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Università degli Studi di

Milano

Milan, Italy

Editorial Office

MDPI

St. Alban-Anlage 66

4052 Basel, Switzerland

This is a reprint of articles from the Special Issue published online in the open access journal

Sensors (ISSN 1424-8220) (available at: https://www.mdpi.com/journal/sensors/special issues/

bm-sensors).

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

Lastname, A.A.; Lastname, B.B. Article Title. Journal Name Year, Volume Number, Page Range.

ISBN 978-3-0365-9823-9 (Hbk)

ISBN 978-3-0365-9824-6 (PDF)

doi.org/10.3390/books978-3-0365-9824-6

© 2023 by the authors. Articles in this book are Open Access and distributed under the Creative

Commons Attribution (CC BY) license. The book as a whole is distributed by MDPI under the terms

and conditions of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

license.



Contents

Alfonso Mastropietro, Massimo Walter Rivolta and Alessandro Scano

Biomedical Sensors for Functional Mapping: Techniques, Methods, Experimental and Medical
Applications
Reprinted from: Sensors 2023, 23, 7063, doi:10.3390/s23167063 . . . . . . . . . . . . . . . . . . . . 1

Cristina Brambilla, Ileana Pirovano, Robert Mihai Mira, Giovanna Rizzo, Alessandro Scano

and Alfonso Mastropietro

Combined Use of EMG and EEG Techniques for Neuromotor Assessment in Rehabilitative
Applications: A Systematic Review
Reprinted from: Sensors 2021, 21, 7014, doi:10.3390/s21217014 . . . . . . . . . . . . . . . . . . . . 5

Giulio Marano, Cristina Brambilla, Robert Mihai Mira, Alessandro Scano, Henning Müller

and Manfredo Atzori

Questioning Domain Adaptation in Myoelectric Hand Prostheses Control: An Inter- and
Intra-Subject Study
Reprinted from: Sensors 2021, 21, 7500, doi:10.3390/s21227500 . . . . . . . . . . . . . . . . . . . . 31

Antonino Crivello, Mario Milazzo, Davide La Rosa, Giacomo Fiacchini, Serena Danti,

Fabio Guarracino, et al.

Experimental Assessment of Cuff Pressures on the Walls of a Trachea-Like Model Using Force
Sensing Resistors: Insights for Patient Management in Intensive Care Unit Settings
Reprinted from: Sensors 2022, 22, 697, doi:10.3390/s22020697 . . . . . . . . . . . . . . . . . . . . . 45

Alessandro Scano, Robert Mihai Mira, Guido Gabbrielli, Franco Molteni and

Viktor Terekhov

Whole-Body Adaptive Functional Electrical Stimulation Kinesitherapy Can Promote the
Restoring of Physiological Muscle Synergies for Neurological Patients
Reprinted from: Sensors 2022, 22, 1443, doi:10.3390/s22041443 . . . . . . . . . . . . . . . . . . . . 57
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1. Introduction

The rapid advancement of biomedical sensor technology has revolutionized the field
of functional mapping in medicine, offering novel and powerful tools for diagnosis, clinical
assessment, and rehabilitation. The ability to collect and analyze various physiological
signals, even in real-time, has provided unprecedented insights into the “hidden” function-
ing of the human body. Biomedical sensors have not only enhanced our understanding of
human physiology but have also significantly impacted clinical decision-making, patient
management, and the development of personalized medical interventions.

This Special Issue presents a collection of 14 papers that showcase the diverse ap-
plications of biomedical sensors in the context of functional mapping. The papers can
be grouped into three sections, highlighting their contributions to (i) medical diagnosis,
detection and prediction; (ii) neurological and rehabilitation assessment; and (iii) medical
applications and monitoring. Together, these papers shed light on the transformative
role of biomedical sensors in understanding physiological mechanisms and enhancing
healthcare practices.

2. Biomedical Sensors for Diagnosis, Detection and Prediction

This section focuses on the application of biomedical sensors for medical diagnosis,
detection and prediction. The papers included in this section have a specific focus on the
detection of conditions such as COVID-19 and hand osteoarthritis and the prediction of
emotions by biosignals. Furthermore, novel approaches based on artificial intelligence and
cutting-edge technologies are described.

The paper “COVID-19 Detection Using Photoplethysmography and Neural Net-
works” [1] presents a groundbreaking approach that utilizes deep learning and raw photo-
plethysmography signals acquired from a pulse oximeter to identify COVID-19 patients.
Achieving an impressive 83.86% accuracy and 84.30% sensitivity in identifying COVID-19
patients, this non-invasive and cost-effective method holds promise for early detection and
management of the COVID-19 pandemic, particularly in resource-limited healthcare settings.

In the paper “Toward Early and Objective Hand Osteoarthritis Detection by Using
EMG during Grasps” [2], researchers explore the potential of electromyography (EMG) in
detecting hand osteoarthritis at an early stage. By studying EMG characteristics during
hand grasping tasks, the study provides valuable insights into identifying hand osteoarthri-
tis patients before joint degeneration occurs, enabling timely intervention and improved
patient outcomes.

The third paper “Applications of Laser-Induced Fluorescence in Medicine” [3] explores
the various medical applications of laser-induced fluorescence (LIF). This highly sensitive
spectroscopic method proves valuable in diagnosing and monitoring conditions such as
cancer, dental diseases, and fungal infections, offering a versatile tool for medical diagnostics.

Sensors 2023, 23, 7063. https://doi.org/10.3390/s23167063 https://www.mdpi.com/journal/sensors
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Additionally, the paper “Predicting Emotion with Biosignals: A Comparison of Classi-
fication and Regression Models for Estimating Valence and Arousal Level Using Wearable
Sensors” [4] delves into predicting emotions using biosignals collected via wrist-worn
sensors. By comparing different prediction models, the study highlights the effectiveness of
regression models, particularly LSTM-based, in estimating emotional valence and arousal
levels, enhancing our understanding of human emotions and their applications in healthcare.

3. Biomedical Sensors for Neurological and Rehabilitation Assessment

This section explores the applications of biomedical sensors in neurological assessment
and rehabilitation. The papers collected in this section describe interesting advancements
in the analysis of electroencephalography (EEG), EMG and Near-Infrared Spectroscopy
(NIRS) signals for the extraction of biomarkers to characterize individual status in neuro-
muscular applications that can have a potential impact, for example, on the assessment of
rehabilitation effectiveness.

The paper “Reliability of Mental Workload Index Assessed by EEG with Different Elec-
trode Configurations and Signal Pre-Processing Pipelines” [5] evaluates the reproducibility
and sensitivity of mental workload assessment from EEG signals using different electrode
configurations and pre-processing pipelines. The findings provide valuable insights into
developing reliable methods for assessing cognitive tasks, crucial for enhancing human
performance in various domains.

In the paper “A Novel Approach for Segment-Length Selection Based on Stationarity
to Perform Effective Connectivity Analysis Applied to Resting-State EEG Signals” [6],
researchers proposed a novel approach for selecting appropriate segment lengths in EEG-
based effective connectivity analysis. By addressing the critical issue of segment-length
selection, this method offers valuable insights into studying brain network interactions
during resting-state, improving our understanding of brain function and connectivity.

The paper “Reliable Fast (20 Hz) Acquisition Rate by a TD fNIRS Device: Brain Resting-
State Oscillation Studies” [7] introduces a high-power setup for multichannel time-domain
functional NIRS measurements. This high-speed acquisition method holds potential ap-
plications in studying brain resting-state oscillations, providing valuable information for
neuroscientific and clinical research.

The paper “Combined Use of EMG and EEG Techniques for Neuromotor Assessment
in Rehabilitative Applications: A Systematic Review” [8] presents a systematic review of
combined EEG and EMG techniques in neuromotor assessment during rehabilitation. The
review highlights the potential of cortico-muscular interactions for improving rehabilitation
approaches in patients with impaired locomotor functions, paving the way for innovative
rehabilitation strategies.

Next, the paper “Whole-Body Adaptive Functional Electrical Stimulation Kinesither-
apy Can Promote the Restoring of Physiological Muscle Synergies for Neurological Pa-
tients” [9] introduces a novel treatment approach, Adaptive Functional Electrical Stim-
ulation Kinesitherapy (AFESK™), for neurological patients using whole-body adaptive
functional electrical stimulation kinesitherapy. This treatment shows promise in restoring
physiological muscle synergies, enhancing motor functionality, and improving rehabilita-
tion outcomes.

Finally, the paper, “Technology Acceptance Model for Exoskeletons for Rehabilita-
tion of the Upper Limbs from Therapists’ Perspectives” [10] addresses the challenges of
integrating exoskeleton technology into clinical practice for upper limb rehabilitation. By
investigating therapists’ perspectives on exoskeleton acceptability, this study reveals factors
influencing their willingness to adopt the technology. The findings suggest that integrating
exoskeletons with multi-sensor feedback systems may improve acceptance and facilitate
better patient outcomes.
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4. Biomedical Sensors for Medical Applications and Monitoring

This last section emphasizes the role of biomedical sensors in medical applications
and monitoring, describing novel technologies and tools to improve health monitoring in
different medical scenarios.

The paper “Towards a Practical Implementation of a Single-Beam All-Optical Non-
Zero-Field Magnetic Sensor for Magnetoencephalographic Complexes” [11] introduces
a single-beam all-optical two-channel magnetic sensor scheme developed for non-zero-
field magnetoencephalography and magnetocardiography applications. This innovative
sensor scheme utilizes a single laser beam with time-modulated linear polarization to
detect magnetic resonance, providing valuable insights for neurological assessments and
diagnostic applications.

The paper “Experimental Assessment of Cuff Pressures on the Walls of a Trachea-Like
Model Using Force Sensing Resistors: Insights for Patient Management in Intensive Care
Unit Settings” [12] investigates the pressures exerted by endotracheal tube cuffs on the
walls of a test bench mimicking the laryngotracheal tract. The study provides valuable
insights for patient management in intensive care unit settings, highlighting the need for
periodic checks of cuff pressure to prevent pressure-related complications.

Continuing in the realm of prosthetic control, the paper “Questioning Domain Adap-
tation in Myoelectric Hand Prostheses Control: An Inter- and Intra-Subject Study” [13]
delves into the challenges of domain adaptation techniques in myoelectric hand prosthesis
control. The results question the conventional approach based on transfer learning and
suggest the need for further exploration in this area.

The last paper in this section, “Multi-Scale Evaluation of Sleep Quality Based on Mo-
tion Signal from Unobtrusive Device” [14], introduces a multi-scale method for evaluating
sleep behavior using motion signals obtained from a pressure bed sensor. The algorithm
provides a good correlation between sleep quality measures obtained with polysomnogra-
phy and pressure bed sensors, offering potential applications for home monitoring of sleep
and improving subjects’ awareness of potential sleep disorders.

5. Conclusions

The Special Issue “Biomedical Sensors for Functional Mapping: Techniques, Methods,
Experimental and Medical Applications” presents a comprehensive collection of cutting-edge
research in the field of biomedical sensors. The papers cover a wide range of applications,
including medical diagnosis and detection, neurological assessment and rehabilitation,
and medical monitoring. These advancements pave the way for improved healthcare
practices, patient outcomes, and personalized medicine. As biomedical sensor technology
continues to evolve, the findings from these research studies hold significant promise in
revolutionizing medical practices and addressing complex health challenges, ultimately
leading to better human health and well-being.
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3. Kwaśny, M.; Bombalska, A. Applications of laser-induced fluorescence in medicine. Sensors 2022, 22, 2956. [CrossRef] [PubMed]
4. Siirtola, P.; Tamminen, S.; Chandra, G.; Ihalapathirana, A.; Röning, J. Predicting Emotion with Biosignals: A Comparison of

Classification and Regression Models for Estimating Valence and Arousal Level Using Wearable Sensors. Sensors 2023, 23, 1598.
[CrossRef] [PubMed]

5. Mastropietro, A.; Pirovano, I.; Marciano, A.; Porcelli, S.; Rizzo, G. Reliability of Mental Workload Index Assessed by EEG with
Different Electrode Configurations and Signal Pre-Processing Pipelines. Sensors 2023, 23, 1367. [CrossRef] [PubMed]

6. Góngora, L.; Paglialonga, A.; Mastropietro, A.; Rizzo, G.; Barbieri, R. A Novel Approach for Segment-Length Selection Based on
Stationarity to Perform Effective Connectivity Analysis Applied to Resting-State EEG Signals. Sensors 2022, 22, 4747. [CrossRef]
[PubMed]

7. Re, R.; Pirovano, I.; Contini, D.; Amendola, C.; Contini, L.; Frabasile, L.; Levoni, P.; Torricelli, A.; Spinelli, L. Reliable Fast (20 Hz)
Acquisition Rate by a TD fNIRS Device: Brain Resting-State Oscillation Studies. Sensors 2022, 23, 196. [CrossRef] [PubMed]

8. Brambilla, C.; Pirovano, I.; Mira, R.M.; Rizzo, G.; Scano, A.; Mastropietro, A. Combined use of EMG and EEG techniques for
neuromotor assessment in rehabilitative applications: A systematic review. Sensors 2021, 21, 7014. [CrossRef] [PubMed]

9. Scano, A.; Mira, R.M.; Gabbrielli, G.; Molteni, F.; Terekhov, V. Whole-Body Adaptive Functional Electrical Stimulation Kinesither-
apy Can Promote the Restoring of Physiological Muscle Synergies for Neurological Patients. Sensors 2022, 22, 1443. [CrossRef]
[PubMed]

10. Luciani, B.; Braghin, F.; Pedrocchi, A.L.G.; Gandolla, M. Technology Acceptance Model for Exoskeletons for Rehabilitation of the
Upper Limbs from Therapists’ Perspectives. Sensors 2023, 23, 1721. [CrossRef] [PubMed]

11. Petrenko, M.; Vershovskii, A. Towards a Practical Implementation of a Single-Beam All-Optical Non-Zero-Field Magnetic Sensor
for Magnetoencephalographic Complexes. Sensors 2022, 22, 9862. [CrossRef] [PubMed]

12. Crivello, A.; Milazzo, M.; La Rosa, D.; Fiacchini, G.; Danti, S.; Guarracino, F.; Berrettini, S.; Bruschini, L. Experimental assessment
of cuff pressures on the walls of a trachea-like model using force sensing resistors: Insights for patient management in intensive
care unit settings. Sensors 2022, 22, 697. [PubMed]

13. Marano, G.; Brambilla, C.; Mira, R.M.; Scano, A.; Müller, H.; Atzori, M. Questioning domain adaptation in myoelectric hand
prostheses control: An inter-and intra-subject study. Sensors 2021, 21, 7500. [PubMed]

14. Coluzzi, D.; Baselli, G.; Bianchi, A.M.; Guerrero-Mora, G.; Kortelainen, J.M.; Tenhunen, M.L.; Mendez, M.O. Multi-Scale
Evaluation of Sleep Quality Based on Motion Signal from Unobtrusive Device. Sensors 2022, 22, 5295. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

4



sensors

Systematic Review

Combined Use of EMG and EEG Techniques for Neuromotor
Assessment in Rehabilitative Applications:
A Systematic Review

Cristina Brambilla 1,†, Ileana Pirovano 2,†, Robert Mihai Mira 1, Giovanna Rizzo 2,*, Alessandro Scano 1,‡ and

Alfonso Mastropietro 2,‡

Citation: Brambilla, C.; Pirovano, I.;

Mira, R.M.; Rizzo, G.; Scano, A.;

Mastropietro, A. Combined Use of

EMG and EEG Techniques for

Neuromotor Assessment in

Rehabilitative Applications: A

Systematic Review. Sensors 2021, 21,

7014. https://doi.org/10.3390/

s21217014

Academic Editor: Yvonne Tran

Received: 23 August 2021

Accepted: 20 October 2021

Published: 22 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Istituto di Sistemi e Tecnologie Industriali Intelligenti per il Manifatturiero Avanzato (STIIMA), Consiglio
Nazionale delle Ricerche (CNR), Via Previati 1/E, 23900 Lecco, Italy; cristina.brambilla@stiima.cnr.it (C.B.);
robertmihai.mira@stiima.cnr.it (R.M.M.); alessandro.scano@stiima.cnr.it (A.S.)

2 Istituto di Tecnologie Biomediche (ITB), Consiglio Nazionale delle Ricerche (CNR), via Fratelli Cervi 93,
20054 Segrate, Italy; ileana.pirovano@itb.cnr.it (I.P.); alfonso.mastropietro@itb.cnr.it (A.M.)

* Correspondence: giovanna.rizzo@itb.cnr.it; Tel.: +39-02-2642-2210
† These authors contributed equally to the work.
‡ These authors contributed equally to the work.

Abstract: Electroencephalography (EEG) and electromyography (EMG) are widespread and well-
known quantitative techniques used for gathering biological signals at cortical and muscular levels,
respectively. Indeed, they provide relevant insights for increasing knowledge in different domains,
such as physical and cognitive, and research fields, including neuromotor rehabilitation. So far,
EEG and EMG techniques have been independently exploited to guide or assess the outcome of
the rehabilitation, preferring one technique over the other according to the aim of the investigation.
More recently, the combination of EEG and EMG started to be considered as a potential breakthrough
approach to improve rehabilitation effectiveness. However, since it is a relatively recent research
field, we observed that no comprehensive reviews available nor standard procedures and setups for
simultaneous acquisitions and processing have been identified. Consequently, this paper presents
a systematic review of EEG and EMG applications specifically aimed at evaluating and assessing
neuromotor performance, focusing on cortico-muscular interactions in the rehabilitation field. A total
of 213 articles were identified from scientific databases, and, following rigorous scrutiny, 55 were
analyzed in detail in this review. Most of the applications are focused on the study of stroke patients,
and the rehabilitation target is usually on the upper or lower limbs. Regarding the methodological
approaches used to acquire and process data, our results show that a simultaneous EEG and EMG
acquisition is quite common in the field, but it is mostly performed with EMG as a support technique
for more specific EEG approaches. Non-specific processing methods such as EEG-EMG coherence
are used to provide combined EEG/EMG signal analysis, but rarely both signals are analyzed using
state-of-the-art techniques that are gold-standard in each of the two domains. Future directions may
be oriented toward multi-domain approaches able to exploit the full potential of combined EEG and
EMG, for example targeting a wider range of pathologies and implementing more structured clinical
trials to confirm the results of the current pilot studies.

Keywords: EMG; EEG; rehabilitation; neuromotor; evaluation; assessment; review

1. Introduction

Neuromotor disorders are developmental or acquired conditions usually caused by
neurological diseases affecting the central nervous system that typically impair movement,
gross and fine motor ability, and posture. It was recently reported that neurological
disorders are the third most common cause of disability and premature death in the
European Union [1], and their prevalence will increase with the progressive aging of
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the population. Therefore, neuromotor disorders associated with neurological diseases
currently represent a burden for patients in all age ranges, health systems, and caregivers
(formal and informal). A detailed comprehension of the processes underlying motor
impairment, with direct involvement of the central nervous/peripheral nervous system,
is at the basis of motor recovery understanding [2]. Moreover, the use of quantitative
and instrumental neuromotor assessments can foster the design of effective therapeutic
interventions and promote the development of personalized therapies to maximize motor
recovery [3].

Different instruments and techniques have been developed to offer clinically reliable
assessments of the neuromotor performances of patients. Two of the most valuable tech-
niques used for analyzing, evaluating, and assessing motor performance employed in the
rehabilitation field are EEG and surface EMG (sEMG, hereby only EMG). They record the
electrical potentials that originated at cortical and muscular levels, respectively. EEG is
a noninvasive and versatile technique that measures electrical activity related to neuron
pools at the cortical level and is suitable for clinical, experimental, and real-life scenarios [4],
whereas EMG measures the train of motor unit action potentials, generated by muscular
contraction, through surface electrodes placed on the skin overlying muscle fibers [5].
They thus provide insights into neuromotor integrity/impairment by monitoring cortical
activation and its motor correlates. Both techniques have been employed for neuromotor
assessments, especially in research studies on rehabilitative applications.

In particular, EEG can explore the brain activity at the cortical and subcortical level and
allows neuronal brain dynamics to be monitored with a high temporal resolution to explore
whole-brain neuronal networks organization [6]. In the reference literature, EEG signal
analysis was historically used in different applications to assess the activation pathways and
to understand basic mechanisms underlying motor functions [7]. This led to more recent
specific studies focused on neuromotor rehabilitation for investigating how activity patterns
change depending on the location of the cortical lesions and on different rehabilitation
treatments in different diseases such as stroke [8], Parkinson’s disease [9], and others.
The evolution of the EEG signal analysis during the last decades shifted the focus from the
time domain to the frequency domain analysis [10] with the more recent use of functional
and effective connectivity approaches [11] to better understand neural network changes
occurring in physiological and pathological conditions. Another relevant application
is related to the use of EEG signal for interactively guiding the rehabilitation session
using brain-computer interfaces (BCI) or biofeedback methods to control a rehabilitation
robot [12] or a lower limb exoskeleton [13], to monitor the status of recovery [14] and to
evaluate the patient’s engagement in traditional motor rehabilitation [15] and in virtual
reality environments [16].

Analogously, in the rehabilitation field, EMG analysis has been used for a variety of
assessments. Current applications of EMG are mainly related to the physiological investi-
gation, monitoring of neurological disorders, and planning of treatments [17]. The study of
muscle activity and coordination patterns is a useful tool for the identification of motor
disorders and the evaluation of motor recovery after rehabilitation. Muscle activation
patterns were identified in both upper [18] and lower limbs [19]; furthermore, EMG was
employed for studying abnormal muscular activity, such as spasticity [20], and effect
such as muscle fatigue [21]. Moreover, the factorization of the EMG signal is also at the
basis of motor control theories, such as muscle synergies, which provide insight into the
control mechanisms for motor planning [22,23]. Applications of this theory have been
oriented toward quantifying motor control abnormalities [24] and changes in the muscular
activation patterns [25]. EMG signals are also used to control exoskeletons for improving
motor rehabilitation and to support daily life activities [26]. Interesting applications were
also found in prosthetic control for amputees using residual EMG near the amputated
region [27].

However, the employment of EEG and EMG signals has been only partially explored
so far, especially in combined applications, although their coupling seems natural and ef-
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fective [28]. It is indeed clear from existing literature that these techniques carry critical and
complementary information regarding several aspects related to neuromotor assessment.
In fact, it has been shown that these techniques allow a better understanding of pathologies
involving the central nervous systems causing motor deficits, especially from the neuromo-
tor point of view. EEG and EMG combined usage also contributes with detailed insights
to the customization and tailoring of therapies by supporting the clinicians with relevant
data on motor organization. Another potential impact provided with EEG and EMG is the
outcome prediction. This issue has been explored with EEG [29] and EMG [30] in separate
studies and acquires variability in a scenario that is evolving toward rationalization of the
resources, containment of the costs, and rehabilitation efficiency [31].

Interestingly, we noticed that, despite their potential, EEG and EMG have been consid-
ered simultaneously in applications with assessment aims only occasionally. They might
help in profiling the level of disability with multi-parameters approaches [32] and can con-
stitute solid bases for novel approaches based on detailed multimodal assessments [33,34].
We also noticed a lack of comprehensive reviews describing which scenarios have been
explored, what applications, setups, methods of analysis, and potential developments can
be foreseen for such techniques, whereas most of the works where EEG and EMG are cou-
pled focuses on brain-computer and multimodal interfaces for feedback and control [35].
Indeed, BCI and biofeedback are the first research fields for which the combination of
the two signals has been successfully employed, and the literature of the past few years
focused on these applications, providing an overview of the possibilities offered by the
techniques until now.

Following the previous considerations, this systematic literature analysis aims to
cover a field that has been less exhaustively described, reviewing all available studies in
which EMG and EEG were combined for clinical practice, targeting applications of the two
combined techniques not only for guiding rehabilitation but mostly for the evaluation and
the assessment of physio-pathological motor function in both healthy subjects and patients.
This review also provides critical comments on the current state-of-the-art approaches and
future trends and directions.

2. Materials and Methods

This review attempts to answer the main research question (RQ 0): “How have EMG
and EEG been combined in clinical practice for assessment of people in rehabilitation?”.
RQ 0 is furtherly split into the following research questions:

RQ (1) Which type of experimental study design was employed?
RQ (2) Which groups of subjects, pathologies, and anatomical segments were targeted

with the combined EEG-EMG approach in rehabilitation?
RQ (3) What setups were used for rehabilitation and signal acquisition?
RQ (4) What analysis techniques have been employed and what results were achieved?
We thus considered papers that applied EMG and EEG simultaneously provided an

overview of which scenarios were considered for applications and which setups were used
for rehabilitation and acquisitions, explored the data analysis techniques and the achieved
results. The international guidelines established by PRISMA (Preferred Reporting Items
for Systematic Reviews and Meta-Analyses) [36] were used.

2.1. Criteria for Papers Classification

Our review of the previous literature was organized to summarize the state-of-the-art
of the field by detailing the following categories:

- TYPE OF STUDY: lists the papers based on the study type described in the text (e.g.,
Observational, Pilot, Randomized Controlled Trial, and Methodological).

This section answers the question RQ 1.
- SUBJECTS AND ANATOMICAL TARGETS: describes to which clinical scenarios

EEG and EMG were applied together. This section answers the question RQ 2.
This section was further specialized into:
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Cohort of Subjects: aiming to summarize what kind of subjects were enrolled for
combined EEG-EMG studies (e.g., post-stroke subjects and healthy controls) and what
sample size of patients/subjects was enrolled in the experimental studies.

Anatomical Targets: aiming to review which anatomical segments were assessed and/or
rehabilitated in concurrent EEG-EMG studies (e.g., upper limb).

- EXPERIMENTAL SETUP and PROTOCOLS: describes which experimental setups
were employed for rehabilitation and data acquisitions. This section answers the question
RQ 3.

Experimental setup and protocols were further divided into:
Setup for tests/rehabilitation: aiming to describe which setup was used for rehabilitation

(e.g., robotic assistive device)
Setup for signal acquisition: aiming to review what setups were used for data collection

(e.g., 16 channel s-EMG).
- DATA ANALYSIS: describes which techniques and findings were used for data

analysis. This section answers the question RQ 4.
Data analysis was further divided into:
Analysis Techniques: aiming to describe which techniques have been employed and

which domains and features were considered in the analysis (e.g., time/frequency).
Benefits of combined EEG-EMG applications: aiming to describe which were the main

findings that were achieved using the combined EEG-EMG acquisition and analysis.

2.2. Bibliographic Research Criteria

With the above-mentioned aims, the following procedure was employed for the
literature screening. A collection of articles was obtained by screening PubMed, Sco-
pus, and Web of Science (WOS), using a query based on the keywords: “EEG”, “EMG”,
“MUSCL*”, “MOTOR*”, “MOVEMENT”, “MOTION”, “REHABILITATION” and exclud-
ing the keyword “BCI”. Articles strictly concerning BCI and biofeedback implementation
with electrical biological signals were excluded since their main aim is commonly not
focused on combined EEG/EMG functional assessment.

The formal logical query was (EEG) AND (EMG OR MUSCL*) AND (MOTOR* OR
MOVEMENT OR MOTION) AND (REHABILITATION) AND NOT (BCI).

2.3. Eligibility Criteria

In the eligibility phase, we distinguished the papers relevant to the aim of this review.
For being eligible, screened papers had to satisfy all the following criteria:

(A) To include the specified query in the abstract and/or title and/or in the keywords
(B) To involve the simultaneous use of EMG and EEG
(C) EMG and EEG had to be used for neuromotor assessment
(D) To target rehabilitation scenarios
(E) To be indexed in at least one of the screened databases
(F) To be a full article (at least 4 pages)
(G) To be available in English

The papers were screened, one by one, for inclusion by two different groups (com-
posed of subgroups of the authors of the paper) independently. The main inclusion criteria
had to include: “criteria A AND B AND C AND D AND E AND F AND G”. Each paper
was screened by two different reviewers who blindly classified it as eligible or non-eligible.
Any disagreement in the classification was settled by discussion between the two groups,
and a consensus was reached in all cases.

3. Results

3.1. Selected Papers

As a result of the screening, 174 papers were found on Scopus, 58 on PubMed, and 144
on WOS. The total number of articles was 385. Out of all these articles, 163 were duplicates
across the 3 databases. The number of studies eligible for the detailed screening was 213.
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After the screening phase, the number of papers identified as eligible, meeting all the
selection criteria, and included in the review was 55. In the next sections, the results of our
research are presented. The PRISMA flow chart summarizing all the steps for screening
and inclusion is presented in Figure 1.

 

Figure 1. The PRISMA flow chart for the proposed literature review [36].

As shown in Figure 2, most of the papers describing concomitant applications of EEG
and EMG in the assessment of neuromotor skills in rehabilitation were recently published.
Indeed, more than 50% of the papers included in this review were produced in the last
5 years.

 
Figure 2. Temporal distribution (number of papers published per year) of selected papers.

An exploratory analysis of the 50 most cited words within the selected papers has
highlighted that they appear overall 34,540 times in the text, and they represent more than
10% of all the words composing the whole documents. Among them, the most cited word
is motor (1900 citations), followed by EEG (1845) and stroke (1805). Among the first 10 most
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cited words, we also found: EMG, patients, study, data, movement, muscle, and coherence.
A pictorial representation is shown in Figure 3.

Figure 3. Word-cloud representing the 50 most cited words (excluding all the words not representing
nouns and not relevant acronyms) included in the text of the papers selected in this review. The higher
the size, the higher the number of citations inside the papers.

3.2. Type of Study

In this section, the papers were subdivided according to the study design proposed
by the experimenters. In Table 1, we grouped the works into four categories: observational
study, pilot study, randomized controlled trial, and methodological study. For each paper,
we also detailed the aim of the study. The distribution of papers in the categories is shown
in a pie chart in Figure 4.

Figure 4. Pie chart portraying the number of selected studies for each study design (Observational,
Pilot, Randomized Controlled, Methodological).

10



Sensors 2021, 21, 7014

Table 1. Type of study and aim.

Type of Study Aim

Observational study

Study of the cortico-muscular coupling (1) during motor tasks [37–41] and (2) with electrical
stimulation [42–46]
Investigation of the effects of exoskeleton on functional connectivity [47–49]
Investigation of the effects of visual feedback [50,51]
Detection of movement intention [52,53]
Study of the interhemispheric interaction with TMS [54]
Study of a neurophysiological marker of stress [55]
Study of slow cortical potentials in stroke [56]
Study of correlation between lower back pain and altered postural stabilization [57]

Pilot study

Test new rehabilitation paradigm [34,58–62]
Investigation of the efficacy of BMI [63] and EEG feedback [64]
Study of movement classification combining EEG and EMG [65]
Investigation of movement intention [66,67] and motor imagery detection [68]
Study of the cortico-muscular coupling [69–71]
Study of the neuroplasticity with electrical stimulation [72]
Investigation of engagement in game rehabilitation [73]
Study of the effects of the use of VR in facial rehabilitation [74]

Randomized controlled trial

Study the effects of transcranial [75,76] and peripheral electrical stimulation [77–79]
Investigation of the efficacy of lower limb exoskeleton rehabilitation [80]
Assessment of a novel gait training paradigm [81]
Investigation of the efficacy of neurologic therapy based on music [82]
Investigation of the effects of biofeedback [83]

Methodological study
Presentation of a multivariate approach for motor assessment [32,33]
Presentation of a method for compressing EEG-EMG signal [84]
Presentation of algorithms for motion detection [85,86] and motion classification [87,88]

A total of 21 papers out of 55 (37%) presented observational studies in which functional
parameters or effects of treatments were investigated on healthy subjects and patients.
An aim commonly found in these works was the assessment of the cortico-muscular
coupling during movements [37–41] as a method to better understand motor control mech-
anisms for improving the rehabilitation design. Cortico-muscular coherence was also
tested as a tool for investigating the effects of functional electrical stimulation [42–46].
Some studies analyzed the effects of treatments based on exoskeletons on neuromotor out-
comes [47–49]. The efficacy of visual feedback was assessed to explore novel rehabilitation
paradigms [50,51]. Two studies only [52,53] were interested in detecting movement inten-
tion coupled with EEG and EMG recordings. Other works investigated specific parameters
typical of each study: Palmer et al. [54] studied the interhemispheric interaction using
transcranial stimulation, Vladimirov et al. [55] searched neurophysiological markers of
stress, Yilmaz et al. [56] investigated slow cortical potentials in stroke patients, and Jacobs
et al. [57] studied the correlation between low back pain and postural stabilization.

Papers that tested a novel experimental setup or concept design on a limited number
of subjects were classified as pilot studies. A total of 18 out of 55 papers (33%) were
classified as pilot studies. Many of these studies presented novel rehabilitation paradigms
based on robotics [58–60] or exoskeletons [34,61,62]. Donati et al. [63] tested a multi-stage
brain-machine interface (BMI), while Hashimoto et al. [64] used the EEG feedback for
improving rehabilitation. Some studies presented preliminary results for methods of move-
ment classification [65], detection of movement intention [66,67], and motor imagery [68].
Three studies investigated cortico-muscular coupling [69–71] as a novel method to eval-
uate the motor recovery of post-stroke patients. Neuroplastic changes induced by TMS
were studied by Dutta et al. [72] to improve rehabilitation technologies. Moreover, pi-
lot studies were conducted for the evaluation of the level of engagement during game
rehabilitation [73] and of the effects of virtual reality on facial rehabilitation [74].

A total of 9 studies out of 55 (17%) presented randomized controlled trials that subdi-
vided the enrolled cohorts into treatment groups compared to the control groups to test
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the validity of an experimental setup. Bao et al. [75] and Benninger et al. [76] studied
the efficacy of employing transcranial stimulation on stroke and parkinsonian patients,
respectively, while three studies applied peripheral electrical stimulation on stroke pa-
tients [77–79]. Rehabilitation for stroke patients was investigated by Calabrò et al. [80]
using an exoskeleton and by Chen et al. [81] with a novel treadmill. Furthermore, the
efficacy of sensorial feedback based on music [82] or EEG/EMG biofeedback [83] in stroke
patients was assessed during rehabilitation to improve motor recovery.

Finally, seven papers (13%) were classified as methodological studies: they pre-
sented novel methods and algorithms for analyzing together EEG and EMG signals.
Cisotto et al. [84] provided a method for compressing EEG and EMG signals. Other studies
developed algorithms for detecting motion [85,86] and classifying it [87,88]. Belfatto et al. [32]
and Pierella et al. [33], instead, showed a methodology for a multivariate motor assessment
aiming at proposing a novel methodology for evaluating rehabilitation.

3.3. Subjects and Anatomical Targets

This paragraph describes the properties of the cohorts of subjects involved in the
experimental sessions considering the clinical status of the subjects (healthy vs. pathologic),
age range, and the sample size. Furthermore, the anatomical targets for the functional
assessment and/or rehabilitation are described. A summary of the most relevant results
described in this section is reported in Table 2.

Table 2. Subjects and anatomical targets.

Categories Details and References

Type of subjects

Healthy (Age range)

Target: 20–30 [61], n.a. [84], 24–36 [72], 60–62 [62], 18–35 [51],
57.8 ± 4.7 [66], 24 ± 2.32 [47,48], 23–27 [67], 26.86 ± 3.39 [52],
25.0 ± 1.7 [60], 22–28 [41], 22 [86], 22.8 ± 3.3 [87], 24.9 ± 5.4 [88],
21.2 ± 1.1 [44], 26.5 ± 6.5 [49], 23–27 [45,46]
Control group: 20–39 [42], 53–62 [58], 27 ± 4 [38], 50.08 ± 15.8 [39],
35.4 ± 5.25 [57], 24 ± 1.5 [43], 27 ± 4 [65], 53 ± 14 [54], 58 ± 16 [33],
24–27 [40], 20 ≥ 60 [85], 33.5 ± 7.9 [53], 55.1 ± 2.1 [55], 35.9 ± 7.7 [68],
n.a. [69,70], 42 ± 13 [71]

Pathologic (Age range)

Chronic stroke: 53–72 [37], 37–72 [42], 35–63 [75], 61 ± 11 [32],
55–77 [80], 52–63 [58], 52.5 ± 9.7 [81], 56.5 ± 9.5 [39], 43–79 [43],
69.9 ± 10.5 [77], 46–81 [54], 56.5 ± 9.5 [78], 68 ± 18 [33], 52.7 ± 8.4 [74],
45–51 [40], 49.9 ± 10.9 [79], 56 [68], n.a. [70], 46–60 [71], 51.4 ± 11.1 [56];
Subacute stroke: 32–79 [50]; Subacute and chronic stroke: 52–64 [69],
42–92 [82]
Parkinson disease: 40–80 [76]; Cerebral palsy: 5–19 [34]; Spinal cord
injury: 32.5 ± 6.2 [38], 26–38 [63], 32 ± 6 [65], 43.5 ± 12.4 [53]; Writer’s
cramp: 67 [64]; Low back pain: 39.2 ± 6.33 [57]; Mixed injuries and
diseases: 33–54 [73], 60–80 [59]; Facial palsy: 23 [74]; MCI: n.a. [85];
Cardiovascular diseases: 56.3 ± 1.0 [55]

Nr of subjects

≤10
6 [37], 5 [32], 6 [34], 3 + 4 [58], 6 [61], 1 [84], 8 [63], 10 [72], 2 [62], 1 [64],
7 [66], 5 [47], 8 [67], 7 [52], 10 [33], 1 [74], 5 + 5 [40], 10 [41], 1 [86],
4 + 4 [53], 4 + 4 [71], 6 [49], 10 [45,46]

10 < n ≤ 20
11 [75], 14 [50], 9 + 9 [81], 10 + 8 [38], 10 + 10 [57], 16 [51], 7 + 4 [69],
10 + 8 [65], 15 [77], 12 [78], 6 + 6 [33], 18 [87], 13 [44], 10 + 1 [68],
7 + 7 [70], 20 [56]

>20
16 + 12 [42], 26 [76], 20 + 20 [80], 14 + 10 [39], 15 + 15 [43], 30 [47,48],
23 [59], 12 + 30 [82], 19 + 14 [54], 30 [83], 14 + 14 [79], 28 + 7 [85], 32 [88],
14 + 14 [55]
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Table 2. Cont.

Categories Details and References

Rehabilitation target

Distal Upper Limb Hand and wrist: [50,59,61,69,84]; Wrist: [37,40,44,75,82];
Hand: [39,43,45,46,51,54,56,62,64,67,73,76,78,83]

Proximal Upper Limb Shoulder and elbow: [32,33,58,60,70,71,82,84];
Elbow: [37–40,62,65,76,87,88]; Arm: [52,85,86]; Shoulder: [55]

Distal Lower Limb Ankle: [42,47–49,51,63,80]; Leg: [41,72,77,79,81]; Foot: [81]

Proximal Lower Limb Knee: [34,42,47–49,80]; Hip and knee: [63]

Other Torso: [57]; Face: [74]; Neck: [68]

3.3.1. Cohorts of Subjects

In the papers analyzed in this review, the cohorts of subjects involved during the ex-
perimental sessions could be divided into two macro-categories: (i) healthy subjects and (ii)
patients affected by different diseases and pathological conditions affecting the neuromotor
system. In particular, 36 out of 55 (64%) studies have enrolled healthy volunteers as either
target groups (19 out of 36–53%) or control groups (17 out of 36–47%). Conversely, 36 out
of 55 (65%) papers have enrolled patients.

Most of the studies involving patients were focused on stroke (23 out of 36–64%) at
different stages. The chronic stage was studied in 20 out of 23 papers (87%), the subacute
phase was described in 1 paper (4%), whereas a longitudinal analysis (subacute and
chronic stage) was performed in 2 out of 23 papers (9%).

A total of 13 out of 36 papers considered other types of pathological conditions such
as: spinal cord injury (4 out of 13–31%), mixed injuries and diseases (2 out of 13–15%),
Parkinson’s disease, cerebral palsy, writer’s cramp, low back pain, facial palsy, mild
cognitive impairment and cardiovascular diseases (1 document each). See Figure 5 for a
schematic representation of the results.

Figure 5. Graph representing the distribution of selected papers based on the cohort of subjects enrolled.

The age of the subjects involved in the studies ranged from 5 to 92. Most of the healthy
subjects’ cohorts were composed of young adults (up to 40) (21 out of 36 documents—58%),
whereas the patients’ cohorts were mostly composed of adults (> 40) or older adults. (>65)
(29 out of 36 papers—80%).

Considering the sample size, 24 out of 55 (44%) papers involved at most 10 subjects,
16 out of 55 papers (29%) enrolled up to 20 subjects, whereas 15 out of 55 papers (27%)
enrolled more than 20 subjects. It is worth noticing that four papers describe results based
on a single subject analysis, whereas the highest number of subjects involved was 42.
See Figure 6 for a schematic representation of the results.
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Figure 6. Pie chart portraying the percentage of selected studies for the sample size.

3.3.2. Anatomical Targets

Regarding the anatomical regions that were objects of study, the distal upper limb
was predominantly considered in 24 out of 55 papers (44%), the proximal upper limb
was evaluated in 21 out of 55 documents (38%), the distal lower limb is included in
13 out of 55 papers (24%) whereas the proximal lower limb in 8 out of 55 papers (15%). It
is worth noticing that in 3 out of 55 documents (5%), the focus was put on other regions
(torso, face, neck).

Specifically, considering the distal upper limb, most of the applications were focused
on the assessment/rehabilitation of hand movements (14 out of 24 papers—58%); 5 out of
24 studies (21%) considered the wrist, whereas 5 out of 24 (21%) documents described the
concurrent analysis of wrist and hand. As to the proximal upper limb, 9 out of 21 (43%)
papers were focused on the elbow, 3 out of 21 (14%) generically on the arm, 1 out of 21 (5%)
on the shoulder, whereas 8 out of 21 (38%) studies were focused on the combined analysis
of shoulder and elbow.

As to the lower limb, in the distal part, 7 out of 13 (54%) papers focused on the ankle,
5 out of 13 (38%) documents on the leg, and 1 out of 13 (8%) studies on the foot movements.
Finally, considering the proximal lower limb, 6 out of 8 (88%) papers focused on the knee
whereas 1 out of 8 (12%) on the simultaneous analysis of hip and knee. A schematic
representation of the results is shown in Figure 7.

Figure 7. Hierarchical representation of anatomical targets considered in the analyzed documents.
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3.4. Experimental Setups and Protocols

The screened papers were subdivided according to the setup employed for the reha-
bilitation and/or assessment. The main categories reported in Table 3 were identified as
miscellaneous techniques for free movement and rehabilitation, robotic assistance, periph-
eral electrical stimulation, transcranial electrical stimulation, and assisted rehabilitation.
Papers presenting techniques possibly ascribable to multiple categories were assigned to
the best fitting one.

Among the selected studies, we grouped studies addressing miscellaneous techniques
in the group “Miscellaneous techniques for free movement rehabilitation”. In this category,
we selected papers that did not include aids, robots, and supports or that used devices that
are very typical of a specific study or do not belong to a specific category. Some studies
assessed the motor function only with simple movements performed by subjects, such as
wrist [69,84], elbow [38], arm [37,57,70,71,87,88], hand [40,67,83,86] and leg tasks [53] and
respiratory movements [55]. Additional sensorial feedbacks were employed for evaluating
the effects of visual [65,73], auditory [82], and audiovisual feedback [56]. In one paper,
the additional neurofeedback allowed the improvement of functional recovery of the hand
in dystonic patients [64]. Moreover, in two studies [53,85], movements were compared
to motor imagery. Bartur and colleagues [50] employed mirror visual feedback in the
rehabilitation setup for hemiparetic stroke patients. The effectiveness of a novel balance
handle was assessed with arm movements [52].

Table 3. Setup for tests/rehabilitation.

Setup Details and References

Miscellaneous techniques for free
movements and rehabilitation

Mirror visual feedback [50]
Wrist movements [69,84]; wrist movements + visual feedback [73]
Elbow movements [38]; elbow movements + visual feedback [65]
Arm movements [37,57,70,71,87,88]; arm movements + auditory feedback [82]; arm
movements + balance handle [52]
Hand movements [40,67,83,86]; hand movements + motor imagery + auditory/smelling
stimulus [85]; hand movements + audiovisual feedback [56]; hand movements +
biofeedback [64]
Leg movements [53]
Motor imagery swallow and tongue protrusion [68]
Respiratory movements [55]
Oculus rift [74]

Robotic assistance

Exoskeleton lower limb + virtual reality [34]; exoskeleton lower limb + virtual reality +
BMI [63]; exoskeleton lower limb + walking [47,48,80]; exoskeleton lower limb + treadmill [49]
Robotic end effector upper limb [32,33,58,59]
Robotic mirror therapy upper limb [60]
Hand mobilizer exoskeleton [39,61,62]; hand mobilizer exoskeleton + motor imagery [66]
Ankle mobilizer [41]

Peripheral electrical stimulation

FES + hand movements [43,78]; FES + walking [79]; FES + hand movements + motor
imagery [45,46]
ePAS + ankle movements [77]
NMES + wrist movements [44]

Transcranial electrical stimulation
HD-tDCs + wrist contractions [75]; anode tDCs + ankle dorsiflexion [72]
rTMS [76]; TMS + wrist contractions [54]

Assisted rehabilitation Pedaling system + NMES [42]
Treadmill [81]; Treadmill + visual feedback [51]

Robotic solutions and exoskeletons were employed in 16 papers for motor reha-
bilitation. Exoskeletons for lower limbs were present in six studies and were tested in
walking tasks [47,48,80], on a treadmill [49], and in virtual reality environments [34,63].
One study only [41] presented a mobilizer specific for the ankle. In the selected papers,
exoskeletons for upper limbs were designed for hand mobilization and finger move-
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ments [39,61,62,66]. Four papers [32,33,58,59] presented a robotic end effector for the upper
limb, and Park et al. [60] developed a robotic mirror therapy for the arm.

For improving motor recovery, peripheral stimulation, in which the stimulus is ap-
plied to the nerve to induce the contraction of the muscles, was employed in different
studies. Functional electrical stimulation (FES) is a popular technique, and it was used
for stimulating hand muscles [43,45,46,78] and ankle muscles [79]. Other techniques for
peripheral stimulation are endogenous paired associative stimulation (ePAS), used by
Olsen et al. [77] for the ankle joint muscles, and neuromuscular electrical stimulation
(NMES), employed by Xu et al. [44] for wrist muscles. In transcranial electrical stimulation,
instead, the electrical stimulus is delivered at the cortical level through electrical current,
as in transcranial direct current stimulation (tDCS), or magnetic field, as in transcranial
magnetic stimulation (TMS). Bao et al. [75] presented a high-density tDCS associated with
wrist contractions for stroke rehabilitation, while Dutta et al. [72] used an anodal tDCS
for assessing neuroplastic changes. Palmer et al. [54] employed TMS for studying the
cortico-muscular coherence in stroke patients, while Benninger et al. [76] assessed the
safety of using repetitive TMS for treating parkinsonian symptoms.

In the assisted rehabilitation group, we collected experimental setups in which de-
vices that helped the movements performed during rehabilitation were included. In
Bao et al. [42], a pedaling system coupled with NMES was employed for motor rehabilita-
tion in stroke patients. A novel turning-based treadmill was presented by Chen et al. [81],
while Jensen et al. [51] added the visual feedback to rehabilitation on a motorized treadmill.

Very few papers included virtual reality (VR) environments in rehabilitation: VR envi-
ronment alone was present in only one study [74], while Bulea et al. [34] and Donati et al. [63]
used virtual reality in combination with exoskeletons.

3.5. Setups for Signal Acquisition

We analyzed the setup used for the acquisition of EEG and EMG signals according
to the type of system, the number, and the positioning of the electrodes. The electrode
positioning of EEG was related to the area of the brain from which the signal was recorded
and was identified in the motor area only, sensorimotor area, and whole cortex; for EMG
signal, we subdivided the positioning based on the number of joints and limbs involved:
therefore, we sorted papers in single-joint, multi-joint and multi-limb. The details are
reported in Table 4, divided into EEG and EMG acquisition setups. Unfortunately, not all
the papers declared the systems used in detail; therefore, we reported only the studies in
which the recording systems were clearly specified.

Table 4. Setup for signal acquisition.

EEG ACQUISITION

Setup Details and References

Number of electrodes

N > 100 163 [70,71]; 160 [58]; 128 [42,59];

100 < N < 30 64 [32–34,38,44,50,65,66,75]; 62 [47,48]; 56 [37]; 40 [68,77];
35 [67]; 32 [40,52–54,81,84];

30 < N < 10 21 [39,80]; 20 [69,82]; 16 [43,49,56,63,78]; 15 [85]; 14 [62,73];
10 [57,61,64];

N < 10 8 [83]; 5 [72]; 3 [60,86–88]; 2 [45,46]; 1 [41,51,55,79];

Electrodes positioning
Motor area only [41,61,67]
Sensorimotor area [39,43,60,64,78]
Whole cortex [32,34,37,38,42,47,48,50,54,58,62,63,66,70,71,75,77]
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Table 4. Cont.

EMG ACQUISITION

Setup Details and references

Number of electrodes
16 [53]; 15 [33,58]; 13 [71]; 10 [37,62]; 8 [32,56,70,73,76,80]; 6 [40,49]; 5 [57,63,84];

4 [38,39,42,47,48,51,59,65,68,69,75,81]; 3 [52,60,61,64,67];
2 [34,44,54,87,88]; 1 [41,43,55,66,72,77–79,82,83,85,86];

Electrodes positioning

Single-joint

Wrist [43,44,50,54,59,61,62,64,66,67,73,75,78,81,83,85,86]
Arm [38,55,60,65,82,87,88]
Leg [34,72]
Ankle [41,51,77,79]
Face [74]

Multi-joint
Lower limb [42,47–49,53,63,80]
Upper limb [32,33,37,39,40,52,56,58,70,71,76,84]
Trunk-upper limb [57]

Multi-limb Upper limb [37,70,71,76]

For the EEG signal, different types of systems were employed for the signal acquisition,
and all the instruments were commercial systems, reported in Table 4. Two papers only
used customized amplifiers [51,86]. We noticed that no system was preferred with respect
to the others, but a variety of instruments were employed in the literature. In addition, the
set sampling frequency and the impedance were different among the studies.

The number of EEG channels changed depending on the study design: a higher
number of electrodes was used for a more comprehensive mapping of the whole cortical
area, while a lower number gives details on the activity of specific areas. Five papers
employed more than 100 electrodes for recording EEG signals: 163 electrodes were used
for studying cortico-muscular coupling [70,71], 160 for mapping brain activity [58], and
128 for neurophysiological assessments [42,59].

Many papers employed the standard number of electrodes that are usually pro-
vided with EEG caps: nine studies used 64 electrodes [32–34,38,44,50,65,66,75], six used
32 electrodes [40,52–54,81,84], five used 16 electrodes [43,49,56,63,78] and one applied 8 elec-
trodes [83]. No standard number of electrodes was found in the other papers. Li et al. in two
studies [47,48] employed 62 electrodes, Mima et al. [37] used 56 electrodes, Olsen et. al. [77]
and Yang et al. [68] applied 40 electrodes and Lou et al. [67] used 35 channels. Other stud-
ies recorded the EEG signal with a lower number of electrodes: 21 electrodes were used
in two papers [39,80] and 20 in other two [69,82]; six studies employed between 15 and
10 electrodes [57,61,62,64,73,85].

Finally, some papers applied very few electrodes: Dutta et al. [72] used five channels,
four studies used three electrodes [60,86–88], and Zhai et al. in two studies [45,46] employed
only two electrodes. Four studies [41,51,55,79] applied only one channel for recording EEG
signal: the electrode was positioned in Cz of the 10–20 electrode placement system in all
these studies.

Papers that employed a high number of electrodes recorded the whole cortical activity
with a high density of probes, but other papers acquired the activity of the whole cortex also
with a lower number of probes [62,63]. Usually, few electrodes were employed for recording
the activity of the sensorimotor area [39,43,60,64,78] or the motor area only [41,61,67].

As for the EEG acquisition setups, the types of systems employed for EMG signal
were different among all the studies, and two papers only customized the setups [42,86],
while all the other used commercial systems, reported in Table 4. Moreover, the sampling
rate and the impedance used for the recording were different among the studies.

Many studies applied few electrodes for recording the activity of a single muscle or a
pair of agonist and antagonist muscles: 4 electrodes were used in 12 studies, 3 in 5 studies,
2 electrodes were employed in 5 papers, and a single probe was used in 12 papers. Using
a few electrodes, the activity was recorded from muscles controlling only one joint. The
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employment of more probes allows recording the activity of some muscles that underlie
multi-joint coordination: three papers [57,63,84] used five electrodes, two papers [40,49]
six electrodes and six studies applied eight electrodes [32,56,70,73,76,80]. Finally, the EMG
activity was recorded from more than 10 electrodes in 6 papers [33,37,53,58,62,71].

The EMG electrode positioning was classified based on the number of joints that are
controlled with the muscles recorded. The upper limbs were investigated more than the
lower limbs in both single and multiple joint categories. The wrist joint was studied the
most: 17 papers analyzed muscles of the forearm moving the hand. Seven studies, instead,
recorded muscles that move the whole upper arm. Two papers [34,72] placed the EMG
probes on knee muscles, while muscles moving the ankle joints were recorded in four
papers [41,51,77,79]. One study [74] acquired the activity of facial muscles. Studies that em-
ployed a higher number of EMG electrodes recorded the activity of muscles that regarded
more than one joint: 7 papers analyzed the muscular activity of the lower limb, 12 studied
the upper limb, and Jacobs et al. [57] included the trunk analysis to support the upper
limb one. Investigating more joints allows the analysis of muscle activation patterns and
muscle synergies, giving an insight into motor control [23]. Only four studies [37,70,71,76]
involved both upper limbs in the EMG acquisitions.

3.6. Data Analysis
3.6.1. Analysis Techniques

In literature, various techniques are employed to analyze EEG and EMG signals
accordingly to the different aims of the specific studies. In Table 5, we identified five
different macro-categories of analysis most frequently used for EEG and EMG indepen-
dently. Three further categories of combined EEG-EMG analysis were identified. For
each macro-category, a further detailed sub-classification was made, based on specific
approaches implemented. Frequently, more than one technique was employed in the same
study. The list of papers reported in Table 5 was sorted accordingly as follows.

Table 5. Signal analysis techniques.

EEG Analysis Techniques

Time domain analysis ERP: [56,57,65,76,77]
Cortical waves amplitude/slope: [53,74,87,88]

Frequency domain analysis Average PSD: [34,41,42,47,49,52,59,65,72,75,79,83,86–88]
Quantitative index calculation: [55,60,62,73]

Time-frequency analysis ERD/ERS: [32,33,38,44,50,57,64,68,81]
ERSP: [42,47,63]

Connectivity Functional: [81,85]
Effective: [48,54,80]

Sources reconstruction
ICA: [34,42,63]

LORETA: [58,71,80]

EMG Analysis Techniques

Time domain analysis Amplitude/RMS: [34,55,58–60,63,73,74,77,79,80,83,86]
Additional time features: [39,64,65,71,87,88]

Frequency domain analysis Average PSD: [41,47,49]
Median frequency: [44,60,79]

Time-frequency analysis Channels coherence: [51]
Time-frequency decomposition: [47]

Thresholding/landmark identification EMG-EEG temporal synchronization: [54,57,62,72,81]
Identification of events: [48,56,71,85,86]

Synergies Non-negative matrix factorization algorithm: [32,33,53]
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Table 5. Cont.

EEG-EMG Combination

Cortico-muscular coherence
EEG-EMG coherence: [37,39,41,43–45,49,61,64,66,67,69,70,75,78,82,84]

EEG-EMG PDC/gPDC: [42,46]

Time-frequency connectivity

Wavelet cross-spectrum: [38,51]
Cross-mutual information: [66,81]

Pearson’s correlation: [47]
Copula Granger’s causality: [40]

Feature fusion for classification
Linear discriminant analysis: [65]
Support vector machine: [87,88]

Among the 55 papers selected, we found that 72.7% of them analyzed the EEG
signal individually, while 61.8% performed an analysis on the EMG signal alone. Only
49.1% of the papers extrapolated features combining EEG and EMG signals. In Figure 8,
a representation of the different categories of found data analysis is provided, divided by
the macro-categories identified in Table 5. For what concern the EEG analysis, we noticed
that most of the papers (47.5%) exploited a frequency domain approach, while the time
domain one is the most represented approach for the analysis of EMG signal (55.9% of
EMG alone papers). Finally, the extraction of the cortico-muscular coherence (CMC) was
the most widespread metric employed (70.4%) among papers that considered the EEG and
EMG signals in combination.

 

Figure 8. Graphical representation of data analysis approaches categories, divided according to the
signal considered: only EEG, only EMG, or EEG and EMG combined. Percentage of papers using
features belonging to each specific category are reported in the graph.

Hereafter, we focus on the description of the identified macro-categories and on the
features proposed in the literature.

In the first instance, the signals analysis can be classified based on the domain of
feature extraction, i.e., in time, frequency, or time-frequency domain. In time domain
approaches, EEG and EMG temporal series are directly analyzed after a pre-processing
step to remove artifacts.

Only nine of the selected papers focused on the extraction of EEG features in the
time domain: in five works, movement event-related potentials (ERP) were analyzed
with respect to an external stimulus or a voluntary movement. In [53,74,87,88], specific
features of the cortical electric potentials were considered, such as amplitude, slope, fractal
dimension, and Hjorth parameters of the cortical response [89].

In contrast with EEG, time domain features are frequently extrapolated from the
envelope of the EMG signal. A total of 19 papers implemented this type of approach
(see Table 5). Specifically, 13 of them focused on the information extrapolated by the
amplitude or the root mean square (RMS) of the envelope to quantify the muscles fibers’
activity, while in 6 works, additional time features were calculated. For example, Guo and
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colleagues [39], as well as Hashimoto and colleagues [64], considered the envelope integral.
Tryon and colleagues [87,88] fitted the EMG experimental signal with an auto-regressive
model, also calculating the mean absolute value, the mean absolute slope, the waveform
length, and zero crossings. Moreover, Yao et al. [70] were able to define a muscle selection
index from the temporal series of EMG electrodes.

Even though the time series can provide usual information on the biological process-
ing underling the recorded signals, a complementary analysis can be performed in the
frequency domain. The Fourier transforms of the temporal signals are calculated, and the
spectral content at specific frequency bands is usually evaluated.

For what concerns the EEG analysis, 19 papers among the ones selected (second raw
Table 5) employed this type of approach. Typically, in EEG, the power spectral density
(PSD) averaged over epochs of the entire signal is calculated, and five spectral bands of
interest are identified, i.e., delta (δ: 0.5–4 Hz), theta (θ: 4–8 Hz), alpha (α: 8–13 Hz), beta
(β: 13–30 Hz) and gamma (γ: 30–150 Hz). The power amount in each of these bands and
their ratio provides information on a particular mental state and cognitive involvement.
Only in 4 of the 19 papers identified, specific quantitative bands power-based indexes were
calculated, e.g., a relative amplitude value [60], an engagement index (β/(α + θ)) [62,73]
and the θ/β ratio [55].

Only six papers exploited the frequency approach to investigate the EMG signal.
As for EEG, in the work of [41,47,49], the EMG signal was segmented and the average
PSD calculated, identifying responses at specific frequencies or spectral correlation be-
tween different muscles signals. In [44,60,79], a specific index, i.e., the median frequency,
was calculated to investigate the occurrence of muscles fatigue during exercise.

Especially in the assessment of rehabilitation, it is important to evaluate the neuro-
motor response related to specific movement or intervention in time. The time-frequency
domain analysis allows combining the spectral information retrieved from the EEG and
EMG signals as they vary during time. This type of analysis has been proposed in EEG
studies to evaluate the rise of cerebral waves at a different frequency. In particular, the
event-related desynchronization/synchronization (ERD/ERS) is usually calculated as the
percentage power decrease or increase at specific frequency bands following a movement
onset. The ERD/ERS represents the synchronization or desynchronization of neuron popu-
lations in response to a voluntary muscle activation [7]. Among the selected, nine papers
exploited this type of time-frequency analysis to explore the frequency-specific brain re-
sponse over time. In three further studies [42,63,73], this approach has been extended in
the evaluation of active/passive muscle stimulation during cycling or walking and brain-
computer interface application, thus using the more general term event-related spectral
perturbation (ERSP) to indicate the type of outcome obtained.

Also, for EMG, it is possible to exploit the conjunction between spectral and temporal
information, even though this approach is not often used in the applications that we
considered in this review work. In fact, only two papers exploited this analysis. Jensen in
2018 [51] performed a time-frequency-based analysis of the coherence between five EMG
channels during a visually guided walking task. Li and colleagues [47] evaluated the
correlation of EMG PSD of four channels in six frequency bands during the gait cycle.

As explained, an accurate time-frequency analysis of both EEG and EMG signals
requires the identification and synchronization of the biological signals time series with
the movement, or more in general to the experimental event of interest. Many studies
reported in literature exploit the EMG signal for the exact timing of the onset of move-
ment/experiment. In Table 5, we found 11 works in which EMG thresholding algorithms
were employed, primarily to identify the onsets, thus leading the following analysis on
both EEG and EMG signals.

The analysis approaches described until now usually considered the signal registered
from each electrode (EEG or EMG) independently. However, a second-level analysis can be
performed, taking into consideration not only the temporal or frequency information but
also their spatial distribution and connection. For the cerebral signal, this approach includes
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connectivity analysis among brain areas, while for EMG, muscle synergies represent
spatial patterns involving the recruitment of multiple muscles. Synergies are coordinated
activations of groups of muscles as a consequence of a common control signal from the
central nervous system [90]. We identified three papers [32,33,53] that implemented this
type of investigation in rehabilitation assessment, exploiting the non-negative matrix
factorization algorithm [91].

Brain connectivity analysis aims to identify those areas that are synchronously active
both at rest and during a specific task. Two types of approaches can be distinguished:
functional and effective analysis. In functional analysis, the functional network orga-
nization is investigated; in effective analysis, also the directionality and the causal in-
fluence between structures are evaluated [92]. We found two works exploring the EEG
functional brain connectivity [81,85] and three papers quantifying the effective connectiv-
ity [48,54,80] to investigate the effect of rehabilitation or intervention on a patient’s cortex
connections reorganization.

The EEG analyses can be performed either by directly analyzing data on the electric
potential difference registered at each electrode or, as an alternative approach, an interme-
diate step of reconstruction of the cortical sources can be added to retrieve the temporal
and spectral series of the generators of the brain electric field. In our review, we found
that most studies were conducted exploiting the electrode signals directly, and only in six
papers (see table) the reconstruction of sources was performed. Among these, two different
main approaches were used: the first one based on independent component analysis (ICA)
of the electrodes signal and fitting of the dipole model [93]; and the second one based on
the low-resolution brain electromagnetic tomography (LORETA) [94].

Even though all the papers selected in this literature review combine the acquisition
of EMG and EEG, authors often conclude with a separate analysis of the two signals and a
combined observation of the results. Only in 28 over 55 works a quantitative combination
metric of EEG and EMG was considered. Mostly, the cortico-muscular coherence (CMC),
defined as the coherence function between the EEG and EMG signals, was quantified [95]
in 16 works. In [42,46], the extended concept of partial directed coherence (PDC) [96] and
generalized PDC (gPDC) [97] was applied to identify also causal information in CMC.
Six studies also explored the application of time-frequency connectivity methods for the
investigation of the relation between muscular and cerebral electrical signals. Cremoux
et al. [38], as well as Jensen et al. [51], exploited a wavelet cross-spectrum-based approach,
while Chen et al. [81] and Kim and colleagues [66] employed the cross-mutual information
metric. In [47], Pearson’s correlation coefficients between EEG and EMG channels were
calculated. In [40], an effective connectivity method was implemented based on Copula
Granger’s causality.

Finally, the studies by Leerskov [65] and Tryon and colleagues [87,88] must be men-
tioned since they pointed out two different classification approaches for the classification of
motion and control of robotic rehabilitation devices through the fusion of features derived
from EEG and EMG.

3.6.2. Benefits of Combined EEG-EMG Applications

In some papers included in this review, EMG has an ancillary role with respect to EEG
since it was used to synchronize EEG signals with respect to relevant functional events
composing the experimental/rehabilitation protocol (e.g., target movements, cognitive
stimuli, electrical muscle stimulations, etc.). More interestingly, there are papers that
combine the EEG/EMG signals to extract new relevant combined features. For example,
the use of CMC can help to detect voluntary movements in spastic subjects or can be
used to evaluate changes in cortico-muscular phase coherence to assess the effectiveness
of rehabilitation strategies (i.e., passive vs. active, with or without exoskeleton or dif-
ferent level of engagement) and to serve as a biomarker for motor recovery in different
pathologies [44,61,66,67,69,82]. In particular, the effect on CMC in post-stroke patients is
mainly investigated [37,39,50,67,70,75,78]. However, the combination of EEG/EMG has

21



Sensors 2021, 21, 7014

demonstrated to efficiently evaluate the residual integrity of the neuromuscular system also
in the spinal cord injury-affected subjects [38,63,65], in identifying low back pain-affected
rehabilitation strategies [57] or to study the sensorimotor cortex in cerebral palsy-affected
children [34]. As an example of stroke recovery evaluation, Chen et al. [81] demonstrated
as a novel turning-based treadmill training was effective for enhancing brain functional
reorganization underlying cortico-cortical and cortico-muscular mechanisms and thus
might result in gait improvement in people with chronic stroke. Lai et al. [43] compared the
outcome of functional electrical stimulation on 15 healthy subjects and 15 post-stroke pa-
tients and demonstrated that EEG-EMG coherence can detect electrical stimulation-induced
changes in the neuromuscular system.

The literature describes other interesting applications based on other techniques of
concurrent analysis. In Pierella et al. 2020 [33], the combined EEG/EMG analysis by PCA
has shown the potential role to extract significant biomarkers for patient stratification as
well as for the design of more effective rehabilitation protocols. Furthermore, the param-
eters extracted by the combined analysis of EEG and EMG signals can also be used to
improve the classification of motor tasks in robotic rehabilitation if used to feed artificial
intelligence approaches [68,87,88]. It is worth noticing that more advanced approaches,
using Granger causality and PDC, were used to explore cortico-muscular connectivity and
developed to detect complex functional coupling between cortical oscillations and muscle
activities and provide a potential quantitative analysis measure for motion control and
rehabilitation evaluation [40,42,45,46].

4. Discussion

In this systematic review, we analyzed papers in which EEG and EMG signals were
simultaneously recorded and analyzed for evaluating or assessing motor performance in
clinical rehabilitation scenarios.

From the distribution of selected papers over the years, the combined application
of EEG and EMG signals to assess rehabilitation-related studies is in a growing trend.
Indeed, most studies were published in the last decade with a remarkable increase in
the last three years. This multi-domain approach was promoted by the improvement
of technology and the availability of integrated low-cost commercial solutions aimed at
combining EEG and EMG sensors. It arises from the literature that a multi-parametric
analysis of EEG/EMG signals allows a more comprehensive investigation of complex
neuromotor mechanisms with respect to exploiting a single technique. In fact, applying
the two techniques independently cannot provide insight into mechanisms such as the
functional connection between the central control system, the brain, and the actuators
of movement, the muscles. Considering the EMG signal alone can provide information
about muscles activation strategies, but no information can be inferred about the role
of the cerebral control in it. Similarly, EEG signal alone during movement can provide
information about the cerebral activation without control on the muscle-effective activation.
These aspects can explain why the use of combined EEG/EMG analysis is rapidly becoming
an emerging topic. All this finding supports the drafting of this review to summarize the
results achieved so far.

In our sample of articles, we found that many studies were observational studies,
mainly focused on the assessment of cortico-muscular coupling and the evaluation of
the effects of treatment administration or rehabilitation methods, and pilot studies in
which novel experimental setups or concept design were tested on a limited number
of subjects. Only a few papers presented randomized clinical trials that evaluated the
efficacy of rehabilitation paradigms by comparing the effects of rehabilitation interventions
or treatments on a target group to a control one. The predominance of the pilot and
observational studies indicated that the concomitant use of the techniques was found
mainly in studies that aim at exploring novel research purposes rather than standard
clinical practice. While this is perfectly understandable due to costs, invasive setups,
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time-consuming procedures, we conclude that, so far, the application and applicability of
combined EEG-EMG setup is very limited in clinical practice.

It followed that these techniques were mostly employed in preliminary studies for
evaluating the effects and efficacy of novel rehabilitation platforms and for proposing novel
methodologies assessing motor performance. The exploratory design of the studies is also
confirmed by the fact that in 45% of the analyzed papers, less than 10 subjects were enrolled.
This shows their intrinsic nature as pilot studies. Future directions should foresee more
structured studies; clinical trials could be developed starting from pilot studies already
available so that more reliable conclusions on concomitant EEG-EMG applications can
be drawn.

Moreover, EEG and EMG combined analysis was widely used for assessing functional
connectivity and comparing cortico-muscular coherence in patients with respect to healthy
subjects. Rarely was it used for evaluating clinical outcomes of motor rehabilitation,
although it could provide a detailed assessment of patients’ status.

Indeed, many studies enrolled healthy subjects as a target for investigating physiolog-
ical parameters concerning treatments or rehabilitation paradigms. The results obtained in
healthy subjects can help to better understand the physiological mechanism underlying
cortico-muscular activity and can be used as a benchmark for the pathological changes
occurring in neuromotor disorders.

The pathologic subjects involved in the studies were mainly post-stroke patients,
probably because stroke is one of the most diffuse cerebrovascular diseases affecting motor
control. Other types of pathological conditions were investigated in a few or single articles.
Future directions could be the extension of EEG-EMG combined analysis to neuromuscular
pathologies that received little or less attention, such as neuromuscular diseases.

The integration of EEG and EMG signals can be useful for the evaluation of motor
impairment and recovery, allowing the investigation of the motor system in its complexity.
For example, the investigation of deficits of motor control exploits at best the potential
of both EEG and EMG domains. Many studies exploit the cortico-muscular coherence,
coupling the two domains in a single analysis [98]. Although this metric is the simplest
approach to quantify the interactions between all motor system actors during movement,
a more complex analysis could be of interest. There are very few studies that tend to
exploit the full potential of each of the domains to unify data after assessment. In a recent
paper [32], authors used domain-specific measurements (such as ERD-ERS for EEG and
muscle synergies for EMG) and tried to interpret critically the detailed findings achieved
in each domain. While some interpretations were still debated and not always fully agreed,
authors could find a general agreement with other more easily interpreted data such as
clinical scales and kinematics. A suggestion for future applications is thus to promote
the use of advanced techniques for each of the domains under analysis. In fact, we also
noticed that in many applications, EMG is seen as a supporting outcome measure for
interpreting EEG data or even to simply allow signal synchronization through thresholding
algorithms for detecting movement onset. Of course, while these approaches are perfectly
scientifically sound, they might reduce the potential of advanced EMG analysis that allows
refined measurements of motor control such as muscle synergies [90]. We also found
that synthetic approaches suggested multimodal analysis as a tool for creating novel
protocols and metrics based on the coupling of EEG and EMG (and other domains) [32,33].
The EEG/EMG bi-modal analysis, including also further domains, is an unexplored field
that might help to shed light on the mechanisms of motor recovery.

For motor rehabilitation and assessment, a variety of experimental setups were ex-
plored in the analyzed papers. Many of them assessed motor function using only free
movements coupled with sensorial feedbacks, motor imagery, or simple instruments.
Robotics and exoskeletons are widely employed in motor rehabilitation to support and
guide the movements of the patients preventing injuries and improving recovery using
different loads and modes. Exoskeletons for assisting either upper limbs or lower limbs
were quite diffused in literature, while robotic devices were found only for upper limb
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rehabilitation. Interestingly, while they have been used mainly for BCI setups [99,100],
EEG and EMG may find wide application in the evaluation of human-robot interaction
under a biomechanical perspective for assessment and evaluation.

Furthermore, particular attention was given to the rehabilitation of the hand because
the upper limbs are the most affected in neuromotor disorders, and hand movements are
involved in many daily life activities. Therefore, hand impairments limit heavily the ability
to perform these activities [101,102], and motor recovery becomes essential for the patients’
quality of life. Different studies employed electrical stimulation, applying the stimulus
either at the peripheral or at the cortical level. This application is useful for studying cortico-
muscular connections in both healthy and pathological subjects. Moreover, functional
electrical stimulation is demonstrated to be effective in improving muscle strength and
motor coordination in patients [103,104].

Among all the papers included, different techniques were employed for the analysis of
EEG and EMG signals, according to the aim of each study. EMG signal was mainly analyzed
in the time domain, extracting indexes from muscle envelopes, while frequency analysis
was used principally for evaluating muscle fatigue from the median frequency. Frequency
and time-frequency analysis were predominant in EEG signal processing because the
power spectrum can provide information about the mental and cognitive involvement
of the subject [105]. Spatial distribution of the signals, as brain connectivity and muscle
synergies, was assessed in only a few papers. However, studying the functional and
effective connectivity of the brain can provide insight into the cortical reorganization
and functional recovery of patients. Moreover, muscle synergies can be used to evaluate
motor control and movement coordination that are affected in neuromuscular disorders.
Therefore, including the analysis of the spatial distribution of the signals can provide further
information about neuromotor impairment and motor improvement in rehabilitation. In
this way, the potentiality of the instruments can be deeply exploited.

5. Conclusions

The evaluation of the complementary contribution of EEG and EMG signals to the as-
sessment of cortico-muscular interactions in clinical rehabilitation of neuromotor diseases is
a promising topic, and an increased number of applications and scenarios is foreseen in the
next future. The combined analysis of EEG and EMG can be boosted by the development
of consolidated pipelines, which warranties results in robustness and direct comparison
among different studies, putting a special focus on the signal interactions in terms of
functional and effective connectivity. Currently, the use of bi-modal EEG/EMG analysis
helps to elucidate physiological and pathological mechanisms to assess the rehabilitation
treatments and to evaluate their effectiveness. However, prospectively, multi-domain
approaches should be developed to exploit the full potential of EEG and EMG, and more
pathologies should be targeted with more structured clinical trials to improve the scientific
evidence.
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Abstract: One major challenge limiting the use of dexterous robotic hand prostheses controlled
via electromyography and pattern recognition relates to the important efforts required to train
complex models from scratch. To overcome this problem, several studies in recent years proposed
to use transfer learning, combining pre-trained models (obtained from prior subjects) with training
sessions performed on a specific user. Although a few promising results were reported in the past,
it was recently shown that the use of conventional transfer learning algorithms does not increase
performance if proper hyperparameter optimization is performed on the standard approach that
does not exploit transfer learning. The objective of this paper is to introduce novel analyses on this
topic by using a random forest classifier without hyperparameter optimization and to extend them
with experiments performed on data recorded from the same patient, but in different data acquisition
sessions. Two domain adaptation techniques were tested on the random forest classifier, allowing us
to conduct experiments on healthy subjects and amputees. Differently from several previous papers,
our results show that there are no appreciable improvements in terms of accuracy, regardless of the
transfer learning techniques tested. The lack of adaptive learning is also demonstrated for the first
time in an intra-subject experimental setting when using as a source ten data acquisitions recorded
from the same subject but on five different days.

Keywords: machine learning; EMG; biofeedback; transfer learning; random forest classifier

1. Introduction

Amputation is one of the major reasons of disability [1]: it is estimated that 100.000 peo-
ple have an upper limb amputation in the United States, and 57% of these are transradial
amputees [2]. The principal causes of upper limb loss are traumatic events, followed by
vascular diseases, congenic absence and cancer [3]. Upper limb amputation limits the daily
life activity of a person heavily [4], although myoelectric prosthesis can restore the func-
tionality of the hand using non-invasive EMG signal of the residual muscles [5]. The use
of myoelectic signals has several advantages with respect to body-powered prostheses
because the user does not need harnesses, the signal is recorded non-invasively on the skin
and the effort required to control it is comparable to the one of an intact limb [6]. However,
user acceptance is still low because of a lack of intuitive and dexterous control [7]: the rate
of prosthesis abandonment is about 44% [8]. The control should be intuitive for the user,
robust to arm and electrode positioning, adaptive to changes such as fatigue or sweating
and easy to train [9].
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In recent years, thanks to the advancement of robotics [10], control systems [11] and
artificial intelligence [12], remarkable improvements have been made in the control of
dexterous, robotic hand prostheses [13]. In particular, machine learning techniques allowed
for developing surface electromyography (sEMG) prostheses that are capable to learn from
each subject the myoelectric patterns corresponding to different hand movements [14].
However, such training procedures can be long (particularly to control a large number of
hand movements), they are not robust to electrode re-positioning [1,9] (which can happen,
for instance, after removing the prosthesis at night) and they can lead to considerable efforts
for the patients. It was also found that inter-subject and inter-session variability are factors
that may affect muscle coordination patterns [15]. Young et al. [16] found that a higher
inter-electrode distance and a combination of longitudinal and transverse oriented channels
can reduce the effects of electrode shift on the classification accuracy. The difficulties related
to training myoelectric models increased the interest of scientific researchers for pre-built
models [17]. Such models are expected to collect previous experience from several subjects
and (through appropriate domain adaptation algorithms) they can be adapted to patients,
accelerating model training. However, this approach can lead to divergence errors between
different domains [18]. Over the years, several experiments lead to promising results in the
domain of transfer learning [17–20].

One of the first studies about myoelectric signal divergence is from Castellini et al. [21].
They observed that myoelectric signals differ considerably between different subjects and
that the use of pre-trained models should be bound to subjects who share a sufficient
amount of similarities. This observation led to different approaches in order to take
advantage of the prior knowledge of different subjects. Sensinger et al. [22] proposed
several ways to concatenate source and target data in one model. Then, in order to improve
non-adaptive baselines, Hypothesis Transfer Learning algorithms were employed in several
studies. The advantage of these algorithms is that they do not need direct access to raw data
exploiting models previously achieved from source subjects. Côté-Allard et al. [19] showed
that transfer learning can lead to improved performance of hand gesture classifiers in three
different datasets of able-bodied subjects using a convolutional network for the target
domain, combining networks trained on the source with different activation functions.
Kanoga et al. [23,24] acquired the same healthy subject for thirty consecutive days and
applied domain adaptation on a linear discriminant analysis classifier, interpolating the
mean vector and the covariance matrix of the calibration data of each day with the data
recorded on the first day, and concluded that these methods allowed to adjust parameters
for changes in positioning of the electrodes between different days. Other studies [25,26]
applied transfer learning on convolutional neural networks (CNN) to improve model
robustness on electrodes shifts: Ameri et al. [25] used a CNN model trained on data before
shifting as a pretrained network and fine-tuned the model using few data of the same user
after shifting; Wang et al. [26] transferred the parameters of the recurrent CNN model of
the source domain to the EMG feature-extraction module of the target domain. Moreover,
Liu et al. [27] applied domain adaptation techniques on a polynomial classifier, using the
leave-one-out prediction error as a metric for the optimization algorithm, and on a linear
discriminant analysis classifier with the Mahalanobis distance as a metric of consistency
between prior models and the current training data. These algorithms were applied
on both intact-limbed and transradial-amputee subjects for ten consecutive days, and it
was found that the domain adaptation methods outperformed the baseline methods for
both classifiers, especially with a small size of training data. Finally, Prahm et al. [28]
applied domain adaptation exploiting the relationship between source and target domain:
since data were recorded with an electrode grid, the distance between the electrodes was
maintained equal even after the electrodes shifting, and therefore, they considered the shift
on only one electrode and assumed linear feature changes between neighboring electrodes.
They applied these approaches on both able-bodied subjects and transradial amputees and
noticed that model performance increased with transfer learning on able-bodied subjects,
but no relevant improvements were found in amputees.
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Recently, transfer learning algorithms were used to train a model over the source
domain to adapt it to a target domain with local adjustments of the tree parameters and its
architecture [29].

Although different studies stated the efficacy of the use of domain adaptation on
gesture recognition, they were usually applied on able-bodied subjects. Exploiting previ-
ously achieved results on intact subjects [30] from the Non-Invasive Adaptive Prosthetics
(NinaPro) database [31], Gregori et al. [32] extended the study to amputee subjects and
presented a novel framework for a realistic experimental setup. They found that, if the
hyperparameters were properly tuned, transfer learning approaches showed the same
performance of the standard methods that did not employ prior knowledge.

In this paper, we improve these results by applying two recent domain adaptation
algorithms [29] to a random forest classifier (which is normally applied without hyper-
parameter optimization in the domain). A random forest classifier was already used on
healthy subjects in combination with a regressor for discriminating reach to grasp strategies,
obtaining good results [33]. These domain adaptation techniques modify the structure of
decision trees within the forests generated by the source models in order to refine them
on target repetitions. Our aims are: (1) to confirm and extend to a different data analysis
workflow the results obtained in previous research; (2) to evaluate the quality of random
forests as classifier for domain adaptation problems on sEMG data; (3) to extend the experi-
ments to tests performed on data recorded from the same person but in data acquisition
sessions of several days.

2. Materials and Methods

2.1. Domain Adaptation and Transfer Learning Algorithms

This section includes a step-by-step explanation of the models used in the domain
adaptation and a description of the transfer learning algorithms used in our experiments.

2.1.1. Source, Target and Test Sets

Given S = [s1, s2, . . . , sn−1, sn], where n is the number of subjects in our dataset,
the first step is the signal feature extraction. We can define all signal features extracted as
D = {xi, yi}N

i=1, where xi ∈ R
d are the input samples, yi ∈ Y = {1, . . . , G} are the paired

labels and G is the number of possible classes plus the rest pose. We can split our initial
collection of subjects into a target model ST composed of a single subject and a source
model SS with all remaining subjects.

In the next step, we divide the number of repetitions of ST , using one part as a test
STtest and the remaining as intra-subject training in order to compare the results for domain
adaptation. Then, SS is used as input to train a random forest classifier [34], which is a
collection of decision trees. In this way, a forest trained on the source is obtained. In the
same way, STtrain is passed to another random forest classifier, building another model
trained on the target as result.

The domain adaptation step follows, where different algorithms transform the forest
trained on the source and refine it on the target.

In conclusion, all previous forests are tested on STtest and compared. This procedure is
then repeated k-times, with k ∈ S, so that each subject takes the role of target at most once.

All steps described above are graphically explained in Figure 1.

2.1.2. Domain Adaptation Algorithms

Given a number of sources, a domain adaptation algorithm builds a new classification
model refining the source on target. We use three algorithms, all based on random forest
classifiers. Structure Expansion/Reduction (SER) and Structure Transfer (STRUT) take
forests trained with source model as input and adapt them to a new target domain [29].
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Figure 1. Block scheme for the domain adaptation model.

Then, we define a MIX algorithm that uses ensembles from both SER and STRUT as
input and mixes them. More specifically, we can describe domain adaptation algorithms
as follows:

(1) Structure Expansion/Reduction (SER): Given a random forest RFS induced using the
source data SS, each decision tree (DT) is processed independently by the SER algo-
rithm. First of all, the set ST

v of all labeled points in the target data STtrain that reach
the node v is computed. Then, in the expansion phase, a full tree expands from each
leaf v with respect to ST

v . Lastly, with a bottom-up approach, the algorithm performs
a reduction of the structure for each internal node v.
This reduction is determined by two kinds of errors with respect to ST

v :

• Subtree error ES;
• Leaf error EL.

The subtree error is the empirical error of the subtree of which the root is v. The leaf
error is defined to be the empirical error on v if it were to be pruned into a leaf. If the
following condition holds:

ES > EL (1)

the subtree is pruned into a leaf node. The decision value at each leaf of the DT is
obtained using the target (empirical) distribution. The SER algorithm then iterates
these operations for each DT contained in the initial forest, building a new forest
adapted on source.

(2) Structure Transfer (STRUT): While the SER algorithm acts on size of DTs inside SS,
the Structure Transfer algorithm changes the threshold. Since decision trees show
similarity for similar problems, the STRUT algorithm exploits a top-down approach,
adapting a DT trained on the source samples to the target samples by discarding
all numeric threshold values in the tree. The values of the numeric thresholds are
substituted by new thresholds τ(v) for a node v using the subset of target examples
ST

v that reach v.
If ST

v is empty for a node v, v is pruned because it cannot be reached in the target
domain. At each leaf, the final decision value is computed on the target training data.
To perform threshold selection for feature φ, STRUT uses two parameters:

• Divergence gain DG;
• Information gain IG.

DG determines the distributional similarity, while IG quantifies the informative value
of the threshold. The similarity is related only to those thresholds x whose IG is larger
than the IG of any other x′ in the ε-neighborhood of x for any sufficiently small ε > 0.
The STRUT algorithm searches for a threshold that gives a high similarity between
the induced and the original distributions during the tree induction stage [35].
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The selection of the threshold can be considered as an optimization problem:

maxx DG(ST
v , φ, x, QL, QR)

s.t. x ∈ R

∀x′ ∈ (x − ε, x + ε) : IG(ST
v , φ, x) ≥ IG(ST

v , φ, x ± ε)
(2)

where QL and QR are the left and right distribution, respectively.
(3) MIX: Once both SER and STRUT are applied, we obtain two distinct forests as a

result. MIX is a combination of the two previous algorithms. This is a simple majority
voting ensemble applied to all decision trees of both forests generated by STRUT and
SER. As can be seen from the results, MIX does not simply average the results of the
previous algorithms but often outperforms both of its constituents and thus is the
second best solution. An intuitive explanation described in [29] about this result is
given in Results.

2.2. Experimental Setup

The experimental setup is based on the “realistic setting” proposed in a previous
work [32]. The setting was considered as “realistic” as it exploits real data coming from
the Ninapro Dataset, recorded during the execution of daily life gestures. Section 2.2.1
presents the data used in all experiments. Then, the general settings and details about the
experiments are described in Section 2.2.2.

2.2.1. Data

The data used in this work are from the NinaPro database (http://ninapro.hevs.ch/,
accessed on 1 November 2021) [31,36], one of the largest publicly available databases that
contains sEMG data of a wide range of distal upper limb movements. We use three NinaPro
datasets for the experiments (namely NinaPro DB2, DB3 and DB6). As reported in Table 1,
in all three cases, the acquisitions were made with Delsys Trigno sEMG sensors. This choice
was made at the moment of data acquisition in order to allow the combination of the differ-
ent datasets in future studies. The following subsections provide a brief presentation of the
datasets, which are described in more details in the reference papers [31,36]. An illustration
of the available EMG channels in this dataset is presented in Figure 2.

Table 1. NinaPro Data. Data employed in this study come from DB2, DB3, DB6 NinaPro datasets.
The 8 electrode-array was used for the analyses.

DB N° Sensors N° Gestures Repetitions

DB2 Delsys Trigno sEMG × 12 40 6
DB3 Delsys Trigno sEMG × 12 40 6
DB6 Delsys Trigno sEMG × 14(8) 7 12 × 2 × 5

(1) NinaPro DB2 and DB3-Single acquisitions of intact subjects and transradial amputees: The
two datasets include 40 intact subjects and 11 amputees. Three amputees [s1, s6, s7]
are excluded because their data acquisitions are not complete. Each subject executed
40 movements 6 times. Each movement repetition lasted 5 s and was followed by
3 s of rest. Twelve Delsys Trigno Wireless electrodes were used to record the sEMG
data from the forearm of the subjects. Following a recently employed approach [7],
a sliding window of 200 ms and an increment of 10 ms were used for the extraction of
signal features. Therefore, the time windows were split into train and test sets for the
classifiers, considering repetitions (1,3,4,6) for the training and repetitions 2 and 5 for
test. A factor of 10 at regular intervals was used to subsample the training set in order
to reduce the computational demands.

(2) DB6-Intact subjects acquired for 5 consecutive days: This dataset is composed of 10 intact
subjects and targets the analysis of data acquisition repeatability in the same subjects.
Each subject executed 7 hand grasps 12 times, two times per day, for 5 consecutive
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days. Each grasp is followed with a few seconds of rest. During the acquisition of the
movements, fourteen electrodes recorded sEMG data. Eight electrodes are positioned
as the first eight electrodes in NinaPro DB2 and DB3 (i.e., equally spaced around
the forearm at the height of the radio-humeral joint). The windowing procedure
follows the same approach described for the previous datasets. For each session,
repetitions (1,3,4,6,7,9,10,12) were dedicated to training, while repetitions (2,5,8,11)
were used as test. In this case, the training set was also subsampled by a factor of 10
at regular intervals.

Figure 2. Positioning of the electrodes and underlying specific muscles. The image was adapted using file licensed under
the Creative Commons Attribution 4.0 International license (Picture was adapted using https://upload.wikimedia.org/
wikipedia/commons/7/73/1120_Muscles_that_Move_the_Forearm.jpg (accessed on 1 November 2021) from the Textbook
OpenStax Anatomy and Physiology (source: https://cnx.org/contents/FPtK1zmh@8.25:fEI3C8Ot@10/Preface, accessed on
1 November 2021)).

The standardized data were used according to the protocol already proposed for
control by Englehart and Hudgins [7], where features were extracted from a sliding window
of 200 ms and an increment of 10 ms. As described in the papers presenting the datasets,
sEMG signals were filtered from 50 Hz (and harmonics) power-line interference using a
Hampel filter [31,36]. The resulting set of windows was subsequently split in the training
set and test set as inputs for the classifier [32]. The sEMG representation used in this setting
was the average of the marginal discrete wavelet transform (mDWT), mean absolute value
(MAV) and variance (VAR) features [37].
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2.2.2. Experiment Settings

One of the novelties of this paper is the use of a random forest classifier for domain
adaptation on sEMG data. It was suggested that the incorrect optimization of hyperpa-
rameters was the main cause of transfer learning and domain adaptation improvements
presented in previous literature [32]. In fact, classifiers such as the SVM need a grid search
to find the best hyperparameters. Using random forests makes the optimization phase
easier. The number of 100 trees was fixed for each forest and for all the experiments. This
setup has shown high level performance (comparable to SVM) in previous results on sEMG
data [31]. This approach was used for both the forests generated for the construction of the
target model and for the source model.

The same number of trees was also used for the domain adaptation algorithms SER
and STRUT.

The following eight classification performances are compared in each experiment:

• Source only;
• Target only;
• SER;
• STRUT;
• MIX;
• Voting ensemble (SER, Target Only);
• Voting ensemble (STRUT, Target Only);
• Voting ensemble (MIX, Target Only).

While the first five values are explained in the previous sections, the last three follow
the same observation as for the MIX algorithm, with the aim of exceeding the accuracy
obtained by the two individual components separately. Each of them represents a separate
voting ensemble of which the underlying model is the union of all decision trees inside
STtrain and each algorithm presented in Section 2.1.2 independently. The methods are
summarized in Figure 3.

The experiments on DB2, DB3 and DB6 are conducted as follows.

(1) DB2 and DB3: The first experiments replicate the experiments previously cited:

• Intact–Intact: the classification of each subject from DB2 exploits prior knowledge
of remaining subjects of DB2.

• Amputee–Intact: the classification of each subject from DB3 exploits prior knowl-
edge of remaining subjects of DB3 plus all subject of DB2.

• Amputee–Amputee: the classification of each subject from DB3 exploits prior
knowledge of remaining subjects of DB3.

In the training set, the subsets from 1 to 4 repetitions were taken into account for
training. In each case, the k-fold cross validation was used for the optimization of the
target model, with each fold corresponding to samples of one repetition. The source
models, instead, were trained using all repetitions.

(2) DB6: Due to the very high number of repetitions for each subject (120), two simplified
experimental settings were chosen:

• Intra-subject: each subject of DB6 exploits prior knowledge of the remaining
repetitions of the same subject.

• Inter-subject: each subject of DB6 exploits prior knowledge of the remaining
repetitions of the same subject plus all remaining subjects of DB6.

For both experiments, the target model is composed of 12 repetitions of the fifth
afternoon, while the remaining repetitions of each subject are used to build the source
model. In the intra-subject setup, we considered almost all possible subsets including
1–8 repetitions. In each case, the target model was optimized using k-fold cross validation,
with each fold corresponding to samples of one repetition. In the inter-subject setup, the
target model was trained using all 8 repetitions of the same session only. In both cases,
the source model was optimized using a k-fold cross validation, where k is the number of
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repetitions from other sessions of the same subject used as target, plus (for the inter-subject
setup) the total number of repetitions of each other subject.

Figure 3. Scheme of the classification methods employed in each experiment.

3. Results

In Figures 4 and 5, the balanced classification accuracy is reported as a function of
the number of training repetitions on the target. Domain adaptation does not improve
movement classification accuracy in comparison to no-transfer learning, neither when
pre-training is performed on different subjects, nor when pre-training is performed on
different acquisitions of the same subject.
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Figure 4. DB2 and DB3 Results: inter-subject balanced classification accuracy as a function of number of training repeti-
tions on target.
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Figure 5. DB6 Results: intra-subject and inter-subject balanced classification accuracy as a function of number of training
repetitions on target.

In Figure 4, the first set of experiments, performed on NinaPro DB2 and DB3, ex-
tends results obtained previously on SVMs. Results are reported in details in Table 2.
Using random forests domain adaptation for these experiments offers a perspective of
the problem that is influenced by less variables, since the classifier is normally applied
without hyperparameter optimization procedures in the domain. Such procedures had
been recently presented as a possible source of errors for domain adaptation works based
on SVMs [32].

The SER algorithm has a performance that is lower than the STRUT algorithm, while
the latter almost perfectly overlaps with the target-only result. Given the low performances
of the SER algorithm, it is not surprising that the MIX algorithm does not give the best
results. The plots also include the source model tested directly on the target (the flat series
of data with the lowest performance in the plot). This result highlights (especially for
amputees) how much the high variability between different subjects affects classification
performance. Indeed, the classification accuracy is lower when amputee subjects are
included, and it is higher when only intact subjects are considered.

A further novel result is that domain adaptation does not improve movement classifi-
cation accuracy even when the data come from the same subject. The domain adaptation
experiments using several data acquisitions recorded from the same person in different
moments show that the “target only” model almost constantly provides results in line with
the ones obtained by the domain adaptation models (Figure 5). The voting ensemble be-
tween target repetitions combined with the STRUT algorithm obtains a small improvement
of the classification accuracy when one or two repetitions are considered in Figure 5 (left).

Finally, domain adaptation from other subjects does not improve classification ac-
curacy even when pre-training on several data acquisitions from different subjects. It is
not possible to notice any improvement in Figure 5 (right), showing that the addition of
information is ineffective even when relying on such a high number of repetitions of the
source. The results are also portrayed in Table 3.
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Table 2. Classification methods accuracy on datasets DB2 and DB3 for each combination of subjects and for each repetition.

DB2 and DB3

Intact–Intact Amputee–Amputee Intact–Amputee

Rep
1 2 3 4 1 2 3 4 1 2 3 4

Methods

Source only 0.150 0.150 0.150 0.150 0.040 0.040 0.040 0.040 0.036 0.036 0.036 0.036
Target only 0.550 0.640 0.680 0.700 0.274 0.335 0.360 0.396 0.270 0.340 0.370 0.390

SER 0.310 0.410 0.470 0.520 0.160 0.210 0.240 0.258 0.180 0.240 0.264 0.290
STRUT 0.540 0.620 0.660 0.680 0.250 0.298 0.320 0.338 0.234 0.290 0.316 0.330

MIX 0.500 0.580 0.630 0.660 0.228 0.278 0.300 0.320 0.234 0.290 0.330 0.350
SER+Target 0.520 0.610 0.660 0.690 0.246 0.304 0.334 0.355 0.256 0.330 0.360 0.381

STRUT+Target 0.560 0.650 0.690 0.700 0.270 0.324 0.350 0.378 0.280 0.350 0.380 0.398
MIX+Target 0.550 0.640 0.670 0.700 0.254 0.312 0.340 0.356 0.274 0.350 0.388 0.398

Table 3. Classification methods accuracy on datasets DB6 for each combination of subjects and for each repetition.

DB6

Inter-Subject Intra-Subject

Rep
1 2 3 4 8 8

Methods

Source only 0.440 0.440 0.440 0.440 0.440 –
Target only 0.588 0.622 0.694 0.710 0.754 0.758

SER 0.500 0.546 0.592 0.620 0.674 0.580
STRUT 0.570 0.618 0.682 0.700 0.728 0.740

MIX 0.600 0.634 0.682 0.700 0.728 0.730
SER+Target 0.620 0.648 0.700 0.714 0.748 0.748

STRUT+Target 0.594 0.630 0.698 0.712 0.754 0.758
MIX+Target 0.610 0.642 0.700 0.714 0.748 0.754

4. Discussion

The results show that inter-subject domain adaptation does not improve classification
accuracy, and it extends the result to intra-subject models computed from different acquisi-
tions of the same subject. This result confirms and extends previous results [32] and is in
partial disagreement with several previous works on domain adaptation.

While previously this conclusion was explained in relationship to SVM parameter
optimization, in our case the result is obtained using a random forest classifier (with a
fixed configuration) and several new transfer learning methods. The domain adaptation
methods tested in this study performed as well as the target-only baseline, which did not
consider the source information. Similarly to previous findings [29], the STRUT algorithm
gives better results with respect to the SER when the correspondence between features is
maintained, while the SER algorithm outperforms STRUT on inverse problems. From our
results, the MIX algorithm obtained a performance that was closer to the best performance,
demonstrating that it had not the average performance of the SER and STRUT. SER and
STRUT algorithms act differently on the same tree: the SER algorithm changes the size of
the original tree, adding depth in the expansion phase and reducing the size of branches in
the reduction one; the STRUT algorithm, instead, maintains the original size of the tree,
modifying the thresholds. Therefore, the MIX forest turns out to be a more diverse forest,
in which the pairwise correlation between two trees, derived from the same original tree,
is low.

Our classification accuracy results are lower than some of the results previously
proposed [32], but this is probably due to differences in the metrics used. While we
preferred to use balanced classification accuracy (due to the unbalanced multi-class nature
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of the classification problem), unbalanced classification accuracy was most likely used
for the realistic setting in the previous work. The difference in accuracy can thus be
explained considering the high incidence of the rest in the dataset (which is classified with
high accuracy).

Another interesting result is introduced by the experiments performed on the data
from the same subject. The intra-subject experiment shows that using the previous ex-
perience of the same subject, there is basically no improvement compared to the case
of no transfer learning. The most intuitive explanation for this result (also reported by
Palermo et al. [36]) is that the re-positioning of the electrodes at each session produces
substantially different results, even for the same subject.

The results from this work may impact real-life settings for people with hand pros-
theses. In fact, a major challenge limiting the use of dexterous robotic hand prostheses
controlled via electromyography and pattern recognition relates to the important efforts
required to train complex models from scratch. To overcome this problem, several studies
in recent years proposed to use transfer learning, combining pre-trained models (obtained
from prior subjects) with training sessions performed on a specific user. Differently from
several previous papers, our results show that there are no appreciable improvements in
terms of accuracy, regardless of the transfer learning techniques employed. The lack of
adaptive learning is also demonstrated for the first time in an intra-subject experimental
setting, when using as source ten data acquisitions recorded from the same subject but on
five different days. This novel result has remarkable repercussions. In fact, in this paper,
it was demonstrated for the first time that not only in single-session recordings, but also
in an intra-subject experimental setting, adaptive learning is not taking place, and several
questions regarding the training of prosthesis with previously acquired data arise. If these
results would be confirmed in further studies, the training effort for amputee subjects could
not be minimized with the exploiting of the previous knowledge available, at least with
algorithms and techniques employed so far. However, authors believe that other strategies
(e.g., based on deep neural networks) should be evaluated as well, as they might allow for
exploiting prior information thanks to different approaches. These results are in accordance
with what was already found when examining the same domain from EMG recordings
using other data extraction methods such as muscle synergies [15], in which inter-session
analysis was carried out, revealing how data can vary considerably also intra-subject and
cannot be used for generalizing intra-subject and inter-subject patterns.

This work has some limitations. First, data from many sessions were used; however,
longer time periods could be considered to extend the validity of our results in prolonged
recordings. Moreover, while the number of participants is not low for this type of study,
it still cannot be considered as representative of all subjects. Future work should expand
our results including a higher cohort of volunteers, also divided according to registry
data, so that the conclusions could be extended to gender and age differences. Despite our
results, we think that classification accuracy of a task may be improved using previous data
available from related tasks. Future work needs to consider this problem by conducting
experiments with new and different approaches or by using a larger number of acquisitions.
Furthermore, it is possible that other classification or pre-processing methods may allow
domain adaptation, for instance by taking into account physical constraints (such as
physical electrode placement) [38] or by using different transfer learning techniques (e.g.,
based on deep neural networks).

5. Conclusions

Differently from what has been described in several previous studies on domain
adaptation in electromyography, our results show that domain adaptation does not ap-
preciably improve classification accuracy, regardless of the transfer learning techniques
tested. The results extend previous studies for a realistic setting by using random forests as
classification algorithm and two algorithms for domain adaptation.
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The lack of adaptive learning is also demonstrated for the first time in an intra-
subject experimental setting, when using as source ten data acquisitions recorded from the
same subject but on five different days. The results demonstrate that the use of previous
experience does not offer concrete improvement, even when considering data from the
same subject and a different classifier, confirming and extending previous achievements
and somehow posing alternative interpretations with respect to several previous works on
domain adaptation. Future works should consider different approaches or use a higher
number of repetitions in order to improve the performance of the classifier by employing
prior information from related tasks.
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Abstract: The COVID-19 outbreak has increased the incidence of tracheal lesions in patients who
underwent invasive mechanical ventilation. We measured the pressure exerted by the cuff on the
walls of a test bench mimicking the laryngotracheal tract. The test bench was designed to acquire the
pressure exerted by endotracheal tube cuffs inflated inside an artificial model of a human trachea. The
experimental protocol consisted of measuring pressure values before and after applying a maneuver
on two types of endotracheal tubes placed in two mock-ups resembling two different sized tracheal
tracts. Increasing pressure values were used to inflate the cuff and the pressures were recorded in
two different body positions. The recorded pressure increased proportionally to the input pressure.
Moreover, the pressure values measured when using the non-armored (NA) tube were usually higher
than those recorded when using the armored (A) tube. A periodic check of the cuff pressure upon
changing the body position and/or when performing maneuvers on the tube appears to be necessary
to prevent a pressure increase on the tracheal wall. In addition, in our model, the cuff of the A tube
gave a more stable output pressure on the tracheal wall than that of the NA tube.

Keywords: COVID-19; intubation; tracheoesophageal fistula; tracheal lesions; acute respiratory
distress syndrome; modeling; intensive care unit

1. Introduction

The coronavirus disease 2019 (COVID-19) outbreak has raised many critical issues in
the management of patients affected by acute respiratory distress syndrome (ARDS) in an
intensive care unit (ICU) setting [1,2]. Among others, the high incidence of full-thickness
tracheal lesions (FTTLs) and tracheoesophageal fistulas (TEFs), and their potential life-
threatening complications, such as pneumomediastinum, pneumothorax, and subcuta-
neous emphysema, have been reported in patients who underwent invasive mechanical
ventilation (MV) [3,4]. This procedure consists of ventilating the respiratory apparatus
via an endotracheal polymeric tube with an inflatable cuff that seals the tracheal duct.
Depending on the targeted application, the endotracheal tube may have an embedded
reinforced metal coil to stiffen the structure, making it less likely to be obstructed [5].
However, independent of the tube type, a cuff pressure ranging between 20 and 30 cmH2O
is always recommended to avoid damage or trauma to the host tissue [6,7].
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Many etiopathogenetic hypotheses have been proposed to explain the unprecedented
increase in complications observed in ARDS patients treated with MV [3,8]; however, to
date, a clear explanation has not been found.

One proposed mechanism relies on performing the invasive MV in the prone (P)
position with the patient’s head laterally rotated. Specifically, by moving the patient from
the supine (S) to the P position, the orotracheal tube cuff is supposed to increase its pressure
on the tracheal wall, causing tissue lesions. However, there are no studies demonstrating
how these lesions are formed at a laryngotracheal level in this body position.

We designed an experimental study to measure the pressure exerted by the cuff on the
wall of a test bench mimicking the laryngotracheal tract, placed in different orientations
(S and P), with different loading configurations (torsion and bending of the orotracheal
tube). The experimental protocol considered both types of endotracheal tubes, namely ar-
mored (A) vs. non-armored (NA), under a progressive increase in the internal cuff pressure.

Understanding the causes of FTTL and TEF formation in patients affected by ARDS
would greatly improve patient management in the ICU, which can result in faster and less
complicated recoveries than those currently experienced.

2. Materials and Methods

The test bench was designed to acquire the pressure exerted by endotracheal tube
cuffs inflated inside a cylindrical pipe, simulating an artificial model of a human trachea
during the intubation maneuvers.

The endotracheal tubes used in this study were armored (A) (Unomedical UM61214075,
7.5 mm, made by ConvaTec, Deeside, UK) and non-armored (NA) (ETT-P22-75, 7.5 mm,
made by Medis Medical, Tianjin, China). The distinctive feature of the A tube is the metal
wire coil embedded in its wall, which keeps the lumen of the tube open when it is bent.
Moreover, the A tube is more flexible than the NA tube, so it is less prone to kink and/or to
being occluded when bent. Because the NA tube is pre-formed and more rigid than the A
tube, it does not require the use of a stylet for a successful intubation. In contrast, the A
tube, being flexible, always requires the use of a stylet. The artificial laryngotracheal tract
used in this study was built using a corrugated plastic tube to replicate the characteristics
of the larynx and trachea. To monitor the endotracheal tube cuff pressure exerted on the
tracheal segment, we deployed four force sensing resistors (FSRs) along the tracheal tract,
positioned on the four sides of the internal tube (i.e., 0◦, 90◦, 180◦, and 270◦, clockwise).
Figure 1 shows a sketch of the prototype from the front and from a longitudinal cross-
section perspective. To assure ease of repeatability and high-precision measurements, the
tracheal segment of the prototype where the FSRs were located was made of a transparent
material (i.e., plexiglass).

 

Figure 1. Front view and longitudinal cross-section of the prototype.
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The sensors used to measure and record the pressure generated by the inflated cuffs
are called FSRs. They are made of a conductive polymer that changes its electrical resistance
proportionate to the force applied to its surface. These sensors have been widely applied to
acquire different human body functional parameters, such as foot pressure [9], respiration
rate [10], finger forces [11], muscle activity [12], and body movements during sleep [13].
The product used in this study was an Interlink FSR® Model 400, which is characterized
by its thinness (i.e., 0.3 mm) and circular active area of ~5 mm diameter. These features
allow the sensors to be positioned and fastened appropriately onto the inner surface of
the tube without creating additional thickness or deformation that may interfere with the
endotracheal tube maneuvers, thus influencing the measurements. Figure 2 shows the
main dimensions of an FSR and its resistance vs. force characteristics.

 

Figure 2. Interlink FSR® Model 400 mechanical data (left) and typical force vs. resistance response
(right) from the datasheet [14].

The FSRs were connected to a Raspberry Pi single-board computer through multiple
microchip MCP3424 analog-to-digital converter (ADC) modules, which translate the raw in-
put voltage from the sensors to a digital format data readable by a software application. The
MCP3424 is an 18 bit, 4-channel delta-sigma ADC with differential inputs, self-calibration
of internal offset, and gain at each conversion. It also provides an internal programmable
gain amplifier, an internal voltage reference (i.e., 2.048 V ± 0.05%, 15 ppm/◦C), and a
programmable data rate of up to 240 samples per second. The ADC modules communicate
with the Raspberry Pi board through the I2C bus in high-speed mode (i.e., 3.4 MHz).

A dedicated application run on the Raspberry Pi oversaw sensor data collection
through a sampling frequency of 3 Hz and subsequently stored it in a local file before
transmitting it on a remote computer for visualization. The acquired sensor voltage data
were analyzed with MATLAB (v2019b), converted into pressure values (in kilopascals), and
plotted in real time to provide immediate feedback during the maneuvers.

The FSRs, although versatile, compact, and cheap, are subject to physical effects
due to their construction, which necessitates careful calibration before usage to reduce
sensing errors. Specifically, it is recommended that the calibration phase of each sensor be
conducted in an environment that is close to the final application [15]. Remarkably, FSRs
show a power law behavior within the force range from 0 to 20 N. However, the 0−4 N
range shows mostly a non-linear relation, thus highlighting the need for accurate calibration
of the FSRs in low-pressure range setups [16]. The FSRs were experimentally characterized
to obtain the actual response curve, considering the effect of the ADC conditioning circuit.
Briefly, 8 sensors were tested by applying a sequence of calibration weights (i.e., 10, 20,
50, 100, and 200 g). After applying each weight, the sensor output was left to stabilize
before noting the reading. For each weight, 10 measures were taken to average the outcome.
From the experimental readings, we designed the fitting curve using a cubic polynomial
regression (Figure 3). Lastly, we computed the inverse function that was used to estimate
the force applied on the sensor surface.
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Figure 3. FSRs experimental characterization curve expressed as applied calibrated weight vs. ADC
input voltage.

2.1. Measurement Protocol

Pressure values were measured before and after applying a maneuver on two types
of endotracheal tubes (NA/A) placed inside two mock-ups resembling the pharyngeal,
laryngeal, and tracheal tracts. The mock-ups had two different diameters (i.e., 20 and
25 mm). Increasing pressure values were used to inflate the cuff (30/40/50 cmH2O).
Even though the recommendations suggest limiting cuff pressure to below 30 cmH2O,
we decided to slightly increase this value in order to consider the potential for operator
error. For each configuration of the tube-test bench, we inserted the tube with the curvature
shown in Figure 1 to replicate the S position of the patient. Then, we verified that the
cuff reached the correct position, namely with the middle section of the cuff in contact
with the four sensors. We inflated the cuff with the targeted pressure, let the sensor
signals stabilize, and then noted the pressure values obtained from each sensor. Before
applying a different maneuver, we deflated the cuff, recovered the original geometrical
configuration, and reinflated the cuff at the target pressure. Thereafter, we applied two
different maneuvers (i.e., torsion (T) and bending (B)) with amplitudes equal to 90◦, along
two different directions (i.e., clockwise and counterclockwise). To perform the experiments
with the test bench replicating the P position, the same set of experiments were performed
with the test bench rotated by 180◦ along the median axis of the mock-up.

2.2. Statistics

We clustered pressure values before and after maneuvers based on the following
group types: input pressures (30/40/50 cmH2O), body position (S/P), maneuver (T/B),
and type of endotracheal tube (NA/A). Data from the four sensors were averaged at each
measurement. Data processing was carried out using jamovi software (V1.6.16.0).

The mean and standard deviation (SD) for the pressure values before the maneuvers
were evaluated. We grouped data from both the torsion and bending maneuvers, giving
a comprehensive picture of the initial configuration, before the maneuvers, across input
pressures. Later, we performed independent Student’s t-test analyses to evaluate the
statistical differences, if any, between the groups (NA/A and S/P) at fixed input pressures.
The p-value threshold was set at α equal to 0.05.

The differences between the pressure values after and before applying a maneuver
were also analyzed. In this case, an analysis separating the outcomes from each type of
maneuver was used, gathering the values from the two opposite directions used for each

48



Sensors 2022, 22, 697

maneuver (T/B). Thus, we performed independent t-test analyses to evaluate the statistical
differences, if any, between the groups (NA/A and S/P) at fixed input pressures, for each
type of maneuver (i.e., T/B). The p-value threshold was fixed at α equal to 0.05. In all tests,
the null hypothesis concerned the lack of statistical difference between mean values.

3. Results

The dataset was tested to check the normality, which was later confirmed using the
Levene’s Test. Statistical analyses concerning the pressure values at the initial configuration
are reported in Figure 4. Two different representations of the dataset with boxplots are
presented, separately comparing the outcomes grouped by the body position (S vs. P)
and type of tube (NA vs. A) against the diameter of the trachea (20 mm vs. 25 mm)
and input pressure (30–50 cmH2O). Figure 4A–D shows the proportional increase in the
measured pressure against the input pressure using the S vs. P classification. Moreover,
significant statistical differences between mean values, independent of input pressures and
tracheal diameter, were observed. We noticed that the pressure values measured when
using the NA tube were usually higher than those measured with the A tube. This effect
is particularly evident in Figure 4B, which shows the results for the prone position with a
20 mm trachea, for which the pressure amplitude reached ~6 kPa. In the 25 mm trachea
(Figure 4C,D,G,H), the mock-up was not able to detect any relevant pressure (i.e., contact)
in 30–40 cmH2O. Measurable outcomes were obtained only at 50 cmH2O, when the cuff
was actually compressed. These results are similar to those of the 20 mm tracheal mock-up,
although with amplitudes of ~2 kPa for the NA tube and almost negligible for the A tube.

Figure 4. Cont.
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Figure 4. Statistical analysis to determine the differences in pressure, if any, before performing a
maneuver. (A–D) Box plots showing the comparison between non-armored (NA) and armored
(A) tubes across diameters of the trachea and position (S—supine, P—prone). (E–H) Box plots
showing the comparison between body position (S/P) against diameters and type of endotracheal
tube (NA/A). Legend: ** p < 0.001, * 0.002 < p ≤ 0.05, and + p > 0.05.

Figure 4E–H shows the dataset using a grouping based on the body position (S vs. P).
In this case, we had a different scenario for the 20 mm trachea: when increasing the input
pressures, the mean values tended to decrease in their significant statistical difference.
Focusing on Figure 4E (NA tube—20 mm trachea), at 30 cmH2O, we estimated a p-value be-
low 0.001 but, already at 40 cmH2O, the mean values were statistically similar. Concerning
the A tube, this effect occurred only at 50 cmH2O.

By changing the organization of the dataset, we used as a dependent variable the
difference in the pressure values before and after performing a maneuver. We compared
the effects of two different maneuvers (i.e., T and B) on the tracheal pressures. Figure 5A–D
shows the results obtained using a grouping based on the type of tube (NA vs. A), while
Figure 5E–H shows the body position (S vs. P).

Figure 5. Cont.
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Figure 5. Statistical analysis to determine the differences in pressure variations, if any, after perform-
ing a maneuver. (A–D) Histograms showing a comparison between non-armored (NA) and armored
(A) tubes across diameters of the trachea and position (S—supine, P—prone). (E–H) Histograms
showing the comparison between body position (S/P) across diameters and type of endotracheal
tube (NA/A). Legend: ** p < 0.001, * 0.002 < p ≤ 0.05, and + p > 0.05.

The comparison between NA and A tubes displays significant differences between the
mean values independent of the type of maneuver and input pressure, with amplitudes
higher for the NA tube than those associated with the A tube. In contrast, an increasing
trend of the values with the input pressure was not detected. As also shown in Figure 4,
no relevant pressures were observed using a 25 mm trachea with input pressures below
50 cmH2O.

A similar scenario was observed by applying the classification based on the body posi-
tion (Figure 5E–H), even though the statistical differences between mean values were not
confirmed in all cases. Specifically, this occurred in relation to the mean values associated
with the bending maneuvers at 40 cmH2O for the 20 mm trachea with the NA tube, torsion
maneuvers at 50 cmH2O for the 20 mm trachea with the A tube, and bending maneuvers at
50 cmH2O for the 25 mm trachea with the NA tube.

4. Discussion

We investigated the effects of pressure exerted by endotracheal tubes in a mock-
up resembling the laryngotracheal tract. Our study aimed to unveil the mechanisms
that induce trauma on the tracheal segment of patients suffering from ARDS who were
treated with MV. We used two endotracheal tube types (i.e., NA/A) and observed the
results by reference to body configuration (i.e., S vs. P) and pressure variations in the cuff.
International guidelines recommend keeping the endotracheal tube cuff pressure between
20 and 30 cmH2O [6,7] to avoid serious complications such as aspiration pneumonia,
tracheal ischemia, FTTLs, and TEFs [17,18]. Furthermore, we used values up to 50 cmH2O
to investigate the effect of possible human error. Usually, this pressure is periodically
monitored via devices connected to the cuff pilot balloon, which has a mechanical valve
that prevents any oxygen leakage [19]. However, the cause–effect relationship of the
mechanical pressure on the tracheal tract is still unclear, in particular during the maneuvers
exerted on the endotracheal tube or on the patient’s body. This issue has become remarkably
relevant during the COVID-19 pandemic, as a large number of patients have been treated
with prolonged MV in different body configurations. Marti et al. published an in vitro
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study on the deflation of cuffs placed in a test bench over time [20]; however, to the best
of our knowledge, our investigation is the first assessment of the mechanical pressure
exerted by a cuff in a simulated environment. The underlying hypothesis of our study is
the variation in the pressure exerted by the cuff on the tracheal wall depending on the type
of tube (NA/A), the maneuvers performed on the tube (T/B), and on the patient’s body
position (i.e., S/P), against the same initial insufflation pressure.

The first result concerned the pressure measurements obtained after inserting the
tube in the model and before applying the maneuvers. Pressure values measured when
using the NA tube were higher than those obtained using the A tube, especially in the
P position (Figure 5A–D). This is probably due to the superior stiffness of the NA tube,
which exhibited a higher preformed curvature than the A tube. These differences may
be compensated in vivo by the viscoelastic behavior of the NA tube polymer at the body
temperature, which was not included in our experimental set-up. Therefore, we can
consider the measured pressures as instantaneous values that may occur just after the
positioning of the tube in the laryngotracheal tube. It is reasonable to hypothesize that
the A tube, being more flexible than the NA tube, would require fewer corrections of the
cuff. Instead, the NA tube might require careful placement and tuning, especially in the
initial period after intubation and before the patient’s body temperature induces a shape
variation. Another interesting difference between the NA and A tubes was the shape of the
cuffs once inflated. The NA cuff took the form of an ellipsoid whereas the A cuff took the
form of a regular cylinder. The contact of the surfaces with different curvatures may be
another factor affecting the exerted pressures and their distribution on the tracheal wall.
This deserves a dedicated investigation.

Another statistically significant result concerned the difference identified in the 20 mm
mock-up with the NA tube and the 30 cmH2O insufflation pressure from the S to P position,
which was not observable for higher insufflation pressures and for the A tube (Figure 4E–H).
This is probably attributable to the stiffness of the NA tube and to the maneuvers on the
external connector of the endotracheal tube during the S–P maneuvers. As mentioned
above, this was not evident for the A tube because of its flexibility.

Using the 20 mm mock-up, we also observed significant differences in output pressure
when using either the NA or A tube, independent of the type of maneuver (torsion vs.
bending) and input pressure, with amplitudes associated with the NA tube being higher
than those of the A tube (Figure 4A–D). In our opinion, this is also due to the different
flexibility of the endotracheal tubes. Therefore, it is reasonable to recommend that careful
tuning and monitoring of cuff pressure should be performed after each maneuver on the
endotracheal tube, especially if the NA tube is employed. Body position appeared not to
consistently influence the pressure on the tracheal wall when applying torsion and bending
maneuvers on the endotracheal tube, regardless of the type of tube and the insufflation
pressure used (Figure 4E–H).

In contrast, the results from the 25 mm mock-up were less informative. This is
due to the exact nominal dimensions of the inflated cuff and the trachea-like structure
producing reduced contact. As a result, contact occurred only at the highest insufflation
pressures. This simple deduction opens up an interesting discussion as to the applicability
of the most common endotracheal tubes that have a cuff expandable up to 25 mm. The
tracheal segment has a highly variable diameter of 10−27 mm [21]. Therefore, the general
employment of a 25 mm cuff tube with the recommended input pressure may be either
dangerous or inefficient. As a consequence, a preliminary evaluation of the diameter of
the tracheal segment (e.g., using parameters such as the weight/height ratio of the patient)
should be conducted to fine-tune the input pressure or, if available, to inform the use of an
endotracheal tube with a larger cuff diameter. However, it is important to stress that, at
this point in time, a scaling factor for input pressures against the diameter of the tracheal
segment is not available.

This study has three main limitations. The first is intrinsic to all studies performed
on experimental models, as they cannot perfectly replicate the in vivo conditions. In
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particular, the use of a thermostatic chamber could have obviated the permanent stiffness
of the NA endotracheal tube and, with its use, we could have verified the change in
cuff pressure exerted on the tracheal wall over time. However, viscous phenomena in
polymeric materials are not immediate and we were interested in assessing the pressure
values immediately upon insertion in order to evaluate the mechanical effect on the trachea-
like wall. A future study will include a thermo-controlled room in which a mechanical
assessment will be performed, in order to highlight the contribution of body temperature.
The second aspect is the lack of a real tracheal epithelium and endotracheal secretions
enabling the sliding of the cuff on the tracheal walls during torsion and bending maneuvers,
which could provide insight into the tribological phenomena concurring or preventing
damage mechanisms over time. While this limitation cannot be overcome with our current
mock-ups, a dedicated study involving ex vivo tissues may help to assess these phenomena.
Finally, an improvement in the evaluation of the cuff pressure, over time, is needed to
investigate the relaxation phenomena and the effects of maneuvers over time. This would
mimic the condition of the current approach for treating COVID-19 patients but, also, in
this case, an ex vivo model would better reproduce the tribological mechanisms of the
involved tissues.

In addition to the abovementioned limitations, our study provides some relevant
take-away messages on the application of endotracheal tubes for MV. In particular, the
first important conclusion concerns the need for periodic checks of the cuff pressure upon
changing the body position and/or performing maneuvers on the tube. The latter occurs
regularly in daily practice even simply by rotating or hyperextending the patient’s head.
Moreover, the cuff of A tubes appeared to give more stable output pressures on tracheal
walls than those of NA tubes. Therefore, instead of the common practice of ICU personnel
to use NA tubes, the use of A tubes should be considered. In the specific case of our tertiary
referral hospital, patients coming from the operating room intubated with an A tube are
promptly reintubated with an NA tube. In the current literature, scientific articles justifying
this clinical practice are missing. It seems that the practice has originated from practical
experience gained in the field.

5. Conclusions

The outbreak of the COVID-19 pandemic has brought new attention to the well-known
practice of ventilating patients affected by respiratory tract pathologies. To the best of our
knowledge, our study delivers, for the first time, an investigation on the loads exerted by
the contact of endotracheal tube cuffs on the laryngotracheal tract. We used a mock-up
of the anatomic system with two different transversal sizes and two different designs
of endotracheal tubes (i.e., armored vs. non-armored) to assess the effect of each device
when using specific maneuvers and loads, characteristic of common practices. Despite the
intrinsic limitations of the model, we unveiled a number of interesting findings. The most
important outcome for clinicians concerns the superior wall pressures induced by NA tube
cuffs due to their specific design. This effect is more significant for patients placed in a prone
position despite the inlet pressure being kept at 30 cmH2O. Interestingly, A tubes induced
more stable wall pressures than those produced by NA tubes. Another interesting point to
note relates to the transversal dimension of the laryngotracheal tract. Current procedures
and tube designs do not consider anatomical differences among patients, notwithstanding
that wall pressures may vary significantly depending on the actual dimensions of the
cross-sectional diameter.

In conclusion, although we concede that current clinical practices have not resulted
in frequent complications, based on recent scientific evidence, our findings support a
reconsideration of the current approach to tracheal intubation aimed at MV in ICU patients.
Specifically, A tubes should be preferred to NA tubes, and face-down pillows with a central
hole to pass NA tubes should be used when pronation is required.
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In view of this, since a full understanding of the damage mechanisms is still missing,
we think that future studies in this field should investigate in detail such aspects of MV
practices, through both ex vivo and in vivo approaches, to improve patient care.
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Abstract: Background: Neurological diseases and traumas are major factors that may reduce motor
functionality. Functional electrical stimulation is a technique that helps regain motor function,
assisting patients in daily life activities and in rehabilitation practices. In this study, we evaluated the
efficacy of a treatment based on whole-body Adaptive Functional Electrical Stimulation Kinesitherapy
(AFESK™) with the use of muscle synergies, a well-established method for evaluation of motor
coordination. The evaluation is performed on retrospectively gathered data of neurological patients
executing whole-body movements before and after AFESK-based treatments. Methods: Twenty-four
chronic neurologic patients and 9 healthy subjects were recruited in this study. The patient group was
further subdivided in 3 subgroups: hemiplegic, tetraplegic and paraplegic. All patients underwent
two acquisition sessions: before treatment and after a FES based rehabilitation treatment at the
VIKTOR Physio Lab. Patients followed whole-body exercise protocols tailored to their needs. The
control group of healthy subjects performed all movements in a single session and provided reference
data for evaluating patients’ performance. sEMG was recorded on relevant muscles and muscle
synergies were extracted for each patient’s EMG data and then compared to the ones extracted from
the healthy volunteers. To evaluate the effect of the treatment, the motricity index was measured and
patients’ extracted synergies were compared to the control group before and after treatment. Results:
After the treatment, patients’ motricity index increased for many of the screened body segments.
Muscle synergies were more similar to those of healthy people. Globally, the normalized synergy
similarity in respect to the control group was 0.50 before the treatment and 0.60 after (p < 0.001),
with improvements for each subgroup of patients. Conclusions: AFESK treatment induced favorable
changes in muscle activation patterns in chronic neurologic patients, partially restoring muscular
patterns similar to healthy people. The evaluation of the synergic relationships of muscle activity
when performing test exercises allows to assess the results of rehabilitation measures in patients with
impaired locomotor functions.

Keywords: muscle synergies; whole body FES; neurological patients

1. Introduction

The aging of the population in the Western countries and the increased awareness of
the economic and social costs of accidents at work are topical. In fact, it is estimated that
in Europe about five million people [1] suffer from pathologies or have suffered trauma
of varying severity to the neuro-muscular system. Furthermore, neural aging also leads
to the development of various forms and degrees of motor impairment. In 2018, 19.7%
of the EU population were 65 or older [2]. A need of advancements in the prevention
and cure of neurologic illnesses clearly emerges. In this context, rehabilitation therapies
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can slow the effects of aging and help improve quality of life [3]. Other than being a
physical and psychological burden to the individual, neurological diseases represent also
a strain on the community, due to the need to provide aid to impaired individuals either
by creating adequate structures for rehabilitation or providing healthcare. According to
Eurostat, curative and rehabilitative therapies account for more than 50% of current health
expenditure in most EU Member States [4].

In this context, the interest of scientists and practitioners in functional electrical stim-
ulation for the rehabilitation of neurological patients with severe disorders of the mus-
culoskeletal system has grown. Neuromuscular electric stimulation (NMES) has often
been used to aid in the recovery of lost motor function [5–8]. The combined action of the
patient’s neurostimulation and mobilization programs allows the brain to re-educate to
recognize muscle stimuli as its own, triggering a series of nervous processes that favor
the reactivation of impaired functional capacities (neuroplasticity) [9,10]. Through con-
trolled and synchronized stimulation of specific areas of the body, physicists and therapists
can provide functionality to muscle contractions. During the years, this specific branch
of NMES has acquired the title of functional electrical stimulation (FES). Many studies
have investigated the effects of FES on stroke survivors, in a variety of applications. In
gait rehabilitation [11,12], increased stability, improved gait independence and higher
gait speed were found after FES treatments. Functional electric stimulation has been also
used in rehabilitation of the upper extremity in stroke survivors and allowed to achieve
finer hand movements such and finger flexion [13], hand grasping [14] and broader arm
movements [15]. In all these studies, the participants regained functionality of the upper
extremity confirming the usefulness of FES. Furthermore, in [14] the authors compared the
effects of basic electric muscle stimulation with EMG controlled FES and demonstrated that
patients who underwent EMG controlled FES treatment performed better than patients
who underwent basic electrical stimulation. FES has been also applied in gait rehabilitation
for spinal cord injury patients proving its usefulness in aiding the rehabilitation process [16].
Other notable applications of FES have been in aiding full-face transplantation patients
regain facial expressions [17]. Ultimately, FES allowed patients to retain functionality even
while not using the devices in multiple scenarios [18].

Other studies employed FES for the recovery of upper extremity functionality with
the aid of robotic instrumentation [19]. FES was also combined with complex control
mechanisms like artificial neural networks trained to mimic natural muscle recruitment
patterns, allowing impaired individuals to restore walking patterns [20].

Indeed, the modern view of human movement management is characterized by a mul-
tilevel hierarchical system between the brain and the muscular system [21]. These levels are
anatomically and functionally connected and communicate through continuous feedback,
in order to ensure movement regulation and correct motor performance. The repetition
of motor gestures allows the improvement of the execution of the motor task [22–24]. It is
known that if the activation of the muscle mass generated by the electrical impulse corre-
sponds to the voluntary physiological activation [25], the brain recognizes stimuli as its
own and automatically activates functions that tend to restore the connections that govern
the part of the body affected by pathology or trauma and improve its functionality [26].

In rehabilitation scenarios, one of the most promising approaches for improving the
prevention of diseases and prescriptions of treatments with novel data for clinicians is the
decomposition of the electromyographic signal into muscle synergies [27]. The muscle
synergy technique offers the possibility to analyze electromyographic recordings consid-
ering the natural couplings between muscles, and thus is a tool useful for the analysis of
the modular organization of the human neuro-musculoskeletal system. Muscle synergies
propose that the CNS relies on a limited number of modules [28], possibly implemented
at the neural level [29], to simplify motion production. Consequently, by appropriately
recruiting spatial modules with temporal activation coefficients, the CNS exploits a reduced
set of preformed neural pathways, called synergies, to obtain a wide variety of motor out-
puts. Applications of muscle synergy included, among others, investigations on the muscle
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synergies of the upper limb in physiological conditions [30,31] and the effect of neurological
injuries [32–34]. Synergies have also been applied to investigate locomotion [35–38] and
postural control [39,40].

However, currently this evaluation approach has rarely been used to evaluate the
efficacy of a rehabilitation program on subjects with CNS lesions based on electrical stimu-
lation, and always on very limited number of subjects.

Given that muscle synergies have proven to be a useful tool to study muscle coordina-
tion patterns and that FES is considered a valuable technique to aid motor re-learning [41],
it is natural for the two techniques to be used as complementary approaches [42]. In
fact, some studies have already used both tools for robot guided rehabilitation [43] where
muscle synergies are used to drive a functional electric stimulation system. Researchers
have used FES and muscle synergies of healthy people to guide gait rehabilitation for post
stroke patients [44] and to study the effects of a FES based rehabilitation technique on
post stroke patients during cycling exercises [41]. In their studies, the authors found a
significant improvement when comparing synergy similarity to healthy controls before
and after the treatment.

In recent years total body electric stimulation (or whole-body electrostimulation) has
become a valuable clinical practice [45]. This technique is the natural evolution of FES,
it makes use of more electrodes and applies electric stimulation to a wider variety of
muscles at once. It was reported that synchronizing the stimuli makes it possible to exercise
complete kinetic chains with a synergistic approach guarantying more natural and fluid
movements [46].

The overall improvements of whole-body electric stimulation come in the form of the
ability to train a vaster array of possible movements and better implement motor control
aids to impaired subjects. Another important feature generally observed in whole body
electric stimulation is the co-contraction of agonist and antagonist muscles. Antagonist
muscles can contribute to the improvement of aerobic strength without presenting damage
to the motor patterns [47,48].

The growing interest of neurophysiology in clarifying the physiological mechanisms of
the use of electrical stimulation for the treatment of locomotor dysfunctions is known [49];
however, few studies are available on assessing the effects of FES on neurologic patients
with the use of muscle synergies when evaluating rehabilitation based on total-body
movements. The aim of this study is to propose a pilot study for assessing the effects
of a FES-based rehabilitation treatment on neurological patients. We aimed at showing
that neuroplasticity can be induced and physiological muscle synergies can be partially
restored in chronic neurological patients after a FES-based treatment in patients with
various pathologies.

2. Materials and Methods

2.1. Participants

Twenty-four patients were recruited in this study. The included patients were divided
into three groups: 8 with hemiplegia/paresis patients; 8 with paraplegia/paresis patients;
8 with tetraplegia/paresis patients. All patients were in the chronic stage of their disease.
A control group composed of 9 healthy individuals was also enrolled. Patients with
oncological and/or rheumatological and patients which have underwent recent orthopedic
surgery and/or recent trauma with respect to the acquisition date were excluded from the
study. A further exclusion criterion was established on the homogeneity of the data. In
order to be included in the study, a patient had to perform the same exercises and had the
same EMG recorded channels in the pre and post treatment assessments.

Two patients were excluded due to inhomogeneous muscle acquisitions between pre
and post treatment sessions (at least one different EMG channel, or different executed exer-
cises). The total number of subjects included in the analysis was 22 patients (7 hemiplegia,
7 paraplegia and 8 tetraplegia) and 9 healthy controls. In the CONSORT flow diagram
(Figure 1), we illustrate the details of the enrollment procedure.
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All patients underwent rehabilitation sessions at the VIKTOR Physio Lab® physio-
therapy center. The center independently sought the opinion of the competent Ethics
Committee. Each patient (or legal representative) has given consent to the processing of
data. The procedures were performed in accordance with ethical standards as set out by
institutional and national committee and with the Helsinki Declaration of 1975, as revised
in 2000 [50].
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Figure 1. Consolidated Standards of Reporting Trials (CONSORT) flow diagram.

The data used in this retrospective study was collected during the period spanning
from November 2018 to December 2020 in the VIKTOR Physio LAB (VIKTOR S.r.l., Milan,
Italy). All enrolled patients underwent experimental recordings with a 16-channel surface
electromyography (FreeEmg BTS, Milan, Italy) in order to monitor the level of motor
functions over the course of the exercises.

The physiotherapy treatment was performed by three qualified physiotherapists.
Medical supervision of the treatment was carried out by Dr. Viktor Terekhov and was
performed using VIK16 Workstation (VIKTOR S.r.l., Milan, Italy).

Treatment and Device: VIK16 Workstation AFESK™

The rehabilitation treatment was carried out according to the VIKTOR method used
with the AFESK™ technology (Adaptive Functional Electrical Stimulation Kinesitherapy).

The VIK16 Workstation technology has been developed exploiting the expertise
achieved with more than thirty years of experience in using FES during exercise for the
rehabilitation of neurological patients with severe lesions of locomotor functions. The
Workstation VIK16 (Figure 2) is a device capable of supporting or partially replacing the
CNS in the management of the motor scheme by delivering stimuli of suitable intensity to
16 muscles.

The method is based on percutaneous electrical stimulation of the neuromuscular
system during cyclic exercises. For each muscle group involved in cyclic movements,
electrical stimuli are given coinciding with the time activation in accordance with the
physiological model of the exercise respecting the synergistic, reciprocal and antagonistic
relationships between the muscles in each exercise.

In order to synchronize the patient’s movement with the supply of an electric stim-
ulus to the muscle, during the exercise, a synchronized sensor or a sound signal were
adopted, in order to trigger stimulation with the first muscle group moving during the
selected program.
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Figure 2. Graphic representation of the VIK16 Workstation and of the set of proposed total-body
exercises. Workstation VIK16 has a library of 50 AFESK exercise programs that are used in rehabili-
tation, athletics and sports training. The programs are created on the basis of polymyographic and
biomechanical assessment of the movement of healthy people, considering synergistic, reciprocal
and antagonistic relationships of the moments of activation of the main muscle groups of the body.
Workstation VIK16 has a wide range of electrical stimulation parameters: including current stabilized
in each of 16 channels maximum of 150 mA, duration of a pulse from 100 to 1000 μs, pulse frequency
from 50 to 200 Hz, motion cycle time from 200 ms to 10 s, impedance parameters and current level
for each muscle group for all exercises performed by the patient, customizable number of cycles
(movements) for each program and time for each exercise. In this study, only a subset of the exercises
was performed by the enrolled patients.
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Thus, with the help of feedback control over the timely and correct performance, the
motor function is implemented in the centers for motion control in the cerebral cortex.
It is also documented that there is a rationalization of the efferent control of segmental
mechanisms at the spinal level with the activation of vegetative support and sewerage of
the afferent flow of information through the use of collateral interneuronal connections
with adequate electrical excitation of the sensory receptor apparatus of the executive link
(muscles, ligaments, joints, skin, etc.) [49,51–57].

When performing a cyclic movement, the electrical stimulation of the neuromuscular
system uses movement as a system-forming function that combines the anatomical and
physiological connections of the control system from segmental executive to cortical motion
control centers [58]. At the same time, the muscle fibers of the muscle performing the
cyclic movement are activated and the entire sensitive neuromuscular control complex
of the segmental level, transmits afferent signals to the cortical centers of evaluation and
movement control [59,60]. In pathology, the coordinated operation of some links in this
chain can be disrupted by interrupting or changing the afferent flows of confidential
afferent information; the electrical stimulation of peripheral afferents can alter the state of
circuits not only within somatosensory cortex, but also within the motor network: It follows
that whole body FES is of a multi-stage hierarchical process in which various elements
of the cortical motor network are consistently engaged [58,61]. When receiving adequate
sensitive information, the cortical centers of motion control begin to restore control of the
lost functions by including in the process of reorganizing the compensatory pathological
stereotype of movement into a normal one [59,60].

Since each movement is the result of coordinated descending central commands that
control the underlying segmental reflex-tuned executive neuromuscular apparatus, the
EMG activity of the muscles that implement the movement reflects the frequency-time
and amplitude parameters of the activity of these muscles and the objective evaluation
of their functional capabilities [62,63]. In the case of adequate electrical stimulation of
these muscles, the entire sensory apparatus available in the muscle pool forms an afferent
flow of information to the cortical centers, using reflex ascending functionally organized
paths. [64–68]. At the end of each session, the workstation VIK16 automatically records in
the download the results of work of each patient and treatment.

2.2. Data Acquisition
2.2.1. Patients’ Protocol

The data was acquired in VIKTOR Physio Lab® physiotherapy center (Figure 3). All
patients underwent two instrumented acquisition sessions: before and after the treatment.
In these two sessions, each patient was evaluated with the Arm, Trunk and Leg sections of
the Motricity Index (MI). Each patient had his/her own customized FES treatment protocol
and thus not all patients performed exactly the same exercises and had EMG recorded
on the same muscles. However, the set-up and protocols were kept as homogeneous
as possible across groups, compatibly with clinical needs. The muscles acquired were
distributed on the whole body of the patient concentrating more on the impaired side of
the body. Right hemiplegic patients had a denser EMG mapping on the right side of the
body; left hemiplegic patients had more EMG sensors on the left emi-body; paraplegic
and tetraplegic subjects were uniformly mapped on both body sides. All EMG probes
were placed according to the SENIAM guidelines [69]. The acquired muscles changed
between patient groups but were kept as homogeneous as possible in accordance with
clinical needs and within patients of the same groups. The average age of participants was:
Hemiplegia/paresis group: 52 years (not counting 1 child 6 years old); Paraplegia/paresis
group—44 years; Tetraplegia/paresis group—46 years (not counting two children, 6 and
14 years old). The effective time of procedures in each session was on average 45 min.

The following program exercises were performed depending on the rehabilitation cycle:

(1) Introductory, adaptation: 7–10 exercises—on average 3–5 min each
(2) Restorative: 7–10 exercises—on average 3–5 min each
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(3) Postural correctional: 5–7 exercises of which 1–2 last for 10–15 min
(4) Speed and endurance: 2–3 exercises of 15–20 min each
(5) Increase the duration of basic exercises: 3–5 exercises according to the program for

10–20 min each

Modality of electrical stimulation parameters were selected in accordance with the
functional capability of each patient. Average values for each study group were listed in
Table 1.

Table 1. FES parameters for hemiplegic patients.

Pulse Width (μs)/Pulse Frequency (Hz)

Hemiplegia 200/100 after adaptation 500/50–100

Hemiparesis 100/50–100 after adaptation 200/100

Paraplegia 200/100 after adaptation 500/50–100

Paraparesis 100/50–100 after adaptation 200/100

Tetraplegia 200/100 after adaptation 500/50–100

Tetraparesis 200/50 after adaptation 200/100

Before the beginning of the rehabilitation course, the sensitivity threshold of each
muscle group was measured for each patient. The results obtained were used as refer-
ence for determining the level of current in the channels, which was supplied until the
appearance of pronounced muscle contraction, without any pain. Usually, the values of the
operating current, especially in patients with paresis, did not exceed twice the value of the
sensitivity threshold. Stimulation parameters considered that the maximum permissible
norms of current density during electrical procedures allow no more than 2 mA/cm2.
Introductory and restorative exercises were performed at the beginning of the course, while
postural, speed and endurance and increase of duration exercises were implemented with a
proportional increase of time and speed of the exercise in order to increase the summation
effects provided with AFESK on both sensory and motor links of neuromuscular regulation
of motor functions. The average data for the performed treatments, including number of
sessions, average movement per sessions and cycles are shown in Table 2.

Table 2. Rehabilitation treatment data (averages for hemiplegic, paraplegic and tetraplegic groups).

Hemiplegic N◦ Sessions Sessions/Week
Cycles

Movements/Session
Total Movement

Cycles

Hemiplegic 71 2.25 813 57,720
Paraplegic 80 2.25 705 56,461
Tetraplegic 40 1.4 667 26,709

During the period from November 2018 to December 2020, during which the reha-
bilitation of these patients was carried out, due to Covid-Sars 2, quarantine measures
were repeatedly introduced with the closure of our center. For this reason, most patients,
especially those with tetraplegia, reduced the number of visits, which reduced the average
number of sessions for tetraplegic patients. In addition, all enrolled patients were in a
stable chronic phase, after 2–10 years from the onset of the disease, and had already tried
various methods of rehabilitation before admission to the center of the VIKTOR Physio LAB
(VIKTOR S.r.l., Milan, Italy). They did not follow other rehabilitative treatments during the
period of the FES training.
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Figure 3. Employed set-ups for training at the VIKTOR Physio LAB.

2.2.2. Control Group Protocol

Healthy control subjects followed an acquisition protocol which encompassed all the
set-ups employed with patients’ groups. The EMG recording protocol adopted for controls
allowed to match muscles and exercises with all patients’ recordings. First, healthy controls
performed the same exercises performed by patients. Given that previous studies confirmed
that there is no major difference in muscle synergies for a wide variety of movements
between the left and right limbs on healthy people [70], the muscles recorded on healthy
controls were on the right hemi-body to match data for the hemiplegic, tetraplegic and
paraplegic groups. Table 3 shows the muscles registered on patients and on healthy subjects
to match the data of each patient group.

The exercises were a set of cyclical full body exercises expressively designed to perform
active cyclical movements such as walking and specific movements to emphasize either
upper-limbs, such as shoulder abduction, or lower-limb exercises, like knee adduction, or
both in many cases. The set of the considered exercises could elicit many of the whole-body
synergies available to subjects. All the exercises performed in the rehabilitation protocol
are presented in Table 4.

2.3. Data Elaboration

The acquired EMG data was imported in MATLAB software (MathWorks, Natick, MA,
USA) for the pre-processing. The EMG signals were filtered with a band-pass 6th order
Butterworth filter covering a bandwidth from 30 Hz to 400 Hz, then they were full wave
rectified, filtered with a low-pass 6th order Butterworth filter with cut-off frequency at 10 Hz,
according to already employed processing pipelines for muscle synergies applications [71].
Lastly, the electromyographic data amplitude was normalized between zero and one to
enable intra and inter subject comparisons, by dividing each channel EMG envelope by
the maximum value found for that channel considering all movements performed by
that subject in that session [72]. Time normalization was achieved by resampling each
acquisition (EMG envelope) at 100 Hz. The elaborated data was organized in 2D arrays
containing a concatenation of elaborated EMG data. Each column of the 2D array contained
an EMG channel while each row contained the sequence of time samples. All exercises
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performed by the same subject were concatenated in the an array for the purpose of
extracting synergies. A visual summary of the processing stage pipeline is provided in
Figure 4.

Table 3. List of muscles acquired for the patients’ groups. The green coloured squares indicate which
muscles were registered for each group. On healthy controls, EMG was placed on all muscles to
match patients’ data.

Hemiplegic
Patients

Tetraplegic
Patients

Paraplegic
Patients

Biceps brachii caput longus
Biceps femoris caput longus

Deltoideus anterior
Deltoideus posterior

Erector spinae longissimus
Extensor carpi radialis longus

Extensor digitorum
Flexor carpi radialis

Gastrocnemius lateralis
Gluteus maximus
Latissimus Dorsi

Obliquus externus abdominis
Obliquus internus abdominis

Rectus abdominis
Rectus femoris
Tibialis anterior

Trapezius descendens
Triceps brachii caput lateralis
Triceps brachii caput longus

Vastus lateralis

Table 4. List of exercises performed by the patients’ groups. The green coloured squares indicate
which exercises were registered for each group. Healthy controls performed all the exercises to match
with patients’ data.

Hemiplegic
Patients

Tetraplegic
Patients

Paraplegic
Patients

Walking
Crutch assisted walking

Lying down arm and
contralateral knee adduction
Lying down Knees and arms

abduction
Lying down Jumping jacks

Hip thrust
Torso Torsion

Knees adduction
Prone to cat pose
Sitting Punching

Shoulder abduction
Standing Punching

Standing Knee adduction
Sit to stand

March
Jump
Squat

Exoskeleton assisted movement
Push
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Figure 4. Pipeline for Signal processing. The raw signals (light grey) were filtered to remove
movement artefacts and to compute the EMG envelope (dark grey). Muscle synergies were then
extracted from the EMG envelope with the NMF algorithm.

2.4. Synergy Extraction

Muscle synergies were extracted from the elaborated EMG data using the non-negative
matrix factorization algorithm (NMF) which is currently the most used algorithm for
muscle synergy extraction. For our study, we used the spatial muscle synergy model,
which extracts a set of spatial synergies containing muscle loads and a series of temporal
coefficients indicating the time recruitment of each synergy. Synergies were extracted from
each patient’s dataset, separating the pre-treatment and the post-treatment sessions, for a
total of 2 sets of synergies per patient. The EMG electrodes and considered movements
were the same for each patient in the two sessions. The number of extracted synergies was
chosen by using the first order that reconstructed at least the 0.85 of the reconstruction R2

of the original signal [73].

Synergy Extraction: Control Group

Since patients from different groups had different EMG acquisition maps and differ-
ent exercises routines, synergy extraction performed on the control group was repeated
individually to match the data for each patient exercise routine and EMG mapping, by
concatenating EMG from various repetitions and movements. The corresponding synergies
from healthy controls were extracted only on the subset of the muscles and exercises spe-
cific for each patient. All healthy subject synergy sets were then averaged across controls
and linked to the patient they refer to. Finally, each patient synergy set was ordered and
compared to the corresponding healthy synergy set.

2.5. Outcome Measures

To compare synergies between healthy controls and patients, a synergy similarity
metric was computed. The muscle synergy similarity (SS) is the dot product between
two-unit norm synergies as shown in Equation (1).

SS = W1 · W2 (1)

The synergy similarity metric was computed between matched couples of synergies
between two sets of synergies (e.g., Hemiplegic patients before treatment and healthy
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subjects). Patients synergies were compared to healthy subjects’ synergies using SS both
before and after treatment. Then, the mean SS (mSS) was computed and used as an indicator
of the synergy performance of each patient with respect to healthy subjects.

2.6. Statistics

A statistical analysis was implemented in order to verify if after the treatment, the
induced synergy modifications were significant. First, all distributions were tested for
normality with the Kolmogorov-Smirnov test. Similarity distributions for each patient
in both pre and post treatment followed a normal distribution. Pre and post treatment
distributions for the Motricity Index was tested with a t-test. The significance level was set
= 0.05. For muscle synergies, mSS were compared using a 1-way ANOVA test to assess if
the treatment induced a modification in spatial muscle synergies. The ANOVA test was
coupled with a post hoc Tukey-Kramer test. When submitting the retrospective study to
the Ethical Committee, assuming a significance level of 0.05 and using a 1-way ANOVA
test applied to the outcome variable for comparison, it was verified that with the available
dataset, it was possible to obtain a level of statistical power above 0.8. This calculation was
performed using GPower software [74].

3. Results

In this section, we first show the results of the treatment found with the Motricity Index
(MI) in Table 5. Pre-post improvements were found for motor functions in many items of
the motricity index. In Hemiplegic patients, arm MI (p < 0.0021) and leg MI (p < 0.0024)
increased; no differences were found instead for trunk MI (p = 0.1723). Paraplegic patients’
arm and trunk had already full function at the beginning of the treatment and no change
was found; leg MI improved (p < 0.0183). Tetraplegic patients’ arm MI and trunk MI did not
improve (p = 0.0702, p = 0.0523, respectively); leg MI improved (p = 0.0446). For tetraplegic
patients, all p-values are slightly lower or higher to the threshold for significance.

A typical example of the extracted synergies before and after treatment from a patient
with hemiplegia is shown in Figure 5.

Table 5. Motricity Index for Arm, Leg and Trunk in Hemiplegic patients, paraplegic patients and
Tetraplegic patients.

Motricity Index Hemiplegic Patients Paraplegic Patients Tetraplegic Patients

Subject ID Body Segment PRE POST PRE POST PRE POST

S1 ARM 10 34 100 100 40 73

LEG 70 76 29 67 38 53

TRUNK 25 25 100 100 61 74

S2 ARM 50 73 100 100 29 29

LEG 91 100 76 100 1 1

TRUNK 25 25 100 100 0 0

S3 ARM 34 41 100 100 29 29

LEG 76 76 1 10 24 24

TRUNK 25 25 61 61 0 0

S4 ARM 1 18 100 100 19 40

LEG 24 29 28 28 19 39

TRUNK 74 74 74 74 0 36
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Table 5. Cont.

Motricity Index Hemiplegic Patients Paraplegic Patients Tetraplegic Patients

Subject ID Body Segment PRE POST PRE POST PRE POST

S5 ARM 10 15 100 100 29 29

LEG 29 39 1 10 29 29

TRUNK 100 100 74 74 24 29

S6 ARM 10 29 100 100 29 34

LEG 19 29 1 10 29 29

TRUNK 61 74 61 61 48 61

S7 ARM 19 29 100 100 92 100

LEG 28 38 58 76 92 100

TRUNK 61 74 87 87 100 100

S8 ARM 34 39

LEG 38 53

TRUNK 87 100

Figure 5. Example of synergies extracted on a hemiplegic patient. Spatial synergies before treatment
are represented in red; spatial synergies after treatment are represented in blue. Grey bars show the
corresponding reference synergies achived averaging synergies on the control group.
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The mSS obtained for all groups of subjects is presented in Figure 6.

Figure 6. Spatial synergy similarity (healthy vs. tetraplegic) before (Pre) and after (Post) treatment.
Graphs represent the similarity of the synergies extracted on each patient with the reference dataset
of spatial synergies found on healthy controls. Pre-tratment synergy similarity is represented in red,
while post-treatment synergy similarity is represented in blue.

In Figure 7, the results of the statistical analysis are illustrated. The first panel shows
the comparison between pre and post treatment for all patients. The other three panels
illustrate the comparison for each group of patients separately.

The comparison including all patients showed a difference between pre and post
treatment (p < 0.001). A median improvement was found increasing mSS from 0.50 in
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pre-treatment to 0.60 in post treatment. We also show the results achieved when dividing
patients according to their disease. The results obtained from comparing pre and post trials
for hemiplegic and paraplegic patients (p = 0.027 in both cases) showed an improvement in
the synergy similarity from 0.45 to 0.60. The comparison between the pre and post trials for
the tetraplegic group of patients did not yield a significant result (p = 0.454) but there was
an improvement in the mSS from 0.57 to 0.61 (even if not significant).

Figure 7. Statistical analysis. Statistical analysis was performed on each group of patients separately
and for all subjects in the same group. We found that for the “All patients”, “Hemiplegic Patients”,
“Paraplegic Patients” results were statistically significant (Post treatment synergy similarity in respect
to controls increased), while for the “Tetraplegic Patients” group, there was a slight median increase
of the MSS which was not statistically significant.

4. Discussion

In this work, we have studied the effects of a total body AFESK treatment method
on three groups of neurologic patients, composed of 22 neurologic patients: 7 hemiplegics
patients, 7 paraplegic and 8 tetraplegic patients. They all underwent the same rehabilitation
intervention protocol, aimed at restoring physiological muscle activation patterns by the
means of total-body exercises coupled with multi-channel AFESK. This analysis describes
one of the first attempts to combine whole-body FES with the muscle synergy assessment,
a relevant biomarker for assessing inter-muscle coordination. Results are confirmed with
clinical scales that also show motor improvements.

The results show the for most of the screened body segments, the Motricity Index
increased after the treatment, indicating a partial recovery of the motor function.

The results also show a trend towards the restoring of healthy-like synergies was
obtained, confirming previous findings achieved with local FES applications [44,75], and
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extending them to whole body approaches. Previous studies regarding muscle synergy
analysis of FES based treatments only analyzed local FES applications, e.g., for walking [44]
or for planar upper-limb movements [68].

Both studies have confirmed a tendency of subjects to re-align motor activation pat-
terns to those of healthy subjects. This result is particularly meaningful because it was
achieved in different pathologies and with chronic patients, during total-body functional
movements strongly related with daily life activities.

Considering each group separately, only the paraplegic and hemiplegic patient groups
achieved statistical significance; the tetraplegic group of patients showed also a slight
improvement, even if not statistically significant. This result is most likely due to the lower
number of sessions and the frequency of visits per week, as well as intervals between
treatment sessions due to quarantine measures. We are also aware that this effect is
probably related to the limited number of subjects included in the study. Interestingly, a
slight improvement was seen both on clinical scales and with muscle synergies, but for
both domains, results were mostly close to the threshold for statistical significance. These
results should be confirmed on a higher number of subjects. At the same time, despite
the fact that the time and frequency of stimulating effects in the tetraplegic group was
lower than desirable for the maximum inclusion of reparation processes, positive changes
in the level of muscle activity of the muscles were noted in most patients. In fact, while
examining the group of patients as a whole, the results indicate a clear improvement in
synergy similarity with the control group before and after the treatment.

At the diagnostic level, our results demonstrate the effectiveness of the whole-body
FES approach and the appearance of changes at the local level of motor units. With further
summation of the positive effects as a result of AFESK, a transition to more refined level
of regulation can occur, in which the necessary levels of synergic interaction between the
interested muscle groups will be more clearly manifested. The results obtained in this study
indicate that whole body FES rehabilitation techniques could in fact be used to realign
muscle activation patterns of neurologic patients to those of healthy people and promote
neuroplasticity. The groups which benefited the most from the treatment were the group of
paraplegic patients and the group of hemiplegic patients.

Despite muscle synergies can capture relevant aspects of muscular coordination pat-
terns, they cannot fully describe the evolution of EMG patterns during the course of the
therapy. In fact, for some patients, we did not observe significant changes in muscle
synergy recruitment patterns, even though important modifications in clinical outcomes
were observed with other methods (such as clinical scales, clinical tests, motor capability,
and others).

One can observe that in four out of seven hemiplegic subjects, the treatment brought
the synergistic muscular activity to a condition more similar with respect to the activations
of the control group. On the contrary, in three patients, the treatment induced a change in
the muscular activity, but this did not help the patients to restore muscle activation patterns
closer to the control group.

All paraplegic patients underwent improvements in the activation patterns, although
to a lesser extent it was expressed also in two patients whose period of injury that caused
paraplegia exceeded 10 years, age—39 and 62 years, localization of damage—L2/3 and
T 12-L2.

In the tetraplegic group of patients, five out of seven exhibited an improvement in the
muscle activation patterns while only two could not. One of these cases had to interrupt the
treatment in occasion of the birth of her child, after which the patient’s motor capabilities
deteriorated, which was confirmed by the results of a repeated myographic examination.
The second case is a patient with residual tetraparesis who completed a course of treatment
after only 20 sessions.

Comparative myograms before and after the completion of the rehabilitation course
of one of the patients with paraplegia level T 12-L2, who did not show modifications in
synergic relationships, help clarify the effectiveness of the therapy which was not fully
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captured with muscle synergies. There was an increase in muscle activity of individual
muscle groups, especially the rectus femoris, while walking with an exoskeleton. This
result is not highlighted in muscle synergy analysis due to EMG normalization needed to
compare synergies across subjects and sessions.

However, an in-depth analysis of changes in muscle activity also revealed a significant
increase in the power spectrum of rapid motor units in the absence of significant changes
in temporal activation parameters important for analyzing the synergistic relationships
between muscle groups underlying movement (not reported here). Probably, the above
case is an example of the accumulation of quantitatively functional changes in the neuro-
muscular apparatus, associated with an increase in the synchronization of the simultaneous
inclusion of rapid motor units. The described effect can occur with an insufficient level
of reflex regulatory influence on the part of the antagonists of their side, as well as the
opposite side, which provides mutual reflex regulation with the participation of specialized
interneurons of the segmental level.

With further repetition of AFESK movements according to this program, a further
increase in the contractile capabilities of the muscle can occur, which can improve in the
synergistic relationship between muscle groups that realize the movement.

Confirmation of the need for prolonged intensive exercises to restore lost functions
were found in one of our patients with post-traumatic hemiplegia C1-2 level, who was
excluded from the hemiplegia group due to the inconsistency of the protocol of the exam-
ined muscle groups that differed when comparing pre and post-therapy;. however, she
managed to conduct a long course (190 sessions) with AFESK, including a high frequency
of treatment (3–4 times a week), and time of movement execution and speed of movement
constantly increasing. Currently, she can perform movement in full capacity.

Limitations and Future Work

While this work provides clear evidence that total body FES helps restore physiological
muscle coordination patterns, our results are affected by the low number of subjects
involved in the study and non-homogeneous samples. Analyzing cohorts with small
sample sizes could lead to non-conclusive results like in the case of the tetraplegic group
of patients. Furthermore, non-homogeneity of the studied group should be avoided in
future work.

Previous studies have confirmed the heterogeneity between different neurologic pa-
tients [44], which reinforces the need to have different protocols for different subjects.
However, in order to provide reliable comparisons, a fully consistent protocol needs to be
established. Despite this, due to the very low evidences available on total-body FES couples
with muscle synergies, our study sets a relevant pilot work for more extensive applications
in the future. We in fact noticed that research articles coupling muscle synergies and FES
have high innovative approaches but always involve a very low number of subjects (from
2 to 9 patients) [41,42,44,76–83].

In addition to improved homogeneity of the cohorts, analyzing the improved perfor-
mance of patients with only muscle synergies, one provides a deep, yet partial perspective
on the actual quality of motion related to neurologic disorders. One effective way to over-
come this limitation is with a conjunct analysis of both EMG and kinematics, for example
by detecting the effects on kinematic and muscular patterns; this can be achieved with
novel algorithms that allow inter-domain factorization [84]. Multi-domain approaches
could be considered to enhance effect of rehabilitation and assessment [85,86].

In addition, given the experience of this study, it should be noted that there is a
need for further development of the methodology for assessing synergic relationships of
muscle activity in patients with severe neurological disorders of whole body and locomotor
functions. The methods currently used in clinical practice do not allow to fully assess
the functional nature of pathophysiological disorders of the whole body and locomotor
apparatus. At the same time, the methodology used to assess the synergistic relationships
of muscle activity during exercise can bring us closer to solving a multi-level assessment
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of violations in movement control. This was confirmed in our work by the coincidence of
the results of the clinical evaluation of the state of patients with the conclusion made on
the basis of synergic relationships for each of the interested muscle groups in patients with
emi-para-tetraplegia.

If used, such a data collection system will allow to timely receive the necessary
information about changes in locomotor functions in the process of rehabilitation timely
change the tactics and set of rehabilitation programs, which in turn will certainly enhance
the effect of therapy [87–92].

Lastly, it is interesting to evaluate the treatments capability to induce long term changes
in patients. Thus, a follow-up session should be included in further studies on the topic.

5. Conclusions

In a few numbers of works, researchers have studied the possibility of either analyzing
FES treatments with muscle synergies or using them for control of stimulation patterns. The
studies that employed muscle synergies and FES, consistently reported positive outcomes
in improvements in muscle synergies patterns for neurologic patients.

This work also adds to this pool of studies by reporting positive changes in patients
which underwent whole body FES. It is necessary to be cautious when interpreting our
results since more studies need to be performed on the matter and be guided by average
indicators on a larger number of cases of the disease for each nosology. In addition, given
the prospects of the direction of active whole-body FES in the rehabilitation of patients with
severe neurological disorders, it is necessary to develop a comprehensive evaluation system
considering clinical practice and objective research methods in the process of implementing
locomotor functions.
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Abstract: Fluorescence is the most sensitive spectroscopic method of analysis and fluorescence
methods. However, classical analysis requires sampling. There are new needs for real-time analyses
of biological materials, without the need for sampling. This article presents examples of proprietary
applications of laser-induced fluorescence (LIF) in medicine with such methods. A classic example
is the analysis of photosensitizers using the photodynamic treatment method (PDT). The level
and kinetics of accumulation and excretion of sensitizers in the body are examined, as well as the
optimal exposure time after the application of compounds. The LIF method is also used to analyze
endogenous fluorophores; it has been used to detect neoplasms, e.g., lung cancer or gynecological
and dermatological diseases. Furthermore, it is used for the diagnosis of early stages of tooth decay or
detection of fungi. The article will present the construction of sensors based on the LIF method—fiber
laser spectrometers and investigated fluorescence spectra in individual applications. Examples of
fluorescence imaging, e.g., dermatological, and dental diagnostics and measuring systems will be
presented. The advantage of the method is it has greater sensitivity and easily detects lesions early
compared to the methods used in observing the material in reflected light.

Keywords: photodynamic therapy; fluorescence; laser; fluorophores; enamel

1. Introduction

Fluorescence methods have played an important role in medicine and biochemistry
for 50 years. DNA sequence analyses, immunofluorescence methods, flow cytometry, and
analyses of vitamins, amino acids, porphyrins, pharmaceuticals and cations are among the
classic examples of fluorescence technique applications.

The advantages of the method include its sensitivity, due to the intensity of fluores-
cence being proportional to the intensity of the excitation light, selectivity and ability to
separate the emission spectra and excitation signals from the background. Another feature
of modern methods is the possibility of using a variety of laser sources and optical fibers
that transmit excitation and fluorescence radiation from anywhere in the human body or
from the external environment.

The use of the LIF method for analyzing the state of biological tissues began in the
1990s. This method has been used for the diagnosis of skin diseases, atherosclerosis,
kidney and urolithiasis and early stages of cancer [1,2]. “Optical biopsies”, as opposed
to histopathological examinations, are non-invasive, do not require material sampling by
fine-needle biopsy, the amount of analyzed material is unlimited, radiation is supplied and
received via optical fibers, signals are measured in real time and the same areas can be
analyzed repeatedly.

The mechanism of changes in the “autofluorescence” spectra of endogenous fluo-
rophores is explained by their quantitative and qualitative differences in tissues, a change
in their redox balance and depth of location, different content in tissues that absorb but do
not fluoresce chromophores, changes in the extracellular matrix structure and the number
of epithelial cell layers. Emission spectra of individual fluorophores in tissues are mod-
ified by the phenomena of light scattering and absorption of blood, which absorbs light
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in the visible part of the spectrum, and local changes in environmental parameters (pH,
redox potential).

Quantitative laser-induced fluorescence (QLF) is a new diagnostic technique for
enamel caries evaluation and the monitoring of mineral changes in initial caries [3]. The
level of the fluorescence intensity of enamel changed in vivo is lower compared to healthy
enamel. The decrease in fluorescence effect is mainly due to the scattering of excitation and
emission light on damaged surfaces of hydroxyapatite. The coefficient of light scattering
on decalcified enamel is 5–10 times greater than that on normal enamel. Research on the
use of LIF has been ongoing for 40 years and was started by Bjelkhagen and Sundström [4].
They induced the fluorescence of a tooth material with nitrogen (N: 337 nm) and argon
(Ar: 488, 514 nm) lasers. The intensity of the fluorescence emission in the blue–green range
decreased with the increased degree of carious enamel decalcification for the excitation
wavelengths given above. The field of this research is still continuing and is the subject of
many current scientific articles [5–11].

In our research, a laser with a wavelength of 405 nm was used to excite the fluores-
cence of the enamel, and these studies showed a high correlation of the results with the
measurements of mineral losses (R = 0.97).

The classic application of the LIF method is the quantitative assessment of the concen-
trations of photosensitizers in the photodiagnostics and photodynamic therapy methods.

The PDT method relies on the selective photooxidation of biological tissues by reactive
oxygen species (ROS). A combination of an external photosensitizer, endogenous oxygen
and red light produces singlet oxygen and free radicals, leading to necrosis and apoptosis
of diseased cells [12,13]. The method of photodiagnostics is based on the localization of
selectively absorbed PS in tissues using fluorescence methods.

Photodynamic therapy used with 5-aminolevulinic acid (ALA) or its methyl ester
(MAL) is accepted worldwide for the treatment of skin cancers, non-cancerous diseases
and photodiagnosis [14,15] This method has been implemented in urology, gynecology,
neurosurgery, pulmonology and gastroenterology [16–22].

When applied exogenously, ALA, or its derivatives, is selectively metabolized to
protoporphyrin IX (PpIX), a compound that gives a strong fluorescence, which serves as
a basis for diagnosis [23]. The accumulation of PpIX in tissues occurs by avoiding the
feedback control in the pathway of hem biosynthesis. Topical photodynamic therapy with
ALA (ALA–PDT) reached approval status for actinic keratosis (AK) in US and Canada,
whereas MAL–PDT is approved worldwide for AK, Bowen’s disease and Morbus Bowen
in Europe and Australia.

Fluorescence methods are used to detect materials of biological origin. Our research
indicates that the fluorescence of fungi also provides clinically useful information.

We presented methods for the quantification of sensitizer levels as well as examples of
fluorescence imaging in in vivo studies of patients. The article presents the basics of the LIF
method, the construction of apparatus, the characteristics of the organism’s endogenous
fluorophores, examples of our own research on the use of the LIF method in medicine and
further development directions.

2. Materials and Methods

2.1. Materials

Fungi samples (Candida albicans—ATTC 18804, Aspergillus flavus—ATTC 16883, Peni-
cillium chrysogenum—ATTC 9179) were prepared as suspensions in water at the Military
Institute of Hygiene and Epidemiology in Warsaw [24].

Photosensitizers—5-aminolevulinic acid hydrochloride (ALA) and amino acid deriva-
tives protoporphyrin IX (PPIX)—were synthesized and purified at the Institute of Opto-
electronics of the Military University of Technology (IOE MUT, Warsaw, Poland). Final
preparations with a concentration of 10% ALA were prepared in the form of creams with
the LIPOBAZA base. PPIX derivatives were used in the form of injection solutions in doses
of 2.5 mg/kg body.
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In vitro studies in dentistry were carried out using human teeth removed for various
dental indications. Teeth with a completely preserved crown, without clinical caries
changes and with carious spots were qualified for the study. The level of fluorescence was
tested with an LESA 6 laser analyzer. Microradiography method was used to measure
the depth of the lesion and loss of minerals. The teeth were sectioned for transverse
microradiography. Tooth slices (250-thick) were sawn perpendicular to the enamel surface
and then were manually ground to 70–80 thickness. Mineral content depth was measured
with a microscope densitometer.

2.2. Measuring Apparatus

The analyzer was LESA5 spectrometer (BioSpec, Moscow, Russia) (Figure 1) [9], which
was installed on the computer card, laser, fiber optic sensor (catheter), optical filters.
Depending on the application, the following lasers were used: He-Ne (λ = 632 nm, 25 mW,
BioSpec), II harmonic Nd: YAG (λ = 532 nm, 10 mW, BioSpec), semiconductor lasers
(λ = 375 nm, 15 mW and λ = 405 nm, 25 mW, Power Technology, Little Rock, AR, USA),
He-Cd (λ= 442 nm, 100 mW, Omnichrom, Rochester, NY, USA).

Figure 1. Fiberoptic fluorescence analyzer: (a) optical scheme, (b) view, (c) laser with input optics.

Fluorescence imaging system (Figure 2) consists of the following main components:
CCD camera GP-KS162 (Panasonic, Osaka, Japan), xenon lamp with liquid fiber 300 W
(Lasar, Warsaw), endoscope (Storc) and optical filters (IOE MUT).

Figure 2. Optical diagram of the fluorescence imaging system: 1—light source with a violet filter
(λ = 405 ± 25 nm), 2—endoscope, 3—monitor, 4—liquid optical fiber, 5—CCD camera, 6—optical
filter, 7—computer, 8—video.

The LIF method was used for the diagnosis of pathological changes in in vivo condi-
tions on patients in Polish clinics that had approvals of the relevant bioethical committee.
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3. Results

3.1. Spectral Characteristics of Fluorophores

Figure 3 shows the collective absorption and emission characteristics of the most
important fluorophores (fluorescent chromophores) found in biological systems [25]. The
tryptophan bands (components of elastin, collagen), FAD and NADH coenzymes and en-
dogenous porphyrins can be clearly distinguished from the field of fluorescence excitation.

Figure 3. Spectral characteristics of potential endogenous fluorophores: 1—collagen, 2—tryptophan,
3—elastin, 4—pyridoxamine phosphate, 5—pyridoxine, 6—pyridoxal phosphate, 7—NADH, 8—
protoporphyrin IX, 9—FAD. (a)-absorpton spectra, (b) emission spectra.

The sources of endogenous fluorescence in cells and biological tissues are aromatic
amino acids, which are used to build proteins and coenzymes. Among the 20 amino acids
from which proteins are built, only tryptophan (TRP), tyrosine (TYR) and phenylalanine
(PHE) have fluorescence in the UV region 1.

The main component of bone, hydroxyapatite, has strong fluorescence properties in
hard tissues. In many disease cases, increased levels of metalloporphyrins are observed [26].

The coenzymes FAD and FMN and vitamin B2 absorb light with a wavelength of
around 450 nm and emission at a wavelength of around 530 nm. Unlike NADH, only the
oxidized form of FAD shows fluorescence.

The phosphoryl derivative of vitamin B6 is another fluorescent coenzyme [27]. Vitamin
B6 occurs in three forms with the same biological activity as pyridoxine, pyridoxal and
pyridoxamine. Biologically active forms are phosphate derivatives of pyridoxamine and
pyridoxal, which interact with enzymes active mainly in the transformation of amino acids
(including racemization of optically active amino acids, transamination, decarboxylation,
tryptophan synthesis).

An important group of fluorophores are pteridine derivatives, heterocyclic compounds
containing several substituents in the basic pterin structure [28]. The pterin is composed
of conjugated pyrazine and pyrimidine rings that contain carbonyl oxygen and an amino
group. The pteridine system is widespread in nature because its derivatives are the basis
for the coloration of the wings and eyes of insects, as well as the skin of amphibians and
fish [25]. Folic acid, necessary to produce red blood cells above the bone marrow, is made
up of the pteroyl group, p-aminobenzoic acid and glutamic acid. The pteridine system is
found in bacteria and fungi.

3.2. Application of LIF in Dental Diagnostics

Typical single fluorescence characteristics consist of an excitation (equivalent to the
absorption spectrum) and emission spectra. By changing the wavelength of the excitation
radiation in the entire absorption range, an emission–excitation (EM–EX) matrix is obtained.
It is the real spectral imprint of the tested sample. The method is of particular interest
for the analysis of substances containing various fluorophores. In addition, it enables the
selection of appropriate wavelengths for testing. Figure 4 shows the enamel and dentin
EM–EX matrices.
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Figure 4. Emission–excitation characteristics (EM–EX) of (a) enamel and (b) dentin.

The strongest fluorescence of enamel is obtained after excitation with radiation in the
range close to UVB and violet.

The LIF spectra with selected excitation wavelengths are shown in Figure 5. The level
of fluorescence of the enamel with caries is lower compared to the unchanged enamel. In
the case of dental caries, an increased level of fluorescence is observed, which is associated
with porphyrin derivatives generated by bacteria.

Figure 5. Influence of the excitation wavelength with laser radiation on changes in the level of enamel
fluorescence: (a) laser 442 nm, (b) laser 407 nm, (c) spectra of bacterial plaque with excitation 633 nm.

Figure 6 shows the relationship between the decrease in fluorescence intensity and other
parameters characterizing the degree of caries: the depth of changes and the degree of mineral
loss. Measurements of these parameters were carried out using the microradiography method,
and the average decrease in the fluorescence of the demineralized area was determined using
a LIF spectrometer with radiation excitation and a wavelength of 407 nm.

Figure 6. Influence of the (a) depth of the lesion and (b) loss of minerals on the decrease in
fluorescence intensity.

3.3. Clinical LIF Applications Using Endogenous Fluorophores

The LIF method based on the study of endogenous fluorophores is of greatest impor-
tance in pulmonology and dermatology. Neoplasms are characterized by lower fluorescence
in the green range (about 530 nm) and a higher ratio of fluorescence in the red and green
bands compared to healthy tissues. Lowering the level of autofluorescence in neoplastic
tissues in the area of FAD emission is related, among other factors, to a greater metabolism
of these tissues (an increase in the level of NADH and a decrease in the amount of the
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oxidized form of FAD). Figure 7 shows the decrease in tissue fluorescence in the case of
pleural mesothelioma. LIF studies were conducted on 23 cases of lesions. The data were
analyzed by performing ANOVA test comparisons between normal and tumor tissues
(significance level α = 0.05.). There was statistically significant difference (p < 0.01) between
these groups of tissues.

Figure 7. Decrease in autofluorescence in the mesothelium (1,2—normal tissue, 3,4—tumor).

An interesting problem is the presence of increased levels of porphyrins in many
diseases. This is evident in the case of porphyria. Increased accumulation of porphyrins
in neoplastic tissues has been observed many times by the authors of this work in many
skin diseases (senilis keratosis) or in advanced cervical neoplasms. The causes of the
fluorescence tissue of the squamous cell carcinoma of the oral cavity are metalloporphyrins
contained in bacteria (Pseudomonas bacteria).

Examples of the presence of elevated porphyrin levels are shown in Figure 8.

Figure 8. Fluorescence of metalloporphyrins: enamel plaque (1) and skin in senilis keratosis (2).

The conventional diagnosis of oral candidiasis is generally based on biopsy tissue;
however, this technique is time-consuming. Candida is a pathogenic organism that may
cause oral candidiasis upon disruption of the balance of flora. The disease is most com-
monly caused by an overgrowth of Candida albicans in the mouth [29]. Figure 9 shows the
fluorescence characteristics of selected fungi.
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Figure 9. Spectral characteristics of selected fungi: (a) EM–EX map of Penicyllium chrysogenium,
(b) EM–EX map of Aspergillus flavus, (c) LIF spectrum of Candida albicans.

3.4. Measurements of Photosensitizers in the PDD/PDT Method

The classic and most important application of the real-time fluorescence method is the
analysis of photosensitizers in the photodiagnostics and photodynamic therapy methods.
These studies include (i) localization and determination of the level of PS concentrations,
(ii) kinetics of their accumulation and excretion over time, (iii) determination of the op-
timal time of therapeutic irradiation from the moment of introducing compounds into
the body, (iv) photochemical distribution of sensitizers and (v) selection of therapeutic
irradiation parameters.

An example of the kinetics of PPIX accumulation after ALA application in the case of
a change in actinic keratosis is shown in Figure 10. These studies are necessary in respect of
introducing new methods to the market to form ALA [30].

Figure 10. Kinetics of PPIX accumulation in alteration of skin actinic keratosis.

A sufficient level of PPIX for further therapeutic irradiation is obtained at least 2 h after
the application of ALA. The topical introduction of an allergic to superficial dermatological
changes is the easiest way. In the case of tumors of internal organs or lesions of greater
thickness, it is necessary to inject photosensitizers. In cases where it is necessary to analyze
changes in tissues of greater thickness, the use of a red laser is a better choice for fluorescence
excitation due to greater light penetration.

Figure 11 shows an example of the use of the He-Ne laser for the photodiagnostics of
cancer (Merkel carcinoma) 48 h after injecting the amino acid PPIX derivatives (2 mg/kg
body mass) into the blood.

85



Sensors 2022, 22, 2956

Figure 11. Fluorescence spectra of Merkel tumor with introduced PP(Ala)2(Arg)2: 1—healthy tissue,
2—tumor on the periphery, 3—tumor in the center of lesions.

The PPD/PDT method has found application in gynecology. Figure 12 shows examples
of the use of the LIF method in the treatment of vaginal and cervical lesions.

Figure 12. Comparison of accumulated porphyrin concentrations in (a) cervical cancer PP
(Ala)2(Arg)2 and (b) vaginal (ALA): 1—tumor in the center of lesions, 2—tumor on the border,
3—normal tissue.

The fluorescence images of these changes are shown in Figure 13.

Figure 13. Fluorescent images of (a) vaginal, (b) cervical, (c) basal cell carcinoma of head,
(d) squamous cell carcinoma of nose, (e) actinic keratosis of skin, (f) after ALA applications.

Apart from the research on the kinetics of photosensitizers’ accumulation in tissues,
the LIF method is helpful in determining the light power density in the PDT method.
During irradiation, the photochemical decomposition of porphyrins takes place, and this
process depends on the intensity of the light. The photobleaching effect of the sensitizer as a
function of irradiation is shown in Figure 14. When using a power density of 100 mW/cm2,
the degradation of the sensitizer occurs much faster than at 40 mW/cm2, the therapeutic
effect is insufficient and the treatment procedure must be repeated.
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Figure 14. Photobleaching effect during the irradiation of skin actinic keratosis with PPIX.

4. Discussion

Endogenous fluorophores that occur in the body and are the basis of autofluorescence
can be divided into three groups based on the spectral range. Absorption in the UVB range
(280–325 nm) is demonstrated by amino acids and proteins. Fluorometric analyses of these
substances play an important role in biochemistry. In the LIF method, lasers such as He-Cd
(325 nm), Nd YAG (266 nm) or tunable OPO or titanium [31] can be used to excite the
fluorescence. The systems built are used to detect biological agents in the air, which are
mainly used in military technology. The UVA (325–380 nm) and blue light ranges include
fluorophores that contribute to the metabolism of the organism (NADH, FAD), pterins and
porphyrins. For example, the ratio of NADH to FAD fluorescence is an indicator of the
metabolic rate. For medical applications, the visible range is the most important. Violet
or blue light excitation on tumor tissues in comparison to healthy ones shows a decreased
level of fluorescence (Figure 7).

Hydroxyapatite, the tooth component, fluoresces within a wide spectral range, from
350 to 450 nm. Quantitative QLF methods have already found practical application, and
imaging systems are already being built (e.g., Inspektor Research system, Bussum, The
Netherlands) [32]. LIF spectrometers allow for more accurate analysis, are many times
cheaper and allow every part of the mouth to be reached with optical fibers.

Caries is a complex pathological process, which entail the gradual loss of minerals
from the hard tissues of the tooth. Under the conditions of ionic equilibrium, normal enamel
undergoes continuous de- and remineralization processes, which do not cause changes in
the enamel structure. If the pH drop in the oral cavity is not balanced, it causes disturbances
in the biochemical balance and initiation of the destructive process under the influence of
acid metabolites. The clinical symptom of early carious lesions is the appearance of whitish,
opalescent spots on the enamel surface. However, the diagnostic effectiveness of most of the
clinical methods used so far is unsatisfactory. Modern methods of radiological diagnostics
currently available in clinical practice do not allow for the detection of changes related
to the very early phase of enamel demineralization. The methods with high expectations
include fluorescence induced by lasers.

The level of autofluorescence of healthy enamel in comparison to the carious enamel
in vivo is higher when excited with lasers with wavelengths of 405 and 442 nm (Figure 5)
In imaging systems, the decrease in the fluorescence of the carious area is visible as a
dark contrast against the bright background of healthy enamel, which greatly facilitates
the diagnosis. One of the important achievements is showing the influence of the depth
of the lesion and loss of minerals in enamel on the decrease in fluorescence intensity
(Figure 6). A measurable decrease in the fluorescence intensity is already visible at a 5%
loss of enamel mineral. In such cases, it is possible to effectively remineralize the enamel
with appropriate dental pastes, without the need for drilling. Very early caries diagnosis is
the main advantage of the LIF method.

LESA is a PC-based spectroscopy system consisting of a laser source for fluorescence
excitation, a miniature monochromator, multichannel CCD detector, an optic fiber sensor
and a computer for data acquisition and processing (Figure 1). The entire fluorescence
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spectra range is recorded simultaneously. The intensity of fluorescence depends on the
irradiance, the distance between the sensor and the light, and the position of the sensor.
Thus, it is important to normalize the signals. The monochromator receives fluorescence
emission and is scattered on the tissue by laser radiation, which is attenuated 103 times
by an appropriate optical filter. The monochromator receives fluorescence radiation and
laser radiation scattered on the tissue, which is attenuated 103 times with an appropriate
optical filter. The obtained spectra are normalized to the laser signal. It is a convenient
reference signal for the fluorescence measurements. The laser emission to fluorescence area
ratio depends only on the concentration of the fluorophore (e.g., Figures 8 and 9). Our goal
was to develop a technique for quantifying fluorophores in all possible medical cases—for
caries testing, PDT sensitizers and cancer by autofluorescence (endogenous sensitizers).
The only such commercially available system is the LESA spectrometer, equipped only with
an He-Ne laser (633 nm). Therefore, the area of an application was limited only to selected
sensitizers. We have modified the system by using many lasers in the UV–VIS range, which
allows us to excite the fluorescence of virtually all chemical compounds, including those of
biological origin.

The system locally determines in vivo the level of photosensitizer accumulation in
any patient’s organs and tissues accessible for a fiber optic probe. The system is used
during photodynamic therapy of intracavity, interstitial and superficial tumors, and for
measurements of biological tissues’ autofluorescence.

The LIF method is indispensable for the analysis of photosensitizers that are constantly
growing in the market. These include porphyrin derivatives, phthalocyanines, bacteriochlo-
rines. They differ significantly in parameters—dose, time of irradiation commencement
and level of accumulation. A properly conducted PDT method requires the control of
parameters and conditions.

The LIF method has great potential in pulmonology. Preneoplastic changes (dysplasias)
and early neoplastic stages (intraepithelial carcinoma—CIS, microinvasion) are difficult to
detect using traditional bronchoscopic methods, as the lesions cover an area up to several
millimeters in diameter and several cell layers (0.2–1 mm thick) [33].

In gynecology, photo diagnosis helps to precisely determine the location of precancer-
ous lesions and malignancies of the vulva (e.g., vulvar lichen sclerosis), vagina and cervix.
PDD enables the detection of hyperplastic at its early stages (Figure 12).

The autofluorescence method has a good chance of being successful in the diagnosis
of various infections, skin pigmentation changes and metabolic disorders. Thus far, the
widely used Wood’s lamp for observing changes in skin fluorescence is an important tool
in dermatology. Currently, changes in fluorescence are determined only visually, which,
combined with too low power density of the mercury lamps used, is a big limitation of the
method. Some fungal infections caused by pathogenic fungi can be precisely diagnosed by
fluorescence methods. The fluorescence spectra depend on the type of disease. The current
level of diagnostics allows us to only link the characteristic color of luminescence with the
type of infection.

In the case of an infection of the skin with the Malassezia furfur fungus, which causes
tinea versicolor, the luminescence has a copper-orange color; the light of coral-red emission
is characteristic of Erythrasma.

Real-time autofluorescence testing methods cover an increasing range of medical ap-
plications. Different fluorescence imaging systems in bronchoscopy (e.g., LIFE, Vancouver,
Canada) [34] and dermatology have already been built. A good example is the use of
a VELscope (Vancouver, Canada) [35] lamp to evaluate the pathological changes in the
mucous membrane. Observation of the changes in the metabolism of the surface layers
of the tissues lining the mouth is important because they come into direct contact with
many carcinogens and are the starting point of oral cancer. The most common disorders in
the oral cavity include leukoplakia, erythroplakia, lichen planus and submucosal fibrosis.
The risk of neoplastic metaplasia for these lesions varies, but early detection and prompt
treatment can prevent cancer development.
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Abstract: Connectivity among different areas within the brain is a topic that has been notably
studied in the last decade. In particular, EEG-derived measures of effective connectivity examine the
directionalities and the exerted influences raised from the interactions among neural sources that are
masked out on EEG signals. This is usually performed by fitting multivariate autoregressive models
that rely on the stationarity that is assumed to be maintained over shorter bits of the signals. However,
despite being a central condition, the selection process of a segment length that guarantees stationary
conditions has not been systematically addressed within the effective connectivity framework, and
thus, plenty of works consider different window sizes and provide a diversity of connectivity results.
In this study, a segment-size-selection procedure based on fourth-order statistics is proposed to make
an informed decision on the appropriate window size that guarantees stationarity both in temporal
and spatial terms. Specifically, kurtosis is estimated as a function of the window size and used to
measure stationarity. A search algorithm is implemented to find the segments with similar stationary
properties while maximizing the number of channels that exhibit the same properties and grouping
them accordingly. This approach is tested on EEG signals recorded from six healthy subjects during
resting-state conditions, and the results obtained from the proposed method are compared to those
obtained using the classical approach for mapping effective connectivity. The results show that the
proposed method highlights the influence that arises in the Default Mode Network circuit by selecting
a window of 4 s, which provides, overall, the most uniform stationary properties across channels.

Keywords: EEG; effective connectivity; kurtosis; resting-state connectivity; stationarity

1. Introduction

The analysis of the interactions encompassed by different neural sources in the brain,
known as connectivity analysis, has become a topic of great relevance in neuroscience.
Specifically, the structural, functional, and causal relationships that take place in the brain
during neural activity are considered the building blocks to explain how the brain transmits
and retrieves neural information [1–3]. This plays a major role in understanding neurolog-
ical disorders, providing an overview of the differences that characterize a pathological
condition in comparison to a healthy state [4–7].

Like many other topics in neuroscience, connectivity analysis has progressed signifi-
cantly thanks to the advancements in neuroimaging. Brain imaging techniques allow for
expressing neural activity in several ways: considering the temporal variation of bioelectric
and magnetic potentials and tracking down the flow, or the light absorbance of the blood
circulating in the brain [8]. By measuring such quantities, non-invasive data-acquisition
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methods such as electroencephalography (EEG), magnetoencephalography (MEG) and
functional magnetic resonance imaging (fMRI) provide a way to observe the dynamic be-
havior of the neural activity expressed as multivariate time series from which connectivity
among neural sources can be estimated [9].

Setting aside the anatomical connectivity, which looks for structural connections that
physically link groups of neurons [10], in some cases requiring invasive techniques to
do so [11], we are left with functional (FC) and effective connectivity (EC) as forms of
characterizing neural processes from non-invasive measures. The former explores how
spatially remote neural populations are being functionally integrated during a brain process,
whereas the latter examines the causal relationships and the directed influences exerted
among neural sources over the same kind of process. In this context, estimating effective
and functional relationships is highly dependent on the temporal reference from which
samples are acquired, hence, neuroimaging approaches such as EEG, MEG, and fMRI (to
some extent) are appropriate for such a task.

In this way, to estimate the causal influences in multivariate time series (i.e., EC), EEG
and MEG provide well-suited data to develop generative models from which inferences
of the coupling of different brain regions are made. In summary, functional connectivity
shows the distribution of the brain activity assessed by statistically significant values while
EC analysis explains the complex elements of the information processing occurring in the
brain, which lead to an understanding of how the brain works [3].

Accordingly, the EC studies comprise a wide range of applications such as theoretical
constructions for high-resolution EEG recordings [2], the comparison of different effective
connectivity measures according to the neural information to be analyzed [12], or the
definition of graphical processing approaches for the coupled systems that can be obtained
from multivariate time series [13]. Moreover, a range of disorders has been addressed:
for example, studies have focused on resting states in long-standing vegetative-state
patients [14], on causal relationships among specific areas in the brain associated with the al-
pha and beta bands during migraine episodes [15], and on patients with treatment-resistant
schizophrenia [5], epilepsy episodes in children [16], autism [7] and drug abuse [17]. Other
examples of EC analysis include task classification from features extracted from connec-
tivity relationships and applied to the identification of individuals [18], motor imagery
prediction [19], object recognition from visual stimulation [20], and the analysis of the brain
response to emotional music [21].

EC analysis applied to resting-state conditions has been also analyzed. The work
described in [22] provided a detailed investigation of the connectivity exhibited among EEG
sources treated in the channel space, where high-density EEG recordings were analyzed
in terms of different EC metrics such as Direct Transfer Function (DTF), Transfer Entropy
(TE) and Phase Locking Value (PLV). Here, Olejarczyk and colleagues established the
significance of the connections by considering weighted adjacency matrices estimated
every 20 s to analyze common brain rhythms comprising the alpha, beta, gamma, delta, and
theta frequency bands. From the physiological point of view, the authors found that the
information flows from the posterior area of the brain towards the frontal area, exhibiting a
marked correlation between the central–posterior to the central–frontal region, suggesting
the activation of areas involved in the so-called Default Mode Network (DMN) mostly
present over the alpha and beta frequency bands.

A similar work that applied graph theoretical analysis to the connectivity of resting-
state conditions with open and closed eyes is presented in [23]. Here, the researchers
analyzed the alpha, beta, and theta bands by employing the Synchronization Likelihood
(SL) to characterize the connectivity using different topological parameters of the network.
They analyzed the network according to the SL to understand where the main nodes are
located and how they interact by considering the evolution of the resting-state condition
every 10 s. They found that by opening the eyes, the connections in the frontal area for the
theta band were decreased, similarly to what was observed for the posterior area connecting
in a bilateral way to the surrounding zones for the alpha band. This is different from what
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was found in [22], where a noticeable cluster of sources offered significant connections over
these areas in the posterior region for both open-eyes and closed-eyes conditions.

On the other hand, Chen et al. [24] found direct links in the frontoparietal connections
characterizing the resting-state conditions with open and closed eyes. While there was
observed suppression of the activity over the alpha band with open eyes, they noticed that
the connectivity was strengthened in a significant way between the posterior regions in the
left hemisphere in comparison to the right one when the signals were analyzed considering
segments of 4 s.

Finally, as an example of the analysis of connectivity in age-related brain degeneration,
the work described in [25] describes the employment of segments of 2 s and functional
connectivity estimators, from which higher connectivity values quantified by the small-
world metrics were observed during the open-eyes condition for the alpha band. This
also differs from the observations presented previously and highlights the appreciable
differences in the results of similar works, which could be linked to the segment duration
employed over the methodologies.

All these research works rely on a suitable framework to obtain connectivity measures
that explain the causal influences from the neural information. Such a method comprises
several steps including preprocessing, where artifacts, noise, and normalization of the
signals are performed, and then, the definition of a working domain from the neural
sources, which is established either directly from the multivariate time series [15], regions
of interest (ROIs) or dipoles [2,26]. From this working domain, the EC calculation is
then performed using different metrics such as Granger causality [15], Directed Transfer
Function (DTF) [22], Partial Directed Coherence (PDC) [4], and transfer entropy, among
others. After that, in some cases, graph-based metrics are employed to characterize the
high-degree network generated by the neural sources [23,24], in order to finally perform
the statistical analysis used to test the significant connections of the network, providing the
final coupled relationships found across the time series as result of the fitting process of a
multivariate autoregressive model (MVAR).

Despite this comprehensive methodology, the approaches described in the literature
do not provide a framework for the selection of an appropriate segment length to guarantee
stationarity to perform effective connectivity analysis. In general, this matter is not usually
addressed, and its influence on the MVAR model regardless of its importance has been
overlooked. Moreover, the heterogeneity of segment durations employed to estimate
connectivity is so diverse that all the works listed so far employ segments that range in
the order of milliseconds [12], up to 100 s [7], which could impact the quality of the results
obtained, affecting the analysis of connectivity.

For this reason, in this study, we devise a segment-length-selection method that
considers the stationary characteristics of EEG signals based on high-order statistical
moments and we assess the influence of the segment length on the MVAR model and its
corresponding connectivity results, as compared to the conventional approach based on
the framework specified above.

In this study, we employed EEG data acquired in the resting-state conditions with open
(R1) and closed (R2) eyes to evaluate the implementation of a segment-length-selection
algorithm as a preliminary step for effective connectivity analysis. The objective is to select
a segment duration that guarantees constant stationary features from the multivariate time
series. To do so, an iterative piecewise segmentation of the EEG signals is performed to
divide the time series into smaller portions from which kurtosis values are calculated. Then,
distributions of the kurtosis variances from the segments are estimated, and a searching
strategy is implemented to find the most common segment duration across the EEG signals
that maintain the stationary characteristics, not only on each recording but in different
neural conditions and subjects.
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2. Materials and Methods

2.1. EEG Dataset

The EEG dataset employed in our study was provided by the Istituto di Technologie
Biomediche (ITB) of the Consiglio Nazionale delle Ricerche (CNR). The dataset comprises
the EEG time series of 10 healthy subjects. These participants were part of a control group
of a clinical research project that evaluated quantitative EEG markers from the brain activity
of chronic stroke patients with monolateral upper-limb deficits before and after undergoing
a robot-assisted rehabilitation program [27]. The experimental sessions took place at the
Presidio di Riabilitazione dell’Ospedale Valduce Villa Beretta, Costa Masnaga (LC), Italy.
The project protocol included EEG recordings under resting-state conditions (i.e., relaxation
states during open- and closed-eyes conditions) and during motor tasks to characterize and
analyze the stroke patients’ evolution during the rehabilitation therapy [28,29]. Written
informed consent was obtained from each subject before inclusion in the study. The study
was reviewed and approved by the local Ethics Committee at A. Manzoni Hospital, Lecco,
and was conducted in compliance with the Declaration of Helsinki.

In this study, two EEG recordings of approximately 5 min (4.77 ± 0.86 min) were
analyzed from each subject and comprised the time series of the two resting-state condi-
tions: R1—open-eyes resting state and R2—closed-eyes resting state. This totaled 20 EEG
recordings that contained the signals coming from 62 channels that were placed over the
scalp using the 10–20 standard system. The Synamps 2/RT system from Compumedics
®Neuroscan™ (Charlotte, NC, USA)was employed for the acquisition and it was config-
ured at a sampling frequency of 1000 Hz with an active power line filtering set at 50 Hz,
employing a Notch filter configured at each channel. Out of the 62 channels, the ground
electrode CZ was employed to eliminate possible spurious components from the signals,
canceling out the noise produced by the ground circuit of the EEG acquisition system.

A preprocessing framework was performed using the EEGLAB toolbox running on
MATLAB version 2019a (The Math Works, Inc. MATLAB. Natick, MA, USA) [30], to
mitigate noise and artifacts. First, by using EEGLAB’s Artifact Subspace Reconstruction
tool [31], the artifacts of the signals were reduced and, in those cases where the affected
portions of the signals could not be repaired, such segments were eliminated. Then, a
data-cleaning stage was performed by setting up a threshold scheme that considered the
density power, signal amplitudes, probability of occurrence, and trend analysis. Finally,
Independent Component Analysis and the Multiple Artifact Rejection Algorithm (MARA)
were employed to discard portions of the signals that were not compliant with the common
features of EEG signals; this was evaluated with a custom neural network embedded in the
MARA tool [32]. The independent components that were discarded from the EEG datasets
were automatically removed by this tool, following the inherent pretrained parameters of
the MARA neural network. In addition, to eliminate noisy portions of the signals, an initial
epoching that considered epoch durations of 1 s was employed, and EEGLAB considering
the ASR, the thresholds, and MARA removed the portions considered as heavily affected by
noise; as a result, the EEG recordings were shortened as shown in Table 1. According to this
semi-automatic artifact-rejection framework, bad channels were also discarded following
the EEGLAB pipeline as explained in [33].

Table 1 summarizes the main characteristics of the EEG signals’ duration before and
after the preprocessing stage described above. As can be noticed, noise and artifacts heavily
affected some of the recordings, resulting in a significant reduction in the signals’ duration
after the data-cleaning process; in some cases, the proportion of the retained signals was as
low as 15%. Hence, in this study, only the clean signals that maintained at least 50% of the
original durations were selected to continue the processing. Accordingly, the recordings
from subjects 1, 3, 4, and 7 were discarded (highlighted in gray on Table 1), leaving 12 out
of 20 recordings from 6 out of 10 subjects available for processing. Table 1 also shows that
the number of channels maintained after the artifact rejection was heterogeneous among
the recordings and ranged from 55 to 61.
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Table 1. Recordings’ characteristics before and after preprocessing (Discarded recordings are high-
lighted in gray).

R1—Opened Eyes R2—Closed Eyes

Subject

Raw
Signals

Duration
[s]

Clean
Signals

Duration
[s]

Clean
Signals

Percentage

Selected
Channels

Channel
Selection

Percentage

Raw
Signals

Duration
[s]

Clean
Signals

Duration
[s]

Clean
Signals

Percentage

Selected
Channels

Channel
Selection

Percentage

S1 305 46 15% 51 82% 311 172 55% 53 85%
S2 308 235 76% 59 95% 314 256 82% 60 97%
S3 284 46 16% 59 95% 204 43 21% 58 94%
S4 192 101 53% 54 87% 278 123 44% 53 85%
S5 308 205 67% 57 92% 306 155 51% 59 95%
S6 308 230 75% 57 92% 311 226 73% 60 97%
S7 353 135 38% 54 87% 313 212 68% 55 89%
S8 315 197 63% 61 98% 319 231 72% 62 100%
S9 189 145 77% 55 89% 184 116 63% 58 94%

S10 303 172 57% 60 97% 328 240 73% 61 98%
Mean 286 151.2 57 287 177.4 58

A resampling step was employed after performing the data-cleaning process on the
signals to reduce the sampling frequency from 1000 Hz to 250 Hz, which is an accept-
able rate considering the frequency information of the alpha band to accomplish the EC
analysis [34]. Then, the resampled signals were band-pass filtered using a Finite Impulse
Response (FIR) filter that employed a Kaiser window with cutoff frequencies of 0.5 Hz
and 50 Hz [35,36]. Finally, the data were common-average referenced. These steps of
resampling, filtering, and referencing conclude the digital conditioning stage of the EEG
signals. The following sections explain the segment-length analysis and selection based on
kurtosis to perform the EC analysis.

2.2. Segmentation and Kurtosis Estimation

The proposed segment-length analysis is based on an iterative piecewise subdivision
of the signals into segments. From such segments, it is possible to obtain estimations of
the dynamical properties of the EEG signals and the nonlinear processes behind them by
evaluating the effective connectivity.

The segmentation approach is summarized in Figure 1. Let WL be the basis window
length defined as an elemental duration of the segments in seconds, and Nw be the total
number of windows (equivalent to the number of segmentation operations) considered to
perform the iterative segmentation. Then, according to these parameters, h is defined as
the longest segment duration following that h = Nw·WL, thus holding that 0 < WL ≤ h. By
considering the total duration of the recording (t), as well as the variable wli, used to keep
the value of the segment duration for a specific segmenting step (i = 1, . . . , Nw), at each
iteration, a matrix of size t/wli by wli · fs is built and contains the segmented signal with
non-overlapping segments. The variable wli refers to the segment duration according to
the segmenting step iteration, so that wli = i · WL, ∀i = {1, . . . , Nw}, and fs corresponds to
the sample frequency (i.e., 250 Hz in this case).

In summary, the iterative process for the segmentation of a signal is explained by its
sequential splitting according to the window length (wli) whose duration is increased at
each iteration by a factor defined as a multiple of the basis window (WL) given i. In this way,
the signal of duration t is divided into non-overlapping pieces, each one of length wli. The
resulted segments are then stored in matrix form and are organized in chronological order.
The procedure is repeated for the original signal Nw times, producing a total of Nw matrices
of segments for each of the signals that compose the dataset. Since the number of windows
is directly related to the window length, Nw must be chosen according to the physiological
characteristics of the brain activity under analysis and the frequency information that we
want to cover with the selected windows. However, this process can be trivial if Nw is set
large enough so that the different windows comprise the needed frequency components to
be analyzed.
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Figure 1. Outline of the segmentation approach performed on EEG signals. (Each color is associated
to a specific window length duration: red − wl1, purple − wl2, green − wl3, and so on).

In summary, the iterative process for the segmentation of a signal is explained by its
sequential splitting according to the window length (wli) whose duration is increased at
each iteration by a factor defined as a multiple of the basis window (WL) given i. In this way,
the signal of duration t is divided into non-overlapping pieces, each one of length wli. The
resulted segments are then stored in matrix form and are organized in chronological order.
The procedure is repeated for the original signal Nw times, producing a total of Nw matrices
of segments for each of the signals that compose the dataset. Since the number of windows
is directly related to the window length, Nw must be chosen according to the physiological
characteristics of the brain activity under analysis and the frequency information that we
want to cover with the selected windows. However, this process can be trivial if Nw is set
large enough so that the different windows comprise the needed frequency components to
be analyzed.

The sequential process is performed until i = Nw, whose value is defined beforehand.
From this approach, it can be easily noted that each segment is composed of a sequence of
samples generically defined by the vector wli,j =

(
xj, xj+1, xj+2, . . . , xj+i·SWL−1, xj+i·SWL

)
,

where xk (for k = j, j + 1, . . . j + i SWL) generically refers to the components of the EEG
segment wli,j. Here j corresponds to the index of the sample where the segment starts with
respect to its occurrence in time, and SWL is the number of samples contained in the basis
window WL (i.e., SWL = WL· fs). Thus, wli, defines the data vector resulting from a specific
segment, a data block formed by a number equal to i · SWL samples that initiates at the
time instant corresponding to the index j.

The segments that belong to a row of non-overlapping windows (shown in the lower
part of Figure 1, represented by the horizontal brackets) form a new matrix containing
the windowed signal according to wli. Each row of this matrix encloses a single segment
from which different statistical measures such as the mean, variance, skewness, or kurtosis
can be estimated. From these statistical moments, it is possible to evaluate the stationary
characteristics of a signal as a function of time given the time interval definitions considered
in the segmentation approach.

From the previous characterization, each matrix containing the signal’s segments
associated with a channel (chn) that belongs to the EEG dataset follows the definition
shown in Equation (1).

Wmatrix ∈ R
t/wli x wli · fs → s.c ∈ R

t/wli , ∀chn = {1, . . . , M} (1)

where Wmatrix is a matrix containing the segments of a signal and s.c stands for the statistical
characteristic whose values are being mapped into. From Equation (1), it is noted that
the statistical characteristic space has a dimension of t/wli, corresponding to a vector that
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represents the calculated statistical moment and whose components are each related to
a segment at a specific time interval, i.e., each vector component is attributed to a time
interval represented by a segment. In this way, it is possible to account for the variation
over time of these statistical characteristics considering different window ranges and the
given matrices.

For our specific case, we rely on the kurtosis (Equation (2)) to account for the stationar-
ity of the segments. This equation calculates the fourth-order central moment by estimating
the expected value of the fourth power of the difference between the time series (x) and
its mean (μx), and applying the normalization by dividing it by the squared variance of x
and subtracting the kurtosis value of a pure Gaussian distribution (i.e., 3), so that the offset,
known as kurtosis excess, accounts for the difference between the kurtosis of the time-series
segment (x) and a strict stationary series that follows Gaussian distribution.

K′
x =

E[(x − μx)
4]

σ4
x

− 3 (2)

High-order moments such as kurtosis contribute to the process characterization. Un-
like the first- and second-order statistical moments that are limited (in our case) by the
zero-mean characteristic of the time series, kurtosis accounts for the existing difference of a
normal distribution when it is compared to the Probability Density Function (PDF) formed
from the samples that belong to a segment. This fourth-order moment can be employed
to determine the non-stationarity behavior exhibited by a segment of fixed duration [37].
Since random processes are assumed to be stationary, and their distributions follow a
Gaussian density, then, by evaluating how different segments’ PDFs differ from the normal
distribution, the non-stationarity proportion of the segment can be estimated.

Under these assumptions, Equation (1) can be rewritten as:

Wi,chn ∈ R
t/wli x wli · fs → Ki,chn ∈ R

t/wli , ∀chn = {1, . . . , M} (3)

where Ki, chn is a vector that contains the kurtosis excess estimated at each segment from the
Wi,chn = Wmatrix at iteration i and channel chn (i.e., a vector of kurtosis whose components
are calculated from each row of the windowed matrix). Then, each component of the
vector Ki,hn explains the degree of non-stationarity of a segment at a specific time interval
bounded by the duration wli on each channel.

2.3. Kurtosis as a Feature

The fourth-order central moment characterizes each segment of the time series in
our approach; this is a feature derived from shorter portions of the data and explains
the dynamic change of the stationarity from segment to segment. Therefore, different
segmentation conditions provide different amounts of information about non-stationary
characteristics requiring comparing kurtosis values from a single channel, a complete
dataset, and finally, among conditions and subjects.

From Equations (1) and (3), it can be noticed that the resulting kurtosis vectors have
dimensions varying according to t/wli; in consequence, an interpolation step is performed
to guarantee the same size across the vectors from which the kurtosis PDF is estimated
and comprises the kurtosis values of a channel subjected to the Nw segmenting iterations.
Figure 2 shows the kurtosis distributions of 4 different channels. As can be observed from
Figure 2a, the kurtosis distributions of different channels follow a Gaussian-like density as
depicted by the PDFs estimated from the segmentation process of the signals associated
with the channels F1, F4, PO5, and PO4. The kurtosis distributions in Figure 2a are the
result of the iterative segmentation process of the signals considering a basis window length
WL = 1 s, for 1 ≤ i ≤ 10, yielding 10 kurtosis vectors as result, from which the PDFs are
fitted. The expected values on each distribution correspond to the most likely kurtosis
expressed by the signal over different segment lengths and they are used to assess the
stationarity of the signal as a function of the window length. The examples in Figure 2a
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are related to some representative EEG sources, i.e., the frontal (F1, F4) and posterior (PO4,
PO5) electrode locations.

 

 

(a) (b) 

Figure 2. (a) Individual kurtosis distributions for the channels F1, F4, PO5, and PO4. (b) Superimposition
of the kurtosis distributions. Estimated for subject 10 during closed-eyes resting-state condition.

As can be noted from the densities in Figure 2a, they have similar shapes and their
distributions span comparable ranges (i.e., approximately −1.5 ≤ K ≤ 2, with expected
values in the range of 0 to 0.5, as shown by the green dashed lines in Figure 2b. Where
K corresponds to the kurtosis value). In this specific example, the relationship that exists
between the frontal channels F1 and F4 is evident as the PDFs are nearly the same. This is
an expected behavior since the electrodes’ locations on the F1–F4 channels are close to each
other relative to their positions from PO5 and PO4.

Furthermore, considering that the alpha rhythm (comprising frequencies from 8 to
13 Hz) is more noticeable over the occipital area during resting-state conditions, then the
EEG data acquired by the channels PO5 and PO4 should evidence an appreciable increment
of the power spectrum under this frequency range. Moreover, since the frequency patterns
are not uniformly distributed over the scalp, it is expected to find differences of such
magnitudes over the same area; in addition, those differences could influence the non-
stationarity behavior of the signals, which could be the reason for the slight variations of
the kurtosis PDFs in Figure 2b. As explained in [23], the posterior region (covered by the
occipital area where PO5 and PO4 are located) has an emergent pattern of connectivity
directed to the frontal–parietal regions, suggesting as well non-uniform stationary behavior
in this area that may be explained by the kurtosis distributions of these channels.

Moreover, by superimposing the kurtosis distributions from different channels, we
can observe how distant their expected values are with respect to each other, from the point
of view of each PDF (as shown in Figure 2b). If more distributions are compared, then we
can find subsets of channels whose expected kurtosis values are closer than others, hence
there exists a probability range that gathers most of these expected values associated with
a specific segment duration. With this information, we design a searching strategy to find
common segment durations across channels that exhibit similar stationary characteristics.

2.4. Kurtosis Variance and Searching Strategy

The proposed strategy for defining the segment length is based on the search for
kurtosis values that are likely to be found across the PDFs estimated from the multivariate
time series of the different EEG signals. Specifically, from the time series, different segment
lengths are evaluated to find a window duration, common across channels, that guarantees
similar stationary characteristics to perform effective connectivity analysis. From the
distributions of the kurtosis of different channels (as shown in Figure 2), their corresponding
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variances are computed as a function of the segment length, i.e., σ2(Ki,chn). The main
advantages of using kurtosis variance are:

1. The kurtosis vector (Ki) generated for each channel is re-expressed as a single value
representing the squared deviation from the expected mean magnitude considering a
specific segment length. In further processing, this is computationally less expensive
than a vector of t/wli components. The data re-expression can be explained as follows:

Ki,chn ∈ R
t/wl → σ2(Ki,chn) = Kσ2

i,chn
∈ R

1, ∀Chn = {1, . . . , M} (4)

2. Similar means and variance values from different segment lengths enable a compari-
son of the dispersion observed on a dataset containing different signals, as exemplified
in Figure 2b.

The searching strategy consists of finding the smallest range of kurtosis variance that
contains the expected values of the kurtosis PDFs (i.e., the mean) estimated across channels
in each recording. As an example, Figure 3b shows the kurtosis variance distribution of the
Ki,chn vectors from one of the participants of the study. The PDF from the kurtosis variance
values is fitted by a Chi-square (X2) distribution (black dashed line); therefore, the resulting
density is estimated from the Kσ2 matrix that holds the kurtosis variances with respect to
the multiples of the basis segment length (wli, for i = {1, . . . ,10}) for each channel of the
EEG recording. This means that the matrix Kσ2 is a result of the concatenation of the Kσ2

i,chn

vectors. This means that Kσ2 contains the variances estimated from the kurtosis values
of each channel’s time series segmented at various scales, from 1 s to 10 s, producing a
matrix of a maximum size of 62 × 10 components, considering that our dataset comprised
a total of 62 EEG signals, but that was reduced in some datasets after performing the signal
preprocessing. In this way, the variance searching algorithm is defined as Algorithm 1:

Algorithm 1: Variance searching algorithm

Input: Kσ2

1. pd f ← MLE(Kσ2, χ2)
2. pk ← max(pd f )
3. Lb ← pk, Hb ← pk

Loop
4. Lb ← Lb – c

Hb ← Hb + c
5. SKσ2 = f ind

(
Kσ2) such that : Lb ≤ Kσ2 ≤ Hb

6. VSelChn ← SKσ2
[
min

(
tw,chn

)]
IF count(VSelChn) > threshold1.

7. Avar ← mean(VselChn)
IF Avar ≤ threshold2.

9. Append Avar to SELECTION
Until k iterations are reached

Algorithm 1 shows how to perform the variance range searching strategy. It receives
the Kσ2 matrix as the input, from which the PDF is estimated considering the Maximum
Likelihood Estimation (MLE) method by fitting a Gamma distribution. After the peak
value of the distribution (pk) is found, it is used to initialize the lower and higher bounds
of the variance range searching interval (Lb and Hb). Then, a constant value c, that sets
the searching rate, is subtracted and then added to the lower and higher boundaries,
respectively, so that a searching interval is initialized. Now, the kurtosis variance values
from the Kσ2 matrix that are under the searching interval

(
Lb ≤ Kσ2 ≤ Hb

)
and that

correspond to the shortest segment duration on each of the channels are selected at the
actual iteration and stored in the variable (VSelChn). Since the rationale is to maximize
the number of channels that exhibit the same stationary characteristics, first, the number
of channels that have at least one segment within the kurtosis variance searching limits is
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computed and, if the count is less than 50% (threshold 1) of the total number of channels in
the dataset, then the algorithm restarts the searching by increasing the interval limits and
setting it up as the new searching range. Then, the average of the variances is calculated,
and if its value is lower than a second threshold (set at 40% of the maximum variance per
channel registered in the matrix), then it is guaranteed that the selected channels exhibit
stationary characteristics bounded by this threshold, assuring only minimum variations of
the stationary features across the selected channels, thus allowing to find common features
over the channels. The channels that meet these bounds are stored in the SELECTION
variable, and their durations are sorted out with respect to their variance values.

 
(a) (b) 

Figure 3. Searching space boundaries relative to the kurtosis limits, estimated for subject 2 (S2) in
open-eyes condition. (a) At the channel level. (b) From the distribution point of view.

2.5. Searching Domain

Starting with the Kσ2 matrix, it is possible to rank the variances from the lowest to
the highest on each of the channels composing a dataset, and the min and max values per
channel are computed to establish the absolute kurtosis variance limits relative to a segment
duration. In the same way, the intermediate values are found, and their corresponding
durations are associated with a specific proportion of the variance limits, as shown in
Figure 3a.

As can be observed from Figure 3a, the lower the percentage threshold, the closer
the selected Kσ2 values are to the min bound and, consequently, the lower the number
of channels that will meet the kurtosis variance requirements. A trade-off is necessary as
higher percentage threshold values will lead to a higher number of channels but, at the
same time, a higher dispersion among the channels, as shown in Figure 3b.

In this sense, sorting the segment durations that are masked out by the percentage
thresholds allows us to identify common durations covered by the area of the PDF bounded
by the interval limits. As result, we obtain a series of segments that are ordered by both
the duration and the relative variance magnitude that they exhibit; this information is
used to categorize them accordingly. Then, counting the segment durations that are found
at a specific percentage threshold quantifies the number of channels that share similar
stationary properties according to their kurtosis variance magnitudes, and, if a cutoff
value is established to set a limit on the minimum number of channels expressing the
Kσ2 values within a percentage range, then the searching strategy returns the segment
durations meeting these requirements. In this way, the searching strategy shows the
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segment durations that, at a specific percentage threshold, gather the required number of
channels exhibiting similar stationary characteristics. In these terms, the trade-off is solved
by performing the selection of the segment length with the lowest percentage threshold
reaching the minimum requirement for the number of channels.

To this extent, by considering different percentage thresholds and the minimum
number of channels within those limits, it is possible to graphically check the areas covered
by the searching interval, and how the selection of the segment duration is derived from
the statistical characteristics coming from the dataset, specifically from the kurtosis of
the segments.

2.6. Directed Transfer Function

To develop the generative model necessary to explain the directed influences and the
relationships that exist between different neural regions, several measures that quantify the
existing coupling among sources considering the temporal information from EEG record-
ings can be employed [1]. Measures based on time series relying on Granger causality and
its variants in the frequency domain are the most common choices in effective connectivity
analysis for EEG data [12]. In this approach, we employed the Directed Transfer Function
(DTF) since it is a measure proven to be more appropriate to be applied to signals registered
on the scalp as demonstrated by Ku and colleagues [38]. The quantification of the DTF is
defined as shown in Equation (5).

DTFij =
Hij( f )√

∑n
m=1|Him( f )|2

(5)

where the matrix H contains the spectral and phase information of the sources i, j, from
which causality is assessed. The DTF value is a complex measure and provides a metric
of the total information that has been flown from the source j to i, being normalized by
the total inflow received by i. In this sense, the DTF detects the direct influence of one or
several signal sources in the channel of destination [34].

If we consider distinct sources and destinations, defined from the EEG channels, then,
Equation (5) is the starting point from which the EC calculation is repeated pairwise on the
signals composing the EEG recording. In this way, a relationship among the channels is
produced and displayed in matrix form, where each row–column component corresponds
to the DTF value estimated on the source and destination signals (j to i), respectively. Since
the EEG data are time-dependent, then each of the DTF matrices should refer to a specific
time interval to characterize the flow of information at each frequency and comprises
components from 1 Hz to fs/2. Hence, in this sense, the selected window length derived
from our approach is employed to calculate the connectivity matrices along with the signals
at every time interval. Figure 4 shows the resulting 3D matrix that comprises the EC
values among channels calculated at each frequency on the EEG blocks after segmenting
the signals with the selected window duration. The value tW refers to the duration of the
selected window, and the segments indicate the time interval along with the EEG signal
product of the segmentation considering a generic selected window.

Finally, to assess the significance of the connectivity among channels, the t-test is
applied to the DTF blocks that characterize a desired frequency range (performed by
averaging elementwise the EC values of the DTF matrices over a desired frequency range,
e.g., alpha band), then, only the connections that have a p-value less than 0.05 are considered
significant and their connectivity relationships are maintained for further analysis. Finally,
considering the complexity of the DTF matrices, the statistically significant relationships
gathered in these matrices are treated as adjacency matrices, from which graph theory
indices are calculated to characterize the network of effective connections.
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Figure 4. 3D matrix of the segments obtained from a generic selected window (tW , . . . , N·tW)
containing the DTF connectivity values among channels (Chn) at each frequency.

2.7. Network Measures: Graph Theory Indices Applied to EEG Data

The use of the adjacency matrices to encode the significant connections as a result of
the DTF estimation across the channels provides the raw structure that shows the effective
connections on the channels. This can be difficult to interpret due to the high density of
connections that are considered significant from the adjacency matrix. In this way, it is
useful to consider graph theory measures to perform a characterization of the connectivity
in the network that is able to show hidden structures, and central nodes that participate
more in the transmission of information and clusters that could characterize the brain
activity that is being investigated, i.e., the resting-state conditions with eyes open (R1) and
eyes closed (R2).

As explained in [39], 4 broad classes of graph measures can be distinguished: the basic
measures that reflect the importance of a node (channel) in the network by considering
the number of connections it has with other nodes (i.e., the degree), the graph density that
measures the actual number of connections in the network and that can be expressed as the
percentage of links present in the network being 0% when no connections are considered
in the graph and 100% when all the significant links are shown, and finally, the strength,
which accounts for the amplitude of the connection between two nodes, e.g., the DTF
magnitude registered for the pair channel i, j in the matrix.

The second class of measures is the so-called measures of integration, which account
for how effortless the communication between the channels is performed. In this category,
there are different measures that help to estimate this. The shortest path length between two
channels, as its name indicates, calculates the line with the minimum length that connects
two nodes on a surface, in this case given the topographic characteristics and the placement
of the electrodes over the scalp of a person. Its value is defined for every pair of nodes, and
given the high density of nodes that form a network of electrodes, the average shortest
path length is used to characterize the typical separation between the nodes.

Conversely, the global efficiency accounts for the inverse of the average shortest path
length and indicates the capacity of a network to support the information flow, and in
the case where networks are not fully connected, it provides a better representation of
the integrative communication characteristics among the nodes since, unlike the average
shortest path length, the global efficiency does not diverge to infinity when a connection
is not present in the network. This provides a useful way to account for how easy the
communication among the present nodes is, since the adjacency matrices in our case are not
fully connected, considering that they only contain the statistically significant connections.

The third category of graph parameters is the so-called measures of segregation
that characterize the independence of local structures found within the network, given the
formation of groups that are interconnected, i.e., clusters of nodes. The clustering coefficient
accounts for the channels connected to a node that are interconnected to each other. Another
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measure of segregation is the local efficiency, which is defined as the efficiency among the
neighbors of a node.

Lastly, the importance of a node in the network is estimated by considering the
betweenness centrality, a parameter that quantifies how central is a node in the information
flow considering the integration and effective connections produced within the structure.
This measure calculates the number of the local short paths connected to a node and that
represent the importance of a channel in the network.

The density parameter is a basic measure that quantifies the fraction of actual connec-
tions that are present on a network. When an adjacency matrix is calculated, it summarizes
the effective directed connections among the channels that are significant in statistical terms,
as explained above. Then, it is most probable that its density is less than the maximum
number of possible connections on the network, defined as N (N − 1), N being the total
number of channels (i.e., 62). Thus, the density of a non-fully connected network, given the
statistically significant relationships condensed in the adjacency matrix, will never be equal
to N (N − 1).

In these terms, the density is constrained by the number of significant connections of
the adjacency matrix whose elements’ magnitudes can be sorted from lowest to highest in
order to generate the “cost” variable, which is used as the independent variable from which
the remaining graph-based parameters are calculated, and by these considerations, they
are defined as a function of the number of actual connections in the network. By sorting
out the magnitudes, the cost represented as the proportion of connections encodes a linear
scale from the highest to the lowest magnitudes. In this way, 1% of the cost comprises
the number of connections in the network that have a magnitude larger or equal to the
99% of the maximum DTF value found in the adjacency matrix. The same applies to the
other percentages up to reaching 100%, whose cost comprises all the significant connections
regardless of the DTF magnitudes on the matrix.

3. Results

3.1. Selection of the Window Duration

By applying the searching strategy and continuing with the example depicted in
Figure 3, the number of channels that meet the kurtosis variance criteria as a function of
the corresponding searching interval and the window length can be computed for the two
resting-state conditions. The results are shown in Figure 5.

  
(a) (b) 

Figure 5. The number of channels as a function of the segment length and the searching interval in
terms of the kurtosis variance. (a) S2 Open-eyes resting state. (b) S2 Closed-eyes resting state.
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Figure 5 shows that, as discussed previously, the number of selected channels increases
if the variance interval is enlarged, reaching the total number of channels at wider variance
intervals. Table 2 reports the exact number of channels from a recording that share similar
stationary characteristics as a function of the window duration, for open (R1)- and closed
(R2)-eyes resting states for the same subject (S2) following what is shown in Figure 5. The
numbers in red in Table 2 (51 and 39) correspond to the number of channels with a similar
stationary value associated with the selected segment duration for this EEG recording;
according to the threshold for the minimum number of channels set at 75% and 65% of the
total number of time series of R1 and R2, respectively.

Table 2. Segment duration and the number of channels sharing kurtosis variance features for
subject S2 in the resting states. The numbers in red correspond to the channels sharing similar
stationary values.

Variance
Percentage

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Resting
State

R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2

Low lim. 0.15 0.17 0.142 0.168 0.132 0.165 0.113 0.163 0.086 0.131 0.028 0.065 −0.02 0.025 −0.057 −0.01 −0.107 −0.05 −0.16 −0.83
Upp. lim 0.15 0.172 0.158 0.174 0.168 0.177 0.187 0.179 0.214 0.211 0.272 0.277 0.32 0.317 0.357 0.354 0.407 0.389 0.46 1.172

1 s 0 0 0 0 0 0 0 0 0 0 4 6 20 19 37 32 52 46 59 60
2 s 2 0 1 3 5 8 12 12 28 39 47 60 57 60 58 60 59 60 59 60
3 s 3 2 8 4 12 10 24 11 34 44 42 59 45 60 53 60 57 60 59 60
4 s 3 1 5 2 11 5 20 6 29 26 37 57 43 60 47 60 55 60 59 60
5 s 1 1 2 4 8 7 15 9 20 33 51 59 56 60 56 60 56 60 59 60
6 s 1 2 6 4 12 5 22 9 35 48 45 60 50 60 56 60 57 60 59 60
7 s 1 1 5 3 8 4 16 6 30 40 44 60 48 60 50 60 57 60 59 60
8 s 4 2 4 3 6 6 8 9 25 43 50 60 55 60 57 60 59 60 59 60
9 s 1 0 2 1 4 1 12 2 22 13 55 49 58 60 59 60 59 60 59 60
10 s 2 2 4 3 7 7 13 8 28 25 57 60 59 60 59 60 59 60 59 60

As can be observed in Table 2, for the open-eyes state (R1 columns), the number of
channels at a percentage level of 40% is significantly inferior compared to wider searching
intervals. By considering the limits on the kurtosis density from Figure 3b, the 40% and
50% ranges cover the most probable kurtosis variances of the whole dataset. Hence in
Table 2, at 40% with a window length of 3 s, only 24 channels share the kurtosis variance
from that range. Following the same logic at 50% of the variance, the number of channels
increases to 34, corresponding to ~58% of the total of channels from the dataset. Moreover,
by evaluating a segment duration of 5 s, it is observed that 15 and 20 channels are found in
the variance intervals of 40% and 50%, respectively. In this way, looking at the Kσ2 PDF
using a segment of 5 s allows the selection of 51 channels (~80% of total channels) that share
a variance in the range of 0.028 ≤ Kσ2 ≤ 0.272. This comprises a probable proportion of
the density.

Looking at the data of S2 during the closed-eyes resting-state condition (Table 2
R2 columns), the kurtosis variance proportions for the EEG dataset that was used here
are also shown. Following the same analysis, in this case, kurtosis variance intervals
comprising relative proportions lower than 50% did not group as many channels as in larger
proportions. The windows of 2, 5, and 6 s for the 50% interval (0.131 ≤ Kσ2 ≤ 0.211)
grouped 65%, 73.3% and 80% of the total of the channels that composed the recording,
which suggests that any of these window durations maximize the number of signals with
similar stationary characteristics. However, considering the assumptions explained in the
methodology, it is required to have a segment length as short as possible that groups many
or all the channels. Thus, in this case, a window of 2 s is the one selected for this subject
in the closed-eyes resting-state condition. As a reference, the red dashed line in Figure 5
depicts the 50% threshold and graphically shows the number of channels gathered at each
window duration for both resting states.

Table 3 summarizes the results obtained for the six subjects. For each of the subjects at
each resting-state condition, the table shows the kurtosis variance range limits that provided
a sufficiently high number of channels (according to the threshold for the minimum num-
ber of channels) with similar stationary characteristics and the resulting window length.
The variance percentage indicates what proportion of the maximum kurtosis variance is
featured by the selected window duration.
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By replicating the same analysis for the remaining 11 recordings composing the overall
dataset, the results in Table 3 are obtained. From this table, it is noticed that a window of
4 s is the most common segment length across the EEG data coming from the six subjects.
From these results, the kurtosis variance percentage on average corresponds to 40% of the
total, providing a significant reduction in the spread of the kurtosis values among the EEG
signals from the recording. This, in addition to the 69% of channels that exhibit similar
stationary characteristics, reaches the objective of maximizing the number of channels
while minimizing the variability of the stationary measures quantified by the kurtosis.
This is achieved by analyzing the recordings in relation to the characteristics of each
specific dataset.

Table 3. Selected segment lengths for each subject and resting-state condition.

Subject Condition Lower Lim. Upper Lim. Variance % Win Length
Remaining

channels
Channel %

S2
R1 0.028 0.272 60% 5 s 47 78%
R2 0.131 0.211 50% 2 s 39 65%

S5
R1 0 0.156 30% 5 s 41 72%
R2 0 0.197 40% 4 s 29 49%

S6
R1 0 0.138 30% 4 s 35 61%
R2 0 0.134 40% 4 s 48 80%

S8
R1 0 0.098 30% 4 s 33 54%
R2 0.032 0.102 30% 4 s 27 44%

S9
R1 0 0.241 50% 3 s 50 91%
R2 0.135 0.273 67% 2 s 48 83%

S10
R1 0 0.088 30% 4 s 45 75%
R2 0.006 0.086 30% 4 s 47 77%

Mean 41% Mean 69%

By replicating the same analysis for the remaining 11 recordings composing the overall
dataset, the results in Table 3 are obtained. From this table, it is noticed that a window of
4 s is the most common segment length across the EEG data coming from the six subjects.
From these results, the kurtosis variance percentage on average corresponds to 40% of the
total, providing a significant reduction in the spread of the kurtosis values among the EEG
signals from the recording. This, in addition to the 69% of channels that exhibit similar
stationary characteristics, reaches the objective of maximizing the number of channels
while minimizing the variability of the stationary measures quantified by the kurtosis.
This is achieved by analyzing the recordings in relation to the characteristics of each
specific dataset.

3.2. Effective Connectivity

Figure 6 shows the results of the connectivity for both resting-state conditions when a
window of 4 s is applied and analyzed for the alpha frequency band (8–13 Hz).

Figure 6 depicts the EC that characterizes each of the resting-state conditions from the
12 recordings considered for our approach. The strength of the connections is color-coded,
and the arrows highlight the directionalities and the relationships among the EEG channel
sources. Yellow colors transitioning to orange, red, and finally brown/black, show the
connectivity strength in the network from low to high according to the magnitudes of the
Directed Transfer Function (DTF) [40,41]. Figure 6 shows the results by establishing the
statistically significant connections among the channels that monitored the EEG potentials
generated over the scalp when subjects were in a resting state (see Section 2.6).

According to the results from the window-selection approach (see Table 3), a window
of 4 s was employed to quantify the connectivity and characterize the influence of different
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neural sources over the scalp since it was the most common segment duration across
subjects and conditions. The directional influence of the connectivity was quantified
according to different network measures as shown in [39]. From these network measures,
basic, integration, segregation, and centrality quantities were calculated from the adjacency
matrices considering the DTF estimations from the signals as explained in Section 2.7. The
DTF values were estimated considering the window of 4 s using the Source Information
Flow Toolbox for EEGLAB in MATLAB [42], and then, the most significant neural sources
represented by the EEG channels were found by integrating the network measures and
establishing the central nodes according to the neural process under analysis. Such a
procedure was carried out considering the methodologies presented in [14,22–24,43].

Conversely, let us now consider the EC patterns by employing a 20 s window according
to the methodology explained by Olejarczyk and colleagues [22]. In this regard, Figure 7
shows the connectivity diagrams obtained from such segment length.

  
(a) (b) 

 

Figure 6. Effective connectivity diagrams considering a window of 4 s (a) for the eyes-open state and
(b) for the eyes-closed state estimated for the 8–13 Hz frequency band (Alpha rhythm).

  
(a) (b) 

 

Figure 7. Effective connectivity diagrams considering a window of 20 s. (a) for the eyes-open state.
(b) for the eyes-closed state estimated for the 8–13 Hz frequency band (Alpha rhythm).
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The connectivity diagrams in Figures 6 and 7 show the significant effective connections
derived from the adjacency matrices formed by the statistically significant relationships
at a cost of 21%, 30%, and 51% of the maximum value of the DTF matrix (for R1 and R2
from the windows of 4 s and 20 s, respectively), which means that only the connections
that exhibited a DTF magnitude higher or equal these values with respect to the highest
DTF element (~0.6 in all conditions) are being plotted in the graph. The intersection of the
selected channels from the graph measures according to [14,22–24,43] provides a list of
nodes that can be considered as central elements that actively participate in the network.
These selected nodes are highlighted by the red circles around their topographic locations
in the graphs. Moreover, the directionalities are also depicted in the graph and show
how the information is being directed to specific areas from different channels given some
identifiable clusters of channels observed in the connectivity diagrams.

From the graphs in Figure 6, it is possible to note that there are clusters formed by
some of the electrodes that exhibit a significant increment of their connections. This is
the case of the closed-eyes condition in Figure 6b. The electrodes located at the posterior
part of the scalp formed by the occipital (Ox), parietal (Px), and central–parietal (CPx)
electrodes appear to be more involved in the connectivity process. In this region, the
internal connections are very evident in terms of strength and number of connections. In
addition, the salient connections with other areas such as the frontal region are shown as
well. These connectivity diagrams for the closed-eyes condition provide some insights
into the directionality of the connections. In this way, besides the evident internal network
occurring in the posterior area of the brain during the eyes-closed condition, an influence is
developed from this region towards the frontal area. In the case of the eyes-open condition,
the pattern of connections is less consistent, in other words, they are not as structured as
in the eyes-closed condition and the strengths from the central channels that participated
more in the network were different as well.

For comparison, Figure 7 shows the connectivity diagrams by employing a window
of 20 s. As can be observed, the central channels can be grouped to form clusters, which
are used to identify the changes in the flow of information not only in the local level given
the topographic location of individual electrodes but in a more general view considering
complete regions that highlight the active areas in which the connectivity is being produced
inside the group of nodes and between these areas. Considering the node grouping, there
is observed a set of channels that participate in the EC. Specifically, the channels grouped
for the closed-eyes condition (Figure 7b) show a significant influence originating in the
posterior region of the brain from which most of the connections are generated. The
channels located in this area present local connections and provide an evident influence
from the occipital–posterior region towards the channels located in the frontal area of the
scalp. Similarly, the significant connections obtained from the window of 4 s (Figure 6b)
show similar connectivity patterns exhibiting a greater involvement of the sources located
in the posterior part of the scalp, being directed towards the frontal area as well.

In the case of the eyes-open condition for the window of 20 s, the distribution of the
channels is different, and by observing its connectivity diagram (Figure 7a), only a few
channels show strong connections given the DTF amplitudes, which leads to the idea that
the connectivity, in this case, is more uniform among the clusters and tends to have more
midrange connectivity amplitudes than the eyes-closed case.

4. Discussion

In this study, we explored the stationary characteristics of EEG signals of resting-state
conditions through the iterative segmentation of multivariate time series. It was intended
to be an intermediate step in the effective connectivity estimation applied to brain activity.
Considering the fourth-order central moment known as kurtosis allowed us to quantify
how different the EEG sampling distributions were for a density formed by the samples of
a pure stationary time series (i.e., Gaussian distribution). This was performed at different
levels of segmentation, and such comparison permitted us to assess the effect of the short-
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time stationarity characteristics affected by this procedure. In this way, the stationary
features did not change drastically over time, ensuring uniform characteristics along with
the signal. From this, a searching strategy was designed that was dependent on the number
of channels from the EEG recordings and the relative variance of the kurtosis distributions,
from which the selection of a common window duration across the signals, subjects, and
conditions was performed to then assess the effective connectivity.

As has been highlighted throughout this paper, according to the theoretical consid-
erations from some studies [16,34,44,45], the use of an appropriate segment duration to
perform the MVAR model-fitting process for EC is an issue that needs to be considered to
guarantee consistent results over different experimental setups and inter-subject analysis.
Therefore, this research topic is encouraged since the connectivity results are heavily af-
fected by this parameter. In this context, our approach provides a way to make an informed
decision regarding the window duration that could be employed in this regard.

As explained throughout the methods, our approach relied on the piecewise subdivi-
sion of the time series. This process was individually performed on each signal composing
the EEG recording, which according to the mathematical generalization we presented,
also allowed the scalability of multiple signals from which segments´ durations were
categorized using a matrix representation. From such a generalization, it was possible to
estimate different statistical quantities (see Equation (1)), opening the possibility to describe
the data with other metrics or extract features from the short-time sequences that resulted
from the segmentation.

As briefly mentioned in this paper, despite the importance of the first- and second-
order statistics, these are not useful to characterize the segments. Considering that the
signals were high-pass filtered in a previous stage using a cutoff frequency of 0.5 Hz, the
first-order moment (i.e., the mean) of a segment was reduced to zero, making its value not
useful for the characterization of a process. Moreover, the second-order central moment (i.e.,
the variance) under the same conditions is equivalent to the mean squared, which does not
provide any insights into the dispersion of the samples composing the segment. Similarly,
the coefficient variation (σx/μx) is very sensitive to the changes in the first-order statistics,
making it grow abruptly as the mean tends to zero. Thereby, only high-order moments such
as skewness and kurtosis contribute to the process characterization. Nevertheless, since
the normalized version of the kurtosis accounts for the existing difference with a normal
distribution when compared to the PDF that is formed from the samples that belong to
a segment, this fourth-order moment can be employed to determine the non-stationarity
behavior exhibited by a segment of fixed duration [37].

The representation adopted in our approach based on the kurtosis variance serves as
a dimensionality-reduction procedure where a vector composed of t/wl kurtosis values
calculated from a single EEG signal is re-expressed by the data dispersion. By considering
this, similar variance values calculated from the multivariate time series at different segment
durations could be compared, and a way to do it is by examining the distribution formed
by all the kurtosis variances. From such a PDF, a searching algorithm was designed and
the segments with similar variance were grouped and organized so that we could examine
how many signals shared the dispersion set by the searching interval limits. Since similar
variances from different signals and window durations comprise closer expected values
in the kurtosis domain, as shown in Figure 2b, it is expected that the deviations in the
kurtosis variance domain to be small for the narrower searching intervals, as shown for the
20%, 30%, and 40% trends in Figure 3a. In such conditions, the searching interval limits
are considered stiff and as a consequence, the number of signals meeting the searching
parameters is not large (e.g., see the 20% where there are scarce dots). In this sense, by
setting up a threshold on the minimum number of channels needed per searching interval,
we can settle the trade-off and let the algorithm find the variance interval where most of
the channels exhibit similar characteristics and, after grouping and ordering according to
the window durations, we can find the shorter duration that captures the most common
characteristics across channels.
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Since our approach relies on the data that are being explored, it could be considered
a non-parametric method for estimating an appropriate window duration to perform the
MVAR fitting process. In this way, it is possible to consider conditions related to different
types of brain activity and not limited to resting-state analysis in “non-epoched” datasets.
This is an advantage in the processing scheme; however, it would need to be optimized to
be presented as a third-party tool, e.g., a plug-in for EEGLAB.

The representation of the number of channels as a function of the searching interval
and the window duration, shown in Figure 5, provides a useful way to perform a visual
inspection of the results obtained from a dataset. It provides insights in a graphical way
into what segment duration gathers more channels when a searching interval is as narrow
as possible. By setting the threshold on the minimum number of channels, the window
duration is found and according to the assumptions discussed so far as it ensures similar
stationary properties according to the kurtosis values. In this sense, Table 2 complements
the information and gives the exact number of channels from the total available in the
dataset following the stationary conditions.

Table 2 gathers as a reference the change in the number of channels when fixed variance
percentages are evaluated at every 10% increase of the total. These 10% steps allow us to
briefly analyze the variation in the number of channels, but this being a nonlinear process,
a smoother variation of such a number would be achieved when percentage steps are
narrowed and placed between 50% and 60%, for example, so the exact number of channels
in between is achieved.

By considering large steps in the variance, the window durations for each of the
subjects are shown in Table 3. The statistical mode of the results suggests that a four-
second window for the resting-state conditions under analysis is enough to guarantee
similar stationary characteristics across subjects. This result is a useful resource for the EC
analysis framework since the window size impacts the connectivity analysis as described
in [16,44,45]. Moreover, the window size selection is not usually addressed in the state of
the art, which is the reason why many research works use different durations to perform
EC as evidenced by the references named throughout this paper.

The characterization from the connectivity allowed us to find common observations
with some other works that are closely related to the methodologies implemented, as
explained in the work performed by Olejarczyk et al. [22]. In this case, by applying
their approach to our data and performing the connectivity analysis, the window of 20 s
highlighted central nodes located in the posterior, left central–frontal joint, and prefrontal
areas, which were not present in their results. Moreover, the statistical analysis allowed us
to find a significant increment of the strength parameter over the alpha band by comparing
the conditions of eyes closed and eyes open. Such an increase was mainly produced in
some of the regions of higher centrality (prefrontal and central areas).

Our results, differently than in other research works [22–24], associated broader scalp
areas differentiated by the EEG channels in resting-state conditions with open and closed
eyes. In particular, the results point to the participation of more nodes located in the
central–parietal and parietal–occipital regions considering the channel network for the
alpha frequency band (see Figures 6 and 7). This finding is reflected by the number of
connections (i.e., the cost) among the considered channels, suggesting that areas covered
by these nodes are possibly involved in facilitating the communication flow between the
posterior area and the frontal region. Such speculation could explain the involvement of
intermediate structures in the frontal–central joint towards the central–posterior one, thus
establishing the importance of the posterior region’s influences on the frontal zone.

These observations provide a starting point in the attempt to characterize the aware-
ness state during relaxation, thus without attention or concentration, by considering the EC
measurements related to the alpha frequency band. In fact, the alpha rhythms (8–13 Hz)
play an important role in resting states (in either open- or closed-eyes conditions), possibly
clearing sensory information from distractors, as well as in waiting states before performing
attentional or cognitive tasks.
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As explained previously, effective connectivity is more noticeable in the posterior areas
as evidenced by the increased network cost for the closed-eyes condition compared with the
open-eyes case. These are characteristics expected from the alpha frequency components
obtained from acquisition settings like ours. Of note, analyzing active thinking or the
engagement of cognitive tasks (more noticeable over the beta frequency band (13–40 Hz)),
despite being important, is out of the scope of this work, mainly due to the nature of the
EEG signals at our disposal, and that our application example was defined to have a glance
at the EC results that could be obtained after applying our methodology, from which we
obtained consistent results.

In summary, our study was aimed at providing a novel method for the selection of a
segment duration that improves the effective connectivity framework by introducing the
analysis of stationary characteristics from the EEG signals as an intermediate step of the EC
approach. Another advantage of our methodology is that it is not restricted to being used
only for signals that measure resting states. Therefore, even though adjustments would be
required to optimize the algorithms and provide flexibility in employing different sampling
rates and channel sizes to reduce processing times, we have devised a methodological
framework that is potentially applicable to any EEG configuration and possibly beyond
resting-state conditions. Future studies could be further devised to demonstrate the capa-
bilities of the method in characterizing connectivity in subjects with specific pathologies.

Moreover, following what is described in [22–24], the hypothesis arises of the involve-
ment of the central–posterior and central–frontal regions as the characteristic areas of the
resting-state conditions. According to these works, the Default Mode Network (DMN)
that comprises those regions is involved in the synchronization over the alpha band. This
hypothesis is reinforced by the results obtained in this work as shown in the last section;
however, considering only 12 recordings to confirm the hypothesis or not can be misleading,
and the EC analysis in our case is limited by the insufficient data available. Despite this
limitation and given the consistency of our results, and the resting-state conditions under
analysis, our method would provide a feasible approach for the analysis of pathological
conditions highlighting statistically significant relationships among brain signal sources
that could potentially complement the analysis of clinical conditions.

Under the framework offered by our methodology, when the process is repeated
for different EEG recordings acquired from distinct subjects, our approach allows the
integration of the data to perform an inter-subject analysis by examining individual results
and selecting the window duration that provides common stationary characteristics, firstly
for most of the channels on each recording and secondly across subjects selecting the
mode, as shown in Table 3. This could be implemented differently, too; similarly to the
methods applied in group ICA [46,47], where the brain-activity data from different subjects
is concatenated forming a single large block of EEG, MEG, or fMRI time series to find
independent components, we could apply this step to analyze the common stationarity of
a large multivariate set of signals and obtain a single-window duration from this process.
Such a procedure is proposed as a future feature of our approach where we will also analyze
the differences in the results with the current method.

Moreover, even though our approach considers a basis window of 1 s for the iterative
segmentation, it does not contemplate non-integer values for intermediate segments (e.g.,
wl = 1.5 s, 2.5 s, 3.5 s, . . . ) that could improve the results by evaluating stationarity according
to the statistical characteristics of the signals. In this way, as future research work, we plan
to evaluate the influence of such kinds of segments in our processing scheme, incorporating
a larger dataset as well, and improve the characterization of the resting-state conditions
through effective connectivity analysis.

Moreover, as explained in [48,49], other metrics such as the Kullback–Leibler (KL)
divergence could be employed to estimate the statistical distance between the sample
distributions of our segments and a Gaussian PDF. However, pure stationarity exhibited
by random time series (where the expected value is zero) in a real case scenario like
ours is difficult to achieve, and such statistical distance under these circumstances would
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constrain our approach, requiring us to find segment durations that exactly follow a normal
distribution. In this way, minimizing the distances and setting a threshold that controls
the “stationarity level” from the distance difference derived from the window duration
would provide a feasible approach to tackle the same problem. This idea is suggested to be
implemented as a future work of our research.

Finally, another idea to be implemented is to investigate the signals at source levels.
By employing methods such as the low-resolution electromagnetic tomography (LORETA)
taking advantage of the multiple EEG recordings, it is proposed to investigate the connec-
tivity relationships directly estimated from underlying brain-activity generators, which
could improve our analysis. Being that this work is a starting point of our research, we
focused on the methodology to select an appropriate window duration for EC from the EEG
signals. This can be enriched by using approaches to solve the inverse problem, providing
an electrical source imaging analysis applied to EC.

5. Conclusions

The analysis of stationary characteristics of short-time segments of EEG signals is a
topic that, despite its importance in effective connectivity analysis, does not receive enough
attention to improve the connectivity results. The use of statistical metrics such as kurtosis
to quantify the stationarity of a segment, and by introducing a mathematical description
for processing multivariate processes coming from high-density electroencephalography
recordings, it contributes to the assessment of the variation of statistical characteristics over
time from the different signals. Moreover, including information from different subjects
and conditions allows us to make an informed decision of a common segment length that
serves to analyze EC in an inter-subject way, guaranteeing uniform conditions among the
EEG datasets and conditions.

In addition, the results of our application example showed that uniform character-
istics maintained over time with a given segment length provide comparable results to
other research works in the literature and other insights that are worth investigating by
considering more data, which unfortunately for this case were insufficient to confirm or
not the involvement of specific regions in the brain regarding the EC analysis. In this
sense, analyzing more data in the analysis is needed to improve the results, in addition to
including EEG recordings of other brain activities that could enrich the assessment of the
methodology presented here.
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Abstract: Sleep disorders are a growing threat nowadays as they are linked to neurological, cardiovas-
cular and metabolic diseases. The gold standard methodology for sleep study is polysomnography
(PSG), an intrusive and onerous technique that can disrupt normal routines. In this perspective,
m-Health technologies offer an unobtrusive and rapid solution for home monitoring. We developed
a multi-scale method based on motion signal extracted from an unobtrusive device to evaluate sleep
behavior. Data used in this study were collected during two different acquisition campaigns by using
a Pressure Bed Sensor (PBS). The first one was carried out with 22 subjects for sleep problems, and
the second one comprises 11 healthy shift workers. All underwent full PSG and PBS recordings. The
algorithm consists of extracting sleep quality and fragmentation indexes correlating to clinical metrics.
In particular, the method classifies sleep windows of 1-s of the motion signal into: displacement (DI),
quiet sleep (QS), disrupted sleep (DS) and absence from the bed (ABS). QS proved to be positively
correlated (0.72 ± 0.014) to Sleep Efficiency (SE) and DS/DI positively correlated (0.85 ± 0.007) to the
Apnea-Hypopnea Index (AHI). The work proved to be potentially helpful in the early investigation
of sleep in the home environment. The minimized intrusiveness of the device together with a low
complexity and good performance might provide valuable indications for the home monitoring of
sleep disorders and for subjects’ awareness.

Keywords: sleep monitoring; pressure bed sensor (PBS); unobtrusive measure; multi-scale analysis;
sleep apnea–hypopnea syndrome (SAHS); shift-working

1. Introduction

Sleep is a biological process intrinsic to life and essential for optimal health as it plays
a critical role in brain function and systemic physiology. However, sleep complications
and disorders are a growing threat nowadays, affecting up to 70 million people in the
United States and approximately 45 million in Europe [1]. Sleep disturbances can involve
sleep deprivation and fragmentation [2], occurring when the necessary amount and quality
of sleep is not achieved and when there is difficulty in falling asleep [3] or maintaining
continuous pattern of sleep [4]. On the other hand, sleep can be affected by other disorder
events such as respiratory or motor ones [3].

In this regard, one of the most common and alarming conditions of sleep breathing
disorders is Sleep Apnea-Hypopnea Syndrome (SAHS). It affects more adult males with
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respect to adult females and it is associated with many factors such as overweight and
obesity, alcohol, smoking, nasal congestion, and estrogen depletion in menopause, but the
only intervention strategy currently supported with enough evidence is weight loss [5,6].
The sleep of subjects suffering of SAHS is characterized by cessations (apnea) or consid-
erable reductions (hypopnea) in respiratory flow. These abnormal episodes are recurrent
during the night and can last from a few seconds to minutes [7]. It follows that sleep results
are strongly fragmented, whereas other symptoms are excessive sleepiness, decreased
cognitive performance, fatigue and also depression [8].

Thus, fragmented sleep can affect the capabilities of memorization, learning and
concentration, but also mood and behavior. Due to bad sleep quality, social problems are
also frequent such as reduced working efficiency and increased risk in traffic accidents.
Importantly, it is also well-known that when the poor sleep condition is prolonged for a
long time the risk of developing cardiovascular pathologies such as hypertension increases.
For these reasons and the current increase in the number of jobs requiring changing and
prolonged shifts, such as nursery, the sleep fragmentation assessment represents a main
topic [9,10].

Polysomnography (PSG) is currently the primary method for sleep analysis and is
considered the gold standard for sleep monitoring. However, it is an onerous and intrusive
technique that can disrupt normal routines. In addition, single nightly measurements of
patients, are insufficient to study intrinsic patterns of variability or to correlate sleep with
the timing of other activities [11].

With the perspective of minimizing the intrusiveness, m-Health technologies have
been developed lately, offering a rapid, customized, and synergistic solution through the
use of unobtrusive wearable or home automation devices to monitor vital signs during
daily activities [12]. In spite of the fact that great diffusion only occurred in recent years,
these devices have found applications in a wide range of scenarios [13] such as fitness or
sport [14], rehabilitation [15], health monitoring [16,17] and sleep analysis [18,19] for the
aims of prolonged monitoring and preventive interventions.

Different technologies were widely employed for different goals related to sleep anal-
ysis such as extracting quality indexes [20], evaluating fragmentation [21] or detecting
disorders episodes [22] and sleep phases [23,24]. Methods can be divided according to
the devices used, such as electrocardiogram-based [25], actigraphy [26], smartphones [27],
smartwatches and complete IMUs [28] or contactless devices, such as bed pressure sen-
sors [7,10,29]. The latter are one of the latest technologies having the advantage of not
generating any discomfort. Indeed, these kinds of sensors do not need direct contact with
the subject’s body, but they can be integrated into the home environment. Furthermore,
the position where the devices are located (smartwatches on the wrists, contactless devices
embedded in the bed, near chest or under the mattress) was also evaluated in different
studies [24,30,31].

Computational methods used to extract valuable information for screening purposes
are mainly based on signal processing and Artificial Intelligence (AI). Common features
extracted are averages, ranges, angles, skewness, kurtosis and Wavelet coefficients [32,33],
whereas classifiers used are K-Nearest Neighbor (KNN) [34], Decision Tree, Random Forest,
Support Vector Machine [10,24,34–36] and Hidden Markov Models (HMMs) [37].

In this work, we developed a multi-scale method based on motion signal extracted
from an unobtrusive Pressure Bed Sensor (PBS) to evaluate sleep behavior. The contribu-
tions of the study are:

• The implementation of a visualization tool for sleep fragmentation as a function of the
activity level;

• The evaluation of the sleep activity level dynamics from the multi-scale perspective;
• The sleep quality indexes extracted from the visualization tool and multi-scale analysis

which were compared to clinical metrics, such as Sleep Efficiency (SE) and Apnea-
Hypopnea Index (AHI);
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• The analysis on motion signal from two different datasets composed of shift-working
nurses and people with suspicions of sleep apnea;

• An easy tool useful for non-invasive devices based on the only motion signal suitable
for home monitoring.

2. Materials and Methods

2.1. Data Acquisition and Study Population

Data used in this study were collected by means of two different acquisition campaigns
performed by using the same device, already employed in [7,10,29]. Ethical approval and
informed consent details are reported in the cited works.

The PBS device was designed with eight electrodes, located in two columns and four
rows, to acquire the measurement of pressure change generated by the sleeping subject.
PBS covers a measurement area of 64 cm × 64 cm and it was placed under the mattress at
the middle of the sleeping subject’s body. A deepened description of the setup and more
details of the device are reported in [7,10,29]. The device was used to acquire:

Dataset 1: includes 22 subjects (11 males and 11 females, age: 48–63 years) that un-
derwent full PSG and PBS recording at the laboratory of the Sleep Centre of Tampere
University Hospital (TaUH, Tampere, Finland) for suspected sleep apnea. PSG measured
cardiac (ECG), neuronal (EEG), and muscular (EMG) activity. In addition to two elastic
bands for Respiratory Inductive Plethysmogram on the thorax and abdomen position,
a pulse oximeter for oxygen saturation in blood, thermistor, and nasal cannula for airflow
measurement were used during the recording. The Respiratory Event (RE) scoring was
performed through an automatic procedure (Rem-Logic software - Embla Systems limited
liability company) that detects abnormal events from the nasal airflow signal. For example,
apneas are detected as a reduction greater or equal to 90% from the baseline. After the
evaluation of the thoracic and abdominal respiratory effort for the classification of the REs,
an expert clinician made manual corrections (e.g., false positive/negative REs), if neces-
sary. Each RE present in the recordings was labeled according to four different classes
corresponding to the type of RE: (1) Obstructive Sleep Apnea (OSA); (2) Central Apnea;
(3) Hypopnea; and (4) Mixed Apnea [7].

Dataset 2: comprises 11 healthy females (age: 20–54 years) that underwent standard
PSG and PBS recording at the sleep laboratory of the Finnish Institute of Occupational
Health (FIOH, Helsinki, Finland) measuring night or day time sleep for shift workers.
Two different recordings, one during daytime sleep after a night shift of work and one
during nighttime sleep, were obtained from each subject. The hypnograms of the resulting
22 recordings were then scored by medical specialists following a standard procedure.
Each sleep phase was labeled according to the 7 possible classes: (1) Stage 1; (2) Stage 2;
(3) Stage 3; (4) Stage 4; (5) REM; (6) Wake with lights off and; (7) Wake with lights on [10].

PBS recording data files gathered were written into a memory card and synchronized
with the reference PSG for the analysis. Information about all recordings from both datasets
are summarized in Table 1.

2.2. Data Conditioning

A signal reflecting the motion and displacement activity occurring during sleep is
possible to be captured from the different channels acquired through the PBS.

In Dataset 1, the motion signal was extracted computing the standard deviation for
each measurement channel with a sliding raised cosine 4-s window. Then, the average value
between channel-wise standard deviations was taken [7]. On the other hand, in Dataset 2,
the motion signal was obtained from Principal Component Analysis (PCA) [10]. For both
datasets the normalization for the maximum value of the recording was performed.
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Table 1. Characteristics of the datasets.

1. Apnea Dataset 2. Shift-Work Dataset

Rec. Subj.
ST
(h)

SE TNE AHI Rec. Subj.
ST
(h)

SE Timetable

1 * S1 6.01 0.72 21 3.49 23 S23 4.34 0.95 D
2 S2 9.66 0.77 145 15.01 24 S23 9.00 0.83 N

3 * S3 8.98 0.95 368 40.99 25 S24 3.90 0.84 D
4 S4 8.74 0.42 2 0.23 26 S24 9.83 0.85 N
5 S5 7.64 0.44 1 0.13 27 S25 4.94 0.85 D
6 S6 8.87 0.66 454 50.63 28 S25 8.36 0.69 N
7 S7 7.22 0.63 13 1.80 29 S26 4.06 0.69 D
8 S8 8.34 0.59 6 0.72 30 S26 8.37 0.89 N
9 S9 9.65 0.68 5 0.52 31 S27 4.89 0.86 D

10 S10 6.18 0.46 196 31.74 32 S27 9.05 0.83 N
11 S11 6.61 0.61 345 52.21 33 S28 5.54 0.94 D
12 S12 6.49 0.53 180 27.75 34 S28 8.46 0.95 N

13 * S13 7.69 0.58 99 12.87 35 S29 5.25 0.93 D
14 S14 9.05 0.68 162 17.90 36 S29 8.68 0.75 N

15 * S15 7.32 0.63 161 22.00 37 S30 4.13 0.93 D
16 S16 11.17 0.64 109 9.76 38 S30 8.09 0.90 N
17 S17 6.79 0.38 319 46.97 39 S31 4.60 0.86 D
18 S18 8.56 0.90 39 4.56 40 S31 9.23 0.85 N
19 S19 8.18 0.87 27 3.30 41 S32 4.80 0.79 D
20 S20 7.02 0.77 161 22.92 42 S32 7.86 0.92 N
21 S21 8.40 0.91 1 0.12 43 S33 5.21 0.47 D
22 S22 5.73 0.80 34 5.93 44 S33 9.52 0.71 N

ST: Sleep Time in hours; SE: Sleep Efficiency; TNE: Total Number of Events; AHI: Apnea-Hypopnea Index; The
recordings marked with “*” symbol are the recordings considered uncertain (see the Section 2.6 for the selection
of the uncertain recordings).

2.3. Pipeline Overview

A multi-scale algorithm using motion signal was designed to assess the sleep quality
on the two different datasets. The pipeline can be divided into different steps with the
purpose of identifying different states during sleep and analyze their trends at different time
scales. After the extraction of the motion signal and the pre-conditioning, the thresholding
method is applied to recognize different kinds of activity in various scenarios. Specifically:
THABS represents the threshold below which subject’s absence from the bed is identified
and THDI is the threshold above which displacements due to subject movements are
detected. Afterwards, a multi-scale analysis based on the cumulative histogram of quiet
sleep periods is performed to analyze sleep fragmentation to recognize quiet and disrupted
sleep. The evaluation is based on prolonged periods of absence of displacements, identified
through minQS that represents the minimum duration considered for a quiet sleep interval.
A summary of the pipeline is shown in Figure 1.
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Figure 1. Complete pipeline of the designed algorithm.

2.3.1. Motion Detection

The power of the motion signal varies according to the different types of noise that
may arise in the environment. Three types of noise identify three situations of interest to be
monitored during sleep:

• External noise: due to the characteristics of the surrounding environment (e.g., traffic).
When only this noise is present (σ2 < THABS) absence from the bed can be assumed
(hereafter called ABS);

• Physiological noise: due to the natural physiological activity (e.g., breathing) of the
subject. If detected (THABS < σ2 < THDI), presence in the bed with no sleep disturbs
or movements can be assumed (hereafter called quiet sleep—QS);

• Displacement: due to physiological movements (σ2 > THDI) during sleep cycle or
abnormal ones (hereafter called DI).
Body movements cause the strongest components in the signal, sometimes even satu-
rating the sensor signal, being many orders higher than the other possible components
generated by the different noise sources. It is well-known that in typical adult sleep
behavior transitions from REM to almost-awake moments generate body movements
each 1.5 h that last a few seconds in physiological sleep [38,39]. On the other hand,
displacements may also be related to other kind of conditions and scenarios. In partic-
ular, the presence of disturbed breathing events (i.e., all thoracic movements stronger
than normal physiological activity such as apnea) or abnormal movements (such as
myclonias) induce strong fluctuations in the motion signal.
The major difference between these cases can be identified through the different
duration and periodicity of the events. The abnormal ones are, indeed, more frequent
and closer to each other, resulting in shorter periods of disrupted sleep (hereafter
called DS). An example of signal highlighting apnea events is shown Figure 2 (box 1).

Therefore, due to the huge differences in the power of the motion signal, the first
phase of the algorithm consists of detecting the three main states through the thresholding
method. In Figure 2 (box 2), a motion signal showing the differences in power during
these distinct states (i) ABS; (ii) QS/DS and (iii) DI and the two thresholds that would
identify them is reported. In the figure, it is also highlighted that signal intervals between
the two thresholds cannot be considered only related to QS, but also to DS, according to
the different duration of periods with no displacements.
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Figure 2. Example of motion signals on time intervals of about one hour of the rec. 2. In (a) the
labeled apnea events are shown. Brown dashed lines represent the event starting, while yellow
dashed lines the ending. In (b) the two thresholds are shown to highlight the different sources of
noise. In particular, THDI (horizontal line in red) is the threshold above considering displacements,
whereas THABS (horizontal line in gray) is the threshold below considering absence from the bed
because of the reduced activity due to the only external noise. The activity between the two thresholds
highlights the period spent lying on the bed that can identify QS and DS. Furthermore, a long time
interval identifying QS is highlighted between the two dashed blue vertical lines, while a short time
interval identifying DS is shown between the two dashed green vertical lines.

2.3.2. Multi-Scale Analysis for Sleep Fragmentation

The only identification of body displacements may suggest potential sleep disorders
but in some cases it is fundamental to specifically investigate their characteristics. For this
purpose, we introduced the cumulative histogram of QS periods.

The proposed visualization method helps to investigate the duration of these peri-
ods, as well as the total amount of QS based on the multi-scale approach. In addition,
the disruptions are also easily interpretable and analyzable in their characteristic periodicity.
This evaluation of the sleep fragmentation allows to highlight random or specific patterns
providing a minimum duration to actually consider a period as QS.

In some cases such as SAHS or myoclonia, threshold-based detection occurs frequently
and for a short time. As a consequence, short periods of motion signal below THDI and
between two detected DI events surrounding them (for example, intervals between apnea
or abnormal movement events or short stationary periods due to physiological movements)
would be correctly detected as DS because of the definition the minimum QS interval.
On the other hand, intervals in which the subject is simply lying on the bed would not be
considered as QS since they are expected to be characterized by shorter periods of absence
of DI. Furthermore, cases in which frequent and long movements occur, not necessarily
related to any specific disorder, would be highlighted, identifying a fragmented sleep that
may be helpful to be aware of.

Therefore, the exploration of sleep fragmentation through the cumulative histogram of
QS periods allows to improve the thresholding-based estimation by accurately identifying
real QS (length(THABS < σ2 < THDI) > minQS) and DS (length(THABS < σ2 < THDI) <
minQS). The latter, among all the possible scenarios in which it can occur, is indeed
generally related to bad rest periods that it would be crucial to detect and distinguish from
QS to correctly monitor the sleep.

In Figure 3, the expected cumulative histograms of QS periods in possible disturbed
and healthy good sleep cases are shown. Specifically, it is possible to analyze how much
time the subject has spent in periods of QS long at least a certain duration (indicated on the
x-axis). Reducing this interval, the cumulative duration increases until it is matched to the
recording duration. Indeed, the scale of durations is followed by DI and ABS durations
which complete 100% of the cumulative. For this reason, the axis is oriented from long to
short periods of QS. It is worth noting that the axis starts from periods of 60 min, because an
occasional interruption of a longer period does not affect the estimate. It is worth noting
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that high slope points are marking the step-up of QS interruption below the given duration.
This may be a marker of repeated disturbances (e.g., SAHS events or myoclonus) with a
period equal or shorter than the step-up point.

Figure 3. Schema representing the possible cumulative histogram of QS periods in disturbed (red) and
healthy good (dashed blue) sleep. The point of maximum slope (red dot) is expected to characterize
the dynamics of the fragmented sleep.

The typical sleep pattern is characterized by regular REM/light/deep sleep cycles,
thus, it is expected to present no movement other than spontaneous ones occurring during
transitions from REM and to result in a modest percentage of fragmented sleep. Conversely,
distinct characteristics can be expected and investigated on the cumulative histogram of QS
according to the different pathological/disturbed sleep. For example, major percentages of
sleep constituted by short periods of QS or significant durations of ABS can be expected in
SAHS or insomnia, respectively.

2.4. Displacement Analysis and Parameters Optimization

In order to identify the four states of interest (i) ABS; (ii) QS; (iii) DS (iiii) DI, it is
necessary to appropriately tune the parameters of the method.

The first parameter to be set is the window size to be considered to evaluate the power
of the signal. For this purpose, the distribution of durations of the characterizing DI events
were investigated across the two datasets setting different thresholds at 0.01, 0.05, 0.1, 0.2,
0.3, 0.35 and 0.5 on the normalized signal.

From the Probability Density Functions (PDF) shown in Figure 4, it is possible to notice
that the durations of the DI extracted from Dataset 1 are distributed up to 20 s. Conversely,
in Dataset 2, the majority of the displacement periods (more than 50% of total duration) are
segments of 1- and 2-s.

Figure 4. Probability Density Function (PDF) of the displacements duration in the Apnea Dataset (a)
and the Shift-Work Dataset (b). The durations were obtained setting thresholds at 0.01, 0.05, 0.1, 0.2,
0.3, 0.35 and 0.5.
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Therefore, the power of the signal was evaluated on 1-s windows as larger intervals
would lead to the misdetection of short movements and transitions, which turn out to be
very frequent, especially in the Dataset 2.

It is also worth noting that longer DI characterizing Dataset 1 are in agreement with
subjects enrolled for sleep problems. Furthermore, the maximum value in the PDF, for al-
most all thresholds used can be noticed around 5 s, highlighting the typical duration in
the order of less than a dozen seconds of the apnea episodes. [6,40]. Conversely, subjects
enrolled in Dataset 2 are all healthy resulting in shorter DIs.

Afterwards, the two thresholds and the minimum QS period parameter, described in
Section 2.3.1, were set. The optimization was performed using a grid-search based strategy
on both datasets. In particular, the best values were found maximizing the correlations
between QS and SE and between DS and AHI, when present. In order to have balanced
values, both correlation values must be greater or equal than 0.5. Then, the best parameters
were obtained maximizing the sum of the two correlations. The resulting values chosen
were 0.05 for the threshold to recognize DI and 15 min as the minimum QS period.

2.5. Detrended Fluctuation Analysis

A widely-used multi-scale method is the Detrended Fluctuation Analysis (DFA). DFA
is a nonstationary time series technique that allows to recognize long-range correlations.
It is widely applied in the biomedical field for a variety of applications, such as [41,42].
DFA calculates the root-mean-square fluctuation of time series, disregarding trends and
nonstationarities in the data. It allows the detection of intrinsic self-similarity, and it also
avoids the spurious detection of apparent self-similarity.

DFA can be divided into three steps. The first one involves the shifting by the mean
and the cumulative sum of the time series. The second one consists of dividing it into
epochs (scales) of various size (logarithmically spaced) and considering these different
segmentations. In the third step, each epoch e is detrended and locally fit to a polynomial
finding the root mean square RMSe, and then the RMSΔs:

RMSΔs =

√√√√ 1
N

N

∑
i=1

[y(i)− yΔs(i)]2 (1)

where N is the total number of data points, RMSΔs is the root mean square obtained for
each scale and y is the input signal.

The Hurst exponent H is then estimated by computing the linear fit between log-
Δs and log-RMSΔs as a function of log-n. H is thus the slope of the line in the range
of time scales of interest and can be estimated using linear regression. Through H it is
possible to quantify the temporal correlations in the signal scale over different window
sizes. In particular, whether:

• H = 0.5, the time series is uncorrelated;
• H > 0.5, there are larger fluctuations on longer time-scales than expected by chance,

thus long-range correlations;
• H < 0.5, means that fluctuations are smaller in larger time windows than expected by

chance, thus the time series is anti-correlated.

Results of DFA applied to the motion signal extracted were compared to indexes
from the cumulative histogram of QS periods. For this reason, we logarithmically selected
15 scales from 1 to 60 min, in agreement to the scales considered by our method (see
Section 2.3.2).

2.6. Experimental Evaluation

Pearson’s correlation analysis was performed between different indexes in multiple
scenarios and conditions to assess the extracted sleep quality.
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First, the QS extracted index was correlated to SE, which was available for all record-
ings. SE is defined as:

SE =
ST
TIB

(2)

where ST is the total sleep time and TIB the total time spent “in bed”.
Second, AHI, which is the number of apnea and hypopnea events per hour of sleep,

was correlated to DS/DI index. AHI is defined as:

AHI =
TNE
TR

(3)

where TNE is the total number of apnea and hypopnea events and TR is total time duration
in hours of the recording. The AHI values for adults are categorized as:

• Normal (N): AHI < 5
• Mild sleep apnea (Mi): 5 ≤ AHI < 15
• Moderate sleep apnea (Mo): 15 ≤ AHI < 30
• Severe sleep apnea (S): AHI ≥ 30

In the correlation analyses, a recording with high values of SE and AHI (Rec.: 3; SE:
0.95; AHI: 40.99) was marked as uncertain. Furthermore, we also considered as uncertain
three recordings where hypopneas composed at least 80% of the total abnormal breathing
events (see Table 1). These specific abnormal respiratory events, indeed, do not generate
any motion [43], thus resulting in being undetectable by PBS.

Furthermore, the two datasets were split according to the SE. Specifically, the threshold
was set to 80%, being considered normal/healthy SE above it [44]. It resulted in 19 record-
ings with good sleep efficiency (GSE), of which 16 are from the Dataset 2 (8 during day
and 8 during night) and 3 from Dataset 1 (all with AHI < 5) and 21 bad sleep efficiency
(BSE), of which 15 are from the Dataset 1 (4 with AHI ≥ 30, 4 with 15 ≤ AHI < 30,
2 with 5 ≤ AHI < 15 and 5 with AHI < 5) and 6 from the Dataset 2 (3 during day and 3
during night).

Correlation analyses were also separately performed on the two datasets to evaluate
the presence and the duration of the displacements (DI state). These durations were statisti-
cally evaluated through Mann–Whitney tests between the independent subgroups obtained.

In particular, in Dataset 1, the recordings were analyzed together and divided into
the normal and mild sleep apnea (N/Mi) group vs. moderate and severe sleep apnea
(Mo/S) group. It resulted in groups of 10 N/Mi and 8 Mo/S recordings. In Dataset 2,
the recordings were analyzed together and dividing between the ones acquired during the
day (11 recordings) and during the night (11 recordings).

Finally, the multi-scale evaluation performed by using the algorithm was compared to
DFA. First, the Hurst exponent, that assesses the self-similarity of the time series, was com-
puted and tested through Mann–Whitney tests to assess statistically significant differences
across all groups. Then, SE and AHI were correlated to the Hurst exponent.

3. Results

First, sleep fragmentation was evaluated through the cumulative histogram of QS
periods. In general, this visualization revealed a greater area and a lower slope in subjects
with high SE and low AHI. In Figure 5, some example cases together with pie charts of the
three main states detected are shown.

It can be noticed that, since the percentage of DI is indicated in the cumulative his-
togram of QS immediately after the value 1 min on x-axis, the recordings having more
movements (green area) results in steeper slopes between the last QS period and DI percent-
age (such as subject 17 reported on middle left). Furthermore, it is worth noting that the
area of the cumulative histogram increases together with the percentage of QS (blue area).
No differences are visible in the last part of the cumulative histogram of QS periods because
the ABS state was never detected since no subject ever stood up during the acquisitions.
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Figure 5. Sleep quality evaluation and fragmentation of recordings from both datasets through pie
charts and cumulative histogram of QS periods.

All the results obtained by the algorithm for the three main states to be detected
recording by recording are then summarized in Table 2.

Afterwards, the Leave-One-Out Cross-Validation was performed on both datasets
evaluating the variability in the correlations between SE and QS detected and between AHI
and DS/DI detected. Parameters and results found were in line to those obtained through
Grid-Search approach described in the Section 2.4. In particular, the resulting correlations
between all SE and QS obtained (0.7162 ± 0.0143) and AHI, when available, and DS/DI
obtained (0.8537 ± 0.0073) remain stable across all folds.
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Table 2. Sleep quality indexes detected by the proposed algorithm for each recording of the
two datasets.

1. Apnea Dataset 2. Shift-Work Dataset

Rec. Subj.
QS
(%)

DS
(%)

DI
(%)

Rec. Subj.
QS
(%)

DS
(%)

DI
(%)

1 * S1 12.02 51.46 36.52 23 S23 90.42 8.92 0.66
2 S2 35.23 49.81 14.96 24 S23 71.37 27.34 1.29

3 * S3 12.14 81.02 6.84 25 S24 93.64 5.43 0.93
4 S4 42.05 47.10 10.85 26 S24 79.78 19.66 0.56
5 S5 48.26 41.38 10.36 27 S25 81.31 17.99 0.70
6 S6 10.15 72.20 17.65 28 S25 68.34 30.61 1.05
7 S7 62.73 32.11 5.16 29 S26 73.18 25.99 0.82
8 S8 58.72 36.49 4.79 30 S26 79.03 20.08 0.89
9 S9 44.06 45.47 10.47 31 S27 81.28 18.13 0.59

10 S10 2.30 84.54 13.16 32 S27 68.44 30.76 0.80
11 S11 6.69 7.23 86.08 33 S28 92.63 6.94 0.43
12 S12 24.62 56.64 18.74 34 S28 91.23 8.34 0.43

13 * S13 0.02 82.63 17.35 35 S29 77.15 22.40 0.45
14 S14 44.02 48.89 7.09 36 S29 74.65 24.63 0.72

15 * S15 0 60.32 39.68 37 S30 84.57 14.87 0.56
16 S16 26.58 62.37 11.05 38 S30 77.02 22.19 0.79
17 S17 0 19.48 80.52 39 S31 68.61 30.76 0.63
18 S18 58.62 37.71 3.67 40 S31 69.66 29.31 1.03
19 S19 71.82 24.86 3.32 41 S32 82.21 17.14 0.65
20 S20 4.26 70.11 25.63 42 S32 92.58 6.87 0.55
21 S21 65.16 30.89 3.95 43 S33 50.16 48.39 1.45
22 S22 49.38 45.14 5.48 44 S33 76.13 23.27 0.60

The recordings marked with “*” symbol are the recordings considered uncertain (see the Section 2.6 for the
selection of the uncertain recordings).

Afterwards, the agreement between SE and QS and AHI and DS/DI was specifically
evaluated through Bland–Altman plots reported in Figures 6 and 7, where uncertain
recordings were also marked.

Figure 6. Bland–Altman Plot of SE vs. QS.
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Figure 7. Bland–Altman Plot of AHI vs. DS/DI.

The plots point out differences between each QS and the corresponding SE, and be-
tween DS/DI and AHI. In both cases, the mean difference was close to the zero (−0.24 and
0.37, respectively). As regards the comparison between SE and QS, only one recording is out
of agreement range (95% range: [−0.70; 0.23]) and it was one of those marked as uncertain.
All the other differences resulted in good agreement across a wide range of SE. The other
three uncertain recordings were among the recordings that deviated most from the average.
Moreover, in the evaluation of AHI in comparison to DS/DI, all differences were within
the confidential interval (95% range: [−0.09; 0.82]) with the uncertain recordings among
the most deviated ones.

The DI state was then specifically assessed. It is possible to notice that, for the thresh-
old (th = 0.05) selected through the procedure described in the Section 2.4, statistically
significant differences were found. In particular, the duration of DI differs between Shift-
Work and Apnea datasets. Furthermore, this difference was also found in the Apnea
Dataset between N/Mi and Mo/S (p-value: <0.05) subgroups and in both datasets between
GSE and BSE (p-value: <0.05) subgroups. A similar duration of displacements resulting in
no statistical difference was found in day and night recordings of the Shift-Work Dataset.
These results, together with the number of DI for each subgroup, are summarized in Table 3.
It is worth noting that the duration of displacements is expressed through the mean and
rank, at which outliers corresponding to 5% of the displacements in the least group were
removed in the pairwise analysis.

Moreover, the Hurst exponent obtained from DFA was evaluated at dataset- and
group-level, as described in the Section 2.6. Larger fluctuations resulting in a higher H
value in the Apnea Dataset with respect to the Shift-Work Dataset were found. Similar
dynamics were found between groups obtained from the same dataset (N/Mi vs. Mo/S,
D vs. N; p-value: >0.05), but a statistically significant difference in the self-similarity was
found between GSE and BSE groups extracted from both datasets (p-value: <0.05). All the
results are summarized in Table 4.

Afterwards, the indexes extracted by the algorithm and Hurst exponent were corre-
lated at dataset- and group-level with SE and AHI. All the results obtained from these
correlation analyses are summarized in the Table 5.

The correlation between QS and SE resulted to be positive and strong in almost all
groups. The Shift-Work Dataset resulted to be greater (0.82) in the case of recordings
acquired during the day than those acquired during the night (0.66). In the whole Apnea
Dataset, a minor correlation (0.5) with respect to Shift-Work Dataset (0.76) was noticed.
At the same time, in this dataset, a strong correlation was found between DS/DI and AHI
(0.85), greater in Mo/S (0.68) than N/Mi (0.44). On the contrary, with respect to QS vs. SE,
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the two subgroup correlations were comparable (N/Mi: 0.53; Mo/S: 0.48). Considering
both datasets, QS and SE strongly correlated as previously mentioned (0.72). Conversely,
the two subgroups, divided according to the SE show low and comparable correlation
values (GSE: 0.4; BSE: 0.39).

As regards as DFA result evaluation, the Hurst exponent was correlated to SE and
AHI, when available. In particular, in the Apnea Dataset, H vs. SE found correlation of
−0.6 in N/Mi subgroup, −0.41 in Mo/S subgroup and −0.47 in the whole set. AHI was
also compared to the results of the DFA but no correlations were found. On the other
hand, in the Shift-Work Dataset, only a high positive correlation of 0.75 in the case of night
recording was revealed. In general, good negative correlation (−0.53) between H and SE in
both datasets was highlighted, resulting in a great difference between GSE (0.34) and BSE
(−0.45) subgroups.

Table 3. Displacements extracted.

Displacements

1. Apnea Dataset
Dur N/Mi (n = 10) Mo/S (n = 8) p Wh

mean [rank] (s) 22.93 [1, 63] 26.85 [1, 110] <0.05 25.54 [1, 110]
n. DI 1494 2973 4467

2. Shift-Work Dataset
Dur D (n = 11) N (n = 11) p Wh

mean [rank] (s) 2.19 [1, 6] 2.17 [1, 5] >0.05 2.17 [1, 6]
n. DI 607 1271 1878

Both
Dur GSE (n = 19) BSE (n = 21) p Wh

mean [rank] (s) 4.65 [1, 21] 24.12 [1, 111] <0.05 18.62 [1, 111]
n. DI 1791 4554 6345

Dur: duration in seconds; n. DI: number of displacements; Wh: whole dataset; n: number of recordings. Non
parametric (Mann–Whitney test). In GSE: 16 are from Dataset 2 — 8 D and 8 N — and 3 from Dataset 1 — all N. In
BSE: 15 are from the Dataset 1 — 4 S 4 Mo, 2 Mi and 5 N — and 6 from the Dataset 2 — 3 D and 3 N.

Table 4. Self-similarity through Hurst Exponent (H) computation.

Hurst Exponent

1. Apnea Dataset
H N/Mi (n = 10) Mo/S (n = 8) p Wh

mean ± std 0.76 ± 0.07 0.75 ± 0.05 >0.05 0.75 ± 0.06
2. Shift-Work Dataset

H D (n = 11) N (n = 11) p Wh
mean ± std 0.63 ± 0.06 0.65 ± 0.04 >0.05 0.64 ± 0.05

Both
H GSE (n = 19) BSE (n = 21) 6 p Wh

mean ± std 0.65 ± 0.05 0.73 ± 0.08 <0.05 0.69 ± 0.08
Wh: whole dataset; n: number of recordings. Non parametric (Mann–Whitney test). In GSE: 16 are from Dataset 2
— 8 D and 8 N — and 3 from Dataset 1 — all N. In BSE: 15 are from the Dataset 1 — 4 S 4 Mo, 2 Mi and 5 N — and
6 from the Dataset 2 — 3 D and 3 N.

Table 5. Correlation analyses.

Correlation Analyses

1. Apnea Dataset 2. Shift-Work Dataset Both
N/Mi

(n = 10)
Mo/S
(n = 8)

Whole
D

(n = 11)
N

(n = 11)
Whole

GSE
(n = 19)

BSE
(n = 21)

Whole

QS-SE 0.53 0.48 0.50 0.82 0.66 0.76 0.40 0.39 0.72
DS/DI-AHI 0.44 0.68 0.85 na na na na na na

H-SE −0.60 −0.41 −0.47 −0.17 0.75 0.07 0.34 −0.45 −0.53
H-AHI −0.21 0.30 −0.02 na na na na na na

Pearson’s correlation (good correlation in bold). na: unavailable results because of missing AHI; n: number of
recordings. In GSE: 16 are from Dataset 2 — 8 D and 8 N — and 3 from Dataset 1 — all N. In BSE: 15 are from the
Dataset 1 — 4 S 4 Mo, 2 Mi and 5 N — and 6 from the Dataset 2 — 3 D and 3 N.
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4. Discussion

In this work, we proposed a multi-scale method to assess the sleep behavior from
motion signals acquired through an unobtrusive device. For this purpose, we computed
indexes related to the sleep fragmentation at different temporal scales and evaluated
them through the comparison to clinical indexes. The complexity of the method is low,
the hardware requirements are low-cost and the four indexes of quality estimated are easily
interpretable and informative for users in everyday life.

The multi-scale analysis provided a visualization of sleep fragmentation and a tool
to identify states of interest during sleep, with particular attention to the definition of
quiet/disrupted sleep (QS/DS). In fact, although numerous valuable indexes are often
estimated through objective measures from different devices [20–24], the recognition of
real periods of QS is fundamental and may represent an easily interpretable indication
for the subject, especially in home monitoring. In different sleep pathologies, multi-scale
components of sleep fragmentation are difficult to be recognized and more informative
visualizations would be essential in clinics to better interpret the pathology of a specific
patient and its characteristics. For example, in the case of a Chronic Obstructive Pulmonary
Disease subject, how long is the interval between two apneas? The cumulative histogram
of QS periods extracted from the motion signal allowed us to analyze the sleep patterns in
comparison to healthy subjects and to visualize differences in sleep fragmentation.

4.1. Sleep Quality Indexes Assessment

From the different examples in Figure 5 some important characteristics were enhanced.
As expected, a minimal DI percentage was found in healthy subjects due only to the
spontaneous movements before REM phases (brief awakenings), characterizing a typical
no-disturbed sleep phase pattern [38,39]. Other general relevant properties observed in
these cases were that 50% of sleep is composed of QS periods of more than 30 min and
that the movements are exclusively composed of physiological ones that fragment in short
periods of QS a modest percentage of sleep. Conversely, during different kinds of disturbed
sleep it can be noticed that:

• Total time spent in DI state is greater than in the case of healthy sleep;
• Long periods of QS with an absence of DI constitute a small percentage of the night

and fragment a modest percentage of sleep into short periods of QS;
• The point of maximum slope characterizes the dynamics of fragmented sleep.

In particular, the latter represents the minimum QS period to be considered to assure
that real QS and DS periods are identified. In the datasets analyzed, 15 min was found to
be the best value to distinguish healthy and pathological sleep. However, it is worth noting
that, for the pathological cases, this point can significantly change according to the different
nature and severity of the disturbance. For example, the maximum slope in the reported
examples in Figure 5, although being less than 15 min, varies from being very close to the 0
min in the figure on the middle left (subject 17), to almost 15 min on the top left (subject
14). This value corresponds to the fastest change in the cumulative histogram, thus it is
expected to underline the most frequent and characteristic time interval fragmenting the QS
of the subject. The present insight points out the necessity of re-calibrating this parameter
for the specific sleep disorder to enable an optimal recognition. At the same time, this
result confirmed:

• The validity of the cumulative histogram of QS periods as a tool for the qualitative
investigation of sleep fragmentation during a night of sleep;

• Its worthiness in longitudinal studies, whatever the chosen period is. In fact, al-
though different sleep disorders can have different and specific dynamics, it is pos-
sible to highlight quality trends, showing improvements and worsenings among
multiple days.

Furthermore, these findings on the cumulative histogram of QS periods demonstrated
that a multi-scale analysis is needed when analyzing sleep from motion signal.
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Indeed, for the purpose of assessing QS and DS, we dealt with the problem of the
definition of a gold standard. These represent particular states during sleep which are
easily interpretable but that, to the best of our knowledge, were not explored through
objective measures from contactless devices. In this regard, what is a real period of quiet
sleep is not straightforward since in many sleep disorders there are intervals of stillness
that may be not actually quiet, as above-mentioned for apparent quiet sleep between
abnormal breathing/movement events [40]. Another concern about this finding is about
the intrinsic limitation of motion signal. It is indeed impossible to distinguish between
real QS periods and intervals in which the patient is completely still but awake. This is an
intrinsic limitation of the technology [24] but the identification of a minimum QS period
can also improve the robustness of the methods in these cases. On one hand, by correctly
setting this value, real QS periods are detected by verifying that they are enough long
to be considered undisrupted. On the other hand, it is unlikely that an awake person
remains totally still and with completely regular breathing for more than 15 min. Either
way, the awareness on this definition of QS must be considered.

To have a direct relation of QS and DS with gold-standard, qualitative and quantitative
analyses were carried out to show the agreement. From a first visual exploration of the
results (in Table 2) it can be noticed that QS in agreement to SE, shown in Table 1, is higher
in Dataset 2 than Dataset 1. On the other hand, the DI state appears to be much less present
in Dataset 2, which is consistent with known characteristics of motion signal in SAHS [7].
Indeed, subjects from Dataset 1 were acquired for sleep problems, resulting in numerous
members of the group suffering from SAHS and, thus, several abnormal movements.
Furthermore, a higher DS/DI tends to be associated with a higher AHI and a reduced SE.
A clear example is given by the comparison of recordings 6 and 19. Second, the correlations
between SE and QS and DS/DI and AHI of all recordings resulted to be high and with low
variability in cross-validation. This result was also confirmed by the Bland–Altman Plot
in Figures 6 and 7, where all recordings resulted to be in the agreement range, except for
one case, also marked as uncertain. In general, all uncertain recordings were among the
most deviated ones. This may suggest a good correlation with the proposed measures,
unless unexpected scenarios of SE and AHI and the intrinsic limitation of hypopneas
recognition. It is indeed well known that this kind of event can be difficult to be detected
by different devices and technologies [45,46], and, especially in motion signals where
differences cannot be visualized [43].

The motion signal, indeed, reflects the activity occurring during sleep, capturing all
kinds of movement, proving to correlate to wake stage periods [30,47]. The presence of
movement was thus tested on the datasets available through DI state to point out possible
valuable characteristics of the subgroups. In particular, it can be noticed that in Table 3
differences were found between all subgroups considered. In particular, in the case of
splitting through AHI and SE the differences were found to be statistically significant, while
dividing by timetable (Day vs. Night) not. Although a slight difference in DI durations
resulting in a bit higher variability during day was found (mean ± std; D: 2.19 ± 1.47; N:
2.17 ± 1.35), the number of DI events per hour in the whole of Dataset 2 was higher during
the night (D: 10.42; N: 13.84). This seems to confirm the similar results between daytime
and nighttime sleep as in [9,10], especially in subjects adapted to the shift-works. In a future
perspective, the algorithm may be employed in long-term monitoring at home according
to the different shifts and to assess the adaptation to these. Unobtrusive technologies
may be of unvaluable interest for the prevention of the well-known risks of occurrence
of coronary heart and cardiovascular disease, and beyond that, psychomotor and mood
problems [9,10,48].

4.2. Multi-Scale Analyses Comparison

Afterwards, the DFA multi-scale method was applied to investigate differences in the
Hurst Exponent. First, it is worth noting that no significant changes were found in Table 4
between subgroups of the same datasets. D and N recordings show similar dynamics in
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agreement to similar SE values in the two groups (D: 0.83 ± 0.14; N: 0.83 ± 0.09) but also
duration and number of DI per hour, as above mentioned. H also did not discriminate N/Mi
and Mo/S apnea patients. It is worth noting that 7 of the 10 recordings within N/Mi had
healthy AHI, but only 3 of these had healthy SE (≥80%). This result may suggest a reduced
sleep quality due to possible other reasons [49], although a low number of apnea episodes
occurred. This bias in the results seems to be also confirmed by the analysis performed
dividing both datasets between high and low SE. These two subgroups were composed
of 19 and 21 subjects, respectively, where the first included the 3 subjects from Dataset 1
considered healthy according to SE and 16 subjects from Dataset 2. This may suggest that
self-similarity significantly grows in fragmented sleep, presenting larger fluctuations.

Table 5 showed the correlations found between clinical indexes and computed ones
at the group- and subgroup-level. For example, for QS vs. SE a better correlation of
daytime recordings was noted, which may be associated to a slightly less variable SE
(SE-D: 0.83 ± 0.14; SE-N: 0.83 ± 0.08) due to shorter recordings. For other cases, slight
general greater correlation was found in subjects that slept better (N/Mi and GSE), which
is probably associated with motion signals from Mo/S and BSE being more variable,
in general. For this reason, in cases of bad sleep it is easier to correctly recognize DS/DI,
also mirroring the better correlation with AHI for Mo/S subgroup. Furthermore, bad sleep,
in general, can be caused by a number of reasons [49]. For example, although cases of
recordings with high percentage of hypopneas were excluded, in remaining ones they
can still be present and produce false QS periods. To deeply investigate the hypopneas,
the abnormal breathing events in the two subgroups of N/Mi and Mo/S were analyzed.
Although in Mo/S the number and the duration was clearly greater, the percentage of
hypopneas with respect to total duration of abnormal breathing events was less than N/Mi.
In particular, 0.39% of the total duration of all breathing events in Mo/S were hypopneas,
whereas 0.58% of the duration in N/Mi were hypopneas, hence resulting in a more difficult
recognition of DS and higher QS periods identification.

Another interesting finding was that the Hurst exponent resulted to negatively corre-
late to SE (−0.53). In agreement with previous result, H appears to grow as SE decreases,
and it is worth noting that this value is very similar in Mo/S and BSE subgroups (Mo/S:
−0.41; BSE: −0.45). The latter indeed contains all recordings of Mo/S (8/21) but also
seven from N/MI and six from Dataset 2. These cases appear to not heavily affect the
result obtained in Mo/S group and consistency among all unhealthy subjects. In general,
this may suggest an auto-affine structure in motion signal of SAHS cases, given by the
known periodical pattern [50,51], which is not present instead in low SE cases. On the other
hand, a positive good correlation was found between H and SE during night recordings of
Shift-Work Dataset (0.75). In D group and whole Dataset 2 this correlation was not found.
It is worth noting that the N group comprised the longest acquisitions and with good
and the least variable SE across all subjects, resulting to be the most homogeneous group.
In this case, a greater agreement between H and SE is suggested and it can be speculated
to mirror the less clear auto-affine structure in shorter recordings. Furthermore, we may
also speculate that H appears to be prone to great changes according to variable SE values.
Furthermore, this could possibly explain the great difference between the values in GSE
and BSE, since GSE is mainly composed by these recordings from Dataset 2, joined with
three recordings from Dataset 1 containing few apnea episodes. On the other hand, BSE is
mainly composed of recordings from Dataset 1, resulting in huge differences in correlations
obtained in the use of DFA, probably due to such different apnea case patterns.

4.3. Home Monitoring Perspectives

The results cast a new light on the home sleep assessment measures obtained from
unobtrusive devices that may be intuitively monitored by the subject. Recently many stud-
ies focused on the problem of minimizing intrusiveness [52], especially during sleep [53].
The problems of intrusiveness and conditioning related to PSG are well-known [54,55],
thus the continuous screening through home devices results to be fundamental, especially
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considering the latest development of these technologies [56]. Moreover, PBS has the advan-
tage of eliminating this problem. Numerous devices for sleep monitoring were successfully
developed in recent years, such as smartwatches and waist or chest belts [20,24,27], but with
the discomfort of wearing them during the whole sleep night. Although, it may be consid-
ered only a small limitation, its continuous use in daily living is discouraged. Conversely,
contactless devices do not need direct contact to the patient’s body, not generating any
discomfort and reaching good performance.

In Table 6, some state-of-the-art studies are reported to compare the proposed work in
terms of technologies, methods, datasets used, detected indexes and advantages. In par-
ticular, the studies were selected according to the datasets used and to characterize the
most widespread and valuable sleep indexes extracted in literature. It is worth noting from
the table that the studies based on EEG, ECG and PPG signals [32,36,57–62] can be used
to extract valuable information on sleep stages or sleep apnea; however, they need higher
computational cost and specialized devices for signal acquisition. On the other hand, other
works based on motion signal from accelerometer and PBS [7,10,24,63,64] underline the
advantage of causing low or mild discomfort to generally detect sleep and wake phases.
However, the proposed work based on PBS allows us to characterize the sleep activity level
dynamics from the multi-scale perspective and to provide interpretable indexes for the
continuous home monitoring, based only on the motion signal.

It is worth noting that home assessment through these devices must be employed
carefully. PSG is the gold-standard for sleep analysis and m-Health technologies may be
helpful in raising a first alarm. Indeed, subjects suffering from many sleep disturbances are
not often aware of their condition resulting in fatigue, low concentration and memoriza-
tion [65]. In other cases, there is hope for the clinicians that biomarkers and other indicators
will help diagnose presymptomatic signal of diseases. It was indeed found for example
that Parkinson’s Disease can be associated with Restless Leg Syndrome [66–68]. It follows
that its preventive identification would be of great importance.

Furthermore, as above mentioned, the algorithm results to be particularly helpful
for longitudinal study and, in general, to have an easy monitoring of personal sleep. It
could be helpful, for example, to visualize the sleep fragmentation of specific disturbed
nights or analyze the trend of QS/DS in correspondence to the introduction of preventive
measures. Examples may be the better care of personal sleep hygiene, such as making
sport [69,70], avoiding the use of electronic devices before sleeping [71], or in the worst
scenarios, the introduction of sleeping medication.

Table 6. State of the art comparison.

State of the Art
Reference Year Device Method Dataset (n. sub) Detected Indexes Advantages

Proposed work 2022 PBS
Multi-Scale Signal
Processing based
method

33 (HC vs. SAHS vs.
SW) ABS, QS, DS, DI No discomfort, interpretability,

model complexity

Hussain et al. [57] 2022 EEG MLP 154 Sleep stages Performance, low number of
channels, no feature extraction

Yang et al. [58] 2022 ECG 1D-SEResGNet 25 (HC vs. SAHS) OSA Embeddable in wearable, no
feature extraction

Wu et al. [59] 2021 PPG (wrist) IBS for fluctuation
analysis, RFC 92 (HC vs. SAHS) AHI Mild discomfort, interpretability

Banfi et al. [63] 2021 ACC (wrist) CNN 81 Sleep vs. Wake Mild discomfort, no feature
extraction

Baty et al. [36] 2020 ECG belt SVM 241 (HC vs. SAHS) AHI Mild discomfort, interpretability

Hulsegge et al. [64] 2019 2 ACC (thigh,
ankle)

LMM and GEE
logistic regression

194 (SW vs.
non-SW)

Onset, Offset,
TST

Mild discomfort, interpretability,
model complexity

Mendez et al. [10] 2017 PBS SVM 6 SW Sleep Stages No discomfort, interpretability,
model complexity

Aktaruzzaman et al. [24] 2017 ACC (wrist), HRV SVM 18 HC Sleep vs. Wake Mild discomfort, interpretability,
model complexity

Mora et al. [7] 2015 PBS Signal Processing
based method 24 (HC vs. SAHS) AHI No discomfort, interpretability,

model complexity

EEG: Electroencephalography; ECG: Electrocardiography; PPG: Photoplethysmography; ACC: triaxial accelerom-
eter; HRV: Heart Rate Variability; MLP: Multilayer Perceptron; 1D-SEResGNet: one-dimensional squeeze-and-
excitation residual group network; IBS: Information-Based Similarity; RFC: Random Forest Classifier; CNN:
Convolutional Neural Network; SVM: Support Vector Machine; LMM: Linear Mixed Models; GEE: Generalized
estimation equations; SW: Shift Workers.
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4.4. Accelerometer Experimentation and Adaptability

The present study was conceived with the aim of also identifying periods of absence
from the bed, which may be particularly helpful in cases of subjects with insomnia disorder
or that awakens multiple times during night [72]. Due to the fact that no subject in either
dataset ever got out of bed during the recordings, this investigation was not possible on the
presented data. This points out the importance of home monitoring, since the acquisition
conditions in a controlled environment do not perfectly mirror the real conditions. This
state was qualitatively assessed through an experimentation performed on a prototypal
device with a triaxial accelerometer, designed to monitor the sleep of subjects during daily
living. In particular, the recognition of the state of absence from the bed was achieved
through a manual setup, lasting 1 min. The device acquired data for 1 min with and
without the subject on the bed and setting the threshold through a ROC analysis. Due to
the significant difference between the only external noise, due to traffic and environmental
conditions, visible when subject is not lying on the bed, and physiological noise, due to
breathing for example, the identification did not result in relevant errors. All the results
on the other states representing sleep indexes resulted to be in line with PBS performance,
confirming the adaptability of accelerometer data.

5. Conclusions

In this work, we studied the multi-scale behavior of the motion signal extracted from
PBS during sleep. The experimentation conducted on two different datasets acquired from
shift-working nurses and people with suspicions of sleep apnea was assessed in correlation
to clinical indexes and compared to a multi-scale method. The entire pipeline is suitable
for online computation on an unobtrusive device dedicated to the described purpose of
avoiding any discomfort to the subject. This may provide valuable indications in daily
living for a rapid and continuous screening of sleep through a home device.
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Abstract: We present a single-beam all-optical two-channel magnetic sensor scheme developed for
biological applications such as non-zero-field magnetoencephalography and magnetocardiography.
The pumping, excitation and detection of magnetic resonance in two cells are performed using
a single laser beam with time-modulated linear polarization: the linear polarization of the beam
switches to orthogonal every half-cycle of the Larmor frequency. Light with such characteristics can
be transmitted over a single-mode polarization-maintaining fiber without any loss in the quality of
the polarization characteristics. We also present an algorithm for calculating optical elements in a
sensor scheme, the results of measuring the parametric dependences of magnetic resonance in cells,
and the results of direct testing of a sensor in a magnetic shield. We demonstrate sensitivity at the
level of 20 fT/

√
Hz in one sensor channel in the frequency range of 80–200 Hz.

Keywords: optically detected magnetic resonance; quantum magnetometer; magnetoencephalography

1. Introduction

One of the most notable challenges of our time is the task of investigating ultra-weak
magnetic fields of the brain. The set of scientific methods that provide a solution to this
problem is called magnetoencephalography (MEG) [1,2]. The avalanche growth of interest
in this problem, which has manifested itself over the past ten years, is mainly associated
with the advent of compact, optical magnetic field sensors. The principle of operation of
these sensors is based on the effect of magnetic resonance (MR) [3–5]. The application of
these sensors to MEG problems has shaken the long-term monopoly of superconducting
SQUID (superconducting quantum interference device) systems [6,7] and made it possible
to overcome their inherent limitations.

The first (and still the most sensitive) optical sensors capable of competing with SQUID
systems were sensors based on the SERF (spin exchange relaxation-free) effect [8–15]. These
are zero-field since they operate only in a zero magnetic field, that is, in stationary magneti-
cally shielded rooms. After SERF sensors convincingly demonstrated their competitiveness
in MEG tasks, a number of research groups began to explore the possibility of adapting
non-zero-field sensors to MEG tasks. These sensors are initially characterized by somewhat
less sensitivity than SERF sensors. Still, their use would make it possible to drastically
reduce the requirements for suppressing the external field and its spatial gradients. This,
in turn, would make it possible to replace expensive magnetically shielded rooms with
magnetic shields and, in the future, to do without shields at all [16–22]. The possibilities
and prospects for the use of scalar non-zero-field optical magnetometers (the class to which
the sensor presented in this work belongs) were studied in [20] and partially in [23]. A
recent review [24] summarizes the general aspects of optical and magnetic field sensors
and the problems associated with applications to biomagnetic measurements.

This paper presents a scheme of such a sensor, a single-beam all-optical non-zero-field
two-channel magnetometer, i.e., a magnetometer-gradientometer of a non-zero field. The
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sensor is built in accordance with the principles we outlined earlier in [25,26]; it meets the
MEG requirements for all the main parameters, namely, for sensitivity, speed and ability to
function without creating RF interference to adjacent sensors.

2. Materials and Methods

The scheme proposed by us in [25] is extremely simple and compact. This advantage
is due to several factors.

First, it uses a single beam with modulated (from partial left circular polarization to
linear and then to partial right circular polarization) ellipticity for pumping, excitation, and
detection of the MR. This scheme differs from numerous single-beam schemes proposed
earlier [27–29] by the absence of sensitivity-reducing compromises. Pumping by the circu-
larly polarized component and detection by the linearly polarized radiation component are
separated in time, according to the phases of the Larmor precession. The ellipticity of the
output beam changes its sign during the modulation period and acquires the maximum
absolute value twice during the period TM = 2π/ωM [25]. The optimal values of maximum
ellipticity lie in the range of 15–20◦, meaning that the linear component is always present
in the beam. Twice per period, the polarization becomes purely linear (π), with the po-
larization azimuth corresponding to the polarization azimuth of the incoming beam. For
the purposes of the following discussion, radiation can be considered as the sum of two
components, purely linear (π) and purely circular (σ±), characterized by time-modulated
intensities. This type of modulation is achieved using an electro-optical modulator (EOM).
This allows for pumping and detection to be carried out with the highest possible efficiency.

Second, we use combined (hyperfine + Zeeman) pumping, first proposed in [30] and
theoretically justified in [31]. The frequency of the beam is tuned to the D1 optical line of
the alkali metal line; it links the hyperfine level F = I − 1

2 of the ground state S1/2 of the
atom with levels F’ = I ± 1

2 of the nearest excited state P1/2 [30,31]. The effective Zeeman
pumping of the F = I + 1

2 , mF = F sublevel is due to the partial conservation of momentum in
the excited state: the electronic part of the momentum is completely destroyed in collisions
with the buffer gas, but the nuclear component is predominantly preserved [31].

Third, we use a modification of the Mx design, known as the Bell–Bloom scheme [4,32].
In this modification, the excitation of the MR is carried out by modulating the circular
component of the pumping light at the Larmor frequency. This makes it possible to perform
the excitation without a resonant radio-frequency field and, as a result, eliminate the
interference such a field creates.

Fourth, we use strong optical pumping, which allows us to collect most of the atoms at
the level F = I + 1

2 , mF = F. William Happer called this state “end-state” or “stretched”, and
showed [33] that the spin-exchange rate in this state can decrease significantly. Indeed, as
the pump intensity increases, the broadening of the magnetic resonance is preceded by its
narrowing [34], which makes it possible to bring the sensitivity of the nonzero field sensor
closer to that of the SERF sensor to some extent.

Finally, we detect MR at the transition F = I + 1/2, mF = F ↔ F – 1 of the ground state
by rotating the polarization angle of the linearly polarized (π) radiation component [35,36].
Therefore, the π-component of the beam is detuned in frequency from the interrogated
optical transition by the hyperfine splitting of the ground state (for Cs, this is 9.192 GHz).
Thus, the conditions for quantum non-demolition measurement (QND) are realized.

Thus, we simultaneously achieve near-optimal conditions for both optical pumping
and MR excitation and detection. However, adapting the scheme [25] for application in
MEG sensors is associated with certain difficulties. Since light contains both linearly and
circularly polarized components, it cannot be transmitted through an optical fiber [37]
without deteriorating its polarization characteristics. The obvious solution is to use a
separate EOM in each sensor, which can significantly increase the cost of a multichannel
MEG complex. On the contrary, the use of a common (sufficiently powerful compared
to VCSEL lasers used in SERF zero-field sensors) pump source with a common EOM for
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several sensors would not only significantly simplify and reduce the cost of the MEG
complex but also reduce technical noise by suppressing the common light noise.

In [38], we proposed a modification of the scheme, which will subsequently allow
using a standard single-mode polarization-maintaining (SM-PM) optical fiber to solve
this problem. Such a fiber has two eigenmodes characterized by orthogonal (s and p)
polarizations propagating along the fiber’s axis [39]. The phase delay between the modes
is not fixed and can change when the fiber is bent, preventing radiation transmission with
elliptical polarization. Nothing, however, prevents the transmission of linearly polarized
radiation with modulated azimuth over the SM-PM fiber. The azimuth of the polarization
is modulated as follows: s-polarization is transmitted through the fiber during the first
half-cycle of the Larmor frequency, while p-polarization is transmitted during the second
half-cycle (note that we do not impose any requirements on the stability of the phase delay
between these two half-cycles). Now the problem is reduced to ensuring that this radiation
can be converted into radiation containing π and σ ± components, properly modulated in
intensity. As will be shown below, such a conversion can be achieved using a combination
of a quarter-wave plate (QWP) and a regulated linear polarizer.

This paper presents a scheme of a single-beam all-optical non-zero field two-channel
magnetometer-gradientometer (Figure 1) with two channels pumped and interrogated by
one common beam; we also present a general algorithm for calculating the optical scheme
of the sensor and the results of a study of its characteristics.

 
Figure 1. Simplified scheme of the experiment: LS—radiation source, OI—optical isolator, EOM—
electro-optical polarization modulator, QWP—quarter-wave plate, RLP—regulated linear polarizer,
NF—neutral filter, HWP—half-wave plates, C1, C2—gas cells with Cs vapors, STM is a semitrans-
parent mirror, NTM is a non-transparent (opaque) mirror, BPD are balanced photodetectors, T is
a thermostat, SH is a magnetic shield with a solenoid. Arrows indicate beam polarization states
corresponding to two modulation half-cycles. Inset: time diagram of the polarization composition of
the beam during one modulation period.

The measurements were carried out on the setup described in [23,25,40] and modified
in accordance with the task of the experiment. The light source (LS) consisted of an external
cavity diode laser (VitaWave ECDL 895R) generating about 25 mW at a wavelength of
894.592 nm, an optical isolator, and an electro-optical modulator (Thorlabs EO-AM-NR-
C1). The control voltage at the EOM, modulated at a frequency of ~42 kHz with an
amplitude of 200 V, provided a phase shift of ±45◦ between the components of the light
decomposed along the EOM’s own axes. An additional QWP (quarter-wave plate) provided
linearly polarized radiation with modulated azimuth generation at the output of the
radiation source.
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The sensitive elements of the gradiometric sensor were cubic cells 8 × 8 × 8 mm3

in size, containing saturated cesium vapor and nitrogen at a pressure of ~100 torr. A
thermostat with cells and a heater was placed in the central region of a multilayer magnetic
shield. A magnetic field induction of ~12 μT was maintained in the shield. A quarter-
wave plate (QWP) installed at the sensor input converts linearly polarized radiation with
modulated azimuth into radiation with switchable (from left to right and vice versa) circular
polarization (the angle between the QWP axes and the fiber’s own axes is 45◦). Further, the
regulated linear polarizer converts the circular polarization into an elliptical one, and the
linear component necessary for detection appears in the beam. The linear polarizer used
in our experiment is a stack of plane-parallel glass plates fixed at a Brewster angle to the
beam direction in a common frame. The polarizer is adjusted by changing the number of
plates. The angle of rotation of the frame around the beam determines the polarization
azimuth of the π component. Unfortunately, in our experiment, the power of the laser
source (taking into account the losses introduced by additional optical elements) turned out
to be insufficient to ensure the optimal light intensity for pumping and interrogating two
channels of the gradiometer. This prevented us from using SM-PM fiber. Instead, we had to
confine ourselves to a model experiment, i.e., to reproduce at the output of the light source
those characteristics that can certainly be obtained at the output of an ideal SM-PM fiber.

Half-wave plates (HWP) are installed in such a way as to ensure the optimal azimuth
of the π-component of radiation in the cells with respect to the direction of the magnetic
field vector. In our experiment, the linear polarizer was positioned in such a way that the
electric vector E of the linear radiation component was parallel to the field vector B. When
D1 line is used for the pump, the above makes it possible to minimize the broadening of the
MR by the linear radiation component by eliminating its destructive interaction with the
most populated (as a result of optical pumping) levels F = I + 1/2, mF = ±F. The sensor axis
passes through the centers of cells C1 and C2 in the direction of light propagation—along
the x-axis in Figure 1. When the sensor is rotated around its axis, the parallelism of vectors E
and B can be ensured by choosing the direction of the HWP axis. This will make it possible
to rotate the sensor around its axis by 360◦ without degrading its parameters, which should
be considered an additional advantage of the proposed scheme.

The block of the optical scheme, which requires preliminary calculation, is enclosed in a
dotted rectangle in Figure 1. Two problems were solved: (1) conversion of the input linearly
polarized light with modulated azimuth into the light with the required polarization
parameters, and (2) preservation of the polarization parameters of the light when the beam
is split into two beams necessary for pumping and interrogating two cells. The ultimate
goal of optimization was to ensure identical characteristics of the beams in the two cells in
all phases of modulation.

The second task turned out to be non-trivial since any beam-splitting mirror, as well
as any interference beam splitter, either changes the ratio of the intensities of the s and
p radiation components or introduces a significant phase delay between them. Of the
possible solutions, we chose the most compact one: rotating the beam polarization azimuth
in front of the beam-splitting mirror and introducing a neutral filter into one of the channels.
The rotation is carried out by rotating the linear polarizer frame; after passing through the
beam-splitting unit, it has to be compensated by additional HWPs.

To calculate the optical scheme, we used the formalism of Mueller matrices [41]. The
Stokes vector of radiation that has passed through a number of optical elements is described
by successive multiplication by matrices corresponding to these elements. Thus, the Stokes
vectors in two cells can be described by the expressions:

S1 = MHWP MNTM MSTM−T MRLP MQWPS0;
S2 = MHWP MNF MSTM−R MRLP MQWPS0,

(1)

where S0 is the Stokes vector of the input beam, MNTM is the non-transparent mirror
matrix, MSTM-T is the semitransparent mirror matrix for the transmitted beam, MSTM-R is
the semitransparent mirror matrix for the reflected beam, MNF is the neutral density filter
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matrix, MRLP is the variable linear polarizer array, MQWP is quarter-wave plate matrix,
MHWP—half-wave plate matrix. A stack of N plane-parallel glass plates located at the
Brewster angle (MRLP = MG

N, one glass is described by the MG matrix [42]) was used as a
regulated linear polarizer.

The Mueller matrices used in our calculations are given in Appendix A. During the
optimization, the following parameters varied: α, the RLR rotation angle, and TNF, which
is the density of the neutral filter.

Figure 2a shows the calculation result for the optical elements used in our experiment.
The reflection and transmission coefficients of the beam-splitting mirror for the s component
are Rs = 0.72 and Ts = 0.28, respectively, and for the p component, Rp = 0.37 and Tp = 0.63.
The reflection coefficients for an opaque silver mirror for the s and p components are
Rs = 0.997 and Rp = 0.976, respectively. Equalization of radiation parameters in two cells is
achieved at α = 46◦ and TNF = 0.82.

  
(a) (b) 

Figure 2. (a) Example of calculation results: red lines are the light intensity at the input to cell C1,
and blue lines are the light intensity at the input to cell C2. Solid lines are the circular component;
dashed lines are the linear component; dotted lines are the total intensity. (b) Oscillograms of the
magnetic resonance signals in cells C1 and C2 after synchronous detection (one component and MR
signal module are shown).

Oscillograms of MR signals in two cells after synchronous detection (one component
and MR signal module) are also shown (Figure 2b). As Figure 2b illustrates, the ampli-
tudes and widths of the resonances in the cells are approximately the same, and there is
no frequency shift between the resonances, which indicates a good balance of the light
parameters in the two cells.

3. Results

Differences in the radiation characteristics in the proposed scheme from those required
in [25] are reduced to the fact that the ellipticity modulation is carried out to a rectangular
law (Figure 1) instead of a sinusoidal one. Thus, both the circular and linear components
are characterized by constant intensities, and the phases of MR signal detection are not
separated in time from the pump phases. The influence of the modulation shape in the
standard two-beam Bell–Bloom scheme was studied in [40], and it was shown that although
rectangular modulation leads to a slight broadening of the MR signal, it nevertheless allows
values close to the ultimate sensitivity to be reached; however, the assumption that this is
also true for the single-beam scheme requires proof. Therefore, we simulated the pumping
conditions during the light transmission by the method described above and studied the
MR parameters. The measurement results are shown in Figure 3. As in [25], we estimated
the ultimate short-term sensitivity by calculating the ratio of the measured resonance
amplitude to its measured width and to the calculated spectral density of the photocurrent
shot noise.
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Figure 3. Dependence of the parameters of magnetic resonance when pumped with light with
modulated ellipticity on the light intensity at the input of the cell: (a) ellipticity for different numbers
(indicated by numbers in the graph field) of glass plates in a linear polarizer; the black circles indicate
the optimal ellipticity values for this series, (b) magnetic resonance half-width, (c) estimation of the
ultimate (limited by calculated shot noise) sensitivity. Connecting lines are guides to the eye.

In accordance with the results presented in Figure 3, the required value of ellipticity
(Figure 3a) was chosen according to the criterion of maximum sensitivity (Figure 3c), based
on the available intensity of laser light and the value of losses on the elements of the optical
scheme. As a consequence, the parameters of the linear polarizer (the number of glass
plates in a stack) and the light intensity in each cell were determined (see Section 4).

Next, we measured the gradiometric sensitivity of the proposed scheme when pumped
with linearly polarized radiation with modulated azimuth. To do this, a magnetic coil was
mounted on the frontal plane of the thermostat. The field generated by the coil in each of
the cells was measured by the displacement of the magnetic resonance line. Based on the
response to the same field, the frequency band of the sensor was determined: f 0 = Γ/(2π)
≈ 315 Hz. Further, in the experiment, the response speed was additionally limited by the
time constant of the synchronous detector (τ = 0.3 ms, 18 dB/octave). The measurement
results are shown in Figure 4.
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Figure 4. Noise spectrum of the magnetic resonance signal in cell C2 (red line), and the difference
signal of magnetic resonances in cells C1 and C2 (blue line)—moving r.m.s. average in 1 Hz band.
Gray lines are the spectra corrected for the frequency response of the sensor. The peak at a frequency
of 10 Hz (marked with an arrow) is a calibration signal with an amplitude of 10 pT r.m.s. The peak at
a frequency of 50 Hz is the interference from the main currents. The dashed lines are the noise floors
of the signal in cell C2 and of the difference signal, respectively. Inset: the magenta line is the sensor’s
frequency response (cutoff frequency f 0 = 315 Hz), the black line is the sensor’s frequency response,
taking into account the time constant of the SR830 synchronous detector (τ = 0.3 ms, 18 dB/octave).

4. Discussion

Let us try to evaluate how the proposed changes in the sensor design affect its ultimate
characteristics, the most significant of which are the achievable sensitivity and bandwidth.
For this, we compare the MR parameters obtained in this work with the parameters obtained
in [25]. According to the evaluation given in [25], the shot-noise-limited sensitivity reached
8.8 fT/

√
Hz at a bandwidth (determined by the MR width) of the order of Γ/(2π) ≈ 580 Hz,

whereas, according to Figure 3, the shot-noise-limited sensitivity reaches (11.0 ± 0.7)
fT/

√
Hz at a bandwidth of Γ/(2π) ≈ 430 Hz. These results show that the proposed scheme

can be used in MEG complexes without noticeable deterioration in their parameters.
The difference in sensitivity is explained, in particular, by the additional light loss in

the linear polarizer. The optimal value of ellipticity lies in the range of 10–20◦ (Figure 3a,c),
which is fully consistent with the data [25]. With the intensity available to us in one cell
(roughly corresponding to the magenta series in Figure 3), the ellipticity of (11 ± 1)◦ is
optimal. This means that (47.9 ± 0.3)% of the total intensity is lost in an ideal adjustable
linear polarizer. As a polarizer, we used a stack of conventional microscope coverslips.
Due to the imperfection of the surfaces and the spread of their installation angles, the
loss on a stack of 9–10 glass plates providing the corresponding ellipticity (see Figure A1)
amounted to (66.7 ± 0.9)%. Under the conditions of limited laser power (15.65 mW at
the EOM output); this loss forced us to reduce the working cell temperature to ~80 ◦C
compared to 90 ◦C in [25].

It should be noted that the data in Figure 3 were obtained without using a beam
splitter, i.e., all the light intensity was fed into one cell. When we operate with two cells
(Figure 4), the power available in our experiment in each channel is ~40% of the maximum
(see Figure 2a),—i.e., about 2.1 mW per cell. As a result, the ultimate shot-noise-limited
sensitivity deteriorates to the value of (15.1 ± 0.7) fT/

√
Hz, and a MR half-width Γ is

reduced to 2π·350 Hz.
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The MR width, in addition to the bandwidth, also determines the permissible field
inhomogeneity, that is, the maximum difference in magnetic fields at the points of location
of individual sensors. Thus, at half-width Γ = 2π·350 Hz, the maximum allowable deviation
of the field from the array-average value for a sensor based on cesium atoms will be
approximately k·Γ/γCs ≈ 50 nT (here, γCs ≈ 2π·3.5 Hz/nT is the gyromagnetic ratio Cs,
k ≈ 0.5 is the width of the conditionally linear section on the dispersion contour of the MR,
referred to Γ). An array radius of 0.1 m corresponds to an allowable gradient of 1 μT/m.

If we exclude from the spectra in Figure 4 the zones of technical interference and
technical noise that dominates at low frequencies (up to 80 Hz), the gradient noise lies in
the range of 30–60 fT/

√
Hz. In terms of one channel of the sensor, this is 20–40 fT/

√
Hz,

and approximately corresponds to the sensitivity limit estimate given earlier in this section.
In addition to photon shot noise, the contribution to the white noise recorded at frequencies
above 80 Hz can come from both technical factors (white thermal Johnson noise) and
fundamental ones (atomic projection noise). The atomic projection noise amplitude with
the optimal parameter configuration is comparable to the shot noise amplitude.

According to [43], in our cylindrical shield, in which the radius of the inner shell
made of steel is a = 17 cm, the thermal noise amplitude should be ~23 fT/

√
Hz. The noise

suppression coefficient in the gradiometric scheme in this shield should be about 1.19·(d/a),
where d is the distance between the cells. In our experiment, d = 1.0 cm, which corresponds
to noise suppression by a factor of 20, down to 1.1 fT/

√
Hz. The value of the thermal noise

component proportional to f−1/2 should also not exceed units of fT/
√

Hz at a frequency of
1 Hz [43]. Thus, the thermal noise of the shield should not make a significant contribution
to our measurements.

The external field’s suppression level in the gradiometric scheme can be estimated
from the suppression of pickup at a frequency of 50 Hz: it is suppressed approximately
70-fold. We can take the residual pickup level (~1.4%) as an upper bound for the unbalance
of the gradiometer parameters.

At the same time, both the f−1/2 noise, which dominates at frequencies up to 80 Hz,
and white noise, which dominates at frequencies above 80 Hz, are suppressed much less,
approximately by a factor of 16

√
2 ≈ 23 (taking into account that two channels contribute

to the noise of the difference signal). This can be explained by laser radiation noise, both
intrinsic and acoustic, during the transmission of radiation through the air over a distance
of ~2 m. Thus, to further improve the scheme, it is necessary, first, to increase the power of
laser radiation (taking into account the inevitable losses during input into the SM-PM fiber)
and, second, to actively stabilize its parameters.

5. Conclusions

We have shown that the earlier proposed scheme can be modified to exclude the
transmission of elliptically polarized radiation from the pump source to the sensor—which
makes it possible to use optical fiber for radiation transmission. This eliminates the last
fundamental obstacle to constructing a magnetoencephalographic system of a non-zero
field based on single-beam optical sensors. A magnetometer-gradientometer based on
this principle has demonstrated a limiting sensitivity (estimated from the ratio of signal
to linewidth and photon shot noise) at the level of (11.0 ± 0.7) fT/

√
Hz at the optimum

optical pump intensity and 15–18 fT/
√

Hz at the distribution of pump radiation on two
sensor channels. Direct measurement of the gradiometric sensitivity of the proposed
scheme showed that the sensitivity of one sensor channel in the range of 80–200 Hz
reaches 20 fT/

√
Hz. Further improvement in sensitivity can be achieved by using a more

powerful laser pump source with a fiber output and active methods for suppressing laser
radiation noise.
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Appendix A

The Muller matrix [41] for neutral filter:

MNF = TNF

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠, (A1)

where TNF is the transmittance of the neutral filter.
Muller matrix for the phase plate (the expression is used to calculate the matrices

MQWP, MHWP):

MWP =

⎛
⎜⎜⎝

1 0 0 0
0 Cos2(2Θ) + Sin2(2Θ)Cos(δ) Cos(2Θ)Sin(2Θ)[1 − Cos(δ)] Sin(2Θ)Sin(δ)
0 Cos(2Θ)Sin(2Θ)[1 − Cos(δ)] Cos2(2Θ)Cos(δ) + Sin2(2Θ) −Cos(2Θ)Sin(δ)
0 −Sin(2Θ)Sin(δ) Cos(2Θ)Sin(δ) Cos(δ)

⎞
⎟⎟⎠, (A2)

where Θ is the angle of rotation of the main axis of the plate, δ is the phase delay angle
(equal to π/2 for QWP, and π for HWP).

Muller matrix for a mirror (the expression is used to calculate the matrices MNTM,
MSTM-T, MSTM-R)):

MM =

⎛
⎜⎜⎜⎝

Rp+Rs
2

Rp−Rs
2 0 0

Rp−Rs
2

Rp+Rs
2 0 0

0 0 −√
RpRsCos(δ) −√

RpRsSin(δ)
0 0

√
RpRsSin(δ) −√

RpRsCos(δ)

⎞
⎟⎟⎟⎠, (A3)

where Rp and Rs are the reflection coefficients for p and s polarizations, respectively, and
δ is the phase delay angle. When calculating the transmission through a semitransparent
mirror, the reflection coefficients are replaced by the transmission coefficients Tp = 1 − Rp,
Ts = 1 − Rs, and the sign of δ is inverted.

In general, the normal mirror plane is not parallel to the beam. If the axis of rotation of
the mirror does not coincide with the axis of the coordinate system, the Muller matrix of the
mirror is transformed using the matrix MR, which describes the rotation of the polarization
plane through the angle Θ:

MM′ = MR(Θ)MM MR(−Θ) = MR MM MR
−1 (A4)

where

MR =

⎛
⎜⎜⎝

1 0 0 0
0 Cos(2Θ) Sin(2Θ) 0
0 −Sin(2Θ) Cos(2Θ) 0
0 0 0 1

⎞
⎟⎟⎠, (A5)

Expression (A5) is also applicable to the calculation of the matrix MSF(n1,n2,ϕ), which
describes reflection and refraction when light is incident at an angle ϕ on the boundary of
two media with refractive indices n1 and n2, and the coefficients Rp(n1,n2,ϕ), Rs(n1,n2,ϕ),
Tp(n1,n2,ϕ), Ts(n1,n2,ϕ) are described by Fresnel equations [42].

The matrix MGL(n1,n2,ϕ) describes the through passage of a beam through two surfaces
of a plane-parallel glass plate:

MGL0(n1, n2, ϕ) = MSF(n2, n1, ψ)MSF(n1, n2, ϕ). (A6)
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where ψ is the direction of the refracted beam inside the plate: sin(ψ) = (n1/n2)sin(ϕ).
If the beam displacement is large compared to the beam diameter, subsequent re-

reflections can be neglected and vice versa. If the plate thickness is small compared to the
beam diameter, the beam shift due to re-reflections can be neglected. Then, the expression
for the transmission of a plane-parallel glass plate MGL(n1,n2,ϕ) must be constructed by
summing an infinite series describing multiple reflections from two surfaces:

MGL(n1, n2, ϕ) = MSF(n2, n1, ψ)
∞

∑
i=0

[1 − MSF(n2, n1, ψ)]2i MSF(n1, n2, ϕ), (A7)

Consequently,

MGL(n1, n2, ϕ) = [2 − MSF(n2, n1, ψ)]−1MSF(n1, n2, ϕ). (A8)

Accordingly, a stack of N plates located at an angle ϕ to the beam direction is described
by the matrix:

MRLP(n1, n2, ϕ, Θ) = MR(Θ)(MGL(n1, n2, ϕ))N MR(−Θ). (A9)

Since the RLP must provide partial suppression of one linear component with the
maximum transmission of another, the angle ϕ should be chosen equal to the Brewster
angle: ϕ = ϕBr = arctg(n2/n1). The calculated linear polarizer parameters are shown in
Figure A1.

Figure A1. Characteristics of the output radiation of a regulated linear polarizer consisting of N thin
glass plates-calculation by Formulas (A5)–(A9); the input light is circularly polarized. (a) Dependence
of the ellipticity of the output light on the angle of inclination of the glass plates; Inset: ellipticity of
the output light as a function of the number N of glass plates set at the Brewster angle. The line is the
calculation; the circles are the experiment. (b) Dependence of the transmission of the s-component of
radiation on the angle of inclination of the glass plates.
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Abstract: A high power setup for multichannel time-domain (TD) functional near infrared spec-
troscopy (fNIRS) measurements with high efficiency detection system was developed. It was fully
characterized based on international performance assessment protocols for diffuse optics instruments,
showing an improvement of the signal-to-noise ratio (SNR) with respect to previous analogue devices,
and allowing acquisition of signals with sampling rate up to 20 Hz and source-detector distance up
to 5 cm. A resting-state measurement on the motor cortex of a healthy volunteer was performed with
an acquisition rate of 20 Hz at a 4 cm source-detector distance. The power spectrum for the cortical
oxy- and deoxyhemoglobin is also provided.

Keywords: time domain; functional near infrared spectroscopy; diffuse optics; brain; hemodynamics;
resting-state brain oscillation

1. Introduction

By exploiting picosecond pulsed lasers and single photon detectors, the time-domain
(TD) near infrared spectroscopy (NIRS) technique allows retrieval of the absolute values
of biological tissues’ optical properties, i.e., absorption (μa) and reduced scattering (μs

′)
coefficients. The acquired photon distribution of time-of-flight (DTOF) can be time-gated
in order to better discriminate between the contribution of late photons, which traveled to
a greater depth, and early photons, which traveled mostly through the more superficial
layer [1]. Due to the poor signal-to-noise ratio (SNR), most of the TD NIRS instruments op-
erate at an acquisition rate < 2 Hz, which is typically enough for monitoring the task-related
cortical hemodynamic response that usually occurs with time constants of a few seconds [2].
However, for some specific applications, such as the monitoring of brain connectivity or
resting-state oscillations, that sampling rate is too low. Spontaneous ongoing global activity
of the brain at rest is highly structured in spatio-temporal patterns called resting-state net-
works. These fluctuations of brain activity exist even in the absence of tasks or stimuli [3],
and were originally characterized by indirect and slow measurements of neuronal activity
by blood oxygen level-dependent (BOLD) functional MRI (fMRI) thanks to the neurovas-
cular coupling mechanism [4]. A non-invasive estimate of brain oscillations can also be
achieved with the functional NIRS (fNIRS) technique, that exploits the different absorption
spectra of oxygenated hemoglobin (O2Hb) and deoxygenated hemoglobin (HHb), as well
as the penetration capability of NIR light in the human head [5]. By calculating the power
spectral density of the signals related to the hemodynamic parameters in the frequency
range <5 Hz, it is possible to study the presence of characteristic frequency peaks associated
with physiological and/or pathological phenomena. Resting-state oscillation fNIRS studies
were performed on patients with mild cognitive impairment [6], acute brain injuries [7] or
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autoregulation dysfunction [8]. By means of a multichannel setup, connectivity studies are
also possible [9]. It is worth noting that all fNIRS studies were performed by a continuous
wave (CW) or frequency domain (FD) approach, by which it was possible to reach a proper
acquisition rate (e.g., 10 Hz) [10–12], differently from TD fNIRS.

During recent years, a huge development of the TD NIRS technique and instrumen-
tation has been observed, with interesting advancements at the level of both research
laboratories and companies; however, no sufficient SNR level was reached in order to
increase the measurement acquisition rate [13]. It is worth noting that increasing the mea-
surement SNR will not only allow faster acquisition rates, but also longer source-detector
distance (ρ) measurements, as compared to the typical examples reported in the literature,
i.e., <4 cm. Although the possibility to probe tissue in depth at null source-detector distance
was also demonstrated by TD fNIRS, the use of larger ρ can be of help in overcoming non-
idealities of the instrument response function (IRF) or in improving depth selectivity [14].
On the other hand, an increase in ρ corresponds to a decrease in signal at the detector
(i.e., for an increase of 1 cm in the source-detector distance, we lose about one order of
magnitude in the signal). The main technological bottlenecks from this point of view are:
(i) the maximum average laser power is limited by safety regulations (<2 mW/mm2 for
λ < 700 nm and from 2 up to 4 mW/mm2 for 700 < λ < 860 nm [15]); (ii) the need for high
stability in time at the sub-nanosecond level, to avoid cross-talk between time drift and the
estimation of optical properties; (iii) a limited signal harvesting efficiency of the detection
line, i.e., the responsivity of the system. Koga et al. [16] attempted to develop a high power
TD NIRS system by modifying an existing device. This instrument was employed in the
assessment of superficial and deep muscle deoxygenation kinetics during heavy intensity
exercises. They reported that it was possible to detect differences in optical properties up to
3 cm depth in a phantom, performing measurements at different source-detector distances
(from 3 to 7 cm, at 1 cm steps in separate trials) but only at a 0.5 Hz acquisition rate. During
the in vivo measurements (ρ = 3 and 6 cm), it was possible to find differences in superficial
and deep muscle deoxyhemoglobin kinetics following the onset of heavy intensity exercise.
In a recent work, Jiang et al. [17] presented a TD fNIRS optical tomography system (NIROT
Pioneer) based on supercontinuum laser sources and SPAD detectors reaching a sampling
rate of 2.5 Hz, aimed to perform DOT acquisitions. In this case, a fiber optical switch alter-
natively selected 11 source positions. The probe geometry allowed them to obtain an FOV
with 2.5 cm diameter (i.e., ρ < 3 cm). A commercial solution, named “Flow”, was presented
recently by Kernel (Kernel, Los Angeles, CA, USA, https://www.kernel.com/ (accessed on
22 December 2022)). They showed a multichannel wearable headset that measures brain
activity [18], which potentially allows measurements up to a 100 Hz acquisition rate in
the single channel, but now limited to 7.1 Hz to avoid cross-talk effects among channels.
They also reported measurements performed at a 6 cm source-detector distance, but with a
limited count rate (~104 counts/s).

For what concerns the possibility to perform brain resting-state oscillation studies with
TD fNIRS, to the best of our knowledge, there are only two previous attempts reported in
the literature. In 2004, there was a 12 Hz acquisition from Themelis et al. (three independent
channels with ρ = 1, 2 and 3 cm) [19], where they reported the presence of the heartbeat
in the 830 nm cortical signal, without presenting a spectrum. They also affirmed that the
selection of a proper time delay in the detected signal could increase the sensitivity of the TD
fNIRS system to contributions coming from the deeper brain regions. The second attempt
was performed by Kacprzak et al. in 2019 [20]. They developed an instrument based
on pulsed semiconductor lasers and time-correlated single photon counting electronics
(TCSPC), step-index fibers with 400 μm diameter and an IRF with a full width at half
maximum (FWHM) of 500 ps. They presented in vivo acquisitions of the brain resting-state
oscillations for both healthy subjects and patients with severe neurovascular disorders,
with a 10 Hz acquisition rate, ρ = 3 cm and two locations on the head. They evaluated
light attenuation (which reflects the superficial variations) and variance (more related to
the cerebral compartment) of the DTOFs performing an FFT analysis of their changes.
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They showed interesting results for what concerns the presence of peaks in the frequency
spectrum of the attenuation but, unfortunately, the measurement duration was set to only
10 min for the patients, and the frequency peaks in the variance spectrum were buried by
the noise, indicating an insufficient SNR during the acquisition. In addition, they did not
provide the same analysis for the hemodynamic parameters.

In this paper, we present a TD fNIRS setup where high power laser sources, hybrid
photomultiplier tubes and custom detection bundles made of plastic optical fibers are
employed. The instrument SNR is drastically improved with respect to previous analogue
instrumentation, allowing acquisitions with a rate of 20 Hz and with source-detector dis-
tances up to 5 cm, both in phantom and in vivo applications. A first preliminary frequency
domain analysis of the hemodynamic signals derived from TD fNIRS measurements is
also provided.

2. Instrument Description

The TD fNIRS device is equipped with two high power pulsed diode lasers (LDH-P-C,
Picoquant GmbH, Berlin, Germany) working respectively at 689.5 ± 0.5 nm (RED) and
828.5 ± 0.5 nm (IR). They are electronically driven at 80 MHz (PDL-828 Sepia II, Picoquant
GmbH, Berlin, Germany) and emit pulses with a minimum pulse width of 72 ps (96 ps)
for the RED (IR). The beam is coupled to step-index multimode glass optical fibers with a
core/cladding diameter of 600/660 μm and NA = 0.22 (QMMJ-55-IRVIS-600/660-3-1.25,
OZ Optics LTD., Ottawa, ON, Canada). It is possible to attenuate the beams by means of
motorized and electronically driven continuous glass variable neutral density attenuators
(NT43-770, Edmund Optics GmbH, Germany) inserted in a free beam region created by
means of specific U-brackets (UB-12-11, OZ Optics LTD., Ottawa, ON, Canada). Before
the sample, an optical beam combiner (FOBS-12P, OZ Optics LTD., Ottawa, ON, Canada)
delays the IR wavelength and couples it with the RED one, in order to implement a time-
multiplexing modality for the injection of light [21], i.e., both wavelengths interleaved
in the same temporal window (12.5 ns) with a proper relative delay (6.4 ns). After the
sample, diffused light is collected by means of four independent detection lines (D1–D4).
Each detection line consists of: (i) a custom-made fiber optic bundle with 3 mm diameter
and 1.25 m length, composed by 7 graded-index plastic optical fiber (POF) with NA = 0.3,
core/cladding diameter of 900/1000 μm (FiberFin Inc., Yorkville, Illinois, USA) in hexago-
nal configuration; (ii) an attenuation stage provided by electronically driven continuous
glass variable neutral density attenuators (NDC-50C-4-B, Thorlabs Inc., Newton, NJ, USA);
(iii) a hybrid photomultiplier tube (PMA-50 Hybrid Series, Picoquant GmbH, Berlin, Ger-
many). The DTOF acquisition is accomplished by a TCSPC unit (HydraHarp 400, Picoquant
GmbH, Berlin, Germany) with short dead time (<80 ns), a maximum count rate per input
channel of 12.5 × 106 cps and an overall sustained throughput of about 40 × 106 events/s,
as summed over all channels. The whole system is controlled by a series of home-made
units based on microcontrollers (DSPIC, Microchip Technology Inc., Chandler, AZ, USA),
which also give an independent time basis and allow the synchronization with external
hardware. In Figure 1, a scheme of the instrument is presented. The device was built with
a modular structure, and it is equipped with a set of custom-made 3D printed probes made
of a compatible material for diffuse optics applications [22]. The state-of-the-art instrument
has a 1 × 4 configuration, i.e., one injection and four detection channels working in parallel.
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Figure 1. TD NIRS device scheme. λ = wavelength, PMT = Photomultiplier tube, TCSPC = Time-
correlated single photon counting, D = Detection channel, Sync = Synchronization signal.

3. Characterization Protocols

In this section, different international standardized characterization protocols em-
ployed for assessing the performances of diffuse optics instruments are presented. We
also present the assessment of the maximum allowed count rate and acquisition rate. In
addition, an in vivo measurement on an arm muscle is presented to validate the use of the
device on humans. In the following sections, the optical parameters are estimated by a
non-linear fitting procedure based on the Levenberg-Marquardt algorithm that minimizes
the error (chi-square) between the measured DTOF and a theoretical function obtained by
the convolution between the IRF and the analytical solution of the diffusion equation in a
semi-infinite homogeneous medium [23].

3.1. Basic Instrumental Performance (BIP)

In the BIP protocol, the basic characteristics of the instrument are explored [24]. The
maximum power exiting from the injection fibers towards the tissue is 1.90 mW (7.9 mW)
for the RED (IR). These power settings were chosen in order to obtain an IRF with a
FWHM of 240 ± 11 ps and 236 ± 12 ps, respectively, for RED and IR, expressed as the
average ± standard deviation among the four detection lines. The width at 1% of the peak
was 920 ± 40 ps (1020 ± 60 ps) for the RED (IR). In the same way, we can express the
average responsivity Savg(λ), obtaining: Savg(RED) = (2.8 ± 1.4) × 10−8 m2sr and Savg(IR)
= (1.5 ± 0.7) × 10−8 m2sr. The average afterpulsing ratio Rap(λ) is: Rap(RED) = 1.2 ± 0.8%
and Rap(IR) = 1.0 ± 0.8%. The detector differential non-linearity is: EDNL = 5.9 ± 0.4%. The
system requires a warm-up time of 110 (40) min in order to reach stability within ±1%
(3%) of the final average values (counts, barycenter and FWHM of the IRF) calculated over
the last 30 min of a 5 h acquisition. All the described parameters reflect those of previous
TD fNIRS devices [25–27]. It is relevant that the setup characteristics, and in particular
the choice of the proper optical fibers, allowed us to obtain IRFs with narrow FWHM,
without undesired peaks due to internal reflections, as shown in Figure 2, providing the
best conditions for a good fitting of the acquired data with the theoretical model [28].

Figure 2. Typical acquisition window during an instrument response function (IRF) measurement.
RED = 689 nm, IR = 828 nm, FWHM = Full width at half maximum, semi-logarithmic scale.
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3.2. Assessment of the Maximum Count Rate and Acquisition Rate

The upper limit to the maximum count rate is set by the detection and acquisition
chain (see Section 2). The employed hybrid photomultipliers have a recommended upper
limit in terms of count rate of 107 counts/s (i.e., above this value, an electronic-controlled
shutter automatically closes to prevent damage to the active area). The TCSPC system
HydraHarp400, based on time-tagged time-resolved (TTTR) mode, guarantees a maximum
count rate per input channel of 12.5 × 106 cps and an overall sustained throughput of
about 4 × 107 events/second, as summed over all channels. On the other side, during
the acquisition, the count rate is typically kept limited in order to operate in the single
photon counting regime: it is necessary to guarantee that the count rate remains below 5%
of the pulse rate, i.e., 4 MHz, since our lasers are working at 80 MHz, in order to avoid the
“pile-up” effect [29]. Otherwise, the TCSPC system would register more than one photon
per excitation cycle, causing a distortion of the DTOF and an error in the retrieval of the
optical properties of the media under study. Recently, it was demonstrated, both with
simulations and phantom acquisitions, that it is possible to work above the single photon
statistics limit [30]. On these bases, we performed specific acquisitions in order to assess
the maximum allowed count rate.

We then performed 10 repeated measurements, each with 1 s acquisition time and
ρ = 3 cm, on a solid homogenous phantom (μa = 0.1 cm−1 and μs

′ = 10 cm−1 nominal optical
properties) at different acquisition count rates: from 5 × 105 ph/s up to 1.1 × 107 ph/s
on the board, with 5 × 105 steps. The retrieved μs

′, shown in Figure 3a, showed small
variations with the increasing of the number of acquired photons with <3% error with
respect to the average calculated among the acquisitions at lower counts (from 0.5 to
4 × 106) where the pile-up effect is negligible. For μa (Figure 3b), we observed an increasing
trend with the increasing of the acquired counts, for both wavelengths. In order for the
error not to exceed 3% with respect to its average value, calculated as for μs

′, it is necessary
to set the injected photon count rate to a maximum of about 8 × 106 ph/s, on the board, or
equivalently 4 × 106 ph/s for each wavelength with the relative DTOFs interleaved in the
same temporal window.

Figure 3. Averaged reduced scattering coefficient (μs
′, (a)) and absorption coefficient (μa, (b)) over

10 repetitions and relative error bars, for different count rates. Red: RED wavelength, blue: IR
wavelength. The dashed lines are the average μs

′ and μa retrieved for counts from 0.5 to 4 × 106. The
green and black lines represent the 1% and 3% error regions, respectively.
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Thanks to the previous findings and to the availability of a high number of detectable
photons, we also tested the possibility to increase the acquisition rate, while maintaining
enough detected photons to guarantee an optimal retrieval of the optical properties. We
performed 10 repeated acquisitions for each acquisition time, on the same phantom as
before with ρ = 3 cm. The acquisition sampling times were set to: 1, 0.1, 0.05, 0.01, 0.005,
0.004, 0.003, 0.002 and 0.001 s. We repeated the measurements at two different count rates:
2 × 106 counts/s and 7 × 106 counts/s per board.

In Figure 4, the retrieved values for μa (first column) and μs
′ (second column) at the

two wavelengths are shown as functions of the acquisition time, when the initial count rate
is set to 2 · 106 counts/s (first row) or 7 · 106 counts/s (second row). The solid horizontal
lines represent the average value over the acquisitions at 1, 0.1 and 0.05 s. It is evident
that, when reducing the acquisition time, the optical properties are obtained with a larger
deviation from the average values and a greater dispersion (i.e., standard deviation).

 

Figure 4. Absorption (μa) and reduced scattering (μs
′) coefficients for both wavelengths as function

of the acquisition time. Initial count rate set at 2 × 106 counts/s (a) or 7 × 106 counts/s (b). The
horizontal lines represent the average value over the acquisitions at 1, 0.1 and 0.05 s.

It is then possible to estimate the minimum number of photons in the acquired DTOFs
which guarantees a sufficient SNR for a reliable estimation of the optical parameters. For
this purpose, we calculated the percentage coefficient of variation (CV%), defined as the
standard deviation of a quantity divided by its average value and multiplied by 100 [31].
To obtain a CV < 1% for both optical coefficients and both wavelengths, a count rate of
around 1.6 × 105 counts/s for each acquisition, i.e., for each board, is necessary. That is
equivalent, when wavelengths are interleaved, to 8.0 × 104 counts/s for each wavelength.
To guarantee enough photons, as stated from the CV parameter, we can use a minimum
acquisition time of 0.1 s (0.03 s) with a count rate of 2 × 106/s (7 × 106/s).

3.3. Further Characterizations

The reproducibility (i.e., the capability to reproduce consistent values for the optical
properties of the same phantom among four different days) and the linearity (i.e., the
capability to correctly estimate the linear change in the optical properties) of our instrument
were tested according to the MEDPHOT protocol [31].

We found that μa and μs
′ values showed variations lower than 3% around their

average values calculated among the different days, showing an excellent reproducibility.
The linearity was tested on a set of 32 solid homogenous phantoms labeled with

numbers from 1 to 8 and letters from A to D, in order to represent the different μa and
μs

′ values, respectively (nominal optical properties from 0.01 to 0.49 cm−1 in 0.07 cm−1

steps for the absorption coefficient, and from 5 to 20 cm−1 in 5 cm−1 steps for reduced
scattering coefficient, at 660 nm). We performed 10 repeated measurements, each with 1
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s acquisition time, in reflectance geometry with ρ = 3 cm and a number of counts in the
DTOF sufficient to guarantee a CV < 1% (see Section 3.2). Linearity was tested for both
coefficients and both wavelengths by a linear interpolation. The R2 coefficients obtained
were always >0.95, showing an excellent linearity, as shown in Figure S1 and Tables S1 and
S2 of the Supplementary Materials.

Thanks to the increased SNR, we also investigated the possibility to perform acqui-
sitions with different source-detector distances ρ (from 1 to 5 cm, at 1 cm steps) on the
previous set of phantoms. During each measurement, we set the highest reachable count
rate. In Figure 5, we show these count rates, for the RED, for all phantoms and source-
detector distances (different colors). In this figure, we indicate the phantoms with their
labels, and we set a horizontal line representing the value on the y-axis for the goal in terms
of counts/s (8 × 104 counts/s) necessary to obtain a CV < 1% (see Section 3.2). We can
notice that, for the less scattering phantoms (A) it is always possible to reach enough counts,
except for the most absorbent (8) for ρ = 5 cm (black dot). For the less absorbent phantoms
(2), it is always possible to reach the goal counts, increasing the scattering (A–D) or the ρ.
Moving towards more scattering and absorbing media, the measurement at ρ ≥ 4 cm is no
longer achievable. Similar results were obtained for the IR wavelength, which shows in
general a higher number of counts achievable, as shown during the BIP protocol. These
data underline the improvement in terms of SNR of this TD fNIRS device over the previous
ones published [21,27,32], with which it was typically not possible to measure phantoms
D6 or D8 at ρ = 2 or 3 cm.

 

Figure 5. Number of photons/s for the RED wavelength, collected on solid phantoms for different
values of absorption (labels 2, 4, 6 and 8: 0.07, 0. 21, 0.35, 0,49 cm−1, respectively) and reduced
scattering (series A, B, C and D: 5, 10, 15 and 20 cm−1, respectively) with different source-detector
distances ρ (different colors). In the figure, the count rate necessary to obtain a CV < 1% is shown
as well.

3.4. In Vivo Characterization Protocol: Arm Muscle Arterial Occlusion

In this section, we present an in vivo protocol to understand the feasibility of mea-
surements on human tissues with a high acquisition rate (20 Hz) and long source-detector
distances (up to 5 cm).

An arterial cuff occlusion (250 mmHg) of the left arm of a healthy adult volunteer was
performed. The probe was placed on the internal side of the forearm (Figure 6), along the
muscle fibers. The acquisition rate was set to 20 Hz and the measurements were performed,
simultaneously, at 4 source-detector distances: from 2 to 5 cm, at 1 cm steps. The protocol
consisted of 120 s baseline, 180 s occlusion and 300 s recovery. We noticed that, according to
the results obtained in Section 3.2, the signal was sufficient to perform reliable acquisitions
at 20 Hz at all interfiber distances. The absolute values for μa and μs

′ were obtained as
explained in Section 3 for each acquisition point. The Lambert-Beer law was applied to
estimate the O2Hb and HHb concentration at each time point during the experiment. A
moving average of order 20 was applied to the retrieved hemodynamic parameters.
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Figure 6. Probe placement during the in vivo occlusion on the arm muscle.

In Figure 7, the time courses of the relative variations obtained for O2Hb and HHb
are shown for all ρ-distances. The variations refer to the baseline values, calculated by
averaging the concentration values found in the first 120 s of the experiment. As expected,
during the occlusion the O2Hb decreases, since both veins and arteries are occluded, and
no other oxygenated blood can enter in the investigated region. Conversely, the HHb
increases because the muscle oxidative metabolism continues during the occlusion period.
After the release of the cuff, we can observe the typical hyperemic peak. The qualitative
behavior of the time courses at all ρ-distances is the same, but for ρ = 5 cm the amplitude
of the variations is smaller. This behavior is more pronounced for the HHb. We do not
have a clear explanation for this phenomenon. At first glance, it cannot be due to possible
measurement faults, such as a lack of photons, because the SNR was sufficient at all source-
detector distances. A possible explanation may be the heterogeneity of the tissue sampled
at different ρ. This hypothesis was partially confirmed by an ultrasound exam of that arm
region, which showed that tissue composition was different above and below a depth of
2.3 cm.

 

Figure 7. Hemodynamic parameters during an arterial arm occlusion. The dashed vertical lines
indicate the start and the end of the occlusion period. The different lines represent the different
source-detector distances (from 2 to 5 cm). (a) Oxyhemoglobin (O2Hb). (b) Deoxyhemoglobin (HHb).

This preliminary measurement also demonstrates the feasibility of the application
of the 20 Hz acquisition rate during in vivo measurements, with the possibility to follow
big changes in absorption, such as the ones that occur during an arterial occlusion in the
muscle. Changes around 15 μM for O2Hb and 25 μM for HHb were, in fact, detectable.

4. Cortical Resting-State Oscillations: Results and Discussion

In this section, we show an in vivo measurement with 20 Hz acquisition rate on the
brain motor cortex of a healthy volunteer during a resting-state period and the resulting
power spectrum for cortical O2Hb and HHb. This pilot study does not aim to explain the
physiological origin of the peaks found in the frequency spectrum, but to demonstrate, for
the first time, that it is possible to detect them by TD fNIRS.

We performed an acquisition on an adult healthy subject (male, 53 years old), in
correspondence with the primary motor cortex area (C3 position according to the 10/20
EEG international system [33]). The subject relaxed in the supine position, with eyes closed,
for 5 min. The acquisition rate was set to 20 Hz and the source-detector distance to 3 cm.
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The previous custom probe was placed on the scalp with a black auto-adhesive bandage,
guaranteeing a good adhesion and avoiding ambient light leakage. The count rate of the
measurement allowed performance of the acquisitions at 20 Hz, according to the results
obtained in Section 3.2.

In order to enhance the contribution of the photons coming from deeper regions (late
photons) from those coming from the more superficial regions (early photons), we modeled
the tissue as a two-layer medium (up layer, UP; down layer, DW) and we calculated
the time-dependent mean photon pathlengths in the UP and DW layers as described in
Zucchelli et al. [34]. These pathlengths were used to estimate the absolute values of the
cortical O2Hb and HHb hemoglobin concentrations, assuming a thickness of the upper
layer of 1 cm (i.e., an equivalent thickness of the extra-cerebral tissue). For cortical O2Hb
and HHb, we found an average of 44.71 μM and 17.94 μM, respectively, calculated over the
initial 5 s. In Figure 8, the time courses of the concentration of O2Hb (red) and HHb (blue),
after subtraction of the average values, are shown. A moving average of order 20 was
applied to the retrieved hemodynamic parameters as well. As we can notice in Figure 8, a
1 s periodicity is clearly visible, superimposed on faster oscillations, for both hemoglobin
species; this amplitude variability is higher for O2Hb than for HHb [10].

 
Figure 8. Time courses of the concentration of the cortical O2Hb and HHb, after subtraction of the
average over the initial 5 s.

We then calculated the power spectrum for the cortical O2Hb and HHb with a custom-
made code, based on the FFT algorithm (MATLAB 2021b, The MathWorks Inc., Natick, MA,
USA), as shown in Figure 9. No filters were applied on the signal. At first, we can observe
that the power spectrum amplitude is higher for O2Hb with respect to HHb, as previously
shown in the literature with CW fNIRS [10]. In both spectra, it is possible to see the typical
peak of the cardiac activity (~1 Hz), more pronounced in O2Hb as compared with HHb.
Obrig et al. [10] have shown that the heartbeat produces changes in pressure, which are
more visible in O2Hb, stating that this parameter should be more sensitive to systemic
variations. In the O2Hb spectrum, a peak compatible with the respiration activity during
rest (~0.2–0.3 Hz) can be recognized as well. In the HHb signal, a similar peak is present as
well, but it is less evident. In addition, in previous CW-NIRS studies, the respiration peak
could not always be visible [35].

In the figure inset, the power spectra for frequencies ≤ 0.5 Hz are shown. This
frequency range is of particular interest since it includes the low frequency oscillations
(LFOs, around 0.1 Hz) and the very low frequency oscillations (VLFOs, around 0.04 Hz) [10].

Firstly, we note that both in the O2Hb and in the HHb spectra a peak around 0.1
Hz is present, related to the intrinsic myogenic activity of the vascular smooth cell. As
stated by Yücel et al. [36], at this frequency two different effects may be superimposed:
the Mayer waves and vasomotion-flowmotion waves. The former are defined as waves
in the arterial blood pressure, which cause an oscillation more visible in the superficial
O2Hb [36]. Mayer waves should not be visible in the HHb [37]. On the contrary, vasomotion
is defined as the oscillation in the blood vessels’ tone, which causes the cross-section of
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the blood vessel to oscillate, giving rise to the flowmotion [38]. This oscillation should be
visible both in the cortical O2Hb and HHb, since in general the LFO amplitude should
increase with the decreasing of the vessel diameter and the vessel diameter should decrease
with the increasing of the depth (from the scalp to the cortex) [39]. The possibility to
simultaneously quantify both hemoglobin species by TD fNIRS helps us in affirming that
the peak at 0.1 Hz of the O2Hb could consist in a superposition of the two effects, i.e.,
Mayer waves and vasomotion-flowmotion, while the one found for HHb should be due to
the vasomotion-flowmotion effect only.

 
Figure 9. Power spectrum of the cortical O2Hb (red) and HHb (blue) hemoglobin for 5 min’s resting-
state acquisition on the motor cortex. In the inset, a zoomed-in view of the frequencies ≤ 0.5 Hz is
shown. LFO: Low frequency oscillation; VLFO: Very low frequency oscillation.

If we now consider frequencies <0.1 Hz, in the O2Hb spectrum an oscillation around
0.06 Hz is clearly visible, possibly related to the neurogenic activity of the vessel walls. To
better understand its origin, further experiments are required, where some physiological
changes can be induced to observe the respective changes in the spectra. Of course, the
concurrent acquisition of the main physiological parameters (such as heartbeat, respira-
tory rate, arterial blood pressure, blood volume pulses and others) can help in a better
interpretation of the whole spectrum.

Finally, in Figure 9, it is possible to notice a strong frequency component at less
than 0.04 Hz, for both hemoglobin species. This range covers the neurogenic activity
of the vessel wall and the vascular endothelium function. In a future work, in order to
remove the continuous component from the frequency spectrum and thus recover the
characteristic peaks in this region, a detrending algorithm has to be applied. Furthermore,
other methodologies should be used to obtain sharper peaks, more comparable with
the previous literature findings, such as the power spectral density (PSD) estimate via
Welch’s method.

5. Conclusions

In this paper, we presented a TD fNIRS device reaching a higher SNR as compared
with previous similar instruments, obtained by combining more powerful lasers and a
more efficient detection system. As shown in Sections 3.2 and 3.3, it was possible to
collect enough signal at the 20 Hz acquisition rate to reliably (CV < 1%) retrieve the optical
properties of homogeneous phantoms with high absorption (0.35 cm−1) and highly reduced
scattering (20 cm−1) coefficients at a 3 cm source-detector distance. Measurements with
a source-detector distance up to 5 cm were also achievable on homogeneous phantoms
mimicking the optical properties of a biological medium (μa = 0.1 cm−1 and μs

′ =10 cm−1).
In general, we demonstrated the possibility to perform measurements with an up to 5 cm
interfiber distance in reflectance geometry, at a maximum acquisition rate of 20 Hz on
diffusive samples with optical properties like those of biological tissues. This result, to the
best of our knowledge, has never been reached by any other TD fNIRS instrument to date.
Thanks to the four independent detection lines, it was possible to perform acquisitions in
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parallel in four different acquisition points. In Section 3.4, we showed the possibility to
employ this device during in vivo measurements on the arm muscle, thus retrieving the
absolute values of the hemodynamic parameters, employing source-detector distances up
to 5 cm.

Furthermore, in Section 4, we showed the power spectra for the absolute values of both
cortical O2Hb and HHb obtained by a TD fNIRS acquisition. This preliminary acquisition,
on a healthy subject, aimed to prove the feasibility of performing measurements on the
cerebral cortex with high sampling rate (20 Hz) by TD fNIRS, rather than explain in depth
each resulting spectral peak; to the best of our knowledge, this result has never been
achieved to date, as already underlined in the Introduction. In particular, thanks to this
acquisition we showed that by TD fNIRS: (1) it is possible to detect the intracranial heartbeat
signal, in particular in the cortical O2Hb signal; (2) it is possible to observe the intracranial
respiration, at least in the O2Hb signal, that was observed by Kacprazak et al. [20] in
the superficial layer only; (3) we increased the SNR, obtaining a non-noisy spectrum by
acquisitions of only 5 min. In the only previously published paper, they needed longer
measurements (20 min) and affirmed that, for the patients, 10 min of acquisition at 10 Hz
were not sufficient, and that some interesting frequencies were buried under the noise;
(4) we were able to provide the spectra of the cerebral O2Hb and HHb, starting from their
absolute values, by one measurement at a single source-detector distance. Thanks to this
opportunity, we were able to distinguish important spectral contributions in the frequency
range below 0.5 Hz.

We think that this study opens up the possibility to perform TD fNIRS measurements
at a high acquisition rate (up to 20 Hz), filling the gap with CW fNIRS instruments and
other previous techniques such as fMRI. In particular, if only an exploration of the more
superficial layer of the brain cortex with fNIRS is possible, there are a series of advantages
in choosing this optical technique. It is possible to perform acquisitions at the bedside and
to guarantee a continuous monitoring. fNIRS is less sensitive to motion artifacts and the
signal does not present physiological noise due to respiratory and cardiac activities, which
cause an unwanted modulation in fMRI signal [40,41]. In addition, if the fMRI signal carries
information only about the BOLD, with fNIRS and in particular TD fNIRS, it is possible to
decouple the contributions of the oxygenated and deoxygenated blood. In this way, the
capability of this technique to provide a more accurate estimation of cortical hemodynamic
parameters can also be fully exploited in cerebral resting-state oscillation studies and, in
the future, by increasing the measurement points, in brain connectivity studies as well.

Of course, further work is necessary to understand the best analysis method for the
extrapolation of the hemodynamics frequency spectra. Theoretical simulations will also be
necessary to define constraints, if any, about the length of the experiment, the number of
photons needed to distinguish two different peaks and other technical aspects. Furthermore,
it will be necessary to employ additional physiological sensors, in order to acquire at least
heartbeat and respiration rate, and to increase the number of subjects involved, for a better
interpretation of the in vivo results.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s23010196/s1, Figure S1: Linearity plots according to MED-
PHOT protocol; Table S1: Linear interpolation goodness for absorption coefficient; Table S2: Linear
interpolation goodness for scattering coefficient.
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Abstract: Background and Objective: Mental workload (MWL) is a relevant construct involved in all
cognitively demanding activities, and its assessment is an important goal in many research fields. This
paper aims at evaluating the reproducibility and sensitivity of MWL assessment from EEG signals
considering the effects of different electrode configurations and pre-processing pipelines (PPPs).
Methods: Thirteen young healthy adults were enrolled and were asked to perform 45 min of Simon’s
task to elicit a cognitive demand. EEG data were collected using a 32-channel system with different
electrode configurations (fronto-parietal; Fz and Pz; Cz) and analyzed using different PPPs, from the
simplest bandpass filtering to the combination of filtering, Artifact Subspace Reconstruction (ASR)
and Independent Component Analysis (ICA). The reproducibility of MWL indexes estimation and
the sensitivity of their changes were assessed using Intraclass Correlation Coefficient and statistical
analysis. Results: MWL assessed with different PPPs showed reliability ranging from good to
very good in most of the electrode configurations (average consistency > 0.87 and average absolute
agreement > 0.92). Larger fronto-parietal electrode configurations, albeit being more affected by
the choice of PPPs, provide better sensitivity in the detection of MWL changes if compared to a
single-electrode configuration (18 vs. 10 statistically significant differences detected, respectively).
Conclusions: The most complex PPPs have been proven to ensure good reliability (>0.90) and
sensitivity in all experimental conditions. In conclusion, we propose to use at least a two-electrode
configuration (Fz and Pz) and complex PPPs including at least the ICA algorithm (even better
including ASR) to mitigate artifacts and obtain reliable and sensitive MWL assessment during
cognitive tasks.

Keywords: mental workload; EEG; signal processing; reliability; cognitive performance; Simon task

1. Introduction

Mental workload (MWL) can be defined, as recently proposed by Longo et al. [1], as
“the degree of activation of a finite pool of resources, limited in capacity, while cognitively
processing a primary task over time, mediated by external stochastic environmental and
situational factors, as well as affected by definite internal characteristics of a human operator,
for coping with static task demands, by devoted effort and attention”. Even if the latter
seems, to date, the most comprehensive definition of MWL, more commonly, MWL is
roughly defined as a multidimensional construct describing the relationship between the
cognitive task demand, under specific conditions, and the actual resources that can be
actively engaged by an individual during the execution of the task [2,3].

MWL is a relevant construct since it is involved in almost all human activities [4],
from everyday life activities to the most complex cognitive tasks, when a certain degree
of mental processing is required. Interestingly, MWL is correlated to task demand and
performance, since it is usually considered that high, as well as low, levels of MWL may
have a negative impact on task performance and increase the incidence of errors [5–7]
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during the execution of a task. Therefore, the assessment and quantification of MWL
represent one of the main interests in ergonomics [8] with relevant potential impact in
different fields such as aeronautics [9], automotive [10], education and training [11], clinical
practice, and rehabilitation [12,13].

Among all the available assessment methods, physiological measurements have been
proven to provide an objective and minimally invasive evaluation with high reliability.
These techniques estimate MWL from changes in biological signals and their derived
variables that are related to the cardiovascular and respiratory system, the ocular responses,
and the electrodermal and brain activity [1,14].

In this context, electroencephalography (EEG) is a widely used technique for the
estimation of MWL, since it allows obtaining a direct non-invasive measurement of brain
activity in different conditions. The study of changes occurring within the characteristic
EEG oscillation rhythms during the execution of specific tasks has revealed that an increase
in MWL is associated with a decrease in alpha activity (8–13 Hz) in the parietal brain
area and an increase in theta activity (4–8 Hz) in the frontal area [15–17]. In particular,
a correlation between increased task complexity and the power spectra of EEG signals
recorded at midline electrodes has been observed [18]. For this reason, a simple metric
to quantify the MWL is the theta-to-alpha ratio, which is calculated by dividing the theta
band power over the EEG midline frontal channel (Fz), and the alpha band power over
the parietal channel (Pz) [18–20]. However, EEG signals have also been used to estimate
the MWL, with different configurations and number of sensors, (e.g., CZ, pre-frontal and
lateral fronto-parietal electrodes) according to the experimental setup [21]. In this scenario,
to the best of our knowledge, a systematic evaluation of the influence of the employed
electrodes on the quantitative estimation of MWL during a cognitive task is still lacking.

Another key factor that can influence the quantification of MWL from EEG power
spectra is the pre-processing pipeline applied to remove the extracerebral components
that affect the EEG recording [22]. Various pre-processing methods are currently proposed
in the literature to extract MWL indicators from EEG signals, and a consensus is still
missing among researchers. The bandpass filtering is typically used in most papers but
with different cut-off frequencies [20,23,24]; the major artifacts are typically removed with
Independent Component Analysis (ICA) [25,26], Artifact Subspace Reconstruction (ASR)
algorithms [20,27] or other methods [28]; the signal is mainly re-referenced to the average
of the electrodes [23,27] or the average of the mastoid electrodes [20]; the channel rejections
are performed automatically [29] or manually [30]. Although some more general pipelines
for EEG signal analysis exist, they are quite broad and not universally adopted [31]. Fur-
thermore, they are not always suitable for real-time applications implying MWL estimation,
since they are based on quite complex methods that are often time-consuming and do not
allow automatic real-time analysis.

In recent years, there has been a relevant growth in EEG analysis methods. The
high amount of available new tools leads to the need of developing guidelines to pursue
research reproducibility and the robustness of results to increase consistency within the
scientific literature. This issue is now being referred to as the “reproducibility crisis” [32].
Indeed, a lack of consistent EEG signal pre-processing techniques can affect the comparison
of quantitative results from different studies, even if the same dataset is analyzed. The
reliability of EEG biomarkers is particularly critical in the perspective of employing them
in clinical practice for understanding human cognition [33,34]. As underlined in the
Organization for Human Brain Mapping reports [35] in presenting best practices for specific
neuroimaging methods, a single best analysis workflow does not exist, and the optimal
solution has to be adapted for the specific application [34]. In the specific field of MWL
estimation, the literature mainly focused on test–retest reliability in longitudinal studies
and on the effects of EEG signal pre-processing on the performances of automatic MWL-
level classification algorithms [36]. However, to the best of our knowledge, no evaluation
has been systematically conducted on the MWL quantification by EEG biomarkers, i.e., the
theta-to-alpha ratio values, disregarding the automatic load classification problem.

164



Sensors 2023, 23, 1367

Considering what was previously introduced, the main aim of the paper is to evaluate
the reliability of MWL assessment by EEG in terms of reproducibility and sensitivity to
identify the best processing pipeline and electrode configuration for MWL quantification
during cognitive tasks.

2. Related Works

The reliability of EEG analysis, and consequently the quantitative indexes derived, is
a long-standing fundamental issue addressed by the scientific community. In the literature,
test–retest studies have been conducted to assess the replicability of EEG-derived indexes
over time. Ding and colleagues [37] tested the reproducibility of EEG spectral analysis at
the electrode and source level during rest and imaginary tasks. Corsi-Cabrera et al. [38]
conducted a longitudinal study on six women to assess within-subject reliability and inter-
session stability of resting EEG over nine months in the estimation of the absolute power
and inter- and intra-hemispheric coherent activity. However, these works did not take into
consideration the effects of different pre-processing workflows on the results’ replicability.
In this context, a few works have tested the pre-processing influence on the longitudinal
replicability of results. In 2017, Shirk et al. [39] tested the impact of subjective artifact
removal on Event-Related Potential (ERP) results, estimating the inter-rater reliability of
different subjective signal-cleaning approaches. The test–retest study by Suarez-Revelo and
colleagues [40,41] compared different pre-processing of resting state EEG for the estimation
of spectral power in six frequency bands. For specific MWL correlates estimation, a test–
retest study was conducted in 2021 by Getzmann et al. [42] to assess the performance of the
cEEGrids recordings, which are based on C-shaped electrode arrays positioned around the
ear. However, no evaluation as regards the pre-processing technique was presented.

While the test–rest approach is valid to prove the stability of results, especially in
longitudinal studies, it is not the most suitable test to assess the impact of pre-processing
on quantitative estimation when repeated measurements are not provided. In this context,
a series of papers have been recently published in which the performances of machine
learning approaches to classify the MWL level after different signal pre-processing pipelines
were compared [36,43–51]. These works are focused only on the automatic classification
accuracy, considering several features extracted from all the EEG frequency bands and
electrode signals, e.g., ERP, as input to the algorithm, whereas any direct evaluation of the
EEG features extracted is provided.

To the best of our knowledge, in the published literature, no works are investigating
how the pre-processing workflow choices affect the MWL quantitative correlates, i.e., the
theta-to-alpha ratio tested in the present work.

3. Materials and Methods

3.1. Experimental Protocol

Thirteen young healthy adults (age: 27 ± 6; 9 males/4 females) were enrolled in the
study. The study was conducted according to the principles expressed in the Declaration of
Helsinki and was approved by the local ethics committee of the University of Pavia, Italy
(2531CEMaugeri-27072021). The participants signed a written informed consent. Subjects
were asked to avoid ingesting any caffeine-containing drink or nicotine and performing
mentally demanding tasks for at least 3 h before the session started. Moreover, they were
invited to sleep at least 7 h before the experiment. The volunteers were not allowed to take
any medication before the experimental session, and they did not suffer from any type of
neurological and psychiatric disease. The experiments were performed at controlled room
temperature (18–20 ◦C) and air humidity (40–60%). The experimental session consisted
of performing a 45 min cognitive-demanding task sitting in front of a computer screen,
and it was composed of three consecutive blocks of 14 min and 30 s each (i.e., Task 1,
Task 2, Task 3), interspersed with 30 s of rest. At the beginning of the sessions, a 3-min
resting period with open eyes was proposed to the volunteers and used as a baseline signal.
Simon’s task was selected to elicit a cognitive demand in the volunteers. The Simon task
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is a behavioral measure of interference/conflict resolution [52,53]. The participants were
asked to respond to visual stimuli by pressing a rightward keyboard button to the “right”
stimulus and a leftward button to the “left” stimulus. The stimuli were randomly presented
on the right side or the left side of the screen. Regardless of the spatial presentation
of the stimuli, the subjects were asked to press the buttons corresponding to the letter
shown by the visual stimulus. A schematic representation of the experimental protocol is
displayed in Figure 1. Cognitive tasks were implemented and presented online using the
PsyToolkit platform [54,55] (https://www.psytoolkit.org, accessed on 20 January 2023). To
measure users’ performance, Reaction Times (RT) and Error Rates (ERR%) were collected
as behavioral data in the different blocks of tasks.

Figure 1. A schematic representation of the experimental protocol timing (upper panel) and an
example depicting what was presented to the volunteers on the PC screen (lower panel).

3.2. EEG Acquisitions

Continuous EEG data were collected using a compact 32-channel system (eego™sports
32, ANT Neuro®, Enschede, The Netherlands). A gel-based electrode cap with sintered
Ag/AgCl electrodes was used (Waveguard, ANT Neuro®, 10–20 system). The online
reference was placed at the CPz electrode. Signal was acquired with eego sports acquisition
software connected to a 24 bits amplifier at a sampling rate of 500 Hz. Impedances for all
electrodes were kept below 20 kΩ. EEG signals were recorded across 30 channels: Fp1, Fpz,
Fp2, F7, F3, Fz, F4, F8, FC5, FC1, FC2, FC6, T7, C3, Cz, C4, T8, CP5, CP1, CP2, CP6, P7,
P3, Pz, P4, P8, POz, O1, Oz, and O2 excluding the mastoids electrodes (M1 and M2). The
starting and ending points of each block composing the acquisition (Rest, Task 1, Task 2,
Task 3) were manually labeled using the acquisition software.

3.3. EEG Pre-Processing

Four different processing pipelines were evaluated to assess their impact on the
estimation of the MWL indicator. A schematic representation is displayed in Figure 2.

1. FILT—The first and simplest pipeline was characterized using band-pass filtering
to mitigate the effects of the artifacts. In detail, EEG signals were band-pass filtered
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in the range 1–40 Hz using a Hamming windowed sinc FIR filter. Bad channels
were removed by evaluating the normed joint probability of the average log power
across the channels [56]. Channels whose probability falls more than three standard
deviations from the mean are removed as bad channels.

2. FILT + ASR—The second pipeline was implemented by adding the ASR algorithm
to the FILT pipeline. ASR uses principal-component-like subspace decomposition
to remove transient and high-amplitude artifacts, it provides a noiseless signal re-
construction using a reference signal fragment [57] and can be helpful for real-time
artifact removal. ASR was used to interpolate artifact “bursts” with a variance higher
than fifteen standard deviations different from the automatedly detected reference
signal, as previously suggested [58].

3. FILT + ICA—The third pipeline was proposed by adding the ICA artifact rejection
method to the first pipeline. ICA algorithms are typically used to detect and remove
artifacts (such as eye movements and electrocardiographic signals) that usually over-
lay with brain activity in EEG recordings. The extended Infomax [59] ICA algorithm
was used in this work. ICLabel [60] was used to automatically reject independent
components having a probability to be plausible brain sources of less than 40%.

4. FILT + ASR + ICA—The last most complex pipeline included sequentially all the
previous different approaches.

Figure 2. A schematic representation of the pre-processing pipelines that were evaluated in this study.

To complete all the previous pipelines, channels that were removed as “bad channels”
were replaced by data interpolated from nearby “artifact-free” channels using a spherical
function, and EEG signals were re-referenced to the average of the channels. Among all the
analyzed EEG signals, on the whole, 3 channels were removed (specifically P7 in 1 subject
and CP2 in 2 subjects).

All the pre-processing steps were implemented in MATLAB (R2021b, The MathWorks)
using the EEGLAB toolbox [61].
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3.4. MWL Assessment

The pre-processed EEG signals were analyzed in the frequency domain to extract the
power spectra in the range 1–45 Hz using the Welch’s power spectral density (PSD) estimate.
The EEG signal was windowed using a Hamming window (1 s length, 500 samples, non-
overlapping) and the periodogram was computed, for each segment, by using the discrete
Fourier transform. The squared magnitude of the result was computed and the individual
periodograms were averaged, separately for each of the three experimental blocks, to obtain
the power spectra for each task. Subsequently, the integral of the power spectrum across
frequencies in theta (4–8 Hz) and alpha (8–13 Hz) ranges was calculated to obtain the
absolute band power for each channel. The MWL index of each block was then calculated
by dividing the theta absolute power θ with the alpha absolute power α into three different
electrode configurations.

1. Fz and Pz electrodes:

MWLFz,Pz =
θFz
αPz

(1)

2. Cz electrode:

MWLCz =
θCz
αCz

(2)

3. Frontal (F7, F3, Fz, F4, F8) and Parietal (P7, P3, Pz, P4, P8) electrodes:

MWLFP =
θFrontal
αParietal

(3)

where θ_Frontal and α_Parietal are the sum of the absolute powers in frontal and pari-
etal electrodes.

The MWL index calculated during tasks was normalized to the value of the rest
condition as follows:

MWL =
(MWLTask − MWLRest)

MWLRest
(4)

3.5. Reproducibility Assessment

The reproducibility refers to the level of consistency and agreement in the estimation of
MWL at different EEG electrode configurations and pre-processing pipelines with increas-
ing levels of complexity. To assess the reproducibility, Intraclass Correlation Coefficient
(ICC) was adopted as a descriptive statistical method. ICC reflects both the degree of
correlation and the agreement between measurements [62]. The two-way mixed-effects
model was selected to assess both consistency and agreement among different scenarios.

In particular, the two-way mixed effects, consistency, and single measurement ICC
(3,1) index was defined as follows:

MSR − MSE
MSR + (k − 1)MSE

(5)

whereas the two-way mixed effects, absolute agreement, and single measurement ICC (2,1)
index was defined as follows:

MSR − MSE

MSR + (k − 1)MSE + k
n (MSC − MSE)

(6)

where MSR = mean square for rows; MSE = mean square for error; MSC = mean square for
columns; n = number of targets; k = number of ratings.

3.6. Statistical Analysis

To evaluate if there is a statistically significant interaction effect between the three
within-subjects factors (pre-processing pipelines, electrode configurations, task blocks) in
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explaining differences in MWL metrics estimated in different conditions (e.g., electrode
configurations, processing pipelines, task blocks), the repeated measure ANOVA test
was adopted. Greenhouse–Geisser correction was applied to only within-subjects factors
violating the sphericity assumption (with significant Mauchly’s test p-value, p ≤ 0.05).

To evaluate the sensitivity, which refers to the ability to discriminate changes in the
MWL index at increasing cognitive loads and different experimental settings, multiple
pairwise comparisons between groups were performed using the pairwise t-test, and the
false discovery rate adjustment was applied to correct p-values. p-values ≤ 0.05 were
considered significant. The statistical tests were performed in R (ver. 4.2.1) [63] embedded
in RStudio (2022.07.1, Build 554).

4. Results

4.1. Reproducibility

Considering each specific electrode configuration individually, the consistency among
MWL metrics, obtained using different pre-processing pipelines, exhibits values (averaged
over tasks) higher than 0.81 in all the conditions. In particular, the mean consistency is
0.94 for FzPz, 0.94 for Cz and 0.88 for fronto-parietal configurations, respectively. The
highest consistency can be observed between Filt + ASR, Filt + ICA and Filt + ASR + ICA
(maximum consistency at 0.99), whereas the lowest values are those corresponding to the
comparison of Filt with the other pre-processing pipelines (minimum consistency at 0.81).
As to the consistency among electrode configurations, its mean values are 0.83 in the case
of FzPz vs. Cz, 0.85 in the case of FzPz vs. fronto-parietal and 0.74 in the case of Cz vs.
fronto-parietal configurations, respectively.

Regarding the absolute agreement, the tendency is similar to that described above for
consistency but with lower values. In particular, as regards the absolute agreement among
pre-processing pipelines in each electrode’s configuration, the mean absolute agreement
is 0.92 for FzPz, 0.91 for Cz and 0.78 for fronto-parietal configurations, respectively. The
highest absolute agreement can be observed between Filt + ASR, Filt + ICA and Filt +
ASR + ICA (maximum absolute agreement at 0.99), whereas the lowest values are those
corresponding to the comparison of Filt with the other pre-processing pipelines (minimum
consistency at 0.58). As to the absolute agreement among electrode configurations, its mean
values are 0.73 in the case of FzPz vs. Cz, 0.77 in the case of FzPz vs. fronto-parietal and 0.49
in the case of Cz vs. fronto-parietal configurations, respectively. A concise representation
of the results is shown in Figure 3.

4.2. Impact of Experimental Factors on MWL

To investigate the impact of the within-subjects’ factors (i.e., electrode configurations,
pre-processing pipelines and tasks) in discriminating differences among MWL indexes,
we explored the results of the three-way repeated measures ANOVA test (as summarized
in Table 1). Considering the single factors individually (i.e., pipeline, configuration, task),
significant differences within them were observed (p < 0.05). As to the interaction of
two factors (i.e., pipeline and configuration, pipeline and task, configuration and task),
statistically significant differences were shown when pipelines and configurations along
with tasks, respectively, (p < 0.05) were considered, whereas a significant difference was
not observed when the combined effect of pipelines and configuration was considered.
Moreover, as shown in Table 1, there is a statistically significant three-way interaction
between pipelines, configurations and tasks, F (18, 216) = 2.225, p = 0.004.
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Figure 3. ICC values are shown for both consistency (upper panel) and absolute agreement
(lower panel). Colors range from red (no consistency/absolute agreement) to green (highest consis-
tency/absolute agreement) as shown in the color bar at the bottom of the figure.

Table 1. Summary of results of the ANOVA three-way repeated measures test. Under the “Effect”
column are listed all the factors included in the study; DFn is the acronym of “degrees of freedom in
the numerator”; DFd is the acronym of “degrees of freedom in the denominator”; F is the test statistic
for ANOVA; p is the p-value; under the “p < 0.05” column, there is an asterisk when the p-value is
less than 0.05; ges is the “generalized eta squared”.

Effect DFn DFd F p p < 0.05 Ges

Pipelines 1.27 15.27 4.253 0.049 * 0.016
Configurations 2 24 3.91 0.034 * 0.038

Tasks 1.49 17.9 10.47 0.002 * 0.166
Pipelines × Configurations 2.59 31.12 2.635 0.075 n.s. 0.003

Pipelines × Tasks 1.51 18.12 3.876 0.05 * 0.006
Configurations × Tasks 2.24 26.9 3.485 0.04 * 0.014

Pipelines × Configurations × Tasks 18 216 2.225 0.004 * 0.000987

4.3. Sensitivity to MWL Changes during Prolonged Simon Task

In Figure 4, the population’s average MWL indexes calculated during the three con-
secutive experimental blocks, considering the three different electrode configurations and
the four pre-processing pipelines, are represented. Regardless of the method/electrodes
evaluated, we observe a common trend of the MWL index during the execution of the
Simon task over time. Specifically, in all cases, we found an initial relevant increase in MWL
compared to the rest condition in the first 15-min block of task execution. Afterward, in
the second and third blocks, a decrease in MWL is observed even though it still remained
higher than MWL calculated at baseline. Considering the users’ performances during the
Simon task, the average RT decreases over time and blocks, ranging from 541 ± 33 ms
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to 515 ± 36 ms whereas, conversely, the ERR%s increases, ranging from 3.1% ± 2.1% to
4.0% ± 2.4% as shown in Figure S1.

Figure 4. Representation of MWL in different experimental conditions (electrode configurations and
pre-processing pipelines) and tasks. Asterisks refer to statistically significant differences (p < 0.05 *;
p < 0.01 **).

In detail, considering the multiple pairwise comparisons results shown in Figure 4,
statistically significant differences were observed in most of the conditions. In particular,
exploring the differences among tasks and rest, significant MWL differences between Task 1
and Rest were found in all the electrode configurations and pre-processing approaches,
whereas significant MWL differences between Task 2 and Rest were observed just in
fronto-parietal and FzPz configurations considering all pre-processing pipelines. Finally,
significant MWL differences between Task 3 and Rest were found in fronto-parietal and
FzPz configurations in the case of FILT, FILT + ICA and FILT + ASR + ICA pipelines.

As to the differences among tasks, significant differences between Task 1 and Task 2,
as well as between Task 1 and Task 3, were observed in all configurations in the case of
FILT + ASR, FILT + ICA and FILT + ASR pipelines. No significant differences were found
between Task 2 and Task 3.

Globally, the conditions in which the maximum number of differences (five out of six)
were found are those where the fronto-parietal and FzPz electrodes are considered and the
FILT + ICA and FILT + ASR + ICA pipelines were used to process the EEG signals.

A summary of descriptive statistical features and the list of p-values and effect sizes related
to the between-groups pairwise comparisons are reported in Table S1 and Table S2, respectively.

5. Discussion

This paper evaluated the reproducibility of MWL estimation from EEG signals consid-
ering different processing pipelines and electrode configurations as well as the sensitivity
of the MWL metric to discriminate among different cognitive loads during a prolonged
cognitive task. Furthermore, this work aimed also at providing guidelines for the quan-
titative estimation of the MWL changes taking into consideration a few aspects that are
usually overlooked in the literature and, when results are available, they lack consistency.
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To assess the reliability of EEG-based MWL estimation, we requested the volunteers
to perform a cognitive task, i.e., the Simon task, eliciting MWL changes related to mental
processes, such as working memory and attentional control, associated with the execution
of the task goal during the congruent/incongruent stimuli presentation [64]. Even though
this work neglected the investigation of the neurophysiological mechanisms underlying
task-related mental constructs, our results show that the Simon task was able to elicit
an increase in MWL if compared to the rest condition. Furthermore, a temporal effect
influences the response; in fact, the initial increase in MWL, during the first block of tasks, is
followed by a reduction in the following tasks, which is probably due to the onset of mental
fatigue related to the prolonged mental demand. Therefore, the MWL index appears to be
sensitive to the Simon effect and its elicited changes in mental effort.

Although MWL variations were well observed in most conditions, we found a depen-
dence of the quantification and statistical identification of changes on both acquisitions, i.e.,
electrode position, and pre-processing approaches. In the literature, the investigation of
different electrode configurations and pre-processing pipelines focuses on the influence
of these factors on MWL classification accuracy through automatic algorithms based on
machine learning and deep learning [50,51]. To our knowledge, no works assessed the
reliability directly in MWL indexes derived from EEG signals. This paper wants to put an
accent on this quantitative aspect and provide suggestions to choose the methodological
aspects that will guarantee the most reliable outcome.

Considering each single electrode configuration independently, the reproducibility
expressed in terms of consistency was good or very good across all the processing pipelines
used to pre-process the EEG signals in every condition. As to the absolute agreement, it ex-
hibited lower values and moderate to very good reliability, especially in the fronto-parietal
configuration. This is most likely due to the wider extension of the fronto-parietal configu-
ration being that more prone to be corrupted by artifacts if compared to the electrodes that
are placed in the midline [65]. For that reason, the MWL estimation in the fronto-parietal
configuration is more susceptible to the choice of the pre-processing pipeline whereas the
FzPz and Cz configurations, which exhibited the best consistency and absolute agreement
among pre-processing pipelines, are less susceptible to that factor. As to the pre-processing
pipelines, the most complex algorithms (e.g., FILT + ASR + ICA, FILT-ICA, and FILT-ASR)
were those showing the highest values of reproducibility.

Considering the reproducibility evaluated across different electrode configurations,
the lowest values of consistency and absolute agreement were found when comparing Cz
with fronto-parietal configurations. Conversely, the best reliability was obtained between
FzPz and fronto-parietal configuration. In general, the single electrode configuration (Cz)
is that with the lowest reliability when compared to the others. Finally, even in this case,
the most complex algorithms are those showing the highest consistency and agreement.

Regarding the factors that can affect the assessment of the MWL index, pre-processing
pipelines and electrode configurations can be chosen independently of each other, since
there is no statistically significant interaction between them. On the contrary, there is a
significant interaction between tasks and electrode configurations or between tasks and
pre-processing pipelines; indeed, the choice of electrode configurations and pre-processing
pipelines independently affects the sensitivity of MWL to discriminate different cognitive
loads during tasks.

In particular, the best electrode configurations in terms of sensitivity to MWL changes
are those with the highest number of electrodes (e.g., fronto-parietal and FzPz), probing
both frontal and parietal lobes. The use of Cz, even though proposed in recent work for
its ease of use [20] and its potential application with single-electrode systems in real-time
MWL monitoring, is not the best choice in terms of sensitivity and has the lowest reliability
if compared to the other electrode configurations.

The MWL index appears to be more reliable if information is taken from both frontal
and parietal electrodes rather than from a single channel probing. Indeed, the results shown
in this paper support the use of at least Fz and Pz electrodes, as previously performed
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in other works investigating changes in MWL [18,19,66], as the minimum set of sensors
suitable for obtaining reliable and sensitive estimation.

As for the pre-processing pipelines, the approaches allowing the best discrimination
among tasks are those including the ICA method (with or without ASR). Our results agree
with those obtained by Kingphai and Moshfeghi [50], who evaluated the accuracy of MWL
classification after different signal pre-processing procedures. In fact, they found that
the most complete pipelines including the ICA technique provide the best classification
accuracy. However, they did not evaluate the introduction of ASR as a prior step, despite
being used in other classification works [27].

A limitation to the generalization of our results could be represented by the fact that
we analyzed signals obtained in a controlled experimental protocol, where subjects were
requested to avoid relevant movements while performing the cognitive tasks. The influence
of the pre-processing pipelines could be more significant in free-moving conditions, and the
results could slightly differ from those presented in this paper. However, we assume that
the midline electrode signals could provide repeatable results even in the more complex
experimental setup, since movement artifacts usually less affect these electrodes. Another
limitation of the present work can be represented by the low number of subjects involved
but, considering that the statistical analysis pointed out significant differences even apply-
ing the correction for multiple comparisons, we are confident that the results presented in
this paper could be generalized.

As for the analysis pipeline, we propose here a set of four different approaches that
try to include all the pre-processing steps that are most frequently employed in the EEG
literature. Anyway, variations in the choice of filters and algorithms parameters could
induce different outcomes.

In the future, the evaluation of MWL reliability should be assessed also during physical
exercises or free-moving experiments.

6. Conclusions

This work showed how the assessment of MWL using EEG signals depends on both
the pre-processing pipelines and the electrode configurations. Therefore, each experimental
protocol definition must be well pondered, since it can affect both the reproducibility
and the sensitivity. Furthermore, comparisons of quantitative results between works
implementing different methods should be carefully dealt with.

This paper suggests that using both frontal and parietal electrodes provides more
robust performances in the detection of MWL changes during a cognitive task if compared
to a single-electrode configuration. However, larger electrode configurations could be more
prone to artifacts, be time-consuming, and be challenging in some experimental conditions
(those involving non-collaborative subjects or those which involve the execution of tasks
during movement).

Most complex pre-processing pipelines have been proven to be more suitable to ensure
good inter-rater reliability and sensitivity in all experimental conditions.

In conclusion, our work provides a practical analysis framework for quantitative EEG-
based MWL evaluation studies. We propose to use at least a two-electrode configuration
(Fz and Pz) and complex pre-processing pipelines including at least the ICA algorithm
(even better if ASR is included) to mitigate artifacts and obtain reliable and sensitive MWL
assessment during cognitive tasks.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s23031367/s1.
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Abstract: This study aims to predict emotions using biosignals collected via wrist-worn sensor and
evaluate the performance of different prediction models. Two dimensions of emotions were considered:
valence and arousal. The data collected by the sensor were used in conjunction with target values
obtained from questionnaires. A variety of classification and regression models were compared, in-
cluding Long Short-Term Memory (LSTM) models. Additionally, the effects of different normalization
methods and the impact of using different sensors were studied, and the way in which the results
differed between the study subjects was analyzed. The results revealed that regression models generally
performed better than classification models, with LSTM regression models achieving the best results.
The normalization method called baseline reduction was found to be the most effective, and when used
with an LSTM-based regression model it achieved high accuracy in detecting valence (mean square
error = 0.43 and R2-score = 0.71) and arousal (mean square error = 0.59 and R2-score = 0.81). Moreover,
it was found that even if all biosignals were not used in the training phase, reliable models could be
obtained; in fact, for certain study subjects the best results were obtained using only a few of the sensors.

Keywords: emotion detection; valence; arousal; wearable sensors; regression; classification; machine
learning

1. Introduction

Wearable wrist-worn sensors are commonly used to monitor human motion based on
inertial sensors such as accelerometers, gyroscopes, and and magnetometers. In addition,
wearables can include sensors for measuring biosignals. Nowadays, wrist-worn wearable
devices can house a wide range of biosensors, including photoplethysmography (BVP) to
measure the blood volume pulse, heart rate (HR), and heart rate variability (HRV), thermome-
ters (ST) to measure skin temperature, and electrodermal activity (EDA) sensors to measure
galvanic skin responses. Based on these, it is possible to monitor human motion along with
monitor other aspects of human behavior and events occurring inside the human body.

Articles have shown good results in detecting stress and affect states based on the
data provided by wearable sensors. For instance, in [1], eight affect states (excited, happy,
calm, tired, bored, sad, stressed, and angry) were detected based on acceleration, electrocar-
diogram, blood volume pulse, and body temperature signals. The results were promising,
especially when personal models were used in the recognition process. Similarly, in [2],
heart rate, blood volume pulse, and skin conductance were used to detect seven affective
states (fun, challenge, boredom, frustration, excitement, anxiety, and relaxation); using
artificial neural networks, most of these could be detected with accuracy over 80%. In [3], a
classifier able to detect high and low stress as well as non-stressful situations in laboratory
conditions was developed based on wearable wrist-work sensors. The results showed that
the two stress classes could be detected with an accuracy of 83%. In [4], a binary classifier
was trained to detect stress and non-stressed state, and it was noted that stress could be
detected using the sensors in commercial smartwatches. There have been several other
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studies showing that stress detection based on classification models can be performed with
high accuracy using user-independent models; see for instance [5,6].

In the past, automatic emotion recognition from biosensor data has focused on detecting
discrete classes of emotion. However, humans have hundreds of emotions, and id discrete classes
can be recognized it is possible to recognize a limited number of them. In addition, it is important
both to recognize the affected state and to recognize the level of the affected state, such as a person
being slightly happy, extremely happy, or anything between these two. In fact, psychological
studies have suggested that the full spectrum of human emotion can be characterized by just
a few dimensions. One common strategy to express human emotion in discrete classes is to
divide emotions into valence and arousal ([7,8]). Valence is the horizontal extent, ranging from
displeasure to pleasure, and arousal is the vertical extent, ranging from deactivation to activation.
By combining valence and arousal, every human emotion can be expressed; often, these are
visualized using Russell’s circumplex model of emotions (see Figure 1).

In this article, valence and arousal levels are predicted based on biosignal data collected
using wearable wrist-worn sensors. The novel contributions of our paper are as follows:

1. It is shown that fine-grained levels of valence and arousal can be detected based on
the data of wrist-worn sensors with high reliability when the data and the target
values provided by the study subjects are normalized in the right way.

2. We compare the suitability of different classification and regression models for detect-
ing the levels of valence and arousal.

3. We explore the finding that the same features and sensors may not be optimal for
every individual.

Figure 1. Russell’s Circumplex Model of Emotions.

The rest of this article is organized as follows. Related works are introduced in
Section 2, and the data used in the experiments are explained in Section 3. Section 4
introduces the methods used in the study, and Section 5 explains the experimental setup,
the applied methods, and the obtained results. Finally, a discussion is presented in Section 6
followed by our conclusions and prospects for future work in Section 7.

2. Related Work

In [9], valence and arousal detection using regression models were studied based on
audio data. There have been several audio- and video data-based studies, for instance, [9,10],
on detecting valance and arousal based on continuous response values and regression
models. However, when it comes to wearable sensors, emotion recognition has in the past
focused on identifying discrete classes of emotion. There have been a number of studies in
which valence and arousal levels were detected; however, in these, the detection was based
on dividing valance and arousal values into discrete classes, meaning that the prediction
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models were based on classification methods. Often, valance and arousal values are only
divided into two discrete classes, high or low arousal, for instance in [11–14]; however, there
have been studies in which more fine-grained classes were studied as well.

In [15], valence and arousal were divided into three classes: low, neutral, and high
arousal/valance. However, in the final classification only the low and high arousal/valence
observations were used. A dataset was collected from 21 study subjects playing games with
increasing difficulty and self-reporting their valence and arousal levels while playing. The par-
ticipants were wearing OpenBCI headsets and JINS MEME eyewear, and these were used to
collect electroencephalography (EEG), electrooculography (EOG), and kinematic motion data
(acceleration from the head and glasses, and gyroscope data from the glasses). Classification
methods such as ensemble learning and random forest were used as classifiers. In the study,
ten-fold cross-validation was used instead of leave-one-subject-out cross-validation. The best
accuracies were obtained using an ensemble learner, and in the binary case, these were
73% for arousal and 80% for valence. In [16], two datasets were studied: the publicly open
CASE dataset, containing electrocardiogram (ECG), BVP, EDA, respiratory rate, ST, and EMG
(electromyography) signals, and another dataset called MERCA containing data from the
autonomic nervous system (HR, HRV, ST, and EDA) and oculomotor nerve system (pupil
dilation, saccadic amplitude, and saccadic velocity) collected using an Empatica E4 wrist-worn
sensor and wearable eye tracker. The aim of the study was to detect the levels of valence
and arousal. For this purpose, three scenarios were studied: a binary case in which valence
and arousal were divided into two classes (high and low), a three-class case (low, neutral,
and high arousal/valance), and a four-class case (high valence + high arousal, high valence +
low arousal, low valence + high arousal, and low valence + low arousal). Different machine
learning and deep learning models were used in the experiments; when leave-one-subject-out
cross-validation was used, the recognition rate for the binary case was around 70%, while it
was lower for the cases with three and four classes.

However, as the level of valence and arousal can be high, low, or anything between these,
dividing the level of valence and arousal into discrete classes is not the best option, and there
is evidence that wearable sensors can be used to predict continuous affect state values as well.
In [17], a significant correlation was found between valence levels and cortisol levels, which
have been accepted as a reliable physical measure of emotions. In addition, it was found that
EEG (electroencephalography) signals collected using a wearable device correlated with valence
levels, showing that the signals of wearable devices correlates with cortisol levels. The study did
not rely on machine learning methods; however, what was noticeable was that valence levels
were not divided into discrete classes, meaning that the study shows that wearables, in this case
EEG sensors, can be used to detect continuous valence level values.

When it comes to detecting continuous target values such as the level of valence and
arousal using machine learning and artificial intelligence methods, prediction needs to be built
by relying on regression models instead of classification models. However, it seems that there
are not many studies where valance and arousal levels are estimated using regression models.
In [18], arousal level was estimated based on ECG, respiratory rate, EDA, and ST signals using
only simple a linear regression model, which is not an up-to-date regression model. Moreover,
the authors did not study valence at all. On the other hand, regression has been applied to other
related problems. For instance, in [19] the authors used statistical methods such as regression
to predict anxiety based on wearable data (in this case BVP, ST, EDA, and microphone data),
and in other studies it has been shown that continuous stress levels can be estimated based on
regression and statistical methods (for instance [20–23]).

These related studies are presented in Table 1. What can be noted from the table is
what is not studied, how well the data of wrist-worn wearable sensors can be used to
estimate the level of both valence and arousal, and how well modern regression models
can predict valence and arousal levels compared to classification models when the valence
and arousal levels are divided into fine-grained discrete classes.
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3. Experimental Dataset

The experiments in this study were carried out based on the open WESAD dataset [24],
which was gathered using an Empatica E4 [25] wrist device and chest-worn RespiBAN
device. In this study, only the Empatica E4 data was used. This device includes sensors to
measure acceleration (ACC), skin temperature (ST), electrodermal activity (EDA), blood
volume pulse (BVP), heart rate (HR), and heart rate variability (HRV).

WESAD contains data from 15 participants; from each study subject, it contains
baseline data, data from a stressful situation, data from a state of amusement, and data
from two meditation states. The purpose of the meditation sessions was to relax the study
subject after each task, and the meditation data were not used in this study. The baselines
were collected at the beginning of the data-gathering session while the participants were
sitting/standing at a table and reading neutral magazines. During the gathering of stress
data, participants had two tasks: (1) they had to provide a public presentation, and (2) they
had to solve arithmetic tasks. Data from the state of amusement was collected while
the participants were watching funny videos. The length of the stressful situation was
approximately 10 min, the amused situation was 6.5 min, and the relaxed situation (baseline)
was 20 min. After each task, the subjects were asked to fill in a self-report consisting of three
types of questionnaires: PANAS [26], shortened STAI [27], and SAM [28]. PANAS asks
whether a person had certain positive and negative moods during tasks, STAI concentrates
on questioning how strong a person’s feelings of anxiety are, and SAM is used to ask about
a person’s level of valance and arousal on a scale of 1–9. Therefore, when the models to
predict valence and arousal levels were trained, the labels used in the training process were
based on these subjective estimations. In this study, answers to the SAM questionnaire
were scaled to [−4, 4] and used to define the correct target variables. This means that when
classification methods are used, instances are classified into nine classes.

In the pre-processing stage, as suggested in [29], not all of the baseline data were
used in the experiments. In fact, the first half of the baseline data were removed from the
dataset, as it is possible that immediately after starting to gather data for the baseline the
study subject’s body may not be in a relaxed state. Moreover, pre-processing of the EDA
signal was carried out following the guidelines in [24]. A 5 Hz low-pass filter was applied
to the raw EDA signal, then it was divided into phasic and tonic parts [30] using cvxEDA
(https://github.com/lciti/cvxEDA). BVP and ST signals were used as they were.

For the model training, signals were divided into windows and features were extracted
from these. A window size of 60 s was used in the experiment, which is the same as used
in [4,24] for stress detection. The slide between two adjacent windows was 30 s. Different
statistical features (min, max, mean, std, percentiles) per signal (BVP, ST, EDA, phasic
and tonic parts of EDA), and physiological features were extracted from the HRV and
PPG signal using HeartPy (https://python-heart-rate-analysis-toolkit.readthedocs.io/en/
latest/). In addition, the slope was calculated from the ST. Features were not extracted
from the accelerometer signal, as the accelerometer measures movement. Due to this,
different activities performed during different tasks may be visible in acceleration data,
leading to situations where accidental activities are detected instead of emotions. Therefore,
only features extracted from biosignals were used to train the models. The full list of
extracted features is shown in Table 2. These features and libraries are commonly used
and recommended for extracting features and pre-processing biosignal data [31]. After the
features were extracted, rows with NaN- and Inf-values were removed from the dataset.

The feature matrix was scaled to level 0–1, and is visualized in Figure 2 using t-SNE,
a dimensionality reduction technique that can be used to project high-dimensional data
into a low-dimensional space [32]. The figure shows that t-SNE effectively clusters data
from different valance and arousal estimates reported by study subjects into own clusters,
as shown in Figure 2a,b. However, the high number of clusters and wide spread of samples
within the same class but different clusters makes analyzing this dataset challenging. This
indicates a high level of variation within classes, and could be due to differences among
study subjects. In addition, the high number of clusters indicates that the dataset has a
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complex underlying structure. Therefore, it may require advanced techniques in order to
achieve good results. Moreover, the figures show that the dataset is highly imbalanced.
Most of the samples are quite neutral, as their label is close to zero, and the dataset does not
contain many extreme values. This makes the data analysis process even more challenging.

(a)

(b)

Figure 2. WESAD dataset illustrated using t-SNE: (a) data visualized using t-SNE and valence levels
as targets; (b) data visualized using t-SNE and arousal levels as targets.
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Table 2. List of extracted features.

Signal Features Extracted from the Pre-Processed Biosignals

Electrodermal activity (EDA) mean, std, min, max, median, range, percentile_95, percentile_5, percentile_75, per-
centile_25, phasic_mean, phasic_std, phasic_min, phasic_max, phasic_median, phasic_range,
phasic_percentile_95, phasic_percentile_5, phasic_percentile_75, phasic_percentile_25,
tonic_mean, tonic_std, tonic_min, tonic_max, tonic_median, tonic_range, tonic_percentile_95,
tonic_percentile_5, tonic_percentile_75, tonic_percentile_25,

Skin temperature (ST) mean, std, min, max, percentile_95, percentile_5, percentile_75, percentile_25, slope
Blood volume pulse (BVP) mean, std, min, max, percentile_95, percentile_5, percentile_75, percentile_25 HR_mean,

NNi_mean, NNi_std, NNi_length, NNi50, pNN50, TINN, rms, LF/HF_ratio,
VLF_relative_power, LF_relative_power, HF_relative_power, VHF_relative_power, to-
tal_power, UHF_energy, LF_energy, HF_energy, breathing_rate

4. Methods

This section introduces the normalization methods compared in this study as well as
the classification and regression models and the performance metrics used to compare them.

4.1. Normalization

People are different, and due to this, biosignals collected from the study subjects
differ from individual to individual. In addition, biosignals are affected by daily changes,
for instance those caused by sleep quality and chronic stress. Therefore, the difference
in biosignals between the subjects can be considerable, and this may pose challenges for
prediction models. Due to this, the prediction power of recognition models trained using
raw data can vary a great deal between individuals.

Data normalization is often found to be an effective method to remove participant-
specific effects on the data, such as daily changes and different natural ranges, and is a
good way to make trained models more generalized to any study subject [33]. Due to
this, normalization is a powerful method to adapt models to the current status of the
study subject’s body as well as to the calibration status of the sensor itself. Moreover,
by regularly calculating the required parameters for normalization, for instance, every
morning, normalization can be used as a tool to adapt models to the changes happening
inside the human body, which affects the sensor readings as well. In this study, four datasets
were created in order to experiment with the effects of different normalization methods.
Figure 3 explains how these were created.

Person-specific z-score normalization has been found to be the most effective way to
normalize biosignals [33,34] when classifying affect and stress stages. Due to this, it was
used in this study. The z-score normalized value zi for observation xi can be calculated
using the equation

zi =
xi − μ

σ
, (1)

where the μ is mean and the σ is standard deviation calculated from the whole signal
X, xi ∈ X collected from an individual. This normalization is performed separately for
each collected biosignal (EDA, BVP, HRV, and ST).

Baseline reduction is commonly used as a normalization method when dealing with
data on emotions. Individual valence and arousal value estimations for the baseline data
were reduced from all the target values for valence and arousal; thus, the target value
for each individual for valence and arousal at the baseline was zero, as the baseline is
considered a neutral stage. Because of the normalization, subject-wise differences from the
target values could be removed.
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Figure 3. Four datasets (base, z, z+base, and raw) were created to experiment with different normal-
ization methods.

The third normalization method tested in this study was a combination of the first
two approaches; z-score normalization was used to remove individual differences from the
signals, then baseline reduction was used to remove individual differences from the labels.

To determine the benefits of normalization, these three normalization methods were
compared to situations where signals and labels were not normalized and the models were
instead trained based on raw data which was not normalized at all.

It should be noted that baseline reduction has an effect on the number of target
variables. When raw questionnaire data were used in the modeling process, the number of
classes for valence level prediction was seven (none of the study subjects reported valence
levels −3 and 4), and for arousal level prediction it was nine. However, after baseline
reduction the number of classes for valence level prediction was eight and for arousal level
prediction it was six.

4.2. Prediction Methods

As one of the purposes of our study was to compare classification and regression
methods, several different classification and regression methods were assessed. Long
Short-Term Memory (LSTM) is a variant of recurrent neural networks; it is highly suitable
for time-series prediction, as it is capable of learning long-term dependencies from the
data [35]. In this study, one hidden layer was used, as it has been shown in [36] that an
LSTM with one layer provides better results than one with two layers when studying
wearable sensor data. The LSTM layer of the model used in this study had 64 units, and the
model had around 17,000 parameters to train. AdaBoost [37], Random Forest [38], XGBoost
(eXtreme Gradient Boosting) [39], and Histogram-GBM (inspired by LightGBM [40]) are
ensemble methods that train a group of weak learners, usually decision trees, and make
a final prediction that is a combination of these. In comparison to decision trees, linear
regression, and LDA (linear discriminant analysis), the latter are simpler methods. In this
article, LSTM, AdaBoost, Random Forest, and XGBoost were used for both classification and
regression, LDA and decision tree were used for classification only, and linear regression
and Histogram-GBM were used for regression only.

4.3. Performance Metrics

All regression models were evaluated using two different types of evaluation param-
eters commonly used with regression models, namely, R2 and the mean squared error
(MSE) [41]. In addition, certain models were evaluated in greater detail using the root
mean squared error (RMSE) and mean average error (MAE) [41]. Normally, the results
of classification models are evaluated using a confusion matrix and performance metrics
calculated from it; because in this case the classification classes were fine-grained and
ordinal, the performance of the classification methods was evaluated using R2 and MSE as
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well. When analyzing model performance using these metrics, it is important to note that a
value of zero is optimal for MSE, RMSE, and MAE, while a value of one is optimal for R2.

Traditionally, the performance of classification methods is analyzed using performance
metrics such as accuracy, sensitivity, specificity, etc. However, as in this article the idea is to
compare classification and regression methods and regression models cannot be analyzed
using these metrics, both classification and regression models were analyzed using MSE,
RMSE, R2, and MAE. In fact, as valence and arousal are continuous phenomena and the
targets for them are ordinal, it is natural that all the models be analyzed using these metrics.
Moreover, evaluating both classification and regression models using the same performance
metrics makes their comparison easier.

5. Experimental Setup and Results

The results of the experiments are presented in this section. All the results were
calculated using the leave-one-subject-out method, meaning that one study subject’s data
is used for testing and all the other data is used for training, with the process then repeated
in turn (Figure 4). Due to this, the trained models are user-independent. When the results
for all the study subjects were obtained, they were combined as one sequence and MSE and
R2 values were calculated from these combined sequences. As most of the models used in
this article contain random elements, the models were trained five times. All of the results
presented in this section are averages from these runs, with the standard deviation between
the runs shown in parenthesis. The scale of the target variables was [−4, 4]; if the estimated
value was outside of this scale, it was replaced with −4 or 4.

Figure 4. Leave-one-subject-out method used in the experiments. In turns, the data of one study
subject are is used for testing while all other data are used for [42].

5.1. Comparison of Prediction Models and Normalization Methods

The results presented in Table 3 show how well different classification and regression
models can predict valence and arousal levels based on raw sensor data and how the
normalization of signals and target values affects the recognition rates. From these results,
it can be noted that it is possible to reliably estimate valence and arousal levels based on
data from wrist-worn wearable sensors and up-to-date prediction models. Moreover, this
estimation is especially reliable when the prediction is made based on the LSTM model. It
should be noted that the LSTM outperforms other classification and regression algorithms.
The best results were obtained using the LSTM regression model with a baseline reduction
as the normalization method, in this case, for valence level estimation MSE = 0.43 and
R2 = 0.71 and for arousal level estimation MSE = 0.59 and R2 = 0.81.
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A comparison of the results from the classification and regression models shows that,
in general, the regression models performed better than the classification models, and only
in very few cases did classification models perform better than regression models. This
is not surprising, as valence and arousal are continuous phenomena and are not discrete,
meaning that they should be analyzed using regression methods, not classification methods.
However, in certain cases classification using LSTM worked very well. For instance, when
the valence level is recognized, the LSTM-based classification model with baseline reduction
normalization (mean MSE = 0.57 and R2 = 0.55) performs nearly as well as the LSTM-
based regression model with baseline reduction normalization, which has the overall best
MSE score (0.43). In addition, when the arousal level is predicted using the LSTM-based
classification model with baseline reduction normalization, the performance of the model
is nearly as good as when using the LSTM-based regression model with baseline reduction
normalization (MSE = 0.81 and R2 = 0.75 compared to MSE = 0.59 and R2 = 0.81). Therefore,
it is not possible to conclude based on MSE and R2 that LSTM-based regression models are
better than LSTM-based classification models. To study the performance of the LSTM-based
models in more detail and compare their classification and regression versions, Table 4
presents a comparison using MSE and R2 along with RMSE and MAE. According to these
results, baseline reduction is the best normalization method, supporting the findings based
on the results of Table 3. Moreover, according to Table 4, in the case of valence recognition
the difference between LSTM-based classification and regression models with baseline
reduction is small when MSE, R2, RMSE, and MAE values are compared. Nonetheless,
when all four performance metrics are compared, the LSTM regression model with baseline
reduction is better than the most similar classification model according to three metrics out
of four. In the case of arousal recognition, the difference is clear, and again the LSTM based
regression model with baseline reduction is the best model according to three metrics out
of four.

Table 4. Detailed analysis of LSTM classification (C) and regression (R) models with different
normalization methods.

User-Independent Prediction Rates for Valence Level Estimation.

Method Type MSE R2 RMSE MAE

LSTM raw R 0.74 (0.20) 0.73 (0.08) 0.82 (0.12) 0.42 (0.08)
LSTM base R 0.43 (0.05) 0.71 (0.04) 0.65 (0.04) 0.34 (0.05)
LSTM z R 0.70 (0.09) 0.75 (0.04) 0.83 (0.06) 0.41 (0.06)
LSTM z+base R 0.57 (0.06) 0.61 (0.05) 0.76 (0.04) 0.40 (0.04)
LSTM raw C 1.75 (0.53) 0.42 (0.18) 1.42 (0.16) 0.63 (0.12)
LSTM base C 0.57 (0.11) 0.55 (0.10) 0.75 (0.08) 0.30 (0.04)
LSTM z C 3.33 (0.16) 0.13 (0.07) 1.90 (0.07) 1.27 (0.40)
LSTM z+base C 1.94 (0.18) −0.04 (0.07) 1.34 (0.07) 0.55 (0.05)

User-Independent Prediction Rates for Arousal Level Estimation.

Method Type MSE R2 RMSE MAE

LSTM raw R 1.57 (0.14) 0.73 (0.03) 1.25 (0.06) 0.60 (0.08)
LSTM base R 0.59 (0.06) 0.81 (0.02) 0.77 (0.04) 0.30 (0.03)
LSTM z R 2.56 (0.36) 0.58 (0.07) 1.60 (0.11) 0.95 (0.10)
LSTM z+base R 1.24 (0.24) 0.59 (0.07) 1.11 (0.11) 0.51 (0.06)
LSTM raw C 2.51 (0.79) 0.64 (0.11) 1.48 (0.11) 0.55 (0.07)
LSTM base C 0.81 (0.10) 0.75 (0.03) 0.90 (0.05) 0.28 (0.03)
LSTM z C 8.41 (0.44) −0.17 (0.07) 2.90 (0.08) 1.90 (0.12)
LSTM z+base C 1.75 (0.19) 0.50 (0.05) 1.32 (0.07) 0.55 (0.06)

According to Table 4, the two best models are LSTM regression and classification models
with baseline reduction. To obtain more insight into these models, Figures 5 and 6 illustrate
how the predicted valance and arousal estimates follow the user-reported target variables
when these models are used in prediction. The figures are drawn based on the results of the
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best runs; in the case of the regression model, MSE and R2 for valence estimation were 0.38
and 0.74, respectively, while for arousal estimation they were 0.51 and 0.84, respectively.
For the classification model, the MSE and R2 for valence estimation were 0.42 and 0.69,
respectively, while for arousal estimation they were 0.68 and 0.80, respectively. In the
figures, predictions using an LSTM-based regression model are shown with a blue line,
those using a classification model are shown using a green line, and the true arousal level is
shown in orange. Due to subjective differences, the estimation is not as good for all subjects;
however, these figures show that in general prediction is highly accurate with both models.
In fact, for a number of study subjects the prediction is almost perfect. However, while the
difference between LSTM regression and classification models according to the MSE and
R2 is minimal, Figures 5 and 6 reveal differences. It can be noted that the WESAD data
does not contain very many samples from cases in which the level of valence is very high
or very low, and it contains very few negative arousal cases. In fact, Figure 5 shows that
the models have difficulty detecting high valence values; in particular, the classification
models seem to suffer due to this lack of training data for high valence values. According
to Figure 5, the classification model performs badly for samples in which valence is above
zero, while the regression model has fewer such problems. Similarly, Figure 6 shows that
the classification model has problems detecting high arousal values; here, the problems are
not as severe as in the case of valence recognition, as the training data contain more cases
with high values for arousal than for valence. In addition, according to Figure 6, neither
model detects negative arousal samples.

Earlier results have already shown that baseline reduction is the most effective nor-
malization method. However, when different normalization methods are compared, it is
especially interesting to see the effects different normalization methods have on LSTM
models, as these outperform other models. This is visualized in Figure 7. The results of this
figure are taken from Table 4 by calculating the average performance of each normalization
method when LSTM classification and regression models are used to detect valence and
arousal levels. The figure clearly shows that there are large differences between the normal-
ization methods; no matter which performance metric is used, baseline reduction always
provides the best results. For MSE, RMSE, and MSE the error is the lowest and for R2 the
value is highest when using baseline reduction. In fact, according to Table 4, for the cases of
both valance, and arousal the best results are obtained when using baseline reduction as the
normalization method. Both classification and regression models benefit from this, showing
that normalization should be used instead of analyzing raw data. The low performance of
z-score normalization is surprising; it provides good results only rarely, and in this study,
the only good results using z-score normalization were obtained when the valence level was
detected using an LSTM-based regression model (MSE = 0.70 and R2 = 0.75, see Table 4).
While z-score normalization does not perform well compared to baseline reduction, it is a
much better option than analyzing data without any normalization. In fact, Figure 7 shows
that, on average, the worst results were obtained from raw data, with the performance of
non-normalized data being especially bad according to the RMSE value.
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(a)

(b)

(c)

Figure 5. True and predicted valence levels for the WESAD dataset using LSTM-based regression
(blue line) and classification (green line) models with baseline normalization. The true valence level
is shown in orange. (a) Valence for study subjects 2, 3, 4, 5, and 6. (b) Valence for study subjects 7, 8,
9, 10, and 11. (c) Valence for study subjects 13, 14, 15, 16, and 17.
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(a)

(b)

(c)

Figure 6. True and predicted arousal levels for the WESAD dataset using LSTM-based regression
(blue line) and classification (green line) models with baseline normalization. The true arousal level
is shown in orange color. (a) Arousal for study subjects 2, 3, 4, 5, and 6. (b) Arousal for study subjects
7, 8, 9, 10, and 11. (c) Arousal for study subjects 13, 14, 15, 16, and 17.

190



Sensors 2023, 23, 1598

Figure 7. Effect of different normalization methods on the performance of the LSTM models.

Figures 5 and 6 show that the valence and arousal levels can be estimated with high
reliability when studied separately, and an LSTM-based regression model with baseline
reduction is the best method to do it. However, the most important thing is to understand
how well emotions can be estimated when valence and arousal estimations are combined
and visualized using Russell’s circumplex model of emotions (see Figure 1). Figure 8 shows
this visualization for different emotion classes; these estimations are from the run that
provided the best results when the target values were normalized using baseline reduction.
Therefore, they are the same ones shown in Figures 5 and 6 for the LSTM-based regression
model. In Figure 8, the estimated values are shown in blue and the target values provided
by the study subjects are visualized using red dots. As baseline reduction is used, in the
case of the baseline class the target value for valence and arousal is zero. Figure 8a shows
that the baseline emotion can be estimated with high accuracy, as almost all the estimations
are close to the origin. In this case, the average estimated valence is −0.01 and the average
estimated arousal is 0.04. According to Figure 1, strong negative emotions are located at
the top left quarter of Russell’s circumplex model of emotions, which is exactly where
estimations of stress-class observations are located based on the models presented in this
article (see Figure 8b). Moreover, the target values obtained from the study subjects are
located in the same place. In fact, the predicted values and target values are very close
to each other. Observations from the amusement class are estimated to be located close
to the origin (Figure 8c) or to the right bottom quarter of Russell’s circumplex model of
emotions, where relaxed emotions are located. While the model estimates only slightly
relaxed emotions during the amusement class, and the detected emotions are not as strong
as those recognized from the stress class, this does not mean that the model performs
badly in this case. Indeed, when predicted values are compared to the target values, it can
again be noted that they are distributed in the same area on the valence–arousal graph.
Therefore, prediction models based on the LSTM regression model and baseline reduction
can estimate the valence and arousal levels for each emotion class with high accuracy,
making it emotion-independent based on this analysis.
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(a) (b) (c)

Figure 8. Results from different emotion classes. The results are presented on a valence–arousal
graph, with valence on the x-axis and arousal on the y-axis. Study subjects’ reported valence and
arousal levels are shown as red dots, while the blue graphs indicate the distribution of estimated
values across the graph: (a) baseline; (b) stress; (c) amusement.

5.2. Subject-Wise Results

Subject-wise valence and arousal level estimation results from the best-performing
regression models are presented in Table 5, where LSTM models without any normalization
and with baseline reduction are compared to AdaBoost and Random Forest models with
baseline reduction. It should be noted that, according to Table 3, the AdaBoost and Random
Forest models perform much worse on average than the LSTM models. The results in
Table 5 show that for most of the study subjects the levels of valence and arousal can
be predicted by all of these models, as well as with the AdaBoost and Random Forest
models. There are even cases in which AdaBoost and Random Forest perform better than
LSTM. However, the largest difference between AdaBoost, Random Forest, and LSTM is
that in certain cases AdaBoost and Random Forest perform very badly, while the variance
between the prediction rates for different study subjects is much smaller using LSTM.
For instance, when the valence of subject 11 was predicted using the AdaBoost regression
model, the R2-score was −131.95, and for Random Forest the R2-score was −127.81. These
naturally have a huge effect on the average values presented in Table 3.

The results in Table 5 show that certain study subjects have data that are more difficult
to predict. For instance, each model has difficulty predicting the valence of study subjects
14 and 17 and the arousal of study subjects 2, 14, and 17. There may be problems with the
data of study subjects 14 and 17, or their bodies may react differently to stimuli compared
to other study subjects. If the differences are caused by different stimuli, this suggests
that it would be possible to obtain better results via model personalization. In addition,
there are model-specific differences. For instance, the valence level of study subject 4 is not
predicted well by LSTM when the model uses raw data; however, when the same person’s
data is predicted with the LSTM model trained using baseline reduction normalized data,
the prediction is highly accurate. This shows the importance of normalization. Moreover,
while LSTM performs well in most cases, for certain subjects the R2-score is negative.

For this experiment, all of the models were trained five times; the results presented
in this section are averages from these runs, with the standard deviation from these runs
for each individual presented in parentheses in Table 5. When the standard deviations are
studied in detail, it can be noted that for certain study subjects the results differ a great deal
between different runs, especially when it comes to valence level detection. For instance,
for study subjects 2, 5, and 14 the standard deviation of the R2 score is greater than 1 when
valence is detected using LSTM and baseline reduction.
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5.3. Experimenting with Sensor Combinations

Different sensor combinations were compared to study the effects of different sensors
on the recognition results. The results calculated using the LSTM regression model with
baseline reduction are shown in Table 6. Table 6 shows that not all of the Empatica E4’s
sensors are needed to estimate valence levels reliably, and arousal can be estimated at a
high rate without using all the sensors as well. In fact, when using just the BVP and EDA
sensors the valence levels can be estimated with the same detection rate as when using all
the sensors. When these results are studied subject-wise, it can be noted that the variance
between the study subjects is smaller when using only BVP and EDA sensors instead of
all the sensors (see Table 7). When the LSTM regression model with baseline reduction
ws used with all the sensors to recognize valence level, the R2 score was negative for four
study subjects (see Table 5). However, according to Table 7, the R2 score is negative only
for one study subject when using only the BVP and EDA sensors. In addition, the variance
within the study subjects is smaller when using just the BVP and EDA sensors instead of
all the sensors; for instance, the variance of the R2-score varies from 0 to 0.14 depending
on the study subject when using only the BVP and EDA sensors, while when using all the
sensors it varies from 0.01 to 1.10.

Table 6. Average recognition rates (standard deviation in parentheses) using LSTM regression model
with baseline reduction with different sensor combinations.

Sensors Valence: MSE/R2 Arousal: MSE/R2

EDA + ST + BVP 0.43 (0.05)/0.71 (0.04) 0.59 (0.06)/0.81 (0.02)
EDA + BVP 0.42 (0.05)/0.72 (0.05) 1.13 (0.10)/0.61 (0.03)
BVP + ST 0.72 (0.12)/0.52 (0.09) 0.92 (0.15)/0.71 (0.05)
EDA + ST 0.82 (0.24)/0.44 (0.18) 0.87 (0.11)/0.70 (0.04)
EDA 0.91 (0.08)/0.39 (0.05) 1.17 (0.22)/0.58 (0.08)
BVP 0.72 (0.07)/0.48 (0.05) 1.07 (0.08)/0.64 (0.03)
ST 1.76 (0.09)/−0.62 (0.08) 3.60 (0.27)/−0.70 (0.15)

Table 7. Results from different emotion classes when using features extracted from only some of the
sensors (EDA and BVP for valence and EDA and ST for arousal) and LSTM regression model with
baseline reduction.

Subject Valence (EDA + BVP): MSE/R2 Arousal (EDA + ST): MSE/R2

2 0.61 (0.04)/0.00 (0.00) 0.69 (0.08)/−1.31 (2.56)
3 2.03 (0.41)/−0.55 (0.14) 0.69 (0.46)/0.62 (0.27)
4 0.16 (0.03)/0.85 (0.02) 0.36 (0.04)/0.91 (0.01)
5 0.15 (0.04)/0.79 (0.01) 0.19 (0.07)/0.94 (0.02)
6 0.04 (0.01)/0.95 (0.01) 0.14 (0.15)/0.79 (0.13)
7 0.04 (0.00)/0.83 (0.02) 0.44 (0.13)/0.86 (0.04)
8 0.02 (0.00)/0.97 (0.00) 0.08 (0.00)/0.97 (0.00)
9 0.28 (0.00)/0.39 (0.07) 0.04 (0.03)/0.86 (0.04)
10 0.11 (0.12)/0.96 (0.03) 0.05 (0.02)/0.98 (0.01)
11 0.09 (0.06)/0.94 (0.05) 0.18 (0.06)/0.94 (0.02)
13 0.81 (0.02)/0.36 (0.06) 2.26 (0.59)/−0.48 (1.05)
14 0.77 (0.04)/0.43 (0.08) 3.81 (0.96)/−1.14 (0.70)
15 0.38 (0.01)/0.59 (0.00) 0.07 (0.01)/0.96 (0.00)
16 0.10 (0.03)/0.96 (0.01) 0.56 (0.01)/0.82 (0.00)
17 0.23 (0.00)/0.93 (0.00) 1.12 (0.32)/0.68 (0.10)

The recognition rate of the arousal level is slightly lower when using just EDA and ST
instead of all the sensors (Table 6). In this case, the selection of only certain sensors does not
have a similar positive effect on standard deviation as does for valence; again, however, the
results in this case are better for certain individuals.
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6. Discussion

The results presented in Section 5 show that fine-grained valence and arousal levels
can be estimated reliably based on wrist-worn wearable sensor data and machine learning
methods. According to the results shown in Table 3, LSTM models are superior to other
methods. This is because LSTM is the only prediction model in our experiments capable of
learning long-term dependencies from the data. Moreover, LSTM is the most advanced
among these prediction models, which is why its superior performance on the WESAD
dataset is not surprising. As shown in Figure 2, the WESAD dataset is complex, and it
requires powerful methods for analysis. Especially in the case of estimating the arousal
level, the difference between LSTM and other prediction methods is very large.

Table 3 shows that regression models perform better for the task in general than
classification models when the performance of the models is measured using MSE and R2

values. This is expected, as valence and arousal are continuous phenomena and are not
discrete. Moreover, as classification methods treat valence and arousal levels as distinct
categories, they are unable to take into account the ordinal nature of these levels and
use it during the model training process. This means that if the training data do not
contain samples from all the possible levels of valence and arousal, as in the case of our
data, classification models cannot detect these from unseen datasets as well. Regression
models do not have this limitation. Despite their limitations, in certain cases classification
methods performed well in our experiments. In fact, according to MSE and R2 values,
the LSTM-based classification model with baseline reduction performs equally as well
as the regression-based LSTM model, though the RMSE and MAE measures (Table 4)
and visualization of the results (Figures 5 and 6) show that there are in fact differences
between these models and that the LSTM regression model is more reliable than the
LSTM classification model. The biggest difference is that the LSTM-based classification
methods seem to have problems detecting positive valence values. In fact, the dataset
does not contain many such samples, showing that the LSTM classification model is more
vulnerable to limited and imbalanced datasets than the LSTM regression model. Moreover,
when the predicted values were visualized using Russell’s circumplex together with target
values provided by the study subjects (see Figure 8), it can be noted that the results are
almost identical. This shows that the models presented in this article are highly capable
of recognizing the level of valence and arousal and that the valence and arousal level
estimates provided by the study subjects contain information that can be used as target
values for the recognition models when data are pre-processed and normalized correctly.
However, it seems that the targets reported by the study subjects are not always reliable.
For instance, subject 3 reported a valence label of 7 after a stress condition, which was the
same as this person reported for baseline valence, claiming that he was looking forward to
the next condition and was therefore cheerful. The models did not manage to predict this
correctly; the results using LSTM, AdaBoost, and Random Forest are as shown in Figure 9.
However, as the target value defined by the study subject was not reliable, most likely the
estimations made by the models are closer to the truth than the target variables. Moreover,
it is possible that people might not always know how they feel [43,44], and for this reason
it seems that in certain cases the models are better at describing feelings than the study
subjects themselves.

In addition, different methods for data normalization were used: z-score, baseline
reduction, and z-score with baseline reduction. These were compared to the case where
features were extracted from raw (non-normalized) data. The results were surprising, in
that the best results were obtained using baseline reduction normalization. It was expected
that z-score normalization would provide the best results, as it has been shown to improve
the detection rates when stress or other affective states are recognized from wearable
sensor data [45]. However, in this study no similar effect was noted. The reason for this
could be that the previous studies concentrated on detecting discrete human emotions
and not on estimating continuous valence and arousal values, as this study does. A baseline
reduction-based z-score normalization has other advantages over z-score normalization
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as well; in order to normalize signals using z-score normalization, the participant-specific
mean and standard deviation need to be calculated from each study subject’s full data
signal, meaning that normalization can only be carried out after data gathering [46]. Due
to this, it is not suitable for real-time application. However, baseline reduction does not
have a similar limitation, as only baseline data need to be collected, and the study subject
can report his/her valence and arousal levels at the same time. Moreover, as baseline
reduction improves recognition rates and z-score normalization does not, this means that
the differences between the individuals are more related to differences in subjective target
variable estimations than to differences in the signals themselves.

Our in-depth subject-wise study (see Table 5) shows that for most of the study subjects
the AdaBoost and Random Forest models perform almost as well as LSTM. However,
the biggest difference between these models is that for certain subjects the AdaBoost and
Random Forest models perform very badly, while the LSTM-based model is more evenly
reliable for each individual. Therefore, LSTM does not suffer from much variance between
the study subjects, resulting in much better average prediction rates than all the other
experimented models. These results show that machine learning is a powerful tool for
detecting valence and arousal levels, and thereby for recognizing emotions. While the
results using the LSTM regression model are good on average, even in the case of the
LSTM regression model there is variation between the study subjects and different runs.
This means that there is a need to personalize models and experiment with larger datasets
that have more variation. Moreover, the results presented in Table 7 show that when
using only certain sensors it is possible to obtain estimations that are just as good as when
using all the sensors. For certain individuals, the results are even better, especially when
it comes to detecting the valence level, as in this case the variance between the study
subjects can be reduced when using only the EDA and BVP sensors instead of all the
sensors. Therefore, prediction models could be personalized by selecting a unique sensor
combination for each individual, which could improve the results and reduce the variance
between study subjects.

(a) (b)

(c)

Figure 9. Subject 3 might have provided the wrong answer regarding the level of valence during
a stressful stage. The blue line shows the predicted valence level, the orange line is the ground
truth for the valence level, and the green line indicates the emotion class: 1 = baseline, 2 = stress,
and 3: amusement. (a) LSTM, (b) AdaBoost, (c) Random Forest.
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7. Conclusions

This study aimed to predict emotions using biosignals collected via wrist-worn sensor
and to evaluate the accuracy of different prediction models. Two dimensions of emotions
were considered, namely, valence and arousal. In this study, valence and arousal levels
were estimated using machine learning methods based on an open-access WESAD dataset
containing biosensor data from wrist-worn sensors. These data included skin temperature,
electrodermal activity, blood volume pulse, heart rate, and heart rate variability collected
from 15 study subjects. Study subjects were exposed to different stimuli (baseline, stress,
and amusement); after each stimulus, they reported their valence and arousal levels. These
estimates were used in this study as target variables. In fact, in the study it was shown
that the level of valence and arousal can be predicted with high reliability with the help
of these user-reported valence and arousal levels by using the LSTM regression model
and normalizing target values through baseline reduction. However, while on average the
results are very good, for certain individuals the results are much weaker. Moreover, it was
found that reliable models could be obtained even if all biosignals were not used in the
training phase; in fact, for certain study subjects the best results were obtained using only a
few of the sensors.

To date, the field of emotion detection has mainly focused on identifying a limited
number of discrete emotions or treating valence and arousal as coarse-grained discrete
variables. However, this study demonstrates the ability to reliably detect fine-grained
valence and arousal levels by analyzing data using advanced machine learning models.
Additionally, this research suggests that regression models are more effective for this task
than classification models. By recognizing emotions through the dimensions of valence and
arousal rather than discrete emotions, this study takes a step towards a more sophisticated
and nuanced understanding of emotion detection using biosignals and machine learning.
This shift towards analyzing continuous variables rather than discrete emotions is expected
to be the focus of future research in this field.

However, this study has weaknesses as well. When subject-wise results were studied,
it was noted that there was variance between the recognition rates for the different individ-
uals; therefore, the recognition rates were not equally good for each study subject. In certain
cases, this variance between individuals could be reduced by personalizing the models by
selecting a unique sensor combination for each individual. In fact, one future tasks is to
study model personalization in more detail; for instance, incremental learning could be an
effective method to personalize models based on streaming data [47]. Moreover, feature
selection needs to be studied in order to provide reliable estimates for each individual.
For instance, a sequential backward floating search has been found to be an effective feature
selection method for biosignals [34].

Another weakness of this study is that the experiments were based on only one
dataset; due to this, future work needs to include experimenting with other datasets. In
particular, it should be studied how well negative arousal levels can be estimated, as the
WESAD dataset used in this study contained very few negative arousal values. Moreover,
the LSTM model used in this article was quite simple; it had one hidden layer, with 64 units
and around 17,000 trainable parameters. However, if the aim is to build a model that can
be run in real-time in a wrist-work device, a complexity analysis should be carried out
in order to better understand how much calculation capacity this type of model requires.
In addition, the parameters of the prediction models should be tuned in order to optimize
the results, as in this study the prediction models were trained without parameter tuning.
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Abstract: Over the last few years, exoskeletons have been demonstrated to be useful tools for sup-
porting the execution of neuromotor rehabilitation sessions. However, they are still not very present
in hospitals. Therapists tend to be wary of this type of technology, thus reducing its acceptability
and, therefore, its everyday use in clinical practice. The work presented in this paper investigates
a novel point of view that is different from that of patients, which is normally what is considered
for similar analyses. Through the realization of a technology acceptance model, we investigate the
factors that influence the acceptability level of exoskeletons for rehabilitation of the upper limbs
from therapists’ perspectives. We analyzed the data collected from a pool of 55 physiotherapists
and physiatrists through the distribution of a questionnaire. Pearson’s correlation and multiple
linear regression were used for the analysis. The relations between the variables of interest were
also investigated depending on participants’ age and experience with technology. The model built
from these data demonstrated that the perceived usefulness of a robotic system, in terms of time
and effort savings, was the first factor influencing therapists’ willingness to use it. Physiotherapists’
perception of the importance of interacting with an exoskeleton when carrying out an enhanced
therapy session increased if survey participants already had experience with this type of rehabilitation
technology, while their distrust and the consideration of others’ opinions decreased. The conclusions
drawn from our analyses show that we need to invest in making this technology better known to the
public—in terms of education and training—if we aim to make exoskeletons genuinely accepted and
usable by therapists. In addition, integrating exoskeletons with multi-sensor feedback systems would
help provide comprehensive information about the patients’ condition and progress. This can help
overcome the gap that a robot creates between a therapist and the patient’s human body, reducing
the fear that specialists have of this technology, and this can demonstrate exoskeletons’ utility, thus
increasing their perceived level of usefulness.

Keywords: technology acceptance model; rehabilitation exoskeletons; therapists; neuro-rehabilitation;
multiple linear regression; Pearson’s correlation; integrated sensor systems

1. Introduction

Upper-limb exoskeletons offer an innovative solution to support the rehabilitation
pathway of patients in need of re-educational motor training. They are external structural
mechanisms provided with joints and links that are intended to be coupled with those of
the human body [1]. Such structures, which are provided with systems of actuators and
sensors, are meant to substitute, support, and enhance the activities and movements of the
arm when it has been impaired by paralytic effects related to pathologies such as spinal
cord injury or stroke. Some examples of exoskeletons for upper-limb rehabilitation are
shown in Figure 1.
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Figure 1. Some examples of upper-limb rehabilitation exoskeletons. The top-left one is ANYexo
by ETH Zurich (©2019, Zimmerman et al. from Ref. [2]), the bottom-left one is ARMin (©2010, Nef
et al., from Ref. [3]), and the one on the right is AGREE, the prototype from our research group at
Politecnico di Milano [4].

Their application for rehabilitation purposes is at least comparable, in terms of efficacy,
with conventional therapy, and it produces more functional benefits than other kinds of
interventions [5]. The key elements for effective rehabilitation therapy include (i) a large
amount of practice, (ii) goal-oriented training, (iii) feedback to the patients, (iv) rewarding
and interactive exercises, and (v) individualized therapy [6]. The use of exoskeletons guar-
antees the fulfillment of all of these requirements, allowing the intensive training sessions
with specific therapeutic purposes to be carried out while always adapting to the residual
motor skills of the patients [7]. Nowadays, despite all of the advantages that we described,
exoskeletons are poorly diffused in daily clinical practice [8]. Therapists tend to find them
challenging to use and often do not think that robots can offer an actual improvement to
the classical therapy that they perform every day. Moreover, they tend to perceive the
presence of an exoskeleton as a barrier to their direct contact with the human limb, reducing
the feedback on the patient’s conditions. The technology acceptance model (TAM) is a
theory that studies the various possible factors influencing users’ acceptance of a certain
technology [9]. Introduced by Davis in 1989 [10], the TAM was then expanded and applied
in various fields to understand what affects human behavior toward a specific technology,
and the acquired knowledge was applied to possibly modify the levels of users’ acceptance
or rejection. Other authors have applied the TAM to study users’ intentions to use robotic
systems for rehabilitation and assistance, but they always focused only on patients’ points
of view [11–13]. Therapists, however, are the counterparts of patients, and their opinions
on this type of technology can strongly influence its diffusion and use. To the best of our
knowledge, no previous studies have been carried out on the acceptability of upper-limb
rehabilitation exoskeleton(s) or, in particular, considering therapists as target users. This
paper, instead, applies the principles of the TAM to investigate the causes that, according to
the therapists’ perspectives, limit the acceptability and, consequently, the use of upper-limb
exoskeletons in everyday clinical practice. Data to be fed to the model were collected from
a questionnaire that we proposed to a pool of therapists, physiotherapists, and physiatrists.
We believe that the investigation of this novel point of view can help identify new methods
for improving the quality and usability of robotic systems for rehabilitation.

The rest of this paper is organized as follows. Section 2 describes the state of the art
of TAM studies, especially those applied to healthcare technologies. The data collection
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and analysis process that we used for the construction of our TAM is presented in Section 3.
Section 4 presents the results of the work, which are discussed in Section 5. Finally, Section 6
draws the conclusions of the work.

2. Related Works

2.1. Technology Acceptance Studies

When Davis proposed the TAM, he wanted to understand why people would choose
to use a particular technology (such as emails and web processing systems) in the context
of their work or daily life. The TAM’s basis comes from physiological theories. The core
model by Davis considered two main factors influencing the users’ intentions: perceived
usefulness (PU) and perceived ease of use (EOU) [10,14]. The aim was not to determine whether
a technology is actually useful or easy to use, but to understand how potential customers
perceive it. This perception is, of course, subject to variations due to age, gender, and
experience, which are considered the control variables of the model. The TAM owes its
success to the fact that it is an easily understandable and simple model. It is, in any case,
subject to wide variations in the correlations among the analyzed variables depending on
the users and the system under investigation. Furthermore, it starts from the assumption
that human beings are rational in their decisions and behavior, which is not always true [15].

Since its introduction, the TAM has undergone several adaptations, such as extensions
to include some “custom variables” in the model. These can be added by each author to
better explain the main elements of their TAM [9]. The extensions to the model can be
grouped into:

• External predictors or prior factors: These have a direct effect on the perceived usefulness
and the perceived ease of use variables. They include self-confidence in technology, prior
usage, and anxiety towards a technology.

• Factors coming from other theories: These should increase the reliability of the model.
Subjective norms, risk, trust, expectations, and user participation belong to this category.

• Contextual factors: Gender, technological characteristics, and cultural diversity can
influence the global effects of the model.

• Usage measures: These are related to attitudes toward technology and actual or
expected usage of technology according to user’s opinions [9,15].

2.2. The TAM Applied to Healthcare Technologies

Even though the TAM was developed for other contexts, it has become progressively
more diffused in the healthcare technology field [12]. According to [16], at least 142 em-
pirical studies were conducted on technology acceptance in healthcare by 2021. They
mainly dealt with telemedicine, mobile applications, health websites, e-learning in medical
education, and electronic health records, and they interviewed nurses, therapists, and
patients—especially older people. Some of the most influential factors that they found in
those studies were anxiety, computer self-efficacy, innovativeness, and trust. Studies about
robotics for healthcare have included a variety of options: social robots, assistive robots,
socially assistive robots, telerobots, and telepresence robots [17,18]. Table 1 summarizes
works in the literature about the TAM for healthcare robotics. Especially for what concerns
the use of rehabilitative and assistive exoskeletons, no study seems to have investigated
therapists’ perspectives.

Jankowski and colleagues [11] evaluated long-term changes in technology acceptance
during patients’ use of a robotic system for stroke rehabilitation and showed how experience
could increase the intention to use the technology. Shore and colleagues [13] proposed a
selection of possible TAMs to assess the acceptability level among the elderly with respect
to the adoption of assistive exoskeletons in their daily lives. Onofrio and colleagues [12]
specifically studied patients’ opinions on the use of upper-limb exoskeletons for assistance
in activities of daily living (ADLs). In particular, this study divided the variables influencing
the model output into those related to emotional or functional perspectives and into
individual or relational ones. PU and EOU, in this sense, were considered individual and
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connected to the functional perspective. The subjective norm was a relational variable
that was connected to both emotional (if coming from relatives and beloved ones) and
functional (if coming from clinicians) perspectives. Anxiety, aesthetics, and trust are factors
that come from other studies related to individual emotional perspectives. They concluded
that for an exoskeleton to be appreciated by patients, the most crucial aspect is that it must
be perceived as useful and inspire confidence in the users.

Table 1. Summary of relevant works from the literature investigating applications of the TAM
for robotics in healthcare. Types of technologies and interviewed users are indicated in the last
two columns.

Study Author and Date Technology Point of View

[19] He et al., 2022 Social robots in elderly
care facilities

Elderly people

[20] Turja et al., 2020 Service robots Healthcare professionals
(nurses and doctors)

[21] Nertinger et al., 2022 Remote assistive robots
(Humanoids)

Adult patients

[11] Jankowski et al., 2020 Rehabilitation end-effector
(Bi-Manu-Interact robot)

Stroke patients

[22] Hall et al., 2019 Assistive robots for activities
of daily living

Patients

[13] Shore et al., 2018 Assistive exoskeletons Elderly people

[12] Onofrio et al., 2020
Assistive technologies for
neurological motor
impairments

Neurological
patients

3. Methods

3.1. A Novel Point of View

Despite the existence of multiple studies dedicated to the acceptability of robotic sys-
tems (including those introduced in Section 2.2), we could not find any from the literature
that considered physiotherapists as the users to be interviewed in relation to this topic. Our
study aims to investigate therapists’ and physiatrists’ perspectives, with the awareness that
they, too, are the end users who are asked to interface with exoskeletal technology. Their
perception is crucial for guaranteeing the integration of rehabilitation robots into classical
therapy sessions.

3.2. Data Collection

Data were collected through the distribution of an anonymous questionnaire (see
Appendix A.1). It was distributed both online and in paper form to therapists working
in different hospitals in Italy. At the beginning of the survey, we asked the participants
to confirm that they belonged to one of the following professional groups: occupational
therapists, physiotherapists, or physiatrists. No other eligibility criteria were considered.
The data that were collected were anonymized, and the survey was developed according
to the law of data protection, according to Art. 13 of the UE 2016/679 norm (General Data
Protection Regulation). Its distribution was approved by the Ethical Committee of our
university (approval no. 8/2022—16 February 2022).

The questionnaire was composed of twenty-five questions related to the topic of the
study. The questions belonged to eight different categories, representing the variables of
interest of our TAM:

• Intention to use—ITO: Independent variable and output of the model;
• Perceived usefulness—PU: How useful the therapists perceive an exoskeleton to be in

supporting part of their rehabilitation sessions;
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• Perceived ease of use—EOU: Level of ease of use of the robotic system in terms of both
setting and application during the therapy;

• Subjective norm: The extent to which the opinions and suggestions received from other
people (e.g., patients, doctors, and other people who the compiler of the application
deems reliable) are favorable to the use of exoskeletons;

• Willingness to interact: How much do the therapists that are interviewed consider it
desirable to interact with the system and to be personally involved in the robotic therapy?

• Anxiety: How much do the participants fear that the use of exoskeletons is a source of
risk for patients or has negative effects on the therapy?

• Time saving: level of perception of an exoskeleton as helpful in saving time and working
with more patients;

• Effort saving: Level of perception of an exoskeleton as helpful in reducing the physical
burden on therapists during the execution of rehabilitation exercises.

According to what was introduced in Section 2, the variables representing the core
of the TAM are the EOU, PU, and the output, ITO. The other variables that we included
belong to the “prior factors” group (time saving and effort saving) and to the “factors from
other studies” group (anxiety, subjective norm, and willingness to interact). Figure 2 shows
the structure of the model and the relations among the variables that we proposed.

Figure 2. Structure of the TAM. Light blue variables are those of the core of the model, and gray
variables are those that we added for our specific study. The dark-blue box represents the output (i.e.,
the predicted variable).

The following table (Table 2) reports the number of questions referred to each category
in the trade-off between the need for a proper number of questions in view of data analysis
(i.e., the more, the better) and the total time required to complete the questionnaire (i.e.,
the less, the better).

The order of presentation of the questions was random and was not related to the
categories in order to avoid any possible bias.

Answers were expressed as five levels of agreement with the information provided in
each question. They were then converted into numerical values. Scores going from one to
five corresponded to the scale of answers from “strongly disagree” to “strongly agree”.

At the beginning of the survey, some additional questions were also proposed with the
aim of gathering some personal (age, sex, occupation) and attitude (relationship with
the technology, previous experiences with rehabilitation exoskeletons) information from
the participants.
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Table 2. Number of questions in each category of the TAM.

Category (Variable) No. of Questions

Intention to use 2
Perceived usefulness 3
Anxiety 4
Time saving 2
Effort saving 2
Subjective norm 6
Perceived ease of use 2
Willingness to interact with the system 4

3.3. Data Analysis

Once we collected all of the answers and we built their correspondence to the numeri-
cal scores, we grouped them according to the categories. At this point, we analyzed data as
follows according to the process proposed by the literature [23–25].

• Cronbach’s alpha: We evaluated Cronbach’s alpha for each variable of the model.
Cronbach’s alpha is a measure of reliability used to assess the internal consistency of
the answers given to questions belonging to the same category. Acceptable reliability
is represented by values of alpha ranging from around 0.7 to 0.95 [26].

• Consistency adjustments: If some categories obtained alphas lower than 0.7, we
further investigated them. We removed the questions that, from an inner correlation
study, were revealed to be uncorrelated with the other questions belonging to the same
group (under the acceptability threshold of ρ = 0.3 for Pearson’s coefficient [27]). If the
correlation values were acceptable, we kept the questions in the dataset. We concluded
by checking whether defections actually improved the alphas of the various categories.

• Pearson’s pairwise correlation: For every category, we evaluated the mean score from
the answers provided by each participant. The literature is unclear about the use of
the mean value rather than the median when studying Likert-type categories data [28].
Given that no agreement seems to have been reached, we tried to be consistent with
Davis’s work, which carried out TAM analyses by using mean scores, Pearson’s
correlation, and multiple linear regression [14,23]. Using the mean data, we built a
correlation matrix to highlight the correlations between the variables involved in the
TAM. We studied Pearson’s coefficients and their statistical significance through an
evaluation of their p-values [23].

• Multiple regression model: We created a multiple regression model with the vari-
ables of the TAM. ITO was our output variable, while the other categories were the
regressors [23].

• Effects of control variables: Given that the control variables could influence the
results of our model, we decided to divide the data coming from people who had
a previous experience with rehabilitation exoskeletons (for both upper and lower
limbs) from the data coming from those who did not. In both cases, we analyzed the
correlations between the variables and studied the differences.

4. Results

4.1. Participants and Answers

Fifty-five people completed the questionnaire. Table 3 shows a summary of the
answers that we collected for some questions that we made to characterize the population.
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Table 3. Summary of the answers to the general questions.

Information Answer

Age
Mean: 37.4 ± 10.1 y.o.
Range: 23–59 y.o.
Median: 35 y.o

Gender
• 23 men
• 31 women
• 1 other

Occupation

• 3 occupational therapists
• 3 physiatrists
• 1 clinical researcher in physiotheraphy
• 48 physiotherapists

Already knew what an exoskeleton is?
• 54 yes
• 1 no

Already used an exoskeleton?
• 31 yes
• 24 no

Figure 3 reports a summary of the statistics of the scores attributed to the twenty-five
questions of the survey, divided into the eight aforementioned classes.

Figure 3. Statistical analysis of the scores given by the 55 users to the questions. Question numbers
correspond to those indicated in Appendix A.1. We gathered the questions by category. In each box
plot, the central mark indicates the median, and the bottom and top edges of the box indicate the
25th and 75th percentiles, respectively.
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4.2. Results of the Data Analysis
4.2.1. Cronbach’s Alpha and Consistency Adjustments

The analysis of Cronbach’s alpha gave the following results (see Table 4).

Table 4. Cronbach’s alpha for the categories of the TAM. ANX: anxiety, ES: effort saving, TS: time
saving, SUBJN: subjective norm, WTI: willingness to interact.

ITO PU ANX TS ES SUBN EOU WTI

α 0.865 0.829 0.795 0.674 0.464 0.705 −0.123 0.424

The alpha values were acceptable for the ITO, PU, anxiety, and subjective norm, and they
were slightly under the threshold for time saving. For all of the categories whose alpha was
considered unacceptable, we tested the inner correlations of the answers that we collected.
The correlations were evaluated through Pearson’s coefficient. From the evaluation of the
acceptability of such correlations, we had to eliminate one of the four questions (and its
results) related to the variable willingness to interact. As a consequence, Cronbach’s alpha
passed from α = 0.424 to α = 0.759. The alpha could be under the threshold when a
category had too few items (i.e., questions). We presented just two items for effort saving
and ease of use, and this could be the cause of their low alpha values. After the correlation
analysis, we decided to keep both of the questions for effort saving (ρ = 0.303 > 0.3) and
to remove the question of the two whose answers had a greater variance for ease of use
(ρ = −0.0586 < 0.3).

4.2.2. Pearson’s Correlation

Table 5 reports the results of the analysis of correlation. We have reported in green the
correlation coefficients of the couples of variables whose relations are relevant to our TAM.

Table 5. Results of Pearson’s correlation analysis on the dataset. If ** is indicated, the correlation is
significant at the 0.01 level. If * is indicated, the correlation is significant at the 0.1 level.

Int. to Use
Perc.

Useful.
Anxiety

Time
Saving

Effort
Saving

Subj.
Norm

Ease of
Use

Will. to
Interact

Intention to use 1 0.765 ** −0.153 * 0.221 0.359 0.440 ** 0.347 ** 0.230 *
Perceived Usefulness 0.765 1 −0.273 0.408 ** 0.582 ** 0.312 0.367 0.168

4.2.3. Effects of Control Variables

As anticipated in Section 2.1, categorical variables can have a strong influence on the
results of the analysis.

4.2.4. Experience

We decided to consider the experience variable, and we split the dataset into two groups.
We divided the results coming from participants who had already used exoskeletons from
the data coming from those who had not (see Table 6). As indicated in Table 3, 31 out of 55
therapists and physiatrists declared that they had previously used exoskeletons for their
therapy sessions.
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Table 6. Comparison of the correlations between the variables of the model. Global values refer to
the analysis of the whole dataset. “Already used” refers to data coming from participants who had
already used exoskeletons, and “never used” refers to data coming from those who did.

Independent Variable Dependent Variable Pearsons’s Coefficient

Global Already Used Never Used

Perc. usefulness ITO 0.765 0.796 0.719
Anxiety ITO −0.153 −0.105 −0.221

Subj. norm ITO 0.440 0.411 0.589
Ease of use ITO 0.347 0.352 0.414

Will. to interact ITO 0.230 0.347 0.089
Time saving PU 0.408 0.522 0.249
Effort saving PU 0582 0.708 0.322

The scheme of the TAM with the results of the correlation analysis coming from the
two groups is presented in Figure 4.

Figure 4. Structure of the TAM with references of the correlations between the various variables
involved in the study.

As can be observed, apart from values related to the correlation between PU and
ITO, all of the others significantly changed when isolating data coming from already
experienced therapists from data coming from those who had never used an exoskeleton
before the questionnaire.

4.2.5. Age

Given the relatively wide range of participants’ ages, we decided to study how the cor-
relations between our variables of interest changed when passing from younger therapists
to older ones. From their answers to the general questions, younger therapists seemed more
used to the technology (the statistics of the scores that they attributed to questions related
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to attitude towards technology, presented in Figure 5, confirmed this). They were also
those who were more likely to have come into contact with exoskeletons for rehabilitation
during their study path. The global age range was 36 years (from 23 to 59 years old). We
divided this range into three equivalent sub-ranges (23 ÷ 34 years old, 35 ÷ 46 years old,
and 47 ÷ 59 years old) and built a correlation model for the participants belonging to each
age group.

Figure 5. Statistics of the scores given to questions related to participants’ attitudes towards technol-
ogy, divided according to the three age ranges that we identified.

When comparing the three models, the values showing an appreciable monotone
age-related trend were related to the correlations between perceived usefulness and subjective
norms with the variable intention to use. Table 7 shows Pearson’s coefficient values for these
two relations.

Table 7. Pearson’s coefficients for the correlations between perceived usefulness and ITO and between
subjective norms and ITO for the three age-range groups.

Younger Group Intermediate Group Older Group

Perceived usefulness 0.881 0.722 0.545
Subjective norms 0.290 0.370 0.551

4.2.6. Multiple Regression Model

When trying to infer cause–consequence relationships, the results of a TAM can also
be explained with a regression model. Table 8 reports the beta coefficients of the multiple
regression that we modeled on the whole dataset, the standard error, and the results of
the F-test, which checked whether the model fit significantly better than a degenerated
model consisting of only a constant term. The values of the coefficient of determination and
adjusted coefficient of determination of the regression were, respectively, R2 = 0.649 and
R2adj = 0.613. This meant that the model explained approximately 65% of the variability
of the response variable intention to use. The results were statistically significant, given
that pvalue = 3.89 × 10−10 (which was under the acceptability threshold). Conversely, we
obtained high pvalues for the pairwise relations of ease of use, willingness to interact, and
anxiety with the output variable. These values were, in any case, due to the relatively
small sample of participants, and in a future expansion of the study, we can expect to see
them be reduced below the acceptability threshold (other works that obtained statistically
significant regressions included around 110 participants in their TAMs; see [24]).

We built a second regression model to find the beta coefficients linking time saving and
effort saving (i.e., the prior factors) to perceived usefulness. We found that the path coefficients
indicating the influences of time saving and effort saving on PU were, respectively, equal to
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βTS = 0.001606 and βES = 0.32972. This second model was also statistically significant
(pvalue = 0.02; under the threshold), but it suffered from the limited dataset.

Table 8. Results of the construction of a multiple regression model for our data. Significant values
are written in bold.

Independent Variable Dependent Variable β SE tStat p Values

Perc. Usefulness ITO 0.7090 0.0981 7.2302 2.9203 × 10−9

Ease of Use ITO 0.0228 0.0891 0.2556 0.7993
Subj. Norm ITO 0.2794 0.1249 2.2423 0.0295

Will. to Interact ITO 0.2098 0.1341 1.5643 0.0422
Anxiety ITO −0.0154 0.0893 −0.1720 0.8642

5. Discussion

The correlation analysis provided information on the percentages of the variance of the
latent variables that were explained by the other variables in the model. The correlations
that were relevant to our model were all found to be significant. The regression model
that we constructed, on the other hand, was statistically reliable overall, but the causal
effects of variables such as willingness to interact, anxiety, and ease of use need to be further
investigated with additional data to increase the consistency of the results. We hypothesize
the following interpretation of the obtained results:

• As we can see from the global correlation model, the perceived usefulness of the exoskele-
ton explained the majority of the variance of the output (around 77%). This correlation
value did not change much when splitting the dataset and comparing the results for
the two experience subgroups. This point is in agreement with the results obtained from
the analysis of patients’ opinions about exoskeletons [12]. The regression coefficient
for perceived usefulness was β = 0.7090, and it had two-tailed significance. We conclude
that, from therapists’ perspectives, the first requirement to be considered for appli-
cation during everyday rehabilitation sessions is to perceive exoskeletons as useful
instruments. Nowadays, various benchmarking frameworks are used to evaluate the
efficacy of rehabilitation for the motor abilities of neurological patients [29]. They
include the use of multiple sensors: from EMG sensors for muscular activation to
optoelectronic systems and inertial measurement units for kinematic performance.
Applying these systems to the measurement of the improvement of patients who
used a rehabilitation robot for their treatment could increase the level of usefulness
perceived by therapists.

• The correlations of time saving and effort saving with PU showed Pearson’s coefficients
that are, respectively, equal to ρ = 0.408 and ρ = 0.582, and both correlations were
significant. The beta coefficient of effort saving was statistically significant, while that
related to time saving was lower than the acceptability threshold of 0.05. Overall,
we can infer that therapists tend to find a robotic system that is able to reduce their
physical effort in the execution of the rehabilitation exercises slightly more useful
than one that makes them save time (i.e., allowing them to treat a patient while a
second one uses the exoskeleton for his/her therapy session).

• The effect of ease of use on the output variable in our model proved to be lower than
that of perceived usefulness. The correlation between ease of use and ITO was, in any case,
higher for inexperienced therapists, who may have been held back by the prospect of
a system that was too complex to learn to use (especially if they did not know about
its advantages).

• The correlation between anxiety towards the technological system and ITO, as can
be guessed, was negative (and so was the β coefficient). It is interesting to notice
that for participants who had already experienced the use of an exoskeleton for their
sessions, the negative effect of the anxiety variable on ITO was reduced by about
12%. This information suggests that the use of robotic systems for rehabilitation
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could be encouraged if therapists have the chance of getting in contact with this
kind of technology. Raising the public’s level of knowledge, at least in hospitals and
rehabilitation centers, could be a good way to increase the level of confidence in this
technology and reduce apprehension in those who do not know how it works. In
general, it is important to find methods for reducing the negative impact that the fear
of not being able to control the therapy has on the willingness to use robotic systems.
As we can understand from the answers collected for Q7 and Q9 (see Appendix A.1),
therapists’ anxiety was caused by the fact that they felt that they would have no
information about how a session conducted by a robot was proceeding if they did
not continuously observe the patient. This leads to us losing the advantage in terms
of time represented by making one patient use the robot while we work on another
patient. An efficient solution to this problem could be investing in complete systems of
sensors to be coupled with the exoskeletons and provide reliable and remote feedback
to therapists. Other studies proved that feedback is crucial for therapists; rehabilitation
experts think that having information about muscular activation and joint positions
could be very useful in assessing a patient’s conditions [30]. In this sense, surface
electromyography sensors can be integrated into the structure of the robot to record
the amount of muscular participation of the patients [31]. Precise position sensors
can provide real-time information on the 3D configuration of the arm of the patient.
Compact force sensors at the interface with the robot [32] can be used to tune the level
of assistance provided by the exoskeleton and assure the therapist that the patient is
not harmed. The work described in [33] already moves in this direction; it presented
a telerehabilitation system that collected haptic data from the interaction between a
patient and a robot and provided them to therapists, who felt confident about being
distant from the user while they performed rehabilitation with the device.

• When studying the results of the relation between the subjective norm and the output
variable, we could observe that participants’ intention to use exoskeletons had a signif-
icant positive correlation with the opinions and suggestions received by doctors and
patients (as indicated in the questions that we proposed). The effect of others’ opinions
on the use of robots for rehabilitation was reduced by almost 18% for the respondents
to the survey who had already used such systems. It also seemed to be reduced
when studying the answers of younger therapists, who were more experienced with
technologies such as exoskeletons.

• The questions that we proposed that were related to the willingness to interact category
aimed to understand if the therapists preferred dealing with robotic systems that
gave them many chances for interaction and personalization of the therapy or leaving
the exoskeletons in charge of the organization of the entire therapy. We wanted to
understand whether it is better to invest in autonomous devices or if it is preferable to
find new ways to make therapists cooperate and exchange information with robots.
The correlation analysis between willingness to interact and intention to use produced
a Pearson’s coefficient that was statistically irrelevant for inexperienced participants
(ρ = 0.089 < 0.1). In any case, the correlation increased by 25.8% when studying
the answers provided by therapists who had already used an exoskeleton before
compiling the questionnaire (ρ = 0.347). We can infer that if inexperienced clinicians
prefer the advantages offered by a higher level of automatization of the therapy,
therapists who have already come into contact with exoskeletal technology consider
collaborating with the system more relevant.

6. Conclusions

The study that we conducted aimed, for the first time, to understand the factors that
influence the acceptability level of exoskeletons for rehabilitation of upper limbs from
therapist’s perspectives. Other works from the literature showed that understanding which
factors influence users’ trust and approval towards a certain technology is crucial for
improving the quality of human–robot interaction [16,34]. Such studies focused only on
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patients’ perspectives. With our work, we investigated a new point of view that we believe
adds fundamental information for increasing the acceptability and use of rehabilitation
robots in clinical environments.

From the analysis of the collected data, we concluded that the perceived level of
usefulness was the most relevant aspect influencing users’ willingness to use the technol-
ogy. The usefulness perception and the level of satisfaction towards the functionalities of
rehabilitation technology were demonstrated to increase patients’ trust in robots [35]. Our
work confirms that these aspects are also relevant according to therapists and physiatrists.
According to our model, the fact that an exoskeleton can reduce the physical effort required
of therapists is an element in favor of their perceived utility. In a potential future version
of the model, we could look for other possible factors that increase this perception. Both
the anxiety produced by the technology and the importance that is given to what other
people (even if they are relevant ones) think decrease when analyzing data from people
with previous experience with exoskeletons. This is why we see the need to invest in the
diffusion of technology and train rehabilitation professionals on the potential that exoskele-
tons offer. This conclusion is also supported when comparing answers collected by younger
therapists with those from older ones. New generations of physiotherapists who have more
experience with exoskeletons and often come into contact with them during their studies
seem to be less influenced by others’ opinions about this new technology. Our model also
supports the conclusion that integrating multi-sensor systems into rehabilitation robots can
have an impact on reductions in the effects of anxiety, thus increasing therapists’ trust in
this technology and augmenting the level of perceived usefulness. Coupling joint positions
with data coming from electromyography, electroencephalography, and force sensors at the
interface between the arm and the exoskeleton can tell a therapist about the user’s level of
participation and performance and allow the therapist to monitor their safety. We should
invest in new methods for integrating information coming from all of these sensors and
make it easily interpretable by therapists. Evaluating it at the end of the therapeutic path
can prove the usefulness of the system, while monitoring it in real-time would reassure the
therapist about the progress of the robotic sessions while they are busy with other patients,
thus possibly increasing the perceived relevance of the time saving variable. This study
can be improved by introducing new questions into the survey, which can be formulated
as clearly as possible to increase the level of inner consistency of the data that we collect.
It can also be expanded by finding new therapists and physiatrists to participate in the
study. Increasing the number of answers that we gather would also increase the statistical
reliability of the model.
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Appendix A. Research Methods

Appendix A.1. Questionnaire

EXOSKELETONS FOR THE REHABILITATION OF THE UPPER LIMB: QUESTION-
NAIRE FOR THE THERAPISTS
Welcome to the questionnaire “Exoskeletons for the rehabilitation of the upper limb: thera-
pists’ usability”. This survey is part of a research project that is being conducted by our
university as part of the realization of exoskeletons for the neuro-rehabilitation of the upper
limbs. The questionnaire is anonymous and aimed at healthcare personnel working in the
rehabilitation field.
By answering the following questions, you will help us understand what the most critical
needs that we should satisfy to realize a robotic system for rehabilitation that is useful and
appreciated by therapists are.

GENERAL QUESTIONS

• Have you ever worked/are you working in an environment in which this kind of
technology for rehabilitation is used?

• Have you ever used this kind of technology with your patients?
• Have you ever used similar technologies, such as exoskeletons, for the rehabilitation

of a hand or a lower limb?

RESEARCH QUESTIONS: We kindly ask you to express how much you agree with
the following sentences, ranging from “strongly disagree” to “strongly agree”.

• Q1: I think that performing some sessions with the help of an exoskeleton for rehabili-
tation could make the treatment provided to the patients more effective.

• Q2: I am afraid that my patient could be hurt if I leave him/her alone during the
session with the exoskeleton.

• Q3: I’d like to use/I’d love to continue using exoskeletal systems during some of the
therapy sessions that I perform with my patients.

• Q4: I’d like to integrate the use of an exoskeleton for rehabilitation into the exercises
that I propose to my patients daily.

• Q5: I think that the use of an exoskeleton makes the therapy sessions less tiring for me.
• Q6: I think that using an exoskeleton does not require too much concentration effort

on my side.
• Q7: I am afraid that the therapy may not go as planned if I do something else while

the patient is using the exoskeleton.
• Q8: I believe it is positive to be able to save time by dedicating myself to one patient

while another performs the therapy while wearing the exoskeleton.
• Q9: I am afraid that, if I leave my patient alone while using the exoskeleton, the therapy

session may not have the effects that I hope for.
• Q10: I appreciate the fact that the exoskeleton gives me the chance to work on more

than one patient at the same time.
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• Q11: I think that introducing some therapy sessions that use an exoskeleton would
improve the overall effect of my physiotherapy treatments.

• Q12: I believe that I could understand how to approach the technology proposed by
an exoskeleton without any problem.

• Q13: My patients would like me to offer physiotherapy sessions carried out with the
aid of exoskeletons for rehabilitation.

• Q14: The doctors who treat my patients expect me to offer physiotherapy sessions
carried out with the aid of exoskeletons for rehabilitation.

• Q15: I appreciate that a robotic system has many parameters and functionalities to be
tuned, so the therapy is sure to be personalized according to my needs.

• Q16: I think that the use of an exoskeleton for rehabilitation would make my job easier.
• Q17: Clinical studies indicate that I should use exoskeletons for rehabilitation in my

physiotherapy sessions, and therefore, I am inclined to use them.
• Q18: I am afraid that the exoskeleton could cause damage to the patient if I do not

monitor it carefully.
• Q19: My patients expect me to offer them physiotherapy sessions carried out with the

aid of exoskeletons for rehabilitation.
• Q20: The doctors who treat my patients would like me to offer physiotherapy sessions

carried out with the aid of exoskeletons for rehabilitation.
• Q21: I appreciate that the exoskeletal structure supports and moves the patient’s limbs

in my place.
• Q22: I would like to be the one in charge of deciding how to regulate the behavior of

the exoskeleton based on my perception of the conditions of the patient.
• Q23: I prefer to have direct control over the course of therapy, without letting a device

make decisions for me.
• Q24: I am aware of scientific studies that highlight the benefits of using exoskeletons

for rehabilitation, and therefore, I am inclined to use them in my work.
• Q25: I appreciate the possibility that an exoskeleton has many parameters and func-

tions to adjust so that I can be sure that the therapy is tailored to my needs.

PERSONAL QUESTIONS:

• Age;
• Gender;
• Educational qualification;
• Job;
• Relationship with technology:

– I like using electronic devices (smartphone, computer, tablet, etc.);
– I always do my best to learn how to use a new technology that I am not famil-

iar with;
– I think technology is really important in our everyday life;
– I am familiar with technological devices (computer, mobile telephone, etc.).
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Abstract: The early and objective detection of hand pathologies is a field that still requires more
research. One of the main signs of hand osteoarthritis (HOA) is joint degeneration, which causes loss
of strength, among other symptoms. HOA is usually diagnosed with imaging and radiography, but
the disease is in an advanced stage when HOA is observable by these methods. Some authors suggest
that muscle tissue changes seem to occur before joint degeneration. We propose recording muscular
activity to look for indicators of these changes that might help in early diagnosis. Muscular activity is
often measured using electromyography (EMG), which consists of recording electrical muscle activity.
The aim of this study is to study whether different EMG characteristics (zero crossing, wavelength,
mean absolute value, muscle activity) via collection of forearm and hand EMG signals are feasible
alternatives to the existing methods of detecting HOA patients’ hand function. We used surface EMG
to measure the electrical activity of the dominant hand’s forearm muscles with 22 healthy subjects
and 20 HOA patients performing maximum force during six representative grasp types (the most
commonly used in ADLs). The EMG characteristics were used to identify discriminant functions to
detect HOA. The results show that forearm muscles are significantly affected by HOA in EMG terms,
with very high success rates (between 93.3% and 100%) in the discriminant analyses, which suggest
that EMG can be used as a preliminary step towards confirmation with current HOA diagnostic
techniques. Digit flexors during cylindrical grasp, thumb muscles during oblique palmar grasp,
and wrist extensors and radial deviators during the intermediate power–precision grasp are good
candidates to help detect HOA.

Keywords: hand function; hand osteoarthritis; electromyography; diagnosis; discriminant analysis

1. Introduction

Hand osteoarthritis (HOA) is a chronic disease that may affect hand function. HOA can
be found at different degrees in 81% of the elderly population [1,2], with a high prevalence
especially in females aged over 50 years. HOA consequences are pain, joint deformity,
and reduced hand mobility, strength and function [3,4]. Despite its high prevalence, HOA
is a silent degenerating disorder that is clinically treated only in very severe situations.
However, applying adequate treatments in early stages would benefit patient quality of life
and could prevent disease progression [5].

HOA is usually diagnosed with a combination of different approaches, such as looking
at risk factors, clinical presentations (e.g., nodes), radiographic images, laboratory results
and subjective questionnaires [6]. Radiographic HOA is often diagnosed with the pres-
ence of osteophytes, loss of joint space, juxta articular sclerosis, local erosion and geodes,
whereas clinical HOA is defined as the experience of joint pain, stiffness and discomfort [7].
However, symptoms often persist before HOA is observed via these methods [8]. Similarly,
disability assessment in HOA is frequently performed using subjective questionnaires
based on pain, satisfaction or physical hand function [9]. Therefore, patients’ diagno-
sis and follow-up very much depend on their willingness to recognize their functional
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limitations [10]. Very little attention has been paid to study forearm and hand muscles
in individuals with HOA, perhaps because HOA is considered a problem of the joints.
However, periarticular structures such as muscles, ligaments and synovial membranes
may also be affected. Some studies have highlighted reduced muscle strength in patients
with HOA [11,12]. Subjects diagnosed with HOA usually face increasing difficulty in
performing simple handling tasks, reduced strength in lifting a ten pound weight and 10%
less hand grasp strength [8]. Nunes et al. [4] found that HOA affects hand function and
leads to functional deficits. However, none have studied whether the forearm muscles are
significantly affected by HOA or differently used as a result of joint deterioration. Elec-
tromyographic (EMG) studies performed with knees have shown that strength deficits in
the knee extensors of persons with osteoarthritis are partly due to the decreased recruitment
of muscle fibers [13]. If muscle activation differs in the muscles around an osteoarthritic
knee, then perhaps there are similar problems in the osteoarthritic hand’s forearm muscles.
Surface EMG (sEMG) is a noninvasive technique that provides information on both the
neural drive (amplitude) and temporal/phasic (shape) activation characteristics of muscles.
In patients with osteoarthritis, Aspden [14] found that changes in muscle tissue seem to
occur before joint degeneration and negatively affect joint stabilization. Brorsson et al. [15]
studied the electromyography activity of extensor digitorum communis (EDC) and flexor
carpi radialis (FCR) while female subjects with HOA performed functional activities to
compare the results to a group of healthy subjects. They found statistically significant
differences between the groups, finding that the HOA group used higher levels of muscle
activation in daily tasks than the healthy group, and wrist extensors and flexors appeared
to be equally affected. On the contrary, a recent work [16] compared the EMG signals of
healthy individuals’ forearm muscles to those of HOA patients, and found an activation
deficit of the wrist’s flexor and extensor muscles, even in initial HOA stages.

The merging of technology and medical science plays an essential role in the pre-
vention, diagnosis and treatment of illnesses and diseases, including patient diagnostic
data [17]. Health technology helps clinicians screen abnormalities and contributes to detect-
ing clinical signs [18]. Thus, studying the forearm’s muscle signals while performing the
most relevant grasps in daily life can lead to the finding of indicators that help detect HOA
before the main symptoms appear. Given the large number of muscles that overlap in the
forearm [19], it is practically impossible to isolate the surface EMG signal from each one.
Therefore, in a previous work [20], we identified seven forearm areas with similar muscle
activation patterns that can be used to characterize the forearm’s muscle activity while
performing ADLs. However, such a study is hindered by the many EMG characteristics
and their combinations that can be used to study muscle function. Selecting optimal EMG
characteristics and the best combination between features and channels are challenging
problems for accomplishing satisfactory classification performance [21,22]. In addition,
an increment in EMG characteristics not only introduces redundancy into the function
vector, but also increases complexity [21,23]. Of the existing characteristics, and besides
muscle activation, new zero crossing (NZC), enhanced wavelength (EWL) and enhanced
mean absolute value (EMAV) are those most frequently used in the literature for their
efficiency and simplicity [24–26]. To date, no study has examined these EMG characteristics
in an attempt to diagnose functional diseases such as HOA. Therefore, a study into the
electromyography of forearm muscles (by considering the cited characteristics) would
allow researchers to investigate whether subjects with HOA use different neuromuscular
control compared to healthy subjects, especially in early disease stages.

One way to characterize the hand is studying hand grasp execution, which is composed
mainly of two stages: the reach-to-object and grasp. The force needed to close a hand
around and grasp an object is determined by several parameters, such as grasp stability
(ability to resist external forces), and grasp security (resistance to slippery objects). Both
depend on the grasp configuration [27,28], among other factors. Grasp configuration is
determined by the type of applied grasp, and several grasp taxonomies have been reported
in the literature in accordance with their purpose [29,30], such as the nine-type classification
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proposed in [30] for the commonest grasps used in activities of daily living (ADLs). This
paper presents a study of the surface electromyography of forearm muscles (considering
muscle activation, NZC, EWL and EMAV characteristics from seven representative forearm
areas) while performing the commonest grasps used in day-to-day life with a twofold
objective: (i) look for muscular forearm areas that are significantly affected or differently
used by HOA in EMG terms; (ii) study if the affected EMG characteristics can be used
as predictors to detect HOA in an early stage by using different combinations of them in
discriminant analyses.

2. Materials and Methods

2.1. Experimental Study

Twenty HOA patients, all right-handed females (72 ± 9 years of age), and 22 right-
handed healthy subjects (10 females and 12 males aged 32 ± 9 and 37 ± 11 years, respec-
tively) were recruited for the experiment. All the subjects gave their written informed
consent before participating in this study, which was approved by both the University and
Hospital Ethics Committees (reference numbers CD/31/2019 and CD/27/2022). HOA pa-
tients were recruited by clinicians from among hospital patients showing different disease
stages and levels of compromise, and none had undergone surgery. The recruitment was
managed by our collaborator P. Granell in the framework of the collaboration agreement
signed with the hospital. Healthy subjects were recruited among members of the research
team, staff of the university and their relatives, and students, and inclusion criteria included
subjects without a history of neuromuscular problems or injuries in the upper arm.

In a comfortable sitting posture, all the participants were asked to exert maximum
effort without the help of other muscles other than those of the forearm and hand while
performing six representative ADL grasps (Figure 1) based on the grasp taxonomy used
in Vergara et al. [30], while recording muscular activity by means of sEMG: two-finger
pad-to-pad pinch (P2D); cylindrical grasp (Cyl); lumbrical grasp (Lum); lateral pinch (LatP);
oblique palmar grasp (Obl); and intermediate power–precision grasp (IntPP).

Figure 1. Six grasp types whose maximum grasping effort (MGE) was recorded. Grasp type defini-
tions according to [30].

All the participants performed each grasp following an operator’s instructions: with
their arm aligned with their trunk and an arm–forearm angle of 90◦, the subject held a
dynamometer by simulating the grasp to be analyzed without exerting force on it, and
then exerted MGE for 2 s while maintaining the posture. Each MGE grasp was performed
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in a random order, with a 3-min break between each grasp to avoid muscle fatigue. For
the normalization of sEMG signals, seven maximum voluntary contraction (MVC) records
were measured with each subject (Figure 2): flexion and extension of the wrist, flexion and
extension of fingers, ulnar and radial deviation of the wrist, and pronation of the forearm.

 

Figure 2. Seven MVC records for the normalization of the muscle activity signal. From left to right:
flexion and extension of the fingers, flexion and extension of the wrist, ulnar and radial deviation of
the wrist, and pronation of the forearm.

EMG signals were recorded with an 8-channel sEMG Biometrics Ltd. device at a sam-
pling frequency of 1000 Hz. sEMG electrodes and dynamometer signals were synchronized
by using the software provided by Biometrics. To place the sEMG electrodes, a grid was
drawn on the forearm by using five easily identifiable anatomical landmarks, while the
subject sat comfortably with their elbow resting on a table at an arm–forearm angle of 90º
and the palm of their hand facing the subject. The grid defined 30 different spots covering
the entire forearm surface (Figure 2). Following SENIAM recommendations [31], electrodes
were placed longitudinally in the center of seven of these spots based on the spot groups
obtained in a previous work [20] (Figure 3). Before placing electrodes, hair was removed
by shaving and the skin was cleaned with alcohol.

Figure 3. (a) Grid and spot areas selected for the sEMG recordings. (b) Five anatomical landmarks
used to draw the grid. The signals from these seven spots are related to seven different movements
according to [20]. Spot 1: wrist flexion and ulnar deviation (WF_UD); spot 2: wrist flexion and radial
deviation (WF_RD); spot 3: digit flexion (DF); spot 4: thumb extension and abduction/adduction
(TM); spot 5: finger extension (FE); spot 6: wrist extension and ulnar deviation (WE_UD); spot 7:
wrist extension and radial deviation (WE_RD).
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2.2. Data Analysis
2.2.1. Computed Parameters

Figure 4 shows the flowchart followed the data analysis. For efficiency and simplicity,
those waveform characteristics most frequently used in the literature [21,23] were extracted
(muscle activity, NZC, EWL and EMAV).

 
Figure 4. Flowchart of the methodology followed in this paper.

First of all, in order to define NZC, EWL and EMAV, the sEMG signals from the MGE
records were filtered with a fourth-order bandpass filter between 25–500 Hz. Waveform
characteristics (NZC, EWL, EMAV) were extracted from each record by considering the
two seconds during which the maximum effort was made (according to the force signal
recorded by the dynamometer). The proposed EMG characteristics were formulated
according to [24,32], where x is the sEMG signal (mV), L is signal length and T is the
selected threshold:

EWL =
L

∑
i=2

∣∣(xi − xi−1)
p∣∣ (1)

EMAV =
1
L

L

∑
i=1

∣∣(xi)
p∣∣ (2)

where p =

{
0.75, i f i ≥ 0.2L and i ≤ 0.8L

0.50, otherwise

NZC =

⎧⎨
⎩

1, i f xi > T and xi+1 < T
or xi < T and xi+1 > T

0, otherwise
; T = 0 (3)
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To determine muscle activity, the sEMG signals from the MGE records were filtered
with a fourth-order bandpass filter between 25–500 Hz, rectified, filtered by a fourth-order
low pass filter at 8 Hz and smoothed using Gaussian smoothing [33]. Later, they were
normalized with the maximal values obtained in any of the seven MVC records measured
with each subject. Finally, for each record, the average muscle activity recorded during
the 2 s while performing maximum effort was computed for each spot (MA from this
point onward).

2.2.2. Global Description

First, as the HOA patients were all female, the gender effect was assessed among the
four characteristics in the healthy subjects. For this purpose, the control group subjects
were segregated by gender: subsample H_w (10 females) and subsample H_m (12 males).
Then, a set of MANOVAs (one for each spot) was applied with the four characteristics
as dependent variables, and with subsample and grasp type as factors. The MANOVAs
compared subsamples H_w and H_m to assess the gender effect. For an overview of the
results, the descriptive statistics (box-and-whisker plot) of all the characteristics (EWL,
EMAV, NZC and MA values) per spot and grasp were computed for both subsamples H_w
and H_m.

After checking the gender effect, a second set of MANOVAs (one per spot) was applied
with the four characteristics as the dependent variable, and with sample (H_w and HOA)
and grasp type as factors, as well as their interactions. For an overview of the results, the
descriptive statistics (box-and-whisker plot) of all the characteristics (EWL, EMAV, NZC and
MA values) per spot and grasp were computed for both samples H_w and HOA patients.

Finally, the four EMG characteristics were converted into 168 variables (4 EMG charac-
teristics x 7 spots x 6 grasps). A MANOVA was performed with the EMG characteristics
(168 variables) as dependent variables and sample (H_w and HOA) as the factor to identify
which EMG characteristics, spots and grasps presented differences and which of them were,
therefore, hindered by HOA.

2.2.3. Can EMG Characteristics Be Used for Early HOA Diagnosis?

As a classification’s accuracy depends on the number and type of variables introduced
into the model, 15 linear discriminant analyses (LDA) were performed (one for every
possible combination of the four EMG characteristics; see Table 1) to locate a small set
of predictive parameters to detect HOA. For each LDA, the EMG characteristics of spots
and grasps that presented significant differences in the previous MANOVAs were taken
as independent variables, and sample (HOA patient vs. H_w) was considered to be the
grouping variable. Table 1 shows all the possible combinations of the EMG characteristics
proposed in each LDA.

For LDAs, the stepwise method was used (predictors were entered sequentially),
which searches for the highest correlated predictors. In particular, Wilks’ lambda was em-
ployed, which checks how well each independent variable (potential predictor) contributes
to the model: 0 means total discrimination, and 1 denotes no discrimination. Each indepen-
dent variable was tested by placing it in the model and then taking it out to generate a Λ
statistic. The significance of change in Λ was measured using an F-test. The variable was
entered in the model if the significance level of its F value was lower than the entry value
(0.05), and it was removed if the significance level was higher than the removal value (0.1).
Classification ability goodness was checked by a leave-one-out cross-validation, which
repeats the analysis by taking one case out in each repetition. In addition, the percentage of
correctly and incorrectly classified patients was checked.
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Table 1. All the different combinations of the EMG characteristics of all the performed LDAs.

NZC EWL EMAV MA

LDA1 X
LDA2 X
LDA3 X
LDA4 X
LDA5 X X
LDA6 X X
LDA7 X X
LDA8 X X
LDA9 X X

LDA10 X X
LDA11 X X X
LDA12 X X X
LDA13 X X X
LDA14 X X X
LDA15 X X X X

3. Results

3.1. Are Forearm Muscles Significantly Affected or Differently Used by HOA in Terms of EMG
Characteristics?

Table S1 of supplementary material presents the statistics (average and SD) of all the
EMG characteristics for each spot, grasp and group. The next sections present that data in
terms of box-and-whisker plots.

3.1.1. Gender Effect in the Control Group Subjects

Figures 5 and 6 show the box-and-whisker plots of the EMG characteristics segregated
by gender and calculated for every grasp in each sample. As expected, the statistics
shown in the box-and-whisker plots and the results of the first set of MANOVAs (Table 2)
when comparing H_w and H_m found that gender significantly affected most of the
EMG characteristics (p < 0.05), except for the ulnar deviators of the wrist (WR_UD and
WE_UD). NZC was less affected by gender, and was affected only in FE and WE_RD. As
gender affected the EMG characteristics, and to compare both target populations, from this
point onward we only considered subsample H_w for the subsequent analyses as being
representative of the control group.

Table 2. Results in columns of the set of MANOVAs. The EMG characteristics that significantly
differed between H_w and H_m are indicated. Abbreviations are defined the Figure 5 caption.

Spot

Factor WF_UD WF_RD DF TM FE WE_UD WE_RD

Gender EWL
EMAV

MA

EWL
EMAV

MA

EWL
EMAV

MA

NZC
EWL

EMAV
MA

NZC

Grasp type

NZC
EWL

EMAV
MA

NZC
EWL

EMAV
MA

NZC
EWL

EMAV
MA

NZC
EWL

EMAV
MA

NZC
EWL

EMAV
MA

EWL
EMAV

MA

NZC
EWL

EMAV
MA

Interaction
EWL

EMAV
MA
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Figure 5. Box–and-whisker plots (horizontal central mark in the boxes is the median; the edges of
the boxes are the 25th and 75th percentiles; whiskers extend to 1.5 times the interquartile range and
outliers are marked as color circles) of the EMG characteristics segregated by gender and calculated
per spot in each sample. Wrist flexion and ulnar deviation (WF_UD); wrist flexion and radial deviation
(WF_RD); digit flexion (DF); thumb extension and abduction/adduction (TM); finger extension (FE);
wrist extension and ulnar deviation (WE_UD); wrist extension and radial deviation (WE_RD).

Figure 6. Box-and-whisker plots (horizontal central mark in the boxes is the median; the edges of
the boxes are the 25th and 75th percentiles; whiskers extend to 1.5 times the interquartile range and
outliers are marked as color circles) of the EMG characteristics segregated by gender and calculated
per grasp in each sample.
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3.1.2. HOA Effect

Figures 7 and 8 show the statistics of the EMG characteristics segregated by sample
(HOA and H_w) and calculated per grasp in each sample by means of box-and-whisker
plots. The results of the MANOVAs (Table 3) for comparing samples H_w and HOA show
that group and grasp significantly affected most of the EMG characteristics (p < 0.05). Once
again, NZC was that less affected by sample and its interaction with grasp.

Figure 7. Box-and-whisker plots (horizontal central mark in the boxes is the median; the edges of
the boxes are the 25th and 75th percentiles; whiskers extend to 1.5 times the interquartile range and
outliers are marked as color circles) of the EMG characteristics segregated by group and calculated
per spot in each sample. Abbreviations are defined the Figure 5 caption.

Table 3. Results in columns of the set of MANOVAs. The EMG characteristics that significantly
differ between the H_w and HOA patients samples are indicated. Abbreviations are defined in the
Figure 5 caption.

Spot

Factor WF_UD WF_RD DF TM FE WE_UD WE_RD

Sample

NZC
EWL

EMAV
MA

EWL
EMAV

MA

EWL
EMAV

MA

EWL
EMAV

MA

NZC
EWL

EMAV
MA

NZC
EWL

EMAV
MA

NZC
EWL

EMAV
MA

Grasp type

NZC
EWL

EMAV
MA

NZC
EWL

EMAV
MA

NZC
EWL

EMAV
MA

NZC
EWL

EMAV
MA

NZC

EMAV
MA

EWL
EMAV

MA

NZC
EWL

EMAV
MA

Interaction
EWL

EMAV
MA

EWL
EMAV

MA

EWL
EMAV

MA

EWL
EMAV

MA MA
EMAV

MA
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Figure 8. Box-and-whisker plots (horizontal central marks in the boxes correspond to the median;
the edges of the boxes are the 25th and 75th percentiles; whiskers extend to 1.5 times the interquartile
range and outliers are marked as color circles) of the EMG characteristics segregated by group and
calculated per grasp in each sample.

Table 4 shows the results of the MANOVA (p < 0.05) performed to look for the EMG
characteristics with significant differences between H_w and HOA. Regarding grasp types,
Lum and IntPP were the grasps with the fewest significant variables in the different spots.
On the contrary, Cyl and Obl were the grasps with the most significant variables. WF_UD,
TM and WE_RD were the spots with the most significant variables, while WF_RD and
DF were those with the least significant variables. Of the initial 168 variables (4 EMG
characteristics × 7 spots × 6 grasps), 100 presented significant differences between samples.
These 100 variables were used in the next LDAs.

3.2. Can EMG Characteristics Be Used for the Early Detection of HOA?

Table 5 shows the results of the discriminant analyses. The models in the table can be
used to calculate discriminant scores F for each subject in such a way that when F is positive,
the prediction is a healthy subject, and if F is negative, the subject has HOA. Superscripts i,j

correspond to spot i, grasp j. The success ratio of the prediction using these discriminant
scores ranged from 73.3% to 100%.

LDA1 had the worst success ratio, which was composed of only the NZC values.
LDA2, LDA4, LAD5, LDA9, LDA10 and LDA14 had the highest success ratios (100%),
with LDA4, LDA9, LDA10 and LDA14 requiring fewer characteristics and grasps with
similar resulting models. Some LDAs obtained the same model, as can be observed in
Table 5. LDA3 and LDA8 were the models with the fewest characteristics and required
grasps (thumb muscles and Cyl grasp) and had a high success ratio (93.3%).
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Table 4. Results of the MANOVA with the combined variable grasp x spot x EMG characteristic as
input. Variables that significantly differ between H_w and HOA patients depend on the spot and
grasp type. Abbreviations are defined in the Figure 5 caption.

Spot

Grasp Type WF_UD WF_RD DF TM FE WE_UD WE_RD

P2D EWL EWL
EMAV

MA

EWL
EMAV

MA

EWL
EMAV

MA

EWL
EMAV

MA

NZC
EWL

EMAV
MA

LatP EWL
EMAV

MA

EWL
EMAV

MA

NZC
EWL

EMAV
MA

NZC
EWL

EMAV
MA

EWL
EMAV

MA

NZC
EWL

EMAV
MA

CyL
EWL

EMAV
MA

EWL
EMAV

MA

EWL
EMAV

MA

EWL
EMAV

MA

EWL
EMAV

MA

EWL
EMAV

MA

EWL
EMAV

MA

Lum EWL
EWL

EMAV
MA

NZC NZC
EWL

Obl EWL
EMAV

MA

EWL
EMAV

EWL
EMAV

MA

EWL
EMAV

MA

EWL
EMAV

MA

NZC
EWL

EMAV
MA

NZC
EWL

EMAV
MA

IntPP EWL
EMAV

MA

EWL
EMAV

MA

NZC NZC

NZC
EWL

EMAV
MA

Table 5. The success ratios and models obtained from the different performed LDAs.

Success Ratio Model

LDA1 73.3% 0.013·NZCWE_RD,Lum -10.383

LDA2 & LDA5 100% 0.002·EWLWF_UD,Obl + 0.003·EWLTM,LatP + 0.004·EWLTM,Cyl −
0.004·EWLTM,Lum − 0.002·EWLWE_RD,P2D − 4.198

LDA3 & LDA8 93.3% 8.065·EMAVTM,Cyl − 4.399
LDA4 100% 3.163·MADF,Obl + 8.121·MATM,Cyl − 4.986·MAWE_RD,IntPP − 3.232

LDA6 & LDA11 93.3% 7.902·EMAVTM,Cyl + 0.005·NZCWE_RD,IntPP − 8.483
LDA7 93.3% 6.514·MATM,Cyl + 0.006·NZCWE_RD,IntPP − 7.512
LDA9 100% 0.002·EWLDF,Obl + 8.542·MATM,Cyl − 5.566·MAWE_RD,IntPP − 4.140

LDA10 100% 3.277·MADF,Obl + 8.215 MATM,Cyl − 6.313·EMAVWE_RD,IntPP − 2.127
LDA12, LDA13 & LDA15 93.3% 6.514·MATM,Cyl + 0.006·NZCWE_RD,IntPP − 7.512

LDA14 100% 0.002·EWLDF,Obl + 8.681·MATM,Cyl − 7.112·EMAVWE_RD,IntPP − 2.938

4. Discussion

In this work, an EMG study of forearm muscles (considering muscle activation, NZC,
EWL and EMAV characteristics from seven representative forearm areas) while performing
the commonest grasps of ADL was carried out with a twofold objective: (1) check if
the EMG characteristics obtained from different forearm areas during grasps presented
significant differences in HOA patients; (2) if these significant EMG characteristics can be
used to help diagnose HOA.
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4.1. Are Forearm Muscles Significantly Affected or Differently Used by HOA in EMG Terms?

First, and as expected, gender significantly affected the EMAV, MA and EWL char-
acteristics, except for the ulnar deviators of the wrist (WR_UD and WE_UD). NZC was
the least affected by gender, and was only affected in finger/wrist extensors and radial
deviators (FE and WE_RD). Similarly, the vast majority of the EMG characteristics were
also affected by condition (healthy women and HOA patients) and grasp type. In addition,
NZC was once again the least affected. This seems reasonable because NZC is meant to
approximate signal frequency, unlike EMAV, MA and EWL, which are related to signal
amplitude and are, consequently, related more to grasping force, the decrease in which is a
HOA symptom [34].

4.2. Can EMG Characteristics Be Used to Detect HOA Early?

From the LDA results, we observed that the EMG characteristics could help in detect-
ing HOA. From all the tested combinations, six models presented the highest success ratio
(100%), some of which presented similarities:

• LDA2 and LDA5 were composed only of EWL values and required recording EMG
signals from wrist flexors, ulnar deviators, thumb muscles, wrist extensors and radial
deviators while performing all the grasps except the intermediate power–precision
grasp. Not requiring MA characteristics would prevent MVC recordings and simplify
the diagnosis method;

• LDA4, LDA9, LD10 and LDA14 required different combinations of EMG character-
istics, but always from the same muscular forearm spots and grasps: digit flexors,
thumb muscles, wrist extensors and radial deviators while performing the cylindrical,
oblique-palmar grasp and intermediate power–precision grasp.

From the other models, LDA3 and LDA8 were seen to be the models with the fewest
characteristics and required grasps (thumb muscles and Cyl grasp), and they also had a high
success ratio (93.3%). This means that recording only one muscle spot while performing
the cylindrical grasp could suffice to detect 93.3% of cases. Furthermore, not requiring MA
characteristics would prevent MVC recordings and simplify the diagnosis method.

However, there were also differences in these models regarding the employed
EMG characteristics:

• NZC values did not well-discriminate HOA patients;
• Muscle activity (MA) did not require any other characteristic to discriminate HOA

patients, but required MVC recordings;
• EWL could very accurately discriminate, but needed information of more grasps;
• EMAV could very accurately discriminate, but always had to be accompanied by other

EMG characteristics (MA or EWL).

There are few previous works that study different muscle activations in HOA, and
comparisons with them must be made with caution, since the measurement protocols and
the analyses performed are not the same. In [35], intrinsic muscles were considered in a fine
manipulation activity, analyzing integrated activation as the only indicator and reaching
the conclusion that although there were differences, when considering the longer execution
time required by HOA patients, these differences disappeared. Despite [15] concluding that
HOA patients require greater muscle activation for activities such as writing or cutting with
scissors, ref. [16] indicates that this activation is lower. However, although in both studies
the signal was normalized, in [15], they do not indicate the application of any filtering. The
novelty and importance of our work lies in considering different grasp types representative
of ADLs; muscles whose activity is also representative of these ADLs; and indicators based
not only on the amplitude of muscle activity, but also on the frequency domain of the
signal. Therefore, ours is a broadening study in the pursuit of checking for differences
in muscle activity due to HOA. The equations provided in this work show that the digit
flexors during the cylindrical grasp, thumb muscles during the oblique palmar grasp and
wrist extensors and radial deviators during the intermediate power–precision grasp were
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much more significant for detecting HOA than the other muscles and grasps. The recent
work [16] found that early-stage HOA may contribute to the activation deficit of the flexor
and extensor muscles of the wrist. The results herein reiterate wrist extensors, along with
thumb muscles and digit flexors, as possible muscle indicators for detecting HOA.

5. Conclusions

This paper proposes using EMG characteristics to identify discriminant functions for
the early detection of HOA. The discriminant results show very high success rates (between
93.3% and 100%), which suggests that EMG can be used as a preliminary step to confirm
current HOA diagnostic techniques. In particular, digit flexors during the cylindrical grasp,
thumb muscles during the oblique palmar grasp, and wrist extensors and radial deviators
during the intermediate power–precision grasp are good candidates to help detect HOA.
These results highlight the possibilities of merging technology and medical science as an
essential role in the prevention, diagnosis and treatment of illnesses and diseases such as
HOA. Furthermore, the results presented herein may help improve the control of hand
prostheses and assistive exoskeletons, especially those intended for HOA patients. As
limitations, note that there are other EMG parameters that have not been considered, that
the sample of participants is limited both in number and degree of HOA compromise, and
that we do not know what would happen with other pathologies (that could give similar
indicators and be mislabeled as HOA). More studies are needed to check if these differences
in EMG characteristics between healthy and HOA patients are present before strength
loss in HOA.
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Abbreviations
ADLs Activities of daily living
Cyl Cylindrical grasp
DF Digit flexion
EMAV Enhanced mean absolute value
EMG Electromyography
EWL Enhanced wavelength
FE Finger extension
HOA Hand osteoarthritis
IntPP Intermediate power–precision grasp
LatP Lateral pinch

229



Sensors 2023, 23, 2413

Lum Lumbrical grasp
MGE Maximum grasping effort
MVC Maximum voluntary contraction
NZC New zero crossing
Olb Oblique palmar grasp
P2D Two-finger pad-to-pad pinch
TM Thumb extension and abduction/adduction
WE_UD Wrist extension and ulnar deviation
WE_RD Wrist extension and radial deviation
WF_RD Wrist flexion and radial deviation
WF_UD Wrist flexion and ulnar deviation
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Abstract: The early identification of microvascular changes in patients with Coronavirus Disease 2019
(COVID-19) may offer an important clinical opportunity. This study aimed to define a method, based
on deep learning approaches, for the identification of COVID-19 patients from the analysis of the raw
PPG signal, acquired with a pulse oximeter. To develop the method, we acquired the PPG signal of 93
COVID-19 patients and 90 healthy control subjects using a finger pulse oximeter. To select the good
quality portions of the signal, we developed a template-matching method that excludes samples
corrupted by noise or motion artefacts. These samples were subsequently used to develop a custom
convolutional neural network model. The model accepts PPG signal segments as input and performs
a binary classification between COVID-19 and control samples. The proposed model showed good
performance in identifying COVID-19 patients, achieving 83.86% accuracy and 84.30% sensitivity
(hold-out validation) on test data. The obtained results indicate that photoplethysmography may be a
useful tool for microcirculation assessment and early recognition of SARS-CoV-2-induced microvascu-
lar changes. In addition, such a noninvasive and low-cost method is well suited for the development
of a user-friendly system, potentially applicable even in resource-limited healthcare settings.

Keywords: photoplethysmogram; microcirculation; deep learning; convolutional neural network;
modelling; classification

1. Introduction

COVID-19 is an infectious respiratory disease caused by SARS-CoV-2, a coronavirus
discovered in the city of Wuhan, China, in 2019 [1]. Since then, the virus has spread rapidly
to other countries around the world, causing a global health and economic crisis. According
to data from the World Health Organization (WHO), more than 664 million cases and more
than 6.6 million deaths have been recorded as of January 2023 [2]. The rapid spread and
the difficulties of treating patients with SARS-CoV-2 infection have led to the development
of several diagnostic methods for the early recognition and treatment of patients with
COVID-19. Except for the molecular test, based on reverse transcription-polymerase chain
reaction (RT-PCR), which remains the reference diagnostic tool, low-cost and easy-to-
perform procedures, and tests have also been proposed. Among these, the analysis of the
photoplethysmogram (PPG) signal as a means for the early recognition of patients with
COVID-19 in the hospital setting has been suggested.

COVID-19 infection typically presents with symptoms such as weakness or fatigue
with fever, dry cough and shortness of breath. In severe infection, the symptomatology
may progress to serious complications such as pneumonia, acute respiratory distress
syndrome (ARDS), requiring intubation and emergency treatment. The virus binds to
upper respiratory tract epithelial cells primarily through the ACE-2 receptor, which is
highly expressed in adult nasal epithelial cells. The virus then undergoes replication and
propagation within the upper respiratory tract, triggering the immune response responsible

Sensors 2023, 23, 2561. https://doi.org/10.3390/s23052561 https://www.mdpi.com/journal/sensors
233



Sensors 2023, 23, 2561

for the onset of typical symptomatology. If the immune response is not sufficient to contain
the spread of the infection, lower respiratory tract (pulmonary alveoli) involvement and
progression to acute respiratory distress syndrome (ARDS) occurs in severe cases [3].
Infected lung cells release a storm of cytokines (CS) that triggers an exaggerated host
immune system response that can culminate in widespread cellular damage. As previously
observed in other clinical conditions such as sepsis [4,5], the body’s immune response
results in endothelial dysfunction that can induce microvascular damage, coagulation
alterations, and consequently contribute to organ dysfunction [6]. In this regard, it has
been reported that in COVID-19 patients, systemic microcirculatory changes accompanied
by endothelial dysfunction correlate with the severity of ARDS [7]. The role of endothelial
dysfunction is important considering that it has been associated with poor prognosis in
the acute phase and with persistent symptoms, such as chest pain and fatigue, during the
long COVID-19 period (4 weeks or more after onset infection) [8]. Therefore, an analysis of
microcirculation and endothelial damage may play a key role in both the clinical course
of COVID-19 and the evaluation of the long-term effects of this clinical condition. This
evaluation could allow the development of new tools for monitoring patients to reduce
the number of severe cases requiring intensive care units. In this context, the use of
devices such as the pulse oximeter may be a valuable solution. The pulse oximeter is a
non-invasive optical device based on the technique of photoplethysmography that allows
the measurement of blood volume changes in a peripheral district, usually the fingertip
or earlobe. The definition of the anatomical site where measurement is performed is a
key point in the acquisition protocol, since perfusion characteristics vary according to
the measurement location [9,10]. This device is commonly used for the estimation of
heart rate and for the measurement of blood oxygenation (SpO2). In addition to these
commonly monitored parameters, it is known that the characteristic components of the
pulse oximeter waveform (PPG) are associated with specific circulatory functions [11,12].
In this perspective, a detailed analysis of the PPG waveform could provide important
information on the microcirculatory function abnormalities and enable early recognition of
patients with SARS-CoV-2 infection.

In our previous work, Rossi et. al [13], we investigated the feasibility of using the
photoplethysmographic signal through a multi-exponential model to recognise patients
hospitalised with COVID-19 and the severity of the disease itself. The photoplethysmo-
graphic signal was evaluated in 93 subjects with the aim of discriminating between healthy
controls and COVID-19 patients of different severity. Using the parameters of the math-
ematical model, three different classifiers (Bayesian, SVM and KNN) were trained and
tested, validating the results obtained by the leave-one-subject-out method. In this work,
we will use the same dataset used in that study by proposing a different method for the
analysis of the PPG signal. In particular, this article presents a new method for PPG signal
pre-processing and a custom deep learning model that, starting from PPG signal analysis
only, performs classification between COVID-19 patients and control subjects. Regarding
the pre-processing phase, we developed a method that analyzes waveform morphology.
Specifically, we adopted a Template Matching approach that performs a pulse-by-pulse
comparison with a reference signal. With regard to the deep learning model, we developed
a convolutional neural network architecture, a type of model that is finding increasing
application in the field of biosignal analysis [14]. The method proposed in this paper,
based only on the pulse oximeter signal, could be applied as a first assessment tool for the
identification of COVID-19-induced microcirculatory alterations. Moreover, since the pulse
oximeter is a low-cost device, as well as already widely used in hospital settings, the intro-
duction of such a method would not imply any additional costs and could also be applied in
healthcare settings with limited resources, such as those in underdeveloped countries and
territorial emergency. Furthermore, due to the easy usage and the non-invasiveness of the
device, this method could be useful in the development of a clinician-friendly system that
could potentially be applied to other clinical conditions that have an impact on peripheral
circulation, such as hypertension or sepsis.
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The purpose of this study was to define a method, based on deep learning approaches,
for the identification of COVID-19 subjects from the analysis of the raw PPG signal only.
In addition, comparison with the results obtained with the different procedure [13] applied
on the same sample of patients is a further objective of this study. In the Section 2, we
reported the main studies that, similar to ours, have adopted a template-matching method
for analysing the PPG signal or have used an artificial intelligence method applied to the
photoplethysmogram. Our method is described in detail in Section 3. In particular, we
described the data acquisition aspects, the implementation details of the pre-processing
algorithm and the architecture of the neural network, together with the strategy adopted
for the model training. The obtained results are reported in Section 4, while a discussion of
them and a comparison with other work is given in Section 5, where limitations and future
developments of the present study are highlighted.

2. Related Methods

There are many techniques that can be used to analyze the PPG signal. In this sense,
knowing the performance and characteristics of different methods can contribute to op-
timising the treatment of patients. In this section, we report the main studies resulting
from the literature review which, similarly to our method, adopted a template-matching
approach for processing or an artificial intelligence approach for analysing the PPG signal.

Proposed template matching techniques differ from each other both in the method
of reference signal (template) generation and in the metric used in the pulse-by-pulse
comparison. Sukor et al. [15] derived a reference template by averaging the individual
pulses of a PPG segment. The authors compared all pulses with the template by evaluating
the Euclidean distance and the ratio between the amplitudes of the two signals. Acceptabil-
ity thresholds for the two metrics were determined heuristically. Orphanidou et al. [16]
and Karlen et al. [17] used Pearson’s correlation coefficient as a metric for the Template
Matching. Orphanidou et al. derived the reference signal as the average of pulses in a
PPG segment and then evaluated the correlation of each pulse with the template. The aver-
age correlation coefficient over the segment was then used as a metric for selecting good
samples by imposing heuristic thresholds obtained from applying the method to different
PPG sensors. Karlen et al., conversely, assessed the quality of each pulse by calculating the
correlation between consecutive pulses, imposing a threshold for the correlation coefficient
of 0.99. Considering a maximum number of consecutive pulses equal to 10 the assumption
is that clean pulses taken from a short time interval are more or less equal to each other,
unless they are corrupted with artefacts. Li et al. [18] used dynamic time warping (DTW) to
match each beat to a template. By calculating the correlation and by using a signal clipping
algorithm, the authors derived 4 features, which were used to train a multilayer perceptron
with the goal of identifying good and bad-quality pulses. The DTW technique was also
used in the study of Papini et al. [19]. The authors compared the morphology of PPG pulses
with an adaptive template obtained by DTW barycenter averaging several beats, to consider
physiological differences among individual pulses. The quality index of each sample was
evaluated by taking into account the mean square error of dissimilarities between pulse and
template. We recently proposed a PPG pre-processing method that required the generation
of an ideal synthetic signal [20]. In particular, 3-s windows of the signal were compared
with the reference signal by calculating the correlation coefficient. The use of a synthetic
signal allows for very selective sample selection but it has the limitation of not accounting
for the morphological variability of the waveform among the subjects.

Several studies used PPG waveform analysis applied to the study of cardiovascular
disease. Nayan et al. [21] analyzed a set of 20 features extracted from the PPG signal
using machine learning approaches for classification between healthy and COVID-19
subjects. The considered characteristics included amplitudes and time intervals of the
main morphological features of the waveform: pulse onset, systolic peak, diastolic peak
and dichrotic notch. The authors evaluated the performance of different classifiers, such
as discriminant analysis (DA), k-nearest neighbour (KNN), decision tree (DT), support
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vector machine (SVM) and artificial neural network (ANN). The results obtained showed
that ANN performed best in discriminating the two classes, achieving 95.45% of accuracy
on the test set and 84.62% of accuracy on the validation set. Praveen et al. [22] used
a feature vector extracted from the PPG signal to train three machine learning models
(Random forest, Gradient boost, Xgboost) to classify blood pressure into 4 different stages
of hypertension. Other approaches involve the use of deep learning methods to analyze the
raw PPG signal, without requiring the process of feature selection and extraction from the
data. Paviglianiti et al. [23] trained several neural networks to infer arterial blood pressure
starting from photoplethysmogram (PPG) and electrocardiogram waveforms, obtaining
good results on the estimation of diastolic and systolic pressure. Mahmud et al. [24]
proposed a new approach for predicting the severity of hypoxia using deep learning
applied to the PPG signal. This method is an alternative to the traditional application of
the pulse oximeter, which, having a high sensitivity in detecting oxygen degradation, often
has a high rate of false positives that could lead to desensitization of healthcare operators.

3. Materials and Methods

3.1. Data Acquisition

Data acquisition was carried out at S. Giuseppe Hospital in Empoli, Italy. A total
of 183 subjects were recruited for the study, including 93 subjects affected by COVID-19
and 90 control, healthy subjects not affected by the target disease. The COVID-19 group
included RT-PCR-positive subjects admitted to the hospital with medium to high disease
severity, identified by the need for treatment with a high-flow nasal cannula (HFNC)
or noninvasive ventilation (NIV). Subjects in the control group were recruited from the
hospital’s healthcare staff including healthy subjects not affected by COVID-19 or by other
cardiovascular diseases. Only subjects older than 18 years and of white Caucasian ethnicity
were included. The inclusion criterion on ethnicity resulted from the fact that as shown in
recent studies, many factors can influence the PPG waveform, and among them one of the
most significant is the skin color [25,26]. All participants accepted informed consent before
being enrolled into the study.

The patient cohort recruited for the study was the same as the one used in the work of
Rossi et al. [13] except for the number of control patients, which was increased to balance
the number of subjects with COVID-19. Among the covid group, 64% of subjects were men
and 36% were women, while in the control group, men accounted for 37% of subjects and
women for 63%. The mean and standard deviation of age were (65.93 ± 17.75) for septic
subjects and (43.99 ± 11.16) for control subjects.

For each subject, the protocol consisted of the acquisition of the photoplethysmo-
graphic trace using a finger pulse oximeter. The acquisition took place under resting
conditions and for a duration of at least 5 min. The measurement site was the index finger
of the right hand for all subjects involved. The acquisition system consisted of a finger
pulse oximeter connected to the Mindray ePM-10 monitor, commonly used in the hospital
for continuous monitoring of patients’ vital parameters. A Raspberry Pi 3 device, connected
to the monitor using a network connection and an HL7 (Health level seven) protocol, was
used to store the waveforms. Data were acquired with a 60 Hz sampling frequency and
stored as standard HL7 messages. In the first decoding step, PPG waveform values were
extracted from the HL7 message for each subject. Then the signals were stored with a
progressive numerical code so as to eliminate any identifying data that could trace back to
the patient.

3.2. PPG Quality Assessment

The PPG waveform is susceptible to various forms of noise. Among these, one of the
most common is the presence of motion artefacts that distort the shape of the signal. In
this study, we developed an algorithm for the evaluation of PPG signal quality based on
waveform morphology. A PPG pulse is characterised by a rising phase (anacrotic phase),
which represents the systolic phase of the heart, and a falling phase (catacrotic phase),
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which represents the diastolic phase. A valley, called a dichrotic notch is often present in
the catacrotic phase of the waveform, and is associated with aortic valve closure and good
arterial function [27]. The use of morphological features to assess PPG signal quality has
been widely used in the literature. One of the most common methods is a pulse-by-pulse
comparison with a reference signal, which is called Template Matching. In this work, we
implemented a Template Matching method by deriving, from each acquisition, a patient-
specific reference pulse. This pulse was then compared with the entire PPG signal through
the calculation of the Pearson correlation coefficient. The good quality portions of the signal
were selected by imposing a threshold for the correlation coefficient.

3.2.1. Template Calculation

In our study, each patient-acquired signal was processed to obtain a specific reference
pulse. Each PPG acquisition was normalised to have values between −1 and 1, and then
the signal was filtered with a Butterworth bandpass filter with cutoff frequencies of 0.5 and
5 Hz [15]. The filtering allowed the preservation of spectral components related to cardiac
activity, thus, facilitating subsequent identification of systolic peaks. From the filtered PPG,
the lower and upper envelope of the signal were calculated to identify the position of the
pulse onset and systolic peaks (Figure 1a).

(a) (b) (c)

Figure 1. Main steps for calculating the reference template for each patient. (a) shows the lower and
upper envelope of the signal. (b) shows the alignment of segmented pulses on the systolic peak. The
calculated template is presented in the (c).

This allowed the segmentation of each individual pulse of the signal, identified as the
waveform between two consecutive onsets. At this stage we provided limits to the pulse
duration imposed by natural cardiovascular physiology so that only those peaks that met
the physiological limits were considered for template calculation. Specifically, the limits
imposed include minimum and maximum values for the systolic phase (SP), that is the
rising wave between the pulse onset and the systolic peak, and limits for the pulse wave
duration (PWD). The acceptable values for the duration of the systolic phase were in the
range of 0.08 to 0.49 s, as described in the study of Fisher et al. [28]. The constraints for
PWD were calculated, as described in Equation (1), by imposing a minimum mean heart
rate of 40 bpm and a maximum mean heart rate of 180 bpm, considering that the subject
was in a resting state during acquisition.

PWDmin =
60 × Fs

HRmax
; PWDmax =

60 × Fs

HRmin
(1)

With regard to the pulse duration, we also derived a PWD reference value by calculating
the median of the width of the pulses. Samples with PWD that differed from the median
value of more than 30% were not considered for template calculation. The selected pulses
were then aligned on the systolic peak, as shown in Figure 1b. The reference point for
alignment was calculated as the mean of the position of the systolic peak of all pulses.
To obtain pulses of the same length, we performed truncation of the longer samples and
constant-value padding at the beginning or end of the signal for the shorter samples. Once
the samples were aligned, we obtained the template by calculating the median of the pulse
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waveforms (Figure 1c). The implemented algorithm for template calculation is summarised
in Figure 2

PPG Normalization
[ 1,1] Band Pass Filtering Low and High PPG

envelope

Pulse Segmentation

Discard PulseDiscard Pulse

YesYes

No

No

Discard Pulse

Yes

Pulses Alignment

Template
Calculation

No

Figure 2. Flowchart of algorithm for template generation.

3.2.2. Quality Assessment

Once the reference template was obtained for each patient, signal quality was assessed
by calculating the Person’s correlation between the template and each segmented pulse
of the patient acquisition. Each pulse was rated of acceptable quality if it correlated with
the template equal to or greater than 0.8. The threshold for the correlation coefficient was
determined empirically by visual inspection of the waveforms. Therefore, we stored all
portions of the signal that contained consecutive pulses labelled as being of good quality.
As a result, we obtained PPG samples of varying lengths associated with the same subject.
Among these, we only selected for further analysis those samples with a minimum duration
of 30 s. The minimum duration of 30 s was chosen experimentally, considering the need
to select a waveform of the longest possible duration and the need to have as much data
as possible available for training the neural network. As a result of the preprocessing
algorithm, we obtained 336 PPG samples. Specifically, 186 samples from 81 patients of the
control group, while a total of 150 samples from 84 patients from the covid group.

3.3. Dataset Construction

The selected PPG samples were then divided into a training set and test set. As a
result of the pre-processing algorithm, multiple PPG samples could be associated with each
patient. The division of the available data was done to ensure that data from a specific
patient was present in only one of the two sets. The assignment of subjects to the training
or test set was done completely randomly. The training set was used for neural network
model development, while the test set was used for model performance evaluation. Since
the PPG samples can have variable durations, we segmented the test samples to obtain a
fixed set of PPG segments on which to perform neural network performance evaluation.
Segmentation was performed by deriving for each PPG sample all possible 30-s duration
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windows from the onset points of individual pulses. The number of samples and the
number of subjects in each set of data are reported in Table 1.

Table 1. Description of training and test sets data.

Training Set Test Set Test Set Segmented

COVID Control COVID Control COVID Control

N subjects 68 65 16 16 16 16
N samples 119 143 29 36 2159 2339
Ratio [%] 45.4% 54.6% 44.6% 55.4% 48.0% 52.0%

3.4. Neural Network Architecture

The design, training and testing of the neural network were implemented in Python us-
ing the Tensorflow and Keras frameworks. All experiments were conducted on a computer
with an Intel i9-11900 2.5 GHz processor and 48 GB RAM within the Microsoft Windows
10 Pro operating system (Lenovo Italy S.R.L., 20054 Milano, Italy). The model structure
used in this study is an architecture based on a convolutional neural network (CNN).
CNN architectures are made of 3 main layers: the convolution layer, the pooling layer
and the fully connected dense layer. The convolution layers and pooling layers compose
the first block of the model, which is devoted to featuring extraction from the input data.
The last block of the architecture consists of a fully connected network formed by dense
layers, and is responsible for associating the extracted features with the desired output.
Our custom model consists of 4 feature extraction blocks (CONV Block), each comprising
a 1D Convolution layer, ReLu activation and a Max Pooling layer. The first two CONV
Blocks have a number of filters equal to 64, while in the last two, the number of filters
is 128. All convolution layers have a kernel size of 11 and all Max Pooling layers have a
filter width of 4 and stride size of 2. The fully connected network includes a first dense
layer with 100 units, followed by a layer with 50 units. For both layers, we included the
dropout method with a rate of 0.2 as a regularization strategy to prevent model overfitting.
The output layer contains two nodes with softmax activation, as we want to discriminate
between two classes. As input, the model takes 30-s PPG segments normalised to have
values in the range [−1, +1]. The detailed description of the proposed architecture is shown
in Figure 3.
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Figure 3. Description of our custom CNN architecture.

Regarding the complexity of the proposed model, we analyzed some of the most
commonly used metrics to assess the complexity of artificial neural networks: the number
of trainable parameters, the number of Floating Point Operations (FLOP) and the inference
time. As for the first metric, our model has 1,614,532 trainable parameters. With regard to
the number of FLOP, this metric represents the total number of calculations (for example,
additions or multiplications) that the model has to perform to process an input sample.
Each layer of the model involves performing a number of operations that depend on the
structure of the layer itself, e.g., the number of FLOP for a one-dimensional convolutional
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layer depends on the number of filters, the kernel size, the number of input features and
the output size. For our architecture, we estimated the number of floating-point operations
equal to 236.74 MFLOP using the TensorFlow Python API. Finally, the inference time
represents how long it takes to process an input and produce the output. This parameter
depends on the available hardware and, in particular, on the number of Floating Point
Operations per Second (FLOPS). This measure can be obtained from the CPU specification
and, in our case, is 3.2 × 105 MFLOPS. The inference time was then calculated by dividing
the number of FLOP required from the model by the number of operations per second
supported by the CPU, yielding an inference time of 0.74 ms.

3.5. Model Training

When working with neural networks, three sets of data are usually used for training,
validation and testing of the model, respectively. At the same time, to evaluate the gen-
eralization ability of the model, cross-validation is typically adopted. There are several
ways to validate a model, in this case, we adopted 5-fold cross-validation. Validation data
were derived from the training set by performing stratified group sampling, where each
group contains PPG samples related to a specific patient. In this way, we obtained 5 sets of
PPG samples containing data from different subjects, thus, permitting evaluation of the
robustness of the method with respect to data variation. In each iteration, 1 of the 5 groups
constituted the validation set, and the other 4 were used to train the model. The same
architecture, previously described in Figure 3, was used for each cross-validation iteration.

Our architecture takes 30-s PPG segments as input examples. Therefore, a segment of
the desired duration was derived from each sample in the training set. The selection of that
segment was made during the training process by considering a 30-s window that had as
its starting point the onset of one of the individual pulses that constitute the waveform. At
each iteration, the selected window was different; thus, the model was trained with many
different portions of a signal from the same patient. The range of values assumed by each
input data was between −1 and 1.

Regarding the selection of the training hyperparameters, a trial-and-error approach
was used, evaluating the trend of the learning curves and the performance obtained by the
model on the validation and test set. The investigated parameters were batch size, learning
rate, optimiser, loss function and the number of epochs. The chosen parameters for the
final version of the model are summarised in Table 2.

Table 2. Chosen hyperparameters for model training.

Hyperparameter Value

Learning rate 1 × 10−6

Number of Epochs 800
Batch size 8
Optimiser Adam
Loss Function Mean Squared Error (MSE)

Given the limited amount of data available, after validating our method in cross-
validation, we re-trained the model using all the data in the training set, assuming to
improve the performance due to the utilization of more data.

4. Evaluation Results

The model was evaluated in the training phase by considering the average perfor-
mance obtained on the cross-validation sets and then on the data selected for the test set.
In both cases, the evaluated metrics were: accuracy, sensitivity, specificity and precision.
Areas under the curve (AUC) of the Receiver Operating Characteristic (ROC) curve and
the Precision-Recall (PR) curve were also measured.

The cross-validation process produced 5 different models. Each model differed from
the other in the subjects used in training and validation, thus, permitting assessment of the
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robustness of the method with respect to the physiological variability of the subjects. The
average performance of our architecture on the validation sets resulted in an accuracy of
79.01%, a sensitivity of 80.02%, a specificity of 76.57% and a precision of 74.95%.

Then the performance of each model was evaluated on the test set data. All models
showed consistent performance on test data, as shown in Table 3. In addition to the average
performance of the models, we evaluated an “ensemble” approach, previously used in
our other work [29], in which all models were combined in the prediction process. In this
method, for each test sample, all models were consulted and the class obtaining the majority
of votes was considered as the final prediction.

Table 3. Performances of 5-fold cross-validation sets on test data.

Accuracy [%] Sensitivity [%] Specificity [%] Precision [%] AUC ROC AUC PR

Fold I 83.95 87.45 80.72 80.72 0.85 0.88

Fold II 82.33 83.97 80.80 80.15 0.84 0.84

Fold III 78.21 81.15 75.50 75.35 0.82 0.84

Fold IV 80.50 81.24 79.82 78.80 0.81 0.80

Fold V 83.06 83.00 83.11 81.94 0.83 0.81

Average Performances 81.61 83.36 79.99 79.39 0.83 0.83

Model Ensemble 82.88 85.27 80.68 80.29 0.84 0.86

Each fold of data differs in the subjects used in training and validation. Each fold produced a different trained
model, whose evaluation on the test set data is shown in the table. The table reports both the performance of the
individual models, the average performance and the performance obtained using the ensemble of models.

As we expected, the combined use of the 5 models resulted in an increase in per-
formance over that achieved by a single one. Similarly, we evaluated the performance
on the test set after using all the training set data to train the neural network (hold-out
validation). The obtained results are summarised by the ROC Curve and the PR Curve
shown in Figure 4.

(b)(a)

Figure 4. Model performance on the test set. (a) shows the ROC Curve and the correspondent
AUC. (b) illustrates the PR and the associated AUC. Each point, on both curves, is derived from the
values of the confusion matrix associated with the application of a specific cutoff to the predictions of
the classifier.

These curves show the ability of a model to classify binary outcomes for each possible
cutoff value applied to the classifier’s predictions. Specifically, the ROC curve is generated
by plotting a model’s false positive rate against the true positive rate, while the PR curve
plots the true positive rate (recall or sensitivity) against the positive predictive value
(precision). With a threshold equal to 0.5, our model achieved an accuracy of 83.86%, a
sensitivity of 84.30%, a specificity of 83.45% and a precision of 82.46%. The total number of
predictions for each class is described in the confusion matrix, shown in Figure 5.

241



Sensors 2023, 23, 2561

1820Covid

Covid

339

Control Total

2159

357Control

Total 2177

1952 2307

2291

T
ru

e
L

a
b

e
l

Predicted label

Figure 5. Confusion matrix on the test set using the hold-out validation.

The results obtained in the hold-out validation confirm our hypothesis that more data
available for model implementation could lead to improved performance.

The most significant parameter for our study is sensitivity, which identifies the per-
centage of COVID-19 samples correctly identified. This parameter reached a good value
of 84.30%. However, since multiple 30-s PPG windows are associated with each subject,
to assess the true percentage of correctly classified subjects, we performed the test on
the individual patient. In this case, we evaluated the number of correctly identified PPG
samples for each patient. Therefore, each subject was considered to be correctly classified if
most of his/her signal samples were associated with the right class. In this testing modality,
our method correctly classified 25 of the 32 patients assigned to the test set, corresponding
to an accuracy of 78%, sensitivity of 75% and specificity of 81%.

5. Discussion

In this study, we evaluated the possibility of using the PPG signal to identify patients
infected with COVID-19. Specifically, we presented a new template matching method
for PPG signal pre-processing and we developed a CNN deep learning-based model for
analyzing the photoplethysmographic signal acquired with a common pulse oximeter.
Data acquisition was carried out at S. Giuseppe Hospital in Empoli, using the Mindray
multiparameter monitor commonly used in the Intensive Care Unit, thus, simulating a real
application of the developed method. The collected data were divided into training set and
test set, which were, respectively, used for classifier training and performance evaluation.
To assess the robustness of the classifier with respect to variation in the subjects used for
performance evaluation, we initially implemented cross-validation and then performed
hold-out validation. In the hold-out validation, our model showed good performance in
the classification between COVID-19 patients and control subjects by achieving an accuracy
of 83.86% and a sensitivity of 84.30% on the test data. Observing the ROC curve related to
our classifier (Figure 4), it can be seen that the curve reaches a plateau. This means that
as the threshold applied to the model’s predictions increases, there is no corresponding
improvement in the performance of the classifier. Therefore, it can be deduced that there are
some patients whom the model fails to classify. We can hypothesise that this performance
may be due to unimpaired microcirculation in these subjects.

Overall, the obtained results confirmed the presence of microvascular changes due to
SARS-CoV-2 infection and the potential of photoplethysmography as a tool for microcir-
culation assessment. This method, based only on samples of the PPG signal, seems to be
suitable for a rapid screening procedure, which could provide the clinician with an early
warning signal and allow, for example, the use of specific diagnostic procedures. Moreover,
given the noninvasiveness and wide use of this device, especially in the hospital setting,
this method could be a tool for the evaluation of microcirculatory changes that does not
introduce additional costs. The results obtained allow us to compare the usefulness of
using deep learning approaches versus other methods based on feature extraction from the
photoplethysmogram. In the study of Nayan et al. [21] a set of features extracted from the
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PPG signal was used to classify COVID-19 patients using Machine learning approaches.
Similar to our study, the classifiers were trained by implementing a 5-fold cross-validation
on the training data and then evaluated on the test set. In particular, the best performing
classifier was a feed-forward multilayer perceptron network, which achieved consistent
performance on both the validation set and the test set, in contrast to other classifiers that
had significantly lower performance on the validation set. The authors obtained excellent
results achieving more than 90% accuracy on the test set and 84.62% accuracy on the
validation set. Although our work yielded lower performance than the method described
by Nayan et al. we believe it still has advantages. Differently from that study, our method
does not require the process of extracting and selecting morphological features from the
PPG signal, but processes 30-s windows of the raw PPG signal. This could be particularly
advantageous in the case of signals acquired under uncontrolled conditions, such as those
acquired from multi-parameter monitors in Intensive Care Units, for which the extraction
of PPG features could be challenging. In our previous study, Rossi et al. [13], the PPG
features were derived by fitting the waveform with a 3-exponential model. The model
parameters were then used in ML approaches to identify COVID-19 patients with different
severity. Since this study is based on the same data set, the aim of this study is to com-
pare the obtained results with those achieved using the exponential photoplethysmogram
model. Given the limited number of subjects enrolled in the study and, consequently, the
limited amount of data available for training the neural network, our work focused on the
classification between control healthy subjects, indicated as group 0, and covid subjects,
regardless of severity, identified as a group (1, 2) in our previous study. In that study,
the comparison between group 0 and group (1, 2) was performed in three different ways
utilising the Bayesian Classifier with the Leave-One-Subject-Out (LOSO) validation method.
The classifier was trained both with features extracted from a single beat and with features
averaged over two consecutive beats. The classification of the patient was then obtained
based on the majority of the classifications of the single or pairs of cycles. Furthermore,
performances were evaluated by considering a single feature vector per patient, obtained
by averaging the characteristics over the entire acquisition. The best performance was
obtained using the average feature vector, resulting in an accuracy of 70%, sensitivity of
68% and specificity of 74% in the classification of subjects. Although the methods are not
directly comparable, as they were validated using different methods, we are interested in
comparing the performance of the two approaches in terms of correctly classified subjects.
In this respect, we can observe that the method proposed in this work, based on a deep
learning model, performed better in classifying individual subjects, achieving an accuracy
of 78%, a sensitivity of 75% and a specificity of 81%.

Study Limitations and Future Developments

Overall, the findings confirm the potential of the proposed method for the early
assessment of microcirculation alterations in COVID-19 patients. However, it is necessary
to consider some limitations of this work that open the way for further investigation
and development of the implemented method. The main limitations are related to the
dataset used. The data for training and evaluation of the model were all acquired in the
same hospital. To assess the generalization ability of the model, we plan to evaluate its
performance on at least one other database. In addition, we hypothesise that a greater
number of data available may improve the performance of the model, as well as allow for
an evaluation of performance on a larger population. Finally, the two groups of subjects
enrolled in the study, although balanced in number, are biased in terms of gender and age.
Investigating the influence of these two parameters on the performance of our method
will be our further goal. In this regard, we are aware that interpretability of the model is a
fundamental requirement for applying this method in the medical field. For this reason,
further validations will be necessary to make the model explainable and consequently
improve the clinician confidence in using this method. Finally, given the potential shown
in this work by the photoplethysmographic technique in the evaluation of microcirculatory
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alterations, in our future work, we are interested in exploring the use of PPG imaging
since optical imaging techniques may also allow a description of the spatial distribution of
peripheral blood flow [30,31].

6. Conclusions

In this study, we evaluated the possibility of using the PPG signal for the screening and
classification of patients with COVID-19. Specifically, we developed a custom convolutional
neural network model that discriminates between Covid patients and control subjects by
analyzing only the PPG signal. The proposed method achieved interesting results in terms
of accuracy (78%), sensitivity (75%) and specificity (81%) on the test set data. Overall this
study confirms that PPG signal may be used for the screening of patients with COVID-19
and the assessment of microcirculatory alterations. Moreover, these results are important
because acquiring the photoplethysmographic trace is simple, noninvasive and inexpensive.
In this regard, this method could be used to develop a user-friendly system that could
represent an initial assessment tool for the clinician, applicable even in clinical settings
with limited resources. Further studies with a larger sample size of patients and with data
from other databases, as well as an evaluation of the interpretability of the model, will be
needed to assess the effectiveness of the proposed method.
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