
ANNs Artificial neural networks
ρ Density
DC Depth of coring
DE Differential evolution
DI Durability
E Elastic modulus
FA Firefly algorithm
FIS Fuzzy inference systems
GA Genetic algorithm
ISRM International Society for Rock Mechanics
MAE Mean of absolute error
MAPE Mean of average percentage error
MFs Membership functions
MLP Multi-layer perceptron
PSO Particle swarm optimization
ν Poisson ratio
n Porosity
Vp P-wave velocity
RMSE Root mean square error
XGB Extreme gradient boosting
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Abstract: The aim of this study is to analyze and model the geotechnical characteristics of soils in
Erbil city using Geographic Information Systems (GIS) and Artificial Neural Networks (ANNs). The
study used GIS to analyze the geotechnical properties of soils by collecting data from 102 boreholes
in three different depth levels (1.5 m–3.5 m, 3.5 m–6.5 m and 6.5 m–9.5 m) to visualize and analyze
soil characteristics such as fines content, moisture content, soil plasticity, shear strength parameters,
compressibility, Standard penetration test (SPT), and bearing capacity. The paper also establishes
the prediction of SPT-N value and bearing capacity based on geotechnical properties of soils using
ANN methods and made correlations between SPT values and shear strength parameters with the
bearing capacity of the soil. The results analyzed via GIS indicated that the soil classification was
silty clay with a small amount of sandy gravel (CL) in most of the study area. According to the
SPT–N values, most of the soils in Erbil City ranged between 33 and 50; a higher SPT value generally
indicates denser and stronger soil. The value of the shear strength parameter for the maximum
friction angle of the soil layers was found to be 36◦, and the predominant cohesion was approximately
100 kPa. The compression index of soils ranged between 0.11 to 0.31. The results showed that the
ANN models were able to accurately predict the geotechnical parameters of the soil types in the
study area. In addition, the use of GIS and ANN techniques allowed for a comprehensive analysis
of the geotechnical characteristics of the soils in Erbil, providing valuable information for future
construction and development projects.

Keywords: Erbil; geotechnical characterization; GIS; ANN

1. Introduction

One of the most important steps before constructing infrastructure is the geotechnical
site investigation. It provides information on the site suitability for design criteria and
possible construction problems such as time and resources. There are many methods for
site investigations and in-situ tests, including pressure meter test, dilatometer test, SPT,
cone penetration test (CPT), and plate load test [1]. For the construction of multistory
buildings, highways, bridges, and industrial facilities, a soil survey is required to determine
the type of soil, consistency, index properties, relative density, groundwater level, shear
strength parameters, (SPT) value and bearing capacity [2]. It is necessary to know the
bearing capacity of the soil layers for design, the choice of the foundation type, and the
foundation depth for any superstructure [2–4]. A geotechnical investigation provides
valuable information on the physical and mechanical properties of the soil and rock at a site,
which is necessary for safe and durable engineering structures. The information collected
from a geotechnical investigation is used to make informed decisions about the design and
construction of the foundation, and to identify potential hazards, such as soil liquefaction
or instability of slopes, that could compromise the safety of the structure. Therefore, to
obtain the geotechnical parameters required for the calculation of the soil bearing capacity
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and settlement, in situ testing is required in addition to the collecting of disturbed and
undisturbed specimens at different depths. Thus, several geotechnical experiments are
conducted on these specimens to determine various parameters that are typically used to
design the foundations [5]. Researchers have studied the reliability of SPT to determine
the bearing capacity of soil [6–8]. Currently, the SPT test is used to evaluate the bearing
capacity to design foundations [9,10].

GISs and ANNs could be used together in analyzing the geotechnical characteristics,
and to predict the shear strength, settlement, and bearing capacity of the soil from the index
properties of soils. The GISs provide an analytical function that is time–consuming for
developing model entry data at different spatial scales [10,11]. A GIS is an organization
of data that people interact with to integrate, analyze, and visualize data, to identify
relationships, patterns and trends, and to resolve complicated issues; GIS has been used
by many researchers to analyze various data [12–15]. ArcGIS was designed to capture
data, store, update, process and present data, and to conduct analyses [16]. GIS can help to
recognize possible challenges to the completion of the project early in the design process,
which can help to avoid time losses for a construction project. Therefore, a GIS is a modular
instrument that can be used to support geotechnical site assessments. It has been used to
guide land preparation and to integrate field data with existing data [17].

ANN is one of the prevalent algorithms among researchers nowadays, specifically in
geotechnical issues. ANN holds three significant advantages: first, the counting speed is
high. Second, it has a strong fault-tolerant capability. Third, it is proficient in dealing with
problems with complicated problem-solving rules [18]. The technique of utilizing ANN
could be a suggestion for predictions, especially in cases where theoretical modeling does
not give foreseen outcomes [19]. ANN aims to model the behavior of the nervous system
in the human brain. ANN is an adequate solution for solving complex and nonlinear data
modeling. Ref. [20] presents the estimation of standard penetration test values on cohesive
soil using an artificial neural network without data normalization. Some previous studies
investigated the assessment of geotechnical properties and determination of shear strength
parameters by unitized ANN [21–23]. In the geotechnical domain, the development situ-
ations generally have multiple variables, making them challenging to model employing
conventional mathematics [24].

In this study, the test results of 102 boreholes were gathered, categorized, and analyzed
and modeled using ArcGIS10.7 software. These data were used to construct models using
ANNs to predict the SPT values and bearing capacity of soils. The data represent the
area of Erbil City in Iraq, covering a depth of 9.5 m below the ground surface. Data were
collected from the Andrea Engineering Test Laboratory and the construction laboratory in
Erbil. Therefore, for a geotechnical engineer, this information can be used to classify areas
into zones according to GIS results. The purpose of this study is to analyze and model
the geotechnical parameters such as the fines content, moisture content, soil plasticity,
shear strength parameters, compressibility parameters, SPT–N values and soil bearing
capacity via GIS to create a group of maps in different layers. In addition, the prediction
of SPT-N value and bearing capacity based on geotechnical parameters were modeled by
ANN methods. Correlations between shear strength parameters, SPT values and bearing
capacities of soils were made by Minitab 17 programming.

By combining the capabilities of GIS and ANNs, researchers can develop models to an-
alyze geotechnical issues at different spatial scales, producing results that are more accurate
and efficient compared to manual methods In summary, GIS and ANNs complement each
other by providing an analytical function that is efficient for developing model data entry
at different spatial scales for geotechnical issues, allowing for more accurate predictions
and a better understanding of the relationships between soil properties and other factors.
To the best of our knowledge, this is the first study to cover mapping and modelling all the
geotechnical characteristics of soil in Erbil city.
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2. Study Area

Erbil is located in the northwestern region of Iraq. Geologically, it is in the low–folded
belt of northern Iraq in the structural trough with a NW–SE axial trend, and within the
foothill zone, which is part of the stable shelf tectonic unit of Iraq. Erbil City has an area of
approximately 250 km2 and GPS coordinates of 36◦11′27.4′′ N 44◦00′33.7′′ [25]. A location
map of Erbil City is shown in Figure 1. From a geomorphological perspective, the area is
flat with uncommon low–lying hills. In addition, Erbil City is stratigraphically covered by
quaternary and Pleistocene deposits, which are dominated by clay, silt, and sand [26]. Erbil
City is mainly covered by soils such as gravel and conglomerates with sand, clay, and silt.
Conglomerates cover more than 80% of the study area [27].
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In the last decade, Erbil city had extensive development in the construction of railways,
internal and ring roads. Therefore, collecting data, building a database, producing GIS
maps for soil properties, and developing a model for soil behaviors and the bearing capacity
of the foundations would be very useful for site engineers to make immediate decisions
regarding the selection of project positions. Finally, the geotechnical properties at different
depths were collected from the study area (Erbil city), analyzed and tabulated for the
102 boreholes. The locations of the boreholes were selected to ensure a uniform distribution
throughout the study area. The borehole locations are shown in Figure 2.

311



Sustainability 2023, 15, 4030Sustainability 2023, 15, x FOR PEER REVIEW 4 of 39 
 

  

Figure 2. Borehole locations in the study area. 

3. Methodology 
The methodology of the study involved collecting data from the field in Erbil city 

center and analyzing it using both GIS and ANNs. The data was processed and analyzed 
using these tools to gain insights and conclusions about the study area. The flow chart 
represents in Figure 3 the methodology of this study as a tool to help readers understand 
the process used. A flow chart can show the different steps involved in integrating GIS, 
ANN, and lab analyses, making it easier for readers to follow and comprehend the study’s 
methodology. 

 
Figure 3. Flow chart showing in a simple way the methodology adopted in the present study. 
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3. Methodology

The methodology of the study involved collecting data from the field in Erbil city center
and analyzing it using both GIS and ANNs. The data was processed and analyzed using
these tools to gain insights and conclusions about the study area. The flow chart represents
in Figure 3 the methodology of this study as a tool to help readers understand the process
used. A flow chart can show the different steps involved in integrating GIS, ANN, and lab
analyses, making it easier for readers to follow and comprehend the study’s methodology.
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3.1. Data Collection

In this study, the results of site investigations and numerous series of soil laboratory
tests were collected from 102 borehole locations that cover the main part of the region.
Soil investigation included drilling boreholes, taking both disturbed and undisturbed soil
samples at 1–meter intervals from 1.0 m to 9.5 m depth, and various field tests. Laboratory
work included a series of geotechnical tests to determine the soil index properties, sieve
analysis, compressibility, settlement, and shear strength.

A sample of the data collected from the laboratory and field tests is presented in
Table 1. This table includes some statistical information (e.g., min. values, max. values,
average values, and standard deviation of the input and output data). All data of the study
could find in Appendix A as a Table A1.

Table 1. Inputs and output of the present study.

No

LL% PL% PI% WC% c kN/m2 φ
Fine

Content
SPT-N Value

kN/m2
Q UL

kN/m2

ASTM D 4318 ASTM
D2216 ASTM 3080 ASTM D

6913 ASTM D1586 -

1 46 22 24 28.3 51 4 62.1 7 117
2 40 22 18 15.0 96 3 94.1 54 224
3 47 25 22 18.0 99 5 91.5 57 225
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .

304 48 23 25 18.7 99 5 94.8 100 292
305 45 25 20 22.8 105 4 92.6 91 296
306 48 25 23 22.1 97 5 69.7 100 288

Min 0 0 0 12 29 3 42 5 74
Avarege 48.02 24.90 22.89 18.69 92.67 4.21 89.48 64.69 255.09

Max 71 36 37 29 136 6 100 100 375
SD * 7.51 3.67 5.59 2.87 19.55 0.62 11.65 25.93 60.98

SD * = Standard deviation.

3.2. Geographical Information Systems (GISs)

The results of the soil investigation and field and laboratory tests were employed to
create a digital database for the study region. A database of geotechnical properties was
used to provide the input values for the mapping software. In this study, the data were
analyzed and presented as maps using ArcGIS (10.7) software. Deterministic methods
(inverse distance weighting) were used to create maps and models of spatial data, which
rely on probability and uncertainty. Deterministic methods use a fixed set of rules or
algorithms to create maps and models, unlike geostatistical methods used for analyzing
and modeling spatial data [11]. These methods are commonly used to analyze patterns,
relationships, and trends in large, complex datasets.

Some of the most commonly used deterministic methods in ArcGIS include:

• Interpolation: This method is used to predict values at unsampled locations based on
observed data. Interpolation methods in ArcGIS include inverse distance weighting,
spline, and triangulated irregular network (TIN) interpolation.

• Buffering: This method is used to create a polygon around a feature that represents a
specified distance. Buffers are commonly used in spatial analysis to identify areas that
are within a certain distance of a feature of interest.

• Overlay: This method is used to combine two or more maps based on a set of rules
or conditions. Overlays can be used to create a new map that shows the spatial
relationships between features in the input maps.
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• Reclassification: This method is used to change the values of a raster or vector layer
based on a set of rules or conditions. Reclassification is often used to simplify complex
data or to create new data layers based on existing data.

• Extraction: This method is used to select features from a map based on a set of
conditions or rules. Extractions can be used to create new data layers that contain only
the features that meet specific criteria [11].

The resulting digital maps illustrate the soil formation patterns, distribution, and
geotechnical properties of soils at different depths. These maps simplify and help designers
and site engineers make the right decisions in the construction of projects. The aim of
drawing digital maps using the GIS method was to illustrate the bearing capacity of
foundations at three different depths. In this study, the bearing capacity was estimated
using two methods. The first Meyerhof method (1963) used shear strength parameters for
(10 × 10 m). In the second method, standard penetration numbers were used for bearing
capacity estimation [28].

3.3. Statistical Analysis

To make a correlation between the geotechnical properties, the data obtained from the
soil investigation of all boreholes in the study area were correlated by MINITAB 17 software.
For instance, correlations were made between the SPT values of soil strata with the shear
strength parameters of soils and the ultimate bearing capacity. This method is used to find
a correlation between the response (Y) and predictor (X) using regression analysis, which is
an extensively used method for analyzing multifactor data.

3.4. Neural Network Model

The process for creating an artificial neural network is assumed by using the Matlab
application. This study aims to make models by an artificial neural network. The network
model developed was formed from data collection of geotechnical properties of soils in
the study area. The ANN analysis result aims to predict SPT N-value and bearing capacity
using the identical algorithm, the Back-propagation algorithm, and the same activation
function. The network architecture was chosen using hidden layers and varying the
number of neurons in the hidden layer. The relation number of neurons in the hidden layer
is between 15 and 18 according to previous researches [29,30]. The network performance
that has the smallest error and the correlation coefficient value that is proximate to 1 is
most suitable for data predictions. Root Mean Squared Error (RMSE) is a commonly used
evaluation metric in ANN models. RMSE measures the difference between the predicted
and actual values, and it is expressed in the same units as the target variable. A low RMSE
value indicates that the predictions are close to the actual values, while a high RMSE value
displays that the predictions are far from the actual values. In ANN models, RMSE is used
to evaluate the performance of the model and determine the quality of the predictions. A
lower RMSE value shows a better fit between the predictions and the actual values and
a more accurate model. In this research, the R2, RMSE, and MAE values of the estimated
and actual target parameters are computed in the implementation evaluation of regression
models. The R2, RMSE, and MAE represented mathematically as Equations (1)–(3):

R2 = 1−
∑N

I=1

(
ymea − ypre

)2

∑N
I=1
(
ymea − ym

)2 (1)

RMSE =

√√√√∑N
I=1

(
ymea − ypre

)2

N
(2)

MAE =
1
N

N

∑
I=1

∣∣∣ymea − ypre

∣∣∣ (3)
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where ymea, ypre, and ym represent the average of existing output, predicted output, and
actual output, respectively. N denotes for all number of data. The degree of fitting is raised
with R2 immediacy to 1. RMSE and MAE are utilized to assess the model’s prediction
capability. For the RMSE and MAE, the prediction model will be more exact and its accuracy
will be higher with a smallish value.

Figure 4 illustrates the structure of neural network models to predict SPT N value
as output with two models: (a) using input as (LL%, PL%, PI%, WC, cohesion, φ, Fine
content) and (b) using inputs as (LL%, PL%, PI%, WC, φ, Fine content). The structures of
neural network models to predict ultimate bearing capacity are presented in Figure 5. The
parameters were used as input in two models: (c) (LL%, PL%, PI%, WC, cohesion, φ, Fine
content) and (d) (LL%, PL%, PI%, WC, φ, Fine content).
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4. Results and Discussions
4.1. Modeling of Soil Properties Using GIS Maps

GIS maps of the soil properties of the study area were produced. These maps included
the distribution of the soil fines content, natural water content, liquid limit, plastic limit,
cohesion, angle of internal friction, compression index, rebound index, SPT–N values,
and bearing capacity of foundations at three different levels (1.5 m–3.5 m, 3.5 m–6.5 m,
and 6.5 m–9.5 m). The soil characteristics at different depths were interpolated for the
survey area to show the distribution of these properties in a clear way. In general, the
soil characteristics in all the maps were divided into six major legends, each of which was
represented by a unique color.

4.1.1. Fines Content Model

Fines content in soils is one of the most significant parameters that affect soil behaviors
such as shear strength, compressibility, plasticity, and indirectly, the bearing capacity of
foundations [31]. The results presented in Figure 6 indicate that the majority of the study
area in Erbil city center has a high fines content. According to the figure, the fines content
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in most of the area is greater than 81%, meaning that the proportion of soil particles that are
smaller than 0.075 mm in diameter is high. This high fine content will likely have significant
effects on the soil’s engineering properties, such as its shear strength, compressibility, and
plasticity. The impact of soil properties on its ability to support loads, resist deformation,
and transmit loads must be carefully considered in future construction and development
projects in the area. The results from Figure 6 provide crucial information for engineers and
planners in Erbil city center, emphasizing the need to consider the fines content of soil in
decision-making for development projects. The compression level of soil becomes crucial
when large particles are replaced by fine particles, and the impact of fines content is more
pronounced when the soil is near saturation. This has been noted by other researchers
in the field [31–33]. The relationship between natural water content and fines content is
intertwined and cannot be evaluated separately. Sometimes, improving natural water
content weakens the effect of fines content on soil shear strength, due to the sensitivity of
fines to changes in natural water content. In dry conditions, fines do not significantly affect
soil behavior due to the influence of suction [34,35].
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4.1.2. Atterberg Limits

Atterberg limits can be used to characterize soil behavior and classification, including
the swelling potential of expansive soils, the consistency and plasticity of the soil. Two
essential index properties can be obtained from the values of the natural water content:
liquid limit and plastic limit [36]. Soil water content affects its consistency. A high water
content in clay makes it behave like a liquid due to the reduction of attraction between clay
particles caused by the excess water between the particles [37]. The liquid limit was used
to determine the consistency of the fine-grained soil. This measure of soil consistency is
useful for estimating soil consolidation properties and calculating the acceptable bearing
capacity and settlement of foundations [38].

The variations in the soil liquid limit throughout the study area at the three different
depths are illustrated in Figure 7. The results of the analysis of liquid limit values in the
study area show that a significant portion of the soils have a liquid limit range between
40% and 52%. This range indicates the presence of low plastic clay, which is a type of soil
that has low resistance to deformation when subjected to stress and is prone to collapsing.
The presence of low plastic clay in high percentages in the study area is an important
factor to consider in construction and development projects, as it may impact the stability
and integrity of structures built on these soils. Additionally, the observation of soils with
high liquid limit values (greater than 53%) in relatively central regions is also important.
These central zones are considered critical points in the study area, as soils with high
liquid limit values are prone to deformation and instability. These critical points need to be
carefully evaluated and addressed in any future construction and development projects in
the area to ensure the stability and integrity of the structures built on these soils. Numerous
researchers have investigated the relationship between the liquid limit of soils and swelling
potential. Some types of clay minerals with a high cation exchange capacity (CEC) suffer
from expansion and an increase in the volume of the available water [38–41].

Plasticity is one of the most important features of clay, and the crystallinity of clay
minerals is the primary source of this plasticity [39–41]. Soil is plastic when the water
content is below the liquid and plastic limits. The plastic range, which is the difference
between the two limit values, is called the plasticity index [42]. The plastic limit provides
geotechnical engineers with indirect information about the activity, toughness index, and
optimum moisture content of soils. Figure 8 shows the plastic limit variation in the study
area at different depths. The analysis of the figure reveals that half of the study area has a
plastic limit of soils that ranges between 19% and 24%, while the other half has a plastic
limit ranging between 25% and 30%. This indicates that the soils in the study area have
different levels of plasticity, which is a measure of the soil’s ability to change shape without
breaking under stress. The presence of soils with low plastic limits (Figure 8a) in small
zones in the southeast direction is also an important observation. Soils with low plastic
limits are less plastic and more brittle, making them more prone to cracking and failure
under stress. These areas need to be carefully assessed and addressed in future construction
projects in the area to ensure the stability and reliability of the structures built on these soils.

4.1.3. Natural Water Content Model

The natural water content can be considered a parameter that profoundly affects the
geotechnical properties [43,44]. Figure 9 shows the variations in the natural water content
in Erbil City. The figure presents the water content at depths of 1.5 m–3.5 m, 3.5 m–6.5 m,
and 6.5 m–9.5 m. The results show that the natural water content in the study area is
mostly found to range between 16% and 20% at the three levels of investigation depths.
The natural water content of soils is an important factor to consider in construction and
development projects, as it affects the soil’s stability, bearing capacity, and compressibility.
Soils with high natural water content are more susceptible to instability, while soils with
low natural water content are more prone to drying and cracking.
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This is consistent with the findings of many researchers working in this region [43,44].
The water table, during the time of exploration, was in very high depths below the natural
ground level (NGL), meaning the groundwater was relatively shallow. The water table
fluctuates seasonally, with an increase during spring. The soil above the water table
affects its strength and compressibility, as more moisture results in decreased strength and
increased compressibility. Saturated soil below the water table creates settling issues as the
consolidation process reduces the natural water content under stable load.
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4.1.4. Shear Strength Parameters

The shear strength of soils is a crucial parameter in many foundation engineering
designs. It refers to the ability of soil to resist forces that cause slipping or sliding along a
plane within the soil. The shear strength of soils is important in determining the bearing
capacity of shallow and deep foundations, slope stability, tunnels, and lateral pressure on
structures [28]. The soil’s shear strength comes from its cohesive strength (c) and frictional
strength, represented by the angle of internal friction (φ). Cohesive strength is due to
the bonding force between soil grains and the binding material, while frictional strength
arises from the friction, interlocking, and rolling of soil grains [44–47]. The strength of
any soil decreases as the shear strain and expansion or contraction increase or decrease,
respectively, with respect to the soil density due to applied loads. Shear strength parameters
are widely utilized by different standard equations in the design of foundations, particularly
in empirical equations. [48].
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Figures 10 and 11 show the variations in the cohesion and angle of internal friction,
respectively. The combination of these two parameters produces the shear strength of
the soil, its variation throughout the study area, and the soil depth. Most of the soils in
the study area at shallow depths (1.5 m–3.5 m) had cohesion values between 76 kPa and
100 kPa. However, there were relatively small regions with cohesion values greater than
100 kPa and less than 50 kPa. The area covered with soil had cohesion values greater than
100 kPa, which increased with the depth. The results of the figures are in agreement with
the distribution of the fines content in the study area. The fines content of soils in the
majority of the study area was found to be greater than 80%, and this high fine content is
likely contributing to the high cohesion values in the area.
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Soils with high fines content produce higher cohesion values [49]. The angle of internal
friction is a parameter of the soil shear strength and is employed in bearing capacity
estimation, slope stability analyses, and estimation of soil lateral earth pressures. The soils
in the study area were found to have an angle of internal friction between 2◦ and 6◦, which
was found to be similar at all three depths in this investigation. The east-south part of
the study area had soils with an angle of internal friction ranging from 7◦ to 12◦. These
results indicate that the angle of friction values found in the study area are consistent with
those found in similar studies in the region. The angle of internal friction is an important
parameter in determining the shear strength of the soil, and these results suggest that
the soils in the study area have moderate to low shear strength values. The results of the
figures can be used to identify zones of high and low shear strength, which are important in
determining the suitability of the soil for different types of structures. The information can
also be used to design and construct structures that are appropriate for the soil conditions
in the area [47,50].
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4.1.5. Consolidation Parameter Model

The consolidation parameters (compression index and swelling index) of saturated
clayey soil should be checked during the analysis and design of the foundations [51]. In
this study, the distribution of the compression index and swelling index throughout the
study area and their variation with the soil depth were investigated. Figure 12 shows that
the compression index of soils in the study area, Erbil city center, has a range of values
between 0.17 and 0.22, with a lower value found at greater depths. The compression index
is an important factor in determining soil compression and consolidation. The results
suggest that the shallow soil strata in the study area have high consolidation and settlement
potential, while the settlement potential is expected to decrease with depth due to the
variation in compression indices.
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The rebound index is an important parameter in geotechnical engineering as it rep-
resents the soil’s tendency to expand or contract under changes in moisture content. A
high rebound index value designates that the soil is more susceptible to expansion and
contraction, whereas a low value indicates that the soil is more stable. The results shown
in Figure 13 suggest that the soil in the study area has moderate to low rebound index
values in the range 0.015–0.078, indicating that the soil is relatively stable and less likely
to expand or contract under changes in moisture content. This indicated that there was
no soil swelling or shrinkage potential in the study area. The minimum values showed a
consistent trend across all levels in the study area (Figure 13a), with the highest swelling
index values located north of Erbil at the first level and in the south at the second and
third levels. Most of the study area had moderate parameter values of 0.015–0.078. The
consolidation parameters were consistent with previous studies [47,50,52].
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4.1.6. Standard Penetration Test Model

The SPT is one of the many standard in situ tests used to identify soil type, stratigraphy,
and relative strength measures during site investigations [53,54]. The eastern part of Erbil
had higher SPT values, which is attributed to the higher unit weight of soils and the
presence of stiffer and stronger soil layers as shown in Figure 14. The SPT values of soils at
a depth of 6.5 m–9.5 m was mostly between 35 and 60, and the range increased from the
west to the east of the study area. The increase in the SPT values with increasing depth
is due to the influence of several factors. Soil type affects the SPT values as different soil
types have different characteristics such as density, porosity, and strength, which all impact
the SPT results. Unit weight, or the weight per unit volume of soil, is also a factor, as a
higher unit weight results in higher SPT values. Confining pressure, the pressure applied
to the soil from the surrounding material, also increases with depth, leading to higher SPT
values. Overall, the results of SPT tests provide a good indication of the soil strength and
its variation throughout the study area. To confirm the relationship between the SPT values
and shear strength parameters (cohesion and angle of internal friction), data obtained from
the boreholes were correlated. Figures 15 and 16 illustrate the correlation between the
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SPT values and shear strength parameters for the soils within the study area. The figures
evidently show that there is a good correlation between the SPT values, cohesion, and
angle of internal friction. Generally, most values of SPT–N distribution from the center
to the west of Erbil City were found to be between 17 and 48, while in the northeast and
southeast, the values were higher than 50. As mentioned in various studies [55–57], the
results of SPT–N showed that the soil in Erbil city is medium to very dense.
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4.1.7. Bearing Capacity

The design of a footing depends on its soil’s bearing capacity. Many methods for
estimating soil bearing capacity exist, relying on factors such as soil shear strength, footing
type, and SPT value [58]. In this study, the soil strata’s ultimate bearing capacity was
estimated using two methods, one based on shear strength parameters using Meyerhof’s
equation, and the other based on SPT-N values. The variation in the soil strata’s ultimate
bearing capacity based on Meyerhof’s equation is shown in Figure 17.
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Figure 15. Correlation of SPT-N values with cohesion of soils in the study area.
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Figure 16. Correlation of SPT-N values with angle of internal friction (φ) of soils in the study.
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Figure 18 shows the ultimate bearing capacity of the soil strata in the study area at
three different depths that were estimated from the SPT values. Changes in the ultimate
bearing capacity were observed throughout the study area. The ultimate bearing capacity
of the soil strata in the study area is a significant factor in the design of shallow and deep
foundations. The results from Figure 18 indicate that the majority of the study area at
shallow depths had an ultimate bearing capacity be-tween 170 kPa and 940 kPa. However,
there were some small areas with lower ultimate bearing capacities. The ultimate bearing
capacity increased with increasing depth, which can be attributed to the increase in soil
confining pressure and soil unit weight. These findings are useful in determining the design
and load-bearing capacity of foundations in the study area.

328



Sustainability 2023, 15, 4030

Sustainability 2023, 15, x FOR PEER REVIEW 21 of 39 
 

Penetration Test (SPT) values is a relatively simple method compared to other methods 
that require more experimental tests and complex equations established on the shear 
strength parameters of the soil. The estimation of ultimate bearing capacity from SPT val-
ues is based on empirical correlations and has been widely used in the field of geotechnical 
engineering. The advantage of this method is its simplicity; however, it may not accurately 
reflect the actual soil conditions, which can be affected by factors such as soil type, stra-
tigraphy, and loading conditions [59]. 

  

 
 

 
Figure 18. Ultimate bearing capacity from SPT-N value at depths (a) 1.5–3.5 m. (b) 3.5–6.5 m. (c) 6.5–
9.5 m. 

Figure 18. Ultimate bearing capacity from SPT-N value at depths (a) 1.5–3.5 m. (b) 3.5–6.5 m.
(c) 6.5–9.5 m.

Figure 19 presents the correlation between the ultimate bearing capacity from Meyer-
hof’s equation and the SPT values of the soils within the study area. This figure indicates
a good correlation between the SPT values and the ultimate bearing capacity of the foun-
dations. The correlation between the ultimate bearing capacity from the SPT values of
the soil strata within the study area and soil cohesion (shear strength parameter). The
ultimate bearing capacity from Meyerhof’s equation and the ultimate bearing capacity
from the SPT values of the soil strata within the study area were correlated, and the results
are presented in Figure 20. The estimation of ultimate bearing capacity from the Standard
Penetration Test (SPT) values is a relatively simple method compared to other methods that
require more experimental tests and complex equations established on the shear strength
parameters of the soil. The estimation of ultimate bearing capacity from SPT values is based
on empirical correlations and has been widely used in the field of geotechnical engineering.
The advantage of this method is its simplicity; however, it may not accurately reflect the
actual soil conditions, which can be affected by factors such as soil type, stratigraphy, and
loading conditions [59].
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4.2. Artificial Neural Network Models

ANN models are commonly used for regression and classification tasks, including
prediction problems. ANN models consist of interconnected nodes, or artificial neurons,
that process and transmit information. The nodes are organized into layers, and the
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connections between them can be adjusted during the training process to minimize the
error between the predicted and actual outcomes. ANN models have been widely used
in various fields due to their ability to handle complex relationships and make accurate
predictions. The relationship between the predicted original SPT values and bearing
capacity in the training data and test data was demonstrated in four models that have
an acceptable R2 and the smallest error. After input and output data are gathered and
structured, training and test sets were established. 70% of the data were used for training
and 15% used for testing and 15% for validation of the total data of boreholes. Predictions
for SPT-N value from two models were developed.

4.2.1. Validation of Interpolations Based on Semivariograms

The transformed data’s spatial autocorrelation is modeled using semivariograms/
covariance modeling for SPT-N values at depth 1.5–3.5 m, depicting the similarity decrease
between data points as their distance increases. Binned values (red dots) are generated by
grouping semivariograms/covariance points using square cells, while average points (blue
crosses) are generated by binning empirical points in angular sectors. Binned points show
local variation, while average values show smooth variation. A stable type model (dark
blue line) is fitted to the empirical variogram for the measured data points.

At h = 0, the semivariogram should be 0. However, at an infinitesimally small separa-
tion distance, the semivariogram often exhibits a nugget effect, which is some value greater
than zero. In this case, the nugget effect exists which is zero. The range is the distance at
which the model levels out (5750.634). Locations closer than the range are spatially auto cor-
related, while farther locations are not. The partial sill is the sill minus the nugget (462.1716).
The lag size is the distance class size (674.7548) with 12 lags. Semivariogram values are
shown in Figure 21 with higher values in orange/red and lower values in blue/green.

Kriging estimates unknown spatial values. The search neighborhood step involves
selecting nearby points with significant influence on the prediction location, determined by
spatial auto-correlation. The method eliminates irrelevant points and weights nearby points
using a search neighborhood of adjacent points, radius, and number of sectors to estimate
values at the unknown location. Accurate neighborhood identification and selection of
nearby points are crucial for successful kriging. As shown in Figure 22, five neighboring
points are selected and a circle with four sectors is selected. The points highlighted in the
data give an indicator of the weights associated with each point, and these weights are
used to estimate the value at the unknown location, which is at the center of the crosshair.

4.2.2. Prediction for SPT-N Value

In Figures 23 and 24 the results of the ANN model (a) show a good agreement between
the predicted and measured SPT-N values, with an R2 of 0.92 for the training data and
0.81 for the testing data. The model uses Atterberg limit values, water content, cohesion,
and internal friction as input variables and predicts the SPT value as its output. On the
other hand, to predict SPT N value as output with (LL%, PL%, PI%, WC, φ, Fine content)
as input, the result showed R2 values of 0.90 and 0.8 for training and testing, respectively.
As mentioned in previous studies [60], the predictions of the SPT values in model (a) and
model (b) were conducted with more superficial R2 values that give a significant agreement
for using ANN modeling in geotechnical engineering that helps the engineering to be
utilized in the design of infrastructures.
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4.2.3. Prediction of Ultimate Bearing Capacity

The prediction of the ultimate bearing capacity of soil using ANNs is a machine
learning approach that involves training a neural network model with a dataset of soil
properties and corresponding ultimate bearing capacity values. The trained model can
then be used to predict the ultimate bearing capacity of new soil samples based on their
properties. Advantages of ANN prediction include the handling of non-linear relationships
between soil properties and ultimate bearing capacity, the ability to incorporate complex
relationships between soil properties and ultimate bearing capacity, and the ability to
handle large datasets with many input variables.

To determine the best prediction results for the ultimate bearing capacity, two models
were used. The inputs and outputs of the models are listed in Table 2 along with the value
of R2, which is a measure of the goodness of fit of the model to the data. R2 ranges from
0 to 1, with a higher value indicating a better fit between the model and the data. The
R2 value provides an indication of how well the models are able to predict the ultimate
bearing capacity based on the inputs.

Table 2. ANN models for Q-Ultimate prediction.

No Model No. Input Output Training Validation Testing Adjust R2

1 Model (c) LL%, PL%, PI%, WC, c,
φ, Fine content

Q-Ultimate
91.5 83.8 82 88.79

3 Model (d) LL%, PL%, PI%, WC, φ,
Fine content 73.97 34.8 86.98 70.8

The results of bearing capacity prediction using ANN modeling show similarities
with the results of previous studies [60]. In Figures 25 and 26 the relationship between
the predicted ultimate bearing capacity and the original ultimate bearing capacity on the
training and testing data are illustrated.
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Model (c) has a high R2 value, indicating a strong correlation between the predicted
and actual values, and a low variance in the residuals. The high R2 value for the training
data (0.91) indicates that the model is able to fit the training data well, while the R2 value
of 0.82 for the testing data suggests that the model has good generalization ability and
can predict unseen data with a certain degree of accuracy. In Model (d), the decrease
in R2 value is likely due to the absence of the cohesion value as an input. Cohesion is
an important factor that affects the bearing capacity of soil, so its absence in the input
could result in a decrease in the accuracy of the model. This highlights the importance of
considering all relevant factors in the input variables of the model to improve its accuracy
and predictability.

Soil cohesion is a measure of the shear strength of soil, which determines its ability
to support loads. The results of research in geotechnical engineering have shown that soil
cohesion is the most important factor in estimating soil bearing capacity. This is because it
determines the resistance of soil to sliding or deformation under load, and is essential for
ensuring the stability of structures built on the soil. Therefore, accurate determination of
soil cohesion is crucial for safe and effective design of geotechnical structures.

4.2.4. Percentage Error of ANN Models

Figures 27 and 28 demonstrate the error percentage lines for model (a) and (b) out-
comes referring to the difference between the predicted values and the actual values. It is a
measure of the accuracy of the model’s predictions. A lower error percentage indicates a
more accurate model, while a higher error percentage means that the model is less accurate.
The acceptable error percentage depends on the specific application and the acceptable
level of error for that particular field. In some cases, a low error percentage, such as 1–2%,
may be acceptable, while in others, a higher error percentage may be acceptable if the cost
of a lower error is too high [61]. It is important to note that no model can be 100% accurate
and some level of error is always present. The goal is to reduce the error to the lowest
possible level while still making predictions that are useful and relevant.
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4.2.5. Analysis of Models

Sensitivity analysis is an important aspect of model evaluation, as it helps to assess
the impact of individual model parameters on the final results. The absence of a sensitivity
analysis in the study you are referring to could limit the understanding of the model’s
behavior and the confidence in the results obtained. Analysis of models is particularly
important when using ANOVA, as the parameters of these models can have a significant
impact on the spatial structure of the data. By conducting a sensitivity analysis, the
researchers could determine the robustness of the model results. The sensitivity analysis to
evaluate the effect of each model parameter based on the semivariograms shown in Table 3.
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Table 3. Analysis of models and effect each parameter on the output of prediction.

Model a Model b Model c Model d

Parameters F-Value p-Value Parameters F-Value p-Value Parameters F-Value p-Value Parameters F-Value p-Value

LL% 1.63 0.204 LL% 0.03 0.862 LL% 0.17 0.677 LL% 2.02 0.157
PL% 1.07 0.303 PL% 0.51 0.477 PL% 0.07 0.792 PL% 2.19 0.142
PI% 0.46 0.497 PI% 0.27 0.607 PI% 1.01 0.316 PI% 0.24 0.627
WC 2.52 0.115 WC 2.36 0.126 WC 1.12 0.291 WC 5.95 0.016

c 157.85 0.000 ϕ 0.75 0.387 c 320.21 0.000 ϕ 0.03 0.873
ϕ 10.29 0.002 No.200 46.73 0.000 ϕ 28.47 0.000 No.200 68.38 0.000

No.200 1.81 0.180 No.200 0.04 0.843

A p-value less than 0.05 is commonly used as a threshold for determining statistical
significance in hypothesis testing. In this context, a p-value less than 0.05 for a particular
model parameter means that the results suggest a statistically significant relationship
between the parameter and the outcome variable being modeled.

In this study, a p-value less than 0.05 for a particular model parameter would indicate
that the parameter has a significant impact on the model results. This information can be
useful in understanding the underlying relationships in the data and in guiding further
analysis or interpretation of the results. However, it is important to consider other factors
such as the sample size, the quality of the data, and the overall fit of the model in evaluating
the reliability and robustness of the results.

5. Conclusions

This study focuses on developing maps for soil geotechnical properties that are widely
utilized by geotechnical engineers in foundation design capacity. The main conclusions are
as follows. An artificial neural network (NN) model was established for estimating SPT-N
value and ultimate bearing capacity:

• GIS is an effective tool that can be used by engineers to analyze the preliminary
exploration of geotechnical sites. Information from 102 boreholes, considering the
main geotechnical properties, was collected, evaluated, and used as input data for
GIS analysis.

• This information suggests that a significant portion of Erbil city has soil with a high
proportion of fine-grained materials, such as clay and silt. High fines content can
impact the soil’s physical and engineering properties, such as its compressibility,
permeability, and shear strength. The presence of high fines content can also increase
the susceptibility of soil to swelling and shrinkage, which can lead to instability in
structures built on or in the soil. The small zones in the southeast of the study area with
lower fine contents may have different soil characteristics and may offer potential sites
for structures that require more stable soil conditions. These findings are important
for the design of infrastructure and buildings in the city.

• Atterberg limits in most of Erbil City were found to be between 40% and 52%, and 19%
and 30% for the liquid and plastic limits, respectively. This indicates the high presence
of low–plasticity clay and clayey silt. The results of the analysis of liquid limit and
plastic limit values in the study area provide important information for engineers and
planners in Erbil city center. They highlight the presence of low plastic clay in high
percentages in the study area, as well as the need to carefully evaluate critical points
with high liquid limit and plastic limit in future construction and development projects.

• Digital mapping of shear strength parameters showed that most soil strata at three
different depths had an internal friction angle between 2◦ and 6◦, and the cohesive
strength ranged between 76 kPa and 130 kPa. The results of the cohesion values show
that the soils in the study area at shallow depths have moderate to high cohesion
values, and that the soils with high cohesion values tend to be located in areas with
high fines content. However, the results of the angle of internal friction show that the
soils in the study area have moderate to low shear strength values, with the soils in
the east-south part of the area having slightly higher shear strength values. These
findings are important in determining the suitability of the soil for different types of
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structures and in designing and constructing structures that are appropriate for the
soil conditions in the area.

• The soil in the study area mostly has a moderate compressibility and resilience, with a
moderate to low amount of rebound. The compression index decreases with depth,
suggesting that the soil becomes less compressible as one moves deeper into the
ground. The rebound index indicates that the soil has a moderate to low ability to
recover its original volume after being compressed. These findings provide valuable
information for designing structures that are built on or into the soil in the study area.

• SPT values in the study area indicate moderate soil strength in the shallow strata, with
a range of 17 to 48. As the depth of the soil strata increases, the SPT values increase
and become higher, covering large parts of the study area. This suggests that the
soil becomes stronger with increasing depth. The SPT is a widely used in-situ test
for measuring soil strength, and these results provide valuable information for the
design of foundations and other structures that are supported by the soil. The higher
SPT values at greater depths indicate improved soil strength characteristics and can
influence the design of these structures in terms of load-bearing capacity and stability.

• This conclusion suggests that the soil in Erbil City is not capable of supporting heavy
loads without modification or special design measures. The ultimate bearing capacity
is a measure of the maximum weight or load that a soil can support without failure. A
value lower than 170 kPa indicates that the soil may not be suitable for supporting
heavy structures, such as buildings and bridges, without additional treatment or
specialized foundation design. Improving the soil, such as through compaction or
stabilization, and utilizing special footing designs, such piles, can increase the soil’s
bearing capacity and ensure the stability and safety of structures built on the soil.

• At the preliminary design point, the completed digital geotechnical maps are vital.
The designer could use the geotechnical parameters, consolidation characteristics and
SPT as an effective visual display tool simply by using the digital values of these
parameters for the proposed region, where the necessary decisions can be made.

• The correlation between the SPT values and shear strength parameters for the soils
within the study area demonstrated a strong relationship between them.

• The results obtained from the models were compared with those measured from
the field tests. It was found that predicted SPT-N values and Q-ultimate bearing
capacity are quite close to the measured values. In order to check the prediction
performance of the ANN model developed, several performance indices, such as R2,
MAPE, and RMSE were also calculated. The ANN model has shown good prediction
performance based on the performance indices. Thus, the developed ANN model can
be used to predict SPT-N and Q-ultimate bearing capacity from the soil parameters and
borehole coordinates. The ANN model’s implementation has also demonstrated that
the neural network is a valuable tool to minimize the uncertainties encountered during
geotechnical engineering projects. Therefore, using Artificial Neural Networks may
provide new techniques and methodologies and minimize the potential inconsistency
of correlations. ANN prediction is a useful tool for predicting the ultimate bearing
capacity of soil, but it should be used in conjunction with other methods and validated
with independent data to ensure accurate predictions.
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Appendix A

The data of all boreholes are provided demonstrated in Table A1.

Table A1. Full data of all boreholes of study area.

BH
NO

DEPTH
m X Y LL% PL% PI% WC% c

(kN/m2)
Φ
(◦)

Fine
Content

SPT-N Value
(kN/m2)

1 1.5–3.5 406,851.5 4,009,570 46 22 24 28.3 51 4 62.1 7

2 1.5–3.5 405,972.9 4,009,284.2 40 22 18 15 96 3 94.1 54

3 1.5–3.5 407,487.6 4,007,947.1 47 25 22 18 99 5 91.5 57

4 1.5–3.5 406,121.1 4,008,204.7 40 22 18 15.0 96 3 94.1 54

5 1.5–3.5 407,443.2 4,008,702.7 50 27 23 20.8 109 5 92.9 41

6 1.5–3.5 407,941.4 4,009,347.7 50 28 22 13.9 108 4 91.8 45

7 1.5–3.5 408,217.9 4,008,512.23 35 20 19 20.0 96 4 96 41

8 1.5–3.5 408,997.4 4,008,917.8 39 21 18 16.3 109 5 89.4 45

9 1.5–3.5 408,743.4 4,009,398.1 47 25 22 18.0 99 5 91.5 57

10 1.5–3.5 408,026.1 4,010,406 45 24 21 16.6 96 5 95.5 63

11 1.5–3.5 409,617.8 4,011,321.6 46 27 19 20.2 99 5 90.7 41

12 1.5–3.5 408,588.1 4,011,780.2 45 25 20 19.0 97 4 91.6 60

13 1.5–3.5 409,762.1 4,012,805.4 48 26 22 19.7 94 5 81.3 75

14 1.5–3.5 411,184.2 4,011,787.2 49 23 26 19.6 108 4 96.3 33

15 1.5–3.5 411,184.3 4,012,540.7 47 25 22 15.6 105 5 97.4 30

16 1.5–3.5 411,247.7 4,013,522.9 48 26 22 18.4 58 3 92.7 19

17 1.5–3.5 409,969.9 4,010,643.8 58 31 27 20.5 91 4 88.9 40

18 1.5–3.5 409,662.9 4,009,977 56 30 26 18.8 94 4 69.1 42

19 1.5–3.5 409,915.1 4,009,232.2 45 24 21 13.6 77 3 95.9 29

20 1.5–3.5 410,862.1 4,009,607.35 44 25 19 18.3 69 5 94.5 30

21 1.5–3.5 411,994.6 4,009,216.9 42 23 19 19.2 70 4 98.2 29

22 1.5–3.5 411,166.1 4,010,438.9 50 26 24 17.9 95 5 92.2 58

23 1.5–3.5 412,126.9 4,010,308.3 51 29 29 19.8 95 5 96.2 70

24 1.5–3.5 411,550.5 4,011,441.2 44 23 21 14.8 95 7 100 80

25 1.5–3.5 413,143.3 4,011,488.9 44 25 19 20.5 97 4 93.5 41

26 1.5–3.5 414,064.7 4,011,692.8 41 23 18 17.4 110 4 53.6 37

27 1.5–3.5 415,317.3 4,010,885.4 50 26 24 15.9 116 5 68.5 23

28 1.5–3.5 414,149.3 4,009,671.4 51 27 24 19.1 94 4 87.3 19

29 1.5–3.5 414,362.5 4,008,450.6 52 24 28 19.7 90 4 86.4 17

30 1.5–3.5 416,171.1 4,012,249.6 45 24 21 15.3 98 6 79.8 43

31 1.5–3.5 415,609.8 4,012,761.8 38 21 17 16.0 95 5 70.6 45

32 1.5–3.5 414,549.1 4,013,637 38 21 17 70 12 97 100

33 1.5–3.5 417,922.5 4,010,462 53 27 26 21.6 69 3 92.6 25

34 1.5–3.5 416,961.1 4,011,319.3 49 23 26 15.1 112 5 86.7 71

35 1.5–3.5 416,542.1 4,010,233.5 43 23 20 17.8 91 3 89.3 79

36 1.5–3.5 416,909.4 4,008,754 44 24 20 14.8 92 4 66.2 85
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Table A1. Cont.

BH
NO

DEPTH
m X Y LL% PL% PI% WC% c

(kN/m2)
Φ
(◦)

Fine
Content

SPT-N Value
(kN/m2)

37 1.5–3.5 406,775.3 4,007,107.5 50 26 24 18.3 82 4 92.1 18

38 1.5–3.5 405,227.4 4,007,274.3 53 27 26 17.3 74 3 96.4 25

39 1.5–3.5 407,403.9 4,006,885.3 40 22 18 13.6 105 5 63.8 19

40 1.5–3.5 407,715.1 4,007,488.5 43 22 21 19.1 90 4 93.2 20

41 1.5–3.5 408,445.4 4,007,069.4 45 24 21 15.8 58 5 95.9 19

42 1.5–3.5 408,736.7 4,005,101.9 44 25 19 17.6 60 4 95.5 22

43 1.5–3.5 408,248.5 4,006,694.7 43 24 19 19.9 69 4 92.1 22

44 1.5–3.5 407,872.4 4,006,657.22 56 25 31 15.6 116 5 95.5 28

45 1.5–3.5 409,311.9 4,005,786 46 24 22 17.7 112 4 97.4 32

46 1.5–3.5 408,775.59 4,006,631.24 46 22 24 21.1 85 4 95.8 19

47 1.5–3.5 409,973.4 4,006,133 53 25 28 20.9 87 5 93.6 31

48 1.5–3.5 409,048.64 4,007,069.39 46 24 22 16.6 89 4 96.2 29

49 1.5–3.5 409,874.19 4,007,406.1 46 24 22 17.7 92 5 94.1 37

50 1.5–3.5 408,985.14 4,007,907.6 54 26 28 15.3 99 4 94.1 39

51 1.5–3.5 411,015.2 4,007,902.7 55 24 31 15.3 112 5 95.2 82

52 1.5–3.5 418,521.8 4,007,163.4 57 25 32 19.6 104 4 92.9 77

53 1.5–3.5 409,785.25 4,008,333.1 48 22 26 14.4 97 4 95.5 22

54 1.5–3.5 410,998.6 4,008,878.3 49 26 23 18.8 105 4 92.2 32

55 1.5–3.5 410,109.1 4,006,834.44 41 19 22 16.8 101 4 87.3 41

56 1.5–3.5 410,419.8 4,006,001 45 21 24 16.3 123 5 52.3 28

57 1.5–3.5 412,049.02 4,007,215.97 52 24 28 21.8 109 5 51.8 44

58 1.5–3.5 411,263 4,006,447.5 51 27 24 19.4 96 4 94.2 33

59 1.5–3.5 412,664.18 4,007,328.4 49 25 24 19.4 124 4 92.6 38

60 1.5–3.5 411,990 4,006,315.2 44 25 19 21.7 136 5 95.7 39

61 1.5–3.5 413,164.9 4,008,779 43 23 20 18.9 119 5 96.6 41

62 1.5–3.5 412,846.74 4,006,559.81 49 26 23 17.4 79 4 93.5 39

63 1.5–3.5 412,536.5 4,005,174.2 48 27 21 18.0 81 4 93.5 35

64 1.5–3.5 415,747.4 4,005,960.69 48 23 25 16.8 96 4 96.4 21

65 1.5–3.5 414,814.8 4,007,156.9 40 21 19 17.9 97 5 39.7 31

66 1.5–3.5 415,071.9 4,004,866.9 47 24 23 19.0 95 5 90.8 34

67 1.5–3.5 417,971.23 4,001,685.01 48 27 21 17.4 88 8 30 61

68 1.5–3.5 418,519 4,003,222.9 0 0 0 17.7 85 10 18 37

69 1.5–3.5 415,926 4,002,878 0 0 0 19.0 83 9 14 50

70 1.5–3.5 416,167 4,004,572.3 0 0 0 11.0 80 8 15 36

71 1.5–3.5 419,289 4,001,977.6 0 0 0 18.6 114 5 25 40

72 1.5–3.5 411,924.27 4,004,297.59 57 25 32 16.4 116 5 94.7 72

73 1.5–3.5 410,482.29 4,003,953.63 48 23 25 13.4 109 5 91.4 74

74 1.5–3.5 412,426.98 4,002,802.69 45 21 24 12.1 144 4 95.6 23

75 1.5–3.5 414,365 4,003,408 44 21 23 13.7 135 4 94.6 20

76 1.5–3.5 411,975.73 4,001,202.95 47 21 26 13.8 118 5 93.2 39

77 1.5–3.5 414,022.9 4,002,387 45 22 23 15.4 95 4 94.7 44

78 1.5–3.5 411,697.91 4,000,107.57 41 27 14 11.9 55 6 77.8 8

79 1.5–3.5 410,200 3,999,706 35 23 12 12.6 47 3 83.7 11

80 1.5–3.5 413,372.73 4,001,528.38 0 0 0 13.7 98 5 8.4 100
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Table A1. Cont.

BH
NO

DEPTH
m X Y LL% PL% PI% WC% c

(kN/m2)
Φ
(◦)

Fine
Content

SPT-N Value
(kN/m2)

81 1.5–3.5 414,253.79 4,000,845.76 47 22 25 17.5 86 5 91.7 81

82 1.5–3.5 415,598.5 4,000,259 45 22 24 20.1 89 3 93.5 83

83 1.5–3.5 413,510.13 3,999,595.57 47 25 22 20.5 81 3 95.6 27

84 1.5–3.5 412,160.93 3,999,051.88 41 22 19 12.7 12 36 100 45

85 1.5–3.5 410,732.9 3,999,785 40 21 19 10.8 15 30 33 47

86 1.5–3.5 410,253 3,998,445 43 23 20 5.7 19 35 42 53

87 1.5–3.5 413,309 3,998,392.5 41 21 20 12.3 108 5 81.6 60

88 1.5–3.5 410,136.16 4,001,490.72 55 26 29 17.3 81 3 96.2 22

89 1.5–3.5 409,296.11 4,002,026.51 46 24 22 22.1 96 5 96.8 31

90 1.5–3.5 408,932.6 4,003,851.9 50 24 26 14.8 90 3 97.3 29

91 1.5–3.5 408,515.58 4,002,310.93 44 30 14 31.1 25 2 90.1 18

92 1.5–3.5 409,939 4,003,009.6 44 28 16 29.2 29 3 89.2 12

93 1.5–3.5 407,821.05 4,002,866.56 42 21 21 23.2 45 4 91.6 19

94 1.5–3.5 407,298.5 4,004,255.62 49 26 23 16.7 38 3 89.8 5

95 1.5–3.5 405,937 4,003,224 43 23 20 13.3 90 4 93.3 7

96 1.5–3.5 407,774.75 4,005,380.1 38 21 17 16.9 98 4 96.6 39

97 1.5–3.5 407,844.33 4,005,870.11 39 22 17 18.9 43 4 56.7 19

98 1.5–3.5 406,914.85 4,005,671.15 45 23 22 14.5 121 6 94.6 23

99 1.5–3.5 405,242 4,004,431.7 46 25 21 15.6 110 4 98.1 25

100 1.5–3.5 405,684.54 4,005,717.45 43 21 22 14.8 95 4 94.3 41

101 1.5–3.5 408,025.12 3,999,907.5 46 24 22 15.7 103 4 96.2 54

102 1.5–3.5 406,400.4 4,001,124 42 26 16 15.5 94 4 96.1 75

103 3.5–6.5 406,851.5 4,009,570 49 23 26 29.4 40 4 83.5 11

104 3.5–6.5 405,972.9 4,009,284.2 48 23 25 29.1 45 5 87 9

105 3.5–6.5 407,487.6 4,007,947.1 50 24 26 19.2 109 5 95.1 72

106 3.5–6.5 406,121.1 4,008,204.7 46 26 20 19.4 85 4 97.9 60

107 3.5–6.5 407,443.2 4,008,702.7 52 26 26 23.2 112 4 94.9 70

108 3.5–6.5 407,941.4 4,009,347.7 52 29 23 14.8 103 4 93.7 77

109 3.5–6.5 408,217.9 4,008,512.23 40 22 18 20.5 113 5 100 90

110 3.5–6.5 408,997.4 4,008,917.8 36 23 13 105 5 98.4 73

111 3.5–6.5 408,743.4 4,009,398.1 44 24 20 19.3 102 5 95.1 86

112 3.5–6.5 408,026.1 4,010,406 42 23 19 15.5 102 6 94.1 80

113 3.5–6.5 409,617.8 4,011,321.6 64 33 31 19.5 89 4 80.5 97

114 3.5–6.5 408,588.1 4,011,780.2 48 25 23 20.1 93 5 89.1 99

115 3.5–6.5 409,762.1 4,012,805.4 46 25 21 17.2 98 5 72.5 100

116 3.5–6.5 411,184.2 4,011,787.2 45 24 21 14.3 104 4 95.7 50

117 3.5–6.5 411,184.3 4,012,540.7 49 28 21 18.2 132 6 92.9 62

118 3.5–6.5 411,247.7 4,013,522.9 45 27 18 19.0 62 4 100 25

119 3.5–6.5 409,969.9 4,010,643.8 51 27 24 18.7 93 5 94.3 91

120 3.5–6.5 409,662.9 4,009,977 54 29 25 19.3 95 5 94.2 89

121 3.5–6.5 409,915.1 4,009,232.2 47 23 24 17.5 87 5 94.6 33

122 3.5–6.5 410,862.1 4,009,607.35 46 22 24 20.7 82 4 98.2 41

123 3.5–6.5 411,994.6 4,009,216.9 45 21 23 17.0 72 5 97.5 35
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Table A1. Cont.

BH
NO

DEPTH
m X Y LL% PL% PI% WC% c

(kN/m2)
Φ
(◦)

Fine
Content

SPT-N Value
(kN/m2)

124 3.5–6.5 411,166.1 4,010,438.9 54 25 29 18.6 91 4 97.8 76

125 3.5–6.5 412,126.9 4,010,308.3 55 26 29 19.3 93 4 92.1 79

126 3.5–6.5 411,550.5 4,011,441.2 46 22 24 14.8 97 8 100 100

127 3.5–6.5 413,143.3 4,011,488.9 46 25 21 21.1 99 4 95.2 75

128 3.5–6.5 414,064.7 4,011,692.8 60 32 28 21.2 147 5 86.6 50

129 3.5–6.5 415,317.3 4,010,885.4 50 28 22 20.2 98 5 91.9 56

130 3.5–6.5 414,149.3 4,009,671.4 42 23 19 19.4 95 5 41.6 100

131 3.5–6.5 414,362.5 4,008,450.6 71 36 35 19.7 95 5 59.7 43

132 3.5–6.5 416,171.1 4,012,249.6 38 21 17 16.8 95 5 82.6 82

133 3.5–6.5 415,609.8 4,012,761.8 44 25 19 16.1 97 6 85.8 83

134 3.5–6.5 414,549.1 4,013,637 42 23 19 10.4 75 11 100 100

135 3.5–6.5 417,922.5 4,010,462 48 26 22 20.2 76 5 96.1 37

136 3.5–6.5 416,961.1 4,011,319.3 48 23 25 114 5 69.1 75

137 3.5–6.5 416,542.1 4,010,233.5 45 26 19 21.6 94 5 94.9 87

138 3.5–6.5 416,909.4 4,008,754 54 32 22 19.6 94 4 89.4 83

139 3.5–6.5 406,775.3 4,007,107.5 53 28 25 19.3 78 3 97.9 45

140 3.5–6.5 405,227.4 4,007,274.3 54 28 26 16.8 82 4 98.6 32

141 3.5–6.5 407,403.9 4,006,885.3 38 21 17 17.3 98 5 92.5 39

142 3.5–6.5 407,715.1 4,007,488.5 47 23 24 21.5 92 5 96.1 55

143 3.5–6.5 408,445.4 4,007,069.4 44 23 21 19.3 81 3 96.3 40

144 3.5–6.5 408,736.7 4,005,101.9 46 23 23 19.2 87 4 93.8 38

145 3.5–6.5 408,248.5 4,006,694.7 52 26 26 22.3 93 5 94.6 53

146 3.5–6.5 407,872.4 4,006,657.22 57 26 31 18.7 106 5 95.6 61

147 3.5–6.5 409,311.9 4,005,786 55 26 29 17.6 103 4 96.9 63

148 3.5–6.5 408,775.59 4,006,631.24 47 23 25 15.8 96 5 92.2 70

149 3.5–6.5 409,973.4 4,006,133 43 21 22 20.5 107 4 87.9 69

150 3.5–6.5 409,048.64 4,007,069.39 46 23 23 17.3 90 4 94.6 50

151 3.5–6.5 409,874.19 4,007,406.1 45 22 23 17.5 92 5 94 73

152 3.5–6.5 408,985.14 4,007,907.6 56 30 26 18.2 110 5 93.3 72

153 3.5–6.5 411,015.2 4,007,902.7 63 28 35 21.8 102 6 94 91

154 3.5–6.5 418,521.8 4,007,163.4 56 24 32 16.6 129 5 96.1 86

155 3.5–6.5 409,785.25 4,008,333.1 51 27 24 18.2 118 6 96.4 40

156 3.5–6.5 410,998.6 4,008,878.3 49 26 23 18.7 99 5 96.3 100

157 3.5–6.5 410,109.1 4,006,834.44 46 19 27 17.2 98 5 90.3 30

158 3.5–6.5 410,419.8 4,006,001 48 20 28 18.2 126 5 87.2 50

159 3.5–6.5 412,049.02 4,007,215.97 54 28 26 17.8 134 6 96.4 63

160 3.5–6.5 411,263 4,006,447.5 55 24 31 19.5 99 5 94.2 79

161 3.5–6.5 412,664.18 4,007,328.4 46 26 20 17.2 118 4 96.6 22

162 3.5–6.5 411,990 4,006,315.2 46 25 21 17.1 121 5 96.5 38

163 3.5–6.5 413,164.9 4,008,779 47 23 24 16.3 115 6 69.1 36

164 3.5–6.5 412,846.74 4,006,559.81 45 24 21 23.8 76 4 94.7 45

165 3.5–6.5 412,536.5 4,005,174.2 47 26 21 18.9 89 5 98.1 41

166 3.5–6.5 415,747.4 4,005,960.69 45 21 24 20.4 126 5 98.4 100

167 3.5–6.5 414,814.8 4,007,156.9 44 22 22 20.4 120 5 96.4 100
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168 3.5–6.5 415,071.9 4,004,866.9 46 23 23 18.9 117 5 90.8 100

169 3.5–6.5 417,971.23 4,001,685.01 45 25 20 17.4 91 9 39 76

170 3.5–6.5 418,519 4,003,222.9 45 24 21 17.7 95 11 64 90

171 3.5–6.5 415,926 4,002,878 41 23 19 19.0 89 11 39 68

172 3.5–6.5 416,167 4,004,572.3 40 20 24 18.0 76 9 55 99

173 3.5–6.5 419,289 4,001,977.6 0 0 0 18.6 112 5 78.8 92

174 3.5–6.5 411,924.27 4,004,297.59 62 26 36 16.6 125 5 68.3 80

175 3.5–6.5 410,482.29 4,003,953.63 49 23 26 16.6 115 6 17.6 69

176 3.5–6.5 412,426.98 4,002,802.69 48 25 23 18.1 140 5 39.9 100

177 3.5–6.5 414,365 4,003,408 39 21 18 17.5 92 4 98.1 80

178 3.5–6.5 411,975.73 4,001,202.95 61 26 35 16.9 137 5 97.2 72

179 3.5–6.5 414,022.9 4,002,387 53 26 27 16.6 119 5 63.6 73

180 3.5–6.5 411,697.91 4,000,107.57 44 23 21 20.3 98 5 50.4 20

181 3.5–6.5 410,200 3,999,706 37 25 12 17.8 60 6 94.2 37

182 3.5–6.5 413,372.73 4,001,528.38 42 21 21 16.3 94 6 87.5 29

183 3.5–6.5 414,253.79 4,000,845.76 46 22 24 20.1 92 4 76.5 91

184 3.5–6.5 408,932.6 4,000,259 48 23 25 19.2 94 4 94.7 100

185 3.5–6.5 413,510.13 3,999,595.57 48 24 24 17.4 85 3 88.6 97

186 3.5–6.5 412,160.93 3,999,051.88 39 21 18 14.1 38 29 100 100

187 3.5–6.5 410,732.9 3,999,785 38 20 18 10.8 8 32 41 100

188 3.5–6.5 410,253 3,998,445 41 20 21 8.7 13 29 44 100

189 3.5–6.5 413,309 3,998,392.5 46 24 22 13.4 94 5 61.1 63

190 3.5–6.5 410,136.16 4,001,490.72 58 27 31 18.4 93 5 99.1 41

191 3.5–6.5 409,296.11 4,002,026.51 50 26 24 21.0 108 4 93.5 39

192 3.5–6.5 409,707 4,003,851.9 51 28 23 15.0 87 3 96 48

193 3.5–6.5 408,515.58 4,002,310.93 50 28 22 28.2 38 4 95.3 20

194 3.5–6.5 409,939 4,003,009.6 41 24 17 25.4 40 5 78.4 29

195 3.5–6.5 407,821.05 4,002,866.56 45 26 19 24.7 51 4 87.9 100

196 3.5–6.5 407,298.5 4,004,255.62 45 23 22 12.2 102 5 93.4 20

197 3.5–6.5 405,937 4,003,224 41 23 18 15.0 87 3 89.8 26

198 3.5–6.5 407,774.75 4,005,380.1 48 23 25 19.9 128 6 91.4 81

199 3.5–6.5 407,844.33 4,005,870.11 38 26 12 23.7 50 4 66.7 31

200 3.5–6.5 406,914.85 4,005,671.15 55 26 29 17.4 112 5 98.7 71

201 3.5–6.5 405,242 4,004,431.7 48 23 25 17.2 125 5 93.8 70

202 3.5–6.5 405,684.54 4,005,717.45 50 27 23 16.2 94 3 98.1 45

203 3.5–6.5 408,025.12 3,999,907.5 48 26 22 17.7 81 3 99.1 81

204 3.5–6.5 406,400.4 4,001,124 49 26 23 21 85 4 98.8 100

205 6.5–9.5 406,851.5 4,009,570 47 23 24 26.9 41 3 83.5 10

206 6.5–9.5 405,972.9 4,009,284.2 51 24 27 30.4 51 3.5 93.8 12

207 6.5–9.5 407,487.6 4,007,947.1 56 30 26 19.1 107 4 93.5 83

208 6.5–9.5 406,121.1 4,008,204.7 54 28 26 16.4 112 5 95.7 80

209 6.5–9.5 407,443.2 4,008,702.7 49 27 22 13.6 105 4.5 94.8 96

210 6.5–9.5 407,941.4 4,009,347.7 55 26 29 21.7 97 4 97.5 82

211 6.5–9.5 408,217.9 4,008,512.23 42 28 0 18.3 117 5 100 100
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212 6.5–9.5 408,997.4 4,008,917.8 54 26 28 18.5 110 5 98.4 82

213 6.5–9.5 408,743.4 4,009,398.1 42 23 19 17.4 108 6.5 97.3 95

214 6.5–9.5 408,026.1 4,010,406 41 28 13 17.4 110 5.5 91.7 82

215 6.5–9.5 409,617.8 4,011,321.6 46 25 21 18.4 122 5.5 52.1 100

216 6.5–9.5 408,588.1 4,011,780.2 42 25 17 19.1 103 5.5 86.3 100

217 6.5–9.5 409,762.1 4,012,805.4 47 26 21 21.4 99 5 90.9 100

218 6.5–9.5 411,184.2 4,011,787.2 47 26 21 21.9 118 4.5 91.7 80

219 6.5–9.5 411,184.3 4,012,540.7 53 25 28 18.3 103 4.5 90 85

220 6.5–9.5 411,247.7 4,013,522.9 47 28 0 19.7 67 4.5 100 29

221 6.5–9.5 409,969.9 4,010,643.8 56 30 26 18.8 93 4 90.7 85

222 6.5–9.5 409,662.9 4,009,977 39 21 18 18.2 95 4.5 82.4 90

223 6.5–9.5 409,915.1 4,009,232.2 44 22 22 16.2 91 4 91.3 47

224 6.5–9.5 410,862.1 4,009,607.35 55 28 27 17.4 85 4 96.1 80

225 6.5–9.5 411,994.6 4,009,216.9 48 23 25 16.1 87 4.5 98.5 78

226 6.5–9.5 411,166.1 4,010,438.9 53 25 28 21.7 92 4.5 90.1 100

227 6.5–9.5 412,126.9 4,010,308.3 56 26 30 12.9 91 4 96.6 99

228 6.5–9.5 411,550.5 4,011,441.2 47 21 26 15.6 108 8.5 100 100

229 6.5–9.5 413,143.3 4,011,488.9 41 21 20 21.7 95 3.5 76.9 90

230 6.5–9.5 414,064.7 4,011,692.8 59 28 31 16.6 130 5 93.8 47

231 6.5–9.5 415,317.3 4,010,885.4 64 33 31 18.7 92 4 64.2 74

232 6.5–9.5 414,149.3 4,009,671.4 56 33 23 18.1 92 4 73.4 72

233 6.5–9.5 414,362.5 4,008,450.6 66 29 37 18.2 96 4.5 61.6 55

234 6.5–9.5 416,171.1 4,012,249.6 32 15 17 16.1 94 4.5 52.4 100

235 6.5–9.5 415,609.8 4,012,761.8 36 20 16 18.2 93 4.5 42.3 100

236 6.5–9.5 414,549.1 4,013,637 44 21 23 11.3 78 14 100 100

237 6.5–9.5 417,922.5 4,010,462 43 25 18 17.1 62 3.5 94.9 40

238 6.5–9.5 416,961.1 4,011,319.3 46 22 24 17.2 110 4.5 74.3 81

239 6.5–9.5 416,542.1 4,010,233.5 55 31 24 20.7 116 4 88.7 100

240 6.5–9.5 416,909.4 4,008,754 48 24 24 22.7 110 5 86.2 100

241 6.5–9.5 406,775.3 4,007,107.5 52 27 25 17.8 85 4 98.4 52

242 6.5–9.5 405,227.4 4,007,274.3 51 26 25 18.2 85 4.5 94.3 54

243 6.5–9.5 407,403.9 4,006,885.3 45 25 20 20.5 103 4 94.4 45

244 6.5–9.5 407,715.1 4,007,488.5 49 26 23 20.1 97 4.5 96.1 71

245 6.5–9.5 408,445.4 4,007,069.4 48 26 22 20.7 85 4 93.1 82

246 6.5–9.5 408,736.7 4,005,101.9 54 25 29 16.6 83 3.5 94.1 83

247 6.5–9.5 408,248.5 4,006,694.7 50 27 23 19.2 97 5 93 79

248 6.5–9.5 407,872.4 4,006,657.22 51 25 26 19.4 138 4 93.3 60

249 6.5–9.5 409,311.9 4,005,786 49 26 23 18.2 130 4.5 97.5 70

250 6.5–9.5 408,775.59 4,006,631.24 48 23 25 17.6 97 5 94.9 69

251 6.5–9.5 409,973.4 4,006,133 44 24 20 17.7 99 5 92.2 75

252 6.5–9.5 409,048.64 4,007,069.39 48 24 24 18.4 97 4.5 90.4 90

253 6.5–9.5 409,874.19 4,007,406.1 46 23 23 15.8 98 5 93.3 89

254 6.5–9.5 408,985.14 4,007,907.6 56 25 31 18.8 108 4.5 96.7 91

255 6.5–9.5 411,015.2 4,007,902.7 45 23 22 14.5 115 5 93.2 99

256 6.5–9.5 418,521.8 4,007,163.4 48 23 25 13.5 113 4.5 93.8 100
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257 6.5–9.5 409,785.25 4,008,333.1 46 24 22 18.8 95 3.5 94 43

258 6.5–9.5 410,998.6 4,008,878.3 49 27 22 18.6 103 4.5 92.9 100

259 6.5–9.5 410,109.1 4,006,834.44 42 28 14 17.2 108 5.5 92.1 59

260 6.5–9.5 410,419.8 4,006,001 55 23 32 17.1 120 4.5 91.2 72

261 6.5–9.5 412,049.02 4,007,215.97 55 24 31 15.4 130 5 82.3 89

262 6.5–9.5 411,263 4,006,447.5 55 26 29 18.4 102 4 92.7 81

263 6.5–9.5 412,664.18 4,007,328.4 48 25 23 16.4 133 5.5 96.1 43

264 6.5–9.5 411,990 4,006,315.2 49 26 23 16.5 120 5 89.7 71

265 6.5–9.5 413,164.9 4,008,779 45 27 18 20.2 123 5.5 86 69

266 6.5–9.5 412,846.74 4,006,559.81 45 24 21 19.6 85 4.5 94.7 75

267 6.5–9.5 412,536.5 4,005,174.2 37 18 19 20.2 88 4 98.0 84

268 6.5–9.5 415,747.4 4,005,960.69 46 22 24 18.4 89 4 91.2 100

269 6.5–9.5 414,814.8 4,007,156.9 43 22 21 16.3 128 5 42.3 87

270 6.5–9.5 415,071.9 4,004,866.9 38 21 17 16.3 122 4 45 100

271 6.5–9.5 417,971.23 4,001,685.01 47 25 22 17.2 97 9.5 42 100

272 6.5–9.5 418,519 4,003,222.9 37 21 16 16.8 90 9.5 36 100

273 6.5–9.5 415,926 4,002,878 44 23 21 17.0 93 10 42 100

274 6.5–9.5 416,167 4,004,572.3 43 23 20 20.1 80 9 60 100

275 6.5–9.5 419,289 4,001,977.6 44 24 20 17.7 109 4 81.4 98

276 6.5–9.5 411,924.27 4,004,297.59 56 25 31 14.4 142 5 96.3 100

277 6.5–9.5 410,482.29 4,003,953.63 0 0 0 15.6 131 7 18.1 100

278 6.5–9.5 412,426.98 4,002,802.69 43 23 20 20.5 136 4.5 93.1 100

279 6.5–9.5 414,365 4,003,408 58 32 26 17.2 97 5 93.7 100

280 6.5–9.5 411,975.73 4,001,202.95 51 24 27 18.1 129 5.5 97.6 72

281 6.5–9.5 414,022.9 4,002,387 81 26 55 15.3 140 5 95.1 79

282 6.5–9.5 411,697.91 4,000,107.57 51 28 23 17.5 131 4.5 94.2 40

283 6.5–9.5 410,200 3,999,706 48 28 22 16.8 103 5 61.4 45

284 6.5–9.5 413,372.73 4,001,528.38 45 21 24 17.2 99 6 93.7 42

285 6.5–9.5 414,253.79 4,000,845.76 49 26 23 18.6 96 4.5 82 100

286 6.5–9.5 415,598.5 4,000,259 41 23 18 21.0 89 4 76.5 100

287 6.5–9.5 413,510.13 3,999,595.57 43 23 20 13.9 87 3.5 26.6 93

288 6.5–9.5 412,160.93 3,999,051.88 36 17 19 13.2 6 32 100 80

289 6.5–9.5 410,732.9 3,999,785 43 21 22 17.0 16 31 45 100

290 6.5–9.5 410,253 3,998,445 42 22 20 9.0 7 30 41 100

291 6.5–9.5 413,309 3,998,392.5 59 26 33 15.7 94 3.5 70.8 100

292 6.5–9.5 410,136.16 4,001,490.72 55 26 29 21.8 97 5 95.9 79

293 6.5–9.5 409,296.11 4,002,026.51 53 25 28 19.2 115 4.5 95.2 42

294 6.5–9.5 408,932.6 4,003,851.9 50 28 22 17.5 94 4 96.8 49

295 6.5–9.5 408,515.58 4,002,310.93 45 28 17 25.9 33 4.5 87.9 38

296 6.5–9.5 409,939 4,003,009.6 43 28 15 26.4 55 4.5 93 33

297 6.5–9.5 407,821.05 4,002,866.56 0 0 0 19.7 52 3.5 25.8 100

298 6.5–9.5 407,298.5 4,004,255.62 41 23 18 15.2 119 4.5 94.7 40

299 6.5–9.5 405,937 4,003,224 46 24 22 19.3 93 4.5 63.7 38

300 6.5–9.5 407,774.75 4,005,380.1 43 21 22 20.5 130 6 94.2 89
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301 6.5–9.5 407,844.33 4,005,870.11 43 23 20 19.8 49 3.5 98.9 38

302 6.5–9.5 406,914.85 4,005,671.15 48 23 25 18.7 99 4.5 94.8 100

303 6.5–9.5 405,242 4,004,431.7 50 26 24 15.5 115 5 96 73

304 6.5–9.5 405,684.54 4,005,717.45 48 23 25 18.7 99 5 94.8 100

305 6.5–9.5 408,025.12 3,999,907.5 45 25 20 22.8 105 4 92.6 91

306 6.5–9.5 406,400.4 4,001,124 48 25 23 22.1 97 5 69.7 100
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Abstract: The shear strength parameters of conglomerate soils are crucial to the stability analysis
of foundation support when excavating and supporting ultra-deep foundation pits in the highland
alluvial lacustrine layer. The difference in water content of conglomerate soils in different regions will
directly affect the values of shear strength parameters. At the same time, more research on the shear
strength of conglomerate soils under different water contents is required. In this study, a series of
large-scale direct shear tests were carried out on the round gravel soil in the plateau alluvial-lacustrine
deposit, and the round gravel soil’s shear strength curves under natural and saturated conditions
and water content were obtained. The influence of different water content on the shear strength
characteristics of the round gravel soil was discussed, and the shear strength parameters of the
round gravel soil with different water content were used in the numerical simulation of ultra-deep
foundation pit excavation and support. The stress and deformation laws of the foundation pit support
were analyzed. The results show that the peak strength of the round gravel soil in the natural water
content state appears between 30% and 45% of the shear displacement, while the peak strength in the
saturated water content state appears around 45–55% of the shear displacement. The shear strength
tends to be stable or slightly weakened with the increase of the shear displacement. The angle of
internal friction and cohesion of round gravel soil in the natural water content state is greater than
those in the saturated water content state. The simulation of the foundation excavation support
shows that the shear strength parameter of the round gravel soil influences the force deformation
of the support structure. The higher the water content of the round gravel soil, the more the shear
strength parameter affects the soil displacement. The research results can provide some reference for
optimizing project design parameters.

Keywords: plateau alluvial-lacustrine deposits; round gravelly soil; large scale direct shear test; shear
strength parameters; numerical simulation

1. Introduction

Plateau alluvial strata are formed by the joint action of river alluvium and lake marsh
sedimentation. Generally, they consist of rounded gravels with high foundation strength
and are often used for urban construction sites [1–5]. Influenced by geological activities on
the Yunnan-Guizhou Plateau, rounded gravel strata are widely distributed in Kunming [6]
and buried at a shallow depth. Influenced by the formation conditions, time, and geo-
graphical area of round gravel soil, the maximum particle size of round gravel soil reaches
60–80 mm, and the poor grading, strong permeability, and interparticle clay composition
lead to the strength of round gravel soil are larger than general soil [7–12]. To a certain
extent, these characteristics make round gravel soils have strong engineering applications,
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leading scholars at home and abroad to focus more on engineering applications or theoret-
ical studies. In contrast, research on shear strength parameters of round gravel soils has
yet to receive more attention [13–15]. With the urban construction of Kunming city, more
and more projects are built on round gravel strata. The shear strength and stress-strain
characteristics of round gravel soils usually need to be considered in the design calculation
of foundation pits. At the same time, there are few relevant studies on round gravel soils,
resulting in most foundation pits in the design calculation can only be taken according
to empirical values, which seriously affects the stability of foundation pit construction.
Especially nowadays, foundation pit projects are developing in the direction of super large
and deep. During design calculation, a slight deviation of soil shear strength parameters
greatly impacts foundation pits’ stability. According to statistics, the annual failure rate of
foundation pits in China reaches more than 10–15%, which causes huge economic losses to
China and threatens the safety of residents and urban construction, mainly due to the lack
of experience in design and construction. Therefore, it is necessary to conduct a systematic
study on the shear strength of round gravel soil parameters for systematic research to avoid
the experience of errors leading to safety accidents in foundation pit construction.

With the continuous in-depth research on the physical and mechanical properties of
coarse-grained soils by scholars at home and abroad, round gravel soils have also been
widely studied. In terms of experimental shear properties of round gravel soil, Tang
Kaishun et al. [16] conducted a large triaxial compression test on round gravel soil in the
Nanning area under different compaction conditions and analyzed and compared the effect
of compaction on shear strength parameters of round gravel soil under various levels of
surrounding pressure. The results showed that the shear strength of round gravel soil was
positively correlated with compaction and significantly improved compared with empirical
engineering values. Ma Shaokun et al. [17,18] conducted a large drained dynamic triaxial
test on round gravel soil in a saturated state. They analyzed the variation of cumulative
strain, stress-strain hysteresis loop, and pore pressure of the round gravel soil under
different relative compactness, dynamic stress amplitude, and the number of vibrations.
Stark et al. [19] investigated the effect of particle shape on the internal friction angle of
beach gravel soils by direct shear experiments on beach gravels. The results showed that
elliptical gravels have a greater effect on the internal friction angle of beach gravel soils, and
increasing the content of elliptical particles in gravel soils can significantly increase their
internal friction angle magnitude. Enomoto et al. [20] investigated the strength, deformation
properties, and small strain properties of undisturbed well-graded gravel soils by a series
of medium and large triaxial and unconfined compression tests. The results showed that
the shear modulus might be large when the small strain properties of gravel soils are
determined by the dynamic method in the laboratory. The dynamic method converges to
the static method test results when the wavelength is significantly larger than the mean
diameter. Secondly, when gravel soil’s dry density and homogeneity coefficient exceeded
certain values, the dynamic and static shear modulus values of in-situ and remodeled soils
increased with the increase of dry density. For the study of the intrinsic model of round
gravel soils. Chen Chen et al. [21] proposed a modified Duncan-Chang intrinsic model for
round gravel soil based on the unified disturbance degree function based on the disturbance
state theory with the relative density Dr as the disturbance parameter. Saberi et al. [22]
established a new elastic-plastic intrinsic model for gravel soil based on double surface
plasticity and critical state geomechanics. To analyze the piling characteristics of round
gravel, Liu Gang et al. [23] proposed a construction method of particle ellipsoid model for
round gravel, established an ellipsoid model database, and derived the piling characteristics
of round gravel through numerical piling tests and comparative analysis with the results of
cylinder piling tests. As for the research on the engineering application of round gravel
soil, Ou Xiaoduo et al. [24] used ABAQUS to simulate the deep foundation excavation of
round gravel-mudstone strata and analyze the effect of deep foundation excavation on
the double-row pile support structure. Ni Xiaorong et al. [25] studied the applicability of
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long-spiral bored piles in round gravel strata. They proposed a new construction process
of secondary pressurized piles for construction problems.

In summary, scholars at home and abroad have studied the strength, deformation, and
other properties of round gravel soil influencing factors and have achieved certain research
results. However, most research focuses on the engineering application of round gravel
formation. Little attention is paid to the influence of water on the mechanical properties
of round gravel soil, and the research results need to be more comprehensive. Due to the
special geographical location and formation conditions of alluvial plateau strata, the shear
strength characteristics of round gravel soil in the formation are different from those in
other regions. They are greatly affected by the change in moisture content. At the same
time, scholars at home and abroad have paid less attention to the physical and mechanical
characteristics of round gravel soil affected by moisture content. Therefore, based on the
foundation pit project of the 14th water purification plant in Kunming, this study carried
out a large-scale direct shear experiment on the round gravel soil of the alluvial plateau
layer, obtained the shear strength parameters of round gravel, and analyzed the change law
of the shear resistance characteristics of round gravel soil under different moisture cuts.

2. Experimental Study of Shear Property Parameters of Round Gravel Soil
2.1. Testing Instruments

The experiment uses a DHJ-30 type coarse-grained soil stacked ring shear experimental
machine, see Figure 1. the experimental machine adopts the plate frame structure with a
host size of 2000 × 800 × 1400 mm. The equipment shear box is square outside and round
inside, the size of Φ300 × 300 mm, the maximum axial pressure is 300 kN (normal stress
4.3 MPa), the maximum horizontal thrust is 300 kN, force sensor resolution is 0.1 kN. It can
realize stress and strain type shear, in which the shear moving speed is 0.001~5 mm/min.
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Figure 1. DHJ-30 indoor large direct shear experiment machine.

2.2. Experimental Soil Samples
2.2.1. Round Gravel Soil Particle Size Composition

The experimental soil sample was selected from the round gravel soil of the foundation
pit project of fourteen water quality purification plants in Panlong District, Kunming, at
a depth of 14 m. The lithology of the stratum is alluvial round gravel, dark gray, blue,
saturated, slightly dense mainly, and locally medium dense, and the photo of the sampling
point is shown in Figure 2.

351



Sustainability 2023, 15, 3954

Sustainability 2023, 15, x FOR PEER REVIEW 4 of 24 
 

 

saturated, slightly dense mainly, and locally medium dense, and the photo of the sam-
pling point is shown in Figure 2. 

  
(a) (b) 

Figure 2. Photos of round gravel soil sampling points: (a) project site photos; (b) photo of sampling 
point. 

Due to the disturbance of soil samples during sampling and transportation, the ex-
perimental process needs to reshape the soil samples, the specimen reshaping needs to 
sieve the retrieved soil samples, and the sieving process is executed according to the Ge-
otechnical Experimental Methods Standard (GB/T50123-2019) [26]. According to the ex-
perimental requirements and equipment limitations, the experiments cannot be tested for 
super-size particles with particle sizes greater than 60 mm, so the soil sample gradation 
needs to be processed. Referring to the provisions of the geotechnical experimental 
method standard, when the content of super-size particles is greater than or equal to 5% 
of the total content, the equal mass substitution method is used. When the content of su-
per-size particles is less than 5% of the total content, the rejection method is used. From 
the sieving experiment, it can be seen that the soil material of Kunming’s fourteen water 
purification plants has less than 5% of soil particles larger than 60 mm in size. The rejection 
method is used to scale down the soil gradation on site, and the results of the sieving 
experiment are shown in Table 1. 

Table 1. Experimental soil particle size composition rejection reduction treatment results. 

Gradation Type 
Percentage of Mass Smaller Than a Certain Particle Size/% 

>60 mm 60~40 mm 40~20 mm 20~10 mm 10~5 mm 5~2 mm <2 mm 
Prototype gradation 0.48 7.39 25.61 21.62 13.73 11.01 20.16 

Scaled gradation  7.43 25.73 21.72 13.80 11.06 20.26 

Based on the results of particle gradation, the mass percentage of round gravel soil 
under different particle size grades is calculated, and the particle size grading curve is 
drawn. In this study, the cumulative curve of the particle size distribution of round grav-
elly soil after screening scale treatment is shown in Figure 3. It can be seen from Figure 3 
that there are particles of all sizes of round gravelly soil in the 14th water purification 
plant in Kunming, indicating that there are fine particles in the coarse particles of Kun-
ming No. 14 Water Purification Plant for filling. 

Figure 2. Photos of round gravel soil sampling points: (a) project site photos; (b) photo of
sampling point.

Due to the disturbance of soil samples during sampling and transportation, the experi-
mental process needs to reshape the soil samples, the specimen reshaping needs to sieve the
retrieved soil samples, and the sieving process is executed according to the Geotechnical
Experimental Methods Standard (GB/T50123-2019) [26]. According to the experimental
requirements and equipment limitations, the experiments cannot be tested for super-size
particles with particle sizes greater than 60 mm, so the soil sample gradation needs to be
processed. Referring to the provisions of the geotechnical experimental method standard,
when the content of super-size particles is greater than or equal to 5% of the total content,
the equal mass substitution method is used. When the content of super-size particles is less
than 5% of the total content, the rejection method is used. From the sieving experiment,
it can be seen that the soil material of Kunming’s fourteen water purification plants has
less than 5% of soil particles larger than 60 mm in size. The rejection method is used to
scale down the soil gradation on site, and the results of the sieving experiment are shown
in Table 1.

Table 1. Experimental soil particle size composition rejection reduction treatment results.

Gradation Type Percentage of Mass Smaller Than a Certain Particle Size/%
>60 mm 60~40 mm 40~20 mm 20~10 mm 10~5 mm 5~2 mm <2 mm

Prototype gradation 0.48 7.39 25.61 21.62 13.73 11.01 20.16
Scaled gradation 7.43 25.73 21.72 13.80 11.06 20.26

Based on the results of particle gradation, the mass percentage of round gravel soil
under different particle size grades is calculated, and the particle size grading curve is
drawn. In this study, the cumulative curve of the particle size distribution of round gravelly
soil after screening scale treatment is shown in Figure 3. It can be seen from Figure 3 that
there are particles of all sizes of round gravelly soil in the 14th water purification plant in
Kunming, indicating that there are fine particles in the coarse particles of Kunming No. 14
Water Purification Plant for filling.

2.2.2. Maximum Dry Density Experiment of Round Gravel Soil

Since the density of the experimental soil sample must be strictly controlled during the
remolding process, it is necessary to measure the maximum dry density and the optimum
moisture content of the round gravel soil, and the heavy compaction instrument is used for
the experiment. During the experiment, take out particles larger than 40 mm and get their
percentage P, and then compact the part of round gravel soil smaller than 40 mm. After
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the experiment, the maximum dry density and the best water content obtained from the
experiment need to be corrected (applicable to the content of particles larger than 40 mm
is less than 30%). Calculate the dry density of each point according to the experimental
results, take the dry density as the ordinate and the water content as the abscissa, and draw
the relationship curve between the dry density and the water content. The ordinate and
abscissa of the peak point on the curve are the maximum dry density and the best water
content, respectively. The results are shown in Table 2.
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Table 2. Results of round gravel soil compaction experiments.

Soil Sample
Number

Design Water
Content
ω (%)

Weight of
Cylinder and

Soil (g)

Weight of
Solid Barrel (g)

Combat
Cylinder

Volume (cm3)

Wet Density
ρ (g/cm3)

After
Experiment

Water Content
ω (%)

1 5 7653 3080 2159 2.12 8.5
2 7 7973 3080 2159 2.27 10.9
3 9 7913 3080 2159 2.24 12.2
4 11 7867 3080 2159 2.22 13.3
5 13 7833 3080 2159 2.20 15.1

The dry density and the water content curves are shown in Figure 4, which shows
that the dry density increases with moisture content and then decreases. In contrast, the
maximum dry unit weight and optimal moisture content correspond to the fitted curve’s
top, consistent with the dry density of fine-grained soil [27,28]. Wang et al. [29,30] found
that the dry density of gravelly calcareous sand increased with increasing water content
when the water content was greater than 8%. Although both are coarse-grained soils, the
dry density shows a different variation pattern, mainly due to the fact that when the water
content of gravelly calcareous sand exceeds 8%, the capillary suction between soil particles
is weakened. Particle movement intensifies while particles’ relative fragmentation rate
increases, but it is always smaller than the relative fragmentation rate of dry calcareous
gravelly sand, resulting in the increase of dry density with the increase of water content.
In comparison, the round gravelly soil has already reached the liquefaction limit when
the water content reaches 11%. If the water content increases, the specimen becomes
liquefaction, and the dry density decreases.
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The results show that the optimum moisture content of round gravel soil is 11%, the
maximum dry unit weight is 2.04 g/cm3, and the corresponding wet density is 2.26 g/cm3.
Since the maximum dry density cannot be reached in the field for round gravel soil, in
order to make the experimental specimens closer to the actual engineering site, the wet
density corresponding to 0.87 of the maximum dry density is taken as 1.97 g/cm3 for the
indoor direct round gravel soil with reference to a large amount of relevant literature. The
soil sample was prepared for the indoor direct shear experiment.

2.3. Experimental Methods and Procedures
2.3.1. Experimental Methods

The soil samples collected in the field were air-dried and sieved in the experiment.
The soil material was weighed according to the particle gradation of round gravel soil after
scale reduction and mixed evenly after spraying an appropriate amount of water according
to the natural moisture content of 13.1%, divided into three parts equally, and loaded into
the bogging bucket, enclosing for 24 h. Control the wet density of round gravel soil to
1.97 g/cm3, the sample was loaded and compacted in layers, the inter-layer hair scraping
treatment was required, and strictly control the filling density of the sample. For the direct
shear experiment of round gravel soil under saturated conditions, after filling samples,
water was added to the test chamber to cover the shear box, and the shear test shall be
conducted after 24 h saturation. The experimental loading was strain-controlled, and the
straight shear test was performed by fast shear, as shown in Figure 5.

2.3.2. Experimental Procedure

(1) Loading sample: according to the determined density, gradation, and moisture content
of the filler, weigh the soil material in three parts, mix and blend, and load into the
shear box in layers of compaction, each time loading to 1/3 of the total height of the
shear box, until the control height, after completion, level the surface.

(2) Vertical loading: according to this experiment to determine the load level (low pres-
sure: 100, 200, 300, 400 kPa) using servo motor control loading, stable pressure
after observing the vertical displacement and event change curve until the stability
standard control in the stability standard control at 0.002 mm/min.

(3) Horizontal shear: after the soil sample vertical loading stability, according to the same
strain rate horizontal shear, the shear rate of 1 mm/min, while observing the exper-
imental machine data acquisition system until the specimen damage. Experiment
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until the soil sample horizontal shear displacement reaches 15% of the diameter of the
specimen when the end of shear.

(4) The specimen damage determination: when the horizontal stress table readings fall,
no longer rise or rise very little, the deformation change is large, that has been shear
damage. If none of the above, when the shear deformation reaches 15% of the diameter
of the shear box, stop the shear experiment. After the experiment, clear the soil on the
shear box, analyze the shear surface characteristics, and take pictures.
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Figure 5. Experimental steps for direct shear of round gravel soil: (a) sieving soil; (b) soil mixing and
enclosing; (c) load soil sample into shear box; (d) lift the shear box into the test chamber; (e) install
the sensor and start the experiment; (f) observe the shape of the cutting surface.

2.4. Test Results and Analysis
2.4.1. Shear Stress-Shear Displacement Curve Change Characteristics Analysis

Figure 6 shows the round gravel soil’s fast shear stress-shear displacement curves in
the natural water content state. As can be seen from the figure, the shear stress of the round
gravel soil of the 14th water purification plant of Kunming City increases with the increase
of shear displacement and then tends to be stable or decreases to a smaller extent, with the
peak shear value appearing between 30% and 45% of the shear displacement. It can be seen
that the curve jumps at some points, mainly since the initial density of the sample is small,
and the shrinkage is continuous during shearing, resulting in the increase of compactness
and strength and the increase of shear stress. Due to large interlocking particles of gravel
in the sample, the overturning friction between the large particles of gravel requires a large
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horizontal thrust as the shearing proceeds, resulting in a rapid rise of shear stress. After
the overturning, since the overturning friction resistance between coarse and fine grains is
small, the shear stress decreases slightly while the shear plane is still in a tight state, and
the shear stress continues to increase until reaching the peak. Low load specimen shear
stress with the increase in shear displacement always maintains an increasing trend. With
the increase in vertical load, this trend gradually weakened, combined with the end of
the experiment shear surface. The difference in the distribution of large particles near the
shear plane may cause this. The shear stress is high if there are many large particles in the
shear plane.
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Figure 6. Shear displacement-shear stress curve for natural moisture content of round gravel soil.

In order to investigate the difference between the natural and saturated moisture
content states of the round gravel soil, direct shear experiments were designed to be
conducted under the saturated moisture content conditions of the round gravel soil. The
shear displacement-shear stress relationship curve after shearing is shown in Figure 7.
As seen in Figure 7, the shear stress of saturated gravel soil increases with the shear
displacement and then stabilizes. The shear stress of saturated gravel soil is smaller than
that of the natural state compared with the shear stress-shear displacement curve of the
natural state. The shear surface morphology of round gravel soil specimens in a saturated
water content state has no large particle fragmentation phenomenon. The reason is that the
saturated state specimens with high water content, due to the lubricating effect of water
molecules and the soil, are looser between the soil, resulting in reduced friction between
soil particles; the soil particles directly overturn each other during shear.

2.4.2. Characterization of Shear Strength Parameters

According to the geotechnical test specification, the peak or stable value on the relation-
ship curve between shear stress and horizontal displacement is taken as the shear strength.
When there is no obvious peak, the shear stress at the horizontal displacement reaches
1/15~1/10 specimen diameter and is taken as the shear strength. Therefore, according to
Figures 6 and 7, the peak shear stress is taken as the shear strength during this experiment.
The relationship between the shear strength and the positive stress is linearly fitted by
combining the Moore-Coulomb strength criterion. The results are shown in Figure 8.
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From Figure 8, it can be seen that the cohesion and internal friction angle of the
saturated moisture content of the round gravel soil are smaller than those of the natural
moisture content, which is since the water content of the saturated round gravel soil is
larger than that of the natural state. The lubricating effect of the free water on the surface of
the soil particles is enhanced, resulting in the weakening of the occlusal force between the
particles and the weakening of the frictional effect, and the smaller horizontal thrust can
make the soil produce larger shear displacement. The strength parameters of the round
gravel soil in the natural and saturated state are shown in Table 3 from Figure 8.

Table 3. Shear strength parameters of round gravel soil.

The Angle of Internal Friction ϕ
(◦) Cohesive Forces c (kPa)

Natural moisture content of round gravel soil 31.9 8.56
Saturated moisture content of round gravel soil 30.5 7.37
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3. Engineering Application Study on Shear Strength Parameters of Round Gravel Soil
3.1. Project Overview

The construction project of Kunming 14th, Water Purification Plant is a fully buried
underground sewage treatment plant located in Panlong District, Kunming City, Yunnan
Province, at the northern end of the Kunming Dianchi faulted basin. The shape of the basin
is irregular, but generally it is longer from north to south and narrower from east to west,
which is consistent with the structural trend. The ground elevation is between 1901.89 and
1907.57 m, and the maximum elevation difference is about 5.68 m. As shown in Figure 9, the
stratigraphic structure within the depth of the pit survey mainly consists of the Quaternary
artificial accumulation (Q4ml) layer: artificial fill; the Quaternary alluvium (Q4al + pl)
layer: clay, round gravel, and powder; and the Quaternary marsh phase sediment (Q4h)
layer: peaty soil and organic soil. The gravels are composed of chert, sandstone, and a
small amount of basalt and quartz, rounded to subrounded, with good rounding, and filled
with a small amount of silt and clay between grains, with poor cementation, and locally
produced with thin laminated pebbles. Round gravel 3© has a grain size of 1.0–4.0 cm,
a small amount of 5.0–6.0 cm, and a gravel content of 50–70%. Round gravel 4© has a
grain size of 1.0–4.0 cm, with a small amount of 5.0–6.0 cm and a gravel content of 50–60%.
Round gravel 5© grain size 0.5 cm~4.0 cm, a small amount of 5.0~6.0 cm, gravel content
about 50~60%. Round gravel 6© Grain size 0.5 cm–3.0 cm, a small amount of 4.0–5.0 cm,
gravel content about 50–65%. Round gravel 7© grain size 0.5 cm~2.5 cm, a small amount
of 4.0~6.0 cm, gravel content of about 50~60%. Round gravel 8© grain size 0.5~2.0 cm, a
small amount of 3.0~4.0 cm, gravel content about 55~65%. Regionally, it belongs to the
Jinsha River system and Dianchi basin, and the surface water body is more developed. The
groundwater type in the site is mainly upper stagnant water and diving, and the water
level burial depth is between 0.8 and 1.5 m.
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The pit covers an area of 65,800 m2, and the depth of pit support is 14~33 m. The pit is
divided into four sections, one of which includes the intake pump room and aeration and
sand sink. The modeling object is the intake pump room, with a design depth of 33 m, plan
size of 32 m long and 25 m wide, perimeter length of 114 m, and area of 800 m2. 1200 mm
diaphragm wall + reinforced concrete internal bearing and anchor cable support form is
used for the enclosure structure. The wall height is 43.75 m and 67.5 m, and the width is
5.10~6.00 m, the length of the single reinforcement cage is 44.25 m and 68 m, and the depth
of continuous wall embedded in the subgrade is 22.8~42.1 m according to the geological
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condition. As Figures 10 and 11 show the section of the pit of the inlet pump room and the
internal bearing structure, respectively.
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depth of the diaphragm wall 2 is −8.7 m, the overall Foundation pit excavation to −8.7 m 
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cavation from −8.7 m to start, diaphragm wall 1 to the boundary to retaining wall simula-
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3.2. Pit Modeling and Parameter Selection
3.2.1. Computational Models

The width of the standard section of the foundation pit is 24.5 m, the length is 32.2 m,
and the excavation depth is 29.4 m. the maximum length of the diaphragm wall is 70 m.
The minimum length is 44 m. In order to reduce the influence of the simulated boundary
conditions on the simulation process, the boundary is taken six times the excavation depth
of the foundation pit. The model size is 180 m × 120 m × 120 m. as the construction depth
of the diaphragm wall 2 is −8.7 m, the overall Foundation pit excavation to −8.7 m before
starting into the pump room pit construction. Therefore, in this simulation pit excavation
from −8.7 m to start, diaphragm wall 1 to the boundary to retaining wall simulation,
calculation model as shown in Figure 12, simplification will not have a large impact on the
accuracy of the calculation and the essence of the calculation. The model grid of the 3D
finite element model of the foundation pit is mixed, the total number of cells of the overall
foundation pit model is 77,202, and the total number of nodes is 47,899. The calculation
uses displacement boundary conditions; in the left and right boundaries of the model, the
displacement in the X direction is fixed, and in the front and back boundaries of the model,
the displacement in the Y direction is fixed. Moreover, at the bottom of the model, the
displacement in three directions is fixed. In the modeling process, the soil and diaphragm
wall are simulated by solid units, the internal bearing and lattice columns are simulated
by beam units, and implanted trusses simulate the prestressed anchor cables. Figure 13
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shows the schematic diagram of the calculation model of the foundation support structure
of the intake pump room. As shown in Figure 13, the diaphragm wall, internal bearing,
and anchor cable together form the foundation support system. The three arrangements in
the calculation model are shown in Figure 10.
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Figure 13. The schematic diagram of the calculation model of the foundation support structure of the
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3.2.2. Calculation Parameters Selection

Based on the large direct shear experiment of round gravel soil, the cohesion and
internal friction angles in the natural and saturated states were determined to be 31.9◦,
8.56 kPa, and 30.5◦, 7.37 kPa, respectively, and the other soil parameters referred to in the
modeling calculations were determined based on the Detailed Geotechnical Investigation
Report of the Fourteenth Water Quality Purification Plant of Kunming City and related
literature [31–33]. Since the support structures such as diaphragm walls, anchor cables, and
internal bearings are in an elastic stress state, the soil in the model is an ideal elastoplastic
medium. The soil model widely used in actual engineering is the Mohr-Coulomb elasto-
plastic model. Therefore, the Mohr-Coulomb principal model is used in the calculation.
The mechanical calculation parameters of the soil are shown in Table 4, and the structural
and mechanical parameters are shown in Table 5.
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Table 4. Mechanical parameters of reference soil layers calculated by numerical simulation.

Number Name of Soil Type
Volumetric

Weight
(kN/m3)

Cohesive
Forces (kPa)

The Angle of
Internal

Friction (◦)
Poisson’s Ratio

Elastic
Modulus

(MPa)

1 Miscellaneous fill 18.7 19.5 8.5 0.28 7
2 Peat soil 13.2 20 6 0.40 12.1

3 Round gravelly soil
(natural) 19.4 8.56 31.9 0.46 196.67

4 Round gravelly soil
(saturated) 19.4 7.37 30.5 0.46 196.67

5 Silty clay 19 40 12 0.30 16

Table 5. Structural mechanical calculation parameters.

Components Elastic Modulus
(MPa) Poisson’s Ratio Volumetric Weight

(kN/m3)

Diaphragm wall 31,500 0.3 26
Anchor cable 195,000 0.3 78.5

Wai purlin 31,500 0.3 26
Interior bearing 31,500 0.3 26
Lattice column 31,500 0.3 26

Compaction grouting 25,000 0.3 26
Retaining wall 31,500 0.3 26

3.3. Results Analysis
3.3.1. Analysis of the Evolution Law of Foundation Pit and Surrounding Soil Displacement

In order to better analyze the surface settlement around the inlet pump room pit
and the uplift of the pit bottom, the vertical displacement of the soil body is analyzed by
selecting the short-side midline section of the diaphragm wall. As shown in Figure 14,
the soil body is elevated 15 m below the pit bottom. It gradually decreases downward
in a semicircle with the center of the pit bottom. The equilateral triangle centered on the
lattice column has a small sinkage of 0.5 m from the center to the edge line. The soil in
the middle of the two lattice columns has a large uplift. The maximum uplift reaches
8.68 cm under the saturation shear strength parameter and 7.95 cm under the natural
shear strength parameter. The difference between the two reaches 7.3 mm, indicating that
the shear strength parameter influences the soil’s vertical displacement in excavating the
foundation pit. Therefore, the shear strength parameter of the soil needs to be accurately
determined in the calculation of the foundation pit design. Otherwise, it will easily lead
to the excavation process of the foundation pit and the soil at the bottom of the pit will
bulge too much and make the pit unstable. There is no sinking of the soil in a certain range
around the excavation of the foundation pit, but there is a slight uplift. However, the uplift
value is negligible. The soil outside the 5~15 m range of the diaphragm wall is affected by
the excavation and sinks, and the sinking distance of the surrounding soil is close to the
maximum settlement distance of 1.83 mm under the two parameters. The displacement is
small and will not affect the surrounding buildings and roads.

Since the surface vertical displacement variation pattern under the conditions of two
shear strength parameters of round gravel soil is consistent, the displacement variation
curve under the conditions of natural shear strength parameters of round gravel soil is
selected for analysis in this study, as shown in Figure 15. As can be seen from Figure 15,
the soil at the edge of the foundation pit sinks after the end of excavation step 1. With
the increased distance from the diaphragm wall, the sinking of the surrounding surface
gradually decreases. The surrounding surface starts to rise outside the range of 40 m from
the diaphragm wall. Furthermore, the soil around the foundation pit within 40 m is uplifted
in the second step of excavation to the end. With the increase of excavation depth, the soil
uplift around the foundation pit gradually increases. From the end of excavation step 2 to
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the end of the excavation, the uplift of the surrounding surface soil gradually decreases
with the increase of distance from the diaphragm wall, and the decrease rate gradually
increases with the increase of excavation depth. The main reason for the bulging of the soil
around the foundation pit is that the foundation pit is excavated deeper, and the self-weight
of the original soil is unloaded rapidly, so the bulging of the foundation is larger and drives
the bulging of the surrounding surface soil.
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(a) diaphragm wall 2 short side; (b) diaphragm wall 1 side.

Figures 16 and 17 show the displacement clouds of the surface and the soil at the
bottom of the pit in X and Y directions around the end of the foundation pit excavation
under natural and saturated shear strength parameters of round gravel soil, respectively.
From Figure 16, it can be seen that after the end of the pit excavation, the soil’s horizontal
displacement at the pit bottom is locally larger, which is located on both sides of the lattice
column, respectively. The maximum horizontal displacement is 15.7 mm, mainly due
to the combined effect of the lattice column and excavation unloading. Affected by the
reinforcement area of the pit bottom, the horizontal displacement of the pit bottom soil
is slightly larger at the edge of the long side but smaller than the two sides of the lattice
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column. The horizontal displacement of the soil body under the saturated shear strength
parameter of round gravel soil is slightly larger than that under natural conditions; the
maximum is 17.7 mm.
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As shown in Figure 17, the maximum horizontal displacement of the subsoil of the
foundation pit is located in the middle of the lattice column, and the horizontal displace-
ment in the Y direction is slightly smaller than that in the X direction, which is mainly
affected by the size and shape of the foundation pit. The horizontal displacement of the
surrounding ground surface is very small and will not affect the surrounding buildings.

The horizontal displacement change curve under the natural shear strength parameter
of round gravel soil is selected for analysis in this study, as shown in Figure 18. The mid-
point of the foundation pit edge on the short side of diaphragm wall 1 and diaphragm wall
2 is taken as the monitoring point. As seen from the figure, during the first two excavation
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steps, the soil body on the side of diaphragm wall 1 is displaced into the pit. The horizontal
displacement gradually decreases with the increase of burial depth. As the excavation
progresses, the horizontal displacement gradually changes to the displacement outside the
pit. Since the pit excavation unloads, the lower soil body extrudes the diaphragm wall to
the pit so that the diaphragm wall above the initial excavation surface shows a trend of
outward displacement, and the soil body is then displaced. Diaphragm wall 2 is displaced
to the foundation pit’s inner side, with the burial depth increasing gradually; the curve at
−25 m appears to turn, mainly by the influence of stratigraphic changes.
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3.3.2. Analysis of Displacement Variation Law of Diaphragm Wall

The excavation process of the foundation pit will change the equilibrium state of the
original soil, and the geotechnical body tends to an unstable state from the stable state in
its natural state. As the main support structure, the underground diaphragm bears the
role of water interception, seepage control, load bearing, and earth retaining and has a
significant impact on maintaining the stability of the foundation pit. Excessive deformation
of the diaphragm wall may cause wall damage or pit collapse. Therefore, the diaphragm
wall displacement must be controlled within the specification requirements. As shown
in Figures 19 and 20, the horizontal displacements of the diaphragm wall in the X and Y
directions are shown. It can be seen from Figure 19 that when the round gravel stratum
is in a state of natural and saturated moisture content, its shear strength parameters have
little influence on the horizontal displacement of the diaphragm wall during the excavation
of the foundation pit. Under the two-parameter conditions, the horizontal displacement of
the diaphragm wall in the X direction is larger in the area below −29.4 m on the long side
of the diaphragm wall. Under saturated conditions, the maximum horizontal displacement
of the diaphragm wall in the X direction is 3.92 mm, which is far less than the standard
warning value.

As shown in Figure 20, the horizontal displacement of the diaphragm wall along the
Y-direction is larger in the range of the third inner support to the fifth inner support on the
short side and the area below the pit bottom, with a mushroom-shaped distribution pattern.
The maximum horizontal displacement in the Y-direction under the two parameters is
0.1 mm different, and it is also larger under the saturated condition, with a maximum
displacement of 3.48 mm. it can be seen that the horizontal displacement under the two
round gravel soil. The horizontal displacement under the shear strength parameter is
close, and the displacement values are small and within the specification warning range,
which indicates that the diaphragm wall better supports the foundation pit of the intake
pump room.
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Select the midpoint of four diaphragm walls for analysis. Figure 21 shows the hori-
zontal displacement curve of the diaphragm wall in X and Y under natural shear strength
parameters of round gravel soil. As shown in Figure 21a, during the foundation pit ex-
cavation, the horizontal displacement of the long sides of diaphragm wall 2 at different
burial depths is symmetrically distributed. Since the excavation depth of the first layer is
shallow in the simulation process, the impact on the deep diaphragm wall is small, and
the displacement decreases with the increase of the burial depth. During the excavation
of the second layer to the fifth layer, it can be seen that the horizontal displacement of the
diaphragm wall at the buried depth of 22.5 m has a big change trend. After excavating
the second layer, the horizontal displacement of the diaphragm wall suddenly decreases
from the buried depth of 22.5 m to the bottom of the pit. In contrast, the excavation of the
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third layer to the fifth layer continues to maintain an increasing or stable change trend,
mainly due to each layer’s excavation depth and the stratum’s influence. From Figure 21b,
it can be seen that the horizontal displacement of the top of wall 1 of the diaphragm wall
gradually moves out of the pit during the excavation process, mainly due to the effect of
the anchor cable in tension and the change of soil pressure behind the wall. It can be seen
that with the increase of excavation depth, the horizontal displacement of the diaphragm
wall gradually increases.
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Figure 21. Horizontal displacement variation curve of diaphragm wall: (a) horizontal displacement
in X direction; (b) horizontal displacement in Y direction.

Figure 22 shows the vertical displacement cloud of the diaphragm wall. As can be
seen from the figure, the closer to the short side of the diaphragm wall 2, the greater the
vertical displacement. The maximum vertical displacement is located in the wall near the
fifth interior bearing on the short side of the diaphragm wall 2, with a maximum vertical
displacement of 10 mm. It is larger under natural moisture content and shear strength
parameter of round gravel soil, but the difference is only 0.1 mm. The top of the diaphragm
wall in the foundation pit has a vertical displacement monitoring alarm value of 10–20 mm.
However, the results show that the displacement of the top of the wall does not reach the
alarm value, which shows that the diaphragm wall is stable.

3.3.3. Analysis of Displacement Variation Law of Diaphragm Wall

The diaphragm wall is a structure used to block the soil’s lateral pressure on the pit’s
side wall, maintain the pit wall’s stability, and ensure the shape of the pit excavation. Its
stability is related to the smooth construction of the pit project and the safety of nearby
buildings. If the pile structure is damaged or overstressed, it will affect the completion of
the pit project and even threaten the safety of the engineering staff. Figures 23 and 24 show
the maximum and minimum principal stresses of the diaphragm wall under the above two
parameters, respectively. As can be seen from Figure 23, the minimum principal stresses
in the diaphragm wall are mainly tensile stresses, and stress concentrations occur at the
corners of the diaphragm wall between the third and fifth interior bearing. It can be seen
that the inner side of the diaphragm wall is subject to compressive stress, the outer side of
the wall is subject to tensile stress, and the tensile stress outside the wall is three times the
compressive stress inside the wall. The maximum value of the minimum principal stress is
3.48 MPa. As shown in Figure 24, the maximum principal stress in the diaphragm wall is
mainly compressive. The maximum compressive stress is located at the corner of two sides
of the diaphragm wall between the third and fifth interior bearing. The compressive stress
here is relatively concentrated, with a maximum of 6.1 MPa, which is 0.2 MPa higher than
the calculated value under the natural shear strength parameter of round gravel soil. The
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main stress of the diaphragm wall has an obvious boundary at a depth of the foundation
pit bottom, mainly since the excavation of the foundation pit leads to the redistribution of
the soil stress behind the wall. However, the stress is small, indicating that the diaphragm
wall has a good supporting effect and that the foundation pit is stable.
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3.3.4. Analysis of the Variation Law of Interior Bearing Axial Force

As one of the main support structures of the intake pump room pit, the internal
support bears the role of dispersing the force deformation of the underground diaphragm
wall, and its force deformation significantly impacts the pit’s stability. Figure 25 shows
the axial force diagram of the interior bearing after the end of the pit excavation under the
above two shear strength parameters. Figure 25 shows that the axial force of the diagonal
brace in the fourth interior bearing is larger due to the large horizontal displacement of the
diaphragm wall at that place after the excavation of the foundation pit is finished. As the
excavation depth gradually increased, the maximum value of the interior bearing axial force
gradually moved down to the fourth interior bearing since the horizontal displacement
of the diaphragm wall gradually moved down to the fourth interior bearing. Under the
natural shear strength parameter condition, the maximum axial force of the interior bearing
from the first excavation to the bottom of the pit is 0.15 MN, 0.59 MN, 1.66 MN, 2.74 MN,
6.3 MN. The saturated shear strength parameters of round gravel soils under the maximum
axial force of interior bearing are 0.15 MN, 0.65 MN, 1.85 MN, 2.95 MN, 6.53 MN. It can
be seen that the maximum axial force of interior bearing axial force of the first four layers
of soil excavation is small. The axial force of the interior bearing after excavating the last
layer changes more. However, it is within the specification design range, indicating that
the interior bearing has a good effect.

3.3.5. Anchor Cable Axial Force Variation Characteristics Analysis

The anchor cable can transfer the earth pressure on the support pile to the deep soil
through the anchor cable’s axial force, so the analysis of the axial force of the anchor cable
is important for analyzing the foundation deformation. Figure 26 shows the axial force of
prestressed anchor cable under natural and saturated shear strength parameters of round
gravel soil. The maximum value of the anchor force is 262.9 kN in the free section of
the second row of anchor ropes under saturated conditions and 261.9 kN under natural
conditions, and the anchor force in the anchor section is gradually dispersed to the soil
around the anchor end by the force transfer of mortar. Hence, the anchor force in the anchor
section is smaller. Under the natural shear strength parameter condition, the maximum
change of anchor cable axial force during excavation is 257 kN, 258 kN, 259 kN, 260 kN,
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262 kN, and under the condition of saturation, the shear strength parameter is 258 kN,
259 kN, 260 kN, 261 kN, 263 kN. The reason is that this simulation mainly starts from
the top of the wall of diaphragm wall 2, and the prestressed anchor cable only exists
in diaphragm wall 1, which is higher than the simulation depth of the pit. Hence, the
excavation simulation has little effect on the anchor cable force.
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4. Conclusions

In this paper, based on a comprehensive analysis of the site geological conditions, the
shear strength characteristics of round gravel soils and their parameter variation laws were
analyzed by reshaping the soil samples retrieved from the site and conducting large-scale
direct shear experiments on round gravel soils with natural and saturated moisture content.
The research results were applied to the numerical simulation of foundation excavation to
obtain the following conclusions.

(1) The shear strength characteristics of plateau alluvial-lacustrine alluvial round gravel
soil under different water content conditions are studied and analyzed through large-
scale direct shear tests. Under different water content conditions, the variation law
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of shear stress-shear displacement of round gravel soil is slightly different. At low
water content, with the increase of shear displacement, the particles of round gravel
soil are sheared, and the shear surface contacts closely until shear failure, and the soil
strength slightly increase. However, the shear resistance curve of round gravel soil
with high water content gradually weakened with the increasing confining pressure.

(2) Large-scale direct shear experiments of round gravel soil show that the cohesion of
round gravel soil in the natural state is 8.56 kPa, and the angle of internal friction is
31.9◦. In the saturated state, the cohesion of round gravel soil is 7.37 kPa, and the
angle of internal friction is 30.5◦. With the increased water content, the round gravel
soil’s cohesive force and internal friction angle decrease significantly.

(3) The numerical simulation results of foundation pit excavation show that after the
completion of construction, the pit bottom is subject to the joint influence of the
reinforcement area and lattice columns. There is a large uplift, and the surrounding
surface soil also shows a bulge within a certain range. Hence, further strengthening
the monitoring and reinforcement of the surrounding structures is necessary. The
stress deformation of the supporting structure is small, far less than the design value.
With the increase of the conglomerate soil’s internal friction angle and cohesion, the
foundation support and soil deformation decreased, indicating that increasing the
shear strength parameter of the conglomerate soil can effectively reduce the founda-
tion deformation. The construction can be carried out by selecting conglomerate strata
with different water content in practical engineering to achieve, reduce the project
cost and improve the project economy.
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Abstract: In Suichang gold mine, the altered rock type gold deposits were cut by faults and joint
fissures, leading to complex resource endowment characteristics, large changes in occurrence, a
serious complex of ore vein branches and great difficulty in mining. In order to select a suitable mining
method for such a difficult and complicated orebody, a multi-factor and multi-index comprehensive
evaluation system involving benefits, costs, safety and other aspects was constructed by using the
Pythagorean fuzzy sets and TOPSIS method. Taking Suichang gold mine as an example, the weighted
aggregation evaluation matrix was constructed, the closeness index of the four mining schemes
were 0.8436, 0.3370, 0.4296 and 0.4334, and the mechanized upward horizontal layering method
was determined as the optimal scheme. This method overcame the fuzzy comparison of economic
and technical indicators directly, but converted them into corresponding fuzzy numbers to obtain
accurate closeness index for optimization. The application of this method not only ensured a safe,
efficient and environment-friendly mining effect, but also provided a reference for the optimization
of the mining scheme of the severely branched composite orebody.

Keywords: mining method optimization; difficult-to-mine complicated orebody; multiple attribute
decision making; Pythagorean fuzzy sets and TOPSIS method; mechanized upward horizontal
layering method

1. Introduction

In the design process of new mines and reconstruction and upgrading of mines,
the design of mining methods is an important part and is the core of the whole design
work, which directly determines the subsequent technical personnel allocation, production
organization management and industrial supporting facilities [1–3]. Choosing the most
appropriate mining method to mine the deposit is very important to the safety, economy
and environmental protection of mining operations and affects the benefits and long-term
development of mining companies [4].

For a continuous orebody with regular shape, the most appropriate mining method
can be selected by comparing the advantages and disadvantages and the economic and
technical indicators. However, taking the difficult-to-mine complicated orebody (DCO) (see
Figure 1) as example, it was greatly affected by faults and joint fissures, leading to obvious
branching and compounding phenomenon. Since it is difficult to determine the optimal
plan through traditional methods for DCO, more reliance is placed on the experience
of design decision-makers and limited data, through the comprehensive comparison of
various indicators. This is typical of Multiple Attribute Decision Making (MADM).
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cal hierarchy process method, the most suitable method selected for Iran’s Qapliq salt 
mine. Yavuz [17] used the AHP method and fuzzy multiple attribute decision-making 
method, respectively, in a lignite mine located in Istanbul, carried out sensitivity analysis 
of the two methods and concluded that the Room and pillar method with filling is the 
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committed to developing a mobile application, integrating several decision-making meth-
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Multiple Attribute Decision Making refers to the decision making problem of selecting
the best alternative or ranking under a condition of considering multiple indicators [5].
In order to solve such problems, researchers have developed a variety of multi criteria
decision-making methods; typical representative methods include the Analytic Hierarchy
Process [6], Entropy method [7], CRITIC method [8], TOPSIS method [9], GST (Grey Target
Decision) method [10], DEA method [11], VIKOR method [12], Fuzzy comprehensive
evaluation method [13], etc.

However, with increase in the complexity and scientific requirements of evaluation,
a single decision-making method cannot guarantee optimal or accurate results [14,15].
Under this background, researchers have explored and developed mixed decision-making
methods, for example, mixtures of Analytic Hierarchy Process and fuzzy, Entropy weight
method and TOPSIS, Analytic Hierarchy Process, fuzzy set and VIKOR, fuzzy set and
TOPSIS, etc.

In the field of mining engineering, many experts rely on these decision-making meth-
ods to optimize mining methods, for example, Karimnia [16] proposed the fuzzy analytical
hierarchy process method, the most suitable method selected for Iran’s Qapliq salt mine.
Yavuz [17] used the AHP method and fuzzy multiple attribute decision-making method,
respectively, in a lignite mine located in Istanbul, carried out sensitivity analysis of the
two methods and concluded that the Room and pillar method with filling is the most
appropriate method. Qinqiang Guo [18] used the mixed method of AHP to determine the
index weight and TOPSIS to rank, selecting the most suitable mining method from the
Soft Broken Complex Orebody, and achieved very good results, Iphar [19] is committed to
developing a mobile application, integrating several decision-making methods, and the
optimal mining method can be obtained by inputting the original parameters for reference
by engineering researchers.

However, in view of the complexity of mining method selection, simple expert scoring
cannot fully reflect the fuzzy information, and the cognitive differences between different
experts are easy to cause distortion of results. In terms of sorting, different ranging methods
may have different results. In this case, the development of fuzzy set theory provides
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a good idea for solving such problems [20]. Bajić [21] transformed the indicators into
triangular fuzzy numbers, constructed a fuzzy decision matrix and a fuzzy performance
matrix, used to select the optimal alternative, and verified this through sensitivity analysis.
Memori [22] uses the TOPSIS method based on intuitionistic fuzzy sets, providing an
accurate sustainable ranking of suppliers and a relevant solution for sustainable sourcing
decisions that is validated through a real-world case study. Narayanamoorthy [23] selected
the best scheme for the selection of industrial robots by using a combination of Interval-
valued intuitionistic hesitant fuzzy entropy and VIKOR.

Pythagorean fuzzy sets (PFS) generalized by Yager [24] is a new method to deal with
fuzzy problems. Its main contribution is to go beyond the limit that the sum of membership
and no membership of fuzzy sets is less than 1 (see Figure 2). Compared with other fuzzy
sets such as intuitionistic fuzzy sets, it can more fully and accurately represent uncertain
information [25]. In view of this, this paper introduces a TOPSIS method based on PFS [26].
The framework of this PFS–TOPSIS method is illustrated (see Figure 3), which is used for
mining method decision-making for the Suichang Gold Mine in Zhejiang Province, China,
and has achieved good results in actual production.
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2. Methods Introduction
2.1. Introduction of PFS Method

Definition 1. Let X be a universe of discourse [27,28]. The PFS ξ on X is given by Equation (1).

ξ =
{[

x, µξ(x), νξ(x)
∣∣xεX

]}
(1)

where the functions µξ(x):X→ [0, 1] and νξ(x): X→ [0, 1] define the degree of membership and
the degree of non-membership of the element x∈X to the set ξ, respectively, with the condition

that 0 ≤ (µξ(x))2 + (νξ(x))2 ≤ 1,∀x∈X. πξ(x) =
√

1−
(
µξ(x)

)2 −
(
νξ(x)

)2 is called the degree of
indeterminacy of element x∈X. For convenience, they are called (µξ(x), νξ(x)) and a Pythagorean
fuzzy number (PFN) denoted by ξ = (µξ,νξ,) [29].

Definition 2. For the collection ξi = (µξ,νξ,) (i = 1,2, . . . . . . n) of the of PFNs with the weight

vector w = (w1 w2 . . . . . . wn) of ξi(i = 1,2, . . . . . . n) such that
n
∑

i=1
wi = 1, the Pythagorean

fuzzy weighted averaging (PFWA) operator and the Pythagorean fuzzy weighted geometric (PFWG)
operator can be defined as in Equations (2) and (3), respectively [30].

PFWAw(ξ1, ξ2, · · · , ξn) = w1ξ1 ⊕ w2ξ2 ⊕ · · · ⊕ wnξn

=

(√
1−

n
∏
i=1

(
1−

(
µξi

)2
)wi

,
n
∏
i=1

(
νξi

)wi

)
,

(2)

PFWGw(ξ1, ξ2, · · · , ξn) = w1ξ1 ⊗ w2ξ2 ⊗ · · · ⊗ wnξn

=

(
n
∏
i=1

(
µξi

)wi ,

√
1−

n
∏
i=1

(
1−

(
υξi

)2
)wi

)
.

(3)

Definition 3. Let A and B be PFSs of X = {x1, x2, . . . xn} [27]. Then, the sum of A and B is defined
as Equation (4).

A⊕ B = {〈x,
√
(µA(x))2 + (µB(x))2 − (µA(x))2(µB(x))2,

νA(x)νB(x)〉 | x ∈ X},
(4)

The product of A and B is defined as Equation (5).

A⊗ B = { 〈x, µA(x)µB(x),√
(νA(x))2 + (νB(x))2 − (νA(x))2(νB(x))2〉 | x ∈ X}. (5)

2.2. Introduction of TOPSIS Method

The TOPSIS method was developed by Hwang [31], first put forward in 1981, and is
a method of ranking according to the closeness of a limited number of evaluation objects
to the ideal target. After years of development, dozens of derivative methods have been
created by combining various mathematical theories, and have been widely used in various
fields such as economic, management, engineering, medicine, etc. Its core ideas and steps
are as follows [32]:

(1) Quantification of evaluation indicators, converting natural language into numbers,
and ensuring a certain distinction between good and bad, D is the evaluation objective
and X is the evaluation index. The characteristic matrix is defined as Equation (6).
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D =




x11 · · · x1j · · · x1n
...

...
...

xi1 · · · xij . . . xin
...

...
...

xm1 . . . xmj . . . xmn



=




D1(x1)
...

Di
(
xj
)

...
Dm(xn)



=
[
X1(x1), . . . Xj(xi), . . . , Xn(xm)

]
. (6)

(2) Normalize the characteristic matrix, obtain the normalized vector rij and establish the
normalized matrix about the normalized vector. This is defined as Equation (7).

rij =
xij√
m
Σ

i=1
x2

ij

, i = 1, 2, . . . , m, j = 1, 2, . . . , n. (7)

(3) Normalize the value vij by calculating the weight; weight normalization matrix is
defined as Equation (8).

νij = wjrij, i = 1, 2, . . . , m, j = 1, 2, . . . , n. (8)

(4) Determine ideal solution A+ and anti-ideal solution A−; in the ideal solution and
anti-ideal solution, J1 is the optimal value of profitability index set expressed on the i
index; J2 is the worst value of the i index of the loss index set. A+ and A− are defined
as Equations (9) and (10).

A+ =
(
maxiνij

∣∣j ∈ J1
)
,
(
miniνij

∣∣j ∈ J1
)
,
∣∣∣i = 1, 2, . . . , m = ν+1 , ν+2 , . . . , ν+j , . . . , ν+n . (9)

A− =
(
miniνij

∣∣j ∈ J1
)
,
(
maxiνij

∣∣j ∈ J1
)
,
∣∣∣i = 1, 2, . . . , m = ν−1 , ν−2 , . . . , ν−j , . . . , ν−n . (10)

(5) Calculate the distance S+ from the target to the ideal solution A+ and the distance S−

from the target to the ideal solution A−. The distances are defined as Equation (11).

S+ =

√
n
Σ

j=1

(
Vij − ν+j

)2
, S− =

√
n
Σ

j=1

(
Vij − ν−j

)2
, i = 1, 2, . . . , m. (11)

(6) Calculate the closeness index of the ideal solution. It is defined as Equation (12).

C+
i =

S−i(
S+

i + S−i
) , i = 1, 2, . . . , m. (12)

(7) Ranking according to the size of the ideal pasting progress.

2.3. Distance Measures and Similarity Measures for PFS

Distance measure for PFSs is a term that describes the difference between PFS. Let A
and B be PFSs of X = {x1, x2, . . . xn} with three parameters µ(x), ν(x) and π(x). Here, some
distance measures (DM) are presented for PFSs.

The normalized Hamming distance is defined as Equation (13).

dPFS(A, B)nH =
1

2n

n

∑
i=1

(
| µA

2(xi)− µB
2(xi) | + | νA

2(xi)− νB
2(xi) | + | πA

2(xi)− πB
2(xi) |

)
(13)

The normalized Euclidean distance is defined as Equation (14).

dPFS(A, B)nE =

√
1

2n

n

∑
i=1

((µA
2(xi)− µB2(xi))

2 + (νA
2(xi)− νB2(xi))

2 + (πA
2(xi)− πB2(xi))

2) (14)
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The normalized Hausdorff distance is defined as Equation (15).

dPFS(A, B)nHd =
1
n

n

∑
i=1

max
[
| µA

2(xi)− µB
2(xi) |, | νA

2(xi)− νB
2(xi) |

]
(15)

For convenience, the above is called formula d1, d2 and d3, and d4 is defined as
Equation (16).

d4(A, B) =
1
n

n

∑
i=1

| µA
2(xi)− µB

2(xi) | + | νA
2(xi)− νB

2(xi) |
µA

2(xi) + µB2(xi) + νA
2(xi) + νB2(xi)

(16)

Like measure distance, similarity distance is also an important parameter between
fuzzy sets. Let f be a monotone decreasing function. Then, the similarity measure between
PFSs A and B can be defined as Equation (17).

s(A, B) =
f (d(A, B))− f (1)

f (0)− f (1)
(17)

By defining f, different similarity measures are obtained. Here, some simple methods
are introduced. When f (x) = 1 − x, the similarity measure is defined as Equation (18).

s(A, B) = 1− d(A, B) (18)

When f (x) = 1/(1 + x), the similarity measure is defined as Equation (19).

s(A, B) =
1− d(A, B)
1 + d(A, B)

(19)

2.4. PFS–TOPSIS Method for MADM

The Pythagorean fuzzy set has a broader value space than the traditional fuzzy set and
can represent uncertain information in more detail. In addition, with better adaptability,
the combination with other MADM methods has achieved many successful cases. TOPSIS
is a classic evaluation or ranking method. Based on this, this section introduced a TOPSIS
method based on the PFS. The detailed procedure is presented in the following:

Step 1: First, determine alternatives, criteria and experts, and also determine the
corresponding transformation relationship between natural language and fuzzy numbers.

Step 2: Establish a group decision matrix scored by experts R = (x(k) ij)l×m
, which can

be defined as Equation (20).

x(k)ij =
{[

µAi

(
Cj
)1, νAi

(
Cj
)1, πAi

(
Cj
)1
]

. . .
[
µAi

(
Cj
)k, νAi

(
Cj
)k, πAi

(
Cj
)k
]

. . .
[
µAi

(
Cj
)n, νAi

(
Cj
)n, πAi

(
Cj
)n
]}

. (20)

This represents PFS formed by n experts’ evaluation of a certain index of a certain
scheme. For convenience, (µAi (Cj)k, νAi (Cj)k, πAi (Cj)k) is represented by (µk

ij, νk
ij, πk

ij). There-
fore, the group decision matrix is obtained as Equation (21).

R =

C1 C2 · · · Cm
A1
A2
...

Al




((
µ1

11, ν1
11, π1

11
)
· · ·
(
µn

11, νn
11, πn

11
)) ((

µ1
12, ν1

12, π1
12
)
· · ·
(
µn

12, νn
12, πn

12
))

· · ·
((

µ1
1m, ν1

1m, π1
1m
)
· · ·
(
µn

1m, νn
1m, πn

1m
))

((
µ1

21, ν1
21, π1

21
)
· · ·
(
µn

21, νn
21, πn

21
)) ((

µ1
22, ν1

22, π1
22
)
· · · (µn

22, νn
22, πn

22)
)
· · ·

((
µ1

2m, ν1
2m, π1

2m
)
· · · (µn

2m, νn
2m, πn

2m)
)

...
...

. . .
...((

µ1
l1, ν1

l1, π1
l1
)
· · ·
(
µn

l1, νn
l1, πn

l1
)) ((

µ1
l2, ν1

l2, π1
l2
)
· · ·
(
µn

l2, νn
l2, πn

l2
))

· · ·
((

µ1
lm, ν1

lm, π1
lm
)
· · ·
(
µn

lm, νn
lm, πn

lm
))




(21)

Step 3: Since the knowledge level, experience and focus of each expert are different, the
importance of each expert is different, so the weight σk of each expert should be determined
according to certain standards. At the same time, for the evaluation of the same indicator
of the same scheme, the individual opinions of all experts need to be aggregated into a
general evaluation view, i.e., transforming a PFS x(k)ij

into a Pythagorean fuzzy number
xij = (µAi (Cj), νAi (Cj), πAi (Cj)). For convenience, this is expressed as xij = (µij νij πij); this
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transformation process is realized through the Python fuzzy aggregated averaging (PFWA)
operator, which can be defined as Equation (22).

xij = PFWAσ

(
x1

ij, x2
ij, · · · , xk

ij, · · · , xn
ij

)

= σ1x1
ij ⊕ σ2x2

ij ⊕ · · · ⊕ σkxk
ij ⊕ · · · ⊕ σnxn

ij

=

(√
1−

n
∏

k=1

(
1−

(
µk

ij

)2
)σk

,
n
∏

k=1

(
νk

ij

)σk
,

√
n
∏

k=1

(
1−

(
µk

ij

)2
)σk

−
(

n
∏

k=1

(
νk

ij

)σk
)2

.

(22)

At the same time, the aggregation evaluation matrix can be obtained as Equation (23).

RA =

C1 C2 · · · Cm
A1
A2
...

Al




(µ11, ν11, π11) (µ12 · ν12, π12) · · · (µ1m, ν1m, π1m)
(µ21, ν21, π21) (µ22, ν22, π22) · · · (µ2m, ν2m, π2m)

...
...

. . .
...

(µl1, νl1, πl1) (µl2, νl2, πl2) · · · (µlm, νlm, πlm)




(23)

Step 4: All criteria may not have equal importance, so it is necessary to assign weight
to indicators. This step is also determined by experts. Let wk

j = [µk
j νk

j πk
j ] be a PFN,

which is used to indicate the evaluation and scoring of the j indicator by the k expert.
Different experts’ evaluation and scoring of an indicator also need to be aggregated into a
Pythagorean fuzzy number wj = (µj νj πj). This process is also implemented through the
Python fuzzy aggregated averaging (PFWA) operator as in Equation (24).

wj = PFWAσ

(
w1

j , w2
j , · · · , wk

j , · · ·wn
j

)

= σ1w1
j ⊕ σ2w2

j ⊕ · · · ⊕ σkwk
j ⊕ · · · ⊕ σnwn

j

=

(√
1−

n
∏

k=1

(
1−

(
µk

j

)2
)σk

,
n
∏

k=1

(
νk

j

)σk
,

√
n
∏

k=1
(1− (µk

j )
2
)

σk −
(

n
∏

k=1
(νk

j )
σk

)2
)

(24)

At the same time, construct a weight matrix for all indicators W, W= (w1 w2 . . . wm).
Step 5: After the aggregation evaluation matrix and index weight matrix are obtained,

the weighted aggregation Python fuzzy decision matrix (PFDM) can be obtained through
the multiple operator RWA = (xWij)l×m, where xWij = (µWij, νWij, πWij), the multiplication
operator, is as in Equation (25).

xWij = xij ⊗ wj

=

(
µij · µj,

√(
νij
)2

+
(
νj
)2 −

(
νij
)2 ·

(
νj
)2,

√
1−

(
µij · µj

)2 −
(
νij
)2 −

(
νj
)2

+
(
νij
)2 ·

(
νj
)2
)

.

(25)

The weighted aggregated PFDM can be constructed as in Equation (26).

RwA =

C1 C2 · · · Cm
A1
A2
...

Al




(µW11, νW11, πW11) (µW12, νW12, πW12) · · · (µW1m, νW1m, πW1m)
(µW21, νW21, πW21) (µW22, νW22, πW22) · · · (µW2m, νW2m, πW2m)

...
...

. . .
...

(µWl1, νWl1, πWl1) (µWl2, νWl2, πWl2) · · · (µWlm, νWlm, πWlm)




(26)

379



Sustainability 2023, 15, 3692

Step 6: Let J1 and J2 be the collection of benefit-type criteria and cost-type criteria. The
Pythagorean fuzzy positive ideal solution (PFPIS) A+ and the Pythagorean fuzzy negative
ideal solution (PFNIS) A− are as in Equations (27)–(30).

A+ = {〈Cj, µ+
Wij, ν+Wij〉|Cj ∈ C, j = 1, 2, · · · , m }, (27)

A− = {〈Cj, µ−Wij, ν−Wij〉|Cj ∈ C, j = 1, 2, · · · , m }, (28)

µ+
Wij =





max
1≤i≤l

µWij i f Cj ∈ J1

min
1≤i≤l

µWij i f Cj ∈ J2
, ν+Wij =





min
1≤i≤l

νWij i f Cj ∈ J1

max
1≤i≤l

νWij i f Cj ∈ J2
, (29)

µ−Wij =





min
1≤i≤l

µWij i f Cj ∈ J1

max
1≤i≤l

µWij i f Cj ∈ J2
, ν−Wij =





max
1≤i≤l

νWij i f Cj ∈ J1

min
1≤i≤l

νWij i f Cj ∈ J2
(30)

Step 7: After obtaining PFPIS and PFNIS, the next step is to calculate the distance
between each scheme and the optimal solution D (Ai, A+) and the worst solution D (Ai,
A−). The normalized hamming distance formula is used. Then, the proximity between the
alternatives and PFPIS is obtained and the calculation formula is as in Equation (31).

C(Ai) =
D(Ai, A−)

D(Ai, A+) + D(Ai, A+)
(31)

Step 8: According to the calculated closeness, rank each alternative from high to low
and select the best one.

3. Results and Application
3.1. Background of Suichang Gold Mine

Suichang Gold Mine, the largest state-owned gold mining enterprise in Zhejiang
Province (see Figure 4), the backbone of national gold system production and the first
member of the Shanghai Gold Exchange, won the honorary titles of “National Green Mine”,
“National Excellent Mining Enterprise for Saving and Comprehensive Utilization of Mine
Resources” and “National 4A Tourist Attraction” (see Figure 5). The mining rights area of
Suichang Gold Mine is 2.3729 km2 and the design production scale is 91,800 t/a. There are
two gold and silver ore bodies in the main mining area, which are distributed in layers and
veins, with an obvious branching compound phenomenon. The ore veins are 27~190 m
long, with occurrence elevation of 125~317 m, dip angle of 35~85◦, average thickness of
1~4 m and average grade of Au 15 g/t and Ag 400 g/t. The surrounding rock of the roof
of the orebody in the middle section is relatively stable, while the roof of the orebody
in the west section is controlled by the compressive torsional fracture, the surrounding
rock is relatively broken and the joints are developed, often resulting in the collapse of the
surrounding rock of the roof in the goaf [33].

At present, the mine faces the following three main technical problems.

(1) The stability of ore and rock in the altered zone is poor and mining technology
is difficult. The endowment characteristics of altered rock type gold deposits are
complex, the occurrence, grade and dip angle vary greatly and the ore veins intersect
and branch seriously.

(2) The shrinkage method is not applicable to ore bodies with complex resource endow-
ments such as large thickness changes and serious branching, the level of mechanized
equipment is low, and the labor intensity of workers is high.

(3) The technology of replacing ore pillar with concrete is complex, with low labor
efficiency and high cost.
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3.2. Primary Selection of Mining Method

For the further development of the enterprise, Suichang Gold Mine decided to upgrade
and reconstruct the mine, optimize mining methods, improve supporting facilities and
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working environment, and increase production capacity. After the preliminary analysis
of technical conditions, investigation of engineering rock mechanics and investigation
of mineability, four mining methods were preliminarily selected four mining methods.
These are the mechanized upward horizontal layering method (MUH), general upward
horizontal layering method (GUH), upward horizontal approach filling method (UHA)
and shrinkage filling method (SFM).

MUH adopts trackless mechanized equipment such as drilling jumbos and scrapers
for production, which can realize strong mining, strong extraction and strong filling, with
large production capacity (see Figure 6).
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GUH faces problems of small production capacity, low mechanization, high labor
intensity, large amount of preparation work, large amount of reserved space pillar and
bottom pillar and low ore drawing efficiency of its two electric harrows (see Figure 7).

UHA adopts trackless mechanized equipment such as the drilling jumbo and scraper,
with large production capacity (see Figure 8).

SFM has low drilling efficiency, large amount of reserved space pillar and bottom
pillar, difficulty of recovery, low recovery rate and large resource loss (see Figure 9).
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3.3. Mining Method Optimization

The specific steps of the PFS–TOPSIS model for mining method optimization are
as follows:

Step 1: In the optimization of mining methods, we selected three parties as scoring
experts, namely the designer (E1), the mining enterprise (E2) and the operator (E3). The
four alternatives are MUHSM (A1), GUHLM (A2), UHAFM (A3) and SFM (A4). The
indexes considered are ore recovery rate (C1), stope production capacity (C2), flexibility and
adaptability (C3), stope safety conditions (C4), ore dilution rate (C5), mining and cutting
quantities (C6), construction organization and labor intensity (C7) and comprehensive total
cost (C8). Obviously, C1–C4 belongs to benefit index (J1), and C5–C8 belongs to cost index
(J2). Next, the corresponding relationship between natural evaluation language and fuzzy
number is defined. Table 1 defines the conversion criteria between the relative importance
of indicators and PFN and Table 2 defines the conversion criteria between the relative
superiority of the scheme and PFN.

Step 2: Three party experts will evaluate and score the superiority of the four schemes
under each indicator, as shown in Table 3.

Table 1. The conversion criteria for the relative importance of indicators and PFN.

Linguistic Variables PFNs

Very important (VI) (0.90, 0.20, 0.39)
Important (I) (0.75, 0.30, 0.59)
Medium (M) (0.60, 0.50, 0.62)

Unimportant (U) (0.45, 0.70, 0.55)
Very unimportant (VU) (0.20, 0.90, 0.39)
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Table 2. The conversion criteria for the relative superiority of the scheme and PFN.

Linguistic Variables PFNs

Perfect (VI) (1.00, 0.00, 0.00)
Very very good (VVG) (0.90, 0.20, 0.39)

Very good (VG) (0.80, 0.30, 0.52)
Good (G) (0.70, 0.35, 0.62)

Medium (M) (0.60, 0.50, 0.62)
Medium bad (MB) (0.50, 0.60, 0.62)

Bad (B) (0.40, 0.70, 0.59)
Very bad (VB) (0.25, 0.80, 0.55)

Very very bad (VVB) (0.10, 0.90, 0.42)

Table 3. Superiority evaluation result and fuzzy number.

Criteria Alternatives
Expert

E1 E2 E3

C1

A1 VG (0.80, 0.30, 0.52) VG (0.80, 0.30, 0.52) VVG (0.90, 0.20, 0.39)
A2 G (0.70, 0.35, 0.62) M (0.60, 0.50, 0.62) G (0.70, 0.35, 0.62)
A3 VVG (0.90, 0.20, 0.39) VG (0.80, 0.30, 0.52) VG (0.80, 0.30, 0.52)
A4 M (0.60, 0.50, 0.62) G (0.70, 0.35, 0.62) M (0.60, 0.50, 0.62)

C2

A1 VVG (0.90, 0.20, 0.39) VG (0.80, 0.30, 0.52) VG (0.80, 0.30, 0.52)
A2 M (0.60, 0.50, 0.62) G (0.70, 0.35, 0.62) M (0.60, 0.50, 0.62)
A3 G (0.70, 0.35, 0.62) M (0.60, 0.50, 0.62) M (0.60, 0.50, 0.62)
A4 VG (0.80, 0.30, 0.52) G (0.70, 0.35, 0.62) VG (0.80, 0.30, 0.52)

C3

A1 G (0.70, 0.35, 0.62) G (0.70, 0.35, 0.62) VG (0.80, 0.30, 0.52)
A2 G (0.70, 0.35, 0.62) M (0.60, 0.50, 0.62) G (0.70, 0.35, 0.62)
A3 VG (0.80, 0.30, 0.52) VG (0.80, 0.30, 0.52) G (0.70, 0.35, 0.62)
A4 M (0.60, 0.50, 0.62) M (0.60, 0.50, 0.62) M (0.60, 0.50, 0.62)

C4

A1 VG (0.80, 0.30, 0.52) G (0.70, 0.35, 0.62) VG (0.80, 0.30, 0.52)
A2 VG (0.80, 0.30, 0.52) G (0.70, 0.35, 0.62) G (0.70, 0.35, 0.62)
A3 G (0.70, 0.35, 0.62) M (0.60, 0.50, 0.62) M (0.60, 0.50, 0.62)
A4 G (0.70, 0.35, 0.62) M (0.60, 0.50, 0.62) M (0.60, 0.50, 0.62)

C5

A1 VB (0.25, 0.80, 0.55) VB (0.25, 0.80, 0.55) VB (0.25, 0.80, 0.55)
A2 M (0.60, 0.50, 0.62) MB (0.50, 0.60, 0.62) M (0.60, 0.50, 0.62)
A3 VB (0.25, 0.80, 0.55) B (0.40, 0.70, 0.59) VB (0.25, 0.80, 0.55)
A4 B (0.40, 0.70, 0.59) VB (0.25, 0.80, 0.55) B (0.40, 0.70, 0.59)

C6

A1 B (0.40, 0.70, 0.59) MB (0.50, 0.60, 0.62) MB (0.50, 0.60, 0.62)
A2 B (0.40, 0.70, 0.59) B (0.40, 0.70, 0.59) B (0.40, 0.70, 0.59)
A3 MB (0.50, 0.60, 0.62) M (0.60, 0.50, 0.62) MB (0.50, 0.60, 0.62)
A4 B (0.40, 0.70, 0.59) VB (0.25, 0.80, 0.55) B (0.40, 0.70, 0.59)

C7

A1 B (0.40, 0.70, 0.59) B (0.40, 0.70, 0.59) VB (0.25, 0.80, 0.55)
A2 M (0.60, 0.50, 0.62) G (0.70, 0.35, 0.62) G (0.70, 0.35, 0.62)
A3 MB (0.50, 0.60, 0.62) MB (0.50, 0.60, 0.62) M (0.60, 0.50, 0.62)
A4 M (0.60, 0.50, 0.62) M (0.60, 0.50, 0.62) G (0.70, 0.35, 0.62)

C8

A1 MB (0.50, 0.60, 0.62) M (0.60, 0.50, 0.62) MB (0.50, 0.60, 0.62)
A2 B (0.40, 0.70, 0.59) B (0.40, 0.70, 0.59) MB (0.50, 0.60, 0.62)
A3 M (0.60, 0.50, 0.62) G (0.70, 0.35, 0.62) M (0.60, 0.50, 0.62)
A4 B (0.40, 0.70, 0.59) MB (0.50, 0.60, 0.62) MB (0.50, 0.60, 0.62)

Step 3: Determine the importance of all experts, that is, assign a certain weight.
Muhammad Akram proposed a method to determine the weight according to the three
elements of PFN and established a corresponding relationship between natural language
variables and weight. For convenience, this section directly refers to σ1 = 0.3252, σ2 = 0.3754
and σ3 = 0.2994. The weighted aggregation of experts’ scores is conducted through PFWA
and the aggregation evaluation matrix is obtained, as shown in Table 4.

385



Sustainability 2023, 15, 3692

Table 4. Aggregate evaluation matrix.

A1 A2 A3 A4

C1 (0.838, 0.266, 0.476) (0.667, 0.400, 0.629) (0.841, 0.263, 0.473) (0.642, 0.437, 0.630)
C2 (0.841, 0.263, 0.473) (0.642, 0.437, 0.630) (0.637, 0.445, 0.629) (0.768, 0.318, 0.556)
C3 (0.735, 0.334, 0.590) (0.667, 0.400, 0.629) (0.775, 0.314, 0.548) (0.600, 0.500, 0.624)
C4 (0.768, 0.318, 0.556) (0.738, 0.333, 0.587) (0.637, 0.445, 0.629) (0.637, 0.445, 0.629)
C5 (0.250, 0.800, 0.545) (0.566, 0.535, 0.627) (0.317, 0.761, 0.566) (0.353, 0.736, 0.578)
C6 (0.471, 0.631, 0.616) (0.400, 0.700, 0.591) (0.542, 0.560, 0.627) (0.353, 0.736, 0.578)
C7 (0.363, 0.729, 0.580) (0.672, 0.393, 0.628) (0.534, 0.568, 0.626) (0.634, 0.449, 0.630)
C8 (0.542, 0.560, 0.627) (0.434, 0.668, 0.604) (0.642, 0.437, 0.630) (0.471, 0.631, 0.616)

Step 4: Each expert will evaluate the superiority of various indicators, as shown in
Table 5 for the indicator evaluation. The results will be weighted and aggregated into the
indicator weight matrix as Equation (32).

W =




(0.8695, 0.2258, 0.4393)
(0.8010, 0.3002, 0.5180)
(0.7140, 0.3496, 0.6066)
(0.9000, 0.2000, 0.3873)
(0.7709, 0.3545, 0.5292)
(0.8010, 0.3002, 0.5180)
(0.7838, 0.3137, 0.5360)
(0.7709, 0.3545, 0.5292)




T

(32)

Table 5. Index evaluation.

Criteria
Experts

E1 E2 E3

C1 (0.90, 0.20, 0.39) (0.90, 0.20, 0.39) (0.75, 0.30, 0.59)
C2 (0.75, 0.30, 0.59) (0.90, 0.20, 0.39) (0.60, 0.50, 0.62)
C3 (0.75, 0.30, 0.59) (0.75, 0.30, 0.59) (0.60, 0.50, 0.62)
C4 (0.90, 0.20, 0.39) (0.90, 0.20, 0.39) (0.90, 0.20, 0.39)
C5 (0.60, 0.50, 0.62) (0.90, 0.20, 0.39) (0.60, 0.50, 0.62)
C6 (0.75, 0.30, 0.59) (0.90, 0.20, 0.39) (0.60, 0.50, 0.62)
C7 (0.60, 0.50, 0.62) (0.75, 0.30, 0.59) (0.90, 0.20, 0.39)
C8 (0.60, 0.50, 0.62) (0.90, 0.20, 0.39) (0.60, 0.50, 0.62)

Step 5: After the aggregation evaluation matrix and index weight matrix are obtained,
the weighted aggregation evaluation matrix can be obtained through the multiplication
operator, as shown in Table 6.

Table 6. Weighted aggregate evaluation matrix.

A1 A2 A3 A4

C1 (0.729, 0.344, 0.592) (0.580, 0.450, 0.679) (0.731, 0.342, 0.590) (0.558, 0.482, 0.676)
C2 (0.674, 0.391, 0.627) (0.514, 0.514, 0.687) (0.510, 0.520, 0.685) (0.615, 0.427, 0.663)
C3 (0.525, 0.469, 0.710) (0.476, 0.513, 0.714) (0.553, 0.457, 0.697) (0.428, 0.585, 0.689)
C4 (0.691, 0.370, 0.621) (0.664, 0.383, 0.642) (0.573, 0.480, 0.664) (0.573, 0.480, 0.664)
C5 (0.193, 0.828, 0.526) (0.436, 0.613, 0.659) (0.244, 0.795, 0.555) (0.272, 0.774, 0.572)
C6 (0.377, 0.672, 0.637) (0.320, 0.732, 0.601) (0.434, 0.613, 0.660) (0.283, 0.764, 0.580)
C7 (0.285, 0.760, 0.584) (0.527, 0.488, 0.696) (0.419, 0.624, 0.660) (0.497, 0.529, 0.688)
C8 (0.418, 0.632, 0.653) (0.335, 0.718, 0.610) (0.495, 0.541, 0.680) (0.363, 0.688, 0.628)
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Step 6: The Pythagorean fuzzy positive ideal solution (PFPIS) A+ and the Pythagorean
fuzzy negative ideal solution (PFNIS) A− are given as in Equations (33) and (34).

A+ = {(0.731, 0.342, 0.590), (0.674, 0.391, 0.627), (0.553, 0.457, 0.697),
(0.691, 0.370, 0.621), (0.193, 0.828, 0.526), (0.283, 0.764, 0.580),
(0.285, 0.760, 0.584), (0.335, 0.718, 0.610)}

(33)

A− = {(0.558, 0.482, 0.676), (0.510, 0.520, 0.685), (0.428, 0.585, 0.689),
(0.573, 0.480, 0.664), (0.436, 0.613, 0.659), (0.434, 0.613, 0.660),
(0.527, 0.488, 0.696), (0.495, 0.541, 0.680)}

(34)

Step 7: Calculate the distance between each scheme and the best solution and the
worst solution and rank the schemes by calculating the closeness index to obtain the best
scheme, as shown in Table 7.

Table 7. Optimal scheme ranking.

Alternatives D(Ai, A+) D(Ai, A−) C(Ai) Ranks

A1 0.0352 0.1897 0.8436 1
A2 0.1501 0.0763 0.3370 4
A3 0.1270 0.0956 0.4296 3
A4 0.1261 0.0964 0.4334 2

It can be seen from the above table that A1 is the best choice, that is, the MUH is the
best scheme along with mechanized mining (see Figure 10).
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4. Discussion

The selection of mining method is very important and complex. In this paper, through
a TOPSIS method based on PFS, the MUH is selected as the final scheme among the four
mining methods suitable for Suichang Gold Mine. By combining the advantages of PFS
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which can fully represent fuzzy information with the advantages of TOPSIS ranking science,
an ideal result is achieved.

However, due to the importance and particularity of mining method decision making,
the above models and calculations cannot fully guarantee the scientific accuracy of the
results. In fact, as TOPSIS methods that rank according to the proximity of good and
bad solutions, the core influencing factors are the distance between the scheme and the
positive and negative ideal solutions, as well as the ranking method. As mentioned above,
there are many methods to measure the distance between PFS and each method has its
own advantages and disadvantages and the most suitable application [35–38]. In terms
of sorting, Hadi-Vencheh [39] believes that the traditional closeness index rank may not
be able to produce an optimal alternative, being close to the PIS and far from the NIS.
Consequently, they introduced the revised closeness index as Equation (35).

RC(Ai) =
D(Ai, A−)

Dmax(Ai, A−)
− D(Ai, A+)

Dmin(Ai, A+)
(35)

Mahanta [31] adopted a method of ranking by similarity in their article. It is defined
in Equations (29) and (30).

Sr =
S
(

Di
+

)

S
(

Di
+

)
+ S

(
Di
−
) (36)

Di
+ = D

(
Ai, A+

)
, Di
− = D

(
Ai, A−

)
, S(D) = (1− D)/(1 + D) (37)

In view of this, the stability of the above results is analyzed through the four distance
measures and three ranking methods mentioned above (see Figures 11–13), as shown in
Tables 8 and 9, and the data in Figure 12 have been normalized.
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Table 8. Results of distance measures.

A1 A2 A3 A4

d1
D(A,A+) 0.03517 0.15011 0.12696 0.12611
D(A,A−) 0.18968 0.07630 0.09560 0.09645

d2
D(A,A+) 0.05468 0.16732 0.13444 0.13656
D(A,A−) 0.18260 0.09535 0.12303 0.11595

d3
D(A,A+) 0.03516 0.15013 0.12699 0.12600
D(A,A−) 0.18969 0.07632 0.09548 0.09646

d4
D(A,A+) 0.04340 0.19304 0.16600 0.16947
D(A,A−) 0.25637 0.10775 0.13392 0.13089
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Table 9. Results of ranking methods.

A1 A2 A3 A4 Rank

C(Ai)

d1 0.84359 0.33702 0.42955 0.43336 A1 > A4 > A3 > A2
d2 0.76956 0.36300 0.47783 0.45919 A1 > A3 > A4 > A2
d3 0.84361 0.33703 0.42920 0.43361 A1 > A4 > A3 > A2
d4 0.85523 0.35822 0.44652 0.43577 A1 > A3 > A4 > A2

RC(Ai)

d1 0 −3.8661 −3.1061 −3.0775 A1 > A4 > A3 > A2
d2 0 −2.5379 −1.7851 −1.8625 A1 > A3 > A4 > A2
d3 0 −3.8669 −3.1078 −3.0747 A1 > A4 > A3 > A2
d4 0 −4.0280 −3.3029 −3.3947 A1 > A3 > A4 > A2

Sr(Ai)

d1 0.57777 0.46267 0.48413 0.48499 A1 > A4 > A3 > A2
d2 0.56460 0.46343 0.49420 0.48953 A1 > A3 > A4 > A2
d3 0.57778 0.46267 0.48406 0.48505 A1 > A4 > A3 > A2
d4 0.60768 0.45645 0.48360 0.48027 A1 > A3 > A4 > A2

It can be seen from the analysis results that the best scheme obtained by changing the
distance measures and ranking methods is still the MUH, so it can be considered that the
results are accurate. In fact, in the actual production of Suichang Gold Mine, the application
of this method has also achieved the ideal results of safety, efficiency and environmental
protection.

Whether it can be considered that the model is universal and can be generalized in
mining method optimization, the answer is obviously unknown. As is known, the factors
that need to be considered in the optimization of mining methods are not completely fuzzy
information, e.g., the recovery rate, cut ratio and other factors have certain empirical values.
Therefore, the perfect solution is to build a corresponding transformation relationship
between the exact value and the PFS and to build a mining method optimization model
that combines fuzzy information with accurate data.

5. Conclusions

(1) Through the PFS–TOPSIS method, based on the selection of technical and economic
mining methods, a comprehensive evaluation system with multiple factors and indica-
tors was constructed and an accurate closeness index was obtained to optimize mining
methods. This overcomes the uncertainty and unpredictability of the traditional op-
timization system and provides a reference for the mining of the difficult-to-mine
complicated orebody.

(2) Taking Suichang Gold Mine as an example, according to the PFSTOPSIS method, a
weighted aggregation evaluation matrix was constructed, and the closeness index
of the four mining methods were calculated to be 0.8436, 0.3370, 0.4296 and 0.4334,
respectively. The MUH has the highest closeness index, so this method was the
best scheme.

(3) There were many ranging methods and ranking methods for PFS and only one method
could not ensure the accuracy and scientific nature of the results. This paper mainly
used the first ranging method, which was ranked by the traditional closeness index.
Finally, it discussed the three methods of traditional closeness index, revised closeness
index and relative similarity values for comprehensive ranking under the four distance
measures. When using the first distance measure, the revised closeness index of the
four mining methods was 0, −3.8661, −3.1061 and −3.0775, and the relative similarity
values were 0.5777, 0.46267, 0.48413 and 0.48499. It was concluded that MUH was the
best scheme, which not only verified the accuracy of the results, but also showed that
PFS was applicable to the selection of mining methods.

Of course, there are still limitations to the mathematical approach used in this study,
i.e., indicators with definite values need to be evaluated first in natural language and then
converted to fuzzy sets. Even so, the method still performs well in problems with a large
amount of fuzzy information, such as the selection of mining methods. Therefore, we
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advocate the application of such methods to more mines and encourage more and more
researchers to test and optimize them in practice.
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Abstract: In maritime engineering, marine-derived construction materials are seen as an efficient and
cost-effective alternative. HWM is a novel inorganic cementitious material characterized by its high
water content, rapid setting, and early strengthening. In this study, first, HWM was proposed to be
produced from seawater and used in a maritime environment. Two groups of HWM samples with
varied w/c ratios were prepared with fresh water and seawater, and their behavior was examined to
assess the viability of HWM produced with seawater. The microstructures and chemical compositions
were studied using SEM and XRD. Results indicated that as the w/c ratio increased from 3:1 to 6:1, the
water content, density, and uniaxial compressive strength of HWM produced from seawater varied
from 72.1% to 77.5%; 1.25 to 1.12 g/cm3, and 1.47 MPa to 0.39 MPa, respectively, which is 2–10% lower,
0.8–2.2% higher, and 13–45% stronger than that from fresh water. The chemical composition of HWM
mixed with seawater is predominantly composed of ettringite, C-S-H gel, aluminum (Al(OH)3) glue,
M-S-H gel, and Mg(OH)2. SO4

2− and Mg2+ in seawater participate in the hydration and hardening
of HWM, resulting in an increase in the synthesis of ettringite and M-S-H gel, which makes the
skeletal structure of HWM denser, hence increasing its strength. HWM derived from seawater retains
excellent physical and mechanical properties. This work reveals the HWM-seawater interaction
mechanism, elucidates the promising application prospect of HWM in maritime engineering, and
paves the way to investigate its field performance.

Keywords: high-water material; seawater; water-cement ratio; microstructure; water content; strength

1. Introduction

In recent years, with the expansion of ocean exploitation, the construction of mar-
itime infrastructure has grown at an unparalleled rate [1]. Cementing material has been
widely used and chosen among manmade construction materials in maritime environments
around the world due to its low cost and ease of construction [2]. Cementing material
draws a matter of continuing concern due to a high environmental cost. It is reported that
cement production is the third-largest producer of CO2 in the world after transport and
energy generation [3]. Sustainability for cementitious material has attracted widespread
interest and has become a hot topic of research [4–6]. Recently, recycled cementing materials
in cementing materials production have become more and more popular in terms of less
consumption of natural materials and many environmental advantages of disposal and
reusing of waste materials. The behavior of recycled cementing materials was investigated
by a large number of researchers [7–13]. However, the long-term durability of recycled ce-
menting materials, especially under various harsh environments, for example, in maritime
environments, was reported to be obviously lower than conventional concrete [14]. There-
fore, developing novel and sustainable cementing materials is still a scientific challenge for
the sustainability of marine development.

Sustainability 2023, 15, 3334. https://doi.org/10.3390/su15043334 https://www.mdpi.com/journal/sustainability
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In addition, cementitious materials are reported by previous research [15–17] to be
susceptible to a range of physical and chemical breakdown processes in maritime envi-
ronments. In addition, the use of standard construction materials (freshwater and river
sand, etc.) on most islands and reefs in marine engineering is always constrained by time,
transportation costs, and difficult geological conditions [17]. Therefore, how to obtain
alternative and sustainable construction materials locally and economically is a significant
challenge [18,19].

High-water material (HWM), also known as high-water back-filling material or high-
water-content and quick-setting material, is a novel cementing material. HWM was first
invented by Professor Henghu SUN from China University of Mining and Technology in
1989 and successfully used in the coal mining back-filling engineering practice [20]. HWM
has been praised as green and sustainable cementing material with numerous excellent
advantages, including high water content, good pumpability, rapid setting, high early
strength, recrystallization recovery strength after the early failure of the stone body, a
simple material production process, and low cost [21]. The chemical composition and
mineral composition of the raw material of HWM were analyzed by Xie and Liu (2014) [22],
and the hydrating and hardening mechanism of HWM was revealed by Xia et al. (2018) [23].
The basic physical and mechanical properties of HWM were tested by a large number of
scholars, and the uniaxial and triaxial compressive strength and creep properties were
measured as well. Xie et al. (2013) investigated the influence of curing time on the
properties of HWM and revealed that the strength of HWM stones increased with the
curing time [24]. Zhang et al. (2017) discussed the effects of water-cement ratios on the
physical and mechanical characteristics of HWM [25]. Zhou et al. (2017) conducted an
experimental study to investigate the failure characteristics of HWM under loading and
divided the stress-strain curve of HWM, which had initial deformation, elastic, plastic
deformation, and disruption four stages [26]. The research above proved that HWM is a
promising cementing material with excellent physical and mechanical properties.

Initially, HWM was utilized mostly for back-filling, roadway support, etc., in under-
ground coal mining [27–30]. Recent studies indicate that HWM has a promising application
in maritime environments. HWM is lauded for its ability to “convert water into stone”
because of its ultrahigh water-cement ratio and water content, which can exceed 10:1 and
95%, respectively, and its strength can exceed 5 MPa [20], which means less cementing
materials are consumed, hence less CO2 emission is produced. Given that water could be
acquired locally and HWM slurry could be transported by pumping, HWM construction is
practical, quick, and inexpensive in maritime environments [31].

Previous research has examined the behavior of HWM and demonstrated its usefulness
in marine environments. Hou et al. (2012) recommended using HWM for the preservation
and reinforcement of coral sand islands and reefs, as well as port reinforcement, and they
measured the properties of HWM in marine environments [32]. The hydration mechanism,
physical and mechanical properties, and port engineering application of HWM in maritime
environments were examined [33]. He et al. (2014) discuss the environmental influences on
the physical and mechanical properties of HWM cured in seawater [34]. However, there
are still a number of scientific obstacles to implementing HWM in marine engineering.
The majority of previous studies focused on the characteristics of HWM mixed with
freshwater [34–37]. Given the shortage of fresh water in marine environments, HWM
derived from marine sources (i.e., seawater) is viewed as an efficient and cost-effective
alternative [38,39]. It is required to explore the viability of preparing HWM with seawater
and the impact of the seawater environment on HWM’s behavior.

In this study, the physical and mechanical characteristics and microstructure, and
chemical composition of HWM produced with seawater were studied.
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2. Materials and Methods

The raw materials of HWM used in this study consist of two parts: main material (A
material, B material) and subsidiary material (A-A material, B-B material). Their chemical
compositions are shown in Table 1. The main components of A material are bauxite. B
material is composed of lime, gypsum, etc. The main components of A-A material are
suspension agent, coagulant, and dispersant, including Na2CO3, BaBiO3, etc. B-B material
is composed of early strength agents, suspension dispersants, etc., including SiO2, CaSO4,
etc. The proportion of ingredients employed in this study was A:A-A:B:B-B = 1:0.1:1:0.04,
which follows the material formulation proposed by Sun and Song (1994) [20].

Table 1. Mineral components of high-water material used in this study.

ID Materials Main Compositions

A Bauxite 3CaO·3Al2O3·CaSO4, 2CaO·SiO2 etc.
A-A Additives Na2CO3, BaBiO3, etc.

B Lime, gypsum, etc. CaSO4, CaSO4·2H2O CaSO4·0.5H2O etc.
B-B Additives SiO2, CaSO4, etc.

Figure 1 shows the preparation procedures for preparing HWM. It can be seen that
A and A-A were mixed together first, and then enough water was added and stirred
thoroughly to produce A seriflux. At the same time, B and B-B were mixed together, and
then enough water was added and stirred thoroughly to produce B seriflux. A and B seriflux
have a strong fluidity and keep good mobility as a liquid for more than 24 h. Therefore,
A and B seriflux have excellent pumpability and can be transported by pipeline, which
is convenient for construction in engineering practice. Then A and B seriflux were mixed
together and stirred thoroughly to produce HWM stone. HWM has the characteristics of
quick setting and early strength. HWM could be solidified in half an hour after mixing
A and B seriflux together. The early strength of HWM stone could be over 2 MPa in 2 h,
which is about 20% of the final strength, and could increase to more than 60–90% of final
strength after 7 days, according to Sun and Song (1994) [20]. After that, the strength of
HWM would increase flat. HWM stone should be cured in water for more than 28 days
to get final strength. In addition, it was reported that the crystals of HWM could keep
growing for a long term hence the mechanical strength of HWM could be recovered after
the early failure of the stone body of HWM.
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Table 2 shows the test plan in this study. The HWM samples were prepared and tested
according to the Standard for the Test Method of Mechanical Properties of Ordinary Con-
crete (GB/T 50081-2002) [40] and Methods for Determination of Physical and Mechanical
Properties of Coal and Rocks (GB/T 23561.1-2009) [41]. By varying the amount of water
added, standard cylindrical HWM samples with a diameter of 50 mm and a height of
100 mm (50 mm × 100 mm) with different water-cement (w/c) ratios (i.e., w/c = 3:1, 4:1,
5:1, and 6:1) were produced. The HWM samples prepared with and cured in tap water were
used as the control test group (Test ID: C). As a comparison, artificial seawater was used
to prepare and cure samples of the seawater test group (Test ID: S). The artificial seawater
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used in this study was manmade in the laboratory by following ASTM D1141-98(2013) [42].
The temperature of the fresh water and seawater was about 18–22 ◦C.

Table 2. Specimen design and test plan.

Test ID Test Group Mixing and Curing Water w/c Parameters Investigated

C Control test group Tap water
3:1, 4:1, 5:1 and 6:1

Density, water content, strength,
microstructure, chemical component etc.S Seawater test group Artificial seawater

Note: S3-2 means the 2nd HWM sample of the seawater test group with w/c = 3:1.

In accordance with the procedure proposed by He et al. (2014) [34], HWM was
prepared and cured. The HWM samples were prepared in a standard cast iron mold
(ϕ50 mm × 100 mm). As shown in Figure 1, the preparation procedures of preparing
HWM in this study comprised weighing, mixing with water, combining A and B seriflux,
injecting into the mold, and demolding. After demolding, the samples were then placed
in tap water or seawater and cured for 28 days. All samples were put in an environment-
controlled room at Sichuan University. The room temperature was kept at 26–30 ◦C, and
the air humidity was 40–50%.

The samples were then utilized in the subsequent analysis. After analyzing the
microstructure and chemical components with a scanning electron microscope (SEM) and
X-rays, the fundamental physical characteristics, such as moisture content and density,
were determined. MTS815.03 Electro-hydraulic Servo-controlled Rock Mechanics Testing
System was used to test the mechanical properties of samples. Each group sample was
subjected to the aforementioned tests three times, with the average value being the final test
results. The above experiments were carried out in the State Key Laboratory of Hydraulics
and Mountain River Engineering of Sichuan University, China.

3. Results
3.1. Density and Water Content

The density of HWM produced from water and seawater at various w/c ratios is
depicted in Figure 2. It can be seen that as the w/c ratio grows, the average mass and bulk
density of samples from two groups of HWM samples drop. As the w/c ratio increases from
3:1 to 6:1, the density of HWM produced from seawater decreases from 1.25 to 1.12 g/cm3.
The density steadily drops until it reaches the density of water (1 g/cm3). However, the
density of HWM prepared from seawater with the same w/c ratio is 0.8% to 2.2% more
than that of HWM prepared from water.
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Figure 3 depicts the water content of HWM produced by mixing freshwater and
seawater at various w/c ratios. As the w/c ratio increases, the moisture content of the two
groups of HWM samples increases progressively. As the w/c ratio increases from 3:1 to
6:1, the water content of HWM produced from seawater increases from 72.1% to 77.5%.
The HWM stone body with the same w/c ratios as the seawater test group had 2–10% less
water than the control test group. Previous studies also found that when water-cement
ratios increase, the density of HWM decreases while the water content of HWM increases,
which is consistent with the findings based on the above test results.
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3.2. Mechanical Characteristics

The stress-strain curves of S3 and S6 are shown in Figure 4.
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In accordance with the rock mechanics classification standard, the stress-strain curve
of a typical HWM can be classified into four stages: pore fracture compaction stage, elastic
deformation to fracture development stage, unsteady fracture development stage, and
post-peak failure stage. Among them, S3 has the shortest pore crack compaction stage, then
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enters the elastic deformation stage with a sharply rising stress-strain curve and an elastic
modulus of 0.198 GPa. Afterward, S3 quickly reaches its maximum strength (i.e., 1.5 MPa),
and the strain is 0.015%. As soon as it enters the post-peak phase, the residual stress is
nearly nil.

Sample S6’s stress-strain curve demonstrates a substantially longer pore fracture
compaction stage and an unstable fracture development stage. In the elastic phase, its
stress-strain curve is quite moderate, as the strain increases from 0.02 to 0.04 and the
corresponding stress increases from 0.1089 MPa to 0.3276 MPa, while the linear phase
elastic modulus is just 0.009 GPa. In the post-peak phase, stress slightly reduces as strain
increases. The range of residual stress is 0.08–0.1 MPa, which corresponds to approximately
45–70 percent of the peak stress, while the range of strain is 0.12 to 0.20. It proved that
HWM with higher water-cement ratios has better plasticity.

In the uniaxial compression test, Figure 5 depicts the typical failure images of the
HWM produced from seawater with w/c = 3:1 (i.e., S3) and 6:1 (i.e., S6). Split failure
can be seen to be the failure mode of S3. During loading, first, the stress of S3 sharply
spiked while there was no vertical compression observed, after that the sample was split
into many pieces in the internal axial direction, after which the stress fell sharply, and
the sample could only hold a small axial strain, which is in accordance with the stress-
strain curve depicted in Figure 4. At the same time, S6’s mode of failure was a ductile
failure. Under axial loading, the axial strain continued to grow, and the specimen was
compressed vertically and extended laterally. As the axial compression increased, the
upper portion of the specimen was initially crushed, and the shattered HWM blocks piled
on the upper portion of the specimen and continued to support the load. The sample
resembled a “compressed biscuit” in appearance. During this procedure, the material
remained somewhat intact, and residual stress remained elevated. Figure 4 depicts the
stress-strain curve for the material. A similar phenomenon was also observed in previous
studies on the failure mode of HWM [43,44]. It was reported that HWM with higher w/c
ratios owns better plasticity; therefore, it could generate a larger axial and horizontal strain
under axial loading.
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During the uniaxial compression test, the surface of the S3 sample remained rather
dry, and no water leaked out. While in S6, water precipitated continually, and as the strain
increased, water bleeding accelerated. As seen in Figure 5, the bleed water was collected
near the sample’s base. Sun and Song (1994) proposed that the water in HWM could
be divided into three parts, namely crystal water, absorbed water, and free water [20].
Most of the water in HWM is free water, and the amount of free water increases with the

398



Sustainability 2023, 15, 3334

water-cement ratios. Free water is apt to be lost under loading. Therefore, a large amount
of water was observed to be leaked out for HWM with higher water-cement ratios.

Two groups of HWM samples were then subjected to uniaxial compression tests
to obtain the uniaxial compression strength. The loading rate for the tests was kept
at 5 mm/min. Figure 6 depicts the sample strength of two distinct groups. It can be shown
that as the w/c increased, the uniaxial compressive strength of the HWM samples in
the two groups fell gradually. The sample strengths of the seawater test group with
w/c = 3:1 and 6:1 were 1.47 MPa and 0.39 MPa, respectively, while those of the control
test group were 1.30 MPa and 0.31 MPa, respectively. The HWM sample strengths of the
seawater group were 13 to 60 percent higher than those of the freshwater group of HWM
samples, respectively.
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3.3. Microstructure and Chemical Compositions Analysis

Figure 7a–c show SEM images (×2000 times) of HWM samples of C3, S3, and
S6, respectively.
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Figure 7a demonstrates that the hydration products of HWM produced by freshwater
are dominated by ettringite crystals and have a needle-like, net-like, and predominantly
rod-like structure. The crystals are staggered and interconnected to produce a dense
network structure that serves as a framework and support. Filling the network structure
with fibrous hydrated silica (C-S-H) gel and pom-shaped aluminum (Al(OH)3) glue reduces
the number of interior pores and increases the density. This explains why the water-cement
ratio and water content of HWM are so high.
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Comparing SEM images of HWM made by water and seawater with w/c = 3:1 (i.e.,
Figure 7a C3 and Figure 7b S3, respectively), the microstructures of both groups include a
network structure composed of ettringite crystals, as well as fibrous hydrated silica (C-S-H)
gel and pom-shaped aluminum (Al(OH)3) glue within the network structure. However,
there are more ettringite crystals within, and the network structure is significantly denser
in HWM generated from seawater, which increases the network structure’s strength in the
HWM-hardened body. In addition to C-S-H gel and Al(OH)3 glue, a significant amount of
M-S-H gel and Mg(OH)2 were found to be present in the network structure, which makes
the structure denser. The strength of HWM with a stronger and denser microstructure is
always greater. Consequently, the differences in the SEM images of HWM created using
fresh water and seawater are consistent with the findings of Figure 6.

By comparing Figure 7b,c, the differences in the SEM images of HWM produced by
seawater with a w/c ratio of 3:1 and 6:1 can be determined. It can be observed that HWM
with w/c = 6:1 has significantly fewer ettringite crystals, as well as C-S-H gel, Al(OH)3
glue, M-S-H gel, and Mg(OH)2 inside the crystal network structure. HWM with a w/c ratio
of 6:1 is able to absorb more water and has a larger water content than HWM with a w/c
ratio of 3:1. This is because the network structure is significantly looser and has many more
internal pores. In addition, the ettringite crystals of w/c = 6:1 are thinner, and the fibrous
hydrated silicic acid gel and pom-shaped aluminum glue in the network structure are also
significantly reduced, resulting in a structure with less compactness and more holes.

The C3 and S3 XRD scans are depicted in Figure 8. Ettringite (chemical formula:
3CaO•Al2O3•3CaSO4•32H2O), C-S-H, and Al(OH)3 are the primary constituents of the
stone body of the HWM, as seen. In addition to the aforementioned component, however,
M-S-H gel and Mg(OH)2 were also detected in the HWM of the seawater group.
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4. Discussion
4.1. Effects of w/c on the Microscopic and Macroscopic Properties of HWM Made by Seawater

In comparison to fresh water, seawater has a substantial impact on the microstructure,
chemical content, and physical and mechanical properties of HWM.

Zhang et al. (2017) analyzed the microstructure of HWM produced using potable
water [25]. Figure 7 shows that compared to the SEM pictures of HWM made with fresh
water, HWM made with seawater has a denser microstructure, a greater number of ettringite
crystals, and a smaller porosity. This is compatible with the impacts of seawater on the
macroscopic properties of HWM, specifically a decrease in water content, an increase in
density, and an increase in strength.

Comparing the microstructure of HWM with different w/c ratios, the principal hydra-
tion products of HWM produced by seawater are the needle-like and prismatic Ettringite
crystals, C-S-H and M-S-H gel, Al(OH)3 glue, and Mg(OH)2. Ettringite crystals in HWM
with higher w/c ratios are narrower than those with lower w/c ratios.

In addition, when w/c ratios grow, fewer ettringite crystals are produced, much less fi-
brous hydrated silica gel and pom-shaped aluminum glue are filled in the network structure,
and HWM has a looser microstructure and more interior pores. Comparing the macroscopic
parameters of HWM with different w/c ratios, as illustrated in Figures 2–4 and 6, HWM
formed from seawater with a greater w/c ratio has higher water content, lower density,
and lower strength. Therefore, the microscopic and macroscopic properties of HWM in our
investigation are compatible.

Additionally, w/c has a substantial impact on the failure modes of HWM. During the
uniaxial compression test, hardly any water separated from samples with a w/c ratio of
3:1. The samples demonstrate brittle elasticity, and split failure is the predominant form of
failure. The samples with a w/c ratio of 6:1 contain more water (78.4%). During the uniaxial
compression test, there was water bleeding, and the rate of water bleeding increased as
stress increased. The major mode of failure for samples with a w/c ratio of 6:1 is ductile
failure. HWM with a greater w/c has excellent plasticity, whereas HWM with a lower w/c
has excellent elasticity-brittleness. This may be the primary reason why failure modes of
HWM with different w/c ratios vary.

He et al. (2014) studied the physical and mechanical qualities of HWM manufactured
with fresh water but cured in seawater for 21 days. The results demonstrated that HWM
cured in seawater could retain outstanding physical and mechanical properties [34]. Hou
et al. (2012) conducted field testing with HWM derived from fresh water in maritime
engineering, and the HWM demonstrated excellent performance [33]. In this investigation,
it was determined that HWM might be prepared and cured in seawater while retaining its
outstanding physical and mechanical qualities. HWM is, therefore, a promising building
material for islands, reefs, and marine engineering.

4.2. Effects of Seawater on the Physical and Mechanical Properties of HWM

Xia et al. (2018) reported that the following reactions will occur after the mixing of two slur-
ries during the hydrating and hardening process of HWM, as shown in Equations (1)–(4) [23].
During the above process, a large amount of 3(3CaO·Al2O3·CaSO4·12H2O) (AFm) and
3CaO·Al2O3·3CaSO4·32H2O (AFt) were produced.

3CaO·Al2O3·CaSO4 + 2CaSO4 + 38H2O→3CaO·Al2O3·3CaSO4·32H2O + 4Al(OH)3 (1)

3CaO·Al2O3·CaSO4 + 18H2O→3CaO·Al2O3·CaSO4·12H2O + 4Al(OH)3 (2)

3Ca (OH)2 +3CaSO4 + 2Al (OH)3 + 2H2O→3CaO·Al2O3·CaSO4 ·32H2O (3)

2CaO·SiO2 + nH2O→C-S-H +Ca(OH)2 (4)

It can be observed that a significant amount of the free water in the mixed slurry of
A and B dissipates during the hydration reaction and converts into bound water of AFm
and AFt, with AFt being the majority of the final reaction result (i.e., ettringite). During the
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hydration and hardening reaction of HWM, the formation of Ettringite crystals is largely
reliant on the amount of water, with free water forming in HWM stones with a higher w/c
ratio and less bound water forming in ettringite with a low w/c ratio. The ideal w/c ratio
for HWM made using potable water is 6.86, and the HWM water content is 87.3% [24].

Seawater provides a high concentration of salt, with SO4
2− and Mg2+ being the most

influential ions on the hydration and hardening reactions of HWM.
According to reports [45,46], SO4

2− reacts with Ca2+ to generate gypsum (CaSO4·2H2O).
On the one hand, gypsum can create ettringite (AFt) directly with tricalcium aluminate
(C3A) in nail slurry. CaSO4 must be present for AFm to react with gypsum dihydrate
and form more ettringite (AFt). Equations (5)–(8) depict the primary chemical reaction
equations for the procedure described above.

Ca(OH)2 + Na2SO4 + 2H2O→CaSO4·2H2O +2NaOH (5)

3(CaSO4·2H2O) + 3CaO·Al2O3 + 26H2O→3CaO·Al2O3·3CaSO4·32H2O (AFt) (6)

3CaO·Al2O3·3CaSO4·32H2O + 3(CaSO4·2H2O)
+4H2O→3(3CaO·Al2O3·CaSO4·12H2O)

(7)

2(CaSO4·2H2O) +3CaO·Al2O3·CaSO4·12H2O +
16H2O→3CaO·Al2O3·3CaSO4·32H2O

(8)

As HWM is a novel cement-based material, its hydration and hardening processes
are comparable to those of conventional cement-based materials, such as cement and
concrete. When concrete is placed in seawater, ion exchange may occur, according to
previous studies [47]. Ca2+ in C-S-H and Ca(OH)2 would be replaced by Mg2+, resulting in
the formation of Mg-S-H gel and insoluble Mg(OH)2. Equations (9)–(11) [46,48] depict the
principal chemical reaction equations of the aforementioned procedure for the production
of HWM from seawater. It can be observed that AFm combines with MgSO4 to form
more ettringite AFt, hence increasing the number of ettringite crystals in the body of the
high-water material after it has been hardened. M-S-H gel and insoluble Mg(OH)2 were
used to strengthen the compactness of the hardened body of HWM by filling the network
structure of Ettringite crystals. Therefore, it contributes to the enhancement of the tough
body of HWM.

Ca(OH)2 + MgSO4 + 2H2O→CaSO4·2H2O +Mg(OH)2 (9)

C-S-H + MgSO4 + 2H2O→M-S-H + CaSO4·2H2O (10)

4CaO·Al2O3·13H2O +3MgSO4 +2Ca(OH)2
+20H2O→3CaO·Al2O3·3CaSO4·32H2O +3Mg(OH)2

(11)

In conclusion, SO4
2− and Mg2+ in seawater can enhance the synthesis of additional

ettringite AFt in the hydration and hardening reaction of HWM, hence enhancing the
strength of the hardened skeleton structure. In addition, M-S-H gel and insoluble Mg(OH)2
were produced to fill the internal holes of the ettringite network structure. This improved
the density of the hardening body of high-water material, hence enhancing the strength of
seawater-based HWM.

5. Conclusions

In this study, HWM was first proposed to be produced from seawater and used
in a maritime environment. Then the method of HWM produced from seawater was
provided, and the physical and mechanical characteristics of HWM made from seawater
were investigated, and the interaction mechanism between HWM and seawater was also
discussed. The subsequent findings were reached:

(1) As the w/c ratio increases from 3:1 to 6:1, the water content, density, and uniaxial
compressive strength of HWM produced from seawater varied from 72.1% to 77.5%; 1.25 to

402



Sustainability 2023, 15, 3334

1.12 g/cm3, and 1.47 MPa to 0.39 MPa, respectively, which is 2–10% lower, 0.8–2.2% higher,
and 13–45% stronger than that from fresh water. Compared to HWM samples made with
fresh water, seawater test group samples show a 0.8–2.2% greater density, 2–10% lower
water content, and 13–45% greater strength.

(2) The primary chemical components of HWM derived from seawater are Ettringite,
C-S-H gel, aluminum (Al(OH)3) glue, M-S-H gel, and Mg(OH)2. Ettringite crystals stagger
and link, forming a dense network structure that functions as a skeleton and support. The
network structure was filled using C-S-H gel, aluminum (Al(OH)3) glue, M-S-H gel, and
Mg(OH)2.

(3) The HWM-seawater interaction was revealed. SO4
2− and Mg2+ in seawater con-

tribute to the hydrating and hardening reaction of HWM, resulting in the production of
additional Ettringite, M-S-H gel, and Mg(OH)2, which makes the skeletal structure of HWM
denser, hence enhancing its strength. HWM produced from seawater retains outstanding
physical and mechanical characteristics.

(4) This study demonstrated that HWM produced from seawater possesses excellent
physical and mechanical properties; consequently, HWM is a promising construction
material for islands, reefs, and marine engineering, and it is suggested that additional field
tests be conducted to verify the long-term behavior of HWM produced from seawater.

Author Contributions: Formal analysis, N.F.; Writing—original draft, B.L.; Writing—review & edit-
ing, C.L., J.G. and N.F. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Geological Survey Program of China Geological Survey
(Grants No. DD20190269, DD20221782).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. To, W.-M.; Lee, P.K.C. China’s Maritime Economic Development: A Review, the Future Trend, and Sustainability Implica-tions.

Sustainability 2018, 10, 4844. [CrossRef]
2. Qu, F.; Li, W.; Dong, W.; Tam, V.W.; Yu, T. Durability deterioration of concrete under marine environment from material to

structure: A critical review. J. Build. Eng. 2021, 35, 102074. [CrossRef]
3. Poudyal, L.; Adhikari, K. Environmental sustainability in cement industry: An integrated approach for green and economical

cement production. Resour. Environ. Sustain. 2021, 4, 100024. [CrossRef]
4. Naqi, A.; Jang, J.G. Recent Progress in Green Cement Technology Utilizing Low-Carbon Emission Fuels and Raw Materials: A

Review. Sustainability 2019, 11, 537. [CrossRef]
5. Mousavi, M.A.; Sadeghi-Nik, A.; Bahari, A.; Ashour, A.; Khayat, K.H. Cement Paste Modified by Nano-Montmorillonite and

Carbon Nanotubes. Mater. J. 2022, 119, 173–185.
6. Mousavi, M.A.; Sadeghi-Nik, A.; Bahari, A.; Jin, C.; Ahmed, R.; Ozbakkaloglu, T.; de Brito, J. Strength optimization of cementitious

composites reinforced by carbon nanotubes and Titania nanoparticles. Constr. Build. Mater. 2021, 303, 124510. [CrossRef]
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Abstract: Blasting is essential for breaking hard rock in opencast mines and tunneling projects.
It creates an adverse impact on flyrock. Thus, it is essential to forecast flyrock to minimize the
environmental effects. The objective of this study is to forecast/estimate the amount of flyrock
produced during blasting by applying three creative composite intelligent models: equilibrium
optimizer-coupled extreme learning machine (EO-ELM), particle swarm optimization-based extreme
learning machine (PSO-ELM), and particle swarm optimization-artificial neural network (PSO-ANN).
To obtain a successful conclusion, we considered 114 blasting data parameters consisting of eight
inputs (hole diameter, burden, stemming length, rock density, charge-per-meter, powder factor (PF),
blastability index (BI), and weathering index), and one output parameter (flyrock distance). We
then compared the results of different models using seven different performance indices. Every
predictive model accomplished the results comparable with the measured values of flyrock. To show
the effectiveness of the developed EO-ELM, the result from each model run 10-times is compared.
The average result shows that the EO-ELM model in testing (R2 = 0.97, RMSE = 32.14, MAE = 19.78,
MAPE = 20.37, NSE = 0.93, VAF = 93.97, A20 = 0.57) achieved a better performance as compared to
the PSO-ANN model (R2 = 0.87, RMSE = 64.44, MAE = 36.02, MAPE = 29.96, NSE = 0.72, VAF = 74.72,
A20 = 0.33) and PSO-ELM model (R2 = 0.88, RMSE = 48.55, MAE = 26.97, MAPE = 26.71, NSE = 0.84,
VAF = 84.84, A20 = 0.51). Further, a non-parametric test is performed to assess the performance of
these three models developed. It shows that the EO-ELM performed better in the prediction of flyrock
compared to PSO-ELM and PSO-ANN. We did sensitivity analysis by introducing a new parameter,
WI. Input parameters, PF and BI, showed the highest sensitivity with 0.98 each.

Keywords: flyrock; weathering index (WI); equilibrium optimizer (EO); particle swarm optimization
(PSO); extreme learning machine (ELM); artificial neural network (ANN)

1. Introduction

Surface mining is basically for breaking in situ rock, construction activities, and ex-
cavation; blasting is the most popular method throughout the globe [1–3]. Blasting is a
system consisting of interaction between explosives and rock [4]. Blast design, properties
of explosives, and rock mass are primarily the existing critical parameters for blasting
and its performance [5,6]. Standard operating procedures are adopted for blast execu-
tion [7,8]. Desired blast fragmentation throw and shape muck pile affect the efficiency
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of loading equipment [9]. Blast fragmentation is also crucial for loading equipment and
downstream operation of hauling and crushing [10,11]. Hence, these parameters are called
favorable parameters [12,13], whereas flyrock, ground vibration, air overpressure, and
dust affect the environment [7,14]. Therefore, these parameters are known as unfavorable
parameters [8,15].

Flyrock is a geotechnical issue based on various rock mass properties. Various studies
have been carried out to resolve geotechnical issues. Failure in geotechnical structure was
studied with a multiscale work analysis approach [16]. An impressive micromechanical
modeling (MM) framework was proposed by utilizing the discrete element method (DEM)
and the micro-mechanical (MM) model [17]. The impact of flow direction vis-a-vis gravity
direction on suffusion in geotechnical structures or slopes was resolved using the pioneer-
ing computational fluid dynamic-discrete element method (CFD-DEM) [18]. Further, the
CFD-DEM model was helpful in investigating the particle shape effect and various levels
of transmission at the macro- and micro-behavior levels during suffusion [19,20]. The
CFD-DEM method played a significant role in the investigation of seepage in the underwa-
ter tunnel face [21]. The novel multi-scale approach, by deploying the smoothed particle
hydrodynamics (SPH) method, was found to be efficient in computational analysis to un-
derstand granular collapse [22]. A possible solution for several engineering and industrial
processes was found by developing DEM for irregular 3D particle shapes [23]. An algo-
rithm was developed to accomplish 3D realistic stones of irregular geometries at random
for specified samples with quantitative adjustable control [24]. In the convention of blasting
safety criteria, defining frequency characteristics of blasting is of practical significance. A
computational method associated with the wavelet frequency domain parameter or a main
frequency band was proposed [25]. The innovative liquid carbon dioxide rock-breaking
technology was found to be safer than explosive blasting. This technology needs further
investigation to show that this technology is more efficient than traditional non-explosive
techniques [26].

Flyrock has also been considered as an incidental or haphazard, exorbitant throw of
rock pieces originating from blasting operations. Rock fragments from blasting may be
thrown beyond the expected normal distance. This may result in a serious hazard to people
working around the mines or severe danger to the property and machinery near the blasting
site [27–29]. There are several causes of flyrock: usage of types of explosives, improper
blast design, or explicit or uncertain conditions of the rock mass. Flyrock accidents are
caused by poor security or blast management practices [30–32]. During the last decade,
several researchers have developed many computational methods concurrently to forecast
flyrock due to blasting [33].

Various researchers have pointed out that ANN, which is a branch of artificial intel-
ligence (AI), is suitable for forecasting engineering problems [34,35]. For decades, many
researchers had used ANN as a prediction method for flyrock distance [36–38]. However,
ANN has some limitations, including slow learning speed and it falls into local minima
due to the use of a gradient-based optimizer [39]. Furthermore, a specific ANN model
for the prediction of flyrock is not available. On the other hand, the boundary condition
of ANN models depends upon the variation in data sets [31]. Further, despite significant
learning cycles on the same data set, there may be a marginal improvement in prediction
performance. ANN models can easily find out the significance and sensitivity of input
parameters [31]. As stated in the literature, various metaheuristic optimization algorithms
(MOAs) could be deployed to forecast flyrock created by blasting due to the MOA’s higher
efficiency and to avoid the limitation of ANN. Some of the researchers compared ANN with
other models, such as the ICA-coupled ANN model, which provided better performance as
compared to ANN for the prediction of flyrock [40]. Furthermore, ANFIS showed superior
performance as compared to ANN [41,42]. The PSO algorithm provided a powerful equa-
tion to predict flyrock due to blasting [43]. Gene expression programming (GEP) and the
firefly algorithm (FA) were used to compare the results of flyrock prediction [44]. Further,
hybrid algorithms were developed using optimization algorithms and ANN. MOAs pro-
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vide a powerful ability to search for the best local solution from global optima. Therefore,
MOA’s estimated biases and weights of ANN can improve the prediction task of flyrock.
The hybrid model, PSO-ANN, was developed for the prediction of flyrock [45]. The results
of two different hybrid models, genetic algorithm-based ANN (GA-ANN) and recurrent
fuzzy neural network (RFNN-GA), were compared with ANN to predict flyrock [46]. The
results of three hybrid models, ICA-ANN, PSO-ANN, and GA-ANN, were compared to
predict flyrock [47].

In recent years, one of the most exciting areas of study is machine learning (ML) [48].
In general, ML describes the ways of making predictions about and learning from data.
As a subcategory of artificial intelligence, ML mainly aims at proposing and developing
algorithms that can learn automatically from data.

Specifically, AI seeks to identify the objects existing in the neighboring areas and
predict how the environment behaves in ways to make informed decisions. As a result,
the ML techniques have a higher tendency to predict instead of estimate. For instance,
it discusses the way researchers can make use of data obtained from an interferometry
experiment to predict the interference pattern that would be seen under a variety of
conditions. Furthermore, ML-based methods are mostly used to address high-dimensional
problems of a higher complexity compared to the problems that may generally arise during
a conventional statistics course [49]. The capability of generating and analyzing large data
sets has dramatically increased during the last three decades. Such “big data” revolution
has been prompted due to an exponential upsurge in computation capacities and memory,
which is recognized as Moore’s law. The ML models SVM [50,51] and ORLEM [52] were
used by researchers for the prediction of flyrock due to blasting. In this research work,
three hybrid models: PSO-ANN, PSO-ELM, and EO-ELM, are developed for the prediction
of flyrock and their results are compared.

2. Models for the Prediction of Flyrock

Numerous researchers have proposed various approaches for flyrock prediction, which
includes empirical, semi-empirical, and mathematical models.

2.1. Empirical Models for the Prediction of Flyrock

Various empirical models were developed by several researchers, mainly for blast
production, which depend upon blast design and/or rock mass properties. Figure 1 shows
a schematic diagram of flyrock, which may result in face burst, cratering, and rifting.
Face burst results when geological discontinuities or planes of weakness exist. Cratering
happens due to the escape of gases in the stemming zone due to back breaks or weak rock.
Furthermore, it may be caused due to incorrect delay sequence (back rows firing first as
compared to front rows). Rifting is due to stemming release with air pulse and associated
with air blast. Inadequate stemming length and inappropriate stemming material are the
causes of rifting [53].

Various empirical equations were developed by several researchers for flyrocks, which
occur in numerous sizes and shapes. The prediction of maximum flyrock was recommended
based on a factor of safety and hole diameter [54]. Further, the relationship between the
ratio of stemming length to burden was established to maximum flyrock distance [55].
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Researchers developed equations for flyrock prediction for the calculation of initial
velocity based on the scaled burden method [57,58]. As per the equation, a charge per m
and burden are the key parameters of face burst, as face burst increases with the increase
in charge per m or decrease in burden. Furthermore, stemming length or charging per m
are the key parameters of cratering. Flyrocks increase due to cratering, with the increase
in charge per m or decrease in stemming length. Similarly, rifting depends upon a charge
per m, burden, and drill hole angle. Flyrock increase, with the increase in charge per m or
decrease in burden and rifting, is minimum in cases of vertical drill hole angle.

Flyrock prediction was developed based on blast design parameters (burden, stem-
ming length, linear charge concentration, and specific charge) and rock mass properties
(unconfined compressive strength and RQD) [58]. The empirical equation was established
based on blast design parameters (stemming length, hole depth, burden, and spacing) and
rock mass property (rock mass rating) for the prediction of flyrock [39]. These equations
do not consider rock mass properties of tropically weathered rock. Various researchers
have reported that empirical equations for the prediction of flyrock may be suitable for a
particular site only and are not accurate [40,59].

2.2. Mathematical Models for the Prediction of Flyrock

Various researchers developed mathematical models for the prediction of flyrock. To
estimate flyrock range, Lundborg [60] adopted a semi-empirical method to analyze the
relationship between rock velocity and charge diameter. In terms of crater blasting in granite
blocks, these authors introduced the relationship between the beginning velocity of the
flyrock fragment, its size, and throw [61]. Two expressions were derived by Chiapetta (1983)
in the case of distance that may be traveled by flyrock (Chiapetta RF, 1983). Furthermore,
a relation was established by Roth (1979) to find out the flyrock travel range. According
to this approach, all of the measurements were done on the flyrock range and the most
important variable was to estimate the flyrock velocity at the beginning. Roth applied
Gurney’s proposed equation to compute the velocity at the beginning of the fragments
thrown around through an explosion [61]. The limitation of mathematical equations is
that their prediction is not accurate due to their being site-specific and having limited
data input.

2.3. Semi-Empirical Trajectory Physics-Based Models for the Prediction of Flyrock

In semi-empirical trajectory physics-based models, the focus is on the beginning veloc-
ity of flyrock; therefore, they are most desired. One of the models developed by St. George
and Gibson was modified by Little and Blair [62]. These models generally suffer from
inexplicity in defining the velocity of detonation and the density of the explosive, which is
applied to determine the blast-hole pressure and effects. The impact time applied to these
equations is determined based on experimental observation instead of real monitoring.

2.4. Artificial Intelligence Techniques

Blasting is one of the major operations that causes several adverse environmental
effects, such as generation of fines, ground vibrations, fumes, air blast, dust, and flyrock [44].
So, it is necessary to control these adverse effects while performing blasting operations [63].
During the last decade, various researchers have applied artificial intelligence (AI) tech-
niques for the prediction, minimization, or optimization of these environmental effects.
In recent years, ML is one of the trending methods. ML may be defined as computer
algorithms that can improve automatically based on the nature of the signal or feedback
provided to the learning system. It is divided into three categories, namely, reinforcement,
unsupervised, and supervised learning. In “supervised learning”, the model is trained
based on provided inputs and their desired outputs and the goal is to learn the pattern
by mapping input to output. In “Unsupervised learning”, the model is trained based
on provided inputs only where labels were not given so that it may find structure in the
input on its own. In the case of “Reinforcement learning”, the model gets across with a
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dynamic environment to perform a certain goal and after performing this goal it obtains
feedback that is equivalent to rewards, which the model attempts to maximize. ANN
is one of the most significant algorithms of ML. ANN is a parallelly distributed system
that epitomizes the neural network of the human brain to create information processing
models by composing different networks and connections [64]. It has the advantages of
self-organizing, adaptive, and real-time learning features that enable it to overcome the de-
fects of traditional logic-based AI in handling unstructured information and intuition [65].
During 1992–1997, Vladimir Vapnik with colleagues developed support-vector machine
(SVM) models at AT&T Bell Laboratories. SVM is one of the models of supervised learning
that have associated learning algorithms to analyze data for regression or classification.

Despite intended flexibility in singleton AI models, the previous studies indicate that
these algorithms may fail to deliver expected results and may experience poor general-
ization capability. The reason for this is that they may become stuck in a locally optimal
solution due to the use of stochastic selection or gradient-based learning algorithms of
learning parameters [66,67]. To get the precise result and to perform the tasks adequately, a
hybrid combination of soft computing techniques may be used as it uses data pre-processing
techniques or metaheuristic optimization approaches to solve those problems [65,67]. Fur-
thermore, the metaheuristic approach coupled with the ML model may enhance the ML
model’s performance as it may adequately reach the local solution from the global best
solution [64,67].

The ANFIS model is a hybrid model developed with ANN and fuzzy interface system
(FIS). Various researchers have used the ANFIS model for the prediction of flyrock due to
blasting [68]. The results are highly promising, and comparative analysis suggests that the
proposed modeling approach outperforms ANNs and other traditional time series models
in terms of computational speed, forecast errors, efficiency, peak flow estimation, etc. It
was observed that the ANFIS model preserves the potential of the ANN approach fully,
and eases the model building process.

Zhou [69] utilized PSO and ANN techniques to minimize flyrock due to blasting [68].
PSO-ANN was found better as compared to the ANN model. ICA, GA, extreme learn-
ing machine (ELM), and biography-based optimization (BBO) have been applied for the
prediction of various geotechnical issues by many researchers. Murlidhar [70] reviewed
the ANN-GA [69], ANN-PSO [71], and ANN- ICA models. Each of these hybrid models
provided better accuracy as compared to single models [42]. Murlidhar [72] have applied
PSO-ELM, BBO-ELM, and ELM models to predict flyrock due to blasting [73].

ELM has insufficient generalization ability in dealing with the samples due to the
random initialization of parameters, and PSO uses the individuals sharing information
in the group to move the whole group to evolve from disorder to obtain the optimal
solution [74]. PSO-ELM takes advantage of PSO to search for global optimal solutions
and ELM to quickly deal with the nonlinear relationship [70]. In other words, PSO-ELM
uses the PSO algorithm to optimize the input weight matrix and the hidden layer bias in
ELM to obtain an optimal network [75–78]. Therefore, the PSO-ELM model provides better
performance as compared to the singleton ELM model. Similarly, the BBO-ELM model
provides better performance as compared to the singleton ELM model because the hybrid
model provides the advantage of both BBO and ELM models [72]. Hence, in this paper, the
authors decided to compare three hybrid models: PSO-ANN, PSO-ELM, and EO-ELM.

3. Background of Model
3.1. Extreme Learning Machine (ELM)

The ELM was introduced by Guang-Bin Huang (2004) [79] for feedforward neural
networks. It consists of one hidden layer with multiple hidden nodes and their parameters
do not require the tuning of input weights. In ELM, output weights of hidden nodes
are generally learned only in one step that result in the learning of a linear model. ELM
has a very high generalization capability and is considerably faster than the feedforward
neural network (back-propagation algorithm (BP). This is because of the dependency
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among parameters of the different layers in a feedforward neural network. Due to these
dependencies, one is obliged to adjust all of the parameters (weights and biases). So,
several iterative learning steps are required to improve the learning performance of the
feedforward network. For these reasons, ELM has been widely applied for classification,
regression, sparse approximation compression, clustering, future learning, and many more.

Essence of ELM

The hidden layer’s parameters do not require tuning of input weights. “Randomness”
is one of the ways to implement ELM other than semi-randomness, which is considered
in many traditional methods. In ELM, the hidden layer’s mapping follows the rules of
ridge regress theory [80], universal approximation, and neural network generalization
theory [81]. Figure 2 shows the mapping of input space and feature space. ELM has the
ability that may bridge the current gaps among linear systems, neural networks, matrix
theories, SVM, random projection, Fourier series, and others.

Figure 2. Mapping of input space and feature space.

The following steps need to be performed if a model consists of a particular number
of hidden notes, node output function, and certain training set:

1. Randomly assign the hidden node’s parameter
2. Calculate the output matrix of the hidden layer
3. Compute the output weights.

ELM is one of the ML algorithms which is free from tuning and works on the above-
mentioned steps. It consists of hidden nodes with high importance and has a high-speed
learning process.

3.2. Artificial Neural Network

The idea of an ANN is derived from the biological neural architecture where a very
large number of biological neurons are interconnected through the links. It is an information
processing model that is similar to the structure of neural networks present in the human
brain in both structure and functions. It mimics the biological neural architecture in
two ways: (i) the learning process is used by the network to acquire the knowledge
from its surroundings and (ii) the acquired knowledge is stored by the synaptic weights
(interconnection strength). An ANN consists of a network of interconnected processing
units, which is capable of ‘learning’ to ‘recognize’ a complex input pattern, and predict the
output pattern thereof. For this, the neural network is first ‘trained’ to analyze the input
patterns and recognize the output that results from these inputs. The network is then able
to recognize similarities in new input patterns and can predict the output. This property
of a neural network makes it very useful for noisy (inexact) data to be interpolated and
outputs predicted in terms of patterns that are already ‘known’ to it. This makes neural
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networks a ready replacement for older statistical techniques, such as linear regressing,
multi-variable regression, and autocorrelation, etc. Even outputs that were previously
not apparent to non-experts become recognizable, making the neural network a virtual
expert. To solve different problems an ANN can be designed using the following three
fundamental components:

• Transfer Function
• Network Architecture
• Learning Law.

3.3. Equilibrium Optimization

The Equilibrium Optimizer (EO) was developed based on a generic mass balance
equation [82]. The EO algorithm is designed with a high level of search capability from
exploratory and exploitative systems to randomly change solutions and prevent local
minima. In the Equilibrium Optimization (EO) algorithm, the equilibrium state (optimal
result) is finally achieved through equilibrium candidates or best so-far solutions through
search agents randomly [83]. If EO is compared with many metaheuristic algorithms, EO
starts the optimization process based on the initial population. The construction of the
initial concentrations is based on several dimensions and particles in the search space
with consistent random initialization. Particles with their concentrations are known as
search agents, corresponding to particles and positions in the PSO algorithm. During the
process of optimization in the initial period, there is no awareness and understanding
about the equilibrium state. In the beginning, equilibrium candidates are identified by
updating concentrations randomly to fit solutions. During the whole optimization pro-
cess, based on different experimentation and case studies four best-so-far particles are
identified and another particle is the concentration of arithmetical mean of the aforesaid
four particles. Exploration capability is based on best-so-far particles while exploitation
capability is based on the average value. In several engineering problems, the generation
rate can be expressed as a function of time [84]. In the case of EO, selecting an appropriate
generation rate as well as updating concentrations randomly enhances EO’s exploratory
performance during the initial irritation and exploitation search in the final iterations. Thus,
EO supports from beginning to end the complete optimization process and avoids local
minima. Exploration and exploitation processes are balanced to obtain adaptive values for
monitoring parameters resulting in a significant reduction in the movement of particles.
To study the efficiency and effectiveness of EO, quantitative and qualitative metrics were
endorsed. The EO algorithm showed higher efficiency (i.e., shorter computational time
or limited iterations) in achieving optimal or close to optimal solutions with specific or
most of the problems examined. The EO algorithm is undoubtedly a better algorithm as
compared to the metaheuristic algorithms, such as GA and PSO, or the recently developed
algorithms, such as GWO, GA, and GSA. The performance of EO is statistically comparable
with SHADE and LSHADE-SPACM algorithms.

3.4. Particle Swarm Optimization (PSO)

The particle swarm optimization algorithm was first introduced by Kennedy and
Eberhart (1995) [85]. To start operation, this algorithm distributes a set of entities (particles,
each of which stands for a feasible solution) randomly in the search space. An objective
function is considered as the determining factor of the swarm’s goal. The fitness of every
entity/particle is determined by the value that is correspondent to the objective function.
Figure 3 shows a standard flow chart of a PSO.
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The PSO algorithm uses a random or stochastically selected population. The first step
in the process is to select a population of particles or solutions and iterate the solutions
until an optimum is reached. Each particle is assigned a value and then updated as per the
‘gbest’ fitness for two outstanding values. The solutions higher than ‘gbest’ fitness values
are chosen and the ‘gbest’ fitness factors are updated. Subsequently, wherever the fitness of
the particle is better or higher than that of ‘pbest’, the corresponding parameters of ‘pbest’
are updated. The process would then enter the second phase, where the particles would be
examined again.

3.5. Case Study and Data Collection

Basalt, granite, and limestone are common rocks for manufacturing aggregates in the
construction industry of Thailand. Figure 4 shows potential rock resources of aggregates in
different locations of Thailand. Small aggregate quarries produce less than 15,000 cubic
meters per month. On the other hand, large aggregate quarries produce up to 150,000 cubic
meters per month [86]. Vast quarries of limestone are used to supply limestone to manufac-
ture Portland cement in factories situated 100 km from Thailand. The selected limestone
quarry is an aggregate limestone quarry. Figure 5 shows photographs of an aggregate
limestone quarry. Figure 6 shows the blasted muck pile of the face. During a blasting
operation, flyrock is generated, which is concerning. In the selected quarry, the input
parameters consisting of hole diameter, burden, stemming length, rock density, explosives
charge per meter, powder factor, blast ability index, weathering index, and flyrock distance
for 114 blasting events were collected. Figure 4 shows the location of the limestone quarry.
Table 1 shows the details of all input parameters. The weathering index is site-specific.
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Based on weathering index, the blast input parameters are decided. Hence, sensitivity
analysis of parameters is compared with weathering index.
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Table 1. Input and output parameters.

Parameters Hole
Diameter Burden Stemming

Length
Rock
Density

Charge
per M

Powder
Factor

Blastability
Index

Weathering
Index Flyrock

Symbol D B ST ρ CPM PF BI WI FR
Unit mm m m Cum.t kg/m kg/cum % Ratio m
Minimum 76 2.5 1.2 1.8 4.54 0.08 18.5 0.13 27
Quartile1 76 2.7 2 1.8 4.99 0.19 28.6 0.25 37
Average 90 3 2 2 7 0.30 43 0.76 81
Quartile3 102 3.6 2.95 2.5 8.99 0.40 54.6 0.88 82
Maximum 102 4.6 4 2.5 9.4 0.50 80.8 0.99 436

Weathering index (WI) is a new parameter introduced based on rock mass properties,
such as water absorption (%), porosity (%), and point load index. Maximum values of water
absorption and porosity are obtained for completely weathered granite. The maximum
value of the point load index is obtained for fresh rock. At each blasting site, samples are
collected, and each rock mass property is compared with the maximum value. The average
of these ratios is known as the WI.

4. Model Development
4.1. Hybridization of PSO-ANN

The PSO algorithm was developed as a bird swarm simulation by Kennedy and
Eberhart. Swarm intelligence is the capability of an individual bird to deal with the
previous experiences of the whole swarm. In PSO, the decision-making process is essential,
and it can be made based on the following:

• Personal experiences of individuals that give their best results.
• Experiences of other individuals that give the best results of the entire swarms.

Several researchers tried to enhance the generalization capabilities and performance
of ANNs by using PSO algorithms because PSO is one of the robust global search methods
that can enhance the performance capacity of ANN by adjusting its bias and weight of
it. Furthermore, in the case of the local minimum, ANNs can increase the probability of
convergence and, at that time, the PSO is likely to obtain the global minimum. Consequently,
the developed PSO-ANN model acquires the search properties of both the ANN and PSO
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models. So, in the case of the PSO-ANN model, the PSO searches for the global minimum
and then exploits towards the local solution, which can be employed by the ANN to find
the best results in the search space [87].

In a learning procedure for PSO-ANN, it starts with random assignment of weights
and biases of a group of random particles. After this step the PSO-ANN model is trained
based on the assigned weights and biases and then, at each iteration, the error is calculated
between the predicted and actual value. After that, the calculated error is reduced by
changing the particle position. By changing the particle position the best solution is
selected and accordingly a new error is achieved. This complete learning process continues
unless or until the termination criteria are fulfilled.

4.2. Hybridization of PSO-ELM

Based on theory, Huang et al. [88] demonstrated the performance capability of ELM
as a universal approximation, and the ability to engage many activation functions. Sev-
eral researchers utilize ELM due to well-known features, such as fast learning capability
and adequate ability to generalize, the same is deployed for prediction methods [79,89].
The generalizing ability of ELM is further enhanced by merging it with some other meth-
ods [90,91]. Several researchers from recent decades have successfully combined a nature-
based/inspired algorithm to optimize the ELM model. Mohapatra et al. [92] designed a
hybrid model consisting of the cuckoo search algorithm and ELM to classify medical data.
The stability analysis of the photovoltaic interactive microgrid was carried out with a firefly
algorithm by Satapathy et al. [93]. The evaluation of the aging degree of the insulated gate
bipolar transistor was done with a whale optimization algorithm and ELM by Li et al. [94].
Figueiredo and Ludermir [95] studied the different topology of PSO—Global, Local, Von
Neumann, Wheel, and Four Clusters—and showed, depending upon the problem, suitable
topology, which need to be selected for the best PSO-ELM performance. Many researchers
have used PSO-ELM for prediction in various engineering problems. PSO-ELM forecast-
ing models were used to predict the regional groundwater depth [96]. The PSO-ELM
approach was used for predicting landslide displacement interval [97]. The PSO-ELM
model was deployed for predicting stabilized aggregate bases [98]. The PSO-ELM model
was deployed to predict the vibration of the ground caused by the process of blasting [99].
Thus, from various research studies, an optimized version of ELM with other algorithms
outperformed individual ELM accuracy levels in prediction jobs. ELM models generally
get trapped in local minima because the initialization process is stochastic for the network
input weights and hidden biases [100]. Various researchers have applied a combination of
PSO and ELM to various areas reliably [101]. During the current study, to the best of our
information/knowledge, the PSO-ELM model is developed for the first time to predict the
flyrock caused by blasting. The flow chart of PSO-ELM is shown in Figure 7.

4.3. Hybridization of EO-ELM

This study proposes a new combination of hybrid ML models, called EO-ELM, where
the EO optimizes the ELM learning parameters to find an optimal configuration of ELM for
the prediction of flyrock. Here, the concentrations of EO are ELM learning parameters. The
RMSE is considered an objective function for EO. The best equilibrium candidate found by
EO is considered as the optimal configuration of ELM for prediction tasks.
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In EO-ELM, initially, all particles do not know the solution space. The collaboration of
five equilibrium candidates helps the concentration updating process of particles. At initial
periods of iteration, the equilibrium candidates are diverse and the exponential term (F)
produces large random numbers, which help particles to cover the entire solution space.
Similarly, during the end period of iterations, particles are surrounded by equilibrium can-
didates which are in the optimum position with similar configurations. At these moments,
the exponential term produces a lower value of random numbers, which helps fine-tune
candidate solutions. The algorithm of EO-ELM is shown in the following Algorithm 1.
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Algorithm 1: The algorithm of EO-ELM. Exponential term (F), λ is a turnover rate and
defined as a random vector in between 0 and 1, a2 is used to control the exploitation task. a1

is used to control the exploration task, sign(
→
r −0.5) component consequences the direction

of intensification and diversification of particles, r is defined as a random vector in between 0
and 1, generation rate (G), r1, and r2 denote the random values between 0 and 1. GCP is called
generation rate control parameter

1. Select training and testing dataset
2. Begin ELM training
3. Set hidden units of ELM
4. Obtain the number of input weights and hidden biases
5. Initialize the populations (P)
6. Initialize the fitness of four equilibrium candidates
7. Assignment of EO parameters value (a1 = 2, a2 = 1, GP = 0.5)
8. for it = 1 to maximum iteration number do
9. for i = 1 to P do
10. Estimate the fitness of the ith particle

11. if fitness (
→
P i) < fitness (

→
P eq[1])

12. Replace fitness (
→
P eq[1]) with fitness (

→
P i) and

→
P eq[1] with

→
P i

13. elseif fitness (
→
P i) < fitness (

→
P eq[1]) & fitness (

→
P i) < fitness (

→
P eq[2])

14. Replace fitness (
→
P eq[2]) with fitness (

→
P i) and

→
P eq[2] with

→
P i

15. elseif fitness (
→
P i) < fitness (

→
P eq[1]) & fitness (

→
P i) < fitness (

→
P eq[2]) & fitness (

→
P i) < fitness

(
→
P eq[3])

16. Replace fitness (
→
P eq[3]) with fitness (

→
P i) and

→
P eq[3] with

→
P i

17. elseif fitness (
→
P i) < fitness (

→
P eq[1]) & fitness (

→
P i) < fitness (

→
P eq[2]) & fitness (

→
P i) < fitness

(
→
P eq[3]) & fitness (

→
P i) < fitness (

→
P eq[4])

18. Replace fitness (
→
P eq[4]) with fitness (

→
P i) and

→
P eq[4] with

→
P i

19. end if
20. end for
21.

→
Pmean = (

→
P eq[1] +

→
P eq[2] +

→
P eq[3] +

→
P eq[4])/4

22.
→
P eq,pool = {

→
P eq[1] +

→
P eq[2] +

→
P eq[3] +

→
P eq[4] +

→
P eq[mean]} (Equilibrium pool)

23. Allocate t =
(

1− Iteration
Maxiteration

)(a2× Iteration
Maxiteration

)

24. for i = 1 to P do
25. Random generation of vectors

→
λ and

→
r

26. Random selection of equilibrium candidate from equilibrium pool

27. Evaluate
→
F = a1 × sign(

→
r − 0.5)[e−

→
λt − 1]

28. Evaluate
→

GCP = {0.5 ∗ r1r2 ≥ GP
0r2 < GP

29. Evaluate
→
G0 =

→
GCP ∗ (

→
P eq −

→
λ ×

→
P)

30. Evaluate
→
G =

→
G0 ×

→
F

31.
→
P =

→
P eq + (

→
P −

→
P eq)·

→
F +

→
G
→
λV
∗ (1−

→
F ) (Concentration update)

32. end for
33. end for
34. Set ELM optimal input weights and hidden biases using

→
P eq[1]

35. Obtain output weights
36. ELM testing

4.4. Model Verification and Evaluation

One of the most important aspects of the model development process is model verifi-
cation and evaluation, as it is necessary to understand the behavior of the model to check
the evolution of the model towards acquiring the accurate result and to know whether the
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quality of the test model is excellent or not. To fulfil the desired, a training set is used to train
the developed models and a different testing set is used to verify the model development.
To evaluate the reliability of the developed model, seven different evaluation matrices,
namely determination coefficient (R|2), root mean square error (RMSE), variance account
factor (VAF), mean absolute error (MAE), Nash–Sutcliffe efficiency (NSE), mean absolute
percentage error (MAPE), and a-20 index (A20), were used to define the relation between
the actual and predicted value. Out of these evaluation matrices, the RMSE shows the
standard deviation of the error between the actual and predicted values. The MAPE shows
the error value percentage with the original data; having 0% MAPE shows the perfect
model. The NSE value is a normalized statistic and is used to measure the goodness of fit
of the model. Similarly, in the case of MAE, the goodness of the model increases with a
decrease in the value of MAE. Further, R2 indicates the correlation between the actual and
predicted values. The closer the value is to 1, the more perfect the model (1). Similarly, if
the value of A20 is closer to 1, this shows a perfect prediction model (2). VAF shows the
ratio of error variance to the measured data variance. The calculation formulas for different
evaluation matrices are as follows:

RMSE =

√
1
n

n

∑
i=1

(y− y)2 (1)

R2 =




∑
q
i=1

(
YEi −YEi

)(
YOi −YOi

)

√
∑

q
i=1

(
YEi −YEi

)2
∑n

i=1
(
YOi −YOi

)2




2

(2)

MAE =
1
n

n

∑
i=1
|(ŷi − yi)| (3)

MAPE =
1
n

n

∑
i=1

∣∣∣∣
yi − ŷi

yi

∣∣∣∣× 100 (4)

NSE =

(
1− ∑n

i=1
(

ROi − REi

)2

∑n
i=1
(

ROi − ROi

)2

)
(5)

VAF (%) = (1− var(YEi −YOi )

var(YEi )
)× 100 (6)

A20 =
m20
M

(7)

5. Results and Discussion

The objective of this study was to predict the flyrock distance. Therefore, crucial blast
design parameters were selected as input parameters (hole diameter, burden, rock density,
stemming length, charge per meter, powder factor, blastability index, and weathering
index). After that, the PSO-ELM, PSO-ANN, and EO-ELM models were developed and
used for the prediction of flyrock. When data are split into train and test sets, it always
becomes a challenging task to develop a generalized data-driven model. This work used
80% and 20% data split ratios for train and test data, respectively. These split data are used
to test and compare the performance of the developed models.

To prove the model’s effectiveness with the split dataset, a 10-times average run of
three models is checked and compared. An average run of optimization-coupled ML
models is useful to check the randomness in problem-solving for the optimal parameter
set of optimization algorithms. Table 2 shows the optimal parameter set of metaheuristic
algorithms, which are initially set by heat and trial method.
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Table 2. Optimal parameter values of metaheuristic algorithms for eight hidden neurons in ELM.

Model Parameters Value

EO-ELM

Maximum Iteration 500
Size of Population 25
a1 2.5
a2 2.5
GP 0.6

PSO-ELM

Maximum Iteration 500
Size of Population 25
C1 1
C2 2
W (inertia weight) 0.9

PSO-ANN

Maximum Iteration 500
Size of Population 25
C1 1
C2 2
W 0.98

During training, 500 iterations are set for each optimization-coupled ML model. The
convergence plot of RMSE vs. iteration count is plotted and shown in Figure 8. Figure 8
shows faster (around 200 iterations) and better convergence ability of the EO-ELM com-
pared to the PSO-ELM and PSO-ANN. The PSO-ELM and PSO-ANN become stuck in a
local solution with premature convergence (Figure 8). Furthermore, the PSO-ANN may
have an improper learning rate and overfitting issues due to the use of stochastic selection
or gradient-based learning algorithms. As gradient-based learning algorithms intend to
reach the minimum training error, but do not consider the magnitude of weights and
only uses differentiable activation functions; due to this, they have less generalization
performance [102]. In spite of this, other models use ELM, which is extremely fast and
can train SLFNs using non-differentiable activation function to reach the solutions in a
straightforward way without having issues, such as local minimum, improper learning
rate, and overfitting. It tends to reach the smallest training error including the smallest
norm of weights; due to this, it has the better generalization performance [102].
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The training phase scatter diagrams for the EO-ELM, PSO-ANN, and PSO-ELM are
shown in Figures 9–11, respectively. It is apparent from Figures 9–11 that the EO-ELM
(Figure 9) predicts flyrock values more accurately compared to the PSO-ANN (Figure 10)
and PSO-ELM (Figure 11). The testing phase scatter diagrams for the EO-ELM, PSO-ANN,
and PSO-ELM are shown in Figures 12–14, respectively. It is evident that the EO-ELM
(Figure 12) predicts the test flyrock data better compared to the PSO-ANN (Figure 13) and
PSO-ELM (Figure 14). Table 3 shows linear equations of the predicted and measured values
for the EO-ELM, PSO-ANN, and PSO-ELM for training and testing data, respectively.
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Table 3. Linear equations for predicted and measured values for the EO-ELM, PSO-ANN, and
PSO-ELM for training and testing data.

Model Training Data Testing Data

EO-ELM 67.10x + 73.93 96.66x + 100.59

PSO-ANN 58.06x + 74.58 88.9x + 92.43
PSO-ELM 64.58x + 73.92 99.10x + 98.85

Table 4 shows the better prediction efficiency of the EO-ELM in the training and
testing period compared to the PSO-ANN and PSO-ELM in terms of seven matrices.
In the testing period, the developed EO-ELM (R2 = 0.97, RMSE = 34.82, MAE = 20.3,
MAPE = 17.60, NSE = 0.978, VAF = 97.88, A20 = 0.65) performed better compared to the
PSO-ELM (R2 = 0.959, RMSE = 35.7 MAE = 23.53, MAPE = 21.84, NSE = 0.96, VAF = 95.79,
A20 = 0.56) and PSO-ANN (R2 = 0.924, RMSE = 48.12, MAE = 31.68, MAPE = 24.25,
NSE = 0.93, VAF = 92.89, A20 = 0.35). Furthermore, for better representation in terms
of model deviations, the receiver operating characteristic (ROC) curve was drawn. It is
evident that all of the models capture the good relationship in the prediction of flyrock
during training (Figure 15) and minimum deviation was found for the EO-ELM followed
by the PSO-ELM and PSO-ANN. Amongst the models, the EO-ELM shows comparatively
lesser deviation during the training period. During the testing period, a similar pattern
was observed, the EO-ELM shows the minimum deviations followed by the PSO-ELM and
PSO-ANN (Figure 16).

Sustainability 2022, 14, x FOR PEER REVIEW 19 of 27 
 

 

Table 4 shows the better prediction efficiency of the EO-ELM in the training and 

testing period compared to the PSO-ANN and PSO-ELM in terms of seven matrices. In 

the testing period, the developed EO-ELM (R2 = 0.97, RMSE = 34.82, MAE = 20.3, MAPE = 

17.60, NSE = 0.978, VAF = 97.88, A20 = 0.65) performed better compared to the PSO-ELM 

(R2 = 0.959, RMSE = 35.7 MAE = 23.53, MAPE = 21.84, NSE = 0.96, VAF = 95.79, A20 = 0.56) 

and PSO-ANN (R2 = 0.924, RMSE = 48.12, MAE = 31.68, MAPE = 24.25, NSE = 0.93, VAF = 

92.89, A20 = 0.35). Furthermore, for better representation in terms of model deviations, the 

receiver operating characteristic (ROC) curve was drawn. It is evident that all of the 

models capture the good relationship in the prediction of flyrock during training (Figure 

15) and minimum deviation was found for the EO-ELM followed by the PSO-ELM and 

PSO-ANN. Amongst the models, the EO-ELM shows comparatively lesser deviation 

during the training period. During the testing period, a similar pattern was observed, the 

EO-ELM shows the minimum deviations followed by the PSO-ELM and PSO-ANN 

(Figure 16).  

Table 4. Comparison of three models in terms of seven matrices 

Training Data Sets 

 R2 RMSE MAE MAPE NSE VAF A20 

EO-ELM 0.942 17.02 11.26 21.20 0.946 94.62 0.53 

PSO-ANN 0.827 29.5 21.07 27.04 0.821 82.19 0.43 

PSO-ELM 0.907 21.56 15.64 24.27 0.900 90.08 0.45 

Testing Data Sets (Continued) 

 R2 RMSE MAE MAPE NSE VAF A20 

EO-ELM 0.973 34.82 20.3 17.60 0.978 97.88 0.65 

PSO-ANN 0.924 48.12 31.68 24.25 0.93 92.89 0.35 

PSO-ELM 0.959 35.7 23.53 21.84 0.96 95.79 0.56 

 

Figure 15. Diagram of REC for training dataset. 

 

Figure 15. Diagram of REC for training dataset.

424



Sustainability 2023, 15, 3265

Sustainability 2022, 14, x FOR PEER REVIEW 19 of 27 
 

 

Table 4 shows the better prediction efficiency of the EO-ELM in the training and 

testing period compared to the PSO-ANN and PSO-ELM in terms of seven matrices. In 

the testing period, the developed EO-ELM (R2 = 0.97, RMSE = 34.82, MAE = 20.3, MAPE = 

17.60, NSE = 0.978, VAF = 97.88, A20 = 0.65) performed better compared to the PSO-ELM 

(R2 = 0.959, RMSE = 35.7 MAE = 23.53, MAPE = 21.84, NSE = 0.96, VAF = 95.79, A20 = 0.56) 

and PSO-ANN (R2 = 0.924, RMSE = 48.12, MAE = 31.68, MAPE = 24.25, NSE = 0.93, VAF = 

92.89, A20 = 0.35). Furthermore, for better representation in terms of model deviations, the 

receiver operating characteristic (ROC) curve was drawn. It is evident that all of the 

models capture the good relationship in the prediction of flyrock during training (Figure 

15) and minimum deviation was found for the EO-ELM followed by the PSO-ELM and 

PSO-ANN. Amongst the models, the EO-ELM shows comparatively lesser deviation 

during the training period. During the testing period, a similar pattern was observed, the 

EO-ELM shows the minimum deviations followed by the PSO-ELM and PSO-ANN 

(Figure 16).  

Table 4. Comparison of three models in terms of seven matrices 

Training Data Sets 

 R2 RMSE MAE MAPE NSE VAF A20 

EO-ELM 0.942 17.02 11.26 21.20 0.946 94.62 0.53 

PSO-ANN 0.827 29.5 21.07 27.04 0.821 82.19 0.43 

PSO-ELM 0.907 21.56 15.64 24.27 0.900 90.08 0.45 

Testing Data Sets (Continued) 

 R2 RMSE MAE MAPE NSE VAF A20 

EO-ELM 0.973 34.82 20.3 17.60 0.978 97.88 0.65 

PSO-ANN 0.924 48.12 31.68 24.25 0.93 92.89 0.35 

PSO-ELM 0.959 35.7 23.53 21.84 0.96 95.79 0.56 

 

Figure 15. Diagram of REC for training dataset. 

 

Figure 16. Diagram of REC for testing dataset.

Table 4. Comparison of three models in terms of seven matrices.

Training Data Sets

R2 RMSE MAE MAPE NSE VAF A20

EO-ELM 0.942 17.02 11.26 21.20 0.946 94.62 0.53
PSO-ANN 0.827 29.5 21.07 27.04 0.821 82.19 0.43
PSO-ELM 0.907 21.56 15.64 24.27 0.900 90.08 0.45

Testing Data Sets (Continued)

R2 RMSE MAE MAPE NSE VAF A20

EO-ELM 0.973 34.82 20.3 17.60 0.978 97.88 0.65
PSO-ANN 0.924 48.12 31.68 24.25 0.93 92.89 0.35
PSO-ELM 0.959 35.7 23.53 21.84 0.96 95.79 0.56

5.1. Average Performance of Models

Table 5 shows the average results for the 10-times run of three models. The EO-ELM
shows the best average prediction performance compared to the PSO-ELM and PSO-ANN
in terms of all matrices (Table 5). Figure 17a shows the most generalized performance of
the EO-ELM (training phase) at each of the runs (10-times) compared to the PSO-ELM
and PSO-ANN. Figure 17b shows that the EO-ELM has the best average convergence rate
compared to the PSO-ELM and PSO-ANN.

Table 5. Comparison of average results for 1-times run of models.

Training Data Sets

R2 RMSE MAE MAPE NSE VAF A20

EO-ELM 0.95 16.66 12.13 19.87 0.95 94.46 0.60
PSO-ANN 0.83 29.68 19.33 29.30 0.82 82.06 0.41
PSO-ELM 0.88 23.68 16.76 26.96 0.88 88.29 0.47

Testing Data Sets (Continued)

R2 RMSE MAE MAPE NSE VAF A20

EO-ELM 0.97 32.14 19.78 20.37 0.93 93.97 0.57
PSO-ANN 0.87 64.44 36.02 29.96 0.72 74.72 0.33
PSO-ELM 0.88 48.55 26.97 26.71 0.84 84.84 0.51
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5.2. Anderson–Darling (A–D) Test

A non-parametric test called the A–D test was performed to assess the normality of
all three models [68]. The p-values for the PSO-ELM, PSO-ANN, and EO-ELM models are
less than the significance level of 0.05 (Table 6). Table 6 shows that the EO-ELM is the best
performing model in estimating flyrock.

Table 6. Comparison of average results for 10-times run of models.

Count Mean Median SD AD p-Value

Actual 114 81.307 50.5 85.927 0 1
PSO-ELM 114 78.951 54.632 75.877 2.843 0.03244
PSO-ANN 114 78.183 55.035 70.484 2.308 0.00619
EO-ELM 114 79.311 53.492 76.092 0.8886 0.004215
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5.3. Sensitivity Analysis

Sensitivity analysis of parameters, with respect to the weathering index, was carried
out as shown in Figure 18. It showed the corresponding relationship of the parameter with
respect to the measured flyrock distance based on the cosine amplitude. The application of
this method was based on expressing all data pairs in a common Z-space. The following
equation defines a data array Z based on data pairs of each input and output:

Z = {z1, z2, z3, z . . . , zi, zn}.Z = {Z1, Z2, Z3 . . . , Zi, . . . , Zn} (8)

whereas, zi is a vector of length m in array Z, that as Equation (9):

zi = {zi1, zi2, zi3 . . . , zI}.zi1 = {Zi1, Zi2, Zi3 . . . , ZI} (9)
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Each point required m-coordinates for describing completely by training each of these
data pairs in m dimensional space. The results were achieved as all of the points were in
the spaced pair. The following equation shows the strength of relation (rij) between the
data set Zi and Zj as Equation (10):

rij =
∑m

k=1 zikzjk√
∑m

k=1 z2
ik ∑m

k=1 z2
k

(10)

The input parameters were selected, which were most sensitive, to apply to various
prediction models and identify the best model suitable for comparing the predicted value
and the measured value of flyrock distance.

6. Conclusions

This study uses three hybrid models: the EO–ELM, PSO–ANN, and PSO-ELM to
predict flyrock. Out of these three hybrid models, the EO-ELM is proposed and the rest
were used to validate the performance of the proposed model. The seven different matrices
(R2, RMSE, MAPE, NSE, MAE, VAF, and A20) are used for comparing the efficacy of the
developed model. The developed EO-ELM model performed better compared to PSO-
the ELM and PSO-ANN in predicting flyrock (Table 4). Further, all models were run
10-times and average results are shown in Table 5. It was observed that the EO-ELM model
outperformed the PSO-ELM and PSO-ANN in average results. Furthermore, the 10-times
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run of the EO-ELM model showed better convergence capability (Figure 17) than the
other two. Further, the A–D test showed that the EO-ELM model has better performance
efficiency compared to the PSO-ELM and PSO-ANN. A sensitivity analysis was done
introducing a new parameter, WI. The PF and BI showed the highest sensitivity with 0.98
each (Figure 18).

The limitation of this study is that this study was carried out for a particular limestone
mine in Thailand. Therefore, the obtained results may not be suitable for other geological
settings, i.e., in granite or other quarries. So, there is a need of further research by con-
sidering non controllable parameters of the blastability index, WI. On the other hand, by
refining the controllable parameters, accuracy of the prediction of flyrock can be improved.
There are a large number of mines near to the limestone mine under study and if large
data sets are collected, further reliability of the prediction models can be improved through
future research. The number of input parameters is eight. However, future studies of the
prediction of flyrock can be done by limiting to five influential input parameters. The use
of the latest technology, such as the video recording of flyrock with drones, will add value
for future research. Furthermore, the wavelet frequency domain parameter or innovative
liquid carbon dioxide rock-breaking technology are recent technologies used for blasting.
Thus, there is a need to develop a new technology alternative to blasting.
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Abstract: Based on a typical project in an altered rock area, this study carried out numerical sim-
ulations using the FLAC3D software to calculate the changes in the stress field, deformation field,
and plastic zone of the surrounding rock during the unsupported and supported excavation of
a water transfer tunnel. The degree of alteration of the surrounding rock was considered as the
base point. The following results were obtained: in the unsupported state, the tunnel surrounding
rock was affected by different degrees of alteration, and compressive stress concentration appeared
within a certain range at the bottom of the chamber. The value of all-directional stress decreased
with the deepening of the degree of alteration, while the opposite was the case for the depth of
influence. The displacement changes at the bottom and side walls of the chamber were large and
increased significantly with the deepening of the degree of alteration; the displacement monitoring
points distributed around the tunnel exhibited the same deformation trend. The plastic zone of the
surrounding rock obviously expanded as the degree of alteration deepened. The stress, deformation
field, and plastic zone of the tunnel surrounding rock were effectively controlled after the adoption
of support measures. The results obtained by this study can be used as a reference for similar projects
in altered rock areas.

Keywords: alteration; tunnel; numerical simulation; stress field; deformation field; plastic zone

1. Introduction

To solve the problems of the uneven distribution of water resources and the contra-
diction between supply and demand, many large-scale water conservancy construction
projects have been built around the world, among which water transmission tunnels are a
key component with high importance. Extreme engineering geological conditions, such
as significant faults, seasonal thawing in permafrost regions, and high-pressure water
action, frequently cause the issue of surrounding rock deformation and damage during
tunnel excavation [1–4]. Similarly, the stability of the surrounding rock is also significantly
impacted by the complicated stress changes, rock extrusion, and deformation brought on
by tunnel excavation. Dong et al. [5] exposed how tectonic stress forces affected the rock
surrounding the tunnel’s stress and deformation damage pattern. After conducting an
excavation simulation under high ground stress for the underground chamber complex of
Jinping I hydropower facility, Qian and Zhou [6] discovered that the rock body will mani-
fest as two-dimensional band disintegration phenomenon and suggested corresponding
support measures. After examining the primary stress rotation mechanism and the rock
extrusion and deformation law during the excavation of high and deep buried tunnels,
Cai et al. [7,8] pointed out that the three-dimensional spatial effect is more significant for
the analysis of the stability of the surrounding rock. They proposed a three-dimensional
orthotropic analysis and rock strength based on the GZZ strength criterion that can weaken
the three-dimensional spatial effect and exert the rock body’s own strength.
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Additionally, as a particular class of engineering geological problems, alteration rocks
have been exposed in several projects around the world, such as the Sanjiang orogenic sec-
tion of the Yunnan–Tibet Railway in China [9], the Kerman Tunnel in the Urmia–Dokhtar
Magmatic Arc (UDMA) in central Iran [10], multiple geothermal power plants in the
Kuril–Kamchatka island arc, Russia [11], and the Wheal Martyn china pit in Southwest
England [12]. Alteration rocks are a new class of rock that forms after diagenesis by
hydrothermal erosion, tectonic dynamics, and secondary weathering that alters the ele-
mental composition and structural features of the original rock to various degrees [13,14].
Researchers have examined the composition and characteristics of altered rocks in vari-
ous geological contexts and discovered that some feldspar and mica minerals are mostly
changed into clay minerals, sericite, chlorite, and chlorite after alteration [15–17]. The
destruction of the original internal structure of the rocks caused by the alteration of tiny
minerals increases the internal porosity of the rocks. The development of internal porosity
as well as microcracks in the rock will produce continuity fracture damage after being
disturbed by excavation [18,19]. Along with the long-term geological tectonic evolution
and the effect of ground stress in the region, the distribution of alteration rocks is irregular,
the internal structure is highly fragmented and the physical and mechanical properties are
poor [20–23], which have a direct impact on site selection and the design and construction
of projects.

The previous research system to examine the mechanical behavior of deeply buried
tunnels from the viewpoints of intrinsic model and geological structure is reasonably well
developed; the theoretical research on micro mineral analysis, physical and mechanical
property changes, and alteration degree classification of altered rocks is also reasonably
mature [24,25], but the pertinent engineering case studies are slightly lacking. Specifically
in deeply buried tunnels, where the damage to the mechanical properties of rocks due to
alteration is frequently beyond our original prediction, it has been common to observe
construction challenges, schedule delays, and even safety threats brought on by improper
support and poor response in the field. This is because there is little consideration of the
alteration effect of rocks during engineering construction in altered rock areas. Therefore,
there is scientific and practical value in analyzing the stress and deformation damage
characteristics of tunnel excavation surrounding rocks under the effect of alteration for
the design and construction of projects in altered rock areas. This study considered a
water transfer tunnel with different degrees of alteration as an example. The FLAC3D

software was used to numerically simulate the excavation of a typical alteration tunnel
section in its natural state and under two working conditions after support with the
objective of analyzing the stress and deformation damage characteristics of the surrounding
rock under different alteration degrees and elucidating the actual impact of alteration on
the surrounding rock stability. The findings of this study provide the theoretical basis
for optimizing the support scheme, and a reference for the design and construction of
similar projects.

2. Engineering Geological Conditions

The water transmission tunnel is located in the central and western part of North Tian-
shan. This tunnel has a total length of 41.82 km, diameter of 5.3 m, and longitudinal slope of
1/564.8, which means that it is a deep and long buried tunnel. The study area has a complex
geological structure with several northwest and northeast-trending compression–torsional
faults, fold zones, and extrusion fracture zones. The tunnel’s surrounding rocks belong
to various lithologies, and mainly include Silurian, Devonian, Carboniferous sandstone,
metamorphic sandstone, tuff, tuffaceous sandstone, and Hualixi-age granite. Among them,
the granite section is 9.81 km long, dominated by diorite, granodiorite, and potassium
granite, and was formed by the crustal movement of the Late Paleozoic and magmatic
activity of the Hualixi period. After a long and complex tectonic–hydrothermal superposi-
tion modification, the granites in the study area have generally been affected by alteration,
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with the chloritization of black mica and clayification of feldspar minerals as the main
alteration types.

Based on a field survey and field test, the degree of rock alteration can be divided
into three categories: slight alteration, moderate alteration, and strong alteration. Slightly
altered rocks have a relatively intact structure, produce a brittle hammering sound, and
their rebound values are between 30 and 50; the cave blocks are less collapsed and larger
in size. Moderately altered rocks have a partially broken structure, produce a muffled
hammering sound, and their rebound values are between 10 and 30; the cave blocks are
more collapsed and larger in size, and cavities can easily form at the top arch. The structure
of strongly altered rocks is completely destroyed, with visible traces of the original structure,
and these rocks can be crushed by hand; the rebound value is less than 10, and the cavern
is in a large area of debris collapse, exhibiting obvious plastic deformation when wet. The
alteration of the surrounding rock in the tunnel is widely distributed, and the construction
process often leads to the large deformation of the surrounding rock, collapse, and other
geological problems.

3. Numerical Computational Model
3.1. Computational Model

Based on site investigation and geological data, the geological model of the study area
was generalized, and a three-dimensional (3D) numerical calculation tunnel model was
established based on FLAC3D. As shown in Figure 1, the water transmission tunnel model
had an 8 m diameter, the height of the model was approximately 1313 m in the vertical
direction (Z-axis), the calculated elevation at the bottom was 1000 m, and the highest
elevation at the top surface was 2313 m. The model width was 200 m (X-axis direction),
and 100 m was taken from each side of the tunnel’s centerline. The extension of the model
was 600 m (Y-axis direction), including 250 m for the slightly altered rock section (mileage
K32 + 105–355), 200 m (mileage K32 + 355–555) for the moderately altered rock section, and
150 m (mileage K32 + 555–705) for the strongly altered rock section.
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The geological model was simplified to four geotechnical materials, namely, the upper
low resistance overburden and the lower three granites with different degrees of alteration.
The tunnel passed through the lower altered rock layer, where the medium altered rock
zone contained a fault. The geological model is shown in Figure 1. Since the model’s overall
size was too large, transitional meshing was employed to simplify the computation while
guaranteeing that the mesh size close to the tunnel satisfied the requirements for calculation
accuracy. The boundary conditions of the model were the X-directional displacement
constraint along the tunnel extension boundary, the Y-directional displacement constraint
along the vertical tunnel boundary, and the fixed constraint at the bottom boundary.
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3.2. Application of Ground Stress and Selection of Calculation Parameters

To accurately obtain the tunnel ground stress field distribution, six sets of acoustic
emission Kaiser effect ground stress tests and analyses were conducted on the borehole
cores of the granite section, and the measured results are presented in Table 1. The test
results reveal that the measured principal stress value of the borehole increased with the
depth; the maximum principal compressive stress σ1 was approximately horizontal, the
dip angle a1 was within ± 10◦, and the dominant direction was north-northwest, which
was more consistent with the direction of the regional tectonic stress field. The middle
principal stress σ2 had a gentle dip angle, and the dip angle a2 varied within ± 28◦; the
minimum principal stress dip angle a3 was above 64◦.

Table 1. Earth stress test results.

Group Depth
(m)

Main Stress Values (MPa) Main Stress Inclination (º) Main Stress Direction (º)
σ1 σ2 σ3 a1 a2 a3 β1 β2 β3

1 470–500 25.9 17.9 10.9 1.1 −25.4 64.6 18.5 −32.2 −73.9
2 580–610 28.7 18.4 13.9 9.6 −27.5 −60.6 13.8 −61.7 86.4
3 650–680 28.8 20.4 16.8 −2.6 −9.9 79.8 1.5 −70.8 −74.1
4 823–829 31.5 24.4 20.5 −8.6 23.6 64.7 11.8 −63.9 83.6
5 848–855 33.2 24.9 22.9 4.5 −16.2 −73.1 8.6 −86.8 83.6
6 883–886 35.2 26.5 23.9 2.7 6.8 82.6 5.2 64.7 63.5

Note: σ1, σ2, and σ3 are the maximum principal compressive stress, intermediate principal stress, and minimum
principal stress, respectively; a1, a2, and a3 represent the angle (inclination) between the maximum principal
compressive stress, intermediate principal stress, and minimum principal stress, and horizontal plane, respectively,
with positive values representing the elevation angle and negative values representing the pitch angle; β1, β2, and
β3 are the angle between the projection of the three principal stresses on the oxy plane and x-axis, respectively,
with positive values indicating counterclockwise rotation and negative values indicating clockwise rotation.

Based on the data in Table 1, the ground stress in the granite cave section can be
projected, and the linear correlation equations between the maximum horizontal principal
stress (σ1), horizontal intermediate principal stress (σ2), and minimum horizontal principal
stress (σ3) and the burial depth (H) can be derived as follows:

σ1 = 0.0196H + 16.653, R2 = 0.9304

σ2 = 0.0211H + 7.0488, R2 = 0.9688

σ3 = 0.0303H − 3.3618, R2 = 0.9862

The principal stresses in the cavern line were projected according to the linear corre-
lation equation, and the results are shown in Table 2. In the numerical calculation, σ1, σ2,
and σ3 were transformed along the X-direction (horizontal vertical tunnel axis direction),
Y-direction (tunnel axis direction), and vertical direction to apply the Sxx, Syy, and Szz
stresses to the model.

Table 2. Projected ground stress values in the calculated section of tunnel.

Main
Lithology

Depth of Burial (m) Density Max. Main Stress σ1
(MPa)

Intermediate Main Stress
σ2 (MPa)

Min. Principal Stress σ3
(MPa)

Min. Max. Average g/cm3 Min. Max. Average Min. Max. Average Min Max Average

monzonitic
granite 594 1078 858 2.67 27.1 43.0 35.8 18.1 29.8 24.5 15.9 28.8 22.9

The elastic–plastic model and Mohr–Coulomb strength criterion were used in the
calculation. The rock surrounding parameters were determined according to the standard of
International Society of Rock Mechanics (ISRM, 2007) after testing at the Quality Inspection
Center of Capital Construction Project of Haihe Water Conservancy Commission, Ministry
of Water Resources of China and School of Earth Science and Engineering, North China
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University of Water Resources and Electric Power, with reference to the Engineering
Rock Quality Grading Standard (GBT50218-2014) and after considering the degree of rock
alteration, as presented in Table 3.

Table 3. Proposed values of the main geological parameters of the tunnel envelope.

Surrounding Rock
Type

Rock
Density

Modulus of
Elasticity

Deformation
Modulus

Poisson
Ratio Shearing Strength

g/cm3 E (GPa) E0 (GPa) µ C (MPa) ϕ (◦)

Fresh 2.60~2.70 16~20 11~13 0.21~0.23 1.6~1.8 46~52
Slightly altered 2.45~2.60 12~15 9~11 0.25~0.28 1.0~1.2 38~44

Moderately altered 2.40~2.45 5~8 4~6 0.31~0.34 0.3~0.5 30~35
Strongly altered 2.30~2.40 0.2~1.0 0.1~0.4 0.36~0.38 0.05~0.10 22~26

According to the excavation design plan, after the tunnel excavation, the TBM shield
was closed with synthetic coarse fiber concrete in time after the initial spraying. The
slightly altered section adopted HW125 steel arch racks with a distance of 0.9 m; the
moderately altered section adopted HW150 steel arch racks with a distance of 0.5 m; the
strongly altered section adoptsedHW150 steel arch racks with a distance of 0.3 m. The
longitudinal connection adopted Φ20 steel bars with a ring spacing of 1 m, and the top
arch was equipped with Φ20 reinforcement rows within 150◦. The support parameters are
shown in Table 4, Table 5, and Table 6, respectively.

Table 4. Basic parameters of the anchor rods.

Diameter
(mm) Length (m)

Equivalent
Elastic Modulus

(GPa)

Tensile
Strength

(MPa)

Cement Slurry
Stiffness

(MPa)

Cement Slurry
Cohesion

(MPa)

22/25 2.0/2.5/3.5 200 360 15 0.8

Table 5. Basic parameters of the steel arch.

Elastic
Modulus

(GPa)

Poisson
Ratio

Cross
Sectional Area

(cm2)

Bulk
Density
(kN/m3)

Y-Axis Moment of
Inertia (104 cm4)

Z-Axis Moment of
Inertia (104 cm4)

21 0.3 30.31 23.8 847 294

Table 6. Basic parameters of the concrete primary lining.

Concrete Grade Equivalent Elastic Modulus
(GPa)

Bulk Density
(kN/m3) Poisson Ratio

C20 25.5 25 0.25

4. Analysis of the Calculation Results

For the in-depth investigation of the distribution and changes of the stress field and
deformation field of the surrounding rock, typical sections were selected for detailed
analysis in the surrounding rock with different degrees of alteration. Section K32 + 230 was
selected in the slightly altered surrounding rock with a burial depth of 905 m; section K32 +
455 was selected in the moderately altered surrounding rock with a burial depth of 860 m;
section K32 + 630 was selected in the strongly altered surrounding rock with a burial depth
of 930 m.

4.1. Analysis of Stress Field

After the tunnel excavation, the horizontal maximum principal stress was approxi-
mately in line with the tunnel axis, ignoring its influence on the tunnel surrounding rock.
The horizontal intermediate principal stress was approximately perpendicular to the tunnel
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axis, and the self-weight stress was the minimum principal stress. Provided that support
measures were not used, under the influence of horizontal tectonic stress, a compressive
stress concentration with a maximum value of 102.4 MPa appeared in the slightly altered
surrounding rock section at the top and bottom 7.0 m of the chamber’s depth, and gradually
decreased to the initial stress state as the distance from the chamber increased, as shown in
Figure 2a. Under the influence of chamber excavation and unloading, a stress reduction
zone with a value of 54.6 MPa and influence depth of 16.0 m appeared in the surrounding
rock on both sides and at the top of the chamber. Shear stress concentration appeared at the
top and bottom corners of the cavern, and its maximum value was 29.5 MPa, as shown in
Figure 2b. Compressive stress concentration with a maximum value of 87.36 MPa appeared
in the medium alteration surrounding rock section 20 m at the top and bottom corners
of the cavern, and gradually decreased to the initial stress state as the distance from the
cavern chamber increased; the influence depth was 28.0 m, as shown in Figure 2c. A stress
reduction zone appeared in the surrounding rock on both sides of the cavern chamber and
at the top and bottom; its value was 42.3 MPa and its influence depth was 32.0 m. Shear
stress concentration appeared at the top and bottom corner of the cavern, and its maximum
value was 19.15 MPa, as shown in Figure 2d. In the strongly altered surrounding rock
section, compressive stress concentration occurred at a depth of 13.0 m from the bottom of
the cavern, and had the maximum value of 107.8 MPa, as shown in Figure 2e. In addition
to the bottom of the cavern, a stress reduction zone with the minimum value of 49.04 MPa
and small main stress influence depth of 35 m existed around the cavern. Shear stress
concentration with an influence depth of 12.0 m existed at the top and bottom corners
of the cavern. The maximum value was 19.7 MPa, as shown in Figure 2f. The depth of
stress influence was significantly higher in the moderately altered and strongly altered
surrounding rocks compared to the slightly altered surrounding rock.

After using support measures, the slightly altered surrounding rock section exhibited
compressive stress concentration in the surrounding rock at the top and bottom corners
of the cavern, and its maximum value was 102.1 MPa, as shown in Figure 3a. The stress
reduction zone appeared at the bottom of the cavern, and its value was 59.9 MPa. Shear
stress concentration appeared at the top and bottom corners of the cavern, and its maximum
value was 31.5 MPa, as shown in Figure 3b. In the moderately altered surrounding rock
section, compressive stress concentration appeared at the top and bottom corners of the
cavern, and its maximum value was 101.6 MPa, as shown in Figure 3c. A stress reduction
zone appeared at the side walls and bottom of the cavern, and its value was 61.4 MPa.
Shear stress concentration appeared at the top and bottom corners of the cavern, and its
maximum value was 24.9 MPa, as shown in Figure 3d. Compressive stress concentration
appeared at the top and bottom corners of the cavern section, with a maximum value
of 98.3 MPa, and gradually decreased to the initial stress state as the distance from the
cavern increased, as shown in Figure 3e. A stress reduction zone with a minimum value of
61.06 MPa appeared in the side walls of the cavern. Shear stress concentration appeared
at the top and bottom corners of the cavern, and its maximum value was 20.46 MPa, as
shown in Figure 3f.
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Figure 2. Main stress diagram of the tunnel excavation under unsupported conditions. (a) Middle
main stress diagram of the slightly altered surrounding rock section. (b) Shear stress cloud diagram of
the slightly altered surrounding rock section. (c) Middle main stress diagram of the moderately altered
surrounding rock section. (d) Shear stress cloud diagram of the moderately altered surrounding rock
section. (e) Middle main stress diagram of the strongly altered surrounding rock section. (f) Shear
stress cloud diagram of the strongly altered surrounding rock section.
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Figure 3. Main stress diagram of the excavation after the tunnel support. (a) Middle main stress
diagram of the slightly altered surrounding rock section. (b) Shear stress cloud diagram of the
slightly altered surrounding rock section. (c) Middle main stress diagram of the moderately altered
surrounding rock section. (d) Shear stress cloud diagram of the moderately altered surrounding rock
section. (e) Middle main stress diagram of the strongly altered surrounding rock section. (f) Shear
stress cloud diagram of the strongly altered surrounding rock section.

The comparison between the stresses in the unsupported and supported cavern cham-
bers is shown in Figure 4. As can be seen from the support, except for the strong alteration
surrounding the rock section, owing to the occurrence of surrounding rock damage defor-
mation and X-direction compressive stress reduction, the other stresses were increased by
the surrounding rock owing to the restraining effect of the support structure.

440



Sustainability 2023, 15, 1161Sustainability 2023, 15, x FOR PEER REVIEW 9 of 18 
 

 
Figure 4. Comparison of surrounding rock stress in each profile before and after excavation and 
support of alteration rock tunnel. 

4.2. Analysis of Surrounding Rock Displacement Field 
In the natural state, the mountain displacement gradually decreases from top to bot-

tom, with a stable trend in general, and the maximum displacement occurs in an area with 
large surface elevation and obvious surface undulation. The numerical simulation con-
ducted by this study mainly considered the surrounding rock deformation caused by tun-
nel excavation. Therefore, the displacement in the natural state was considered to be zero, 
and the relative displacement of the surrounding rock after tunnel excavation was inves-
tigated on this basis. 

In the tunnel excavation without support measures, the overall deformation of the 
surrounding rock after tunnel excavation was directed toward the cavern face; the top 
arch sank, the bottom slab rose, and the side walls moved inward. Figure 5 shows the 
displacement trend of each typical section of the surrounding rock under unsupported 
excavation. As can be seen, the maximum total displacement of the surrounding rock in 
the slightly altered section was 9.64 cm, and the displacement and impact depth of the top 
slab and sidewall were relatively large, while the displacement and impact depth of the 
bottom slab were relatively small. The deformation of the surrounding rock in the mod-
erately altered section was larger than that in the slightly altered section, and the maxi-
mum total displacement was 166.4 cm. The maximum total displacement of the surround-
ing rock in the strongly altered section was 45.6 m, and the displacement at the base plate 
and sidewall was the most variable. In the displacement cloud distribution of each typical 
section (Figure 5), the area of the surrounding rock deformation caused by cavern exca-
vation was pie shaped. Because of the large burial depth, the displacements of the sur-
rounding rock in the vertical direction (Z-direction) and vertical tunnel direction (X-direc-
tion) were relatively large owing to the influence of self-weight stress and horizontal tec-
tonic stress, while the displacement in the tunnel extension direction (Y-direction) was 
small. Owing to the influence of the degree of rock erosion, the displacement of the and 
moderately altered section (section 32 + 455, depth of 860 m) was much larger than that of 

Figure 4. Comparison of surrounding rock stress in each profile before and after excavation and
support of alteration rock tunnel.

4.2. Analysis of Surrounding Rock Displacement Field

In the natural state, the mountain displacement gradually decreases from top to
bottom, with a stable trend in general, and the maximum displacement occurs in an area
with large surface elevation and obvious surface undulation. The numerical simulation
conducted by this study mainly considered the surrounding rock deformation caused by
tunnel excavation. Therefore, the displacement in the natural state was considered to be
zero, and the relative displacement of the surrounding rock after tunnel excavation was
investigated on this basis.

In the tunnel excavation without support measures, the overall deformation of the
surrounding rock after tunnel excavation was directed toward the cavern face; the top
arch sank, the bottom slab rose, and the side walls moved inward. Figure 5 shows the
displacement trend of each typical section of the surrounding rock under unsupported
excavation. As can be seen, the maximum total displacement of the surrounding rock in the
slightly altered section was 9.64 cm, and the displacement and impact depth of the top slab
and sidewall were relatively large, while the displacement and impact depth of the bottom
slab were relatively small. The deformation of the surrounding rock in the moderately
altered section was larger than that in the slightly altered section, and the maximum total
displacement was 166.4 cm. The maximum total displacement of the surrounding rock in
the strongly altered section was 45.6 m, and the displacement at the base plate and sidewall
was the most variable. In the displacement cloud distribution of each typical section
(Figure 5), the area of the surrounding rock deformation caused by cavern excavation
was pie shaped. Because of the large burial depth, the displacements of the surrounding
rock in the vertical direction (Z-direction) and vertical tunnel direction (X-direction) were
relatively large owing to the influence of self-weight stress and horizontal tectonic stress,
while the displacement in the tunnel extension direction (Y-direction) was small. Owing to
the influence of the degree of rock erosion, the displacement of the and moderately altered
section (section 32 + 455, depth of 860 m) was much larger than that of the slightly altered
section (section 32 + 230, depth of 905 m). Considering the discontinuity characteristics of
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the rock, it is concluded that large deformation damage occurs frequently. The strongly
altered section (section 32 + 630, depth of 930 m) had actually been completely destroyed
by large deformation.

Figure 5. Displacement diagram of the tunnel excavation under unsupported conditions. (a) Total
displacement diagram of the slightly altered surrounding rock section. (b) Total displacement
diagram of the moderately altered surrounding rock section. (c) Total displacement diagram of the
strongly altered surrounding rock section.
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After adopting support measures, such as the anchors of a grouting reinforcement sys-
tem, steel arch, shotcrete, and reinforcement mesh, the deformation area of the surrounding
rock caused by tunnel excavation became butterfly shaped, and the deformation area of
the surrounding rock was mainly concentrated at the side wall, whose displacement and
influence depth were relatively large while the displacement and influence depth of the top
arch and bottom slab were relatively small. Figure 6 shows the typical section displacement
changes of each surrounding rock under supported excavation. As can been seen, the
maximum total displacement of the slightly altered surrounding rock section was 1.02 cm,
the maximum total displacement of the moderately altered surrounding rock section was
1.56 cm, and the maximum total displacement of the strongly altered surrounding rock
section was 2.62 cm. The main reason for this is that the horizontal structural stress was the
maximum main stress and the vertical stress was the minimum main stress in the tunnel.
This led to the displacement of the surrounding rock, which was caused by the lateral
expansion effect as the main contradiction, and the displacement of the top and bottom slab
as the secondary contradiction, coupled with a high degree of fragmentation, extremely low
mechanical strength, and the poor integrity of the strongly altered rock body, which led to
the downward movement of the bottom slab under the influence of excavation disturbance
and the constraint of the support effect during the excavation process (Figure 7a,c,e).
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In the calculation process, to monitor the deformation evolution process of each type
of surrounding rock after tunnel excavation, displacement monitoring points were set at
the top plate, both walls, and bottom plate of the cavern; the monitoring results are shown
in Figure 7b,d,f. It can be seen that after the use of support measures, the displacement
monitoring amount of all types of surrounding rocks in the cavern was significantly
reduced, and the surrounding rocks of the tunnel exhibited the largest displacement at
the cavern side walls, followed by the bottom slab and smallest top slab. Among them,
the displacement of the top plate of the slightly altered surrounding rock was 0.23 cm, the
maximum displacement of both walls was 0.86 cm, and the displacement of the bottom
plate was 0.48 cm. The maximum displacement of the top plate of the moderately altered
surrounding rock was 0.32 cm, the maximum displacement of both walls was 1.30 cm, and
the maximum displacement of the bottom plate was 0.88 cm. The displacement of the top
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plate of the strongly altered surrounding rock was 0.56 cm, the maximum displacement of
both walls was 2.19 cm, and the displacement of the bottom slab was 1.62 cm.

4.3. Analysis of the Plastic Zone of Surrounding Rock

The size and distribution characteristics of the plastic zone reflect the mechanical
properties of the surrounding rock. Additionally, they characterize the actual size of the
loosening zone of the tunnel surrounding rock after excavation and unloading, and the
degree of disturbance to the surrounding rock in each excavation phase. After excavation,
because of the increase in the large principal stress and decrease in small principal stress
in the surrounding rock, the surrounding rock unit was in the form of compression–shear
damage; the distribution of its plastic zone is shown in Figure 8.
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In the natural state, the damage depth of the plastic zone was approximately 8.0–10.0
m for slightly altered surrounding rock (section 32 + 230, depth of 905 m), approximately
20.0 m for moderately altered surrounding rock (section 32 + 455, depth of 860 m), and the
strongly altered section of the perimeter rock had been completely destroyed and the depth
of impact was too great, after tunnel excavation, as shown in Figure 8a,c,e.

After the use of support measures, the extent of the plastic zone in the surrounding
rock decreased significantly compared with the unsupported condition, and the depth of
damage of the plastic zone in the slightly altered surrounding rock (section 32 + 230, depth
of 905 m) decreased to approximately 1.0–2.0 m. The depth of damage of the plastic zone
in the moderately altered surrounding rock (section 32 + 455, depth of 860 m) decreased
to approximately 1.0–3.0 m, and the depth of damage of the plastic zone in the strongly
altered surrounding rock (section 32 + 630, depth of 930 m) decreased to approximately
0.6–1.0 m. The depth of damage in the plastic zone (section 32 + 630, depth of 930 m)
decreased to approximately 1.0–3.0 m, as shown in Figure 8b,d,f.

4.4. Recheck of the Surrounding Rock Deformation

During the tunnel boring process, it was found that the deformation of the steel arch
was mainly concentrated within 24 h after excavation, after which it gradually stabilized,
and the final deformation was less different to the 24 h monitoring value. Therefore, 14
monitoring points with different degrees of alteration were randomly selected for each
section of the excavation, and the above-mentioned support method was used to monitor
and count the displacement changes of the steel arch after 24 h. The actual monitoring values
are presented in Table 7 and Figure 9. Among them, the deformation of the steel arch in the
slightly altered rock section ranged from 0.49 to 0.76 cm, and the average value was 0.62 cm.
The deformation of the steel arch in the moderately altered rock section ranged from 0.57 to
1.29 cm, and the average value was 0.97 cm. The deformation of the steel arch in the strongly
altered rock section ranged from 1.73 to 2.27 cm, and the average value was 1.93 cm.

After comparison with the numerical simulation results, it was found that the average
value of the actual deformation of various altered rocks was basically consistent with the
numerical simulation results, and the error was controlled within 1 cm, which validated the
numerical simulation. The deformation of some moderately altered rocks was lower than
the average value of deformation of slightly altered rocks, which indicates that moderately
altered rocks still possessed a certain strength, and the rocks had good stability under
supporting measures. The maximum deformation value of strongly altered rocks was
2.27 cm, which was significantly lower compared with unsupported excavation. Hence,
the deformation of the surrounding rock was effectively controlled, which verified the
reasonableness of the support measures.

Table 7. Comparison between the monitored and calculated values of the surrounding rock deforma-
tion in tunnel sections with different degrees of alteration.

The Degree of
Surrounding Rock

Alteration

The Actual Monitoring
Range of Surrounding
Rock Deformation (cm)

The Actual Monitoring
Average Value of

Surrounding Rock
Deformation (cm)

The Numerical
Simulation Calculation

Value (cm)

Slightly altered 0.49~0.76 0.62 1.02
Moderately altered 0.57~1.29 0.97 1.56

Strongly altered 1.73~2.27 1.93 2.62
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5. Conclusions

This study carried out numerical simulations of a typical tunnel section excavated in
the study area under unsupported and supported conditions using the FLAC3D software.
The stress field, displacement field, and plastic zone of a typical section of the surrounding
rock were selected for calculation and comparison, and the results were analyzed. The
following conclusions were drawn:

1. After tunnel excavation, under the action of tectonic stress, the initial horizontal
tectonic stress field was much larger than the vertical self-gravity stress field, and the
intermediate principal stress and minimum principal stress exerted greater influence
on the surrounding rock. Stress redistribution in the mountain body led to the
concentration of compressive and shear stresses within a certain depth of the cavern
surrounding rock. Under the influence of horizontal tectonic stress, the displacement
of the rock around the tunnel was maximum in the vertical tunnel direction (X-
direction) followed by the vertical direction (Z-direction), and minimum in the tunnel
extension direction (Y-direction). Based on the displacement monitoring curve of the
surrounding rock, it is concluded that the displacement of the side wall of the cavern
chamber was the largest, followed by the bottom plate and smallest top plate;

2. Under unsupported tunnel excavation, the surrounding rock underwent plastic dam-
age at a certain depth range and large deformation damage was likely to occur owing
to the discontinuous characteristics of the rock body. After implementing support
measures, the stress in all directions of the tunnel surrounding rock increased owing
to the restraint of the surrounding rock by the support structure, and the deformation
of the surrounding rock was effectively controlled;

3. The comparison between the stress and displacement field results for the more strongly
altered section and slightly altered section revealed that the deformation of the tunnel
surrounding rock increased significantly with the deepening of alteration, and the
alteration destroyed the original structure of the surrounding rock body, which led
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to the reduction in its stiffness and strength, and thus increased the deformation of
the surrounding rock such that destabilization damage occurred. After implementing
support measures, the deformation of the tunnel decreased significantly. The actual
monitoring value of the surrounding rock displacement was consistent with the simu-
lation results, and the support scheme was reasonable, which provides a theoretical
basis for the design and construction of similar projects.
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Abstract: Effective monitoring of rock fracture and seepage is an important information means
to ensure the safety of geotechnical engineering. Therefore, sandstone samples were subject to
uniaxial compression under different hydraulic conditions in the presence of infrared radiation
and observation. This study uses the multiple infrared radiation indexes (∆AIRT, IRV, VDIIT) and
image data to analyze the influence of coupled stress-hydro effect of infrared radiation change on
sandstone surface. The main findings are: (1) The surface temperature of sandstone samples rises in
the compaction and linear elastic stages, keeps stable or decreases in the fracture development stage,
and rapidly decreases in the post-peak failure stage. (2) The samples with internal water pressure not
more than 0.30 MPa, surface temperature and load curve at the compaction and linear elastic stage
have a strong power function relationship, which a coefficient of determination is 0.8900. (3) The IRV
curve appears as a pulse jump at the time of water seepage. After that, both the fracture development
and the post-peak failure stages have stepped up. The VDIIT curve also appears to be a pulse jump
at the time of water seepage, and obvious up and down fluctuations exist before water seepage and
fracture. (4) Based on the Pauta Criterion, by analyzing the values of VDIIT during the experiment,
the early warning threshold of sandstone fracture seepage is determined to be 0.00559. The research
finding can provide an experimental and theoretical basis for the early warning of flood accidents in
underground rock engineering.

Keywords: coupled stress-hydro effect; uniaxial loading; infrared radiation; warning threshold;
non-destructive monitoring

1. Introduction

With the rapid development of social construction, many cities worldwide have
taken the development and utilization of underground space as an important way to

Sustainability 2022, 14, 16454. https://doi.org/10.3390/su142416454 https://www.mdpi.com/journal/sustainability
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solve the population, resource and environmental crises and implement the concept of
sustainable development [1–9]. However, the development of underground space and
other geotechnical engineering is often restricted by groundwater [10–17]. Because water
can cause changes in the physico-chemical properties of rocks, it is generally regarded as
one of the most active and direct factors in geotechnical engineering disasters [18–25]. The
rock in the engineering site is usually subject to the double action of water pressure and
external force. Therefore, it is imperative to explore the dynamic law of rock fracture and
seepage under the coupled stress-hydro effect and carry out the prediction research of water
damage accidents to reduce the occurrence rate of geotechnical engineering accidents.

It has been found, that when the rock breaks, it usually releases electromagnetic
energy [26–31], elastic energy [32–41], thermal energy [42–44], acoustic energy [45–51],
and other kinds of energy [52]. Hence, generating a variety of disaster warning methods
related to rock mass, such as infrared radiation method [53,54], electromagnetic radiation
method [55,56], acoustic emission method [57,58], potential method [51,59] and microseis-
mic method [60,61]. Among these, as a non-contact method, the infrared radiation method
has the advantages of high accuracy [62], strong reliability [63], simple operation [64], and
visualization [65], etc., which provides a convenient and accurate early warning method
for rock fracture seepage monitoring under coupled stress-hydro effect.

Many scholars have recently studied the infrared radiation characteristics of rock failure
and instability. Wu et al. [66] believe that there are abnormal changes in the infrared radiation
image and temperature curve before rock failure. Lin et al. [67] found that the evolution law
of average infrared radiation temperature is closely related to rock porosity, and the process of
rock failure can be inferred from this. Huang et al. [68] found that the surface emissivity of
loaded rock varies linearly with stress through experiments. Cao et al. [69] proposed a new
index, “load-unload response ratio (LURR)” based on the rock failure characteristics under
cyclic loading and unloading conditions. Zhang et al. [70] conducted some experiments on
preflawed sandstone to investigate the infrared radiation characteristics during failure process
and presented a new quantitative model based on Verhulst inverse function.

In addition to the above research on the infrared radiation characteristics of dry rocks,
some scholars have conducted relevant experiments with water-bearing rocks. Cao et al. [71]
carried out uniaxial loading tests of sandstone with different water content and thus proposed
a quantitative analysis index of energy dissipation infrared radiation ratio, which was applied
to predict and identify the failure of saturated rock. In addition, his team also found that rock
saturation weakened its mechanical properties and amplified the changes in infrared radiation
during the bearing process. According to the experimental results, they established a uniaxial
loading constitutive model of rock based on infrared radiation [72]. Cai et al. [73] studied the
infrared radiation characteristics of sandstone, granite, and marble with different water saturations
during loading. They considered that the increment of infrared radiation has a great relationship
with rock samples’ water content and compressive strength. Shen et al. [74] proved through
experiments that the maximum infrared radiation temperature of rock samples presents different
characteristics at different stages of loading.

However, because many rock masses in the project site are under the simultaneous
and continuous action of water pressure and external force, the above research cannot fully
meet the requirement of real engineering application. Therefore, this paper innovatively
designed the infrared radiation observation experiment of sandstone failure seepage under
the coupled stress-hydro effect and established the quantitative characterization method of
sandstone failure seepage through the infrared radiation response indicators, i.e., AIRT, IRV,
and VDIIT. After that, the infrared radiation warning threshold of sandstone fracture and
seepage was determined. The research results can provide an experimental and theoretical
basis for the early warning of flood accidents in geotechnical engineering, e.g., tunnels,
mines, and underground reservoirs.
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2. Experimental Design
2.1. Experimental System and Equipment

The infrared radiation observation experiment for sandstone fracture and seepage
under coupled stress-hydro effect, consists of a pressure control system, a hydraulic loading
system, a digital camera system, and an infrared monitoring system. The influence of
coupled stress-hydro effect on the infrared parameters of the sandstone surface is analysed
through the collection of various parameters during the experiment; the initial position
and damage characteristics of sandstone seepage fracture under various conditions are
investigated. Figure 1 depicts the experiment system schematic diagram.
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Pressure control system

This test uses the MTS C64.106 electro hydraulic servo universal testing equipment
as the pressure control system, as shown in Figure 2. In Figure 1, the press may display
the test parameter curve dynamically and record the axial stress, strain, displacement, and
load in real-time. The sampling frequency is 1000 Hz, the maximum static load is 1000 kN.
The loading, displacement, and deformation accuracy are within 0.5%.
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Digital camera system

The Canon 600D SLR camera is used in this experiment to record the images. It has an
18 million pixel CMOS sensor, a digital 4 image processor, a 3-inch reversible LCD screen,
full HD video recorder. The camera will record the entire experiment and be utilised to
watch the sample fracture and water seepage process in the later stages of the experiment.

Hydraulic loading system

Pull a steel pipe out of the drilled sandstone, fill it with water, connect the pressure
gauge, and link it to the air pump interface, before strong glue using to secure the perforated
iron sheet to the top of the sandstone. An air pump compression technique is used to verify
that the internal water pressure reaches and maintains a specific value during the test. The
primary air compressor (Figure 3) characteristic parameters are listed in Table 1.
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Table 1. Main characteristic parameters of the air compressor.

Item Parameter Item Parameter

Size 45 × 19 × 45 cm Speed 2800 r/min
Matching power 980 W Rated exhaust pressure 0.7 MPa
Overall weight 14 kg Volume of air storage tank 8 L

Infrared observation system

An infrared thermal imager and its professional control system comprise the infrared
radiation observation system, as shown in Figure 4. The infrared thermal imager is an
uncooled infrared thermal imager with the type varioCAM HD head 880 from infra Tec,
Dresden, Germany. The essential characteristics and performance of the infrared thermal
imager are described in Table 2.
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Table 2. Main Characteristic Parameters of Infrared Thermal Imager System.

Item Parameter

Thermal sensitivity 0.02 ◦C;
Thermal resolution 50 mK

Measuring band 7.5~14 µm
Lens F1.0

Standard calibration range −40~1200 ◦C
Pixel 2048 × 1536

High acquisition rate 240 Hz

2.2. Sample Preparation

The rock samples used by the authors were taken from the coal mine site and made
by cutting a whole rock. First, the authors preliminarily screened the processed rock
samples and eliminated the rock samples with surface cracks. Next, the authors used the
U510 non-metallic ultrasonic detector to accurately measure the wave velocity of the sample.
During the process, the probe should be kept in direct contact, and the probe should be
in close contact with the sample through the couplant. At the same time, the authors
eliminated the samples whose wave velocity deviated by more than 10% to ensure the
maximum elimination of the dispersion of rock samples. The representative samples of
cubic shape had dimensions 100 mm × 100 mm × 100 mm. To provide a space for water
injection in the sandstone, drill a sandstone cylinder with a diameter of 50 mm and a depth
of 65mm, at the centre of the sample surface with a drilling machine (see Figure 5a). After
that, a steel pipe with an exterior diameter of 20 mm, an inner diameter of 18 mm, and a
length of 200 mm (see Figure 5b) and an iron square piece of specification 80 mm, shall be
used (see Figure 5c). Keep the drilled sandstone, steel pipe, and perforated iron sheet in
a ventilated area for 24 h to allow the strong adhesive to set completely. Simultaneously,
the small space at the three-part junction must be filled with strong glue and sealed to
guarantee that the processed sample does not leak (see Figure 5d).
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To ensure the accuracy of the experimental monitoring data, the flatness parameters of
the rock sample surface are set as follows: the roughness of the rock sample surface is less
than 0.1 mm, and there is no bulge and depression. The side of the rock sample shall be
perpendicular to the upper and lower end faces, with a deviation of less than 0.05◦. Rock
samples are natural samples without special treatment such as drying or soaking. The
rock sample shall be put into the laboratory one day before the experiment to ensure that
the temperature of the rock sample is consistent with the temperature of the experimental
environment. That is to prevent the accuracy of the infrared radiation response information
from being disturbed by the heat transfer during the experiment.

The test is divided into 4 groups, with 3 samples in each group, 12 in total. Four
different water pressures of 0 MPa, 0.15 MPa, 0.3 MPa and 0.45 MPa are, respectively, used
to pressurize. The experimental samples grouping details are given in Table 3.

Table 3. Experimental grouping.

Water
Pressure

Sample
Number

Water
Pressure

Sample
Number

Water
Pressure

Sample
Number

Water
Pressure

Sample
Number

0 MPa
0–1

0.15 MPa
0.15–1

0.3 MPa
0.30–1

0.45 MPa
0.45–1

0–2 0.15–2 0.30–2 0.45–2
0–3 0.15–3 0.30–3 0.45–3

2.3. Experimental Process

Figure 1 depicts the pressure control system, water pressure loading system, digital
camera system, and infrared observation system. The infrared observation instrument and
digital camera are placed 1 m in front of the sample to enable observation and recording. The
steel pipe is used to fill the interior chamber of the loaded sample with water sample, and the
steel pipe is connected to the air compressor via the rubber pipe to assist later pressurisation.
Place the loaded specimen on the presser pressure plate. Given the poor bearing capacity of
the rock sample’s cavity, a specification of 100 mm (length)× 35 mm (width)× 30 mm (height)
metal cushion block is placed on the solid part of the rock sample and its center is aligned
with the loading center, as illustrated in Figure 6. Simultaneously, the reference sample used
for noise reduction must be put and kept on the loaded sample’s side, and its height must be
consistent with that of the loaded sample.
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After arranging the necessary equipment and samples, each experimenter is respon-
sible for configuring the storage directory and other basic settings for the press, infrared
thermal imager, and other equipment, with a 0.2 mm/min loading rate. After that, the
air compressor increases the water pressure to the desired value, and the valve is closed
to guarantee that the internal water pressure of the rock sample remains constant. After
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setup, the infrared thermal imager, digital camera, press, and other equipment will begin
to operate in unison under the unified password. It is prohibited for laboratory staff to
move around and close the laboratory windows, curtains, and all lighting sources that may
create radiation interference during the information gathering procedure of the infrared
thermal imager.

After the test, all equipment shall stop working at the same time, and the test personnel shall
properly save the data of all equipment, and take photos of the fracture morphology of the rock
sample. After cleaning the test bench, place the next sample to continue the experiment.

2.4. Experimental Data Processing Method

In the infrared radiation information collection system, the infrared thermal imager
maps the rock samples’ physical and structural changes during the experimental procedure
to the infrared radiation temperature field. It shows in the form of infrared thermal images.
When the difference between the background temperature and the temperature of the
rock sample is large, the abnormal features of the infrared thermal picture are not visible
(as shown in Figure 7), so the infrared radiation data of the rock sample must be extracted
again in a small range.
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A rectangular area (as illustrated in Figure 7) is constructed along the whole sample
section in the infrared radiation acquisition system, and the infrared radiation response
information of the rectangle area is then retrieved and preserved in the form of a series
of two-dimensional matrices. The resampled infrared radiation data of frame P is a two-
dimensional matrix with the following expression:

fp(x, y) =




fp(1, 1) fp(1, 2) . . . fp
(
1, Ly

)

fp(2, 1) fp(2, 2) . . . fp
(
2, Ly

)
...

...
. . .

...
fp(Lx, 1) fp(Lx, 2) . . . fp

(
Lx, Ly

)


 (1)

where x represents the row number of the matrix fp(x, y) and y represents the column
number; Lx and Ly are the maximum number of rows and columns of x and y, respectively.

According to the obtained temperature matrix, the following parameters can be calculated:

(1) Average infrared radiation temperature (AIRT) and ∆Average infrared radiation
temperature (∆AIRT)
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AIRT can directly reflect the bearing rock surface’s overall infrared radiation field
temperature. The average infrared radiation temperature (AIRT (p)) of the pth frame in the
original infrared radiation thermal image sequence is expressed as:

AIRT(p) =
1
Lx

1
Ly

Lx

∑
x=1

Ly

∑
y=1

fp(x, y) (2)

Since the radiation interference of the loaded sample and the reference sample is
almost synchronous in time and space, the AIRT of the loaded sample can be subtracted
from the AIRT of the reference sample to obtain the denoised ∆AIRT. This can be calculated
by using Equation (3):

∆AIRT(p) = AIRT(p)−AIRT′(p) (3)

(2) Infrared radiation variance (IRV)

The physical meaning of IRV is the changing trend of the dispersion degree of the
temperature field in the original infrared radiation thermal image sequence diagram. The
variance (IRV (p)) of the original infrared radiation thermal image sequence of the pth frame
is expressed as:

IRV(p) =
1
Lx

1
Ly

Lx

∑
y=1

Ly

∑
x=1

[
fp(x, y)−AIRT(p)

]2 (4)

(3) Variance of differential infrared image temperature (VDIIT)

The physical meaning of VDIIT is the variation trend of the dispersion degree of the
temperature field in the differential infrared radiation thermal image sequence diagram.
The variance (VDIIT (P)) of the differential infrared radiation thermal image sequence of
the pth frame is expressed as:

VDIIT(p) =
1
Lx

1
Ly

Lx

∑
y=1

Ly

∑
x=1

[
ϕp(x, y)−AIRT(p)

]2 (5)

where ϕp(x, y) = fp+1(x, y)− fp(x, y).

3. Experimental Results and Analysis
3.1. AIRT Response Characteristics of Sandstone Seepage

The loaded specimen ∆AIRT value has prominent change characteristics, mainly showing
an upward-downward trend. According to the inflection point (breakpoint) of the correspond-
ing load curve, the whole process can be divided into four stages: (I) compaction stage, (II)
linear elastic stage, (III) fracture development stage, and (IV) post peak failure stage.

(1) sample 0–1

Figure 8 depicts the ∆AIRT-load curve for sample (0–1). At 0 s, the ∆AIRT was−0.147 ◦C.
In the compaction stage, it showed a fluctuating upward trend. The sample enters the linear
elastic stage at 340.17 s, at which the corresponding load is 54.27 kN, the ∆AIRT is −0.100 ◦C,
which is 0.047 ◦C higher than that at the beginning. In the elastic stage, the ∆AIRT also showed
an upward trend, and the temperature rise rate was almost the same as in the previous stage.
Before and after 697 s, the load curve fluctuated, decreasing from 233.32 kN to 215.96 kN. At
this time, the corresponding ∆AIRT was −0.043 ◦C, which indicates that the sample was at
the end of the linear elastic stage, and the temperature increased by 0.057 ◦C compared with
the initial stage. In the next fracture development stage, with the increase of the load curve,
the ∆AIRT begins to decrease. At 796.19 s, the load curve has a peak value. After that, it
rapidly decreases, which means the beginning of the post-peak failure stage. At this time, the
corresponding ∆AIRT is−0.056 ◦C. At 802.80 s, the end of the experiment, the load decreased
to 215.86 kN, and the ∆AIRT fell to −0.059 ◦C.
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Figure 8. Experimental data of sample 0−1. Figure 8. Experimental data of sample 0–1.

(2) sample 0–3

Figure 9 depicts the ∆AIRT-load curve for sample (0–3). The ∆AIRT at 0 s is 0.056 ◦C,
it rises slowly at the compaction stage. In the range of 100.48 s to 120.35 s, ∆AIRT jumps
from 0.063 ◦C to 0.081 ◦C, increasing by 0.018 ◦C. During this period, the load has not
exceeded 2 kN, and the heat generation is caused by friction of particles in the rock sample.
At 454.41 s, the bearing rock sample enters the linear elastic stage. At this time, ∆AIRT was
0.109 ◦C, which is 0.053 ◦C higher than the initial stage. In the linear elastic stage, ∆AIRT
continued to rise. At 758 s, the load curve suddenly drops, and the drop amplitude reaches
13 kN. The ∆AIRT value was 0.134 ◦C, and the whole stage increased by 0.025 ◦C. The
loaded rock sample thus enters the fracture development stage. In this stage, the load curve
drops again at about 836 s, with a magnitude of 9 kN. At 919.91 s, the load curve reached
the peak of 202.46 kN, followed by a sudden drop, which is a sign of the beginning of the
post-peak failure stage. So far, the temperature drop of the whole fracture development
stage is 0.057 ◦C. At the post-peak stage, the load curve and ∆AIRT both decreased rapidly,
and the ∆AIRT fell to −0.041 ◦C.
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(3) sample 0.30–2

Figure 10 depicts the ∆AIRT-load curve for sample (0.30–2). The initial value of ∆AIRT
was −0.671 ◦C. In the compaction stage (0 s~193.05 s), the load rises to 51 kN and ∆AIRT
rises to −0.646 ◦C. In the linear elastic stage (193.05 s~524.76 s), the load curve and ∆AIRT
showed a nearly linear rising trend, in which the load increased to 210.04 kN, ∆AIRT rose
to −0.601 ◦C. During the whole fracture development stage (524.76 s~637.80 s), the load
increased from 210.04 kN to 253.37 kN, which is also the peak load. During this period, the
∆AIRT was stable, and only slightly increased by 0.011 ◦C. After the peak of the load curve,
the ∆AIRT and the load have a sudden drop trend, wherein ∆AIRT dropped to −0.773 ◦C,
which overall decreased by 0.183 ◦C.
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Figure 11 shows the ∆AIRT’s difference of the three samples at each stage. It revealed
that in the compaction stage, the water body is confined to the interior of the rock sample.
Its control effect on the ∆AIRT has not yet appeared, so the temperature change trend of
the rock sample surface is dominated by the temperature rise caused by loading. In the
linear elastic stage, the original fracture in the rock sample is gradually closed in the previous
stage, the internal water body is difficult to seep out, so the surface temperature of the rock
sample is still rising. In the fracture development stage, the internal cracks of the rock sample
begin to grow, and gradually develop into macroscopic cracks, which is visible to the naked
eye. The cracks begin to meet and penetrate, and the sample volume expands. In this stage,
as the water begins to seep out along the developed fracture, its cooling effect on the rock
sample surface begins to appear, in which 0–1 sample is cooled by 0.013 ◦C and 0–3 sample
is cooled by 0.067 ◦C. Although the 0.30–2 sample still has a small temperature rise of
0.011 ◦C, the temperature rise trend has been significantly suppressed. In the post-peak failure
stage, the load curve has decreased significantly since the macro fracture surface was formed.
The water in the rock sample flows out in large quantities, resulting in a significant cooling
effect. Among them, 0–1 sample is cooled by 0.003 ◦C, 0–3 sample is cooled by 0.118 ◦C, and
0.30–2 sample is cooled by 0.183 ◦C.
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In this experiment, when the internal water pressure is not more than 0.30 MPa, the
water seeps out after the crack is developed, thus causing the cooling phenomenon. When
the water pressure is 0.45 MPa, the internal water body seeps out in the linear elastic stage,
thus, the ∆AIRT value changes from up to down. For rock samples with a water pressure of
0.45 MPa, the analysis of ∆AIRT changes will be given in combination with IRV and VDIIT.

3.2. The Functional Relationship between ∆AIRT and Load before Sandstone Seepage

By plotting the ∆AIRT-load curve of each rock sample, it can be found that when the
internal water pressure is not more than 0.30 MPa, the load and ∆AIRT show a certain
positive relationship in the compaction stage and the linear elastic stage, that is ∆AIRT
increases with the increase of load. The 0–2 sample, 0–3 sample and 0.30–2 sample with
typical experimental results are selected for analysis.

To further explore the functional relationship between ∆AIRT and load in this process,
the ∆AIRT and load data of these rock samples in the compaction and linear elastic stages
can be extracted. The function fitting can be performed according to the time parameters as
shown in Figure 12. After several fitting times of, it was found that the trend of the power
function model is consistent with the corresponding relationship point. The functional
expression of ∆AIRT and load (L) is:

∆AIRT = aLb (6)

where, ∆AIRT is the average infrared radiation temperature difference (◦C), L is the axial
load (kN), a and b are coefficients.
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Figure 12. Data of each sample in the compaction and elastic stages. (a) 0−2 sample; (b) 0−3 sample; 
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Figure 13 depicts a fitting curve of ΔAIRT-load of each sample. The maximum 
standard deviation of the fit curve for each sample is only 0.06429, and the minimum value 
of the function correlation coefficient is 0.8924, which indicates that the model selection 
and fit effect are ideal. The details about each sample are given in Table 4. 

  

Figure 12. Data of each sample in the compaction and elastic stages. (a) 0–2 sample; (b) 0–3 sample;
(c) 0.30–2 sample.

Figure 13 depicts a fitting curve of ∆AIRT-load of each sample. The maximum standard
deviation of the fit curve for each sample is only 0.06429, and the minimum value of the
function correlation coefficient is 0.8924, which indicates that the model selection and fit
effect are ideal. The details about each sample are given in Table 4.
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Table 4. Function fitting parameters of ∆AIRT and load of some samples.

Sample Function Correlation Coefficient A B Standard
Deviation

0–2 0.9063 −0.36895 −0.09505 6.429%
0–3 0.9623 0.06149 0.15406 2.705%

0.30–2 0.8924 −0.70989 −0.02894 2.517%

3.3. IRV Response Characteristics of Sandstone Seepage

Figure 14 depicts the ∆AIRT-load-IRV curve of 0.45–2 sample. It revealed that in the
compaction stage (0 s−217.15 s), the ∆AIRT of 0.45–2 sample shows an upward trend,
rising from−0.013 ◦C to 0.057 ◦C, increasing by 0.070 ◦C, and the corresponding load curve
bends upward to 36.98 kN. As the water body inside the rock sample has not yet seeped
out, the control effect on the surface temperature of the rock sample has not yet appeared.
The temperature change trend is mainly dominated by the temperature rise caused by
uniaxial loading, and the IRV has been stable between 0.013 and 0.016.
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through the original fissures in the rock and the micro pores between the particles around 
340 s (see Figure 15). At the same time, the load value reached 80.41 kN, and remained in 
a linear rising state, while the AIRT and IRV curves exhibited significant changes. For 

example, at 339.47 s, the AIRT curve attained a peak value of 0.089 °C before beginning to 
fall. At 338.81 s, the IRV remained stable at 0.016, but at 342.78 s, the IRV pulse jumped at 

0.060 before returning to 0.015 at 343.44 s. It can be seen that when the water pressure is 
strong (enough to cause a water seepage point and form a water seepage surface in a short 
time), the inflection point of ΔAIRT from rising to falling and the pulse type jump peak of 
IRV can be used as an early warning signal for water seepage (water inrush) of rock 

samples. 

Figure 14. IRV of 0.45–2 sample and other related data.

Under 0.45 MPa water pressure, the water in the rock sample escapes and seeps through
the original fissures in the rock and the micro pores between the particles around 340 s (see
Figure 15). At the same time, the load value reached 80.41 kN, and remained in a linear rising
state, while the AIRT and IRV curves exhibited significant changes. For example, at 339.47 s,
the AIRT curve attained a peak value of 0.089 ◦C before beginning to fall. At 338.81 s, the IRV
remained stable at 0.016, but at 342.78 s, the IRV pulse jumped at 0.060 before returning to
0.015 at 343.44 s. It can be seen that when the water pressure is strong (enough to cause a
water seepage point and form a water seepage surface in a short time), the inflection point
of ∆AIRT from rising to falling and the pulse type jump peak of IRV can be used as an early
warning signal for water seepage (water inrush) of rock samples.
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Figure 15. Water seepage diagram of 0.45–2 sample before and after 340 s.

After water seepage (water inrush) of rock samples, the ∆AIRT value drops rapidly.
During the period from 339.47 s to 560.24 s, the ∆AIRT decreased from the peak value of
0.089 ◦C to −0.039 ◦C, and the cooling range was as high as 0.128 ◦C. While the IRV also
increased from 0.015 to about 0.034 and maintained stable instability. During this period,
the load curve has been in a linear rising state, reaching 179.46 kN at the end of the stage.

In the fracture development stage (560.24 s–638.80 s), IRV appears a step-type jump
compared with the previous stage. In the later stage of the last linear elastic stage, IRV
was once stable at around 0.034. Though the appearance of first peak of the load curve,
the IRV curve rises rapidly, and remains constant at about 0.045 at this stage. This can be
understood that the IRV response characteristics of the rock samples entering the fracture
development stage. During this period, the load curve decreased from 179.46 kN to about
165.42 kN, and ∆AIRT was still in a downward trend.

In the post-peak failure stage (638.80 s–711.71 s), IRV continued to rise in stages. IRV,
which was previously stable at 0.045 in the fracture development stage, rose rapidly to
0.055 and maintained a stable fluctuation trend. During this period, the load curve reached
the peak of 168.61 kN and began to drop, while the ∆AIRT value was stable at −0.079 ◦C.

Figure 15 is an image recording of water seepage of the 0.45–2 sample before and after
340 s. The rock sample’s observation surface is dry at 338 s, and a wet water point appears
at the upper part of the rock sample, that is, the water seepage point. The seepage point is
the starting point of the seepage process. After the water seepage, the wet area centered on
the water seepage point began to expand. With time, it mainly expanded to the lower part
of the rock sample and rapidly formed water droplets to slide down, which also affected
the changes in ∆AIRT curve and IRV curve.

3.4. VDIIT Response Characteristics of Sandstone Seepage

Figure 16 is the ∆AIRT-load-VDIIT curve of the 0.45–2 sample. Figure 16 revealed the
VDIIT of this rock sample is always around 0.0040 in the early stage of the experiment.
However, between 250.20 s and 252.28 s, VDIIT jumped from 0.0040 to 0.0062, and then
rapidly decreased to 0.0016. This point can be used as a precursor of water seepage of rock
samples. After a development period, VDIIT suddenly increased to 0.0130 at 340.13 s, then
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jumped to 0.0408 at 342.78 s. This time point also corresponds to the inflection point of
AIRT from rising to falling and the water seepage phenomenon, as shown in Figure 15.
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Figure 16. VDIIT of 0.45−2 sample and other related data. 

 
Figure 17. Macro crack development and fracture water seepage process of 0.45–2 sample before 
and after 552 s. The red circle represents the location of fracture development. 

Figure 16. VDIIT of 0.45–2 sample and other related data.

The VDIIT also shows abnormal fluctuation when the rock sample breaks and water
seep. At 551.27 s, VDIIT jumps from 0.0043 of the previous frame to 0.0063, then drops to
0.0017 at 552.60 s. It can be seen from the image records that this time point corresponds to
the macro crack development and fracture water seepage process of the rock, as shown in
Figure 17.
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Figure 17. Macro crack development and fracture water seepage process of 0.45–2 sample before and
after 552 s. The red circle represents the location of fracture development.

Figure 17 shows the macro crack development and fracture in the water seepage
process of 0.45–2 sample before and after 552 s. At 551 s, longitudinal cracks appeared in
the middle of the rock sample observation surface, and water flowed out at the lower part.
At 552 s, a VDIIT fluctuated when longitudinal water seepage growth also appeared, at the
left of the center upper part. Over time (555 s–560 s), the two seepage zones developed,
expanded, and penetrated each other, forming a Y-shaped macro fracture. During this
period, the ∆AIRT also rapidly decreased to 0.013 ◦C.
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In order to reflect the mutation characteristics of VDIIT of the sample, the mutation
threshold of VDIIT is determined based on the Pauta Criterion, and the discrimination
criteria can be calculated using Equation (7).

|ε− µ| > 3σ (7)

where: ε is the VDIIT value, µ is the average value of VDIIT, σ is the standard deviation of
VDIIT. The infrared radiation threshold is µ± 3σ.

For example, the Sandstone sample 0.45–2 mutation threshold of VDIIT of the sand-
stone sample based on Pauta Criterion is 0.00798. It can be seen from Figure 16 that the
VDIIT index based on the Pauta Criterion can effectively identify the VDIIT mutation in the
process of water seepage (water inrush), which can be used as an early warning of disasters.
Table 5 shows the mutation threshold statistics of all sandstone samples. The average value
of the upper threshold of the mutation threshold is 0.00627, the maximum value is 0.00798,
and the minimum value is 0.00559. When water seepage (water inrush) occurs in the rock,
the difference in the infrared radiation temperature matrix increases, which makes VDIIT
suddenly increase. Therefore, when identifying VDIIT mutations, it is only necessary to
consider the upper threshold. In the application process, the minimum value of mutation
threshold 0.00559 should be taken as the early warning threshold to ensure the accuracy of
early warning.

Table 5. Water seepage (water inrush) threshold of sandstone samples.

Sample Upper Threshold Lower Threshold

0–1 0.00559 0.00367
0–2 0.00683 0.00455
0–3 0.00566 0.00368
0.15–1 0.00644 0.00401
0.15–2 0.00561 0.00383
0.15–3 0.00697 0.00487
0.30–1 0.00658 0.00434
0.30–2 0.00654 0.00427
0.30–3 0.00567 0.00362
0.45–1 0.00575 0.00376
0.45–2 0.00798 0.00048
0.45–3 0.00562 0.00360
Average value 0.00627 0.00372

4. Discussion

The rock, before uniaxial loading, contains a certain amount of pores, air and water. In
the process of uniaxial loading, the internal stress of rock mass will increase, accompanied
by pore compression, crack development, fracture and water seepage.The coupling effect
of water pressure and stress leads to rock mass fracture, and the crack development will
promote the seepage of water in the rock. The change of energy (∆E) on the rock surface
under coupled stress-hydro effect mainly includes the following five parts:

∆E = ∆E1 + ∆E2 + ∆E3 + ∆E4 + ∆E5 (8)

∆E1 is energy that the gas escape process carries in the primary pore. It has been
confirmed through laser Raman spectroscopy analysis technology that CH4, CO2, O2 and
other gases are in most rocks’ pores [75]. Before the pores are damaged, the internal gas
exists in the interior or surface of the pores in a free or adsorbed state. Under the action
of external load, the pores are compressed or even destroyed, resulting in the escape of
internal gas. In the process of gas escape, some energy will be taken away. Therefore,
generally, ∆E1 < 0.
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∆E2 is the energy generated by friction heat generation. In the rock’s interior, the
friction behavior will occur between the pores, fractures, joints and rock particles developed
in all directions. Two factors affect the friction heat generation process: the positive pressure
on the contact surface and the friction coefficient. When the friction coefficient is constant,
the greater the normal stress on the contact surface, the greater the friction force, and the
more work is done to overcome the friction force in the process of crack and particle sliding,
thus causing the temperature of the contact surface to rise, so ∆E2 > 0.

∆E3 is the energy generated by the thermoelastic effect. The change of temperature rise
of the loaded sample is in direct proportion to the change of stress, and the expression is:

∆T/T = K0∆σ (9)

where: T is the absolute temperature of the solid unit; ∆T is the temperature change; ∆σ is
the variation of the principal stress sum, and K0 is the thermal elastic coefficient.

In the process of uniaxial loading, the principal stress increases with loading, so the
sample temperature rises, ∆E3 > 0.

∆E4 is the heat generated by the expansion of original pores, fractures, and joints in
the rock and the development of new fractures. With the increase of external load, internal
pores and joints will shrink and close. With further loading, the pores will collapse, and
the original fractures and joints will further expand, penetrate and merge, accompanied by
new fractures. The increase of heat accompanies this process, so ∆E4 > 0.

∆E5 is the energy loss caused by the water body escaping. With the development,
expansion, and penetration of rock fracture, the water in the sample begins to seep out.
Water’s specific heat capacity and thermal inertia are larger than rock’s. The water has an
evaporation effect, the temperature of water under the same conditions is lower than that
of surrounding objects, and the water seepage part shows an obvious low-temperature area
in the thermal image. With the increase of water seepage, the temperature of rock sample
decreases continuously, so ∆E5 < 0.

The whole process of the experiment, includes the above five energy changes. With
the difference in stress state, damage degree and other conditions of rock samples, the five
changes work together to cause the rise and fall of rock sample temperature.

In the process of fracture and water seepage caused by rock mass compression, the
seepage of water in the rock mass will lead to a decrease in infrared radiation temperature,
while the thermal elastic effect, friction thermal effect, and crack propagation thermal effect
will lead to the increase of infrared radiation temperature in the rock mass. Because the
temperature drop of water seepage is higher than the temperature rise of rock fracture,
the infrared radiation temperature of the rock will drop rapidly when the rock is near
the fracture seepage. Infrared radiation has a strong sensitivity to water, which also pro-
vides the feasibility for monitoring the rock water seepage (water inrush) of underground
engineering with infrared radiation.

Figures 15 and 17 show the whole process of sandstone before (fracture and water
seepage) and after macro fracture development and water seepage, respectively. The
microcracks on the surface of rock samples under uniaxial loading are mainly tensile cracks.
For example, the microcracks on the surface of rock 0.45–2 sample first appear in the middle
and late stages of loading, and gradually expand with the increase of stress, eventually
forming large-scale fracture and water seepage. The authors believe this is related to the
fact that the sandstone selected in this test is hard brittle sandstone. Hard rock has no
obvious post-peak stage than soft rock samples such as mudstone. It is generally destroyed
immediately after the peak strength, accompanied by sound. The hard rock stress-strain
curves show a rapid decline after the peak stress. This type of rock strength is higher than
soft rock. Most rock samples are axially split; the failure surface is nearly parallel to the
axial tension failure. The specimen will not be damaged immediately after axial splitting,
but also has a certain bearing capacity until a through tensile failure crack is formed in
the rock. However, the water seepage in the rock sample impacts the rock’s failure form;
that is, a small number of rock samples appear shear microcracks on the surface in the
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middle and late stages of loading, and then the water seeps out along the shear microcracks.
This is because the water seepage in the rock sample has a lubricating effect on the rock
particles, reduces the friction force of particle crystals for friction sliding, and thus promotes
the growth of primary cracks and the generation of new cracks (tensile cracks and shear
cracks). The propagation of primary cracks can induce the generation of new cracks,
and local damage is easy to occur, eventually leading to shear microcracks in a few rock
samples. However, the seepage effect of water in the rock mass is affected by the rock mass
microstructure. The rock microstructure in different areas of underground engineering is
different, even in different regions of the same rock. In future research, the authors will
further study the seepage effect of water in the rock mass and the corresponding infrared
radiation characteristics, in combination with the microstructure characteristics of the rock
mass to finally realize the monitoring and early warning of water seepage (water inrush) in
underground engineering.

5. Conclusions

To explore the infrared radiation changes in the process of sandstone fracture and
water seepage and determine the corresponding infrared radiation warning threshold, this
study designed the infrared radiation observation experiment of sandstone failure seepage
under the coupled stress-hydro effect and evaluated the corresponding relationship among
load, AIRT, IRV, and VDIIT during the experiment. The following conclusions were drawn:

(1) During the experiment, the ∆AIRT of the sample mainly showed an upward-downward
trend. Among them, the compaction stage and the linear elastic stage are both rising,
the fracture development stage is stable or falling, and the post-peak failure stage has
an obvious downward trend.

(2) For the sample with internal water pressure lower than 0.30 MPa, ∆AIRT at the
compaction and linear elastic stage has a strong power function relationship with
the load. The expression is ∆AIRT = aLb, where ∆AIRT is the difference between
the infrared radiation average temperature of the loaded sample and the reference
sample, L is the load, and a and b are the undetermined coefficients. The correlation
coefficient of the function can reach above 0.8900, which has a strong reference value.

(3) The IRV curve has a pulse jump at the time of water seepage of the rock sample, and
a step jump at the fracture development and the post-peak failure stages, respectively.
The VDIIT curve has a pulse jump at the time of water seepage, and there is an obvious
up and down fluctuation before water seepage and fracture.

(4) Based on the Pauta Criterion, a VDIIT mutation threshold for rock fracture seepage is
proposed, which is 0.00559.
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Abstract: The firing pattern of blastholes influences the geometric aspects of a blast design in terms
of change in blasting burden and spacing. This in turn changes the effective stiffness of a blasthole
and confinement of the explosive and aids in better fragmentation. However, during the blasting,
the fragments tend to collide and further fragment the rock. In comparison with other patterns, the
V-type firing pattern increases the chances of collision between the fragments during flight. The
process is scantly documented and accordingly field experiments were conducted using three firing
patterns, viz., line, diagonal, and V-type, in a mine with minor variation in rock factor and minor to
moderate changes in blast design variables. Sixteen blast design variables such as burden, spacing,
charge per hole, in-hole charge density, etc. along with firing pattern were considered for the analysis
and fragmentation modeled with the help of surface response analysis and artificial neural networks.
The analysis revealed that there is a significant influence of firing patterns on fragmentation. The
V-type pattern showed significant reduction in fragment sizes that can be ascribed to in-flight collision
processes. A surface response model was developed using advanced ANOVA and resulted in an
adjusted R2 and RMSE of 0.89, 0.025, respectively. Further, modeling with ANN was attempted that
showed better results than ANOVA with R2 and RMSE of 0.96 and 0.040 in training, and 0.884 and
0.049 in validation tests. Since, diagonal and V-type patterns have similar design parameters, the
reduction in fragment size in the former pattern can be ascribed to the collision of rock fragments
during their flight in blasting.

Keywords: blasting; V-type firing pattern; collision fragmentation; RSA; ANN

1. Introduction

The objectives of blasting in mining are to ease the excavation operation by obtaining
maximum yield through optimum fragment sizes while minimizing the adverse impacts
of blasting such as blast-induced ground vibration, air overpressure, flyrock, and noise.
To obtain the desired blast results, various blast design variables and factors, viz., burden,
spacing, stemming length, type of explosive, powder factor, stiffness ratio, firing pattern,
etc. are optimized as per the site-specific requirement. The end purpose of rock blasting
in limestone mines, where investigations were carried out, is to produce the desired size
feed for a crusher. Fragments produced by blasting should not only be small enough for
economic loading of equipment, but should also pass easily through the crusher to realize
equipment productivity [1]. To achieve the desired rock fragmentation by blasting, an
effective way of determining the blast design variables should be selected [2]. There is
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ample evidence of the role of fragmentation on the overall mine–mill fragmentation system
performance [3,4]. The efficiency of the system through fragmentation optimization is
documented by several researchers [5–10] and can be achieved only when fragment sizes
obtained from the blasting are measured. Therefore, fragmentation measurement of blasted
muck piles is essential [11].

To reduce the production cost, the blast design should be revisited to match the cost of
the mine–mill fragmentation system (MMFS) that includes unit operations such as drilling,
blasting, loading, hauling, or conveying and crushing of primary or secondary nature [4]. In
open pit mines, the cost of drilling and blasting operations covers approximately 15–20% of
the total mining cost [12–14]. An increase in blasting cost reduces the cost of the downstream
operations, viz., loading, hauling, crushing, and boulder breaking [3]. This requires the
determination of an optimum fragment size range so that the cost of MMFS is optimized. If
increasing the cost of blasting operations does not reduce the cost of successive operations,
it will not impact the overall economics of the system.

Methods such as blast design evaluation or auditing lead to changes in main blast
design variables such as burden, spacing, and stemming, hence, resulting in improved
fragmentation and better system performance. One such method involves a change in firing
sequence that can be considered as another critical blast design requirement for improving
the rock fragmentation [15].

A proper design of the firing pattern, i.e., the delay required between hole to hole
and row to row, plays a vital role not only in reducing fragmentation size but also helps to
reduce ground vibration as well as back break. To maintain the continuous momentum for
the inter-row displacement, a systematic release of the blasting energy is required which can
be achieved with a proper burden. An improper delay in multi-row blast gives poor blast
results, viz., poor rock fragmentation from the back rows, severe over/under break, large
boulders from the collar region of the blasthole, and tight muck pile, etc. [16]. Different
types of firing patterns, e.g., line, diagonal, and V-type are used in bench blasting. Each
firing pattern has its own application and advantages [17,18]. The change in firing sequence
from line firing to diagonal pattern changes the design geometries while blasting. This
helps to reduce the blasted burden and increase the spacing and overall actual charge per
unit mass of the blasthole. Thus, the effective stiffness and explosive confinement in the
blasthole are modified significantly resulting in improved fragmentation particularly in the
case of diagonal firing.

The V-type firing pattern has similar blasting design variables except those two limbs
of a blast from the center fire towards each other. A distinction between the fragmentation
in diagonal and V-type firing patterns should thus account for the fragmentation due to the
collision of the fragments while in flight during blasting.

Although V-type and diagonal firing patterns provide a similar effective spacing to
burden ratio, the V-type firing pattern is more suitable for achieving smaller fragmen-
tation because it increases the opportunity for in-flight collision between broken rock
fragments [15]. This particular characteristic of V-type firing is considered important to
reduce fragment size and boulder occurrence within the blasted rock piles [17].

With this hypothesis studies have been conducted to document the reduction in blast
fragmentation with V-type firing pattern. The primary focus of this paper is thus to evaluate
the influence of in-flight collision between rock fragments on fragmentation and is probably
the first of its kind study.

2. Influence of Firing Patterns on Fragmentation

As mentioned earlier, the firing patterns play a vital role in rock fragmentation size
during blasting of the rock.

The firing pattern influences the rock fragmentation by following three ways, these are:

1. By changing burden and spacing during blasting which is also known as effective
burden (Be) and effective spacing (Se) or blasting burden and blasting spacing;

2. Through possible in-flight collision between rock fragments during blasting and
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3. a combination of the above two mechanisms.

There are many variations in firing patterns, but the most known firing patterns are:

1. Line firing pattern;
2. Diagonal firing pattern;
3. V-type firing pattern.

The objectives and effect of these patterns on rock fragmentation during blasting are
summarized in Tables 1–5.

Table 1. Line firing pattern (a).

Firing Pattern Line Firing Pattern (Holes in Same Row Fired Simultaneously)

Representative image

Main objectives To achieve coarser fragmentation with lesser muck pile throw

Effect of firing pattern
on fragmentation

Mb = Md
where Mb is the ratio of Se to Be and Md is the ratio of S to B. With this type of firing pattern, effective burden (Be)
is equal to the drill burden, which results in no advantage to the firing pattern on fragmentation. In addition, the
movement of rock fragments is also in a single direction, with little possibility of inter collision of rock fragments
during blasting. However, when rock fragments strike the ground, further fragmentation may take place which is
governed by several variables, namely, discontinuities in the initial rock mass, their orientation at the time of
impact, physicomechanical properties, incident angle, impact velocity, geometry and stiffness of the ground, and
the presence of water [19].

Table 2. Line firing pattern (b).

Firing Pattern Line Firing Pattern (Holes in Same Row Fired Individually, But Firing of Successive Row Starts after Completion of the
Preceding Row)

Representative image

Main objectives To achieve larger fragmentation with more muck pile throw.

Effect of firing pattern
on fragmentation

Mb = Md
Similar influence on rock fragmentation as provided by line firing pattern given in Table 1.
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Table 3. Diagonal firing pattern (RHS).

Firing Pattern Diagonal Firing Pattern (RHS)

Representative image
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Main objectives To achieve medium and uniform fragmentation with medium muck pile throw.

Effect of firing pattern
on fragmentation

Mb > Md
Since effective burden (Be) decreases than the drill burden (B) during firing, a medium fragmentation
is achieved. Since the movement of rock fragments is only in a single direction, this pattern also has
little possibility of in-flight collision of rock fragments during blasting.
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Table 5. V-type firing pattern.

Firing Pattern V-Type Firing Pattern

Representative image
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Main objectives To achieve smaller and uniform fragmentation with optimum muck pile throw.

Effect of firing pattern
on fragmentation

Mb < Md
Since effective burden (Be) decreases than the drill burden (B) during firing, a smaller fragmentation
is achieved. In addition, it provides in-flight collision of rock fragments during blasting leading to
further fragmentation.

Mb = Se/Be, Md = S/B, S = drill spacing, B = drill burden, Se = effective spacing during blasting, Be = effective
burden during blasting.

3. Data Compilation and Analysis

The study was conducted in a limestone mine in India. The deposit belongs to a hilly
terrain of the Precambrian age of the Delhi Super Group. The annual production of the
mines was 6 MTPa. Compressive strength of limestone varied from 80 to 110 MPa. The
mine uses a blasthole diameter of 115 mm. ANFO was used as the explosive having a
density of 800 kg/m3 and the average VoD of the explosive measured through continuous
in-hole method was 3700 m/s. The charging process of the blasthole is summarized in the
following steps:

1. Create an air deck at the bottom of the hole with a wooden spacer having a length of
0.75 cm placed first;

2. Seal off the gap between the wooden spacer and the blasthole periphery, cut a primer
cartridge, and put in the hole;

3. Lower the primer cartridge, attached with DTH of 250 ms, into the hole as a base charge;
4. Pour the prilled ANFO into the hole as a column charge;
5. Stem the blasthole with the help of drill cutting;
6. Connect blastholes of the first row with the help of TLD of 25 ms and the blasthole of

the second and third row connected with the help of TLD of 42 ms as depicted in the
figures given in Tables 1–5.

The blasts were initiated by a shock tube system with a delay sequencing of 17 ms,
25 ms, and 42 ms with a staggered drill hole pattern. The loading operations were per-
formed by front end loader, shovel, and backhoe. The blast muck was transported by
55 MT rear dump trucks.

In order to achieve the objectives of this study, full scale blast trials were conducted in
the mines by deploying line firing (L), diagonal firing (D), and V-type firing patterns (V).
Other variables of the blast design varied over a narrow range and thus provided a means
for comparing fragmentation in the above three firing patterns.

477



Sustainability 2022, 14, 15703

To assess the in-flight collision process between rock fragments during blasting in
different firing pattern and its impacts, the following research methods were resorted to:

1. Determination of rock type, its strength and variation. Three main types of the rock
formations are present in the area which were assigned three values for rock factor (RF);

2. Fragmentation analysis of blasted muck pile as explained in Table 6
3. Data analysis was carried out using Surface response analysis and artificial neural

networking methods as explained in the following sections.

Table 6. Process of fragmentation assessment by the Fragalyst software.

Step Image Description

1
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A digital image analysis method using Fragalyst software was used for measurement
of fragmentation in all the blasts monitored. The method requires muck pile images with
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a scale to calculate the size of fragments. The representative images of blasted muck pile,
captured at different time intervals during the excavation operation to cover all the sizes
of fragmentation in the whole muck pile, were thus taken. The process of fragmentation
assessment by Fragalyst software is depicted in Table 6.

Ninety-two full-scale blasts were conducted while monitoring the blast design vari-
ables such as burden, spacing and stemming, bench height, specific charge, firing patterns,
delay, and mean fragmentation, etc., with one free face availability. The statistics of the
data generated are presented in Table 7. The difference in fragment sizes in the three types
of firing patterns is evident from Figure 1d, wherein a reduction of around 26% in diagonal
and around 45% in the case of the V-type firing pattern is registered in comparison with the
fragmentation obtained in the line firing pattern.

Table 7. General statistics of the variables measured.

Statistics Burden (B) (m) Spacing (S) (m) Stemming
Length (ls) (m)

Bench Height
(Hb) (m)

Specific
Charge (q)

(kg/m3)

Mean
Fragmentation
Size (k50) (m2)

Mean 2.82 3.86 2.81 9.08 0.48 0.32
Standard Error 0.01 0.02 0.04 0.08 0.00 0.01

Median 2.83 3.91 2.50 9.36 0.48 0.30
Mode 2.80 4.00 2.50 9.85 0.50 0.30

Standard
Deviation 0.09 0.18 0.40 0.80 0.04 0.10

Sample
Variance 0.01 0.03 0.16 0.63 0.00 0.01

Kurtosis 1.03 0.76 −1.21 1.52 −0.68 1.34
Skewness -0.44 −1.35 0.43 −1.26 0.16 1.18

Range 0.49 0.65 1.59 3.85 0.16 0.42
Minimum 2.53 3.41 2.00 6.14 0.41 0.20
Maximum 3.03 4.06 3.59 9.99 0.57 0.62

Sum 259.28 354.91 258.49 835.68 44.27 29.19
Count 92.00 92.00 92.00 92.00 92.00 92.00

Representative images of fragmentation obtained from different firing patterns are
provided in Figure 1a–c and the distribution of fragmentation in all the three firing patterns
representing the average fragment sizes of all the blasts monitored are plotted in Figure 1d.

The distribution of some important blast design variables along with their ranges is
given in Figure 2a–f.
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4. Model Development
4.1. Response Surface Analysis (RSA)

The impact of change in firing patterns on rock fragmentation during blasting can be
evaluated properly if other variables of blasting are kept constant. However, it is important
to note that in bench blasting there are variations in design pattern due to drilling, charging,
and measuring errors. Moreover, there are conflicts in some factors and variables that
make perfect modeling difficult. To develop an easy-to-use model for rock fragmentation
prediction, response surface analysis (RSA) of the data was carried out while using the
variables that most influence the fragmentation. The results of the RSA evaluation (Table 8)
obtained through multivariate non-linear ANOVA method (Table 9), were finally used in
developing the model. A back propagation algorithm being robust in nature was deployed
to evaluate the variables over p-value, R2, Akaike information criterion (AiCC) and Bayesian
information criterion (BiCC), to eliminate insignificant and redundant terms in a quadratic
model suggested by the initial analysis.

Table 8. Response surface design evaluation results.

Source Sum of Squares df Mean Square F-Value p-Value

Model 0.5322 7 0.076 106.42 <0.0001
A-A 0.1431 2 0.0715 100.14 <0.0001
B-RF 0.0146 1 0.0146 20.4 <0.0001
C-ρee 0.0161 1 0.0161 22.55 <0.0001

D-B × S 0.0146 1 0.0146 20.44 <0.0001
BC 0.0058 1 0.0058 8.12 0.0055
D2 0.0124 1 0.0124 17.38 <0.0001

Residual 0.0579 81 0.0007
Cor Total 0.59 88

Table 9. ANOVA for the reduced RSA model.

Std. Dev. 0.0267 R2 0.90

Mean 0.3087 Adjusted R2 0.89
C.V. % 8.66 Predicted R2 0.88

Adequate Precision 38.70

The Model F-value of 106.42 implies that the model is significant. There is only a
0.01% chance that an F-value this large could occur due to noise and p-values less than
0.0500 indicating that the model terms are significant. In this case, A, B, C, D, BC, and D2

(see Table 8 for terms) are significant model terms. Values of p > 0.1000 indicate the model
terms are not significant. The modeling results are presented in Table 8.

The Predicted R2 of 0.88 is in reasonable agreement with the Adjusted R2 of 0.89, i.e.,
the difference is less than 0.2. Adequate precision, a measure of the signal to noise ratio,
should be greater than four. In our case, the ratio of 38.70 indicates an adequate signal.
This model can be used to navigate the design space. Several diagnostics were deployed
(Figure 3) before accepting the final equation.

The plot of normal probability of externally studentized residuals follows a straight
line (Figure 3a) indicating a proper transformation of the output, and that the residuals are
within the expected ranges (Figure 3b) with no outliers. The Box-Cox plot for transformation
(Figure 3c) confirms the transformation applied to the output, and all the data in the Cook’s
distance (Figure 3d) are quite well within the limits. The diagnosis thus points to the
well-behaved structure of the design and analysis. The predicted vs. observed plot of the
mean fragmentation size (k50) shows that the prediction is quite significant with an adjusted
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R2 of 0.89 and predicted R2 of 0.88. Accordingly, the final equation for prediction of mean
fragmentation size (k50) in terms of the independent variables is provided in Equation (1).

k50 = Int. + 0.21RF + 0.00204ρee − 0.256(B × S) + 0.0039(RF × ρee) + 0.134(B × S)2 (1)

where Int. is the intercept and equals 0.471 for L, 0.389 for D, and 0.327 for the V-type firing
patterns (for other symbols please see abbreviations at the end of this paper).

A comparison of mean fragmentation size predicted by the RSA model given in
Equation (1) and measured value is shown in Figure 4 and confirms that the model can be
used for mean fragmentation size (k50) prediction.

To ascertain the surface response through the model and the interactions between
the variables over space, several iterations were conducted while keeping two variables
constant and varying one at a time. The results of such simulations are presented in
Figure 5a–i.
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Figure 4. Predicted versus measured values of the mean fragmentation size (k50) for the RSA model.

Figure 5. Interaction of different blast variables and response surface defined with the model for
mean fragmentation size k50, (a–c) relationship between RF and ρee with k50 with average (B × S),
(d–f) influence of RF and (B × S) on k50 with average value of ρee, (g–i) relationship between ρee and
(B × S) on k50 with average value of RF, for three different firing patterns tested.
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Figure 5a–c show the relationship with RF and ρee versus mean fragmentation size
(k50) with average (B × S). Similar trends are observed in all three firing patterns. However,
there is significant reduction in fragment size despite the constant variables at average
(B × S) in case of V-type of firing pattern.

Figure 5d–f shows the influence of RF and (B × S) on the mean fragmentation size (k50)
with an average value of ρee and have similar trends of fragment size (k50) irrespective of
the type of firing pattern. The figure confirms that the relationship of burden and spacing
is not linear with fragmentation and an optimum value is evident for achieving the best
possible fragment size. However, a significant change in fragment size is observed in the
case of the V-type firing pattern.

The influence of ρee and (B × S) on the mean fragmentation size (k50) with average
value of RF is shown in Figure 5g–i. The trends in all the cases of firing patterns are
similar, except the size of fragmentation that is varying over the three firing patterns tested.
These figures also provide an optimum value of (B × S) at which we can achieve smaller
fragmentation with the same value of ρee. There is a marked change in fragment size in the
case of diagonal and V-type firing patterns. Distinct trends in the change in fragmentation
with variation in (B × S) and ρee are, however, apparent from the figures.

4.2. Fragmentation Prediction Using Artificial Neural Network (ANN)

Artificial neural network (ANN) is a computational method consisting of several
processing elements that receive inputs and deliver outputs based on their predefined
activation functions. ANN consists of three layers, viz., input layer, the hidden layer, and
the output layer. The input layer picks up the input signals and transfers them to the next
layer and, finally, the output layer gives the prediction. The neural networks have to be
trained with some training data to obtain a solution to a complex process output. The ANN
and related methods have a capability to solve complicated problems, especially when the
process and results are not fully understood [20]. The case is similar in blasting where the
design variables present a complex relationship with rockmass, which in turn has several
inconsistencies such as inhomogeneity and anisotropy.

Various algorithms have been suggested for training of the neural network, but the
backpropagation algorithm is the most versatile and robust technique and provides the most
efficient learning procedure for multy layer perceptron (MLP) networks. An experimental
database including enough datasets is required to train the ANN model. Once the training
process is completed, prediction can be made for a new input dataset.

Accordingly, to predict rock fragmentation by blasting, a back propagation ANN
model was deployed for the data acquired and analyzed earlier by ANOVA. Several
iterations were made to find the best possible network and hidden layers. The model
that trained well and presented the best results is given in Figure 6. The plot of training
progression thus obtained during the process is given in Figure 7.

In the above training process, the network is presented with a pair of patterns: an
input pattern and the corresponding desired output pattern. The firing patterns can be
treated as a string in the ANN training and therefore it is possible to estimate the mean
fragment size from the trained network. The network can be queried for such results and
hence compared.

Tables 10 and 11 show the input parameters and output parameters with their symbols
and range, respectively, considered for developing the neural network. For introducing
fragmentation to the network, an image analysis method, i.e., “Fragalyst” software was em-
ployed to determine muck pile size distribution. The process of fragmentation assessment
by Fragalyst software is illustrated in Table 6. The 50% passing size (k50) was chosen to
determine the fragmentation quality. Out of a total of 92 datasets, 73 datasets were used to
train the ANN model and 19 separate datasets (not used in training) were utilized for the
purpose of validation thus representing the standard 80:20 ratio.
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Table 10. Input parameters used for developing the neural network and their ranges.

Input Parameters Symbols Ranges

Burden (m) B 2.53–3.02
Spacing (m) S 3.41–4.06
Stemming length (m) ls 2.0–3.59
Bench Height (m) Hb 6.13–9.98
Sub Drill (m) lsub 0.0–0.2
Air Decking Length (m) ldeck 0.0–1.7
Number of holes Nh 11–27
Number of rows Nr 2–5
Charge length (m) lq 3.23–8
Charge/hole (kg) Qhole 29.75–61.87
Charge/blast (kg) Qblast 401.21–1246.95
Rock factor RF 6–8
ρee (kg/m3) ρee 0.38–0.60
Specific Charge, kg/m3) q 0.41–0.57
firing pattern FPat L = 1, D = 2, V = 3
B × S - 9.27–12.28

Table 11. Output parameter used for developing neural network and their ranges.

Output Parameters Symbol Range

Mean Fragmentation size (m) k50 0.20–0.62

The training results of the ANN model and the validation results are presented in
Figure 8a,b respectively. The results of the analysis show R2 and RMSE of 0.96 and 0.040 in
the case of training and 0.884 and 0.049 in the case of validation tests. The results point to
the fact that the ANN method can be well used for the prediction of fragmentation.
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In addition to the above, the sum of the absolute weights of the connections from the
input node to all the nodes in the first hidden layer defines the importance of the input
variables. The relative importance can thus be worked out from such results. The results of
such analysis are presented in Figure 9.

There are variables in the above list that can be grouped together or represent explosive
distribution in a blasthole such as charge length, stemming length, decking length, and
sub-drill length that has a significant contribution to fragmentation. This is probably the
reason that some of the variables such as B and S assume less importance in ANN but have
retained their importance in RSA when several such variables were combined in a single
factor ρee.
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5. Conclusions

A hypothesis that there is further breakage by the collision effect during flight of
fragments in the blasting process was evaluated in this study. An experimental scheme
that presents similar trends in design variables was adopted and comparison was made
with the help of fragmentation measured in three types of firing patterns in blasting. The
effect of firing patterns on fragmentation were evaluated with the help of 92 blasts in which
12 blasts were taken with a line firing pattern, 36 blasts with diagonal, and 44 blasts with
a V-Type firing pattern in a limestone mine. The results acquired showed that there is a
significant reduction in fragmentation in the case of the V-Type and diagonal firing patterns,
respectively, and counts for 45% and 26% reduction in fragmentation in comparison to that
of the line firing pattern and diagonal firing pattern. Since design variables are similar in
the case of diagonal and V-type firing patterns, the reduction in fragmentation in the case
of the latter pattern can be assigned to the impact of collision.

A surface response model was developed for prediction of the mean fragmentation
size (k50) that provided excellent results while using a rock factor with effective energy
density in a blasthole and (B × S) as modeling variables. The results of the analysis are
provided in the form of models for the three types of firing patterns analyzed which showed
significant R2 and a strong agreement in adjusted and predicted R2.

Further, the ANN method was deployed for assessing the predictability of the frag-
mentation using a back propagation algorithm and two hidden layers. The model trained
well and validation tests yielded significant correlation between the predicted and observed
values of mean fragment size of the blasts. Moreover, the importance of blast variables
on rock fragmentation was evaluated with the help of ANN analysis in which the fir-
ing patterns and rock factor along with the charge distribution in the blasthole assumed
higher significance.
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Abbreviations
The following abbreviations are used in this manuscript:
Abbreviations Explanations
Hb Bench height (m)
B Burden (m)
Be Effective burden (m),
S Spacing (m)
Se Effective spacing (m)
Mb Ratio of Se to Be
Md Ratio of S to B
ls Stemming length (m)
k50 Mean fragment size (m)
d Blasthole diameter(mm)
q Specific charge (kg/m3)
Nh Number of holes
Nr Number of rows
Qhole Explosive charge per hole (kg)
FiringPat Firing pattern
TLD Trunk Line Delay Detonator
DTH Down The Line Delay Detonator
RHS Right Hand Side (Connection of TLD leaning towards Right hand Side)
LHS Left Hand Side (Connection of TLD leaning towards Left hand Side)
lsub Length of subgrade drilling (m)
ldeck Length of decking (m)
lq Length of explosive charge in the hole (m)
Qblast Explosive charge per blast (kg)
RF Rock factor
ρee Equivalent explosive charge density (kg/m3), i.e., ratio of explosive

per hole in kg to volume of charged section the blasthole where
volume = B × S × lq

bsd Product of burden (B) and spacing (S) (m2)
RSA Response surface analysis
ANN Artificial neural network
ANOVA Analysis of variance
ANFO Ammonium Nitrate Fuel oil
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Abstract: Quality control considerably affects road stability and operability and is directly linked
to the underlying ground compaction. The degree of compaction is largely determined by water
content, which is typically measured at the actual construction site. However, conventional methods
for measuring water content do not capture entire construction sites efficiently. Therefore, this study
aimed to apply remote sensing of hyperspectral information to efficiently measure the groundwater
content of large areas. A water content prediction equation was developed through an indoor
experiment. The experimental samples comprised 0–40% (10% increase) of fine contents added to
standard sand. As high water content is not required in road construction, 0–15% (1% increase) of
water content was added. The test results were normalized, the internal and external environments
were controlled for precise results, and a wavelength–reflection curve was derived for each test
case. Data variability analyses were performed, and the appropriate wavelength for water content
reflection, as well as reflectance, was determined and converted into a spectrum index. Finally,
various fitting models were applied to the corresponding spectrum index for water content prediction.
Reliable results were obtained with the reflectance corresponding to a wavelength of 720 nm applied
as the spectrum index.

Keywords: spectrum index; water content; hyperspectral information

1. Introduction

The term sustainability refers to the ability to maintain a function and survive over
time [1]. Several other definitions of the term have also been provided. For example,
Brown [2] defined sustainability as the ability to meet the needs of future generations
without reducing their opportunities, and the Brundtland Commission [3] defined it as
technology to meet present needs without compromising the resources of future generations.
In the field of engineering, especially geotechnical engineering, sustainability refers to the
use of resources at a low cost while appropriately controlling harmful emissions. The term
is divided into four concepts [4,5]: (1) robust design and construction, including social cost
and inconvenience caused by construction; (2) the minimized use of resources and energy
in the planning, design, construction, and maintenance of geotechnical facilities; (3) the use
of methods and materials with a low impact on ecology and the environment; and (4) the
reuse of geotechnical structures for minimizing waste.

The concepts of sustainability have been applied to the field of road construction,
which is a subfield of geotechnical engineering. Corriere and Rizzo [6] defined “sustainable
roads” as roads that can achieve basic design goals (compliance, safety, ease of mobility,
maintenance, energy efficiency, transport capacity, etc.) during the construction, mainte-
nance, and operation phases. Meanwhile, the sustainability of roads is mainly considered
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from the perspective of maintenance. Greenroads Foundation (USA) evaluated road sus-
tainability using scores obtained from four-year tests on more than 50 types of roads The
London Councils in the UK manages a “Highways Minor Works” toolkit to support the
procurement of highway services, such as recycling, reducing transport distances, reducing
overall lifetime costs, energy use, and CO2 emissions [7,8]. In South Korea, development
and research on smart roads are being actively conducted, which mainly requires au-
tomation equipment, datafication of information, and accurate quality control in a wide
area [9,10].

In addition to the maintenance aspect, the practical implementation of “sustainable
roads” is achieved through thorough, early-stage road excavation and pavement work. The
compaction performed to secure the road bearing capacity not only ensures the durability
of the asphalt or concrete road, but is also the determining process for road performance
and quality, including the drivability of vehicles [11]. In general, the goal of compaction is
90% or more, which is calculated as the ratio of the dry unit weight on-site to the maximum
dry unit weight. Furthermore, the water content used for the calculation is the ratio of soil
water to soil weight, which affects the long-term stability of the subgrade, the quality of
compaction, and the number of passes. It is essential to determine the groundwater content
prior to performing actual compaction [12–20].

Groundwater content measurement is performed by the traditional methods of com-
paring the weight of an on-site sample with the weight of the sample after drying, using a
scale; time domain reflectometry through the reverberation time of an electrical signal; and
ground penetrating radar (GPR) through the intermittent measurement of water volume
and dielectric constant [14–19]. However, the disadvantage of these methods is that they
are time-consuming and labor-intensive in determining the water content distributed over
the entire construction site by point measurement. Furthermore, the passive aspect of the
data measurement process may vary the measured values depending on the skill level of
the operator or increase the error range, which may cause reliability problems.

Accordingly, it is necessary to measure the water content in a range by a more reliable
method rather than by the existing point measurement method. For example, remote
hyperspectral sensing has been actively researched recently as a viable method. The field
of remote hyperspectral sensing is broadly divided into spectroscopy, radiative transfer,
imaging spectroscopy, and hyperspectral image processing, where spectral curves are
derived through radiative transfer. A spectrum is a function of wavelength and indicates
the distribution of reflectance; thus, the reflectance shown by the spectrum depends on the
characteristics of the object [20]. In the construction industry, remote hyperspectral sensing
usually involves the use of drones. Through this, orthographic images and hyperspectral
information of a wide area are acquired and mainly used to classify mineral types, sizes, and
qualities or to analyze vegetation distribution [21–27]. The photographed hyperspectral
information indicates only the reflectance based on wavelength and is expressed as a
spectrum index by substituting the equation corresponding to each property. The spectrum
index is a value obtained by converting the spectral information (wavelength–reflection
curve) obtained through a spectral experiment into a single value; this is equivalent to
normalizing the necessary information. Thus, secondary processing of hyperspectral
information is required to convert the photographed copy to suit the operator’s intention.

Measuring groundwater content in ranges requires a conversion of the measured
hyperspectral information into a spectrum index representing the water content. However,
studies on the spectrum index related to water content have mainly focused on factors
influencing water quality or moisture content in [25–29]. Through hyperspectral image
analysis, Prošek et al. [28] classified the local waters, and Guo et al. [29] analyzed only
the color change of the lake. On the other side, Ge et al. [30] verified the equation for
calculating the spectrum index of various water contents to confirm soil aggregate structure
and nutrient status. However, in general, many spectrum index models have a small
R2 value of calculated water content and measured water content. The most suitable
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spectrum index model still has a disadvantage: the target site does not reflect the low water
content of agricultural land (measured water content of 10–30%).

The ground targeted in this study was a road construction site. In such a ground,
compaction is usually carried out after filling, and the transported soil usually has a similar
water content. That is, the water content measured at the surface represents the water
content of the entire ground. In this ground, as work was performed on general sand, high
water content was not recorded, but low water content was considered. Therefore, the
application of the corresponding spectrum index model may show inappropriate results,
necessitating the development of a spectrum index to indicate new water content. Thus,
ground hyperspectral information was acquired from water content through a normal-
ized and thoroughly controlled indoor experiment in this study. A subsequent spectrum
index expressing water content through various combinations was obtained. The soil
used in the experiment was prepared from 0 to 30% of fine particles (10% increments;
particle size ≤ 0.075 mm) using standard sand, and it was used to simulate various types
of soil while increasing water content by 1%. As the spectrum index must be used during
image acquisition through drones, an indoor experimental system with the same measure-
ment method was created, in which hyperspectral information was acquired for spectrum
index calculation.

2. Methodology for Estimating Ground Water Content in Road Construction Site

The water content measurement process of this study is illustrated in Figure 1 and
detailed as follows; (1) A hyperspectral camera is mounted on a drone, which is an un-
manned aerial vehicle, and orthographic image and hyperspectral information of the
ground for which water content is to be determined are acquired. In this case, the hyper-
spectral information is the pixel unit of the measurement area, which can be freely adjusted;
(2) The acquired image is corrected through post-processing because there is shaking during
the drone shooting process using the push-broom method. (3) Hyperspectral information
existing in each pixel is converted into water content for a photographed copy where all pro-
cesses have been completed. Here, hyperspectral information is the relationship between
reflectance and wavelength; (4) A specific color is assigned to the water content converted
for each pixel, and this is displayed on the map. That is, it implements a color-coded
map (CCM).
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This study aims to present a spectrum index that converts hyperspectral information
into groundwater content at the fourth step illustrated in Figure 1. Thus, the spectrum
index would refer to the groundwater content, which is a function of reflectance according
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to wavelength, as expressed in Equation (1). Here, w refers to water content, Ri refers to
reflectance at a wavelength of i-nm, and i ranges from 400 nm to 1000 nm. Reflectance (R) is
the ratio of the reflected energy to the total energy incident on the body, and it is expressed
as a percentage. R is expressed through a complex process of reflection, absorption, and
transmission of energy; it varies with wavelength and enables features to be identified on
the body or surface to be measured [31].

Spectrum index = w = f unction(Ri) (1)

Overall, we aim to present hyperspectral information measured with a hyperspectral
camera as a function of Equation (1) (Figure 2), where, Ri in the function may represent
one, two, or more points. Corresponding combinations and analyses are described in a
later section.
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3. Laboratory Tests for Obtaining Hyperspectral Information
3.1. System for Obtaining Hyperspectral Information

An indoor experimental system (Figure 3a) was created to acquire hyperspectral infor-
mation for determining the water content of the soil. The system consists of a hyperspectral
camera (Micro HSI410shark, Coring, Seoul, Korea) capable of measuring wavelengths of
400–1000 nm at 2 nm intervals, a stage for push-broom scanning, and software to express
the reflectance by wavelength in row data and graphs.
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The shooting method of a spectral camera is typically divided into staring or spectral
scanning, which captures the entire scene in band-sequential format, and push-broom
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scanning, which generates a hyperspectral image in a line-by-line format [32]. The push-
broom scanning method is a reliable method [33–35] mostly used for aviation photography
using an unmanned aerial vehicle. The method also provides reasonable spatial resolution
and high spectral resolution [36].

In push-broom scanning, a spectral camera is mounted to have a slit perpendicular to
the moving direction of the drone (Figure 3b) to extract spectral information from a desig-
nated area of one pixel. The area of one pixel is determined by the sensing interval, focal
length, and flight altitude. The drone captures all pixels corresponding to the orthogonal
area while moving and then measures the frame of the line corresponding to the next pixel.
The captured information is spectral information, including orthographic images.

In the actual field, push-broom scanning is applied as the drone moves, but in the
indoor experiment, the movement of the sample located at the bottom was simulated.
The simulation was intended to reduce errors due to changes in focus resulting from the
camera movements and to omit the geometric correction step performed after actual on-site
image acquisition.

3.2. Laboratory Test of Soil Sample

The ground measured in this study was a construction site mainly comprising sand
composed of soil particles of various sizes, with differences in void ratio, compaction curve,
and optimal water content depending on the particle size distribution. As the ground was
composed of various sand types, differences were expected in the spectral information
measured according to the water content. Therefore, it was necessary to acquire spectral
information for various types of ground and convert it into water content. Thus, the derived
water content should be constant regardless of the type of ground.

Therefore, for basic normalization, the base soil was set as standard sand. Standard
sand is an aggregate used to improve the strength of cement, referring to poorly graded
sand, which is granular soil with a particle size of 0.075–2.00 mm in accordance with [37].
Various ground simulations were performed with the addition of 10%, 20%, and 30% fine
contents (particle size of 0.075 mm or less).

3.2.1. Sieve Test

The sieve test of standard sands with 0, 10, 20, and 30% fine contents was performed
according to [38], and the results were as presented in Figure 4 and Table 1. The fine
contents were added in relation to the total weight of the soil. As a result of the test,
D10 was not measured at 20% and 30% of fine contents, but the pass rate for fine contents did
not exceed 50%; D10 increased as it acted as a denominator in the coefficient of uniformity
and the coefficient of curvature. Therefore, all samples used as a result of classification
according to [39] could be classified as Poor Sand with uneven particle sizes.
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Table 1. Sieve analysis results of the used soil sample.

Fine Content
in Standard

Sand (%)

D10
1

(mm)
D30

2

(mm)
D60

3

(mm)
Coefficient of

Uniformity, Cu
4

Coefficient of
Curvature, Cc

5

Percentage
Passing No. 200

Sieve (%)

Soil
Classification

0 0.274 0.363 0.530 1.934 0.907 0.06 SP
10 0.150 0.329 0.505 3.367 1.429 9.15 SP
20 - 0.300 0.482 - - 16.72 SP
30 - 0.272 0.461 - - 23.13 SP

1 D10: Particle diameter in percent finer of the soil corresponding to 10%; 2 D30: Particle diameter in percent
finer of the soil corresponding to 30%; 3 D60: Particle diameter in percent finer of the soil corresponding to 60%;
4 Cu: Coefficient of uniformity that calculated by Cu = D60/D10; 5 Cc: Coefficient of curvature that calculated
by D30

2/(D10D60).

3.2.2. Standard Compaction Test

To produce soil samples with the same degree of compaction, it is necessary for us to
know the maximum dry unit weight of each sample. Accordingly, the sieve test of standard
sands with 0, 10, 20, and 30% fine contents was performed according to [40], and the results
are presented in Figure 5. As the amount of fine content increased, the voids for the volume
of the soil sample decreased, being filled with the fine content. Therefore, as shown in
Figure 5, the optimum water content increased while the dry unit weight decreased with
an increasing amount of fine content.
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3.2.3. Composition of Specimens

In general, the degree of compaction (ratio of on-site dry unit weight and maximum
dry unit weight obtained through indoor experiments) is 95% at road construction sites.
Thus, the soil sample specimens in this study were prepared with a compaction of 95%.
Following the compaction curve in Figure 5, each sample was prepared with water content
according to Figure 6a, followed by compaction as shown in Figure 6b. Here, the water
content was set to 0–15%, making a total of 16 levels. Finally, specimens (Figure 6c) were
obtained and placed on the specimen stage of the configured system (Figure 3a) to extract
hyperspectral information.

The water content was the weight ratio of soil to water, and water as much as the
water content set in this study was added to the weight of the sample. The volume of the
experimental can (diameter = 10 cm, height = 6 cm) used for making the specimens was
471 cm3, and the maximum weight of soil that the experimental can could contain was
914 g (standard sand), 870 g (standard sand + fine content 10%), 790 g (standard sand + fine
content 20%), and 742 g (standard sand + fine content 30%), according to the maximum dry
unit weights presented in Figure 5.
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(b) Compaction of the specimen in a circular petri; (c) Specimens of soil samples with fine and
water contents.

Whenever the water content increased by 1%, 9.1 g, 8.7 g, 7.9 g, and 7.4 g of water was
added. The composition of specimens was processed precisely, and when the water content
was measured again after obtaining the spectral information, the water content was found
to be the same as in the initial state. Hence, the measured spectral information reflected the
water content of specific specimens accurately.

3.3. Hyperspectral Information of Soil Sample

Figure 7 illustrates the hyperspectral information (relationship between wavelength
and reflectance) of soil samples according to the water content measured through the system.
In all the indoor experimental results, the reflectance according to wavelength showed a
similar trend. The reflectance increased non-linearly as the wavelength increased, showing
a rapid increase at approximately 750 nm. The maximum reflectance was measured at
800 nm and gradually decreased to the vicinity of the wavelength of 920 nm. Subsequently,
the reflectance exhibited non-linear behavior; for example, it increased again. According to
the characteristics of each wavelength band, the reflectance increased in the visible-rays
region (400–800 nm), and then it decreased and increased non-linearly in the wavelength
band of infrared rays (800–1000 nm). In addition, as the water content increased, the
reflectance according to the wavelength decreased. This may have been due to absorption
occurring more than reflection as the amount of water increased.
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4. Estimation of the Spectrum Index for Water Content Prediction
4.1. Variability Analysis of Hyperspectral Information

For water content prediction, spectral information measured through experiments
should be converted into a single-value spectrum index, which should be inserted into
a water content prediction equation. Processing spectral information is time-consuming
as numerous row data are collected from the row data obtained with a hyperspectral
camera; this phenomenon is due to the relationship between wavelength and reflectance,
as shown in Figure 7. However, as water content measurement is performed on the day
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of construction in actual road construction sites, with frequent changes made according
to various conditions (rainfall, humidity, and temperature conditions), it is essential to
minimize the processing time. Accordingly, a significant point (reflectance at a specific
wavelength) should be extracted, which should be converted into a spectrum index.

The conditions under which a specific wavelength was selected are illustrated in
Figures 8 and 9. The hyperspectral information processed was the ratio of fine content
(0–30%, 10% increment) and water content (0–15%, 1% increment), and the wavelength–
reflection curves were 64 in total.
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The first wavelength selection condition is that the difference in reflectance at a specific
wavelength should be small regardless of the content of fine particles at a specific water
content amount. If the difference between reflectance is large according to the content of
fine particles, a different spectrum index and equation of water content prediction should be
selected according to each ground condition. However, this step is practically impossible as
it requires setting the ground conditions individually in a large construction site. Therefore,
it is necessary to calculate a specific wavelength band with little difference in reflectance
according to the change in fine content; this wavelength should show reflectance with
slight variability (Figure 8).

The second condition is that there should be a clear difference in reflectance among
water contents (Figure 9). If the difference in reflectance at a specific wavelength is not large,
there is a possibility that the difference in water content may change rapidly even with a
small change in reflectance. Hence, the error would be substantial, having a large impact
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on the final product, CCM. Therefore, it is necessary to determine a specific wavelength
band with a large difference in reflectance according to a change in water content, which is
equivalent to finding a point with a large variability.

Data variability can be evaluated by the coefficient of variation (COV), as in Equation (2).
Here, COV is the ratio of standard deviation (SD) to mean. In general, COV is excellent at less
than 10%, good from 10% to 20%, acceptable from 20–30%, and not acceptable beyond 30%.

COV(%) = (SD/Mean)× 100(%) (2)

4.1.1. Effects of Fine Contents

Figure 10 presents the COV (Dot in figure) of four points of fine content (0%, 10%, 20%,
and 30%) and the average (Red line in figure) of all data according to the wavelength at a
specific water content. In terms of average COV, the wavelength with the maximum COV
was 29.03% at 500 nm, and the wavelength with the minimum COV was 720 nm, which
was 10.23%. In the wavelength range of approximately 400–600 nm, the COV was high; in
the range of 600–880 nm, it showed a smooth parabolic shape with a value of 10.23–12.40%.
At wavelengths above 880 nm, the COV was approximately steady with slight fluctuations.
Regarding the first condition for selecting the wavelength to be applied to the spectrum
index, a wavelength with small fine content variability should be selected. For the optimal
condition, it is appropriate to use the reflection of a wavelength of 720 nm although it also
appears appropriate to use the reflectance of a wavelength of 600 nm or more, as the COV
difference from 600 nm to 880 nm was approximately 2%.
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Figure 10. Analysis of using COV to select an appropriate wavelength for minimizing fine
content effect.

4.1.2. Effects of Water Contents

Figure 11 illustrates the COV of reflectance by water content according to fine content
amount as well as the average according to wavelength. Regarding the second condition
for selecting the wavelength to be applied to the spectrum index, a wavelength with high
water content variability should be selected. Therefore, to maximize the water content effect
at the wavelength of 600–880 nm, a wavelength with a high COV was selected. Within that
range, a minimum COV of 24.31% at 810 nm was measured as well as a maximum COV of
27.60% at 600 nm.
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content effect.

4.2. Spectrum Index Reflected by Selected Wavelength and Reflection

Following the variability analyses, a specific wavelength for spectrum index was
selected as illustrated in Figure 12: (1) 720 nm wavelength and (2) 600–880 nm wavelength.
The wavelength of 720 nm is the point with the least fine content effect. As water content
had a high variability, it is most appropriate to use the wavelength from a single perspec-
tive. In this case, the spectrum index refers to a reflectance at 720 nm. We express the
corresponding spectrum index as R720. The variability analysis showed that COV exhibited
a similar trend in the wavelength band of 600–880 nm. Therefore, all reflectance in the
wavelength band of 600–880 nm are considered, and the spectrum index is expressed as an
integral. In this paper, the integral is expressed as I600–820 (integral from 600 nm to 820 nm
of wavelength), and it refers to the area between the wavelength–reflectance curve and the
x-axis (range of 600–820 nm).
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4.3. Equation for Predicting Water Content Using Spectrum Index

Data fitting was performed, as shown in Figure 13, to determine the water content
prediction formula using the appropriate spectral index. The fine particle content was not
classified separately in all the data here; R720 and I600–880 were plotted on the x-axis against
water content on the y-axis. The total number of data was 64. Figure 13 shows that the
water content gradually decreased as the spectrum index increased, but the relationship
was nonlinear. Therefore, it is necessary to derive a non-linear equation for the relationship.
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Various fitting equations, including linear, polynomial, logarithmic, and exponen-
tial equations, were considered. Table 2 presents the equations and their corresponding
R2 values. After fitting, R2 was low for I600–880 (using the integral area) compared with
that of R720 (calculated as a single point). Therefore, it was appropriate to select R720 as
a spectrum index; an exponential fitting model with a high correlation coefficient was
selected as the equation for water content prediction.

Table 2. Results of the fitting.

Index Fitting Model Equation R2

R720

Linear w = −0.379R720 + 21.021 0.636

Polynomial w = −8.38 × 10−6R720
4 + 0.0012R720

3 − 0.0462R720
2 −

0.2631R720122(0 index + 33.7973)
0.687

Logarithm w = 25.767 − 7.004 ln(R720 − 19.738) 0.695
Exponential w = −1.172 + 79.648 exp(−0.0666R720) 0.697

I600–880

Linear w = −0.00883I600–880 + 14.658 0.579

Polynomial w = −5.37 × 10−12I600–880
4 + 2.159 × 10−8I600–880

3

−7.782 × 10−5I600–880
2 + 0.0479I600–880122(0 index + 10.0868)

0.637

Logarithm w = 48.239 − 6.432 ln(I600–880 − 144.708) 0.643
Exponential w = −0.2228 + 25.032 exp(−0.00167I600–880) 0.645
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4.4. Comparison of the Literature with Proposed Spectrum Index Method

To verify the suitability of the water content prediction equation proposed in this
study, a comparison with the existing theoretical equations was performed. Eleven of the
thirty high-R2 prediction equations investigated by Ge et al. [30] are presented in Table 3.
Because the existing equations target only the spectrum index, a separate fitting should
be performed for the water content prediction equation. According to [30], a linear fitting
was performed. Therefore, to obtain the equation for predicting water content, the spectral
information from this study was substituted into the spectrum index, and the equations
were obtained individually through linear fitting.

Table 3. Comparison of bias factors of each inflection point.

Spectrum Index
Equation for Water Content Prediction Ref.

Sort Equation

mNDVI705 (R750 − R705)/(R740 + R705 + 2R445) w = −105.01mNDVI705 + 13.40 [41]
NDVI (R800 − R680)/(R800 + R680) w = 161.11NDVI − 20.57 [42]
NDCI (R762 − R527)/(R762 + R527) w = 8.04NDCI + 1.44 [41]

NDVI705 (R750 − R705)/(R750 + R705) w = −120.54NDV705I + 14.53 [43]
RVI R800/R680 ω = 55.28RVI − 71.13 [43]

NDRE (R750 − R705)/(R750 + R705) w = −120.54NDRE + 14.53 [44]
GNDVI (R750 − R550)/(R750 + R550) w = 3.79GNDVI + 5.10 [45]
OSAVI [(1 + 0.16) (R800 − R670)]/(R800 + R670 + 0.16) w = 115.04OSAVI − 19.52 [42]
VOG1 R740/R720 w = −114.33VOG1 + 127.58 [46]
VOG2 (R734 − R747)/(R715 − R726) w = 2.71VOG2 + 5.66 [46]
VOG3 (R734 − R747)/(R715 + R720) w = 577.11VOG3 + 14.58 [46]

Figure 14 illustrates the results of the water content prediction equation proposed
in this study and the measured and predicted water contents according to the existing
theoretical formulas. Overall, in the existing equations, no significant change was observed
in the predicted water content as the measured water content increased. In other words,
the R2 value was distributed from 0.002 to 0.122, indicating an extremely low correlation.
Therefore, when the spectral information obtained in this study was substituted into the
existing spectrum index, a considerable error was obtained, demonstrating that the water
content prediction equation using the proposed R720 is appropriate.
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and (l) VOG3.

5. Conclusions

In this study, groundwater content was measured for determining road bearing capac-
ity and for road quality control during road earthworks and pavement construction toward
achieving “sustainable roads.” The existing water content measurement method is the point
measurement method; however, we aimed to acquire the water content of a wide area at
once, necessitating the use of hyperspectral information. Hence, hyperspectral information
was obtained through many indoor experiments, and a water content prediction formula
was proposed. The conclusions drawn from this study are as follows.

1. In this study, sophisticated specimens were created by adding fine contents to standard
sand, and hyperspectral information was obtained according to water content through
precise laboratory tests. For hyperspectral information, a spectrum index was selected
through various correlation analyses, and an equation to convert the spectrum index
to water content was proposed.

2. The suitable wavelength for calculating the spectrum index was 600–880 nm, as de-
termined through variability analysis based on the water content and fine contents.
The variability analysis results showed that no difference existed in the results of the
equation for water content prediction even when a single wavelength within the range
was selected. When the integral value of reflectance was used at 600–880 nm, R2 was
rather low. This phenomenon was the result of the overlapping variability of wavelength
and reflectance. Even when the R2 of the corresponding index was measured, it was not
appropriate as it increased the time for calculating the spectrum index.

3. The available equation for the prediction of the groundwater content is when the
reflectance at a wavelength of 720 nm is applied to the exponential model. As a
result of the linear regression analysis according to the measured and predicted water
content, R2 was measured to be the highest, which means that it is most suitable for
representing the water content in the ground. In terms of spectral range, 720 nm is
deep red light.

4. The correlation (R2: 0.009–0.122) when the existing spectrum index for water content
prediction was substituted into the hyperspectral information obtained in this study
was measured to be very low. Even when the existing equation was substituted into the
hyperspectral information obtained by Ge et al. [26], the R2 ranged from 0.052 to 0.398,
indicating that the reliability of the existing formula was low. Therefore, the R2 (0.7067)
of our proposed equation for water content prediction according to R720 was large and
reliable. This is because the existing method calculated the water content in a linear line
through a simple linear regression analysis of the spectrum index.

5. The disadvantage of this study is that the proposed equation was derived without
going through an actual field test. Thus, in the field, errors may occur depending
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on actual variables, such as weather, temperature, humidity, and the skill level of
the drone operator. Therefore, it is necessary to test the accuracy and reliability of
the equation derived from this study in the field, and the equation must be modified
through additional data acquisition.
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Abstract: Cut blasting is one of the most essential processes to reduce blast-induced vibration in
tunnel blasting. The long and large-diameter uncharged hole boring (LLB) method is an example
of one of the cut blasting methods, which utilizes large-diameter uncharged holes drilled in the
tunnel face. In this study, blasting simulations were performed to analyze its blasting mechanism,
and the LLB method and the traditional burn-cut method were simulated to compare their blasting
efficiency. A 3D numerical analysis using LS-DYNA code, a highly non-linear transient dynamic
finite element analysis using explicit time integration, was used to simulate the blasting process, and
a Johnson–Holmquist constitutive material model, which is optimal for simulating brittle materials
under dynamic conditions, was used to simulate the rock behavior under blasting. The modified
LLB method showed a 3.75-fold increase in the advance per round compared to the burn-cut method,
due to the increased formation of long and large-diameter uncharged holes compared to blast holes.
This modified LLB method used 30% less explosives, so its failure range was approximately 1.25 times
less than that of the burn-cut method, but its advance was approximately 4 times larger than the
burn-cut method, which was similar to the original LLB method. This confirmed that the modified
LLB method is significantly more efficient in terms of increased blasting efficiency (particularly the
advance per round) as well as reduced blast-induced vibration, compared to the traditional cut
blasting method.

Keywords: tunnel excavation; cut blasting method; LLB method; uncharged hole; numerical simulation

1. Introduction

A drill and blast method is the most common rock excavation method in mining and
civil engineering. However, this method causes environmental pollution and hazards
such as noise, vibration, and flying rocks generated by the blasting, and blast-induced
vibration can damage nearby structures in urban areas, when it exceeds specific values [1,2].
In tunnel construction, the advance rate is one of the key factors because it is directly
related to the overall construction period and influences the economic feasibility of a project.
Therefore, the ultimate goal of blast excavation in the new Austrian tunneling method
(NATM) is to maximize the advance per round, while meeting the allowable criteria for
blast-induced vibration. It is well known that blast-induced vibration is the most significant
factor that affects the surrounding structures [3]. In the rock fragmentation caused by
blasting, it has been found that only 20–30% of the energy is used in the breakage of the
surrounding rocks, while the residual energies are dissipated in the forms of vibration, noise,
and flying rocks [4,5]; thus, the current blasting techniques have inevitable limitations [6].
When the vibration exceeds a critical value, internal cracks in the rock mass can be induced,
potentially harming nearby structures [7]. Given the recent rise in environmental concerns,
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complaints about blast-induced vibration and noise continue to increase, and regulations
are becoming commensurately stricter [8].

Several parameters affect blast-induced vibration [9], and the free face is one of the
most efficient factors in maximizing the blasting efficiency, as well as reducing vibration.
Unlike open-pit mines, tunnel structures generally have only one free face, so the cut
blasting method is necessary to create artificial additional free faces to improve the blasting
efficiency. V-cuts and burn-cuts, which are the traditional cut blasting methods, are widely
used in tunnel blasting. Using the traditional cut method, more explosives are needed to
increase the advance, but there are limits to increasing the amount of explosives, while
keeping to the allowable limit of vibration.

A long and large-diameter uncharged hole boring (LLB) method is an advanced
cut blasting method that involves boring large-diameter uncharged holes. This method
has been reported to have significantly less blast-induced vibration than traditional cut
methods [10]. The high-performance LLB machine generally drills 50 m with a 382-mm
hammer bit at a time, considering the overall working process and drilling time. Thus, this
method has the great advantage of creating large-diameter uncharged holes (free faces) that
are deeper than regular blast holes, thus significantly increasing the advance per round
compared to the traditional cut method [11].

However, the cut methods in tunnel blasting that utilize large-diameter uncharged
holes (over 350 mm) have not yet been fully analyzed in terms of failure mechanisms and
blasting efficiency. In addition, in some tunnel construction sites where the LLB method
was used, the advance per round was similar to, or even less than, the traditional cut
methods. In the actual tunnel construction site, if explosive material detonates inside
the rock mass, there is a limit to investigating the failure mechanism of the LLB method
because an instantaneous explosion reaction occurs. To investigate the failure mechanism
of blasting more accurately, experimental studies should be conducted, but several risks
and limitations are involved because they are very expensive and time-consuming [12].
Instead, numerical approaches have been widely used to overcome the many limitations of
experimental research [13–15].

In this study, a series of numerical analyses were carried out to investigate the failure
mechanism of tunnel blasting with the LLB method. The LS-DYNA software, which is
a finite element software that can handle dynamic and non-linear problems, was used to
simulate the tunnel blasting. The traditional burn-cut method and the LLB method, as
employed to create uncharged holes for reducing blast-induced vibration, were modeled,
to compare their blasting mechanisms and efficiency, especially the advance per round.
Additional analysis was performed to compare the blasting efficiency when a reduced
amount of explosives was used with the LLB method.

2. Long and Large-Diameter Uncharged Hole Boring Method
2.1. Introduction to the LLB Method

The LLB method is an advanced cut blasting method to minimize the vibration gener-
ated by blasting in a NATM tunnel. This method creates long and large-diameter (382-mm)
uncharged holes at a cut area using a high-performance boring machine, as shown in
Figure 1. The LLB hole serves to release the confining stresses of the rock mass before
blasting. When an explosive detonates in the blast hole, the adjacent uncharged hole can
not only provide a larger space for moving breaking rocks, but can also change the stress
distribution in the rocks around the uncharged hole, which is called the “uncharged hole
effect” [16].

One of the outstanding characteristics of this method is that it typically drills 50 m at
a time, and can efficiently drill up to 65 m without any problems. Thus, additional free
faces are formed beyond the depth of the blast hole, which theoretically has the advantage
of increasing the advance per round. In addition, one to three holes are generally drilled
in the LLB method, depending on what is applicable in the site conditions. Unlike the
conventional cut blasting methods, such as V-cut and burn-cut, this method is applicable
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for both weak and hard rock masses. The field application of the LLB machine and a tunnel
face with completed drilling are shown in Figure 2 [10].
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(a) Field application of the LLB machine; (b) tunnel face with completed drilling.

2.2. A Mechanism of Tensile Fracturing by Long and Large-Diameter Uncharged Holes

When an explosive detonates in a blast hole, gaseous detonation products fill the
blast hole with high pressure and temperature. This high-pressure detonation gas is
immediately applied to the surface of a blast hole and generates radial compressive stress,
which is generally greater than the strength of the rock [17,18]. The compressive stress
wave generated by blasting turns into a tensile stress wave when it reaches a free face, and
the reflected tensile wave returns through the rock mass [19–21]. This behavior is generally
called the Hopkinson effect, and the principle of this theory is illustrated in Figure 3 [22].

It is well known that the dynamic tensile strength of rock is much lower than the
dynamic compressive strength [23,24]. If the tension stress waves exceed the dynamic
tensile strength of the rock, cracks will be generated gradually, and this tensile stress leads
to greater damage to the rock mass in the vicinity of the free face [16]. Therefore, when
a propagated compressive stress wave from the detonated explosive reaches an uncharged
hole, it turns into a tensile stress wave; thus, the rock is effectively crushed around the
uncharged hole. A tunnel structure generally has only one free face, which is the tunnel
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face. To effectively blast in tunneling, adding free faces is the most vital factor for initiating
or maximizing the Hopkinson effect.
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3. Numerical Analysis
3.1. Analysis Model

This study used the LS-DYNA software, which is widely used for blasting simulations,
to simulate dynamic and non-linear problems. The arbitrary Lagrangian–Eulerian (ALE)
formulation was employed to investigate blast-induced pressure and its interaction with
various materials [25–27]. The ALE formulation contains both Lagrangian and Eulerian
formulations to utilize the advantages of each approach [28]; it allows the mesh to move
independently from the material flow, and each element in the mesh can contain mixtures
of different materials [29].

The burn-cut method and the LLB method were modeled to investigate their effects
on the blasting efficiency, including the advance per round in tunnel blasting. Both anal-
ysis models included the rock, explosives, and stemming in the charge hole, as well as
uncharged holes. The rock was modeled using the Lagrangian method, with a geometry
of 1500 mm × 1500 mm × 1500 mm to focus on the cut area, as shown in Figure 4. The
diameter of the blast holes was 50 mm and they contained 300 mm of explosives and
700 mm of stemming, which were modeled with the ALE method. The diameters of the
uncharged holes for the burn-cut and the LLB method were 102 mm and 382 mm, respec-
tively. The spacing between the blast hole and the uncharged hole for the burn-cut was
200–300 mm and 400 mm for the LLB method. The geometries were modeled based on
actual design cases from subway tunnel construction sites in South Korea. In both cases,
the explosives were set to detonate at the same time, and the boundary conditions were set
as non-reflecting boundaries for all sides, except the tunnel face.

3.2. JH-2 Constitutive Model for Rock Material

A Johnson–Holmquist (JH-1) constitutive material model was initially proposed for
studying the behavior of metals such as copper and nickel under large strain, high strain
rate, and high-pressure conditions. Based on the JH-1 model, an improved material model,
named as the JH-2 constitutive model, was suggested to describe the mechanical behavior
under dynamic conditions, considering the softening property of brittle materials. The JH-2
model is widely used in LS-DYNA to simulate the dynamic behavior (blasting) of rocks.
This improved model represented the strength and damage of material as functions of the
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representative variables and the damage evolution within the material was considered.
In addition, this model considers the pressure, strain-rate dependent strength, damage,
and fracture of materials [30–32]. Granite is one of the most brittle materials and a widely
distributed underground rock material in South Korea. Therefore, granite properties were
used here to simulate the tunnel blasting, as shown in Table 1 [33]. A general overview of
the model is illustrated in Figure 5.
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Table 1. Input parameter for JH-2 model in LS-DYNA.

Parameter Value Parameter Value

Density (kg/m3) 2560 Maximum normalized fractured strength 0.160
Shear modulus (GPa) 11.606 Hugoniot elastic limit (GPa) 4.500

Intact normalized strength parameter A 1.248 Pressure component at the Hugoniot elastic limit (GPa) 2.930
Fractured normalized strength parameter B 0.680 Fraction of elastic energy loss 1.000

Strength parameter C 0.005 Parameter for a plastic strain to fracture D1 0.008
Fractured strength parameter M 0.830 Parameter for a plastic strain to fracture D2 0.435

Intact strength parameter N 0.676 First pressure coefficient K1 (GPa) 10.720
Reference strain rate 1.000 Second pressure coefficient K2 (GPa) −386

Maximum tensile strength (GPa) 0.015 Elastic constant K3 (GPa) 12,800
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The JH-2 model includes the following three types of strength: intact state, damaged
state, and fractured state, as shown in Figure 5. The three states have their own strength
equations, which present the relationship between the normalized equivalent stress and
the normalized pressure, expressed as

σ∗ = σ∗
i − D(σ∗

i − σ∗
f ) = σ/σHEL (1)

where σ∗
i is the normalized intact equivalent stress, σ∗

f is the normalized fracture stress, D is
the damage coefficient (0 ≤ D ≤ 1), σ is the actual equivalent stress calculated by the von
Mises stress formula, and σHEL is the equivalent stress at the Hugoniot elastic limit (HEL).
The HEL stands for the net compressive stress at which a one-dimensional shock wave
with uniaxial strain exceeds the elastic limit of the material. The brittle material begins
to soften when the damage begins to accumulate, and this process can be expressed by
Equation (1). Although the softening does not continue when the material is completely
damaged (D = 1), it allows for gradual softening of the brittle material under increasing
plastic strain. The normalized intact strength and fracture strength are given by

σ∗
i = A(P∗ + T∗)N

(
1 + C × ln

.
ε
∗) (2)

σ∗
f = B(P∗)M

(
1 + C × ln

.
ε
∗) (3)

where A, B, C, M, and N are all constants. The normalized pressure is P∗ = P/PHEL, where
P is the actual pressure and P∗ is the pressure at the HEL. The normalized maximum tensile
hydrostatic pressure is T∗ = T/PHEL, where T is the maximum tensile hydrostatic pressure.
The strain is

.
ε
∗
=

.
ε/

.
ε0, where

.
ε is the actual strain;

.
ε0 = 1 s−1 is the reference strain rate.

The damage is mainly accumulated due to the generation of fractures, and the damage
graph is shown in Figure 6a. The damage in the JH-2 model can be expressed as follows:

D = ∑ ∆εp/ε
p
f = ∑ ∆εp/[D1(P∗ + T∗)D2 ] (4)

where ∆εp is the plastic strain during a cycle of integration, ε
p
f is the plastic strain to the

fracture under constant pressure P, and D1 and D2 are the damage factors for ε
p
f . The

equation of state (EOS) for the JH-2 constitutive model, as shown in Figure 6b, presents the
relationship between hydrostatic pressure and volumetric strain, which consists of a pure
elastic stage and a plastic damage stage. The hydrostatic pressure before the fracture and
after the damage starts to accumulate can be expressed as follows:

P = K1µ + K2µ2 + K3µ3 · · · (D = 0) (5)
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P = K1µ + K2µ2 + K3µ3 + ∆P · · · (0 < D < 1) (6)

where K1, K2, and K3 are constants (K1 is the bulk modulus), and µ = ρ/ρ0 − 1 for the
current density ρ and the initial density ρ0. When the fracture occurs in the material, which
is caused by the bulking energy, the incremental pressure ∆P is added. In this analysis
model, erosion was set to occur when the tensile stress exceeds the maximum tensile
strength of the rock mass, using blasting to simulate the rock failure.
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3.3. Explosive and Stemming Material Models

To model the pressure generated by the expansion of the detonation product, a Jones-
Wilkins–Lee (JWL) equation of state (EOS) was used [34]. The JWL EOS is widely used
in explosives modeling for describing the relationship of pressure–volume–energy for
detonation products. In this study, JWL EOS was used to simulate the blasting process, and
this equation can be expressed as follows:

P = A
(

1 − ω

R1V

)−R1V
+ B

(
1 − ω

R2V

)−R2V
+

ω

V
E0 (7)

where P is pressure, E and V are the detonation energy per unit volume and the relative
volume, and A, B, R1, R2, and ω are the EOS coefficients, respectively. A high explosive
burn (HEB) material card was used to simulate the detonation of the explosives. The input
values for JWL EOS and HEB for an emulsion material are provided in Table 2 [35].

Table 2. Input parameter for JWL EOS in LS-DYNA.

JWL Parameter A
(GPa)

B
(GPa) R1 R2 ω

E0
(GPa/m3/m3)

V0
(m3/m3)

Value 276 8.44 5.215 2.112 0.501 3.868 1.0

HEB
Parameter RO

(kg/m3)
D

(m/s)
Pcj

(GPa)
Value 1180 5122 9.530

where RO, D, and Pcj are the density, detonation velocity, and Chapman–Jouguet pressure, respectively.

Stemming is a material used to prevent the release of detonation gases by filling the
remaining areas in the blast hole, and it helps the pressure generated by the explosives to
crush the rock efficiently. Here, the stemming material was modeled using the FHWA_SOIL
material model developed by the U.S. Federal Highway Administration (FHWA) [36]. This
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model is an isotropic material with damage, and it is effective at modeling the behavior of
soil under the consideration of strain-softening, kinematic hardening, strain rate effects,
element deletion, excess pore water effects, and stability with no soil confinement; the input
parameters are listed in Table 3 [37–39].

Table 3. Input parameter for FHWA_SOIL model in LS-DYNA.

Parameter Value Parameter Value

Density (kg/m3) 2350 Eccentricity parameter 0.700

Specific gravity 2.650 Moisture content 6.200

Density of water (kg/m3) 1000 Skeleton bulk modulus (MPa) 0.153

Viscoplasticity parameter Vn 1.100 Minimum internal friction angle (radians) 0.063

Viscoplasticity parameter γr 0.0 Volumetric strain at initial damage threshold 0.001

Maximum number of plasticity iterations 10.00 Void formation energy 10.00

Bulk modulus (MPa) 15.30 Strain hardening, percent of ϕmax where non-linear effects start 10.00

Shear modulus (MPa) 19.50 Pore water effects on bulk modulus PWD1 0.0

Peak shear strength angle (radians) 0.420 Pore water effects on effective pressure PWD2 0.0

Cohesion (MPa) 0.011 Strain hardening, amount of non-linear effects 10.00

The uncharged holes were modeled using the NULL material card, and the void was
modeled using the LINEAR_POLYNOMIAL EOS material card, which is given by

P = C0 + C1µ + C2µ2 + C3µ3 +
(

C4 + C5µ + C6µ2
)

E (8)

where C0, C1, C2, C3, C4, C5, and C6 are constants, and µ = ρ/ρ0 − 1, which is the ratio
of the current density to the initial density. The detailed parameters for air are given in
Table 4.

Table 4. Material model and EOS parameter for air.

ρ (kg/m3) C0 C1 C2 C3 C4 C5 C6 E0 (MPa)

1.29 0.0 0.0 0.0 0.0 0.4 0.4 0.0 0.25

3.4. Results of Numerical Analyses

Figure 7 displays the results of numerical analyses for the burn-cut and LLB methods
over time, and shows side views of the analysis models in the wireframe element mode for
observing the state of fracturing around the blast holes inside the rock mass. The number
of elements of the burn-cut and LLB methods was 6,800,190 and 6,816,395, respectively.

When the explosives detonate after 0 s, the high-temperature and high-pressure gases
are generated by the four blast holes; thus, compressive fractures are generated near the
blast holes, and the explosion energy is propagated in the form of a compressive stress wave
to the rock mass [40,41]. The propagated compressive stress wave reaches the uncharged
holes before it reaches the tunnel face because of the shorter burden. The compressive
stress wave first reaches the surface of the uncharged holes, and then is reflected as a tensile
wave that begins to crush the rock around the uncharged holes at 0.2 ms in both cases. At
0.2 ms, in the burn-cut method, the spacing between the explosives and the uncharged
hole is shorter than that of the LLB method; thus, the crushed zone around the uncharged
hole was wider than in the LLB method. Then, the crushed area near the uncharged holes
gradually increases. At the same time, the continuously propagated stress wave finally
reaches the tunnel face and the rock is crushed, due to the reflected tensile stress at 0.8 and
1.0 ms, respectively. The crushed zones continuously increase due to the high pressure and
the reflected tensile stress generated by the uncharged holes and the tunnel face.
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4. Discussion
4.1. Effect of Increasing the Advance Rate in the Burn-Cut and LLB Methods

Figure 8 summarizes the numerical analysis results at the last step (at 1.4 ms) to
investigate the influence of the advance rate in the burn-cut and LLB methods. In the
case of the Burn-cut method, the rock was crushed up to 0.09 m from the end line of the
explosives, whereas the rock was crushed up to 0.37 m in the LLB method, which was more
than four times the advance rate. It is believed that the large-diameter uncharged hole that
was longer than the ordinary blast holes contributed significantly to the generation of more
extensive tensile failure. In particular, in the burn-cut method, the blast-induced stress was
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used more to crush rocks between the blast holes and the tunnel face than to increase the
advance. On the other hand, blast-induced stress in the LLB method was used more to
increase the advance. Therefore, the long and large-diameter uncharged hole is believed to
contribute greatly to increasing the advance.
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When explosives detonate near the cut area in the first stage, the long and large-
diameter uncharged hole provides a larger space for crushed rock to move into, thus
reducing the confining pressures of the surrounding rocks. Efficient moving of these
crushed rocks creates an additional free face and reduces interference between the crushed
rocks in the second stage. Considering that the entire blasting process uses the sequential
blasting technique, which has a detonating delay time in the actual blasting, this method is
significantly beneficial in that the long and large-diameter uncharged hole provides a larger
space to move the crushed rocks into. In addition, the formed long and large-diameter
uncharged hole before blasting provides an opportunity to reduce the amount of explosives;
thus, the advance rate can be increased and the blast-induced vibration can be reduced.

4.2. Effect of Increasing the Advance in the Burn-Cut and LLB Methods

Additional analysis of the LLB method was carried out to investigate the blasting
efficiency with the large-diameter uncharged hole with the same depth as the blast holes
(a shorter depth than in the original LLB method). Figure 9 summarizes the results of
the numerical analysis for the original LLB method and the modified LLB with a shorter
uncharged hole. The number of elements of the modified LLB method was 6,719,248. The
results show that the advance in the modified LLB method with its shorter uncharged hole
was 0.11 m, which was approximately 3.36 times less than in the original LLB method.
However, the advance in the modified LLB method was approximately 1.22 times longer
than in the burn-cut method, as shown in Figure 8a. This suggests that the advance
increased due to the long and large-diameter uncharged hole that caused a more extensive
range of tensile failure compared to the burn-cut method. Given that the wider and longer
uncharged hole significantly contributed to increasing the blasting efficiency as well as
the advance, the LLB method has pronounced advantages compared to the traditional
burn-cut method.

518



Sustainability 2022, 14, 13347

Sustainability 2022, 14, x FOR PEER REVIEW 11 of 15 
 

advance increased due to the long and large-diameter uncharged hole that caused a more 

extensive range of tensile failure compared to the burn-cut method. Given that the wider 

and longer uncharged hole significantly contributed to increasing the blasting efficiency 

as well as the advance, the LLB method has pronounced advantages compared to the tra-

ditional burn-cut method. 

  
(a) (b) 

Figure 9. Comparison of blasting efficiency depending on the length of the large-diameter un-

charged hole. (a) Original LLB method; (b) modified LLB method with reduced uncharged hole 

length. 

4.3. Effect of Reducing the Amount of Explosives 

Additional numerical analysis was performed to estimate the effect of reducing the 

amount of explosives when applying the LLB method. The total length of the explosives 

was reduced by 30%, from 300 to 210 mm, and the results are illustrated in Figure 10. The 

number of elements of the modified LLB method was 6,801,550. The crushed zone around 

the blast hole was about 2.25 times smaller than with the original LLB design, but the 

advance was similar, 0.37 mm compared to 0.36 mm with the original LLB design. Alt-

hough the overall failure range decreased as the amount of explosives was decreased, the 

tensile failure caused by the long and large-diameter uncharged hole had a significant 

influence. Therefore, in sequential blasting, the modified LLB method with a reduced 

amount of explosives in the cut area can be expected to have similar blasting efficiency as 

the original LLB method. 

  
(a) (b) 

Figure 9. Comparison of blasting efficiency depending on the length of the large-diameter uncharged
hole. (a) Original LLB method; (b) modified LLB method with reduced uncharged hole length.

4.3. Effect of Reducing the Amount of Explosives

Additional numerical analysis was performed to estimate the effect of reducing the
amount of explosives when applying the LLB method. The total length of the explosives
was reduced by 30%, from 300 to 210 mm, and the results are illustrated in Figure 10.
The number of elements of the modified LLB method was 6,801,550. The crushed zone
around the blast hole was about 2.25 times smaller than with the original LLB design, but
the advance was similar, 0.37 mm compared to 0.36 mm with the original LLB design.
Although the overall failure range decreased as the amount of explosives was decreased,
the tensile failure caused by the long and large-diameter uncharged hole had a significant
influence. Therefore, in sequential blasting, the modified LLB method with a reduced
amount of explosives in the cut area can be expected to have similar blasting efficiency as
the original LLB method.
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Figure 11 shows the numerical analysis results of blasting with the burn-cut method
and the modified LLB method with a reduced amount of explosives. As mentioned above,
although the total influence range near the explosives was decreased due to the reduction
in the amount of explosives in the modified LLB method, its advance was four times longer
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than that of the burn-cut method, as shown in Figure 11. Even in terms of blasting design,
it is estimated that it is desirable to reduce the amount of explosives compared to the
existing design, due to the large-diameter uncharged hole formed before blasting. Thus, the
modified LLB method showed pronounced advantages in reducing blast-induced vibration
by reducing the amount of explosives in the cut area, as well as increasing the advance.
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Figure 11. Comparison of range of failure in the burn-cut and the modified LLB methods. (a) Burn-cut
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4.4. Comparison of Each Analysis Model using Eroding Elements

Figure 12 presents the total deleted eroding volume by detonation in the original LLB
method, the burn-cut method, and the modified LLB method with reduced explosives.
The total number of eroding elements can be used to compare the extent of the failure
zones according to each method, and the number of deleted elements for each method was
101,953, 86,622, and 81,753, respectively. The original LLB method showed the widest range
of the crushing zone, which was about 1.18 times larger than in the burn-cut method. In the
modified LLB method with 30% reduced explosives, the total number of deleted eroding
elements decreased by about 1.25 times compared to the original LLB, and was about
1.06 times lower than the burn-cut method. The modified LLB method showed similar
failure patterns compared to the original LLB method, but the number of deleted eroding
elements around the blast holes decreased as the amount of explosives decreased. The
main effect of the burn-cut method was the reduction in the failure zone between the blast
holes and the tunnel face, rather than contributing to increasing the advance.
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In summary, the reduction in explosives in the modified LLB method reduced the
overall size of the failure zones, but had a substantial advantage in that it contributed
significantly to increasing the advance rate. Therefore, the LLB method clearly had better
crushing efficiency than the traditional burn-cut method and, even when the amount
of explosives in the cut area was reduced, this method had similar blasting efficiency
compared to the traditional burn-cut method. Therefore, the modified LLB method can be
considered an excellent alternative blasting method in that it not only reduces blast-induced
vibration by reducing the amount of explosives needed in the cut area, but also increases the
advance rate. However, since this is the result of the analysis using computer simulation,
numerous field tests should be carried out for validation of the results.

5. Conclusions

In this study, numerical analysis using LS-DYNA software was performed to investi-
gate the blast mechanism and efficiency by applying an advanced LLB cut blasting method
that can effectively reduce blast-induced vibration. The Johnson–Holmquist (JH-2) consti-
tutive model, which was developed for brittle materials subjected to dynamic conditions,
was used to model the tunnel rock material, and the explosives and stemming materials
were modeled using relevant emulsion and soil properties, respectively. The original LLB
method was compared to the traditional burn-cut method as well as the modified LLB
method, which shortened the depth of its large-diameter uncharged hole to match that of
the blast holes and reduced the amount of explosives by 30%.

The numerical analysis confirmed that the new LLB method not only contributed to
increasing the rock failure range in the cut area by forming an approximately 3.75 times
larger uncharged hole than in the conventional burn-cut method, but also increased the ad-
vance rate by about 3.36 times by generating more tensile failure in the excavation direction.
The modified LLB method used 30% less explosives and produced about 1.25 times fewer
deleted eroding elements than the original LLB method (and 1.06 times fewer than the
burn-cut method). In the traditional burn-cut method, which uses relatively small-diameter
uncharged holes, explosives are used in crushing rocks more finely instead of contributing
to increasing the advance rate. In contrast, the modified LLB method, with its long and
large-diameter uncharged hole, generated more tensile failure in the excavation direction,
so its advance rate increased four-fold compared to the burn-cut method. The long and
large-diameter uncharged hole, which was already formed before blasting, reduces the
initial confining stress of rock mass and can efficiently utilize the free face effect, thereby
reducing the amount of explosives. Therefore, the modified LLB method, with its reduced
amount of explosives, is significantly beneficial as an alternative method for reducing
blast-induced vibration and increasing blasting efficiency, particularly in terms of advance
per round, compared to the traditional burn-cut method. If a multi-LLB method that uses
several long and large-diameter uncharged holes instead of one hole is considered, the
blasting efficiency would increase significantly. Therefore, based on the numerical analysis,
this method can be considered as an economical and eco-friendly blasting method for
reducing the overall construction period and addressing environmental concerns.
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Abstract: Affected by climatic conditions such as rainfall, evaporation and air temperature, most of
the backfill soil is in an unsaturated state, and the decrease in matric suction leads to the failure of
the retaining structure. In view of this, this study takes the vertical rigid retaining wall with narrow
unsaturated backfill as the research object, assuming that the backfill behind the wall forms a circular
soil arch and considering the interlayer shear stress; thus, the analytical solution of the active earth
pressure of narrow unsaturated soil is derived based on the thin layer element method. The reliability
of this method is verified by comparing with the experimental and existing theoretical results. A
parameter analysis demonstrates that with the increase in the interface friction angle of the moving
wall–soil, the average shear stress coefficient of zone I and zone II increases gradually, but with the
increase in the interface friction angle of the fixed wall–soil, the average shear stress coefficient of
zone I decreases; with the increase in effective internal friction angle and effective cohesion, the active
earth pressure decreases and the tension crack depth increases; with the increase in the interface
friction angle, the active earth pressure in the upper part of the retaining wall increases slightly, while
the active earth pressure in the lower part decreases obviously; with the increase in matric suction,
the active earth pressure first decreases rapidly and then increases gradually, and the tension crack
depth first increases and then decreases, but the distribution pattern of the horizontal active earth
pressure remains unchanged; the active earth pressure decreases with the decrease in the aspect ratio,
and when the aspect ratio is smaller, the attenuation is more obvious; until the aspect ratio reaches a
certain value, the active earth pressure is basically unchanged.

Keywords: active earth pressure; unsaturated narrow backfill; interlayer shear stress; arching effect;
thin-layer element method

1. Introduction

The lateral pressure of the retaining wall is a key factor affecting the safety and stability
of the retaining wall. An accurate estimation of the earth pressure behind a retaining wall is
the premise of rational design. Coulomb’s and Rankine’s earth pressure theory have been
used by engineering designers until now because of their simple form and clear concept.
Both of them assume that the backfill behind the wall is semi-infinite and is fully saturated
or dry. Furthermore, the earth pressure obtained by the two theories is linearly distributed
along the depth. However, it is proven that the active earth pressure distribution behind
the wall is nonlinear due to the rough wall–soil interfaces [1–5].

With the rapid development of urban construction, underground buildings are be-
coming more and more intensive, so that the backfills behind many retaining walls cannot
meet the conditions of semi-infinite soil. The adjacent underground structures prevent the
sliding surface in the backfill from fully developing to the backfill surface, resulting in a
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large difference between the earth pressure behind the wall and that in the semi-infinite
soil case. Several studies have demonstrated that the active earth pressure acting on the
retaining wall decreases with the narrowing of the backfill behind the wall [3,5–12]. In
addition, some scholars have discussed the shape of the slip surface in the soil under the
condition of narrow backfill. A simple but effective method is to assume that the linear
sliding surface is truncated by the adjacent wall to form a trapezoidal sliding wedge [5,13].
Greco [14] believed that the sliding surface will reflect and form a multi fold line failure
mode after it develops to the adjacent wall. Yang et al. [15] conducted a series of model
tests and observed that the slip surfaces are curvilinear planes developed from the heel of
the retaining wall to the crest of the backfill.

On the other hand, after the soil arch theory was put forward by Janssen [16], the
relevant earth pressure research was carried out by many geotechnical scholars. Handy [17]
defined the active soil arch as the trajectory of small principal stress, assumed that the
trajectory of the soil arch between two parallel retaining walls is catenary, and established
the expression of the earth pressure distribution behind the wall by the slice method. Paik
and Salgado [18] assumed that the soil arch is a circular arc, and the sliding surface of the
backfill is the Rankine sliding surface, but the deflection of the principal stress at the sliding
surface is not considered. Goel [19] assumed the soil arch as a parabola and solved the
theoretical expression of active earth pressure in the form of polar coordinates in the case of
the linear failure mode and parabola failure mode. Many subsequent studies have proven
that the soil arching effect cannot be ignored in the calculation of earth pressure [9,20–22].

Additionally, due to the complex natural geological environment, various retaining
structures are inevitably backfilled by unsaturated soil. In this case, the traditional earth
pressure theories treat backfills as completely saturated or dry soils. Nevertheless, many
engineering cases demonstrate that economic and safe retaining structure design can only
be carried out if the lateral pressure change caused by the change of matric suction in
unsaturated backfill is reasonably considered [23–25]. The following work has been car-
ried out by researchers: Pufahl et al. [26] obtained the Rankine earth pressure solution of
unsaturated soil based on the strength theory of two stress variables [27]. Liang et al. [28]
combined the strength theory of unsaturated soil with the Coulomb earth pressure theory,
and obtained the unified solution of Coulomb earth pressure in unsaturated soil. Since
then, the limit equilibrium method has been widely used to solve the earth pressure of
unsaturated soil [24,29,30]. Moreover, the slip line theory [31,32] and the upper bound
method of limit analysis [33–35] have also been extended to the calculation of earth pres-
sure in unsaturated soils. However, most unsaturated earth pressure theories still assume
that the backfill is in semi-infinite soil conditions when analyzing the finite fill behind the
wall, which is seriously inconsistent with the actual situation, resulting in too conservative
calculation results. In addition, two ideas are generally adopted for the theoretical deriva-
tion of unsaturated earth pressure at present. One is based on the traditional Coulomb
earth pressure method, and the overall sliding wedge is used to solve the problem, but the
distribution of earth pressure cannot be obtained. The other method is to use the horizontal
thin-layer slicing method, but most theories do not consider the comprehensive influence
of the soil arching effect and interlayer shear stress in the analysis, resulting in a large
deviation between the predicted results and the actual situation.

Based on the above analysis, this study takes the narrow unsaturated backfill as the
analysis object, assumes that the trajectory of small principal stress is an arc and the soil
slip surface behind the wall is a Coulomb slip surface, and the Mohr stress circle is used
to calculate the average vertical stress and shear stress of the horizontal interlayer; on this
basis, the expression of active earth pressure, its resultant force and the height of the action
point is given by the horizontal thin layer analysis method, and it is compared with the
model test and other theoretical results in the relevant literature. At the same time, through
parameter analysis, the effects of fill aspect ratio, cohesion, internal friction angle, matrix
suction and wall–soil interface friction angle on active earth pressure, its resultant force
and the height of the action point are studied.
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2. Shear Strength for Unsaturated Soils

In order to more clearly describe the characteristic that the shear strength of unsatu-
rated soil increases with the increase in matric suction, Fredlund et al. [27] introduced a
new material variable ϕb related to matric suction, and proposed a shear strength theory
of two independent stress state variables for calculating the shear strength of unsaturated
soil. As shown in Figure 1, in the three-dimensional space of two stress variables and shear
stress, the shear strength envelope is a plane. The expression of shear strength is given by:

τf = (σ− ua) tan ϕ′ + c′ + (ua − uw) tan ϕb (1)

where σ is the total normal stress; ua and uw are the pore air pressure and the pore water
pressure; (σ − ua) represents the net normal stress on the failure plane; ϕ’ is the effective
internal friction angle; c’ is the effective cohesion; (ua − uw) represents the matric suction;
ϕb is matric suction angle, which indicates the rate of increase in the soil strength with
respect to an increase in matric suction.
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Subsequent studies [36,37] found that the φb is not a fixed value. With the change of
matric suction, ϕb will take different values. Based on the microscopic analysis of unsaturated
soil, Vanapalli et al. [38] suggested that the SWCC model be used to correlate the relationship
between φb and volumetric water content of soil, which has the following form:

tan ϕb =

(
θ − θr

θs − θr

)
tan ϕ′ (2)

where θ is the volumetric water content; θr is the residual volumetric water content; and
θs is the saturated volumetric water content. Using the SWCC model proposed by Van
Genuchten [39], the matric suction angle corresponding to different matric suction can be
obtained from the following formula:

tan ϕb =
tan ϕ′

{
1 + [α(ua − uw)]

n}1−1/n (3)

where α and n are SWCC fitting parameters; parameter α is approximate to the inverse of
air entry suction; parameter n reflects the pore size distribution.

Through the above analysis, when the value of matric suction is determined, the
shear strength provided by the matric suction can be calculated. The intercept of the shear
strength envelope in the corresponding net stress and shear stress plane coordinate system
is the sum of the shear strength provided by the effective cohesion and matric suction, as

527



Sustainability 2022, 14, 12699

shown in Figure 1. In the subsequent calculation, we will express the contribution of matric
suction to shear strength through total cohesion:

ct = c′ + (ua − uw) tan ϕb (4)

3. Lateral Pressure Coefficient and Shear Stress Coefficient

Terzaghi [40] defines the phenomenon of earth pressure transfer from the yield zone
to the adjacent static zone as a soil arching effect, and the existence of the soil arching
effect changes the distribution of the earth pressure. The basic idea of calculating the earth
pressure by soil arching effect is to obtain the active lateral earth pressure coefficient by
assuming the geometric shape of the principal stress arch, and then solve the average
vertical pressure and earth pressure of the soil layer according to the differential element
force balance equation. In the calculation of the lateral earth pressure, the circular earth
arch is widely used and the earth pressure distribution is in good agreement with the
test results [18,19,41]. However, few studies have considered the influence of adjacent
underground buildings on the soil arch.

As shown in Figure 2, in the case of narrow backfill, assuming that the backs of two
rigid walls are vertical, and the backfill surface is horizontal, it is considered that there is an
overload q0 on the surface of the backfill, and the backfill of the wall is in an unsaturated
state. Suppose the wall height is H, the soil weight is γ, the soil cohesion is c’, the soil
friction angle is ϕ’, the friction angle between the retaining wall and the soil is δ1, and the
friction between the existing building and the soil is angle is δ2. The active slip surface
intersects with the adjacent underground buildings to form a trapezoidal soil wedge, the
Coulomb slip surface is assumed to be the slip surface under this working condition, and
the inclination angle β of the Coulomb-type slip surface passing through the wall heel is:

β = arctan

(√
tan2 ϕ′ +

tan ϕ′

tan(ϕ′ + δ1)
+ tan ϕ′

)
(5)

Different lateral earth pressure coefficients and interlayer shear stress coefficients will
be obtained when the soil arching effect is analyzed in the upper rectangular region (zone I)
and the lower triangular region (zone II). In this section, the lateral earth pressure coefficient
and the interlayer shear stress coefficient of each region are solved first, and the influence of
the wall soil friction angle on them is discussed. Then, in the next section, the distribution
of earth pressure, resultant force and their action points in each region are solved according
to the horizontal thin layer element method.

Considering the total cohesion of unsaturated soils, the coordinate system σ’oτ is
obtained by translating the coordinate system σoτ to the left by ctcotφ’, as shown in
Figure 3. Next, the lateral earth pressure coefficient and interlayer shear stress coefficient
will be calculated by analyzing the soil arching effect in different areas.

Zone I:
From the stress Mohr’s circle in Figure 3, the angles θA and θB between the large principal

stress and the horizontal direction at points A and B in Figure 2 can be expressed as:

θA =
π

2
− 1

2
arcsin

(
sin δ1

sin ϕ′

)
+

δ1

2
(6)

θB =
π

2
− 1

2
arcsin

(
sin δ2

sin ϕ′

)
+

δ2

2
(7)

where δ1 and δ2 are the interface friction angle of the moving wall and the fixed wall.
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The width of the horizontal thin layer element in zone I can be calculated as:

b = R(cos θA + cos θB) (8)

where R is the radius of circular soil arch.
In the new coordinate system, the horizontal stress, vertical stress and shear stress at

any point in the soil arch can be expressed as:

σx
′ = σ1

′
(

cos2 θ + Ka sin2 θ
)

(9)
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σz
′ = σ1

′
(

sin2 θ + Ka cos2 θ
)

(10)

τ = σ1
′(1− Ka) sin θ cos θ (11)

where σ’1 is the major principal stress of the new coordinate system; Ka is the Rankine
active earth pressure coefficient, which can be calculated by Ka =

1−sin ϕ′
1+sin ϕ′ .

Handy [17] and Paik [18] defined the lateral active earth pressure coefficient as the
ratio of the horizontal stress behind the retaining wall to the average value of the vertical
stress on the soil arch trajectory. Similarly, we define the interlayer shear stress coefficient
as the ratio of the average shear stress on the soil arch trajectory to the average vertical
stress on the soil arch trajectory.

The average shear stress and the average vertical stress on the soil arch trajectory can
be obtained by the integral method:

σz1
′ =

∫ π−θB
θA

σ1
′(sin2 θ + Ka cos2 θ

)
R sin θdθ

b
= σ1

′
(

1 +
(Ka − 1)

(
cos3 θA + cos3 θB

)

3(cos θA + cos θB)

)
(12)

τ1 =

∫ π−θB
θA

σ1
′(1− Ka) sin θ cos θR sin θdθ

b
= σ1

′ (1− Ka)
(
sin3 θB − sin3 θA

)

3(cos θA + cos θB)
(13)

The horizontal reaction force of the retaining wall in the new coordinate system can be
expressed as:

σxA
′ = σ1

′
(

cos2 θA+Ka sin2 θA

)
(14)

Therefore, in the new coordinate system, the lateral active earth pressure coefficient
and interlayer shear stress coefficient are:

K1 =
σxA

′

σz1
′ =

3(cos θA + cos θB)
(
cos2 θA+Ka sin2 θA

)

3(cos θA + cos θB) + (Ka − 1)(cos3 θA + cos3 θB)
(15)

k1 =
τ1

σz1
′ =

(1− Ka)
(
sin3 θB − sin3 θA

)

3(cos θA + cos θB) + (Ka − 1)(cos3 θA + cos3 θB)
(16)

Zone II:
The deflection angle of point C has the same expression as that of point A. Considering

the deflection of the principal stress at the sliding surface, θC and θD is obtained, as follows:

θC =
π

2
− 1

2
arcsin

(
sin δ1

sin ϕ′

)
+

δ1

2
(17)

θD =
π

4
+ β− ϕ′

2
(18)

The width of the horizontal element in zone II and the radius of the soil arch conform
to the following relationship:

bz = R(cos θC − cos θD) (19)

Referring to Equations (12)–(14), the average vertical stress, average shear stress and
horizontal reaction force of the retaining wall in zone II can be expressed as:

σz2
′ =

∫ θD
θC

σ1
′(sin2 θ + Ka cos2 θ

)
R sin θdθ

bz
= σ1

′
(

1 +
(Ka − 1)

(
cos3 θC − cos3 θD

)

3(cos θC − cos θD)

)
(20)
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τ2 =

∫ θD
θC

σ1
′(1− Ka) sin θ cos θR sin θdθ

bz
= σ1

′ (1− Ka)
(
sin3 θD − sin3 θC

)

3(cos θC − cos θD)
(21)

σxC
′ = σ1

′
(

cos2 θC+Ka sin2 θC

)
(22)

Then, the lateral pressure coefficient and interlayer shear stress coefficient of zone II in
the new coordinate system can be expressed as:

K2 =
σxC
′

σz2′
=

3(cos θC − cos θD)
(
cos2 θC+Ka sin2 θC

)

3(cos θC − cos θD) + (Ka − 1)(cos3 θC − cos3 θD)
(23)

k2 =
τ2

σz2′
=

(1− Ka)
(
sin3 θD − sin3 θC

)

3(cos θC − cos θD) + (Ka − 1)(cos3 θC − cos3 θD)
(24)

Figure 4 shows the relationship between the interlayer shear stress coefficients (k1 and
k2) and the interface friction angle of the fixed wall–soil δ2 under different values of the
interface friction angle of the moving wall–soil δ1. The curves in the figures are obtained
from Equations (16) and (24). As shown in the Figure 4a, the increase of δ1, k1 increases
obviously, but decreases with the increase of δ2. Moreover, from Figure 4b, k2 increases
with the increase of δ1, but does not change with the increase of δ2. This is because the soil
arch in zone II is not formed to the fixed wall. Additionally, when δ1 = δ2, k1 = 0. As δ2
continues to increase, k1 will take a negative value, and the direction of the interlayer shear
stress will change.
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4. Derivation of Active Earth Pressure Formula

For unsaturated backfills, the tension cracks on the backfill surface cannot be ignored
due to matric suction. Combining Equation (9) and the transformation relationship between
the two coordinate systems, at the critical depth (z = hc), the following relationship is given:

σxA = σ1
′(cos2 θA+Ka sin2 θA

)
− ct cot ϕ′

= (γhc + q0 + ct cot ϕ′)
(
cos2 θA+Ka sin2 θA

)
− ct cot ϕ′ = 0

(25)

Rewriting the above equation, the tension crack depth can be expressed as:

hc =
1
γ

(
ct cot ϕ′

cos2 θA+Ka sin2 θA
− ct cot ϕ′ − q0

)
(26)

In Equation (26), when hc < 0, take hc = 0.
Zone I:
Carry out force balance analysis for rectangular thin layer element, as shown in

Figure 5, in which σx1 and σx2 are the horizontal reaction force of the retaining wall and
fixed wall; τw1 and τw2 are the interface shear stress of the retaining wall and fixed wall; σz
and σz + dσz are the average vertical stress acting on the upper surface and lower surface;
τ and τ + dτ are the average interlayer shear stress acting on the upper surface and lower
surface; dW is the self-weight of thin layer element.
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The force equilibrium equations in the vertical and horizontal directions are estab-
lished as:

σx1dz− σx2dz + (τ + dτ)b− τb = 0 (27)

τw1dz + τw2dz− σzb + (σz + dσz)b− dW = 0 (28)

where 



τw1 = σx1 tan δ1 + cwt1
τw2 = σx2 tan δ1 + cwt2
σx1 = K1σz + (K1 − 1)ct cot ϕ′

τ = k1σz + k1ct cot ϕ′

dW = γbdz

(29)

The adhesive force of wall and soil can be considered as the same as the friction force,
which is given by:

cwt1 = ct
tan δ1

tan ϕ′
, cwt2 = ct

tan δ2

tan ϕ′
(30)

Neglecting the second-order terms, the first-order differential equation can be obtained
by solving Equations (27) and (28):

dσz

dz
+ M1σz + N1 = 0 (31)

where 



M1 = K1(tan δ1+tan δ2)
b(k1 tan δ2+1)

N1 = K1ct cot ϕ′(tan δ1+tan δ2)−γb
b(k1 tan δ2+1)

(32)

By integrating Equation (30), the average vertical stress can be solved as:

σz = C1e−M1z − N1

M1
(33)

Substituting the boundary conditions (z = hc, σz = q0 + γhc) into Equation (33), C1 is
obtained as follows:

C1 = eM1hc

(
q0 + γhc +

N1

M1

)
(34)

Zone II:
As shown in Figure 6, according to the equilibrium conditions of stresses acting on the

trapezoidal thin layer element, the two equations are expressed as:

σxdz− σndz
sin β

sin β
+ τsdz

cos β

sin β
+ (τ + dτ)(bz − dz cot β)− τbz = 0 (35)

τwdz + τsdz
sin β

sin β
+ σndz

cos β

sin β
+ (σz + dσz)(bz − dz cot β)− σzbz − dW = 0 (36)

533



Sustainability 2022, 14, 12699

in which 



τw = σx tan δ1 + cwt1
τs = σn tan ϕ′ + ct
σx = K2σz + (K2 − 1)ct cot ϕ′

τ = k2σz + k2ct cot ϕ′

bz = (H − z) cot β

dW = γbzdz− 1
2 γdz cot βdz

(37)

where σn and τs are the normal stress and shear stress on the slip surface.
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Combining Equations (35) and (36), a differential equation is obtained as:

dσz

dz
+

M2

H − z
σz +

N1

H − z
+ P2 = 0 (38)

where 



M2 =
K2[tan( π

2 −β+ϕ′)+tan δ1]
cot β[1+k2 tan( π

2 −β+ϕ′)]
− 1

N2 = ct
tan( π

2 −β+ϕ′)((K2−1) cot ϕ′+cot β(1−k2 cot ϕ′))+K2 cot ϕ′ tan δ1+1
cot β[1+k2 tan( π

2 −β+ϕ′)]
P2 = −γ

1+k2 tan( π
2 −β+ϕ′)

(39)

Integrating Equation (38) can be solved as

σz = C2(H − z)M2 +
P2

1−M2
(H − z)− N2

M2
(40)

By substituting the boundary value z = h, σz = C1e−M1h − N1
M1

, C2 is obtained, as
follows:

C2 =
C1e−M1h − N1

M1
− P2

1−M2
(H − h) + N2

M2

(H − h)M2
(41)

Therefore, the distribution of the horizontal active earth pressure is obtained as:

σx =





K1

[
C1e−M1z − N1

M1

]
+ (K1 − 1)ct cot ϕ′ (hc ≤ z ≤ h)

K2

[
C2(H − z)M2 + P2

1−M2
(H − z)− N2

M2

]
+ (K2 − 1)ct cot ϕ′ (h ≤ z ≤ H)

(42)

The resultant force of the horizontal active earth pressure and the total overturning
moment of the retaining wall can be expressed, respectively, as

Ex =
∫ H

hc
σxdz =

∫ h
hc

K1

[
C1e−M1z − N1

M1

]
+ (K1 − 1)ct cot ϕ′dz

+
∫ H

h K2

[
C2(H − z)M2 + P2

1−M2
(H − z)− N2

M2

]
+ (K2 − 1)ct cot ϕ′dz

(43)

M =
∫ H

hc
σx(H − z)dz =

∫ h
hc

K1

[
C1e−M1z − N1

M1

]
(H − z) + (K1 − 1)ct cot ϕ′(H − z)dz

+
∫ H

h K2

[
C2(H − z)M2 + P2

1−M2
(H − z)− N2

M2

]
(H − z) + (K2 − 1)ct cot ϕ′(H − z)dz

(44)
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It should be noted that a special working condition may also occur. When h < hc,
there will be no zone I. In this case, the boundary conditions (z = hc, σz = q0 + γhc) are
substituted into Equation (40), and C2 is obtained as follows:

C2 =
q0 + γhc − P2

1−M2
(H − hc) +

N2
M2

(H − hc)
M2

(45)

Then, the horizontal active earth pressure, resultant force of horizontal active earth
pressure and the total overturning moment of the retaining wall can be expressed, respec-
tively, as

σx =

{
0 (0 ≤ z ≤ hc)

K2

[
C2(H − z)M2 + P2

1−M2
(H − z)− N2

M2

]
+ (K2 − 1)ct cot ϕ′ (hc ≤ z ≤ H)

(46)

Ex =
∫ H

hc
σxdz =

∫ H

hc
K2

[
C2(H − z)M2 +

P2

1−M2
(H − z)− N2

M2

]
+ (K2 − 1)ct cot ϕ′dz (47)

M =
∫ H

hc
σx(H − z)dz =

∫ H
hc

K2

[
C2(H − z)M2 + P2

1−M2
(H − z)− N2

M2

]
(H − z)

+(K2 − 1)ct cot ϕ′(H − z)dz
(48)

The distance from the location of the resultant of the active earth pressure to the heel
of the wall, denoted as Ha, can be easily derived as the ratio of M to Ex:

Ha =
M
Ex

(49)

5. Comparison and Verification

The novelty of this study is to propose a theoretical framework for calculating the
active earth pressure of narrowed unsaturated backfill. To the knowledge of the authors, no
similar experimental and theoretical methods have been developed so far, so the proposed
method is only compared with the results in the absence of the matric suction. Frydman
et al. [6] carried out centrifugal tests of limited sand active earth pressure for vertical
retaining walls under different aspect ratio (b/H) conditions. In the test, b/H = 0.235,
γ = 15.8 kN/m3, ϕ’ = 36◦, δ1 = δ2 = 25◦, and the backfill width b = 2 m. Additionally,
Chen et al. [13] used the horizontal differential element method to calculate the σx/(γH)
value of the narrow backfill behind the wall. Figure 7 shows the comparison results of the
normalized active earth pressure σx/(γH) value obtained by the method in this paper and
the centrifugal test [6] and Chen et al. [13]. It can be observed that the method in this paper
is in good agreement with the results of the centrifugation test, which demonstrates the
rationality and accuracy of the method in this paper. In addition, the horizontal differential
element method adopted by Chen et al. [13] ignores the shear force between the adjacent
elements; thus, the calculation result is larger than that of the method in this study.
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Figure 7. Comparison of centrifugal test and theoretical calculation results [6,13].

6. Parametric Study

In this section, a parametric study was performed to analyze the effective internal fric-
tion angle ϕ’, surcharge pressure q0, interface friction angle δ, effective cohesion c’, matric
suction (ua − uw), and width-height ratio of backfill b/H on the distribution of the hori-
zontal active earth pressure. In the analysis, these parameters were fixed: γ = 18 kN/m3,
α = 0.02 kPa−1, n = 3 and H = 10 m. Other parameters for analysis can be found in the
analysis figures. In addition, the interface friction angle δ1 of the moving wall–soil and the
interface friction angle δ2 of the fixed wall–soil are equal, that is, δ1 = δ2 = δ.

Figure 8 depicts the normalized horizontal active earth pressure (σx/γH) along the
normalized height (z/H) for the various effective internal friction angle ϕ’. To investigate
the effect of the effective internal friction angle on the horizontal active earth pressure
against the retaining structure, different values of ϕ’ (i.e., ϕ’ = 20◦, 25◦, 30◦, 35◦ and 40◦)
were used. From Figure 8, it is obvious that the horizontal earth pressure first increases
and then decreases along the depth, showing a nonlinear “drum” distribution, reaching a
peak above the wall bottom. With the effective internal friction angle increases, the active
earth pressure acting on the retaining wall at each depth decreases significantly, and the
area where the earth pressure is zero gradually increases, indicating that the depth of the
tension crack also increases with the increase in the effective internal friction angle.
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to discuss the effect of the surcharge pressure on the horizontal active earth pressure 
against the retaining structure, and thus different constant values of q0 (i.e., q0 = 10 kPa, 20 
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pressure increases significantly with the increase in surcharge pressure applied on the 
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Figure 8. Values of σx/γH versus z/H for different values of the effective internal friction angle ϕ’.

Figure 9 shows the normalized horizontal active earth pressure (σx/γH) along the
normalized height (z/H) for different values of the surcharge pressure q0. Herein, the aim
is to discuss the effect of the surcharge pressure on the horizontal active earth pressure
against the retaining structure, and thus different constant values of q0 (i.e., q0 = 10 kPa,
20 kPa, 30 kPa, 40 kPa and 50 kPa) were used. Figure 9 shows that the horizontal active
earth pressure increases significantly with the increase in surcharge pressure applied on
the backfill surface, whereas the shape of the horizontal active earth pressure distribution
remains unchanged. Moreover, the depth of the tension crack decreases with the increase
in the surcharge pressure, and when values of q0 are large enough, the tension crack will
not form.
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Figure 10 illustrates the normalized horizontal active pressure (σx/γH) along the
normalized height (z/H) for the various interface friction angle δ. To discuss the effect
of interface friction angle on the horizontal active earth pressure against the retaining
structure, different values of δ varying from 0.2ϕ’ to 0.8ϕ’ were used here. As shown
in Figure 10, with the increase in the interface friction angle, the horizontal active earth
pressure in the upper part of the retaining wall increases slightly, while the horizontal
active earth pressure in the lower part decreases obviously. Furthermore, the action point
of the horizontal earth pressure resultant force has a tendency to move upward with the
increase in interface friction angle.
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Figure 10. Values of σx/γH versus z/H for different values of the interface friction angle δ.

Figure 11 shows the normalized horizontal active earth pressure (σx/γH) along the
normalized height (z/H) for the various values of soil effective cohesion c’. To analyze
the impact of the backfill inclination angle on the horizontal active earth pressure against
the retaining wall, different values of c’ (i.e., c’ = 5 kPa, 10 kPa, 15 kPa, 20 kPa and 25 kPa)
were used. Figure 11 shows a pronounced decrease in the horizontal active earth pressure
against the rigid retaining wall with the increasing value of c’, and the depth of the tension
crack in soil increases correspondingly. From the earth pressure distribution curves, with
the increase in the effective cohesion of the soil, the earth pressure distribution curves
gradually shift to the left axis.

Figure 12 depicts the normalized horizontal active earth pressure distribution (σx/γH)
along the normalized height (z/H) for various matric suction (ua − uw). To study the
effect of the matric suction (ua − uw) on the horizontal active earth pressure against the
retaining wall, various values of (ua − uw) varying from 0 kPa to 200 kPa were used. From
Figure 11, with the increase in matric suction, the horizontal active earth pressure first
decreases rapidly and then increases gradually, and the depth of the tension crack first
increases obviously and then decreases, while the shape of the horizontal active earth
pressure distribution remains unchanged. The reason is that the total cohesion increases
first and then decreases with the increase in matric suction, and this is consistent with the
conclusion given by Song [42]. the horizontal active earth pressure reaches its minimum
value at the matric suction equaling 50 kPa; this is because the matric suction takes the air
entry pressure (approximately equal to the reciprocal of parameter α), and the apparent
cohesion provided by the matric suction is the largest.
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The normalized horizontal active earth pressure distribution (σx/γH) along the nor-
malized height (z/H) for different width-height ratio of backfill b/H is shown in Figure 13.
In order to study the effect of the width of backfill on the horizontal active earth pressure
against the retaining wall, various values of b/H (i.e., b/H = 0.2, 0.3, 0.4, 0.6, and 0.8) were
employed. As shown in Figure 13, the magnitude of the horizontal active earth pressure
decreases with the decrease in the b/H value, and the attenuation becomes clearer when
the b/H value is smaller. When the width of backfill reaches a certain value, the horizontal
active earth pressure remains unchanged with the increase in the b/H value. This is because
the backfill with a sufficient width allows the slip surface to fully develop.
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7. Conclusions

The variation of soil suction has a significant effect on the active earth pressure of nar-
row unsaturated backfill in retaining structures. An analytical framework was developed
for evaluating the active earth pressures of narrow unsaturated backfills affected by arching
when the interlayer shear stress was considered. By comparing the results of the proposed
method with other theoretical and experimental results, the method’s effectiveness was
verified. A detailed parametric study was carried out to discuss the effect of various factors
on active earth pressure. The main conclusions include the following:

(1) With the increase in the interface friction angle of the moving wall–soil, the average
shear stress coefficient of zone I and zone II increases gradually, but with the increase
in the interface friction angle of the fixed wall–soil, the average shear stress coefficient
of zone I decreases, while the average shear stress coefficient of zone II remains
unchanged. The horizontal earth pressure shows a nonlinear “drum” distribution
along the depth, which increases first and then decreases, and reaches a peak above
the wall bottom.

(2) With the increase in effective internal friction angle and effective cohesion, the hori-
zontal active earth pressure decreases significantly, while the tensile depth increases.
In addition, the horizontal active earth pressure increases significantly with the in-
crease in surcharge pressure, but the distribution shape of the horizontal active earth
pressure remains unchanged. Additionally, when the interface friction angle increases,
the horizontal active earth pressure at the upper part of the retaining wall slightly
increases, while the horizontal active earth pressure at the lower part obviously de-
creases. In addition, the action point of the horizontal earth pressure force tends to
move up with the increase in the friction angle.

(3) With the increase in matric suction, the horizontal active earth pressure first decreases
rapidly and then increases gradually, and the tension crack depth first increases
obviously and then decreases, but the distribution pattern of the horizontal active
earth pressure remains unchanged.

(4) The horizontal active earth pressure decreases with the decrease in the aspect ratio.
When the aspect ratio is smaller, the attenuation is more obvious. When the aspect ra-
tio reaches a certain value, the horizontal active earth pressure is basically unchanged.
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Abstract: The generalized Hoek–Brown criterion (GHB) is recognized as one of the standard failure
criteria in rock engineering and its validity extends to a wide range of rock mass quality. A drawback
of this criterion is the difficulty of transforming it into an explicit form defining the Mohr failure
envelope when its strength parameter a is not equal to 0.5. The information on the functional form
of the Mohr envelope for the full range of rock mass conditions enables the implementation of
classical engineering approaches, such as the limit equilibrium method and limit analysis, in the
framework of the GHB criterion. Knowing that for a 6= 0.5 the exact closed-form representation of the
Mohr envelope is not feasible, an alternative is to express it in an approximate analytical form. The
main purpose of this study is to propose a new improved method to define an approximate Mohr
envelope of the GHB criterion that is much more accurate compared with the recently published
approximations. The idea behind the formulation is to expand the Balmer’s equation, which defines
the relationship between the normal stress and minor principal stress at failure, by invoking the
finite Taylor series centered at the known solution for a = 0.5. The formulation is then completed by
substituting this solution into another Balmer’s equation, defining the relationship between the shear
strength and the minor principal stress. The Taylor polynomial approximations of up to third degree
are considered in the formulation. The accuracy of the shear strength prediction is shown to be much
better than that of the approximate formula of Lee and Pietruszczak proposed in 2021. An illustrative
example of limit equilibrium analysis of rock slope stability, incorporating the new approximate
expression for the Mohr envelope, is provided. The analysis incorporates a modified version of the
Bishop approach, which is simpler and more rigorous than the original nonlinear expression. The
study confirms that the new approximate representation of the Mohr failure envelope can facilitate
the application of the GHB criterion to a range of practical rock engineering calculations.

Keywords: Hoek–Brown criterion; Mohr failure envelope; Balmer’s equation; limit equilibrium
analysis; modified Bishop approach

1. Introduction

The generalized Hoek–Brown (GHB) criterion [1] is a nonlinear failure condition that
is commonly used in rock engineering and can be applied to intact rock as well as jointed
rock mass. This criterion defines the major principal stress at failure for a given minor
principal stress and its strength parameters are identified using the respective empirical
formula based on the GSI value [2,3]. A weakness of this criterion is the difficulty of
transforming it to the corresponding explicit shear strength–normal stress equation, i.e., the
Mohr envelope, which is required for applications of classical rock engineering approaches,
such as the limit equilibrium method [4,5] and the upper bound limit analysis [6–10]. In the
latter methodology, the energy dissipation along the sliding surface is calculated using the
normal and shear stresses. It is noted that in cases when the strength parameter a equals

Sustainability 2022, 14, 12113. https://doi.org/10.3390/su141912113 https://www.mdpi.com/journal/sustainability
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0.5, the closed form solution for the Mohr envelope is available [11–17]. However, when
a 6= 0.5, an exact analytical expression of the Mohr envelope relating the shear strength
to the normal stress cannot be obtained, which limits the scope of the applications of the
GHB criterion.

In order to resolve the difficulty associated with the lack of a closed-form solution,
various approximate analytical expressions for the Mohr envelope have been sought. The
simplest approach is to obtain the equivalent friction angle and cohesion by approximating
the GHB criterion by a linear form in a specified range of minor principal stress [1,18–21].
However, this linear approximation has an evident shortcoming that the strength nonlinear-
ity, which is inherent in the GHB criterion, cannot be accounted for. Moreover, the accuracy
of linear approximation depends on the size of the approximation interval. In the original
approximation by Hoek et al. [1], the upper limit of minor principal stress was different
for deep tunnels and slopes. Therefore, in later works dealing with slope stability [21,22]
some empirical equations were employed for a more accurate assessment of this upper
bound. At the same time, in order to improve the efficiency of the linear approximation,
Wei et al. [23] presented a method of dividing the GHB curve into several sections and then
linearly approximating each segmented interval. The methods of approximating the GHB
envelope with a simpler form of nonlinear power function have also been attempted [24–26],
but they do not retain the original meaning of the strength parameters employed in the
GHB criterion.

Several other efforts to formulate the nonlinear Mohr envelope, while preserving
the original meaning of strength parameters of the GHB criterion, have been made (e.g.,
Kumar [27] and Yang and Yin [28,29]). However, these formulations are implicit in the
sense that the shear strength and normal stress are expressed as functions of instantaneous
friction angle. Recently, Lee and Pietruszczak [14,15] and Lee [16] have formulated an
explicit nonlinear expression approximating Mohr envelope equations by converting the
power function terms appearing in the implicit form of this envelope to quadratic and/or
cubic polynomial equations. Although the accuracy of these GHB envelopes was found to
be good overall, these kinds of approximation still have room for further improvement.

As mentioned earlier, most of the existing approaches employ approximations of the
GHB criterion in an a priori specified range of minor principal stress. This implies that in
the field conditions the shear strength prediction may not be accurate if this range is not
appropriately selected. In this study, a new approximate form of the Mohr envelope of
the GHB criterion is proposed, which is not affected by the anticipated range of values of
minor principal stress. The accuracy of the newly proposed Mohr envelopes is validated
by calculating the percentage errors in the shear strength predictions for various rock
mass conditions and the results are compared with those obtained using the approximate
formula of Lee and Pietruszczak [15]. In the latter part of this paper, an example of limit
equilibrium analysis, involving assessment of rock slope stability based on the proposed
form of the Mohr envelope, is provided. The analysis employs a modified form of the
classical Bishop approach, which is believed to be more rigorous than the original nonlinear
expression. The study also includes a scenario in which the loss of stability is triggered by
the distributed load acting on the horizontal upper surface.

2. Generalized Hoek–Brown Criterion
2.1. General form in Terms of Minor Principal Stress

In the generalized Hoek–Brown (GHB) failure condition [1], the major principal stress
(σ1) at failure is a nonlinear function of minor principal stress (σ3) defined as

σ1 = σ3 + σci

(
mb

σci
σ3

+ s
)a

, (1)

where σci denotes the uniaxial compressive strength of the intact rock, while mb, s and a are
the strength parameters of rock mass defined empirically as follows:
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mb = mi exp
(

GSI− 100
28− 14D

)
, (2)

s = exp
(

GSI− 100
9− 3D

)
, (3)

a =
1
2
+

1
6

(
e−GSI/15 − e−20/3

)
. (4)

In the equations above, GSI denotes the Geological Strength Index [2] and D is the distur-
bance factor which varies from 0 to 1 depending on the excavation damage. For undisturbed
rock mass, D = 0, while for highly disturbed rock mass (e.g., as in an open pit mine slope)
there is D = 1.

2.2. Normalized Form of the GHB Criterion

In order to facilitate the mathematical treatment of the GHB criterion, Rojat et al. [30]
introduced the following normalization rule for normal stress (σ):

N =
σ

ma/(1−a)
b σci

+
s

m1/(1−a)
b

(5)

Applying this rule to σ1 and σ3, the GHB criterion takes the simplified nondimensional
form as

N1 = N3 + Na
3 , (6)

where
N1 =

σ1

ma/(1−a)
b σci

+
s

m1/(1−a)
b

; N3 =
σ3

ma/(1−a)
b σci

+
s

m1/(1−a)
b

(7)

In the transformed space (N1 − N3 space), the normalized GHB criterion, i.e., Equation (6),
is completely defined by the strength parameter a and all the GHB curves start from the
origin as shown in Figure 1.
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2.3. Shear–Normal Stress Relation of the GHB Criterion

The shear stress (τ) acting on an incipient failure plane is a function of the normal
stress σ. In general, this function is nonlinear in σ− τ space and it is referred to as the Mohr
failure envelope. Invoking the following normalization rule for τ [14],
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T =
τ

ma/(1−a)
b σci

(8)

it can be shown that the normalized Mohr envelope of the GHB criterion is a concave
downward curve always starting from the origin of N − T space as depicted in Figure 2. φi
and ci in this figure represent the instantaneous friction angle and cohesion, respectively.
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According to Yang and Yin [28] and Lee and Pietruszczak [14], the φi − ci relationship
implied in the GHB criterion is given by

ci
σci

=
cos φi

2

[
mba(1− sin φi)

2 sin φi

]a/(1−a)
−ma/(1−a)

b

[
a(1− sin φi)

2 sin φi

]1/(1−a)(
1 +

sin φi
a

)
tan φi +

s
mb

tan φi. (9)

The formulation of the Mohr envelope can be accomplished by invoking Balmer’s
procedure [31], in which the envelope can be expressed in the form of the following implicit
parametric functions of N3:

N = N3 +
N1 − N3

dN1/dN3 + 1
, (10)

T = (N − N3)

√
dN1

dN3
(11)

Noting that, based on Equation (6), there is dN1/dN3 = 1 + aNa−1
3 , the above two paramet-

ric equations can be restated as

f (N3) + 2N3 − 2N = 0, (12)

T =
Na

3

aNa−1
3 + 2

√
aNa−1

3 + 1 (13)

where
f (N3) = (a + 1)Na

3 − aNNa−1
3 . (14)

Thus, it is evident that the establishment of an explicit analytical equation of the Mohr
envelope is equivalent to finding the root N3 of Equation (12) for a given value of N.
Substituting this root into Equation (13) defines the normalized shear strength T, which
can then be used to calculate the shear strength τ from Equation (8).

Lee and Pietruszczak [15] have derived the closed form solution of Equation (12) for
a = 0.5, which takes the form

N3 =

(
16N + 9

24

)
cos
(

θ

3
+

4π

3

)
+

32N + 9
48

, (15)
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where

θ = cos−1

[
−4096N3 + 6912N2 + 3888N + 729

(16N + 9)3

]
(16)

In general, however, for a 6= 0.5, an explicit solution is not available. To overcome this
difficulty, Lee and Pietruszczak [14,15] have used explicit analytical functions approximat-
ing the exact solution. In this paper, another approach to find an approximate solution
of Equation (12) is proposed which leads to a new approximate formulation of the Mohr
envelope which is much more accurate. The details of the formulation are described in the
following section.

3. New Approximate Formulation of the Mohr Envelope for GHB Criterion
3.1. Approximate Mohr Envelope Based on Taylor Expansion of the Balmer’s Equation

The idea of the new formulation of the Mohr envelope is to approximate the power
function terms in the first Balmer’s equation, i.e., Equation (12), with the Taylor series.
Denoting by N3∗ the exact solution of Equation (12) for a = 0.5 (cf. Equation (15)), i.e.,

N3∗ =

(
16N + 9

24

)
cos
(

θ + 4π

3

)
+

32N + 9
48

(17)

and noting that this solution may not be far from that corresponding to a 6= 0.5, the above
value of N3∗ can be selected as the expansion center for the Taylor series. In this case, the
approximation of Equation (12) can be expressed as the following polynomial equation of
degree n:

n

∑
k=0

1
k!

f (k)(N3∗)(N3 − N3∗)
k + 2N3 − 2N = 0, (18)

where f (k)(N3∗) denotes the kth derivative of the function f with respect to N3 evalu-
ated at N3∗ . In this paper, the polynomials of degree up to three are considered and the
corresponding solutions for N3 are presented below.

(i) Linear approximation (n = 1)

If n = 1, Equation (18) simplifies to a linear form, and the solution for N3 is obtained
as follows:

N3 =
2N + (a− 1)(a + 1)Na

3∗ − a(a− 2)Na−1
3∗ N

a(a + 1)Na−1
3∗ − a(a− 1)Na−2

3∗ N + 2
. (19)

(ii) Quadratic approximation (n = 2)

If n = 2, Equation (18) becomes a quadratic equation, and its solution for N3 is given by

N3 =
−K2

√
K2

2 − 4K1K3

2K1
(20)

where
κ1 = −1

2
a(a− 1)(a− 2)Na−3

3∗ N +
1
2

a(a− 1)(a + 1)Na−2
3∗ (21)

κ2 = a(a− 1)(a− 3)Na−2
3∗ N − a(a− 2)(a + 1)Na−1

3∗ + 2 (22)

κ3 = −1
2

a(a− 2)(a− 3)Na−1
3∗ N +

1
2
(a− 1)(a− 2)(a + 1)Na

3∗ − 2N. (23)

(iii) Cubic approximation (n = 3)

If n = 3, Equation (18) reduces to a cubic polynomial equation, which has the follow-
ing solution

N3 =
2
3

√
η2

1 − 3η2 cos
(

θ

3
+

4π

3

)
− 1

3
η1, (24)
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where

θ = cos−1

[
9η1η2 − 27η3 − 2η3

1

2
(
η2

1 − 3η2
)3/2

]
(25)

η1 =
−3(a− 1)(a− 3)(a + 1)N2

3∗ +
(
3a3 − 18a2 + 27a− 9

)
N3∗N

(a− 1)(a− 3)(a + 1)N3∗ + [1− a(a− 2)(a− 3)N]
(26)

η2 =
3a(a− 2)(a− 3)(a + 1)N3

3∗ + 3a
(
a3 − 7a2 + 14a− 7

)
N2

3∗N + 12N4−a
3∗

(a− 1)(a− 2)(a + 1)N3∗ + [1− a(a− 2)(a− 3)N]
(27)

η3 =
−(a− 1)(a− 2)(a− 3)(a + 1)N4

3∗ + a(a3 − 8a2 + 21a− 19)N3
3∗N − 12N4−a

3∗ N
(a− 1)(a− 2)(a + 1)N3∗ + [1− a(a− 2)(a− 3)]N

. (28)

Finally, referring to Equations (8) and (13), the equations for the Mohr envelope corre-
sponding to the above three approximate solutions for N3, i.e., Equations (19), (20) and (24),
take the following form:

τ = σcim
a/1−a
b

Na
3

aNa−1
3 + 2

√
aNa−1

3 + 1 (29)

Thus, substitution of Equations (19), (20) and (24) into Equation (29) yields three new
analytical expressions of the approximate Mohr envelope of the GHB criterion, which
are based on the linear, quadratic and cubic approximations of the Balmer’s equation,
respectively. It is important to note that N3∗ appearing in Equations (19), (20) and (24) is
different from the actual calculated value of N3. As such, unlike in the existing approximate
expressions for the Mohr envelope, there is no restriction here on the range of values of σ3.
Consequently, the predictive abilities of this representation are significantly enhanced. Due
to the nature of the Taylor approximation, it is not difficult to deduce that when the value
of GSI approaches 100, that is, when the strength parameter a approaches 0.5, the newly
proposed approximate Mohr envelopes converge to the exact solution.

3.2. Discussions on the Accuracy of New Formulations of the Mohr Envelope

In this section, the accuracy of the three new approximate Mohr envelopes adopting
Equations (19), (20) and (24), respectively, is investigated. In Figure 3, the approximate
Mohr envelopes are compared with the numerically determined ‘exact’ solutions for the
rock mass with mi = 20, D = 0.0 and five different GSI values, i.e., 20, 40, 60, 180 and 100.
In this figure, the solid lines represent the approximate envelopes, while the dashed lines
are the exact solutions. It should be noted here that the term ‘exact’ refers to the general
analytical form of the Mohr envelope constructed with a numerical solution for N3, viz.
Equation (12), which can be obtained by implementing a suitable numerical algorithm such
as the Newton–Raphson method [32]. The respective Mohr envelopes are normalized by
σci. The approximate curves shown in Figure 3a–c are the plots of the analytical form (29)
with three different approximations for N3s, i.e., Equations (19), (20) and (24), respectively.

Figure 3 clearly shows that the accuracy of the approximate envelope is excellent,
and even the envelopes corresponding to linear approximation (Figure 3a) are difficult
to distinguish from the exact envelopes. On the other hand, in Figure 4 that presents
the approximate Mohr envelopes recently proposed by Lee and Pietruszczak [15] for the
same rock mass conditions as in Figure 3, slight differences between the exact and the
approximate solutions can be seen when GSI ≥ 60.
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In order to understand how the accuracy of the newly proposed approximate Mohr
envelopes varies with the selection of the degree of the Taylor approximation, the percent-
age errors in the shear strength predictions are calculated and the results are compared
with the prediction errors from the corresponding Lee and Pietruszczak’s approximate
Mohr envelopes [15] (Figure 4) in Figure 5. Here, the percentage error is defined as

Percentageerror(%) =

∣∣∣∣
τapprox − τexact

τexact

∣∣∣∣× 100 (30)
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The number of data points in each curve shown in Figure 5 is 101, but only 11 symbols
are displayed to indicate the curve.

Figure 5 clearly shows that the errors in the proposed approximations of the Mohr
envelope decrease with the increase in the normal stress σ, except for a slight increase in
the beginning. Additionally, it is evident that the percentage errors decrease significantly as
the GSI value increases. This tendency is because the greater the normal stress and the GSI
value, the smaller the curvature of the Mohr envelope. A decrease in the curvature implies
that the curve becomes more linear, so that the Taylor polynomial approximation can
produce more accurate results. Another interesting fact is that, contrary to the expectation,
the accuracy of the Mohr envelope based on the quadratic Taylor approximation is slightly
higher than that based on the cubic approximation. This may be due to the fact that the
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geometric shape of the Balmer function of the GHB criterion is more favorable for the
quadratic Taylor approximation. Overall, Figure 5 shows that the accuracy of the three new
representations of the Mohr envelope is much better than that for the Lee and Pietruszczak
envelope [15]. For example, when GSI = 80, the order of percentage error reduction
by the new approach is 7 or more compared with the case of the Lee and Pietruszczak
approach [15]. It can also be seen that the quadratic approximation is slightly better than the
cubic one, although the difference is rather subtle. Thus, among the three forms, it is evident
that the Mohr envelope based on the quadratic approximation of Balmer’s equation, i.e.,
Equation (20), is the best choice when considering both the accuracy and the computational
time, as the latter is directly related to the complexity of the formula involved.

The effect of the value of GSI on the percentage error in the shear strength prediction
by the newly formulated approximate Mohr envelopes is shown in Figure 6. Here, the
assumed rock mass conditions are the same as in Figure 3 and four normal stress intensities,
i.e., σ/σci = 0.2, 0.4, 0.6 and 0.8, are considered. Evidently, for the assumed values of
normal stress, the trends in the variation of the percentage errors with GSI are similar in all
approximate Mohr envelopes. When the value of GSI is very small, the percentage errors
increase, but after reaching the peak, the errors tend to decrease with increasing GSI. Again,
Figure 6 confirms that in the full range of GSI values the new approximate Mohr envelopes
based on the quadratic and cubic Taylor approximations of Balmer’s equation are more
accurate than that based on the linear Taylor approximation.
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4. Limit Equilibrium Analysis of a Slope in GHB Rock Mass

In order to illustrate the proposed formulation, the limit equilibrium analysis of a
rock slope is conducted by employing the contact failure criterion based on the quadratic
approximation of Balmer’s equation, i.e., Equation (29) combined with Equation (20).
It should be emphasized here that the original expression of the GHB criterion, i.e., the
σ1− σ3 relationship, is not suitable for this type of analysis as the equivalent explicit relation
between the shear and the normal stress along the failure surface is not defined. Thus, in
order to address the problem, the representation developed in the current study is required.

4.1. Geometry of Rock Slope Models

Figure 7a,b show the geometric configuration together with the assumed failure
mechanisms. The slope geometry is defined by its height H and the face angle β f . In both
models analyzed here, it is assumed that a vertical tension crack of depth z is embedded at
a distance xc from the crest and the distributed load p acts on the horizontal upper surface
of the slope. Two distinct failure modes are considered involving a planar surface with
the inclination angle βp and a circular failure surface, both passing through the toe of the
slope and the tip of the crack. Given that the coordinates of the crack tip are (x0, y0), the
minimum radius of the circular surface is

rmin =
x2

0 + y2
0

2x0
(31)

The analysis employs the method of slices. For a circular slip surface, αi represents the
inclination of the base segment of the ith slice, whereas the corresponding distance from its
mid-point to the center of rotation is xi = r sin αi.

Sustainability 2022, 14, x FOR PEER REVIEW 12 of 20 
 

criterion is satisfied, and the safety factor is assessed by considering the global conditions 
of equilibrium. This is unlike the original Bishop approach in which the assessment of 
global stability is based on the notion of a local safety factor defined to estimate the cur-
rent/mobilized shear stress. It is noted that the formulation of the simplified Bishop 
method, which incorporates a nonlinear relation for the safety factor requiring an iterative 
solver, raises some concerns. First of all, the assessment of the value of mobilized shear 
stress based on the failure condition that is satisfied only at the onset of failure may be 
questioned. In fact, prior to failure, the shear stress cannot be perceived as a unique function 
of normal stress. In addition, there is no basis for assuming that the local safety factor is 
constant within the domain. Given those concerns, the modified approach proposed here 
is not only computationally more efficient but also appears to be more rigorous. 

 
 

(a) (b) 

Figure 7. Geometry of slope showing forces of interaction acting on a typical slice: (a) model for 
plane failure; (b) model for circular failure. 

For a circular failure surface (Figure 7b), the global safety factor is defined as the ratio 
of the moment resisting sliding to the overturning moment, both taken about the center 
of rotation. For the entire sliding wedge considered as a free body, the overturning is trig-
gered by the own weight and the external load p, while the resisting moment is due to the 
shear stress distribution along the failure surface. Thus, summing up the contribution 
from individual slices, the safety factor (FS) is defined as 

sec
( )sin

i i

i i

b
FS

w pb
τ α

α
=

+



, (32)

where 𝑤  is the weight of the slice and 𝜏  is the shear stress which, at the inception of the 
loss of stability, satisfies the local failure condition 𝜏 = 𝜏(𝜎 ) as defined by Equation (29). 
It should be noted here that for all slices intercepting the slope there is 𝑝 = 0, as the dis-
tributed load acts only along the horizontal boundary.  

The expression for the safety factor, viz. Equation (32), is now supplemented by con-
sidering the equilibrium of an individual slice. Referring again to Figure 7, 𝑉  and 𝐸  are 
the shear and normal forces of interaction between the slices. Neglecting now the variation 
in shear forces, i.e., taking 𝑉 = 𝑉  as commonly assumed in the Bishop simplified ap-
proach [25], and invoking the force equilibrium in the vertical direction, yields 

tan 0i i i iW pb b bσ τ α+ − − = . (33)

Figure 7. Geometry of slope showing forces of interaction acting on a typical slice: (a) model for
plane failure; (b) model for circular failure.

4.2. Modified Bishop Approach for the Assessment of Safety Factor

The analysis presented here is conducted using a modified version of Bishop’s simpli-
fied method. This approach is conceptually different from the original one (e.g., [33]). It
invokes the classical framework of limit equilibrium analysis whereby an a priori assump-
tion is made regarding the geometry of the failure surface along which the failure criterion
is satisfied, and the safety factor is assessed by considering the global conditions of equilib-
rium. This is unlike the original Bishop approach in which the assessment of global stability
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is based on the notion of a local safety factor defined to estimate the current/mobilized
shear stress. It is noted that the formulation of the simplified Bishop method, which in-
corporates a nonlinear relation for the safety factor requiring an iterative solver, raises
some concerns. First of all, the assessment of the value of mobilized shear stress based
on the failure condition that is satisfied only at the onset of failure may be questioned. In
fact, prior to failure, the shear stress cannot be perceived as a unique function of normal
stress. In addition, there is no basis for assuming that the local safety factor is constant
within the domain. Given those concerns, the modified approach proposed here is not only
computationally more efficient but also appears to be more rigorous.

For a circular failure surface (Figure 7b), the global safety factor is defined as the ratio
of the moment resisting sliding to the overturning moment, both taken about the center
of rotation. For the entire sliding wedge considered as a free body, the overturning is
triggered by the own weight and the external load p, while the resisting moment is due to
the shear stress distribution along the failure surface. Thus, summing up the contribution
from individual slices, the safety factor (FS) is defined as

FS =
∑ τi b sec αi

∑(wi + pb) sin αi
(32)

where wi is the weight of the slice and τi is the shear stress which, at the inception of the
loss of stability, satisfies the local failure condition τi = τ(σi) as defined by Equation (29).
It should be noted here that for all slices intercepting the slope there is p = 0, as the
distributed load acts only along the horizontal boundary.

The expression for the safety factor, viz. Equation (32), is now supplemented by
considering the equilibrium of an individual slice. Referring again to Figure 7, Vi and Ei are
the shear and normal forces of interaction between the slices. Neglecting now the variation
in shear forces, i.e., taking VLi = VRi as commonly assumed in the Bishop simplified
approach [25], and invoking the force equilibrium in the vertical direction, yields

Wi + pb− σi b− τib tan αi = 0 (33)

Again, since along the rapture surface the failure criterion is said to be satisfied, there is
τi = τ(σi) as stipulated in Equation (29). Thus, given Equation (33), the value of σi for each
slice can be determined, which in turn defines the individual terms in the expression for
the global safety factor (32).

It should be noted that in the original version of the simplified Bishop method, the
equilibrium statement explicitly incorporates a local safety factor, i.e.,

Wi + pb− σi b− 1
FS

τib tan αi = 0 (34)

In this case, the problem becomes nonlinear and the simultaneous Equations (32) and (34)
are solved in an iterative manner. Apparently, in case of a planar failure mode (Figure 7a),
αi in Equations (32)–(34) is replaced by a constant angle βp.

For the circular failure mode, the factor of safety varies with the assumed radius r of
the sliding block. In this case, the determination of FS represents a unimodal optimization
problem for finding the critical radius that minimizes the factor of safety within the interval
rmin ≤ r < ∞. Recall that the minimum radius (rmin) can be calculated by Equation (31).
In this paper, the minimum FS was determined by employing the golden section search
algorithm [34]. In the examples that follow, the proposed approach is named as the modified
Bishop method, while the approach incorporating Equation (34) is referred to by its original
name, i.e., the simplified Bishop method.

4.3. Comparison of Safety Factors Based on the Simplified and Modified Bishop Methods

The simulations have been carried out assuming H = 35 m and β f = 70◦, while the
strength parameters were taken as σci = 20 MPa, mi = 10, D = 0. The unit weight of
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rock was assumed as γ = 26 kPa/m. In the example given here, no distributed load was
considered, i.e., P = 0.

Figure 8 shows the variation in the safety factor as a function of GSI for the slope
models having a 5 m deep tension crack. Two different horizontal positions of the crack,
i.e., (a) xc = 5 m, (b) xc = 10 m, are considered. In the figure, the results obtained by
assuming the plane and circular failure surfaces are presented together for the purpose of
comparison. It is evident that the simplified Bishop method predicts larger FS than the
modified approach. When xc = 10 m and GSI = 40, for example, the safety factors for
circular failure surface are 1.84 with the simplified method and 1.27 with the modified
approach, while the respective factors of safety for a plane failure surface are 1.94 and 1.30.
However, as the GSI value decreases, the difference becomes smaller. This is because the
global FSs from both methods approach unity as the rock mass quality becomes poorer.
Here, it should be noted that both methodologies predict the same condition for the onset
of the loss of stability, i.e., the case when FS = 1. Another interesting feature is that, in the
case of the modified method, there is little change in the safety factor when the GSI value is
between 10 and 50. Thus, the modified method predicts a more conservative safety factor
in a wide range of rock mass quality.
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Figure 8. Factors of safety versus the value of GSI for a slope with embedded vertical tension crack
of depth 5 m located at (a) xc = 5 m and (b) xc = 10 m.

Figure 8 also reveals that the FS for the planar failure is larger than that for the circular
failure, and the difference reduces again as the GSI value decreases. This trend can be
attributed to the fact that the failure surface which yields the minimum FS becomes flatter
as the rock mass properties degrade, cf. Figure 9. However, it should be kept in mind
that these results correspond to an isotropic continuum and are different from the case of
structurally controlled planar sliding commonly occurring in many rock slopes.

Finally, Figure 10 shows the variation in safety factor with the distance (xc) defining
the crack location. The trend is different for both methodologies. It is interesting to note
that for large values of GSI, e.g., GSI = 60, the safety factor based on the simplified method
decreases quite abruptly with increasing value of xc when the crack is near the slope. The
latter is intuitively not correct as it implies that the cracks at locations closer to the crest
result in a more stable configuration. Here, the results based on the modified method
appear to be more consistent.
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4.4. Assessment of the Critical Value of Surface Load

In this section, the critical value of distributed load p, which results in the loss of
stability, was assessed for the same slope geometry as that shown in Figure 8. Since in
this case the solution requires FS = 1, both methodologies yield the same results, while the
modified Bishop method is simpler and computationally more efficient. The latter approach
was implemented here in an iterative manner by adjusting the value of p until the safety
factor became close to 1.

Figure 11 shows the predicted variation in critical load as a function of GSI for two dif-
ferent crack depths, i.e., z = 5 m and 10 m, and two crack locations, i.e., xc = 5 m and
10 m. It is seen that the critical load increases exponentially as the GSI value increases. It
is also evident that the critical load for plane failure is larger than that for circular failure,
which is consistent with the FS calculation results given in Figure 8. Another observation,
which stems from the result shown in Figure 11, is that the critical load increases with
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increasing crack depth. This may be due to the fact that, as the crack depth increases, the
average inclination of the sliding surface decreases, and consequently it becomes more
resistant to failure. To examine the effect of crack depth in more detail, the critical loads
were calculated for four different depths by assuming a circular failure mode (Figure 12).
In this case, it is apparent that the effect of crack depth is less significant when the crack is
located close to the slope, but the influence increases as the position of the vertical crack
moves further away from the slope.
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Finally, Figure 13 shows the geometry of critical failure surfaces associated with the
loss of stability for GSI = 20, 40, 60 and 90. In this case, a 10 m deep vertical crack is assumed
to be present at two locations, i.e., xc = 5 m and 10 m. The results indicate that, in this case,
the influence of GSI value on the shape of the critical surface is not very significant.
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5. Conclusions

The GHB criterion considers the nonlinearity of the rock mass strength and is ap-
plicable to a broad spectrum of rock masses, from weak to competent ones. However, a
serious disadvantage of this criterion is that when a 6= 0.5, its shear strength–normal stress
relationship, i.e., the Mohr envelope, is not available in the form of an explicit analytical
expression. An alternative to overcome this difficulty is to define the Mohr envelope in
an approximate analytical form. In this paper, a new approximate expression of Mohr
envelope of the GHB criterion, which has much higher accuracy compared to other existing
approaches, was proposed. The idea behind this formulation is to approximate Balmer’s
equation [31], which defines the relationship between normal stress and minor principal
stress at failure, by the Taylor polynomial equations of a finite degree that can be solved
analytically in an explicit form.

At a first glance, the proposed formulation looks similar to that of Lee and Pietruszczak [15]
in that it starts from the approximation of Balmer’s parametric equation which defines the
relationship between the normal stress and the minor principal stress at failure. However,
in the approach pursued here Balmer’s equation is approximated much more accurately by
replacing the power function terms with the finite Taylor series centered at the exact root of
Balmer’s equation for a = 0.5. The accuracy of the resulting approximate Mohr envelopes,
incorporating the Taylor approximation of degree up to 3, was found to be superior to that
of the recently published approximation of Lee and Pietruszczak [15]. Among the three
cases considered, the one based on the quadratic Taylor approximation exhibited the best
accuracy. Due to the mathematical constraints embedded in the Taylor approximation, as
the GSI value approaches 100, the new three approximate Mohr envelopes come close to the
exact Mohr envelope. Moreover, it can be shown that the accuracy of the proposed approach
can be further improved if the solution is expressed in the form of a Coulomb equation
employing the tangential friction angle of the approximate Mohr envelope, although in
this case the resulting equations become algebraically more complicated. More importantly,
since the proposed formulation of the Mohr envelope does not impose any restrictions
on the range of σ3, the high accuracy of the calculated shear strength can be retained
in the whole range of normal stress. Therefore, it is expected that the newly proposed
approximate Mohr envelope can find its applications when assessing the stability in the
vicinity of a rock excavation surface where a relatively high stress gradient can occur.
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As an example of application, the limit equilibrium analysis of a rock slope was
carried out by incorporating the newly derived equation of the Mohr envelope based on
the quadratic Taylor approximation. Two different approaches were considered, viz. the
conventional simplified Bishop method and the modified Bishop method. In the proposed
modified method, the factor of safety for slope failure is calculated in a global sense
with the assumption that the current stress state satisfies the failure condition. The slope
models employed in this study considered a vertical tension crack embedded in the upper
horizontal surface, and the factors of safety have been calculated for varying crack position,
crack depth and GSI value. In addition, the critical value of distributed load causing the
loss of stability has been assessed for different cases. The results of the limit equilibrium
analysis have shown that the factor of safety for plane failure is larger than that for circular
failure. Furthermore, in a good quality rock mass the safety factor is more sensitive to the
value of GSI than in a poor quality rock. Of the two equilibrium methods, the modified
approach has resulted in a lower value of FS. However, the difference in the calculated FSs
became smaller with the decrease in the value of GSI. The analysis has also shown that the
critical magnitude of distributed load triggering the slope failure increases exponentially
with the increase in GSI. However, for a given geometry of vertical crack, the GSI value did
not significantly affect the shape of the critical circular surface. As the crack deepened, the
critical load showed the tendency to increase, and this trend was more pronounced as the
crack moved further away from the slope.

In conclusion, the illustrative examples given here demonstrated that the approximate
equation of the Mohr envelope derived in this study can be conveniently used for stability
analysis of slopes in the GHB rock mass, which is not feasible with the original form of
the GHB criterion. The limit equilibrium analysis incorporated a modified version of the
Bishop method. The latter is simpler and more rigorous than the original approach. Its
implementation is quite straightforward, as it does not involve a nonlinear expression for
the safety factor, and the estimates of stability are more conservative than those obtained
using the conventional methodology.

Finally, it needs to be emphasized that the current study of slope stability is preliminary
and serves mainly as an exploratory example. As mentioned earlier, the analysis employed
a simple failure mechanism involving a circular surface passing through the toe of the
slope and the tip of a pre-existing tension crack. Certainly, a proper verification of the
proposed modified Bishop method requires a more in-depth study incorporating other
failure mechanisms. Thus, even though the predicted basic trends are in line with an
intuitive assessment, the quantitative verification is still required. In addition, some
real case studies involving slope failures in rocks need to be examined to gain more
confidence in the proposed methodology. Such studies are planned to be carried out in
the future. In particular, the use of commercial software, such as FLAC, will be explored
for comparison purposes. In addition, an upper bound limit analysis, incorporating the
proposed approximation to the Mohr envelope, will also be pursued for a class of problems
dealing with assessment of bearing capacity.
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