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Preface to ”Gender and STEM: Understanding

Segregation in Science, Technology, Engineering and

Mathematics”

This volume features thirteen original chapters on the causes and consequences of gender 
segregation in scientific, technical, engineering, and mathematics (“STEM”) occupations and fields 
of study.

Although women have made great strides in equalizing access to labor markets and higher 
education, many STEM fields—particularly in the physical sciences and engineering—remain 
strongholds of gender segregation in the United States and other reputably gender-progressive 
societies. Policymakers, business leaders and activists have launched countless initiatives to diversify 
access to lucrative, high status occupations and ameliorate labor shortages that diminish innovation 
and competitiveness.

Contributors to this volume apply diverse theoretical lenses and methodological approaches 
to understand the individual, interactional, organizational, and cultural dynamics that drive this 
segregation in the United States. Results show that the gender composition of scientific and technical 
fields varies a great deal over time and across organizational contexts and socio-demographic 
groups defined by race, ethnicity, class, and sexuality. But despite this variability, STEM work and 
STEM workers in the United States are widely presumed to be naturally and inevitably masculine. 
Research presented here reveals how these stereotypes combine with cultural beliefs about natural 
and fundamental differences between men and women to produce gendered aspirations and reinforce 
inequalities in the US scientific and technical workforce.

The book is divided into five sections. In the introductory section, we review diverse theoretical 
accounts of occupational gender segregation and consider how they accord with the available 
evidence on gender inequality in STEM fields that is published here and elsewhere. We argue that 
support is strongest for cultural accounts that allow for a dynamic interplay between individual-level 
traits and the broader sociocultural environments in which they develop. The four subsequent 
sections consider the gender typing of scientific and technical fields in different life phases and 
in different institutional domains. Section two includes four contributions on the development of 
STEM aspirations and expectations. This is followed by section three which includes two articles 
on how STEM educational trajectories are affected by gender and race/ethnicity within American 
universities. Contributors to section four consider the transitions from education to STEM labor 
markets, and the fifth section explores inequalities by gender and sexuality within academic and 
nonacademic STEM workplaces.

Articles in this book were originally published as a special issue of Social Sciences that we 
guest-edited. We thank the Social Science editors for their administrative support and dozens of 
anonymous reviewers who offered crucial insights and suggestions on multiple drafts of the articles 
in this volume. We also thank Russell Thébaud for his excellent design work on our cover. We are 
most grateful to the contributing authors for their thought-provoking research and their ongoing 
efforts to illuminate the sociocultural dynamics of gender inequality in STEM and beyond.

Maria Charles, Sarah Thébaud

Special Issue Editors
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Abstract: Scientific, technical, engineering, and mathematical (STEM) occupations are strongholds
of gender segregation in the contemporary United States. While many Americans regard this
segregation as natural and inevitable, closer examination reveals a great deal of variability in the
gendering of STEM fields across time, space, and demographic groups. This article assesses how
different theoretical accounts accord with the available evidence on the gender composition of
scientific and technical fields. We find most support for accounts that allow for a dynamic interplay
between individual-level traits and the broader sociocultural environments in which they develop.
The existing evidence suggests, in particular, that Western cultural stereotypes about the nature
of STEM work and STEM workers and about the intrinsic qualities of men and women can be
powerful drivers of individual aptitudes, aspirations, and affinities. We offer an illustrative catalog of
stereotypes that support women’s STEM-avoidance and men’s STEM-affinity, and we conclude with
some thoughts on policy implications.

Keywords: gender; STEM; segregation; stereotypes; culture; work; occupations; science; inequality

For more than three decades, American educators, policy makers, activists, and business leaders
have engaged in research and policy initiatives to increase the presence of women and other
underrepresented groups in scientific, technical, engineering, and mathematical (STEM) occupations
and fields of study. These efforts have been motivated by interests in broadening opportunities in
lucrative, high-status occupations and in ameliorating acute STEM labor shortages that are believed to
threaten national prosperity, private profits and the public welfare.

Despite wide-ranging research and policy efforts, STEM occupations remain strongholds of
gender segregation in the contemporary United States. Women made up nearly half of the US labor
market in 2015, but only 28% of all scientific and technical workers. Within STEM, gender segregation
is also very strong, with women comprising 48% of life scientists and 60% of social scientists, but only
28% of physical scientists and 15% of engineers (NSF 2018, Appendices 3–12).1 While some fields
have integrated over time, others have become more segregated. Women’s share of US bachelor’s
degrees in computer science, for instance, declined from 28% to 18% between 2000 and 2015 (NSF 2018,
Appendices 2–21).

While many Americans understand men’s dominance of scientific and technical work as
natural and universal, the gender typing of STEM fields varies a great deal across space, time, and
socio-demographic groups. Recent comparative studies have shown that scientific degree recipients
are disproportionately female in Iran, Saudi Arabia, Romania, and Georgia, for example, and that the
gender gap in children’s STEM aspirations is larger in more affluent societies (Charles 2011a, 2017;

1 Even within engineering women and men tend to do different work: about 10% of mechanical and electrical engineers are
women, compared to 20% of civil engineers (ibid.).
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Stoet and Geary 2018; see also Women in Engineering in Predominately Muslim Countries n.d.). Within the
United States, the gender composition of STEM fields has varied over time as well—including in
computer programming and quantitative social science, which have transitioned from female- to
male-labeled since their founding (Luker 2008; Abbate 2012; Ensmenger 2015). STEM gender gaps
also vary in size across groups defined by race, class, and immigration status (Xie and Shauman 2003;
Ma 2009; Nores 2010). In 2015, for instance, 22% of Black engineers, but only about 14% of White,
Asian, Hispanic and Latino engineers were women in the US (Wong and Charles 2018).

This strong contextual variability suggests an important role of sociocultural factors in the gender
segregation of scientific and technical work. Contributors to this volume explore these factors through
in-depth analyses of the STEM-relevant experiences and outcomes of US-based workers and students.

The current article assesses how different theoretical accounts of segregation accord with available
evidence on the gender composition of STEM fields. We find most support for accounts that allow for
a dynamic interplay between individual-level traits and the broader sociocultural environments in
which they develop. The evidence suggests, in particular, that Western cultural stereotypes about the
nature of STEM work and STEM workers, and about the intrinsic qualities and relative social status of
men and women, can be powerful drivers of gendered aspirations and affinities. Our discussion of the
existing theoretical and empirical literature is followed by an illustrative catalog of stereotypes that
have been found to support women’s STEM-avoidance and men’s STEM-affinity. We conclude with
some thoughts on policy implications.

1. Why are STEM Fields so Segregated?

Sociologists commonly distinguish between micro- and macro-level explanations for gender
inequality. The former consider characteristics of persons (e.g., individual workers and employers)
and the latter focus on characteristics of larger units (e.g., organizations, national societies). Below,
we consider how each framework accords with the available evidence on gender segregation of STEM
fields, and how micro- and macro-level processes may interact to produce highly resilient forms of
gender inequality.2

1.1. Micro-Level Explanations

The explanations of gender segregation that are most popularly resonant invoke the personal
traits of workers and employers. These are often dubbed “supply-side” and “demand-side” accounts,
respectively, in reference to the sellers and buyers of labor depicted in classical microeconomic theory.

Supply-side explanations focus on differences between men and women in aptitudes, preferences,
or workplace productivity (Becker 1985; Mincer and Polachek 1974). The segregation of STEM fields
might, for example, be attributed to women’s stronger orientation toward interpersonal relations and
care, or to men’s greater investment in the requisite human capital or greater capacity for analytical
thinking. Biologically-based supply-side accounts emphasize sex hormones and brain structures as
drivers of gendered behaviors and divisions of labor (Baron-Cohen 2003; Ceci and Williams 2011).
Socialization accounts emphasize the sorting of people into binary sex categories at birth and the
rewards (sanctions) that accrue for gender-conforming (-nonconforming) behaviors. Because gendered
traits are eventually internalized, adult women are expected to prefer roles that draw upon feminine
traits, and adult men are expected to prefer roles that draw upon masculine traits (Parsons and Bales 1955;
Marini and Brinton 1984).

Explanations emphasizing gendered workers resonate widely and align well with the
ubiquitous “Mars and Venus” mythology that depicts men and women as innately “opposite” sexes
(Gray 2012). High-profile supply-side accounts of gender inequality in STEM include a 2005 speech by
Harvard president Lawrence Summers, and a 2017 memo by former Google engineer James Damore,

2 For a more general review of the literature on occupational gender segregation, see Wong and Charles (2018).
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both attributing women’s underrepresentation to fundamental gender differences in abilities and
preferences. These accounts generate fierce resistance among advocates for equality because they
seem to blame women for their lesser status in these fields and suggest that the current gendering of
occupations is inevitable.

Most social scientists view supply-side explanations as inadequate—among other things, because
the gender typing of occupational roles varies strongly across time and space, and over the individual
life course (Jacobs 1989; Tolley 2003; Penner 2008; Grier 2005; Charles 2011a, 2017) and because
measurable differences between men and women are too small to account for the extreme patterns of
segregation observed in many occupations and workplaces. Even when men and women differ on
average on some aptitude or personality trait, between-gender differences are typically much smaller
than within-gender differences, and the size of observed gender gaps frequently vary by context or
disappear when men and women have the same status (Epstein 1988; Ridgeway and Smith-Lovin 1999;
Eagly 1995; Hyde 2005; Stoet and Geary 2018). An exhaustive analysis of the science of sex differences
accordingly concludes with the following observation:

Personality traits and predispositions are not identical in individuals, but they are also not
well captured by the binary system of gender . . . We aren’t blank slates, but we also aren’t
pink and blue notepads (Jordan-Young 2010, p. 290).

Even gendered divisions of family labor, a central focus of neoclassical micro-economists
(Mincer and Polachek 1974), appear to have little power to explain differences in career trajectories
between women STEM and non-STEM professionals (Glass et al. 2013). In this volume, for instance,
Sassler et al. (2017) find that differential STEM persistence of men and women degree holders
in computer science and engineering are unrelated to family factors, and Shauman (2017) shows
that gender disparities in early career outcomes of STEM doctorates cannot be attributed to actual
parenthood/marriage patterns, as is commonly presumed. Overall, it appears that differences between
men and women in the typically invoked individual-level characteristics have limited explanatory
power for understanding gender-differentiated STEM career paths.

Among the standard “supply side” variables, occupational aspirations and expectations typically
show the most robust effects on career trajectories: aspirations are strong predictors of occupational
outcomes, and gender is a strong predictor of occupational and educational aspirations, holding
constant a host of other factors, including employment continuity and expectations for marriage and
children (Okamoto and England 1999; Xie and Shauman 2003). The causes of gendered occupational
aspirations are less well documented. Further on, we identify one important causal factor: the cognitive
biases that can result from stereotypes about hard-wired gender difference (i.e., “gender-essentialist”
belief systems).

Demand-side explanations switch the focus from attributes of men and women workers, to actions
and attributes of employers and clients (and, at the macro level, characteristics of firms and policy
regimes). The simplest demand-side explanation for labor market inequality is that employers with
“tastes for discrimination” are willing to pay a wage premium to hire members of preferred groups
(Becker 1957).3 Although economic theory holds that discrimination puts employers at a competitive
disadvantage, some economists have attributed its persistence to employers’ imperfect information
about the relative productivity of potential workers. According to “statistical discrimination” theory,
employers may seek to maximize profits by discriminating against groups whose members they
believe are less productive on average (Phelps 1980). For example, if an employer believes that the
average woman has a weaker capacity for analytical reasoning than the average man (and if analytical

3 Employer discrimination also figures prominently in queuing theory, which holds that modern labor markets are built
around two queues: a labor queue in which employers rank the desirability of employees, and a job queue in which workers
rank the attractiveness of jobs (Reskin and Roos 1990). Because women are systematically ranked below men in the labor
queue, they are overrepresented in the least attractive jobs.
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reasoning were difficult to measure directly), it might seem rational to discriminate against all women
in hiring for jobs that place a premium on analytical reasoning.

An important point here is that employers’ personal beliefs about average gender differences
need not be true to produce extreme gender segregation. Because many employers are exposed to the
same taken-for granted cultural stereotypes about men’s and women’s average capacities, statistical
discrimination can be a powerful mechanism for translating cultural beliefs about gender difference
into gendered individual preferences and outcomes (Bielby and Baron 1986). We discuss this sort of
macro-micro interplay further on.

Gender discrimination is difficult to measure—in part because it is illegal in the United States and
few people will admit to it. Some of the most compelling evidence of discrimination in STEM hiring has
been gathered through experiments and audit studies. One double-blind audit study demonstrated,
for example, that STEM faculty members were less likely to hire female than male candidates for a
lab manager position, because women were perceived to be less competent (Moss-Racusin et al. 2012;
see also Goldin and Rouse 2000). Other research has shown that faculty are more likely to respond to
email requests for graduate mentoring from persons with male, white-sounding names (Milkman et al.
2015) and that scientific papers are judged to be of higher quality when attributed to a male author
(Knobloch-Westerwick et al. 2013). In this volume, Blair-Loy et al. (2017) provide new evidence of
unequal treatment in the STEM hiring process in the form of videotaped job talks that show more
interruptions of women than men candidates for faculty engineering positions.

Importantly, supply- and demand-side processes can reinforce one another by generating
self-fulfilling prophesies. For example, knowledge (or even rumors) of discrimination in male-dominated
science and engineering fields may influence occupational aspirations, leading some girls and women
to forego STEM training and thereby reducing their future competitiveness in these fields. STEM
avoidance by a few girls can have multiplier effects because adolescents respond strongly to standards
set by same-gendered peers (Legewie and DiPrete 2014). Discriminatory treatment is also reinforced
by behavioral responses to unbalanced gender ratios. In her classic ethnography, Kanter (1977) showed
how the intense visibility and performance pressures experienced by numerical minorities (“tokens”)
in work organizations give rise to stereotype-confirming behavior and interactions that reproduce
existing inequalities (1977). For example, token women may react to discriminatory treatment and
gender stereotyping by enacting some organizationally sanctioned version of femininity to which
they can reasonably conform. The result is often constrained opportunities and feedback loops of
disadvantage and personal dissatisfaction (Turco 2010; Ridgeway 2011; Banchefsky and Park 2018;
Garr-Schulz and Gardner 2018).

The interactional processes that disadvantage women in male-dominated STEM workplaces are
often compounded by other forms of minority status, including nonwhite or immigrant identities,
and non-hegemonic forms of gender or sexuality (Fenstermaker and West 2002; Williams et al. 2014;
Alfrey and Twine 2017; Cech and Pham 2017; Ma and Liu 2017; Sassler et al. 2017). In US academic
physics, for example, the cultural image of the white male scientist intensifies pressure on women of
color, who frequently face skepticism about their competence and belonging (Ong 2005).

1.2. Macro-Level Explanations

Gender segregation of STEM is generated within social environments that vary widely. In the
following, we consider how individual aptitudes and preferences are conditioned by broader structural
and cultural forces.

A first set of macro-level accounts focus on societies or countries as the unit of analysis.
One influential structural theory suggests a generically egalitarian effect of socioeconomic
modernization—either because discrimination is too costly to sustain in competitive market economies
(Treiman 1970; Jackson 1998; see also Cole and Cole 1973 on meritocracy in science), or because
countries absorb liberal universalistic cultural values from the affluent West as they modernize and
develop tighter links to global institutions and world culture (Ramirez et al. 1997; Berkovitch 1999;

4
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Meyer 2010). Consistent with these evolutionary accounts, gender equality has increased around
the world on many important dimensions—in particular with respect to formal legal rights and
participation in labor markets and educational institutions. In other respects, however, inequality has
proven to be highly resilient in the industrial West. Today some of the most gender-segregated STEM
workforces are found in highly affluent, reputably gender-progressive societies (Charles 2011b, 2017;
Stoet and Geary 2018).

The “postindustrial” restructuring of economies has had similarly uneven effects on gender
stratification, supporting rising rates of female employment while also contributing to the consolidation
of pink-collar “occupational ghettos” (Charles and Grusky).4 These shifting labor market dynamics
have been reinforced by the postwar expansion of higher education—in particular, the proliferation
of two-year and vocational institutions and the expansion of programs such as human development,
home economics, and teacher education, which were explicitly designed to appeal to what were
understood to be women’s natural interests (Bradley and Charles 2004). In short, women have often
been incorporated as women into expanding labor markets and educational institutions. And since the
middle of the twentieth century, “women’s work” has not included most STEM occupations.

Gendered employment patterns are also heavily shaped by national policies and traditions.
Social arrangements—for example, relating to hours, working conditions, family leaves, childcare,
worker protection, and taxation—regulate individual behavior and reproduce normative models
of work and family (Buchmann and Charles 1995; Gornick and Meyers 2003; Thébaud 2015;
Ecklund and Lincoln 2016). Social democratic policy regimes, which offer greater support to working
parents, tend to promote more egalitarian family structures and higher rates of women’s full-time
employment (Charles and Cech 2010; Pedulla and Thébaud 2015; Hegewisch and Gornick 2011),
but they are at best weakly related to gender segregation in STEM—as evidenced in the highly
segregated scientific and technical labor forces found in policy-progressive Scandinavian countries
(Charles and Bradley 2006; Charles 2011a).

A second set of macro-level accounts focus on characteristics of workplaces and work organizations.
For instance, much has been written about the role of organizational bureaucratization in reducing
the operational salience of masculine, white, and heteronormative biases. Some studies show that
technology firms that emphasize formal rules and procedures—as opposed to informal peer-group
control—are characterized by less discrimination and more opportunities for recruitment and
advancement of women scientists (McIlwee and Robinson 1992; Baron et al. 2007). Other analyses
suggest that formal bureaucracy obscures discrimination in “gendered organizations” by advancing
structures that presume male workers but discourses that leave the gender of the ideal worker
unspecified (Acker 1990).5 In one Swedish information and communication technology firm,
for example, requirements for travel and long hours away from home were found to restrict women’s
ability to acquire advanced technological expertise and resulted in their concentration in administrative
roles (Holth et al. 2017). But while workplace expectations for high temporal and spatial availability
tend to elicit gendered responses (Blair-Loy 2003; Zippel 2017), they appear to affect advancement and
retention in similar ways across different sorts of professional occupations (Glass et al. 2013). They do
little, therefore, to explain the extreme gender segregation of STEM fields in particular.

Given the limited explanatory power of other accounts, it is not surprising that a growing
body of research centers on the uniquely gendered cultural elements of STEM disciplines and work
environments in Western societies and organizations. Gender is a dominant cultural frame that

4 Many expanding industries (e.g., in childcare, health, elementary teaching) produce services that are symbolically
or functionally linked to women’s domestic work, and high labor demand has led some employers to reorganize
these jobs to appeal to married women—for example, through part-time scheduling (Oppenheimer 1973; Goldin 1990;
Charles and Grusky 2004).

5 Other organizational characteristics that have been linked to occupational gender segregation include firm size, personnel
policies and practices, skill requirements, opportunities for team work, unionization rates, women’s presence in management,
and workplace traditions (Bielby and Baron 1986; Baron et al. 1991; Reskin and McBrier 2000; Smith-Doerr 2004).
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organizes everyday social relations, shapes individual identities, and inscribes gender inequality
in social and economic institutions (Ridgeway 2011). In contemporary Western societies, persons
are widely presumed to occupy one of two distinct gender categories, and many work tasks are
presumed to be intrinsically masculine or feminine (Bem 1993; Faulkner 2000; Nosek et al. 2002;
Des Jardins 2010). Many people believe, therefore, that occupations like engineering and preschool
teaching are highly segregated because they require aptitudes and bodies that map neatly onto the
“Mars and Venus” gender dichotomy. As such, occupations themselves become implicitly categorized
by gender, just as people do. In the case of STEM, this categorization is often reinforced by the
distinctively masculine cultural beliefs, norms, and practices that pervade STEM educational and
work environments.

Of course, an occupation’s gender composition depends upon diverse factors, including
the economic and social conditions operative at the time of its expansion (e.g., labor shortages,
technological developments, barriers to entry) and the functional and symbolic proximity of its task
profile to work historically done by men or women. But, once segregated, occupational gender labels
become imprinted in the popular imagination and are absorbed at an early age. “Draw-A-Scientist”
studies show, for example, that young American children have taken for granted the masculinity of
STEM workers for at least five decades (Miller et al. 2018). These gender labels are naturalized as
people identify aspects of the work process (e.g., physical, analytical, or emotional demands) that
support cultural stories about the occupation’s intrinsic masculinity, often remembering evidence
that is consistent with their preexisting beliefs and discounting evidence that undermines them
(Bourdieu 1975; Milkman 1987; Fiske 1998; Tolley 2003; Charles and Grusky 2004). Greater exposure
to women scientists and proximity to same-gender role-models appear to weaken these stereotype
effects, however (Miller et al. 2018; Jacobs et al. 2017; Misra et al. 2017).

Evidence is growing that cultural beliefs associated with STEM occupations can bias cognition
and affect individual decision-making, thereby reproducing occupational segregation. We believe that
this interplay between macro and micro-level processes offers a particularly fruitful explanation for
the resilience of gender segregation in STEM in advanced industrial societies.

1.3. Micro-Macro Interactions: Cultural Stereotypes into Aspirations

The cultural gender stereotypes that we associate with people and jobs reproduce occupational
segregation by affecting both labor demand and labor supply. On the demand side, the most obvious
intermediary mechanisms are discrimination against workers and applicants whose gender does
not “fit,” or align with, the gender of the job, gendered recruitment practices, and biased assessments
of individuals’ relative qualifications (Becker 1957; Phelps 1980; Bielby and Baron 1986; Foschi 1996;
Heilman 2001). On the supply side, stereotyping reinforces segregation by leading people to
make gender-conforming choices that affirm their masculinity or femininity, and avoid social
sanctions and discriminatory work environments (West and Zimmerman 1987; Ridgeway 2011;
Cech 2013; Blair-Loy et al. 2017; Weisgram and Diekman 2017).

Research also shows that gender stereotypes affect supply-side processes by biasing people’s
understandings of their own aptitudes and affinities. That is, people may choose gender-conforming
occupations because they believe, perhaps erroneously, that they will be more skilled at this work or
enjoy it more (Correll 2004; Charles 2017). These biased self-understandings are powerful because they
can shape occupational aspirations, and behaviors even in the absence of direct structural constraints,
discrimination, or individual-level socialization.

For instance, recent research documents how cultural gender beliefs affect people’s confidence in
their abilities to carry out the technical tasks and assume the identities associated with gender-atypical
occupational roles (Thébaud 2010; Cech et al. 2011; Stets et al. 2017; Hill et al. 2017; Sanabria and
Penner 2017; Wynn and Correll 2017). An important experimental study by Correll showed that
women’s exposure to (false) information about men’s generally superior performance at a specific task
led them to rate their own task performance lower and to express less interest than men in careers that

6



Soc. Sci. 2018, 7, 111

purportedly draw upon related skills (2004). No gender gaps in self-assessments or aspirations were
found when participants were exposed to the belief that men and women were equally proficient at
the task.

Besides biasing self-assessments of ability, cultural gender stereotypes can also bias individuals’
beliefs about their own affinities, so that they will more often expect to enjoy work that involves
gender-conforming tasks. Cech (2013) finds that college students are more likely to later
choose female-dominated occupations if they describe themselves in culturally feminine terms,
such as emotional, unsystematic, and people-oriented. Comparative research suggests that this
gender-typing of career aspirations is especially pronounced in affluent, “postmaterialist” societies
(Charles and Bradley 2009; Charles 2017). In these contexts, concerns about existential security are less
salient in career choices and cultural narratives emphasize “following your passions” and “doing what
you love” (Inglehart and Welzel 2005; Tokumitsu 2015). Since many persons, especially adolescents,
do not know in advance what they will love doing, postmaterialist career aspirations may be built
more often upon stereotypes about what people like them (often same-gendered people) love. Girls,
for example, may expect to enjoy work that they think will be more communal and interactive, and
following these passions will probably not lead them toward the solitary science career depicted in
Western popular culture. The implication is that widespread cultural beliefs about how men and
women are different and what they enjoy doing contribute to career choices that reproduce the gender
order but are experienced as the expression of personal likes and dislikes.

This emotional buy-in contributes to the reproduction and legitimization of gender segregation
in advanced industrial societies and helps account for the surprising cross-national differences
in the gender composition of STEM occupations. Whereas ideologies of male primacy—and
vertical inequalities—tend to weaken in affluent Western democracies, beliefs in categorical gender
difference are easily reconciled with the liberal individualistic ideals that permeate these cultures
(Charles and Grusky 2004; Cotter et al. 2011; Levanon and Grusky 2016; Knight and Brinton 2017;
Chatillon et al. 2018). Under these “postmaterialist” gender regimes, horizontal forms of gender
segregation, such as professional women’s underrepresentation in STEM fields, retain legitimacy
because they are easily understood as the outcome of free choices by equal but innately different men
and women.

Culture can also affect performance in a stereotype-consistent manner. Experiments on “stereotype
threat” show that people do worse on tests when they fear confirming a negative stereotype about their
gender (or racial) group. In one study, a significant gender gap in test performance was observed when
subjects were told that men generally do better, but not when they were told that men and women do
equally well on the test (Spencer et al. 1999). Beliefs in essential gender differences in aptitudes have
especially strong effects in fields such as STEM, where practitioners often attribute success to innate
talent (Leslie et al. 2015). This is another way in which stereotypes can be self-fulfilling.

The preceding analysis has identified diverse ways in which cultural stereotypes contribute to
the gender-typing of STEM—among other things, by influencing how men and women perceive
themselves, how they are treated by others, and how societies and work environments are structured.
The cognitive schemas and life experiences that result from taken-for-granted cultural beliefs about
men, women, and STEM produce aspirations and outcomes that are far more gender-differentiated
than any underlying distribution of individual-level traits. They therefore have far more power to
explain the extreme gender segregation of STEM fields observed in the contemporary United States.

In the following section, we unpack the underlying content of cultural beliefs about the gendered
nature of persons and jobs that are revealed in this volume and elsewhere. By assembling these
stereotypes in one place, we hope to demonstrate their prevalence, range, and potential to shape
individual cognition, aspirations, and behaviors. We also aim to articulate why the culture of many
STEM disciplines and occupations remain bastions of masculinity in the contemporary United States.
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2. Stereotypes about Men, Women, and STEM Workers, Work, and Workplaces

Before discussing stereotypes that are specifically relevant to the segregation of STEM fields,
we provide some general background on the descriptive and prescriptive content of gender stereotypes.

2.1. Descriptive and Prescriptive Gender Stereotypes

For decades, social psychologists have documented the content of cultural stereotypes about
men and women (see Rudman and Glick 2008 for a summary). In the US context, men are believed
to be more agentic and competent than women, whereas women are believed to be more communal
than men. That is, men are not only privileged on competence-related traits like intelligence, skill,
and capability, but they are also believed to be more able to get things done by being more assertive,
goal-oriented, ambitious, independent, competitive, and self-interested. By contrast, women are
presumed to be primarily oriented toward others—by being more warm, kind, nurturing, friendly,
and polite.

One might imagine that these descriptive stereotypes would be outdated, given women’s progress
toward equality in the workforce and in education over the last half-century. And indeed, a recent
study suggests that that the belief that women are in general less intelligent or skilled than men
has waned in more recent cohorts (Eagly 2018). At the same time, though, research shows that
especially high levels of intelligence or ability—characteristics like “brilliance,” or “genius”—remain
masculine-coded (Furnham et al. 2006; Stephens-Davidowitz 2014), and stereotypes still privilege
men’s ability in male-typed tasks like mathematics (Ridgeway 2011). Furthermore, there has not been
any discernible change in the belief that women are less agentic than men, and stereotypes about
women’s greater communality are even more strongly held today than they were in earlier cohorts
(Eagly 2018).

Importantly, these commonly held beliefs do not merely describe men and women (i.e., they
presumably are this way), but they also set prescriptive expectations for behavior (i.e., men and women
ought to be this way) (Prentice and Carranza 2002). For instance, being assertive and ambitious is
intensely prescribed for men (i.e., cultural beliefs dictate that men really ought to possess this trait
in order to be liked and respected by others), whereas being warm and kind is intensely prescribed
for women (i.e., cultural beliefs dictate that women really ought to possess this trait in order to
be liked and respected by others). This prescriptive dimension of gender stereotypes is critical
for understanding persistent inequality, since it sets the foundation for several micro-interactional
processes that ultimately motivate both men and women to behave in stereotype-consistent ways
(Heilman 2001; Rudman and Glick 2008). It is noteworthy, however, that normative pressures to
conform tend to be particularly strong for men because society places greater value on the traits and
abilities associated with men and masculinity than on those associated with women and femininity
(see e.g., Ridgeway 2011). For instance, Rudman et al. (2012) demonstrate that the traits that men
are supposed to possess are high in status (e.g., competitive), whereas the traits that women are
supposed to possess are more neutral in status (e.g., friendly). In contrast, the traits that men are not
supposed to possess are low in status (e.g., emotional) and the traits that women are not supposed to
possess are high in status (e.g., aggressive). As such, it is not surprising that normative expectations
and perceptions—especially when enforced by same-gender peers—are particularly relevant for
understanding men’s behavior, given that gender conformity translates into a status advantage for
men but not for women (Kimmel 2008; Pascoe 2007).

2.2. Stereotype Content and Inequality in STEM

Both the descriptive and prescriptive content of stereotypes about men and women have direct
implications for inequality in STEM. To begin, contemporary stereotypes about STEM workers, work,
and workplaces simultaneously privilege masculine-coded traits like high levels of intelligence and
agency while devaluing the communal traits that women supposedly possess. Many STEM fields,
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especially the more male-dominated ones like physics and computer science, share a culture in which
high levels of raw talent and brilliance are viewed as essential to success. Recent studies suggest
that differences across fields in the strength of this “brilliance narrative”—both among academics
and within the broader culture—map directly onto the distribution of men and women across fields
(Meyer et al. 2015; Leslie et al. 2015).

Beyond prizing high levels of raw intelligence, many science and engineering disciplines
idealize workers who embody such stereotypically masculine traits as assertiveness, competitiveness,
dominance, and strong identification with work (Bailyn 2003; Cooper 2000; Williams et al. 2006).
Furthermore, a “geek” stereotype is today associated with many STEM fields and workers
(Cheryan et al. 2009; Varma 2007; Ensmenger 2015). The “geek” cultural image is of a person who
is exclusively interested in and focused on scientific or technological endeavors (e.g., someone who
stays up all night coding). When the “geek” image is not valued, other forms of masculinity and
masculine identity may be present. For instance, some technology workplaces have been found to
valorize “brogrammers”—who are supposedly more sociable and outgoing than “geeks,” but only
in the way that a stereotypically party-focused fraternity brother would be (Alfrey and Twine 2017;
Wynn and Correll 2014). Both the “geek” and frat-like “brogrammer” cultural images exemplify the
agentic qualities that women supposedly lack, and they devalue the communal traits that women
supposedly possess: such individuals are thought to lack “social skills,” to be disconnected emotionally,
and/or to be less caring toward others.

In our view, the broader implication of these numerous linkages between masculine traits and
abilities and many STEM disciplines, workers, and workplaces is that men are not only perceived
as a better “fit” for these social spaces from a descriptive point of view, but they are also likely to
experience greater social pressure and rewards for pursuing them. That is, by pursuing one of these
fields, a man can align his presumed abilities and interests with a high-status career, while also living
up to prescriptive expectations for how he ought to behave. As such, his occupational choice is likely
to increase his chances of being liked and respected as a man. The calculation is less clear for a woman.
While she may be respected for pursuing a high status career, her choice may not necessarily be
perceived as a good fit for her interests or abilities, and it may not win her greater admiration or respect
as a woman. Instead, she may risk discrimination, dislike, or ostracism for being “too” aggressive,
ambitious, etc. (see e.g., Heilman 2001 on backlash effects). As such, men are more likely to experience
strong incentives to pursue STEM fields and to retain commitment to them, whereas this not always
the case for women, notwithstanding the material advantages of STEM careers.

This argument is supported by recent research on the linkage between masculine traits and
abilities, STEM, and men’s and women’s decision-making. Gendered beliefs about the relationship
between high levels of innate intelligence and qualification for particular pursuits have been shown
to affect career aspirations from an early age. One recent study found that, by age six, girls are less
likely than boys to believe that members of their gender are “really, really smart,” and that they begin
to avoid activities believed to be for children who are “really, really smart” (Bian et al. 2017). In this
volume, Hill et al. (2017) similarly find that middle schoolers who believe that raw intelligence is a
fixed trait from birth are more likely to endorse the idea that boys are better than girls at science and
less likely to believe that they themselves could be a scientist. Sanabria and Penner (2017) also show
that boys are more likely than girls to persist in STEM majors after failing an introductory calculus,
perhaps because stereotypes about gender differences in mathematics ability make boys less likely to
attribute poor test performance to a lack of intrinsic ability.

Presumptions of greater male scientific and technical competence also reinforce gender segregation
through their effects on workplace interactions. Experimental studies show, for example, that women’s
expectations of discrimination and gender bias reduces their anticipated sense of belonging and their
interest in STEM careers (Moss-Racusin et al. 2018). Cech and Pham (2017) deepen our knowledge
about this relative devaluation of feminine traits in STEM workplaces by illustrating the ways that
lesbian, gay, bisexual and transgender (LGBT) workers—whose gender performance often deviates
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from normative expectations—experience disadvantage in STEM workplaces. It is this very disconnect
between the cultural traits linked to women and the cultural traits linked to normative STEM workers
and STEM workplaces that catalyzes inequality.

Men’s stronger interest in and greater likelihood of persistence in STEM fields is also driven by
gender-differentiated self-perceptions of fit and ability (Cheryan et al. 2009; Wynn and Correll 2017)
and the application of double standards for competence (Blair-Loy et al.; Foschi 1996). Both of these
mechanisms arise from the mismatch between expectations for STEM workers and expectations for
women’s behavior. Such stereotyping processes are especially insidious because they matter even
when an individual personally disagrees with them (Ridgeway and Correll 2004). That is, merely
knowing that most other people hold certain beliefs about gender and STEM is enough to bias attitudes
and behaviors. This is one reason why the content of stereotypes often remains relatively stable even
in the face of changing occupational preferences and choices.

Finally, it is not just stereotypes about STEM workers and STEM workplace cultures that create a
gender mismatch. As much of the research in this volume shows, stereotypes about the content of
STEM work itself can deter women. For instance, many young people endorse the stereotype that
science careers are not compatible with having a family. Weisgram and Diekman (2017) show that this
belief, whether true or not, powerfully reduces many young women’s interest in pursuing a science
career. Similarly, Kyte and Riegle-Crumb (2017) find that holding the cultural belief that science is
socially relevant—e.g., that science can help people or solve everyday problems—positively predicts
young women’s, but not young men’s, intentions to major in a STEM field.

Sociocultural processes like these offer a fruitful alternative to the standard individual
human-capital and family-status explanations for gender differences in STEM entry and persistence.
The stereotypes identified here and elsewhere in the volume are important not only because they
encourage social stigma and discriminatory treatment by others, but also because they cause
people to under- or over-estimate their own qualifications and their own potential affinity for
gender-nonconforming work. As a result, men and women (boys and girls) are likely to aspire
to different occupations, pursue different educational and occupational pathways, and experience their
work interactions and environments in gendered ways. In liberal egalitarian societies, many forms of
gender inequality are reproduced and legitimated through the conversion of cultural stereotypes into
gender-conforming preferences—and then into seemingly free choices by different-but-equal men and
women (Charles 2011b).

We turn next to consider the practical implications of this research: What, if anything, might be
done to diversify STEM occupations?

3. Policy Implications

Experimental and audit studies provide strong evidence that women’s underrepresentation
in scientific and technical fields is at least partly attributable to cultural gender stereotypes and
discrimination, which can be converted subsequently into gender-specific aspirations and choices.
Even if the composition of STEM occupations reflects gender-differentiated career aspirations, this
segregation may be problematic for at least three reasons. First, history shows that “separate but
equal” principles generally produce unequal outcomes. This is evident, among other things, in the
lower pay in women’s than men’s occupations (Levanon et al. 2009). Second, gender segregation has
cultural feedback effects, reinforcing stereotypes and limiting perceived educational, family, and career
options of subsequent generations. And third, women (and racial/ethnic minorities) represent an
untapped labor pool globally in fields such as engineering and computer science, where shortages
threaten to undermine national development or competitiveness. These concerns have motivated
myriad initiatives by governments, non-governmental organizations, and industry leaders around
the world to broaden and diversify opportunities in scientific and technical occupations and fields
of study.
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The research presented in this volume suggests that gender integration will not come easy and will
partly depend on increasing girls’ and women’s interest in STEM. This will in turn depend upon the
erosion of two kinds of cultural stereotypes: those that depict women as intrinsically ill-suited for STEM
work, and those that depict STEM work as uncreative, solitary, and masculine. While cultural change
of this sort can only occur gradually, some efforts toward counter-stereotype programing are evident
in the growing popularity of toys like GoldieBlox engineering kits and women Lego scientists, which
provide parents of young girls with alternatives to toy store pink-aisle marketing. Also challenging
male math nerd stereotypes are efforts to rebrand STEM as compatible with conventional femininity.
These include books like Kiss my Math and Hot X: Algebra Exposed by actress Danica McKellar, and even
an updated Barbie doll in 2010. While her 1992 Teen Talk sister recited canned phrases like “Math class
is tough,” and “Let’s go shopping,” Computer Engineer Barbie presents computing as both feminine
and fun—a “geek chic” that essentially replaces one set of stereotypes with another.

A more aggressive strategy for reducing the salience of gender stereotypes would be to create more
opportunities for girls and boys to learn directly about gender-nonconforming fields and about their
own abilities to enjoy and excel in them. Expanded high school graduation requirements, including
in mathematics, computer science, and engineering could help reduce reliance on stereotypes and
increase girls’ confidence in their mathematical and technical ability. Although such policies would
seem to be at odds with American ideals of individual choice and self-expression, research suggests
that they might also weaken penetration of gender stereotypes and reduce peer pressure in course
taking. Comparative studies show that the gender gap in STEM aspirations and outcomes tends to
be smaller in countries and schools where curricular choice is reduced or delayed and where high
school science and mathematics curricula are stronger (Federman 2007; Charles and Bradley 2009;
Cheryan et al. 2009; Legewie and DiPrete 2014; Scheeren et al. 2018). This may be because reluctance to
transgress gender norms declines with age (Gerson 1985; Jacobs 1989), or because exposing students to
a broader array of fields provides them with better information about what they like and what they
are good at.

In India, for example, a strong national mathematics curriculum makes girls more confident in
their ability to learn computer skills, even if they are less likely to have computers at home, than
their American counterparts (Varma and Kapur 2015). In Malaysia and India, where women earn
about 45% of information and communication technology (ICT) degrees, computing is viewed as a
woman-friendly profession that offers a safe and pleasant indoor working environment. This presents
a sharp contrast with the male hacker image in the United States, where women earn only 23 percent
of ICT degrees (Margolis and Fisher 2002; Lagesen 2008; Varma and Kapur 2015; UNESCO 2018).

But mandated early exposure will backfire without careful attention to the culture and organization
of STEM classrooms and workspaces. Encouraging a sense of belonging for underrepresented groups
requires work, study, and family environments that include diverse role models, supportive peer
networks (including summer and afterschool clubs like Women in Engineering), and freedom from
gender stereotypes and discrimination. Even the physical environment can matter. One experiment
by Cheryan et al. (2009) showed that exposure to stereotype-consistent computer science classrooms
(e.g., with Star Trek posters and video games visible) decreased girls’, but not boys’, interest in a
computer science major, and that gender differences in interest were smaller when subjects were
exposed to classrooms that did not conform to current stereotypes (e.g., with nature posters and phone
books visible). College website descriptions may also attract more women by including information
on the social relevance and collaborative nature of engineering (Da Costa and Stromquist 2018).

Some elite universities have recently implemented organizational changes aimed at undermining
stereotypes about computer science work and diversifying the “boy hacker” culture. Changes have
included revamping introductory computer science courses to offer a more inclusive and socially
relevant curriculum, and increasing mentorship and peer support of underrepresented groups.
Increases in women’s share of computer science graduates have been impressive, going from 10% to
40% in five years at Harvey Mudd College, for example (Cheryan et al. 2009).
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Once women have entered a STEM job, organizations and governments will need to develop
policies and practices that keep them there. Policies relating to work hours, flexible scheduling, family
and sick leave, and childcare are important, but research shows that it is not enough to have these
policies. Workplaces must have cultures that support their use—by both women and men. True
or not, many STEM workers report stigma associated with using family accommodation policies
(Cech and Blair-Loy 2014).

A key finding from the historical, experimental, and interview-based research reported in this
volume and elsewhere, is that individual occupational preferences are social products. Aspirations
for STEM work are shaped by the (real or perceived) culture of STEM fields and by deeply rooted
beliefs about the intrinsic natures of men and women. American girls who aim to “study what they
love” might be just as passionate about computer science and engineering as they are about teaching
and nursing if they had more chances to find out whether they love these STEM fields (e.g., through
required courses, after school clubs, or summer programs for underrepresented groups), and their
passion might grow if they could more easily imagine themselves fitting into these professional
cultures. Counter-stereotype programming, and more exposure to women scientists might help them
make that leap of imagination.
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Abstract: Despite efforts to increase participation in science, technology, engineering and math
fields (STEM), the role of students’ perceptions of the social relevance of science in guiding their
expectations to major in STEM remains largely unexplored. Though science education scholars
predict that perceptions of social relevance likely matter equally for boys and girls, gender scholars
suggest that these perceptions should matter more for girls than boys. Using longitudinal data from
a large, urban, low-income, and predominantly minority-serving district, this study examines the
potentially gendered role of perceptions of social relevance in ninth graders’ expectations to major in
STEM. Further, it examines these dynamics with respect to expectations to major in any STEM field
as well as expectations to major in specific STEM fields. Findings largely support the perspective of
gender scholars; perceptions of the social relevance of science positively and significantly predict
female, but not male, students’ intentions to major in STEM (vs. non-STEM fields). Subsequent
analyses that look at intentions to major in specific STEM fields reveal a similar pattern, such that
perceptions of relevance positively predict female students’ intentions to major in the biological
sciences, the physical sciences, and engineering, while male students’ intentions are not similarly
impacted. By contrast, positive perceptions of the relevance of science predict a modest increase in
interest in computer science for both boys and girls.

Keywords: social relevance; science attitudes; perceptions; gender; STEM; expectations; majors; field
of study; middle school; high school

1. Introduction

Labor market analysts have been sounding the alarm regarding the need for more workers trained
in science, technology, engineering and math fields (STEM) for more than a decade, as the U.S. economy
is increasingly reliant on innovation and growth in these fields [1–3]. Researchers in several disciplines
have attempted to understand why, despite the high demand and the accompanying high status and
income associated with careers in many STEM fields, the percent of students choosing to study these
fields in college has remained stagnant, or even decreased in some cases [4]. Additionally, as women
remain greatly underrepresented in many STEM fields, there is a large public as well as academic
discourse regarding the obstacles to recruiting and retaining female students [5,6]. Of course, the roots
of the problem extend far back beyond the labor force and the postsecondary realm, as research
indicates that young people make decisions quite early about whether they intend to pursue STEM
fields in the future [7,8]. Though the notion of a STEM pipeline has been rightly critiqued for being too
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simplistic, it is nevertheless clear that adolescents’ early decisions in this regard are highly predictive
of their subsequent behaviors. So what factors motivate young people to choose to study STEM fields,
and why are female students much less likely to make such choices?

In an effort to understand these dynamics, researchers within the fields of sociology, psychology,
and education have concentrated on the role that several different factors, including academic
performance, attitudes, and self-perceptions of competence play in both shaping students’ decisions
to pursue STEM fields and in creating and sustaining gender inequality [5,8–11]. In general, while
recognizing the presence of gender socialization and stereotypes, much of the research in this area can
be characterized as arguing that female underrepresentation is driven by the fact that females trail
behind their male peers on the academic (e.g., high test scores) or psychological (e.g., self-confidence)
factors that best predict entry into STEM fields [6,12]. Such studies have certainly helped to establish a
strong foundation of knowledge regarding the factors that do (and alternatively do not) contribute to
inequality. Yet, we argue that what is currently lacking are empirical studies that go beyond focusing
on individuals’ skills and perceptions of their own abilities and attitudes, and instead focus explicit
attention on how young people actually see and make sense of science itself, and how this may have
implications for gendered choices. Specifically, while research on gender disparities often assumes
(either implicitly or explicitly) that girls’ and boys’ views of science likely play a role in shaping their
decisions to later enter such fields [4,13–15], they typically do not attempt to actually measure such
views nor investigate their potential impact on the choices that students subsequently make.

To address this shortcoming in the literature, in this study we examine whether and how
perceptions of the social relevance of science contribute to male and female students’ expectations
of majoring in STEM fields. In doing so we build on insights from gender scholars [9,16,17] as well
as those in science education [18–20], as each provides different predictions regarding the role of
gender. Specifically, gender theories would predict that, consistent with dominant cultural beliefs
about women’s presumed innate preferences, perceptions of science as a domain that has broad
applicability for improving human life would be much more important for influencing female students’
decisions to enter STEM fields compared to male students. Yet, research in science education would
instead suggest that perceptions of social relevance would be important for the subsequent decisions
of both male and female students, as views of science as having meaning and utility for life outside
the classroom are thought to be important motivators for all students to want to continue to study
and pursue STEM fields. Thus, we will investigate whether both male and female students’ future
expectations are similarly positively impacted when they view scientific fields as contributing to the
improvement of society, or whether instead, such views are more important in shaping the expectations
of female students.

Moreover, our investigation will move beyond considering students’ expectations to pursue
STEM fields in the aggregate. Importantly, women’s representation varies quite substantially across
fields within STEM, such that a singular focus only on the broad category of STEM can obscure critical
differences. Specifically, in 2013, women—who earned 57% of all bachelor’s degrees—earned 59% of
degrees in the biological sciences and 39% of those in the physical sciences, but only 19% and 18%
of degrees in computer science and engineering, respectively [21]. Our study will examine students’
expectations to major in each of these different STEM fields, and thus reveal whether perceptions of
social relevance may be more important in shaping young people’s future plans to pursue certain
fields than others [22].

To investigate these issues, we draw on longitudinal data collected in a large, urban,
predominantly minority, and low-income school district. As such, the students at the center of our
study are set within an educational context that mirrors those inhabited by ever increasing percentages
of young people [23]. Additionally, while minority and low-income youth are often underrepresented
in STEM fields in college (and beyond), research has documented relatively high STEM interest among
such student populations [24,25]. And by moving our attention past the typical focus on predominantly
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white populations, we gain insight into the expectations of young people who represent the changing
demographics of the country.

2. Theoretical Framework

2.1. Considering the Role of Social Relevance in Shaping Females’ Interest in STEM

Sociologists studying gender inequality generally posit that gender is socially constructed,
such that is created and maintained through interactions at the individual level as well as the
institutionalization of gendered roles and expectations at the societal level [17]. Cultural stereotypes
about gender play a large role in this construction, shaping the expectations and perceptions people
have for themselves and for others according to their gender [17,22]. Scholars studying gender
inequality within STEM fields in particular tend to concentrate on measuring the existence and impact
of stereotypes that are directly STEM-related, such as the view that males are innately better at math
than females [22,26]. For example, research by Correll [9] discusses how gender-STEM stereotypes lead
girls to doubt their confidence in their own ability (despite high levels of performance), subsequently
leading them to be less likely than their male peers to declare STEM majors in college.

In this paper, we argue that while we have learned much from this body of research, we need
to focus more explicit attention towards broad gender schemas and stereotypes that may also have
implications for gendered patterns in STEM fields. Specifically, Charles and Bradley [27] argue that
in contemporary Western societies such as the United States, egalitarian beliefs that all individuals
should have equal opportunities in the public sphere, including access to education, exist alongside
persistent cultural beliefs that men and women are essentially and fundamentally different [16,28].
Such beliefs are manifest in decisions such as the selection of a college major, where choices reflect
societal beliefs about the types of work and activities for which men and women are each presumed
to be differentially and innately suited to perform. For example, women are stereotyped as naturally
more nurturing and concerned with the well-being of others, while men are presumed to be more
individualistic, analytical, and competitive [16].

Importantly, these dominant views about essential differences between the genders also map
onto perceptions of different occupational and educational fields. Some gender scholars argue that to
the extent that science is not perceived to have direct applicability to helping others and benefiting
society as a whole, then a decision to enter such fields would conflict with females’ presumed natural
preferences [8,29]. Yet in fact, there is little empirical research that focuses specifically on individuals’
perceptions of science fields, and whether and how they are linked to gendered decisions about
whether or not to pursue STEM. While some studies have identified gender differences in preferences
for work activities, such as working alone or in teams, and linked this to subsequent gender differences
in the likelihood of choosing a STEM field [5,29,30], the extant literature generally stops short of
considering individuals’ actual perceptions of science as a domain.

Thus in this paper, building on the insights of gender scholars, we seek to empirically investigate
the claim that to the extent that science is viewed as not socially relevant—meaning it is narrow in
its application and does not address societal problems—females will be much less likely than their
male peers to express an intention to pursue related fields. At the same time, this perspective implies
that when students do perceive science as socially relevant, this should hold more sway in increasing
females’ interest in pursuing STEM compared to males.

2.2. The Role of Social Relevance in Increasing STEM Interest for All Students

Of course those studying gender inequality are not the only scholars whose research focuses on
increasing students’ interest in STEM. Researchers in the field of science education have long focused
on understanding the factors that lead to student engagement and learning in science and related fields.
Classical theorists like Piaget as well as Dewey [18], called early attention to the importance of science
classrooms that made explicit connections between the curriculum and the real world, recognizing the
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need for instruction that emphasized the broad application and power of science to transform human
life. In more recent years, educational researchers have again called attention to this issue, arguing
that ‘school science’ too often treats science fields as varied collections of abstract historical discoveries
and intangible phenomenon, asking students to memorize decontextualized facts and concepts that
result in their becoming bored and disinterested [31,32]. Current educational reforms are working to
change this [20] and although limited in scope, there is empirical evidence that students who view
science as socially relevant are more likely to remain engaged with the content and express interest
in continuing to study science [19,31,33–35], and that curriculum that directly emphasizes the broad
applications and benefits of science for human life can indeed be effective in promoting all students’
positive views [36].

Thus educational theories as well as empirical research emphasize the power of perceptions
of the relevance of science in shaping educational outcomes for all students, regardless of gender.
This is not to say that the science education literature is not concerned with gender differences, yet the
emphasis is typically on identifying those instances where girls trail behind boys, such as science
self-confidence, and then focusing on how these could be improved [37]. And studies that explore
gender differences in students’ perceptions of the social relevance of science typically find that girls’
and boys’ views are actually very similar [32,33,38]. As such, research in this area does not typically
consider these perceptions to be a likely contributor to gender differences in science interest or related
future expectations.

2.3. This Study

Stepping back, the insights of two different areas of research offer two essentially competing
hypotheses about the impact of perceptions of the social relevance of science on students’ subsequent
interest in pursuing future educational opportunities in related fields. Within science education,
researchers are very concerned with students’ views of science, yet generally work from the
presumption that perceptions of social relevance will equally benefit all students regardless of gender.
From this perspective, when both girls and boys view science as applying directly to real life and
having the capacity to improve society in a myriad of ways, they will subsequently be more motivated
and likely to want to continue to study it. Yet on the other hand, operating from a different theoretical
lens, gender scholars call attention to dominant cultural beliefs about essential differences between
males and females, which include stereotypes of women as inherently concerned with the well-being
of others and the general health of society (and the planet). Thus consistent with normative gender
scripts, views of science fields as being socially relevant (or not) should be more powerful in shaping
the subsequent decisions of female students compared to male students. In this paper, we will
empirically examine these two alternative predictions. Moreover, while women are well-represented
in the biological sciences, and to a lesser extent, the physical sciences (with high representation
in chemistry, a large field, but not in physics, a comparatively smaller field), they remain vastly
under-represented in computer science and engineering fields at the postsecondary level as well as
in the labor force [5,21]. Indeed some have argued that the reason behind these gendered patterns of
representation is that women perceive computer science and engineering as abstract and disconnected
from social concerns, and thus not directly related to helping others [29]. Thus we will examine
whether students’ perceptions of social relevance are more or less closely linked to expectations to
pursue some STEM majors more than others.

3. Data and Methods

Data for this study come from the Broadening Science in School Study (BSSS) set within a large,
diverse school district in one of the biggest cities in the Southwest. The vast majority of students in the
district qualify for free or reduced price lunch (80%) and the student body is primarily Hispanic (62%)
with smaller percentages of Black (25%) and white (8%) students. In many ways, the characteristics of
this district are quite common for U.S. school children. For example, a recent study from the Southern
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Education Foundation notes that 51% of students nationwide are in poverty [39]. Furthermore, within
urban settings, 64% of students are eligible for free or reduced price lunch programs suggesting that
such disadvantages are the norm rather than the exception [40]. Moreover, school desegregation
has stalled (or perhaps even reversed) in recent years, while the share of the school-age population
comprised by minority students has dramatically increased [41]. Thus a large share of students in the
U.S. currently attend racially and economically segregated schools like those within our focal district.

As part of the BSSS, members of the research team collected survey data from students within this
district for several years as part of a larger study aimed at understanding students’ science experiences
in school. Administrative data were also collected in the form of students’ academic transcripts
(including their grades, test scores, etc.). Finally, students’ demographic data were obtained from the
district including their gender, race/ethnicity, and other characteristics such as their eligibility for free
or reduced price lunch.

The analytic sample for this study is comprised of a cohort of students who were 8th graders in the
Fall of the 2012 academic year, and who then transitioned to high school as 9th graders the following
Fall (2013). We limited the sample to those students who reported at least some likelihood that they
would attend college (retaining all but 3% of students). Additionally, due to the very small percentages
of students who were Asian or identified as ‘other’ race, we chose to restrict our analyses to white,
Black, and Hispanic students.1 Students who did not complete questions about their expected college
major (our dependent variable) were excluded from the sample. Missing data on the independent
variables was quite limited (ranging between 0%–6%) and was singly imputed using STATA’s impute
command. Our final analytic sample includes 935 students attending 13 high schools.

3.1. Expectations to Major in STEM

Our dependent variables are constructed from students’ responses to a survey question they
answered in the Fall of their 9th grade year that asked, “If you attend college, how likely is it that you
would choose to major (or specialize) in each of the following fields?” This question asked students
about four STEM-related fields (biological sciences, physical sciences, computer science and technology,
and engineering). Student responses were reported on a scale ranging from 1 (not at all likely) to 5
(very likely). As a value of 3 represents a neutral response, we consider students who responded with
a 4 or 5 for any of these four fields to be expecting to major in STEM. Our first dependent variable
considers STEM expectations in the aggregate and distinguishes between those who expect to major
in any of these four STEM fields vs. those who do not. In a second set of analyses we consider each
field separately (e.g., distinguishing those who expect to major in the biological sciences from those
that do not, those that expect to major in the physical sciences from those that do not, and so on).2

A correlation table including all of the dependent variables and the independent variables described
below are included in Appendix A (Table A1).

As seen in Figure 1, gender differences in expectations to major in STEM are quite striking.
The leftmost two bars show that 47% percent of girls report an expectation of majoring in any STEM
field compared to 69% of boys. Further, in examining students’ plans to major in specific STEM fields,
the right side of Figure 1 shows that field-specific gender gaps in STEM expectations are observable
at this age. In particular, boys and girls have similar expectations of majoring in both the biological
and physical sciences. Specifically, 16% of boys and 19% of girls in our sample planned to major in the
biological sciences whereas 17% of boys and 18% of girls planned to major in the physical sciences

1 Findings from a sensitivity analysis with these students retained in the sample were consistent with those presented here.
2 Note that the dependent variables measuring students’ field-specific interests are not mutually exclusive, as students

indicated their expectation of majoring in each of the four fields. Among those planning to major in any STEM field, students
were roughly split between those expecting to major in only one field (49%) and those expecting more than one (51%).
Expectations to major in the biological and physical sciences are modestly correlated (R = 0.46), as are computer science and
engineering (R = 0.34).
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(neither difference is statistically significant). Furthermore, consistent with national patterns at the
postsecondary level, there are very large and statistically significant gender differences in expectations
to major in both computer science and engineering among the adolescents in our sample. Specifically,
35% of boys but only 21% of girls expected to major in computer science, while 53% of boys and only
22% of girls expected to major in engineering.
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Figure 1. Expectations to major in STEM fields by gender among 9th grade students. *** p < 0.001,
** p < 0.01, * p < 0.05, ~ p < 0.10, two tailed test.

3.2. Perceptions of the Social Relevance of Science

The independent variable at the center of this study is students’ perceptions of the social relevance
of science. We utilize a scale comprised of students’ averaged responses in the Spring of their 8th
grade year to the following items: “science helps people,” “a lot of people never use science in their
lives,” “science is useful for solving everyday problems,” “everyone uses science sometimes,” “I only
use science at school,” and “there are all kinds of jobs or careers that use science.” Items were re-coded
so that a high score indicated a positive response. Because students’ views of science were largely
positive, we dichotomized each item to account for the skewed distribution of students’ attitudes
and to distinguish between those who strongly agreed vs. not (agree, disagree, strongly disagree).
The Cronbach’s alpha for the scale is 0.71, and an exploratory factor analysis confirms that this scale is
unidimensional with similar loadings across the component items. As reported in Table 1, boys and
girls had similar perceptions of the social relevance of science (pooled mean = 0.36). This is consistent
with other studies that have examined young people’s views of the relevance of science [32–35,38]
and underscores the fact that the focus of our study is not about whether girls have a deficit in a
STEM-specific resource (as evidenced by a lower mean, for example), but rather whether or not girls’
expectations to pursue STEM are more strongly shaped by their perceptions of the social relevance
of science.

3.3. Control Variables

3.3.1. Social Background

The multivariate models in this analysis use a set of controls for students’ social background
characteristics. These include students’ race/ethnicity (available from administrative data), immigrant
status, and a proxy for social class. Immigrant status measures whether students reported in the survey
that they were born in a country other than the U.S. (coded 1) or born in the U.S. (coded 0). For social
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class background, we utilize a proxy that measures the number of books in one’s home (commonly
used in international and national studies of this age group including TIMSS). It is a dichotomous
variable distinguishing between those who report having enough books in the home to fill one or more
bookcases (coded 1) and those who report that their homes have fewer than enough books for one
bookcase (coded 0).

Table 1 shows the descriptive statistics for these background variables, both overall and by gender.
Consistent with the demographics of the school district, 73% percent of the sample is Hispanic, 10% is
white, 17% is Black, and 15% were born outside of the United States. On average, students report
having fewer books at home than it would take to fill a bookcase.

Table 1. Descriptive statistics for pooled sample and reported separately by gender.

Overall Boys Girls Sig Dif

Mean SD Mean SD Mean SD

Dependent Variables

Expects to major in STEM 0.56 0.69 0.47 ***
Expected STEM major

Biological sciences 0.18 0.16 0.19
Physical sciences 0.18 0.17 0.18
Computer science 0.27 0.35 0.21 ***
Engineering 0.36 0.53 0.22 ***

Focal Independent Variable

Perception of the social relevance of science 0.36 0.31 0.35 0.32 0.37 0.31

Control Variables

Social background
Race/ethnicity

White 0.10 0.08 0.10
Black 0.17 0.18 0.17
Hispanic 0.73 0.74 0.72

Born outside of the U.S. 0.15 0.17 0.14
Books in the home 0.40 0.37 0.42

Science achievement 0.03 0.77 0.04 0.77 0.02 0.76
Science affect 0.32 0.39 0.36 0.41 0.29 0.38 *
N 935 407 528

*** p < 0.001, ** p < 0.01, * p < 0.05, ~ p < 0.10, two tailed test.

3.3.2. Science Achievement

Because prior research finds that students’ academic achievement in STEM fields positively
predicts their subsequent intentions to pursue such fields in college [6], our models include a summary
measure that captures students’ 8th grade science test score, as well as their science grades and level of
course-taking. Specifically, students’ transcripts included their score on the state accountability exam
in science, as well as their cumulative grade average in science (originally scaled as 0–100). Transcripts
also indicated whether or not the student was in an honors or advanced science course.3 To avoid
issues of multicollinearity and account for the different scales of each original measure, we created
standardized versions of each measure, and then calculated the mean to create a summary measure
used in the multivariate models that follow. Consistent with the prior literature in this area [42],
girls and boys at this age are not statistically different from one another in their science achievement.

3 As 8th graders, students in the district took a survey or overview course covering topics in earth science, biology,
and chemistry.
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3.3.3. Science Affect

As mentioned previously, there is a large extant research literature examining the influence
of gender differences in social-psychological variables on subsequent gaps in STEM fields [9,43].
Therefore, to better assess the potentially unique contribution of our focal variable, perceptions of the
social relevance of science fields, our models also take into account students’ own personal feelings
towards science. We include a science affect scale, comprised of students’ responses to three items
on the 8th grade survey: “I like science,” “science is fun,” and “I enjoy learning science” (Cronbach’s
alpha = 0.79). As before, we account for the positive skew by dichotomizing each item to distinguish
between those who strongly agree vs. those who do not, before taking the mean across all items.
We note here that this measure is only moderately correlated with perceptions of social relevance
(R = 0.40). Moreover, boys report significantly more positive affect towards science (0.36) than do
girls (0.29).4

3.4. Analytic Plan

The analysis in this study proceeds in two main parts. First, we examine the extent to which
students’ perceptions of the social relevance of science predict their subsequent expectations to major
in STEM by conducting logistic regression models predicting students’ likelihood of expecting to major
in any STEM field (versus not). The baseline model includes students’ background characteristics,
academic achievement in science, and their science affect. The second model adds the measure of
students’ perceptions of the social relevance of science to examine whether boys and girls who perceive
science as more socially relevant are in turn more likely to expect to major in any STEM field. Finally,
to examine whether social relevance may matter more for girls’ expectations, we include an interaction
between gender and social relevance in the third model.

In the second part of our analysis, we use the same approach to predict students’ expectations of
majoring in each of four STEM fields—namely the biological sciences, physical sciences, computer
science and technology, and engineering. Once again, we first examine models with only the main
effect of social relevance, and then include an interaction term between social relevance and gender to
address whether perceptions of the social relevance of science matter more for girls’ expectations to
major in specific fields of STEM. Throughout, we utilize clustered models with robust standard errors
that take into account the nesting of students within schools.5

4. Results

4.1. Expectations to Major in Any STEM Field

The first part of our analysis examines whether students’ perceptions of the social relevance of
science shape expectations to major in any STEM field and whether these perceptions may be especially
powerful for girls. The results are included in Table 2, below. Consistent with prior research [11,44,45]
our baseline model (model 1) shows that girls are less likely than boys to intend to major in STEM
fields in the aggregate (consistent with Figure 1), while those from higher social class background
(as captured through the proxy of books in the home), and students who are born outside the U.S.
are also significantly more likely to expect to major in STEM (although the p-value for the former is
0.06 indicating a marginally significant effect). Students with higher levels of science achievement
are also significantly more likely to expect to major in a STEM field (although the effect is borderline

4 In analyses not shown here, we also included a measure of students’ science self-efficacy or self-confidence, as prior research
finds that this positively predicts STEM outcomes [9]. However, because the survey only included one item to measure
efficacy (“I usually do well in science”), and it did not significantly predict students’ plans to major in STEM net of their
science affect, nor did it alter the impact the results shown here, we chose not to include it in the final models.

5 Multi-level random effects models yielded extremely similar results, but the variation across schools was not
statistically significant.
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at p = 0.09), as are those with higher levels of science affect. In model 2, we find that students who
perceive science as more socially relevant are in turn more likely to expect to major in STEM. This effect
is only borderline significant (B = 0.42, p = 0.09), and appears weaker than the measure for science
affect. Specifically, in model 2, a one standard deviation increase in a students’ perceptions of the social
relevance of science is associated with an increase of 0.03 in the probability of expecting to major in
STEM, while a one standard deviation increase in science affect results in a predicted increase of 0.07.6

As expected, adding perceptions of social relevance to the model does not diminish the gender gap in
expectations as boys and girls have similar means.

Table 2. Results from logistic regression models predicting expectations to major in any STEM field
(Coefficients with standard errors in parentheses) (N = 935).

M1 M2 M3

Coef p Coef p Coef p

Focal Independent Variable

Perceived social relevance
0.42 ~ −0.14
(0.25) (0.37)

Interaction Effects

Female * Relevance
0.93 *
(0.46)

Female
−0.88 *** −0.91 *** −1.22 ***
(0.14) (0.14) (0.22)

Control Variables

Social background

Race/ethnicity

Black
0.10 0.08 0.09
(0.30) (0.30) (0.30)

Hispanic 0.25 0.27 0.29
(0.26) (0.26) (0.26)

Born outside of the U.S.
0.74 *** 0.75 *** 0.76 ***
(0.21) (0.21) (0.21)

Books in the home
0.31 ~ 0.31 ~ 0.32 *
(0.16) (0.16) (0.16)

Science achievement
0.17 ~ 0.14 0.14
(0.10) (0.10) (0.10)

Science affect
0.89 *** 0.76 *** 0.80 ***
(0.18) (0.20) (0.20)

Constant
0.17 −0.04 0.11
(0.29) (0.30) (0.31)

*** p < 0.001, ** p < 0.01, * p < 0.05, ~ p < 0.10, two-tailed test.

Model 3 adds an interaction between gender and perceived social relevance to the set of
variables previously included in Model 2. The interaction term is positive and statistically significant,
indicating a greater effect of relevance for girls. Additionally, the main effect is now negative, smaller,
and not significant.

6 Throughout, the estimated increases in probability of majoring in STEM are calculated using the margins post-estimation
command in Stata.
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To better illustrate the gendered patterns from model 3 of Table 2, in Figure 2 we show the
predicted probabilities of expecting to major in STEM for boys and girls as a function of their
perceptions of the social relevance of science. All other variables in the model are held to the mean.
We see that as perceptions of the social relevance of science increase, girls’ probabilities of expecting to
major in STEM increase substantially, though boys’ probabilities remain relatively flat. Put differently,
while boys’ average probability of having expectations to major in a STEM field is quite high (around
0.7), it is virtually insensitive to their perceptions of science. However, for girls, perceiving science
as more socially relevant is associated with a much higher likelihood intending to major in STEM.
Thus, students’ perceptions of the social relevance of science clearly operate in notably gendered ways
in shaping plans to major in STEM.

Figure 2. Predicted probability of expecting to major in STEM by perceptions of social relevance
and gender.

4.2. Field-Specific STEM Expectations

To address the second part of our research agenda, we now examine whether perceptions of the
social relevance of science shape expectations to major in specific fields within STEM and whether and
how this may differ by gender. In Table 3, we proceed with the same series of covariates in our models
as in Table 2. However, this analysis models students’ likelihood of expecting to major in the biological
sciences ([A] models, leftmost section of table), the physical sciences ([B], second section from the left),
computer science ([C], second section from the right), and engineering ([D], rightmost section).

Turning first to expectations to major in the biological sciences, the baseline model (A1) shows
that students with higher science affect as well as those born outside the U.S. and those with more
books at home are more likely to expect to major in the biological sciences. Model A1 also shows that
girls are significantly more likely than boys to intend to major in the biological sciences. In the second
model (A2) we see that students who perceive science as more socially relevant are significantly more
likely to expect to major in the biological sciences. Finally, in model A3, the interaction between gender
and social relevance is positive and marginally significant (p = 0.08), while the main effect is greatly
diminished and no longer statistically significant. Thus the pattern of results for the biological sciences
generally follows that observed in Table 2 for any STEM field. Specifically, calculating predicted
probabilities (with other variables held to the mean) reveals that as girls’ perceptions of social relevance
increase from one standard deviation below the mean to one standard deviation above the mean, their
probability of declaring a biological science major increases from 0.13 to 0.24, while boys’ predicted
probabilities (non-significantly) increase from 0.13 to 0.15.
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Moving to the next set of models within Table 3, we now consider the role of social relevance in
shaping expectations to major in the physical sciences. In the baseline model we see that those born
outside the U.S., those with more books in the home, and those with a more positive science affect are
more likely to expect to major in the physical sciences. Also consistent with Figure 1, we see that gender
is not a significant predictor of expectations of majoring in the physical sciences. In model B2, we see a
positive and significant effect of perceptions of the social relevance of science. Yet with the inclusion of
the interaction between gender and relevance, we once again see that this positive association is driven
by girls, as the main effect moves very close to zero and is not significant, indicating no discernible
impact for boys, while the interaction is positive and statistically significant. Specifically, as girls’
perceptions of social relevance increase from one standard deviation below the mean to one standard
deviation above the mean, their probability of declaring a physical science major increases from 0.11 to
0.22, while boys’ predicted probabilities remain at around 0.15.

The next portion of Table 3 examines the role of social relevance in shaping expectations to major
in computer science. As expected, the baseline model (C1) shows that girls are much less likely to
expect to major in computer science, while those with higher science affect are more likely. Model 2
reveals a small, positive, and marginally significant effect (p = 0.08) of perceptions of social relevance.
Unlike previous models, the coefficient measuring the interaction between gender and social relevance
in the third model is close to zero and not statistically significant. With its inclusion, the main effect
remains virtually the same in size but is no longer statistically significant.

Finally, the rightmost models of Table 3 consider the role of social relevance in shaping
expectations to major in engineering. The baseline model (D1) shows that girls are much less likely
to expect to major in engineering compared to boys, while those born outside the U.S., high science
achievers, and those with higher levels of science affect are significantly more likely than their peers to
plan to major in engineering. Including perceptions of science relevance in model D2 explains away
the positive effect of science affect found in D1, yet social relevance does not significantly predict
students’ expectations to major in engineering. Yet with the inclusion of the interaction term in model
D3, which is positive and statistically significant, it appears that the absence of a main effect obscures
the positive impact of perceptions of social relevance that exists uniquely for girls. Specifically, as girls’
perceptions of social relevance increase from one standard deviation below the mean to one standard
deviation above the mean, their probability of declaring an engineering major rises from 0.17 to 0.26,
while boys’ predicted probabilities hover at around 0.5. Taken together, consistent with the biological
and physical sciences but in contrast to computer science, girls alone appear more likely to plan to
major in engineering when they perceive science to be socially relevant.

5. Discussion

Despite decades of scholarly attention on the topic of what draws students to STEM fields,
there is a lack of empirical literature that focuses explicit attention on how young people perceive
science, and how such perceptions may be directly linked to their future plans to pursue STEM fields.
This study attempts to address this by drawing on two different areas of research that essentially
present competing ideas about whose intentions may be shaped by views of science as socially
relevant. Specifically, gender scholars hold that gender stereotypes guide girls toward fields that are
viewed as having the broad capacity to help others, improve life, and make a difference in the world.
From this perspective, girls who perceive science as socially relevant may be more likely to pursue these
fields as a way of fulfilling the normative feminine role dictated by prevailing cultural beliefs about
gender, while boys’ decisions to enter STEM are likely unaffected by perceptions of social relevance,
as normative masculine roles do not include placing a priority on such things. By contrast, scholars
from within science education would argue that perceiving science as socially relevant encourages
STEM expectations similarly among both girls and boys, as students are more likely to want to continue
studying a subject that has meaning and importance outside of school walls. This study examines this
issue directly by examining whether perceptions of social relevance guide expectations to major in
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STEM among adolescents. In doing so, we examine not only the role of social relevance in guiding
interest in STEM in general, but also the extent to which social relevance guides students toward
specific majors within STEM—namely, the biological and physical sciences, computer science, and
engineering. Because students’ expectations as ninth graders will guide their decision-making and
academic preparation for college, these foreshadow gendered pathways into STEM in higher education
and ultimately, the labor force [6,46].

In examining how perceptions of the social relevance of science shape expectations to major in
STEM at the start of high school, we found that viewing science as socially relevant clearly increases the
likelihood that students will intend to major in STEM in ways that are gendered. Consistent with the
view offered by gender theorists, we found highly gendered patterns in how social relevance guides
students’ intentions to pursue STEM majors in the aggregate. As seen in Table 2 (and the associated
Figure 2), perceiving science as more socially relevant is associated with a statistically significant
and substantial increase in girls’ expectations to major in a STEM field, while boys’ expectations
are not moved in response to such views. Subsequent field-specific analyses reveal that this same
gendered pattern appears in three of the four STEM fields considered, specifically, the biological
sciences, physical sciences, and engineering. Thus we find that in our sample, perceptions of social
relevance are an important predictor of adolescent girls’ intentions to enter STEM postsecondary
fields where women are currently well-represented (the biological sciences, and to a lesser extent,
the physical sciences) as well as in engineering, a field that remains highly male-dominated [21].
Indeed, this suggests that recent efforts, such as ad campaigns by organizations such as Exxon/Mobil
that highlight the power of engineering to change the world for the better, could perhaps move the
needle towards gender equity [47].

By contrast, our results for computer science are not quite as clear. We find a borderline significant
main effect of the perceived social relevance of science, and no evidence of a gender interaction.
Thus on the one hand, the results might be interpreted as consistent with science education researchers
who suggest that all students benefit when they view science as relevant and powerful for solving
problems outside of school walls. In practice, this insight offers a potentially useful avenue for
increasing participation in computer science by linking it to solving real-world problems in the minds
of both male and female adolescents. Yet, we also note that the effect we observe is relatively small,
and thus such perceptions may do little on a practical scale to move more girls into a field where
women are so grossly under-represented.7

6. Conclusion

Though the specific focus of our paper was on examining the gendered impact of perceptions
of social relevance, our findings also speak to larger conversations about gender gaps in STEM
participation. Specifically, we found that a majority of ninth-grade girls in our sample (54%, compared
with 32% of boys) have already expressed a disinterest in pursuing any STEM major. Moreover,
the gendered patterns we observe in Figure 1 regarding future intentions in specific STEM fields
largely mirror current patterns of gender representation in postsecondary education at the national
level as well as within the labor force [47]. Thus our results underscore the powerful role of gender in
shaping students’ plans long before the transition to college, as well as hint that perhaps we should not
anticipate that younger cohorts will play a role in changing patterns of gender segregation. Yet at the
same time we note one potentially positive sign; perhaps reflecting changes in interest in technology
among younger cohorts, computer science and engineering were the most popular STEM majors for
both girls and boys in our sample.

7 Specifically, as students increase from one standard deviation below the mean to one standard deviation above the mean on
the social relevance scale, their predicted probability of expecting to major in computer science increases from 0.24 to 0.29.
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As with any study, there are several limitations and other questions that arise that cannot be
addressed by the present study. First, because this study focuses on predominantly Hispanic high
school students in one large, urban school district, it is not possible to say how the patterns observed
here would compare to other contexts. Future research could address this, as well as whether patterns
might be similar or different among both younger and older student populations. Moreover, we looked
for but did not find racial/ethnic differences in how social relevance predicted students’ STEM
intentions.8 Moving forward, it would be informative to consider these dynamics at the intersection of
race/ethnicity and gender, which unfortunately we could not explore due to sample size. Furthermore,
specific survey items examining how students view the social relevance of specific STEM fields, such
as engineering, would be even more informative than the general questions utilized in this study.
Current efforts to address such issues are hampered by the scarcity of data that is both large in scope
and detailed in its STEM focus. Yet, by demonstrating that perceptions of social relevance may help
guide more girls into STEM fields, future scholars can build on the contribution begun here.
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Appendix A

Table A1. Zero-order correlations between variables.
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Expects to major in STEM 1.00
Biological sciences 0.41 1.00
Physical sciences 0.41 0.46 1.00
Computer science 0.54 0.13 0.19 1.00
Engineering 0.66 0.07 0.18 0.34 1.00
Female –0.22 0.05 0.00 –0.16 –0.32 1.00
Black –0.02 0.00 –0.01 –0.02 –0.04 –0.01 1.00
Hispanic 0.02 –0.01 –0.02 0.06 0.01 –0.02 –0.75 1.00
Born outside of the U.S. 0.11 0.10 0.07 0.04 0.08 –0.03 –0.07 0.07 1.00
Books in the home 0.07 0.10 0.08 –0.04 0.04 0.04 0.09 –0.31 0.01 1.00
Science achievement 0.07 0.03 0.01 –0.03 0.10 –0.02 –0.06 –0.15 –0.07 0.31 1.00
Science affect 0.18 0.17 0.21 0.10 0.10 –0.08 –0.01 –0.02 –0.02 0.07 0.10 1.00
Perceived social relevance 0.11 0.15 0.15 0.07 0.06 0.03 0.11 –0.17 –0.04 0.11 0.21 0.40 1.00

8 It is important to note that national studies have found that Hispanic as well as Black adolescents exhibit similar levels of
interest in STEM fields as their white peers, and conditional on college matriculation, are as likely to enter STEM majors in
college [48].
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Abstract: In the United States, gender gaps in science interest widen during the middle school
years. Recent research on adults shows that gender gaps in some academic fields are associated
with mindsets about ability and gender-science biases. In a sample of 529 students in a U.S. middle
school, we assess how explicit boy-science bias, science confidence, science possible self (belief in
being able to become a scientist), and desire to be a scientist vary by gender. Guided by theories and
prior research, we use a series of multivariate logistic regression models to examine the relationships
between mindsets about ability and these variables. We control for self-reported science grades,
social capital, and race/ethnic minority status. Results show that seeing academic ability as innate
(“fixed mindsets”) is associated with boy-science bias, and that younger girls have less boy-science
bias than older girls. Fixed mindsets and boy-science bias are both negatively associated with a science
possible self; science confidence is positively associated with a science possible self. In the final model,
high science confident and having a science possible self are positively associated with a desire to be
a scientist. Facilitating growth mindsets and countering boy-science bias in middle school may be
fruitful interventions for widening participation in science careers.

Keywords: adolescence; bias; gender; identity; mindsets; science; science careers

1. Introduction

The gender gap in science persists in many fields despite increases in the participation of women
in the paid workforce and 4-year colleges and graduate and professional schools (Ceci et al. 2014).
Explanations for this gap include a number of individual, interactional, and institutional mechanisms
including gendered socialization, implicit biases, stereotypes, and discrimination (Cheryan et al. 2015;
Grunspan et al. 2016; Hill et al. 2010; Moss-Racusin et al. 2012; Xie and Shauman 2003). Evidence
suggests that in the United States, in elementary school, both boys and girls have similar levels of interest
in science, but by middle school, interest in science among girls has diminished (Andre et al. 1999;
Blue and Gann 2008). This disproportionate decline in science interest for adolescent girls compared
to boys cannot be due to differences in academic success; on average girls have equivalent or better
grades in math and science than boys at every age (Voyer and Voyer 2014).
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One compelling explanation for the science interest gap between boys and girls is the complex
social, psychological, and developmental processes that happen during adolescence. In particular,
there is evidence that gender identity becomes more salient during adolescence (Galambos et al. 1990).
For girls compared to boys, greater gender identity salience can result in lower self-esteem, and reduced
confidence across many social and psychological domains (Orenstein 2013), including confidence in
science and math (Heaverlo et al. 2013). Biased self-assessments may also emerge from implicit and
explicit biases in the U.S. and other western European countries where there is a widely held cultural
belief that boys are better at science (and math) than girls (Nosek et al. 2009; Cai et al. 2016). Because
of the bias towards boys as science kinds of people, girls may not perceive their gender identity as
compatible with a science identity (Nosek et al. 2002; Nosek and Smyth 2011). Considerable research
has been focused on how to close the “science identity gap” for girls, as well as other underrepresented
minorities in science (Archer et al. 2010, 2012, 2013; Barton et al. 2013; Kozoll and Osborne 2004).

The challenges that some girls experience combining “girl” and “science” identities may be influenced
by whether or not valued abilities are viewed as innate or attained through effort (Blackwell et al. 2007;
Levy et al. 1998). Indeed, research in adult populations show that at least some of the science gender
gap can be explained by mindsets about intelligence (whether it is fixed or whether it can be developed
through effort), and gendered assumptions about boys’ presumed “innate brilliance” compared to
girls’ presumed “hard work” (Leslie et al. 2015).

The extent to which stereotypes about girls and science, and mindsets about intelligence
influencing science identity, warrants further investigation. Because science career aspirations begin
forming in early adolescence (Tai et al. 2006), one way that researchers have explored the relationship
between science identity and science career aspirations is by assessing youth science possible
selves (Packard and Nguyen 2003), or the perception that they may someday become a scientist
(Oyserman et al. 2006). There are no studies of middle school aged youth that have simultaneously
included measures of mindsets, boy-science bias, science confidence, and science possible selves,
yet there are reasons to expect that each of these concepts contributes to the desire to be a scientist.

In this study, we assess science possible selves, and the desire to be a scientist in a sample of
529 adolescents in a U.S. Title I (high poverty) middle school. Using developmental theories about
gender identity, mindsets, and science possible selves, we assess multiple hypotheses about how
gender, grade level, and mindsets are associated with boy-science bias, science confidence, science
possible selves, and the desire for a science career.

1.1. Gender Identity in Early Adolescence

Adolescence is an important time in the life course. Children begin the social and physical
transition to adulthood, and in so doing explore, affirm, or cast aside identities (Eccles et al. 1997;
Eckert 1989; Eder 1995). Gendered identities are also “under construction” in early adolescence,
when youth are “trying on gender” and other identities as they imagine futures compatible with salient
identities, particularly related to gender (Williams 2002).

According to the gender intensification hypothesis, gender identities become more relevant in
adolescence, and the intensification contributes to lower self-esteem and reduced mental health for girls
(Galambos 2004; Pettitt 2004). Similarly, confidence drops more for girls than boys during adolescence
in many areas of life, including in science and math (Orenstein 2013). In school contexts, gender
intensification may be explicitly or implicitly endorsed by peers and significant adults (Eder 1995;
Adler et al. 1992; Thorne 1993). A classic ethnographic study by Eder (1995) showed that middle
school is a time when girls more often become objectified and sexualized, and where social status
for girls is often based on physical appearance, relationships with boys, and friendships with girls,
compared to an emphasis on achievement for boys (Eder 1995). Bullying is more common during
middle school than elementary and high school (Olweus 2013), and sexual harassment of adolescent
girls is widespread (Leaper and Brown 2008).
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In addition to the overt sexualization and objectification of many girls during puberty, many
girls also face academic sexism (Archer et al. 2013; Banchefsky et al. 2016). Academic sexism involves
actions that discourage girls from participating in areas deemed as “male”, such as science, math,
and computers (Leaper and Brown 2014). In a study of 600 girls, Leaper and Brown (2008) found
that 52% of the sample reported some form of academic sexism related to math and science, with the
majority perpetrated by peers, but also reportedly from parents. If being desirable, feminine, and sexy
is perceived as incompatible with interest and achievement in science, girls may distance themselves
from science and also fail to form friendships around science (Archer et al. 2013; Banchefsky et al. 2016).
Peer influence can increase or decrease academic achievement, positive identities, and overall
well-being (Crosnoe and McNeely 2008; Crosnoe et al. 2008; Leaper et al. 2012). Friendship groups are
highly segregated by gender (Shrum et al. 1988). Altogether, these social and cognitive processes and
biases may influence science aspirations differently for boys and girls (Gauthier et al. 2017).

1.2. Mindsets and Gender Stereotypes

There is compelling evidence that implicit theories about the malleability of traits (i.e., mindsets)
can foster or inhibit the development of possible future selves (Levy et al. 1998; Levy and Dweck 1999;
Stroessner and Dweck 2015). According to Dweck (2006), people with a growth mindset believe that
abilities can be developed. With a fixed mindset, people believe that intelligence or talent are simply
fixed traits that they were either born with, or not. People with fixed mindsets focus on documenting
intelligence or talent instead of developing intelligence and talents (Dweck 2006). There is evidence
that a fixed mindset might emerge from fundamental cognitive processes that help people make sense
about the world, but can also lead to errors about the world (Bigler and Liben 1993).

The process of overly simplistic categorizing can lead to inflating differences between groups and
ignoring variation within groups, resulting in stereotyping and biases (Master et al. 2012). One common
type of error in reasoning that leads to gender stereotypes is called psychological essentialism, or the
belief that people naturally possess certain traits based on group characteristics (Stroessner and Dweck
2015; Cimpian and Salomon 2014). Gender essentialism is the belief that differences between boys and
girls are natural or innate (based in biology) and that they cannot be changed (Eidson and Coley 2014).
This is because if boys are seen as naturally or effortlessly brilliant, and science requires brilliance, then
fixed mindsets about intelligence and essentialist mindsets about gender may lead to a science-gender
bias favoring boys, and disfavoring girls.

For girls, a boy-science bias might contribute to the pattern of more girls than boys becoming
disinterested in science, and may result in a lower likelihood of having a science possible self
and/or a desire to be a scientist in middle school for girls more than boys. Conversely, for boys, in
group-favoritism (favoring those who belong to your social group) and intergroup biases (disfavoring
those not in your social group), may translate into a boost from boy-science bias, resulting in
a stereotype lift effect for science possible selves and a desire to be a scientist (Walton and Cohen 2003;
Tajfel and Turner 2004).

Although many people perceive that gender stereotypes and biases have disappeared, recent
research (2014) shows that there are similar levels of gender stereotypes among contemporary college
age youth as in 1980 (Haines et al. 2016). Even though there is evidence that actual explicit gender
stereotypes persist, they are likely underreported in surveys due to social desirability.

1.3. Science Confidence and Science Possible Selves

In the United States there is a strong belief that youth can choose any career; therefore it can be
popular to blame under-representation of women in science and engineering professions on personal
preference rather than social structural inequality (Rosenbloom et al. 2008). Charles and Bradley (2009)
argue that the higher standard of living in the United States, combined with implicit gender biases
about science, contribute to many youth “indulging our gendered selves” when ‘choosing’ career paths.
Research suggests, however, that more than simply reflecting an individual’s abilities, career paths are
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also shaped by social identities and cultural beliefs about who we are, and where we fit in, perhaps
even more than what we are good at (Correll 2001, 2004; Cech 2013).

Our identity, or how we see our self, is a social construction; it is a product of shared social
interactions and cognitive processes related to social and self-categorizations (Tajfel and Turner 2004;
Burke and Stets 2009; Turner et al. 1987). These conceptions of the self are dynamic and are based
on our experiences of the social world, including our self-appraisals and reflected appraisal from
significant others (e.g., parents, teachers, and peers) (Bouchey and Harter 2005; Gunderson et al. 2012).
Our identities are not socially constructed in a vacuum, but are formed within larger social structures
and within social institutions (like schools) that are also gendered (Charles and Bradley 2009; Acker
and Oatley 1993; Connell 2014; Ridgeway 2009; Risman 2004). Therefore, given these social and
institutional contexts, these self-appraisals may be biased or inaccurate and may vary by gender
(Correll 2001). At the college level, women’s biased self-assessments and perceptions of a lack of
“fit” can impact women’s persistence in some Science, Technology, Engineering, and Math (STEM)
fields, (e.g., engineering and computer science) (Cech 2013; Cech et al. 2011; Master et al. 2015).
In international studies on adolescent education and achievement, for youth in some high achieving
countries, researchers find a negative relationship between student achievement and self-concept;
the better students do, the lower they rate their own abilities (Wilkins 2004). In a national study of
eighth grade girls in the U.S., researchers found that these biased self-assessments in science are more
likely for girls than for boys (Riegle-Crumb et al. 2011); this phenomenon is sometimes referred to as
the “confidence gap” (Orenstein 2013).

Identities shape our actions and choices, plus they influence our commitment to pursuing future
goals. Therefore, these emerging identities in adolescence are important for many long-term social,
emotional, and career outcomes (Eccles et al. 1997; Schwartz et al. 2015). Adolescents make choices
about who they are friends with, what activities they pursue, and in high school, what classes to take,
in order to validate their identities and to maintain their self-esteem (Barton et al. 2013; Barber et al.
2005; Cast and Burke 2002). Adolescence is also a time when many youth are asked what they want to
be when they grow up. Images of who youth might be in the future are referred to as possible selves
(Markus and Nurius 1986). Possible selves can be either negative or positive and a possible self that
a person finds plausible will affect their current behavior and choices (Oyserman et al. 2006).

A science possible self, or the belief that you might be able to become a scientist someday,
is one outcome of emergent science identities during adolescence (Buday et al. 2012). A student who
believes that they might be a successful scientist in the future is more likely to express interest in
scientific endeavors, excel in science classes, and to form friendships around science activities (Robnett
and Leaper 2013). Indeed, the social aspect of science is often overlooked, even though we know that
social interactions, validation, and recognition are important for identity (Carlone and Johnson 2007).
In a longitudinal study of 41 high school girls who transitioned into college, researchers found social
support and mentoring to be important predictors of science career-related possible selves (Packard
and Nguyen 2003). Lips (2004) found that college and high school age women were much less likely to
have science possible selves compared to men, and that college-aged women saw even less science
possibility than high school women, indicating that science pathways constrict more for women than
men over time (Lips 2004). In a more recent study, Buday, Stake, and Peterson (2012) found that for
both boys and girls, social support was crucial to having a high science possible self, but did not find
a gender differences in science possible selves (Buday et al. 2012).

The aforementioned studies all explore science possible selves, but had small sample sizes and
were not representative of a general population of students. In addition, these studies have consisted
of youth who had been identified as having science and math aptitude and been enrolled in specific
science focused programs based on that aptitude and interest. In addition, no studies simultaneously
examine mindsets, boy-science bias, science confidence, science possible selves, and the desire to be
a scientist. Middle school is a time for early career exploration when science career preferences may
emerge, strengthen, or for some, diminish (Tai et al. 2006; Dabney et al. 2015, 2012). Clearly, we need
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more investigation of identity formation, science possible selves, and youth trajectories in science
among boys and girls to understand how science possible selves may be associated with science career
aspirations more broadly (Buday et al. 2012).

1.4. Current Study

Our goal is to add to the emerging understanding of the origins of gender gaps in science interest
by modeling the sources of the gap using a series of multiple logistic regression models. We use
a sample of 529 middle school youth in a midsized Midwestern middle school to first assess how
middle school youth differ on key focal science attitudes and beliefs by gender. We then assess whether
gender, grade level, or mindsets are associated with having a boy-science bias after adjusting for social
capital and racial/ethnic minority status. Next, we assess the extent to which gender, grade level,
mindsets, and boy-science bias are associated with science confidence after controlling for self-reported
grades, social capital, and racial/ethnic minority status. Theories of stereotype formation indicate
that biases among boys and girls may be associated with boy-science bias and science confidence
differently by age, therefore we estimate interaction by gender and grade level. In addition, theories
about in-group bias and stereotype lift suggest that the association between boy-science bias and
science possible selves should be gender specific, therefore we estimate an interaction by gender.

1.5. Hypotheses

H1: Boys will have higher boy-science bias, science confidence, science possible self, and a desire
to be a scientist than girls. Boys and girls will not differ on science grades, fixed mindsets,
or essentialist mindsets.

H2: For all youth, including both boys and girls, fixed or essentialist mindsets will be associated
with having a boy-science bias, after controlling for minority status and social capital variables.

H3a: For girls, but not boys, boy-science bias will vary by grade level; girls in lower grade
levels will have less boy-science bias than girls in higher grade levels, after adjusting for mindsets,
and controlling for self-reported grades, minority status, and social capital variables.

H3b: For girls, but not boys, we expect that science confidence will vary by grade level; girls in
lower grade levels will have higher science confidence than girls in higher grade levels, after adjusting
for mindsets, boy-science bias, and controlling for self-reported grades, minority status, and social
capital variables.

H4a: For girls, but not boys, boy-science bias will be associated with a lower likelihood of a science
possible self, after adjusting for mindsets, science confidence, and controlling for self-reported grades,
minority status, and social capital variables.

H4b: For boys, but not girls, boy-science bias will be associated with a higher likelihood of
a science possible self, after adjusting for mindsets, science confidence, and controlling for self-reported
grades, minority status, and social capital variables.

H5: For all youth, higher science confidence and higher science possible self will be associated
with a desire to be a scientist, after adjusting for mindsets, boy-science bias, and controlling for
self-reported grades, minority status, and social capital variables.

2. Materials and Methods

We used SPSS version 22, and t-tests and chi-square tests to compare means and proportions for
all theoretical variables by gender. Next, we show correlations between variables using a Pearson’s r
correlation to assess for multicollinearity and to assess bivariate relationships between key theoretical
variables. Finally, we use multivariate logistic regression to estimate associations with boy-science bias,
science confidence, science possible selves, and the desire to be a scientist. Because of important prior
work on the underrepresentation of some race/ethnic minority groups and elitism in science, we control
for race/ethnic minority status and social capital in all models (Catsambis 1995; Hazari et al. 2013).
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2.1. Participants

The data collected for this study are from Wave III of the Study of Science Identity in Middle School,
(collected in January 2015). All sixth, seventh, and eighth grade students enrolled in science classes
at a Title I (high poverty) Middle School in a mid-sized Midwestern city were asked to participate
in the survey. All parents or guardians of potential participants were notified of the opportunity to
participate in the survey with an automated phone call and email, and were provided a form to opt
their child out of the study if desired. These forms were available in English, Spanish, Vietnamese,
and Arabic. Of the 645 students at the school, 95% (610) were enrolled in a science class. Those who
were not were either suspended or were placed in a low proficiency English Language Learner (ELL)
classroom instead of a science classroom. Of those eligible to participate, 87% (533) chose to participate
in the survey, 529 of which we have complete data for all analytic variables. Institutional Review Board
(IRB) approval was obtained for this study prior to participation.

Because this is a study of a single school, we use caution in generalizing the findings. This school is
demographically diverse. A high proportion of youth come from racial/ethnic minority groups (69.9%),
and a large proportion of youth receive free and reduced lunch (78%). Not only can we not generalize,
the gender dynamics in this school may be different than in schools with higher socio-economic status
(SES) and that are less diverse (Armstrong et al. 2014; Hamilton and Armstrong 2009). Even with this
limitation, this research can provide insights into gender, identity development, and science career
aspirations during middle school years, and suggestions for valuable further exploration of this critical
developmental time.

2.2. Measures

To assess the extent to which youth have a desire to be a scientist when they grew up, we asked them,
“How much, if at all, do you want to be a scientist?” (1 = A lot, 2 = Some, 3 = A little, 4 = Not at all).
We dichotomized this variable so that wanting to be a scientist “A lot” = 1 (7.3%) and all other categories
have a value of 0.

We operationalized science possible selves in order to take into account that many youth in early
adolescence might see a science career path as a possibility, but might favor another career path more
(Archer et al. 2014). For middle school students, asking how much they want to be a scientist might
not capture their perception of how open a science path is to them. For example, even students who
want to be a famous musician, actor, or athlete might still see science as a possible path. Therefore,
we measure a science possible self with the following item: “For this question, let’s pretend you want
to be a scientist when you grow up. Which of the following best describes you?” (1 = I could become
a scientist, 2 = I might be able to become a scientist, 3 = I probably could not become a scientist,
4 = I could not become a scientist, and 5 = I don’t know). We dichotomized this variable so that those
that reported “I could become a scientist” have a value of 1 (23.1%), and all other categories are a zero.

To measure science confidence, students were asked, ‘How good are you at science?’ (1 = Poor,
2 = Fair, 3 = Good, 4 = Excellent). We dichotomized this variable so that those who report they are
“Excellent” at science = 1 (20.2%).

To measure explicit boy-science bias we asked the question “Do you think boys or girls are
better at science?” The response categories are similar to a measure of explicit science and math
gender stereotypes used in other studies that provide a category in which boys and girls are the same,
indicating no stereotype (Nosek et al. 2009, 2002; Cai et al. 2016). We dichotomized the responses
into those who think girls are better at science, and those think boys and girls are the same at science
(boy-science bias = 0), compared to those who think that boys are better at science (more boy-science
bias = 1). Our coding reflects the dominant cultural stereotype in the U.S.; that boys are better at science
than girls. Approximately 16% of all students report that boys are either a little or a lot better at science
than girls.

We assess the extent to which youth have fixed mindsets based on an item from Dweck
(Blackwell et al. 2007) that we modified for readability based on the young age of our sample. Students
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were asked how much they agree with the following statement, “You can learn new things, but you
can’t really change how smart you are.” This variable had a range from 1–5 where 1 = Strongly Disagree,
5 = Strongly Agree. The mean is 2.5 (S.D. = 0.05). We also developed a measure guided by the theory
of mindsets to assess essentialist mindsets, “Some people are just naturally good at things (like sports,
science or music) and will never have to work hard at them.” This variable had a range from 1–5 where
1 = Strongly Disagree, 5 = Strongly Agree. The mean is 2.7 (S.D. = 0.06)

Science grades were self-reported; we asked students “What grades do you usually get in science
classes?” (1 = Mostly below C’s, 2 = Mostly C’s, 3 = Mostly B’s and C’s, 4 = A mix of A’s, B’s, and C’s,
5 = Mostly B’s, 6 = Mostly A’s and B’s, 7 = Mostly A’s). The mean is 5 (S.D. = 0.07).

We measure social capital using two variables, the number of books in the home and
college expectations. We asked students, “About how many books do you have in your home?”
(1 = 0–10 books, 2 = 10–100 books, 3 = Over 100 books). Approximately 22.7% of students reported
0–10 books, 53.1% reported 10–100 books, and 24.2% percent reported more than 100 books at home.
Students were also asked, “How likely is it that you will be able to go to college?” (1 = Not at all likely,
1.5 = I don’t know, 2 = A little Likely, 3 = Somewhat Likely, 4 = Very likely). The mean is 3.4 (S.D. = 0.83).
We chose to use books in the home because youth are often unable to report accurately on parental
income, and this is a widely used measure for youth assessing academic outcomes and achievement
internationally (Provasnik et al. 2012). In addition, differences in career aspirations by social class have
also been associated with different college expectations dependent upon social class (Grodsky and
Riegle-Crumb 2012; Buchmann and DiPrete 2006; Legewie and DiPrete 2012).

We include race/ethnic minority status as a control variable. Students were asked, “What is your
race/ethnicity? You can mark more than one answer.” Response categories were; “Black/African
American,” “Latino/Hispanic,” “Middle Eastern/Arabic” “White,” “Asian,” “Native American,”
“Pacific Islander,” “Mixed,” and “Other,” with space to write in any other race/ethnic group.
Approximately 30% of the respondents were white only. Latino (23.5%) and middle eastern (7%)
are ethnic categories, so any student who marked these, no matter what other race category they
marked, were included in the under-represented race/ethnicity minority category. About a fifth of the
sample self-identified as black, 6% Asian, 6.2% Native American, and 3% other. We dichotomized the
responses into minority = 1 (69.9%) or not minority = 0.

3. Results

3.1. Bivariate Results

We provide bivariate results by gender (shown in Table 1) to assess hypothesis 1, whether boys and
girls differ on the desire to be a scientist, science possible selves, science confidence, and boy-science
bias. For continuous variables, we used t-tests and for categorical variables we used chi-square tests.
We find evidence to support hypothesis 1. Compared to girls, a higher proportion of boys want to be
a scientist (10% vs. 5%, p = 0.048), and believed that they could become a scientist if they wanted to
(26% vs. 19%, p = 0.031), and reported that they were ‘Excellent’ at science (24% vs. 16%, p = 0.014).
More boys than girls believed that boys are better at science (had boy-science bias) (22% vs. 11%,
p = 0.003). There were no significant differences between boys and girls on reported science grades,
fixed mindsets, essentialist mindsets, or college expectations. There are no differences by gender for
the control variables, minority status, and books in the home.

Table 2 shows the bivariate Pearson’s r correlation matrix for the theoretical and control variables.
The strongest associations in the matrix are between science grades and science confidence (r = 0.40,
p < 0.001), science possible selves and the desire to be a scientist (r = 0.37, p < 0.001), and science
confidence and science possible selves (r = 0.35, p < 0.001). Girls, minorities, and youth with less social
capital have lower science possible selves and lower science confidence than boys, non-minorities,
and those with higher social capital. Youth with lower grades and less social capital are also more
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likely to hold a boy-science bias. Grade level has a negative association with science grades, indicating
that science grades are lower for youth in 8th compared to 6th grade.

Table 1. Bivariate Descriptive Statistics by Gender

Boys (N = 284) Girls (N = 245) sig.

Mean/Proportion S.D. Mean/Proportion S.D.

Desire to Be a Scientist 0.10 0.05 *
Science Possible Self 0.26 0.19 *
Science Confidence 0.24 0.16 *
Boy-Science Bias 0.22 0.11 **
Fixed Mindset 2.52 1.23 2.54 1.21 n.s.
Essentialist Mindset 2.71 1.31 2.61 1.27 n.s.
Science Grades 5.09 1.59 4.06 1.65 n.s.
Minority 0.69 0.70 n.s.
College Expectations 3.39 0.84 3.47 0.82 n.s.
Books in the home (0–10 reference) 0.24 0.25 n.s.

10–99 books 0.52 0.54 n.s.
100+ books 0.24 0.21 n.s.

Note: *** p < 0.001, ** p < 0.01, * p < 0.05, n.s. = not significant.

Youth with fixed mindsets are less likely to have a science possible self (r = −0.19, p = 0.001),
more likely to have boy-science bias (r = 0.14, p < 0.021), lower science grades (r = −0.28, p = 0.001),
and lower college expectations (r = −0.10, p = 0.018). Also, youth with essentialist mindsets were
more likely to have fixed mindsets (r = 0.26, p < 0.001), a higher likelihood of having a boy-science
bias (r = 0.10, p < 0.05), had lower science grades (r = −0.09, p = 0.041), and lower college expectations
(r = −0.10, p = 0.18) than youth without essentialist mindsets.

3.2. Multivariate Results

Table 3 shows the results of a series of logistic regressions with the likelihood of boy-science bias
(Model 1 and 2) and science confidence (Model 3 and 4) as outcomes to test hypothesis 2, hypothesis 3a,
and hypothesis 3b. Table 4 shows the results of a series of logistic regressions with the likelihood
of a science possible self (Model 1 and 2), and the desire to be a scientist (Model 3) as outcomes
to test hypothesis 4a, hypothesis 4b, and hypothesis 5.1 All ordinal variables are mean centered to
adjust for multi-collinearity, to more easily interpret the constant/intercept, and to solve for and plot
significant interactions.

1 We chose to dichotomize our dependent variables for multiple reasons. First, the explicit gender bias scale includes a girl
science bias, but we dichotomized this variable and included those with a girl-science-bias with youth who report no bias
because it is likely that a girl science bias has a different meaning and interpretation for boys and girls in a society with
documented cultural biases favoring boys in science. We will explore girl-science-bias more fully in future work. Second,
for the desire to be a scientist, science possible selves, and science confidence, we were interested in assessing the odds that
someone would fall into the highest category compared to all others. We conducted a number of sensitivity analyses to
assess how our results might differ if we use OLS regression on these four categories, and ordinal variables rather than the
dichotomized variables. We found that the results varied little if we used the dichotomized or ordinal analyses. Our main
findings for the associations of gender with the outcomes and among the core concepts (i.e., mindsets, gender bias, science
confidence, science possible selves, and the desire to be a scientist) were similar for both approaches. Associations for two of
the control variables (social capital and self-reported science grades) were significant in the OLS models with the ordinal
outcomes but not in the logistic regression models with the dichotomous outcome. We interpret these differences in the
models as indicating that social capital and science grades matter more when distinguishing among the lower categories.
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Table 4. Logistic Regression Models Predicting Possible Selves A and Desire to be a Scientist B.

Science Possible Self Desire to be a Scientist

Model 1 Model 2 Model 3

β SE p β SE p β SE p

Grade Level 0.33 0.15 * 0.33 0.15 * 0.28 0.25
Girl (Boy Reference) −0.40 0.24 + −0.42 0.25 + −0.27 0.40

Focal Independent Variables

Mindsets
Essentialist Mindsets 0.12 0.09 0.11 0.09 0.25 0.15
Fixed Mindsets −0.28 0.11 * −0.27 0.11 * 0.09 0.17

Boy-Science Bias −1.00 0.42 * −1.04 0.47 * 0.26 0.57
GirlXBoy-Science Bias - - 0.32 0.91 - -
Science Confidence 1.49 0.29 *** 1.49 0.28 *** 1.48 0.45 **
Science Possible Self - - - - 2.42 0.45 ***

Controls

Science Grades 0.13 0.09 0.11 0.09 0.09 0.16
Racial/Ethnic Minority (white reference) −0.15 0.25 −0.16 0.42
Social Capital

College Expectations 0.57 0.18 ** 0.57 0.18 ** −0.21 0.25
Books in the home (0–10 reference)

10–99 books −0.13 0.33 −0.13 0.33 −0.20 0.51
100+ books −0.04 0.38 −0.03 0.37 −0.26 0.58

intercept −1.27 0.38 ** −1.27 0.38 ** −4.88 1.38 ***
Nagelkerke R squared 0.26 *** 0.26 *** 0.34 ***

Notes: A Let’s Pretend you wanted to become a scientist, could you become a scientist if you wanted to?
Outcome = “I could become a scientist.” Reference = “I might be able to become scientist,” “I probably could
not become a scientist,” “I could not become a scientist,” “I don’t know.” B How much do you want to become
a scientist? Outcome = “A lot.” Reference= “Some,” “A little,” “Not at all.” + p < 0.10, * p < 0.05, ** p < 0.01,
*** p < 0.001.

3.3. Boy-Science Bias and Science Confidence

Table 3, Model 1 shows the associations of grade level, gender, and fixed and essentialist mindsets
with the likelihood of having a boy-science bias. The results show that girls are less likely to have
a boy-science bias (β = −0.75, p = 0.004) after adjusting for other variables in the model. Additionally,
we find evidence that partially supports hypothesis 2; fixed mindsets, but not essentialist mindsets,
are associated with boy-science bias (β = 0.24, p = 0.021). Youth with fixed mindsets are more likely to
have boy-science bias than youth without fixed mindsets.

In Model 2, to test for hypothesis 3a, we include a measure of the interaction of gender by
grade level. There is support for hypothesis 3a because the interaction is significant on boy-science
bias (β = 0.72, p = 0.027). The main effect for grade level is not significant, indicating that in the
adjusted model, for boys, boy-science bias does not differ by grade level. Figure 1 shows the predicted
probabilities for boy-science bias by gender and grade-level.

Figure 1 shows the predicted proportion with a boy-science bias for 6th, 7th, and 8th grade boys
and girls. Among boys, there is a slight, non-significant decline in the proportion with a boy-science
bias from 6th (31%) to 8th (24%) grade. The proportion of girls with a boy-science bias is largest for 8th
grade girls (22%), smaller for 7th grade girls (14%), and smallest for 6th grade girls (9%). The difference
between boys and girls is largest in 6th grade (22%).

Table 3, Model 3 shows the multivariate logistic regression model for science confidence.
After adjusting for control variables, effects of gender and grade level are only marginally significant.
There were trends that were marginal on science confidence for girls and by grade level. Girls have
lower science confidence than boys (β = −0.47, p = 0.067). Higher grade level is associated with higher
science confidence (β = 0.26, p = 0.095). Similar to the bivariate model, there is no significant relationship
between boy-science bias, fixed mindsets, essentialist mindsets, and science confidence. The only
significant association is between self-reported grades and science confidence (β = 1.07, p < 0.001).
Although minority status and social capital had significant associations with science confidence in the
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bivariate model, they are no longer significant in the full multivariate model. In Model 4, we tested
an interaction between gender and grade to assess hypothesis 3b; that boys’ confidence would not
vary by grade level, while girls’ science confidence would be lower as grade level increase. We failed
to find support for this hypothesis.
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Figure 1. Predicted Proportion with a Boy-Science-Bias by Grade and Gender, adjusted for control variables.

3.4. Science Possible Self and the Desire to Be a Scientist

Table 4, Model 1 shows the multivariate logistic regression results for science possible selves.
Results show that grade level has a positive association with science possible selves (β= 0.33, p = 0.025);
therefore being in a higher grade is associated with higher science possible selves compared to
being in a lower grade. Similar to the bivariate level, girls have lower science possible selves than
boys (β = −0.40, p = 0.096), although the effect is only marginal after adjusting for controls. Science
confidence has a significant association with science possible selves (β = 1.49, p < 0.001), followed
by boy-science bias (β = −1.00, p < 0.018). Youth with fixed mindsets have lower science possible
selves (β = −0.28, p = 0.013) than youth without fixed mindsets. In contrast, youth with college
expectations have higher science possible selves (β = 0.57, p = 0.002) than youth without college
expectations. In Model 2, we test an interaction of gender and boy-science bias to assess hypothesis 4a
and hypothesis 4b. The results do not support hypotheses 4a and 4b; the association of boy-science
bias with science possible selves does not differ for boys and girls.

Finally, we assess the relationship between all previous theoretical variables and the desire to
be a scientist (Model 3). We find support for hypothesis 5; high science confidence is associated with
higher odds of having a desire to be a scientist (β = 1.48, p = 0.001). Having a science possible self was
also associated with higher odds of having a desire to be a scientist (β = 2.42, p < 0.001).

4. Discussion

This study provides a comprehensive analysis of how a fixed mindset and essentialist mindsets
are associated with boy-science bias, science confidence, science possible selves, and the desire to
be a scientist in a large sample of early adolescents in a U.S. middle school. Several findings are
noteworthy. First, despite relatively high proportions of youth with high science confidence and high
science possible selves (about 25%), very few say they want to be a scientist “A lot“; only approximately
7% in the whole sample. Although almost twice as many boys desire to be a scientist in the bivariate
model (10% compared to 5%), gender differences are not significant in the adjusted model, indicating
that gender gaps in science are related to differences in science possible selves and science confidence
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among boys and girls. Indeed, science confidence and a science possible self were both independent
predictors of a strong desire to be a scientist.

While the only significant association with science confidence was self-reported grades in science
in the multivariate models, science possible self was associated with many more variables. Girls, youth
with a boy-science bias, and with a more fixed mindset were less likely to have a science possible
self, while grade level, science confidence, and college expectations were associated with a higher
likelihood of a science possible self. Although we do not find that a boy-science bias has a direct
association with youth desire to be a scientist, it has a negative association with a science possible self
for boys and girls. Therefore, higher levels of boy-science bias in 8th grade girls compared to 6th grade
girls may explain at least some of the emergent gender gap in science during early adolescence.

Although we hypothesized that a boy-science bias would be associated with lower odds of
having a science possible self for girls, and possibly higher for boys, we found it was associated with
having a lower likelihood of a science possible self for boys and girls. Theories about in-group biases
led us to hypothesize that a boy-science bias might give boys’ science possible self a boost or lift
(Walton and Cohen 2003). We therefore plan to conduct more research to understand how boy-science
bias could operate in the same way for boys and girls. It may be that some boys have unrealistically
high expectations of themselves, which do not match their perceived ability. It might also be the case
that strong in-group favoritism may be protective against low self-appraisal/self-esteem related to
underachievement or disinterest in science.

Science confidence had robust associations with having a science possible self and desire to be
a scientist, and the trend was that girls, on average, had lower confidence. The associations, however,
were only marginal in the multivariate model. We also did not find evidence that confidence differs
by grade between boys and girls in adolescence, although youth in higher grade levels had more
confidence than in lower grades, exploratory analyses suggest this is driven by boys’ confidence
increasing relative to girls, and not girls’ confidence decreasing. Science confidence has significant
associations with having a science possible self and the desire to be a scientist. Efforts to increase
science confidence among youth and longitudinal follow-up could better identify if such efforts could
help boys and girls maintain science interest and career aspirations.

Fixed mindsets about intelligence were associated both with a boy-science bias, and with science
possible selves in multivariate models. Essentialist mindsets were only associated with boy-science
bias and fixed mindsets in the bivariate models, and were not associated in the multivariate models.
These intriguing findings indicate that youths’ beliefs about intelligence, whether it is fixed or
malleable, are associated with boy-science bias and science possible selves. Therefore interventions to
foster growth mindsets and science possible selves could maintain, widen, and broaden interest and
persistence in STEM (Leslie et al. 2015; Meyer et al. 2015).

As with all research, there are important limitations to the generalizability of these results.
First, this is a study of a single school; schools can vary considerably, and variables associated with
adolescent culture might influence gender identity and gender stereotypes (Legewie and DiPrete 2014).
Second, this study is cross sectional. Although we interpret the differences between sixth, seventh,
and eighth graders, it is possible that the differences we see are cohort effects and not developmental
effects. Although theory and empirical research supports that there is likely a developmental change
in boy-science bias views, we cannot conclude from these findings that the differences we see by grade
level are necessarily developmental. We would need a longitudinal study to assess how these attitudes
change over time.

Our measures of social capital are limited, and recent research linking social capital with
“science capital” and science career aspirations indicates that this is likely an important aspect of
science career aspirations and science identity for adolescence (Archer et al. 2015). Future studies
should consider including measures of socioeconomic status, and in particular, “science capital”
including exposure to scientists, and exposure to science media, and informal science outside of
schools (Archer and DeWitt 2015). The association between mindset, stereotyping, and science possible
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self is another possible rich avenue for exploration. Although much of our emphasis is on reducing
the relevance of gender for STEM engagement, it might be worth exploring if in-group bias favoring
science is protective against gender stereotypes. A longitudinal study of youth from 4th through 8th
grade to assess change in mindsets, boy-science bias views, and science possible selves might unpack
how these constructs change over time for girls, and lead to possible promising areas for interventions.

Overall there is evidence that decreasing fixed and increasing flexible mindsets has the potential
to increase science possible selves and the desire for a job in science. Efforts to help youth learn about
how they learn and the possibilities for learning (i.e., that they do not have to be born a scientist),
seem promising for increasing interest in science careers. Attempts to de-gender science or to make
science gender neutral may also be worthwhile because boy-science bias was associated with lower
science possible selves for boys and girls. Finally, providing more concrete information about possible
science careers could help youth to imagine a possible self with work involving science.
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Abstract: This paper examines the extent to which prospective engineers follow in their parents’
footsteps. Specifically, we investigate the connection between fathers’ and mothers’ employment
in the engineering profession and the career plans of sons and daughters. We develop a number
of reasons to expect an occupation-specific intergenerational association in this field, as well as
hypotheses regarding gender-specific role-modeling. Data are drawn from the UCLA HERI Freshman
Survey data spanning 1971 to 2011. The results point to clear and substantial effects on sons and
daughters’ plans to pursue engineering, connections that cannot be explained by typical pathways
such as social background, education and values. The evidence points to a pattern of increasing
salience of mothers with respect to the career plans of their children, especially their daughters.
The implications of these findings for the under-representation of women in engineering and for
gender-specific family dynamics are discussed in the conclusion.

Keywords: gender; STEM fields; career choices; college majors; occupational mobility

1. Introduction

Despite a long and rich history of research on occupational mobility and career choice, researchers
have rarely explored intergenerational occupational inheritance at the level of specific occupations.
In this paper, we add to a small and diverse literature on this topic by investigating the extent to which
college freshmen plan to follow their parents into the engineering profession.

The under-representation of women in STEM (Science, Technology, Engineering and Mathematics)
fields has long been the focus of considerable scholarly attention [1–5] and public policy initiatives [6–9].
In particular, policy makers are concerned about a shortage of individuals trained for engineering and
other STEM professions. Indeed, interest in generating a skilled labor force underlies much of the
research on STEM fields [10,11].

The economic impact of the two and a half million engineers currently employed in the US far
surpasses their numbers. Working in diverse industries, they plan roads, bridges and weapons systems
for the government, design new products for consumers, monitor and improve production processes
in manufacturing and energy production, and develop materials for use in construction, medicine,
and many other fields [12,13].

Sociologists have long been interested in engineering [14] due to its status as a profession
often based in large corporations [15] and for its role as an exemplar of the knowledge society [16].
In more recent years, the gender and racial homogeneity of practitioners has taken center stage among
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sociologists interested in engineering [17,18]. Indeed, engineering is the largest of the STEM majors
and is the career most often mentioned by male freshmen [19]. The under-representation of women
and minorities is particularly notable in the case of engineering [20].

Examining occupational choices among parents and children will help us to understand
the under-representation of women in this field. Research on the determinants of women’s
entry into the field of engineering has paid relatively little attention to parent’s employment in
engineering [21]. Sikora and Pokropek (2012) represents a notable exception. If sons are more
likely than daughters to follow their fathers into engineering, this differential would contribute to
women’s under-representation in engineering. Similarly, if daughters are more likely to pattern
themselves on their mothers, and if mothers are substantially under-represented in engineering,
then this gender-specific role-modeling pattern could contribute to young women’s continuing
under-representation in this important field. These are among the possibilities we investigate [21].

In addition to contributing to our understanding of diversity in the field of engineering, this study
promises to contribute to our understanding of gender patterns within families. By examining
gender-specific role models, and investigating whether the salience of mothers’ careers has increased
over time as women’s careers have become more established, we hope to shed light on the way gender
inequality is reproduced and how these patterns may be evolving over time. The large and unique
data set we tap provides unparalleled opportunity to assess change over time and to make detailed
distinctions, such as differentiating between families in which both parents are employed as engineers
and those in which only the mother is an engineer.

Understanding freshman plans to pursue a career in engineering should be understood as
representing one point in the career-development process. Engineering, along with other STEM
fields, experiences considerable attrition during the undergraduate years, and significant gender
differences in persistence continue to be evident [22–25].

This line of research often focuses on the scientific “pipeline,” that is, stages in the educational
career where women may “leak out” of pathways towards a career in engineering [26–28]. For the
purposes of understanding the career plans of college freshmen, engineering is a useful case in part
because there is a clear link between the choice of field of study in college and the pursuit of a career.
Specifically, freshmen who express an interest in pursuing a career in engineering also are likely to plan
to major in engineering [29]. In many cases, there is an additional behavioral step involved. In other
words, engineering is often located in its own collegiate division or school and frequently requires
a separate application process. In short, the plan to pursue a career in engineering represents more
than checking off one box in a list of possible careers. We will examine the issue of the predictive
validity of freshman career intentions in more detail below.

Finally, given its reliance on data spanning several decades, this study will help us understand
change over time. We are particularly interested in exploring whether the salience of mothers in their
children’s career choices has grown over time.

2. Scarcity of Studies of Occupational Inheritance

Researchers from several distinct disciplines have approached the question of occupational
assortment using a variety of theoretical frameworks. As we will see, researchers have often focused
on self-selection into occupational types or clusters rather than individual occupations. This pattern is
evident in both social-psychological studies [30,31] as well as research on social mobility conducted by
sociologists [32].

This psychological literature, for example, emphasizes the role of personality and values in the
choice of occupations as well as the persistence in these careers. Another approach to intergenerational
inheritance employs occupational indices such as prestige scales or socio-economic status scores [33].
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Similarly, economic studies have generally emphasized intergenerational connections with respect to
income rather than via specific occupations per se [34,35].1

There is a widely dispersed literature on the recruitment and retention of employees in
particular occupations [36–38]. These fields often come to be studied because of perceived shortages,
high turnover, or the belief that the unique demands of a particular field require a very specific
personality type. These occupation-specific studies typically do not focus on the inter-generational
association. The main exceptions have been volunteers for military service [39] and self-employment.
A variety of studies have found that children whose parents were self-employed are much more likely
to be self-employed themselves [40,41].2

The scarcity of research on intergenerational connections to particular occupations may well be
due in part to the large amount of data needed to pursue this issue, since individual occupations often
represent one percent or less of a sample. Fortunately, the UCLA Higher Education Research Institute
(HERI) freshman surveys are large enough to allow for the analysis of small but important subgroups.

The questions investigated in this study most closely match those examined in an exemplary
paper by Sikora and Pokropek (2012) [21]. They considered the impact of parents’ careers on children’s
plans to pursue STEM careers using data on fifteen-year-old students from 24 countries. The differences
between our study and theirs include the following: (a) their study does not focus on engineering
alone but groups this field with computer science and mathematics; (b) we are able to examine changes
over time in the relationships between parents (especially mothers) and children; (c) our results
pertain to college freshmen, who are several years older than the students included in Sikora and
Pokropek’s study. Not only are college freshmen older and more focused on their career plans, but we
are observing them at a particularly critical time in the selection of their field of study.

3. Theorizing Intergenerational Connections

It should be noted that there is a broad cultural emphasis on the importance of young adults
making their own choices. In other words, parents (at least in the US) are broadly enjoined from
issuing specific career directives for their children. Instead, parents’ role is often seen as “guiding,
not deciding” for their children [42].3 Advice columnists and parenting guides urge parents to help
their children pursue opportunities for self-discovery and appropriate information rather than direct
them toward a goal of the parents’ choosing [43]. In fact, as we will see, the vast majority of children
pursue careers that differ from those of their parents.

There are nevertheless a number of reasons to believe that children will be disproportionately
likely to follow in their parents’ footsteps. There are at least three sources of a connection between the
careers of parents and their children: familiarity, values and skills. The world of work is comprised
of a bewildering array of specialties, and consequently there are many fields of work which may
not be familiar to the average 18-year-old. In general, children are exposed to their parents’ career
choices, although they may not be acquainted with the details of the job. If occupational choices are
disproportionately concentrated among familiar fields, and if children are at least acquainted with
their parents’ jobs, then children will disproportionately express an interest in the same career choices
as their parents. In Sorensen’s (2004) memorable formulation, exposure (to parent’s occupational
experiences) leads to social closure, that is, a tendency for in-group members to have advantaged
access to a social position over out-group members [41].

1 Several economic studies of intergenerational inheritance in specific occupations are discussed below.
2 Self-employment across generations is a complex matter, as not all children take over their parents’ business. Moreover,

many self-employed individuals are supplementing other family income by working part-time.
3 Parents of students at the University of Minnesota divided roughly between those who felt parents should have “some”

influence over their children’s career choices (45%) and those who felt that parents should have “a little” or “very little”
influence (49%) (University of Minnesota, 2011). Very few parents maintained that they should have “a lot” of influence
(less than 2%, and only a small fraction felt that parents should have no influence (less than 4%).
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Children may also absorb occupationally-related values from their parents. For example,
some parents may emphasize the importance of service as a necessary component of meaningful
work, while others may stress the importance of job security or pecuniary success. Many studies have
documented the inter-generational congruence of connection of values, although the connections are
sometimes weaker than one might expect and the pathways can be hard to pinpoint [44–47].

A final reason for expecting children to follow in their parent’s footsteps relates to the acquisition
of skills. Children may absorb some of the ‘tricks of the trade’ by watching their parents work and
listening to their parents’ stories. This mode of human capital acquisition has been emphasized
for self-employment and family farms, where children are likely to have direct exposure and even
involvement, a form of on-the-job training. Some researchers find that those who have inherited
occupations from their parents earn more than those whose parents were employed in different
fields ([48]; but see Sorensen (2004) for an exception [41]). They attribute this earnings advantage to
the assimilation of occupation-specific skills during childhood and adolescence by those who follow in
their parents’ footsteps.

To summarize, despite a general cultural emphasis on the importance of individual choice,
we expect that children are likely to disproportionately select their parents’ current career as their own
occupational goal.

4. Engineers’ Job Satisfaction

The tendency of children to follow their parents’ career choices assumes that the parents
themselves have a generally positive view of their career choices. While it is difficult to summarize
feelings about the engineering profession, since it represents such a large and diverse set of careers and
employment settings, there are nonetheless several reasons to believe that parents convey a generally
positive assessment of their careers in the field.

Professionals tend to view their careers in a favorable light, and engineers are no exception in
this regard [49]. Our analysis of job satisfaction using data from the General Social Survey (GSS)
reveals that engineers are not statistically distinguishable from other professionals in their level of job
satisfaction.4

When the Gallup organization asked respondents what kind of work or career they would
recommend to a young man or woman, engineering ranked in the top 7 for both genders, and
combining “engineering” with “technology/electronics” and “computers” would place this cluster of
fields second only to medicine [50]. One survey reports that engineers generally regard their work as
“interesting and rewarding” (77%), and that 84% would recommend and engineering career to their
child or to a friend’s child [51].

An additional consideration that should be noted here is that parents of college freshmen are
generally older, and job satisfaction increases with age. This is due in part to the fact that job rewards
increase with age [52]. It is also the case that parents who are engineers when their children are in
college represent those who have survived or persisted in the field of engineering. Many of those
who were disgruntled or unsatisfied with engineering would have left the field by this stage in their
lives [53]. Since parents of college freshmen are generally in their forties or fifties, they may well offer
a more positive evaluation of the field than those who were dissatisfied and left to pursue other lines
of work.

4 The main caveat here is the small sample size, due to the fact that job satisfaction is not included in every administration
of the GSS, and the fact that only a small fraction of working Americans report that they are employed as engineers.
We conducted the comparison for the 53 engineers in the GSS sample as well as for a broader set of architects, engineers and
scientists (n = 96).
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5. Fathers and Mothers, Sons and Daughters

Thus far, we have reviewed reasons for parental effects without differentiating between fathers
and mothers on the sending side and sons and daughters on the receiving side. Now, we turn to the
issue of gender-specific connections. The father-son relationship has been the focus of the greatest
attention. In our view, this reflects the historical assumption that the status of the family depends on
the father’s occupation and earnings. In other words, if the male is assumed to have the breadwinner
role [54], the connection between fathers and sons is the key association in terms of intergenerational
transmission of status.

Research on intergenerational social mobility has most commonly taken father’s occupation as
a measure of ‘social origins,’ whether or not daughters are included along with sons in the research [55],
despite substantial evidence that mothers also influence children’s outcomes. When mothers are added
to the model, their influence has usually been conceptualized as rooted in their education rather than
their occupation (see [56] for a review, and [57] for an exception). However, women’s employment
has grown to the point that the majority of mothers work for pay, including mothers of pre-school
children [58]. The vast majority of undergraduates are able to list a career for their mothers, and only
a minority list their mother’s occupation as “homemaker.”5 In this context, it is important to develop
specific hypotheses regarding the effects of both fathers and mothers on the career choices of sons
and daughters.

We expect the occupation-specific father-son connection to be stronger than the father-daughter
connection. Daughters who choose to follow their fathers must overcome gendered stereotypes about
careers in engineering and science (see [17,25] cited above). In other words, we expect that it will be
easier for sons to follow their fathers because there are a host of social and cultural obstacles in the
way of daughters who may be inclined to do the same.

The voluminous literature on role models suggests a mother-daughter connection. Researchers
have long suggested a connection between positive maternal role models and daughters’ engagement
in paid employment [59].6 Now that mothers’ employment is common, we expect that mothers will
not only represent a model of employment but of specific occupational choices as well. More recent
research, in both experimental and natural settings, has provided evidence that non-familiar female
role models, serve to counter gender-stereotypes [61]. A central question, then, is whether the presence
of a significant role model within the family in a gender-atypical setting effectively counters the
broader cultural barriers to the daughter’s pursuit of a male-dominated field, in this case a career
in engineering.

Sikora and Popropek [21] lay out the role-modeling thesis in detail with respect to careers in
sciences. They find that role models are influential in the choice of scientific careers, and parents in
particular serve as powerful role model.

Marks [62] carefully maps out several specific gender-specific role-modeling effects. Specifically,
he investigates whether fathers have stronger effects on boys in terms of the influence of the
fathers’ socio-economic level, occupational status and educational attainment. The mother-daughter
association for these same three factors are also posited to be stronger than the gender-discordant
relationships. Drawing on data covering over 170,000 15-year-old students in 32 countries, Marks finds
some evidence of these gender-specific relationships on children’s student performance, but these
associations are not consistently evident within countries or across countries. Marks concludes that
it makes relatively little difference which parent contributes resources to the family as long as the
mother works for pay. He also finds no evidence of change over time in the impact of mothers relative
to fathers.

5 In the 2015 HERI survey, 15.0% of freshmen listed their mother’s occupation as “homemaker/stay at home parent” while
2.0% of fathers were classified this way. See Eagan et al. [19].

6 See Gerson [60] for a useful corrective to an overly simplistic view of stay-at-home or working mothers as role models.
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Rather than abandon the premise of gender-specific role models, this study will pursue these
questions in terms of a substantively different parent-child connection. We posit that that the
parent-child connection may well be stronger in terms of the child copying the parent’s specific
occupational field rather than in terms of students’ overall educational performance. The general
socio-economic relationships that Marks investigates are rather diffuse and children may not
differentiate between their father’s and their mother’s attributes in this particular way. In other words,
if children experience their family’s overall social standing as a whole, it may not always be possible to
tease out separate effects of mothers and fathers, especially as parents are increasingly matched on
their educational levels [63]. In contrast, the particular occupational and career experiences of parents
may well be more salient and not reducible to a general socio-economic dimension. Thus, there is
reason to believe that, when it comes to career choice, sons may be more likely to copy their fathers
while daughters copy their mothers.

In addition to redirecting the question to occupational specific connections, we reframe the
question in terms of change over time. Mothers’ impact on the career goals of their children may be
more salient today than was the case a generation or two ago, when fewer mothers worked outside
the home for pay, and when commitment to a full-time career was less common than it has become.

As women spend a greater portion of their lives in the labor force, it may be that their occupational
choices are becoming increasingly influential in their children’s development of career aspirations.
Consequently, we expect that the salience of mothers’ careers may well have increased over time,
especially in terms of their connection with the career choices of their daughters. We expect that
mothers will have disproportionate effect on their daughters rather than their sons, and that the effect
on both sons and daughters will have grown in recent decades.

It should also be noted that mothers who remain employed as engineers by the time that their
daughters are entering college are a selected group. There is evidence of attrition from engineering
at all stages, from the point of college entry and continuing throughout the career, and exit rates
are higher for women than for men (see [23–25,53]). Consequently, the role-modelling of mothers in
this case needs to be understood against this backdrop. In other words, the mothers who survived
in engineering are more likely to be committed to this career, and their daughters are likely to be
cognizant of this fact.

In this regard, our hypothesis is quite different than that developed by Hellerstein and Morrill [64],
who find evidence of an increasing association over time between the career choices of daughters
and their fathers. They posit that this reflects a greater level of “occupational-specific” human capital
investments on the part of fathers in the context of a greater likelihood that their daughters are
going to spend a significant portion of their careers in the labor market. It is possible, then, that the
Hellerstein-Morrill effect may off-set a potential increase in the mother-daughter connection. Of course,
it is possible as well that there has been an increase in both the father-daughter and mother-daughter
connections. We revisit the Hellerstein-Morrill issue with data that spans the period during which
mothers’ labor force attachment was increasing.

6. Parental Occupational Homogamy

One important consideration in assessing the potential impact of mothers who are engineers is the
fact that a very large fraction—almost half—of students whose mothers are engineers also report that
their fathers are engineers. Consequently, a simple assessment of the mother’s impact on her children
will overstate her influence because in many cases this will actually represent the combined effect
of fathers and mothers. Because we have such a large sample, we are able to separate engineering
families into those which are father only, mother only, or both parents.

7. Research Questions

The specific goals of this study include efforts to answer a series of inter-related research questions:
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Research Question 1: Is there an increased likelihood of planning a career in engineering if one or more
of the respondent’s parents is an engineer?

Research Question 2: Does the association between parents’ and children’s careers vary for fathers and
mothers, and sons and daughters, as well as the case in which both parents are engineers?

Research Question 3: Have these associations increased or declined over the last four decades?

Research Question 4: Are parental effects mostly mediated by particular pathways, such as values and
preparation, or is most of the parent–child association a largely unexplained residual?

8. Data and Methods

Our research taps into data collected by the Cooperative Institutional Research Program (CIRP),
a nationwide study of college students housed at the Higher Education Research Institute at
the University of California, Los Angeles. The HERI Freshman Survey, a national longitudinal
study of college students in the United States, annually obtains responses from entering college
students regarding their demographic backgrounds, high school experiences, affective traits such as
self-concepts and values, and goals and aspirations related to college and beyond.

Data for this study cover the period 1976 through 2011. The analysis reported here is based on
a sample of nearly 1 million first-year students. This sample is stratified by institutional type, control
and selectivity. Weights are applied in order to make the results representative of freshmen enrolled
full time at four-year institutions in the United States [19].

Entering freshmen are asked to indicate their intended career as well as the careers of their parents
based on a list of several dozen career goals on the survey. This occupational list forms the basis for
the dependent variable in this study as well as the two key independent variables. Students who
designated “engineer” as their career goal were assigned a value of 1; other occupational plans were
assigned a value of 0. The same procedure was applied to students’ reports of the parents’ occupations.
The odds ratios for father-son, father-daughter, mother-son and mother-daughter associations are
calculated. These and other analyses are reported separately by gender. The trends in these associations
are also reported.

Once the associations between first-year students’ plans to enter engineering and their parent’s
employment in engineering were established, we sought to identify whether these associations
were mediated by identifiable measures. In other words, we examined whether the parent-child
association could be explained by factors such as academic self-concept or student values, or whether
the association was a direct one, net of mediating factors. We employ logistic regression analysis,
given the 0/1 nature of the dependent variable. We also checked on the robustness of the model by
re-estimating it with OLS (ordinary least squares) regression as recommended by Mood [65].

The control variables employed in this study were prepared as part of a larger project on the
determinants of majoring in STEM fields. The selection and grouping of other independent variables
draws on Lent, Brown, and Hackett’s [66] Model of Career Related Choice Behavior (MCRCB).
Variables were divided into four groups:

� Race, Ethnicity and Religion
� Socio-economic Characteristics
� Educational Preparation, Self-Rated Abilities and Aspirations
� Personality, Interests and Goals.

- Race, Ethnicity and Religion: Race dummy variables (vs. White) include African-American,
Asian-American, Latino/Chicano and Native American. Religion (versus Protestant)
dummy variables include Catholic, Jewish, Other and None.

- Socio-economic Characteristics: Family Income, Mother’s and Father’s Education, Race,
Ethnicity and Religion, and Financial Concern for College,
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- Academic Preparation, Self-Rated Abilities and Aspirations: High School GPA, Self-rated
Mathematics Ability, Scholar Personality (factor), Degree Aspiration, Expectation of Making
at Least a B Average, Expectations of Changing Major Field, Educational Reasons for Going
to College (factor).

- Personality, Interests and Goals: Leader Personality (factor), Scholar Personality (factor), Goal
of Making a Theoretical Contribution to Science; Goal: Developing a Meaningful Philosophy
of Life; Goal: Raise a Family; Social Activist Personality (factor), Artistic Personality (factor),
and Status Striver Personality (factor), Educational Reasons for Going to College (factor),
Extrinsic Reasons for Going to College (factor).

The principal focus is the effect of these blocks of variables on the strength of the parent–child
connection. The goal of the analysis is to determine whether these groups of variables account for,
or explain, the impact of parents on their child’s choice of engineering as a career goal. The construction
of the factors and other specifics regarding these control variables can be found in the appendix section
of this paper.

While we draw on a very large data set spanning a long period of time with an extensive set of
variables, there are limitations to this study, as is inevitable in any research of this kind. The data we
examine do not follow students over their undergraduate years and into their careers. Thus, while we
are able to shed light on a key moment in the career development process, we are unable to address
questions regarding persistence into engineering and other STEM careers. The UCLA HERI Freshman
Survey data also do not include questions regarding how involved parents are in their children’s
career choices, questions that are available in some other studies, e.g., [67]. We also do not have direct
measures on parents’ values. We are thus in a position of inferring value transmission from student
reports rather than comparing students’ and parents’ reports.

9. Results

Figure 1 displays trends in the percent of freshmen indicating that they plan to major in
engineering. For most of the last forty years, these figures have hovered between 12% and 18%
for men and 2% and 4% for women. The fraction of women indicating an interest in engineering has
increased since the 1970s, when it was 12%–13% as high as men’s;7 it has ranged from 18% and 22% of
men’s level of interest since then.8

Are sons of engineers more likely to follow their fathers into engineering, and daughters more
likely to follow their mothers? Pertinent data are presented in Table 1. Summarizing over the entire
period 1976–2011, the findings indicate that a significant minority of sons of engineers (27.4%) plan to
follow their fathers into this career field, compared with 13.3% of their male classmates.

A brief discussion of probabilities, odds and odds ratios may be helpful in understanding these
patterns. The probability of a young man aspiring to engineering if his father is an engineer is 27.4.
The odds of his aspiring to engineering if his father is an engineer is 27.4/72.6 = 0.377 (p/1 − p).
For young men whose fathers are NOT engineers, the corresponding odds are 13.3/86.7 = 0.153.
The odds ratio for young men with and without engineering fathers is therefore 0.377/0.153 = 2.46,
meaning that those with an engineering father are 146% more likely to aspire to an engineering career
than those without an engineering father.

While daughters are much less likely to plan to become engineers than are sons, there is
nonetheless an increased likelihood associated with parental employment in this field. Daughters

7 For example, in 1976, 1.93% of women and 14.99% of men planned a career in engineering; thus, women’s level of interest
was 13.4% (1.93/14.99 = 13.4%) as high as men’s.

8 Figure 1 indicates an increase in interest in engineering careers on the part of both freshman men and women that coincided
with the start of the Great Recession. This increase is also reflected in a growth in the number of engineering majors and
enrollment in schools of engineering [68].
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whose fathers or mothers are engineers are more likely to enter engineering (6.3% and 11.9%,
respectively), than are those whose parents are engaged in other occupations and professions
(2.3%–2.6%).

14.99%

17.80%

12.59% 12.65%

15.03%

1.93%

3.24%
2.49% 2.36%

3.30%

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

1976 1986 1996 2006 2011

Figure 1. Percent of College Freshman Planning to Become 
Engineers

men women

Figure 1. Percent of College Freshman Planning to Become Engineers.

For all four parent-child relationships, there is a considerable effect of parents’ careers on their
children’s choices. Expressed in terms of an odds-ratio, the odds of entering engineering more than
double (2.45) if the father is an engineer.

A strong father-daughter connection appears when this association is depicted in terms of an odds
ratio (2.85). This does not mean that daughters of engineering fathers are more likely to become
engineers than male counterparts. Rather, it indicates that the relative effect of fathers (starting at a very
low baseline) is as large if not larger for daughters than for sons. The mother-daughter connection
appears to be the strongest of all of the parent-child dyads (odds ratio = 5.06), but further analysis is
needed to refine this conclusion. The gender-specific associations conform to our expectations in some
respects but not in others. The main surprise is the disproportionately large effect of mothers on both
their sons and daughters. As we will see shortly, this effect is not quite what it seems, as it is in part
a “both-parents” effect.

The unstated pattern in the first panel of Table 1 is the fact that many mothers who are engineers
have spouses (or at least co-parents) who are also engineers. While of course not all parents are married
or remained married by the time their children enter college, understanding the impact of parental
occupational homogamy is necessary for fully addressing the issue of gender-specific role-modeling.
Overall, 8.5% of all freshmen have only a father who is an engineer, 0.5% only have a mother who
is an engineer and 0.24% report that both parents are engineers. There is an interesting asymmetry
in mothers’ and fathers’ engineering careers. Nearly half of students who report that their mothers
are engineers also report that their fathers are engineers (47.2%), while only a small fraction (2.8%)
of students with engineering fathers report having a mother who is an engineer.9 This reflects the
fact that women engineers represent such a small minority in this profession. This asymmetry will
reappear in interpreting other findings as well. This pattern of occupational homogamy among parents

9 This pattern holds for a number of occupations, including physicians [69].
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requires us to separate out parents into four categories: the (a) father is an engineer while the mother is
not; (b) the mother is an engineer while the father is not; (c) both parents are engineers; and (d) neither
parent is an engineer.

Table 1. Interest in Engineering by Parental Engineering Employment and Gender.

A. Sons

percent indicating engineering as a career plan

father father not mother mother not
engineer engineer engineer engineer

0.274 0.133 0.305 0.145

B. Daughters

percent indicating engineering as a career plan

father father not mother mother not
engineer engineer engineer engineer

0.063 0.023 0.119 0.026

C. Sons, Differentiating Father only, Mother only and Both Parents as Engineers

percent indicating engineering as a career plan

father only mother only both parents neither parent
engineer engineer engineers engineer

0.270 0.236 0.382 0.133

D. Daughters, Differentiating Father only, Mother only and Both Parents as Engineers

percent indicating engineering as a career plan

father only mother only both parents neither parent
engineer engineer engineers engineer

0.060 0.077 0.165 0.023

The effect of fathers on their sons and daughters declines slightly when the association focuses on
families in which only the father is the engineer. (The odds ratio declines from 2.45 to 2.38 for sons.)
This slight change is due to the fact that a small number of “both parent” engineering families are
included in the results reported in Panel A of Table 1. When this group is removed, the father-son
relationship declines marginally. There is much more sizable decline in the mother-son association
when dual-engineering families are removed due to the concentration of engineering mothers in this
group. The mother–son odds ratio declines from 2.60 to 1.81 when the analysis focuses on mothers only.

The same pattern holds for daughters. There is still a considerable father-daughter connection in
Panel D of Table 1 (odds ratio is 2.65), but the effect of mothers on daughters is considerably attenuated
(odds ratio = 3.08, compared with 5.06 when dual-engineering parents are included).

When both parents are engineers, the parental effect more than doubles for sons and nearly
doubles for daughters. A large minority (38.2%) of sons plan to pursue engineering when both of the
parents are engineers, while for daughters the rate is about one in six (16.5%). This rate is roughly
the same as what would be obtained by adding the impact of both fathers and mothers. This finding
speaks to the power of families to affect the career choices of their children.

The results presented in Table 2 speak to trends over time in parent-child associations. Rather
than portraying these connections as reflecting some enduring psycho-social dynamic within families,
our analysis opens up the possibility that these relationships vary over time.
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Table 2. Time Trends for Parent Child Association.

A. Sons
Odds Ratios

Father Mother Father only Mother only Both Parents

1976 2.43 2.15 2.41 1.24 4.58
1986 2.29 1.70 2.27 1.28 2.85
1996 2.35 1.98 2.31 1.47 3.01
2006 2.50 2.72 2.42 2.03 3.57
2011 2.71 3.41 2.52 2.32 4.39

All Years 2.45 2.60 2.38 1.81 3.63

B. Daughters
Odds Ratios

Father Mother Father only Mother only Both Parents

1976 3.22 2.21 3.19 - -
1986 2.51 2.25 2.47 1.69 5.85
1996 2.53 4.14 2.42 3.09 5.75
2006 3.11 5.38 2.77 3.02 7.90
2011 3.01 5.18 2.60 3.34 6.75

All Years 2.85 5.06 2.65 3.08 7.35

Note: Missing values for 1976 reflect low samples sizes. The 1986 results for mother only and both parents
represent an average of 1976 and 1986 data.

In Table 2, we see a steady increase over time in the effect of mothers who are engineers on the
career choices of their children. These results are presented graphically in Figure 2a,b. Focusing on the
father-only and mother-only trends, for sons, mothers’ impact is much weaker than that of fathers at
the start of the study period. The gap, however, narrows considerably, and since 2006, the connection
between mothers’ careers and their sons’ career choices is considerable (odds ratios in excess of 2.0 for
2006 and 2011). For daughters, however, the marked increases in mothers’ effect now reveal a stronger
mother-daughter connection than is the case between fathers and daughters. The mother-daughter
association jumped in the 1990s and has remained strong (odds ratios above 3.0) ever since.10

The results presented in Table 2 underscore the importance of examining change over time.
Specifically, the relative influence of parents on daughters shifts over time. Fathers had more impact
than mothers on their daughter’s career choices in the 1970s and 1980s, and this pattern shifts to
a gender-specific role-modeling pattern since the 1990s.

In the multivariate analyses, we estimated the effect of several sets of variables in addition to
parents’ occupation on the choice of engineering. In other words, we added groups of variables in
order to see how much they reduced the intergenerational associations presented in Tables 1 and 2.
Coefficients for parental engineering status from nested (or step-wise) regression results are presented
in summary form in Tables 3 and 4. The full models are presented in Tables A3 and A4.

Intergenerational effects remain strongest for same-gender parents, and the overwhelming
majority of the parent-child association is a direct effect, independent of the mediating variables
included in our model. In other words, other indicators of social background, children’s academic
preparation and values, self-efficacy, etc., are responsible for only a small portion of the parent-child
association observed. This pattern is particularly clear for fathers and sons, where nearly 90% of the
association remains after controls are added to the model. The pattern also holds almost as well for
fathers and daughters.

The influence of mediating variables is stronger in understanding the effect of mothers: roughly
one quarter of the father-daughter association is mediated by the control variables, as is nearly

10 The cell sizes for 1976 were too small to report when we tried to differentiate between mother-only and dual-career marriages,
but the increasing maternal effect is evident in the overall mother’s effect reported in Table 2. The odd-ratio for mothers and
daughters grows from 2.21 in 1976 to 4.14 in 1996 to 5.18 in 2011.
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two-fifths of the mother-daughter association. Academic variables such as self-rated mathematics
ability and personality, interest and goals play the largest role in mediating the mother-daughter
association. This notable result warrants further inquiry.

 
(a) 

(b) 

0

1

2

3

4

5

6

7

8

9

1976 1986 1996 2006 2011
father only mother only both parents

Figure 2. (a) Trends in Parent-Son Association for Plans to Enter Engineering: Odds Ratios;
(b) Parent-Daughter Association for Plans to Enter Engineering: Odds Ratios.

The OLS analysis confirms the general story but there is less of a gendered difference in the effects
of the mediating variables (See Table 4). The portion of the intergenerational association mediated
by control variables is roughly 20% for fathers and sons, 25% for mothers and sons, 15% for fathers
and daughters, and 20% for mothers and daughters. In both sets of specifications, there is a large
intergenerational association not accounted for by the factors controlled in this analysis. The full
regression models are reported below as Tables A3 and A4.

The results were estimated separately for freshman men and women. We pooled the two groups
in order to test for statistical significance. Given the large sample sizes, the gender differences reported
are all statistically significant, p < 0.001. Specifically, the father-son association differs from the
father-daughter relationship, and the mother-son and mother-daughter effects differ as well.
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10. Persistence in Engineering

A skeptic might question whether freshman intentions are a meaningful indicator of the choice of
major and career. While many students who report engineering as a career goal will not end up as
engineers, the freshman data are more predictive than a questioning reader might assume. Moreover,
if there is one field where the link between freshman intentions and career outcomes is likely to be
evident, it would be the field of engineering. Many students enter the engineering pipeline early
because the extensive and demanding requirements can make switching in relatively difficult. In fact,
nearly all students who report planning to become an engineer also report that engineering is their
intended field of study (95% of men and 94% of women). Thus, engineering career plans have face
validity in terms of their connection to the choice of major.

A variety of data sources also suggest substantial persistence; that is, students who plan to major
in engineering are well represented among those who graduate with engineering degrees and begin
their careers as engineers. Astin and Astin (cited as [22] above) report that 43.9% of freshmen who
intended to major in engineering in 1985 remained in the field four years later, and a total of 53.4%
ended up in a STEM field. While this may seem to indicate a low rate of persistence, it should be
noted that relatively few students switch into engineering. In other words, over two-thirds (68.9%) of
those who were majoring in engineering in 1989 had planned to do so four years earlier. Expressed in
terms of an odds ratio, students were 33 times more likely to become an engineering major if they had
indicated this plan as a freshman.

A strong pattern of persistence of freshmen in engineering is also reported with more recent data
by Hughes and his colleagues ([29] above). They also found that having a parent who was an engineer
increased the chances of completing this course of study. In other words, having a parent who was
an engineer not only increased the chances of entering engineering, but also increased the chances of
continuing in the field. Sax [70] reports that the majority of engineering undergraduates who pursued
graduate training (64.9% of women and 63.5% of men) did so in the field of engineering.

While the persistence data discussed here may seem to set a higher bound on the degree of
parental impacts, there are a number of additional considerations that should be taken into account.
It may be that some children of engineers who did not express an interest in the field reverted to this
choice at some later point. As noted above, nearly one-third of engineering graduates switch into the
field during college. If children of engineers are disproportionately represented in this group, it would
increase the degree of intergenerational connection.

Another consideration has to do with near misses. It is often the case that children are affected by
their parent’s occupation even when it is not a case of complete correspondence. For example, if the
mother is an electrical engineer and her daughter planned to be a computer scientist, many would
consider this a case of the daughter following in her mother’s footsteps, but in our analysis, this would
be considered a defection [71]; see also [22]. If we add physical sciences and mathematics as additional
educational choices and science-related careers, the extent of parental sway would be substantially
higher than if the analysis is restricted to perfect matches.

11. Conclusions

This study contributes to our understanding of how the scientific and technical labor force is
created. Specifically, there is a significant inter-generational association in the pursuit of careers in
engineering. Both fathers and mothers significantly affect the career choices of their sons and daughters.
These effects are large direct effects, that is, they are principally effects that are in addition to the effects
of parents’ socio-economic status and the influence that they may have on their children’s values.
In other words, the parental coefficients remain large even in full model with extensive controls.

Since young women and young men are roughly equally likely to have parents who are engineers,
the gender differential in this case is not a matter of daughters’ deficit. In other words, the gaps
documented here are more about differences in parental effects between young men and young women
rather than differences in levels of family resources or family exposure to engineering role models.
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The data point to gender-specific role model effects. Sons are more likely to follow in their father’s
footsteps than in their mother’s. The gender gap in parents’ effects has narrowed as the salience of
mothers on the career choices of their children has grown over time. The gender-specific role-modeling
pattern for daughters is a story of change over time. In the 1970s and 1980s, daughters were more likely
to follow their fathers than their mothers. However, since the 1990s, the mother-daughter connection
has become stronger than the father-daughter connection. This pattern is most evident when the power
of mothers is isolated by distinguishing mother-only engineering families from those in which both
parents were engineers. Identifying the small numbers of families in which both parents are engineers
reveals the powerful role modeling that occurs under such conditions.

Our results extend the findings of Sikora and Propokek [21] by showing that gender-specific
parental role modeling operates at the point of college entry. The findings extend Marks’s [62]
analysis by examining occupation-specific role modeling effects. In other words, while the general
socio-economic standing of mothers and fathers does not consistently appear to be channeled
via gender-specific role modeling, the choice of specific occupations does operate in this manner.
The results presented here run somewhat counter to those of Hellerstein and Morrill [64], in that it is
the growing importance of mothers rather than fathers that stands out.

The daughters of engineers are much less likely than are sons to pursue careers in engineering.
This gendered baseline is clear from the data, even though the presence of parents in the field
leads daughters to pursue engineering far more than the classmates in non-engineering families.
One potential source of additional women in engineering (and, by extension, other STEM fields) would
be to increase their representation to the same level as their brothers and other male counterparts.

The results point to a growing effect of mothers on the career choices of their children, especially
their daughters. We interpret this as pointing to a growing salience. The presence of mothers in the
labor force is now more established, and mothers are working for a greater share of their children’s
early years. The evidence from engineering, which remains a majority-male field, brings the influence
of mothers’ careers into sharp relief.

The findings on the increasing impact of mothers on daughters is a promising development,
but (a) engineering mothers remain relatively scarce, and thus the payoff of this relationship will take
a long time to have a significant impact; and (b) the growing significance of mothers is relative to the
low baseline of daughters’ interest in engineering. In other words, while the impact of mothers is now
considerable, the level of their daughters’ interest in engineering continues to lag well behind their
male counterparts.

Do the findings on the salience of parents’ careers point to any policy recommendations for
non-engineering families? Compared to students whose parents are engineers, other students have less
direct exposure to the profession, less familiarity with the values and lifestyle that this type of career
involves, and possibly less occupation-specific knowledge. Consequently, more effort to cultivate
interest in engineering in these families is likely to be required.

The notion of gender-specific role models may perhaps be extended from the realm of family
members to non-family members. Projects engaged in promoting women’s representation in
engineering [72] have tried to develop social supports in just this way. In other words, if students
have not had direct exposure to engineering and related STEM fields in their own family experience,
educators can seek to substitute other social experiences that would provide a substitute for this type
of direct familiarity and exposure. The data reported here are consistent with the thrust of this type of
non-familial social supports are in order for the great majority of college students who did not happen
to have parents who spent their careers in the engineering profession.
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Appendix A. Details on the Multivariate Regression Analysis

This study utilizes data from the Cooperative Institutional Research Program (CIRP) Freshman
Survey, the oldest and largest longitudinal study of American higher education. The survey is
administered to entering college students and covers a wide range of topics, including demographic
background, high school experiences, college expectations, self-concepts, values, and life goals as
well as their academic and career aspirations. A large number of these variables have been asked
consistently over the years; hence, this information enables us to meet the study’s key objectives,
which is to examine changes over time in parent’s influence on the pursuit of a career in engineering.

This study is based on CIRP data from 1225 baccalaureate-granting institutions from 1976 to 2011.
Data on five time points (1976, 1986, 1996, 2006 and 2011 are included. The trend analysis explores
how the intent to pursue a career in engineering has varied by gender from 1976 to 2011. The sample
for the descriptive trend analysis was then weighted by student gender and institutional control, type,
and selectivity so that it would reflect the population of first-time, full-time college students at all
four-year institutions in the United States for each year. (See Pryor et al. [65], for a weighting scheme,
in addition to validity, and reliability).

The regression analyses provide insight into the pathways which may account for parents’ effect
on their children’s plans to pursue a career in engineering, and focus on five specific years of survey
data: 1976, 1986, 1996, 2006, and 2011. These years were selected because they contained the most
consistent set of survey items at evenly-spaced decade (and one half-decade) intervals. The regression
sample from across these five years is unweighted.

1. Measures

Men’s and women’s self-reported plans to pursue a career in engineering (versus all other majors)
serves as the dependent variable in the regression analysis. Planning a career in engineering is coded
as 1 and all other career plans are coded as zero. Overall, 14.5% of the male freshmen and 1.9% of
the female freshmen indicated that they planned to pursue careers in engineering. Given the focus
on intergenerational connections, father’s and mother’s employment in engineering serve as the key
independent variables in this analysis.

The list of independent variables used for the regression analysis, along with their coding schemes,
is provided in Table A1.

Table A1. Variable List and Coding.

Dependent Variables

Intent to Puruse a Career in Engineering Dichotomous: 0 = All others, 1 = Engineering

Key Independent Varaiables

Father Engineer Dichotomous: 0 = All Others, 1 = Engineering
Mother Engineer Dichotomous: 0 = All Others, 1 = Engineering

Race, Ethnicity and Religion Race (vs. White)

African American Dichotomous: 0 = “No”, 1 = “Yes”
Asian American Dichotomous: 0 = “No”, 1 = “Yes”
Latino/Chicano Dichotomous: 0 = “No”, 1 = “Yes”
Native American Dichotomous: 0 = “No”, 1 = “Yes”

Religion: Catholic Dichotomous: 0 = “No”, 1 = “Yes”
Religion: Jewish Dichotomous: 0 = “No”, 1 = “Yes”
Religion: Other Dichotomous: 0 = “No”, 1 = “Yes”
Religion: None Dichotomous: 0 = “No”, 1 = “Yes”

Socio-Economic Characteristics

Father’s Education 8-point scale: 1 = “Grammar school or less” to 8 = “Graduate Degree”
Mother’s Education 8-point scale: 1 = “Grammar school or less” to 8 = “Graduate Degree”
Family Income 25-point scale: 1 = “less than $6000” to 25 = “$250,000 or more”
Concern about Finances 3-point scale: 1 = “None”, 2 =”Some”, 3 = ”Major”
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Table A1. Cont.

Dependent Variables

Educational Preparation, Self-Rated Abilities, and Aspirations

High School GPA (Average grade in H.S.) 8-point scale: 1 = “D” to 8 = “A or A+”
Self-rated Mathematical Ability 5-point scale: 1 = “Lowest 10%” to 5 = “Highest 10%”
Future Activity: Make at least a ‘B’ average 4-point scale: 1 = “No Chance” to 4 = “Very Good Chance”
Future Activity: Change Major Field 4-point scale: 1 = “No Chance” to 4 = “Very Good Chance”

Degree Aspirations (vs. Bachelor’s or less)

Ph.D Dichotomous: 0 = All Others, 1 = PhD
Law Dichotomous: 0 = All Others, 1 = Law
Medical Degree Dichotomous: 0 = All Others, 1 = Medical
Master’s Degree/M.Div. Dichotomous: 0 = All Others, 1 = Master’s or M.Div.

Personality, Interests and Goals

Leader Personality Factor See Table A2
Scholar Personality Factor See Table A2
Goal: Develop a meaningful philosophy of life 4-point scale: 1 = “Not Important” to 4 = “Essential”
Goal: Make a theoretical contribution to science 4-point scale: 1 = “Not Important” to 4 = “Essential”
Goal: Raise a family 4-point scale: 1 = “Not Important” to 4 = “Essential”
Social Activist Personality Factor See Table A2
Artistic Personality Factor See Table A2
Status Striver Personality Factor See Table A2
Education Reasons for choosing a College Factor See Table A2
Extrinsic Reasons for choosing a College Factor See Table A2

2. Factor Analysis Procedures

Exploratory factor analysis using Principal Axis Factoring with Promax rotation was conducted
to determine what factors would be used for the regression analysis. Factor analysis was guided
by previously constructed factors from Astin’s model of student types [73] as well as Sax’s [74]
typology and college choice factors. Of the 65 independent variables considered, forty-one variables
were grouped into seven factors. (See Table A2 for a list of factors, their loadings, and reliability).
The threshold for reliability was set at a Cronbach’s alpha of 0.65, and variables were only considered
valid for inclusion in a factor if they loaded at .40 or higher (ultimately, all loadings exceeded 0.60).

Table A2. Factor Variables, Loadings, and Reliabilities.

Factor
Factor Loading

Men Women

Leader Personality α = 0.66 α = 0.65

Self Rating: Drive to Achieve 0.72 0.71
Self-Rating: Leadership Ability 0.83 0.83
Self-Rating: Self-confidence (social) 0.77 0.75

Scholar Personality α = 0.64 α = 0.64

Self-rated: Academic ability 0.80 0.79
Self-rated: Self-confidence (intellectual) 0.78 0.78
Self-rated: Writing ability 0.72 0.73

Social Activist Personality α = 0.76 α = 0.72

Goal: Influence social values 0.77 0.74
Goal: Participate in a community action program 0.76 0.75
Goal: Help others in difficulty 0.65 0.61
Goal: Influence the political structure 0.72 0.69
Goal: Becoming involved in programs to clean up the environment 0.67 0.64

Artistic Personality α = 0.72 α = 0.69

Goal: Create artistic work 0.83 0.82
Self-rated: Artistic ability 0.66 0.72
Goal: Write original works 0.75 0.67
Goal: Become accomplished in the performing arts 0.73 0.66
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Table A2. Cont.

Factor Factor Loading

Men Women

Status Striver Personality α = 0.64 α = 0.64

Goal: Obtain recognition from colleagues 0.78 0.78
Goal: Be very well-off financially 0.64 0.64
Goal: Become authority in my field 0.75 0.74
Goal: Be successful in a business of my own 0.62 0.62

Education Reasons for Choosing College α = 0.63 α = 0.60

Reason: To gain a general education and appreciation of ideas 0.79 0.76
Reason: To make me a more cultured person 0.78 0.77
Reason: Learn more about things that interest me 0.73 0.73

Extrinsic Reasons for Choosing College α = 0.67 α = 0.66

Reason: To be able to get a better job 0.87 0.86
Reason: To be able to make more money 0.87 0.86

3. Data Analysis

We included two dummy variables for parents’ employment in engineering (father engineer = 1
if the student reports that the father is employed as an engineer, 0 otherwise; and mother engineer = 1
if the mother is an employed as an engineer, 0 otherwise). The baseline mode includes just these
two intergenerational measures. We then added all other variables to assess whether the effect of the
parental measures was mediated by other factors.

A set of 30 variables was categorized into four blocks. Variables were added in groups in order.
The groups included: (1) race, ethnicity and religion; (2) socio-economic characteristics; (3) learning
experiences, self-rated abilities, and educational aspirations; and (4) personality, interests and goals.

The key regression findings are summarized in the results section above. The full regression
analyses are presented below as Table A3 (logistic regressions) and Table A4 (OLS regressions). While
Mood has raised concerns about the interpretation of logistic regression coefficients, in this particular
case the OLS and logistic findings are quite similar. We correlated the OLS and logistic coefficients
across the 31 variables in the model. The association is extremely closely for men (Pearson’s r = 0.98)
and nearly as close for women (r = 0.90). The signs and directions of the coefficients are consistent
across the OLS and logistic specifications.

There are many interesting coefficients in these analyses that are not the principal focus of this
paper. Selected findings of note include the following. Women who plan to have a family by age
30 are less likely to plan a career in engineering, while the same goal does not deter young men.
Self-rated ability in mathematics substantially increases the chances of expressing interest in a career
in engineering for both men and women, as does interest in making a contribution to science. Interest
in developing a meaningful philosophy of life, and factor scores for status striving, social activism are
all negatively related to planning a career in engineering. The leadership factor has a negative sign
for men but not statistically significant for women. These results are consistent with those found in
previous studies of engineering and STEM majors.

The key finding that we stress in this paper is the effect of father’s and mother’s employment
in engineering. This effect continues to be statistically significant in the final model, even after race,
ethnicity, religion and other socio-economic factors are controlled. The parental effect is partially
mediated by educational plans and values for men and somewhat more so for women, but the clear
majority of the parental effect remains even after all of these variables are taken into account.
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Abstract: Two studies extended the communal goal congruity perspective to examine perceived
incongruity between science careers and family caregiving goals. Study 1 examined beliefs about
science careers among young adolescents, older adolescents, and young adults. Science careers were
perceived as unlikely to afford family goals, and this belief emerged more strongly with age cohort.
Study 1 also documented that the perception that science affords family goals predicts interest in
pursuing science. Study 2 then employed an experimental methodology to investigate the impact
of framing a science career as integrated with family life or not. For family-oriented women, the
family-friendly framing of science produced greater personal favorability toward pursuing a science
career. In addition, perceived fulfilment of the scientist described predicted personal favorability
toward a science career path. We discuss the implications of these findings for research and for policy.

Keywords: gender; STEM; goal congruity; family

1. Introduction

Researchers across the disciplines of psychology, sociology, education, and many others offer an
assortment of possible explanations for the underrepresentation of women in STEM (Ceci and Williams
2007; Diekman et al. 2015). Recent reviews have called for greater emphasis on the role of girls’ and
women’s personal choice in the process of selecting a STEM career (Valla and Ceci 2014), along with
an understanding of how these choices are influenced by both individual-level and structural-level
factors (Diekman and Fuesting). The factors that influence girls’ and women’s personal choices often
reflect gendered cultural beliefs, internalized gender stereotypes, and perceptions of gender bias by
individuals and organizations. For example, individuals’ assessments about their own skill within
domains are influenced by gender stereotypic expectations (Correll 2001), and occupational structures
do not readily integrate caregiving responsibilities that continue to be central to the female role
(Stone 2007). Understanding how STEM occupations are perceived to afford family goals, and how
these perceptions influence choice processes, is the purpose of the current research.

This research utilizes a goal congruity framework that suggests that a key factor influencing
entry into social roles is the perceived alignment between those roles and the valued goals of the
individual (Diekman et al. 2017). We extend the goal congruity framework that has been applied to
communal goals and STEM interests (Diekman et al. 2010) to include family caregiving goals. Thus, we
specifically focus on how perceptions of science careers as affording family goals—allowing one to
spend time with one’s family and care for one’s family—impact individuals’ interest in pursuing STEM
pathways. We explore this research question across two studies. In Study 1, we investigate age and
gender differences in children’s, adolescents’, and adults’ perceptions of STEM careers as affording
family goals and whether these perceptions predict interest in STEM careers. In Study 2, we use an
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experimental design to investigate the causal impact of perceptions that science careers afford family
goals on young women’s attitudes toward STEM careers.

1.1. The Goal Congruity Framework

The goal congruity approach posits that perceived congruity between individuals’ goals and their
social roles fosters positivity toward entering into and persisting in social roles (Diekman et al. 2017).
Social roles function as an opportunity structure that people navigate in order to meet their valued goals
(Diekman and Eagly 2008). Critically important is the recognition that in the goal congruity framework,
anticipated incongruity between goals and roles is central. Even though anticipated incongruity may or
may not align with actual incongruity, anticipated incongruity can affect decisions (Diekman et al. 2017).
As we illustrate in the current research, the mere perception that STEM careers are incompatible with
family goals can influence intentions to persist along those pathways, regardless of the accuracy of
this perception.

The goal congruity model has documented robust, consensual stereotypes of STEM careers as less
likely to afford communal goals than other kinds of careers (Diekman et al. 2010, 2011). Given these
stereotypes, more communally-oriented individuals (who tend to be women; (Diekman et al. 2011;
Schwartz and Rubel 2005)) are less likely to be interested in STEM careers (Diekman et al. 2010).
However, individuals who do see STEM as affording communal goals express greater interest in STEM
(Brown et al. 2015). Especially important is evidence demonstrating that beliefs about communal goal
affordances in STEM are malleable. Interventions that frame science careers as affording altruistic and
collaborative goals succeeded in increasing positivity toward STEM careers, particularly among young
girls and women (Diekman et al. 2011; Weisgram and Bigler 2006).

To date, the goal congruity research has focused on communal goals as a broad construct, including
a general orientation to help others or work with others. In the current work, we extend the goal
congruity approach to consider the endorsement of family goals, and the perception that STEM fields
allow one to meet family goals (Weisgram and Diekman 2016). Although the endorsement of family
goals could be seen as an extension of communal goals in that family caregiving also is other-oriented
(Weisgram et al. 2011), people who endorse communal goals may or may not also endorse family
goals—the desire to have a family and spend time caretaking for their family members. Thus, research
is needed to investigate specifically how perceived congruity or incongruity of family goals influences
women’s and men’s and STEM interests and attitudes.

1.2. The Importance of Family

In the social, vocational, and developmental psychology literatures, research has demonstrated
that caring for one’s future family is a high priority for both men and women (Konrad et al. 2000;
Weisgram and Hayes 2014). However, gender differences in family goal endorsement also emerge, with
women endorsing family goals more than men (Weisgram et al. 2010, 2011). This gender difference is
not present in childhood and adolescence, but emerges in young adulthood as men and women begin
to consider their future more closely (Weisgram et al. 2010). This increasing gender difference may
also be due to increasing influence of gender norms with age. Moreover, men and women encounter
different opportunities to pursue and display their family-oriented values: because family orientation
is more central to the female gender role, others may elicit more expectancy-confirming behavior and
attitudes (Geis 1993), resulting in greater expression of family goals by women than men.

However, men and women may have different perspectives on what caring for one’s family
entails, perhaps stemming from the traditional breadwinner-caregiver model (Fulcher and Coyle 2011;
Fulcher et al. 2015). Women may see themselves as caring for their family by taking time off from their
careers, being home with their children, and providing physical and emotional care; and men may
see themselves as caring for their family by providing income for housing, food, and other expenses
(Brown and Diekman 2010; Curry et al. 1994). These gendered perspectives may have educational and
occupational consequences as adolescents and adults make achievement-related choices. Indeed, for
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women, two competing cultural schemas—devotion to work and devotion to family—can be seen
as wholly impossible to pursue simultaneously (Blair-Loy 2009). These presumed tradeoffs emerge
in educational and career expectations: among adolescents, endorsing traditional attitudes about
work-family gender roles predicted lower educational expectations (i.e., only graduating high school),
while endorsing egalitarian attitudes predicted higher educational expectations (i.e., attending college
or graduate school; (Davis and Pearce 2007)). Among undergraduate college students, valuing family
goals predicted higher anticipated pay for men and lower work commitment and anticipated pay for
women (Lips and Lawson 2009).

In general, gendered ideas about caring for one’s family may lead women to negotiate flexible
work roles or take time off from work altogether (Fulcher et al. 2015). If flexible options are not
available, women may opt out of a particular career: for example, women who leave a male-dominated
field for a female-dominated field often cite family reasons (Frome et al. 2006). Given the current
workplace structure and traditional gender role expectations, women may be more likely than men
to project explicit trade-offs between work and family. For example, traditionally college-aged men
and women project gender-differentiated possible selves ten years into the future (Curry et al. 1994).
In particular, women who rated their family selves as highly relevant were less likely to rate their
career selves as relevant. Other research has shown a negative correlation between the importance of
and commitment to work and importance of and commitment to family among women, but not among
men (Owen Blakemore et al. 2005; Friedman and Weissbrod 2005). Although both men and women
appear to value family involvement, this involvement is projected to be in opposition to paid work for
women, but not for men. In general, the ability to balance work and life is related to a sense of life
fulfilment and satisfaction for men and women (Greenhaus et al. 2003; Gröpel and Kuhl 2009), but
how men and women combine work and life may differ.

As men and women explore their career options and then enter the world of work and parenthood,
their endorsement of family goals may change. Across the 10 years following graduate school entry,
women in STEM fields, particularly those with children, significantly increased their preference for a
job that was flexible, had weekends free, and had reasonable hours (less than 50 hours per week); in
contrast, these preferences stayed the same for men across the same time period (Ferriman et al. 2009).
Indeed, 40% of women with children felt that working part-time was very important, whereas fewer
than 15% of men agreed. These family orientations have been shown to negatively predict young
women’s (and young men’s) interest in Computer Science (Beyer 2014)—a finding that may generalize
to other STEM fields as well.

A key point is that presumed incongruity between career and family goals can influence decisions,
even if individuals are unaware of this influence. For example, in interviews with 100 students at
multiple campuses, Cech found that neither male nor female students considered their family plans
as important in their career decisions (Cech 2016). Some comments also reflected a sense that their
career paths would accommodate their family goals, reflecting the value they accorded to work-family
alignment. The questions we pose in the current research are: (1) are STEM fields in particular
perceived as posing challenges to integrating family; and (2) do models of scientists who integrate
or do not integrate family influence women’s positivity toward pursuing science? We thus first turn
to the literature that suggests that STEM careers are often perceived to impede engaging in family
caregiving (Weisgram and Diekman 2016).

1.3. Perceptions of STEM Careers as “Family-Unfriendly”

According to the goal congruity approach, the perception of STEM careers as affording the
opportunity to attain family goals is key to the recruitment of family-oriented men and women into
the field. However, research by Weisgram et al. suggests that individuals (children, adolescents, and
young adults) perceive masculine jobs, in general, as affording family goals to a lesser extent than
feminine jobs (Weisgram et al. 2010). Importantly, the study also reported adults’ ratings of family goal
affordances for individual occupations. Indeed, the job of “scientist” (M = 2.16, SD = 0.74) was rated
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lower in affording family goals than masculine jobs (M = 2.51, SD = 0.32) and feminine jobs (M = 3.07,
SD = 0.40).

There are several reasons that STEM jobs may be perceived as being family “un-friendly.” One reason
may be the overall stereotype of scientists: young adults perceive successful scientists to be less communal
and more agentic than men and women in general (Carli et al. 2016). Indeed, parents are perceived as
less agentic, and less committed to potential jobs, than nonparents (Fuegen et al. 2004). Thus, it may be
that perceptions of successful scientists are at odds with perceptions of successful parents.

Beliefs about perceived affordances of roles can be rooted in a range of prior experience with
the role (Diekman et al. 2017). The cues to perceptions of whether science affords family goals can
thus come from either primary or secondary experience. Primary experience might include science
activities or classes, or interactions with scientists. As students approach college, they are increasingly
likely to have more first-hand contact with scientists (rather than science educators); however, these
members of the science faculty may actually reinforce perceptions that science careers do not align with
family caregiving goals. First, there are fewer women than men in academic science and engineering
positions (National Science Board 2016); second, those female scientists who are in academia may not
disclose information about their family caregiving responsibilities, given that these are not normative
within the profession. Thus, as students move from childhood to emerging adulthood, they may be
exposed to more information that confirms, rather than disconfirms, perceptions that science does not
afford family goals.

Perceptions of scientists and their work may also develop based on media depictions of scientists.
Because children, adolescents, and adults may not interact personally with scientists in their everyday
life, presentations of scientists in books, television, and movies influence individuals’ perceptions of
both scientists and STEM careers (Steinke et al. 2007). Representation of science as integrated with
family caregiving is rare: For example, a content analysis of popular films found that of the 23 female
scientists depicted, only four were depicted as mothers and of those, only two were depicted as
full-time employed mothers (Steinke 2005). The lack of media models of scientists, especially female
scientists, who combine family caregiving and career may contribute to children’s, adolescents’, and
adults’ perceptions of STEM careers being incompatible with spending time with and caring for
family members.

Perceived challenges in combining STEM careers and family goals can result from a number of
factors, including the type of training needed to attain STEM careers, the timing of advanced education
or training opportunities, and discrimination based on parental status. Many professional fields include
long hours and extensive training, such as law and medicine—fields that have a greater proportion
of female workers than most STEM fields (48% of medical degrees and 47% of law degrees are
awarded to women (National Center for Education Statistics 2011). Although many individuals move
to STEM careers with a Bachelor’s degree (i.e., jobs in industry), many jobs, including those within
academia, require advanced degrees and have a particularly long period of apprenticeship before an
individual secures a permanent position. Most academic scientists attend graduate school, followed
by a post-doctoral apprenticeship (or two), and then enter a tenure-track position achieving tenure
after six to seven years—a combined probationary period that often overlaps with the developmental
time period in which many women wish to have children. In addition, the work of scientists often
includes labor- and time-intensive work in the lab (e.g., chemistry, neuroscience) or in the field of
study (e.g., biology, paleontology), and thus they may not be able to have a flexible schedule to
accommodate children’s needs, may need to travel to conduct fieldwork (perhaps to locations that are
unsafe for children), travel to conferences to present and learn about current research, or may have
to make decisions between attending to a time-sensitive research project (e.g., work with rats who
reach puberty on a given day) and children’s care (e.g., sick child care, special occasions at children’s
schools). Because of the perceived and real difficulties of combining an academic STEM job with family
duties, many women elect to leave academic positions for STEM positions for positions in industry
that have more reliable hours and often higher salaries (Newsome 2008).
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Advocates for gender equality in STEM fields have recently argued that decreasing barriers
to family commitments is key in recruiting and retaining women (Weisgram and Diekman 2016;
Villablanca et al. 2011; Williams and Ceci 2012). Policies are present in many academic and
non-academic workplaces that may decrease these barriers such as parental leave (paid or unpaid)
or stopping a tenure clock. Women are more likely than men to want to use these policies but chose
not to make a request to do so (Villablanca et al. 2011). Women were more concerned than men with
the reaction of their colleagues for using family benefits. In addition, within a School of Medicine,
women were more likely than men to report remaining childless or having fewer children than desired
(Villablanca et al. 2011).

In surveys of both postdoctoral fellows and tenure-track faculty, the perception that an
institution supports family responsibilities strongly predicts job satisfaction and workplace belonging
(Heilbronner 2013). Among STEM postdocs and faculty (including medical sciences), this relationship
was stronger for women than for men. In addition, surveys of men and women who left STEM careers
often note that the incompatibility with family responsibilities strongly influenced their decision to
leave (Heilbronner 2013).

The importance of gender balance and work-life interaction to individuals considering STEM
careers was demonstrated in an experimental study (DeFraine et al. 2014). Undergraduate and graduate
students who were highly identified with math watched one of two lab recruitment videos, which
either depicted a male-dominated, work-focused environment that emphasized competition, or a
gender-equal work/life-interaction-focused environment that emphasized flexibility and collaboration.
Although commitment to science did not differ between the groups, those students, both men and
women, who watched the work-life-interaction video projected that they would feel a greater sense
of belonging in the lab and reported a greater desire to participate. Thus, depicting a research lab as
allowing flexibility across work and home domains led to benefits. However, whether these benefits
are specifically due to perceived family-friendliness, or are also due to the increased presence of women
and increased collaboration, is a question that remains.

1.4. The Present Studies

The present studies examine the relationships between individuals’ perceptions of science as
affording family goals and their interest in science. In Study 1, we examine gender and developmental
differences in interest in science and perceptions that science jobs afford family goals among three
different age groups: young adolescents, older adolescents, and young adults. We also examine whether
perceptions that science affords family goals predicts interest in science. In Study 2, we present an
experiment that directly manipulates perception of science jobs as affording family goals and examines
effects on women’s interest in pursuing these roles. We focus on women in particular because of the
underrepresentation of women in STEM fields and because of the perceived family-impacting-work
conflict that young women anticipate relative to young men (Fulcher and Coyle 2011). Given the
importance that men and women ascribe to family goals and the relatively little literature on the
perception of STEM careers as affording these goals in relation to interest in STEM, these studies fill an
important void in the literature.

2. Study 1

In Study 1, we examined gender and age differences in individuals’ perceptions of science as
affording family values and their relation to interest in science tasks and careers. This developmental
timepoint is critical, as boys and girls begin to lose interest in STEM careers in adolescence, with boys
retaining higher interest than girls across development (Frenzel et al. 2010). Research by Weisgram et al.
has demonstrated that age differences, but not gender differences, emerge for the perception that
masculine jobs afford family goals less than feminine jobs (Weisgram et al. 2010). Moreover, research
with young adults has found consensus across male and female participants in beliefs that STEM fields
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lack communal opportunities (Diekman et al. 2010, 2011). We predict that family affordances of STEM
jobs will also follow this pattern.

We expected to replicate robust gender differences in science interest with boys and young men
reporting greater interest than girls and young women, and with gender differences increasing across
age groups. We then sought to examine whether family goal affordances would predict interest in
STEM. Specifically, we expected that the belief that science affords family goals will positively predict
interest in science careers and science tasks.

2.1. Methods

2.1.1. Participants

Participants included 103 middle school adolescents (37 boys, 66 girls; Mage = 12.47, SD = 0.52),
80 high school adolescents (32 boys, 48 girls; Mage = 15.64, SD = 0.73), and 217 undergraduate students
(92 men, 125 women; Mage = 19.49, SD = 1.34). Middle school (7th grade) and high school (10th grade)
students were recruited from public schools in a mid-sized city in the Midwest. Science teachers
recruited students from their classrooms with surveys administrated to each student who received
parent permission. Undergraduate students were recruited from introductory psychology classes at a
mid-sized regional university in the Midwest in the same city where the adolescent data were collected.
Students completed the study as part of course participation. The sample was 88% European American,
4.5% Asian American, 2% African American, 2% Hispanic American, 1% Native American/Alaskan,
2.5% Other/Unreported, and is reflective of the region in which the data was collected. Parent
permission was received for all adolescents in the sample.

2.1.2. Procedures

Participants completed three surveys: (a) perceptions of science; (b) interest in science careers, and
(c) interest in science tasks. Adolescents completed paper and pencil versions of the survey during their
mandatory science classes. Undergraduate students completed online versions of the same survey.

2.1.3. Measures

Perceptions of Science Jobs

To assess whether participants perceive science jobs as affording family values, participants
answered four items derived from Weisgram and Bigler’s Occupational Values Scale (Weisgram and
Bigler 2006). Participants were given the prompt of “Being a scientist is a job that . . . ” with sentence
completions including “allows scientists to take time off when they become a parent,” “allows scientists
to easily manage both a career and a family,” “gives scientists plenty of time to spend with their family,”
and “allows scientists to work part-time when their children are young.” Response options ranged
from (1) “Not at all” to (4) “Very Much.” Reliability was high for each age group, with Cronbach alphas
ranging from 0.78 to 0.88.

Interest in Science Careers

Interest in five science careers was assessed: scientist (general), astronomer, physicist, chemist,
and biologist. A brief description of each career was given (e.g., “a physicist is someone who studies
what things are made of (matter), energy, atoms, light, sound, x-rays, gravity, and many other aspects
of the physical world”). Participants were asked how much they would want to do each job on a scale
of (1) “Not at all” to (4) “Very Much.” Reliability was high for each age group, with Cronbach alphas
ranging from 0.68 to 0.80.
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Interest in Science Tasks

Because many individuals are unaware of what science jobs entail or feel they are unable to
commit to a science career, interest in scientific tasks was also assessed (Weisgram and Bigler 2006,
2007). This list of 25 scientific tasks was developed by Weisgram and Bigler in consultation with female
scientists (Weisgram and Bigler 2006). Participants were asked to indicate how interested they were in
performing each task with response options ranging from (1) “Not at all” to (4) “Very Much.” Cronbach
alphas ranged from 0.89 to 0.92 for the three age groups.

2.2. Results

Data analysis was a two-step process. First, we investigated age and gender differences on family
affordances, interest in science careers, and interest in science tasks. Second, we examined whether
beliefs that science afforded family goals predicted interest in science careers and science tasks.

2.2.1. Gender and Age Differences

For each construct, a 2 (gender: male, female) × 3 (age group: younger adolescents, older
adolescents, college students) analysis of variance (ANOVA) was performed. As shown in Figure 1, the
belief that science afforded family goals decreased with each age group, as reflected in the significant
effect of age group, F(1, 386) = 24.40, p < 0.001, partial η2 = 0.11. Post hoc comparisons (LSD) indicated
that beliefs that science affords communal goals were held most by middle school students and least
by college students, with each age group significantly differing from the others. No gender differences
emerged for perceptions of science as affording family goals.

Consistent with past research, boys and young men reported greater interest in science careers
and tasks than did girls and young women across all age groups. These differences were significantly
different for science tasks, F(1, 387) = 31.12, p < 0.001, partial η2 = 0.11, and marginally significant for
science careers, F(1, 386) = 3.34, p = 0.06, partial η2 = 0.01. See Table 1 for means and standard deviations.

Table 1. Study 1: Means and Standard Deviations for Dependent Variables by Gender and Age Group.

Males

Middle School
(n = 37)

High School
(n = 32)

College
(n = 92)

Overall
(n = 161)

Mean SD Mean SD Mean SD Mean SD

Perception of Science as
Affording Family Goals 3.03 a 0.71 2.81 b 0.77 2.40 c 0.49 2.63 0.67

Interest in Science Careers 2.13 0.52 2.07 0.85 2.11 0.68 2.11 0.69

Interest in Science Tasks 2.22 0.52 2.17 0.63 2.09 0.48 2.14 0.52

Females

Middle School
(n = 66)

High School
(n = 48)

College
(n = 125)

Overall
(n = 239)

Mean SD Mean SD Mean SD Mean SD

Perception of Science as
Affording Family Goals 2.95 a 0.77 2.65 b 0.63 2.51 c 0.55 2.66 0.66

Interest in Science Careers 2.11 0.60 1.95 0.56 1.85 0.67 1.94 0.64

Interest in Science Tasks 1.90 0.43 1.86 0.49 1.80 0.48 1.84 0.47

Note: All values range from 1 (low) to 4 (high). Superscripts indicate significant differences across groups.
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Figure 1. Perception that science affords family goals by gender and age group.

2.2.2. Predicting Science Interests

To examine whether interest in science careers and tasks was predicted by participants’ perceptions
of science as affording family goals, regression analyses were performed. Because there were significant
age differences (but not gender differences) in perceptions that science affords family goals, age group
was included as dummy variables with the middle school group representing the reference group.
Perceptions that science affords family goals, and the interactions between this construct and the
dummy variables, were included as predictor variables in the linear regressions. For interest in science
tasks, perceptions that science careers afford family goals was a significant predictor (see Table 2).
Results for interest in science careers followed a similar pattern (see Table 2).

Table 2. Study 1: Predictors of Interest in STEM Careers and Tasks

Standardized Beta Values

Interest in Science Tasks F(3, 388) = 13.89, p < 0.001, R2 = 0.10
Perceptions of STEM as affording family goals 0.30 *
Age group (high school = 1) × Perceptions 0.06
Age group (college = 1) × Perceptions 0.05
Interest in Science Careers F(3, 387) = 4.60, p = 0.004, R2 = 0.03
Perceptions of STEM as affording family goals 0.19 *
Age group (high school = 1) × Perceptions −0.02
Age group (college = 1) × Perceptions −0.02

Note: * p < 0.05.

2.3. Discussion

Study 1 provided a novel examination of whether students from middle school through college
perceive science as affording opportunities to have a family life. We assessed gender and age differences
and in perception that STEM careers afford goals and also examined the predictive relationship between
beliefs that science affords family goals and interest in science tasks and careers. Results showed a
clear developmental trend in the perception that a career in science affords family goals; although
middle schoolers endorse these beliefs to a moderate extent, high school students are less likely to
hold these beliefs, and college students are even less likely than their younger counterparts.

To our knowledge, this study is the first to document age trends in perceptions of whether science
affords family goals. The finding that these perceptions decrease with age is important: as students
move to life stages where their beliefs about family and career matter most for their own decisions, they
are increasingly likely to see science as incompatible with family goals. Specifically, as students choose
STEM electives in high school, courses in college, and career paths in college, achievement-related
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choices that are crucial to choosing a career in STEM (Wang and Degol 2013), they are simultaneously
and increasingly perceiving incongruity between these career paths and their family goals.

Study 1 clearly demonstrated that those who perceive that science affords family goals are
especially positive toward science. This finding suggests that perceptions about family goals might play
a critical role in shaping decisions about entry into and persistence in science careers. However, Study
1 rests upon a correlational design, and thus it is always possible that third variables that were not
measured could explain this relationship. In order to establish that perceptions that science affords
family goals play a causal role in attraction to science careers, we turned to an experimental method in
Study 2. In this study, we focus, in particular, on women’s responses to framing STEM occupations
as “family friendly,” given that women may experience more work-family interference than men
(Borelli et al. 2017; Duxbury et al. 1994).

3. Study 2

In Study 2, we examined whether experimentally manipulating the family-friendliness of an
entry-level science career would elevate women’s positivity toward science. In addition, in this study
we expanded our positivity variables to include both general positivity toward science, as well as
personal positivity toward pursuing science as a career. Although both attitudes are important in
determining who persists in the STEM pipeline, personal favorability may be more challenging to
influence with short-term exposure to information. However, understanding the beliefs that predict
both general positivity and personal favorability are critical to forming interventions and policy to
broaden participation in STEM.

In Study 2, we investigated two hypotheses. First, we hypothesized that framing a scientist’s
career as family-friendly will elicit greater general positivity toward science and personal positivity
toward a career in science, particularly for women who are family-oriented. Second, we posited that
this effect of family-friendly science will be mediated by beliefs that the scientist is fulfilled in life and
in work. Thus, we expected that framing a scientist’s career as family-friendly will lead to greater
beliefs that the scientist is fulfilled, which will in turn predict positivity toward science and personal
positivity toward pursuing science.

3.1. Methods

3.1.1. Participants

Participants included 87 women (Mage = 19.08), recruited from undergraduate psychology classes
at a regional University in the Midwest. Students were predominantly European American (87%), with
African American (7%), Hispanic American (2%), Asian American (2%), and Biracial (2%) students
also represented in the sample. Students were predominantly first year students (74%), with smaller
groups of second year students (17%), third year students (3%) and fourth year students (2%). Three
non-traditional students were eliminated from analyses.

3.1.2. Procedures

Students were randomly assigned to one of two conditions, described below: (a) a family-friendly
condition, and (b) a control condition in which family was not mentioned. After reading the description,
students completed a brief measure of their positivity toward science, perceptions of people in science
careers, and perceptions of career and life fulfilment.

3.1.3. Materials

A description of a day in the life of an entry-level female chemist was based on similar descriptions
used by Diekman et al. (2011). The work-related tasks were the same across both conditions (e.g., “I go
to the lab after about an hour to check on samples left overnight (for example, to see if a drug
crystallized), characterize samples from the previous afternoon to integrate the data collected the
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previous day, and characterize new samples that have come in that day”). In the family-friendly
condition, some events described interactions with spouse and children (e.g., “I wake up and wake
the children. I watch morning cartoons with them for a bit.”); in the control condition, these events
described the same content but without spouse or children (e.g., “I wake up. I watch a bit of television
in the morning.”).

Both descriptions note that the scientist enjoys “working by myself and solving problems,” and the
work tasks are identical across the two conditions. Thus, unlike previous research (Diekman et al. 2011),
the nature of the work is consistent across both conditions; instead, only the presence and support for
family caregiving differs between the two conditions. See Appendix A for the complete descriptions.

Control Condition

In the control description, the chemist (Joyce) wakes up, watches television, gets dressed and
makes lunch, walks to work, checks her email, and checks a research database to get up-to-date about
some of her experiments. She then goes to her lab to check on samples left over night and prepare new
samples and catches up on her research. She walks across campus for exercise.

Family-Friendly Condition

The description of the scientist was modified to include family responsibilities and caregiving.
In this description, Joyce wakes up and wakes up her children, watches television with her children,
gets herself dressed and the children dressed and makes them all lunch. She walks to work dropping
the children off at day care along the way. While at work, the duties are identical to the duties in the
control condition. Late morning, she walks across campus and visits her children as they have lunch.

3.1.4. Measures

Family Orientation

To capture individual differences in family orientation, participants responded yes or no to the
question, “Have your future family plans factored into your career decisions?” Individuals responding
“Yes” were categorized as high in family orientation and those responding “No” were categorized as
low in family orientation.

Positivity toward Science

Two indices of positivity were assessed. First, an index of general positivity toward science was
created by averaging two items (alpha = 0.73): “What is your general impression of an entry-level
career in STEM?” and “What is your general impression of science careers?” with response options
ranging from (1) Very Negative to (7) Very Positive. Second, an index of personal favorability toward
pursuing a science career was created by averaging three items (alpha = 0.91): “How successful do you
think you would be as an entry-level scientist?”; “How enjoyable do you believe you would find a
career as an entry-level scientist?”; “How interested are you in a career as an entry-level scientist?”
with response options ranging from (1) Not at all to (7) Extremely.

Fulfilment

Two items assessed fulfilment. The first item asked “How fulfilling do you believe the scientist
you read about finds her career?” and the second item asked “How fulfilling do you believe the
scientist you read about finds her life?” Response options for both questions ranged from (1) Not at
All to (7) Extremely. These items were highly correlated (alpha = 0.76) and were averaged to create an
index of perceived fulfilment.
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Demographics

Participants reported demographic information, including gender, age, race, year in college, and
current major.

3.2. Results

3.2.1. Positivity

We conducted a 2 (condition: family-friendly or control) × 2 (family orientation: high or
low) multivariate analysis of variance (MANOVA) including both general positivity and personal
favorability as dependent measures. This analysis yielded a significant interaction between condition
and family orientation, F(1, 85) = 3.23, p = 0.04, Wilk’s Λ = 0.93, partial η2 = 0.07. Univariate analyses
revealed that this interaction only emerged as significant for general positivity, F(1, 85) = 6.53, p = 0.01,
partial η2 = 0.07, and was not significant for personal favorability, p = 0.17. See Table 3 for means and
standard deviations. To investigate this interaction, comparisons between conditions were examined
for family-oriented and non-family-oriented women separately. Family-oriented women who read
about a female scientist with a family were more positive toward STEM careers than family-oriented
women who read about a female scientist without a family, t(30) = 2.37, p < 0.02, d = 0.88. There were
no significant differences between conditions for non-family-oriented women. See Figure 2.

Table 3. Study 2: Means and Standard Deviations by Condition and Family Orientation.

Family Friendly Control

Family-Oriented
(N = 13)

Non-Family-Oriented
(N = 29)

Family-Oriented
(N = 19)

Non-Family-Oriented
(N = 28)

Mean SD Mean SD Mean SD Mean SD

General Positivity 5.85 a 0.94 5.13 0.82 4.82 b 1.36 5.29 1.01

Personal Favorability 4.08 1.16 3.41 1.42 3.21 1.84 3.51 1.59

Perceived Fulfilment 6.27 0.78 5.82 0.84 5.65 1.08 5.89 0.94

Note: Superscripts indicate significant differences across groups.

Figure 2. Positivity toward STEM careers by family orientation and condition.

3.2.2. Fulfilment

We examined effects on the perception that the scientist was fulfilled in a 2 (condition) × 2 (family
orientation) ANOVA. There were no significant main effects of condition (p = 0.19) or family orientation
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(p = 0.62), and there was no significant interaction between the constructs (p = 0.11). See Table 3 for
means and standard deviations.

3.2.3. Does Perceived Fulfilment Predict Positive Attitudes?

We had predicted that the family-friendly framing would foster positivity through perceptions
that the scientist was fulfilled. Because we did not detect condition effects on perceived fulfillment,
that mediational model was not supported. However, we were able to examine whether perceived
fulfillment would be associated with positive attitudes toward pursuing science. We conducted a linear
regression analysis to determine whether this projected sense of fulfilment predicted positivity toward
science. For general positivity toward science, perceived fulfilment was a significant positive predictor,
B = 0.53, β = 0.47, p < 0.001, and for personal favorability, perceived fulfilment was a marginal positive
predictor, B = 0.32, β = 0.19, p = 0.07. On both measures, women who perceived that the scientist was
more fulfilled tended to express more positivity toward science.

3.3. Discussion

In Study 2, we presented participants with a description of an academic science job that was
framed as either typical (control) or family friendly. The female scientist in each of the scenarios
performed typical duties of scientists, but the family friendly description contained information about
spending time with her family members and caring for them, while the control description contained
information about her hobbies and activities outside of work.

Our data indicate that family-oriented women who learn about a scientist whose work allows for
the integration of caregiving responsibilities were more positive toward STEM than their peers. Thus,
this research supports the goal congruity perspective as applied to the affordance and endorsement of
family goals (Diekman et al. 2017; Weisgram and Diekman 2016). Specifically, the higher the congruity
that was present between women’s goals and their perception of STEM careers, the more positive they
felt toward these careers in general. Based on this brief study, we may infer that intervention programs
aimed at increasing girls’ and women’s positive evaluation of, STEM may benefit, at least for many
individuals, from including information about work-life balance in STEM fields.

In addition to examining general positivity and personal favorability, we also examined the effect of
framing STEM careers as family-friendly on the perceptions of personal fulfilment of the female scientist
that was described. Although our framing of the STEM career did not affect perceptions of fulfilment,
there were individual differences in the degree to which perceptions of fulfilment predicted STEM
attitudes. We found that the sense that the scientist was perceived to be fulfilled, across both conditions,
influenced attitudes toward STEM careers. For general impression of the field, this relationship was
significantly positive: the more a participant perceived the scientist as fulfilled with her life, the more
positive attitudes she had toward STEM careers in general. For personal favorability, perceptions that
the scientist was fulfilled were positively (but marginally) related to positive STEM attitudes These
patterns indicate that a sense that others are fulfilled in STEM careers is important in the development
of positive STEM attitudes among women.

Across two studies, we demonstrate the potential impact of beliefs that science careers can be
combined with family goals. Study 1 found that across developmental stages from middle school
to college, both boys and girls are increasingly likely to perceive science as failing to afford family
caregiving. Moreover, in early and late adolescence, these family affordances predict positivity toward
STEM career paths. Thus, it is possible that perceiving STEM careers as not “family friendly” deters girls
from exploring and pursuing STEM careers. Study 2 employed an experimental design to demonstrate
that family-oriented individuals who read about a scientist who incorporates family roles expressed
more general positivity toward a scientist career.
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4. General Conclusions

Overall, these data suggest that highlighting the possibility of STEM careers as family-friendly
might be a significant mechanism of intervention for broadening participation of family-oriented
individuals—and perhaps more interventions should incorporate information about how STEM
careers afford these goals. Interventions that incorporate other communal goals have been successful
with adolescent girls and young women (Weisgram and Bigler 2006). Thus, interventions that include
portrayals of scientists as multidimensional individuals who are both scientists and parents may
increase girls’ and women’s positive attitudes and break down stereotypes about scientists. A strong
caveat to this conclusion, however, is that such family-friendliness cannot only occur in marketing
about careers; the real-life cultures of institutions and workplaces must encompass work-life resources
(Weisgram and Diekman 2016).

To truly shift workplace cultures to encompass family goals, specific steps need to be taken to
remove barriers that particularly influence women’s entry and persistence in STEM. Indeed, Mason
has widely implemented and discussed some of the ways in which STEM careers, and academic
careers more broadly, can be made to help accommodate parents, such as stopping the tenure clock
(Mason et al. 2013). In recent years, the National Science Foundation has begun to incorporate more
family-friendly policies to help grant holders, including delaying the start of research due to pregnancy
or parental leave (particularly for those for whom traveling with young children is dangerous or
difficult) and providing additional funding for research assistants to carry out parts of the research that
might be difficult or dangerous for a pregnant woman or parents with young children (e.g., paleontology
digs in extreme heat, Arctic fieldwork, etc.). Some universities are even providing back-up child care
services and sick child care in one’s home at a partially subsidized rate to limit the impact child care
disruptions have on faculty members’ productivity—disruptions that disproportionally affect women
(University of Michigan 2016).

Thus, although some steps are being taken to make STEM careers more family friendly, institutions
and individuals still have a long way to go. A key message across intervention efforts should be to
demonstrate that family goals and STEM careers are not in competition with one another, but can be
integrated. In addition, qualitative and quantitative research should be conducted with female and
male scientists that aims to investigate the complex challenges these individuals have in combining
work with family, and to identify mechanisms that would enable them to be successful and fulfilled in
both roles.

Despite the promising findings of these studies, there are a number of limitations to this research.
Although the elegant design of Study 2 is useful in determining the causal role of family-friendly
framing on individuals’ STEM attitudes, it portrays scientists as either being isolated or having a family.
Certainly, other forms of connection to people (besides child caregiving) can offer opportunities to meet
communal goals. Future research using this vignette paradigm should also depict male and female
scientists having a rich social network both in and outside of the workplace, having hobbies and outside
interests, and having STEM jobs that afford a variety of values and goals. Given that family-orientation
is ranked highly in women’s occupational value structures (Weisgram and Hayes 2014) and that the
construct moderates the effects of family-friendliness on positivity, we see value in emphasizing the
ability to successfully integrate family and career roles in attracting women and girls to STEM fields.

An essential step for future research is to investigate how men navigate family and employment
roles. Study 1 found that men and women held similar beliefs about whether science afforded family
goals; as men become increasingly involved with caregiving and less able to assume a stay-at-home
partner, they too may be faced with perceptions that work and family are incongruent. We anticipate
that flexible work structures that allow both men and women to pursue their valued goals will be
increasingly favored. However, an initial step is to understand whether both male and female scientists
can model family-friendly STEM workplaces, and whether both male and female respondents weigh
this information equivalently in their choices. In previous experimental studies, both male and female
scientists conveyed opportunities to work with or help others within STEM roles (Fuesting and
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Diekman 2017). However, because of the gendered nature of family caregiving, it is possible that
female scientists can more effectively convey cues that STEM roles can integrate family.

In addition, future research should further examine the direction of the relationships assessed here
through experimental and longitudinal research. The experimental method in Study 2 demonstrated
that perceived family-friendliness can have a causal impact on positivity toward pursuing a science
career. However, other naturalistic relationships are possible. For example, individuals who are
highly immersed in science and positive toward the field may also have more opportunity to observe
scientists who are involved in family caregiving or who are fulfilled in various ways. We also note
that explorations of these constructs among individuals who vary in age, ethnicity, socioeconomic
status, and a variety of other background variables would provide opportunity to understand the
strengths and limitations of the framework explored here. In particular, it is important to understand
whether groups vary in their perceptions that science affords family goals, and whether groups have
differential access to resources to help them navigate perceived work-family conflict (e.g., affordable
high-quality child care; extended family networks).

The experimental stimuli used here were designed to manipulate the presence or absence of family
integration in academic science, and a question for extending this research is the ecological validity of
this description. In short, does this vignette realistically depict a day in the life of a female scientist who
is a primary caregiver or a co-parent? Many real-life situations are more challenging than depicted
here: in the vignette, the scientist’s children are healthy, they attend the same day care on her campus,
have no afterschool activities, and she has a partner who participates in the daily division of labor.
Although parents may experience many days such as the one described, daily life with young children
can be decidedly more stressful (e.g., illnesses that prevent them from attending day care, the lack of
availability of affordable high-quality child care for parents, the stresses that exist between co-parents
of young children, and the difficulty of transitions as children develop; (Augustine et al. 2013; Hardway
and McCartney 2015; Nelson et al. 2014)). However, these are issues that many families face regardless
of discipline, and thus cannot explain gender gaps in STEM pursuits. Finally, we note that career
decisions may often be based on ideals rather than reality; thus, the development of perceptions of
scientists and science careers across age merits future research. What is important to note here is that
when an idealized science career integrates family, it might be more appealing than when it does not.

The current research demonstrates that beliefs that family caregiving is incongruent with a
science career become more extreme from adolescence through young adulthood, and this perceived
incongruity can have strong implications for career decisions. For those who wish to create greater
opportunity for women (and family-oriented men) in science, two paths are clear: First, scientists who
do successfully integrate family can make these successes more public, and second, scientists who
meet with challenges in integrating family can make these obstacles more public. When parents have
to choose family or a scientific career, the losses accrue not only to those individuals, but to institutions,
to science, and to society at large.
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Appendix A

Appendix A.1 Family Friendly STEM Condition

Joyce is a chemist at a university in the Midwest. She lives with her husband and two children
(ages 1 and 3) in a home near the university. A sample day in her life is as follows:
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6:30 a.m. I wake up and wake up the children. I watch morning cartoons with them for a bit.
Then, I make breakfast and get dressed-helping the children get dressed as well. I pack lunches for
them and for myself.

7:45 a.m. I walk to work, dropping off children at the University Child Care Center on the way.
8:15 a.m. I come in and check my e-mail then plan the day. I usually have to check a database

maintained by the Operations Group (they run the high-throughput screens) to learn the status of
ongoing experiments so I can go from primary to secondary characterizations.

9:15 a.m. I go to the lab after about an hour to check on samples left overnight (for example, to see
if a drug crystallized), characterize samples from the previous afternoon to integrate the data collected
the previous day, and characterize new samples that have come in that day. I look up relevant past
research to consult about the procedures.

11:30 a.m. I often walk to the University Child Care Center to visit the children as they have lunch.
12:00 p.m. The company runs presentations during lunch, where we learn what else is going on

both within the company and with the Big Pharma companies who supply us with compounds. I
watch video feed of these presentations at my desk while I eat. Speakers might be a researcher from a
different lab giving an update, a patent lawyer briefing us on legal issues in patent protection, and a
member of the Products Group describing ongoing product development work.

1:00 p.m. Do data analysis (e.g., powder X-ray diffraction, differential scanning calorimetry,
thermal gravimetric analysis) and troubleshoot any problems that come up by myself.

2:45 p.m. I call my spouse to check in and say hello and discuss what we should have for dinner
that evening.

3:00 p.m. Go to meeting to update my supervisor on the status of my projects, which are typically
independent. My supervisor will tell me what further experiments to run or additional data points to
collect. My supervisor also gives me a heads-up on what compounds are coming in during the next
few weeks. This gives me an idea of what my own workload will be like.

4:00 p.m. Update lab notebook with either data collected that day or experiments started. Get
started on experiments that can be set up and run overnight.

4:30 p.m. Commute home.
5:30 p.m. I play with the children before starting dinner for my family. We have dinner, talk about

our day, and my spouse cleans up afterwards.
6:30 p.m. We spend “family-time” together—often watching television, spending time in our

yard, or going for a walk.
7:30 p.m. We put the children to bed.
8:30 p.m. I catch up on household chores such as laundry, dishes, and picking up items around

the house.
9:15 p.m. I check my email from work and respond to any pressing issues and often complete a

little bit of grading if needed.
10:00 p.m. I read a leisure book in bed for a bit to relax.
10:45 p.m. I get ready for bed and go to sleep.
Summary I like that so much of my work involves working by myself and solving problems.

The solitary nature of my work really lets me advance at a quick pace, and I get the sense that I am
achieving a great deal through my projects. I like having a variety of tasks, gathering data through
multiple methods, and trying to interpret data from both high-throughput experiments and bench-top
experiments. I like the sense of contributing to understanding drug candidates that are likely to get
into clinical trials. I like being exposed to industry and to the various issues in the pharmaceutical
industry, both within my field and outside—largely from presentations—from the senior scientists and
other experts. I also like that I have a flexible schedule that allows me to spend time with my family.
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Appendix A.2 Control Condition

Joyce is a chemist at a university in the Midwest. She lives in a home near the university. A
sample day in her life is as follows:

6:30 a.m. I wake up. I watch a bit of television in the morning. Then, I make breakfast and get
dressed. I pack a lunch for myself.

7:45 a.m. I walk to work.
8:15 a.m. I come in and check my e-mail then plan the day. I usually have to check a database

maintained by the Operations Group (they run the high-throughput screens) to learn the status of
ongoing experiments so I can go from primary to secondary characterizations.

9:15 a.m. I go to the lab after about an hour to check on samples left overnight (for example, to see
if a drug crystallized), characterize samples from the previous afternoon to integrate the data collected
the previous day, and characterize new samples that have come in that day. I look up relevant past
research to consult about the procedures.

11:30 a.m. I often walk across campus for exercise.
12:00 p.m. The company runs presentations during lunch, where we learn what else is going on

both within the company and with the Big Pharma companies who supply us with compounds. I
watch video feed of these presentations at my desk while I eat. Speakers might be a researcher from a
different lab giving an update, a patent lawyer briefing us on legal issues in patent protection, and a
member of the Products Group describing ongoing product development work.

1:00 p.m. Do data analysis (e.g., powder X-ray diffraction, differential scanning calorimetry,
thermal gravimetric analysis) and troubleshoot any problems that come up by myself.

2:45 p.m. I decide what to have for dinner that evening and make a shopping list.
3:00 p.m. Go to meeting to update my supervisor on the status of my projects, which are typically

independent. My supervisor will tell me what further experiments to run or additional data points to
collect. My supervisor also gives me a heads-up on what compounds are coming in during the next
few weeks. This gives me an idea of what my own workload will be like.

4:00 p.m. Update lab notebook with either data collected that day or experiments started. Get
started on experiments that can be set up and run overnight.

4:30 p.m. Commute home.
5:30 p.m. I make dinner and clean up afterwards.
6:30 p.m. I often watch television, spend time in my yard, or go for a walk.
7:30 p.m. I spend time working on my hobbies
8:30 p.m. I catch up on household chores such as laundry, dishes, and picking up items around

the house.
9:15 p.m. I check my email from work and respond to any pressing issues and often complete a

little bit of grading if needed.
10:00 p.m. I read a leisure book in bed for a bit to relax.
10:45 p.m. I get ready for bed and go to sleep.
Summary I like that so much of my work involves working by myself and solving problems.

The solitary nature of my work really lets me advance at a quick pace, and I get the sense that I am
achieving a great deal through my projects. I like having a variety of tasks, gathering data through
multiple methods, and trying to interpret data from both high-throughput experiments and bench-top
experiments. I like the sense of contributing to understanding drug candidates that are likely to get
into clinical trials. I like being exposed to industry and to the various issues in the pharmaceutical
industry, both within my field and outside—largely from presentations—from the senior scientists and
other experts.
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Abstract: This study focused on entry to and attainment of bachelor’s degrees in science, technology,
engineering, and mathematics (STEM) fields, by examining gender and race/ethnicity in an
intersectional manner and paying particular attention to STEM subfields. The intersectional analysis
extends previous research findings that female students are more likely to persist in college once
they are in a STEM field and further reveals that racial minority women share the same tendency
of persistence with white women. Women and racial minorities are most under-represented in
physical-STEM fields. Our analysis reveals that black men would have had the highest probability
to graduate in physical-STEM fields, had they had the family socioeconomic background and
academic preparations of Asian males. This highlights the critical importance of family socioeconomic
background and academic preparations, which improves the odds for STEM degree attainment for
all groups. Out of these groups, black students would have experienced the most drastic progress.

Keywords: gender; race; STEM; persistence; intersection

1. Introduction

The recent release of Science and Engineering Indicators (2016) once again highlights
the under-representation of women and non-Asian racial minorities in science, technology,
engineering, and mathematics (STEM) degree attainment, and in the STEM labor force
(National Science Board 2016). This is a significant social issue, as STEM fields witness more job
growth and promise higher earning potential than non-STEM fields. So, the under-representation of
women and racial minorities in STEM could increase labor market inequality along race and gender
lines. On a different level, as the demographics of the American population become more diverse,
STEM workforce needs to catch up with demographic changes. Otherwise, the country runs the risk of
losing its competitive advantages in the world.

The under-representation of women and racial minorities in STEM is particularly acute now, as
racial minorities have made significant inroads into postsecondary institutions, and women in recent
years have been obtaining bachelor’s degrees at a higher rate than men (Buchmann and DiPrete 2006).
However, the increase of access to colleges and universities does not automatically bring about an
increase of enrollment in STEM fields. Therefore, it is an increasingly worthy task for researchers
to understand the processes leading to the under-representation of women and racial minorities in
STEM fields.

Recent research has brought additional complexity to the theme of under-representation. Studies
have shown that black students are as likely as their white counterparts to claim college majors in
STEM fields (Hanson 2009; Ma 2009; Riegle-Crumb and King 2010). That is, initially, they are not
under-represented in STEM fields; however, they are eventually under-represented in STEM degree
attainment, but it is not clear why. Racial disparity in degree attainments generally exists, but we are
not sure whether STEM degree attainment poses additional barriers for racial minorities. Research is
needed to disentangle the process of STEM degree attainment from general degree attainment.
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In addition, this study also pays particular attention to STEM subfield variations, as women
and racial minorities are not uniformly under-represented across STEM subfields. Previous studies
have documented strongly that women and racial minorities have made great inroads into life
science and related STEM fields, but they are persistently under-represented in such fields as physics,
computer science, and engineering (England and Li 2006; Frehill 1997; Ma 2009; Sassler et al. 2017).
In computer science, women’s representation has surprisingly declined by 2013, as compared to the
1980s (Corbett and Hill 2015; Sassler et al. 2017). Engineering has witnessed more growth, but it still
remains heavily male-dominated (Xie et al.). For this reason, this study has differentiated STEM
into life-STEM and physical-STEM fields, with the former including agricultural, biology, and other
life science-related STEM fields, and the latter including physical science, math, computer science,
and engineering.

This study focuses on both entry-level majors and bachelor’s degree attainment in STEM
fields—the admission ticket to many STEM occupations (Xie and Shauman 2003). It examines patterns
of representation in STEM subfields for the intersection of gender and racial/ethnic groups. It uses
the National Education Longitudinal Studies (1988:2000) (NELS) from the National Center for Education
Statistics. The NELS data make possible an examination of the process from college entry to degree
completion, and also enable an examination of racial minorities, as the survey over-sampled Asians and
Hispanics. The data also contains rich contextual information on high school academic preparations,
which are important to understand STEM attainment in college.

In what follows, I will first review theoretical and empirical studies using intersectional
perspectives of gender and race, and then review the relevant literature in understanding the process
of STEM degree attainment. The process of STEM degree attainment can be understood from two
angles. One is the trajectory that students have traveled. Do students graduate with STEM degrees by
choosing their initial college majors in STEM and then persisting, or do they start with a non-STEM
major and then switch later to STEM? The second angle is to understand the extent to which key
background factors including family socioeconomic status and academic preparations account for
group disparity in STEM attainment. The intersectional perspectives of race and gender can help
elucidate new patterns and insights about the process of STEM degree attainment, in terms of both
trajectories and contextual explanations for group disparity.

2. Intersectionality Studies

Critical race theorist and legal scholar Kimberlé Williams Crenshaw coined the term
“intersectionality” in 1989 to address the marginalization that African American women and other
women of color faced in both feminist and antiracist politics and theory. Crenshaw argued that the
experience of women of color cannot be understood in terms of their gender or race. Therefore,
she used the concept to denote the many ways in which race and gender interact to influence the
experiences of African American women. In her book titled “Ain’t I A Woman? Black women and
feminism,” scholar and social activist bell hooks examines the history of sexism and racism on black
women and the civil rights movement and waves of feminist movements to the 1970s, against both
forms of oppressions, which together have caused black women to suffer the most in American society
(hooks 1981). While the idea of intersectionality was developed largely based on the experience of
women of color, the concept has expanded to refer to the insight that social locations such as race,
ethnicity, gender, class, sexuality, nationality, ability, and age do not function as stand-alone and
mutually exclusive entities (Collins 2015, p. 2). In this sense, intersectionality calls attention to power
relations that create social inequalities and injustices (Collins 2015, p. 5). Power shapes privileged and
oppressed social categories that are interconnected, creating a “matrix of domination” (Collins 2015).

However, in understanding educational experiences in STEM fields, most studies treat gender
and racial minorities in the aggregate, as if all men and women share similar experiences in STEM
fields. It is also problematic to presume that gender is irrelevant when we examine racial/ethnic
disparities in STEM fields (Muller et al. 2001). Recent research on subgroups clearly underscores the
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significance of examining gender and race/ethnicity from an intersectional perspective. Hanson (2009)
found that African American girls, contrary to the expectation that they are doubly disadvantaged
in STEM fields as members of two under-represented status groups, show a greater interest and a
more positive attitude towards science than their white counterparts. A study by Riegle-Crumb and
King (2010) questions the assumption that STEM fields are still dominated by white males, and they
find that racial minorities are not under-represented as compared to whites in entering STEM fields in
terms of college major choices. Unfortunately, their study has not included Asian students, a group
highly visible in STEM. Also, their study examines only college major choices two years after high
school. Their conclusion, consequently, cannot apply to ultimate degree attainment, in which racial
minorities still fall behind.

Most recently, Ro and Loya (2015) have found out that among a sample of engineering
students, black women rate their skills lower than white men and women, and also lower than
black men. The authors suggest that black women may be suffering “a double effect because
of their gender and race” (Ro and Loya 2015, p. 385). On the other hand, Ma (2010) has found
that Asian women hold quite a positive attitude towards STEM fields, much more than their white
counterparts. Lord et al. (2009) argue that many studies on engineering education literature fails to
disaggregate women by race/ethnicity, therefore getting overgeneralized results that render minority
women invisible. The intersectional analysis is needed to fully understand the group disparity in
STEM attainment.

3. Pipeline Model or Revolving Door?

The “pipeline model” has been widely-used to understand the process of choice and attainment
in STEM (Berryman 1983; Xie and Shauman 2003). As the metaphor of the pipeline indicates, the
process is characterized by uni-directional rigid steps in choosing a college major and then persistence
in attaining the degree. Other educational trajectories, e.g., choosing a non-STEM major initially,
are viewed as “leaking from the pipeline.” The pipeline imagery is grounded in the framework of
cumulative disadvantage theory (Merton 1968; DiPrete and Eirich 2006), which posits higher attrition
rates among traditionally under-represented groups, such as women and racial minorities. The theory
then holds that the probability of a later influx into the pipeline is small, and therefore, complete
persistence should be the dominant means for any group to attain a STEM degree.

Contrary to cumulative disadvantage theory and the pipeline model, the revolving door
theory—proposed by Jerry Jacobs (1989) in his seminal study of occupational sex segregation—provides
a different approach that enables a more dynamic and fluid perspective. Jacobs found substantial flows
of women into and out of male-dominated occupations. The “revolving door” perspective captures
fluidity in aspirations and choices, allowing for delayed entry and attainment. Recent studies provide
some empirical evidence for this view (Xie and Shauman 2003; Ma 2011), which indicates that most
female STEM baccalaureates enter the STEM educational trajectory during college, after entertaining
high school expectations of a non-STEM college major, whereas most male STEM baccalaureates
anticipated majoring in a STEM field and held to this course in college. Ma (2011) further argued that
the social control that prevents women from entering math and science fields during their pre-college
years may ease up in college, which may help account for the influx of women into STEM later,
in college. However, we are not yet certain of the more complex picture that may emerge after an
examination of the intersection of gender and race/ethnic groups. Will racial minority women follow
a similar trajectory of STEM degree attainment as white women, due to the more open and supportive
environment in college than pre-college years? The intersectional analysis will provide empirical
evidence to address this question.

4. Social Background Effects on STEM Choice and Attainment

Research has provided robust evidence for the impact of such contextual factors as family
factors—particularly family SES—and high school academic preparations on STEM choice and
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attainment. There are substantial differences in STEM coursework and achievement between
low-SES and high-SES students spanning from elementary schools to college (Miller and Kimmel 2012;
NSB 2014). Various studies posit that high-SES parents can provide the necessary resources, exposure,
and access to experiences that lead to later interest and participation in STEM (Archer et al. 2012;
Dabney et al. 2013; Sjaastad 2012). In this aspect, racial minorities, black and Hispanic students in
particular, are disadvantaged because they disproportionately derive from low-income households.
Under-represented racial minorities are more likely to be in remedial courses and less likely to take
advanced math and science courses than their white and Asian peers (Kelly 2009; Nord et al. 2011;
NSB 2014). It is important to disentangle the effects of race from those of family SES, although they
highly correlate in the U.S.

Academic preparations in pre-college math and science have been identified as the key
determinants for participation in STEM fields in college (Adelman (1998, 2006); Smyth and McArdle
2004; Tai et al. 2006). However, recent research has consistently documented that aggregate gender
differences in academic preparation, such as course taking and test scores, are negligibly small
and can account for virtually nothing of the differences in the choice of a STEM major (Simon and
Farkas 2008; Xie and Shauman 2003). Performance at the college level also influences students’
educational trajectory, leading to STEM degree attainment. Some research suggests that when women
and minorities fail a course, they are more likely not to repeat the course and to switch their major
(Seymour and Hewitt 1997). Course grades in the first years of college may predict program retention
(May and Chubin 2003). Few studies at the national level exist concerning the intersection of gender and
race/ethnic patterns. However, some studies have shown that African American females have higher
levels of academic preparation than their male counterparts (Hyde and Linn 2006; Riegle-Crumb 2006),
and Asian American women show a much stronger tendency than white women to major in STEM
fields, though they still fall behind Asian men (Ma 2011).

5. Research Questions

This study investigates the following questions:

� What are the patterns of representation in STEM fields in college in terms of the intersection of
gender and racial/ethnic groups?

� How does the group representation vary at the starting and end points of students’ college careers?
Is under-representation among minorities driven mainly by their lower overall likelihood of
finishing college, or does persisting in a STEM field pose additional barriers?

� How do race and gender distributions vary across STEM fields? Specifically, we distinguish
life-STEM (biology and life sciences) and physical-STEM (physical science, math, computer, and
engineering). How do race and gender distributions vary across STEM fields after taking into
account family and academic backgrounds?

6. Data and Analytical Samples

The study uses the NELS: 88-2000 and the Postsecondary Education Transcript Study, which is the
nationally representative dataset, collected by the National Center of Survey Statistics (NCES). NELS
data is the most recent nationally representative longitudinal study that spans from students’ 8th
grades to 8 years after high school. The 1988 eighth grade cohort was followed at two-year intervals as
the students passed through high school and entered post-secondary education. Similar to previous
datasets collected by NCES, NELS data contain rich information on student pre-college academic
preparation, including detailed information on coursework, and its postsecondary transcript data
contains detailed curriculum and postsecondary attendance and attainment information. This survey
allows for study of college access, college major choice, and degree attainment. The studies also
oversampled Asians and Hispanics, which makes it possible to study racial patterns as well.
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Since this study examines two sequential outcomes—the initial college major choice and STEM
degree attainment—there are two distinct samples. For the initial major choice, the sample consists
of all the postsecondary participants, based on transcript data, who also identify as one of four
racial/ethnic groups: non-Hispanic Whites, non-Hispanic Blacks, Hispanics, and Asians. This results
in 9272 students—among whom, 1657 has claimed STEM fields as their initial major, 5555 has claimed
non-STEM fields as their initial majors, and 2060 students were undecided. The sample for STEM
degree attainment consists of all those with bachelor’s degrees, and the sample size is 4020—among
whom, 1013 have attained STEM degrees. Appropriate weights variables are also employed in
the analysis.

7. Variables

7.1. Dependent Variables

The dependent variables are the initial college major, and bachelor’s degree major. The NELS
data have the first college major information; bachelor’s degree major information was obtained from
the NELS: 88/2000 Postsecondary Transcript files. An aggregated variable with 12 categories (BAMJR)
is used, and STEM fields include life science, math, physical, and computer sciences, engineering
(of all sorts); the rest are non-STEM fields. STEM fields are further differentiated into life-STEM
(agriculture, biology, and life-science related), and physical-STEM (computer, math, physical science,
and engineering). This coding is a modified version of the coding used by the National Science
Foundation, as well as by other researchers (Frehill 1997; Ma 2011).

7.2. Independent Variables

7.2.1. Academic Preparation

Academic preparation is measured using high school course taking and standardized test scores
in math and science from the 12th grade and first year college GPA. These factors are domain-specific,
and are considered to be important factors for the bachelor’s degree attainment in STEM fields.
Course taking information was gathered from high school transcripts, and includes the highest math
course taken in high school. It has nine categories: Basic/Remedial Math, General/Applied Math,
Pre-Algebra, Algebra I, Geometry, Algebra II, Advanced Math (Algebra III, Finite Math, Statistics),
Pre-calculus (including Trigonometry), and Calculus. The course taking and test scores have some
missing, and we use group means to impute for those missing values.

7.2.2. Demographic Variables

Demographic variables include gender, race, and family socioeconomic status (SES). Race consists
of four categories: non-Hispanic Whites, non-Hispanic Blacks, Hispanics, and Asian/Pacific Islanders.
Family SES is a composite measure drawn from information on both parents’ education and their
occupations and income.

8. Findings

8.1. Entry

Figure 1 presents the percentage of students from eight groups who chose a STEM field as their
first college major. Because most of the participants were in their second year in college, a bit more than
one fifth of students had not yet declared a college major. Asian males topped the chart, with more than
30 percent in STEM. The lowest male group—Hispanics—had more than 20 percent in STEM fields,
still higher than the highest female group—Asian females, at 19 percent. While males are overall more
likely to enter STEM fields than females, there are significant group variations across STEM subfields.
In general, life-STEM fields witnessed much more female presence, while physical-STEM fields had a
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quite low female presence. In particular, over 12 percent of Asian females entered life-STEM fields,
surpassing all male groups. The other notable finding was that blacks were not at all under-represented.
Black males were as likely as white males to claim STEM majors. Black females are more likely than
white females to enter STEM fields. More than 14 percent of black females had their first college major
in a STEM field, compared to less than 11 percent of white females. In particular, black females are
about twice as likely as their white counterparts to enter physical-STEM fields. Black females also
overtook Asian females in their entry to physical-STEM fields.
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Figure 1. Gender and Race Disparity in Entry into science, technology, engineering, and mathematics
(STEM) fields (N = 9272). Note: Data is from National Education Longitudinal Studies (NELS:88-00)
postsecondary transcript data. The sample consists of all the postsecondary participants, based on
transcript data, who also identify as one of the four racial/ethnic groups: non-Hispanic Whites,
non-Hispanic Blacks, Hispanics, and Asians. The parenthesis includes the sample size for each group.

8.2. STEM Degree Attainment

Figure 2 shows the group patterns in STEM bachelor’s degree attainment. The NELS data collected
entry information (initial college major choices) in 1994, and the degree attainment information in 2000,
eight years after high school. Figure 2 shows that among the 9272 students who were enrolled in college
in 1994, a significant number of them have no degrees six year later. Racial gaps are paramount. Over
65 percent of black males and 64 percent of Hispanic males have not obtained any degrees, compared
with 33 percent of Asian females with no degrees—the lowest among all the groups. In terms of
STEM degree attainment, Asian females have a higher rate of STEM degree attainment than all of
the male groups, except for Asian males. Close to 20 percent of the Asian females have attained
bachelor’s degrees in STEM fields, compared to less than 15 percent of white males and less than
10 percent of black and Hispanic males. Asian males still topped the chart, with 24 percent graduating
in STEM. There are significant variations across STEM-subfields. In particular, Asian females have
the highest representation in life-STEM fields among all race-gender groups, with over 14 percent
of Asian females graduating from life-STEM fields. However, less than 6 percent of Asian females
graduated from physical-STEM fields and they trailed behind every male group, except for Hispanic
males. Physical-STEM fields seem to be daunting for all females, with Asian females most represented
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(less than 6 percent) among all females. Although black females surpassed Asian females in their
tendency to choose a physical-STEM major, they were left behind when it comes to degree attainment.

Given both black males and females were initially not under-represented in STEM fields but
eventually are, this suggests a severe attrition issue for black students. But the question remains:
Are the seemingly high attrition rates due to their higher rate of dropping out of college, or due to
their higher rate of switching out of STEM fields?
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Figure 2. Gender and Race Disparity in Completing a STEM bachelor’s Degree (N = 9272). Note:
Data is from NELS: 88-00 postsecondary transcript data. The sample consists of all the postsecondary
participants, based on transcript data, who also identify as one of the four racial/ethnic groups:
non-Hispanic Whites, non-Hispanic Blacks, Hispanics, and Asians. The parenthesis includes the
sample size for each group.

8.3. Attrition for Those with Initial Majors in STEM and Non-STEM Fields

Figures 3 and 4 can help address the above questions. Figure 3 examines outcomes for those who
claimed a STEM field as their initial college major. There were 1657 students who had initial majors
in STEM in 1994. These students could have four potential outcomes in 2000: no degree, associate
degree, bachelor’s degree in STEM fields, and bachelor’s degree in non-STEM fields. A strong pattern
emerges: females of all groups persisted slightly more than males, and Asian females had the highest
persistence rate among all of the groups. Among those who claimed a STEM field as their initial
college major, 62 percent of Asian females ultimately attained their bachelor’s degree in a STEM field,
followed by 56 percent of Asian males and 46 percent of white females. Among STEM graduates, all the
males have more degrees in physical-STEM than in life-STEM, and the reverse is true for females, but
black females remain the exception. While black females and white females share similar percentage
in physical-STEM fields (over 15 percent), there are 13 percent of black females in life-STEM fields,
compared with over 30 percent of white females in life-STEM fields.

A close examination of the question of attrition shows that black males have the highest percentage
of dropping out of college: over 57 percent of those who initially claimed a STEM college major left
college without any degree, compared to less than 20 percent of Asian females. Hispanic males were
equally likely to drop out of college. Since there were many fewer black and Hispanic students
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completing college, the number of those who switched out of STEM and graduated with a non-STEM
degree was also less than the number of white and Asian students.

Figure 3. Gender and Race Disparities in the Outcomes among those with an initial STEM major.
(N = 1657). Note: Data is from NELS:88-00 postsecondary transcript data. The sample size includes all
with the initial college major in STEM fields. The parenthesis includes the sample size for each group.

Figure 4. Gender and Race Disparities in the Outcomes among those with an initial non-STEM major.
(N = 5555). Note: Data is from NELS:88-00 postsecondary transcript data. The sample size includes all
with an initial major in non-STEM fields. The parenthesis includes the sample size for each group.
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Figure 4 examines the outcomes of those with an initial major in a non-STEM field. This figure,
along with Figure 3, offers a comparison of the attrition rates among those who started with STEM and
non-STEM fields. The interesting pattern emerges that for females, entering a STEM field is associated
with a much lower attrition rate than entering a non-STEM field; this pattern is not so strong for
males. For example, more than 34 percent of Asian females in non-STEM fields dropped out of college,
compared to less than 20 percent of their counterparts in STEM fields; close to 60 percent of Hispanic
females in non-STEM fields left college with no degree, compared to 44 percent of their counterparts
in STEM fields. The same pattern applies to white females: 37 percent in non-STEM fields did not
complete college, compared to only 25 percent of their counterparts in STEM fields. Black females
exhibit similar patterns, though the gap is not as salient. This seems to indicate that female students
who enter STEM fields are positively selected in ways that drive them to persist in college.

For males, entry into STEM does not make as much of a difference in completing college, with
the exception of Asian males. Less than 30 percent of Asian males in STEM fields drop out of college,
compared to 39 percent of their counterparts in non-STEM fields. Blacks show a similar pattern, but the
gap is not salient. For whites and Hispanics, the type of college major makes virtually no difference.

8.4. Trajectory of STEM Degree Attainment

Figure 5 examines the pathways of STEM degree attainment. Among 1013 students who finally
attained STEM degrees in 2000, 679 students (67 percent) claimed their initial college majors in STEM,
in other words, they followed the pathway of early entry and persistence; about 334 students entered
STEM later in college, after initially not in STEM. Apparently, the early entry and persistence pathway
is a dominant one. But the intersection of race and gender group analysis reveals the importance of
non-dominant path. Figure 5 shows that Asian women, Hispanic women and white women are all
more likely to travel the non-dominant pathway than their male counterparts. The only exception
is black women, with a quarter of them attaining STEM degrees after initially in a non-STEM field,
compared to 40 percent of Asian and white women and 47 percent of Hispanic women who did so.
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Figure 5. Gender and Race Disparities in Traveling the Non-Dominant Path of STEM Degree
Attainment (N = 1,013). Note: Data is from NELS:88-00 postsecondary transcript data. The sample size
includes all with the STEM bachelor’s degrees by 2000. The parenthesis includes the sample size for
each group.

Table 1 shows group disparities in key variables in family and academic backgrounds. For the
highest math course taken during high school, contrary to the conventional wisdom that females trail
behind males, both Asian females and black females surpassed their male counterparts. Meanwhile,
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whites and Hispanics maintained the traditional gender gap in favor of males. Asian females went the
furthest in terms of the highest math course taken. Racial gaps are salient, in that blacks and Hispanics
trail behind whites and Asians. Similar racial gaps manifest for standardized math achievement test
scores. However, the female advantage in math course taking starts to trail off in standardized test
scores, with both Asian and black females coming close to their male counterparts.

Table 1. Gender and Race Disparities in Key Independent Variables.

SES
(from −2.43–2.54)

Highest Math
(from 1–6)

Math Score
(from 30.27–71.37)

College GPA
(from 0–4)

Mean S.D. Mean S.D. Mean S.D. Mean S.D.

Asian Male 0.27 0.88 4.18 1.57 57.24 8.41 2.68 0.77
Hispanic Male –0.35 0.78 2.91 1.40 49.79 8.13 2.43 0.70
Black Male –0.15 0.80 2.91 1.19 46.66 7.66 2.24 0.71
White Male 0.30 0.70 3.58 1.45 55.59 8.02 2.59 0.74
Asian Female 0.30 0.90 4.33 1.48 56.92 8.17 2.82 0.72
Hispanic Female –0.46 0.76 2.82 1.22 47.85 7.45 2.48 0.75
Black Female –0.26 0.77 3.14 1.26 47.14 7.87 2.41 0.72
White Female 0.20 0.71 3.41 1.40 53.76 7.75 2.76 0.72
Full sample 0.13 0.79 3.44 1.44 53.40 8.46 2.63 0.74

Note: Data is from NELS:88-00 postsecondary transcript data.

8.5. Predicted Probabilities of Majoring in STEM Subfields

Figures 6 and 7 present the predicted probability based on the logistic regression model of entry
into life-STEM majors and physical-STEM majors. The model includes the key independent variables
in academic preparation and family SES (their details are in Table 1). The blue bars represent predicted
probabilities for each of the race and gender groups with the academic and SES variables set at the
group-specific mean. Given that Asian males have the highest STEM degree attainment, the orange
bars represent predicted probabilities for each of the race and gender groups, with the academic
and SES variables set at the mean for Asian men. The comparison between the two sets of bars can
elucidate how much of the group gaps can be closed by equalizing family background and academic
preparations. Figure 6 shows that all the groups have increased their predicted probabilities in entry to
life-STEM fields if they have had the same group mean in academic and family backgrounds with Asian
men, except for Asian women. It is no surprise that Table 1 already shows Asian women have more
academic advantages than Asian men. However, these academic advantages do not translate to much
presence in physical-STEM fields. As Figure 7 shows that Asian women are much less represented in
physical-STEM fields than other male groups, and also than black women. After setting group means
at the level of Asian men’s, the predicted probability for black women in entering physical-STEM
fields is 0.122, compared with 0.06 of Asian women. The biggest change took place for black men.
The predicted probability of black men in entering physical-STEM fields jumped to 0.285, had they had
the family and academic backgrounds of Asian men. Figure 7 also shows that black men thus have the
highest propensity to enter physical-STEM fields, had they had the family and academic backgrounds
of Asian men.
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8.6. Predicted Probabilities of Degree Attainment in STEM-Subfields

Figures 8 and 9 present the predicted probabilities based on the logistical regression of STEM
degree attainment for life-STEM and physical-STEM fields respectively. Similar methods were used
as in Figures 6 and 7 to compare the predicted probabilities before and after setting the mean at the
level of Asian men, in terms of family and academic background variables. Figure 8 has shown that
salient changes took place for both black males and Hispanic females. The predicted probability has
jumped to 0.077 from 0.02 for black males to graduate in life-STEM fields after taking on the mean of
Asian male’s academic and family background. The increase for Hispanic females from 0.018 to 0.072
is also quite remarkable. Figure 9 focuses on physical-STEM fields. It has shown the most striking
changes for black males. The predicted probability for black males to graduate in physical-STEM has
jumped to 0.186 from its previous 0.031, had they had the family and academic attributes of Asian
males. Notably, the predicted probability of Asian males to graduate in physic-STEM fields is 0.096,
only half of the level of black males with Asian characteristics.
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8.7. Separate Model

Tables A1 and A2 (in the Appendix A) examine the intersectional effects by running separate
models for each of the eight gender and race groups. Table A1 focuses on the outcome of entry into a
STEM field. The effects of academic preparations, and in particular, the highest math courses taken
during high school, are very important for most of the groups. Family SES is less important. Table A2
focuses on the outcome of attaining STEM degrees. Here, the high school academic preparation, along
with first year college GPA are important for most of the groups, and their impacts on life-STEM and
physical-STEM fields are similar.

9. Conclusions

This study focused on entry to and attainment of bachelor’s degrees in STEM fields, by examining
gender and race/ethnicity in an intersectional manner. The intersectional analysis reveals that both
race and gender matter in the STEM degree attainment. What is notable and consistent with previous
research (Hanson 2009; Ma 2009; Riegle-Crumb and King 2010) is that black students were not at all
under-represented at the starting point; that is, black males were as likely as white males to claim
a STEM field as their initial major, and black females were more likely than white females to enter
STEM. Black females in particular show their willingness, more than any other female groups, to
choose physical-STEM fields as their initial college majors, in which females in general remain severely
underrepresented. However, when it comes to completing a STEM bachelor’s degree, the attrition issue
for black students is severe. Asians and whites were much more likely to complete their bachelor’s
degree in STEM than blacks and Hispanics. Among those who had an initial major in STEM, females
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were slightly more likely than their male counterparts for all racial groups to complete the degree.
Asian females had the highest persistence rate among all the groups, followed by Asian males.

Our findings reinforce the robust evidence provided by previous research that family
and academic backgrounds are key to closing group disparities in STEM degree attainment.
Our intersectional analytical approach can highlight particular race-gender groups that would benefit
most from equalizing family and academic backgrounds. For example, women and racial minorities are
the most under-represented in physical-STEM fields. Our analysis reveals that black men would have
had the highest probability to graduate in physical-STEM fields, had they had the family and academic
preparations of Asian males. Black women would have had the highest probability of graduating in
physical-STEM fields among all women, had they had the family and academic preparations of Asian
males. This highlights the critical importance of family resources and academic preparations, which
improves the odds for STEM degree attainment for all groups. Black students would have experienced
the most drastic progress.

The focus on both the starting and end points of a college career make it possible to pinpoint
when and where minorities are under-represented, so that targeted efforts can be made. This study
resonates with previous research showing that female students are more likely to persist in college
once they are in a STEM field (Ma 2011). It also provides new evidence by looking at women in terms
of race/ethnicity and finding that minority women share the same tendency of persistence with white
women. This study also found that racial disparities in completing STEM degrees are much larger
than at the entry point. Blacks and Hispanics, males and females included, trail behind Asians and
whites in persistence. This study attempted to disentangle bachelor’s degree attainment from STEM
degree attainment. We found that for males, claiming a STEM major does not make much difference in
the probability of dropping out of college; for females, claiming a STEM major was associated with a
lower rate of dropping out of college than claiming a non-STEM major, which again testifies to the
positive selection of females’ choosing a STEM field.

Therefore, recruitment is much more important than retention for women at the undergraduate
level. At the start of college, women are much less likely to choose a STEM major, and those who do
are among the select few who are particularly driven and interested in STEM. Therefore, encouraging
and supporting women as early as secondary school about the possibility of entering a STEM field is
key for recruitment.

Our analysis extends earlier research on the trajectories of STEM degree attainment, by taking
an intersectional perspective to examine race and gender. It not only corroborates with previous
research that women are more likely to follow the non-dominant path, different from early entry and
persistence as predicted by the pipeline model (Xie and Shauman 2003; Ma 2011), but also reveals
that this non-dominant path of degree attainment applies to Asian women, Hispanic women, and
white women. This provides further testimony that college may provide a more open environment
that re-socializes women in a way that makes STEM fields more appealing and viable career path than
pre-college does. This paper calls forth targeted efforts at pre-college stage to encourage and support
women in STEM fields.

Other factors are noted as important in the literature, but we were not able to examine them
given the scope of this project. In particular, the academic culture of STEM fields, especially the
weed-out culture of STEM gateway courses and a lack of support overall, are integral to understanding
racial disparities in persistence. The role of culture and climate in contributing to racial disparity in
STEM is akin to a similar process leading to gender disparity in STEM (Catsambis 1994; Correll 2001).
This indicates that efforts to improve the cultural climate in STEM fields and reduce the gender gap
should be extended to address racial disparity.
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Appendix A

Table A1. Multinomial Logistic Regression Models for Intersectional Effects (STEM Entry).

Asian M Hispanic M Black M White M

Life-
STEM

Physical-
STEM

Life-
STEM

Physical-
STEM

Life-
STEM

Physical-
STEM

Life-
STEM

Physical-
STEM

Family SES 1.011 1.014 1.007 1.006 0.976 1.003 0.960 0.994
(0.015) (0.013) (0.011) (0.007) (0.038) (0.008) (0.038) (0.006)

Math test score
1.075 ** 1.012 1.003 1.004 1.109 *** 1.024 1.061 *** 1.044 ***
(0.038) (0.027) (0.033) (0.020) (0.042) (0.025) (0.014) (0.010)

Highest math course 1.869 *** 1.656 *** 1.610 *** 1.395 *** 0.908 1.522 *** 1.402 *** 1.372 ***
(0.363) (0.240) (0.297) (0.162) (0.231) (0.240) (0.097) (0.069)

Observations 381 381 524 524 351 351 3019 3019

Asian F Hispanic F Black F White F

Life-
STEM

Physical-
STEM

Life-
STEM

Physical-
STEM

Life-
STEM

Physical-
STEM

Life-
STEM

Physical-
STEM

Family SES 1.010 0.687 0.999 0.903 0.997 0.997 0.994 0.998
(0.053) (0.169) (0.040) (0.221) (0.011) (0.009) (0.008) (0.008)

Math test score
1.002 1.143 *** 1.047 0.995 1.104 *** 1.097 *** 1.053 *** 1.069 ***

(0.030) (0.053) (0.036) (0.031) (0.041) (0.034) (0.014) (0.018)

Highest math course 1.606 *** 1.307 1.644 ** 1.438 ** 1.667 ** 1.450 ** 1.727 *** 1.628 ***
(0.280) (0.290) (0.328) (0.266) (0.375) (0.270) (0.125) (0.141)

Observations 403 403 624 624 488 488 3482 3482

Reference group: “no major.” Coefficients on “Non-STEM major” are not reported in this table. **denotes p < 0.01,
***denotes p < 0.001.

Table A2. Multinomial Logistic Regression Models for Intersectional Effects (STEM Degree
Attainment).

Asian M Hispanic M Black M White M

Life-
STEM

Physical-
STEM

Life-
STEM

Physical-
STEM

Life-
STEM

Physical-
STEM

Life-
STEM

Physical-
STEM

Family SES 1.016 1.019 0.978 1.016 0.976 1.023 ** 1.003 0.992
(0.014) (0.012) (0.069) (0.012) (0.074) (0.010) (0.007) (0.010)

Math test score
1.144 *** 1.074 ** 1.059 1.062 1.147 *** 1.047 1.080 *** 1.107 ***
(0.045) (0.035) (0.048) (0.040) (0.057) (0.040) (0.017) (0.016)

Highest math course 1.976 *** 2.498 *** 2.467 *** 2.932 *** 0.860 2.250 *** 1.807 *** 2.157 ***
(0.414) (0.483) (0.641) (0.666) (0.301) (0.504) (0.144) (0.153)

GPA
2.447 *** 2.933 *** 2.247 * 2.636 ** 3.504 ** 4.106 *** 2.107 *** 2.337 ***
(0.764) (0.838) (1.073) (1.059) (1.828) (1.639) (0.277) (0.267)

Observations 381 381 524 524 351 351 3019 3019

Asian F Black F White F

Life-
STEM

Physical-
STEM

Life-
STEM

Physical-
STEM

Life-
STEM

Physical-
STEM

Family SES 0.976 0.616* 1.010 1.006 0.996 0.972
(0.038) (0.166) (0.011) (0.012) (0.010) (0.056)

Math test score
1.051 * 1.172 *** 1.053 1.057 1.113 *** 1.180 ***
(0.031) (0.060) (0.056) (0.048) (0.017) (0.029)

Highest math course 2.221 *** 2.350 *** 2.388 *** 2.743 *** 1.976 *** 2.169 ***
(0.395) (0.661) (0.754) (0.752) (0.150) (0.248)

GPA
2.256 *** 1.293 2.999 ** 2.977 ** 2.010 *** 2.314 ***
(0.660) (0.482) (1.602) (1.374) (0.264) (0.472)

Observations 403 403 488 488 3482 3482

Reference group: “no degree.” Coefficients on AA and non-STEM degrees are not reported in this table. Due to the
small sample size of Hispanic females in STEM degree attainment (less than 10), the estimates are unreliable, thus
excluded from this table. **denotes p < 0.01, ***denotes p < 0.001.
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Abstract: Although women graduate from college at higher rates than men, they remain
underrepresented in science, technology, engineering, and mathematics (STEM) fields. This study
examines whether women react to failing a STEM weed-out course by switching to a non-STEM major
and graduating with a bachelor’s degree in a non-STEM field. While competitive courses designed
to weed out potential STEM majors are often invoked in discussions around why students exit the
STEM pipeline, relatively little is known about how women and men react to failing these courses.
We use detailed individual-level data from the National Educational Longitudinal Study (NELS)
Postsecondary Transcript Study (PETS): 1988–2000 to show that women who failed an introductory
calculus course are substantially less likely to earn a bachelor’s degree in STEM. In doing so, we
provide evidence that weed-out course failure might help us to better understand why women are
less likely to earn degrees.

Keywords: higher education; gender; STEM; inverse probability weighting

1. Introduction

A longstanding body of research on gender differences in education suggests that women
are underrepresented in many science, technology, engineering, and mathematics (STEM)
fields—particularly in the physical sciences and engineering (Xie and Shauman 2007). Research
seeking to understand gender differences in who majors in a STEM field has identified a plethora
of factors, ranging from discrimination, cultural stereotypes around gender and science, confidence,
peer networks, and a preference for flexible curricula not offered in STEM departments (Correll 2001;
Charles and Bradley 2009; Cech et al. 2011; Riegle-Crumb 2006; Mann and Diprete 2013). Underlying
much of this research is the notion that STEM undergraduate training occurs in an environment that
ranges from disengaging to competitive to chilly, and that this climate leads students to opt for other
fields (Seymour and Hewitt 1997; Niederle and Versterlund 2007). While the factors that contribute to
this climate are likewise numerous, competitive weed-out courses at the introductory level are a source
of considerable dissatisfaction among undergraduates (Seymour and Hewitt 1997). These courses
serve a gatekeeping function, as they are required for many STEM majors, and are often failed by a
substantial number of students, promoting a competitive “sink or swim” environment (Seymour and
Hewitt 1997; Kokkelenberg and Sinha 2010; Olson and Riordan 2012).

Importantly, both women and men see this as problematic. The women interviewed by Seymour
and Hewitt express their thoughts like “I knew I could have done it if I wanted to. But I just said ‘Do
you really want to do this? Is it really worth killing yourself for?’” or “It’s been unadulterated hell.
Major overloads, no rest, stress—and it’s getting worse. That’s why I’m looking elsewhere” (Seymour
and Hewitt 1997, pp. 202–3). Men’s assessments are largely similar: “I mean, why stay [in science]?
You know, there’s no reason. And the rewards are—there’s no rewards. I mean, I can see no logical

Soc. Sci. 2017, 6, 47; doi:10.3390/socsci6020047 www.mdpi.com/journal/socsci115



Soc. Sci. 2017, 6, 47

reason why you’d stay.” and “You go through hell in the sciences without any guarantee that you
will be able to work. Why do it? Why not be an English major?” This sentiment is summarized by
Meg Whitman, who noted in an interview that “I took calculus, chemistry, and physics my first year.
I survived. But I didn’t enjoy it . . . After that, I had to find something else to do. I began selling
advertising for a magazine that was published by Princeton undergrads. It was more fun than physics”
(Fishman 2001).

However, despite the fact these weed-out courses are often invoked by students as a significant
source of disengagement, surprisingly little is known about how undergraduates respond to failing
these courses. While not examining weed-out course failure per se, research on grade inflation
suggests that failing a weed-out class could play an important role in shaping students’ future majors.
One study, for example, found that students were “pulled away” by their higher grades in the
humanities, arts, and social sciences courses and “pushed out” of STEM because of lower grades
(Ost 2010). Grade inflation in introductory classes may be particularly important, as the grades that
students receive in introductory courses strongly predict whether students choose to enroll in more
courses in the discipline (Ost 2010). Introductory courses in STEM departments tend to be among the
lowest graded courses (Rask 2010). Simulations suggest that if the grading distribution in introductory
science courses resembled the college average, there would be 2–4 percent increase in advanced science
course taking in later semesters (Rask 2010).

We build on this research by examining whether there are gender differences in the rates at which
men and women fail introductory calculus (which we henceforth refer to simply as calculus), and how
they respond to failure. Calculus often serves a gatekeeping function across STEM disciplines, limiting
the rate at which students can take advanced coursework in their major. Introductory math courses,
such as calculus, were found to be important factors for students’ decisions to stay or switch out of
STEM (Chen 2013). Although several studies have indicated that performance in introductory courses
has been linked to STEM persistence, little attention has been given to failing weed-out courses like
calculus. A key limitation in previous research is that these studies pool grades across STEM courses,
using GPA as an indicator of poor performance. While important, these studies cannot ultimately
address the role of weed-out course failure. Given the important signal that failing a weed-out course
provides to students (Crisp et al. 2009), we argue that examining the gendered responses to calculus
failure can provide researchers a better understanding of the critical junctures that shape a student’s
academic trajectory.

Gender might play an important role in shaping how students respond to failing calculus given
societal stereotypes about math competence. Correll (Correll 2004) shows that beliefs about gender
differences in a domain can shape self-assessments of competence and interest in pursuing a career
using these skills. Specifically, when women are exposed to the belief that men are superior in a
particular domain, women rate their performance worse than men, even when men and women receive
identical feedback about their actual performance in the domain. Given widespread stereotypes about
gender differences in mathematics, Correll’s findings suggest that women who fail a calculus course
might perceive their math skills to be worse than men who fail, and might have less interest in pursuing
math-dependent careers. Gender differences in self-assessments driven by these stereotypes may
explain why women tend to express doubts in their mathematical skills (Charles and Bradley 2009;
Noel-Levitz 2014) and are more likely to switch to a female-typed major when receiving lower grades
in coursework (Rask and Tiefenthaler 2008). As Charles and Bradley (Charles and Bradley 2009, p. 926)
note, “Beliefs about gender difference can thus spawn powerful self-fulfilling prophesies”.

While previous research suggests that women are more likely to re-evaluate and change their
career pathways in response to negative feedback, we know of no study that has examined the
implications of calculus failure and gender differences on whether students major in STEM. This study
uses a doubly robust inverse probability weighting approach to compare the degree outcomes of
students who had taken and failed calculus to a comparison group who passed calculus. We thus
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provide the first examination of the potentially gendered ways in which students responded to failing
weed-out coursework.

Research Questions

Our key research question examines whether there are gender differences in the response to
failing calculus, focusing on students’ likelihood of completing a bachelor’s degree, and in particular,
on degree completion in a STEM field. To motivate the analyses for our central research question,
we first ask (1) who takes and who fails calculus? Then, we ask, (2) what are the schooling outcomes
associated with failing calculus? Finally, we address our key question, (3) are there gender differences
in the schooling outcomes associated with failing calculus? To understand how failing a weed-out
class may affect students in the STEM pipeline (i.e., those who may be considered at risk of majoring a
STEM field), we narrow our sample size for questions (2) and (3) to students who planned to major in
STEM as high school seniors.

2. Data

Data are from the National Education Longitudinal Study (NELS:88) and the NELS Postsecondary
Education Transcript Study (PETS:2000) (NCES 1988; NCES 2000). The NELS:88 is a longitudinal study
that followed a representative sample of 25,000 eighth-grade students over twelve years starting in
1988. The Educational Testing Service created pencil-and-paper tests to assess each eighth-grader’s
skills in reading and mathematics for the NELS:88. These tests were repeated in tenth, and twelfth
grades. We use the student’s percentile rank in the pencil-and-paper test in twelfth grade to measure
students’ pre-college academic skills in reading and math.

During each follow-up survey, additional data and interviews were collected from parents,
teachers, and students participating in the study. As a longitudinal panel study, NELS:88 experienced
sample attrition and non-response bias. To adjust for the sampling frame, the NELS:88 replenished the
sample with additional respondents. All analyses thus use weights to adjust for these differences and
students in the analyses were non-missing in key outcome, predictor, and control variables.

The fourth and last follow-up study of NELS:88/2000 for the sample of the eighth-grade class
of 1988 occurred in 2000. The study collected postsecondary education transcripts for the sample
members who responded to the final follow-up and reported attendance at a postsecondary educational
institution in the third (1994) or fourth (2000) follow-up. Approximately 16,020 postsecondary
transcripts were collected for 15,240 sample members, a subsample from the third follow-up.
Transcripts contained detailed information on students’ coursework, credits, grades, and degree
obtained. To examine postsecondary education outcomes, we restricted our sample to the base-year
through fourth follow-up studies, limiting the number of valid cases with a postsecondary transcript
record to 7050 individuals.

3. Measures

Our key independent variable is failing an introductory calculus course, a key gate-keeping
course that often serves as a requirement for STEM majors. Calculus courses were identified using the
2010 College Course Map (CCM) taxonomy system to code information on the course subject and title
from college transcripts. Students were coded as having failed a class if they both (1) received a grade
of “0” or “F” for the course and (2) reported zero earned credits for the course. We ran additional
analyses where we define failure to include grades of “D”, “D-“, and “F”. Findings were consistent
with results from analyses reported here.

The two main outcome variables in this study are whether a student completed a bachelor’s
degree and whether they graduated with a bachelor’s degree in a STEM field. STEM majors include
engineering, mathematics, physics, chemistry, and biology; a complete list of majors included as STEM
fields is available in Appendix A (Table A1). The degree type and major is reported on the student’s
transcript at collection.
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We also control for a wide range of variables. Student-level controls include race/ethnicity, gender,
socio-economic status, high school GPA (standardized), twelfth grade test score percentile ranks in
both reading and math, whether students planned to major in STEM as high school students, and the
highest math course taken while in high school. During students’ senior year of high school, students
were asked if they expected to attend college and in which field they expected to major; we collapsed
anticipated majors into an indicator for whether students planned to major in a STEM field. While we
would ideally use a measure of intended major from the fall when students entered university, we prefer
our measure from the senior year of high school to information collected in the third follow-up of
NELS:88 in 1994, when most students were in their second year of college.

We also control for whether the student’s primary institution was a public two-year, private
not-for-profit four-year, and a public four-year institution. Because some students move from one
college to another, we coded for the first college that a student entered after high school. Accounting for
observable differences on these dimensions helps ensure that the associations we observe between
failing calculus and degree receipt are not being driven by these factors.

4. Sample

The first column of Table 1 provides a summary of the controls and outcome measures, as well
as the number of students who took calculus and the number of students who failed (n = 3650).
The study sample has slightly more women (52.6 percent) than men (47.4 percent). The sample
consisted of primarily Non-Hispanic White (74.5 percent), with 7.5 percent identifying as Non-Hispanic
Black, 11.5 percent identifying as Hispanic, and 6.6 percent as Asian. The average age that students
entered college was 18.4, with ages ranging from 17 to 24.

To measure socioeconomic status, we use the socioeconomic status composite measure created
by NELS, which combines information from the father’s education level, mother’s education level,
father’s occupation, mother’s occupation and family income from the parent questionnaire data in
NELS:88. In our sample, the average socioeconomic status (SES) composite is 0.08, meaning that the
college-going students in our sample are relatively advantaged compared to the unweighted national
average of −0.08 in NELS:88. For pre-college academic skills, we use the score percentile rank from
the NELS pencil and paper test in reading and math that students took in twelfth grade in high school.
On average, students in our sample of college-going students scored in the 60th percentile, meaning
that students in our sample scored on average at the 60th percentile of the national distribution of high
school seniors. The average high school grade point average (GPA) for our sample is 2.89. In our full
study sample, about a quarter of students (24.9 percent) planned to major in STEM. We also take into
account the highest level of mathematics course taken in high school, creating a series of indicators for
whether students’ highest math course was Algebra I or similar (10 percent), geometry (13 percent),
Algebra II (34 percent), Trigonometry (15 percent), pre-Calculus (16 percent), or Calculus (12 percent).

Looking at institution-level characteristics, we see that approximately 38 percent of the students
in our sample entered a public two-year institution as their primary institution, while 18 percent
entered a private not-for-profit four-year institution, and around 45 percent entered a public four-year
institution. Approximately 15 percent of the entire sample had taken calculus and 1.6 percent of the
entire sample (10.7 percent of calculus takers) had failed calculus. Regarding key outcomes, about less
than half of the sample (41 percent) had earned a bachelor’s degree in any field as of 2000, while 46
percent did not. About 13 percent of the sample received a bachelor’s degree in a STEM field.

The second and third sets of columns of Table 1 provide the summary of covariates, outcome
measures and independent variables among students who planned to major in STEM (n = 910) and
those who did not plan to major in STEM (n = 2740), respectively. The group of students who planned
to major in STEM is more evenly split by gender (49 percent men and 51 percent women) compared
with the group of students who did not plan to major in STEM (47 percent men and 53 percent
women). There are fewer White students (70 percent as compared with 76 percent), more Black
students (10 percent as compared with 7 percent), fewer Hispanic students (11 percent compared

118



Soc. Sci. 2017, 6, 47

with 12 percent), and more Asian students (9 percent as compared with 6 percent) in the group of
students who planned to major in STEM. Students who planned to major in STEM demonstrate slightly
higher levels of pre-college academic skills (scoring on average at the 63rd percentile compared with
the 60th percentile) and achievement (2.98 GPA compared with 2.86) than those who did not plan to
major in STEM fields. A significantly larger proportion of students who planned to major in STEM
had taken Calculus as their highest math course in high school (20 percent) compared to those who
did not plan to major in STEM (10 percent) while a higher proportion of students who did not plan to
major in STEM fields had taken up to Algebra II (36 percent compared with 29 percent).

Table 1. Descriptive statistics of variables used in analyses (n = 3650).

Full Study Sample Planned to Major in STEM Did Not Plan to Major in STEM

# valid obs mean/% # valid obs. mean/% # valid obs. mean/%

3650 910 2740

Gender

Male 1730 47.4% 450 49.5% 1280 46.7%
Female 1920 52.6% 460 50.5% 1460 53.32%

Race/Ethnicity

White (Non-Hispanic) 2720 74.5% 640 70.5% 2080 75.8%
Black (Non-Hispanic) 270 7.5% 90 10.2% 180 6.6%
Hispanic 420 11.5% 100 10.6% 320 11.8%
Asian 240 6.6% 80 8.7% 160 5.8%

Age when entered college 3650 18.4 910 18.3 2740 18.4
Socioeconomic status (composite) 3650 0.08 910 0.04 2740 0.09

Prior Ability and Achievement

NELS test score percentile 3650 60.6 910 62.6 2740 60.0
High School GPA 3650 2.89 910 2.98 2740 2.86

Highest Math Course Taken in High School

Algebra I or equivalent 380 10.3% 80 8.% 300 11.0%
Geometry 480 13.2% 100 11.0% 380 13.7%
Algebra II 1250 34.2% 260 28.5% 990 36.1%
Trigonometry 550 15.1% 130 14.3% 420 15.3%
Pre-calculus 570 15.6% 170 18.7% 400 14.6%
Calculus 430 11.8% 180 19.8% 260 9.5%

Primary Institution Type

Public 2 year 1380 37.8% 340 37.3% 1040 38.0%
Private Not-For Profit 4-year 640 17.5% 150 16.5% 490 17.9%
Public 4-year 1630 44.7% 430 47.3% 1200 43.8%

Planned to Major in STEM

Did not plan to major in STEM 2740 75.1% – – – –
Planned to major in STEM 910 24.9% – – – –

Calculus Course

Taken calculus 560 15.3% 250 27.5% 300 11.0%
Failed calculus 60 1.6% 40 4.4% 30 1.1%

Degree Attainment

Earned a bacherlor‘s degree 1510 41.4% 360 39.6% 1150 42.0%
Did not earn a bacherlor‘s degree 1660 45.5% 400 52.7% 1260 46.0%

Earned a Bachelor‘s in STEM

Did not earn bacherlor‘s degree in STEM 1190 32.6% 150 16.5% 1050 38.2%
Earned bacherlor‘s degree in STEM 470 12.9% 250 27.5% 220 8.0%

Source: National Educational Longitudinal Study (NELS:88) and Postsecondary Education Transcript Study
(PETS:2000) (NCES 1988; NCES 2000). Sample restricted to students who had valid non-missing information
on their postsecondary enrollment status, coursework, institution type, gender, race, age, NELS 12th grade test
score percentile, high school GPA, highest math course taken in high school, and orientation towards majoring in
a science, technology, engineering or mathematics (STEM) field in college. Degree attainment does not include
students who earned an Associate’s Degree. n in models have been rounded to the nearest 10 for disclosure.

The percentages of students who entered a public two-year, a private not-for-profit four-year, or a
public four-year institution as their primary institution in each group were fairly similar to the full
sample. Approximately 28 percent of students who planned to major in STEM took calculus in college
compared to 11 percent of students who did not plan to major in STEM. Four percent of students who
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planned to major in STEM as high school seniors had failed calculus, while one percent of students
who did not plan to major in a STEM field failed calculus. The percentages of students who earned a
bachelor’s degree in each group were fairly similar to the full sample. Approximately 28 percent of
students who planned to major in STEM earned a bachelor’s degree in a STEM field, while 8 percent
of students who did not plan to major in STEM earned a STEM bachelor’s degree.

5. Methods

Estimation Strategy

We use doubly robust inverse probability weighting (IPW) to examine the relationship between
failing calculus and degree outcomes among calculus takers. In our observational data, we cannot
randomly assign our treatment (e.g., calculus failure). As such, students who fail calculus are likely
to be different from those who did not fail calculus (our “control” condition) in both observable and
unobservable ways. Table 2 provides descriptive results on students who take and fail calculus in
the study sample. We see in Table 2 that there are both demographic and institutional differences
between students who pass and students who fail calculus. Given these differences, we cannot
estimate the effect of calculus failure on degree completion by simply comparing the estimates of
degree completion likelihood among those who failed or students who passed calculus. To address
this issue, we use IPW estimates to account for differences in the observable characteristics of students
who pass and fail calculus.

IPW estimators use a two-step approach. First, the predicted probability of receiving the treatment
is estimated for each student. Then, weights for each student are created. To balance the groups on
observable characteristics, the IPW scheme up-weights students who received a given treatment but
were unlikely to receive the treatment based on observable characteristics (e.g., students who were
likely to fail but passed, or who were likely to pass but failed). Conversely, the scheme down-weights
students who were highly likely to receive the treatment they received.

One limitation of IPW is that it assumes that the model used to predict the treatment (and
therefore the weight) is correctly specified. If this model is not correctly specified, then the weighting
will not account for the differences in these observable characteristics. We can relax the model
specification assumption by using doubly robust IPW estimators and include controls in our weighted
models predicting our outcomes. In these models, if either the weighting model or the final model
is correctly specified, we will account for potential imbalance in our observable characteristics. It is
important to clarify, however, that doubly robust models do not account for differences in unobserved
characteristics of respondents. For a step-by-step process of how we created the doubly robust IPW
estimators, see Appendix B.

6. Results

6.1. Predicting Calculus Taking and Performance

Table 2 presents the results of linear probability models in order to provide descriptive information
on the characteristics of students who (a) take calculus compared to the entire study sample (n = 3490)
and (b) fail calculus compared to students who had passed calculus (n = 540).

Model 1 shows that women are 11 percentage points less likely to take calculus than men, and that
Asian students are nine percentage points more likely to take calculus than white students. A one-unit
increase in SES composite is associated with a two percentage-point increase in taking calculus. One
percent increases in students’ reading and math scores and high school GPA are associated with four
and 11 percentage-point increases in the likelihood of taking calculus, respectively. Compared to
students who had algebra I or a similar course as their highest math class in high school, students who
took algebra II are, if anything, slightly less likely to take calculus, while students who took calculus in
high school were 31 percentage points more likely to take calculus in college. Students who planned to
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major in STEM as high school seniors were 13 percentage points more likely to take calculus. Finally,
students entering a four-year private or public college (compared to entering a two-year college) were
six and three percentage points more likely to take calculus, respectively.

Table 2. Linear Probability Models (LPM) predicting who takes calculus and who fails calculus.

Taken Calculus Failed Calculus

Compared to Students Who
Never Took Calculus

Only among Students
Who Took Calculus

Demographics

Female
−0.11 *** −0.02
(−8.20) (−0.44)

Age −0.38 −0.76
(0.11) (−1.46)

Age squared 0.01 0.02
(0.11) (1.50)

Black
0.01 −0.01

(0.68) (−0.81)

Hispanic 0.01 0.01
(0.60) (0.15)

Asian
0.09 * 0.07
(2.31) (0.84)

Socio-economic status composite 0.02 * −0.06 *
(2.21) (−2.11)

Prior academic skills and achievement

NELS 12th grade test score percentile (logged)
0.04 *** −0.03
(4.69) (−0.45)

High school GPA (logged) 0.11 *** −0.17 +

(4.27) (−1.70)
Highest math course taken in High School

Geometry −0.03 −0.20
(−1.64) (−1.06)

Algebra II −0.02 + 0.07
(−1.76) (−0.35)

Trigonometry 0.04 + −0.07
(1.90) (−0.37)

Pre-calculus
0.10 *** −0.11
(3.77) (−0.59)

Calculus
0.31 *** −0.12
(8.75) (−0.65)

Planned to major in STEM 0.13 *** 0.03
(7.23) (0.74)

Institution Type

Private not-for-profit 4-year 0.06 ** 0.05
(2.62) (1.23)

Public 4-year 0.03 * 0.11 *
(2.18) (2.37)

Constant
3.37 7.53

(7.23) (1.55)
R2 0.24 0.11
n 3490 540

Source: National Educational Longitudinal Study (NELS:88), Postsecondary Education Transcript Study (PETS:2000)
(NCES 1988; NCES 2000). t-statistics underneath coefficients in parentheses. Controls are in reference to male,
White, highest math course taken as Algebra I or other math course in high school, and entered a public two-year
college. Sampling weight used in analyses. n in models have been rounded to the nearest 10 for disclosure. + p < 0.1,
* p < 0.05, ** p < 0.01, *** p < 0.001.

Model 2 examines how the same set of factors from Model 1 are associated with failing calculus
among students who took it. Importantly for our purposes, we see no gender differences in the
likelihood of failing among calculus takers. We do find that high SES students, as well as students
with higher GPAs in high school are less likely to fail. We also find that students who directly enter a
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four-year college are more likely to fail than students who first entered a two-year college. All other
variables in the model yielded statistically non-significant findings.

6.2. General and STEM Bachelor Degree Attainment

Our results examining the relationship between failing calculus and degree attainment are
presented in Table 3. As noted earlier, to focus on students who might plausibly be in the STEM
pipeline, we restrict our analyses here to students who (a) planned to major in STEM in their senior
year of high school and (b) had taken calculus in college. Students in this sample were weighted
based on their probability of being assigned to treatment received. To address concerns around
misspecification in the weighting model, we estimate doubly robust models that include all covariates
in the models predicting our outcomes. In the first two models, we first examine whether students
completed a bachelor’s degree in any field. Models 3 and 4 examine whether students attained a
bachelor’s degree specifically in a STEM field.

Table 3. Linear Probability Models (LPM) predicting receipt of a bachelor’s degree and receipt of a
bachelor’s degree in a STEM field, among students who had taken calculus and planned to major
in STEM.

Bachelor’s
Degree

Bachelor’s
Degree

STEM
Bachelor’s

STEM
Bachelor’s

Failed calculus −0.12 + −0.12
(−1.66) (−1.39)

Gender and Failure Status
(Omitted category: men—did not fail calculus)

Men—failed calculus −0.03 0.13
(−0.34) (1.30)

Women—did not fail calculus 0.12 + 0.04
(1.82) (0.48)

Women—failed calculus −0.19 −0.66 ***
(−1.45) (−7.40)

Constant 16.43 18.14 −52.37 −44.35
(0.67) (0.76) (−1.52) (−1.36)

R2 0.25 0.27 0.31 0.42
n 230 230 190 190

Source: National Educational Longitudinal Study (NELS:88) and Postsecondary Education Transcript Study
(PETS:2000) (NCES 1988; NCES 2000). STEM in reference to science, technology, engineering or mathematics
fields. t-statistics underneath coefficients in parentheses. Reference category for interactions is a male college
student who did not fail calculus. Includes demographic, prior achievement/academic skills, and institution
controls for doubly robust estimates. n in models has been rounded to the nearest 10 for disclosure. + p < 0.1,
* p < 0.05, ** p < 0.01, *** p < 0.001.

In Model 1, we examine the relationship between failing calculus and completing a bachelor’s
degree. After accounting for demographic characteristics, prior achievement, academic skill, highest
math course taken in high school, and institution-level covariates, we find that failing calculus is
associated with a 12 percentage-point decrease in degree completion. In Model 2, we interact failing
calculus and gender to see whether the relationship between failing calculus and bachelor degree
completion varies by gender. To facilitate interpretation, we present predicted probabilities from
Model 2 (holding covariates constant so that covariates are averages for the study sample) in Figure 1.
While we find only small differences in the likelihood of receiving a bachelor’s degree between men
who passed and failed calculus (0.80 versus 0.76), we see that women who did not fail calculus
are 32 percentage points more likely to receive a bachelor’s degree than women who failed calculus
(0.92 versus 0.60; p = 0.019). Men’s likelihood of receiving a bachelor’s degree is thus not strongly tied
to whether they pass calculus, while for women it is. Women who pass calculus are more likely to get
a bachelor’s degree than men, while women who fail calculus are less likely to do so.
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Figure 1. Predicted probabilities of bachelor degree receipt by gender. Source: National Educational
Longitudinal Study (NELS:88) and Postsecondary Education Transcript Study (PETS:2000) (NCES 1988;
NCES 2000).

Model 3 in Table 3 examines the relationship between failing calculus and STEM bachelor’s degree
completion. Here we find that, overall, failing calculus was not statistically significant (p = 0.165),
though the point estimate is similar in magnitude and direction as in Model 1, suggesting that students
who fail are less likely to obtain a STEM degree. Model 4 follows Model 2, examining the relationship
between failing calculus and receiving a STEM bachelor’s degree by gender. Predicted probabilities
from Model 4 are reported in Figure 2. As above, we find no statistically significant differences among
men (0.74 versus 0.86), but we do find that there is a statistically significant difference between women
who do and do not fail (0.07 versus 0.78, p < 0.001). As is readily visible in Figure 2, failing calculus
does not appear to weed out men, but does appear to weed women out.

Figure 2. Predicted probabilities of bachelor degree receipt in a Science, Technology, Engineering, and
Mathematics (STEM) field by gender. Source: National Educational Longitudinal Study (NELS:88) and
Postsecondary Education Transcript Study (PETS:2000) (NCES 1988; NCES 2000).

7. Discussion

Despite widespread interest in the role of weed-out classes in the STEM training pipeline, little
is known about how failing a weed-out class might shape both men and women’s STEM decisions
to major in a STEM field. Using nationally representative data and a wide range of controls, we find
that women who intended to major in STEM and fail calculus in college are significantly less likely to
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obtain a bachelor’s degree in a STEM field. For men who intend to major in a STEM field, on the other
hand, we find no evidence that failing calculus lowers their likelihood of obtaining a STEM degree.
To the degree that calculus functions as a weed-out class, our findings suggest that it does so in a
profoundly gendered way, weeding out women but not men.

Our results have important consequences for policies aimed at increasing the representation of
women in STEM fields. Given that calculus often serves as a gatekeeper for advanced courses in
STEM, students who fail calculus face additional barriers that make it difficult to continue with their
college studies in many STEM fields (Seymour and Hewitt 1997; Chen 2013). Our findings suggest
that these barriers do little to dampen men’s STEM degree completion, but may play a substantial
role in shaping women’s STEM degree completion. Policies aimed at increasing the representation of
women obtaining STEM degrees may want to focus on women at this crucial stage, and efforts to assist
students who have failed calculus may want to focus particularly on women. More broadly, given the
lack of an effect on men’s majors, these findings suggest that STEM educators may want to rethink the
role of weed-out classes in STEM education. That is, it is difficult to argue that weed-out classes are
doing their job and keeping unprepared individuals from pursuing these majors, when men who fail
calculus are just as likely to graduate with a STEM degree as men who pass.

This lack of a difference for men is perhaps puzzling and raises additional questions. For example,
it is unclear at what rate we would want men and women who failed calculus to continue pursuing
STEM degrees (Penner and Willer 2015). Women are generally more responsive to grades than men
(Charles and Bradley 2009), and while research on STEM persistence typically operates under the
assumption that STEM persistence should be encouraged for all individuals, it seems plausible that
after failing a weed-out class, pursuing a different major is potentially more adaptive than continuing
to major in STEM. That is, while qualities like grit (Duckworth et al. 2007) and resilience (Masten 1994)
are rightfully celebrated, adaptive goal disengagement (Heckhausen and Schulz 1995) is also an
important adaptive strategy. To use a non-educational example, somebody who has repeatedly asked
a romantic interest to go on a date and been turned down should potentially disengage from the goal
of being in a romantic relationship with this individual, rather than continue to persist. While we
are unable to adjudicate whether the women who fail weed-out classes are best served by persisting
in STEM fields, we argue that understanding the outcomes associated with weed-out class failure
provides insight into the larger structural changes needed to alter students’ persistence decisions.

In line with arguments around adaptive goal disengagement, our findings could in part also
reflect the fact the women who fail calculus have better non-STEM options than men (Penner 2015;
Wang et al. 2013). If this was the case, weed-out classes could plausibly explain both why women
are less likely to major in STEM fields (they switch their majors after failing) and why men are less
likely to graduate from college, net of enrollment rates (if they drop out after failing a weed-out class).
As we only find evidence for the first of these processes, this suggests a gendered dimension in how
calculus weeds women out of STEM fields. It also seems unlikely that these differences could produce
differences of the magnitude we observe here. However, this perspective does highlight that we should
not view women dropping out of the STEM pipeline as failures, but instead focus on questions around
how STEM fields are structured.

In addition to questions about the larger structure of STEM education, larger societal stereotypes
about gender and STEM are potentially relevant. One explanation for our findings is that the weed out
culture for introductory-level coursework combines with gendered stereotypes about STEM fields to
result in different self-assessments after calculus failure (Correll 2004). That is, much like the women
in Correll’s study who expressed less interest in pursuing fields that were said to be male advantaged,
larger gender stereotypes might shape how women who fail calculus incorporate this information into
their self-assessments and interests differently than men.

In supplemental analyses, we considered whether failure in any course deters women from
earning a STEM degree. Taking a sample of students in the humanities “pipeline,” we estimated
whether failing introductory writing composition is more likely to deter women than men from
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graduating with a humanities degree using the same IPW estimation strategy described above. While
failing introductory writing is negatively associated with completing a bachelor’s degree and a
humanities bachelor’s degree, we find no gender differences in humanities degree attainment rates
among those who failed this course. We also examined other potential STEM weed-out courses
(e.g., introductory chemistry), and do not find similar patterns in these courses as for calculus. This is
perhaps surprising, and may speak to the unique space that calculus occupies.

8. Limitations

While we provide important evidence regarding the different ways in which women and men
respond to failing weed-out courses, our study has several limitations. The first is the possibility
that students who have failed calculus are different from students who did not in unobservable
ways, limiting causal attributions. While we account for a wide range of observable characteristics by
estimating doubly robust IPW, our approach cannot account for unobserved differences between the
students who did and did not fail calculus.

Another limitation of our study is our lack of information about students’ intended majors
before and after taking calculus. We use information about whether students planned to major in
STEM as high school seniors to indicate whether students could be in the STEM pipeline at this
point, but cannot isolate failing calculus as being the factor that led students to pursue a different
major. For example, we lack information on other important factors associated with college and STEM
persistence, such as quality of faculty-student contact in the STEM department, peer interactions,
experiences or perceptions of diversity on the college campus, student satisfaction, and participation in
extracurricular activities while enrolled in college (Seymour and Hewitt 1997). Of particular note, we
lack data on perceptions of failure, motivation, and self-efficacy in the NELS:88 (Tinto 1987). However,
to the degree that many of these considerations could be mediators that helped explain why failing
mattered, it is unclear that they should be introduced as control variables. Additionally, while we
acknowledge that calculus takers across STEM majors may differ, the limited sample size in our study
does not allow separating out analyses by specific major (e.g., physical versus biological sciences).

Finally, although we use a large, nationally representative dataset to examine these questions,
the number of individuals who intended to major in a STEM field and took (and failed) calculus
is relatively small, necessitating caution in interpreting the results. As such, these results would
benefit from future replication studies. Furthermore, as noted above, in our supplemental analyses,
we find evidence suggesting that calculus may be unique, as we do not find similar patterns for other
introductory STEM courses. However, given the relatively small samples for these classes, future work
on this question would be particularly useful in understanding if other attributes to its position in
the course sequence, course content, pedagogy or other factors play a role in weeding out women
but not men. In particular, while we focus on calculus, given its prominent position and relative
prevalence, future work might fruitfully examine whether other weed-out classes function in similar
gendered ways.

9. Conclusions

Gender disparities in postsecondary STEM education continue to be an enduring issue in higher
education. Our study examined how men and women react differently to failing a weed-out course
among potential STEM majors, which might shape their educational pathways. Using detailed
individual-level data from NELS PETS:1988–2000, we find that women who planned to major in
STEM and failed calculus in college were substantially less likely to obtain a bachelor’s degree in
STEM. On the other hand, failing calculus did not appear to lower the likelihood of STEM degree
receipt among men. Thus, we demonstrate evidence of the gendered ways these weed-out courses
function—weeding out women but not men in the STEM degree pipeline.
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Appendix A

Table A1. Coding for Expected Majors and Received Majors as STEM.

Planned to Major in STEM Did Not Plan to Major in STEM

Architecture and Related Programs Agricultural Business and Production
Biological and Life Sciences Area, Ethnic and Cultural Studies
Computer and Information Sciences Business Management
Engineering Communications
Engineering Related Technologies Education
Mathematics Health Professions
Physical Sciences Humanities
Science Technologies Law

Liberal Arts and Sciences
Public Administration and Services
Reserve Officers’ Training Corp (R.O.T.C)
Social Sciences
Vocational Education
Visual and Performing Arts

Appendix B

Doubly Robust Inverse Probability Weighting

In the first step of doubly robust IPW, we estimate propensities (P) for each student. Using
covariates discussed earlier, each student is given a propensity score. An individual variable does
not have to be a statistically significant predictor of treatment in the propensity model since the
objective is for students in the treated and control categories to be balanced on the covariates.
The propensity score equation is a logit model predicting the probability of a student receiving
an F in calculus. All individual-level and college-level covariates discussed above were included in the
logistic regression equation to predict the probability of treatment:

Pr(Fail)i = αi + βkXki + εi. (A1)

Equation (A1) predicts the probability of a student failing calculus in college and Xi is a vector of
control variables. In the model above, i represents the value of an individual in the predictor equation.

After estimating each student’s predicted probability of failing calculus in Equation (A1), we then
use the probabilities to create inverse probability weights, which we define as the inverse of the
probability of receiving or not receiving the treatment given observable characteristics. For students at
each category of treatment t (failed or passed calculus), we define our inverse probability weight as:

W = 1/P̂t, (A2)

where P̂t is the predicted probability that a student received the treatment that he or she received.
For doubly robust IPW estimators, the same covariates used to estimate the probability weights

for Equation (A1) are also included as controls in a linear probability model predicting our degree
outcomes. To examine whether the relationship between failing calculus and degree outcomes vary by
gender, we estimate models that interact failing calculus with gender. We estimate two sets of these
models; the first set predicts bachelor degree completion in any field and the second set predicts STEM
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bachelor degree completion. Thus, our first model in Table 3 predicts whether students completing a
bachelor’s degree in any field as a function of failing calculus:

Pr(Degree)i = αi + β1Faili + βkXki + εi , (A3)

where Faili is a dummy variable equal to one if a student ever failed calculus and zero otherwise and
Xi is a vector of background controls for doubly robust estimates. The main effect of Faili provides
information about the association between failing calculus and receiving a bachelor’s degree. In the
next model, we include an interaction effect between Faili and whether the student was female to
examine the association any variation between failing calculus and bachelor degree completion by
gender. The error term, εi, captures characteristics not accounted for in the model that influences the
outcome variable. We estimate similar models predicting STEM bachelor degree receipt.
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Abstract: The representation of women among STEM doctorates has grown over the past decades
but the underrepresentation of women in the STEM labor force persists. This paper examines the
immediate post-degree employment outcomes of nine cohorts of STEM doctorates who attained
their degrees between 1995 and 2013. The results reveal both progress toward gender equity and
persistent inequities. Contrary to historical gender disparities, a small female advantage has emerged
in the attainment of tenure-track faculty positions, women are increasingly less likely than men to
enter postdoctoral positions, and the flow of STEM doctorates into business and industry, which
was once male dominated, is now gender neutral. Among the doctorates who do not follow the
doctorate-to-faculty career path, women are as likely as men to “stay in STEM,” but less likely to
attain research-oriented jobs. Gender segregation in occupational attainment and significant gender
gaps in earnings, however, continue to be defining characteristics of the STEM labor force. The results
show that the labor market disparities vary across STEM fields but are largely not attributable to the
gendered impact of parenthood and dual-career marriage.

Keywords: gender; STEM; labor market; family; trends; segregation

1. Introduction

The representation of women among doctorates in science, technology, engineering
and mathematical (STEM) fields has grown significantly over the past decades [1] but the
underrepresentation of women in the STEM labor force persists [2]. Women with STEM doctorates are
less likely than men to work in STEM occupations, and those who do are less likely to be employed in
the most prestigious and well-paid positions in academia, government, business and industry [3,4].
The observed gender inequalities in the STEM labor force are generated by myriad influences and
sorting processes operating continuously throughout the life course [3], but recent evidence points to
the critical and long-term impacts of the immediate post-degree transitions. For example, a primary
cause of the continued underrepresentation of women among recent cohorts of research university
faculty is that women may be less likely than men to apply for faculty positions [4,5]. Identifying the
extent, character and causes of gender differences in early employment transitions is therefore central
to understanding gender differences in the STEM labor force and developing policies that support the
optimal and equitable development of STEM talent.

In this paper, I present a detailed analysis of the immediate post-degree transitions of doctorates
in STEM fields, using data from nine cohorts of doctorates from the 1995–2013 waves of the Survey
of Doctorate Recipients (SDR). I focus on the transition to the labor market within two years of Ph.D.
completion and examine gender differences in multiple employment outcomes that capture the full
range of post-degree labor market experiences that may impact career development. This analysis is
motivated by 4 research questions:
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• Are there gender differences in the immediate post-degree labor market outcomes of
STEM doctorates?

• Which labor market outcomes have the greatest gender disparities?
• Have the observed gender disparities changed over time?
• Do the gender differences in labor market outcomes vary by STEM field, and are they associated

with the doctorates’ family characteristics?

This analysis is largely descriptive in that I identify where the labor market experiences of women
and men differ and if those differences are correlated with a set of variables measuring the family
characteristics of the STEM doctorates. By disaggregating the transition to the labor market and
examining gender differences across multiple aspects of early employment, I provide a more nuanced
assessment of the degree to which women are less likely to utilize their educational investments and
to leave the STEM labor force. I focus on assessing the influence of family characteristics on gender
differences in employment outcomes because prior research identifies parenthood and other family
characteristics, e.g., dual-earner couple status, as having particularly negative effects on women’s
employment outcomes in the STEM fields. The demands of childbearing and of caring for young
children appear to have a particularly negative influence on the likelihood that women will stay in
STEM fields and attain career success on a par with their male colleagues [3,6,7]. Research has also
identified employer behaviors, such as unconscious bias against women in general [8–10], and against
mothers in particular [11], along with structural and cultural aspects of STEM workplaces [12] that
operate on the demand-side to inhibit the career progress of women.

This study is designed to address four empirical limitations of prior research. First, analyses
of gender differences in STEM tend to focus on single employment outcomes and to collapse all
alternatives into a single comparison category. Such simplistic operationalizations of the transition
process can identify neither the relative probability of competing employment outcomes nor the
correlates of those outcomes. The employment outcome that has received the most attention is the
attainment of a tenure-track job, and the focal question is: why are women not attaining/choosing
academic jobs? Analyses addressing this question often use a dichotomous classification of
employment outcomes, academic vs. non-academic positions, which obscures the heterogeneity
among the alternatives to academic employment. When a clearly-defined outcome is contrasted with
a heterogeneous aggregation of “other” outcomes, only the characteristics of the focal employment
outcome and the influence of correlates associated with its achievement can be measured with accuracy.
Studies that employ this strategy cannot adequately address why women choose non-academic jobs,
what characteristics of non-academic jobs they attain, and how they fare in those jobs relative to men.
Studies that focus on the academia-vs.-other dichotomy also reify the assumptions that employment
in academia is the most desirable outcome and that other types of employment represent a “loss”
at both the individual and institutional levels—individual women disproportionately “lose” in the
competition for academic employment and the science pipeline “loses” women disproportionately.
This assumption is further bolstered by a tendency for the research to focus on factors that might
“push” women out of academia (e.g., chilly climate, incompatibility of academia with family formation,
etc.) [13–15] and to neglect positive aspects of non-academic employment options that might “pull”
women to other sectors of STEM employment.

Second, the study of differences in employment outcomes tends to ignore the dynamic
and contingent nature of career development. Despite the universal adoption of the “pipeline”
characterization of the science career trajectory, the study of gender differences in STEM is segmented
into literatures that focus on distinct career stages but rarely examine the transitions between those
stages [3]. The contingent nature of the successive stages of the career trajectory is acknowledged but
not often incorporated into analyses. Research commonly compares the representation of women at
prior stages in the trajectory to their representation at a subsequent stage without attending to the
intervening transitions that condition the likelihood of the focal outcome. Yet inattention to intervening
transitions may produce biased estimates of gender differences and misidentification of their causes.
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It is common, for example to compare the percent female among tenured faculty with the percent female
among doctorates to assess the size of the gender gap in the tenure rates. The appropriate denominator
for the calculation of gender differences in the tenure rate is a much-debated topic that hinges on the
degree to which the transitions that intervene between degree attainment and achievement of tenure
are acknowledged. Estimated gender differences in the rate of tenure attainment will vary from large
to non-existent depending upon whether the denominator of the rate is all doctorates, doctorates who
enter the labor force, doctorates who apply for tenure-track positions, or just the doctorates who attain
a tenure-track position. Analyses of career outcomes that ignore the nested or conditioning effect of
intervening transitions are unlikely to accurately represent the career-building process and, therefore,
to identify the component processes that generate gender-specific outcomes.

Third, extant research has tended to ignore the heterogeneity within science fields and across
the labor market for doctorate-level scientists and engineers. The distribution of doctorates across
the STEM fields is significantly segregated by gender and since post-doctorate career pathways are
also field-specific, gender segregation will yield significant aggregate-level gender differences in
employment patterns. However, there is ample evidence of significant gender differences in academic
employment, rates of promotion to tenure, salary and other employment outcomes among doctorates
in the same field [16–18]. These within-field gender differences in the career paths of doctoral scientists
may be driven by influences that are unique to specific STEM fields. Analyses that aggregate science
fields therefore risk obscuring or misrepresenting the magnitude of the gender differences that exist,
and attributing gender differences in educational and occupational experiences in blanket fashion
when they apply in only specific fields.

Fourth, prior research has measured “persistence in STEM” in a narrow way that may
underestimate the degree to which women apply their STEM education in the labor market. Attaining
a tenure-track faculty position at a research-intensive university is often characterized as the ideal
labor market application of a STEM doctorate because such employment fully utilizes the educational
capital the STEM Ph.D. represents. Other types of employment vary in the degree to which they
utilize doctoral-level training in a STEM field and are part of “the STEM pipeline.” Some jobs will
rival the research university faculty position in their demand for specialized knowledge and skills,
some will demand only some of the specialized training gained in the pursuit of a STEM doctorate,
while the performance of others will demand none of that training. Identifying the degree to which
the STEM doctorate is utilized in various occupational outcomes is therefore at the heart of our ability
to reliably identify gender differences in the utilization of STEM education and participation in the
science labor market. Prior research on gender differences in the “science pipeline,” has relied on a
researcher-imposed operationalization of educational utilization [3], by which researchers classify
a set of occupations as those that comprise the STEM labor market, and employment in one of
these occupations is defined as the utilization of STEM education. I propose and apply a more
data-driven approach to identifying STEM-related employment for the analysis presented in this paper.
See Appendix B for a discussion of the approach and Section 2.1.2 for a description of how it is applied
in this study.

To address the limitations of prior research, I consider post-doctorate labor market entry as a set
of contingent transitions that result in employment in a range of academic and non-academic settings.
Figure 1 presents the conceptualization of the post-doctorate transition to the labor market that guides
this analysis. I analyze gender differences in four nested employment outcomes and in the salary the
doctorates earn 2 years after completing their degrees. The conditional nature of the labor market
outcomes is reflected in the analytical design in that preceding states define the population at risk of
subsequent outcomes.
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Figure 1. Schematic representation of post-doctoral employment transitions and outcomes.

Among the full population of STEM doctorates, all possible employment outcomes depend
on whether a doctorate enters the labor market. Doctorates who enter the labor market and gain
employment1 may work full or part time, and since part-time jobs are not equally distributed
across the labor market, the degree of labor force attachment has implications for the types of jobs
doctorates may attain. Gender differences in part-time employment may therefore help explain
other disparities in STEM labor force outcomes. Among full-time workers, STEM doctorates may
enter a broad range of occupations which I classify as belonging to five discrete employment sectors:
(1) postdoctoral positions; (2) tenure-track faculty positions in postsecondary educational institutions;
(3) non-tenure-track faculty positions in postsecondary educational institutions; (4) other academic
positions, including those in elementary and secondary school, and government positions; and (5)
positions in business or industry. Although each of these categories offers opportunities to utilize
the educational investments that the STEM doctorates have made by doing work that is related to
their doctoral field and training, there is significant between-category variation in the types of jobs
they offer. The five categories also differ in the degree to which they capture a homogeneous set
of jobs: the first and second categories are the most homogeneous, whereas the “other academic or
government” and “business or industry” sectors are quite heterogeneous. I therefore distinguish
different types of employment outcomes within each of these sectors. In light of the persistent
underrepresentation of women among the faculties at research-intensive universities (those classified
as R1 and R2 doctoral-granting institutions on the Carnegie Classification), and because the attainment
of a postdoctoral position, especially at a research-intensive university, has become a necessary
prerequisite a faculty position [19,20], I assess the likelihood of attaining employment at such
institutions among the STEM doctorates who enter postdoctoral positions and tenure-track faculty
positions. For doctorates entering the other three employment sectors, I examine the likelihood that
they attain jobs where their educational investment is utilized—indicated by the degree to which the
job requires a Ph.D., is closely related to their degree field, and research is a primary job activity. I also
assess the degree to which the transition into these employment sectors is marked by gendered sorting
by testing the association between the doctorates’ gender and the gender-type of the occupations they
enter, as measured by the percentage of females among incumbents.

1 Unemployment is negligible in the data, so labor force participation and employment are essentially equivalent.
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The relationships between the employment outcomes specified in Figure 1 are more complex and
recursive than depicted, but modeling the transition to the labor market as a discrete set of steps has
a number of advantages. First, it reflects the contingent nature of the transition to the labor force by
identifying the successively selective segments of the population of doctorates at risk of each type of
outcome. Second, this approach to defining the population at risk of each outcome yields relatively
conservative estimates of the gender gaps that characterize each and allows identification of where
the gender gaps are greatest. Third, by considering both academic and non-academic employment
outcomes, as well as those that are related and unrelated to doctoral degrees in STEM fields, this
approach provides a more complete assessment of the career paths followed by STEM doctorates.
It therefore can test the perception that women are disproportionately “lost” from science, and achieve
a more nuanced assessment of how STEM doctorates utilize their educational investments.

I note that the conceptualization presented in Figure 1 includes two outcomes that are
characterized as terminal (indicated by red arrows): the transition out of the labor force and part-time
employment. These transitions do not, in fact, preclude full labor market participation but gaps in
labor force participation and full employment do impact job placement, promotion rates and earnings
trajectories [21]. However, I bracket such questions about gender differences in the experience and
impact of these labor market states from this analysis.

2. Materials and Methods

2.1. Data

This analysis uses data from two sources: the 1995, 1997, 1999, 2001, 2003, 2006, 2008, 2010, and
2013 waves of the Survey of Doctorate Recipients (SDR) [22] and the O*NET Occupational Information
Network Database (O*NET) [23]. The SDR is a longitudinal study of individuals who obtained a
doctoral degree in a science, engineering or health field from a postsecondary institution in the
U.S. The biennial survey conducted by the National Center for Science and Engineering Statistics
collects information about the doctorates’ demographic characteristics, educational background,
employment situations, and other measures of career achievement. The SDR includes detailed
classifications of both Ph.D. degree field and occupation, so it supports the identification of specific
education-occupation transitions.

The SDR data supply both the analytical sample of recent STEM doctorates used to measure
gender differences in the transition to the labor market and a sample used to operationalize three
measures of job characteristics that are specific to the population of doctorates (see description in
Section 2.1.2). Although the SDR is a longitudinal dataset, the sample used for this analysis is drawn
from the “new cohort” of doctorates that is added at each new wave of the SDR. The analytical sample
is therefore an aggregation of single-year, cross-sectional data snapshots of each new cohort of STEM
doctorates, i.e., it does not incorporate the longitudinal nature of the data. Each new cohort includes
approximately 5000 doctoral recipients who received their degree within two years of the survey date.2

The analytical sample therefore includes a total of 18,687 doctorates, 12,953 men and 5,734 women
aged 25 to 50 who had attained a doctoral degree within the 2 years preceding the survey, i.e., degrees
earned in the years 1993 through 2011, who provided complete information about their employment
status and occupation.

The occupation-level characteristics are aggregated from a larger ‘operationalization sample’ that
includes all respondents from the SDR “older cohorts” who meet the following criteria: they are aged
25 to 50 years; they had attained a STEM doctoral degree 3 to 13 years prior to the survey date; they
reported being employed and working 35 or more hours per week at the time of the survey; and they
provided complete responses about their doctorate field, their occupation, and to a set of survey items

2 The new cohort of the 2006 survey includes doctoral recipients who received their degree within three years.
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soliciting their subjective assessment of the extent to which their job is related to their degree field and
if research is a primary activity of their job. The operationalization sample drawn using these selection
criteria consists of 63,962 individuals (47,700 men and 16,262 women) who earned their degree in the
years 1982 to 2010. This sample includes multiple observations of individual doctorates and thereby
provides the large sample required to generate reliable measures of occupational characteristics by
degree field and year. I emphasize, however, that the operationalization sample is exclusive of the
analytical sample of sample of STEM doctorates, so the measures of education-occupation relatedness
are exogenous to the behavior of the STEM doctorates included in the analytic sample.

The O*NET data includes detailed information about the characteristics, requirements and
activities of a broad range of occupational and worker attributes for jobs classified according to
the Standard Occupational Classification (SOC) system that are gathered from on-going representative
surveys of job incumbents [24]. I use these data to operationalize one of the job-level characteristics
included in this analysis: the level of education required to perform a job (described in Section 2.1.2).

2.1.1. Individual-Level Variables Measuring the Characteristics of STEM Doctorates

Table 1 presents the distribution of the analytical sample of STEM doctorates by the variables
measuring their Ph.D. degree field, demographic characteristics, educational background, and family
characteristics. I define STEM fields as including engineering and all mathematical, biological and
physical sciences. The field in which each respondent earned his/her degree is coded per a 4-category
classification that aggregates the categories of the more detailed major field coding scheme available in
the SDR data (Table A1 lists the 4-category aggregation of 15 detailed codes). The biological sciences
are the most common fields of specialization among the STEM doctorates, accounting for almost
37 percent of all doctorates, followed by engineering which accounts for about 30 percent and the
physical sciences at 22 percent. Math and computer science account for the remaining 11 percent of
STEM doctorates. Table 1 reflects the well-documented patterns of sex segregation among STEM fields:
women are overrepresented among doctorates in the biological sciences but are underrepresented in
all other STEM fields. Women are especially scarce among engineering doctorates where they account
for only 18 percent of all doctorates awarded from 1995 to 2013.

This analysis of employment outcomes among STEM doctorates includes controls for age, an
indicator of U.S. citizenship, and a 5-category classification of race/ethnicity. Educational background
is controlled with two variables: a continuous indicator of the number of years between bachelor’s
and doctorate degree and a categorical indicator of the Carnegie classification of the doctorates’
degree-granting institution. The gender gap in time-to-doctorate may measure an aspect of human
capital that is associated with employment outcomes [3], and the influence of the “quality” or
prestige of the doctorate-granting institution on the employment outcomes of academic scientists is
well-documented [25,26]. Women doctorates take fewer years on average between their bachelor’s
and doctoral degrees than do men, and although women are not underrepresented among doctorates
from R1 universities, they are marginally underrepresented among doctorates from R2 universities.
I measure the doctorates’ family characteristics with a series of dummy variables indicating the
presence of children of aged under 2 years, 2–5 years, and 6–17 years, and a categorical indicator of
the presence and employment status of a spouse. Male and female doctorates differ on all the family
characteristics measured. Women are less likely than men to be married, more likely to be childless,
and more likely to have spouses who work either part or full time.
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Table 1. Sample means for variables measuring degree field, demographic characteristics, educational
background, and family structure for all recent doctorates, by gender.

Total Males Females % Female

Sample size (n) 18,687 12,953 5734 30.684
Degree field

Mathematical & computer sciences 0.113 0.123 0.089 *** 24.186
Biological sciences 0.368 0.290 0.544 *** 45.316
Physical sciences 0.223 0.237 0.193 *** 26.528
Engineering 0.296 0.350 0.175 *** 18.092

Demographic characteristics

Age 33.438 33.552 33.181 ***
(4.886) (4.884) (4.881)

U.S. citizen 0.593 0.568 0.650 ***
Race

White, non-Hispanic 0.574 0.569 0.585 *
Black, non-Hispanic 0.029 0.026 0.036 ***
Asian or Pacific Islander, non-Hispanic 0.351 0.364 0.324 ***
Hispanic 0.037 0.034 0.044 ***
Other, non-Hispanic 0.008 0.007 0.010

Educational background

Years from BA to Ph.D.
9.544 9.617 9.380 ***

(3.785) (3.808) (3.727)
Carnegie classification of doctorate-granting institution

R1 University 0.741 0.744 0.735
R2 University 0.109 0.111 0.103 †
Doctorate Granting 0.098 0.099 0.096
Other 0.052 0.045 0.067 ***

Family Characteristics
Family structure at time of survey

No children 0.629 0.604 0.685 ***
Children aged <2 years 0.188 0.200 0.163 ***
Children aged 2–5 years 0.168 0.185 0.130 ***
Children aged 6–17 years 0.122 0.135 0.093 ***

Marital status/Spouse’s work status
Unmarried 0.285 0.274 0.311 ***
Spouse works full time 0.423 0.352 0.581 ***
Spouse works part time 0.073 0.090 0.033 ***
Spouse does not work 0.219 0.283 0.075 ***

Notes: Sample means and standard deviations (in parentheses) are weighted to account for sampling design;
† p ≤ 0.10, *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, for two-tailed test of sex differences. Source: Author’s calculations
using data from the Survey of Doctorate Recipients [22], 1995–2013.

2.1.2. Occupation-Level Variables Measuring the Relationship between STEM Fields and Occupations

I create four occupation-level variables to measure occupational sex-typing and the extent to
which an occupation is related to a STEM doctorate. See Appendix B for a full discussion of the
approach used. The doctorate-occupation relatedness variables aim to quantify the degree to which an
occupation requires doctorate-level education, demands research skills, and is substantively related
to each degree field. All occupation-level variables are measured using the most detailed level
of occupational classification (131 categories) available in the SDR. Table S1 presents the full list of
occupational categories, along with the occupational distribution for both the analytical and operational
samples of STEM doctorates from the SDR. The occupation-level variables are also allowed, when
possible and appropriate, to vary by degree field (using the detailed classification) and survey year.
The occupation-level variables are linked to the individual-level data by survey year, occupation,
and degree-field.
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Demand for Doctoral-Level Education

The variable measuring the occupational requirement for doctoral-level education is generated
using data from the O*NET 12.0-18.0 Databases. The O*NET survey asks respondents to specify the
level of education, from a list that distinguishes 12 levels of certification and degree attainment, “that
is required to perform their job” [24]. I operationalize the demand for doctoral-level education as
the percent of O*NET respondents who specify that a doctoral or post-doctoral degree is required
for performance of their job. I then aggregate the SOC-level information to the 131-category
SDR occupational coding scheme and specify the mean of the percent reporting a requirement for
doctoral-level education within the aggregated categories as the measure of occupational demand for
doctoral-level education. This variable varies by occupation and year and ranges from 0 to 100.

Occupation-Degree Field Relatedness and Demand for Research Skills

To measure the extent to which occupations are substantively related to degree fields and demand
research skills, I use the SDR operationalization cohort data for two survey items that are included in
all waves of the SDR survey. The first item reads, “To what extent was your work on your principal
job held during the week of [survey reference date] related to your highest degree?” and respondents
could choose “closely related,” “somewhat related,” or “not related.” The second survey item is a
dichotomous indicator of whether the respondent indicates that “basic research, applied research,
development, or design” is either their primary or secondary work activities at their job. The variable
measuring occupation-degree relatedness is operationalized as the percent of respondents, identified
by each possible combination of the 15-category classification of degree field and the 131-category
occupational classification who report that their occupation is “closely related” to their degree field.
Similarly, the variable measuring occupational demand for research skills is defined as the percent of
respondents identified by each field-occupation pairing who report that research was their primary or
secondary work activity. All data are weighted prior to aggregation to account for the sampling design
and calculated separately by survey year. The values of both variables range from 0 to 100, and since
small cell sizes can produce highly variable estimates with low reliability, each variable is coded to 0 for
combinations of degree field and occupation that are experienced by fewer than 5 individuals within
each survey year. These variables are linked to the individual-level data by the detailed (15-category)
classification of degree field, occupation, and survey year.

Occupational Sex-Typing

I use the percent of females among the operational cohort of doctorates in each of the
131 occupational categories as a measure of the occupational sex-typing.3 This variable ranges from 0
to 100 and is calculated separately for each year. Including this variable in the analysis allows a test of
the degree to which occupational attainment among STEM doctorates at the transition to the labor
market follows (or departs from) established patterns of occupational segregation by gender.

2.2. Methods

To analyze gender differences in the labor market outcomes for STEM doctorates, I use
regression models for categorical and linear dependent variables. The labor market outcomes that are
operationalized as binary variables—labor market entry, full-time work versus less-than-full-time work,
and employment at a R1/R2 versus all other postsecondary institutions—are analyzed with binary logit
models. The analysis of employment sector, a nominal outcome with 5 categories, uses a multinomial
logit. I use linear regression models to analyze gender differences in the doctorate-occupation

3 To generate reliable measures of the percent female in the observed occupations, I use the full sample of SDR respondents,
regardless of degree field. The sample includes 95,244 individuals (57,934 men and 37,310 women).
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relatedness variables, occupational percent-female, and salary among the STEM doctorates employed
full time.4 The focal independent variable in all models is FEMALE, an indicator of the doctorates’
self-identified gender (FEMALE = 1 for females) and each model includes an extensive set of covariates.
The coefficient for FEMALE from each model estimates the average gender gap in labor market
outcomes (controlling for all covariates), change over time in the gap, and variation in the gap by
STEM field and by family structure.

3. Results

3.1. Gender Differences in the Labor Market Outcomes of STEM Doctorates

Figure 2 presents the probability of each labor force outcome depicted in Figure 1 separately
by gender and illustrates how the early post-degree employment outcomes of STEM doctorates
differ for women and men. These results address the first two research question: Are there gender
differences in the early labor market outcomes of STEM doctorates? For which outcomes are the
gender disparities greatest?

Figure 2. Probability of employment states by gender. Source: Author’s calculations using data from
the Survey of Doctorate Recipients [22] and the O*NET Occupational Information Network Database [23],
1995–2013. Note: Solid bars represent gender differences that are significant at α = 0.05.

4 The continuous dependent variables that are modeled with linear regressions are logged to correct for the skewness of their
distributions. For each employment outcome, I estimate the following general model:

Outcomei = β0 + β1(FEMALE)i + β2(YEAR)i + β3(FIELD)i + β4(FAMILY)i +

β5(YEAR × FEMALE)i + β6(FIELD × FEMALE)i + β6(FAMILY × FEMALE)i+

ϕ1(EDUC)i + ϕ2(EDUC * FEMALE)i + ϕ1(X)i + ϕ2(X * FEMALE)i + εij

where FEMALE is an indicator of the doctorates’ self-identified gender (FEMALE = 1 for females), YEAR represents
both the linear and quadratic specification for survey year (which also distinguishes each cohort of doctorates), FIELD
represents the categorical indicator of the doctorates’ STEM degree field, FAMILY represents the variables measuring family
structure, EDUC represents the measures of educational background, and X is a vector of control variables measuring the
doctorates’ demographic characteristics and other covariates specifically relevant to each outcome. The models of salary and
occupational characteristics (demand for doctoral degree, occupation-degree field relatedness, demand for research skills,
and percent female in the occupation) include controls for hours worked, employment sector, and all the other occupational
characteristics. Percent female in the occupation is not included as a control variable in the occupational characteristic
models because it is very highly correlated with both the other outcome variables and the covariates. Including percent
female obscures the estimated association between doctorate gender and the other occupational characteristics that are
correlated with percent female. The regression model of occupational percent female, however, includes all occupational
characteristic variables as covariates.
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The probability of labor force participation is very high for all doctorates, but women are less likely
than men to enter the labor force. Full-time employment is the norm among the STEM doctorates who
enter the labor force, but women are slightly less likely than men to work full time hours. Entering a
postdoctoral position or a job in business or industry are the most likely post-degree transitions for the
doctorates who work full-time but there are significant gender differences in these paths. Women are
significantly more likely to enter postdoctoral positions: 44.2 percent of women but only 32.7 percent
of men are in postdoctoral positions 2 years after attaining their degree. In contrast, entering business
or industry is much more common for men than it is for women. About 42 percent all male doctorates
who enter full-time employment within two years of obtaining their doctorate do so in business or
industry, compared to only 27.2 percent of women. Entering faculty positions is much less common
for STEM doctorates. Ten percent of both women and men enter tenure-track faculty positions in
postsecondary institutions. Another 10 percent enter non-tenure-track faculty positions and women
are slightly overrepresented among the doctorates in such positions. Entry into “other academic or
government” jobs is a path taken by only 7 percent of STEM doctorates and is equally likely for men
and women.

Figure 3 presents descriptive statistics for the occupational characteristics relevant to each
employment sector the STEM doctorates may enter. Among the doctorates who enter either a
postdoctoral or a tenure-track faculty position (panel a of Figure 3), women are less likely than
men to attain such positions at research-intensive universities. Panel (b) of Figure 3 shows that
there also are gender differences on all four measures of the characteristics of occupations outside
of the normative Ph.D.-to-faculty career path. Among the doctorates who enter non-tenure-track
postsecondary positions, other academic or government jobs, or business and industry, women are
more likely than men to enter occupations that require doctoral-level education and that are closely
related to their degree fields. However, the occupations women enter are less likely to primarily
focus on research than those occupations entered by men. The significant gender gap in the mean
percent female in the occupations entered by men (23.6) and women (33.0) testifies to the prevalence of
occupational sex segregation among the STEM doctorates who leave the tenure-track career trajectory:
women tend to enter occupations with a greater representation of women than do the male members of
their doctoral cohorts. Finally, there is a significant gender gap in earnings among all STEM doctorates
who are employed full time. Within two years of earning their degree, women with a STEM doctorate
who are employed full time earn, on average, $12,400 less per year than their male colleagues.

Figure 3. Gender-specific means for the variables measuring the characteristics of occupations entered
by STEM doctorates who are employed full time: (a) the percent of STEM doctorates who attain
postdoctoral or tenure-track faculty positions at R1 or R2 universities; and (b) salary, and the degree
to which an occupation requires doctorate-level education, is closely related the doctorate’s degree
field, demands research skills, and is female-dominated. Source: Author’s calculations using data from
the Survey of Doctorate Recipients [22] and the O*NET Occupational Information Network Database [23],
1995–2013. Note: All gender differences are significant at α = 0.05.
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3.2. Have the Gender Differences in Early Labor Market Outcomes among STEM Doctorates Changed
over Time?

Results from the multivariate model of each labor market outcome are presented in Figures 4–6.
These figures summarize the statistical results relevant to the research questions that motivate this
analysis: Have the observed gender differences in the early labor market outcomes of STEM doctorates
changed over time?

The results are presented using the estimated marginal effect of FEMALE from the multivariate
models for each labor market outcome. The full set of coefficients for each multivariate model are
presented in Tables A2–A5. Marginal effects are useful for interpreting the results of both linear and
nonlinear models, but they are particularly helpful for the interpretation of estimates from models
that include many interaction terms such as those used in this analysis [27]. The figures present the
average marginal effect of FEMALE, i.e., the gender gap for the “average” STEM doctorate (when all
covariates are set to their mean value), and the 95% confidence interval for the marginal effect, by year.
Negative values of the marginal effect indicate a female deficit in the likelihood of an outcome. If the
gender gap in an employment outcome has changed significantly over time the heights of the bars will
differ such that the confidence intervals do not overlap.

Figure 4 presents the trends in the estimated gender gap in the rates of labor force participation
among all STEM doctorates, and of full-time employment among the doctorates who enter the labor
force. These results show that, controlling for the doctorates’ educational background and family
structure, women are about 3 percent less likely than men to enter the labor force, and the magnitude of
the gender gap is unchanged across all 9 cohorts included in this analysis. Among the doctorates who
do enter the labor force, women are about 2 percent less likely than men to work full-time, although
this small gender gap may have closed as it is not significant for the most recent cohort.

Figure 4. Estimated marginal effects of FEMALE on the likelihood of labor force participation and
full-time employment (among those in the labor force), for all STEM doctorates by year. Source:
Author’s calculations using data from the Survey of Doctorate Recipients [22] and the O*NET Occupational
Information Network Database [23], 1995–2013.

Figure 5 presents the cohort-specific gender gaps in the likelihood of each employment sector
outcome among full-time employed doctorates. These results identify the significant gender differences
in the post-degree career paths of STEM doctorates and how these disparities have changed over time.
Among the cohorts of doctorates who earned their degrees in the late 1990s, women were significantly
more likely than men to enter postdoctoral positions and less likely to take jobs in business or industry.
However, the gender gap in postdoc entry declined and then reversed, and the gap in entering business
or industry declined to insignificance—among the 2010 and 2013 cohorts, women are significantly less
likely than men to enter postdocs, and there is no gender gap in the likelihood that a STEM doctorate
will take a job in business or industry. In contrast, the estimates indicate that there is a growing female
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advantage in the likelihood that a doctorate attains a tenure-track faculty position. Starting with the
cohorts who earned their degrees in the early 2000s, the probability that a STEM doctorate enters a
tenure-track faculty position has been 2 to 4 percent greater for women than men. In addition, contrary
to the expectation that women have been marginalized in non-tenure-track positions more often than
men, the results indicate that a female advantage in the likelihood of entering a non-tenure-track
faculty position emerged only for the most recent cohorts, while there was gender parity in this
employment outcome for the 1995–2008 cohorts.

Figure 5. Estimated year-specific marginal effects of FEMALE on employment sector outcome among
all STEM doctorates employed full time. Source: Author’s calculations using data from the Survey of
Doctorate Recipients [22] and the O*NET Occupational Information Network Database [23], 1995–2013.

Figure 6 presents the estimated gender gaps in the characteristics of the occupations entered by
STEM doctorates, controlling for the doctorates’ educational and family characteristics. The results
presented in panel (a) show that among the doctorates who entered postdoctoral or tenure-track faculty
positions directly after completing their degree, women and men in all cohorts are equally likely to
attain such positions at R1 or R2 universities. There are, however, gender gaps in the characteristics of
the jobs attained by doctorates who gain employment in the non-tenure-track postsecondary, other
academic or government, or business and industry sectors (panel b). Women are more likely than
men to enter jobs that require doctoral-level education, although this gender gap was largest among
the 1990s cohorts and has declined across the cohorts. Women and men from all cohorts have been
equally likely to utilize their educational investments by entering jobs that are closely related to
their degree fields, but women in the 1999-2008 cohorts were less likely to attain research-focused
jobs. The significantly positive marginal effects of FEMALE for the percent female in an occupation
reflect a significant level of occupational segregation among the STEM doctorates when they first
enter the labor market: they show that women are more likely than men to enter jobs with a higher
relative representation of women, while men are more likely to enter jobs where men predominate.
This tendency toward occupational sex segregation appears to have declined across the cohorts, but
remains statistically significant. In addition, the results in panel (c) show that a significant gender gap
in earnings emerges at the very start of the STEM doctorates’ employment and that this gender gap
has changed little across the cohorts. The model estimates indicate that women STEM doctorates start
their careers earning 4 to 7 percent less than men with the same employment sector, job characteristics,
educational credentials and family characteristics.
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Figure 6. Average estimated marginal effects of FEMALE on the likelihood of: (a) employment at a
R1 or R2 university (among STEM doctorates entering postdoctoral or tenure-track faculty positions);
(b) employment in an occupation that requires a doctoral degree, that is related to a doctorate’s
degree field, in which research is the primary work activity, and that is female-dominated (among
STEM doctorates employed in non-tenure-track positions, other academic and government positions,
or in business or industry); and (c) salary among all STEM doctorates employed full-time. Source:
Author’s calculations using data from the Survey of Doctorate Recipients [22] and the O*NET Occupational
Information Network Database [23], 1995–2013.

3.3. Do the Gender Differences in Labor Market Outcomes Vary by STEM Field or Family Characteristics?

The aggregate gender differences in the labor market outcomes of STEM doctorates described
above may mask differences across STEM fields or by the family characteristics of the scientists.
The patterns may vary across field because of differences in normative career paths and employment
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opportunities, or because of field-specific differences in the representation of women and the experience
of bias or discrimination. Similarly, the aggregate gender gaps may not reflect the experience of all
scientists but may instead be driven by a distinct subgroup such as those who have young children or
are in dual-earner couples. The multivariate analyses test if the aggregate patterns are representative
or if specific populations drive them. The results may inform our understanding of the causes of the
observed gender disparities and guide interventions aimed at reducing them.

To test if the gender differences in labor market outcomes vary by STEM field or family
characteristics, I estimate the marginal effect of FEMALE, i.e., the estimated gender gap, for each of
the labor market outcomes separately by degree field, parental status and marital status (controlling
for all other covariates). Tables 2 and 3 present the results. In addition, I estimate the marginal
effects of FEMALE for job characteristics and salary separately by employment sector to provide
additional information about the labor force contexts where gender disparities are most significant.
Negative values that are statistically significant indicate a female deficit in the likelihood of an outcome.
All estimates control for the doctorates’ individual demographics, educational credentials, family
characteristics, and employment characteristics (see Tables A2–A5 for the full model specifications).
In Tables 2 and 3, the statistical significance of within-group gender differences, e.g., the gender gap
among engineering doctorates, is indicated by stars, and significant between-group differences (α = 0.05)
in the magnitude of the gender gaps, i.e., between the four degree fields or family types, are indicated
by bolded text. The focus of this part of the analysis is on the significance of between-group
differences (bold values) since these indicate that a covariate is associated with gender disparities
in an employment outcome and may therefore help to explain the overall gender gaps in the career
trajectories of STEM doctorates.

Table 2. Estimated marginal effect of FEMALE on labor force entry, full-time employment, and
employment sector, by degree field and family characteristics

Among all
STEM doctorates

Among those who
enter the labor force

Among all STEM doctorates employed full time

Post-doctoral
position

Post-secondary,
tenure track

Post-secondary,
not tenure

track

Other
academic
or gov’t

Business or
industryLabor force entry

Full time
employment

Average –0.027 *** –0.034 *** 0.016 0.029 * 0.007 0.009 –0.061 ***
Panel A: Degree field
Mathematical & computer sci. –0.018 ** –0.041 ** –0.024 0.075 * 0.034 0.001 –0.087 **
Biological sciences –0.018 * –0.012 * 0.044 * –0.009 –0.018 0.004 –0.022
Physical, chemical & earth sci. –0.026 *** –0.017 * –0.057 * 0.046 ** 0.028 * 0.022 † –0.039
Engineering –0.036 *** –0.028 *** 0.040 * 0.069 *** 0.009 0.009 –0.127 ***
Panel B: Family Characteristics
Family structure at time of survey

No children –0.016 *** –0.010 * –0.002 0.025 0.008 0.010 –0.041 *
Children aged <2 years –0.092 *** –0.069 *** 0.050 † 0.040 –0.028 0.023 –0.085 **
Children aged 2–5 years –0.050 *** –0.057 *** 0.026 0.049 * 0.034 † –0.005 –0.104 ***
Children aged 6–17 years –0.030 *** –0.025 ** 0.063 † 0.017 0.018 –0.001 –0.096 *

Marital status/Spouse’s work status
Unmarried –0.020 ** –0.005 –0.005 0.031 * –0.007 0.013 –0.032
Spouse works full time –0.044 *** –0.040 *** 0.007 0.025 0.022 † 0.008 –0.061 **
Spouse works part time –0.040 * –0.045 * 0.002 0.079 –0.024 –0.029 –0.028
Spouse does not work –0.010 –0.008 0.059 † 0.023 0.007 0.022 –0.110 **

Note: Marginal effects are estimated based on the full regression models of employment outcomes; see Tables A2
and A3 for model specifications and estimated coefficients. Statistical significance of individual marginal effects
of FEMALE is indicated by stars: † p ≤ 0.10, *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001. Statistically significant (α = 0.05)
between-group differences, e.g., between the categories of degree field, in the estimated marginal effect of FEMALE
are indicated by bold text. Source: Author’s calculations using data from the Survey of Doctorate Recipients [22] and
the O*NET Occupational Information Network Database [23], 1995–2013.

3.3.1. STEM Degree Field

The marginal effects of FEMALE by degree field for each employment outcome are presented
in Panel A of Tables 2 and 3. These results show that gender disparities in labor force participation
and attachment, in most job characteristics and in salary do not vary by STEM field, but that gender
differences in employment sector do vary by field. A greater proportion of women than men enter
postdoctoral positions among doctorates in the biological sciences and engineering, but the gender
gap is reversed among doctorates in the physical sciences, where men are more likely than women to
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enter postdocs. The female advantage in attaining tenure-track faculty positions is observed among
doctorates in the mathematical and computer sciences, physical sciences, and engineering, but not
among biological science doctorates. In addition, the female deficit in the likelihood of taking a
job in business or industry is large and significant only among doctorates in engineering and the
mathematical and computer sciences. In short, the aggregate pattern of gender differences in the
employment sector outcomes (shown in Figure 2 above) appears to be driven by the gender differences
among doctorates in engineering and the mathematical and computer sciences. In these fields, which
are the most male-dominated of the STEM fields, women are overrepresented among the doctorates
who pursue the traditional academic career path by entering a postdoctoral or faculty position, and
men are overrepresented among those who enter business or industry. In contrast, there are few gender
disparities in the employment outcomes of doctorates in the biological sciences, the most gender
balanced field.

Table 3. Estimated marginal effect of FEMALE on job characteristics and salary, by degree field and
family characteristics.

Among postdocs &
tenure-track faculty

Among STEM doctorates employed full time, not in
postdoctoral or tenure-track positions Among all STEM

doctorates employed
full timeDoctorate

required in
occupation

Work is
related to

degree field

Research is
primary work

activity

Percent
female in

occupationR1 or R2 University
Salary

Average –0.058 *** 0.244 * 0.097 –0.247 ** 0.137 *** –0.046 *
Panel A: Degree field
Mathematical & computer sci. –0.028 0.200 0.182 –0.495 ** 0.115 * –0.028
Biological sciences –0.010 0.034 0.014 0.024 0.058 –0.047 *
Physical, chemical and earth sci. –0.035 –0.074 0.377 * –0.310 * 0.185 *** –0.068 *
Engineering –0.068 0.539 *** –0.019 –0.302 * 0.165 ** –0.032
Panel B: Family Characteristics
Family structure at time of survey

No children –0.039 0.274 * 0.094 –0.243 ** 0.143 *** –0.053 **
Children aged <2 years –0.017 0.157 0.308 † –0.181 0.070 –0.023
Children aged 2–5 years –0.038 0.214 –0.121 –0.135 0.152 *** –0.027
Children aged 6–17 years 0.032 0.222 0.107 –0.512 ** 0.174 ** –0.056 †

Marital status/Spouse’s work status
Unmarried –0.037 0.362 * 0.051 –0.116 0.141 *** –0.008
Spouse works full time –0.005 0.168 0.144 –0.233 0.145 *** –0.030
Spouse works part time –0.005 0.713 ** 0.046 –0.072 0.155 * –0.118 **
Spouse does not work –0.074 0.101 0.088 –0.455 ** 0.114 –0.086 **

Panel C: Employment sector
Postdoctoral position –0.021 –0.012
Postsecondary, tenure track –0.040 –0.057 *
Postsecondary, not tenure track –0.177 0.072 –0.228 0.134 ** –0.033
Other academic or government –0.003 0.194 –0.195 0.198 *** –0.088 **
Business or industry 0.396 *** 0.085 –0.262 ** 0.126 ** –0.057 *

Note: Marginal effects are estimated based on the full regression models of employment outcomes; see Tables A4
and A5 for model specifications and estimated coefficients. Statistical significance of individual marginal effects
of FEMALE is indicated by stars: † p ≤ 0.10, *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001. Statistically significant (α = 0.05)
between-group differences, e.g., between the categories of degree field, in the estimated marginal effect of FEMALE
are indicated by bold text. Source: Author’s calculations using data from the Survey of Doctorate Recipients [22] and
the O*NET Occupational Information Network Database [23], 1995–2013.

The estimates presented in Panel A of Table 3 show that the gender differences in the types of jobs
the doctorates attain generally do not vary significantly across degree field. Among the doctorates that
enter postdoctoral positions or tenure-track faculty jobs, women and men from all degree fields are
equally likely to attain these positions at research-intensive universities. For the doctorates that do not
enter postdocs or tenure-track faculty positions, there are gender differences in the types of jobs they
attain but, with only one exception, the between-field disparities do not attain statistical significance.
The aggregate female advantage in the likelihood that a doctorate attains a job that requires Ph.D.-level
education is driven by those in engineering fields. Women and men are, on average, equally likely to
attain jobs that are related to their degree field, although women with physical science doctorates are
more likely than men to utilize their field-specific education on the job. In contrast, the female deficits
in the attainment of research-oriented jobs and the tendency toward occupation sorting by sex are
significant for doctorates in all degree fields, except the biological sciences. Yet, the biological sciences
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and the physical sciences are the two fields in which women doctorates earn significantly less than
men even when they have equivalent background and employment characteristics.

The estimated marginal effects of FEMALE presented in Panel C of Table 3 provide additional
information about the labor market contexts in which these occupational gender disparities occur. Both
the female advantage in attainment of jobs that require a doctoral degree and the female disadvantage
in the attainment of research jobs are concentrated among those who enter business or industry jobs.
The tendency for doctorates to segregate into gender-typed occupations, however, is universal across
the non-tenure-track postsecondary, other academic and government, and business and industry
sectors. The gender gap in salary is also universal across sectors, although it reaches statistical
significance only among doctorates who enter tenure-track faculty positions, other academic or
government jobs, and positions in business or industry.

3.3.2. Family Structure

The estimated gender disparities in labor force entry, full-time work and employment sector by
the measures of family structure are presented in Panel B of Tables 2 and 3. These estimates show that
gender differences in labor force participation and the likelihood of working full time are strongly
associated with the STEM doctorates’ family characteristics but that subsequent employment outcomes
are not. The female deficit in labor force participation is significant for all family structures but it
is greatest among doctorates with young children (aged less than 2 years) and those in dual-earner
marriages (doctorates’ whose spouses work either full or part time), indicating that gender differences
in the influence of the household division of labor, especially as it relates to childbearing and caring
for young children, is a significant cause of the gender gap in labor force participation among STEM
doctorates. The gender gap in the likelihood of full-time employment is also strongly associated
with the parenting of young children and dual-career marital status. Among doctorates who have no
children, the rate of full-time employment is one percent lower for women than men, but for doctorates
with young children, the likelihood of full-time employment is 5–9 percent lower for women than
men. Similarly, there is no gender gap in the likelihood of full-time employment among unmarried
doctorates and doctorates whose spouses do not work, but the gender gap increases to 4 percent
among doctorates who have spouses who work either full or part time.

The estimated gender differences in the doctorates’ employment sector outcomes, the
characteristics of the jobs they attain and the salaries they earn are presented in Panel B of Table 3.
These results show that the aggregate pattern of gender differences in these employment outcomes
do not vary by the doctorates’ family status, so the gender gaps in these labor force outcomes cannot
be explained by gender differences in the distribution or influence of family characteristics. Notably,
this analysis provides no evidence that marital or parental status affects the female advantage in the
likelihood of employment in tenure-track faculty positions or the female deficit in the likelihood of
employment in business or industry. Nor do family characteristics appear to affect gender differences
in the types of jobs doctorates attain, their salary, or the tendency for doctorates to enter sex-typed
occupations. In fact, after controlling for all covariates, the gender gap in salary is significant only
for doctorates who are childless, for whom there can be no effect of parenthood, and those who have
spouses who work part-time or not at all, for whom dual-career conflicts should be minimal.

4. Discussion

This analysis provides some insight into the gender disparities that characterize the transition of
STEM doctorates to the labor market and that may affect their subsequent career trajectories. The time
frame of this analysis is narrow—the 2 years following the doctorate’s degree attainment—so the
parities and disparities identified are not necessarily representative of later career outcomes since they
have yet to be affected by any significant exposure to labor market influences. They are consequential,
however, since early career transitions and achievements may at least condition, if not determine,
subsequent opportunities and outcomes.
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Among the nine cohorts of STEM doctorates who earned their degrees between 1995 and 2013,
I find that women are less likely than men to enter the labor force and work full-time, and that these
disparities are consistent across STEM fields and have changed only slightly across the cohorts. I also
find significant gender differences in the types of employment attained by STEM doctorates and
some of these results contradict long-held perceptions of gender disparities in the STEM labor market.
The results indicate that among the early cohorts of doctorates, women were more likely than men
to enter postdoctoral positions but that the gender gap declined and then reversed so that men are
now overrepresented among the doctorates entering postdoctoral positions. The gender gap in entry
into postdoctoral positions varies by STEM field so the stark aggregate trend may reflect field-specific
changes in the availability and career necessity of postdocs, as much as it may reflect changes in the
behavior of men and women: while postdoctoral positions have long been a normative part of the
career trajectory in the female-dominated biological sciences, over time they are increasingly available
and a required precursor to faculty positions in the male dominate STEM fields.

In contrast to prior studies, I find that women are more likely than men to enter tenure-track
faculty positions within two years of completing their doctorate and that they are as likely as men
to obtain these positions at research-intensive universities. I also find that the overrepresentation of
women among doctorates who attain non-tenure-track academic positions emerged only among the
most recent cohorts, when the availability of such positions increased significantly. The discrepancy
between the results reported here and the existing literature may be attributed to differences in research
design, and they thereby highlight the need for carefully constructed analyses. This study explicitly
parses gender disparities in labor force participation and attachment from employment outcomes
whereas prior analyses often conflate these, and thereby overestimate the gender gap in attainment
of faculty positions, by simply comparing the representation of women among tenure-track assistant
professors to that among recent cohorts of doctorates without additional controls. Furthermore,
by focusing on a narrow post-degree period, the results of this analysis likely understate the gender
differences that ultimately develop among each cohort of doctorates, but they more accurately indicate
that those disparities develop at later points in the career trajectory. These points underscore the
necessity of disaggregating employment transitions to the most detailed level possible to accurately
identify the processes that drive gender differences in career trajectories. By looking at narrow slices
of the career trajectories and explicitly examining how they are connected, we can more accurately
identify where the disparities are occurring, what are their causes, and we therefore will be better able
to develop policies that will generate greater gender equity in STEM career development.

By using an inclusive conceptualization of employment outcomes that includes and attempts to
disaggregate non-academic career tracks, this analysis provides a more comprehensive and nuanced
picture of gender differences in the career paths of STEM doctorates and in the likelihood they will
“leave” science. The results show that women are less likely than men to gain employment in business
and industry and that this gender disparity is greatest among doctorates in engineering and the
mathematical and computer sciences, but that it may have declined over time. Among the doctorates
who enter business or industry, the alternative approach to identifying who “stays in the pipeline”
developed for this analysis shows that women are more likely than men to enter jobs that require a
doctorate, and they are at least as likely as men to enter occupations that are related to their degree
field. However, I also find that women in all fields, except the biological sciences, are significantly less
likely than men to enter research-oriented jobs. Therefore, women may persist in STEM but are “lost”
from research jobs. The gender-specific patterns of education-occupation matching identified in this
analysis reflect processes of gender sorting across a range of occupational characteristics that has been
under-appreciated and warrant further investigation. A more well-known pattern that this analysis
clearly identifies as a persistent influence on the occupational attainment of doctorates, is occupational
segregation by sex. In addition, while the results of this analysis suggest that the extent to which STEM
doctorates enter gender-segregated occupations has declined over time, it remains significant among
the most recent cohorts and in all STEM fields except the biological sciences.
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The results of this analysis echo the refrain of the growing body of the gender and work literature:
family structure has a negative impact on the employment outcomes of women in the STEM fields.
However, this study joins the chorus in a limited way: I find that the presence of children and
the gendered impact of being in a dual-earner couple are strong negative influences on the early
employment outcomes of women, but only because they disproportionately inhibit their labor market
entry and full-time labor force attachment. Gender differences in other dimensions of the transition
into the labor market are not influenced as strongly by marital or parental status, nor is there evidence
that the female-specific influence of the presence of young children or a working spouse are driving
either the differential sorting of men and women across employment sectors and occupations, or the
significant gender gap in earnings.

Overall, these results indicate that there has been some progress toward gender equity at the
earliest stages of the career trajectories of STEM doctorates but that this progress is slow and variable
across STEM fields. In general, the greatest gender gaps remain in those fields where women’s
representation continues to lag, but disparities in outcomes persist even when gender parity in
representation is approached. Further analysis of the labor market processes and outcomes that follow
the initial transitions investigated here should assess if similar progress toward equity is being attained
and how the gender disparities vary by race/ethnicity and other social identities. The experiences
of STEM doctorates who enter jobs in business and industry is an area that is particularly in need of
both data collection and analysis. Although an increasing number of STEM doctorates enter business
and industry, there are few data sources that can adequately inform our understanding of their labor
market experiences and outcomes, or the forces that influence the significant gender disparities in that
sector which this analysis identified.

Supplementary Materials: The following are available online at www.mdpi.com/2076-0760/6/1/24/s1, Table S1:
Percent distribution by occupational category, for analytical and operational samples, separately by gender and
degree field.
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Appendix A

Table A1. Percent distribution of analytical and operational samples by degree field and gender.

Sample of Recent Doctorates Operational Sample of Doctorates

Total Males Females %Female Total Males Females %Female

Sample size (n) 18,687 12,953 5734 30.68 63,962 47,700 16,262 25.42
Degree field
Math & computer sciences

Computer & information sciences 5.25 6.09 3.37 *** 19.68 4.61 5.12 3.11 *** 17.15
Mathematics & statistics 6.00 6.22 5.50 † 28.13 5.57 5.80 4.91 *** 22.40
Agricultural & food sciences 2.95 2.79 3.31 † 34.45 3.58 3.56 3.62 25.76

Biological sciences
Biochemistry & biophysics 5.24 4.65 6.59 *** 38.57 1.54 1.33 2.16 *** 35.70
Cell & molecular biology 5.89 4.33 9.41 *** 49.06 1.75 1.52 2.43 *** 35.33
Microbiology 2.60 1.86 4.27 *** 50.40 0.72 0.35 1.81 *** 63.87
Other biological sciences 20.14 15.42 30.79 *** 46.91 29.86 23.87 47.44 *** 40.40

Physical sciences
Chemistry, except biochemistry 11.11 10.77 11.87 * 32.80 12.17 12.04 12.53 26.19
Earth, atmospheric & ocean sciences 3.34 3.34 3.34 30.68 3.32 3.41 3.08 * 23.59
Physics, astronomy & astrophysics 7.88 9.56 4.09 *** 15.94 8.38 9.67 4.58 *** 13.90

Engineering
Chemical engineering 3.39 3.79 2.47 *** 22.34 3.39 3.80 2.18 *** 16.38
Civil engineering 2.55 3.00 1.55 *** 18.63 2.38 2.82 1.08 *** 11.58
Electrical & computer engineering 8.80 10.85 4.17 *** 14.54 8.49 10.25 3.33 *** 9.95
Materials, metallurgical & mechanical 7.41 9.06 3.69 *** 15.28 5.18 6.25 2.01 *** 9.89
Other engineering 7.45 8.28 5.58 *** 22.97 9.07 10.22 5.71 *** 16.01

Note: † p ≤ 0.10, *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, for two-tailed test of sex differences. Source: Author’s
calculations using data from the Survey of Doctorate Recipients [22], 1995–2013.

146



Soc. Sci. 2017, 6, 24

Table A2. Estimated coefficients from logit models of labor force entry and employment vs.
post-doctoral position.

Labor force entry Full-time vs. Part-time Employment

Main effect *FEMALE Main effect *FEMALE

b se(b) b se(b) b se(b) b se(b)

Constant 0.077 (2.991) 8.150 (1.866) ***
Female 1.958 (0.954) * –0.972 (0.805)
Year 0.032 (0.061) –0.034 (0.081) 0.123 (0.049) * –0.050 (0.069)
Year2 –0.001 (0.003) 0.002 (0.005) –0.005 (0.003) † 0.003 (0.004)
Demographic characteristics

Age 0.141 (0.182) –0.224 (0.112) *
Age2 –0.001 (0.002) 0.002 (0.001)
U.S. citizen –0.159 (0.151) –0.288 (0.135) *
Race (reference = White,

non-Hispanic)
Black, non-Hispanic 0.125 (0.262) –0.343 (0.179) †
Asian or Pacific Islander,

non-Hispanic –0.312 (0.153) * 0.130 (0.147)

Hispanic –0.105 (0.219) –0.007 (0.200)
Other, non-Hispanic –0.590 (0.427) –0.270 (0.347)

Degree field (reference = Mathematical & computer sciences)
Biological sciences –1.211 (0.334) *** 0.730 (0.425) † 0.273 (0.204) 0.519 (0.284) †
Physical sciences 0.079 (0.393) –0.344 (0.494) 0.040 (0.207) 0.454 (0.306)
Engineering 0.163 (0.376) –0.708 (0.480) 0.611 (0.206) ** –0.135 (0.315)

Educational background
Years from BA to Ph.D. 0.258 (0.140) † –0.412 (0.161) * 0.036 (0.109) 0.162 (0.128)
Years from BA to Ph.D.2 –0.013 (0.006) * 0.018 (0.007) ** –0.002 (0.004) –0.004 (0.005)
Carnegie classification of doctorate-granting institution (reference = Research University I)

Research University II 0.120 (0.318) –0.501 (0.370) 0.094 (0.219) –0.444 (0.297)
Doctorate Granting I & II 0.042 (0.350) 0.215 (0.443) –0.521 (0.190) ** 0.475 (0.286) †
Other –0.113 (0.291) 0.255 (0.413) 0.366 (0.354) –0.296 (0.460)

Family Characteristics
Family structure at time of survey (reference = No children)

Children aged <2 years –0.154 (0.262) –1.217 (0.303) *** –0.226 (0.189) –0.876 (0.245) ***
Children aged 2–5 years 0.161 (0.278) –0.755 (0.325) * –0.099 (0.187) –0.757 (0.245) **
Children aged 6–17 years 0.395 (0.362) –0.420 (0.421) 0.469 (0.213) * –0.420 (0.290)

Marital status/Spouse’s work status (reference = Unmarried)
Spouse works full time 0.303 (0.208) –0.809 (0.284) ** 0.372 (0.175) * –1.065 (0.251) ***
Spouse works part time 0.832 (0.443) † –1.178 (0.612) † 0.659 (0.260) * –1.365 (0.426) ***
Spouse does not work 0.557 (0.307) † 0.116 (0.496) 0.462 (0.201) * –0.236 (0.420)

Model goodness-of-fit statistics
Sample (n) 18,687 17,831
Wald χ2 (df) 476.02 (40) 440.09 (40)
Pseudo R2 0.123 0.088

Note: † p ≤ 0.10, *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, for two-tailed test of sex differences. Source: Author’s
calculations using data from the Survey of Doctorate Recipients [22] and the O*NET Occupational Information Network
Database [23], 1995–2013.
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Table A4. Estimated coefficients from logit models of employment at a R1 or R2 university among
those attaining a postdoctoral position or a tenure-track faculty appointment.

Main Effect * Female

b se(b) b se(b)

Constant –6.693 (1.226) ***
Female –1.376 (0.462) **
Year 0.108 (0.024) *** 0.030 (0.039)
Year2 –0.003 (0.001) * –0.002 (0.002)
Demographic characteristics

Age 0.443 (0.071) ***
Age2 –0.005 (0.001) ***
U.S. citizen –0.324 (0.068) ***
Race (reference = White, non-Hispanic)

Black, non-Hispanic –0.297 (0.130) *
Asian or Pacific Islander, non-Hispanic –0.151 (0.071) *
Hispanic –0.028 (0.105)
Other, non-Hispanic –0.356 (0.241)

Degree field (reference = Mathematical & computer sciences)
Biological sciences 0.303 (0.103) ** 0.072 (0.197)
Physical, chemical and earth sciences 0.016 (0.106) –0.031 (0.212)
Engineering 0.477 (0.106) *** –0.167 (0.228)

Educational background
Years from BA to Ph.D. –0.353 (0.051) *** 0.188 (0.078) *
Years from BA to Ph.D.2 0.010 (0.002) *** –0.008 (0.003) *
Carnegie class of doctorate-granting institution (reference = Research University I)

Research University II –0.352 (0.097) *** 0.060 (0.180)
Doctorate Granting I & II –1.146 (0.132) *** 0.247 (0.217)
Other –0.851 (0.149) *** –0.089 (0.231)

Family Characteristics
Family structure at time of survey (reference = No children)

Children aged < 2 years –0.076 (0.083) 0.053 (0.151)
Children aged 2–5 years –0.021 (0.081) –0.048 (0.156)
Children aged 6–17 years –0.021 (0.088) 0.284 (0.177)

Marital status/Spouse’s work status (reference = Unmarried)
Spouse works full time –0.068 (0.080) 0.128 (0.128)
Spouse works part time 0.025 (0.113) 0.129 (0.254)
Spouse does not work –0.026 (0.097) –0.149 (0.200)

Employment Sector (reference = Postdoctoral position)
Faculty position, tenure-track –0.555 (0.077) *** –0.078 (0.131)

Model goodness-of-fit statistics
Sample (n) 9850
Wald χ2 (df) 548.25 (42)
Pseudo R2 0.063

*p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001. Source: Author’s calculations using data from the Survey of Doctorate Recipients [22]
and the O*NET Occupational Information Network Database [23], 1995–2013.
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Appendix B. Measuring the Relationship between STEM Doctoral Degrees and Occupations

Attainment of a doctoral degree in a STEM field represents a significant investment in specialized
education, and a strong commitment to a career in a STEM field. Utilizing that investment entails
gaining employment in job that requires the use of the specialized knowledge and skills developed
through educational experiences [28]. The underutilization of the education, skills, and expertise of
women who invested in STEM fields is well-documented (for example, see [3,29–31]).

Attaining employment as a tenure-track faculty member at a research-intensive university is
the ideal labor market application of a STEM doctorate because such employment fully utilizes the
educational capital the STEM doctorate represents. Other types of employment vary in the degree to
which they utilize doctoral-level training in a STEM field: some jobs will rival the research university
faculty position in their demand for specialized skills and training, some will demand only some of the
skills and specialized knowledge gained in the pursuit of a STEM doctorate, while the performance of
others will demand none of those skills.

Prior research on gender differences in the utilization of science and engineering educational
investments, i.e., research on gender differences in the “science pipeline,” has exclusively relied on
a researcher-imposed operationalization of educational utilization [3]. In this approach, researchers
classify a set of occupations as those that comprise the STEM labor market, and employment in
one of these occupations is defined as the utilization of STEM education. The researcher-imposed
classification may be based on any combination of independent judgment, the conventions of prior
research, or classification schemes used by benchmarking entities [6,7].

Although the researcher-defined approach is reasonable, it has significant limitations which may
produce biased estimates of the degree to which STEM doctorates utilize their education in the labor
market, i.e., the degree to which they stay in the “pipeline.” First, it relies on the judgment of the
researcher, rather than on the assessment of the individuals whose education-work transition is being
observed or on an empirical method of measuring the substantive consistency of education-occupation
pairing. As such, it is likely to be strongly influenced by the something as relatively capricious as
the labeling of the categories in the classification scheme. The researcher-defined approach also
ignores the fact that occupational categories combine jobs that may differ in the degree to which they
are related to a STEM degree. This variability cannot be reflected in the dichotomous nature of the
researcher-defined operationalization, nor can the education-occupations “linkages” identified by a
binary indicator variable capture the relative strength of education-occupation connections [28].

To obtain unbiased estimates of gender differences in the attainment of employment that utilizes
STEM education, I operationalize education-occupation relatedness by measuring the degree to which
an occupation requires doctorate-level education, demands research skills, and is substantively related
to their degree field. The level of education required for employment in a given job is a basic measure
of whether one’s education will be utilized on the job. For doctorates, the extent to which a doctoral
degree is required by the jobs in an occupational category is a first-order measure of whether an
occupation is commensurate with their educational investment. Second, since doctoral-level education
in STEM fields is devoted to the training of research skills, I use the extent to which research is a
primary work activity to capture another dimension of education-occupation relatedness. Third, I use
the degree to which an occupation is related to various STEM fields as a measure of the substantive
education-occupation relatedness. Using these measures of educational utilization to track employment
outcomes may provide a new understanding of where in the labor market the science pipeline leads
and to what extent those pathways differ by gender.
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Abstract: We examine factors contributing to the gender gap in employment in science, technology,
engineering, and math (STEM) among men and women with bachelor’s degrees in computer science
and engineering, the two largest and most male-dominated STEM fields. Data come from the National
Science Foundation’s (NSF) Scientists and Engineers Statistical Data System (SESTAT) from 1995
to 2008. Different factors are associated with persistence in STEM jobs among computer science
and engineering degree holders. Conditional on receiving a degree in computer science, women
are 14 percentage points less likely to work in STEM than their male counterparts. Controlling for
demographic and family characteristics did little to change this gender gap. Women with degrees in
engineering are approximately 8 percentage points less likely to work in STEM than men, although
about half of this gap is explained by observed differences between men and women. We document
a widening gender gap in STEM employment in computer science, but this gender gap narrows across
college cohorts among those with degrees in engineering. Among recent computer science graduates,
the gender gap in STEM employment for white, Hispanic, and black women relative to white men is
even larger than for older graduates. Gender and race gaps in STEM employment for recent cohorts
of engineering graduates are generally small, though younger Asian women and men no longer have
an employment advantage relative to white men. Our results suggest that a one-size-fits-all approach
to increasing women’s representation in the most male-dominated STEM fields may not work.

Keywords: gender; scientists and engineers; STEM employment; gender inequality

1. Introduction

During the later third of the 20th century, the science and technology labor force diversified in
important ways. Women’s graduation rates in science, technology, engineering, and mathematics
(STEM) increased between two and ten times since the 1970s (Committee on Maximizing the Potential
of Women in Academic Science and Engineering (U.S.) and Committee on Science, Engineering,
and Public Policy (U.S.) (2007)). However, even among women who held degrees in STEM fields,
employment in STEM jobs continues to lag that of their male counterparts. Women who graduate
with degrees in STEM majors are less likely than their male counterparts to enter STEM occupations,
or remain in them (Glass et al. 2013; Ma and Savas 2014; Mann and DiPrete 2013; Sassler et al. 2017).
Historically, women were often discouraged from pursuing employment outside the home, particularly
in jobs—such as those in STEM—typically thought of as “masculine” (Robinson and McIlwee 1991).

Soc. Sci. 2017, 6, 69; doi:10.3390/socsci6030069 www.mdpi.com/journal/socsci155



Soc. Sci. 2017, 6, 69

Gender differences in human capital accumulation, occupational concentration, work history, and
discrimination also differentiated the likelihood that women worked in STEM jobs. As women have
increased their participation in the workforce and obtained college and advanced degrees, some of
these explanations have faded in importance; others, such as differences in the working patterns of
men and women, continue to have an impact on earnings differentials (Blau and Kahn 2006; Mandel
and Semyonov 2014) and occupational attainment (Weeden et al. 2016).

Tremendous resources have been devoted to increasing women’s representation in STEM
employment (Committee on Maximizing the Potential of Women in Academic Science and Engineering
(U.S.) and Committee on Science, Engineering, and Public Policy (U.S.) (2007)). Such efforts are
based on the belief that increasing women’s representation in STEM occupations will encourage
more women to pursue such fields of study, and remain in the STEM work force (Fouad et al. 2011;
Hill et al. 2010). The increased representation of women could also have the long-term effect of
diversifying leadership in STEM jobs, and expanding women’s access to mentoring and leadership
positions (Preston 2004; Stephan and Levin 2005). In fact, among the most widely cited impediments
to greater diversification of the STEM labor force are perceptions of being isolated, reported by
many women who are employed in fields, such as engineering and computer science, where their
representation is the smallest (Fouad et al. 2011; Gunter and Stambach 2005; Kanter 1977; Michelmore
and Sassler 2016). Others attribute the dearth of women in some STEM fields, and disparities in wages,
to discrimination, though the evidence suggests that discrimination has diminished as a contributor to
the gender earnings gap, if not to the employment gap in particular fields (Mandel and Semyonov
2014; Michelmore and Sassler 2016). Despite a good deal of public discourse on the challenging climate
facing women in computer science and engineering, additional empirical research is needed to better
understand what factors contribute to the gender employment gap in these fields.

In the two largest and most male-dominated STEM fields, computer science and engineering, there
have been opposing demographic shifts in the composition of degree holders over time. In computer
science, the representation of women as a share of degree holders has fallen significantly even as
the composition of female graduates has diversified. Women made up over one-third of graduates
in the mid-1980s; in recent years, that share has fallen. By 2013, the share of bachelor’s degrees in
computer science that were being awarded to women was only half of what it had been in the 1980s
(Corbett and Hill 2015). In engineering, in contrast, the opposite trend is seen. Although still heavily
male-dominated, women have increased their representation in engineering ten-fold since 1970, going
from 2% of majors in 1970, to 22% of majors in 2004 (Michelmore and Sassler 2016). However, degree
receipt alone is not an adequate proxy of success in increasing shares of women in employment,
as numerous studies make clear (e.g., Corbett and Hill 2015; Glass et al. 2013; Sassler et al. 2017).
How these demographic shifts in the composition of STEM graduates have affected the gender gap in
employment in STEM is an empirical question.

In this paper, we answer this question by examining the factors that contribute to the gender
gap in STEM employment among those who received a bachelor’s degree in computer science or
engineering over the last four decades. We focus our analysis on these two fields because they represent
the largest share of STEM jobs and are the two STEM fields in which women make up the smallest
share of college majors. Using data from the National Science Foundation’s (NSF) Scientists and
Engineers Statistical Data System (SESTAT) from 1995 to 2008, we first illustrate the large demographic
shifts that occurred in these two fields between 1970 and 2004—with computer science experiencing
a large decline in the number of female degree holders, and engineering experiencing an increase in
women degree holders. We then document the overall gender gap in persistence in STEM occupations
among these individuals, testing to what extent gaps can be explained by differences in observable
characteristics between men and women. Finally, we analyze how the large demographic shifts in the
composition of computer science and engineering degree holders has influenced the gender gap in
STEM employment over time through a cohort analysis.
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Results from our analysis shed light on the factors associated with persistence in STEM
occupations, and how the gender gap in persistence in STEM has changed over the last several
decades. Our results reveal two distinct portraits of women’s experiences in the two largest and most
male-dominated STEM fields. Among recent cohorts, women’s representation of computer science
graduates has declined. Women who do obtain degrees in computer science are increasingly less likely
to work in STEM occupations relative to their male peers. In contrast, as women have increased their
representation in engineering over the last several decades, gender gaps in working in STEM appear
to have stabilized. As a result, the share of women graduates who work in engineering is at near
parity with men in recent cohorts. Our results suggest that the barriers to employment for women in
computer science likely differ from those deterring even larger increases in women’s representation in
engineering. Such findings highlight the very real need to address roadblocks—such as a challenging
and often unwelcoming work climate, gender bias and discriminatory treatment, and the negation of
relationship and family responsibilities—that deter more women from majoring in and remaining in
computer science jobs.

2. Understanding the Gender Gap in Women’s Employment in STEM Occupations

Among one of the more frequent explanations for why women were underrepresented in STEM
professions in the closing decades of the 20th century was one that drew on gender essentialism,
namely that women were less interested in STEM topics, and therefore unlikely to pursue the training
necessary to work in the STEM labor force. Historically, women who pursued bachelor’s degrees have
been far less likely than men to major in STEM, instead obtaining degrees in humanities or liberal arts
subjects (Shauman 2006; Xie and Killewald 2012). A gender essentialist argument overlooks the social
nature of gender, and the many barriers that prevented women’s entrance into STEM studies and
occupations (Charles and Grusky 2004). In fact, the gender composition of STEM fields varies a great
deal across countries (Charles and Bradley 2006; Charles and Bradley 2009), suggesting cross-cultural
variation in occupations that are considered “masculine” or “feminine.” In recent years, there has been
a substantial increase in the proportion of female STEM graduates in the United States. In the early
years of the 21st century, women accounted for the majority of all college graduates with degrees in
the life sciences, and approximately 40% of those graduating with degrees in the physical sciences
(Michelmore and Sassler 2016).

In computer science and engineering, women continue to make up a distinct minority of
graduates: women account for approximately one-third of graduates in computer science, and
one-fifth of graduates in engineering. Women’s representation in computer science, however, has
actually declined in recent years. We illustrate this in Figure 1, where we present the gender and
race composition of computer science and engineering degree holders since 1970. Computer science
has become more male-dominated in recent years, due in large part to an influx of Asian men into
the computer science major. White women’s representation in computer science, on the other hand,
has declined substantially: from 28% during 1970–1974, to just 15% during 2000–2004. The decline
in women’s representation in computer science would be even more dramatic, were it not for the
increase in representation among minority women, primarily black and Asian women. Engineering,
on the other hand, has seen a very different pattern over the last several decades. Among graduates
during 1970–1974, white men made up more than 80% of degree holders, and women as a whole
accounted for just 2% of graduates. Over time, women have increased their representation, accounting
for approximately 22% of graduates during 2000–2004. While the representation of white women
among engineering graduates has grown, there have also been increases of other women, particularly
Asian women. In addition to contributing to the gender wage gap, women’s underrepresentation in
engineering and computer science majors accounts for a sizable proportion of the gender employment
gap in STEM occupations, as these two fields account for about three-quarters of jobs in STEM
(Corbett and Hill 2015; Michelmore and Sassler 2016; Xie and Killewald 2012).
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(a) 
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Figure 1. Race and gender distribution of computer science and engineering majors by college cohort:
(a) Computer Science Majors; (b) Engineering Majors. Source: National Science Foundation’s Scientists
and Engineers Statistical Data System (SESTAT) 1995–2008. All men and women graduating with a
bachelor’s degree in computer science or engineering between 1970 and 2004.

In recent years, the evidence suggests that among those who complete degrees in STEM fields,
the gender gap in transitions into STEM employment is minimal initially, and women appear as likely
to transition into STEM jobs as their male counterparts, though computer science remains an exception
(Smith-Doerr 2004). However, increasing the representation of women pursuing and obtaining STEM
degrees is not enough to narrow the gender gap in STEM employment, as the pipeline continues
to leak after degree receipt. The evidence suggests that retention of women in STEM professions is
a challenge. Women in STEM occupations are significantly more likely to exit STEM employment than
are women in other challenging fields, such as law or business (Glass et al. 2013), or men in STEM
occupations (Fouad et al. 2011; Hunt 2016; Preston 2004).

The explanation most frequently proffered for gender discrepancies in professional job retention
tend to revolve around challenges with balancing work and family life. Some scholars argue that
persistent gender differences in labor market retention can be attributed to the discrepancy between
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women’s and men’s willingness to prioritize work demands over family obligations (Ceci and Williams
2011; Ferriman et al. 2009; Hakim 2000; Hakim 2002), though attributing differential behavior
to preferences is strongly critiqued by feminist scholars as essentialist (Halrynjo and Lyng 2009;
Stähli et al. 2009). The relational and family care obligations of marriage, for example, appear to be
greater for women than men; perhaps as a result, women with STEM degrees are less likely than their
male counterparts to be married (Mason et al. 2013).

Nonetheless, recent research has challenged the long-accepted belief that family constraints,
such as the presence of children, contribute to differential retention of women in STEM occupations
(Glass et al. 2013; Hunt 2016). Hunt (2016) showed that the gendered persistence gap in engineering
was almost entirely due to dissatisfaction with pay and promotion, rather than resulting from family
constraints. Glass and colleagues (2013) found that women exited STEM within a few years of college
completion, often prior to marriage and having children. Nonetheless, among those who persisted in
STEM jobs post marriage and childbearing, having a second or higher order child exacerbated women’s
odds of exiting from STEM jobs to a considerably greater extent than it did for other professional
jobs (Glass et al. 2013). Research on how marriage and children influence men’s attrition from the
STEM labor force is non-existent, although descriptive evidence suggests that men are increasingly
influenced by perceptions that STEM fields are not amenable to family life (Mason et al. 2013). There is
also some evidence that the association between children and earnings—a central factor shaping
retention (Hunt 2016)—has changed among more recent cohorts of women, at least for some segments;
among professional women, the association between motherhood and wages has become positive
(Buchmann and McDaniel 2016; Michelmore and Sassler 2016; Pal and Waldfogel 2016). This likely
reflects, to some extent, selection issues into both motherhood and working among recent cohorts of
professional women.

While family factors may matter less for attrition from the STEM labor force among more recent
cohorts, particularly among women, the stock of STEM workers is shaped by the historical experiences
of earlier graduates. In other words, gender gaps in STEM employment could be due to the labor force
exits of earlier cohorts of women employed in STEM. Previous cohorts of women were more likely
than men to have taken time out of the labor force, or to have reduced their hours of employment,
to have and raise children (Bertrand et al. 2010; Budig and England 2001; Byker 2016; Goldin 2014).
Older cohorts of women may also have exited the STEM work force due to frustration over lack
of promotion or experiences with discrimination. The evidence suggests that the passage of equal
employment legislation has reduced the impact of discrimination as a contributor to the gender
earnings gap in the overall labor market between 1970 and 2010 (Mandel and Semyonov 2014),
and perhaps in employment as well. Nonetheless, recent studies employing experimental designs
have revealed how implicit bias and gendered stereotypes operate to privilege men over women in
the hiring process, while also shaping pay and mentoring (Moss-Racusin et al. 2012). Still, female
employment throughout the life course has become increasingly normative, leading us to expect the
gender gap in employment to narrow among more recent graduates.

In this paper, we expand on prior work analyzing the gender gap in STEM employment.
Our analysis uses a broad range of cohorts of college graduates, and we focus on the two STEM
professions that account for the largest share of STEM workers. Our sample includes all men and
women holding bachelor’s degrees in either computer science or engineering, unlike some prior work
that focused on PhD holders (e.g., Mason et al. 2013; Shauman 2017). We begin by illustrating the
gender gap in retention in STEM occupations, separately for computer science and engineering degree
holders. We next use regression analysis to illustrate how the gender gap in working in STEM changes
with the addition of controls for race/ethnicity, immigrant status, college cohort, advanced degree
holding, and family characteristics. Finally, given the large demographic shifts in these two fields over
the last several decades, we examine how the gender gap in persistence in STEM has changed across
college cohorts from 1970 to 2004.
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3. Data and Method

Data come from the National Science Foundation’s (NSF) Scientists and Engineers Statistical
Data System (SESTAT). We incorporate data from six waves of the SESTAT data collection: 1995,
1997, 1999, 2003, 2006, and 2008. SESTAT is comprised of three ongoing surveys designed to create
a nationally representative sample of science and engineering college degree holders. We utilize the
integrated data, which include data from the National Survey of College Graduates Science and
Engineering Panel, the National Survey of Recent College Graduates, and the Survey of Doctoral
Recipients. SESTAT participants have all received at least a bachelor’s degree and have at least one
degree in science or engineering, or are individuals holding any college degree that work in a science
or engineering occupation. The restricted SESTAT data include detailed information regarding labor
force participation, occupation categories, educational attainment, and demographic characteristics.

We treat the data as repeated cross-sections, although some respondents appear in more than
one wave of data. To reduce concerns of non-independent sampling, we restrict our analysis to one
observation per person, choosing a survey wave at random for individuals represented in multiple
waves. We further limit our analysis to men and women who received a bachelor’s degree in either
computer science or engineering between 1970 and 2004. Since data are collected between 1995 and
2008, this cohort restriction limits the sample to working-aged individuals (aged 22 to 60). We further
limit our sample to individuals who are working, excluding individuals who are unemployed, in school,
or out of the labor force. This restriction reflects our interest in understanding the factors that determine
men and women’s decisions to work in STEM occupations relative to other non-STEM occupations.
Results from our analysis of the gender gap in STEM can therefore be interpreted as the difference
in men and women’s propensity to work in STEM compared to other employment outside of STEM
occupations. Labor force participation is quite high among this sample: these restrictions omit 7% of
men and 14% of women with degrees in computer science or engineering.1 Our final sample consists
of 55,895 men and women working (in any occupation) with bachelor’s degrees in computer science
or engineering.

4. Measurement

Dependent variable: Our dependent variable of interest is a binary indicator for whether the
individual was working in a STEM occupation at the time of the interview. The SESTAT data contain
detailed occupation codes for all employed individuals in the survey. Individuals working in one of
the four main STEM fields were considered working in STEM (computer science, engineering, life
sciences, or physical sciences), while individuals who were employed outside of the STEM fields
were considered not working in STEM. While we analyze results separately for computer science and
engineering majors, we do not restrict STEM majors to work in the occupation they majored in. That is,
respondents who majored in computer science and work as life scientists are considered working in
STEM, just as computer science majors working in computer science are also considered working in
STEM. A list of STEM occupations can be found in Table A1, along with the share of STEM workers
working in each of the occupations. Table A1 also lists the top occupation categories for individuals
not working in STEM.

Approximately 90% of computer science majors who work in STEM are working in computer
science or math-related occupations. Among engineering majors, 74% of those who are working in
a STEM occupation are working in an engineering occupation. Another 16% of engineering majors
are working in computer science. Among those not working in a traditional STEM field, the top
occupations were science and engineering managers, science and engineering pre-college teachers,

1 Our main findings are consistent if we include individuals who are unemployed, in school, or out of the labor force and
consider them “not working in STEM”. Gender gaps are slightly larger, reflecting the fact that women are more likely to be
out of the labor force relative to men (6% compared to 2% of men).
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and science and engineering technicians.2 These three fields accounted for roughly 40–45% of the
occupations of non-STEM employed computer science and engineering degree holders in our sample.

As a sensitivity analysis, we also present results using a more restrictive definition of working
in STEM (we refer to this as the “restricted” definition). In particular, we present results restricting
the definition of working in STEM to include only the occupations that are in the respondent’s major
degree of study (i.e., computer science occupations for computer science majors and engineering
occupations for engineering majors). These results reveal whether there is gender or racial variation in
the propensity to work in STEM fields outside of the major field of study.

Independent variables: Our key independent variable of interest is the gender of the respondent.
As a sensitivity check, we also estimate separate gender gaps in STEM employment for whites, blacks,
Hispanics, and Asians by running regressions separately by race/ethnic group. Given the large
foreign-born representation in the STEM work force (Sana 2010) we also include a dummy variable
indicating whether respondents were born outside of the United States.

A number of controls are incorporated to account for the age and cohort structure of our sample.
For starters, a linear control for the survey year of the SESTAT data is included in order to account for
the variations in the propensity to work in STEM over time. We also utilized a linear control for age,
to allow the propensity to work in STEM to vary by age. Last, we construct five-year college cohort
indicators to account for the fact that the propensity to work in STEM may differ across college cohorts
between 1970 and 2004; the 1970–1974 cohort serves as the comparison group.

We also include controls for whether the respondent obtained an advanced degree, differentiating
among those with a master’s degree in a STEM field, a PhD in a STEM field, and a non-STEM advanced
degree. We expect that individuals with graduate degrees in STEM will be more likely to work in STEM
compared to individuals with only a bachelor’s degree or an advanced degree in a non-STEM field.
Finally, we incorporate various controls for family characteristics. Separate indicators are constructed
indicating whether the respondent is married or cohabiting, given that cohabitors espouse less
traditional views regarding gender roles than do marrieds (Clarkberg et al. 1995). We also include
a control for whether the respondent has any children, or any children under the age of six, the most
time-intensive years. We also include interactions of all family characteristics with gender, to allow
the association between family characteristics and propensity to work in STEM to differ for men and
women. We expect family characteristics to be negatively associated with women’s propensity to work
in STEM, but to have no association with men’s propensity to work in STEM.

Our analysis proceeds as follows. First, we describe differences in observed characteristics between
men and women graduating with bachelor’s degrees in computer science and engineering. We then
turn to our multivariate analyses, using linear probability models to test whether differences between
men and women in background characteristics, educational attainment, and family formation can
account for the gender gap in persistence in STEM. A linear probability model has the advantage of
allowing a straightforward interpretation of regression coefficients, particularly in evaluating how
coefficients change across models. We test the sensitivity of our results using our restricted definition
of what is considered a STEM occupation. Finally, we examine how the large demographic shifts
in the composition of computer science and engineering degree recipients may have affected the
gender gap in working in STEM by examining how the gender gap has evolved according to college
cohort. This analysis will provide insight into whether the large demographic shifts in the race and
gender composition of computer science and engineering graduates over the last several decades has
correlated with shifts in the gender gap in persisting in STEM occupations. Since computer science
and engineering have experienced very different demographic shifts over the last several decades,
we present all results separately for these two fields.

2 Results including these occupations as STEM occupations revealed largely similar gender and race gaps in working in STEM.
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5. Results

Descriptive statistics of those who majored in computer science or engineering are presented in
Table 1, separately by major and gender. Underlined coefficients indicate significant differences in
characteristics between men and women. The gender gap in working in STEM is much wider among
computer science majors than among engineering majors. While 56% of male computer science majors
in our sample were working in STEM at the time of the survey, the equivalent share of women was just
42% for female computer science majors, a gap of 14 percentage points. The gap is slightly narrower if
we restrict our definition of “working in STEM” to include only working in computer science-related
occupations (52% vs. 40%), reflecting the fact that male computer science majors are slightly more
likely to be working in STEM occupations outside of the main computer science field.

Table 1. Descriptive Statistics of those who majored in Computer Science or Engineering, by Gender.

Computer Science Engineering

Men Women Men Women

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

Working in STEM 0.56 0.50 0.42 0.49 0.64 0.48 0.61 0.49
Working in STEM (restricted) * 0.52 0.50 0.40 0.49 0.49 0.50 0.45 0.50

Survey year 2002.8 4.39 2002.5 4.38 2002.5 4.48 2002.8 4.33
Age 37.80 9.40 37.60 9.23 39.20 9.50 35.02 8.11

Race/Ethnicity
White 0.75 0.43 0.68 0.47 0.74 0.44 0.62 0.49
Black 0.06 0.24 0.10 0.30 0.03 0.17 0.07 0.26

Hispanic 0.05 0.21 0.05 0.22 0.06 0.23 0.07 0.25
Asian 0.15 0.35 0.17 0.37 0.17 0.38 0.24 0.43

Foreign born 0.20 0.40 0.23 0.42 0.25 0.44 0.30 0.46

College (BA) cohort
1970–1974 0.09 0.29 0.09 0.28 0.12 0.32 0.02 0.12
1975–1979 0.08 0.28 0.09 0.28 0.12 0.32 0.06 0.24
1980–1984 0.13 0.34 0.13 0.34 0.18 0.38 0.17 0.38
1985–1989 0.19 0.39 0.20 0.40 0.18 0.39 0.20 0.40
1990–1994 0.19 0.39 0.20 0.40 0.18 0.38 0.21 0.41
1995–1999 0.16 0.37 0.17 0.37 0.14 0.35 0.20 0.40
2000–2004 0.15 0.36 0.12 0.33 0.08 0.27 0.14 0.35

Graduate Degrees
Has a master’s in STEM 0.17 0.38 0.16 0.36 0.25 0.43 0.27 0.44

Has a PhD in STEM 0.02 0.15 0.02 0.13 0.04 0.18 0.03 0.18
Has an advanced degree in non-STEM 0.11 0.32 0.14 0.35 0.14 0.34 0.12 0.33

Family Characteristics
Married 0.67 0.47 0.65 0.48 0.75 0.44 0.63 0.48

Cohabiting 0.03 0.16 0.03 0.16 0.02 0.13 0.03 0.16
Has any kids 0.46 0.50 0.48 0.50 0.52 0.50 0.44 0.50

Has any kids <6 0.24 0.43 0.23 0.42 0.25 0.44 0.25 0.43
Number of Observations 10,229 5666 35,377 7889

Source: National Science Foundation’s Scientists and Engineers Statistical Data System (SESTAT) 1995–2008. All men
and women graduating with a bachelor’s degree in computer science or engineering between 1970 and 2004, who are
employed at the time of the survey. Notes: Women with children are defined as those who have at least one child
under the age of 18 living in the household. Marriage and cohabitation evaluated at the time of the survey.
Underlined cells indicate significantly different from men at p < 0.05 level; * Restricted definition: working in
a STEM occupation of same field as college degree.

While male and female computer science majors are of similar age (on average, 37 years old at
the time of the survey), the racial composition of computer science majors is quite different for men
and women. Three-quarters of male computer science majors are white, compared to just two-thirds
of female computer science majors. Female computer science majors are more likely to be black
or Asian, and are also more likely to be foreign-born, compared to male computer science majors.
Aside from differences in the racial composition between male and female computer science majors,
other observable characteristics are quite similar between the two groups. Female computer science
majors are slightly less likely to have an advanced degree in STEM, but more likely to have an advanced
degree in a non-STEM field compared to men (14% versus 11%, respectively). Somewhat surprisingly,
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male and female computer science majors have similar family characteristics: about two-thirds are
married, about half have any children, and just under a quarter have any children under the age of six.

A different story emerges in engineering, where the gender gaps in working in STEM are much
smaller, but the observable characteristics are quite different for men and women. The gender gap in
working in STEM is just 3 percentage points when considering working in any STEM occupation in the
four main STEM fields (64% of men compared to 61% of women), though this difference is statistically
significant. Using our restricted definition of working in STEM, only 49% of men and 45% of women
were working in STEM engineering occupations at the time of the interview. This lower retention
reflects the migration of engineering majors into computer science-related fields (16%).

Despite the smaller gender gap in working in STEM, male and female engineering majors look
quite different from each other. Male engineering majors are older than their female counterparts,
indicating an influx of female engineers in more recent cohorts (39 years compared to 35 years on
average, respectively). Similar to computer science, female engineering majors are more racially
diverse than are male engineering majors, as three-quarters of male engineering majors are white,
compared to just 62% of female engineering majors. Female engineering majors are more likely to
be black than male engineering majors (7% versus 3%, respectively), and more likely to be Asian
(24% versus 17%, respectively). Female engineering majors are also more likely than their male
counterparts to be foreign-born (30% compared to 25%). Reflecting the age difference between male
and female engineering majors, female engineering majors are more likely to have graduated from
college (bachelor’s degree) in 1995 or later. Less than 2% of the sample of female engineering majors
graduated during 1970–1974, compared to 12% of male engineering majors. This reflects the large
increase in female representation in engineering that has occurred over the last several decades.

We also find significant differences in the family characteristics between male and female
engineering graduates. Approximately three-quarters of male engineering degree holders were
married, compared to just 63% of women. Women engineers were also somewhat more likely than their
male counterparts to be cohabiting (3% versus 2%, though the difference is statistically significant),
perhaps reflecting a desire to defer or avoid normative gender expectations that come with marriage.
Male engineering majors were also more likely than their female counterparts in engineering to have
any children (52% versus 44%). Still, women and men engineering graduates were equally likely to
have young children (under age six) (25% of the sample). Some of these differences may be attributed
to the younger average age of the female engineers, though others suggest the greater challenges to
relationships for women committed to being professionals in demanding fields.

Among both computer science and engineering majors, women are less likely to be working in
STEM occupations than men. These gender gaps are not uniform across racial groups, however.
Figure 2 presents the share of men and women working in STEM for each of the four main
race-ethnic groups in our sample, separately for computer science and engineering degree holders.
In computer science, gender gaps in working in STEM are largest among whites and Asians; women
are approximately 15 percentage points less likely to be working in STEM than their male counterparts
in both of these groups. Gender gaps are much smaller among black and Hispanic computer science
degree-holders. The gender gap for Hispanics is approximately 10 percentage points, while for blacks
it is just 2 percentage points. For both men and women, black and Hispanic computer science degree
holders are significantly less likely to be working in STEM compared to their white and Asian peers.

Among engineering degree holders, gender gaps in working in STEM are much narrower for all
racial groups than in computer science. In engineering, the gender gap is actually widest between
black men and women; black women are approximately 5 percentage points less likely to be working
in STEM compared to black men. Among whites and Asians, women are approximately 3 percentage
points less likely to be working in STEM relative to men. Among Hispanics, we find virtually no
gender gap in working in STEM.
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(a) 

 
(b) 

Figure 2. Share of men and women working in STEM among computer science and engineering degree
holders, by race. (a) Computer Science Majors; (b) Engineering Majors. Source: National Science
Foundation’s Scientists and Engineers Statistical Data System (SESTAT) 1995–2008. All men and women
graduating with a bachelor’s degree in computer science or engineering between 1970 and 2004.

6. Multivariate Results

We next turn to regression analyses to test whether background characteristics can explain some
of the gender gap in the likelihood of working in STEM. Results for computer science graduates are
presented in Table 2, while results for engineering graduates are presented in Table 3. We present
models sequentially, first estimating the overall gender gap in the likelihood of working in STEM,
then estimating gaps separately for each race/gender group, and subsequently adding controls
for educational attainment and family characteristics to test whether differences in observable
characteristics can explain part of the gender gap in STEM employment.
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7. Computer Science Majors

With no other controls in the model, Model 1 shows that women who majored in computer science
are 14 percentage points less likely to work in STEM compared to men who majored in computer
science. In Model 2, we add controls for age and survey year. These controls do not mediate the
relationship between gender and working in any STEM occupation.

Adding race to the model (Model 3) shows some heterogeneity in the gender/race gap among
computer science majors in working in STEM. White, black, and Hispanic women are much less likely
to work in STEM compared to white men (between 15 and 17 percentage points), while Asian women
are only 4 percentage points less likely to work in STEM. Minority men are also less likely to work in
STEM: black men are approximately 11 percentage points less likely to work in STEM and Hispanic men
are 7 percentage points less likely to work in STEM compared to white men. Asian men, on the other
hand, are significantly more likely to work in STEM than their white counterparts (11 percentage points).
Including a control for whether the respondent is foreign-born (Model 4) explains some of the race
gaps in working in STEM. Foreign-born computer science majors are 7 percentage points more likely
to work in STEM compared to native-born respondents. This foreign-born advantage is explained by
differences in the likelihood of obtaining higher degrees in STEM between native-born and foreign-born
respondents, as the effect of being foreign-born is fully mediated (the coefficient is reduced and becomes
statistically insignificant) (Model 6). Having a masters or a Ph.D. in STEM increases the propensity
to be working in STEM by approximately 20 percentage points, while having an advanced degree
in a non-STEM field reduces the likelihood of working in STEM by more than 20 percentage points.
A cohort pattern emerges for computer science majors, with the most recent college cohorts being the
most likely to work in STEM. Controlling for college cohort and advanced degree holding, however,
has little impact on the gender/race gaps for computer science graduates working in STEM, as these
coefficients remain relatively unchanged across models.

Adding controls for family characteristics (Model 8) does partially mediate the gender/race
gaps among computer science majors in working in STEM. However, with all controls in the model,
white women remain 12 percentage points less likely to work in STEM compared to white men.
Black and Hispanic women are even less likely to work in STEM compared to their white, male
counterparts, and Asian women remain 6 percentage points less likely to work in STEM. Including
controls for family characteristics have virtually no impact on the likelihood of working in STEM for
black, Hispanic, or Asian men relative to white men.

For both men and women, being married is positively associated with persisting in STEM,
though cohabiting is negatively associated with persevering in STEM. Having children is also
negatively associated with persisting in STEM, particularly when children are older (over the age
of six). Interestingly, we find no gender differences in propensity to work in STEM associated with
family characteristics among computer science graduates. Married and cohabiting women are equally
likely to work in STEM as married men, as are women with children, although coefficients of the
interaction among gender, cohabitation, and having children are slightly negative (though insignificant).
This implies that among computer science degree holders, family characteristics do not appear to
influence persistence in STEM differentially by gender.

8. Engineering Majors

The engineering story is quite different (Table 3). Among engineering degree-holders, women
are approximately 3 percentage points less likely to work in STEM compared to men. As shown in
Table 1, the female engineering degree holders were younger on average than the male engineering
degree holders. Controlling for differences in age and the survey year actually widens the gender gap
in STEM employment, since age is negatively correlated with persisting in STEM. Differentiating by
race (Model 3), white, black, and Hispanic women are least likely to work in STEM compared to their
white male counterparts. The gap for white women is 8 percentage points, while black women are
12 percentage points and Hispanic women are 10 percentage points less likely to work in STEM relative
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to white men. Asian women are no less likely to work in STEM relative to white men. Among the
men, black and Hispanic men are less likely to work in STEM relative to white men, but Asian men are
approximately 5 percentage points more likely to work in STEM.

In contrast to the story in computer science, foreign-born engineering majors are less likely to
be working in STEM relative to native-born majors. Controlling for advanced degrees exacerbates
the native-foreign born gap, suggesting that foreign-born engineering majors are less likely to obtain
higher degrees in STEM. Again, a cohort pattern emerges for engineering majors, with the most recent
college cohorts being the most likely to work in STEM.

Similar to the findings for computer science, we see little change in the gender/race gap in
working in STEM with the inclusion of controls for college cohort, advanced degree holding in
STEM, and the main effects for family characteristics. Only once we include interactions of our family
characteristics with an indicator for female, allowing the family characteristics to have a different effect
on the likelihood of working in STEM for men compared to women, do we see any change in the
gender gaps in working in STEM (Model 8). Including controls for whether the women are married or
cohabiting and have any children substantially reduces the gender gap in working in STEM among
engineering majors. For white women, the gap shrinks from 8 to 3 percentage points, while reductions
were quite similar in magnitude for the other racial groups as well. For white, black, and Hispanic
women, observable characteristics can explain between 55% and 64% of the gender gap in persistence
in STEM. For Asian women, controlling for observable characteristics actually reverses the gender
gap in persistence in STEM: Asian women are 4 percentage points more likely to be working in STEM
relative to white men.

In contrast to computer science, family characteristics do appear to have different associations
with working in STEM for men and women engineering graduates. While we find no association
between marriage and working in STEM for men (coefficient: 0.006 and insignificant), married women
are 4 percentage points less likely to work in STEM compared to married men. Cohabiting women,
however, are more likely to be working in STEM than cohabiting men, though the difference is not
significant. Having any children is negatively associated with working in STEM for both men and
women, but women with children are 4 percentage points less likely to work in STEM compared to
men with children. This implies that married female engineers with children face substantially more
barriers to working in STEM than do married male engineers who are parents.

These analyses reveal two distinct portraits of the gender gap in persistence in STEM for
those majoring in computer science and engineering. Among computer science majors, women are
substantially less likely to work in STEM compared to men, and observable characteristics do little
to explain this gap. In contrast, among engineering majors, the gender gap in working in STEM is
much smaller, and approximately half of the gender gap can be explained by observable characteristics:
namely, family characteristics.

8.1. How Does Our Restricted Definition of “STEM” Affect Results?

To test the sensitivity of our results to the definition of “working in STEM”, we also ran models
where we restrict the definition of working in STEM to be “working in STEM occupation of same major”.
For instance, if the respondent obtained a bachelor’s degree in computer science, then they will be
considered “working in STEM” only if they also work in a computer science occupation. Among
computer science degree holders, approximately 90% of those working in any STEM field were
working in computer science. In contrast, engineering degree holders were less likely to be working in
engineering occupations: 75% of engineering degree holders working in any STEM field were working
in engineering occupations. An additional 15% of those working in any STEM field were working in
computer science (see Table A1).

Using our restricted definition of working in STEM does not alter results much among computer
science degree holders (see Table A2). This is not surprising, since 90% of those working in any STEM
occupation were working within their field of major. Gaps are slightly smaller for all racial groups
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aside from Asian women, and, once again, controls do very little to alter the gender gap in persistence
in STEM.

The gender gap in persisting in STEM among engineering degree holders also does not change
upon using a more restricted definition of working in STEM, except for Asian men and women.
While Asian men and women were actually more likely to work in STEM compared to white men using
a traditional definition of working in STEM (including any STEM occupation in the four main fields of
STEM), restricting the definition to only include engineering occupations reverses the direction of the
relationship. In the fully-controlled model, both Asian men and women were 8 percentage points less
likely to work in engineering compared to white men. Upon further exploration, this result is due to
Asian men and women with engineering degrees having a higher propensity to work in computer
science compared to non-Asian engineering degree holders.

There is considerable heterogeneity among engineering graduates. Because it remains among
the engineering fields with the lowest representation of women (Michelmore and Sassler 2016),
some have suggested that electrical engineers are more similar to computer science majors than
to many other engineering fields (like mechanical or civil engineering). We therefore explored whether
grouping electrical engineers with computer science graduates altered our results substantively.
Analyses run on our new, expanded group (computer science and electrical engineering graduates)
reveal more similarities between electrical engineers and computer science graduates than other
engineering specializations. For this new expanded category the gender and race gaps in STEM
employment are accentuated, and family characteristics now largely do not mediate the gender/race
gaps evident for those working in STEM. In contrast, the omission of electrical engineering majors
from the engineering models results in smaller gaps in STEM employment among our more
constrained group of engineers, and family characteristics now fully mediate the gender and race
gaps in STEM employment. Our results indicate that not all engineers are alike; the barriers facing
women engineering graduates who specialized in electrical engineering—an area with relatively few
women—are more similar to those experienced by women in computer science than they are to women
in other engineering disciplines.

8.2. Differences by Race/Ethnic Group

Our analyses in Tables 2 and 3 measure gender and race gaps relative to white men; estimating
within-race gender gaps in likelihood of working in STEM separately for each of the four main
race/ethnic groups presents a similar story (see Figure 3). Figure 3 presents results from regressing
an indicator for working in STEM on an indicator for whether the respondent is female for each of the
four main race/ethnic groups, measuring how gender gaps change with the addition of the full set
of controls from Model 8 in Tables 2 and 3 (the dark bar represents the coefficient without controls,
while the light bar represents coefficients with controls). In computer science, we find evidence
that observed characteristics explain more of the gender gap in working in STEM for white and
Asian computer science degree holders than for black and Hispanic degree-holders. With no other
controls in the model, white women are approximately 15 percentage points less likely to work in
STEM relative to white men. This gap narrows to 11 percentage points with the addition of controls
for educational attainment, college cohort, and family characteristics. Similarly, Asian women are
approximately 15 percentage points less likely to work in STEM relative to Asian men. Including
the full set of controls, this gap narrows to 9 percentage points. The story is quite different for black
and Hispanic computer science degree-holders. Among black computer science degree-holders, we
find no statistically significant differences in the likelihood of working in STEM between men and
women in either model. Among Hispanic degree-holders, we find evidence that including controls for
demographic characteristics exacerbates the gender gap in persisting in STEM occupations—increasing
the gap from 10 to 16 percentage points with the inclusion of controls.
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(a) 

 
(b) 

Figure 3. Differences in likelihood of working in STEM for women relative to men by race, coefficient
on indicator for women from LPM regressions predicting likelihood of working in STEM, separate
regressions by race/ethnic group and STEM major. (a) Computer Science Majors; (b) Engineering
Majors. Source: National Science Foundation’s Scientists and Engineers Statistical Data System
(SESTAT) 1995–2008. All men and women graduating with a bachelor’s degree in computer science or
engineering between 1970 and 2004, and employed at the time of survey. Bolded coefficients indicate
statistically significant at p < 0.05 level.

Among white, black, and Asian engineering degree-holders, the race-specific gender gaps
in STEM persistence are consistent with the overall results. For these three groups, women are
between 3 and 5 percentage points less likely to work in STEM relative to their male counterparts,
not including any controls in the model aside from age and survey year. Including the full set of
controls presented in Model 8 in Table 3, fully mediates the gender gaps in likelihood of working in
STEM for these groups. This implies that among engineering graduates, the majority of the gender
gap in propensity to work in STEM is explained by difference in observable characteristics between
men and women. Among Hispanics, we see a different pattern. Similar to Hispanic computer science
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degree holders, we find that including controls for observable characteristics actually exacerbates the
gender gap in propensity to work in STEM, increasing from virtually no gap in the uncontrolled model,
to 10 percentage points in the fully-controlled model.

8.3. How Has the Gender Gap in Employment in STEM Changed over Time?

The gender and racial composition of computer science and engineering majors have shifted
dramatically over the last several decades (see Figure 1). Since the 1970s, white women have exhibited
a retreat from computer science, accounting for 28% of computer science majors during 1970–1974,
to just 16% of majors among the 2000–2004 graduating cohort. The decline of women’s representation
in computer science would be more dramatic, were it not for the increase in representation among
minority women. In engineering, women have increased both their representation and become more
diverse. With these large demographic shifts in computer science and engineering, it raises the question
of how the gender gap in working in STEM has changed over time.

To answer this question, we predict the probability of working in STEM separately for men
and women for each cohort using a regression similar to Model 8 in Tables 2 and 3, but adding
an interaction term of college cohort and gender, to allow for the gender gap in STEM employment to
change over cohort (see Figure 4). We hold all other characteristics at their mean value. The predicted
probabilities indicate how the gender gap in working in STEM has changed by college degree cohort.
In computer science, we find that the decline of white female majors over the last several decades
coincides with a retreat of women from working in STEM as well. Relative to their male counterparts,
women who have graduated from college since 1985 have a much lower predicted probability of
working in STEM than men who graduated from college during the same time period (ranging from
a 12 to 19 percentage point difference). This analysis is conditional on obtaining a college degree in
computer science, and implies that on top of being less likely to major in computer science to begin
with, women who graduated with degrees in computer science over the last two decades are also less
likely to work in STEM.

In engineering, on the other hand, we find the opposite pattern by college cohort. Since 1975–1979,
the gap in working in STEM between women and men who graduated with an engineering degree has
narrowed such that, for the college cohort 1995–1999, the predicted probabilities of working in STEM
are identical. This narrowing of the gender gap in STEM employment has occurred at the same time
that more women have obtained engineering degrees.

Finally, we also examined whether major non-demographic factors influencing the likelihood of
working in STEM persist among the most recent cohorts. To do that, we ran our linear probability
models, but limited our sample to the two most recent cohorts—those who graduated between 1995 and
1999, and those finishing their degree between 2000 and 2004. The general patterns shown in Table 2 for
computer science remained, but the gender and race gaps were considerably larger (results not shown).
Among the most recent cohorts, female computer science graduates were considerably less likely to
be working in STEM jobs than their male counterparts, and the gaps between white and Hispanic
females and white males had expanded, though Asian women who had completed a degree in
computer science were no less likely than their White male counterparts to be working in STEM jobs.
Our measures of family status (married and had any minor children) was also not significant among
the most recent cohorts of computer science graduates, perhaps due to delayed marriage and parenting
among both women and men.

Among engineering graduates, on the other hand, gender disparities in employment were far
narrower among more recent cohorts. Nonetheless, we do observe some widening of disparities among
racial minorities (results not shown). The gender gap between white women and men remains largely
the same magnitude, even as their representation in engineering grew. The gap between Black and
Hispanic women and men, relative to white men, is greater among the two most recent cohorts of
engineering graduates. Furthermore, the employment advantage demonstrated by Asians is no longer
significant among the two most recent cohorts, though in the full sample both Asian women and
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men had exhibited a greater probability of working in STEM jobs than had white males. However,
our family covariates do not explain the gender and race gaps in employment among the most recent
cohorts, as the race gaps persist upon including our family controls.
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Figure 4. Predicted Probabilities of Working in STEM by College Cohort for Women and Men.
(a) Computer Science Majors; (b) Engineering Majors. Source: National Science Foundation’s Scientists
and Engineers Statistical Data System (SESTAT) 1995–2008. All men and women graduating with
a bachelor’s degree in computer science or engineering between 1970 and 2004, and employed at the
time of survey.

9. Discussion and Conclusions

Much progress has been made in diversifying the STEM labor force over the last several decades
(Xie and Killewald 2012), but women continue to remain underrepresented in science and engineering
occupations. Numerous studies have examined the source of the gender gap in women’s STEM
presence, noting differences in major field of study, transitions into STEM occupations, as well as
differential retention in STEM occupations, working patterns, and the challenging experience of being
a minority. Restricting our sample to STEM degree holders in computer science and engineering
eliminates some potential factors, such as differences in human capital accumulation or employment
opportunities that contribute to women’s underrepresentation. We use SESTAT data and assess the
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factors that influence the gender gap in persistence in STEM employment in computer science
and engineering occupations, assessing differences by race as well as changes in the gender gap
across cohorts.

We find sizable and significant gender and race gaps in STEM employment for both computer
science and engineering degree holders. Disparities were greater, however, in computer science than
in engineering. Women who received degrees in computer science were approximately 14 percentage
points less likely to work in STEM occupations than white men, while women in engineering were
7 percentage points less likely to do so. Black and Hispanic men were also significantly less likely to
be working in STEM occupations than their white male counterparts in both fields, but the gap was
generally smaller than it was for women. Contrary to our expectations, we find no evidence that the
gender gap in employment is narrowing among more recent college graduates, at least when it comes
to employment in computer science occupations. Even though female employment throughout the
life course has become increasingly normative in American society, and computer science jobs have
proliferated and generally provide good wages, the occupation is not succeeding in drawing women.
Instead, the evidence suggests that something about the field of computer science is repelling rather
than attracting women.

However, it is difficult to account for the factors associated with these employment disparities.
We found little evidence that differences in observable characteristics between men and women could
explain the gender gap in persisting in STEM among computer science degree holders, contrary to
our hypotheses. After controlling for college cohort, advanced degree holding, and marriage and
family formation, white women with computer science degrees remained 12 percentage points less
likely to work in STEM compared to white men. This suggests that there remain unobserved barriers
to working in STEM for female computer science majors relative to male computer science majors.
Empirical evidence suggests that computer science education is less welcoming to female students
(Cheryan et al. 2013; Master et al. 2016) and that the field is often viewed as a quintessentially masculine
subject (DuBow and James-Hawkins 2016), especially by men (Corbett and Hill 2015; Smyth and Nosek
2015). Furthermore, anecdotal evidence suggests that such barriers persist, or are even exacerbated,
among those working in computer science occupations (Margolis and Fisher 2001; Mundy 2017),
resulting in high attrition of women from jobs in computer science.

In engineering, we find a different story. Gender gaps in persisting in STEM were smaller than in
computer science, and about half of the gap could be attributed to differences in the characteristics
of male and female engineering degree holders. This is consistent with the changing demographic
patterns that have occurred in these two fields over time. Women have historically obtained a greater
proportion of degrees in computer science but are less likely to major in computer science today than
they were forty years ago. In computer science, therefore, the demographic characteristics of men
and women are quite similar. Engineering, in contrast, has seen a dramatic increase in women’s
their representation among degree holders in recent years, and therefore differ more in terms of their
demographic characteristics: the female engineering degree holders are much younger, much less
likely to be married, and much less likely to have children compared to the male engineering majors.
Over time, then, as older engineering degree holders, who are predominantly male, retire, gender
disparities in demographic characteristics—as well as retention in STEM occupations associated with
engineering—should narrow.

Many attribute the dearth of women in STEM occupations to the challenges women (but not men) face
in attempting to balance what are often rigid employment expectations with family life. Our findings
suggest that the associations between family life and employment are more nuanced than one would
expect. Among computer science degree holders, men and women were equally (un)likely to be
married and have minor children. Our regression analysis suggests that both men and women were
more likely to be working in STEM if they were married, relative to those who were single. Similarly,
the presence of children reduced the propensity to work in STEM among both men and women equally,
although having young children (under the age of six) was not significantly associated with working
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in STEM relative to childless individuals. In computer science, therefore, family characteristics do
not appear to be an obstacle for women more so than men. That is the case, at least, among those
who remained in computer science jobs. Evidence from other studies have suggested that those for
whom children are not a deterrent in the work force, and who can maintain employment and even
earn higher wages when they are parents of young children, are highly selective (e.g., Michelmore and
Sassler 2016; Pal and Waldfogel 2016; Buchmann and McDaniel 2016). Furthermore, given that these
women are better represented among those graduating in the 1980s than the 1990s and into the 21st
century, they are older, may be more likely to be divorced or to have older children.

Family life, however, appears more challenging to adjudicate for women engineers than for their
male counterparts. Among engineering majors, observed differences in the propensity to be married
(75% of men were married compared to only 63% of women) and to have minor children (52% versus
44%, respectively) translate into differences in the likelihood of working in STEM. While married men
in engineering were no less likely to be working in STEM compared to single men, married women
were 4 percentage points less likely to be working in STEM relative to married men. Furthermore,
having children further exacerbated this gender gap. Even though having minor children reduced
the likelihood of working in STEM for both men and women, women with minor children were
significantly less likely to work in STEM compared to men with children (by 4 percentage points).
These results are consistent with the idea that women in engineering face barriers in balancing work
and family that do not prevent men from combining marriage and family with working in STEM. Of
note is that those with preschool aged children were slightly more likely to be working in engineering
jobs, and that this effect does not differ for men and women. Perhaps it is not the presence of children,
per se, that challenges employment among those in STEM jobs, but differences in the availability of
full-day and full-year care for children of differing ages. Finally, there appears to be heterogeneity
among engineering occupations, with electrical engineering looking more akin to computer science
in its gender representation and the gender employment gap than to other engineering specialties.
Such findings reveal the challenges that remain to making STEM fields where women are highly
underrepresented welcoming workplaces.

In examining how these patterns have changed over time, computer science appears to be the
exception to increasing female representation, as recent cohorts of female computer science majors are
increasingly less likely to work in STEM jobs than their counterparts who graduated three decades
ago. Women and men are equally likely to work in STEM jobs if they graduated in the 1970s and 1980s.
We document an emerging gender gap in employment in computer science in the late 1980s, rising
to between 10 and 15 percentage points in the more recent cohorts. The declining share of women
and minority computer science workers has been well canvassed in the popular media (Dewey 2014;
Mundy 2017; Stross 2008). Our findings shed additional light on the need to better understand the
factors contributing to women’s diminishing representation in this field, given that computer science
is of considerable importance to the American and global economy. While our findings do not provide
much purchase on why women find computer science an unwelcome field, our results are consistent
with several recent studies detailing persistent wage gaps between men and women in computer
science (Michelmore and Sassler 2016). Increasing the representation of women in computer science
employment, then, appears to be very challenging, and additional research is needed to best determine
effective ways of addressing gender barriers to retention.

Our study is not without limitations. The nature of our data does not allow us to determine
the factors that push or pull men or women out of the STEM labor force and into other occupations,
or whether this process differs for men and women. Recent research has suggested that women
exit particular STEM fields as a result of frustration with working conditions (e.g., Glass et al. 2013;
Hunt 2016), such as dissatisfaction with pay and promotion opportunities. Despite the increasing
presence of women in STEM fields of study, the evidence indicates that women are significantly less
likely to be retained in the STEM labor force (Glass et al. 2013). In engineering, however, we find
no evidence of an expanding gender gap in employment over time, coinciding with an increase in
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women majoring in engineering. Nonetheless, family responsibilities more adversely shape women
engineering graduates’ odds of retention than they do for men, suggesting the need to further explore
how spousal and parental roles play out differentially in the spheres of work and home.

Over the past few decades, remarkable progress has been made in narrowing the gender gap in
STEM employment, but considerable work remains. While the engineering field presents a reason
for optimism that women’s persistence in STEM will increase as their representation among majors
continues to rise, the story in computer science is just the opposite. Increasing women’s representation
in the two largest STEM fields has important implications for gender equity in the labor force, as well
as the overall gender wage gap. Computer science and engineering are among the highest-paying
fields for college graduates; expanding women’s presence in these fields would go a long way towards
reducing gender inequality in pay.
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Appendix A

Table A1. List of STEM occupations and the fraction of computer science and engineering STEM
workers working in each occupation.

STEM Occupations
Percent of Computer
Science STEM Workers

Percent of Engineering
STEM Workers

Computer and information scientists 66.7% 15.7%
Mathematical scientists 7.0% <1%
Postsecondary teachers—computer and math sciences 16.0% <1%
Agricultural and food scientists <1% <1%
Biological and medical scientists 1.0% 1.0%
Environmental life scientists <1% <1%
Postsecondary teachers—life and related sciences <1% <1%
Chemists, except biochemists <1% <1%
Earth scientists, geologists and oceanographers <1% <1%
Physicists and astronomers <1% <1%
Other physical and related scientists <1% <1%
Postsecondary teachers—physical and related sciences <1% <1%
Aerospace, aeronautical, or astronautical engineers <1% 5.9%
Chemical engineers <1% 6.2%
Civil, architectural, or sanitary engineers <1% 12.0%
Electrical or computer hardware engineers 2.5% 17.7%
Industrial engineers <1% 5.1%
Mechanical engineers <1% 15.2%
Other engineers 1.4% 13.4%
Postsecondary teachers—engineering <1% 3.9%

Percent working in STEM occupation of same major 89.7% 73.6%

Top occupations for individuals not working in STEM
Science and Engineering Managers 14.0% 26.1%
Science and Engineering pre-college teachers 13.6% 1.7%
Science and Engineering technicians 19.1% 11.9%
Sales and marketing occupations 8.6% 11.3%
Other non S&E occupations 16.8% 22.7%
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Abstract: We use a case study of job talks in five engineering departments to analyze the
under-studied area of gendered barriers to finalists for faculty positions. We focus on one segment
of the interview day of short-listed candidates invited to campus: the “job talk”, when candidates
present their original research to the academic department. We analyze video recordings of 119 job
talks across five engineering departments at two Research 1 universities. Specifically, we analyze
whether there are differences by gender or by years of post-Ph.D. experience in the number of
interruptions, follow-up questions, and total questions that job candidates receive. We find that,
compared to men, women receive more follow-up questions and more total questions. Moreover, a
higher proportion of women’s talk time is taken up by the audience asking questions. Further, the
number of questions is correlated with the job candidate’s statements and actions that reveal he or
she is rushing to present their slides and complete the talk. We argue that women candidates face
more interruptions and often have less time to bring their talk to a compelling conclusion, which
is connected to the phenomenon of “stricter standards” of competence demanded by evaluators of
short-listed women applying for a masculine-typed job. We conclude with policy recommendations.

Keywords: gender; STEM; interruptions; job talks; gender bias; faculty hiring; underrepresentation
of women; women in science; double standards; stricter standards

1. Introduction

Women remain starkly under-represented in STEM (Science, Technology, Engineering, and
Mathematics) professional occupations in the United States. Over the past two decades, researchers
and policy makers have focused on “leaky pipelines” and challenges to the recruitment and retention of
girls and women in STEM education, and women have made some gains there. However, women with
college and advanced degrees remain underrepresented in many STEM fields [1,2]. Policy makers and
academics view the paucity of women in academic STEM as placing limits on scientific creativity [3,4]
and contributing to the national shortage of STEM professionals [5–7].
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This paper focuses on tenured and tenure-track academic engineering faculty positions in
research-focused universities [8–10]. The ways that gendered barriers may persist in academic hiring
are not fully understood. Experimental studies have found that women can be held to double standards
and stricter standards compared to men [11,12], especially when the highest levels of competence
are demanded [13,14]. In contrast, another study that distributed a set of hypothetical short lifestyle
descriptions of faculty job candidates without details of technical qualifications found that women had
a higher chance than men of being chosen [15].

However, there is a dearth of research regarding how the faculty hiring process unfolds within
real departmental contexts. Moreover, we are aware of no study that considers whether gender barriers
are salient for women and men who have risen to the top of a large applicant pool and been added to
the “short list” of finalists invited for a campus interview.

We analyze this issue with a case study of short-listed applicants, who have been invited to
campus to interview for tenure-track faculty appointments within five male-dominated engineering
departments across two Research 1 universities.1 Case-oriented research is not intended to be
generalizable but rather sheds light on under-studied social processes. Our data come from the most
important segment of the job interview: the “job talk”, a seminar in which the candidate presents his or
her original research to the academic department. Our paper assesses whether in these talks, women
candidates face greater scrutiny and stricter standards, manifesting as more questions, compared to
men candidates.

We analyze the number of questions presenters receive from the audience, which is mostly
composed of department faculty and graduate students. By asking questions, faculty try to assess
whether the candidate is fully in command of his or her research project and its larger implications.
Some interruptions may indicate audience engagement, while others may indicate that the speaker
was unclear or that the audience questions the presenter’s competence.

To preview our results, we find that compared to men presenters, women face more questions
during their job talk seminars, are confronted with more follow-up questions, and spend a higher
proportion of time listening to audience speech. Moreover, we find that questions directed to women
and men candidates are more prevalent in more highly male-dominated departments, compared to
departments that have a somewhat higher proportion of women on the faculty. More senior candidates
generally receive fewer questions than more junior ones, but women face more questioning and
scrutiny compared to men with the same level of experience.

As noted in the conclusion section, our data have some limitations. Our IRB agreement allows
us research access to this treasure trove of video recordings collected for other purposes but does not
permit us to examine which candidates were actually offered a job. Even if job offer data were available,
it would be of limited value. Many candidates withdraw from consideration after receiving preferable
offers from other universities, so the absence of an offer does not reliably indicate a candidate’s lack of
success with the interview. The data do show that, regardless of gender, the number of questions is
correlated with candidates’ statements and actions indicating they are rushing to finish their slides and
conclude their talk. To our knowledge, this is the first study of whether there are gender differences in
the degree to which faculty candidates are interrupted during job talks.

The next section will present our theoretical framework, which motivates our research questions.
We adopt the broad sociological perspective that gender frames expectations and interactions within
academic departments. We briefly present literature on implicit biases, which automatically give
men more credit than similar women for competence. We then examine how these processes can
unfold in ways consistent with double or stricter standards, which could manifest as evaluators posing

1 Each university is an elite research-focused institution, ranked as a “Highest Research Activity” university in the Carnegie
Classification of Institutions of Higher Education and has an engineering school ranked among the top 50.
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more questions during the job talk. We therefore turn to insights from a literature on interruptions in
workplace or task-oriented interactions.

Following that, we present our data and methods. Next, we provide descriptive and multivariate
results. Our discussion and conclusion section also presents study limitations and policy implications.

2. Theoretical Framework and Research Questions

Extensive research documents broadly shared implicit biases, which can automatically filter
assessments of professionals in ways that penalize women, while giving men automatic credit
for competence [16–18]. Assumptions that women are less competent are particularly prevalent
in male-dominated settings [14,19,20]. This is important in our case study. Engineering has historically
been seen as a “masculine” profession, because it is numerically male-dominated, and because the
culture and ethos of the industry are considered masculine [21,22]. Further, in male-dominated
disciplines such as engineering, academic success has been understood to depend on raw brilliance, a
quality less frequently attributed to women [23].

The processes of biased evaluation are illuminated by studies of how, under the illusion of
meritocracy, evaluators can apply double standards in evaluation and hiring. Studies of academic
hiring, based on detailed candidate information that is real or believed to be real by faculty evaluators,
discover that women candidates are seen as less competent, less qualified, and less hirable, compared to
men with similar qualifications. In an analysis of real candidate applications selected for a prestigious
medical research fellowship, faculty evaluators gave women applicants less credit than men for their
publications [24]. In a study of psychology professor applications, faculty assessing one ostensibly
real CV with a female name gave this candidate less credit for her qualifications and were less likely
to recommend hiring her, compared to other participants, who viewed an identical CV with a male
name [25]. Another experimental study used physics, chemistry, and biology professors as participants
to examine an ostensibly real CV of either a man or a woman science student applying for a lab
manager position [26]. Compared to equally qualified women candidates, the men were more likely to
be rated as competent and hirable and were offered a higher salary.

A line of experimental research by Foschi and colleagues examines how subjects evaluating results
of participants’ simulated tasks are implicitly aware of status characteristics such as gender. These
studies show that evaluators generally hold women to more scrutiny and harsher standards in the
inference of competence. In contrast, they will tend to assess similar performances by men with more
lenient standards and give them the benefit of the doubt [11,12,14]. Particularly when tasks are seen as
masculine, evaluators generally assume that the man candidate has more ability than a comparable
woman and apply more lenient standards for him than for her [14].2

In contrast to the broad direction of the literature cited above, one study found that evaluators
were more likely to rate a woman academic candidate than a man academic candidate as hirable [15].
However, this study relied on short narrative summaries of similarly strong men and women
candidates. Importantly, the narrative summaries described a hypothetical search committee’s
evaluations of the job candidates, and assigned the hypothetical men and women candidates identical
numerical scores for their interviews and job talks.3 The provision of only narrative summaries
and secondary judgments allows evaluators to rely on others’ assessments of the job candidates
instead of forming their own judgment about the hypothetical candidates based on detailed objective
information generally provided in academic job searches, such as education credentials and research
productivity, alongside any implicit gender biases that may exist. Moreover, the assignment of identical

2 Foschi’s ([11], p. 31) review of experimental research shows “substantial support” for these predictions.
3 A third, weaker candidate was added as a foil.
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scores obviates the double standards phenomenon that the literature shows generally favors men in
masculine-typed occupations.4

In other research, Biernat and Kobrynowicz [13] found that for inferences of minimum ability,
lower standards are set for the lower status group (such as women) and higher standards are set for the
higher status group (men). However, when inferences about greater ability had to be made, the reverse
pattern emerged. Women were held to stricter standards and men to more lenient standards. Similar
results were found in other studies (see [11] for review, e.g., [27]). Further, women were similarly
or more likely to be considered competent enough to be short-listed when compared to the lower
standards generally set for women but they were held to harsher standards in objective rankings as
well as in promotion and hiring decisions [28,29].

Thus, scope conditions for double standards becoming stricter standards and greater scrutiny for
women include masculine-typed settings when confirmatory decisions (that require higher assessments
of ability) are being made. These scope conditions fit our study.

Overall, this line of research suggests that in an actual engineering faculty job search, with real
stakes and zero-sum decisions involved, women who have made it to the short list may confront
heavier scrutiny and stricter standards than short-listed men during the interview. This reasoning
suggests that women job candidates may be implicitly assumed to be less competent, will be challenged
more than men candidates and face more questions by faculty members during their job talk. Patterns
of evaluators’ closer scrutiny and stricter standards for women are manifestations of “prove it again”
bias [18]. More broadly, by studying audience—candidate interactions in recorded job talks, we assess
whether gender barriers emerge within the social context of actual departments as work units and if
such barriers vary depending on social structural features of departments [30].

We now turn specifically to the literature on interruptions. Here, this literature will help
us formulate specific research questions. Later, we return to the interruptions literature as we
operationalize questions and interruptions.

The literature on conversational interruptions abounds with examples of gender effects. The
classic study by Zimmerman and West [31] found that men interrupt women more than the other way
around. One experimental study of task-oriented groups found that the odds of a man interrupting
another man are less than half of the odds that a man will interrupt a woman. Further, men’s
interruptions of men are generally more positive and affirming, while men’s interruptions of women
are more negative. In contrast, women interrupt women and men equally [32]. Fewer interruptions
were found in all-male groups than in mixed-gender or all-female groups [33].

Other studies have found that a host of variables are predictive of interruptions, and may be
more significant than gender in particular situations. For example, Irish and Hall [34] found that
patients interrupt more than their physicians do, but also patients tend to interrupt with statements
whereas physicians interrupt by asking questions. In conversations between managers and employees,
Johnson [35] found that “formal legitimate authority severely attenuates the effect of gender in these
groups”. While authority, status, topic, setting, group size and composition, and many other factors
have been shown to play significant roles in predicting conversational interruptions, considerable
research has supported the basic gender effect that men interrupt more than women do [36–38], and
that women are more frequently interrupted than men [32,39].

These studies on gender and implicit bias, double standards and interruptions motivate our
research questions.

RQ1a: Among job candidates, do women experience more questions than men?
RQ1b:Relative to men, is a higher share of women’s candidate time taken up by audience speech?

4 Williams and Ceci [15] supplemented the study of narratives (they received 711 evaluations) with “control studies” on small
groups of hypothetical CVs. In the male-dominated field of engineering, they sent out the hypothetical applicant CVs to
only 35 faculty.

184



Soc. Sci. 2017, 6, 29

We also examine variation by department. Studies of gender in other workplace settings find
that women face more equal treatment when they are in gender-integrated work settings, even within
male-dominated occupations and industries [40,41]. As we explain below, the proportion of women
among the faculty in the departments we study ranges from 4% to 18%. Although none of our
departments are gender-balanced, the departments at the higher end are among those with the largest
share of women faculty among the top 50 engineering schools in the nation. We study whether higher
share of women in the departmental faculty is associated with fewer interruptions at the job talks in
those departments.

RQ2: Net of gender, do candidates presenting in departments with a smaller proportion of women on
the faculty experience more questions than candidates presenting in departments with a larger
proportion of women on the faculty?

Further, we are interested in whether the job candidate’s post-Ph.D. experience matters. Previous
research on faculty CVs suggests that gender bias is more pronounced when candidates are more
junior, and their potential is judged more subjectively, compared to when candidates are more senior
and have a clear and unambiguous track record of achievement [25]. Moreover, in the interruptions
literature, authority dampens the effect of gender on conversational interruptions [35].

RQ3: Do junior candidates experience more questions than more senior candidates?

3. Data and Methods

Case-oriented research identifies a small, non-random sample and investigates it deeply; this is
not meant to be generalizable but rather illuminates the complexity of the context under study [42–44].5

For our case study, we analyze interruptions in job talks in highly ranked engineering departments,
in order to examine whether gendered processes unfold despite formal commitments to meritocracy
and fairness.

3.1. Data

Our data of 119 recorded job talks come from five departments across two Universities, whose
engineering divisions each rank in the national top 50.6 The departments are Computer Science
(CS), Electrical Engineering (EE), and Mechanical Engineering (ME). CS and EE are studied at both
University 1 and University 2. ME is only considered at University 1. The share of women on the
faculty ranges from 4% to 18%. We analyze 92 talks from University 1 and 27 from University 2.

The talks existed as archived videos that were already recorded by departments during two years
of hiring, for purposes unrelated to this study. Some departments want to have recordings for faculty
who are out of town to be able to evaluate the candidate’s talk. Other departments wish to have the
recordings available as a resource for their graduate students.

In our data, the job talks take place in a campus conference room. The candidate is evaluated on his
or her performance in presenting their original research and responding to questions. All departments
in the study schedule job talks for nominally one hour. Candidates are given their schedules in advance.
Both candidates and audience members generally also know that there is no hard stop at the one-hour
mark, since running over will merely subtract some minutes from the next event, which is typically
lunch, or a break.

5 Many high impact studies of social inequality have a case study design. These include Armstrong and Hamilton [45],
Hochschild [46], Castilla [47], Cech and Waidzunas [48], and Blair-Loy and Wharton [30].

6 Following common usage at the university level in the United States, we use the term “department” to mean an academic
unit devoted to one academic discipline, typically lead by a Chair. The terms “division” and “school”, led by a Dean, are
used synonymously as in “engineering school” to mean the set of engineering departments within a university.
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Talks are generally advertised by posting flyers and by sending e-mail to faculty, postdocs, and
graduate students in the academic department conducting the search for faculty candidates. The e-mail
may get forwarded to people with related research interests in other departments, and it is common to
have a few audience members from other departments. Faculty are the most active members of the
audience and the ones most likely to ask the presenter questions.

We lack consistent data on the gender of audience members who ask questions. The presenter
wears a microphone for clear audio and is consistently in the field of view of the camera. However,
the audience members who ask questions may not be visible in the picture, and the audio sometimes
leaves their gender unclear.

We constructed a sample of the archived videos in five engineering departments hosting job
searches over two recent academic years.7 For these departments, women applicants represent roughly
15% to 20% of all job applicants. Due to the small numbers of interviewees, the percentages of women
in the interview pool varies from 0% to about 33% across different department job searches. Given
the small proportion of women presenters in the population, we over-sampled women as follows.
We used all the videos from women candidates, and attempted to match each woman with two men of
the same seniority from the same department. Seniority is measured by the number of years post-Ph.D.
Seniority ranges from 0 (people still finishing up their dissertations, called, colloquially, ABDs (All but
Dissertation) or “baby Ph.D.s”) to candidates with multiple years of experience post-Ph.D.

There were a few instances when the matching process was not exact. For example, three women
ABD candidates were matched with five (rather than six) men ABDs, because there were not six men
available in that seniority category in that department. In another example, a woman candidate seven
years out after awarded a Ph.D. was matched with men who are seven and eight years out, because
there were not two men available who were seven years out.

We refer to the faculty candidate as the “presenter”, and the time they spend formally presenting
their slides (excluding time responding to interruptions) as the “presentation”. In our context of the
job talk, we are concerned with the amount of time taken away from the candidate’s nominal one
hour of presentation time. Because we are interested in the presentation time and how interruptions
and questions could affect the outcome of the talk or whether it is brought to conclusion, our analysis
excludes the dedicated Question and Answer (Q & A) segment after the presenter has formally
concluded the talk.

To code our data, we watched the videos with a playback that shows minute and second.
When an audience member asked a question, the coder paused the video and noted minute and

second for the question start time, as well as end time. Likewise, the start and end times for answers
were noted. The coding process involves a judgment call by the coder to decide what constitutes the
end of an answer, when the presenter returns to the presentation.

3.2. Defining Types of Interruptions, Our Dependent Variables

In some previous studies, conversational interruptions have been defined in terms of syllabic
measurements, for example as simultaneous talk which begins more than two syllables from the end of
a current speaker’s sentence [49] or in terms of grammatical, turn-construction units that are “hearably
complete” [50]. Interruptions have also been defined in more contextual ways, for example taking
into account whether a speaker has already made a point, or whether they are repairing a previous
violation of their speaking turn [51,52].

Since much past research has focused primarily on interruptions in turn-taking conversation,
it has required definitions of interruptions appropriate to that context. By comparison, there have
been few studies of interruptions in scenarios with an audience and a presenter. Furthermore, in
these latter studies, for example a psychology experiment involving hecklers during a speech [53]

7 We did not include the total population of archived videos, due to the time and expense involved in the coding of each video.
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or an examination of television coverage of a political speech [54], determining the existence of an
interruption was straightforward and not a focus of the study.

Within the pre-Q & A period under analysis, we are concerned with any time that an
audience member speaks, regardless of syntactic positioning. We define three types of speaking
by audience members:

An acknowledged question is one where the audience member raises his or her hand, and is
acknowledged by the presenter. This definition relies on the audience member’s hand gesture and
presenter’s acknowledgement.

A follow-up question corresponds to a situation where the presenter has just finished answering a
question from the audience, and a member of the audience asks another (follow-up) question. In this
case, the audience member does not raise his or her hand but would not generally be expected to do so.

An unacknowledged interruption happens in one of two ways:

(1) If the presenter is presenting (rather than answering a question), then we expect an audience
member to raise a hand, and so an unacknowledged interruption is defined by the audience
member speaking without first raising his or her hand, even if the presenter has completed a
sentence or a section of the talk. Thus, this definition relies on the lack of audience member hand
gesture and presenter acknowledgement.

(2) If the presenter is answering a question, then an unacknowledged interruption is defined by an
audience member speaking before the presenter has finished their answer. (In a few rare cases, an
interruption arises from an audience member having a speaking overlap with another audience
member). Our distinction between this case and the earlier definition of a follow-up question
depends upon the contextual information about the presenter’s completion of an answer.

The motivation for these definitions is as follows. When the presenter is presenting, there is a
presumption that an audience member should ask permission to speak, so politeness is defined by
raising a hand. In that phase, an audience member can speak either by asking permission (raising
their hand and getting acknowledged, which is considered polite) or by interrupting (starting to speak
without raising their hand, which is considered impolite whether or not the presenter has just finished
a sentence, or a section of the talk). This speaking without raising one’s hand is our first type
of interrupting.

However, once the presenter has begun answering a question, the situation may be considered
to have shifted into one more like conversational turn-taking, in which conversational politeness or
lack thereof is defined by allowing the current speaker to complete their thought. Thus, in this phase,
an audience member can speak either by waiting for the other person (presenter or other audience
questioner) to finish his or her thought, in which case it is a follow-up question (which may be seen as
questioning the presenter’s authority but is not conversationally impolite) or by interrupting (not letting
the presenter finish their answer, which is considered impolite). This speaking with speech overlap
while the presenter is giving an answer is our second type of interrupting. Once the presenter returns
to presenting, the situation returns to one in which the audience member should raise their hand to
get permission to speak. We combine the two types of interrupting into one category, since they both
indicate lack of politeness.

3.3. Meanings of Zero Questions

Based on our own experience in similar departments, and in conversation with other engineering
faculty, we are aware of three meanings of “zero questions”.

(1) The talk is very clear, so no questions are needed.
(2) The talk is way below the bar, so nobody bothers asking questions.
(3) The departmental culture does not involve asking questions before the formal Q & A period.
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We cannot adjudicate between meanings 1 and 2. It is likely that meaning 3, the departmental
culture explanation, does not apply to the five departments in our study. In each department, in most
of the talks (91% overall), candidates received questions during the Pre-Q & A period.8

Table 1 provides an example of the collected data. Presentation time begins at 1 min 22 s; the time
prior to that is the introduction. This composite example illustrates the situations that the coder must
recognize: presenting yielding to an acknowledged question at 11:26 (hand gesture, acknowledgement),
a presenter transitioning from answering a question back into presenting at 11:47 (context), presenter
getting interrupted at 15:40 (no acknowledgement), a follow-up question at 15:51 (context), and an
answer getting interrupted at 16:09 (context).

Table 1. Example of Raw Data.

Female, Ph.D. + 4 YEARS Start End Duration

Presenting 0:01:22 0:11:25 10:03
Acknowledged Question 0:11:26 0:11:33 00:07

Answer 0:11:34 0:11:46 00:12
Presenting 0:11:47 0:15:40 03:53

Unacknowledged Interruption 0:15:40 0:15:44 00:04
Answer 0:15:45 0:15:51 00:06

Follow-up Question 0:15:51 0:15:54 00:03
Answer 0:15:55 0:16:09 00:14

Unacknowledged Interruption 0:16:09 0:16:11 00:02
Answer 0:16:12 0:16:18 00:06

Presenting 0:16:19 0:19:02 02:43

Our dependent variables also include the total number of questions, which is the sum of
acknowledged questions, unacknowledged interruptions, and follow-up questions during one
presenter’s seminar. We also measure the audience time as the proportion of the pre-Q & A talk
time taken up by audience members’ questions (audience time/total pre-Q & A time). As noted above,
all of these dependent variables are indicators of interruptions in a broader sense, because all of them
occur before the final segment of the seminar, officially designated as the Q & A period.

4. Descriptive Results

Table 2 presents descriptive statistics for the dependent variables, broken down by gender. The
left column shows the average values for men (standard deviations in parentheses below), while the
middle column shows the average values for women. The right column shows the differences between
the two groups (with standard errors in parentheses below).

Table 2 shows that women, on average, are asked about 1.8 more follow-up questions and about
three more total questions than men. Women are asked about 12% more total questions than men.
Running a t-test on the difference in average number of questions between men and women will be
unlikely to return valid inference in this case because the dependent variable is either a count (number
of questions) or a ratio (fraction of the talk). After presenting descriptive statistics on the explanatory
variables, we will address the choice of appropriate models for these analyses.

8 In contrast, one department we had originally considered—Biomedical Engineering—had zero questions during the pre
Q & A period in 81% of the talks, indicating a departmental culture of few to no questions. Our research questions entail
understanding how gender may affect audience responses to the talk and affect the amount of time the presenter has to
conclude the presentation. We therefore excluded the Biomedical Engineering Department from analysis.
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Table 2. Descriptive Statistics: Dependent Variables.

Dependent Variables
Men Women

Diff./(SE)
Mean/(SD) Mean/(SD)

Unacknowledged interruptions 3.77 4.95 −1.18
(4.87) (6.21) (1.04)

Acknowledged questions 5.49 5.39 0.097
(4.89) (4.07) (0.89)

Follow-up questions 4.83 6.66 −1.83
(4.76) (7.02) (1.09)

Total questions 14.1 17 −2.91
(11.6) (13.9) (2.40)

Audience time proportion 0.038 0.050 −0.012
(0.031) (0.038) (0.0065)

N talks 78 41

4.1. Explanatory Variables

Table 3 presents descriptive statistics for the explanatory variables, broken down by gender.
Our focal predictor variable is gender. Our data set has different departmental indicators, including
proportion of the faculty who are women and the specific departments (Computer Science, Electrical
Engineering, and Mechanical Engineering) across two Universities. We also indicate experience
post-Ph.D. Almost a third of the presenters are ABDs with an experience of 0 years. The highest end of
the range is 21 years, with three observations over 12 years. To control skewing, we capped the high
end at 12-plus years.9

Table 3. Descriptive Statistics: Explanatory Variables.

Explanatory Variables Men Women

Years since Ph.D. (mean/SD)
3.12 3.17

(3.84) (4.35)

Proportion female faculty in department (mean/SD) 0.11 0.11
(0.06) (0.06)

University

University 1 (frequency, %) 60 (77%) 32 (78%)
University 2 (frequency, %) 18 (23%) 9 (22%)

Department

CS (frequency, %) 43 (55%) 21 (51%)
EE (frequency, %) 32 (41%) 18 (44%)
ME (frequency, %) 3 (4%) 2 (5%)

N talks 78 41

4.2. Graphical Results

As a first step toward selecting an appropriate model, we show two overlapping conditional
density histograms of the total number of questions, indicated in grey for men candidates and white
for women candidates (Figure 1). This figure illustrates important patterns. One is the overwhelming
number of questions—20 to 50—some candidates are faced with. Note that women experience more
questions on average (see the vertical dashed line for the male average and the solid line for the female

9 Capping or not capping the experience variable at 12 years did not affect the substance or statistical significance of results.
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average). There are few talks with zero questions (11), and women are more likely to experience
zero-question talks.

Figure 1. Total Number of Questions by Gender.

Next, Figure 2 presents a similar conditional histogram (grey for men, white for women), but
the horizontal axis is the number of follow-up questions. Similar to the last figure, Figure 2 shows
that women have a higher average number of follow-ups than men (see vertical dashed line for male
average and solid line for female average). Moreover, most of the talks with a large number (12—30)
of follow-ups, on the right hand side of the graph, have women presenters, indicated by the clear bars.

Figure 2. Number of Follow-ups by Gender.

These descriptive results provide preliminary answers to Research Question 1a: Women candidates
receive more total questions and, among those, more follow-up questions, than men candidates.

5. Multivariate Results

To more formally assess the results illustrated in the histograms, we need to choose which model
to use. The dependent variables for this analysis are counts of the number of questions of different
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types received by each candidate. In addition to being integer-valued, Figures 1 and 2 show that these
counts are non-negative and are not normally distributed. To accurately model these data, therefore,
we choose to use a count data method. The standard choices for modeling count data are a Poisson
model, negative binomial model, or a zero-inflated version of either of these models [55]. We prefer a
zero-inflated, negative binomial (ZINB) model for this analysis for empirical and theoretical reasons.
Table 2 shows that the variance of each dependent variable is high relative to the mean, indicating that
the data are over-dispersed. This feature means that the negative binomial model is more suitable than
a Poisson model. Theoretically, department norms about whether to ask questions during a job talk
also mean that some talks are more likely to have zero questions, making a zero-inflated model more
appropriate.10

The ZINB model simultaneously fits two models. One model estimates the probability of observing
zero questions. Since there are two possible states—zero questions or positive questions—this model
uses a logit regression. The other model estimates the number of questions, conditional on the
candidate receiving at least one question. This model operates like a typical negative binomial
regression. Together, these models account for both the excess number of zero observations and for
the positive-value count data. In the results shown below, the model for zero-question observations is
shown in the bottom panel of the table, and the model for positive values is shown in the top panel.

We now estimate ZINB models to address our first research question: do women get more questions
than men during the job talk? Table 4 shows that the answer is yes, in part. We focus on the top
panel of the table, the model for positive values. For each row, the table lists the coefficient from
the ZINB model. Below that is the exponentiated coefficient, and below that is the standard error
in parentheses.11 Consistent with Figures 1 and 2, the top panel of Table 4 shows that women face
more total questions and more follow-up questions than men. Specifically, the coefficient for female
is statistically significant in the models predicting the number of follow-up questions (model 3) and
the number of total questions (model 4), controlling for the percent of departmental faculty who are
women.12 However, there is no gender difference in the number of unacknowledged interruptions.

Taking the exponential of the coefficients, as shown below each ZINB coefficient in Table 4,
is helpful for interpretation. The coefficients for the positive values have a similar interpretation to the
percent change—they now represent the factor by which the number of questions goes up when that
variable increases by one.13 Since the female coefficient of the number of follow-up questions (model 3)
is 0.35, then exp(0.35) = 1.4, indicating that women get about 1.4 times more follow-up questions than

10 In addition to the reasons for selecting the ZINB model given above, a statistical model selection procedure can also guide
model choice. The software program Stata has a user-written routine, countfit, which provides diagnostics on which models
to use. The models fit the dependent variable to the exponential of the right-hand side variable, thus constraining the
predictions to be positive. For the zero-inflated models, we also specify a separate model for zeros to try to explain why
some observations are zero. The decision of whether to use a Poisson or negative binomial is based on the mean of the
dependent variable relative to its variance, after taking into account control variables. The Poisson model assumes that the
variance of the dependent variable is equal to the mean. Table 2 suggests that this is not true, so we should also expect to
prefer a negative binomial model. We fit the model predictions to the actual data at different levels of the dependent variable
(results available upon request). These diagnostics indicate that for zero questions, both the Poisson (PRM) and negative
binomial (NBRM) models are highly inaccurate. Both of the zero-inflated models perform well at zero, by construction. For
positive numbers of questions, the Poisson and zero-inflated negative binomial (ZINB) models are the most accurate. From
the fitting model predictions test, ZINB model is preferred.

11 Because of limited variation, including the control variable university in the Table 4 model leads to numerical convergence
issues for the acknowledged and follow-up question models. Therefore we exclude university from the model for positive
values. We exclude university for the same reason in Table 6, below.

12 In separate models (not shown), we substituted percent departmental faculty who are women with dummy variables for
department (with CS as the excluded reference department). The results were substantively the same, with the same pattern
of statistical significant coefficients for women candidates receiving more follow up and more total questions. For numerical
reasons, we have also chosen to exclude the university control variable from the model for positive values.

13 In cases where the variable is binary, the exponentiated coefficient has an interpretation very similar to the predicted value;
it gives the relative increase or decrease in the dependent variable that results from being part of the group indicated by the
dummy variable (female).
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men.14 Similarly, since the female coefficient for total questions (model 4) is 0.22, then exp(0.22) = 1.2,
indicating that women get about 1.2 times more total questions than men, on average, conditional on
getting more than zero questions. The exponential of the intercept shows that, conditional on being
asked at least one question, the average male candidate would receive about 30 total questions from a
hypothetical department composed of only male faculty. Thus, under this condition, women get about
1.2 × 30 = 36, or six more total questions than men do, on average.

Table 4 also answers Research Question 2. Departments with a larger proportion of the faculty who are
women pose fewer interruptions, acknowledged questions, follow-up questions, and, of course, total
questions than departments with a smaller share of women faculty.

Table 4. ZINB Models Predicting Questions (all dependent variables).

Model Number
(1) (2) (3) (4)

Num.
Interruptions

Num.
Acknowledged

Num. Follow-Ups Total Questions

Model for positive values

Female
0.26 −0.011 0.35 ** 0.22 *
1.3 0.99 1.4 1.2

(0.27) (0.14) (0.16) (0.13)

Proportion female faculty
−8.83 *** −2.59 * −7.44 *** −7.19 ***

0.0001 0.08 0.0006 0.001
(2.61) (1.39) (1.54) (1.20)

Constant
2.32 *** 2.07 *** 2.36 *** 3.41 ***

10.2 7.9 10.6 30.3
(0.22) (0.19) (0.17) (0.14)

Model for zeros

Female
−0.52 0.18 1.84 * 0.75
0.59 1.2 6.3 2.1

(1.10) (0.83) (1.07) (0.78)

Pct. female faculty
56.3 *** −34.7 *** 28.8 −30.4 ***

2.8 × 1024 0.00 3.2 × 1012 0.00
(20.7) (11.7) (106.5) (11.3)

University 1
2.24 −6.89 *** −18.7 *** −6.70 ***
9.4 0.001 0.00 0.001

(1.79) (1.10) (3.13) (1.12)

Constant
−10.6 *** 5.52 ** −5.94 4.47 **

0.00 249.6 0.003 87.4
(4.08) (2.22) (19.1) (2.08)

ln(alpha) −0.22 −1.11 *** −0.70 *** −0.98 ***
(0.23) (0.21) (0.21) (0.18)

N talks 119 119 119 119

Notes: Columns 1 through 4 show the coefficients from zero-inflated negative binomial models. Significance is
indicated by * p < 0.10, ** p < 0.05, *** p < 0.01. Robust standard errors are shown in parentheses. Below each
coefficient (above the standard error) is the exponentiated value of that estimate, which can be interpreted as the
factor by which the expected number of questions increases due to a one unit change in the independent variable
for the top panel and the factor by which the odds of having no questions changes in the bottom panel. Robust
standard errors are shown in parentheses.

14 The interpretation of the coefficients for the positive values is similar to a log-linear model, so all coefficient values can also
be read as approximate percent changes. This approximation is accurate for values less than about 0.1. For exact percent
changes, take the coefficient, exponentiate, and subtract 1.
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We now address Research Question 1b, whether women candidates, compared to men, generally
find that a higher share of the total talk time is spent on audience time. Similar to count data, ratios are
best handled by a specialized nonlinear estimation strategy. The standard practice is to use a binomial
family estimator with a logit or probit link [56]. Table 5 presents results of a binomial estimator and
logit link.15

Table 5. Binomial Model Predicting Audience Time.

Variables Predicting Audience Time
Binomial

Audience time

Female
0.26 *
(0.15)

Proportion female faculty −5.74 ***
(1.24)

Constant
−2.63 ***

(0.15)

N talks 119

Notes: Binomial models use a logit link. Significance indicated by * p < 0.10, ** p < 0.05, *** p < 0.01. Robust standard
errors are shown in parentheses.

The binomial model in Table 5 performs similarly to an OLS model (results not shown).
The binomial model should be interpreted as percent changes. It indicates that for female candidates,
1.3 times as much time is taken up by questions. From the summary statistics in Table 2, one can see
that the audience takes up 4.3% of the total talk time, on average. The results from the model indicate,
therefore, that roughly 5% of an average talk by a female candidate is taken up by the audience while
3.8% of an average talk by a male candidate is audience time.

We now turn to Research Question 3: Do junior candidates experience more questions than
senior candidates? The ZINB models in Table 6 examine whether the presenter’s professional
experience mitigates interruptions. Here, we focus on the number of follow-up questions as the
dependent variable.

Model 2 shows that there is a modest, yet statistically significant, decline in the number of follow
up questions candidates receive if they have more experience. However, women still face more
follow-up questions than men after controlling for years since Ph.D. In Model 3, the interaction term
of woman candidate times experience is not statistically significant. In other words, having more
experience does not differentially help women candidates. Men and women with more experience
receive fewer questions than men and women with less experience, respectively, and this negative
effect of years since Ph.D. on number of follow-up questions is the same for men and women.

The data presented so far do not indicate whether having more questions helps or hurts a
candidate. We do not have measures of job offers. However, while coding the video recordings, we did
monitor in qualitative language when candidates’ verbal cues clearly indicate that they are rushing
to get through their carefully prepared slide decks and reach the punch line of their talk. Example
statements that indicate rushing include “For the sake of time, I’m going to skip this part”, “There’s
not much time left; I will rush through this”, “I’m going to skip to the end”, “I’m going really quick
here because I want to get to the second part of the talk” and “We’re running out of time so I’m not
going into the details”. We find that rushing, as indicated by these cues, is correlated with the number
of total questions (Pearson correlation coefficient 0.22) and with the number of follow-ups (Pearson
coefficient 0.19). This suggests that having many questions may prevent a candidate from delivering

15 We found virtually identical results for the effect of female when department dummies (with CS as the excluded reference
category) were substituted for percent of the faculty who are women. Results not shown.
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all their prepared content and may rush them in covering the key sections that are often placed at the
end (summary of results, impact of results, future work).

Table 6. ZINB Models Using Gender and Experience to Predict Number of Follow-up Questions.

Model Number (1) (2) (3)

Num. Follow-Ups Num. Follow-Ups Num. Follow-Ups

Model for positive values

Female
0.35 ** 0.35 ** 0.45 **

1.42 1.42 1.57
(0.16) (0.16) (0.18)

Proportion female faculty
−7.44 *** −7.70 *** −7.38 ***

0.001 0.0005 0.001
(1.54) (1.49) (1.55)

Years since Ph.D.
−0.041 *

0.96
(0.024)

Years since Ph.D. × female
−0.036

0.96
(0.040)

Constant
2.36 *** 2.50 *** 2.35 ***
10.59 12.18 10.49
(0.17) (0.16) (0.17)

Model for zeros

Female
1.84 * 1.85 * 1.84 *
6.30 6.36 6.30

(1.07) (1.07) (1.07)

Proportion female faculty
28.8 30.0 30.6

3.2 × 1012 1.1 × 1013 1.95 × 1013

(106.5) (106.6) (106.6)

University 1
−18.7 *** −18.4 *** −18.6 ***

7.6 × 10−9 1.02 × 10−8 8.4 × 10−9

(3.13) (3.87) (3.82)

Constant
−5.94 −6.17 −6.27
0.003 0.002 0.002
(19.1) (19.1) (19.2)

ln(alpha) −0.70 *** −0.74 *** −0.71 ***
(0.21) (0.21) (0.22)

N talks 119 119 119

Notes: Columns 1 through 3 show the coefficients from zero-inflated negative binomial models. Significance is
indicated by * p < 0.10, ** p < 0.05, *** p < 0.01. Below each coefficient, above each standard error, is the exponentiated
value of that estimate, which can be interpreted as the factor by which the expected number of questions increases
due to a one unit change in the independent variable for the top panel and the factor by which the odds of having
no questions changes in the bottom panel. Robust standard errors are shown in parentheses.

6. Discussion

Our analyses shed light on a key set of interactional processes linked to the persistent
under-representation of women faculty in academic engineering departments. Women academics
who have made it to the short list in competitive academic job searches in top departments face more
follow-up questions and more total questions during their job talks than men do, on average, even
after controlling for years of experience post-Ph.D. Under the condition of at least one question being
asked during the talk, women receive six more questions than men do, on average. Further, a higher
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proportion of women’s talk time is spent on audience members’ speech. This means that, generally,
women have less time to present their prepared talk and slides.

The larger number of questions women receive on average is mostly driven by the larger number
of follow-up questions. These are questions piled on to previous questions and thus may indicate a
challenge to the presenter’s competence—not only in their prepared talk but also in their response
to questions. Consistent with research on greater scrutiny and stricter standards for higher prizes
in masculine-typed occupations and “prove it again” bias, we find a Catch 22 for women. Even
short-listed women with impressive CVs may still be assumed to be less competent, are challenged,
sometimes excessively, and therefore have less time to present a coherent and compelling talk.

We have revealed subtle conversational patterns of which most engineering faculty are likely
unaware. It is a form of almost invisible bias, which allows a climate of challenging women’s
competence to persist. These patterns may be linked to the small numbers of women faculty hired
into these departments. Indeed, departments with a larger share of women faculty tend to ask fewer
questions of all candidates (women and men), take up less of their time in audience speech, and
thereby give candidates more time to complete their presentations.

6.1. Policy Recommendations

Our data set shows that a few candidates, both women and men, receive a very large number
of questions, in the range of 30 to 50. In some cases, a presenter rushes through slides at the end,
or decides to skip a large number of slides. In other cases, the talk runs over by 15–20 min, and the
audience dwindles. It may be advisable for each talk to have a facilitator, perhaps a senior faculty
member who introduces the presenter, who will pay attention to the number and also the tone of
questions being asked. If the number of questions becomes large and especially if the tone seems hostile
or the presenter seems to be rushing, the facilitator could ask the audience to hold their remaining
questions for the Q & A session at the end. Sometimes presenters may make this request themselves,
but it may be difficult for a young ABD candidate to make this request to an audience of senior faculty.
If there is no assigned facilitator, it may be appropriate for a senior faculty member in the audience to
make this request.

When the suggestion of having a facilitator stop questions was made in one department, a faculty
member protested that if he did not ask his questions as the talk went along, he would not understand
the subsequent material, and the remainder of the talk would be useless. While this is a legitimate
argument, his preference to ask multiple questions should be balanced against the preferences of
others in the audience who may be fully understanding the talk and would be better served by having
the presenter complete the material.

It would also be helpful for young faculty applicants to be aware that there are large differences
in university or departmental culture, so that they are prepared for this. For the five engineering
departments in this study, only 9% of talks had zero questions. In contrast, the Biomedical Engineering
Department that was excluded from the study, 81% of talks had zero questions. Especially candidates
in interdisciplinary sub-fields may be surprised if they have a mixed audience with differing cultures
in this regard. Applicants should also know that some talks get derailed by questions, and it is an
acceptable option for the presenter to ask the audience to hold remaining questions for the Q & A
session at the end. We encourage advisors and mentors to share this knowledge with their graduate
students and postdoctoral fellows.

6.2. Limitations

Case studies are, by design, not necessarily representative of other organizations. Our analysis
of job talk video recordings is pioneering. However, the data have a number of limitations. We were
limited to the departments which had archival video recordings. We constructed a theoretical
framework from well-established literature on the unequal treatment by gender in terms of competence
and hirability evaluations and the likelihood of being interrupted. Future research should adapt these
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insights to the study of the effects of candidate race. Moreover, the nature of our access to the archival
video recordings precluded us from measuring which candidates were later voted by departmental
faculty as worthy of receiving job offers. Note that even if it had been possible for us to investigate job
offers in our data, defining this outcome would be problematic. Some top candidates may not receive
a formal offer if they have already received—and potentially accepted—offers from other departments
further ahead in their recruitment process. We encourage future researchers to investigate these issues
in other research-oriented STEM departments.

7. Conclusions

This study analyzed video recordings of job talks in five engineering departments. We found that,
compared to men, women with similar years of experience receive more follow-up questions and more
total questions and spend less time on their prepared talk. These subtle differences in how women
and men candidates are treated persist, likely outside the conscious awareness of hiring departments.
More broadly, we assess how gender barriers emerge within the context of actual work units and
vary depending on social structural features of the work units. For example, we found that there are
more audience interruptions in departments with a smaller proportion of women. We urge future
researchers to examine the connections between the number of questions posed at the job talk and
actual job offers extended to candidates. Since these patterns operate under the radar, they are not
seen to contradict the broader cultural belief that academic science is a meritocracy, in which the best
scientific ideas are objectively assessed and rewarded [57,58].
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Abstract: Previous research documents how stereotypes discourage young women from choosing
and attaining technology jobs. We build off this research and ask whether (and how) stereotypes
continue to affect men and women once they enter the technology workforce. Using a novel survey
of technical employees from seven Silicon Valley firms and new measures of what we call “cultural”
and “skill” alignment, we show that men are more likely than women to believe they possess the
stereotypical traits and skills of a successful tech employee. We find that cultural alignment is
especially important: because women are less likely than men to believe they match the cultural
image of successful tech workers, they are less likely to identify with the tech profession, less likely to
report positive supervisor treatment, and more likely to consider switching career fields. This paper
is the first to use unique and independent measures of cultural and skill alignment comparing
employees’ perceptions of themselves to their perceptions of an ideal successful worker. By allowing
cultural and skill alignment to operate separately, we are able to determine which work outcomes
are most strongly related to each form of alignment. Our results imply that if we can broaden the
cultural image of a successful tech worker, women may be more likely to feel like they belong in
technology environments, ultimately increasing their retention in tech jobs.

Keywords: gender; technology; work and occupations; stereotypes

1. Introduction

“When most people think of the average tech entrepreneur, the pale guy who codes while
playing World of Warcraft in his gadget-filled basement pops up.” (Wei 2012).

This quote comes from a Washington Post article written by a woman venture capitalist in Silicon
Valley describing the masculinized culture of technology. According to the article, women do not relate
to this image of a tech worker as readily as men do, and thus women may be less likely to believe they
belong in tech jobs. This weak sense of alignment could cause a variety of negative work outcomes
for women.

Existing literature and policy to increase the number of women in tech jobs are primarily concerned
that young women lack the skills, or at least the confidence in their skills, to enter and succeed in
tech jobs. However, as we show below, these skill-based perceptions often matter less than cultural
perceptions. Cultural images (like the guy in his gadget-filled basement) can make women feel like
they do not match the stereotypical portrait of a successful tech worker. In this paper, we examine
the way stereotypic images of tech workers influence the career progression of men and women
technical workers.

According to a recent report written by the US Department of Commerce (Beede et al. 2011),
women currently make up about half of the US workforce; yet, they hold only 24% of jobs in science,
technology, engineering, and math (STEM) fields. The report further notes that even as women’s share
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of the college-educated workforce has increased over the past decade, women’s underrepresentation
in STEM fields has remained relatively constant. Furthermore, while 40% of men with STEM college
degrees work in STEM jobs, only 26% of women with STEM degrees do. Women also leave STEM
jobs at higher rates than women leave other professional jobs, particularly early in their careers
(Glass et al. 2013). These gender disparities have important implications for lifetime earnings; women
in STEM jobs earn 20% more than comparable women in non-STEM jobs (Beede et al. 2011).

Gendered stereotypes about math and science can impede the entry and retention of women
in STEM fields. Stereotypes are widely shared cultural beliefs about categories of people. In the
case of STEM domains, stereotypes include beliefs that men have more ability than women do
(Davies et al. 2002; Nosek et al. 2002; Spencer et al. 1999). As we describe below, research has
established that negative stereotypes about young women’s math ability can affect their mathematical
performance, self-assessments of their competence, interest, confidence, and sense of belonging in
STEM activities (Steele 1997; Correll 2001; Murphy et al. 2007; Cech et al. 2011; Cheryan et al. 2009).
Ultimately, stereotypes can shape the choices and aspirations of men and women considering
STEM fields (Cech et al. 2011). In addition, stereotypes also cause women to be judged by a
harsher standard than men and to have their achievements devalued or ignored in STEM fields
(Foschi 2000; Moss-Racusin et al. 2012).

To combat the effects of stereotyping, policy makers have suggested many different interventions
to enhance the pipeline of women entering STEM fields: reshaping high school and college programs,
enhancing mentorship of young women, fostering interest at a young age, increasing visibility of female
role models, and actively recruiting women (Hill et al. 2010; Huhman 2012; Margolis and Fisher 2002).
These interventions aim to increase girls’ entrance and participation in math and science. However, few
policies actively engage women once they have entered STEM careers (The NSF ADVANCE program
is a notable exception; see www.nsf.gov/advance).

Underlying current pipeline policies is the assumption that if we can help young women in their
more formative years continue on the path toward careers in STEM fields, the negative effects of
stereotypes will disappear or be less relevant once these women enter the workforce. On the one
hand, this assumption makes sense and is largely consistent with current understandings of why
stereotypes have the effects that they do. Empirical studies have supported theoretical predictions that
stereotypes impact judgments most heavily when there is some uncertainty about how to assess ability
(Correll 2004; Reskin and McBrier 2000; Uhlmann and Cohen 2005). If women persist long enough in
STEM careers, they may garner considerable evidence of their skill and ability; this successful history
may reduce uncertainty about whether they possess the skill necessary to achieve continued success in
a STEM field. It seems logical to predict, then, that with this reduced uncertainty, negative stereotypes
may cease to influence their self-assessments and choices over time.

On the other hand, perhaps stereotypes continue to influence people’s decisions and perceptions
once they are in the workplace. In any workplace, new tasks and roles emerge all the time, and
employees must continuously adapt to new situations. These changing elements can create uncertainty,
and negative stereotypes may resurface, reigniting women’s doubts about their ability and sense of
belonging. This would lead to the alternative prediction that the same stereotypes that decrease middle
school, high school, or undergraduate women’s interest in STEM fields may continue to affect women
once they are on the job.

Using a unique dataset of men and women technical employees in Silicon Valley firms, we ask
whether stereotypes continue to affect the judgments, decisions, and perceived treatment of women and
men once they have made it through the educational pipeline and are working in a STEM job. To our
knowledge, this is the only survey of its kind conducted with actual tech workers. While previous
literature has documented the attrition of women out of science and engineering, and scholars are
quite concerned about the dearth of women in these fields, this is one of the first papers to examine
the effect of stereotypes on women who are working in tech jobs. Furthermore, while some emerging
qualitative research examines women in Silicon Valley tech firms (e.g., Alfrey and Twine 2016), this is
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the first survey analysis of both men and women currently working in such firms. In particular, we
examine whether women are less likely than their male counterparts to perceive that they align with
stereotypes about successful tech workers.

We create novel measures that we call “cultural alignment” and “skill alignment.”1 We define
cultural alignment as the extent to which a tech employee believes she or he matches the attributes of a
stereotypical successful tech worker. Widely shared images of successful tech workers—such as the
coding-obsessed geek—can create a sense of belonging in those who believe they match the image,
and a sense of alienation in those who do not. We define skill alignment as the extent to which a tech
employee believes he or she possesses the skills of a typical successful tech worker. Tech companies
expect their employees to demonstrate a range of quantitative and analytical skills, and employees
may or may not believe they match the desired skill profile. In addition, we explore how these feelings
of alignment (or lack of alignment) are related to career outcomes. If women are less likely than men
to believe they match the cultural image or skill profile of a successful tech employee, how does this
belief influence their intentions to stay in technology and their perceptions of how they are treated by
their supervisors? How do perceptions of alignment, fueled by stereotypes, influence work outcomes
for men and women who are already in tech careers?

This paper offers a number of important theoretical contributions. First, this paper clarifies the
distinction between cultural and skill-based forms of alignment with the prevailing standard in one’s
work context. While other authors have explored similar dimensions (Cech et al. 2011), this is the first
paper to operationalize the distinction between culture and skill by comparing individuals’ beliefs
about themselves to their beliefs about successful workers in their field. By allowing these dimensions
to operate separately and exploring the variance each explains in important gendered outcomes, we
offer novel insight into the mechanisms that perpetuate gender inequality even once women have
entered STEM fields. The masculine culture of technology has been cited as a key deterrent for women,
but it is currently difficult to disentangle the effects of skill-based alignment from the culture of these
settings. Second, this paper offers insight into the kinds of outcomes related to cultural and skill
alignment. While skill alignment may be more important for certain outcomes, cultural alignment
may be more significant for others. For example, is cultural alignment more strongly associated with
women’s identification with the tech field and their companies, as compared to skill alignment? What
about supervisor treatment? It is possible women perceive a lack of sufficient skill, thereby identifying
less with their professions and anticipating worse treatment by their supervisors, but it is also possible
that cultural alignment is more strongly associated with these outcomes. We currently lack research
adjudicating between these competing arguments. This distinction has important practical implications
since it can help guide policy interventions toward the right problems, thereby increasing the number
of women in tech fields.

Before turning to the data that allow us to answer these questions, we first briefly review what is
known about how stereotypes contribute to men and women’s uneven movement into STEM fields.

2. How Stereotypes Affect Perceptions in Tech Fields

Decades worth of research by sociologists and psychologists show that widely held beliefs about
groups of people, as encoded in stereotypes, function as cognitive shortcuts in decision-making
(Correll et al. 2017; Podolny 2005; Tiedens and Linton 2001; Weary et al. 2001). That is, under conditions
of uncertainty about how to make judgments, stereotypes influence evaluations of self and other.
Below, we review how gender stereotypes affect self-perceptions of skill, self-perceptions of fit or
belonging, and perceptions of treatment by others, and we draw out the implications of this research
for understanding the way stereotypes might impact women who are in technical jobs.

1 Our measures complement, but are distinct from, measures used by others, such as Cech and coworkers’ measure of
“professional role confidence” (Cech et al. 2011) and Rivera’s measure of “fit” (Rivera 2012).
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2.1. Self-Perceptions of Skill

Stereotypes can powerfully affect how women see themselves progressing in math-intensive
subjects and technical careers. Particularly among people who highly identify with a domain
(for example, high-achieving women in tech fields), stereotype threat can significantly undermine
performance (Beilock and Carr 2005; Steele 1997; Shih et al. 1999). Low performance can subsequently
reduce identification with the relevant domain (Steele 1997).

In addition to impairing performance, stereotypes can influence self-assessments of ability and
aspirations for future opportunities. In the case of mathematics, even when male and female high
school students receive equal objective scores on tests of mathematical ability, young men tend
to rate themselves higher in mathematical ability than young women do (Correll 2001). Similarly,
Cech and colleagues found that male college students rate their engineering ability higher than
women do, even though men and women have similar college grade-point averages and SAT scores
(Cech et al. 2011). These higher ratings by men do not occur in domains that are not stereotyped as
masculine (Correll 2001; Correll 2004). As Correll (2004) demonstrates, when negative stereotypes
are salient, women judge their own performance by a harsher standard than men do, requiring more
evidence of their skill before believing they have sufficient ability to succeed in a male-typed field
(see also Cheryan et al. 2011). Furthermore, these self-assessments can shape future career aspirations
and decisions (Correll 2001; Correll 2004). In this way, the gender gap in mathematical self-assessments
contributes to the underrepresentation of women in STEM college majors.

If we apply this literature to the case of women who are already in technical jobs, we might expect
that they, like younger women, would continue to judge their own performance by a harsher standard
and, if so, they would be less likely to see themselves as possessing the skills of a typical successful
tech worker. In other words, their skill alignment would be lower than that of their male counterparts.
Since gender self-assessments have been shown to affect career decisions (Correll 2001; Correll 2004),
we predict that lower skill alignment will be negatively associated with important career outcomes.
However, the alternative prediction is that since women technical workers have already earned
technical degrees and entered technical jobs, they have garnered considerable evidence of their
technical skills, thereby reducing their uncertainty about their own abilities. If so, we might expect
that the gender gap in skill alignment would be small or even non-existent.

2.2. Self-Perceptions of Belonging

In addition to affecting performance and self-assessments of ability, stereotypes can also decrease
women’s interest in pursuing STEM majors and careers by making women feel like they do not fit
or belong in these fields. In an experiment by Davies and colleagues, viewing gender-stereotypic
television commercials led women to avoid math questions in favor of verbal questions and indicate
less interest in quantitative educational and vocational domains (Davies et al. 2002). Similarly, Murphy
and colleagues conducted an experiment where undergraduates who were “highly math-identified”
and who were majoring in a STEM field watched a video promoting an upcoming conference
(Murphy et al. 2007). Women who watched a video with an unbalanced ratio of men to women
displayed more signs of anxiety and fear of negative treatment, and reported less desire to participate
in the conference, compared with women who watched a gender-balanced video. Whether the video
was balanced or unbalanced had almost no effect on men. Importantly, this study demonstrates
how features of a setting can make masculine stereotypes salient, thereby creating a threatening
environment where women are less likely to feel like they belong. Subtle situational cues can trigger
both objective (cognitive and physiological vigilance) and subjective (decreased sense of belonging
and fit) experiences of threat. Threatening features of a setting can cause even highly confident,
domain-identified women to lose interest in STEM activities and fields.

Cheryan and colleagues similarly show how physical environmental cues and interactions can
influence women’s sense of belonging and subsequent interest in computer science (Cheryan et al. 2009;
Cheryan et al. 2011). In one experiment, changing the objects in a computer science classroom from
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masculine objects (such as geeky posters) to more neutral objects (such as nature scenes) significantly
raised women’s interest and sense of belonging (Cheryan et al. 2009). Stereotypical images can
reinforce women’s feeling of alienation in masculine fields and decrease their interest in pursuing
future opportunities.

To the extent that stereotypes make women feel like they do not fit or belong in STEM majors or
careers, we would expect that women will be less likely than their male counterparts to believe they
match the cultural image of a successful tech worker. Furthermore, since technical workplaces are
even more heavily male-dominated than STEM college majors (Beede et al. 2011) and often embody a
masculine or “frat like” culture (Wynn and Correll 2014), we predict that women will have a lower
level of cultural alignment than their male counterparts, even once on the job. Given the literature
reviewed above, we predict that lower cultural alignment will lead women to feel like they do not
belong in tech careers, thereby increasing the odds that they will leave these careers.

2.3. Perceptions of Others’ Treatment

In addition to shaping women’s self-perceptions and choices, stereotypes also affect the way
women perceive others’ judgments and behaviors. Women in STEM fields are often judged by a
harsher standard than men by gatekeepers such as employers and teachers (Foschi 1996; Foschi 2000;
Heilman 2001; Moss-Racusin et al. 2012). Heilman (2001) argues that stereotypical gendered
expectations negate the recognition of women’s accomplishments, either through the devaluing
of their work or through attributing responsibility for their success to something other than their skill
and ability. For example, a recent study found that science faculty rated a student applicant for a
science lab manager position more highly when the application had a man’s name than when the very
same application had a woman’s name (Moss-Racusin et al. 2012). Faculty considered the man more
hirable and competent, and they offered him a higher starting salary and more career mentoring, than
the identical woman applicant. Research on the effects of stereotypes in other male-typed domains
finds similar effects to those found in the STEM fields (Steinpreis et al. 1999).

As these studies show, in domains that are either numerically or culturally associated with
men, gatekeepers judge women’s performance by a harsher standard. Therefore, we predict that, in
addition to judging their own performances by a harsher standard, women tech workers will expect
to face harsher judgments from their employers than men do. Perceptions of harsh treatment can
have a profound effect on women’s careers. Previous research has demonstrated that perceptions
of career opportunity and discrimination affect self-esteem and confidence, health and wellbeing,
job performance, job commitment, and aspirations for future career prospects (Ensher et al. 2001;
Kaiser et al. 2004; Kanter 1977; Markham et al. 1985). When people feel they are being treated poorly
or that they do not belong in a particular setting, they may disengage, becoming less involved
in and committed to their work (Ensher et al. 2001; Gutek and Tsui 1996; Hausmann et al. 2009;
Stainback and Irvin 2012). Ultimately, these choices and aspirations can affect employee performance
and organizational rewards. If women are more likely than men to expect discrimination in technical
careers, these expectations can cause unequal career setbacks and stymied advancement (compounding
the effects of the discrimination itself).

2.4. The Current Research

While existing research demonstrates how stereotypes affect women’s persistence in STEM
fields at early life stages (e.g., high school and college), we continue to lack evidence about whether
stereotypes continue to affect women once in a technical job. With what we believe is the only existing
survey data from actual tech workers, we build on prior work by broadening our understanding of
whether and how gender stereotypes matter in an important but understudied stage in the career life
course of technical workers. We further explore how stereotypes about the culture of technology and
the skills of technologists operate differently, and we analyze their independent effects on important
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gendered outcomes. We now turn to describing our data and our models for assessing the relationships
between alignment and work outcomes for men and women in technical careers.

3. Data

Our data come from a dataset of men and women technical employees called “Climbing the
Technical Ladder.” In 2007, the Anita Borg Institute for Women and Technology and the Clayman
Institute for Gender Research at Stanford University conducted a survey of technical men and women
in the Silicon Valley (Simard et al. 2007). The San Francisco Bay Area’s “Silicon Valley” is a region
characterized by a high concentration of high-technology companies, providing a unique window
into the technology world. Silicon Valley firms pride themselves on being meritocratic; organizational
hierarchies are flat, and innovative start-up mentalities pervade. However, gender researchers suggest
that widely shared gender beliefs are often carried into these new spaces (Ridgeway 2011), and
technology companies often have a masculine or “fraternity-like” culture (e.g., Alfrey and Twine 2016;
Wynn and Correll 2014). Using a sample of technical employees from seven Silicon Valley firms, we
examine whether women perceive themselves as less aligned with the image of success than men; if
so, we explore how this gender gap relates to employees’ career decisions and opportunities.

Much in the same way that Cech and colleagues studied the experiences of men and women STEM
students in four US universities to delve deep into a heretofore unstudied process (Cech et al. 2011),
we draw on data from seven tech companies to examine cultural and skill alignment. This research
setting is rare and particularly useful for empirically analyzing the impact of stereotypes on women
currently working in STEM careers. The seven tech companies in our dataset include organizations
within the broad computer and information technology industry as well as companies that employ top
technical talent.2 The primary industry segments represented are hardware and software. Surveyed
employees comprised the core Silicon Valley technical workforce at each participating company. Thus,
our sample contains data from employees actively working in technical jobs. The survey included
questions about demographics, attitudes towards and perceptions of technical work, retention and
advancement, and family. The survey was administered online to all employees in each company’s
core Silicon Valley technical workforce over a seven-month period in 2007–2008. The survey was
administered to 12,805 employees across the seven participating companies. In total, 1795 employees
completed the survey; thus, the overall response rate is 14%. Because the response rate is low, we
should interpret the results with caution.3 While a higher response rate is always desirable, having a
sample of actual tech workers is unusual. With these data, we can provide novel insight into processes
that affect women and men’s experiences in tech fields.

The sample is similar to the broader Silicon Valley population in race and ethnicity, median income,
and percent foreign-born (as well as country of origin). Women comprise 34.2% of the sample and 24%
of the Silicon Valley engineering and computer population; thus, there is a slight overrepresentation

2 Research directors at the Anita Borg and Clayman Institutes recruited seven companies to participate in the study.
Their recruitment strategy was designed to capture organizational variation within the broad computer and information
technology industry and to focus on companies that were known to employ top technical talent. We are unable to name
the companies due to promised confidentiality. At the time the survey was completed, software and hardware industry
segments were the largest employers in the high-technology sector in Silicon Valley, and these industry segments constitute
the company sample. Surveys were administered to employees who comprised the core Silicon Valley technical workforce
at each participating company; companies defined their “core technical workforce in the Silicon Valley region” for the
researchers. The vast majority of survey respondents identified their field of expertise as software development/engineering
and hardware engineering. For more information about the survey methodology, see (Simard et al. 2007).

3 Some recent research indicates that low response rates are not necessarily associated with significant declines in sample
representativeness (Chang and Krosnick 2009; Curtin et al. 2000; Keeter et al. 2000). For example, Chang and Krosnick (2009)
found that a sample with a 25% response rate was just as representative as a 43% response rate sample. In addition, response
rates have generally declined over time, and the response rates obtained today are considerably lower than those obtainable
in 1980, holding budget constant over time (Chang and Krosnick 2009; Holbrook et al. 2003).
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of women.4 The analyses presented below were conducted on cases for which there are no missing
values on any variables included in the models (88% of the sample).5 The final sample includes 1582
respondents: 1048 men and 534 women.

4. Analytical Plan and Measures

We first assess the cultural and skill-based stereotypes tech workers hold about successful technical
work. We then assess the extent to which male and female tech workers align with these stereotypes
and, if so, whether these differences in alignment contribute to gender gaps in work outcomes. After
establishing the distinction between cultural alignment and skill alignment, we ask whether cultural
or skill alignment has a larger impact.

4.1. Dependent Variables

Men and women’s perceptions of how well they conform to cultural and skill expectations at work
are related to a number of work outcomes. We include dependent variables capturing a range of work
factors, described below, to determine the nature of resulting gender inequality. Answer choices on all
dependent variable survey questions range from 1 (not at all descriptive/strongly disagree/definitely
not) to 5 (extremely descriptive/strongly agree/definitely will).6

4.1.1. Identity Measures

The extent to which individuals identify with a field can influence their career-relevant judgments
and decisions, thereby affecting what is commonly called the “pipeline” of women in STEM careers
(Meyersson Milgrom and Petersen 2006). Our survey questions ask participants to rate the extent to
which they personally identify with the tech profession and identify with their companies.

4.1.2. Supervisor Treatment Measures

Perceptions of the judgments and behaviors of gatekeepers such as teachers, supervisors, and
employers can also affect men and women’s career progress. Barriers or “glass ceilings” often prevent
one group from achieving the same level of success as another group (Hymowitz and Schellhardt 1986).
Our survey questions ask respondents about their supervisor’s treatment: does their supervisor
value their opinions, and does their supervisor assign them high-visibility projects? Being assigned to
high visibility projects is crucial for promotion in tech companies (Correll and Mackenzie 2016;
Silva et al. 2012).

It is important to note that our supervisor treatment variables represent respondents’ perceptions
about their supervisors’ treatment. Though our data cannot reveal whether supervisors actually treat
respondents as they reported, perceptions of supervisor treatment can have a profound effect on life
outcomes, as described above. Therefore, if cultural or skill alignment contributes to the gender gap in
perceptions of supervisor treatment, this finding would have important implications for workplace
gender inequality more broadly.

4 Because women are underrepresented in the larger tech industry, an overrepresentation in the sample facilitates analysis by
gender. While some might claim sample overrepresentation requires weights, others have argued that sampling weights
are not necessary in multivariate analysis if the weight is not a function of the dependent variable, and that weighting in
multivariate analysis, at least with the OLS estimator, actually produces inefficient estimates (Winship and Radbill 1994).
Thus, we did not include sampling weights in our analysis.

5 We also ran our analyses with multiple imputation using a multivariate normal model (models available upon request).
The patterns of results remain the same. Though some findings change slightly in magnitude and/or in level of significance,
our overall arguments remain unchanged. Since very few data are missing, deleting the missing cases does not change our
results substantially.

6 For the “plan to switch career fields” variable described below, there is a “don’t know” answer choice, which we coded
as missing.
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4.1.3. Turnover Intention Measure

To measure turnover intentions, the survey asks participants the extent to which they plan to
switch career fields in the next 12 months.

4.2. Independent Variables

Tech employees in the sample were first asked to identify the attributes of people who succeed
in technology. These questions allow us to assess what stereotypes they hold about successful tech
workers. Later in the survey, respondents were asked to identify the attributes that describe themselves.
To the extent that their stereotypes of successful tech work overlap with their descriptions of themselves,
we define the employees as perceiving that they “align” with the prevailing stereotype of success.

4.2.1. Stereotypes about Successful Tech Work

Respondents were given a set of attributes (listed below) and asked, “In your opinion, to what
extent are the following attributes TRUE of people who succeed in technology?” (Answer choices are on a
5-point scale ranging from “not at all true” to “extremely true”). Guided by a principle-component
factor analysis, we determined that participants’ beliefs about successful tech workers coalesced
around two types of traits: cultural and skill-based. These categories emerged inductively from the
data; in other words, the cultural traits and skills loaded onto separate factors during our analysis.7

Thus, we created two variables: a scale of cultural traits of successful tech workers and a scale of the
skill set of successful tech workers.

The cultural traits scale is the average response from questions about the extent to which each of
the following traits described the successful tech worker: obsessive, assertive, cool, geeky, young, and
long working hours (α = 0.66).8 Together, these traits constitute the stereotypical image of the “geeky
coder,” a young man who stays up all night obsessively coding. We ran models with several different
specifications of the scale (e.g., we dropped one of the items from the scale such as “long hours”).
The claims we make below are robust across models. Results are available upon request.

Because this coder image often pairs with concrete human capital skills, we created a separate skill
set scale for the skills believed to be associated with successful tech work. After all, the stereotypical
geeky coder is also a talented and proficient worker. The skill set scale is the average response from
questions about the extent to which each of the following traits described the successful tech worker:
analytical, questioning, and highly mathematical (α = 0.60). These skills are often considered essential
for success in the tech world. The Pearson’s bivariate correlation between the cultural and skill scales
describing successful tech workers is 0.243. Additional correlations between scale items are available
in the Appendix A.

4.2.2. Self-Perception Scales

After rating successful tech workers on the attributes above, respondents were then given the
same list of attributes and asked how much the attributes described themselves. We created a cultural
traits self-rating scale (α = 0.56) by averaging how participants rated themselves on the items loading
on the cultural factor and a skill set self-rating scale (α = 0.61) by averaging how participants rated

7 We used principal-component factor analysis with varimax orthogonal rotations to derive the cultural and skill dimensions.
The cultural dimension is a combination of two factors: intensive work commitment and geeky personality. We combined
these factors due to their theoretical relevance to cultural perceptions of tech workers. The skill dimension is comprised of
one factor. More information is available in the Appendix A.

8 The scale is constructed by dividing the sum of the question responses by the total number of questions answered. Thus, a
value is created for every observation for which there is a response to at least one item (i.e., at least one variable in the scale
is not missing). The summative score is divided by the number of items over which the sum is calculated. The scale value
thus represents an average.
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themselves on the items loading on the skill set factor.9 The Pearson’s bivariate correlation between
the scales describing self is 0.344.

4.2.3. Cultural and Skill Alignment Measures

The variables above measure how individuals rate themselves and how they rate successful
tech workers. To measure the extent to which individuals believe they match the cultural image or
skill expectation of successful tech workers, however, we need to compare each individual’s self-rating
to how the same individual rates successful tech workers. If their image of self is similar to their
image of a successful tech worker, we describe them as believing they “align.” If women are less likely
than men to believe they match the cultural image and skill expectations of successful tech workers,
they may experience negative work outcomes. Below, we describe more fully how we created our
alignment variables.

First, we created dummy variables that measure whether self-ratings of cultural traits and skill
sets match the cultural and skill dimensions of successful tech workers. If the respondent sees himself
or herself as equal to or greater than their own rating of the average successful tech worker, the cultural
alignment dummy variable is coded as 1. This indicates that respondents see themselves in line with the
cultural and personality traits of successful tech workers. If the respondent sees himself or herself as
lower on the culture scale than their own rating of a successful tech worker, then the dummy variable
equals 0, indicating a lack of alignment.

Similar to the cultural alignment dummy variable, the skill alignment dummy variable codes those
who see themselves having equal or greater skills than the average tech worker as 1, and those who
see themselves as less skilled as 0. Thus, these two dummy variables indicate whether respondents
perceive themselves as successful on both cultural and skill dimensions. Importantly, these items do
not ask individuals to directly compare themselves to a successful tech worker, but rather to assess
the attributes of a successful tech worker and then, later in the survey, to assess themselves using the
same list of attributes. In this way, our measures of alignment differ from related measures of “fit” or
“professional role confidence” used by other researchers (Cech et al. 2011; Rivera 2012).

While these dummy variables provide useful information about cultural and skill alignment,
we are also interested in the magnitude of any discrepancy between self-ratings and images of the
successful tech worker. If women see themselves as less successful than men, does the extent of this
difference matter?

Therefore, we created a second alignment variable that is the absolute value of the difference
between a respondent’s self-rating and his/her own rating of successful tech workers. The cultural
alignment absolute value variable indicates how wide the gap is between self and successful tech worker
on the cultural alignment scales, and the skill alignment absolute value variable indicates the gap on the
skill-based scales.

For example, if an individual rates herself as a 2 on the cultural scale and 3 on the skill scale, and
she rates a successful tech worker as a 5 on both the cultural and skill scales, she would be coded as a 0
on both the cultural and skill dummy variables because her self-rating is lower than her impression
of a successful tech worker. Her value on the absolute value variables would be 3 for culture and 2
for skill, indicating that she considers herself further from the successful tech worker on the cultural
dimension compared to the skill dimension.

To simultaneously consider both the direction and the magnitude of any gap, we will add
an interaction between the absolute value and dummy variables to our regression models below.
This analytical procedure, which we call a “direction-magnitude interaction model,” is rather

9 Because self-ratings are more complicated and nuanced than ratings of successful tech workers, they do not align as neatly
with particular “types.” Thus, we prioritized obtaining a good scale (i.e., higher Cronbach’s alpha values) for the ratings of
successful tech workers rather than self-ratings. Factor loadings and bivariate Pearson’s correlations of the scale items are
available in the Appendix A. Breakdowns by gender are available upon request.
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untraditional, but as we describe below, it allows us to analyze both direction and magnitude of
alignment independently.10

4.2.4. Gender and Race Measures

We also include variables tracking respondents’ gender (Female and Male) and race (White, Asian,
and Other). Gender is represented with a dummy variable where female is coded 1 and male
0. For Race, we introduce a dummy variable for Asian and Other, with White serving as the
reference category. Unfortunately, we only have sufficient sample size to divide our sample into
three racial categories. Consistent with the larger tech industry, our sample comprises mainly
White (55%) and Asian (38%) respondents. Respondents were able to choose more than one racial
category; thus, when coding the race variables, we included only respondents who exclusively chose
“White/Caucasian” in the “White” category. We included in the “Asian” category anyone who chose
“South Asian (Indian subcontinent/South Asian American),” “Southeast Asian/Southeast Asian
American,” “East Asian/East Asian American,” or “Other Asian/Asian American.” Our “Other
Race” category includes anyone who chose “African American/Black,” “American Indian/Alaska
Native,” “Native Hawaiian,” “Mexican American/Chicano,” “Central/South American,” or
“Other Latino/Puerto Rican.”

4.2.5. Employee Level

Finally, we include controls for employees’ level in the company. Levels were categorized according
to the career ladders or structures at each respondent’s company (Simard et al. 2007). Employees were
categorized into three levels: low (entry), mid, and high. Mid-level is used as the reference category.
Technology, similar to other professional fields, is characterized by vertical segregation, with women
being more underrepresented in higher-level positions (Charles and Grusky 2004). Consistent with
this trend, women in our sample are more heavily concentrated in the lower-level positions, while
men are more concentrated in higher-level positions. Due to the sample size and the somewhat limited
number of demographic variables, we are not able to add additional controls to the models.

5. Results

5.1. Summary Statistics

Before turning to regression models, we first explore the bivariate relationships between gender
and our dependent and independent variables (see Table 1). Examining our dependent variables,
we find that men are significantly more likely than women to identify with the tech profession and
marginally more likely to identify with their companies. Men are also significantly more likely to
believe their supervisors value their opinions and assign them high-visibility projects. Men are
significantly less likely than women to plan to switch career fields in the next twelve months. There are
significantly more White men than women in the sample and significantly more Asian women than
men. As is common in technology firms in the Silicon Valley, women are more heavily represented
among the lower levels compared to the higher levels (Simard et al. 2007).

10 We also ran models using the raw difference between individuals’ self-ratings and their ratings of successful tech workers
as the dependent variable. The overall patterns are consistent with our direction-magnitude interaction models, but our
models provide more specific information. We also ran models using a spline variable. Our direction-magnitude interaction
models show how the difference between self-ratings and ratings of successful tech workers affects our outcome variables
as the difference gets more negative for the no-alignment group and more positive for the alignment group; spline models
show the effect as the difference gets more positive for both groups. Even so, the results of the spline models are largely
similar to our models, with the same overall patterns. Models are available upon request.
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Table 1. Means and Standard Deviations of Variables used in the Analyses of the Relationship between
Alignment and Workplace Outcomes.

Variables Men Women

Dependent Variables

Identify with tech profession a 3.83
(0.95)

3.58 ***
(1.00)

Identify with company a 3.40
(1.06)

3.31 +
(1.10)

Supervisor values opinions a 3.91
(0.96)

3.74 **
(0.97)

Supervisor assigns high visibility projects a 3.64
(1.02)

3.53 *
(1.05)

Plan to switch career fields b 1.89
(0.97)

2.03 **
(1.01)

Independent Variables
Cultural Alignment (=1) 0.57 0.38 ***

Cultural Alignment Absolute Value 0.51
(0.40)

0.59 ***
(0.48)

Skill Alignment (=1) 0.66 0.53 ***

Skill Alignment Absolute Value 0.58
(0.54)

0.69 ***
(0.59)

Race

White 0.59
(0.49)

0.48 ***
(0.50)

Asian 0.36
(0.48)

0.44 ***
(0.50)

Other Race 0.06
(0.23)

0.08
(0.27)

Level

Low (Entry) Level 0.20
(0.40)

0.33 ***
(0.47)

Mid-Level 0.55
(0.50)

0.57
(0.50)

High-Level 0.25
(0.43)

0.10 ***
(0.30)

N 1048 534

Notes: (standard deviation). + p < 0.10, * p < 0.05, ** p < 0.01, *** p < 0.001. Bivariate t-tests
(Simard et al. 2007). N = 1582. a Answer choices vary from 1 (not at all descriptive/strongly disagree) to 5 (extremely
descriptive/strongly agree). b Answer choices vary from 1 (definitely not) to 5 (definitely will). “Don’t know” is
coded as missing.

5.2. What Are the Stereotypes About Successful Tech Work?

Figure 1 displays how men and women rated successful tech workers on the cultural and skill set
dimension. These ratings reflect the stereotypes individuals hold about successful tech work. As can be
seen, men and women hold relatively similar stereotypes, although women hold a more stereotypical
view of successful tech workers on the cultural dimension, viewing successful tech workers as more
geeky, obsessive, etc. The average for men’s ratings of successful tech workers is 2.76 (α = 0.66), and
women’s ratings average 2.90 (α = 0.67) (p < 0.001). There is no significant gender difference in how
men and women rate successful tech workers on the skill dimension, seeing successful tech workers
as equally analytical, questioning, and highly mathematical. On the skill dimension, the average of
men’s ratings of successful tech workers is 3.72 (α = 0.61), and women’s ratings average 3.77 (α = 0.60),
an insignificant difference.
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Figure 1. Stereotypes Tech Workers Hold about Successful Tech Work (Simard et al. 2007). N = 1582.

5.3. How Do Individuals Rate Themselves?

Figure 2 displays how men and women rate themselves on the cultural and skill dimensions.
As can be seen, women rate themselves significantly lower on both dimensions than men do (p < 0.001).
The average value on the cultural scale is 2.76 (α = 0.53) for men’s self-ratings and 2.59 (α = 0.60)
for women’s self-ratings. Thus, men believe they are more obsessive, geeky, etc. than women do.
The average skill scale value is 3.83 (α = 0.59) for men’s self-ratings and 3.62 (α = 0.64) for women’s
self-ratings. Therefore, women tech workers are significantly less likely than men tech workers to think
they have analytical quantitative skills, echoing earlier findings from high school and college settings.11
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Figure 2. How Tech Workers Rate Themselves on Cultural and Skill Dimensions. N = 1582 (Simard et al. 2007).

11 Some might wonder if men rate themselves higher on all domains than women. It is worth noting in this regard that the gap
between men and women’s self-ratings is considerably larger on the cultural domain than on the skill domain. Further,
Correll (2001) shows that while men make higher assessments of their mathematical ability, women actually assess their
verbal ability higher. This suggests that self-ratings are affected by the gender typing of the domain being considered.

211



Soc. Sci. 2017, 6, 45

In sum, these measures reveal that men and women hold similar beliefs about the skills required
to be a successful tech worker, but women are less likely to believe they themselves exhibit these traits.
On the cultural dimension, women are significantly more likely than men to believe that successful
tech workers embody obsessive, geeky traits, and they are also significantly less likely than men to
believe these traits describe themselves.

5.4. Are Women Less Likely to Align with the Stereotypes of Successful Tech Work?

We now evaluate the extent to which individuals believe they match the cultural image or skill
expectation of successful tech workers. Figure 3 plots the percentage of women and men whose image
of themselves aligns with their image of successful tech workers. The bar graphs show percentages
for the dummy cultural and skill alignment variables. Here we find significant gender differences for
both the skill and cultural alignment variables. Only 37% of women demonstrate cultural alignment,
rating themselves as greater than or equal to their image of a successful tech worker. In contrast, 56%
of men demonstrate positive cultural alignment (p < 0.001). Fifty-three percent of women indicate
skill alignment, whereas 66% of men have skill alignment (p < 0.001). Thus, men are more likely than
women to consider themselves similar to successful tech workers in terms of having the cultural traits
and skills successful workers posses. A wide chasm exists between men and women’s perceptions;
men think they have what it takes to be successful, whereas women perceive a gap between themselves
and the ideal tech worker, and the gap is especially pronounced on the cultural dimension.
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Figure 3. Percent of Women and Men with Cultural and Skill Alignment (Simard et al. 2007). N = 1582.
Note: Alignment is defined as a zero or positive gap between self-ratings and ratings of successful tech
workers, and non-alignment is defined as a negative gap.

To examine simultaneously the direction and the magnitude of any cultural and skill difference,
we plot the magnitude of the gaps, broken down by whether or not individuals see themselves as
similar to their image of a successful tech worker on the cultural and skill dimensions.

Specifically, in Figure 4, we graphed the cultural alignment for four different groups: (1) men who
do not think they match the cultural image of a successful tech worker; (2) women who do not think
they match the cultural image of a successful tech worker; (3) men who do think they align culturally;
and (4) women who do think they align culturally. We also graphed the skill alignment for men and
women who do and do not believe they possess the same skills as successful tech workers. The bar

212



Soc. Sci. 2017, 6, 45

graph shows the extent to which respondents think they are different from successful tech workers; this
difference can be in a positive direction (respondents think they are better than the average successful
tech worker) or a negative direction (respondents think they are worse than the average successful
tech worker).
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Figure 4. Gap between Self-Ratings and Ratings of Successful Tech Workers by Direction and Gender
(Simard et al. 2007). N = 1582. Note: Alignment is defined as a zero or positive gap between
self-ratings and ratings of successful tech workers, and non-alignment is defined as a negative gap.
The y-axis displays the average successful tech worker rating subtracted from the average self-rating
for each group.

When we compare men and women who do not perceive themselves as successful on the cultural
alignment dimension (bars on the far left of Figure 4), we find that women’s absolute value is
significantly larger than men’s (p < 0.001). This means that, among men and women who feel like
they do not align, women perceive a large difference between themselves and successful tech workers,
whereas this difference is significantly smaller for men. Women more strongly believe they lack the
cultural traits valued in their environment.

In contrast, when we compare men and women who do consider themselves culturally similar to
the successful tech worker (the second set of bars on Figure 4), we find that the gap between self-ratings
and ratings of successful tech workers is significantly larger for men (p < 0.05). Men are more likely to
believe they greatly exceed the cultural standard for success, whereas women in this category only see
themselves as equivalent or slightly better than their image of the successful tech worker.

Similarly, when the skill alignment dummy variable equals 0, indicating a perceived lack of skill
(third set of bars on Figure 4), women’s absolute value is significantly larger than men’s (p < 0.001).
This means that, compared to men who believe they lack skill, women perceive that their lack of skill is
much greater, relative to the successful tech worker. However, among people who consider themselves
successful on the skill dimension, there is no significant gender difference in absolute value (p > 0.10)
(right-most bars in Figure 4).
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Across our two measures of alignment, among those who do not believe they align with the
prevailing standard of success, women see themselves as far more deficient than men do when
comparing themselves to successful tech workers. However, among those who do believe they align,
men are more likely than women to see themselves as exceeding the cultural image, but they are no
more likely than women to believe they have more skill.12

We now turn to regression models that allow us to assess whether these gender differences in
alignment are associated with workplace outcomes.

5.5. Analytical Strategy

In the following sections, we estimate a series of ordinary least squares regression models to
analyze the effect of cultural and skill alignment on work-related outcomes. We cluster the standard
errors by company to account for non-independence. Since these dependent variables are discrete and
ordered, we also conducted ordered logistic regressions. Because the results are extremely similar to
the OLS models, we present the ordinary least squares estimates here for ease of interpretation. Results
from the ordered logistic regressions are available upon request.

We first model the main effects of gender, race, and employee level. Then, we add dummy
variables for cultural and skill alignment, which tell us whether alignment is associated with these
work outcomes. In the final models, we add absolute value and interaction variables to examine
whether the magnitude of alignment also matters, or whether the direction of alignment alone is most
strongly associated. If the dummy variables are strongest, that means the direction of alignment
matters most; if the interactions are significant, that means the magnitude matters as well. Thus, we
present two specifications of alignment: one that is direction-only, and the other that includes direction
and magnitude.

5.6. Is Alignment Associated with Workplace Outcomes?

We first present a series of models that assess the relationships between alignment (cultural
and skill) and our identity measures (identification with the tech profession and identification with
the respondent’s company). We then turn to models assessing whether alignment is significantly
associated with perceptions of supervisor treatment (supervisor values respondent’s opinion and
supervisor assigns high visibility projects). We then model whether cultural and skill alignment are
significantly related to plans to switch career fields. Finally, we assess whether the results presented
vary by employee career stage.

Identity models. Model 1 of Table 2 shows the raw gender, race, and employee level effects for
identification with the company where the employee works. The non-significant female dummy
variable coefficient indicates that there is no significant gender gap in identification with company.
There is also no significant effect for company level. However, Asians and “other race” are significantly
more likely than Whites to identify with their companies. The Asian result is consistent with literature
on Asian culture, particularly regarding STEM fields (Jiménez and Horowitz 2013). In Model 2, we add
the cultural and skill alignment dummy variables. Both cultural and skill alignment are significantly
associated with identification with one’s company, and perhaps unexpectedly, skill alignment is
negatively associated with company identification. Those who feel they have the skills to succeed are
less likely to identify with their companies, while those who feel they align culturally are more likely
to identify.

12 We also examine effects by company (see Appendix A, Table A6). As the descriptive patterns do not vary substantially
across organizations, and since the number of cases for some companies is small, we pool our data across company in the
regression models and cluster standard errors by company.
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Table 2. Ordinary Least Squares Regression Estimates for the Effects of Cultural and Skill Alignment
on Identity Outcomes for Silicon Valley Tech Workers.

ID with Company ID with Tech Profession

Variables Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Female (=1) −0.143
(0.079)

−0.121
(0.078)

−0.118
(0.078)

−0.248 **
(0.051)

−0.196 **
(0.051)

−0.187 **
(0.047)

Asian 0.394 ***
(0.047)

0.390 ***
(0.046)

0.382 ***
(0.046)

0.332 **
(0.073)

0.337 **
(0.069)

0.335 **
(0.069)

Other Race 0.223 *
(0.088)

0.205 +
(0.087)

0.197 +
(0.086)

0.309 ***
(0.027)

0.294 ***
(.042)

0.292 ***
(0.040)

Low-Level 0.168
(0.113)

0.158
(0.111)

0.163
(0.116)

−0.168 **
(0.032)

−0.163 **
(0.038)

−0.159 **
(0.040)

High-Level 0.090
(0.089)

0.094
(0.092)

0.091
(0.091)

0.111
(0.115)

0.090
(0.111)

0.090
(0.111)

Cultural Alignment (=1 when
self-rating equals or exceeds

successful tech rating)

0.134 ***
(0.019)

−0.016
(0.064)

0.163 *
(0.057)

0.061
(0.067)

Negative Cultural
Self-Assessment, Magnitude

(Absolute Value)

−0.216
(0.137)

−0.100
(0.111)

Positive Cultural
Self-Assessment, Magnitude

(Interaction Term)

0.239 +
(0.103)

0.189
(0.125)

Skill Alignment (=1 when
self-rating equals or exceeds

successful tech rating)

−0.053 *
(0.019)

0.098
(0.070)

0.194 ***
(0.026)

0.175
(0.112)

Negative Skill Self-Assessment,
Magnitude (Absolute Value)

0.083
(0.063)

−0.019
(0.103)

Positive Skill Self-Assessment,
Magnitude (Interaction Term)

−0.274 *
(0.083)

0.009
(0.129)

Constant 3.192 3.155 3.240 3.705 3.489 3.570
R2 0.04 0.04 0.05 0.05 0.07 0.07

N = 1582. Note: All models cluster standard errors by company. (robust standard error). + p < 0.10, * p < 0.05,
** p < 0.01, *** p < 0.001 (Simard et al. 2007).

To assess both the direction and magnitude of alignment on identification, we add the absolute
value variables and the interaction terms in Model 3. The cultural alignment interaction is marginally
significant and positive, indicating that for those who consider themselves successful on the cultural
alignment dimension, the more they exceed the successful tech worker standard, the more they identify
with their company.13 The absolute value variable indicates the effect for those who do not feel they
align culturally, and the cultural alignment dummy variable indicates the effect of alignment when
the absolute value equals zero, or the respondent’s self-rating equals their rating of successful tech
workers. The skill alignment interaction is significant and negative, indicating that for those who
consider themselves successful, the more successful they consider themselves relative to other tech
workers, the less likely they are to identify with their company.14 Perhaps people who believe they are
overqualified relative to their stereotypes of a successful tech worker seek sources of identification
outside the company. Given the higher rate of attrition out of technology from women compared to
men (Beede et al. 2011), this is an encouraging finding. Increasing women’s cultural alignment with
the tech field would presumably increase women’s engagement with their companies.

Models 4–6 in Table 2 demonstrate the effects of cultural and skill alignment on identification
with the tech profession. As the negative female dummy variable coefficient indicates in Model 4,

13 Technically, the effect for those who believe they align equals the interaction coefficient combined with the absolute
value coefficient.

14 While the R2 is low, our main goal is not to explain all variance in our dependent variables. Instead, we are interested in
mechanisms that contribute to the gender gap. As research on the effects of stereotypes shows, even small effects can have
large impacts as they cumulate over careers (Martell et al. 1996).

215



Soc. Sci. 2017, 6, 45

women are significantly less likely than men to identify with the tech profession. Similar to Models 1–3,
Asians and “other race” are significantly more likely than Whites to identify. Perhaps unsurprisingly,
low-level employees are significantly less likely than mid-level employees to identify with the tech
field, while high-level employees do not differ from mid-level employees.

In Model 5, we add the cultural and skill alignment dummy variables. Both skill and cultural
alignment are significant and positive, indicating that higher alignment is associated with higher
identification with the tech profession. The gender variable also decreases in magnitude with the
addition of these two variables, indicating that some of the gender gap in identification is related to
the alignment variables, but the gender gap remains significant.

Next, we test whether the magnitude of perceived alignment is related to tech identification.
We add the absolute value variables and interactions in Model 6. None of the coefficients for these
variables are significant, leading us to conclude that Model 5 is the preferred model for identification
with tech. For this dependent variable, the direction of alignment (i.e., alignment vs. no alignment)
matters more than the magnitude or extent of alignment. The coefficient for the female dummy
variable decreases by 21% from Model 4 to Model 5, indicating that about a fifth of the gender gap is
associated with cultural and skill alignment.

It is possible the magnitude has more of an effect in local environments (e.g., company culture
and experiences on teams), while the direction has more of an effect on identification with the broader
technical culture (e.g., the technology field). To feel identified with the tech field, it may be sufficient
for tech employees to merely perceive that their personalities and skills align with expectations, and
the magnitude of alignment may matter less than the simple existence of alignment. In contrast, to feel
comfortable in local environments (e.g., companies and teams) and to believe that one has what it takes
to be successful, the amount of alignment may matter more. That is, individuals may need a more
precise estimate of alignment when making sense of self in a specific setting that contains concrete
others with whom to compare oneself.15

We also added three-way interactions between gender, alignment dummies, and absolute value
to assess whether alignment has a stronger or weaker effect on the dependent variables (models not
shown). These interactions are not significant. Therefore, men and women place similar value on
perceptions of alignment. Lack of cultural and skill alignment do not have a stronger effect for women
than for men. Instead, women simply report less cultural and skill alignment than men, thereby
lowering their identification with the tech profession.

Supervisor treatment models. We now present models assessing the effect of our alignment variables
on perceptions of supervisor treatment. As we detail below, cultural alignment has an even stronger
relationship to these dependent variables: women are less likely than men to report that their supervisor
values their opinions or assigns them high visibility projects, and controlling for cultural alignment
completely eliminates these gender gaps. In contrast, skill alignment has almost no impact on these
gender gaps (and if anything, it has the opposite effect of what we might expect).

Model 1 of Table 3 shows that women are less likely than men to report that their supervisors
value their opinions. Asians are significantly less likely than Whites to report that their supervisors
value their opinions. Employee level is not significant. In Model 2, we add the alignment dummy
variables and find that the cultural alignment coefficient is significant and positive, while the skill
alignment coefficient is insignificant. Further, the female coefficient decreases in magnitude and drops
to marginal significance with the addition of the alignment dummies, indicating that much the gender
difference in perceptions of supervisor treatment is related to cultural alignment; because women are
less likely to believe they align with the cultural profile of a successful tech worker, they are less likely
to believe their supervisors value their opinions.

15 It is also possible that the direction-magnitude interaction models (with a dummy variable, absolute value and their
interaction) split up the variance in alignment variables so much that it becomes hard to detect independent effects of each
component of alignment.
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Table 3. OLS Regression Estimates for the Effects of Cultural and Skill Alignment on Perceived
Supervisor Treatment of Silicon Valley Tech Workers.

Supervisor Values Opinion Assigns High Visibility Projects

Variables Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Female (=1) −0.133 *
(0.052)

−0.108 +
(0.050)

−0.095
(0.049)

−0.081 *
(0.031)

−0.053
(0.040)

−0.046
(0.038)

Asian −0.203 +
(0.096)

−0.206 +
(0.090)

−0.216 +
(0.092)

−0.180 *
(0.070)

−0.185 *
(0.060)

−0.199 *
(0.063)

Other Race −0.077
(0.104)

−0.097
(0.104)

−0.108
(0.108)

−0.197
(0.153)

−0.222
(0.143)

−0.236
(0.146)

Low-Level 0.003
(0.068)

−0.008
(0.066)

−0.002
(0.065)

0.068
(0.042)

0.053
(0.042)

0.057
(0.049)

High-Level 0.097
(0.071)

0.102
(0.068)

0.100
(0.071)

0.115
(0.089)

0.123
(0.091)

0.120
(0.093)

Cultural Alignment (=1 when
self-rating equals or exceeds

successful tech rating)

0.158 *
(0.043)

−0.121 +
(0.056)

0.189 *
(0.075)

−0.104
(0.095)

Negative Cultural
Self-Assessment, Magnitude

(Absolute Value)

−0.305 **
(0.051)

−0.346 *
(0.096)

Positive Cultural
Self-Assessment, Magnitude

(Interaction Term)

0.501 **
(0.090)

0.510 *
(0.215)

Skill Alignment (=1 when
self-rating equals or exceeds

successful tech rating)

−0.057
(0.048)

0.101
(0.058)

−0.093
(0.076)

0.175 *
(0.069)

Negative Skill Self-Assessment,
Magnitude (Absolute Value)

0.087 +
(0.043)

0.158 *
(0.051)

Positive Skill Self-Assessment,
Magnitude (Interaction Term)

−0.313 ***
(0.043)

−0.492 **
(0.093)

Constant 3.957 3.910 4.053 3.672 3.630 3.751
R2 0.02 0.03 0.05 0.01 0.02 0.06

N = 1582. Note: All models cluster standard errors by company. (robust standard error). + p < 0.10, * p < 0.05,
** p < 0.01, *** p < 0.001 (Simard et al. 2007).

When we add the absolute value and interaction variables in Model 3, we see that the cultural
alignment variables have a strong effect on supervisor treatment. The interaction term is significant and
positive, which indicates that for those who consider themselves successful on the cultural dimension,
as the gap between themselves and successful tech workers widens, they are more likely to report that
their supervisor values their opinion. The absolute value variable is significant and negative; for those
who are unsuccessful on the cultural dimension, as the gap between themselves and successful tech
workers widens, they are less likely to report that their supervisor values their opinion.

In contrast, skill alignment has the opposite effect. The significant negative skill alignment
interaction coefficient indicates that, for those who perceive they have skill alignment, as the absolute
value of the difference between self-ratings and ratings of successful tech workers increases, employees
are less likely to believe their supervisor values their opinions. Those who report they are much
stronger in mathematical and analytical skills than their stereotypes of a successful tech worker may
be overly confident and difficult to work with. Whatever the reason, lack of skill alignment does not
seem to explain why women are less likely than men to feel valued by their supervisors. Instead, lack
of cultural alignment is more strongly related to this pattern. The coefficient for the female dummy
variable decreases by 29% from Model 1 to Model 3, indicating that much of the gender gap is related
to perceptions of alignment. Furthermore, we see that the magnitude of alignment matters in addition
to the direction of alignment.

We see similar results for models measuring whether respondents report that their supervisors
assign them high visibility projects (Models 4–6, Table 3). The negative coefficient for the female
dummy variable in Model 4 shows that women are less likely than men to agree with this statement,
and Models 5 and 6 demonstrate that controlling for cultural alignment completely eliminates this
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gender gap. The coefficient for the female dummy variable decreases by 43% from Model 4 to
Model 6 and becomes non-significant. For employees who do not align culturally, as the gap between
self-ratings and ratings of successful tech workers increases, they are much less likely to report that
their supervisor assigns high visibility projects. For those who do align culturally, as the gap between
self and successful tech worker ratings increases, they are much more likely to report their supervisor
assigns high visibility projects.

Skill alignment shows the same curious pattern as before, where those who perceive they are more
skilled than a successful tech worker believe they are less likely to receive high visibility projects from
their supervisors. Therefore, perceptions of deviations from the stereotypical image of a successful
tech worker, rather than perceived deficiencies in skill, are more strongly associated with gender
differences in perceptions of supervisor treatment.16 Furthermore, other research finds women do
receive fewer highly visible, “high-potential” projects relative to men (Silva et al. 2012), suggesting
that women’s perceptions of supervisor project assignments in the current study may well reflect an
accurate representation of their opportunities (rather than being a misguided perception).

Finally, in models not shown, we find that three-way interactions among gender, the cultural
alignment dummy, and the cultural alignment absolute value are not significant for the supervisor
treatment variables. That is, men and women react similarly to low cultural alignment. Women report
less cultural alignment than men, and this is significantly associated with the fact that they are more
likely to report negative supervisor treatment.

However, the interaction between gender, the skill alignment dummy, and the skill alignment
absolute value variable is negative and significant analyzing whether the respondent feels their
supervisor values their opinion (p < 0.05, model not shown). In other words, the negative effect of skill
alignment on perception of supervisor treatment is not as strong for women relative to men. While for
men, higher perceived skill (relative to a successful tech worker) is associated with worse perceived
supervisor treatment, this effect is weaker for women.

Turnover intention models. Our final set of models examines the effect of cultural and skill alignment
on plans to switch career fields.

In Model 1 of Table 4, there are no significant gender, race, or employee level effects. Recall that
the dependent variable asks respondents whether they intend to switch career fields in the next 12
months. Since most people do not plan to leave their career field in the near future, the variation in
this variable is reduced, making a lack of a main effect for gender, race, and employee level not overly
surprising. In Model 2, neither of the alignment variables is significant. However, in Model 3, where
the specification of alignment includes both magnitude and direction, we see that cultural alignment
has a significant effect on plans to switch career fields. For those who are aligned on the cultural
dimension, as the gap between self and successful tech worker ratings increases, they are significantly
less likely to consider switching career fields in the next 12 months. The reverse is true for those who
lack cultural alignment. Therefore, cultural alignment is significantly associated with plans to switch
career fields in the near-term future.17 Skill alignment, by contrast, has virtually no effect. In addition,
the magnitude of alignment matters for plans to switch career fields. Given our earlier finding that

16 In studies like this, concerns about endogeneity must also be considered. One alternative explanation for our results could
be that women perceive a lack of alignment because their supervisors treat them poorly. (In other words, the direction
of causality may be reversed.) However, this seems unlikely due to the construction of our alignment variables. Survey
respondents were asked to rate the average successful tech worker on a number of attributes, then they rated themselves on
those same attributes. Therefore, since we did not directly ask respondents to report perceptions of alignment, but rather
constructed the alignment variable from their trait assessments, it seems unlikely that the causal direction could be reversed
in this way. While endogeneity can never be ruled out by cross-sectional data, this particular analysis is less susceptible to
such concerns due to the way the variables were constructed.

17 Furthermore, in analyses not shown, we added the identification and perception of supervisor treatment variables as
independent variables to the model predicting plans to switch career fields and found that identification with the tech
profession, perception that supervisor values opinion, and perception that supervisor assigns high visibility projects all
significantly predict plans to switch career fields (p < 0.05). Therefore, by impacting these variables, alignment also indirectly
impacts plans to switch career fields in the next 12 months.
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magnitude appears to matter more in local environments (e.g., companies and teams) compared to
broader environments (e.g., industry), perhaps people make decisions about leaving a field based
on their experiences in their local environment. Whatever the reason, the extent of alignment has a
significant impact on turnover intentions.

Table 4. OLS Regression Estimates for the Effects of Cultural and Skill Alignment on Silicon Valley
Tech Workers’ Plans to Switch Career Fields.

Variables Model 1 Model 2 Model 3

Female (=1) 0.108
(0.077)

0.115
(0.070)

0.109
(0.071)

Asian 0.102
(0.063)

0.102
(0.061)

0.107
(0.064)

Other Race 0.096
(0.148)

0.092
(0.162)

0.101
(0.159)

Low-Level 0.008
(0.066)

0.007
(0.073)

0.006
(0.073)

High-Level −0.126
(0.067)

−0.128
(0.067)

−0.126
(0.068)

Cultural Alignment (=1 when self-rating
equals or exceeds successful tech rating)

0.033
(0.085)

0.195*
(0.079)

Negative Cultural Self-Assessment,
Magnitude (Absolute Value)

0.205 ***
(0.034)

Positive Cultural Self-Assessment,
Magnitude (Interaction Term)

−0.287*
(0.103)

Skill Alignment (=1 when self-rating
equals or exceeds successful tech rating)

0.010
(0.057)

−0.091
(0.123)

Negative Skill Self-Assessment,
Magnitude (Absolute Value)

−0.086
(0.082)

Positive Skill Self-Assessment, Magnitude
(Interaction Term)

0.183
(0.127)

Constant 1.878 1.854 1.781
R2 0.01 0.01 0.02

N = 1582. Notes: All models cluster standard errors by company. (robust standard error). + p < 0.10, * p < 0.05,
** p < 0.01, *** p < 0.001 (Simard et al. 2007).

These findings have important implications for gender diversity in the tech industry. While most
policy efforts to date have involved efforts to enhance women’s confidence in their technical skills,
our results suggest that efforts focusing on the cultural dimension will likely be more successful.
We find that only 37% of women who are in tech jobs have cultural alignment, compared to 56% of
men (see Figure 3). However, Model 3 above suggests that if women’s cultural alignment were equal
to men’s, women would be even more likely than men to plan to stay in tech careers. Since women enter
tech at substantially lower rates than men, retaining women at a higher rate than men could offset
some of the gender gap in these fields.

5.7. Does Career Stage Matter?

In the models presented above, we control for tech workers’ level in their company. We now ask
whether the relationships we have found differ for low, middle, and high-level employees. As we
have discussed, stereotypes may have less of an effect on individuals the further they progress in their
career. That is, as an individual gains more career experience, she gains more evidence of her skills,
which could lessen the effects of stereotypes on career outcomes. In addition, by spending more time
in the tech industry, women may develop more realistic, and less stereotypical, images of successful
tech workers. By analyzing separate models for employees at different levels, we gain some, albeit
limited, insight into this question.
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In results not shown, we find that, at higher position levels, there are fewer gender differences in
work outcomes. There are no significant differences between high-level women and high-level men in
identification with the tech field or in their reports of positive supervisor treatment. However, even
among high-level employees, gender gaps in alignment persist. High-level women score significantly
lower on cultural alignment compared to high-level men (p < 0.01). What differs is that cultural
and skill alignment gaps simply are not as strongly associated with work outcomes for high-level
women compared to low-level women. Perhaps high-level women have received enough evidence
of their ability to draw confidence from other sources. It is also possible that differences between
high- and low-level women could reflect differential attrition; women with lower levels of alignment,
identification, and/or perceived supervisor treatment may leave the company before reaching the
highest levels.

These results are consistent with the idea that as women progress in their careers, the effects
of stereotypes become less pronounced. Such differences in gender gaps by level could potentially
derive from two mechanisms: either high-level women have higher self-assessments than low-level
women on cultural and skill traits, thereby narrowing the gap between their self-assessments and their
stereotypes of successful tech workers, or they have less stereotypical assessments of successful tech
workers than lower-level women. Either mechanism would lead to higher alignment.

To gain empirical leverage on this question, we analyzed the self and successful tech worker scales
separately. On the cultural traits scale, we find no significant difference in how high-level and low-level
women rate themselves. (The same is true for high- vs. low-level men.) However, low-level women
rate the average successful tech worker significantly higher on the cultural traits scale compared to
mid- and high-level women (p < 0.01). In other words, low-level women have an inflated view of
how geeky, assertive, etc. successful tech workers are compared to high-level women. (There is no
significant difference by level among men.) On the skill scale, high-level women rate themselves
significantly higher than low-level women (p < 0.05), and the same is true for men (p < 0.01). Low-level
women rate the average successful tech worker marginally higher on the skill scale than mid- and
high-level women (p < 0.10). (In contrast, there is no difference for men.)

Thus, on the cultural dimension, high-level women do not have a fundamentally different
self-image than low-level women; rather, their image of a successful tech worker becomes less
stereotypical at higher levels. On the skill dimension, women gain more evidence of their ability
(just as men do), while also updating their conception of the average successful tech worker’s skills.
As women reach higher levels in the tech industry, they revise their image of tech work in more realistic
ways; tech workers, after all, are not really spending the bulk of their time playing World of Warcraft
in their parents’ basement.

6. Summary and Conclusions

In this paper, we introduce the concepts of cultural and skill alignment and ask whether men
and women in technical jobs differ in the extent to which they perceive that they have the traits and
skills they associate with a successful technical worker. We further examine whether cultural and skill
alignment are related to work outcomes such as identifying with the tech field, plans to switch fields,
or perceptions of supervisor treatment. While past research has examined how stereotypes shape
the movement of young adults into STEM fields, ours is the first study to examine cultural and skill
alignment among a sample of men and women in technical jobs.

We find that, while women and men largely agree on the stereotypes about successful tech
workers, women hold slightly more stereotypical images of tech workers on the cultural dimension.
Furthermore, women are less likely to view themselves as having the cultural traits and skills they
associate with successful tech workers. Women are less likely than men to believe they match the
stereotypical image of successful tech workers, and this is significantly related to reporting worse
work outcomes. Across our dependent variables, we find that cultural alignment is generally more
powerful than skill alignment, and cultural alignment explains some of the variance by gender on the
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identification with the tech profession and supervisor treatment variables. For the supervisor treatment
variables in particular, controlling for cultural alignment fully eliminates the gap between men and
women. The skill alignment variables either have little effect on the gender gap, or in some cases, skill
alignment has the opposite effect of what we might expect. Given the current policy emphasis on
improving women’s technical skills and confidence, it is surprising that perceptions of skill alignment
are less predictive overall in our models than are perceptions of alignment with the cultural image of a
successful tech worker.

These findings have important theoretical implications. This is the first paper to clarify the
distinction between cultural and skill based forms of alignment and demonstrate their independent
effects. We show a connection between women’s lack of alignment with the masculinized culture
of technology and important work outcomes, such as women’s identification with technology and
perceptions of supervisor treatment. We further show that these cultural images are often more strongly
associated with intentions to leave tech than are skill-based assessments. While cultural alignment is
associated with perceived supervisor treatment and plans to switch career fields, skill-based alignment
is significantly associated with women’s identification with the tech field, leading women to be less
likely than men to identify with the field. By analyzing the separate operation of cultural and skill
alignment, this paper offers unique insight into the mechanisms that impact gendered outcomes in the
technology field.

Furthermore, we find that the simple existence or non-existence of alignment seems to matter
more in broader contexts, such as deciding whether or not one belongs in an entire field; in contrast,
the extent or magnitude of alignment matters in more localized contexts, such as a company or team.
By using direction-magnitude interaction models that examine both the direction and the magnitude
of alignment, we are able to tease apart the independent effects of different alignment specifications.

The main practical implication of this study is that if we want to increase the representation
of women in STEM fields, we need to attend to cultural alignment in STEM workplaces. Current
policies focus primarily on generating young women’s interest and skills, thereby slotting women
into STEM majors in college, and eventually into STEM careers. Such policies neglect the fact that
stereotypes continue to hinder women as they progress in their careers. As long as cultural stereotypes
continue to make women feel like they do not fit in, women will be less likely to identify with
their professions. Indeed, in their analysis of college students majoring in a STEM field, Cech and
colleagues show that students who had less confidence that they fit in a STEM major were less
likely to say they intended to enter a STEM career after graduation compared with students who
perceived a better fit (Cech et al. 2011). Similarly, the study by Murphy and colleagues demonstrates
how male-dominated cultural environments can make female students less likely to feel like they
belong, causing even women highly identified with STEM fields to lose interest in pursuing STEM
careers (Murphy et al. 2007). Our study shows that even those women who do enter a STEM career
may be less likely to stay in these fields if they perceive that they lack the cultural traits associated
with technical work (e.g., geeky, assertive, and obsessive).

In addition, policies that aim to increase women’s human capital by improving their training,
restructuring school programs, and targeting women’s quantitative and analytical skills, while
important, cannot solve the problem by themselves. Even when we compare men and women
who have equal perceptions of skill alignment, a cultural divide between the stereotypical view of
women and the stereotypical view of successful tech workers disadvantages women, especially at
the early stages of their career. Widespread assumptions about who succeeds in tech companies—the
masculine-typed geeky coder—continue to proliferate. Our findings suggest that, unless we reshape
the cultural images surrounding technology and technical work, women will continue to leave tech
jobs in higher numbers than men.

Logically, women’s cultural alignment could be increased either by broadening the cultural image
of successful tech work, by stressing its collaborative and socially important nature, for example
(Cech 2015; Diekman et al. 2010; Diekman et al. 2016), or by urging women to see themselves in
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ways that align with existing narrow images of tech as geeky, obsessive, etc. Since these images are
currently strongly associated with masculinity, the latter approach seems less promising. Policies
that broaden the image of a successful tech worker might help increase the retention of women in
tech fields. Carnegie Mellon University provides an encouraging example of such change: in 1995,
only 7 of 95 students entering the undergraduate program in computer science were women. In 2000,
that number had increased to 54 out of 130, or 42% (Margolis and Fisher 2002). The researchers
found that the stereotype of computer science majors as geeks “myopically obsessed with computing”
discouraged women. Carnegie Mellon broadened the picture of a successful computer science student
by encouraging faculty and students to discuss multiple valid ways to be a computer scientist and
emphasizing computing’s real-world value and connections to other disciplines. Importantly, they
did not urge women to change their self-conceptions to fit into the current narrow image of computer
science. By changing the cultural image of the computer science major (along with several other
changes), Carnegie Mellon succeeded in increasing the representation of women. Tech companies can
emulate this example and increase the retention of women by altering the cultural images surrounding
tech work.

In a controlled experiment, Cheryan and colleagues found that by simply changing the objects
in a computer science classroom from those associated with geeky masculinity (e.g., Star Trek
posters) to more gender-neutral objects, college women’s interest in computer science increased
(Cheryan et al. 2009). However, some technology companies do just the opposite, displaying
exactly the kinds of images that Cheryan and colleagues found dampen women’s interests
(Wynn and Correll 2014). Such stereotype-saturated environments can also influence the treatment of
women, such as career mentorship opportunities and salary (Moss-Racusin et al. 2012). While it is hard
to change widely shared cultural stereotypes, it is possible for local organizations, such as universities
and individual workplaces, to change the images that are present in their environments. Doing so
might be especially useful for retaining women in the early stages of their careers.

The dataset for this study comes from seven tech companies in the Silicon Valley. While this area
is an important site for technical work, it is not clear if the results would be the same in other regions
or even in other companies in the Silicon Valley. Because of our theoretical interests in examining how
stereotypes affect men and women tech workers, we sought a sample that would allow us to examine
these processes in a heretofore unexamined population. With these unique data of actual tech workers
at cutting-edge companies, we believe we gain novel insights into the stereotypes such workers have
about successful technical work and how these stereotypes affect men and women tech workers once
on the job. Given the increasing importance of technical work for today’s economy and the continued
dearth of women in these fields, understanding how stereotypes affect the identification and intentions
of women and men who are in these fields is of crucial importance.

Furthermore, the findings may apply to other historically male-dominated industries—such
as finance, academia, and law enforcement—that continue to narrowly associate success with
stereotypically masculine traits (Blair-Loy and Cech 2016). By altering cues in the local environment
and changing the prevailing image of a successful worker in these fields, organizations in such
industries can potentially increase women’s alignment and ultimate retention. Our findings imply
that by making the image of success broader and more inclusive, organizations can do more than put
women into high-status jobs—they can retain women and enable them to advance.
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Appendix A

Table A1. Rotated Factor Loadings from Principal-Component Factor Analysis on Traits Describing
Successful Tech Workers (Simard et al. 2007).

Variables Factor 1: Intensive
Work Commitment

Factor 2: Geeky
Personality

Factor 3:
Quantitative Skill

Young 0.526 0.451 −0.129
Masculine 0.573 0.384 −0.131

Long Working Hours 0.744 0.111 0.101
Cool −0.005 0.687 −0.114

Geeky 0.202 0.727 0.170
Highly Mathematical 0.259 0.207 0.608

Obsessive 0.621 0.159 0.212
Assertive 0.644 −0.156 0.051
Analytical 0.029 0.006 0.805

Questioning −0.004 −0.034 0.682

Table A2. Pearson’s Zero-Order Correlation Coefficients from Bivariate Pairs of Cultural Scale Traits
Describing Successful Tech Workers (Simard et al. 2007).

Variables Young Long Hours Obsessive Assertive Cool Geeky

Young 1.000
Long Hours 0.356 1.000
Obsessive 0.255 0.352 1.000
Assertive 0.167 0.282 0.333 1.000

Cool 0.244 0.036 0.128 0.150 1.000
Geeky 0.266 0.249 0.320 0.117 0.407 1.000

Table A3. Pearson’s Zero-Order Correlation Coefficients from Bivariate Pairs of Cultural Scale Traits
Describing Self (Simard et al. 2007).

Variables Young Long Hours Obsessive Assertive Cool Geeky

Young 1.000
Long Hours 0.074 1.000
Obsessive 0.060 0.225 1.000
Assertive 0.044 0.172 0.325 1.000

Cool 0.351 0.095 0.123 0.220 1.000
Geeky 0.169 0.148 0.278 0.118 0.237 1.000

Table A4. Pearson’s Zero-Order Correlation Coefficients from Bivariate Pairs of Skill Scale Traits
Describing Successful Tech Workers (Simard et al. 2007).

Variables Highly Mathematical Analytical Questioning

Highly Mathematical 1.000
Analytical 0.348 1.000

Questioning 0.207 0.507 1.000

Table A5. Pearson’s Zero-Order Correlation Coefficients from Bivariate Pairs of Skill Scale Traits
Describing Self (Simard et al. 2007).

Variables Highly Mathematical Analytical Questioning

Highly Mathematical 1.000
Analytical 0.472 1.000

Questioning 0.179 0.436 1.000
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Table A6. Percent of Men and Women who have Cultural and Skill Alignment by Company.

Company Variables Men Women

Company 1 Cultural Alignment 51% 37% **
Skill Alignment 55% 50%

N 127 296
Company 2 Cultural Alignment 58% 36% *

Skill Alignment 63% 54%
N 112 28

Company 3 Cultural Alignment 53% 42%
Skill Alignment 71% 32% **

N 34 19
Company 4 Cultural Alignment 62% 50%

Skill Alignment 63% 59%
N 144 46

Company 5 Cultural Alignment 57% 57%
Skill Alignment 61% 43%

N 44 14
Company 6 Cultural Alignment 58% 34% ***

Skill Alignment 71% 68%
N 320 68

Company 7 Cultural Alignment 55% 30% ***
Skill Alignment 67% 57%

N 267 63

N = 1582. Note: (standard deviation). + p < 0.10, * p < 0.05, ** p< 0.01, *** p < 0.001. Bivariate t-tests (Simard et al. 2007).
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Abstract: Lesbian, gay, bisexual, and transgender (LGBT) individuals in U.S. workplaces often
face disadvantages in pay, promotion, and inclusion and emergent research suggests that these
disadvantages may be particularly pernicious within science and engineering environments.
However, no research has systematically examined whether LGBT employees indeed encounter
disadvantages in science, technology, engineering and math (STEM) organizations. Using
representative data of over 30,000 workers employed in six STEM-related federal agencies (the
Department of Energy, the Environmental Protection Agency, the National Science Foundation,
NASA, the Nuclear Regulatory Commission, and the Department of Transportation), over 1000 of
whom identify as LGBT, we compare the workplace experiences of LGBT employees in STEM-related
federal agencies with those of their non-LGBT colleagues. Across numerous measures along
two separate dimensions of workplace experiences—perceived treatment as employees and work
satisfaction—LGBT employees in STEM agencies report systematically more negative workplace
experiences than their non-LGBT colleagues. Exploring how these disadvantages vary by agency,
supervisory status, age cohort, and gender, we find that LGBT persons have more positive experiences
in regulatory agencies but that supervisory status does not improve LGBT persons’ experiences,
nor do the youngest LGBT employees fare better than their older LGBT colleagues. LGBT-identifying
men and women report similar workplace disadvantages. We discuss the implications of these
findings for STEM organizations and STEM inequality more broadly.

Keywords: STEM; LGBT inequality; Federal Agencies

1. Introduction

For decades, scholars have documented interactional- and institutional-level processes that
perpetuate disadvantages for women and racial/ethnic minorities in science, technology, engineering,
and mathematics (STEM). Although these professional arenas are increasingly committed to equality
and inclusion [1,2], women and racial/ethnic minorities continue to face marginalization and
discrimination in K-12 and college STEM education [3–8] and in STEM workplaces [5,9,10].

Do lesbian, gay, bisexual, and transgender (LGBT) persons experience similar forms of
disadvantage within STEM-related environments? Gender and sexuality scholars have argued that
hostility toward non-heterosexual identities and non-binary gender expressions often accompanies
social contexts dominated by hegemonically masculine gender performances [11–13]. Such biases are
rooted in beliefs about gender roles; they are reactions to what are presumed to be “normal” or “natural”
expressions of gender identity and proper relationships between men and women [12–15]. Emergent
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research suggests that anti-LGBT bias may be particularly strident in STEM-related environments
compared to other professional setting (e.g., [16–18]). As a set of professional arenas that are culturally
dominated by hegemonically masculine-typed behavioral norms and interactional styles and that
devalue femininity [7,10,19–21], STEM environments likely harbor heterosexism, bias and discrimination
against LGBT persons that includes marginalization, harassment, and the denial of resources, and
heteronormativity, a cultural schema that promotes an essentialized male/female sex binary and
designates heterosexuality as the only normal sexuality [22,23].

Despite early exploration, researchers have yet to systematically determine whether LGBT workers
encounter widespread disadvantages in their day-to-day experiences in STEM-related workplaces.
The goal of this paper is to do just that. We use unique, representative survey data to compare the
workplace experiences of LGBT employees to their non-LGBT colleagues and to explore whether
these inequalities vary by agency, supervisory status, age, and gender. Drawing on ten distinct
measures along two different dimensions of workplace experiences—treatment as employees and job
satisfaction—this research offers a significant advancement in scholarly understanding of the contours
of LGBT inequality in STEM environments.

We study what are, in many ways, “best-case scenario” organizations for LGBT equality and
inclusion in science and engineering: STEM-related federal agencies. Unlike the private sector, which
is at the whim of organizational, local, and/or state-level anti-discrimination policies, federal agencies
have included sexual minorities in their non-discrimination policies since 1998 and transgender persons
since 2012. Although heavily hierarchical and bureaucratized accountability structures are not always
beneficial for the career advancement of under-represented groups [24], federal agencies are generally
recognized as employing organizations with better average diversity outcomes [25–27] and greater
equality in leadership [28] and remuneration [29] than organizations in the non-academic private
sector.1 As such, patterns of inequality that we identify within these STEM-related federal agencies
are likely present—if not amplified—in STEM organizations in the private sector. Additionally, these
are powerful and important organizations for the safety and vitality of the U.S.; thus, it is especially
important that all workers in these federal agencies are able to engage and contribute at work to their
fullest capacity, regardless of their sexual identity and gender expression.

Six federal agencies are included in our sample: the National Aeronautics and Space
Administration (NASA), the National Science Foundation (NSF), the Environmental Protection
Agency (EPA), the Department of Energy (DOE), the Nuclear Regulatory Commission (NRC),
and the Department of Transportation (DOT). These agencies are described in more detail below.
A representative sample of employees from these agencies was included in the U.S. Office of Personnel
Management’s 2013 Federal Employee Viewpoint Survey (FEVS). FEVS is, to our knowledge, the only
large representative workplace survey that includes an LGBT self-identification measure and a range of
workplace experience questions. Using these data, we are uniquely positioned to examine workplace
experience inequalities by LGBT status in STEM-related agencies.2

Unlike much past research on inequality in STEM, ours is an examination of all employees in
STEM-related organizations, not an analysis of the experiences of STEM professionals specifically.
Workers with STEM training are employed in a great variety of organizations across the labor
force—some of which are centrally focused on science and engineering tasks and others (e.g., healthcare
or entertainment-related organizations) that are not centrally STEM-focused. The overall culture of
an organization can be powerfully shaped by the cultural norms and values of the professional
occupations which serve as the raison d’être of that organization [10]. NASA centrally involves

1 Along these lines, a recent Canadian study of pay gaps for gay men found that these gaps were smallest among public-sector
workers and largest among private-sector workers [30].

2 We refer to these as “STEM-related agencies” rather than the more common “science agencies” because the former aligns
more closely with the actual work done in these agencies (which includes mathematical, engineering, and technical work)
and because “STEM” aligns with existing literature on inequality in technoscientific work.
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aerospace science and engineering; EPA involves environmental and biological sciences; NSF evaluates
and funds basic science, engineering, and math research; NRC is heavily involved with nuclear science
and engineering; the DOT is centrally tasked with civil, transportation, and logistics engineering and
technology; and the DOE promotes energy sciences. As such, the experiences of employees in these
agencies is fundamentally shaped by the cultural norms and practices of STEM in ways that impact
their day-to-day workplace experiences, even if employees themselves are not scientists, engineers,
mathematicians, or technologists.

As a result of the systemic heterosexism and heteronormativity suggested by previous research on
STEM environments [19,31], we expect that LGBT employees in these STEM-related federal agencies
will report more negative treatment as employees and be less satisfied with their jobs than their
non-LGBT colleagues. We expect that these patterns of inequality may vary depending on the context
of each agency. In particular, agencies that principally serve a regulatory function may attract a slightly
more politically liberal set of employees who may also be more supportive and inclusive of LGBT
colleagues. We also explore whether these inequalities are mitigated for LGBT employees who have
advanced in the hierarchy of their organization (i.e., are supervisors), whether recent cultural shifts
toward greater rights and inclusivity for LGBT persons manifests as cohort differences in reported
workplace experiences, and whether LGBT disadvantages play out differently by gender.

We find that LGBT employees report significantly more negative workplace experiences in these
agencies than their non-LGBT colleagues across a number of workplace experience measures. These
inequalities appear to be slightly less pronounced in the two regulatory agencies—the EPA and the
NRC—relative to the other STEM-related agencies. Contrary to expectations, however, we do not find
that inequalities are mitigated for LGBT employees who hold a supervisory role in their agency, nor
for the youngest workers, suggesting that these workplace experience disadvantages may neither “get
better” with career advancement nor disappear as younger generations of LGBT persons enter the
workforce. Finally, we find that both men and women who identify as LGBT face similar workplace
experience disadvantages in these agencies.

Examining LGBT inequality as a workplace dynamic is an important approach given the nature of
LGBT status biases. Unlike other status characteristics such as gender or race/ethnicity, LGBT status is
not reliably visible; LGBT status biases may operate within workplaces even when workers do not know
or are not frequently reminded of the LGBT status of their co-workers [32,33]. As such, it is especially
useful to study LGBT inequality by examining its entrenchment within STEM-related organizations.

2. Background

Recent research has identified a variety of ways that heterosexism and heteronormativity operate
within the U.S. workforce. More than half of U.S. states lack employment discrimination legislation
that includes LGBT status and several states are actively seeking to walk back such laws [34]. Within
employing organizations, LGBT persons face formal and informal discriminatory policies such as
health benefits that exclude transgender persons and same-gender domestic partners [22,35,36].
Informally, LGBT employees frequently encounter wage inequalities, social isolation from colleagues,
workplace experience disadvantages, and pressures to downplay or cover their LGBT status (Author
cite, [15,37,38]).

Emergent scholarship suggests that these LGBT inequalities are similar, if not more exaggerated,
in STEM organizations. Exploratory qualitative work on LGBT employees in STEM organizations has
found that they often are isolated from colleagues and feel they work harder than their non-LGBT
colleagues to convince others of their competence as STEM professionals [16,39]. Studies of academic
settings have found that LGBT students and faculty in STEM are more likely than LGBT persons in
other disciplines to report discomfort with the campus climate and fear harassment and physical
violence on campus [18,22,40,41].

Despite this early research, we know very little about the experiences of LGBT-identifying
workers in science and engineering environments. This paper seeks to fill this void by comparing
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LGBT and non-LGBT colleagues in the same STEM-related organizations across an array of workplace
experiences. As we discuss in the conclusion, the results presented here are likely applicable to STEM
organizations across the labor force—even organizations that, like the federal agencies we study, have
non-discrimination policies that include sexual identity and gender expression.

2.1. STEM-Related Federal Agencies

Six federal agencies are included in our study. To provide context for our analysis, we briefly
describe the origins and goals of each agency.

Environmental Protection Agency (EPA): Sparked by the physical and political fallout of the Santa
Barbara oil spill in 1969, president Nixon formed the Environmental Protection Agency (EPA) in
1970 [42,43]. The EPA is a regulatory agency whose mission it is to protect human health and the
environment and to “ensure compliance with environmental laws passed by Congress, state legislatures
and tribal governments” [44]. The EPA works to make the United States air, water, and land cleaner
and safer through policies such as the Clean Water and Clean Air Acts [45].

Nuclear Regulatory Commission (NRC): In the wake of the first atom bomb detonation in 1945 and
the Cold War arms race that ensued, the federal government saw a need to regulate nuclear materials
and find civilian uses for nuclear energy. The Atomic Energy Commission (AEC) was created in 1946 to
regulate and promote nuclear power. However, the AEC depended on the nuclear industry to produce
data for them and to regulate themselves [46,47]. To address the inherent conflict of both promoting
and regulating the nuclear industry, the 1974 Energy Reorganization Act split the AEC into the Nuclear
Regulatory Commission (NRC) and the Energy Research and Development Agency (ERDA) [48].3

The NRC now oversees the nuclear industry by regulating nuclear materials and creating and enforcing
nuclear safety requirements [47].

Department of Energy (DOE): The energy shortage of the 1970s demonstrated the need for
federal policy regarding energy creation and transmission, which had largely been left to the private
sector [50,51]. President Carter signed the Department of Energy into action in 1977 [52]. The new
agency’s responsibility was to “[advance] the national, economic, and energy security of the United
States; [promote] scientific and technological innovation in support of that mission; and [ensure]
the environmental cleanup of the national nuclear weapons complex” [50]. The Department of
Energy is responsible for research and development of energy technologies, energy conservation and
regulation planning, and energy data collection and analysis [48]. Currently, clean energy research and
development stands as the DOE’s highest priority [53].

National Aeronautics and Space Administration (NASA): Russia’s launch of the satellite Sputnik
sparked a fervor in the U.S. government for aerospace research [54–56]. President Eisenhower signed
the National Aeronautics and Space Act on 29 July 1958 to establish an agency that would “pioneer
the future in space exploration, scientific discovery and aeronautics research” [56,57]. Building on
the early accomplishments of its Apollo program, NASA is currently responsible for continued space
and exploration research and works alongside the space programs of other nations and the nascent
for-profit space exploration industry [57].

National Science Foundation (NSF): Congress signed a bill in 1950 to establish the National Science
Foundation, an agency intended to facilitate the perpetuation of the wartime pace of scientific and
engineering advancements during times of peace [58]. The NSF’s central goals are to support research
and education in science and engineering [59]. From its inception, the mission of NSF has dictated that
scientists and engineers be in charge of the agency and that patenting guidelines are developed and
managed by the foundation itself [60,61].

Department of Transportation (DOT): The transportation infrastructure played an important
role in the post-World War II economic boom [62]. By the 1960s, billions of dollars were being

3 The Energy Research and Development Agency was absorbed into the DOE upon its creation in 1977 [49].
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spent across eleven transportation-related agencies that dealt with differing facets of transportation
management [62]. Congress adopted the Department of Transportation Act in 1966 to consolidate these
efforts into one agency [63]. The new agency was intended to “serve the United States by ensuring
a fast, safe, efficient, accessible and convenient transportation system that meets our vital national
interests and enhances the quality of life of the American people, today and into the future” [64].
DOT is currently responsible for creating and coordinating wide-reaching transportation policies and
programs across the U.S. [64].

Although the climate for LGBT-identifying employees may vary across these agencies, they—like
all federal employees—are protected by anti-discrimination policies that are inclusive of sexual
minority and gender expression. Furthermore, each of these agencies has an LGBT-specific Employee
Resource Group (ERG) that provides networking, advocacy, and social support for LGBT employees
and allies.

2.2. Hypotheses

Based on research discussed above on the experiences of LGBT persons in the workforce generally
and in STEM specifically, we expect that LGBT-identifying employees in STEM-related federal agencies
will report significantly less positive workplace experiences than their non-LGBT colleagues. We focus
on two specific dimensions of workplace experiences, shown to be important in previous research on
LGBT workplace inequality [32,65–67]: respondents’ perceived treatment as employees (e.g., whether
they feel like their work is respected and that they are supported by their co-workers) and their work
satisfaction (e.g., whether they are personally satisfied with their job and the extent to which they
feel empowered at work). Due to processes of heterosexism and heteronormativity discussed above,
we expect that LGBT persons will report significantly less positive treatment as employees, and be less
satisfied with their work compared to their non-LGBT colleagues.

Hypothesis 1: LGBT-identifying employees will report worse workplace experiences than their non-LGBT
colleagues, net of agency, gender, racial/ethnic minority status, age cohort, tenure, and supervisory status.

Support for LGBT equality and inclusion varies drastically across the two dominant political
parties in the U.S. As entities that work in and around partisan politics, we might expect that some
of this partisanship might play out within the context of the federal agencies themselves. However,
as federal agencies, the six organizations that we study are bipartisan by definition and decree.
The top-level leadership of several of them is purposefully comprised of an equal balance of democratic
and republican appointed executives.

Although none of them are “conservative” or “liberal” agencies with corresponding views on
LGBT equality, we suspect that the average workplace experiences for LGBT employees may vary
depending the politicization of the core work of the agency. Specifically, there may be differences
between the experiences of LGBT employees who work in agencies that principally serve a regulatory
function (i.e., EPA and NRC), versus those that work in agencies that serve a number of other functions.
Government regulation itself is politicized: conservative political leaders and legislators have called
for broad-scale deregulation, and conservative voters tend to be deeply unsupportive of expanding
government regulation [68,69].4 As such, we expect that the regulatory agencies in our sample
may attract a slightly more politically and socially liberal set of employees than the other agencies.
These more liberal pro-regulation employees may thus be more supportive of LGBT rights and
inclusion [71,72] than the average employees in other federal agencies.

4 For instance, in recent Pew polls, 76% of Republicans say that the government regulation of business does more harm
than good (compared to 41% of Democrats) while 64% of Democrats (compared to only 28% of Republicans) believe that
environmental protection should be strengthened [70].
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Hypothesis 2: LGBT employees who work in regulatory agencies (i.e., EPA and NRC) will report more positive
workplace experiences than LGBT employees who work in other STEM-related agencies, net of age cohort,
supervisory status, gender and racial/ethnic minority status.

Previous research on LGBT persons in the workforce has suggested that those who occupy
leadership positions in their organizations have more social power and are more able to be open
about their LGBT status than those who are lower in the organizational hierarchy and thus more
vulnerable [65,66].5 As such, we expect that LGBT persons who are supervisors may be comparatively
insulated from the effects of LGBT status biases and report significantly more positive workplace
experiences compared to LGBT persons who do not hold a supervisory role in their organization:

Hypothesis 3: LGBT employees who are supervisors report significantly more positive workplace experiences
than their LGBT colleagues who are not supervisors, net of agency, age cohort, tenure, gender and racial/ethnic
minority status.

Over the last several decades, public views on sexual minorities and transgender individuals
have changed dramatically [73]. Although over half of Americans express some level of disapproval
toward sexual minorities [74], younger cohorts have entered the workforce during a time when blatant
heterosexism is on the decline and state and local legislation has become more equitable overall
for LGBT-identifying persons. Older LGBT-identifying federal employees experienced a different
work environment in past decades. Up until the 1980s, LGBT persons were regularly denied the
security clearances so often required of work in science and engineering agencies and were subject to
invasive questioning in security clearance applications through the 1990s [75]. Given these political
and social changes, we might expect that the youngest cohorts of LGBT-identifying workers may
report systematically more positive work experiences than their older colleagues. Even if older LGBT
colleagues face a qualitatively better work environment now than in the past, their views on their
current workplace experiences may be colored by past experiences of prejudice. As such, we expect
there to be a significant and negative interaction effect between age cohort and LGBT status, meaning
that younger LGBT persons have more positive workplace experiences than older LGBT colleagues.

Hypothesis 4: Older LGBT employees will report significantly more negative workplace experiences than
younger LGBT employees, net of agency, gender, racial/ethnic minority status, tenure, and supervisory status.

If, however, the LGBT * age cohort interaction terms are insignificant, this would indicate that
younger cohorts of LGBT persons are not generally better off than their older LGBT colleagues.

Finally, we examine whether these LGBT inequalities vary by gender. Existing scholarship does
not suggest an obvious set of relationships. For men, LGBT status likely undermines workplace
experiences, both because of negative status biases toward LGBT persons in general and the cultural
association of gay, bisexual, and transgender men with femininity [22] that is devalued in STEM
environments [19]. The pattern among women is less clear. On the one hand, lesbian, bisexual, and
transgender women are culturally associated with masculinity, which may mean that they are taken
more seriously in STEM-related environments and have better work experiences [19]. On the other
hand, LGBT-identifying women’s divergence from normative or “natural” gender roles may mean that
they encounter more negative treatment and have less work satisfaction than other women in their
agencies. We investigate whether there are gendered patterns in these LGBT inequalities by comparing
LGBT and non-LGBT men and women separately. The results of this analysis shed light on gender
processes in STEM environments more generally by helping to disentangle whether gender biases are

5 Along similar lines, interviews with sexual minority graduate students in engineering suggested that they felt more
comfortable being open about their sexual identity as teaching assistants than they were as undergraduate students [19].
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principally an issue of the devaluation of femininity (which would reflect LGBT biases for men but no
effect—or possibly a benefit—of LGBT status for women) or broader processes related to the norms
and expectations of the gender structure more broadly.

3. Methods

We use data from the 2013 Federal Employee Viewpoint Survey (FEVS) for these analyses. FEVS
is a representative survey of employees in federal agencies in the U.S. conducted by the Office of
Personnel Management (OPM). In 2012, OPM added a question about LGBT status to the FEVS.
Although FEVS has limitations in that it is cross-sectional and does not (for reasons of confidentiality)
include details on respondents’ occupation or specific positions of employment, it is the only available
dataset that offers the ability to assess the workplace experiences of LGBT persons in STEM-related
organizations using representative data.

The full 2013 FEVS sample contains 376,577 employees.6 For this analysis, we use the
37,219 respondents who are employed in the six STEM-related agencies. We use multiple imputation
(20 multiply-imputed datasets) to handle missing data on all measures except LGBT status7 and all
models are weighted with the OPM-provided proportional weight “postwt”.

3.1. Variable Operationalization

Table 1 provides information on specific question wording and scale construction. LGBT status,
the focal independent variable, was created by OPM out of a question that asked respondents: “Do you
consider yourself to be one of the following (mark all that apply):” “Heterosexual or Straight”,
“Bisexual”, “Gay or Lesbian”, “Transgender”, and “Prefer not to say”. Respondents who selected
bisexual, gay or lesbian, or transgender were coded as LGBT. Respondents who marked “prefer not to
say” (12% of the sample) were excluded from the analysis.

Table 1. Operationalization of workplace experience dependent variables.

Perceived Treatment as Employees

Work Success is
Fostered

“I feel encouraged to come up with new and better ways of doing things”, “I am given a
real opportunity to improve my skills in my organization”, “I have enough information to
do my job well”, and “My talents are used well in the workplace”. (1 = [neg]ative to
3 = [pos]itive; α = 0.820)

Transparent
Evaluations

“My performance appraisal is a fair reflection of my performance”, “My supervisor/team
leader provides me with constructive suggestions to improve my job performance”, and
“Discussions with my supervisor/team leader about my performance are worthwhile”,
(1 = neg to 3 = pos; α = 0.816)

Adequate Resources “I have sufficient resources to get my job done”, “My workload is reasonable”, and “My
training needs are assessed”. (1 = neg to 3 = pos; α = 0.657)

Respected by
Supervisor

“My supervisor/team leader listens to what I have to say”, “My supervisor/team leader
treats me with respect”, and “My supervisor/team leader provides me with opportunities
to demonstrate my leadership skills”. (1 = neg to 3 = pos; α = 0.852)

Diversity Supported

“My supervisor/team leader is committed to a workforce representative of all segments of
society”, “Policies and programs promote diversity in the workplace”, “Prohibited
Personnel Practices are not tolerated”, and “Managers/supervisors/team leaders work
well with employees of different backgrounds”. (1 = neg to 3 = pos; α = 0.798)

6 FEVS was administered to a random sample of all permanent, non-seasonal employees of 37 large agencies and
45 independent agencies. The 2013 response rate was 48.2%, which is a typical response rate for workplace surveys [76].

7 The Stata “chained” command was used to produce the 20 imputed datasets. Seventeen percent of responses were missing
on the diversity support measure and 16 percent were missing from the meritocratic organization measure. All other
measures had less than 7 percent missing.

234



Soc. Sci. 2017, 6, 12

Table 1. Cont.

Perceived Treatment as Employees

Workplace Satisfaction

Personal Satisfaction
from Work

“I like the kind of work I do”, “My work gives me a feeling of personal accomplishment”,
and “The work I do is important”. (1 = neg to 3 = pos; α = 0.723)

Satisfaction with
Working Conditions

“Employees are protected from health and safety hazards on the job”, “Physical conditions
allow employees to perform their jobs well”, “My organization has prepared employees
for potential security threats”, and “I recommend my organization as a good place to
work”. (1 = neg to 3 = pos; α = 0.659)

Employee
Empowerment

“Creativity and innovation are rewarded”, “Employees have a feeling of personal
empowerment with respect to work processes”, “Employees are recognized for providing
high quality products and services”, and “Supervisors/team leaders in my work unit
support employee development”. (1 = neg to 3 = pos; α = 0.844)

Satisfaction with
Procedures

“How satisfied are you with the recognition you receive for doing a good job?” “How
satisfied are you with your involvement in decisions that affect your work?” “How
satisfied are you with your opportunity to get a better job in your organization?” and
“How satisfied are you with the information you receive from management on what’s
going on in your organization?” (1 = neg to 3 = pos; α = 0.835)

Overall Job
Satisfaction “Considering everything, how satisfied are you with your job?” (1 = neg to 3 = pos)

We examine two dimensions of workplace experiences: treatment as employee measures and
work satisfaction measures (also see [32]. The range of measures we include are important: some of
them (e.g., job satisfaction, respected by supervisor) are less dependent on one’s particular occupation
or hierarchical position than others (e.g., adequate resources). This range also allows us to understand
whether patterns of inequality seem to coalesce around only one type of workplace experience
inequality or extend across a wider array of issues.

The individual measures, and the variables that were used to make up the scales, are detailed in
Table 1. In the original FEVS instrument, respondents were asked their level of agreement with each
statement on a 1–5 scale (1 = “strongly disagree”, 2 = “disagree”, 3 = “neither agree nor disagree”,
4 = “agree”, and 5 = “strongly agree”). Questions related to work satisfaction were asked with
a parallel 1–5 scale ranging from “very dissatisfied” to “very satisfied”. In order to help protect
confidentiality, OPM recoded the 1–5 response values on each question into a 1–3 positive/negative
response range, where 3 = positive (agree or strongly agree; satisfied or very satisfied), 2 = neutral
(neither agree nor disagree; neither satisfied nor unsatisfied), and 1 = negative (strongly disagree or
disagree; very dissatisfied or dissatisfied). The index measures below were divided by the number of
measures in the index in order to retain a 1–3 value range.

3.2. Controls

Our models control for as wide a range of demographic and employment variables as is available
in the data. Specifically, we control for gender (1 = woman, 0 = man), racial/ethnic minority (REM)
status (1 = identify as African-American, Asian, Hispanic or Latino, Native American and/or other
nonwhite identity; 0 = identifies as white, non-Hispanic), tenure in one’s agency (1 = 5 or fewer
years, 2 = 6–14 years, 3 = 15 or more years), supervisory status (1 = supervisor, manager, or executive;
0 = non-supervisor or team leader), and age cohort (1 = under 40 years; 2 = 40–49 years; 3 = 50–59 years;
4 = 60 years or above). Due to concerns about possible identifiability and loss of confidentiality,
the Office of Personnel Management does not provide educational background level or occupational
category in FEVS, nor does it grant restricted-use access to such data. As such, we are not able to
determine whether individual respondents in these agencies are employed in STEM occupations or
have STEM degrees.
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3.3. Analytic Strategy

Means and standard errors for all respondents and for LGBT and non-LGBT persons separately
are included in Table 2. To test our hypotheses, we use OLS regressions for all but one of our dependent
measures. Because overall job satisfaction is a single-question measure with a 1–3 value range, we
use an ordered logistic regression model for that measure. We test the first hypothesis with models
that include the LGBT identity measure, alongside controls for gender, REM status, supervisor status,
employment tenure, age cohort, and agency. For the second hypothesis, we re-run this set of models
with interaction terms between LGBT status and each of the agencies, including these interaction
terms in the models one at a time. Hypotheses 3 and 4 are tested by adding to the previous models
interaction terms for LGBT status X supervisor status and LGBT status X age cohort, respectively.
Finally, to investigate possible differences in the effect of LGBT status by gender, we present the LGBT
coefficients for each outcome measure in models ran separately for men and women.

Table 2. Univariate and Bivariate Statistics for LGBT and non-LGBT Respondents.

ALL LGBT Non-LGBT
p

(N = 37,219) (N = 1042) (N = 36,177)

Mean SE Mean SE Mean SE

LGBT 0.028 0.001 n/a n/a
Female 0.369 0.003 0.379 0.016 0.369 0.003

Racial/Ethnic Minority 0.279 0.002 0.251 0.014 0.279 0.002 *
Supervisor 0.184 0.002 0.183 0.012 0.184 0.002
Age cohort 2.495 0.005 2.293 0.030 2.500 0.005 ***

Tenure 2.318 0.004 2.219 0.025 2.321 0.004 ***

Treatment as Employee

Success fostered 2.513 0.003 2.394 0.021 2.517 0.003 ***
Transparent evaluations 2.548 0.003 2.438 0.022 2.551 0.003 ***

Adequate resources 2.291 0.003 2.146 0.021 2.295 0.003 ***
Respected by supervisor 2.709 0.003 2.635 0.019 2.711 0.003 ***

Diversity supported 2.592 0.003 2.489 0.019 2.594 0.003 ***

Work Satisfaction

Personal satisfaction 2.768 0.002 2.710 0.015 2.769 0.002 ***
Working conditions 2.705 0.002 2.613 0.015 2.708 0.002 ***

Employee empowerment 2.357 0.003 2.243 0.022 2.360 0.003 ***
Procedure satisfaction 2.300 0.003 2.160 0.021 2.304 0.003 ***

Job satisfaction 2.593 0.004 2.446 0.025 2.597 0.004 ***

Agencies

EPA 0.084 0.001 .152 0.011 0.082 0.001 ***
NRC 0.053 0.001 0.053 0.007 0.053 0.001
NSF 0.018 0.001 0.027 0.005 0.018 0.001

NASA 0.218 0.002 0.168 0.012 0.220 0.002
DOT 0.487 0.003 0.464 0.015 0.487 0.003
DOE 0.140 0.002 0.136 0.011 0.140 0.002

† p < 0.10, * p < 0.05, ** p < 0.01, *** p < 0.001 (two-tailed test comparing LGBT and non-LGBT respondents).

4. Results

Table 2 provides means and standard errors for the demographic and workplace experience
measures for all respondents and separately by LGBT status. Just under three percent (2.8%) of
our sample identifies as LGBT. This is noticeably lower than national estimates that 3.4% of the U.S.
population identifies as LGBT [65], suggesting that LGBT persons are under-represented in these
STEM-related agencies relative to their representation in the U.S. population in general. Compared to
non-LGBT respondents, there is a significantly lower proportion of REMs among the LGBT sample
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and the LGBT sample is typically younger and has a shorter tenure. In these bivariate statistics, LGBT
persons have significantly more negative workplace experiences across all of the measures included
here. The multivariate analyses below will test whether these differences remain net of variation in age,
tenure, supervisory status, gender and race/ethnicity. Table 2 also provides the proportion of the total
sample are employed in the six different agencies. Appendix A Table A1 provides the representation
of LGBT persons in each agency, ranging from a high of 5.0% at the EPA and a low of 2.2% at NASA.

We hypothesized above that LGBT-identifying employees would report worse workplace
experiences than their LGBT colleagues in the form of more negative treatment and worse job
satisfaction. Table 3 presents the results of the OLS and ordered logit models predicting the workplace
experience measures with LGBT status and controls. As expected, LGBT-identifying employees
report more negative workplace experiences along a variety of different measures: they are less
likely than their non-LGBT colleagues to report that their success is fostered, that they have adequate
resources, that their organization supports diverse workers, and (marginally) that they have transparent
evaluations in their workplace. We also find substantial differences in job satisfaction: LGBT employees
report significantly lower satisfaction with employee empowerment and organizational procedures
in their agency, and lower overall job satisfaction than their non-LGBT colleagues. They are also
marginally significantly less likely to report personal satisfaction with their work and satisfaction with
the working conditions in their organization. On average, these effect sizes are about a tenth of a point
on a three-point scale (1 = negative to 3 = positive).

Table 3. OLS and Ordered Logistic Regression Models Predicting Workplace Experience Measures
with LGBT Status and Controls (N = 37,219).

Treatment as Employees Measures

Success Fostered
Transparent
Evaluations

Adequate
Resources

Respected by
Supervisor

Diversity
Supported

B S.E. B S.E. B S.E. B S.E. B S.E.

LGBT −0.115 * 0.046 −0.084 † 0.043 −0.162 *** 0.046 −0.074 0.046 −0.147 * 0.066
Female 0.035 ** 0.013 0.005 0.013 0.011 0.013 −0.031 * 0.014 −0.029 * 0.012
REM 0.008 0.015 −0.017 0.014 0.081 *** 0.015 −0.035 * 0.014 −0.134 *** 0.014

Supervisor 0.203 *** 0.014 0.130 *** 0.014 −0.048 ** 0.016 0.153 *** 0.011 0.216 *** 0.011
Tenure −0.060 *** 0.011 −0.075 *** 0.011 −0.066 *** 0.010 −0.041 *** 0.010 −0.079 *** 0.009

EPA −0.018 0.017 0.067 *** 0.017 −0.173 *** 0.017 0.056 *** 0.015 0.058 *** 0.015
NSF 0.064 * 0.027 0.079 ** 0.028 −0.088 ** 0.029 0.029 0.026 0.037 0.025

NASA 0.267 *** 0.011 0.226 *** 0.012 0.177 *** 0.012 0.164 *** 0.010 0.246 *** 0.010
NRC 0.185 *** 0.015 0.149 *** 0.017 0.218 *** 0.017 0.111 *** 0.014 0.187 *** 0.014
DOT 0.004 0.015 0.071 *** 0.015 0.046 ** 0.014 0.022 0.014 0.019 0.013

Constant 2.485 *** 0.027 2.577 *** 0.027 2.369 *** 0.025 2.750 *** 0.025 2.69 *** 0.022

Workplace Satisfaction Measures

Personal
Satisfaction

Satisfactory
w/Working
Conditions

Employee
Empowerment

Procedures
Satisfaction

Overall Job
Satisfaction ˆ

B S.E. B S.E. B S.E. B S.E. B S.E.

LGBT −0.049 † 0.026 −0.080 † 0.045 −0.115 * 0.046 −0.140 ** 0.050 −0.379 * 0.153
Female 0.011 0.008 0.002 0.011 0.037 ** 0.013 0.017 0.013 0.078 † 0.044
REM 0.018 * 0.008 0.028 * 0.012 0.042 ** 0.015 0.046 ** 0.015 0.081 † 0.048

Supervisor 0.098 *** 0.009 0.128 *** 0.011 0.274 *** 0.015 0.243 *** 0.016 0.505 *** 0.054
Tenure −0.029 *** 0.006 −0.058 *** 0.008 −0.102 *** 0.011 −0.092 *** 0.010 −0.229 *** 0.035

EPA −0.002 0.012 0.035 * 0.011 0.040 * 0.017 −0.037 * 0.016 −0.020 0.053
NSF 0.044 * 0.019 0.064 *** 0.017 0.057 * 0.028 0.003 0.027 0.105 0.093

NASA 0.096 *** 0.008 0.169 *** 0.008 0.386 *** 0.012 0.303 *** 0.011 0.695 *** 0.041
NRC 0.073 *** 0.012 0.152 *** 0.010 0.267 *** 0.017 0.233 *** 0.016 0.514 *** 0.061
DOT 0.059 *** 0.010 −0.014 0.011 0.009 0.015 0.030 * 0.015 0.279 *** 0.049

Constant 2.728 *** 0.015 2.686 *** 0.020 2.296 *** 0.027 2.280 *** 0.026 N/A N/A

Notes: DOE is the comparator category for the agency. REM = Racial/ethnic minority status. Columns report
unstandardized coefficients (and Std. Errors) from regression models. † p < 0.10, * p < 0.05, ** p < 0.01, *** p < 0.001
(two-tailed test), ˆ indicates ordered logit models; all other models are OLS regressions.
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Overall, these results indicate workplace experience inequalities for LGBT-identifying employees
across a wide range of treatment and satisfaction measures (supporting H1). Figure 1 presents the
mean values on each workplace experience measure for LGBT and non-LGBT workers, respectively.
Error bars represent 95% confidence intervals (±1.96 × SE). The asterisks indicate the significance of
the difference between LGBT and non-LGBT coworkers on each measure, net of controls (significance
values taken from Table 3).

Figure 1. Workplace Experiences among Non-LGBT and LGBT Employees. Height of the columns
indicates the means for LGBT and non-LGBT employees, respectively (error bars = 95% C.I.s).
Asterisks indicate significance of LGBT status net of variation by gender, REM status, tenure, age
category, and agency (* p < 0.05, ** p < 0.010, *** p < 0.001, based on two-tailed tests; 1 = negative,
2 = neutral, 3 = positive). See Table 3 for significance levels of the direct comparison of LGBT and
non-LGBT workers.

Although the STEM-related federal agencies in our sample share anti-discrimination regulations
and procedures, we expect there to be variation in the experiences for LGBT persons across these
agencies. In particular, we expect that LGBT employees will do slightly better in agencies that served a
primarily regulatory purpose, as workers with conservative anti-regulation political views (which are
correlated with less positive views of LGBT equality) may be likely to self-select out of those agencies.

To test Hypothesis 2, we predicted the workplace experience measures with an interaction term
between LGBT status and each agency indicator. The LGBT*agency measures were included in
the models one at a time. Figure 2 summarizes the patterns of significance for these interaction
terms. Specifically, the figure presents the direction and level of significance of the interaction term
between that agency and LGBT status that reach at least marginal statistical significance (p < 0.10).
A significant and positive interaction term would indicate that LGBT respondents at that agency
have significantly more positive experience on that measure compared to LGBT respondents in other
agencies. Appendix A Table A2 presents the coefficients, standard errors, and p-values for each of
these interaction terms.

The results are in the expected direction: LGBT respondents employed in the EPA are significantly
more likely to report that they have adequate resources and to be satisfied with their working
conditions, and marginally more likely to report satisfaction with organizational procedures, compared
to LGBT persons in the other STEM-related agencies. The Nuclear Regulatory Commission also
promotes more positive workplace experiences for LGBT persons compared to other agencies along
several dimensions: LGBT persons in the NRC report more transparent evaluations, more support for
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diversity, and, marginally, more adequate resources and more satisfaction with working conditions
and procedures, compared to LGBT employees in other agencies. NSF LGBT employees reported
significantly higher levels of employee empowerment and NASA LGBT employees reported greater
resources than LGBT employees at other agencies. On the flip side, LGBT employees in the DOE are
significantly less likely to report adequate resources and more negative working conditions than LGBT
employees at other agencies.8

Figure 2. Significance Level and Direction of LGBT*Agency Interaction Terms, for Regulatory (EPA,
NRC) and Non-Regulatory (NASA, NSF, DOT, DOE) Agencies. Note: † p < 0.10, * p < 0.05, ** p < 0.01,
*** p < 0.001 (two-tailed test). Only significant interaction terms are presented; all other interactions
terms have p > 0.10. ˆ indicates ordered logit model; all other models are ordinary least squared (OLS)
regressions. Coefficients, standard errors and p-values for each coefficient are presented in Table A1.

An alternative explanation for the generally more positive patterns at the NRC and the EPA
might be that they are demographically different than the other agencies—that they have greater
representation of LGBT employees, greater gender and race diversity, or their workforce is younger
and thus potentially more accepting of LGBT persons than the workforce at NASA, NSF, DOE and
DOT. Appendix A Table A1 provides employee demographics broken down by agency. The NRC is
not an outlier in its demographic diversity nor the average age of its employees. The EPA has the
highest proportion of LGBT employees (5 percent), which may help improve the experiences of LGBT
persons overall in that agency [32], but has comparatively low representations of women and people
of color and employees of similar average age. As such, the demographic contours of NRC and EPA
do not appear to be the driving factor in the patterns documented in Figure 2.

Beyond agency differences, we hypothesized that supervisory status may insulate LGBT persons
from some of the disadvantages that those lower in the organizational hierarchy encounter (H3). Table 4
presents the coefficients, p-values, and significance of the interaction term between LGBT*supervisory
status. Contrary to our hypothesis, we find that none of the interaction terms are significant and all are
substantively small. This suggests that the workplace experience inequalities that LGBT employees
face in these agencies are not lessened among those who have obtained supervisory status. In contrast,

8 Because the sample of LGBT respondents at NSF is numerically small (N = 28), there may be LGBT*NSF effects that are too
small to be picked up by the analysis. However, the p-values on the majority of the NSF*LGBT interaction terms are quite
large, lending confidence that NSF does not, indeed, provide better workplace experiences than other agencies. The sample
of LGBT respondents at NRC is similarly small. Several of the NRC*LGBT interaction terms approach full or marginal
significance; with a larger sample, we may see an even more substantial NRC effect.
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the main effect for the supervisor indicator, which now represents results from non-LGBT supervisors,
is strong and positive for most workplace experience measures, suggesting that non-LGBT persons
have generally more positive workplace experiences when they are supervisors. The same does not
hold for LGBT employees.

Table 4. OLS and Ordered Logistic Regression Models Predicting Workplace Experience Measures
with LGBT X Supervisor Status Interaction Term (N = 37,219).

Supervisor
Coefficient

LGBT Coefficient
Supervisor *

LGBT Coefficient
Supervisor *

LGBT p-Value

Treatment as Employee Models

Success fostered 0.203 *** −0.115 * 0.004 0.957
Transparent
evaluations 0.131 *** −0.079 −0.041 0.572

Adequate
resources −0.049 *** −0.169 ** 0.046 0.574

Respected by
supervisor 0.152 *** −0.077 0.024 0.717

Diversity
supported 0.215 *** −0.151 * 0.026 0.768

Work Satisfaction Models

Personal
satisfaction 0.097 *** −0.051 † 0.020 0.670

Working
conditions 0.128 *** −0.079 −0.011 0.863

Employee
empowerment 0.272 *** −0.120 * 0.041 0.580

Procedure
satisfaction 0.242 *** −0.142 * 0.018 0.823

Job satisfaction ˆ 0.506 *** −0.376 * −0.026 0.923

Note: † p < 0.10, * p < 0.05, ** p < 0.01, *** p < 0.001 (two-tailed test). ˆ indicates ordered logit model; all other models
are OLS regressions.

Next, we hypothesized that, consistent with substantial cultural and legislative shifts toward
LGBT equality and inclusion, younger LGBT employees would report more positive workplace
experiences than their older LGBT colleagues (H4). However, there is little indication of age cohort
effects: all but one of the interaction terms between LGBT status and age cohort are non-significant
(Table 5).9 We discuss the implications of these results in the next section.

Finally, we tested whether there are gender differences in the manifestation of LGBT inequality.
Table 6 presents LGBT coefficients for models ran separately for men and women. We find similar
patterns across both sets of models. This is confirmed by supplemental analyses (not shown)
replicating the models in Table 3 with LGBT*woman interaction terms; none of the interaction terms
were significant. This runs counter to possible expectations that LGBT-identifying women may
experience less workplace experience disadvantages than non-LGBT women because of the cultural
assumptions that non-heterosexual and transgender women are more masculine than heterosexual
women. It indicates that both men and women who identify as LGBT face similar workplace experience
disadvantages.10

9 Older LGBT workers report marginally lower satisfaction with their pay than younger LGBT workers, possibly reflecting
actual wage gaps for older LGBT employees that have accumulated over time.

10 The effects for employee satisfaction and job satisfaction are negative but do not reach statistical significance for women.
However, the interaction term between LGBT *gender in supplemental analysis is nonsignificant, suggesting that
LGBT-identifying women and men experience similar disadvantages on those measures.
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Table 5. OLS and Ordered Logistic Regression Models Predicting Workplace Experience Measures
with LGBT X Age Cohort Interaction Term (N = 37,219).

Age Cohort
Coefficient

LGBT Coefficient
Age Cohort *

LGBT Coefficient
Age Cohort *

LGBT p-Value

Treatment as Employee Models

Success fostered 0.014 † −0.155 0.021 0.672
Transparent
evaluations 0.010 −0.052 −0.013 0.788

Adequate
resources 0.006 −0.247 † 0.042 0.413

Respected by
supervisor −0.004 −0.072 0.001 0.989

Diversity
supported 0.001 −0.284 0.067 0.366

Work Satisfaction Models

Personal
satisfaction 0.014 ** −0.030 −0.009 0.705

Working
conditions 0.026 *** −0.133 0.026 0.574

Employee
empowerment 0.039 *** −0.116 0.004 0.978

Procedure
satisfaction 0.030 *** −0.149 0.006 0.915

Job satisfaction ˆ 0.067 * −0.376 −0.001 0.998

Note: † p < 0.10, * p < 0.05, ** p < 0.01, *** p < 0.001 (two-tailed test). ˆ indicates logit model; all other models are
OLS regressions.

Table 6. OLS and Ordered Logistic Regression Models Predicting Workplace Experience Measures
with LGBT Status, Run separately for Women and Men.

MEN (N = 22,550) WOMEN (N = 14,669)

LGBT Coefficient Std. Error LGBT Coefficient Std. Error

Treatment as Employee Models

Success fostered −0.119 † 0.063 −0.099 † 0.051
Transparent
evaluations −0.066 0.055 −0.112 † 0.060

Adequate
resources −0.153 ** 0.055 −0.177 ** 0.069

Respected by
supervisor −0.061 0.044 −0.092 0.094

Diversity
supported −0.106 † 0.053 −0.216 † 0.127

Work Satisfaction Models

Personal
satisfaction −0.049 † 0.027 −0.045 0.073

Working
conditions −0.079 0.063 −0.087 0.112

Employee
empowerment −0.100 * 0.049 −0.136 0.086

Procedure
satisfaction −0.145 * 0.069 −0.130 ** 0.046

Job satisfaction ˆ −0.456 * 0.196 −0.210 0.216

Note: † p < 0.10, * p < 0.05, ** p < 0.01, *** p < 0.001 (two-tailed test). ˆ indicates ordered logit model; all other models
are OLS regressions.
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5. Discussion

The goal of this paper is to examine whether there are significant workplace experience inequalities
for LGBT-identifying employees within STEM-related agencies and whether those inequalities vary
by agency, worker supervisory status, worker age, and gender. As hypothesized, we found evidence
of widespread workplace experience inequalities for LGBT employees compared to their non-LGBT
colleagues. We found these inequalities to be somewhat lessened—but not completely mitigated—in
agencies with primarily regulatory missions and goals. Although we cannot say for certain that
the regulatory focus of these agencies produces a selection effect that deters politically conservative
employees, the results for the EPA and NRC are in line with these expectations. Supplemental analyses
also helped rule out demographic diversity and average age and tenure as possible explanations.

These first two sets of results have important implications. First, LGBT workplace experience
inequalities appear to be quite widespread within STEM-related agencies. We find significant
differences by LGBT status on a variety of workplace experience inequalities ranging from the lower
likelihood of reporting that their success is fostered and they have adequate resources, to their
perception of a lack of support for diversity, to lower job satisfaction.

Additionally, our results suggest that the particular socio-political context of the organization may
have consequences for the experiences of LGBT persons, even if the point of politicization (in this case,
regulatory functions) is not directly connected to LGBT equality issues. As noted in the introduction,
antidiscrimination policies and employee benefits are held constant across these six federal agencies.
The politicization of the work of other non-governmental STEM-related organizations (e.g., defense
contractors or companies that use stem cells for biomedical research) may, by the nature of their central
work tasks, attract employees that tend to be more or less supportive of LGBT equality and inclusion.
More research is needed to understand how particular organizational focus and goals can promote
more positive or negative workplace experiences for LGBT workers.

Our analysis also produced insightful null findings. First, counter to our expectations,
supervisory status does not appear to insulate LGBT employees from negative workplace experiences.
LGBT supervisors do not fare better than non-supervisors on any of the workplace experience measures.
While supervisory status does provide workers with more authority and power within an organization,
it does not appear to protect them from colleagues’ bias.

Second, we found that the youngest LGBT workers in these agencies do not have systematically
more positive workplace experiences than their older LGBT colleagues. This is a striking finding, as
employees in these agencies who were required to gain security clearance three decades ago would
have had to remain closeted in order to keep that clearance [77]. Of course, the responses of older
LGBT employees may simply reflect their more positive current workplace experiences compared to
more egregious heterosexism and heteronormativity in the past, but the memories of past negative
workplace experiences might color their view of their current workplace experiences, compared to
younger workers who have enjoyed LGBT-inclusive non-discrimination policies and a more tolerant
cultural landscape for the entirety of their (short) careers. This suggests that the resolution of these
LGBT inequalities is not simply a matter of waiting for this to “get better” as younger generations of
LGBT persons enter the workforce their older colleagues retire.

Third, we find that there is little difference in the reported experiences of LGBT-identifying women
and men. One possible alternative explanation for the results of LGBT status in the full sample is that
it is not LGBT status per se that is devalued, but femininity within the context of a culturally masculine
organizations. In this perspective, the LGBT effects would be primarily driven by the devaluation
of perceived femininity among LGBT-identifying men in STEM environments. However, our results
indicate that LGBT-identifying women are similarly disadvantaged compared to non-LGBT women.
This suggests that the LGBT results are rooted in status biases related to the normative expectations
for “normal” or “natural” performances of gender rather than just the devaluation of femininity in a
masculine space.
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These analyses have several limitations worth noting. FEVS is a cross-sectional survey, so we are
unable to follow workers over time as they encounter and react to their workplace experiences. Future
work with longitudinal data would also be better able to discern how workers’ experiences change as
they move into supervisory positions. Related, although we believe that the agency-specific effects are
due at least in part to differences in politicized priorities that may lead to a selection of more politically
liberal workers into regulatory agencies, we cannot rule out other possible explanations. Third, as the
LGBT samples at some of the agencies were quite small (especially NSF and NRC), it is possible that
there may be agency effects that were not picked up by the interaction terms.

Finally, the FEVS does not have data on respondents’ occupation; thus we cannot distinguish
between workers who are engaged directly in STEM work and those who do other types of work
(e.g., administrative or human resources) in these STEM-related agencies. It would have been
particularly helpful to have occupation in order to control for possible patterns of occupational
segregation in these results. Some of the workplace experience differences we see by LGBT status may
be due in part to the under-representation of LGBT persons in occupations within the STEM-related
organizations that have less power and prestige. This may explain part of the relationship between
LGBT status and adequate resources and satisfaction with working conditions.11 For example, if LGBT
employees are less likely to be in “line” positions working as STEM professionals in these STEM-related
agencies, they may, by the nature of their jobs, have less adequate resources and less satisfaction with
their working conditions on average than non-LGBT persons. However, most other measures (e.g.,
respected by supervisor, job satisfaction) are not so closely tied to occupation. To account for as much
variation by job and occupation as possible, our models controlled for supervisory status and tenure.12

Despite these limitations, these data provide an unprecedented opportunity to examine the contours of
LGBT inequality among a representative sample of workers in a number of STEM-related organizations.
Because recent literature has begun to demonstrate that anti-LGBT bias can be particularly pernicious
among STEM professionals, we expect that these results (which include STEM and non-STEM workers
in STEM-related agencies) underestimate the workplace experience disadvantages LGBT-identifying
STEM professionals encounter.

6. Conclusions

Overall, these results illustrate that LGBT workplace experience inequalities are pervasive
within STEM-related agencies, extend across age cohorts and supervisory status, and exist for both
LGBT-identifying women and men. This has several implications for STEM-related organization
inside and outside the federal government. As we noted in the introduction, federal agencies have
expansive non-discrimination policies and bureaucratized accountability structures that formally
protect LGBT employees. Nevertheless, workplace experience inequalities for LGBT persons persist in
these agencies. Although many high-profile STEM organizations in the private sector have promoted
LGBT inclusion for decades, these protections are not industry-wide. As such, the inequalities we
document here are likely present—if not exaggerated—in STEM-related organizations in the private
sector. Additionally, previous research has illustrated that workplace satisfaction and more negative
treatment can reduce worker engagement and productivity [78–80]. As such, the workplace experience
inequalities documented here may actually serve to reduce the productivity and efficiency of these
STEM organizations.

11 Occupational segregation by gender likely plays a role in the results by gender as well. The sample of women includes
STEM workers but also likely a larger proportion of non-STEM workers than among the sample of men. As such, these
results likely underestimate biases that women working in STEM jobs in these agencies encounter.

12 We found that LGBT persons were equally as likely as their non-LGBT colleagues to have supervisory responsibilities in
their agency.
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LGBT inequality is an informative axis of disadvantage to consider in STEM. Not only is LGBT
status an important social category in its own right, but the results here suggest that consideration of
LGBT status sheds light on gender inequality as well. Our results suggest that devaluation as a result
of the norms of the gender structure—not just the devaluation of femininity—reproduces inequality in
STEM environments. Further research is needed to discern how sexual identity and transgender status
intersect with professional and organizational cultures in STEM and how these biases interface with
gender biases documented in prior scholarship. Understanding how inequality is reproduced along a
variety of demographic axes is the first step toward developing policies and practices that make STEM
as inclusive as possible.

Author Contributions: Cech took the lead on paper conceptualization and data analysis. Pham and Cech both
contributed to the literature review, writing, revising, and formatting efforts.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Demographic Characteristics of STEM-Related Agencies (N = 37,219).

Percent LGBT
Percent
Women

Percent Racial/Ethnic
Minorities

Mean, Tenure
Measure

Mean, Age
Cohort

NRC 2.8% 36.8% 30.5% 2.19 2.45
EPA 5.0% 54.7% 29.2% 2.47 2.47
DOE 2.7% 39.7% 22.8% 2.25 2.46
NSF 4.2% 64.5% 34.6% 2.34 2.58

NASA 2.2% 36.8% 24.3% 2.47 2.46
DOT 2.7% 32.0% 29.7% 2.29 2.56
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Abstract: Universities were established as hierarchical bureaucracies that reward individual
attainment in evaluating success. Yet collaboration is crucial both to 21st century science and,
we argue, to advancing equity for women academic scientists. We draw from research on gender
equity and on collaboration in higher education, and report on data collected on one campus. Sixteen
focus group meetings were held with 85 faculty members from STEM departments, separated by
faculty rank and gender (i.e., assistant professor men, full professor women). Participants were
asked structured questions about the role of collaboration in research, career development, and
departmental decision-making. Inductive analyses of focus group data led to the development of a
theoretical model in which resources, recognition, and relationships create conditions under which
collaboration is likely to produce more gender equitable outcomes for STEM faculty. Ensuring women
faculty have equal access to resources is central to safeguarding their success; relationships, including
mutual mentoring, inclusion and collegiality, facilitate women’s careers in academia; and recognition
of collaborative work bolsters women’s professional advancement. We further propose that gender
equity will be stronger in STEM where resources, relationships, and recognition intersect—having
multiplicative rather than additive effects.

Keywords: collaboration; gender equity; academic STEM careers

1. Introduction

Collaboration is essential to 21st century academic careers, particular for those in science,
technology, engineering, and mathematics (STEM) fields, where research is more likely to be carried
out in teams and collaborative grants and publications are common. As Kathrin Zippel notes,
“Collaborations are crucial for academic career advancement as they further the exchange of ideas,
skills, and expertise” [1]. Yet, collaboration presents a paradox to universities, which historically
privilege individual attainment and expertise in the evaluation of success. A mismatch exists between
the growing need for collaborative approaches and institutional structures developed in an earlier era
of university life. We argue that addressing this mismatch can lead to better outcomes for faculty and
their institutions, especially for the participation and advancement of women in STEM, a long-standing
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challenge for universities.1 Collaboration may raise particular challenges for women, while fostering
collaboration may be a key way to create greater equity in university settings.

Collaboration is defined here simply but broadly as people working together to solve problems.
In contrast to much previous work, our approach to collaboration expands the focus beyond
collaborative research products. First, we consider how much access faculty have to resources needed
for research collaboration, as well as how much recognition they receive for collaborative research.
Second, we consider the relational process of career development which involves mutual mentoring
within a network of faculty who share information and advise one another to advance their careers.
Thus, three components of collaboration are proposed as integral to faculty success: access to resources
for research collaboration, recognition given to collaborative research, and collegial collaborative
engagement in career advancement.

Within research collaboration we focus specifically on faculty working together in STEM fields
because collaborative research plays a key role in scientific discovery. Indeed, diverse groups working
together are particularly effective at finding solutions to complex problems [2–4]. However, to get
collaborative research off the ground, resources are necessary, such as locating possible collaborators,
finding specialized but necessary equipment on-campus, sharing lab space, supplies, or personnel,
and coordinating experiments across labs and fields. These much-needed resources are not accessible
to all faculty members, and may reflect gender inequalities.

Independent of the mechanics of conducting collaborative research, faculty members need to
receive recognition for their collaborative research in STEM fields. There is considerably ambiguity
within STEM fields about how to determine whether a team member has made a substantial
contribution to a project. Substantial contribution may be attributed to the first author, the last author,
or the corresponding author, depending on field. However, these attributions become ambiguous
if a paper led by a junior author has a senior co-author on it. In that case, readers may perceive
the senior author to be the intellectual driver of the project even though the junior author is the
lead. Put differently, uncertainty stems from not knowing how to weight the contributions of less
senior authors and other authors whose names appear in the middle of the authorship list on a paper.
The same uncertainty emerges when trying to decide how much recognition should be given to
faculty members who are co-principal investigators (Co-PI), or co-investigators (Co-I) on research
grants instead of the Principal Investigator (PI). These ambiguities about how to recognize individual
contributions within science teams may particularly affect young investigators and women scientists
to the extent that they are perceived as having less expertise and lower status.

Within collaborative career development, we focus on faculty mutually mentoring each other in peer
relationships because career development and advancement often depends on informal acquisition of
knowledge through collaborative networks with colleagues [5–7]. Collaborative career development
is not a hierarchical, unidirectional traditional mentoring relationship, but one based on a relational
network among faculty members, since research shows that these mutual mentoring networks are
particularly effective [5,7]. While collaborative career development may be common across academic
fields, it may be especially pertinent to STEM faculty who have to use their professional networks
to find collaborators, specialized equipment, shared supplies, and lab space. This is where informal
knowledge acquisition is critical. If collaborative career development is less accessible to women, they
may be disadvantaged.

We propose that ensuring resources, recognition, and relationships for collaborative work matters
for gender equity in STEM. Increasing incentives and structures that promote rather than penalize
faculty working together as scholarly peers simultaneously enhances the core mission of the university,
produces knowledge, and benefits women’s advancement. To explore how men and women faculty

1 We posit that addressing the mismatch between collaboration and university hierarchy will also have benefits for faculty
members from underrepresented racial and ethnic groups; however this paper focuses on gendered processes exclusively,
given the small numbers of URM and international faculty represented in this data.
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in STEM disciplines experience and understand collaboration, and its role in academic science and
engineering, we conducted a study using focus group methodology with STEM faculty from a research
university as participants.

To shed light on why academic collaboration might activate gender stereotypes and differentially
influence career outcomes for men and women scientists and engineers we draw on expectation states
theory, which argues that status plays a central role in the maintenance of inequality [8–10]. Status
beliefs, or cultural stereotypes about the worthiness and competence of particular groups, influence
the enactment of social hierarchies among people. In addition to status, the social context matters
as well, according to expectation states theory. In contexts that are societally assumed to be men’s
domains, status stereotypes about gender are particularly likely to shape evaluations of women’s
competence. Because STEM fields are stereotyped as men’s domain, status beliefs may affect how
women compared to men are evaluated, rewarded, and promoted [11]. Past research shows that status
beliefs influence men and women’s behavior in mixed gender settings: men tend to talk more, make
more task suggestions, act more assertive, and appear more influential than women [8]. Expectation
states theory suggests that if women act against status expectations, others may penalize them, for
example, for asserting authority or engaging in self-promoting behavior. However, it may also be
the case that if a woman holds a well-recognized high status position within a professional context
(e.g., Distinguished Professor of Mechanical and Industrial Engineering), her personal high status may
offset gender stereotypes from being applied to evaluate her competence.

We use expectation states theory as the theoretical framework to inform our analysis of focus
group data on collaboration in STEM fields. Given that STEM contexts are widely stereotyped as male
domains, this provides an opportunity to examine whether social psychological processes related
to status and gender stereotypes affect the extent to which women, relative to their peers who are
men, gain access to institutional resources that facilitate collaboration, receive recognition for their
collaborations, or receive mentorship.

2. Existing Research on Collaboration

Researchers have used multiple approaches to study collaboration in university environments.
We review research in three areas: scholarship on research collaborations; how collaboration is
evaluated; and collaborations that promote faculty development (e.g., peer mentoring). While
much empirical research has focused on research collaboration (especially quantitative studies of
co-authorship), in a recent comprehensive review of the literature on collaboration, Bozeman and
colleagues note that while we now understand research collaboration from a bibliometric standpoint,
much more qualitative research is needed on the meaning of collaboration and the informal side of
collaboration, including mentoring [12]. By recording the meanings of collaboration raised in focus
group interviews, and by conceptualizing collaboration more broadly than simply through co-authored
publications, we contribute rich contextual evidence about the nature of collaboration in academic
science and engineering and the relation between collaboration and equity.

2.1. Research Collaboration

Scientific, technical, and engineering innovations and discovery are increasingly driven by
team-based research collaborations [2,13] and research collaboration is a strong predictor of
productivity, as measured by peer-reviewed publications [14,15]. Past research on universities has
identified the importance of, and strategies for, collaboration, including multi- and interdisciplinary
collaboration, collaboration across institutions, and the relationship between collaboration and
productivity [1,2,13–24].

Some research identifies gender differences in research collaborations. Controlling for other
factors that influence collaboration, research in Europe and the U.S. suggests that women show greater
preference for collaborative and interdisciplinary research, yet may have fewer collaborators and
be less integrated into international research networks [1,25–33]. Men in the U.S. hold most of the
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prominent leadership roles in interdisciplinary research centers [13]. When women do secure positions
in university research centers with ample resources for collaborative research, their career outcomes
become more comparable to that of men. In contrast, women in traditional STEM departments with
fewer resources for collaborative research experience larger gender gaps in rank, career satisfaction,
and research funding [34]. This evidence fits with expectation states theory which would predict that
in STEM fields dominated by men, women have lower status relative to men, which makes it more
difficult for them to attract collaborators or gain access to resources. Indeed men, with their more
privileged status, may feel more entitled than women to access resources.

2.2. Valuing Collaboration

Even as team-based science has increased, the process of evaluating faculty for tenure and
promotion continues to rely almost exclusively on assessment of individual performance, which may
also yield gendered results [24,35,36]. Judging individual performance based on team science can be
difficult because of the ambiguity of determining who is responsible for which aspects of collaborative
research, as well as inconsistencies in how collaboration is defined [17,37,38]. One estimate is that half
of all collaborations are not credited by formal recognition in co-authorship [39].

Ambiguities in how to document, report, and credit collaboration may be accentuated by implicit
gender bias [40–43]. A growing body of research reveals the multiple ways in which gender stereotypes
unintentionally, or implicitly, bias evaluations of men’s and women’s professional work inside and
outside academia [8,44–47]. For example, studies that have found that subtle or implicit gender
bias affect hiring decisions [46,48–55], how letters of recommendation are written [56–58], how grant
proposals are reviewed [59,60], how manuscripts are peer-reviewed at scientific journals [61], and
evaluations of professional women’s competence and likeability [48,62,63]. In other words, gender
biases that emerge in evaluations of academic scientists and engineers are consistent with lessons
from stereotyping research: in decision-making contexts with incomplete or ambiguous information,
evaluators unintentionally use stereotypes to “fill in the gaps” and draw inferences about individuals’
competence and worthiness based on those stereotypes [64,65].

One classic ambiguous situation is where evaluators make inferences about how much of the
intellectual work in a collaborative team of scientists was done by individual members of that team.
Because people implicitly stereotype the ideal successful scientist or engineer as male [44,45,66], when
it comes to giving credit to members of a science team in the absence of complete information, these
implicit gender stereotypes subtly push evaluators to assume men on the team must have made
more unique contributions than the women, absent clear markers of leadership. For similar reasons,
expectation states theory would also predict that in masculine professions like STEM, evaluators often
assume that men (more than women) are the intellectual leaders in the team whose contribution is
critical to the team’s discovery.

2.3. Collaboration in Career Development

Past research suggests that collaboration in career development, including mentoring, is key to
retaining women faculty in STEM [67–69]. As Kemelgor and Etzkowitz argue, “Mentors provide
an indispensable relationship necessary for every young scientist, to learn the craft, the unwritten
rules, and give entrée into social networks crucial to professional growth” ([70], p. 240). Through
mentoring, faculty learn important insights such as how work is structured and valued in their
discipline or workplace, how to access resources necessary to conduct their research, connect with
potential collaborators, teach and advise students, and engage in meaningful and recognized service.
Faculty mutually mentoring each other to advance their careers is a form of collaborative career
development that is important to both women and men in STEM.

While traditional faculty mentoring relationships involve senior faculty members informally
advising junior colleagues, research suggests peer and mutual mentoring networks are more effective
than traditional top-down dyads [5–7]. Peer relationships also last longer than traditional mentoring
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pairs [5]. In addition, the more mentoring relationships professionals have, the greater their
professional satisfaction [71]. Institutionalizing mentoring activities helps ensure that women receive
professional development and career coaching that may be overlooked by more informal models [72,73].
Increasingly, institutions are developing peer mentoring networks or mentoring committees for faculty
members [7,72,74].

Expectation states theory would suggest that in the STEM context, men faculty may have access
to a wider network of informal faculty mentors than their women colleagues because of their higher
status in science and engineering professions. Women, particularly women of color in STEM, may
be excluded from collegial interactions, isolated not only socially but also professionally [68,75,76].
Being mentored by a variety of peers can mitigate isolation that is endemic for many STEM women,
and may help them develop relationships with other women both within and outside their home
department even when numbers are small [68,70,75]. Moreover, finding mentors, including peers, who
have had similar gendered experiences is likely to be important to ensuring women’s success [68,70,72].

Situated in the context of prior research, the present study uses focus groups to examine faculty
experiences of collaboration in the context of their research, and professional development. The next
section describes the institutional context within which these focus groups were conducted and the
methodology used in the study. Following that, we detail main findings that emerged from the
focus groups.

3. The Present Study: Institutional Context and Methods

We conducted research at a large research-intensive, doctoral-granting public university in
the US enrolling almost 30,000 students. This university is comparable to many other land grant
universities—with women composing approximately 40% of all Department Chairs and Deans.
However, among STEM departments (which includes all of the NSF funded sciences) women comprise
a smaller proportion of leadership positions: approximately 35% of Department Chairs, 20% of
Distinguished Professors, and 25% of full professors are women. Larger proportions of women are
in mid-career and pre-tenure faculty positions: 40% of associate and assistant professors are women.
While men and women appear to have similar chances of attaining tenure and promotion to associate,
women achieve promotion to full professor more slowly than men. Efforts toward increasing equity and
inclusion for all faculty have primarily been in the arenas of work-life policies and recruitment policies,
although the university also has invested in a peer-mentoring model [7] that has been particularly
effective for women and members of underrepresented minorities.

Our aim was to understand the challenges that STEM faculty identified in how they were
supported and credited in their work. We invited all tenure-line STEM faculty (defined as faculty in
NSF-supported fields) to attend a focus group set at a specific date and time, and organized by rank
and gender. Altogether, sixteen focus groups were conducted with 72 STEM faculty participants in
Spring 2015. Written feedback was gathered from 13 additional participants who could not attend.
The 85 faculty who provided input along with the seven faculty facilitators make up about 15% of all
full-time faculty in the NSF funded science and engineering colleges at the university. Among the full
professors, department heads/chairs and other former leaders were well-represented. The majority
of faculty who participated in these focus groups came from natural science departments who
do experimental research in laboratories (e.g., physics, chemistry, biology, neuroscience, physical
anthropology) or theoretical research (e.g., mathematics, theoretical physics); others came from
engineering, and computer science. A smaller minority of faculty came from non-lab oriented social
sciences (e.g., economics, sociology). Table 1 shows the comprehensive list of departments for each
group of faculty interviewed by rank and gender.
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Table 1. STEM Fields Represented in Focus Groups.

Rank & Gender of Focus Group Field

Assistant Men
Biochemistry and Molecular Biology, Chemistry, Chemical Engineering, Computer
Science, Electrical and Computer Engineering, Mechanical and Industrial
Engineering, Political Science, Psychological and Brain Sciences

Assistant Women

Astronomy, Biology, Chemistry, Chemical Engineering, Civil and Environmental
Engineering, Economics, Environmental Conservation, Geosciences, Linguistics,
Mechanical and Industrial Engineering, Microbiology, Physics, Psychological and
Brain Sciences, Resource Economics, Sociology

Associate Men
Biochemistry and Molecular Biology, Biology, Chemistry, Civil and Environmental
Engineering, Computer Science, Economics, Electrical and Computer Engineering,
Landscape Architecture and Regional Planning, Sociology

Associate Women Anthropology, Biology, Chemistry, Ecological Conservation, Math and Statistics,
Physics, Psychological and Brain Sciences, Sociology

Full Men
Astronomy, Biochemistry and Molecular Biology, Biology, Chemistry, Computer
Science, Linguistics, Management, Math and Statistics, Political Science, Physics,
Psychological and Brain Sciences, Sociology

Full Women

Anthropology, Biology, Chemistry, Economics, Electrical and Computer
Engineering, Geosciences, Mechanical and Industrial Engineering, Landscape
Architecture and Regional Planning, Physics, Political Science, Psychological and
Brain Sciences, Sociology

These focus groups should not be seen as representative of all STEM faculty nor should this
one university be seen as representative of all research-intensive universities. In using a qualitative
method like focus groups our goal was to generate new insights about the nature of professional
collaborations and not necessarily to generalize to a larger population. Focus groups provide a rich
hypothesis-generating mechanism by using inductive methods to identify and develop emergent
themes. As compared to surveys, focus groups allow researchers to ask more nuanced questions,
and receive considerably more complex answers than are possible to include in survey measures.
As compared with individual interviews, focus groups benefit from the interplay between different
respondents. At times, respondents disagree with one another; at other times, they chime in with
similar experiences. The conversations thus capture how people make sense of their experiences;
highlight convergences and divergences in their encounters at the university; and give us important
insights into our respondents’ understandings of their positions as faculty members. Although focus
group data are not necessarily generalizable to a larger population, quantitative research that builds
on focus group findings may later test the insights developed through these qualitative methods on
larger, more generalizable samples.

We attempted to avoid the potential ‘groupthink’ outcome of focus groups where minority voices
may be silenced by organizing focus groups by rank and gender. In this way, the homogenous
gender/rank groups could identify concerns faced by women and men at different ranks, including
attaining tenure, time to promotion, and leadership roles [77]. Department heads and chairs were
informed about the focus groups and asked to encourage their faculty to attend, but the research was
faculty-based (and not institutionally required). Among the six sessions divided by gender and rank,
there were at least two or three tables of 4–5 people from different departments, composing sixteen
groups in all. This helped avoid faculty members feeling concerned that their comments might be
heard by senior colleagues, or reported back to department leaders. Given the fairly critical comments
made in the focus groups (as presented in the findings), we do not expect that the faculty who attended
our focus groups were reluctant to speak.

Two members of the research team, one serving as facilitator and another as note-taker, also sat at
each table. Each group started with an initial conversation aimed at understanding challenges faced
by faculty within that group. A structured protocol (see Appendix A) was used in which specific
questions were posed to the group and responses solicited. The structured protocol included questions
about mentoring, departmental decision-making, transparency in personnel decisions, support for
collaborative and interdisciplinary research, job satisfaction, and barriers to faculty work. We focused
on these topics based on our reading of the existing literature on collaboration and interdisciplinarity.
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The final 15 minutes brought all focus groups together when a moderator asked faculty to identify
some of the key interventions that the university could design to address challenges they had identified.
Detailed notes of the sessions, flipcharts where intervention ideas were recorded, and the informal
conversations with faculty after the session were used for data analysis.

The larger research team was composed of three social scientists, three natural scientists and
one engineer. While all members of the team did not attend every focus group session, a majority of
the team was at each focus group session, which led to useful insights as we compared similarities
and differences across groups. The research team members wrote up summaries of their impressions
immediately after each focus group, which were discussed by the entire research team to identify
main themes that emerged from all-men and all-women focus groups within each rank. For example,
after holding focus groups with assistant professors who were men vs. women, our research team
identified key themes that emerged from these two types of groups. The team was also attentive to
whether the same themes, or the same gender differences or similarities emerged from focus groups of
associate and full professors. We considered whether women and men spoke of experiencing different
challenges or had different interpretations of the same challenges. We found more evidence of the
latter: women and men often reported the same experiences, but interpreted the same experiences
through different lenses. We identified three themes in focus group responses regarding collaborations:
comments about professional resources, recognition, and relationships. These themes are used to
organize the results section below.

4. Findings

4.1. Resources for Collaboration

Resources always matter to research productivity; yet in STEM fields, where collaboration is
critical, challenges in accessing resources to foster collaboration can be particularly problematic.
This included inadequacies in staff support to get labs started and connected and facilitate collaborative
grant-writing, limited collaborative research space, lack of opportunities to meet potential collaboration
partners due to physical and disciplinary boundaries, and lack of seed funding to get new collaborative
research off the ground. Both men and women identified these issues to collaboration, suggesting that
they have similar experiences, but women seemed particularly disadvantaged in locating resources to
facilitate collaboration.

A major concern voiced by faculty members was difficulty finding basic resources such as access
to staff. However, there were differences in how men and women of different ranks interpreted the
problem of too little staff support for collaboration. Men of all ranks and some senior women expressed
frustration about the lack of staff to provide logistical support for collaboration. In contrast, assistant
professor women talked about the lack of time to do the work themselves or lack of time to identify
appropriate resources to support collaborations. In keeping with expectation states theory, it appears
that men and senior women, holding more privileged status, feel more entitled to resources than
junior women.

Staffing was a key theme in all of our focus groups, even though we did not explicitly ask about
staffing (see Appendix A). Focus group members noted how much more productive they would be,
and how many more research collaborations they could develop, if they had adequate staff support,
given the particularly time-consuming nature of organizing teams of collaborators. In one group of
associate professor men, a faculty member argued that, while colleagues at other universities receive
20 h a week of administrative support, he receives “much closer to zero administrative support, which
affects my productivity.” Another associate man responded that inadequacies in staffing particularly
affect interdisciplinary research collaboration: “Support makes a big difference. I recently put in
[a grant] proposal with someone who had administrative help and that was great. You could focus
on stuff you’re good at.” Faculty members also discussed the high level of administrative demands

256



Soc. Sci. 2017, 6, 25

beyond research work, and how this work takes faculty time away from collaborative research and
teaching activities.

With a shrinking tenure-line faculty, and increased administrative demands, faculty described
frustration with doing clerical and administrative work that could be carried out by staff, rather than
what they viewed to be the key elements of their jobs. This clerical work gets in the way of developing
relationships with new collaborators, while also slowing progress on existing collaborations. Both men
and women identify a problem in how much clerical work they do to support collaborations, but junior
women tended to be more apologetic, suggesting that they understood staffing constraints meant that
they had to take on more administrative work. However, senior women faculty opinions tended to
align with men. For example, one woman who is an associate professor responded to our focus group
questions in writing took a tone more similar to the men’s comments, noting: “There is so much that
could be done 10–20 h/week by an administrative assistant, if I had one. My life would be dramatically
improved if I had a 10–15 h/week secretary (emphasis hers).” One group of associate women faculty
members agreed that men talked about and shared resources that facilitate collaboration more, in
part because they were more integrated with their colleagues. As one associate professor argued
“some department members got grant prep[aration] assistance, [there should be] transparency that
everyone gets the same access to staff support.” Applying for funding to support collaborative research
is hampered when women faculty members cannot access grant preparation support.

Assistant professor men conveyed frustration in words, tone, and body language with the lack of
staff support for research collaborations. One man who is a full professor noted the challenge for new
faculty, arguing that they “get the run around when trying to set up their research programs—very
opaque processes.” Assistant professor men described relying on seasoned colleagues (usually senior
men) to advise them about the resources they needed. In contrast, assistant professor women were
more likely to blame themselves for their inability to find existing resources to support collaboration.
Assistant professor women described needing more information about where and how to access
institutional resources. One described the time-consuming nature of getting important and necessary
information—“it’s not that the info doesn’t exist or people aren’t helpful, [but] you spend two days
[looking for it].” Assistant women seemed to lack mentoring to find resources, something their men
took for granted in our focus group discussions. Yet the junior women suggested that, if they were less
busy, they would learn to navigate the system and develop collaborations with colleagues. Most did
not consider that what was lacking was not time, so much as appropriate staffing and mentoring to
identify research-related resources on-campus.

In addition, faculty voiced substantial challenges around buildings and lab space, some of which
was not adequate for their work. Both men and women were concerned about space that would permit
collaborative research to thrive. One woman full professor argued, “Space is not transparent; I got . . .
an un-renovated lab that was supposed to be torn down. I’m the only one in the department in that
building—me and retirees.” An associate man similarly noted that he was “isolated” with a few other
senior faculty in a different building, which limits his ability to build collaborations. As he explains,
“All the new faculty go to the new building. When people visit, they say and think—‘you weren’t
good enough to move to the new building?’” In a university where some departments are located
across buildings, some faculty feel geographically isolated and this limits opportunities to collaborate
with their colleagues. Space was therefore a barrier to collaborative research, especially potential
collaborators were located in distant buildings.

Another concern involved scarce opportunities to meet and engage with potential collaborators.
Faculty in our focus groups described how they often experienced roadblocks from units that were
supposed to support collaboration. Assistant professor men noted a “huge wall” between colleges
within the same university, such as the college of natural sciences and the college of engineering that
made it almost impossible to engage in interdisciplinary collaboration between two colleges. Assistant
women also described roadblocks to finding collaborators. One assistant woman noted that, because
her department’s faculty has been changing, “I don’t have anyone senior that I can say ‘hey, do you
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want to collaborate?’” She further noted that, because her research requires large computing power, she
lost two years of research time because her Dean would not provide her with an adequate computer.
Yet, she characterized herself as “very happy with [her] department, just issues I had to work through.”
While she and other assistant women had experienced obstacles that had seriously impacted their
collaborative work, they downplayed these concerns. Untenured women may recognize that being
assertive could lead to negative repercussions in fields dominating by men as such behavior goes
against status expectations for women. This awareness may lead them to soften complaints.

Related to the concerns about finding collaborators was the need for internal seed funding to
pay for research assistants, supplies, and initial pilot data to stimulate a new collaborative project and
set the stage for a future collaborative grant proposal seeking external funding. For example, one
assistant man argued, “[my previous university] would give small seed grants to fund interdisciplinary
collaboration among faculty in different departments.” At another table of assistant professor men,
one argued,

My work is very interdisciplinary. There’s not much chance to interact with other
departments. The exception is [interdisciplinary program with] cross-college faculty
members. Faculty share what they are doing, but beyond that, is there other support?
There are no seed grants for working together. This is discouraging.

STEM faculty men looked for additional resources that would allow them to develop more
robust interdisciplinary collaborations. Assistant men also noted that the lack of university-supported
research assistants made it difficult for them to get their collaborative research programs off the ground:
“the absence of RA-ships for graduate students makes it difficult to attract graduate students without
[my] already having grants.” Assistant men suggested that support for interdisciplinary RAs and
postdocs would be a major resource that would help facilitate collaboration across units or faculty at
the university. While many of the assistant women in our focus groups came from engineering and lab
science fields that emphasize collaboration, they did not make the same claims for internal funding for
RAs and postdocs.

Overall, we found that faculty were concerned about the lack of resources for collaboration
available at the university, despite the importance of collaboration to their careers. Assistant women
tended to blame a lack of accessible information or themselves for not being able to identify resources,
while assistant men were more critical of the lack of staff and resources to support their collaborative
research. We also found that men were somewhat more likely to have colleagues helping them learn
about how to access resources for collaboration, while women were less integrated. As a result, women
seem disadvantaged in gaining access to resources needed for collaboration, even as both men and
women identify this as an issue they face.

4.2. Recognition

Recognition was a second theme that emerged from our focus groups. The key recognition
narrative focused on how collaboration was perceived during tenure and promotion at the
university. Faculty spoke about the difficulty getting institutional recognition for collaborative and
interdisciplinary research when it came time for tenure and also for promotion to full. Expectation
states theory and implicit bias research suggests that in male-dominated contexts where gender
stereotypes favor men, women may get less credit for collaborative research than men in personnel
actions like tenure and promotion—if the independent contributions of individual team members is
not self-evident in co-authored publications and grants.

The challenges of evaluating collaborative and interdisciplinary research in personnel actions
was a topic that came up among both men and women faculty. Because funding agencies tend to
prioritize collaborative work, many STEM faculty carry out collaborative and interdisciplinary projects.
Yet, they noted personnel evaluation gave primacy to independent research without collaborators.
Both men and women saw a need for personnel committees to have greater training in evaluating
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collaborative research during personnel actions. Funding and personnel evaluation seemed at odds
to many of our respondents. In one interchange, assistant professor men described the challenges of
doing collaborative research in the current funding environment, where funding is harder to get, and
there is a greater support for collaborative research than for individual principal investigators (PIs):

Assistant Man 1: The old standard used to be that you have to get a grant and be the PI on
it. Now it’s more common to be a co-PI (instead of PI) or get a collaborative grant.

Assistant Man 2: Collaborative work often raises questions in people’s mind about who
the “real” leader is in a collaborative project.

Assistant Man 1: In my department, collaborative work would not count as my work.
This is made very explicit in my department.

A woman assistant professor made a similar argument in another focus group:

It’s not olden days for funding. Everyone is trying to be in a silo to write grants, and
[they are] not going to get funded. Interdisciplinary efforts get funded . . . saying you
won’t get promoted if [you are] co-investigator or co-PI on the grant . . . is throwing the
baby out with bathwater.

Another assistant woman similarly noted, “I feel like [the university] is shooting itself in the foot
with that. If collaborative grants were valued and you could still show your independent contributions,
it would cost the university a lot less money in terms of start-ups and having to hire people.” Devaluing
collaborative grants left these faculty feeling uncertain about how to carry out their research programs,
given tensions between collaborative funding opportunities but emphasis on individual grant-getting
at the university.

These issues are also challenges for interdisciplinary scholars. One assistant professor man
argued regarding his department, “People have had shaky tenure cases before because they’ve been
doing interdisciplinary research.” A woman assistant professor noted that she had received “mixed
messages” about interdisciplinary research: “There is a difference between valued and useful for your
tenure package. Interdisciplinary is awesome and cool, but you will have plenty of time to do this
later.” As one full man noted, comments from interdisciplinary program directors are “never used” in
personnel decisions, even though they should be according to personnel procedures. Another full man
noted that “the places where it has failed is where [a] junior faculty does interdisciplinary research
that the department doesn’t buy into.”

One woman assistant said that even with interdisciplinary hires, “the department wants them to
work on one discipline especially when comes to evaluation of performance. If you brought [a] grant
as a co-PI, and if you are on many, many papers, but you are not the first author, it is discounted.”
A woman associate professor argued,

It would almost be politically incorrect to say we do not support interdisciplinary research.
I think we are open verbally . . . the [research] literature they are bringing in [to their paper]
is [interdisciplinary], but the co-authorships are not. Again, coming back to the cultural
impediments, high impact journals are the ones that are very field and disciplinary specific,
no matter how interdisciplinary, that is where you are going to get published and read, not
in interdisciplinary venues. There is a conflict there.

A full professor who is a woman similarly argued that “disciplinary flagship journals are valued
more than interdisciplinary journals,” leading to a conversation about how external letter writers
might review interdisciplinary faculty poorly who are up for tenure and promotion if judging simply
by the standards of their field. We also heard from a woman associate professor who felt that since
external reviewers are usually within the field, “if someone has a big interdisciplinary focus,” it would
be challenging to find external reviewers who do not judge them primarily on “what they are doing
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for the field.” This suggests that doing interdisciplinary research is not entirely recognized in tenure
and promotion decision.

Both men and women noted that there are increased pressures to collaborate, particularly for
external funding, but that recognition for collaborative work is more problematic, including difficulty
in proving leadership in collaborations. One major concern for those evaluating personnel cases is
determining how central a faculty member’s work is to a particular collaboration. In one conversation
among full professor men, one faculty member noted that evaluation depends on whether the research
is “thematically related or are they just doing a task for six different labs—how involved are they in the
collaborative work?” Another full professor who is a man noted that judging credit for “collaborative
projects requires significant contribution—work with people who are different enough so that your
contribution is clear.” Many faculty similarly called for identifying exactly what the faculty member’s
contribution is in a collaboration. In a conversation with full women, one noted “academia emphasizes
what you did in evaluations. The PI for example is rewarded; the co-PI is not” on collaborative projects.
Yet a full professor man noted that, in the best collaborations, clear delineations of contributions “are
hard to define because there has been so much interaction.”

Although both men and women raised the issue of how to credit collaborative work, women
faculty were more likely to report substantial concerns about lack of recognition for their collaborative
work. One full professor woman suggested that, although it is “sold as a positive in recruiting . . .
[tenure and promotion] discussions are very negative about collaborations, with even first authorship
downgraded.” An associate woman professor similarly noted, “If you collaborate, it’s not independent
work, so it’s basically ignored.” One assistant woman professor argued regarding her collaborative
work, “I don’t know what I need to do to demonstrate that I’ve been part of the team, bringing
something to the table, rather than riding on others’ coattails.” Another woman assistant professor
argued that

the advice I got was to work on my own work. They don’t really count much of
these collaborative papers unless it’s your students, your name. If you’re the co-PI
on a collaborative grant, the money is kind of discounted, especially related to tenure
and promotion.

This is very challenging for faculty members trying to ensure both research funding
and promotion.

One conversation provides a glimpse into how full professor women understood collaborative
research, and how they assessed their colleagues, as well as themselves. One woman who is a full
professor noted, “Without collaboration, I would not have lots of NIH money, but I would not have
dared before full promotion. It’s not so valued in my department, crossing the line so far as [discipline]
goes, and [it] would not have been seen as a good thing before full professorship.” Another full
woman argued, regarding engaging in collaborative research, “not before tenure, I tell juniors to stay
within line” while another said “even then, not until they are a full professor.” Women at this table
further noted that engaging in interdisciplinary research was perceived as “crossing into uncharted
territory,” and that while it could bring “notoriety for junior faculty,” they “want people to take a
safer path.” While both men and women reflected that receiving recognition for collaborative work
was challenging, women were much more likely to bring up this topic, and spent much more time
discussing these problems.

Men appeared less likely to recount problems in how their own collaborative research was
considered in their evaluations. For example, one associate man noted, “I had several research projects
and worked with people outside the department. That was important for my work. I never thought
of how this was viewed by my department.” In answer to a question as to whether he did this
collaborative research pre-tenure, he further noted “Not an issue. It worked well in terms of work and
publications. Equal work from all PIs.” However, another associate man suggested, “If you don’t have
publications by yourself it is bad/viewed negatively. If you have your own publications and some
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with others—it is good. If all of your research is collaborative—you are not capable of doing your
own research.” This man suggests that collaborative research is read within the context of a broader
research agenda, and at least some solo publications are necessary (although this norm likely varies by
field). Overall, it is interesting that women at all ranks were more likely to emphasize the challenge of
assigning credit for collaborative research, while fewer men emphasized it as a central problem.

To summarize, we found that faculty raised a number of issues around recognition, including of
their collaborative research. Both men and women identified challenges in receiving recognition for
collaborative and interdisciplinary research, but women seem to express more concern about receiving
recognition for collaborative research than men faculty. This finding fits with expectation states theory,
which suggests that women may, in fact, get less credit than men peers if they are in fields where
women as a group are stereotyped as being less competent relative to men. Given the importance of
collaboration to STEM research, experiences of engaging in collaborative research without receiving
adequate credit further limits women’s advancement.

4.3. Relationships

Career development through peer mentoring collaborations was another critical point of
conversation. One of the key themes that emerged was the type of mentoring structures that were
effective or ineffective for faculty, such as formal versus informal mentoring, or top-down versus
peer mentoring. Faculty also discussed mentoring support on papers and grant applications, and
concerns around how to receive effective mentoring about getting grants given the current scarcity
of funding. A final theme focused on concerns about burdening mentors or feeling burdened by
mentoring. Men and women both discussed these issues, though men were more likely to report
sustained mentoring from a range of colleagues, while women were more likely to report concerns
about burdening mentors. Expectation states theory helps explain why men may be more likely to be
mentored in male-dominated fields, as their colleagues may be more likely to see them as competent,
and thus worthy of mentoring. Women’s concerns about burdening their mentors may reflect their
attempts to live up to status expectations of women to care for others and think communally.

Many of the faculty were aware of the importance of professional development and faculty
mentoring. This awareness meant that more departments assigned mentors to faculty when they
joined the university. Yet, these assigned mentoring relationships were not altogether successful. Most
men and women noted that assigned mentors were seldom activated. One assistant woman professor
said her assigned mentors “rarely met with me and were not particularly helpful.” An associate
woman described her department as “dominated by older white men,” and said “I don’t know if
I was assigned a mentor, but my mentoring came from my graduate student friends and colleagues.”
One associate man noted that assigned mentoring worked only “so-so,” arguing that it “depended on
whether personalities matched up.” As one assistant woman, 18 months into her time at the university
reflected, “I have my mentoring committee, but I haven’t really talked with them . . . but I’m going to
do it soon.” Here again, we noted that women tended to blame themselves for the challenges that they
face. Rather than wondering why her “mentoring team” had not contacted her, she expressed guilt for
not contacting them.

While hierarchically assigned mentoring was not altogether successful, peer mentors were more
helpful. The most successful formal mentoring programs involved peer mentoring networks that
operated at department or college level, rather than a hierarchical relationship between a senior mentor
with a junior mentee. For example, an assistant woman described a mentoring group in her college:

We felt a little frustrated in our department, and we had no senior women faculty at the
time, so we did a College . . . mentoring group for women that focused on issues of research,
teaching, work-life balance. Women of all ranks were included.

Here, junior women have created a peer mentoring program to provide each other with support
that had been missing within their department. Another group of associate women discussed a
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previous mentoring program funded by an external grant that was no longer active because the
funding had ended:

we all shared a love of the mentoring program we had pre-tenure and . . . that is lacking,
post-tenure . . . it was so productive, we would all like to see an effort, built in structurally.
It needs to be institutionalized, can’t be just depending on funding, gone away the next year.

One full professor who is a man also argued for this sort of mentoring system, adding that
multiple types of mentoring are important—not just one (powerful) mentor. One larger department
runs faculty mentoring sessions every other year for new faculty. These sessions count as departmental
service for the senior faculty member running the sessions. An assistant man described the sessions:
“[We have] monthly mentoring session for junior faculty around special topics (applying for NSF
CAREER awards, balancing teaching and research, etc.) . . . We discuss teaching, balancing research,
getting tenure, like 5–6 sessions a year.” Other faculty around the table thought this was an excellent
idea, given that the advice is tailored to the needs of junior faculty members in that department. In all
of these examples, cross-rank mutual mentoring networks institutionalized within departments or
colleges, as opposed to individual assigned mentors, seemed to receive enthusiastic support.

One of the issues raised by faculty was whether there was a culture of mentoring in departments.
For example, one associate man noted that he had lunch with his assigned mentor once a month, who
served as his “official point person,” while those in his research area “are fairly close, so [they provide]
lots of mentoring for things—grant writing to teaching.” Yet, he further noted “That’s the culture of
my group. It’s not true for all groups in the department.” An associate woman also noted, “I’ve not
experienced any mentoring as an associate prof. There is no structure [for it]. There are people who
would be willing, they’re not hostile. It’s just not part of the culture.” An assistant woman conveyed
that her assigned mentor did not work out and there is “no culture of mentoring” in her department.
Interestingly, this missing “culture” of mentoring seemed most evident to women. However, one
associate man expressed similar sentiments about mid-career faculty: while “mentoring for junior
[faculty] is good. Once you get tenure, that system collapses.”

In addition to formal mentoring programs, faculty respondents also discussed informal mentoring.
Men argued that they received a great deal of informal mentoring, making the formal mentoring less
important. Comments among the assistant and associate men in different sessions and tables were
fairly consistent:

Assistant man: The lunch bunch [including faculty of all ranks] discusses what is “valued”
within the department. Learning this is important and one can only learn it by talking to
people. You have to get some sense of what’s valued and not, what should you focus on
with limited time. I got this in the informal discussions, because no one will actually tell you:
How many students? How many papers? No one will tell you in the formal conversations.

Assistant man: There are five or six people giving me comments so I get as much as I want
or more. There are monthly lunches with mentors, and I stop by [their offices] when I
have questions.

Associate man: Informal mentoring may focus on grant writing, teaching, and identifying
collaborators. Where mentoring does not exist formally, faculty still form collegial
relationships and aim to help junior faculty succeed.

Associate man: There were many [faculty] interested in my success when I arrived.
People read my grants, helped me formulate lectures, get matched up with people.

All in all, most assistant and associate men expressed that they were collaborating with their
colleagues to enhance career development very effectively.

Women tended to feel less engaged with informal mentoring, particularly when they were in
departments made up mostly of men. An assistant woman argued, “Networking depends on being
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part of the boys’ club, and women can’t do that,” noting that much socializing occurs after 5 pm,
which is difficult for mothers, even though many men are also fathers. An associate woman similarly
referred to informal mentoring as “the men chumming around [after] work.” One woman who is a full
professor argued, “Male mentoring happens organically, on the golf course, but women keep busy,
but don’t hang out outside of getting things done.” For many of the women, this sort of informal
collaborative work toward professional development seemed out of reach.

Men full professors, many of whom noted that they had not experienced formal mentoring
themselves, were less certain about the need for institutionalized mentoring. Women full professors
were somewhat more divided about mentoring. A number of full professor women noted that there
was “no mentoring after tenure” or that “mentoring is only for junior faculty,” calling for more peer
mentoring efforts aimed at senior faculty. Yet in one group of women full professors, one referred to
peer mentoring as “fabulous,” while another suggested that formal and institutionalized mentoring
was “intrusive and infantilizing.” Similarly, in one discussion of why faculty were slow to advance to
full in one department, full professor men suggested that those faculty were “too cautious,” while one
noted that “we found our own way, there is too much spoon feeding [now].”

Some men who are full professors suggested that processes such as departmental seminars, where
faculty might present their work, or regular pre-tenure personnel evaluations, provided the necessary
mentoring, and were skeptical about the need for additional mentoring efforts. One full professor
who is a man said, “[We] have an informal system and talk about making it more formal, but it
seems to work well. When it breaks down, the department head steps in. We also have—with one
gap [one case where the junior faculty did not get mentored]—the department head and head of the
personnel committee meet with junior faculty early in fall and talk about generalities—expectations,
and meet informally.” In this discussion, there appeared to be a disconnect between the mentoring that
associate and assistant professors wished for and the mentoring that some full professor men thought
was appropriate.

Respondents also discussed the mentoring that they received on papers and grants, suggesting
that it was easier to ask for specific feedback. One assistant professor woman noted about her
formal mentors:

I do get [feedback], if I bug them, like [on] a grant, I ask them to read my grant . . . but they
are both senior people. I don’t feel that connection, maybe [I have questions about] very
stupid things about student, [they’ll say] ‘learn to deal with it,’ no real suggestions. There
is no real understanding between my situation and their situation.”

Some assistant and associate women suggested that men mentors were more likely to collaborate
with men mentees, and read their proposals and paper drafts, but were less focused on mentoring
women. As one assistant woman noted, “overall, I’d characterize the mentoring environment in the
department as one of benign neglect.” One associate woman argued that men were more likely to
mentor other men, “It’s the case that men will talk to junior women, but won’t read a paper . . . That’s
the male style of mentoring and it’s rare to do any at all.” From her standpoint, men were less likely
to read and provide feedback to women. This may because their senior colleagues are implicitly less
likely to view women as worthy of this mentoring help. Men did not report these types of experiences.

Women respondents were particularly likely to point to mentoring as a burden. Women expressed
concern about taking time from their mentor’s busy schedules, but we did not hear this theme among
men. One assistant woman wistfully described that she did not take full advantage of her mentors
in her first year: “I had wonderful mentors, and they have advanced to other positions . . . and have
new mentees in their first year, but you didn’t know all the questions to ask yet.” Assistant women in
different focus groups tended to make the same points about not wanting to burden their mentors:

Assistant woman: I find that often it’s the stuff I don’t know to ask about that ends up being
an issue...[but] I really don’t want to take up more of my mentor’s time than I already do.

Assistant woman: As a junior faculty, you don’t want to bother people.
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Assistant woman: You feel like everyone is so busy, you don’t feel like always going to
someone’s office, would be nice to have senior faculty to initiate it.”

Assistant woman: You do sometimes feel like you do not know if your issue is big enough
to bug them.

However, one woman in her first year as an assistant professor noted that she was “always asking
questions,” and felt that being proactive was working well for her.

Our respondents suggest mentoring tended to go unrecognized and unrewarded. One assistant
woman suggested, “Mentoring should be initiated by senior faculty and include [mentoring regarding]
amount and types of service to undertake and grant writing. Maybe senior faculty should get
service credit for mentoring—[the university should] incentivize it.” From her standpoint, by creating
incentives to mentor, faculty would be more likely to engage in needed mentoring. Another assistant
woman argued, “[mentoring is] almost out of the goodness of the faculty hearts. The people that
genuinely care, but if mentoring is that critical, then mentors should get credit somehow at some
level.” One associate woman noted that though she is now a mentor, she has no time, suggesting that
course releases would facilitate tenured faculty serving as mentors. While many women full professors
valued interactions with other women at the same level, they also felt overwhelmed by work demands,
including mentoring. Some full professor women called for more information resources to be put
online, so that they could direct junior faculty to the resources they need to do their jobs well to make
mentoring less time-consuming. Women untenured faculty further mentioned the lack of incentives to
mentor, despite their need for mentoring. Faculty suggested personnel committees need to do more to
value the mentoring and service work that facilitates a collaborative climate.

The key concern assistant professor men mentioned was about the changing funding environment,
especially with respect to both the increasing scarcity of federal grants and greater emphasis on
collaborative research. As one assistant man argued:

Funding is tight these days. It’s sometimes hard to get mentoring around grants because
senior faculty without funding may not have gotten a grant in this climate. Now people
are scrambling to find a way to sustain funding in a new environment, people who before
had these massive labs, just don’t.

Women also expressed these concerns, such as the assistant woman who said, “I have to say it’s
harder with the funding situation. Before juniors could get funding in first or second round, money
to solve research questions, but now the funding is a problem and still on top of that, we’re junior
faculty.” Both men and women reflected that they may not receive effective grants mentoring if older
colleagues have not had similar experiences.

Overall, when it comes to collaboration in career development, we heard more differences in the
experiences of men and women, although they both agree about the need for mentoring, especially
around grant proposals. While assistant and associate men could recount substantial mentoring
engagement, much of it informal, assistant and associate women reported less mentoring. Women
provided examples of the difficulty of connecting with colleagues, and receiving feedback on their
work more than men. Women also were concerned about the time-consuming nature of mentoring,
and the lack of incentives to mentor faculty colleagues—making them more cautious about requesting
time and attention from their mentors.

5. Conclusions

For most STEM faculty, research collaboration is crucial for research productivity and career
advancement. Yet, there may be gender differences in the resources available for research collaboration
and how contributions to collaborations are evaluated. At the same time, while collaboration in career
development is also important to developing social networks and teach faculty members the informal
norms that lead to career success, women in STEM fields dominated by men may be less likely to
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be engaged in these collaborations. Based on focus group data from STEM faculty at one research
university, we find that faculty primarily identified three major issues around collaboration: resources
for research collaboration, recognition for collaborative work, and collaborative relationships that support
professional development, as illustrated in Figure 1. These three themes reflect many of the issues raised
in the literature we reviewed on research collaboration and collaborative professional development,
but also may serve as a broader framework to address gender equity in the academy [68,73,78–80].

Figure 1. Interactive Model of Resources, Recognition, and Relationships.

By holding our focus groups separately by gender and rank, we were able to identify both
similarities and differences in how men and women, at different ranks, perceive the climate for
collaboration at their university. While all faculty noted the need for greater resources for collaboration,
men expressed greater outward frustration about the lack of resources, and women were more likely to
identify their own inability to access resources needed for collaboration. Women were also much more
concerned about how their collaborative research was viewed. Indeed, even senior women thought
that they would not be credited as making contributions to their collaborative research. While both
men and women expressed that formal assigned mentoring was not particularly effective, men were
much more likely to describe informal mentoring that they received that was invaluable to their career
development. In comparison, women were less likely to report these types of supports, and worried
about asking for their mentors’ time, which led them to feel less certain about whether they were
making good career decisions.

Despite being located at a university that has developed supports for STEM women, it appears
that men and women continue to experience their work quite differently. In keeping with expectation
states theory women’s and men’s different statuses in STEM fields may have affected their experiences.
If a particular field is framed as masculine, status beliefs about women may be based on the
implicit stereotypes that women have less expertise in that field. Those who hold more privileged
statuses—such as men and, in some cases, senior women, feel more entitled to resources and mentoring
than junior women. In comparison, those who hold less privileged statuses, such as assistant
and associate women, express substantial concern that they are less likely to be credited in their
collaborative research. Men also appear to benefit from more consistent mentorship from colleagues
whereas women express concerns about burdening mentors, which may reflect their attempts to live
up to communal status expectations for women.

Expectation states theory does not suggest that these statuses are fixed. Even if women are viewed
as less competent, other statuses, such as being a full professor, can counteract the status effects of
gender. Indeed, senior women were more likely to make strong claims about needing resources for
collaboration that mimicked men’s. In other words, gender differences in faculty responses were more
apparent among untenured men and women than full professors. It is important to recognize the
gendered experiences and understandings of untenured faculty because it may lead to differential
rates of tenure, promotion, and professional success. If untenured women make fewer claims for
resources, are less likely to be recognized for their contributions for collaborations, and are less likely
to be engaged in collaborative career development—they may also be less likely to attain tenure
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and promotion. This pattern then reinforces assumptions that women may be less competent in
particular fields.

These findings also provide insights into the factors that could lead to greater gender equity.
Although our framing was around collaboration, our findings suggest that women’s professional
outcomes may be better in units where they have access to the same resources, recognition, and
professional relationships as men. Substantial research has pointed to how women may not be able to
access the same resources as men [43,68,73,78,81–87]; for example women may receive less investment
through research funds, which limits their research productivity. The existing literature also points
to the crucial role that relationships play in academic workplaces [6,7,67,74,88–94]. If men are more
readily integrated into faculty networks, they may find it easier to learn the informal workplace
norms and access information that helps them succeed. Research also suggests that recognition
via transparent evaluation processes and communication matters, particularly regarding women’s
advancement [15,80,86,95–99].

We suggest that each of these factors—resources, recognition, and relationships—matter to
academic success for STEM faculty. Moreover, our data suggests that when resources, relationships, and
recognition intersect—as when a faculty member knows how to access essential resources (staff, space),
whom to ask for help (a mentor or a staff member), and how his or her activities will be evaluated
(as in the departmental personnel committee)—the effects are multiplicative rather than additive
(see Figure 1). In other words, where access to all three “R”s exists (the central portion of Figure 1),
the professional conditions are optimal, and we expect to see greater gender equity in retention, job
satisfaction, and advancement of women STEM faculty. The area where two Rs intersect will lead
to better outcomes than in the areas where only resources or recognition or relationships support
collaboration. These factors influence each other in a bi-directional manner. Resources catalyze
relationships and recognition. Recognition creates opportunities to attract more resources and build
new relationships. Relationships help connect faculty to resources and receive greater recognition.
All three factors matter, and indeed, the accounts from our focus group suggest that relationships are
truly crucial for faculty to learn how to access resources and gain recognition or their collaborative
work. We suggest that this model may be useful to universities as they address the challenges of
gender equity. By examining and ensuring gender equity in resources, relationships, and recognition,
in a variety of domains, it should be possible to develop strong and effective supports for women in
STEM fields.
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Appendix A.

The interviews began with an introduction that provided broad context for the discussion, and
our goals, followed by focus group discussions at separate tables regarding the following questions.

Q1. What support for peer mentoring exists (if any) in your department?
Q2. How are decisions made in your department—do you think decisions are made hierarchically, or

more collectively? (for example, do chairs consult and make decisions, do committees decide/
how are committees selected)

Q2B. Relatedly, how much transparency would you say exists around personnel decisions in
your department? (promotion, tenure, merit, distinguished, teaching awards)

266



Soc. Sci. 2017, 6, 25

Q3. In your own work, do you engage in interdisciplinary research?

Q3A. Do you see interdisciplinary research as supported by your department? (i.e., How do you
think interdisciplinary research will come into play when it comes time for tenure review?)

Q4. What do you think the general level of satisfaction is among faculty in your department? (why?)
Q5. What barriers do you perceive to faculty work?

After these small group discussion were completed (after about 40 minutes), we shifted to a large
group discussion, for all of the participants in the room. We first provided data on the race, gender, and
rank breakdown of faculty in STEM fields. We also presented results of a survey that indicated that
men perceive more equal treatment than women in personnel decisions, and asked the participants to
discuss the data.

Q6. Are these data surprising? Why do you think there is a gender gap?
Q7. What recommendations do you have for interventions to address perceived barriers to

faculty work?

Q7A. Are there ways that decision-making could be improved?

Q7B. Would you recommend additional support for interdisciplinary research, and if so how?
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