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Preface

Acoustic sensors are built to measure an environment and convert this information into a digital

or analog data signal that can be analyzed by a computer or observer, processed, and involved in

numerous applications. The signals collected by acoustic sensors contain a large amount of valid

information that facilitates further processing of the collected acoustic signals.

Acoustic sensors have an extremely broad range of applications in many fields, including,

engineering acoustics, underwater acoustics, environmental acoustics, architectural acoustics,

physical acoustics, psychoacoustics, and so on. Acoustic sensors have extensive usage in different

areas, including but not limited to automotive and transportation, robotics, healthcare, security and

surveillance, entertainment, home automation, agriculture, IT & communication, commerce, space,

and defense.

The acoustic sensors are designed to have some properties such as high sensitivity, linearity,

low noise, high resolution, and low power consumption. There are many types of sound sensing

devices and some of them highlight a couple of them. First of which is the microphones which are

the most common devices to pick up sound waves and turn it into an electric signal. Like our highly

sensitive ear, microphones convert our voice into waveforms. The second type is the piezoelectric

sensor that also converts the pressure into small electric signals. The sound travels through the air as

a wave of pressure and that’s exactly what causes the piezoelectric sensor to generate in the form of

an electric signal.

Acoustic sensor is one of the fastest-growing technologies in recent years. The increasing

demand for acoustic sensors can be attributed to their large market serving different purposes across

multiple industries. The sensor technological advances in acoustics turning heavy, non-portable,

expensive hardware, labour and time-intensive methods for analysis into new small, movable,

affordable, and automated systems, make acoustic sensors increasingly popular.. The future outlook

of the acoustic sensor market thus looks promising and is expected to witness significant growth in

the coming years. Overall, the ongoing digital transformation and increasing integration of acoustic

sensors in various applications will contribute to the market’s revival and long-term growth.

This Special Issue is focused on the acoustic sensors and their applications covering the design

and implementation of the acoustic sensors as well as their numerous applications such as noise

control, speaker recognition, leak detection, non-destructive testing, structure health monitoring,

online real-time monitoring, etc. Different types of acoustic sensors including piezoelectric

transducers, ultrasound sensors, and microphones, are featured here being an integral part of

various issues related to ultrasonic systems, acoustic power transfer systems, sonar systems,

preload measurement systems, hybrid acoustic models, aggregation acoustic models, acoustic

emission, optochemical devices, optical microphones, infinity tubes, etc. The future directions

and some challenges related to acoustic sensors designs and applications are further highlighted.

This Special Issue supports the engineers, researchers, academics, and designers, in several

interdisciplinary domains.
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Acoustic sensors have been in commercial use for more than 60 years. Acoustic
sensing technologies have been studied extensively, and the information, transmission,
reception, transformation, processing and application of acoustic signals have been devel-
oped, with acoustic sensors as a central focus. An acoustic sensor is a device that converts
a sound wave signal into an electrical signal. The design and development of acoustic
sensors are very important technological and scientific issues. Acoustic sensors are widely
used in industrial, medical and numerous other applications including environmental
and health monitoring, chemical and biochemical detection, and signal processing devices.
The papers that form this Special Issue cover a variety of approaches and models related to
acoustic sensors and their applications.

Liu et al. [1] aimed to fabricate a smart, nickel-based super-alloy bolt with a high-
frequency (center frequency: 17.14 MHz) piezoelectric thin-film sensor by radio frequency
magnetron sputtering. The proposed high-frequency probe provides a number of advan-
tages over the commercially available piezoelectric probe in terms of a pure and broad
frequency spectrum, high temperature tolerance, small preload measurement, repeatability,
measured error due to thickness of couplant layer and change in measurement position.

Rong et al. [2] proposed a muffler named infinity tube with an expansion chamber
(ITEC) by adopting the transfer matrix method (TMM) for noise control in the ductwork
system. A thorough theoretical and numerical study was carried out for this novel sound
attenuation device, ITEC, to reduce duct noise. A closed-form expression for the transmis-
sion loss of the ITEC device was derived. The advantage of ITEC over IT (infinity tube)
in low-frequency noise reduction was demonstrated by comparing the transmission loss
between them.

Deng et al. [3] designed an end-to-end speaker recognition system, ResSKNet-SSDP,
with an improved feature extraction capability and improved adaptation to the speaker
recognition task. The proposed system makes it more suitable for practical application as it
is more efficient in terms of the Equal Error Rate (EER) and detection cost function (DCF),
and its structure is lightweight with fewer parameters and less interference time compared
to many of the existing methods.

Bente et al. [4] proposed broadband air-coupled ultrasound-emitting and -receiving
transducers, demonstrating the combined use of a broadband thermoacoustic emitter and
an optical microphone as receiver. They showed an initial application for simultaneous
determination of thickness and sound velocity of a solid material. The sensor combination
presented is simpler to use, and the transducer pair works for all samples that have a
thickness resonances (TR) frequency below a critical value of 1 MHz.

Liang et al. [5] presented a secondary phase transform (PHAT) cross-correlation
method to improve the performance of the acoustic methods based on cross-correlation

Sensors 2023, 23, 7726. https://doi.org/10.3390/s23187726 https://www.mdpi.com/journal/sensors
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for pipeline leakage detection in complex background noise environments, for example,
in power plants or other industrial concerns. A sinc interpolation method was then
introduced to automatic search for the peak value of the cross-correlation curve. An
improved performance of the proposed method is shown for noise suppression and accurate
time delay estimation (TDE) compared to the basic cross-correlation method, which can be
beneficial in engineering applications.

Yao et al. [6] investigated the capabilities of a commercial AE (Acoustic Emission)
sensor in decomposing AE wave modes generated by pencil lead breaks (PLBs) on a thin
metal plate incorporating the LAMDA (linear array for modal decomposition and analysis)
sensor and finite element analysis (FEA). It is shown that a transverse PLB produces a
dominant A0 mode, while a longitudinal PLB produces a combination of A0 and S0 modes.
This work can further initiate the application of LAMDA sensors to identify the wave
modes generated by the different damage mechanisms in composite panels.

Vetrab and Gosztolya [7] used hybrid HMM/DNN embedding extractor models in
computational para-linguistic tasks. The proposed HMM/DNN hybrid acoustic-model-
based feature extraction technique was then found efficient at extracting features from
different para-linguistic tasks. In order to perform classification through SVM models, dif-
ferent aggregation methods are used to convert acoustic frame-level features into utterance-
level features. The proposed scheme can be considered a competitive and resource-efficient
approach for various computational para-linguistic tasks.

Liu and Abdulla [8] introduced an improved acoustic power transfer (APT) system by
proposing a 3D-printable and cost-efficient piezoelectric transducer equilateral triangular
peripheral clamp. This study integrates an impedance matching circuit into the Mason
circuit and investigates the impact of fixed constraints on the piezoelectric transducer’s
sound pressure and output voltage. The novel findings of this study can aid researchers
and practitioners in various fields that employ APT systems to improve their performance
in air.

Scheuer and DeCorby [9] applied an ultrasensitive, broadband optomechanical air-
coupled ultrasound sensor to investigate the acoustic signals produced by pressurized
nitrogen escaping from a variety of small syringes. Harmonically-related MHz-range
jet tones were generated by passing pressurized nitrogen gas through a collection of
small syringes and shown the extension of the previously established theory to this range.
The results from the constructed compact probe for all-optical detection in the MHz range
could have practical implications for the non-contact monitoring and detection of early-
stage leaks in pressured fluid systems.

In the tenth study, Han et al. [10] developed a sophisticated embedded ultrasonic
system to monitor the mechanical properties of ice in real-time and online under various
temperature conditions. With the help of the numerical models, the wave propagation in
ice was investigated, and the influence of varying temperatures on the wave propagation
was also discussed. The proposed system provides a platform to continuously obtain the
response of the ice. With this system, the ice properties under specific temperature condi-
tions are then identified based on the intrinsic relationships between the wave propagation
velocities and the mechanical properties of ice.

Finally, in the last paper, Jang et al. [11] introduced an electrical equivalent circuit
for sonar sensors based on their impedance characteristics by proposing an estimation
approach to derive the equivalent circuit. In this study, a particle swarm optimization (PSO)
algorithm is employed for parameter estimation of high-degree electrical equivalent circuits.
The proposed approach maintained high precision of the derived equivalent circuit even
with variations in the number of resonances and the sensor’s impedance characteristics.
It is expected to provide accurate estimations of the load characteristics when designing
amplifiers for sonar operation.

Author Contributions: writing—original draft preparation, F.S.; writing—review and editing, N.B.P.,
R.F.-R. and F.S. All authors have read and agreed to the published version of the manuscript.
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Ultrasonic Measurement of Axial Preload in High-Frequency
Nickel-Based Superalloy Smart Bolt

Shuang Liu 1,*, Zhongrui Sun 1,2, Guanpin Ren 1,2, Cheng Liao 2, Xulin He 2, Kun Luo 2, Ru Li 2, Wei Jiang 2,*

and Huan Zhan 2,*

1 Department of Applied Physics, College of Mathematics and Physics, Chengdu University of Technology,
Chengdu 610059, China

2 Chengdu Development Center of Science and Technology of CAEP, Chengdu 610299, China
* Correspondence: liushuang19@cdut.edu.cn (S.L.); jiangwei.phys@aliyun.com (W.J.);

zhanhuanhunan@163.com (H.Z.)

Abstract: A high-frequency, piezoelectric thin-film sensor was successfully deposited on a nickel-
based superalloy bolt by radio frequency magnetron sputtering to develop a smart, nickel-based
superalloy bolt. Ultrasonic response characterization, high accuracy, and repeatability of ultrasonic
measurement of axial preload in nickel-based superalloy smart bolts are reported here and were fully
demonstrated. The axial preload in the nickel-based superalloy smart bolt was directly measured by
the bi-wave method (TOF ratio between transverse and longitudinal-mode waves) without using the
traditional integration of a longitudinal and shear transducer. A model concerning the bolt before and
after tensioning was established to demonstrate the propagation and displacement distribution of the
ultrasonic waves inside a nickel-based superalloy smart bolt. The measured A-scan signal presented
significantly favorable features including a mixture of transverse and longitudinal mode waves, a
pure and broad frequency spectrum which peaked at 17.14 MHz, and high measurement accuracy
below 3% for tension of 4 kN–20 kN. For the temporal ultrasonic signal, the measurement envelopes
were narrower than for the counterpart of the simulation, justifying the ‘filtration’ advantage of the
high-frequency sensor. Both the TOF change of the single longitudinal-mode wave and the TOF
ratio between transverse- and longitudinal-mode waves increased linearly with preload force in the
range of 0 kN to 20 kN. Compared with the commercial piezoelectric probe, the proposed probe,
based on the combination of a high-frequency, piezoelectric thin-film sensor and a magnetically
mounted transducer connector, exhibited high tolerance to temperatures as high as 320 ◦C and high
repeatability free from some interference factors such as bolt detection position change and couplant
layer thickness. The results indicate that this system is a promising axial preload measurement system
for high-temperature fasteners and connectors, and the proposed sensor is a practical, high-frequency
ultrasonic sensor for non-destructive testing.

Keywords: axial preload; ultrasonic measurement; nickel-based superalloy; bolt preload; high-frequency
piezoelectric thin-film sensor; non-destructive testing

1. Introduction

Nickel-based superalloys are attractive materials for the components used in the
hot zones of jet turbine engines and other industrial applications where exceptional re-
sistance to high-temperature working conditions is required [1–3]. As bolts are critical,
high-temperature components, nickel-based superalloy bolts are a credible choice for top-
notch, rugged applications in aircraft, aerospace, oil and gas, and various industries [1]. The
accurate measurement and monitoring of the axial preload of bolts are critical for maintain-
ing important infrastructure performance and preventing premature failure accidents [2–6].
On this basis, a lot of attention has recently been paid to research in the field of structural
health monitoring and the measuring of bolts and bolted connections under the influence

Sensors 2023, 23, 220. https://doi.org/10.3390/s23010220 https://www.mdpi.com/journal/sensors
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of loss of load capacity and high-temperature working conditions [2–10]. There are many
ways to directly or indirectly measure bolt preload [2,4–15]. Direct measurement methods
are mainly strain gauges [14] and torque control [15]. These methods are employed less due
to their low accuracy and significant error, and they do not allow for the online monitoring
of bolted structures. This has pushed detection and investigation methods toward indirect
methods [7–17]. Many indirect methods such as impedance-based methods [16], piezo
active sensing methods [17], acoustoelastic-based methods [7–10], etc., have been intensely
investigated in recent years and have been proved to evaluate bolt preload force. Some
detection methods can basically realize unmanned online monitoring. However, most
indirect methods have different intrinsic shortcomings. For instance, impedance-based
methods [16] suffer from relatively high cost, large size of setup, and sensitivity to thermal
and load fluctuations, although they are highly sensitive and suitable for in situ monitoring.

Among these indirect methods, acoustoelastic-based methods, i.e., ultrasonic preload
measurement, combine the attributes of high precision, excellent real-time performance, and
strong sensing penetration and, therefore, have been the most widely used for the detection of
axial preload in bolts [2,4,7–13]. Ultrasonic preload measurement methods can be roughly
classified into the mono-wave method and bi-wave method according to the nature of the
measurement [2,4]. The mono-wave method, proposed earlier, refers to the use of a single
transverse wave or longitudinal wave to measure the axial stress in a bolt [2,4,7,11]. This
method is generally used to control and verify the preload applied during the assembly of
the bolt [2,4]. For comparison, the bi-wave method relies on a combination of transverse- and
longitudinal-mode waves to measure the axial preload in bolts [18]. The method provides
easier detection of the axial preload in an already tightened bolt [2,4,18,19]. Currently, to
achieve the bi-wave method for bolt measurement, a transverse- or longitudinal-mode wave
probe is adopted to collect ultrasonic wave signals [18,19]. Another way is to integrate the
transverse- and longitudinal-mode wave probe together for the bi-wave method. These
ways not only have intricate measurement and large-size probe fabrication processes, but
they also easily cause additional measurement errors in terms of axial preload during the
measurement process.

Prior to measurement, to avoid error caused by the repeated coupling of transduc-
ers, the end face of the subject bolts is processed by some methods such as turning and
polishing [7]. However, it not only damages the bolt body but also consumes a great deal
of time and labor. These limitations can be overcome by moving to an electromagnetic
acoustic transducer (EMAT) [2] and a permanently mounted transducer system (PMTS) [20].
They have been gradually replacing the piezoelectric transducer in recent years. However,
the two transducers have not been widely used in engineering applications relating to
bolt preload or stress. For example, the use of an EMAT for bolt preload measurement is
limited by low conversion efficiency and difficulty in exciting the longitudinal wave on
the end faces of ferromagnetic bolts [2,4,20]. The special handling process of the bolt and
lead content frustrates the wide use of PMTS [2]. Similar to PMTS, an ultrasonic sensor
deposited or bonded on the bolt surface has been demonstrated recently [7]. The common
mechanism of the ultrasonic sensor action is described in Figure 1. Based on the inverse
piezoelectric effect, the excitation electric pulse signal is easily converted into an ultrasonic
wave signal which propagates along the axial direction of the bolt and generates the echo
at the bottom; subsequently, the echo propagates along the axial reverse direction and
reaches the ultrasonic sensor, and the echo is converted into an electrical pulse signal with
preload- or stress-related information through the piezoelectric effect. Based on a smart
piezoelectric sensor bolt with a frequency constant of 1.89 MHz, Q. Sun et al. [7] recently
reported precise bolt preload measurement by only the mono-wave method. However,
the piezoceramic transducer was fixed in the center of the bolt head by low-temperature-
tolerance (150 ◦C) epoxies. Currently, most ultrasonic-related sensors and probes are low
frequency and have low temperature tolerance due to the couplant requirement and single-
mode wave transducers below 10 MHz [2,4,7–20]. To the best of our knowledge, little
literature has so far reported on the axial preload measurement of non-ferromagnetism or
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weak-ferromagnetism smart bolt specimens such as nickel-based superalloy and titanium
alloy bolts. There have been almost no reports on high-frequency, piezoelectric ultrasonic
sensors for the axial preload of bolts before.

Figure 1. Experimental setup schematic and fundamental principle diagram of measuring bolt axial
preload by the mono-wave method. (L-wave: longitudinal wave, V: velocity of longitudinal wave, ΔL,
Δx: length and time change of the smart bolt induced by the preload compared with the slack bolt).

In this work, smart, nickel-based superalloy bolts with a high-frequency, piezoelectric
thin-film sensor were successfully fabricated by radio frequency magnetron sputtering.
High accuracy and repeatability of ultrasonic measurement of axial preload for the smart,
nickel-based superalloy bolts were fully demonstrated. Thanks to the proposed probe,
i.e., the combination of a high-frequency, piezoelectric thin-film sensor and a magnetically
mounted transducer connector, the collected ultrasonic wave signals possessed pure and
broad frequency centered at 17.14 MHz and included both transverse- and longitudinal-
mode waves. These facts enabled us to measure the axial preload in the nickel-based
superalloy by either the mono-wave method or the bi-wave method. Compared with
the simulated ultrasonic response, the measured ultrasonic response showed narrower
envelopes due to the ‘filtration’ character of the proposed sensor. The pure ultrasonic
response allowed a small preload of 800 N to be successfully measured with the introduction
of a spline interpolation algorithm. The proposed high-frequency probe showed obvious
advantages over the commercial piezoelectric probe in terms of frequency spectrum, high
temperature tolerance, small preload measurement, repeatability, measured error caused
by couplant layer thickness, and measurement position change.

2. Research Methods

Measurement and Experiment Process

Ultrasonic pulse-echo technology based on acoustoelasticity theory was used here to
measure the axial stress in a smart bolt [2]. For the mono-wave method, axial preload in
the nickel-based superalloy bolt was calculated by the TOF change measurement of the
pulse echo before and after tightening [2,4]. The relationship between the TOF change and
axial preload force can be expressed as follows [2]:

F =
E·S·ΔL

L
(1)

where F is the axial preload force, ΔL = Δx·V is the change of bolt length, Δx is the change
in TOF from before to after tightening, and V is the propagation speed of the ultrasonic
longitudinal wave in the material; E is the elastic modulus of bolt material, S is the effective
cross-sectional area, and L is the clamping length of the bolt.

An integrated excitation and collection ultrasonic system based on a high-frequency
piezoelectric sensor was constructed and is depicted in Figure 1. This proposed system
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consists of an ultrasonic signal excitation and acquisition integrated module, a computer
with measurement software, and an ultrasonic probe. The independently developed
excitation and acquisition integrated unit could not only launch the exciting voltage in
the range of 0~400 V but could also collect ultrasonic wave signals with a frequency
from 0.2 MHz to 25 MHz. The corresponding sampling frequency was 100 MHz, and the
maximum gain value was as high as 89 dB. The analog signal filter in the frequency domain
was from 2 MHz to 25 MHz in this work. The influence of temperature on the preload
measure was not considered here.

Different from the commercial piezoelectric probe shown in Figure 2a, the ultrasonic
probe consists of two disconnected parts: a high-frequency, piezoelectric thin-film sensor
and a magnetically mounted transducer connector, as shown in Figure 2b. To address the
disadvantages of the ultrasonic probe, the high-frequency, piezoelectric thin-film sensor
was deposited on the slightly polished surface of the nickel-based superalloy head, as
shown in Figure 2c. The smart bolts that were the specimens in the experiment were
M8 nickel-based superalloy bolts with four thin-film, multi-function layers: an electrode
layer, isolated layer, high-frequency, piezoelectric thin-film layer, and transition layer. The
composition of the four layers was GH4 169, ZnO, Cr2O3, and Sn, respectively. The ZnO
ceramic target was a high-frequency piezoelectric material with a high purity of 99.99% in
this work. The deposition processes were performed inside radio frequency magnetron
sputtering [21], as shown in Figure 2d. The fabrication procedure was as follows: Through a
nanosecond pulsed laser polishing technique [22], the surface roughness of the nickel-based
superalloy bolt head was controlled below 0.4 μm, and the parallelism between the top and
the bottom of the bolt was controlled at 0.01 mm. Then, the nickel-based superalloy sample
was consecutively cleaned by an acetone, ethanol, and deionized water solution through
an ultrasound cleaner and dried by high-purity nitrogen; to remove the surface pollutants
of the target, it was required to pre-sputter the high-frequency piezoelectric target for 20
min. After that, the sputtering experiment was started; by radio frequency magnetron
sputtering method, four thin-film, multi-function layers were gradually deposited on the
polished surface of the nickel-based superalloy bolt head. The process parameters for
preparing the high-frequency thin films on the surface of the nickel-based superalloy bolt
were as follows: the base vacuum pressure was 8.4 × 10−4 Pa, the sputtering pressure was
1.0 Pa, the sputtering power was 250 W, the ratio of argon to oxygen flow rate was 10:2,
the distance between the target and the substrate was 7 cm, the rotation rate of the sample
stage was 5 r/min, annealing for 1 h in oxygen atmosphere, the annealing temperature
was 400 ◦C, and the sputtering time was 40 min. To avoid the introduction of additional
stress, the thin-film deposition was performed at room temperature. The thickness of the
whole thin film was ~14 μm. The thickness of the electrode layer, isolated layer, high-
frequency, piezoelectric thin-film layer, and transition layer was 5.2 μm, 6.0 μm, 2.1 μm,
and 1.1 μm, respectively. To the protect the high-frequency thin-film layer from corrosion
and pollution, an isolated metallic oxide layer was introduced between the electrode layer
and the high-frequency thin-film layer. The material property of the thin-film sensor is
shown and discussed in the following sections.
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Figure 2. Photographs of (a) a commercial piezoelectric probe of 10 MHz and (b) a magnetically
mounted transducer connector; (c) schematic diagram of a high-frequency M8 smart nickel-based
superalloy bolt; (d) photograph of radio frequency magnetron sputtering.

3. Result and Discussion

3.1. Theoretical Model and Simulation Results

To simulate the propagation process of ultrasound inside the nickel-based superalloy
bolt, numerical calculation was carried out thoroughly with the well-known finite element
method that is reported elsewhere [23,24]. The expression of the analytical function of the
electrically excited bolt is [25]:

an1(t) = V0 ∗ sin(A ∗ t) ∗ gp1(t) (2)

where V0 is the excitation voltage, A is the amplitude, gp1(t) is the Gaussian pulse, and the
function expression of the Gaussian pulse is [26]:

gp1(t) = A ∗ e−
2(t−2T0)

T0 (3)

where A is the amplitude, and T0 is the period.
In the piezoelectric effect, the deformation of the piezoelectric film is caused by the

voltage applied by the electric excitation. The mechanism of the piezoelectric effect can be
summarized as the following governing equation [25]:

ρ
∂2u
∂t2 = ∇·S + Fv (4)

where ρ is the material density, and u is the displacement field. S is the stress tensor, and Fv
is the deformation gradient.

Table 1 gives the input parameters of the acoustoelasticity model for the smart bolt
in the work. Figure 3 shows the displacement distribution of the ultrasonic wave along
the whole bolt in the axial direction for cases of 0 N and 20 kN. To simplify the simulation
result, we only considered elongation of the bolt length induced by the axial preload, and,
therefore, the length of the bolt mode lengthened by 0.233 mm according to the experiment
assessment, as shown in Figure 3. An ultrasonic wave was produced on the upper surface
of smart bolt through 60 V voltage excitation and directly transmitted toward the bottom
of the bolt at time 2 μs. The trailing waves could obviously be seen at time 2–6 μs, and part
of the ultrasonic wave was reflected by the boundary of the bolt side. The ultrasonic wave
reached the boundary of the bolt bottom at time 6 μs and then completed the reflection
behavior on the boundary at time 8 μs. One part of reflection wave energy transmitted in
the opposite axial direction. It was observed, from 12 μs to 14 μs, that the ultrasonic wave
was gradually detected at the bolt head to generate the first longitudinal wave. Compared
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with the slack bolt, the bolt to which 20 kN preload had been applied presented a similar
ultrasonic propagation process with a corresponding time decay. Figure 4a shows the
simulation results of the temporal ultrasonic signal before and after tensioning at 20 kN.
With the introduction of 20 kN tension, the whole temporal ultrasonic signal presented a
delay phenomenon, and a TOF change for the first longitudinal wave was observed. The
absence of a shear wave in the temporal signal is attributed to the pressure acoustic module
of the used COMOSOL Multiphysics software, which only contains longitudinal wave
mode. The displacement field distribution of the upper surface for the slack bolt and the
preload bolt with 20 kN was calculated and presented in Figure 4b. Two peak components
of the displacement field were found to correspond to the first and second longitudinal
wave. The axial preload of 20 kN had no remarkable influence on the displacement field
intensity of the longitudinal wave, which led to a time delay.

Table 1. Input parameters of acoustoelasticity model for smart bolt.

Parameter Unit Value

Longitudinal wave speed m/s 5788

Frequency, f0 MHz 17

Function, A 2 ∗ π ∗ f0 (MHz) 10.6814

Period, T0 s 5.8824 × 10−8

Wavelength, λ0 m 3.4047 × 10−4

Exciting voltage, V0 V 60

Figure 3. (a) Evolution of the ultrasonic wave inside the nickel−based superalloy bolt, (b) schematic
diagram of ultrasonic wave propagation difference between the slack bolt and the bolt with 20 kN applied.

 
 

Figure 4. (a) The simulated temporal ultrasonic signal inside the nickel−based superalloy bolt, (b)
displacement field contrast of the upper surface between the bolt with 20 kN axial preload applied
and the slack bolt.
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3.2. Measured Ultrasonic Wave Properties

Spline function interpolation was adopted to increase data points and improve the
resolution of the propagation time difference [26]. Figure 5a shows the measured A-scan
waveform collected from the nickel-based superalloy bolt head. The first longitudinal wave
was the envelope, which peaked at 14.10 μs, corresponding to the time of one round trip of
the longitudinal wave propagating along the whole bolt in the axial direction. Likewise,
the second longitudinal wave corresponded to the time of two round trips of longitudinal
wave propagation, and the envelope was centered at 27.95 μs with a reduction of voltage
amplitude. The intense envelope between the first and second longitudinal waves was the
first shear wave, peaking at 26.85 μs. The unique feature of the coexisting longitudinal and
shear wave made us directly use the bi-wave method for the preload measurement. Until
now, rare ultrasonic transducers have been reported to generate longitudinal and transverse
waves simultaneously. In addition to this, it was noted that the voltage amplitude of the
first shear wave was more intense than the counterpart of the longitudinal wave. The
reason may be attributed to the piezoelectric thin-film sensor possessing a more intense
poling phenomenon at the plane direction compared with the perpendicular direction when
the thin-film layer was excited by 60 V voltage. Limited by the experimental conditions,
however, the corresponding microscopic mechanism could not be effectively obtained
in this work. Figure 5b compares the TOF of the pulse echo before and after applying
tension at 20 kN. The use of tension led to an obvious TOF change and a reduction of
amplitude intensity. Nevertheless, the profile of the curve presented no change. In this
case, the cross-correlation algorithm [9] was used to obtain the TOF change before and
after tension. Compared with the simulation results (see the Figure 4), the experimental
results (see Figure 5a,b) presented more narrow envelopes. As the sensor intrinsic material
property could not be considered during the simulation result, the reflected waves and
the scattering waves from other surfaces were mixed into the echo signal. However, the
measured narrow envelopes could be filtered by the high-frequency sensor. The intrinsic
reason was unclear. For the outline and time position, the experimental results basically
coincided with theoretical simulation result. To check the high temperature tolerance, the
smart nickel-based superalloy bolt was inserted into a heating furnace with a temperature
of 320 ◦C and kept at a continuous heat for 1 h. As shown in Figure 5c, the whole temporal
ultrasonic signal at 320 ◦C also presented time decay comparable to its counterpart at
22 ◦C, while the amplitude intensity presented no significant reduction. It suggests that
the smart bolt can tolerate a high temperature of 320 ◦C without failure. The further high-
temperature test was limited by the tolerance temperature (≤250 ◦C) of the available BNC
connector line. For comparison, ultrasonic measurement of the bolt was carried out by
replacing the magnetically mounted transducer connector with a commercial piezoelectric
probe centered at 10 MHz. As indicated in Figure 5d, the temporal ultrasonic wave signal
presented some obvious background noise and no shear mode wave between the first and
second longitudinal waves. The envelope of the first peaked longitudinal wave of the
commercial probe was obviously wider than the counterpart of the smart bolt. It validated
the ‘filtration’ advantage of the high-frequency piezoelectric sensor with weak interference
from the reflected waves and the scattering waves from other surfaces.
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Figure 5. (a) The measured A−scan waveform collected from the high−frequency, piezoelectric
thin−film sensor, (b) comparing TOF change of the pulse echo before and after applying tension
at 20 kN, (c) A−scan waveforms of the smart bolt at 22 ◦C and 320 ◦C (the insert compares the
waveform of the first longitudinal wave for the bolt at 22 ◦C and 320 ◦C), (d) the measured A−scan
waveform collected from the commercial piezoelectric probe.

Frequency spectra of the first longitudinal waves collected from the commercial probe
and high-frequency piezoelectric sensor were obtained by the Fastest Fourier Transform in
the West (FFTW) algorithm. The results are shown in Figure 6. For the commercial probe,
in addition to the frequency centered at 8.32 MHz, several other harmonic waves could be
easily observed, as shown in Figure 6a. These harmonic waves originated from nonlinear
ultrasonic effects, including sum-frequency and difference-frequency effects [27], and the
piezoelectric material intrinsic property [28]. An increase in tension led to a more intense
inhomogeneous stretch along the axial direction of the bolt. Owing to nonlinear ultrasonic
effects, energy transfer between low- and high-frequency signals occurred continually
with the increase in the tension. In this case, the similarity of the ultrasonic wave signals
before and after straining was reduced, so the calculated results by the cross-correlation
algorithm were difficult to keep at high accuracy. By comparison, the first longitudinal-
mode wave collected by the piezoelectric sensor corresponded to a pure and broad spectrum
centered at 17.14 MHz, as shown in Figure 6b. Neither a low-frequency peak nor a high-
frequency peak was observed. For the smart bolt reported in [7], the center frequency
of the piezoelectric sensor was 1.89 MHz, and no frequency spectrum was presented.
As reported in [11], the frequency spectra presented obvious higher-harmonic-related
components. With the increase in the tension, the spectrum center showed no obvious shift,
although the amplitude intensity presented a slight reduction. It justifies the advantages of
the piezoelectric sensor with a high nonlinear suppression feature and almost no energy
transfers of different frequency signals. This ensures that mono-wave methods based on the
cross-correlation algorithm are capable of achieving a precise measure of the bolt preload.
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Figure 6. Frequency spectra of the measured ultrasonic wave collected from (a) the commercial PZT
probe and (b) the high−frequency piezoelectric sensor.

3.3. Axial Preload Measurement

During the measurement experiment, a specially designed clamp was used to connect
the nickel-based superalloy smart bolt specimens together with a magnetic connector to
form a whole body. After that, axial tension was applied from 0 to 20 kN with an interval
of 4 kN by the calibrated electrical universal material testing machine. In the experiment,
the repeatability error for 4 kN, 8 kN, 12 kN, 16 kN, and 20 kN was calculated to be 0.42%,
0.37%, 0.36%, 0.27%, and 0.22%, respectively. Synchronously, the ultrasonic measurement
system excited and collected ultrasonic wave signals by computer software. For the five
bolt samples, axial preload was measured experimentally and linearly fitted as a function
of the TOF change, as shown in Figure 7a. For each sample, actual measured tension values
and fitted tension values had a very high fitting precision, i.e., a good linear relationship
between the TOF change of the first longitudinal wave and tension. Neither a nonlinear
curve nor some deviation points were observed. This validates the effectiveness of the
TOF change calculated by the cross-correlation algorithm. To examine the feasibility of the
bi-wave method, the TOF ratio of the first longitudinal wave to the first shear wave as a
function of the tension was measured and is shown in Figure 7b. A good linear relationship
between the tension and TOF ratio of the first longitudinal wave to the first shear wave
was also observed. It means the in-service bolt preload could be directly measured by
the calibration curve function shown in Figure 7b. For the in-service superalloy smart
bolt, the proposed measurement system with only a magnetic connector directly measured
its axial preload only one time due to the simultaneous generation of the longitudinal
and shear waves. Compared with the previously reported bi-wave methods [18,19], the
bi-wave method based on the high-frequency sensor is more effective and accurate for
measuring axial preload of in-service bolts. The coefficient of determination R2 for the bi-
wave method was 0.99878, which is in agreement with that of the mono-wave wave method.
Therefore, axial preload of the installing, already tightened, or in-service superalloy smart
bolts is capable of being effectively and accurately measured by the proposed ultrasonic
measurement system based on a high-frequency sensor.
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Figure 7. (a) Relationship between the TOF difference and the tension; (b) TOF ratio of the first
longitudinal wave to the first shear wave as a function of the tension; (c) relationship between the
temperature and TOF in an unstressed bolt; (d) TOF change before and after the applied axial preload
of 800 N after interpolation. The inset is the original temporal signal of the first longitudinal wave for
the cases of 0 N and 800 N.

In the experiment, a heat module installed on an electrical universal material testing
machine was inconvenient and prohibited for safety. As the change in temperature from
room temperature to 250 ◦C was large, many parameter calibrations were complicated and
limited by the presented experiment condition. Considering these, the relationship between
the temperature and TOF in an unstressed bolt was measured as shown in Figure 7c. TOF
in unstressed sample 5 was firstly recorded at 20 ◦C. Sample 5 was inserted into a heap of
sandy soil sustainably heated by the furnace and kept for half an hour at each measurement
temperate. TOF of the heated sample 5 was quickly measured and recorded. This process
was repeated until the temperature reached 250 ◦C. The temperature increased in 10 ◦C
steps. It showed a nearly linear relationship between the temperature and TOF of sample 5.
The coefficient of determination R2 was 0.99761. The results could be used as compensation
for the actual high-temperature tension measurement [2] in the following work. To examine
the ability to measure the small preload below 1 kN, a small axial preload of 800 N was
applied to sample 5 by an electrical universal material testing machine. The measured
temporal ultrasonic signal curves are shown in Figure 7d. As shown in the inset of Figure 7d,
no TOF change was observed for the original temporal signal for the slack and small preload
due to the limited sampling frequency of 100 MHz. The spline interpolation algorithm was
used to increase time resolution. After that, the preload value measured by the proposed
system fluctuated in the range of 0.75~0.84 kN, corresponding to an error of less than ±7%.
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The ultrasonic signal amplitude of the slack bolt was slightly lower than that of the bolt
with 800 N applied, as described in Figure 7d. Both the value fluctuation and the lower
amplitude of the slack smart bolt may be attributed to the small inner noise interference
of the acquisition unit and different contact pressure between the magnetically mounted
transducer connector and the smart bolt.

3.4. High Accuracy and Repeatability Property

To identify the advantage of the high-frequency sensor for preload measurement, five
nickel-based superalloy bolts were chosen as experimental specimens and loaded with
tension from 4 kN to 20 kN by the calibrated testing machine. The measurement error
was obtained from a function (measure error σ = 100% ∗ (Fmeasure − Fapply)/Fapply, where
Fmeasure is the tension value measured by the software, and Fapply is the tension value
applied by the testing machine). The calculation results of measurement error are shown in
Figure 8a. It was noted that the absolute error of this system was below ±0.3 kN, and the
relative error was less than ±3%. The error results were in agreement with the counterpart
reported in [7]. As a nickel-based superalloy bolt is a kind of extremely weak magnetic
material, insufficient contact between the magnetic connector and the smart bolt was easily
induced during the stretching test process. The low ultrasonic preload measured error
for the weak-magnetism bolt justifies the advantage of the high measurement accuracy
of the proposed measurement system. Compared with a carbon-steel-based bolt [7], the
superalloy smart bolt with weak magnetism easily led to deficient contact and was excited
by external voltage. As a result, the excited position of the sensor easily changed the
required uniform piezoelectric property around the center region of the sensor. Additionally,
the contact position change easily caused the angle deviation between the excitation and
collection of ultrasonic wave. For a carbon-steel-material smart bolt, the absolute error of
the system was less than ±0.2 kN (corresponding to <±1%) in the experiment because the
magnetic connection contributed to the fixed contact position point and both the excitation
and collection of the ultrasonic wave. These justify the high accuracy of the ultrasonic
measurement system based on a high-frequency piezoelectric sensor.

Figure 8. (a) The relative error of ultrasonic measurement based on the high-frequency sensor;
(b) temporal ultrasonic wave signs for ten different contact positions between the magnet connector
and smart bolt; (c) temporal ultrasonic wave signs for two different contact positions between the
commercial piezoelectric probe and smart bolt (inset shows schematic diagram of two different
detection positions on the surface of the bolt head.); (d) temporal ultrasonic wave signs for two
different couplant layer thicknesses.
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To examine the high repeatability of the proposed sensor, the magnetic connector was
mounted at ten different positions on the nickel-based superalloy bolt head surface. The
corresponding ten ultrasonic measurements were carried out. The measurement results are
shown in Figure 8b. All of the first longitudinal mode signals almost overlapped together.
This means the proposed ultrasonic system is insensitive to the contact position. This is
due to the vibration–electrical energy conversion occurring between the four thin-film
layers, as shown in Figure 2c. For comparison, the commercial piezoelectric probe could
be used to measure ultrasonic wave signal at two different contact positions and coupling
layer thicknesses. These measurement results are presented in Figure 8c,d. Obvious
deviation phenomena between the ultrasonic wave signals could be easily seen in the
cases of different contact positions and coupling layer thicknesses. This drawback makes
it difficult for the commercial piezoelectric probe to measure the axial preload in actual
engineering applications.

4. Conclusions

In summary, newly developed nickel-based superalloy smart bolts with a high-
frequency (center frequency: 17.14 MHz), piezoelectric thin-film sensor were fabricated
by radio frequency magnetron sputtering. The ultrasonic temporal and spectrum domain
response and axial preload measurement of the nickel-based superalloy bolt were fully
demonstrated. The proposed piezoelectric sensor possesses a pure and broad frequency
spectrum from 10 MHz to 30 MHz, high-temperature-tolerance ability up to 320 ◦C, and
a mixture of transverse- and longitudinal-mode waves. Compared with the commercial
piezoelectric probe, the proposed sensor presents stable ultrasonic properties with high
suppression of the nonlinear ultrasonic effect. The measured temporal signal presented
narrower signal envelopes than the simulation results, indicating the ‘filtration’ advantage
of the proposed sensor. Both the mono-wave method and the bi-wave method were applied
to measure the axial tension for small preloads from 800 N to 20 kN. TOF presented a linear
increase trend with temperature increasing from room temperature to 250 ◦C. The ultra-
sonic system based on the smart bolt showed excellent characteristics of high repeatability,
low measurement error of axial preload below ±3% (comparable to the counterpart of
the previously reported carbon-steel bolt), small preload measurement ability, and high
stability. As a fixed contact position point was difficult to keep long enough for weakly
magnetic smart bolts, high-accuracy ultrasonic measurement of the axial preload in this
work indirectly demonstrated the uniform piezoelectric distribution in the whole high-
frequency sensor. Future research work will be transferred to monitor the axial preload of
the high-temperature, in-service bolt and establish a high-precision and -frequency laser
ultrasonic system based on the high-frequency piezoelectric sensor.
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Abstract: This paper proposes a muffler with simple geometry to effectively reduce low-frequency
noise in ductwork systems. A muffler named infinity tube with an expansion chamber (ITEC) is
developed from the infinity tube (IT). Theoretical and numerical analyses of wave propagation in
the ITEC have been conducted in this paper. The transfer matrix method is adopted to predict
transmission loss theoretically. The theoretical results are validated by the finite element method
simulation. The comparison of the transmission loss between the IT and ITEC illustrates that the
ITEC has an advantage in low-frequency noise reduction. The transmission loss results of the ITEC
are compared with the Helmholtz resonator system to assess the potential for industrial application.
Finally, the geometric parameters of the proposed ITEC on its noise attenuation performance have
been analyzed. The proposed ITEC can effectively reduce low-frequency noise, and it is suitable for
ductwork systems in constrained spaces.

Keywords: infinity tube; transfer matrix method; transmission loss; noise control

1. Introduction

The ductwork system is of vital importance to modern buildings [1]. It is an essential
part of the HVAC system to supply fresh air, recycle exhaust, and maintain a comfortable in-
door environment. However, the ductwork system always encounters noise problems [2,3].
Researchers have invented many kinds of well-designed mufflers to reduce duct-borne
noise in ductwork systems. In industry, dissipative and reactive silencers have a wide
range of applications [4]. The principle of dissipative silencers is using sound-absorbing
materials to convert sound energy into heat. However, subject to the dimensions of porous
material, the dissipative silencers are not suitable for attenuating low-frequency noise [5].
The reactive silencers are composed of acoustic elements which could alter the impedance
and reflect the incident acoustic waves. The Helmholtz resonator [6], quarter-wavelength
tube [7], and expansion chamber [8] are typical reactive silencers used in duct systems.
For the Helmholtz resonator and quarter-wavelength tube, the noise attenuation band
is near the resonance frequency and relatively narrow. The expansion chamber needs a
large expansion ratio to maintain the noise attenuation ability, which leads the expansion
chamber to be cumbersome [9]. A novel muffler is required to avoid the disadvantages of
the existing silencers.

The Herschel-Quincke tube (hereafter HQ) consists of two pipes parallelly mounted
along with arbitrary length and cross-section area [10,11]. Stewart discussed the sound
transmission characteristic of HQ tube devices theoretically [12]. After years of research,
the HQ tube system has been shown to be an effective silencer for low-frequency noise
attenuation. Selamet et al. [13] conducted an experimental, theoretical, and computational
investigation on HQ tube transmission loss (TL). Thereafter, Selamet et al. [14] eliminated
the geometric restrictions of HQ and altered the HQ tube to an N-duct configuration.
Kim et al. [15] designed a virtual HQ tube system to achieve the desired transmission loss
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performance under a required frequency range. Wang et al. [16] combined the HQ tube with
micro-perforated panels and developed a new noise control device. Ahmadian et al. [17]
developed a genetic algorithm to optimize the parameters of a HQ tube. Mazzaro et al. [18]
numerically investigated air flow movement inside the HQ tubes. The disadvantage of
the HQ tube is clear. HQ needs two length parameters to locate the position on the main
duct and determine the resonant frequency [19]. Therefore, compared with other reactive
silencers, HQ appears to be cumbersome. In addition, the research by Torregrosa et al. [20]
showed that the HQ tube would cause flow repartition between the main duct and
HQ device.

Lato et al. [19] developed the traditional HQ tube into the infinity tube (hereafter IT)
by combining the previous two connecting points of the HQ in different duct cross-sections
into one cross-section. With a simpler geometry, the IT is easier to manufacture and install
than the HQ tube. In addition, IT could avoid flow repartition. The research showed that
IT is an innovative muffler and would have the potential for industrial applications. To
further improve the noise attenuation ability of IT, an expansion chamber muffler would be
used to replace the side branch of the IT device. The improved IT device would be referred
to as the infinite tube with an expansion chamber (ITEC) throughout the whole study.

In this paper, the transfer matrix method (TMM) is adopted to predict the noise atten-
uation ability of the ITEC. TMM and the statement of pressure equality and conservation of
volumetric flow are performed to solve the transmission loss of the ITEC analytically. The
finite element method (FEM) simulation of the ITEC has been conducted to validate the
theoretical prediction results. Then, the transmission loss results of the ITEC are compared
with infinity tubes and other silencers to examine the noise attenuation performance. The
most frequently used reactive silencer in industry, the Helmholtz resonator, is chosen for
comparison. Finally, the effects of the geometric parameter of the proposed ITEC on the
noise attenuation performance are investigated.

2. Analytical Model of the ITEC

2.1. Sound Propagation Inside the Duct System and Transfer Matrix Method

Considering only that the plane wave exists inside a duct system, the sound wave
propagation along the X-direction would be governed by the classical acoustic wave
equation as:

∂2 p
∂x2 =

1
c2

0

∂2 p
∂t2 (1)

where p is the acoustic pressure, c0 = 343 m/s represents the sound speed in the air, and t
is the time. Assuming that the wave is harmonic in time, the sound pressure and particle
velocity could be solved as:

p(x, t) = pIei(ωt−kx) + pRei(ωt+kx) (2)

u(x, t) =
pI

ρ0c0
ei(ωt−kx) − pR

ρ0c0
ei(ωt+kx) (3)

where i =
√−1 is the imaginary unit, ρ0 = 1.204 kg/m3 represents the air density, pI and

pR are complex pressure amplitudes indicating acoustic waves that propagate along with
two opposite directions, ω is the angular frequency, and k = ω/c0 is the wave number.

The transfer matrix method (TMM) has been widely used to evaluate the noise at-
tenuation performance of the mufflers. The transfer matrix of a circular duct of uniform
cross-sectional area and length, e.g., from point C to point D in Figure 1d, is given by:

[
p(0, t)

ρ0c0u(0, t)

]
=

[
T11 T12
T21 T22

][
p(LEC, t)

ρ0c0u(LEC, t)

]
= TCD

[
p(LEC, t)

ρ0c0u(LEC, t)

]
(4)
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where LEC is the length from point C to point D. Sound pressure p(0, t) and p(LEC, t) as
well as volume velocity u(0, t) and u(LEC, t) can be solved via Equations (2) and (3):

p(0, t) = [pI + pR]eiωt

p(LEC, t) = [pIe−ikLEC + pReikLEC ]eiωt

= [(pI + pR) cos kLEC − i(pI − pR) sin kLEC]eiωt

(5)

u(0, t) = 1
ρ0c0

[pI − pR]eiωt

u(LEC, t) = 1
ρ0c0

[pIe−ikLEC − pReikLEC ]eiωt

= 1
ρ0c0

[(pI − pR) cos kLEC − i(pI + pR) sin kLEC]eiωt

(6)

  

(a) (b) 

 
 

(c) (d) 

Figure 1. Schematic of the Helmholtz resonator, HQ tube, infinity tube, and infinity tube with an
expansion chamber. (a) Helmholtz resonator (HR); (b) HQ tube; (c) infinity tube (IT); (d) infinity tube
with an expansion chamber (ITEC).

By ignoring the time-harmonic terms, Equations (5) and (6) could be re-arranged to a
matrix form: [

p(LEC)
ρ0c0u(LEC)

]
=

[
cos kLEC −i sin kLEC
−i sin kLEC cos kLEC

][
p(0)

ρ0c0u(0)

]
(7)

Equation (7) could be used to determine the sound pressure and particle velocity
transmitted through length L inside a uniform cross-section duct. Then, the transfer matrix
TCD of Equation (4) could be obtained by inverting Equation (7):

[
p(0)

ρ0c0u(0)

]
=

[
cos kLEC i sin kLEC
i sin kLEC cos kLEC

][
p(LEC)

ρ0c0u(LEC)

]
= TCD

[
p(LEC)

ρ0c0u(LEC)

]
(8)
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TMM could also solve the transfer matrix at conjunction points. According to the
statement of pressure equality and conservation of volumetric flow, the transfer matrix
from point B to point C in Figure 1b is given by:

[
p(B)

ρ0c0u(B)

]
=

[
1 0
0 SEC

SN

][
p(C)

ρ0c0u(C)

]
= TBC

[
p(C)

ρ0c0u(C)

]
(9)

where SEC is the area of duct CD, and SN is the area of neck AB.
By calculating the product of the transfer matrix in each subsystem, the sound pressure

and particle velocity between points A and F in Figure 1b are given by:

[
p(A)

ρ0c0u(A)

]
= TT

[
p(F)

ρ0c0u(F)

]
=

[
TT11 TT12
TT21 TT22

][
p(F)

ρ0c0u(F)

]

= TABTBCTCDTDETEF

[
p(F)

ρ0c0u(F)

] (10)

where TT represents the transfer matrix for the side-branch tube of the ITEC, and TAB to
TEF represents the transfer matrix of each cascaded subsystem. The transfer matrix from
TAB to TEF could be easily obtained by referring to Equations (8) and (9).

2.2. Transfer Matrix of the ITEC

The sound transmission characteristics inside the side-branch tube are pre-requisites
to acquiring the sound pressure and particle velocity of the whole duct system. This
indicates that the transfer matrix between points L and R of the main duct is required. The
continuous conditions of pressure equilibrium and conservation of volume velocity at the
junction position yield:

{
p(L) = p(R) = p(A) = p(F)
SMu(L) + SNu(F) = SMu(R) + SNu(A)

(11)

Re-arranging Equation (11), we can obtain:

u(L) =
SN
SM

(u(A)− u(F)) + u(R) (12)

The relationship between U(A) and U(F) in Equation (12) could be derived from
Equations (10) and (11):

⎧⎨
⎩

p(A) = p(F)
p(A) = TT11 p(F) + TT12ρ0c0u(F)
ρ0c0u(A) = TT21 p(F) + TT22ρ0c0u(F)

(13)

Equation (13) along with Equations (12) and (11) could be solved to determine the
transfer matrix between points L and R:

[
p(L)

ρ0c0u(L)

]
= TM

[
p(R)

ρ0c0u(R)

]
=

[
TM11 TM12
TM21 TM22

][
p(R)

ρ0c0u(R)

]

=

[
1 0

SN
SM

TT12TT21+(TT22−1)(1−TT11)
TT12

1

][
p(R)

ρ0c0u(R)

] (14)

Finally, the transmission loss of the whole duct system could be expressed as:

TL = 20 log10 |
p(L)
p(R)

| = 20 log10 |
1
2
(TM11 + TM12 + TM21 + TM22)| (15)
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3. Results and Discussion

3.1. Validation of Theoretical Prediction

The finite element method (FEM) simulations are performed by commercial software
COMSOL Multiphysics to validate the accuracy of the transmission loss results of the
analytical model. The parameters of the ITEC model in this validation case are listed in
Table 1. The transmission loss results of the frequency domain between 1 and 1000 Hz
are shown in Figure 2. It can be seen that the ITEC has three resonance frequencies in the
selected frequency domain. The TMM results match the FEM results well, especially near
the first transmission loss peak. The frequencies corresponding to transmission loss peaks
are listed in Table 2. It could be seen that the transmission loss peaks have a maximum
error of 10 Hz near the second peak and a minimum error of 4 Hz near the first peak. In
general, the analytical model has relatively high accuracy.

Table 1. Parameters of the ITEC model for simulation.

Length (mm) Area (mm2)

Main duct LM = 1000 SM = 5674.5
Neck LN = 95.91 SN = 1418.6

Expansion Chamber LEC = 958.19 SEC = 5674.5

 
Figure 2. Comparison between the theoretical and numerical results of transmission loss spectra
of the ITEC tube; the solid lines represent theoretical predictions by TMM, and the dotted crosses
represent simulation results.

Table 2. The frequencies correspond to the transmission loss peak.

TMM FEM

1st peak 115 Hz 119 Hz
2nd peak 403 Hz 409 Hz
3rd peak 733 Hz 743 Hz
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The analytical model could also be used to predict the transmission loss of the in-
finity tube. According to Lato et al. [19], for an infinity tube, as shown in Figure 1c, the
transmission loss is:

TL = 20 log10 |
2(SM − S2 + SMeikL2 + S2eikL2)

1 + 2SMeikl2
| (16)

where SM represents the cross-section area of the main duct, S2 denotes the cross-section
area of IT, and L2 represents the length of IT. In Figure 1b, if SEC has the same value as SN,
the ITEC would become an infinity tube. Therefore, the analytical model of the ITEC could
also be used to predict the transmission loss of IT. In this case, matrices TBC and TDE in
Equation (10) turn into identity matrices, which indicates that Equation (10) becomes:

TT =

[
TT11 TT12
TT21 TT22

]
= TABTCDTEF (17)

Using the expression of TT in Equation (17), the transmission loss of the infinity tube
could be deduced. In the following research, the analytical model based on Equation (15) is
used to calculate the transmission loss of IT and then is compared with the results from
Equation (16).

As shown in Figure 3, the solid lines represent the transmission loss of ITs with L2 = 1.15 m
and various S2/SM ratios. At the same time, ITs with the same geometries are used
to examine the transmission loss by Equation (15). Figure 3 illustrates a good agree-
ment between the analytical model from the second part and from the research con-
ducted by Lato et al. [19]. The results indicate that Equation (15) could predict the IT
transmission loss.

 
Figure 3. Comparison between the transmission loss of IT based on the analytical model from
Section 2 and Equation (16); the solid lines are transmission loss results extracted from Lato et al. [19],
and the dotted crosses are calculated by TMM from Section 2.

3.2. Noise Attenuation Ability of the ITEC

A comparison of the transmission loss between the IT and ITEC is carried out to
examine the noise attenuation ability of the ITEC. The parameters of the ITEC are the same
as the geometric model of Table 1, and the IT parameters are selected as the S2/SM = 1/4
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case in Figure 3, which indicates that IT has the same cross-section area as the neck of
the ITEC.

Figure 4 shows the analytical transmission loss between the IT and ITEC. The trans-
mission loss peaks of the ITEC are 115, 403, and 733 Hz, while the transmission loss peaks
of IT are 149, 447, and 745 Hz. The results show that an expansion chamber could lead
to a decrease of 34, 46, and 12 Hz in resonance frequency. On the other hand, compared
with IT, the noise attenuation bands of the ITEC under three transmission loss peaks are
non-uniform. In the lower frequency (1–350 Hz), the attenuation band of the ITEC is
significantly wider than IT. In medium frequency (350–650 Hz), they are approximately
close to each other. In the higher frequency (650–1000 Hz), the attenuation band of the
ITEC is narrower than IT. This feature indicates that the ITEC is more efficient in reducing
low-frequency noise. In addition, since the ITEC has decreased resonance frequency, it has
an advantage in low-frequency noise control compared with IT.

 
Figure 4. Comparison of transmission loss between the IT and ITEC; the black lines represent IT
results, and red lines represent ITEC results.

The Helmholtz resonator is widely used as a muffler for ductwork systems in indus-
try [8]. To further examine the noise attenuation ability and assess the potential in the
industrial application of the ITEC, a comparison of the transmission loss between the ITEC
and Helmholtz resonator system is conducted here. As illustrated in Figure 5a, if a sharable
sidewall is placed at the midpoint of the ITEC, the whole system could be regarded as two
curved Helmholtz resonators mounted on the same cross-section of the main duct. Cai and
Mak [21] have examined the transmission loss of parallel HRs system, which is shaped as
shown in Figure 5b. Figure 5a,b indicate that curved HRs are geometrically similar to the
parallel HRs system. However, the ductwork system is always located in a limited space.
A curved HRs system could save more space if it has the same cavity volume as a straight
HRs system.
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(a) (b) 

Figure 5. Configuration of curved HRs and parallel HRs systems. (a) Curved HRs; (b) parallel HRs.

In this study, the parameters of curved HRs are the same as the ITEC in Table 1. The
neck parameters of parallel HRs are LN = 95.91 mm and SN = 1418.6 mm2. The cavity
volume of parallel HRs is the same as half of the chamber volume of curved HRs, which is
easy to obtain from Table 1. As shown in Figure 6, the transmission loss of curved HRs is the
same as the ITEC, with the same resonance frequencies and noise attenuation bandwidths.
This indicates that the sharable sidewall has no impact on the noise attenuation mechanism
of the ITEC. However, the transmission loss of the parallel HRs system is different. It has
only two resonance frequencies from 1 to 800 Hz, while the ITEC and curved HRs have
three. In addition, under the lower-frequency domain (1–350 Hz), the resonance frequency
of parallel HRs is 133 Hz, which has an increase of 14 Hz compared with the ITEC and
curved HRs; under the moderate frequency domain (350–650 Hz), the resonance frequency
of parallel HRs is 473 Hz, which has an increase of 64 Hz compared with the ITEC and
curved HRs. The characteristic of resonance frequencies shows that the ITEC and curved
HRs are entirely different from the parallel HRs system, although they are geometrically
similar. The ITEC has a lower resonance frequency than parallel HRs, which indicates
that the ITEC is more suitable for reducing low-frequency noise. Furthermore, the curved
shape of the ITEC and curved HRs system has an advantage in a constrained space. These
characteristics indicate that the ITEC would have potential in ductwork systems.

3.3. Parametric Study of the ITEC

In this section, ITECs with different geometric parameters are analyzed to discuss the
influence of geometrics on noise attenuation performance. Figure 7 shows the transmission
loss results of ITECs with different length ratios. The total length of ITECs (LEC + 2LN)
is fixed (1150 mm), while the neck and expansion chamber lengths have different values.
The length values are shown in Table 3. Both FEM simulation and TMM analysis are
conducted to validate the accuracy of transmission loss results. According to research
in the previous parts, the ITEC would have three peaks of 1–350 Hz, 350–650 Hz, and
650–1000 Hz, respectively. Therefore, the frequency domains are divided into three sub-
domains to distinguish 1st, 2nd, and 3rd TL peaks. Under the lower-frequency domain,
the peaks of ITECs with different length ratios are close, while they have more significant
differences under moderate and higher-frequency domains. We could summarize the
following principles for ITECs with different length ratios:
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Figure 6. Comparison of the simulated transmission loss results between the ITEC and the curved
HRs and parallel HRs systems; the red lines represent the ITEC results, black lines represent parallel
HRs system results, and the red dotted crosses represent curved HRs system results.

Figure 7. Comparison of transmission loss with respect to different length ratios of the
expansion chamber.

Table 3. Parameters of LN and LEC of ITECs in Figure 7.

LN/LEC LN LEC

1/10 95.91 mm 958.19 mm
1/6 143.75 mm 862.5 mm
1/4 191.65 mm 766.67 mm

(1) Under the lower-frequency domain, length ratios have little influence on resonance
frequency and attenuation bandwidth. ITECs with a higher length ratio would slightly
decrease transmission loss peaks and have slightly narrower attenuation bands.
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(2) Under the moderate frequency domain, the length ratio significantly influences trans-
mission loss performance. ITECs with higher length ratios have a higher resonance
frequency and narrower attenuation bands. Compared with the low-frequency con-
dition, ITECs have significantly narrower attenuation bands under the moderate
frequency domain, which indicates that ITECs with higher length ratios are not
suitable for medium-frequency noise attenuation.

(3) Length ratio has a significant influence on transmission loss under the higher-frequency
domain. With the length ratio changing from 1/10 to 1/4, the transmission loss peak
has increased by nearly 100 Hz. In addition, ITECs with a length ratio equal to 1/4
have a significantly wider bandwidth than the other length ratios, which indicates
that the increase in neck length of the ITECs would be good for high-frequency
noise attenuation.

Furthermore, the influence of the cross-section area ratio is investigated. As listed in
Table 4, three SN/SEC ratios correspond to three different expansion chamber radii and a
fixed neck radius. The transmission loss results are shown in Figure 8. It could be obtained
from Figure 8 that a higher cross-section area ratio would be better for low-frequency noise
attenuation. The ITEC with SN/SEC = 1/4 has the lowest peak frequency and widest noise
attenuation bandwidth under the lower-frequency domain. On the contrary, the lower
cross-section area ratio would be better for high-frequency noise attenuation. The ITEC
with SN/SEC = 1/1.44 has the highest peak frequency and widest noise attenuation band
under the higher-frequency domain.

Table 4. Parameters of SN and SEC of the ITECs in Figure 8.

SN/SEC RN REC

1/1.44 21.25 mm 25.5 mm
1/2.25 21.25 mm 31.875 mm

1/4 21.25 mm 42.5 mm

 
Figure 8. Comparison of transmission loss with respect to different cross-section area ratios of the
expansion chamber.

In Figure 9, we perform the transmission loss results of the ITECs with different total
lengths. The total length of the ITECs is changed from 0.6 and 0.75 times to the original
length (L = LEC + 2Ln = 1.15 m); LEC and Ln are also scaled down simultaneously, whereas
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the radii of the neck and expansion chamber have remained unchanged. As shown in
Figure 9, the shorter total length would have a broader sound attenuation bandwidth. At
the same time, the transmission loss peak would shift to the higher-frequency domain,
even exceeding 1000 Hz, the upper limit of this research. In addition, the TMM results of
0.6 L would lead to a more significant error than the FEM results, which is due to the fact
that the neck length of 0.6 L is very short. According to Ingard [22], an end correction is
non-negligible for the aperture neck to improve transmission loss accuracy. For this reason,
TMM in this study is not suitable for the short Ln case. Both TMM and FEM results show that
the ITECs with shorter lengths would have a broader noise attenuation band. Meanwhile,
the transmission loss peaks tend to shift to the higher-frequency domain. Therefore, the
ITECs with shorter lengths would have better noise attenuation performance but are not
suitable for low-frequency noise reduction. The transmission loss peak (TLmax) and the
resonance frequency (f0) of ITECs with different geometric parameters are summarized
in Table 5.

Figure 9. Comparison of transmission loss with respect to different lengths of the ITEC.

Table 5. Summary of the transmission loss peak and the resonance frequency of ITEC with different
geometric parameters.

Peak 1 Peak 2 Peak 3

TLmax
(dB)

f0 (Hz)
TLmax

(dB)
f0 (Hz)

TLmax
(dB)

f0 (Hz)

Ln/LEC = 1/10 41.40 119.00 37.06 409.00 29.27 743.00
Ln/LEC = 1/6 35.20 105.00 25.20 427.00 18.01 797.00
Ln/LEC = 1/4 38.10 99.00 32.20 459.00 36.90 851.00

Sn/SEC = 1/4 41.43 119.00 37.06 409.00 29.27 743.00
Sn/SEC = 1/2.25 42.30 139.00 32.30 435.00 33.10 759.00
Sn/SEC = 1/1.44 45.10 151.00 44.40 459.00 33.30 777.00

L 41.40 119.00 37.06 409.00 29.27 743.00
0.75 L 49.22 165.00 37.86 557.00 27.60 997.00
0.60 L 48.97 217.00 38.79 711.00 - -

Figure 10 illustrates the influence of different geometric parameters of ITEC on the
TLmax. It can be seen that changing the length ratio leads to a change of 19 dB in the TLmax
in higher-frequency domain and a change of 11.8 dB in the TLmax in moderate frequency
domain. Changing the cross-section area ratio has a change of 12.1 dB in higher-frequency
domain. Changing the total length has a change of 7.8 dB in lower-frequency domain.
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Therefore, adjusting the length ratio and the cross-section area ratio are beneficial for
improving the higher- and medium-frequency noise attenuation ability, and adjusting the
total length is useful for improving the lower-frequency noise attenuation ability. Figure 11
illustrates the influence of different geometric parameters of ITEC on f0. Changing the
total length has more of a significant impact on the resonance frequency than changing the
length ratio and the cross-section area ratio. The f0 under three peaks has an increase of 98,
302, and 254 Hz. This indicates that adjusting the total length is an effective way to control
the frequency of noise reduction.

 

Figure 10. Variation of the transmission loss peak of the ITEC with different geometric parameters.

Figure 11. Variation of the resonance frequency of the ITEC with different geometric parameters.

4. Conclusions

This paper conducts a thorough theoretical and numerical investigation of an innova-
tive noise attenuation device, the ITEC. The conclusions are summarized as follows:

A closed-form equation for the transmission loss of the ITEC device has been derived.
The analytical model is compared with the FEM model to validate the accuracy of the
transmission loss results. In addition, the analytical model is used to predict the transmis-
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sion loss of the IT device. Transmission loss results indicate that IT could be regarded as a
particular case of the ITEC.

The transmission loss results of the ITEC are compared with those of IT, which shows
that the ITEC is more suitable for reducing low-frequency noise than IT devices. The
transmission loss results of the ITEC are compared with those of curved HRs and parallel
HRs systems. The results show that the ITEC has the same transmission loss results as
those of curved HRs system, which indicates that the sharable sidewall does not affect the
noise attenuation characteristics of the ITEC device. The ITEC has 14 and 64 Hz resonance
frequency reduction than parallel HRs, which indicates that the ITEC is more suitable for
reducing low-frequency noise. In addition, the geometry of the ITEC shows that it has an
advantage in a constrained space, which indicates that the ITEC would have potential in
ductwork systems.

A parametric study is conducted to investigate the influence of geometric parameters
on the noise attenuation performance of the ITEC. Transmission loss results of the ITECs
with different length ratios, cross-section area ratios, and total length are conducted by
TMM and FEM. The transmission loss results could provide guidance on choosing the
geometric parameters of the ITECs to reduce duct noise.

Author Contributions: R.X., C.C., C.M.M. and K.W.M. conceived this study; R.X. simulated and
analyzed the data; C.M.M. contributed analysis tools; C.C. and C.M.M. provided advice for the
preparation and revision of the paper; R.X. wrote the paper; C.M.M. and K.W.M. reviewed the
manuscript for scientific contents. All authors have read and agreed to the published version of
the manuscript.

Funding: The work described in this article was fully supported by grants from the Research Grants
Council of the Hong Kong Special Administrative Region, China (Project No.15207820), the National
Natural Science Foundation of China (Grant No. 51908554), and Hunan Provincial Natural Science
Foundation of China (Project No. 2020JJ5712).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

The following abbreviations are used in this manuscript.
A Cross-section area of an acoustical element
c0 Sound speed of air
f 0 The resonance frequency of the Helmholtz resonator
k Wave number
LEC Length of the expansion chamber
LN Neck length of the ITEC
p Acoustic pressure
pI Sound pressure of incident plane wave
pR Sound pressure of reflected plane wave
SEC Area of the expansion chamber
SN Area of the ITEC neck
T Transfer matrix of an acoustical element
TL Transmission Loss
u Particle velocity
ρ0 Air density
ω Angular frequency
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Abstract: In speaker recognition tasks, convolutional neural network (CNN)-based approaches
have shown significant success. Modeling the long-term contexts and efficiently aggregating the
information are two challenges in speaker recognition, and they have a critical impact on system
performance. Previous research has addressed these issues by introducing deeper, wider, and more
complex network architectures and aggregation methods. However, it is difficult to significantly
improve the performance with these approaches because they also have trouble fully utilizing global
information, channel information, and time-frequency information. To address the above issues,
we propose a lighter and more efficient CNN-based end-to-end speaker recognition architecture,
ResSKNet-SSDP. ResSKNet-SSDP consists of a residual selective kernel network (ResSKNet) and self-
attentive standard deviation pooling (SSDP). ResSKNet can capture long-term contexts, neighboring
information, and global information, thus extracting a more informative frame-level. SSDP can
capture short- and long-term changes in frame-level features, aggregating the variable-length frame-
level features into fixed-length, more distinctive utterance-level features. Extensive comparison
experiments were performed on two popular public speaker recognition datasets, Voxceleb and CN-
Celeb, with current state-of-the-art speaker recognition systems and achieved the lowest EER/DCF of
2.33%/0.2298, 2.44%/0.2559, 4.10%/0.3502, and 12.28%/0.5051. Compared with the lightest x-vector,
our designed ResSKNet-SSDP has 3.1 M fewer parameters and 31.6 ms less inference time, but 35.1%
better performance. The results show that ResSKNet-SSDP significantly outperforms the current
state-of-the-art speaker recognition architectures on all test sets and is an end-to-end architecture
with fewer parameters and higher efficiency for applications in realistic situations. The ablation
experiments further show that our proposed approaches also provide significant improvements over
previous methods.

Keywords: speaker recognition; end-to-end; selective kernel convolution; aggregation model

1. Introduction

Speaker recognition is intended to identify the speaker by obtaining identity informa-
tion from the audio. With the widespread use of voice commands, speaker recognition has
become a necessary measure to protect user security and privacy. However, the real-world
recording environment can be too noisy for the audio to contain the speaker’s identity
information. Intrinsic factors such as age, emotion, and intonation may also have an impact.
Therefore, speaker recognition remains a challenging task. The key to achieving effective
speaker recognition is to extract the fixed-dimensional and discriminative features from
the audio.

In the past few decades, the traditional i-vector system with probabilistic linear dis-
criminant analysis (PLDA) [1,2] was the principal method of speaker recognition. However,
with the development of deep learning, deep neural networks (DNNs) have brought sub-
stantial improvements to speaker recognition. Compared with the traditional i-vector
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system, the DNN architecture does not require manual feature extraction. Instead, it
can directly process noisy datasets to extract frame-level features and then aggregate the
variable-length frame-level features into fixed-dimensional utterance-level features for
end-to-end training. The DNN-based end-to-end speaker recognition system [3,4] achieved
a better performance than the i-vector system and occupies a dominant position with
excellent feature extraction capabilities. In recent years, researchers have been attempting
to build more effective speaker recognition architectures to obtain more discriminative
features. Specifically, these attempts can be divided into two categories: (1) more efficient
network architectures; and (2) better aggregation models.

Convolutional neural networks (CNNs) are the most popular feature extractors for
speaker recognition tasks. CNN-based [5,6] feature extractors are widely used due to their
strong feature extraction capabilities. These feature extractors can be classified into two
classes: (1) one-dimensional convolution-based structures [7–12]; and (2) two-dimensional
convolution-based structures [13–16]. The one-dimensional convolution generates two-
dimensional outputs with time and channel dimensions. The time-delay neural network
(TDNN) [7–9] is a typical one-dimensional convolution structure. The two-dimensional con-
volutional structure treats the input acoustic features as an image with three dimensions—
time, frequency, and channel—and uses two-dimensional convolution to produce three-
dimensional outputs. In the two-dimensional convolutional structures, the time and
frequency dimensions decrease, and the channel dimensions increase with the downsam-
pling operation. ResNet is a representative two-dimensional convolutional structure [5].
However, CNNs have their imperfections. Convolutional operations use a fixed-size con-
volutional kernel to capture the time and frequency information of the audio. The size of
the convolution kernel limits the receptive fields. As a result, the feature extractor is also
limited in its capabilities, which leads to its inability to capture essential global information
and model long-term contexts [17,18]. Some researchers have used deeper, wider, and more
complex network structures to solve these problems. Although these methods can expand
the receptive fields, they lead to a significant increase in parameters and inference time.

Another challenge is the aggregation of frame-level features. In speaker recognition,
the length of the input audio is variable, and an aggregation model is needed to aggregate
the variable-length features into fixed-dimensional utterance-level features after the feature
extractor has acquired the frame-level features [19,20]. The most common approach is to use
global average pooling (GAP) directly to aggregate frame-level features into utterance-level
features. However, global average pooling causes the frame-level features to lose time and
frequency information, and the aggregated utterance-level features are not discriminative.
In addition, audio sometimes changes or pauses while speaking, and the global average
pooling cannot focus on these significant parts. To address this problem, researchers have
proposed attention-based aggregation models to aggregate the frame-level features [21–23].
However, these methods also use global average pooling on the frame-level features for
pre-processing. They also lose some of the information and do not take full advantage of
the audio’s time-frequency information.

On the other hand, with the widespread use of mobile devices [24–27], the design
of speaker recognition systems tends to be light and efficient. However, existing models
cannot be lighter, and the performance decreases drastically when made lighter. Therefore,
we also need to design more light models for mobile devices.

To address these problems, we propose a more effective and lighter CNN-based end-
to-end speaker recognition architecture, ResSKNet-SSDP. We propose a residual selective
kernel network (ResSKNet), which can capture the neighborhood and global information of
the features and can more efficiently model long-term contexts, resulting in more discrimi-
native features. We propose self-attentive standard deviation pooling (SSDP). This avoids
the pooling operation and preserves the time and frequency information, allowing a more
accurate selection of information-rich frame-level features which contain more speaker
identify information. Self-attentive standard deviation pooling can also capture the short-
and long-term variations of the frame-level features, thus aggregating the variable-length
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frame-level features into fixed-length, robust, and more discriminative utterance-level
features. To prove the effectiveness of our proposed method, we performed experiments
with various settings in realistic environments. The main contributions of this study are
as follows:

1. We propose ResSKNet. This is a more efficient and lighter network structure that can
capture global information and effectively model long-term contexts;

2. We propose self-attentive standard deviation pooling (SSDP). This can capture short-
and long-term changes in the frame-level features, aggregating the variable-length
frame-level features into fixed-length, more distinctive utterance-level features;

3. We build a light and efficient end-to-end speaker recognition system. Extensive
experiments conducted on two popular public datasets demonstrate the effectiveness
of the proposed architectures.

In the rest of this paper, we primarily present the most popular and advanced network
structures and aggregation methods and their disadvantages in Section 2. In Section 3,
we present the details of the proposed method. In Section 4, we introduce the dataset
used, training details, testing details, and testing methods. In Section 5, we discuss and
analyze the experimental results. Finally, we summarize the work conducted and explain
the limitations of the current work and future research directions in Section 6.

2. Related Works

This section introduces the current research related to network structures and ag-
gregation models for speaker recognition systems. In the network structure, we present
the most common and state-of-the-art methods based on one-dimensional convolution
and two-dimensional convolution at present. In the aggregation models, we describe
the statistical-based approach, the attention-based approach, and the dictionary-based
approach. In addition, we summarize the advantages and disadvantages of these methods.

2.1. Network Structure

To obtain a larger receptive field and improve the system performance, researchers
usually improve the network structure, such as Snyder et al., who proposed a x-vector
speaker recognition system [7]. It extracts frame-level features by overlaying TDNN
layers and then uses statistical pooling to aggregate the frame-level features into a fixed-
dimensional speaker vector. The x-vector has become the most commonly used method
for speaker recognition due to its excellent performance and light structure. The structural
design of the x-vector also laid the foundation for most of the speaker recognition systems,
such as E-TDNN [7], F-TDNN [8], DTDNN [18], and ECAPA-TDNN [12]. In addition, many
works have used famous CNN structures, such as ResNet [5], ResNeXt, and Res2Net [16],
in extracting the frame-level features. ResNet [5] introduced short connections to the neural
network, thus alleviating the problem of gradient disappearance, and obtaining a deeper
network structure, simultaneously. ResNet is also the most popular feature extractor in
current speaker recognition systems. ResNeXt [16] adopts the repetitive layer strategy of
VGG/ResNets while exploiting the split-transform-merge strategy in a simple and scalable
way. A module in ResNeXt performs a set of transformations, each on a low-dimensional
feature, whose output is aggregated by summation. ResNeXt reduces the parameters and
inference time of the model, but it has yet to improve its modelling of long-term contexts.
Res2Net [16] focuses on the revision of ResNet blocks, which build hierarchical residual
block-like connections in a single residual block. It splits the features within one block into
multiple channel groups and designs residual-like connections across the different channel
groups. This residual-style connection increases the coverage of the receptive fields and
yields many different combinations of the receptive fields for the improved modeling of
long-term contexts. Res2Net has a smaller parameter, while achieving a better performance
improvement. Although these methods achieved better performance improvement, they
require more computation resources and are difficult to lighten the structure. The light
structure makes it difficult to capture global information and model long-term contexts.
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Therefore, we designed ResSKNet. It combines the advantages of both regular and dilation
convolution and uses an attention mechanism to adjust the weights between the two
convolutions according to the input features. Thus, it can capture global information and
adaptively adjust the weights between the short-term and long-term contexts of the input
audio to better model long-term contexts.

2.2. Aggregation Model

In speaker recognition, the length of the input acoustic features is variable. Therefore,
a flexible processing method should have the ability to accept audio of any duration and
obtain the fixed-dimensional features. In speaker recognition systems, the GAP aggregation
model [10,20,24] is the most commonly used method for aggregating the frame-level fea-
tures into fixed-dimensional utterance-level features. The reference [7] employs statistical
pooling (SP) to aggregate the features, which computes the mean vector of the frame-level
features and the standard deviation vector of the second-order statistics; then, it stitches
them together as an utterance-level feature. However, our voices sometimes change, and
there are brief pauses in the audio. Hence, researchers have proposed a self-attentive
pooling (SAP) aggregation model [3,21,22] based on the attention mechanism to solve this
problem and select frames that contain speaker information more effectively. Okabe et al.
constructed the attention statistics pooling (ASP) aggregation model [23] based on the SP
aggregation model by introducing an attention mechanism. It is calculated in the same way
as the SP aggregation model, but has better performance than SP. They also introduced
the NetVLAD aggregation model in computer vision that aggregates features into fixed
dimensions via clustering [20,28]. NetVLAD assigns each frame-level feature to a different
cluster center and encodes the residuals as output features. However, attention-based
pooling methods are weakly robust and can exhibit a lower performance than GAP in
different experimental settings. In addition, these methods usually use pooling operations
to process features, resulting in a loss of information in the time and frequency dimensions
and weakening the discriminative character of utterance-level features. Chung et al. con-
ducted experiments using the NetVLAD method and its variants on the Voxceleb dataset
and achieved the best results for speaker recognition [21]. It is a more robust and effective
aggregation model, but the number of parameters increases as the cluster center increases.
Therefore, we propose self-attentive standard deviation pooling. We avoid the pooling
operation and retain the time and frequency information of the features, which allows
self-attentive standard deviation pooling to select information-rich frames and capture the
short- and long-term changes of the frame-level features more accurately. Thus, it aggre-
gates more discriminative utterance-level features. In addition, it has stronger robustness
and fewer parameters.

3. Materials and Methods

In this section, we introduce the proposed architecture, ResSKNet-SSDP, as shown
in Figure 1. It consists of four parts: (1) feature extraction network. We use ResSKNet to
extract frame-level features, which can acquire local and global information more efficiently
to model both short-term and long-term contexts, as shown in the red box in Figure 1. The
structure of ResSKNet is shown in Table 1; (2) feature aggregation. The aggregation model
is a bridge between the frame-level features and the utterance-level features. We aggregate
the variable-length frame-level features into the fixed-dimensional utterance-level features
through self-attentive standard deviation pooling, as shown in the blue box in Figure 1;
(3) speaker recognition loss function. AM-softmax loss is used during training to classify
speakers more accurately [29]; (4) similarity metric. This is used to identify speakers, after
the training, by calculating the distance of a pair of utterance-level features to determine
whether the audio comes from the same speaker.
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Figure 1. Overview of the ResSKNet-SSDP speaker recognition system.

Table 1. The structure of ResSKNet.

Layer Blocks (T × 40 × 1) Channels Output Size (T × F × C)

Conv 1 Conv2d, 3 × 3, stride 1 32 T × 40 × 16
Stage 1 ResSK Block×3, stride 2 32 T × 40 × 32
Stage 2 ResSK Block×3, stride 2 64 T/2 × 20 × 66
Stage 3 ResSK Block×3, stride 2 128 T/4 × 10 × 128

3.1. ResSKNet

Dilated convolution is a special convolutional operation that skips the input values by a
certain step and uses filters in the region over its convolution kernel. Compared to standard
convolution, dilated convolution can produce a larger receptive field by skipping and can
more effectively model variable-length audio with long-term contexts. However, it is a
challenge to use dilation convolution in deep convolutional neural networks. Performing
lots of dilated convolutional layers in a deep structure will lead to a gridding problem
that causes the complete loss of the local information and makes the information at a
distance unrelated. In addition, it is problematic to determine in which layers to use
dilation convolution for deep structures.

To solve the above problem, we designed a ResSKNet block, which consists of a resid-
ual selective kernel convolution (ResSKConv) module and 1 × 1 convolution with residual
connections. We improved and introduced the selective kernel convolution (SKConv)
module [18] into the end-to-end speaker recognition architecture, as shown in Figure 2. It
performs standard and dilated convolutional layers on two parallel paths to capture the
local and global information to better model short- and long-term contexts. Then, we use a
self-attentive module to obtain the global information and adaptively adjust the weight
between the short-term and long-term contexts.

1 1 conv,
32

3 3 conv

3 3 conv

Standard Conv

Dilation rate=2

1 1 conv GAP 1 1 conv
1 1 conv

1 1 conv

1 1 conv,
32

1 1 conv,
32

(b) Residual Selective Kernel Convolution Block

input

3 3 conv

5 5 conv

GAP FC
FC

FC
output

(a) Selective Kernel Convolution

input output

Figure 2. Residual selective kernel convolution structure.
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Using x∈RT×F×C to denote the input features, T, F, and C are the time dimensions,
frequency dimensions, and channel dimensions, respectively. SKConv performs 3 × 3
convolutional F′ and 3 × 3 dilated convolutional F′′, respectively. The dilation rate is set to 2.

u = δ(B(F′(x))) (1)

u′ = δ(B(F′′ (x))) (2)

In Equations (1) and (2), B and δ denote the batch normalization (BN) and ReLU
activation functions, respectively. We do not use addition to fuse the features on the
two parallel paths. Instead, we connect the features of the two branch outputs along the
channel dimension and use a 1 × 1 convolution to fuse them, where U∈RT×F×2C is the
global feature obtained from the two paths. Compared to the addition method, we use
convolution to fuse the features of two parallel paths along the channel dimension, thus
increasing the depth and making full use of the features. Then, we generate a global channel
feature UC∈R1×1×C using global average pooling and perform a feature transformation on
it to generate channel attention wCF∈R1×1×C and wCF ′∈R1×1×C on the two paths. Finally,
after connecting the weighted elements of the features on both paths along the channel
dimension, the features y∈RT×F×C are then output by using a 1 × 1 convolution.

U = conv1(u, u′) (3)

UC = GAP(U) (4)

wCF = softmax(conv3(δ(conv2(UC)))) (5)

wCF′ = softmax(conv4(δ(conv2(UC)))) (6)

y = conv5(u × wCF, u′ × wCF′) (7)

where conv1∈R1×1×C, conv2∈R1×1×C/r, conv3∈R1×1×C, conv4∈R1×1×C, and conv5∈R1×1×C

are the convolution operations, r is the scale factor used to reduce the parameters and to
obtain the dependencies between channels. Usually, we set r to 16. We do not use a fully
connected layer for feature transformation because a fully connected layer is inefficient and
useless. We use a 1 × 1 convolution, which captures the dependencies between channels
more efficiently and thus produces more accurate channel attention [30].

Current speaker recognition systems only use the features of the last convolutional
layer to obtain the frame-level features. Considering the hierarchical character of CNNs,
these deeper features are the most complex and should be closely related to the speaker’s
identity. However, according to references [31,32], we believe that shallow features are also
helpful in making utterance-level features more discriminative. Therefore, in our proposed
system, we connect the output features of each stage of the ResSKNet block. We use 1 × 1
convolution to transform the output of each stage to the same size as the output of the last
stage. The final architecture is shown in Figure 1.

3.2. Self-Attentive Standard Deviation Pooling

Attention-based aggregation models, such as SAP and ASP, can select frame-level fea-
tures based on their importance. However, they can exhibit a similar or lower performance
than GAP in different experimental settings. This indicates that these attention-based
aggregation models are not accurate in selecting more informative frame-level features
and have weak robustness. In addition, these methods usually use pooling operations
to process features, resulting in the loss of time and frequency information and reducing
the utterance-level feature differentiation. Therefore, we propose self-attentive standard
deviation pooling. Self-attentive standard deviation pooling avoids pooling operations and
preserves the time and frequency information of the frame-level features, allowing a more
accurate selection of information-rich frames. At the same time, the self-attentive standard
deviation pooling computation can capture the short- and long-term changes of frame-level
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features, aggregating variable-length frame-level features into fixed-length, more differ-
entiated utterance-level features. It is also more robust than the previous attention-based
aggregation models.

Use x∈RT×F×C to denote the frame-level features extracted by the convolutional
neural network (T is the time dimension, F is the frequency dimension, and C is the channel
dimension). The existing aggregation methods typically use an average pooling layer along
the frequency axis of the features to generate a time feature descriptor matrix X∈RT×C and
h = [x1,x2, . . . ,xT], where xt∈R1×C. However, this causes the features to lose information
in the frequency dimension and limits the performance of the aggregation model. We
transform x to obtain the time-frequency feature description matrix H∈RN×C (N = T × F)
and h = [h1,h2, . . . ,hN], where ht∈R1×C. We retain the time and frequency information of
the features, and then use it to generate the importance weight wt∈R1×C corresponding to
each frame-level feature. Considering that the frame-level features extracted by the neural
network already have great screening, the non-linear activation function is not applied
to change the distribution of the features during aggregation, causing feature distortion.
Therefore, we use a linear attention mechanism with a softmax function in the self-attentive
standard deviation aggregation model to generate the weights, as shown in Equation (8).
The fSL() denotes the linear attention mechanism and it can enhance the significant parts
of the frame-level features and suppress the unessential parts without causing feature
distortion. The non-linear activation functions change the information in the frame-level
features and the feature distribution, resulting in feature distortion and the inaccurate
selection of frame-level features. Thus, self-attentive standard deviation pooling retains
more speaker information and can select frame-level features more accurately.

et = fSL(ht) = wTht + b (8)

wt =
exp(et)

T
∑

i=1
exp(ei)

(9)

The mean vector μ∈R1×C and the standard deviation vector σ∈R1×C are calculated
as shown in Equations (10) and (11). However, statistical methods cannot identify which
part of the audio contains the speaker identity information. Therefore, we use attention to
calculate the mean vector and the standard deviation vector.

μ =
1
T

T

∑
t

ht (10)

σ =

√√√√ 1
T

T

∑
t

ht 	 ht − μ 	 μ (11)

where ht denotes the time-frequency feature descriptions, and 	 denotes the Adama product.
In self-attentive standard deviation pooling, we obtain the mean vector by weighted

summation, as shown in Equation (12): wt is the importance weight, and α∈R1×C is a
learnable vector. The average vector generated by attention can be trained along with the
neural network. It is learnable. In addition, it can suppress noise, thus filtering out part of
the interference information to retain more effective time-frequency information. Finally,
the features ht and weights wt are concatenated and reduced with the mean vector μ to
obtain the self-attentive standard deviation vector e∈RC, as shown in Equation (13). The
self-attentive standard deviation vector is the utterance-level features obtained from the
aggregating frame-level features. As the standard deviation contains other speaker features,
in terms of time variability over long-term contexts, the self-attentive standard pooling
model captures features’ long-term variation.

μ = ∑N
t=1 wtα (12)
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e = ∑N
t=1 wtht − μ

N
(13)

We did not use the same calculation as the statistical method because the frame-level
features obtained by the convolutional neural network are first-order information, and there
is an information mismatch between them and the higher-order information obtained by
the statistical method [33]. In contrast, self-attentive standard deviation pooling uses first-
order information for calculation throughout the process, and the output utterance-level
features are also first-order information, avoiding this mismatch. At the same time, in the
audio features, the difference in frequencies between different time-frequency locations is
very large, and there is a coincidence in the direct addition of the results. The self-attentive
standard deviation calculation eliminates this chance and makes the produced utterance-
level features more discriminative. It goes without saying that self-attentive standard
deviation pooling is also differentiable. Therefore, self-attentive standard deviation pooling
can also be trained, along with the speaker recognition system, based on backpropagation.

4. Experimental Setups

4.1. Dataset

The experimental speaker datasets were adopted from the CN-Celeb [34] and Vox-
celeb [19] datasets, which have been commonly used for speaker recognition tasks in
recent years.

There are 3000 speakers and 11 different genres in CN-Celeb, which include various
real-world noises, cross-channel mismatches, and speaking styles in wild speech utterances.
The training set has more than 600,000 utterances from 2800 speakers and 18,024 utterances
from 200 speakers. There are 3,604,800 pairs in the test trials. Moreover, domain mismatch
between the enrollment and test in the trials makes this dataset a very challenging one in
speaker verification.

Voxceleb is a large text-independent speaker recognition dataset containing the Vox-
celeb1 and the Voxceleb2 dataset, and Voxceleb2 contains more than 1 million audio clips
of 5994 speakers extracted from YouTube videos. The average time duration was 7.8 s,
from different acoustic environments, making speaker identification more challenging.
Voxceleb1 contains over 100,000 pieces of audio from 1251 speakers. There are three test
sets: Voxceleb1-O, Voxceleb1-E, and Voxceleb1-H. Voxceleb1-O is a test set that includes
40 speakers independent of Voxceleb1 and does not overlap with the speakers in Voxceleb1.
The Voxceleb1-E test set uses the entire Voxceleb1 dataset, while the Voxceleb1-H test set
is specific. It contains samples from the same country of nationality and the same gender.
The Voxceleb2 dataset is an extended version of the Voxceleb1 dataset, but the two datasets
are mutually exclusive. As mentioned in reference [31], Voxceleb2 contains some flaws in
its annotation. Therefore, it is not recommended for testing models. It is widely used for
training. As with most existing references, we use Voxceleb2 for training and Voxceleb1 as
the test set.

4.2. Training Details

We selected the 40-dimensional Filter Banks as the input features to the deep convolu-
tional neural network without voice activity detection (VAD) and data augmentation [35].
The acoustic features have a frame length of 25 ms and a frame shift of 10 ms. Compared
with the other acoustic features [36,37], Filter Banks are more in line with the nature of the
sound signal and suitable for the reception characteristics of the human ear. We also do not
use complex processing at the back-end, such as PLDA. During the training, we cut out a
three-second clip from the audio.
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The loss function of the system adopts AM-softmax [29] with margin = 0.1 and
scale = 30. Compared with the softmax loss function, AM-softmax improves the verification
accuracy by introducing a boundary in the angular space. It is calculated as follows:

Li = − log
es(cos θyi−m)

es(cos θyi−m) + ∑j 
=yi
es cos(θj)

(14)

where Li is the cost of classifying the sample correctly, and θy = arccos (wTx) refers to the
angle between the sample feature and the decision hyperplane (w), with both vectors
normalized by L2. Therefore, the angle is minimized by making cos(θyi)−m as large as
possible, where m is the angle boundary. The hyperparameter s controls the “temperature”
of the loss function, producing higher gradients for well-separated samples and further
reducing the intra-class variance.

The Adam optimizer [38] with an initial learning rate of 0.001 was used to optimize
the network parameters and attenuate 0.1 times every five cycles for training.

4.3. Testing and Testing Standards

During the test phase, we used the same settings as [19], extracted ten 3-s segments
from each test audio as samples, and then sent them to the system to extract the utterance-
level features of each segment and to calculate the distance between all of the combinations
(10 × 10 = 100) of pairs of segments. Then, the average of 100 distances denotes the score.

This study adopts the commonly used equal error rate (EER) and minimum detection
cost function 2010 (DCF10) [39] as the evaluation indices to objectively evaluate the perfor-
mance of different aggregation models. They indicate that the smaller the value, the better
the performance. The calculation formula of the minimum detection cost function is:

DCF = CFRFFRPtarget + CFAFFA(1 − Ptarget) (15)

where CFR and CFA are the weights of false rejection rate FFR and false acceptance rate
FFA, respectively, and Ptarget and 1−Ptarget are the prior probability of real speaking and
impersonation tests. We use the parameters CFR = 1, CFA = 1, and Ptarget = 0.01 (DCF10) set
by NIST SRE2010. DCF not only considers the different costs of false rejection and false
reception but also considers the prior probability of the test. Therefore, MinDCF is more
informative than EER in model performance evaluation.

5. Results

5.1. Ablation Experiments
5.1.1. Evaluating the Residuals Selective Kernel Convolution

To validate the effectiveness of the proposed ResSKNet-SSDP speaker recognition
system, we first performed a series of ablation experiments. In addition, we counted their
parameters and inference time. The inference time is the time required by the speaker
recognition system to convert the audio into the utterance-level features. We both used
the same experimental setups, simple training methods, and direct aggregation of frame-
level features using global average pooling (GAP). Table 2 shows the test results of the
regular convolution, SK conv, with our proposed ResSK conv on voxceleb1-O. As shown in
Table 2, the EER/DCF of the regular convolution is 4.17%/0.3882. After using SK conv, the
EER/DCF decreases to 3.42%/0.3522. It significantly improves the system performance,
although the parameters and inference time increased slightly. It also shows that using SK
conv improves the modelling of the long-term contexts. Testing again using our proposed
ResSK conv as shown in Table 2, the EER/DCF further decreased to 2.85%/0.3126. This
indicates that our ResSK conv obtained a larger perceptual field than the SK conv by using
dilated convolution. In addition, we captured the dependencies between channels more
effectively by using 1 × 1 convolution in the ResSK conv than the fully connected layer in
the SK conv, which produces more accurate channel attention. These improvements allow
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ResSK conv to capture local and global information more effectively and thus better model
short- and long-term contexts. Compared to the regular conv, it increases the parameters by
0.3 M and inference time by 4.1 ms, but the performance is improved by 31.7%. Compared
with SK conv, it increases the inference time by 1.7 ms with 0.1 M more parameters, but the
performance is improved by 16.7%.

Table 2. Results of residual selective kernel convolution on Voxceleb1-O.

Model Method Aggregation Loss Dims EER (%) DCF Params (M) Time (ms)

ResSKNet regular conv GAP AM-softmax 512 4.17 0.3882 2.9 27.8
ResSKNet SK conv GAP AM-softmax 512 3.42 0.3522 3.1 30.2
ResSKNet ResSK conv GAP AM-softmax 512 2.85 0.3126 3.2 31.9

5.1.2. Evaluating the Dilation Rate of the Residuals Selective Kernel Convolution

As shown in Table 3, when the dilation rate is 0, the EER/DCF is 3.29%/0.3417, and the
perceptual field of the convolution at this time is consistent with that of the conventional
convolution. When the dilation rate is 1, the EER/DCF decreases to 3.16%/0.3253. At this
time, the ResSK conv has a larger receptive field. When the dilation rate is 2, the EER/DCF
further decreases to 3.16%/0.3253, the receptive field also increases further and achieves
the best performance. However, as the dilation rate increases, the performance of ResSK
conv gradually decreases. The increase in the dilation rate leads to the loss of a lot of
local information and makes the information discontinuous and irrelevant. In addition,
we found that the inference time gradually increased with an increase in the dilation rate.
This is because, as the dilation rate increases, the convolutional kernel of ResSK conv also
gradually increases, and it also limits the bottleneck of the inference speed due to the GPU
access memory bandwidth. Therefore, in this study, the best performance of ResSK conv is
achieved when the dilation rate is 2, which can capture local and global information more
effectively and thus better model the long-term contexts.

Table 3. Results of dilation rate on Voxceleb1-O.

Model Dilation Rate Aggregation Loss Dims EER (%) DCF Params (M) Time (ms)

ResSKNet 0 GAP AM-softmax 512 3.29 0.3417 3.2 30.9
ResSKNet 1 GAP AM-softmax 512 3.16 0.3253 3.2 31.3
ResSKNet 2 GAP AM-softmax 512 2.85 0.3126 3.2 31.9
ResSKNet 3 GAP AM-softmax 512 3.39 0.3614 3.2 32.4
ResSKNet 4 GAP AM-softmax 512 3.68 0.3871 3.2 33.2

5.1.3. Evaluating the ResSKNet

Table 4 shows the results of ResSKNet with other networks on the Voxceleb1-O test, set
under the same experimental conditions. As shown in Table 4, the worst performers were
x-vector [7] and ResNet-34 [19], with EER/DCF of 4.39%/0.3726 and 4.47%/0.3909, respec-
tively. However, compared to ResNet-34, the x-vector has the lightest structure and shorter
inference time with fewer parameters. Due to its deeper and wider network structure,
ResNet-50 [19] exhibits a significant performance improvement, with the EER/DCF falling
to 3.89%/0.3710. However, both the inference time and its parameters increase dramatically.
We then tested with ResNeXt [16] and found that ResNeXt achieved a similar performance
to ResNet-50 with an EER/DCF of 3.85%/0.3822. Compared to ResNet-50, ResNeXt has
12.2 M fewer parameters and 55.2 ms less inference time. This indicates that the structure
of ResNeXt can effectively reduce the parameters and inference time of the model, but
it still cannot better model the long-term context. Testing Res2Net [16] again, we found
that Res2Net achieves the lowest EER/DCF, of 3.32%/0.3442, compared to the previously
tested methods. Its parameters and inference time are close to ResNeXt but still much
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higher than the x-vector structure. This suggests that Res2Net is a more efficient network
structure that can better model long-term contexts, but is still not applicable in practice due
to its parameters and inference time. Finally, we tested the proposed ResSKNet. ResSKNet
further improves its performance compared to Res2Net, achieving the lowest EER/DCF
of 2.85%/0.3126. This indicates that ResSKNet has better feature extraction capability
and can more effectively model long-term contexts and our designed ResSKNet structure
makes full use of both shallow and deep features, resulting in more informative frame-level
features with more speaker identity information. Meanwhile, it has 2.1 M fewer parameters
and 36.1 ms less inference time compared to the x-vector, but a 35.1% improvement in
performance. This proves that the ResSKNet we constructed has a more efficient and light
structure. To further visualize the effectiveness of the proposed architecture, we plotted
detection error trade-off (DET) curves for all comparable models, as shown in Figure 3. We
found that ResSKNet maintained a great performance advantage and was always below all
of the curves.

Table 4. Results of networks on Voxceleb1-O.

Model Aggregation Loss Dims EER (%) DCF Params (M) Time (ms)

x-vector [7] GAP AM-softmax 512 4.39 0.3726 5.3 63.5
ResNet-34 [19] GAP AM-softmax 512 4.47 0.3909 21.4 117.6
ResNet-50 [19] GAP AM-softmax 512 3.89 0.3701 36.5 237.6
ResNeXt [16] GAP AM-softmax 512 3.85 0.3822 24.3 182.4
Res2Net [16] GAP AM-softmax 512 3.32 0.3442 26.0 204.2

ResSKNet GAP AM-softmax 512 2.85 0.3126 3.2 31.9

Figure 3. DET curve of different networks on Voxceleb1-O.

5.1.4. Evaluating the SSDP Aggregation Model

Table 5 shows the performance of our proposed self-attentive standard deviation
pooling with other aggregation models on the Voxceleb1-O test set. Similarly, both the
training and testing were performed under the same experimental conditions, and we did
not introduce the attention method into the network. We directly use ResSKNet as the
backbone network. As shown in Table 5, the performance of the baseline system can also be
significantly improved using the aggregation model. The SP aggregation model [7] reduces
the EER/DCF of the system to 2.64%/0.3883 by calculating the mean and standard deviation
vector of the frame-level features. The SAP aggregation model [21] further improves
its performance by focusing on more significant frame-level features, achieving a lower
EER/DCF than the statistical approach of 2.62%/0.3599. The ASP aggregation model [23]
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combines attention and statistics to further reduce the EER/DCF to 2.57%/0.3563. However,
it is not a significant improvement over the SAP aggregation model. This indicates that the
ASP aggregation model does not effectively combine attentional and statistical methods.
NetVLAD [28] still shows the best performance with an EER/DCF of 2.42%/0.3391. Finally,
we tested the SSDP proposed in this paper. We found that SSDP achieves the lowest
EER/DCF of 2.33%/0.2451, which is better than NetVLAD. This proves that the utterance-
level features obtained from SSDP are more discriminative. It can more accurately select
frame-level features and capture short- and long-term changes in the frame-level features,
resulting in robust and more discriminative utterance-level features. Compared to ASP, it
combines attention and statistics methods more effectively. We estimated the parameters
and inference time of these aggregation models. The proposed SSDP has 0.2 M more
parameters and 4.4 ms more inference time than the GAP, with the simplest structure
and the least number of parameters, but the performance is improved by 18%. On the
other hand, compared to NetVLAD, self-attentive standard deviation pooling has fewer
parameters, a smaller inference time, and better performance. We similarly plotted the
detection error trade-off (DET) curves for all of the comparable aggregation models, as
shown in Figure 4. Our proposed SSDP also significantly outperforms the NetVLAD, which
had previously achieved the best results, and is always below the NetVLAD curve.

Table 5. Results of aggregation models on Voxceleb1-O.

Model Aggregation Loss Dims EER (%) DCF Params (M) Time (ms)

ResSKNet GAP [19] AM-softmax 512 2.85 0.3126 3.2 31.9
ResSKNet SP [7] AM-softmax 512 2.64 0.2883 3.2 33.1
ResSKNet SAP [21] AM-softmax 512 2.67 0.2699 3.4 35.3
ResSKNet ASP [23] AM-softmax 512 2.57 0.2563 3.6 37.6
ResSKNet NetVLAD [28] AM-softmax 512 2.42 0.2491 3.9 40.0
ResSKNet SSDP AM-softmax 512 2.33 0.2298 3.4 36.3

Figure 4. DET curve of aggregation models on Voxceleb1-O.

5.2. Results of the Speaker Recognition Systems on Voxceleb1-O

Next, our proposed ResSKNet-SSDP end-to-end speaker recognition system is com-
pared and evaluated on the Voxceleb1-O test set with these current advanced speaker
recognition systems, as shown in Table 6. As some of the methods are not open source,
we directly applied the results from the paper. In the previous work, RawNet3 [40] and
ECAPA-TDNN [12] were the most advanced methods in speaker recognition systems with
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EER/DCF of 2.35%/0.2513 and 2.38%/0.2349. However, our ResSKNet-SSDP end-to-end
speaker recognition system outperforms the previous best results, achieving the lowest
EER/DCF of 2.33%/0.2298. This proves that the ResSKNet-SSDP end-to-end speaker
recognition system has a greater feature extraction ability and is a lightweight speaker
recognition system suitable for practical applications.

Table 6. Results of different systems on the Voxceleb1-O test set.

System Aggregation Loss Dims
Voxceleb1-O

EER (%) DCF

ThinResNet-34 [19] NetVLAD AM-softmax 512 3.32 0.3391
ThinResNet-34 [19] GhostVLAD softmax 512 2.85 -

ResNet-34 [21] GAP AM-softmax 512 4.83 0.3809
ResNet-50 [21] GAP AM-softmax 512 3.95 0.3471
RawNet2 [41] SP AAM-softmax 512 2.48 0.2337
RawNet3 [41] SP AAM-softmax 512 2.35 0.2513

CNN+Transformer [40] GAP softmax 512 2.56 -
PA-ResNet50 [42] MRMHA AAM-softmax 512 3.32 -

ECAPA-TDNN [12] SP AM-softmax 128 2.38 0.2349
x-vector [7] AP AM-softmax 1500 3.85 0.3515

Res2Net [16] SAP AM-softmax 512 2.65 0.2613
ResNeXt [16] SAP AM-softmax 512 2.79 0.2817
Y-vector [43] SP AM-softmax 512 2.78 0.2694
S-vector [44] SP softmax 512 2.76 0.3015

ResSKNet-SSDP SSDP AM-softmax 512 2.33 0.2298

To evaluate the performance of the ResSKNet-SSDP end-to-end speaker recognition
system more comprehensively, we tested it again in the more extensive and challenging
Voxceleb1-E and Voxceleb1-H test sets, as shown in Table 7. In Voxceleb1-E, which uses
the entire Voxceleb1 as the test set, the proposed ResSKNet-SSDP end-to-end speaker
recognition system still achieves the best results with an EER/DCF of 2.44%/0.2559. In
the Voxceleb1-H test set, using the same country and gender, the differences in accent
and intonation decreased, and they were more difficult to distinguish. As a result, the
EER/DCF increased for all systems. However, our proposed ResSKNet-SSDP end-to-
end speaker recognition system still holds the lead with an EER/DCF of 4.10%/0.3502
below other methods. This demonstrates that the ResSKNet-SSDP end-to-end speaker
recognition system can obtain more distinguishable features and thus better distinguish
between speakers with higher similarity. In the three test sets of Voxceleb, our designed
ResSKNet-SSDP also maintains a great advantage, and the DET curve is always below the
other systems’ curves, as shown in Figure 5.

Table 7. Results of different systems on the Voxceleb1-E and Voxceleb1-H test sets.

System Aggregation Loss Dims
Voxceleb1-E Voxceleb1-H

EER (%) DCF EER (%) DCF

ThinResNet-34 [19] NetVLAD AM-softmax 512 3.24 0.3471 5.57 0.4479
ResNet-34 [21] GAP AM-softmax 512 4.92 0.4218 7.97 0.5091
ResNet-50 [21] GAP AM-softmax 512 4.42 0.3822 6.71 0.4514
RawNet2 [41] SP AAM-softmax 512 2.87 0.2701 4.33 0.4091

x-vector [7] AP AM-softmax 1500 4.01 0.3868 7.33 0.4893
Res2Net [16] SAP AM-softmax 512 2.71 0.2653 4.42 0.3702
ResNeXt [16] SAP AM-softmax 512 2.74 0.2993 4.58 0.4036
Y-vector [43] SP AM-softmax 512 2.64 0.2701 4.33 0.3775

ResSKNet-SSDP SSDP AM-softmax 512 2.44 0.2559 4.10 0.3502
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Figure 5. DET curve of different systems on Voxceleb1 test set.

5.3. Results of the Speaker Recognition Systems on CN-Celeb

Table 8 shows the test results of these speaker recognition systems on CN-Celeb. It can
be seen that the results on CN-Celeb are worse because the registered and tested discourse
is shorter in this dataset. For example, the EER/DCF on CN-Celeb is substantially and
obviously increased compared to the x-vector results for Voxceleb1-O. These results clearly
show that state-of-the-art speaker recognition systems cannot inherently deal with the
complexity introduced by multiple genres. In previous work, EDINet achieved the best
identification results on CN-Celeb, with an EER of 12.8%. The ResSKNet-SSDP end-to-end
speaker recognition system we have designed achieves slightly better performance than
EDINet, with an EER/DCF of 12.81%/0.5051. In addition, we can clearly see that the DET
curves of all of the systems have shifted significantly upwards compared to the Voxceleb
dataset, but the curve of ResSKNet-SSDP is still lower than the other systems, as shown in
Figure 6. The ResSKNet-SSDP end-to-end speaker recognition system achieved an excellent
performance on all of the different test sets, proving that it is more efficient, lighter, and
more suitable for practical application.
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Table 8. Results of different systems on the CN-celeb test set.

Model Aggregation Loss Dims EER (%) DCF

PA-ResNet-50 [42] MRHMA AM-softmax 256 13.21 0.5409
ResNet-34 [21] SP AM-softmax 512 16.52 0.6092

EDINet [45] GAP cosine loss 256 12.56 -
ResNet-50 [21] SAP AM-softmax 512 15.38 0.5691

ThinResNet-34 [19] ASP AM-softmax 512 18.37 0.6097
x-vector [7] NetVLAD AM-softmax 512 16.59 0.5864

Res2Net [16] SAP AM-softmax 512 13.72 0.5393
ResNeXt [16] SAP AM-softmax 512 14.55 0.5645

ResSKNet-SSDP SSDP AM-softmax 512 12.28 0.5051

Figure 6. DET curve of systems on CN-celeb.

5.4. Visualization Analysis

We used the visualization method by Kye S M et al. to visualize the effectiveness of
the proposed ResSKNet-SSDP end-to-end speaker identification system. We formed the
visualization map after the dimensionality reduction in the speaker identity features by
the t-SNE [46]. In Voxceleb1-H, fifty speakers were randomly selected to be represented
by different colors. Each person randomly selected ten audios, and then ten randomly
extracted three-second test segments from each audio. There were a total of 5000 three-
second test segments obtained. The visualization maps of x-vector, Res2Net, ResSKNet,
and ResSKNet-SSDP are shown in Figure 7.

(a) shows the speaker feature visualization graph of x-vector. It is observed that the
feature extraction ability of x-vector is weak. The result is that the visualization graph is
also very poorly classified, with many classification errors and collisions occurring. This
suggests that the speaker features obtained by x-vector are not discriminative. (b) shows
the visualization of Res2Net. It is noticeable that its visualization has been significantly
improved compared to (a). It has fewer classification errors and collisions. It verifies the
effectiveness and robustness of Res2Net. It also shows that Res2Net has a better feature
extraction ability, and the speaker features are more discriminative. However, the intra-
class distance of the speaker features is bigger, and the inter-class is smaller, and there
are still some classification errors and collisions, as shown in (b) in Figure 7c shows the
visualization map of ResSKNet. Comparing the visualization map of Res2Net, we can
see that the collision in the visualization map of ResSKNet is significantly improved, and
almost no speaker features collide. The inter-class distance increases significantly. It also
proves that ResSKNet effectively improves the feature extraction ability by acquiring larger
receptive fields and generating more combinations of receptive fields. However, there
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are still a few cases of classification errors and large intra-class distances in ResSKNet, as
shown in (c) in Figure 7d represents the visualization map of ResSKNet-SSDP. It not only
has no classification errors, but also has a larger inter-class distance and closer intra-class
distance. This indicates that our proposed SSDP is efficient. It effectively improves the
feature extraction ability of ResSKNet-SSDP to achieve more distinguishable features and it
gives the speaker features from the same speaker a higher similarity.

(a) x-vector (b) Res2Net

(c) ResSKNet (d) ResSKNet-SSDP

Figure 7. t-SNE visualization results.

6. Conclusions

In this work, we designed a speaker recognition architecture, ResSKNet-SSDP, with an
improved feature extraction capability and improved adaptation to the speaker recognition
task. The ResSKNet-SSDP network models the long-term contexts more effectively through
the ResSKNet network structure. In addition, it also introduces the SSDP aggregation
model to capture the short- and long-term changes of the frame-level features, aggregating
variable-length frame-level features into fixed-length, more differentiated utterance-level
features. We achieved the lowest EER/DCF of 2.33%/0.2298, 2.44%/0.2559, 4.10%/0.3502,
and 12.28%/0.5051 on the noisy Voxceleb1 and CN-Celeb test sets, outperforming many
of the existing methods and effectively improving the accuracy of the end-to-end speaker
recognition system. Our proposed ResSKNet-SSDP end-to-end speaker recognition system
has 3.1 M fewer parameters and 31.6 ms less inference time compared to the lightest x-vector,
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but 35.1% better performance, which indicates that it is a more efficient and lightweight
structure. It is also more suitable for practical application.

The work we have conducted has improved the feature extraction ability of the speaker
recognition system. When performing speaker recognition, we need to map the utterance-
level features into the features space for similarity metrics. Therefore, the essence of speaker
recognition is a metric learning problem and how to make the network more effective for
metric learning is also a critical issue. The loss function is the key to solving this problem.
In future work, we will focus on improving the loss function. In addition, we will also
extend the proposed approach to other voice applications, such as language recognition
and emotion recognition.
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Abstract: Air-coupled ultrasound sensors have advantages over contact ultrasound sensors when
a sample should not become contaminated or influenced by the couplant or the measurement has
to be a fast and automated inline process. Thereby, air-coupled transducers must emit high-energy
pulses due to the low air-to-solid power transmission ratios (10−3 to 10−8). Currently used resonant
transducers trade bandwidth—a prerequisite for material parameter analysis—against pulse energy.
Here we show that a combination of a non-resonant ultrasound emitter and a non-resonant detector
enables the generation and detection of pulses that are both high in amplitude (130 dB) and bandwidth
(2 μs pulse width). We further show an initial application: the detection of reflections inside of a
carbon fiber reinforced plastic plate with thicknesses between 1.7 mm and 10 mm. As the sensors work
contact-free, the time of flight and the period of the in-plate reflections are independent parameters.
Hence, a variation of ultrasound velocity is distinguishable from a variation of plate thickness and
both properties are determined simultaneously. The sensor combination is likely to find numerous
industrial applications necessitating high automation capacity and opens possibilities for air-coupled,
single-side ultrasonic inspection.

Keywords: thermoacoustic emitter; optical microphone; air-coupled ultrasound; local resonance;
thickness measurement; thickness resonance

1. Introduction

Most currently used air-coupled ultrasound (ACU) transducers can be classified as
either piezoelectric or capacitive in nature [1–5]. However, developments in recent years
have resulted in fundamentally new approaches to generate and detect ultrasound in air [6].
Thermoacoustic emitters were proven to provide high amplitude and high-bandwidth
acoustic signals with frequencies of up to 1 MHz [7]. At the same time, highly sensitive
optical microphones were developed that cover the same frequency range [8–11]. This
new generation of emitters and receivers can overcome a former fundamental restriction
of air-coupled ultrasound: only transducers with pulse durations above 10 μs provided
sufficient amplitude for practical applications. Previously proposed methods to generate
and detect pulses shorter than 10 μs resulted in low amplitudes [1,12]. However, high
amplitudes are mandatory for air-coupled ultrasound applications due to the low energy
transmission coefficients at the involved solid-to-air interfaces.

Here we demonstrate the combined use of a broadband, thermoacoustic emitter and
an optical microphone and show an initial application: the simultaneous determination of
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thickness and sound velocity of a solid material. Carbon fiber-reinforced plastic (CFRP)
plates with different thicknesses were used to show the applicability for a currently relevant
material [13]. A transmission setup and time-of-flight data processing were implemented.

Previously proposed techniques that measure thickness and speed of sound simultane-
ously rely on the thickness resonances (TR) of the investigated sample [5]. Such techniques,
however, require the determination of the frequency-dependent transmission coefficient,
necessitating some advanced data processing and data fitting. More importantly, the cor-
rect transducer combination is required for each new sample. The sensor combination
presented here is simpler to use, and the transducer pair works for all samples that have a
TR frequency below a critical value of 1 MHz.

A plate thickness measurement has been demonstrated previously using a laser pulse
to generate the ultrasound and an optical microphone as a detector [14]. Since the ul-
trasound was generated directly in the specimen, the distance between the source of the
ultrasound and the detector was not constant during the scan. It was thus not possible to
extract the plate thickness independently from the plate material (and vice versa), as in
the case for our method. In [14], the plate thickness and plate curvature were measured,
while the corresponding sound velocity in the plate needed to be known or measured at
the reference point. This is not necessary for the method introduced in this work.

2. Materials and Methods

2.1. Transducers

The thermoacoustic effect describes the generation of sound from heat. Well-known
cases are thunder and spark discharge [15], but also less commonly known cases such as
laser-induced breakdown [16] and thermophones [7,17,18] are capable of transforming
heat into acoustic waves. Physically best understood are thermophones, which use a thin
Ohmic conductor to transform electric energy into heat in the surrounding fluid. When the
heat deposition occurs fast enough, a finite volume of air is heated, which is equivalent
to an increase in pressure. Thin films on a curved surface are well suited for material
testing [7]. Such setups hold the advantages of a thermoacoustically active 2D area that can
be used for pressure generation and beam focusing at the same time. Typical materials are
indium tin oxide for the thin film and silica glass for the substrate. The transducer used
in this study consisted of a 200 nm indium tin oxide film on a borosilicate glass substrate
with a curvature of 55 mm and radial electrode placement (see Figure 1). Thermoacoustic
transducers generate ultrasound directly in air and do not rely on mechanical or resonant
vibrations. This enables the generation of short pulses, necessary for the method proposed
in this work.

The receiver was an optical microphone (Eta 450 Ultra, XARION Laser Acoustics
GmbH, Vienna, Austria). The working principle is based on a rigid Fabry-Pérot laser
interferometer with two miniaturized mirrors, where sound waves in air change the
refractive index, alter the optical wavelength and the light transmission of the pair of
mirrors. Like the thermoacoustic emitter, the microphone does not rely on resonantly
vibrating components to detect ultrasound and hence enables broadband signal detection.

It is the combination of a high-bandwidth transmitter and a high-bandwidth receiver
that lets us resolve the in-plate reflections in time even for millimeter thin composite plates,
as discussed later in this article. The measured signal of the setup with and without a
specimen is shown in Figure 2.

2.2. Calculation of Thickness and Speed of Sound

High-power microsecond pulses in CFRP plates enable exact determination of the
pulse arrival time tToF and the simultaneous measurement of the in-plate reflection period
tTR, as shown in Figure 2. This enables the determination of plate thickness and longitudinal
ultrasound velocity in the investigated plate from a single measurement.

We show this by expanding on the time-of-flight calculations from [19], in which only
one of the two parameters could be determined independently. In addition, note that
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reference [19] reports a speed of sound measurements with uncertainties mostly in the
range of 20–50% due to long pulse widths.

Figure 1. Image and schematic of the air-coupled ultrasound transmission setup. Sending and
receiving transducers were positioned on both sides of the CFRP step wedge. The emitter consists of
a thin indium tin oxide film in between two electric poles. The receiver was an optical microphone.
The distance between transmitter and receiver D and the thickness of the plate could be determined
experimentally.

Figure 2. Representative signals for the proposed technique. The upper and lower graphs show a
measured signal with and without a specimen, respectively. The times tTR and tToF are independent
parameters, which enable the discrimination between the influence of the plate thickness and the
material properties. An initial measurement of the time of flight between the transducers (tref) enables
the determination of absolute values for both parameters simultaneously. The observable signal
oscillations after the pulse detection feature components other than only the in-plate reflections and
are further analyzed in the signal measurement and processing section.

In the following, tToF is the time the pulse travels through air and sample, D is the
corresponding distance between ultrasound source and detector, d is the material thickness,
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and vA and vM are the speed of sound in air and in the analyzed material, respectively.
With these definitions, we can express tTR and tToF as

tTR =
2d
vM

(1)

and
tToF =

d
vM

+
D − d

vA
. (2)

These two equations can be solved for the plate thickness d and the longitudinal
ultrasound velocity in the plate material vM. Setting up two transducers with a distance D
is typically error prone with uncertainties in the order of magnitude of 1 mm. This leads to a
similar error in the calculation of d. Therefore, it is best practice to replace the measurement
of D by a measurement of the time of flight of a pulse between the two transducers with no
sample tref, meaning D = tref · vA. These considerations lead to

d =

(
tref − tToF +

tTR

2

)
· vA (3)

and
vM =

2d
tTR

. (4)

Both parameters, d and vM, can be estimated from the independent parameters tToF
and tTR, obtained from a single ultrasonic signal. The only prerequisites for this obtainment
are the detectability of the in-plate reflections and the constant distance between the
transducers.

2.3. Experimental Setup

The air-coupled ultrasound transmission setup can be divided into four parts: the
sending part, the receiving part, the manipulator, and the piloting computer. The sending
part consisted of the USPC 4000 Airtech system (Hillger NDT GmbH, Braunschweig,
Germany), a voltage divider, an Agilent 33500B (Keysight Technologies, Santa Rosa, CA,
USA) arbitrary waveform generator (AWG), an in-house power amplifier and the already
described thermoacoustic transducer. The USPC 4000 Airtech system generated electric
trigger signals, which were adjusted to 5 V and transmitted to the AWG. The pulse width
was adjusted at the AWG and the pulse was transmitted to the in-house power amplifier
and transmitted to the thermoacoustic transducer.

The power amplifier was designed such that pulses in the order of magnitude of
several 100 ns to several 100 μs and 30 kW could be generated for a thermoacoustic load
with a resistance of 8 Ω.

The receiving part consisted of the optical microphone, its data processing unit, and
an analog-to-digital converter, which was part of the USPC 4000 Airtech system. The ma-
nipulator was a FlatScan 1000 (Hillger NDT GmbH, Braunschweig, Germany), controlled
by the USPC 4000 Airtech system. Hillgus software (Hillger NDT GmbH, Braunschweig,
Germany) was used to synchronize the sent and received signals and to control the manip-
ulator position.

The transducers were facing one another, and their distance was varied until a maxi-
mum amplitude could be measured on the receiving side. This distance was 54 mm for
all thicknesses. The pulse width of the electric pulse was set to 2 μs at an amplitude of
375 V. Together with the 7.8 Ohm of the transducer, this resulted in an approximately
18 kW electrical sending power. The pulses were transmitted at a 75 Hz repetition rate
and the sample was scanned with a spatial resolution of 0.15 mm along the scanning axis.
Three adjacent lines with 0.15 mm distance were scanned and the results averaged. This
avoided artefacts caused by local sample inhomogeneities. The signal converter of the
optical microphone was set to 20 dB amplification and the data acquisition software Hillgus
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amplified the signal by another 9 dB for all performed scans. The temperature was 23 ◦C
and the relative humidity was 40%.

2.4. Specimen

The step wedge was a CFRP made from an epoxy prepeg of type HexPly(R). The fiber
density was 1.78 g/cm3 and the resin density 1.22 g/cm3. The fiber orientation was quasi
isotropic with 120 layers over a total thickness of 20.2 mm.

The specimen features a surface roughness below the smallest wavelength components
of sound in both interface media, parallel front and back surfaces, and a sufficiently low
dispersion. These parameters are typical prerequisites for air-coupled ultrasonic testing.

3. Results

3.1. Signal Measurement and Processing

Linear scans were performed using plates with thicknesses ranging from 1 mm to
5.1 mm (Figure 3a) and from 6.1 mm to 20.2 mm (Figure 3b), as indicated above the figures.
Figure 3a,b have different time windows since the trigger time delays were not the same
for both scans. The delays were chosen such that the first break and the subsequent in-plate
reflections are fully captured for all plate thicknesses.

Figure 3. B-scans for thinner (a) and thicker (b) plate thickness ranges. The signals in frequency
domain are shown in S-scans (B-scans in frequency domain) for the same positions of both linear
scans in (c,d). The TR frequency is inversely proportional to the plate thickness, while the ToF is
linearly proportional to the plate thickness.

The obtained signals were converted to frequency domain for all scanning positions.
The linear scans of the plate thicknesses are shown in S-(spectrum) scans (Figure 3c,d).
The term S-scan is used to designate B-scans in frequency domain. In order to improve
the signal-to-noise ratio, only the time window between 10 μs before and 32 μs after the
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first break of the signal was used. It was converted to frequency domain, after applying a
Hamming window. The amplitude of the S-scans is expressed relative to the maximum
peak value of the TR frequency of both linear scans.

The goal of the signal processing is to determine tToF and tTR in an automated process.
The value of tTR is determined in frequency space. The in-plate reflections and the TR
frequency are distinguishable for the plate thicknesses ranging from 1.7 mm to 10.1 mm.
Figure 3c,d clearly show that the TR frequency peak value is proportional to d−1. Although
our system is comparatively broadband, it is to some extent possible to observe its charac-
teristic behavior. Each signal was superimposed by two main oscillations with period times
of roughly 10 μs and 30 μs (see Figure 2). These signals were likely caused by multiple
reflections of the pulse inside the microphone cavity and between the microphone and the
plate surface, respectively. Such interferences leads to differences in the quality of the signal
for certain plate thicknesses. For example, the detected TR frequencies close to 660 kHz,
540 kHz, 340 kHz, and 150 kHz have higher amplitude than others. However, despite these
interferences, the method allows for reliable detection of the TR frequency peak over a
broad frequency range.

The value of tToF was determined in time domain. A strong correlation between the
plate thickness and tToF is shown in Figure 3a,b. The in-air reflections between the specimen
and the optical microphone are visible in Figure 3b. They arrive approximately 30 μs after
the first break of the US signal. This corresponds to the microphone-to-specimen distance
of 4.8 mm.

3.2. Comparison of Measured and Reference Values

The first step of the analysis was the extraction of tToF and tTR from the signal for
all scanning positions. tToF was reliably obtained by picking the time of the maximum
signal levels (shown in Figure 3a) for the scan over the lower plate thickness range (1 mm
to 5.1 mm). For greater thicknesses (6.1 mm to 20.2 mm), the first negative peak is more
pronounced than the first positive peak (Figure 3b). The arrival times were thus more
reliably obtained by picking the time of the minimum signal level. The in-air reflections,
which arrived after the first break of the signal and might have larger amplitude, were
neglected. The mean value of the arrival time difference between the minimum and the
maximum signal values of all the scanning locations was added to the arrival times for the
scan of the lower thickness range in order to synchronize the scans of both thickness ranges.

The parameter tToF was obtainable by this method for all plate thicknesses. This
was not the case for the second parameter tTR, which was not measurable for the whole
thickness range. As can be seen in Figure 3, the in-plate reflections (in time domain) and
TR peak (frequency domain) are visible only for the plate thicknesses between 1.7 mm and
10.1 mm. This is due to the frequency range of our measurement system—up to 0.8 MHz
for the applied excitation parameters. The upper limit of the plate thickness is defined by
the ultrasound attenuation level in the plate. The condition for the successful measurement
is that the in-plate reflections are detectable. tTR was obtained by inverting the TR peak
(visible in Figure 3c,d).

In Figure 4, we present the plate thicknesses obtained by inserting tToF and tTR in
Equations (3) and (4). The only parameter in this equation that was not measured directly by
our experiment is sound velocity in air which proportionally influences all the measurement
points and amounted to 345.7 m/s in our experiment. The thicknesses measured by
our ACU method are compared to values obtained by the reference measurement with
a micrometer screw (precision higher than 0.01 mm). In Table 1, statistical values are
provided for each of the plate thicknesses: mean value of the air-coupled measurement, its
standard deviation, number of measurements at each of the plate thicknesses (obtained
by the linear scan), and the number of the outliers, which we excluded to calculate the
standard deviation. We did not exclude any values in Figure 4.
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Figure 4. Plate thicknesses obtained by simultaneous measurement of tTR and tToF using Equation (3).
As tTR and tToF are independent parameters, we can simultaneously estimate longitudinal sound
velocity in the sample material (approximately 2800 m/s) using Equation (4), without a reference mea-
surement at a known thickness, which is required for conventional contact ultrasonic measurements.
This is only possible because our method is broadband and air coupled.

Table 1. Plate thicknesses determined with the presented ultrasound method with reference values.

Reference
[mm]

Air-Coupled—
Mean Value

[mm]

Air-Coupled—SD 1

[mm]
Number of

Measurements

Number of
Excluded
Outliers

1.65 1.70 0.03 23 0
1.83 1.89 0.03 22 1
2.04 2.11 0.05 22 0
2.53 2.55 0.05 45 2
3.02 3.06 0.04 43 2
3.33 3.32 0.04 44 0
3.65 3.62 0.07 46 1
4.05 3.99 0.06 46 2
5.07 4.96 0.06 38 3
6.07 6.07 0.08 43 0
7.07 7.03 0.07 44 0
8.07 8.12 0.08 45 2
10.90 9.93 0.08 46 0

1 SD = standard deviation.

The outliers are caused by the false picking of the time of arrival or the TR peak
frequency. The two parameters might not refer to the same thickness, especially at the
(discrete) transition from one thickness to another. The wave propagation properties could
be affected by the thickness transitions, which could alter the TR frequency (Figure 3). The
standard deviations of the air-coupled thickness measurements remained below 0.09 mm
for the plate thicknesses from 1.65 mm and 10.1 mm.

The longitudinal sound velocity in the plate material was measured for all scanning
locations by the same experiment using Equation (4). Its mean value over the whole scan is
2800 m/s with the standard deviation of 160 m/s. A reference measurement of the speed
of sound in the utilized plate was performed using a contact ultrasound time of flight

59



Sensors 2023, 23, 1379

measurement with a 2.25 MHz transducer. The technique produced 2896 m/s, which is
well within the first standard deviation of the proposed air-coupled technique.

4. Discussion

Our experimental setup enables, for the first time, the resolution of in-plate reflections
at plate thicknesses ranging from 1.65 mm to 10 mm without physical contact to the
specimen. In contrast to conventional pulse echo methods based on contact ultrasound,
the time of flight and the period of in-plate reflections are, in our setup, independent
parameters. This opens the possibility to measure the speed of sound and material thickness
simultaneously from a single ultrasonic signal. In other words, it is possible to measure
plate thickness without actually knowing the ultrasound propagation speed in the sample
material. This new paradigm only assumes the prior knowledge of the speed of sound
in air and a reference time-of-flight measurement without the specimen. The latter will
deliver the distance between the transducers, which should and can (due to the air-coupled
setup) be kept constant during the whole experiment.

The experiments were conducted at a CFRP plate due to its relevance in research and
industry. The applicability of our technique to a certain object will depend on the object’s
composition of speed of sound, thickness, and dispersion. Dispersion might influence our
technique stronger than other material analysis approaches as it may vary the shape of
the in-plate reflections. Applying our technique to a wide range of material parameter
combinations will be a subject of future research.

Temperature changes and airflows are likely to occur in industrial applications. The
airflows can influence air-coupled ultrasound measurements when the overall distance
between the sender and the receiver in air is several centimetres long. Such flows might
disrupt the method by altering the measured time of flight in air. It is, however, unlikely
that temperature changes will influence our measurement since they occur on different
time scales than the ones relevant for our method—200 μs.

We measured signal components up to 0.8 MHz. However, the non-resonant working
principles of the utilized emitter and receiver do not limit this frequency range. A limiting
factor is the energy per pulse that is proportional to the pulse length and amplitude. The
pulse width (e.g., full width at half maximum, τFWHM), however, determines the lower
limit of detectable plate thicknesses dlimit via dlimit = c · τFWHM/2. Higher amplitudes will
be required for future applications that require even shorter pulse lengths. With further
developments in the efficiency of thermoacoustic emitters and the sensitivity of optical
receivers, sub-microsecond pulses are likely to be provided for future applications.

The proposed technique is one initial possibility for the utilization of short pulses and
non-resonant transducers and more applications are likely to follow. As our method is
able to distinguish the in-plate reflections, it provides the potential to allow single-side
air-coupled ultrasonic inspection and to resolve the direct reflection from the back-wall
echo. Localized material properties of the specimen or the inspected features could be
characterized by the analysis of the local resonances in the ultrasonic frequency range, as
it has been demonstrated using laser generated ultrasound [15,20]. The broadband ther-
moacoustic emitter carries high potential to replace laser pulse ultrasound excitation [21],
which is more expensive and evokes special safety-related concerns. As both transducers
also function in liquids, expanding the scope of the technique to immersion testing is likely
to succeed in future research.
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Abstract: Leaks from pipes and valves are a reputational issue in industry. Maintenance of pipeline
integrity is becoming a growing challenge due to the serious socioeconomic consequences. This paper
presents a secondary phase transform (PHAT) cross-correlation method to improve the performance
of the acoustic methods based on cross-correlation for pipeline leakage detection. Acoustic emission
signals generated by pipe leakage are first captured by the sensors at different locations, and are
subsequently analyzed using the cross-correlation curve to determine whether leakage is occurring.
When leakage occurs, time delay estimation (TDE) is further carried out by peak search in the cross-
correlation curve between the two sensor signals. In the analysis, the proposed method calculates
the secondary cross-correlation function before the PHAT operation. A sinc interpolation method is
then introduced for automatic searching the peak value of the cross-correlation curve. Numerical
simulations and experimental results confirm the improved performance of the proposed method for
noise suppression and accurate TDE compared to the basic cross-correlation method, which may be
beneficial in engineering applications.

Keywords: acoustic emission; leak detection; cross-correlation; phase transform; time delay estimation

1. Introduction

Maintaining the reliability and integrity of pipeline networks is becoming an increas-
ingly critical challenge in industry. A large number of pipes and valves exist in power
plants for the transport of liquids and gases, and delays in detecting and repairing the
damaged pipe sections can result in significant financial loss and hazardous situations. In
long-term service, the pipeline networks are constantly affected by high temperature, high
pressure, corrosion and damage, all of which makes them susceptible to leakage. Leakage
detection is crucially important for a company when making asset management decisions
and maintaining the resilience of the pipeline system. In recent decades, much attention
has been paid to targeting leakage effectively and efficiently in academic and industrial
communities [1–3].

Traditionally, leak detection surveys are conducted manually, for example, by listening
to the sound of leaks and applying soap bubbles to suspicious locations. These methods
have low inspection efficiency. In recent years, rapid progress in leakage detection meth-
ods have been made, including the mass balance method, flow model method, infrared
thermography, optical fiber method and acoustic method [4–10]. These methods have their
own advantages and disadvantages in terms of detection accuracy, efficiency, installation
mode and cost.

For the mass balance method, monitoring the quantity of the fluid flowing through
the inlet and outlet of the pipeline may be undertaken to determine whether leakage is
occurring [11]. The principle of this method is relatively straightforward at the expense
of its efficacy and reliability, because the change caused by a suspected leak can only be
reflected after a period of time, especially for small flow leakage. Furthermore, more
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variables and parameters, such as fluid viscosity, pipe resistance, etc. need to be taken
into account in the flow model. As such, a real-time flow model of the pipeline can be
developed, which yields more reliable results compared to the mass balance method.
Infrared thermography is mainly suitable and successful for leakage detection in pipe
networks with obvious temperature characteristics, such as heating pipes [12]. Due to high
temperature resolution, it has proven to be sensitive to small temperature differences and
hence effective for detecting small leakages, which greatly improves the applicability of
the method. More recently, optical fiber sensing technology has been developed for the
detection of the temperature changes, vibration and strain caused by leakage in the pipe
system [13]. To date, the optical fiber method has shown great promise due to its detection
accuracy and efficacy. However, there are certain difficulties in installation for the pipelines
buried under the soil or with wrapping materials.

Acoustic methods are commonly used for leakage detection due to the reliability, low
cost and easy installation, including the traditional listening method, the negative pressure
wave method and the acoustic emission method [14–16]. In principle, when leakage occurs,
acoustic signals are generated in the vicinity of the leak, which are often seen as acoustic
emission signals. The acoustic energy is transmitted in the pipe system in a variety of
modes in broadband frequencies, which can be measured by acoustic and vibration sensors.
Correspondingly, the leakage can be detected and located by analyzing the transmitted
signals that carry the information of leak sources [17].

Acoustic emission based on cross-correlation is robust and widely used for pipeline
leakage detection. The basic cross-correlation (BCC) process suffers from essential draw-
backs, i.e., although this method is generally effective for white noise, the detection per-
formance suffers to some degree for other-colored noise. To overcome this problem, an
appropriate windowing or frequency weight function is introduced in the generalized cross-
correlation (GCC) methods to pre-whiten the measured signals before cross-correlation.
Nevertheless, the performance of the GCC methods varies in leak detection surveys due
to the uncertainties in the practical engineering environments. Of particular interest is
the phase transform (PHAT) cross-correlation, which uses only the phase information
directly related to the difference between the arrival times of the leak noise at the sen-
sors locations [18,19]. This method has proven to be effective for leak detection in a high
signal-to-noise (SNR) environment. Otherwise, the detection accuracy suffers, in that the
effects of background noise are neglected in the pre-whitening process. In recent years,
some new time delay estimation (TDE) algorithms have been proposed. Ji et al. proposed
a PHAT-β GCC algorithm by changing the exponential regulator β of the pre-whitening
weight function in the 3D localization of transformer patrol robot [20]. Cui et al. proposed
a variable step normalized LMS adaptive filter for leak localization in water-filled plastic
pipes [21]. The algorithm transforms the TDE into the parameter estimation of the filter
with advantages of variable step iterative learning. Alternative signal processing processes
have been attempted to improve the leak detection accuracy [22–26], such as wavelet analy-
sis, empirical model decomposition, neural network and deep learning methods. Whilst
the advantages of these processes are immediately apparent, they also bring additional
problems, such as large number of detection samples, long training time and complex
calculated model.

In this paper, a secondary phase transform (PHAT) cross-correlation method is pro-
posed to accentuate the information directly related to leakage. The method can suppress
effectively the interfering effects of background noise by calculating the secondary cross-
correlation function before the PHAT operation. Additionally, a sinc interpolation method is
introduced for automatic searching the peak value of the secondary PHAT cross-correlation
function. This can further improve the TDE accuracy since the error caused in the selection
of the maximum value is significantly reduced. The remainder of this paper is as follows.
In Section 2, the background of pipeline leakage detection is briefly discussed, followed by
a detailed description of the proposed secondary phase transform (PHAT) cross-correlation.
In Section 3 a numerical model is described, and some results are presented to show the
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detectability of the method for pipeline leakage detection. In Section 4 experimental work
is carried out to verify the effectiveness of the proposed method in comparison with the
BCC. Finally, conclusions are drawn in Section 5.

2. Methodology

2.1. Background of Pipeline Leak Detection

Figure 1 depicts the schematic diagram of the process of pipeline leak detection.
The pipeline leakage will cause the fluid to overflow under the action of pressure and
produce acoustic signals, which propagate along the pipeline upward and downstream.
Acoustic/vibration sensors are generally installed at the pipe fittings, for example values
and fire hydrants, to capture the transmitted leak signals.

Figure 1. Schematic diagram of the process of pipeline leak detection.

Assume that the acoustic signals x1(t) and x2(t) received by sensor 1 and sensor 2 are
expressed as follows:

x1(t) =s(t)+n1(t)

x2(t) =s(t − D)+n2(t)
(1)

where s(t) and s(t−D) represent the propagating leakage signals that travel along the pipe
and are captured by sensors 1 and 2; the time delay D denotes the difference in the arrival
times of the corresponding leakage signals at the sensors’ locations; and n1(t) and n2(t)
denote the background noise at two sensor locations.

The BCC between the acoustic signals, x1(t) and x2(t), can be obtained by

R12(τ) = E[x1(t)x2(t − τ)]

= E{[s(t)+n1(t)][s(t − D − τ)+n2(t − τ)}
= Rss(τ − D) + Rsn2

(τ) + Rsn1(τ − D) + Rn1n2
(τ)

(2)

where R12( ) denotes the BCC algorithm; Rss( ) is the BCC function between leakage signals
s(t) and s(t−D); Rsn1( ) and Rsn2( ) are the BCC functions between the leakage signal s(t)
and background noise signals n1(t) and n2(t) respectively; and Rn1n2( ) is the BCC function
between background noise n1(t) and n2(t). Generally, for random white noise, leakage
signal and background noise signals are independent and uncorrelated with each other. In
this case, Rsn1( ), Rsn2( ) and Rn1n2( ) in Equation (1) are equal to 0.

The above analysis suggests that if there is no leakage in the pipeline, the acoustic
signals received by the two sensors are background noise, resulting in the cross-correlation
result being close to zero. In contrast, when leakage occurs in the pipeline, the acoustic
signals received by the two sensors include the additional transmitted leakage signals,
which leads to the correlation result being non-trivial. This is further demonstrated in the
simulations in the next section.

Applicable leak detection process involves two phases. When pipeline leakage is
initially identified, background noise may produce signals with characteristics similar to
leakage signals. Thus, it is critical to take accurate measurements to localize the exact
location of the leak. Equation (2) can be further simplified as

R12(τ) = E[s(t)s(t − D − τ)] = Rss(τ − D) (3)
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It is apparent that when τ − D = 0, the BCC function R12(τ) achieves the maximum
value. In this case, the time delay between the two leakage signals τ = D. The time delay D
is subsequently obtained by automatic searching the cross-correlation function R12(τ) for
its peak value by using the sinc-interpolation. This can avoid the error caused by manually
selecting the maximum value.

D = argmax[
T

∑
τ=1

R12(τ)Sinc(t − τ)] (4)

where argmax denotes the argument corresponding to the maximum value of the function;
T is the signal length and Sinc denotes the sinc-interpolation.

Referring to Figure 1, given that the distance between sensor 1 and sensor 2 is L, the
propagation wavespeed is v, and the time delay is D, the relative location from sensor 1 to
the leak source, x can be obtained by

x =
L − vD

2
(5)

In the BCC method, the time delay is estimated by searching the peak of the cross-
correlation function. This method has low computational complexity and is easy to be
programmed. Accurate TDE can be achieved provided that leakage signals and background
noise are uncorrelated with each other. However, when the uncorrelated assumption is
violated in actual leak detection surveys, the TDE obtained by the BCC method will be in
significant error due to the smearing effects on the main peak or even false peaks.

2.2. Secondary PHAT Cross-Correlation

In order to suppress the interfering effects of background noise, this paper proposes
a secondary PHAT generalized cross-correlation method. The process of the proposed
algorithm is shown in Figure 2, with detailed description as follows:

Step 1: calculate the auto-correlation function R11(τ) by performing auto-correlation
operation on sensor signal x1(t)

R11(τ) = E[x1(t)x1(t − τ)] = E{[s(t)+n1(t)][s(t − τ)+n1(t − τ)] (6)

Step 2: calculate the cross-correlation function R12(τ) by performing the cross-correlation
operation on sensor signals x1(t) and x2(t)

R12(τ) = E[x1(t)x2(t − τ)] = E{[s(t)+n1(t)][s(t − D − τ)+n2(t − τ)] (7)

Step 3: calculate the secondary cross-correlation function RRR(τ) by performing cross-
correlation operation on the above auto-correlation function R11(τ) and cross-correlation
function R12(τ)

RRR(τ) = E[R11(t)R12(t − τ)] = E{[Rss(t) + Rsn1(t) + Rn1s(t) + Rn1n1(t)] (8)

Step 4: the phase transform operation is used to weight the cross-power spectral
density of RRR(τ) in the frequency domain. Finally, the secondary PHAT cross-correlation
function, RS-PHAT(τ), is obtained by performing the inverse Fourier transform

RS-PHAT(τ) =
∫ ∞

−∞
GRR(ω)ϕ12(ω)e−jωτdω (9)

ϕ12(ω) =
1

|GRR(ω)| (10)

where ϕ12(ω) is the weighting function of the secondary PHAT cross-correlation in the
frequency domain.
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Figure 2. Schematic of the implementation of the secondary PHAT cross-correlation.

3. Simulations

Simulation results are presented for comparing the performance of the proposed sec-
ondary PHAT cross-correlation and the BCC method for leak identification and localization.

3.1. Leak Identification
3.1.1. Pipe without Leakage

In the simulation model, white noise is used to simulate the signals received by the
sensors when there is no leakage. Figure 3 plots the sensor signals in the time and frequency
domains. The BCC function between the two sensor signals is calculated and shown in
Figure 4. As can be seen from Figure 4, the BCC result value is very small. As anticipated
in Section 2, it confirms that no leakage is occurring in the pipeline.

 
(a) (b) 

Figure 3. Simulated signals in the pipe without leakage: (a) in the time domain; (b) in the frequency domain.

3.1.2. Pipe with Leakage

When leakage occurs, the signals received by sensor 1 and sensor 2 are from the same
leakage point with different arrival times. For simplicity, in the analysis, the sensor signal 1
is set to be the delayed signal of sensor 2 with 10 sampling points. The time domain and
frequency domain characteristics of two sensor signals 1 and 2 are shown in Figure 5a,b,
respectively. The corresponding BCC function is plotted in Figure 6. As expected, a distinct
peak is found in the cross-correlation result. Further check of the BCC results for the pipes
with and without leakage shows the effectiveness of the cross-correlation method for pipe
leakage identification.
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Figure 4. The BCC result of the simulated sensor signals for the pipe without leakage.

 
(a) (b) 

Figure 5. Simulated signals in the pipe with leakage: (a) in the time domain; (b) in the frequency domain.

Figure 6. The BCC result of the simulated sensor signals for the pipe with leakage.

3.2. Leak Localization

Evaluation of the performance of TDE using the BCC and the secondary PHAT cross-
correlation methods are performed under a high SNR (SNR = 10 dB) and a low SNR
(SNR = −10 dB). Figure 7 plots the TDE curves of the two methods. The oscillatory behavior
of the BCC result is obviously shown in Figure 7a,c, in particular, in the case of low SNR. As
shown in Figure 7c, the fluctuations in the curve lead to a series of local maxima. However,
these anomalous peaks are not generated by the leakage source; they are caused by noise
interference instead. If these pseudo-peaks are mistakenly selected, the error in TDE
will be significant. In contrast, the proposed secondary PHAT cross-correlation method
leads to more reliable results for both high and low SNRs with single pronounced peaks
corresponding to the actual time delay with some fluctuations in the magnitude being
less distinctive than expected. This is due to the reason that the proposed method has the
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ability to pre-whiten the autocorrelation and cross-correlation, thus effectively reducing
the interference effects of spurious peaks.

In order to better demonstrate the real peak corresponding to the actual time delay,
Figure 8 plots the local results marked by the red boxes in Figure 7. For the BCC, the
actual time delay is more discernible in Figure 8a, whereas it cannot be observed readily in
Figure 7c. The simulation results in this section confirm that the proposed secondary PHAT
cross-correlation method offers potential improvement for TDE over the BCC method.

Figure 7. Comparison of the TDE curves of the simulated sensor signals: (a) the BCC method
under SNR = 10 dB; (b) the secondary PHAT cross-correlation method under SNR = 10 dB; (c) the
BCC method under SNR = −10 dB; and (d) the secondary PHAT cross-correlation method under
SNR = −10 dB.

Figure 8. Local results marked by red box in Figure 7: (a) the BCC method under SNR = −10 dB; and
(b) the secondary PHAT cross-correlation method under SNR = −10 dB.
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4. Experiments

4.1. Experimental Setup

In order to evaluate the performance of the proposed method for pipeline leakage
detection, experimental results from a PE water pipe rig are discussed. Tests were carried
out at the leak detection facility built in the laboratory, as shown in Figure 9. The test pipe
section had a length of 6 m and the wall thickness of 5 mm. The inlet and outlet of the pipe
were, respectively, equipped with regulating valves. With reference to the figure, there was
a simulated leak nozzle in the middle of the pipe section. Two hydrophones were used
to capture the acoustic signals generated by the leak. The sensor model was a B&K 8103
hydrophone and the effective frequency range was 3 Hz–80 kHz. The distances between
sensors 1 and 2 and the leakage was 0.9 m and 0.1 m, respectively. The leak signals were
captured by using B&K PUSLE 3050 multi-channel signal acquisition instruments with a
sampling rate of 8192 Hz. Similar to the analysis in the simulations, measurements were
made in the cases of leak and no leak and in the pipe section.

The experimental procedures are briefly addressed as follows:
Step 1: Block the leak hole in the test pipe section to simulate the absence of leakage;
Step 2: Close the outlet valve and open the inlet valve of the test pipe section. Pressur-

ize the test pipe by filling it with water. When the pressure reaches 1 bar and is stable, the
sensors collect the acoustic signals in the pipe without leakage;

Step 3: Close the inlet valve and open the outlet valve of the test pipe section. Depres-
surize the test section. Then replace the nozzle with the leakage hole of 1 mm in diameter
to simulate the pipeline leakage;

Step 4: Close the outlet valve and open the inlet valve of the test pipe section. Pressur-
ize the test pipe by filling it with water. When the pressure reaches 1 bar and is stable, the
sensors collect the leakage signals in the pipe.

4.2. Results and Discussions

When no leakage occurs, the signals measured by sensors 1 and 2 are plotted in
Figure 10a,b in the time and frequency domains, respectively. In this circumstance, the
signals include mainly ambient and system noise. Similar trends are demonstrated in
Figure 10 for two sensor signals in both the time and frequency domains, indicating
background noise dominates in the measured data. The noise signals have amplitudes of
about 2.5 V, which is mainly concentrated at low frequencies below 50 Hz.

 

Figure 9. Experimental setup of the PE water pipe.
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(a) (b) 

Figure 10. Test signals in the pipe without leakage: (a) in the time domain; and (b) in the frequency domain.

Next the cross-correlation methods are adopted to determine whether there exists
leakage in the pipe section. Comparison of the BCC and the proposed secondary PHAT
cross-correlation results for TDE curves is shown in Figure 11. Clearly there are a series
of local peaks in the BCC results, as plotted in Figure 11a. In addition, these peak values
are considerably larger, indicating that pipe leakage is likely to occur. This is, however,
misleading, due to the fact that the BCC result is easily corrupted by the strong inference
of background noise. In comparison, the TDE curve given by the secondary PHAT cross-
correlation leads to very small result values in magnitude, which is close to 0 for the entire
time-history. This confirms that the proposed method is marginally affected by background
noise, and thereby can be adopted to monitor the pipe conditions more convincingly.

Figure 11. The TDE curves for the test pipe without leakage: (a) the BCC method; and (b) the
secondary PHAT cross-correlation method.

In the case of pipe leakage, the sensor signals are plotted in Figure 12. Compared
to the signals without leakage plotted in Figure 10, the sensor signals have very different
characteristics in both the time and frequency domains. Besides, it can be seen from Figure 12
that the signal at sensor 2 has larger amplitude compared to that at sensor 1 due to the closer
distance relative to the leak source, and hence less attenuation. As shown in Figure 12b, most
of the frequency components of the sensor signals are mainly concentrated in the frequency
range up to 600 Hz. It must be noted that, similar to the case of no leakage, at lower frequencies
below 50 Hz, the measured signals are dominated by background noise.
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(a) (b) 

Figure 12. Test signals in the pipe with leakage: (a) in the time domain; and (b) in the frequency domain.

The cross-correlation methods are now applied to sensor signals for leak localization.
Comparison of the TDE curves of the BCC and the proposed secondary PHAT cross-
correlation are shown in Figure 13. Both methods are effective for leakage identification,
since the main peak values of the BCC and the proposed methods are significantly large,
confirming the presence of the pipe leakage.

Figure 13. The TDE curves for the test pipe with leakage: (a) the BCC method; and (b) the secondary
PHAT cross-correlation method.

As demonstrated in the simulations, several spurious peaks are found in the BCC
results for test data as shown in Figure 13a. To better compare the TDE results, Figure 14
plots the local results marked by the red boxes around the main peak in [−0.05 s, 0.05 s]
in Figure 13. The local result plotted in Figure 14a shows that the main peak has some
fluctuations with close amplitudes. Again, they are caused by the inference of background
noises at the test site. If the anomalous peaks are mistakenly selected as the peak corre-
sponding to the time delay, an appreciable error will be given in the leak detection results.
By comparison, the proposed secondary PHAT cross-correlation outperforms the BCC in
terms of leak identification and localization. As stated above, the proposed methods via
the pre-whitening process can effectively suppress the interference of background noise,
hence producing more prominent peak corresponding to the actual time delay.
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As can be found from the experimental setup, the distance difference between the
two sensors is 0.8 m. In the measurements, the propagation wavespeed obtained is deter-
mined to be 310 m/s. As a result, the actual time delay is calculated to be 2.7 ms. It can be
seen from Figure 14 that the BCC has several peaks around the actual time delay, while the
proposed method leads to only one distinct peak. Their corresponding time delay results
and calculation error are listed in Table 1. Compared to the BCC, the proposed secondary
PHAT cross-correlation method is capable of suppressing other additional peaks unrelated
to the time delay information.

Table 1. Leak localization results.

Method Peak
Real Time

(ms)
Time Delay
Estimation

Error (%)
Mean Error

(%)

BCC

Peak 1

2.6

2.69 3.46

21.54

Peak 2 2.56 1.54

Peak 3 2.44 6.15

Peak 4 2.32 10.77

Peak 5 0.37 85.77

S-PHAT Peak 1 2.44 6.15 6.15

Figure 14. Local results marked by a red box in Figure 13: (a) the BCC method; and (b) the secondary
PHAT cross-correlation method.

5. Conclusions

In order to suppress the undesirable effects of background noise on pipeline leakage
detection, a secondary PHAT cross-correlation has been proposed. The paper introduces
the principle of the BCC and secondary PHAT cross-correlation methods for the process of
pipeline leakage detection. Simulations have been conducted to compare the performance
of the proposed method with the BCC method for leak identification and localization in the
pipe, with and without leakage. It has been found from the cross-correlation curve that
when there is no leakage, the correlation result is close to zero. However, when leakage
occurs, the correlation curve will have an obvious peak value corresponding to the time
delay resulting from the pipe leakage. The simulation results have shown that the proposed
method has sharper peaks than the traditional BCC method in a low-SNR environment.
Experiments were carried out on the pipeline test rig made in the laboratory. Test results
have shown that the BCC method has multiple peaks, while the proposed secondary PHAT
method has only one peak. Comparing the leakage detection error of different peaks,
it can be seen that the proposed secondary PHAT method outperforms the traditional
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BCC method in terms of both the number of peaks and the average error. The findings
suggest that the secondary PHAT cross-correlation method has been proposed as a potential
solution to pipeline leakage detection in complex background environments, for example,
in power plants or other industrial concerns.
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Abstract: Acoustic emission (AE) testing and Lamb wave inspection techniques have been widely
used in non-destructive testing and structural health monitoring. For thin plates, the AEs arising
from structural defect development (e.g., fatigue crack propagation) propagate as Lamb waves, and
Lamb wave modes can be used to provide important information about the growth and localisation
of defects. However, few sensors can be used to achieve the in situ wavenumber–frequency modal
decomposition of AEs. This study explores the ability of a new multi-element piezoelectric sensor
array to decompose AEs excited by pencil lead breaks (PLBs) on a thin isotropic plate. In this study,
AEs were generated by out-of-plane (transverse) and in-plane (longitudinal) PLBs applied at the
edge of the plate, and waveforms were recorded by both the new sensor array and a commercial
AE sensor. Finite element analysis (FEA) simulations of PLBs were also conducted and the results
were compared with the experimental results. To identify the wave modes present, the longitudinal
and transverse PLB test results recorded by the new sensor array at five different plate locations
were compared with FEA simulations using the same arrangement. Two-dimensional fast Fourier
Transforms were then applied to the AE wavefields. It was found that the AE modal composition was
dependent on the orientation of the PLB direction. The results suggest that this new sensor array can
be used to identify the AE wave modes excited by PLBs in both in-plane and out-of-plane directions.

Keywords: acoustic emission; wave propagation; Lamb wave; modal decomposition; structural
health monitoring; spectrum analysis; 2D FFT; pencil lead break test

1. Introduction

There has been a significant amount of research on the development of structural
health monitoring techniques to detect fatigue crack growth [1–3] in aircraft components.
The uncontrolled propagation of an internal fatigue crack in a structural component un-
der loading can lead to catastrophic failure, so the early detection of fatigue cracks is
desirable. Many non-destructive testing (NDT) methods have been applied to crack de-
tection in metallic structures, including ultrasonics, eddy current, and X-ray computed
tomography [4–7].

Acoustic emission (AE) is one of the few passive NDT techniques available for de-
tecting, characterising, quantifying damages, and predicting system failure [8–12]. AE is
defined as the rapid release of transient elastic waves from localised sources in solids [13].
Such emissions occur in metal, rock, cement, and composites [9,14–17]. Research has
been undertaken on AEs generated during static tensile tests and fatigue tests of metallic
material [8,10,18–21].

Generally, the analysis of AE signals mainly focuses on two aspects: hit-related signa-
tures and waveform features. Hit-related signatures include parameters such as rise time,
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amplitude, and count rate, and waveform features include dominant frequencies, wave
modes, and power spectral entropy [22]. In a study of hit-related features, Roberts and
Talebzadeh conducted an experiment on compact steel specimens [10], finding that it was
possible to use the linear correlation between the AE count rate and the crack propagation
rate to predict the remaining life of a structure. A similar linear relationship has also been
indicated in other studies [23,24]. As a result, the count rate can be used as an empirical
tool for predicting the fatigue life remaining in specimens. In addition, many researchers
have used cluster analysis, a data analysis method for classification of AE hits, to identify
different types of AE sources [17,25,26].

A number of researchers have suggested that research should focus not only on the
AE hit-related features, but also on the AE waveform features [20,27–29]. To capture AE
waveforms, the most popular types of AE sensors used are bonded piezoelectric sensors and
commercial AE sensors. Because the acoustic environment in most structural applications
is noisy, it is customary to exclude from consideration emissions that do not exceed a
predetermined signal threshold [30]. While excluding low-amplitude AE signals can lead
to information loss, it is a simple and effective noise-mitigation technique and is widely
used in practical implementations of AE testing.

In investigations of AE waveform features, researchers have focused on the dominant
frequency contribution in the waveforms. In a study in which hits were synchronised
with fatigue loading and clustered into nine groups according to the time domain signal
and frequency spectrum of waveforms, Bhuiyan et al. found that these groups of hits had
distinct peak frequencies for particular loads; the authors associated these with different
sources [31]. Other researchers have also reported a correspondence between dominant
frequencies and different AE sources [25,32–34], suggesting that the frequency composition
of AE waveforms may be relatable to the type of source. However, other studies have
also shown that the frequency spectrum of AE waveforms can vary depending on the
type of sensor used [31]. As a result, it is important to consider the dynamic response
characteristics of a sensor when undertaking such studies [35].

Due to the possible variability in the monitored frequencies, wave mode identification
is potentially a better option for providing information about AE sources. The identification
and analysis of contributing modes in an AE is a practice referred to as Modal Acoustic
Emission (MAE), which previous studies have shown to be an effective method of AE
source localisation and identification [36,37]. Hamstad [38] showed that in-plane pencil
lead break (PLB) tests excite a distinct ratio of the flexural to the extensional mode when
applied at the near top surface and near mid-plane locations in a plate. In Maslouhi [39],
during an increase in the fatigue life percentage from 0% to 100%, the wavelet transform
(WT) coefficient of a flexural wave mode increased first and then decreased, while that of
an extensional wave mode kept decreasing.

Wave modes can be identified using a range of established methods, including time–
frequency plots. Using the frequency–time domain WT method, experimentally obtained
frequency–time domain contours are compared to contours determined theoretically from
Lamb wave dispersion relations [29,38,39]. However, the frequency–time domain method
only works when the WT coefficients of emitted wave modes are well-separated in time be-
cause, when the source–sensor distance is very short, the WT coefficients for different wave
modes are close to each other and thus become hard to distinguish. Commercially available
AE sensors only record waveforms at a single location, which limits the ability of these
sensors to be used for modal separation if the source–sensor distance is relatively small.

A potentially more useful way of differentiating wave modes is to conduct a wavenumber–
frequency decomposition by performing a two-dimensional fast Fourier transform (2D
FFT). However, to determine the wavenumber of contributing wave modes, the AE must
be resolved spatially. The Linear Array for Modal Decomposition and Analysis (LAMDA)
is a new thin-film piezoelectric sensor array made of polyvinylidene fluoride (PVDF). This
sensor array consists of 16 separate equidistant sensing elements, enabling the recording of
16 waveforms simultaneously, thus allowing the wavenumber–frequency decomposition
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of an AE [40,41]. LAMDA has been used to identify the emitted wave modes of ball-drop
impacts [40], but the capabilities of LAMDA in identifying wave modes generated by PLB
are yet to be investigated. PLB testing is a well-established method for generating AE
sources [38] that are broadly representative of actual AE sources in components under stress
and, therefore, are significantly more representative than a ball-drop impact. Consequently,
an experimental assessment of the performance of LAMDA in the modal decomposition of
PLB signals is considered an important preliminary step toward the eventual implementa-
tion of this sensor for the AE monitoring of components under loading.

Using the LAMDA sensor, a commercial AE sensor, and finite element analysis (FEA),
this study investigates the capabilities of the LAMDA sensor in decomposing AE wave
modes generated by PLBs applied to a thin metal plate. Two different orientations of the
PLBs were used to create AE sources, specifically along the longitudinal and the transverse
direction of the test plate. In the present work, a novel implementation of the conventional
PLB is used, where a reference hole is drilled in the thickness direction of the plate into
which the lead is inserted, in order to control the location and orientation of the PLB. These
test configurations give rise to multiple Lamb wave modes in the test plate, which are
identified through modal decomposition using LAMDA sensors.

2. Methods

2.1. PLB Experiments

In this experimental study, PLB tests were conducted on the edge of a 400 mm × 400 mm
× 0.6 mm aluminium alloy 5005 (Al5005) plate (refer to Figure 1a). PLB tests are usually
conducted on the surface of the testing plate, but in practice, it is difficult to conduct PLB
tests with a high degree of repeatability [42]. To ensure the PLBs were applied at precisely
the same location and in the required direction, a 0.5 mm diameter and 0.5 mm depth
reference hole was drilled on the surface of the testing plate (see Figure 1b). A hard-black
pencil lead of 0.5 mm diameter was used to generate PLB sources. The pencil lead was
inserted into the hole (details in Figure 1b) and broken in the out-of-plane (transverse) and
in-plane (longitudinal) directions, as shown in Figure 1a.

Two sensing systems were used to record the AE signals. The first system was a
Physical Acoustics Corp micro-SHM system with a 20 kHz–1000 kHz analog filter. This
system operates via a threshold trigger and has a sampling rate of 10 MHz. The trigger
threshold was set to 40 dB to avoid triggering during the insertion of the pencil lead into
the drilled hole. The commercial AE sensor used with the system was a PKWDI sensor
from Physical Acoustics Corp. This sensor can only record the response at a single point,
which, in this study, was a position 70 mm radially away from the centroid of the source,
labelled Location 1 in Figure 1c.

The second system was the LAMDA [40,41], which consists of 16 5 mm × 1 mm
piezoelectric elements arranged in a linear array with a 1.27 mm pitch, mounted on a thin
flexible polymer carrier. The total length of this sensor is ~20 mm. Signal recordings from
LAMDA were acquired using a 16-channel Acousto Ultrasonic Structural health monitoring
Array Module+ [43] with a 43 μs pre-trigger time, a 0.02 μs sampling rate, and a 50 kHz–5
MHz bandwidth. The output from LAMDA consisted of 16 voltage waveforms from the
16 sensing elements in the array. Further details on the architecture of the LAMDA and
the hardware can be found in [40,41,43]. LAMDA sensors were bonded to the plate along
the radial direction from the source, as illustrated in Figure 1c, so that the wavenumber–
frequency plots obtained from the PLB source could be compared with the theoretical
curves obtained from DISPERSE without adjustment for the angle of incidence [40]. Five
LAMDA sensors were positioned 70 mm radially from the source and arranged in ori-
entations of 0, 45, 90, 135, and 180 degrees with respect to the plate edge, denoted as
locations 1–5, respectively, as shown in Figure 1c. Waveforms at locations 1 to 5 were
recorded for longitudinal direction PLB tests, while only waveforms at locations 1, 2, and 3
were recorded for the transverse PLB. The reason for this is that for the transverse PLB
test, the system is symmetric, so waveforms at locations 4 and 5 should theoretically be the
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same as those at locations 1 and 2. The PLB tests were repeated 10 times at each location,
and the wavenumber–frequency plots shown in Section 3.2 represent an average taken
over the 10 PLB tests.

 
(a) 

  
(b) (c) 

Figure 1. (a) PLB test set-up indicating lead-break directions relative to LAMDA orientation;
(b) schematic showing PLB hole dimensions; (c) sensor locations relative to source.

2.2. FEA Analysis

The arrangement shown in Figure 2 was also modelled using the ANSYS 19.2 Explicit
Dynamic FEA package. The aim was to compare measurements of the Lamb wave modes
generated in the considered plate using PLBs acting in the longitudinal and transverse
directions with corresponding numerical predictions.

Figure 2. FEA model set up: source position, detecting position, and input force directions.

The plate considered in this simulation had side dimensions of 280 mm× 140 mm× 0.6 mm,
and the detection locations were identical to those used in the corresponding experiment
described in the previous section. Cylindrical coordinates were used in the velocity probe
when extracting waveform information. The origin of the cylindrical coordinate system
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was at the source location. The out-of-plane direction is defined as the z-axis, the angular
direction is defined as the θ-axis, and the radial direction as the r-axis, as shown in Figure 2.
The material properties used in this simulation are consistent with those of the plate used in
the experiments and for determining the Lamb wave dispersion curves using the DISPERSE
software tool [44]; this is, specifically, Young’s modulus of 68 GPa and Poisson’s ratio of
0.33. The size of the hexahedral element was 0.2 mm in both length and width directions,
and 0.075 mm in the plate thickness direction. The 0.2 mm length dimension corresponds
to ~10 nodes per wavelength for the shortest wavelength of interest (the A0 mode), which
is sufficient [45] to accurately decompose all Lamb wave modes below the maximum
frequency of interest of 1 MHz. In the plate thickness direction, the 0.075 mm element
dimension was determined to be sufficient for an accurate representation of the mode
profiles [46].

A linear ramp forcing function was used to simulate the PLB input force [42]. As
the dimensions of the hole were small (~20%), relative to the shortest wavelength, the
influence of the hole was neglected, and the force was applied directly as a point force at
the mid-plane location of the plate. Transverse and longitudinal 0.5 μs linear ramp nodal
input force functions were applied and investigated separately (refer to Figure 2).

The time step used in the simulation was 0.05 μs, which corresponds to 20 time
steps per cycle at the maximum considered frequency of 1 MHz, satisfying the ANSYS
general requirement for accurate results [47]. At each recording location shown in Figure 2,
16 measurement probes were created at locations corresponding to the centre of each of the
LAMDA sensing elements.

2.3. Theoretical Dispersion Curves

The DISPERSE software tool [44] was used to obtain theoretical dispersion curves
(wavenumber–frequency characteristics) for S0, SH0 and A0 modes for the aluminium
plate in the frequency range of 0–1000 kHz. These theoretical dispersion curves are shown
in Figure 3a. Figure 3b shows the corresponding frequency–time plots, determined from
the group velocity dispersion curves and the known source to sensor distance.

Figure 3. (a) Theoretical wavenumber–frequency dispersion curve for 0.6 mm thick aluminium plate.
(b) Corresponding frequency vs. arrival time 70 mm from the source.

2.4. Validation of Method

To verify the mechanical properties of the aluminium plate, laser vibrometry was
used to obtain the Lamb wave dispersion curves experimentally. In addition, in order to
explore the impact of the LAMDA sensor on these dispersion curves, laser vibrometry was
undertaken on the plate with and without a LAMDA attached. The corresponding disper-
sion curves were obtained by applying a 2D FFT to the laser vibrometer measurements.
A three-dimensional laser vibrometer was used to obtain measurements of the in-plane and
out-of-plane displacement components of Lamb waves in the plate. A piezoceramic disc
element was used to selectively excite the A0 mode, and a transducer with an angle wedge
was used to selectively excite the in-plane S0 mode [48]. To improve the signal-to-noise
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ratio of these measurements, retroreflective film was used over the scan paths, labelled 1–3
in Figure 4a: route 1 was 80 mm in length, route 2 was 20 mm in length and adjacent to the
LAMDA sensor, and route 3 was 20 mm in length and was over the LAMDA sensor.

 

Figure 4. (a) Laser scanning routes labelled 1–3. Al5005 plate dispersion curve wavenumber versus
frequency (b) of route 1 (80 mm); (c) route 2 (20 mm); and (d) route 3 (20 mm over LAMDA sensor).

As can be seen in Figure 4, there is generally good agreement between the theoretically
and experimentally obtained dispersion curves for routes 1 and 2. However, for route 3,
there is a small discrepancy of ~5% for the A0 mode, and a slightly larger discrepancy
of ~20% for the S0 mode, indicating that the LAMDA has an influence on Lamb wave
propagation in the plate. Given that the structure and elastic properties of LAMDA are
known, it should be possible to compensate for this influence, but this was not required in
the present study as the objective is simply to identify constituent modes.

3. Results and Discussion

3.1. Wavelet Transform Results

In Section 3.1, for the purpose of analysing the time–frequency signals, in order to
obtain a direct comparison with the waveform acquired from the commercial AE sensor, the
LAMDA, and the FEA at the same distance, the waveform acquired from the 8th (middle)
sensing element in LAMDA and the FEA probe at location 1 were compared with those
acquired from the Commercial AE sensor. The waveforms collected for the transverse
PLB using the Commercial AE sensor, the eighth element of LAMDA, and the eighth
probe of FEA are shown in Figure 5(a1), Figure 5(a2) and Figure 5(a3), respectively. Time–
frequency plots and the corresponding theoretical curves (Figure 3b) are superimposed in
Figure 5(b1–b3). The results of the longitudinal PLB tests are presented in Figure 6 with
the same arrangement.

For reference, for the FEA generated plots, zero-time corresponds to the time when
the force was applied; in addition, signal contributions arriving after 70 μs in Figure 5(b3)
and after 30 μs in Figure 6(b3) correspond to reflections from plate edges, and can thus
be ignored.
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FEA 
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Figure 5. Transverse PLB results. Top row shows waveform (left) and corresponding time–frequency
plot (right) for commercial AE sensor. Middle row as for top row but for LAMDA sensor. Bottom
row as for top row but for FEA prediction corresponding to out-of-plane velocity component.

Since measurements from the conventional Commercial AE sensors and LAMDA
could not be synchronised with the applied force, the waveform recordings needed to
be appropriately time-shifted so that the wave arrival times were consistent with the
theoretical group velocities shown in Figure 3b. The required time-shift was determined by
ensuring that the experimental frequency–time contour was aligned with the theoretically
determined contour. In the case of Figure 5, this contour corresponded to the A0 mode. This
process was not as straightforward to apply for the longitudinal PLB results, particularly
for the Commercial AE sensor data as it produced a contour markedly different to that of
the theoretical result.

From Figure 5, it is clear that the A0 mode is dominant for the transverse PLB orienta-
tion, with little evidence of an S0 contribution; for the longitudinal PLB orientation results
shown in Figure 6, both A0 and S0 are present in the experimentally obtained measure-
ments; in the simulation results, it is unclear whether the second arrival corresponds to an
SH0 mode or an edge wave, which is discussed further in Section 3.2.

The results in Figures 5 and 6 show that the ratio of the S0/A0 modes is dependent
on the orientation of the PLB. From the transverse PLB results in Figure 5(b1–b3), the WT
coefficient of the S0 mode was extremely small compared to that of the A0 mode. On the
other hand, the results obtained with a longitudinal PLB show that the WT coefficient of
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the S0 mode was about the same as that of the A0 mode, see Figure 6(b1–b3). Therefore,
the longitudinal (in-plane) PLB results lead to a higher ratio of the S0/A0 mode compared
to the transverse (out-of-plane) PLB. As PLBs on the edge of a plate have been reported to
be more similar to the buried AE sources [49], the difference in the modal ratio between
the two PLB orientations suggests that LAMDA could potentially be used to distinguish
different internal AE sources.

 
 
 
 
Commercial 
AE sensor 

  
(a1) (b1) 

 
 
 
 
8th sensor of 

LAMDA 

  
(a2) (b2)  

 
 
 
 
8th probe of 
FEA 

  
(a3) (b3) 

Figure 6. Longitudinal PLB results. Top row shows waveform (left) and corresponding time–
frequency plot (right) for commercial AE sensor. Middle row as for top row but for LAMDA sensor.
Bottom row as for top row but for FEA prediction corresponding to radial velocity component.

3.2. 2D FFT Results

The waveforms obtained from FEA were time-gated to exclude reflected wave contri-
butions before applying a 2D FFT. The length of this time gate was determined from the
known Lamb waves group velocities. The wavenumber–frequency plots corresponding to
the transverse PLB orientation were normalised with respect to the maximum out-of-plane
component amplitude at location 1, while those corresponding to the longitudinal PLB
orientation were normalised with respect to the maximum radial component amplitude at
location 1. After the normalisation, the wavenumber–frequency plots that corresponded to
transverse PLBs from the FEA for the angular component contained no information, as the
energy was extremely low, and thus was not shown. Similarly, the wavenumber–frequency
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plots that corresponded to longitudinal PLBs from the FEA for the out-of-plane component
contained no information, and thus were not shown. After this, the results from the FEA
were compared with experimental results from LAMDA at all detecting locations.

The experimental results and the FEA results that correspond to the transverse
PLB orientation for sensing locations 1 to 3 are shown in Figure 7. Figure 7(a1–a3) are
wavenumber–frequency plots obtained from FEA waveforms for the radial component
(r-axis); Figure 7(b1–b3) are wavenumber–frequency plots obtained from FEA for the out-of-
plane component (z-axis); and Figure 7(c1–c3) are wavenumber–frequency plots obtained
from waveforms recorded by LAMDA. When the PLB is applied transversely, the ge-
ometry and loading of the plate are symmetric about the centreline, so waveforms at
locations 4 and 5 should theoretically be the same as at locations 1 and 2, respectively. Thus,
only results from locations 1 to 3 are shown here.

 FEA (r-axis) FEA (z-axis) LAMDA 
 
 
 
Location 1 

   

(a1) (b1) (c1) 
 
 
 
Location 2 

   

(a2) (b2) (c2) 
 
 
 
Location 3 

   

(a3) (b3) (c3) 

Figure 7. Transverse PLB results. Top row shows wavenumber–frequency plots corresponding to the
radial component obtained from FEA, the out-of-plane component obtained from FEA, and from the
LAMDA sensor at location 1. Middle row as for top row but for location 2. Bottom row as for top row
but for location 3.

Based on the observation of Figure 7, it can be seen that this forcing configuration leads
to the generation of dominantly asymmetric wave modes. The wavenumber–frequency
plots that correspond to PLB tests using LAMDA sensors were dominated by A0 mode
contributions at all three locations, and the wavenumber–frequency plots from FEA, gener-
ated using the out-of-plane component, were dominated by a strong A0 mode contribution,
and a very weak A0 mode at location 1, which corresponded to the radial component. The
dominance of the A0 mode is consistent with findings from Hamstad’s study [38], where a
monopole out-of-plane source near the mid-plane gave rise to the A0 mode only. Addi-
tionally, the wavenumber–frequency plots corresponding to the out-of-plane component
in the FEA waveform had a slightly higher energy at location 1 than at locations 2 and 3.
A possible reason for this could be the presence of an asymmetric edge wave [50]; however,

85



Sensors 2023, 23, 1988

this was not confirmed. The weak A0 mode present in the radial component results shown
in Figure 7(a1) is assumed to correspond to the leakage of the asymmetric edge wave.

Figure 8(a1–a5) are wavenumber–frequency plots of waveforms from FEA that corre-
spond to the radial component (r-axis); Figure 8(b1–b5) are wavenumber–frequency plots of
waveforms from FEA that correspond to the angular component (θ-axis); and Figure 8(c1–c5)
are wavenumber–frequency plots of waveforms recorded by LAMDA sensors.

 FEA (r-axis) FEA ( -axis) LAMDA 
 
 
 
Location 1 

   

(a1) (b1) (c1) 
 
 
 
Location 2 

   

(a2) (b2) (c2) 
 
 
 
Location 3 

   

(a3) (b3) (c3) 
 
 
 
Location 4 

   

(a4) (b4) (c4) 
 
 
 
Location 5 

   

(a5) (b5) (c5) 

Figure 8. Longitudinal PLB results. Top row shows wavenumber–frequency plots corresponding to
the radial component obtained from FEA, the angular component obtained from FEA, and from the
LAMDA sensor at location 1. Second row as for top row but for location 2. Third row as for top row
but for location 3. Fourth row as for top row but for location 4. Bottom row as for top row but for
location 5.

As can be seen in Figure 8(a1–a5), the wavenumber–frequency plots from FEA that corre-
spond to the radial component showed S0 mode content at detecting locations 1, 2, 4, and 5,
with almost no energy at location 3. Locations 2 and 4 contained stronger S0 mode contribu-
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tions above 500 kHz, which was consistent with the corresponding wavenumber–frequency
plots obtained from waveforms recorded by LAMDA sensors.

In Figure 8(b1–b5), the wavenumber–frequency plots from FEA waveforms that cor-
respond to the angular component (θ-axis) showed that the SH0 mode appeared to be
dominant at locations 2, 3, and 4. However, it was observed that the wave mode contribu-
tions at locations 1 and 5 did not align perfectly with the known SH0 mode wavenumber–
frequency curve. Moreover, the energy of the suspected SH0 mode at locations 1 and 5
was higher compared to locations 2 and 4. The reason for this was that the symmetri-
cal Rayleigh-like edge wave propagating near the edge of the plate was also captured at
locations 1 and 5 [51]. This edge wave is also evident in the radial displacement component
at locations 1 and 5, shown in Figure 8(a1,a5). This wave mode could also be confirmed
to be an edge wave rather than the SH0 mode from Figure 6(b3), as the velocity of the
symmetrical edge wave was expected to be around 90% of the SH0 mode [52].

Locations 1 and 5 and locations 2 and 4 have the same empirical Lamb wave dispersion
curves, corresponding to both radial and angular components of FEA and LAMDA sensors.
This demonstrates that the longitudinal PLB tests generate a symmetric wave-scattering
pattern with respect to the plate centreline.

For the longitudinal PLB tests, both A0 and S0 mode contributions were observed in
the wavenumber–frequency plots obtained from the LAMDA sensors at all five locations.
Comparing the wavenumber–frequency plots from FEA predictions and the PLB tests, it
is observed that the S0 mode observed in Figure 8(c1–c5) was most likely from the radial
component of the collected waveform. Furthermore, an A0 mode contribution is observed
in the LAMDA wavenumber–frequency plot that is not present in the corresponding
FEA predictions. This is because, when conducting the longitudinal PLB test manually,
it was almost impossible to keep the force strictly vertical to the plate. As a result, the
longitudinal PLB is likely to also have contained a weak transverse component, leading
to the excitation of A0. Observing the wavenumber–frequency plots from LAMDA in
Figure 7(c1–c3) and Figure 8(c1–c5), it is apparent that a longitudinal PLB results in an
additional S0 modal contribution compared to a transverse PLB. For a longitudinal PLB,
the S0 modal contribution above 500 kHz is more significant at locations 2 and 4 than at
locations 1 and 5.

The presented results indicate that the orientation of a PLB affects the modal compo-
sition of the resulting AE. Such modal contributions can be difficult to distinguish using
time–frequency analysis only, i.e., synchronising the time–frequency plots with the the-
oretical group velocity curves may not be sufficient when there are multiple interfering
wave modes. By contrast, the wavenumber–frequency decomposition implemented using
LAMDA allows contributing wave modes to be determined regardless of time interference.
Consequently, LAMDA could provide a useful basis for the modal decomposition of Lamb
wave packets generated by other AE sources. Such decomposition may aid in AE source
localisation and characterisation.

4. Conclusions

This study has demonstrated the ability of a novel multi-sensor array to achieve the
modal decomposition of the acoustic emission from PLBs when different orientations of the
acoustic source are applied. It was shown that a transverse PLB produces a dominant A0
mode, while a longitudinal PLB produces a combination of A0 and S0 modes. These results
are consistent with FEA simulations and previously reported AE studies. The current
work includes the investigation of only zero-order wave modes and the application of the
LAMDA sensors on isotropic plates. Ultimately, this capability will be used to study the
wave mode composition of the AEs generated during fatigue crack propagation in coupons.
Future work will investigate the higher-order wave modes that are excited by acoustic
sources arising from damage initiation and development. Future work will also include the
use of LAMDA to identify the wave modes generated by the different damage mechanisms
in composite panels.
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Abstract: The field of computational paralinguistics emerged from automatic speech processing, and
it covers a wide range of tasks involving different phenomena present in human speech. It focuses on
the non-verbal content of human speech, including tasks such as spoken emotion recognition, conflict
intensity estimation and sleepiness detection from speech, showing straightforward application
possibilities for remote monitoring with acoustic sensors. The two main technical issues present in
computational paralinguistics are (1) handling varying-length utterances with traditional classifiers
and (2) training models on relatively small corpora. In this study, we present a method that combines
automatic speech recognition and paralinguistic approaches, which is able to handle both of these
technical issues. That is, we trained a HMM/DNN hybrid acoustic model on a general ASR corpus,
which was then used as a source of embeddings employed as features for several paralinguistic tasks.
To convert the local embeddings into utterance-level features, we experimented with five different
aggregation methods, namely mean, standard deviation, skewness, kurtosis and the ratio of non-zero
activations. Our results show that the proposed feature extraction technique consistently outperforms
the widely used x-vector method used as the baseline, independently of the actual paralinguistic task
investigated. Furthermore, the aggregation techniques could be combined effectively as well, leading
to further improvements depending on the task and the layer of the neural network serving as the
source of the local embeddings. Overall, based on our experimental results, the proposed method can
be considered as a competitive and resource-efficient approach for a wide range of computational
paralinguistic tasks.

Keywords: hidden Markov model; deep neural network; embedding; hybrid acoustic model;
computational paralinguistics

1. Introduction

Historically, the main research topic of automatic speech processing has been auto-
matic speech recognition (ASR). In ASR, we have to automatically create a transcription
for audio (e.g., recording or utterance). From the 1990s to the present, several other topics
have received more attention, such as speaker recognition and diarisation (“who’s speaking
when”) [1], speech compression [2], cognitive load measurement [3,4], detecting Parkin-
son’s [5–7] or Alzheimer’s [8–10] disease, identifying Multiple Sclerosis symptoms [11] or
assessing the level of depression [12]. Besides these tasks, a complete subfield has arisen,
concerning phenomena present in human speech, containing tasks such as age and gender
recognition [13], emotion recognition [14,15], identifying laughter events [16], estimating
the degree of sleepiness [17] or conflict intensity [18] and detecting whether the speaker
is intoxicated [19]. These subtopics belong to the field of computational paralinguistic,
which has recently started to receive more interest. In this field, instead of generating
transcriptions, we seek to identify other phenomena present in a speech signal, focusing
on the non-verbal content of human speech. It refers to the non-verbal aspects of human
communication such as tone of voice and other vocal cues. These cues play an essential
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role in understanding human communication and can significantly impact the meaning
and interpretation of spoken language. Paralinguistic features are often extracted from
audio data in machine learning applications, using techniques such as speech analysis and
audio signal processing. With the various acoustic sensors becoming increasingly cheaper
(and, in parallel, more and more widespread), they could allow the remote monitoring of
speaker traits and states. It can opening up a wide range of potential applications such as
warning when a vehicle driver is too tired or sleepy. A major boost for paralinguistic was
the Interspeech Computational Paralinguistic Challenge (ComParE, later renamed ACM
Multimedia Computational Paralinguistic Challenge), which has been held annually since
2009 [20–22]. It has led to the development of publicly available datasets and produced a
consensus among standard methods, tools and evaluation metrics.

We have to consider slight but really important differences between computational
paralinguistic and ASR. One important dissimilarity is the focus of the two area. In
automatic speech recognition, we concentrate on the spoken content of the speech signal
and try to ignore any other information present (such as the age, gender, native language
or the inner feelings of the speaker), as these are considered irrelevant. On the contrary,
in computational paralinguistics, we focus on one of the latter speaker states and traits,
and disregard the actual words uttered. This dissimilarity of focuses actually leads to a
significant technical difference as well.

One technical difference came from the relationship between the length of the input
and the output. In ASR the output is the correct phone sequence for a given speech
recording and the size of the input utterance is roughly proportional to the length of the
output: we expect more words uttered over a longer period of time. Technically, this means
that in the traditional speech recognition paradigm the classification step is performed at
the local level, handling the audio in small, equal-sized parts called frames. In this case,
traditional classifiers such as Gaussian Mixture Models (GMMs [23]), and more recently
deep neural networks (DNNs [24]), are used to estimate the local likelihood of the different
phones and phone-derived classes from standard frame-level features (such as MFCCs [23]).
These local likelihood estimates (the classes of the frames) are then combined over the time
axis in the subsequent step (for example, using a hidden Markov model [25]) to obtain
the utterance-level output [26] (i.e., a time-aligned sequence of phones). In contrast, in the
field of computational paralinguistics, we need to associate different lengths of audio
recording inputs with a single label output. Here, the input speech signal is split into
larger chunks of continuous speech (such as one sentence), and these chunks are treated as
separate units. A given artifact or speaker state (e.g., emotion) is assigned to these chunks
(“utterances” or “recordings”). From a machine learning perspective, this means that one
such utterance will be one machine learning example. The traditional machine learning
models can only process fixed-length inputs, so we need to convert our varying-length
recordings into fixed-length feature vectors. We have to calculate a fixed-length feature
vector out of these varying-length recording, because, traditional classifiers are unable
to handle a concatenation of frame-level attributes of varying lengths as input features.
Perhaps the most straightforward solution for that is to take the frames and aggregate the
local results instead of combining them. The name of aggregation, is refers to a process
rather than a specific mathematical method. The use of this statistic conversion allows us
to obtain a fixed-sized utterance-level vector, so the length of the output no longer depends
on the length of the input recording.

Another important difference between the two area concerns the size of the databases.
For ASR nowadays, hundreds or even thousands of hours’ worth of databases are available,
meaning tens or hundreds of millions training examples for frame-level phoneme classifi-
cation. This allows researchers to train DNN models, which are known to be data-greedy.
By comparison, computational paralinguistics typically has small corpora, because each
task usually requires specific recording protocols and annotations. This drawback means
that usually there are just a few hundred (or at most a few thousand) examples for a specific
paralinguistic subtopic or class. Therefore, traditional classifier models (which can be well
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trained on very few data) are used instead of end-to-end neural networks. It is common to
employ learning methods for classification such as Support Vector Machines (SVM [27]).
Deep neural network machine learning techniques (e.g., fine-tuning) are only rarely used in
computational paralinguistics. Standard solutions are still dominant, for example low-level
descriptors (e.g., energy, spectral and cepstral (MFCC)) and voicing-related attributes for
frame-wise computing; statistic conversion techniques, such as mean and standard devia-
tion for aggregation; and classification methods such as SVMs. In the last decade, there
have been few research studies that have applied complex machine learning models and
usually the performance is strongly task-dependent.

Based on our previous studies [28,29], we developed a method shown in Figure 1 that
combines ASR and paralinguistic approaches. For frame-wise computing, we followed
standard ASR principles and we used DNNs to perform a frame-level feature extraction.
Afterwards, to aggregate these features, we used more or less traditional computational par-
alinguistics techniques such as standard deviation and kurtosis. In the end, we employed
SVM models to perform the classification task.

Figure 1. Hybrid HMM/DNN model workflow for paraliguistics task.

2. Processing Paralinguistic Data

Figure 1 shows the complete workflow of our experimental method from the preprocess-
ing of the ASR corpus to the classification of the paralinguistics corpus. As mentioned above,
we created a hybrid method that follows ASR principles and computational paralinguistics
principles too. In this section, we will describe the workflow in a step-by-step fashion.

2.1. HMM/DNN Hybrid Model

Hidden Markov models (more specifically, HMM/GMMs) used to be the state of
the art in automatic speech recognition. They consisted of a local GMM module, being
responsible for supplying local (i.e., frame-level) phonetic probability estimates, while the
HMM part was responsible for combining these local estimates into utterance-level phone
sequences [30]. After deep neural networks were invented, these HMM/GMM models
were developed into HMM/DNN [31] hybrid models by replacing the GMM component
with a deep neural network, still operating locally (i.e., on the frame level). Soon it became
widespread knowledge how to efficiently train and employ HMM/DNN hybrid models.
In our study, we seek to employ this knowledge by training such a DNN acoustic model,
and using this as the base of our feature extractor for computational paralinguistic tasks.

The HMM/DNN model has two parts. The first part is the deep neural network,
while the second part is a hidden Markov model. The outputs of the DNN will be the
input of the HMM. The DNN gives frame-level estimations, which will be a posterior
probability (P(ck | xi)). The next part, the HMM, expects a class-condition likelihood
(p(xi | ck)), so before utilising the output of the DNN in the HMM, we have to transform it.
The transformation can be processed with Bayes’ theorem. If the posterior estimation is
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divided by a priori probabilities of phonetic classes (P(ck)); then, we obtain class-condition
likelihood value within a scale factor. The a priori probabilities are usually estimated using
simple statistical methods. However, the scale factor can be ignored because it has no
influence on the subsequent search process.

Nowadays, recurrent neural architectures have become the state of the art in ASR [26].
Applying units such as long short-term memory (LSTM) [32] and Gated Recurrent Units
(GRU) [33] as building blocks leads to a better performance. Nevertheless, there are several
reasons for employing an HMM/DNN model instead of applying a recurrent neural
network. The simple feed-forward DNN structure employed in the HMM/DNN acoustic
model makes the training steps easier: it has lower computational complexity and uses less
memory. These networks still have a competitive performance [34,35] in the case where
training data are scarce.

2.2. DNN Embedding Extraction

To extract embeddings for further classification, first we have to train our hybrid model.
We can see the acoustic HMM/DNN model training in the left top corner of Figure 1. Here,
we need a larger ASR corpus that has time-aligned phonetic labels. From this corpus,
we have to extract frame-level features. The extraction can be handled using different
techniques, such as calculating filter banks, deltas, spectrograms or using neural networks.
Now, we can use these frame-level features to train our hybrid model for a general language
structure. When the training phase is over, we need to make a slight modification to our
model to use it for DNN embedding extraction. We have to detach the DNN from the
hybrid model and fix its weights. In this case, we are not interested in the original output
layer of our DNN, which produces the posterior estimates. Now, we will focus on the
previous hidden layers and their activation values, because hidden layers can provide
more abstract information. We can see the process of embedding extraction in the left
bottom corner of Figure 1. Here, we have to extract frame-level features from a smaller
paralinguistics corpus. The length of a frame-level feature has to be the same as a feature
from the ASR corpus. The best way to achieve this is to use the same method here as before.
Afterwards, we can feed them into the modified deep neural network. The output of the
hidden layers will be our embedding features.

2.3. DNN Embedding Aggregation

When we have acoustic frame-level embeddings, we have to convert them into
utterance-level features in order to perform a classification. Figure 1 shows the final
classification workflow in the bottom right corner. Since databases contain recordings with
different lengths, we have a different number of embedded features for each recording.
Traditional classifiers handle only fixed-sized inputs for one utterance, so we cannot create
utterance-level features with a simple frame-level concatenation. We need to aggregate
embeddings and Figure 2 shows the method in more details. This could be performed in a
straightforward way by calculating statistical values along their time axis, such as mean,
standard deviation or others. The final size of the aggregated vector is independent of the
length of the original recording and it only depends on the number of neurons in the last
given hidden layer and on the aggregation technique used. In the end, these utterance-level
feature vectors can be fed into any traditional classification or regression model, where the
output will be a label (class or real number) for each recording.

94



Sensors 2023, 23, 5208

Figure 2. Creating fixed sized feature vectors with statistic conversion.

3. The Databases Used

Next, we will introduce the datasets that we employed in our experiments. Different
aspects were taken into account when selecting the databases. On the one hand, we
preferred databases that were easily accessible to the research community, and thus the
databases used in the ComPare challenge were chosen. The other aspect was that they
should be easily comparable, which is why we chose three German language databases
so possible language differences would not affect the results. To cover different topics,
we used three paralinguistic corpora (AIBO, URTIC and iHEARu-EAT). Although these
corpora cover different topics, the recording conditions (such as sampling rate, language
and background noise) are quite similar. Table 1 showes a summary from these three
paralinguistic database. The fourth database utilized in our experiments (called BEA) was
not a paralinguistic one, but it was used for training our hybrid acoustic model.

Table 1. The number of speakers and utterances for the three paralinguistics databases used.

Dataset Language No. of Classes
No. of Utterances No. of Speakers Total Duration (hh:mm:ss)

Train Dev Test Train Dev Test Train Dev Test

AIBO German 5 7578 2381 8257 26 6 25 03:45:18 01:11:46 03:53:44
URTIC German 2 9505 9596 9551 210 210 210 14:41:34 14:54:47 14:48:18
iHEARu-EAT German 7 657 287 469 14 6 10 01:20:37 00:31:44 01:00:39

3.1. AIBO

The FAU AIBO Emotion Corpus [36] contains speech taken from 51 native German
children. The children were selected from two schools. The database contains 9959 record-
ings from the Ohm school, and 8257 recordings from the Mont school. The total duration
is approximately 9 h. The subjects had to play with a pet robot called AIBO. They were
told that AIBO responds to their commands, but it was actually remotely controlled by a
human. The Ohm school recordings are commonly used for training (with speaker-wise
cross validation). The Mont school recordings were used for the test set. Because of the
size of the training set, we were able to define a development set. We kept recordings of
20 children in the training set (7578 utterances) and used recordings of 6 children in the
development set (2381 utterances). The original 11 emotional classes were merged to form
a 5-class problem. The new classes were constructed from the originals: Anger (angry,
irritated, reprimanding), Emphatic, Neutral, Positive (motherese and joyful), and the Rest
(helpless, surprised, bored, non-neutral but not belonging to the other categories). This
database was also employed in the INTERSPEECH 2009 Emotion Challenge.

3.2. URTIC

The Upper Respiratory Tract Infection Corpus (URTIC) [37] was provided by the Insti-
tute of Safety Technology, University of Wuppertal in Germany. It contains native German
speech from 630 subjects (248 female, 382 male). The total duration is approximately 45 h.
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The recordings have a sampling rate of 44.1 kHz downsampled to 16 kHz. They were split
into 28,652 chunks of 3 to 10 s. The participants had to complete different tasks. They had
to read short stories (e.g., a well-known story in the field of phonetics “The North Wind and
the Sun”), had to produce voice commands (such as stating numbers from 1 to 40) and they
also had to narrate spontaneous speech (e.g., say something about their best vacation).
The number of tasks varied for each speaker. The database was split speaker-independently
into training, development and test sets where each one contained 210 speakers. The train-
ing and development sets contained 37 infected participants and 173 participants with no
cold. There were two classes, namely cold and no cold. The purpose of the classification
was to decide whether the speaker had a cold. This database was also employed in the
INTERSPEECH 2017 Computational Paralinguistics Challenge.

3.3. iHEARu-EAT

The iHEARu-EAT corpus [38] was provided by the Munich University of Technology.
It contains close-to-native German speech taken from 30 subjects (15 female, 15 male). It
was recorded in a quiet, slightly echoing office room. It contains approximately 2.9 h of
speech (sampled at 16 kHz). The recordings were segmented into roughly equal parts.
The participants had to perform speaking exercises while eating different type of foods.
Speakers had to complete different tasks, e.g., read the German version of “The North Wind
and the Sun” story, and they had to give a spontaneous narrative about their favourite
activity or place. The number of completed activities varied for each speaker because not
everyone was willing to eat every type of food offered. The database was split speaker-
independently into a training set (20 speakers) and test set (10 speakers). There were seven
classes determined by the consistency: apple, nectarine, banana, crisp, biscuit, gummy bear
and without any food. The aim of the classification was to recognise what the subject was
eating while speaking. These type of foods typically allowed the participants to eat while
speaking. This database was also employed in the INTERSPEECH 2015 Computational
Paralinguistics Challenge.

3.4. BEA

We used a subset of the BEA Hungarian corpus [39] to pretrain our acoustic model.
This was not a specific paralinguistics corpus like the three above, but it is also a speech
corpus. It contains only spontaneous speech and it is good for generalising a neural network
for speech processing. We applied a subset of this database, which contained the speech of
165 subjects (≈60 h). This subset contained only spontaneous speech with special events
such as filled pauses, breathing sounds, laughter, gasps and so on. It had a transcription,
where the phonetics set and the special events were also marked.

4. Experimental Setup

4.1. Frame-Level Features

For both the ASR and paralinguistics corpora, the frame-level feature extraction was
carried out by 40 Mel-frequency filter banks with the standard values of 25 ms window
width and 10 ms frame step. We also extended it with the log-energy value, and calculated
the first- and second-order derivatives (i.e., Δ and ΔΔ [40]). The final number of features in
a frame-level vector was 123.

4.2. HMM/DNN Hybrid Model

We trained the hybrid model with the large BEA corpus. It has a standard feed-forward
deep neural network (DNN). During DNN training and evaluation, we used the standard
solution of applying a 15-frames-wide sliding window, so the input layer of the network
contained 15 × 123 = 1845 neurons. The DNN has five hidden layers, where each one
contains 1024 ReLU neurons. The final softmax layer of the network had as many neurons
as the number of phonetic states, namely 911. For embedding extraction, we used the
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activation values of the middle five hidden layers (i.e., layer 1, 2, 3, 4 and 5). Each layer
generated 1024-sized frame-level feature vector.

4.3. Embedding Aggregation

In the conversion step, we transformed the frame-level embeddings into utterance-
level feature vectors by aggregating them with a statistical function along the time axis.
The statistical approaches used were the following: arithmetic mean, standard deviation,
kurtosis, skewness and “zero ratio”. Zero ratio represents how many times out of each
embedding an output neuron fired (it means a feature has a non-zero value, as we used
ReLU neurons). The used aggregations has the following mathematical formula, if we have
N frame-level embeddings in the form x1, x2, . . . , xi, . . . , xN :

Arithmetic mean: x = 1
N ∑n

i=1 xi

Standard deviation: σ =
√

1
N ∑N

i=1(xi − x)2

Kurtosis = 1
N ∑N

i=1
(xi−x)4

σ4

Skewness = 1
N ∑N

i=1
(xi−x)3

σ3

Zero ratio = 1
N ∑N

i=1 yi, where yi =

{
1 if xi > 0,
0 otherwise

Notice that, having N embeddings with m frames, any of these formulas produce
m utterance-level aggregated features.

4.4. Classification

For optimal results, we separated all paralinguistic corpora into training, development
and test sets. We determined the optimal parameters of the classifier while training with the
training set end evaluating with the development set. After the optimisation, we measured
the overall efficiency while training with the combination of training and development
sets and evaluating with the test set. During the classification step, our classifier was a
Support Vector Machine (i.e., SVM) [41]. We optimized the complexity parameter using
10 powers between 10−5 and 100. In the case of AIBO and URTIC, we always standardised
and downsampled the actual training set before feeding it into the SVM. In the case of
iHEARu-EAT, we only performed a speaker-wise standardization.

To measure the efficiency, we calculated the Unweighted Average Recall (i.e., UAR) [42]
from the posteriors of our SVM model. UAR measures the average recall across all classes
without considering class imbalance. To calculate UAR, you compute the recall for each
class and then take the average across all classes. Recall, also known as sensitivity or
true-positive rate, is the proportion of true-positive instances (correctly identified instances)
out of all actual positive instances. UAR is called “unweighted” because it treats each
class equally, regardless of class size or prevalence. This makes it suitable for datasets with
imbalanced class distributions, where some classes may have significantly fewer instances
than others. It provides a balanced view of the overall performance of a classification system,
taking into account the performance across all classes equally. In an emotion recognition
task with an imbalanced dataset (Happy: 500, Sad: 300, Neutral: 2000), accuracy can
be misleading. For instance, a classifier that predicts the majority class (Neutral) for all
instances would have high accuracy (2000/2800 ≈ 71.4%). However, UAR (Unweighted
Average Recall) gives a better evaluation by considering the recall for each class separately.
In this case, UAR would indicate poor performance (UAR: (0 + 0 + 1)/3 ≈ 0.333) as
the classifier fails to identify instances of the minority classes (Happy and Sad) while
performing well on the majority class.

4.5. Baseline Method

X-vector networks [43] nowadays are receiving more attention in the field of par-
alinguistics. Previous studies have successfully applied x-vector embeddings in various
paralinguistic tasks [5,17]. This feed-forward deep neural network was originally designed
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for speaker identification, but with a slight modification it can be used for feature extraction
as well [43]. Figure 3 shows the structure of our baseline network. It has nine layers, in the
following order: five time-delayed frame-level layers, one statistics pooling layer, two
segmentation layers and one softmax layer. The statistics pooling layer is responsible for
transforming frame-level information into utterance-level information. It aggregates over
the output of the fifth frame-level layer and calculates different metrics such as mean or
standard deviation. The segmentation layers can capture meaningful information about
the speaker, e.g., age and gender. The last layer of the network contains the speaker id.

...

Stats pooling layer

embedding

embedding

frame
level

segment
level

Frame-level features (e.g. MFCCs)

Speaker posterior estimates

Figure 3. The x-vector neural network structure used as the baseline.

In order to use x-vector DNNs for paralinguistic feature extraction, we trained the
model on the BEA corpus and we evaluated separate baselines for each of the AIBO, URTIC
and iHEARu-EAT databases. In parallel, we calculated different frame-level features from
each database, such as mfcc, fbank and spectrogram values. After training different x-vector
models on them, we fixed the weights of the models and removed the last two layers from
each. We extracted utterance-level information from the seventh hidden layer as a network
embedding and examine traditional classification on them. We also tried out a noise
augmentation technique. To find the best baseline, we always carried out a quick search of
the frame-level feature sets with and without augmentation for each database separately.

5. Experimental Results

5.1. AIBO

When we used the AIBO database, we had a five-class classification task. Figure 4
shows all the results with different statistic conversion techniques on the development set.
The best baseline result was obtained using f-bank features with augmentation and it came
to 39.3% (indicated by the grey horizontal line in the figure).

Regarding the layers, we can state that the fourth layer always outperforms the
baseline. Moreover, the fourth layer achieved the best performance scores with all the
aggregation techniques used. In view of aggregation, there were no significant differences
between the robustness of aggregations. Kurtosis and skewness had the worst performance
scores overall. In the majority of cases, we cannot beat the baseline with them. The
mean and standard deviation performed the best. In most cases, they outperformed the
x-vector baseline. The average performance of a conversion technique is represented by a
black column. The mean and standard deviation of the fourth and fifth layers had better
performance scores than their average layer performance scores and these gave the best
results overall.
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Figure 4. AIBO results on the development set. Extracting embeddings from each of the 5 layers.
The black columns denote the average performance of all five layers. The baseline is represented by a
grey line.

5.2. URTIC

When we used the URTIC database, we had a two-class classification task. Figure 5
shows all the results obtained with different aggregations with the development set.
The best baseline result was obtained using MFCC features with augmentation and it
was 66.9% (indicated by the grey horizontal line in the figure).

Here we can state that the third and fourth layers always reach or outperform the
average performance of a conversion technique (represented by a black column), but in
the majority of cases they cannot beat the x-vector baseline. The standard deviation is a
bit more robust than the others, but again there is no significant difference. The kurtosis
and skewness statistic conversions again had the worst performance scores. Here, the best
results can beat the baseline. One of them is the mean of the third and fourth layers.
The other is the zero ratio statistic conversion for the second and fourth layers.

Figure 5. URTIC results on the development set. Embeddings from each of the 5 layers. The black
columns denote the average performance of all five layers. Baseline represented by a grey line.

5.3. iHEARu-EAT

With the iHEARu-EAT corpus, we had a seven-class classification task. Figure 6 shows
all the results obtained with different aggregations using the development set. The best
baseline result was obtained using fbank features with augmentation and it was 58.7%
(indicated by the grey horizontal line in the figure).

Here, we can state that all of our embeddings always outperform the baseline. Similar
to URTIC, the second and fourth layers perform best and in most cases outperform the
local average performance (represented by a black column). The robustness behaviour is
similar, but the zero ratio and mean are slightly better. The rest of the aggregations behave
just like before. The mean and the standard deviation of the second and fourth layers give
the overall best results.
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Figure 6. iHEARu-EAT development set results. Embeddings from each of the 5 layers. The black
columns denote the average performance of all five layers. Baseline represented by a grey line.

6. Combined Results

A summary of our results from the first series is represented in Table 2. We can see that
the HMM/DNN embeddings always outperform the x-vectors. The kurtosis and skewness
aggregations perform the worst. The mean, standard deviation and zero ratio techniques
behave slightly the same. We also wanted to know the expressive power of the embeddings,
so we combined all of the five techniques as well. With this, we improved performance
on the development set, but the scores of the test sets dropped. This raises the question
of whether there is a specific combination of statistic conversation techniques that gives
improvements on the development set while maintaining the ability of generalisation. We
tried to determine the best-generalised model that would give better performance scores
against future data.

In the second series of experiments, we used sequential forward selection (SFS) to
combine multiple aggregated feature vectors. The basic idea behind SFS is to initialise the
subset with just the best method, and then iteratively add one more aggregation to the
subset based on which combination provides the greatest improvement in performance.
To combine a subset of aggregations, we concatenated their utterance-level feature sets.
The size of each utterance-level feature vector was as follows: 1024 as one technique,
2048 as a concatenation of two different aggregated vectors, 3072 as a concatenation of three
different aggregated vectors, 4096 as a concatenation of four different aggregated vectors
and 5120 when we concatenated all the different aggregated vectors.

Table 2. Results of different aggregation techniques with the three different corpora.

AIBO URTIC iHEARu-EAT

Layer DEV TEST Layer DEV TEST Layer DEV TEST

mean 4 45.2% 44.0% 4 67.3% 69.3% 2 71.4% 79.0%

std 4 44.8% 44.4% 2 66.4% 68.1% 2 73.3% 74.4%

kurtosis 4 42.5% 40.3% 1 64.2% 60.8% 4 69.7% 69.0%

skewness 4 43.0% 41.2% 1 63.5% 68.3% 4 70.3% 67.3%

zero ratio 4 44.3% 42.1% 2 67.4% 68.8% 3 70.0% 75.5%

all 5 45.5% 44.2% 4 66.0% 65.3% 4 76.6% 74.6%

x-vector – 41.8% 35.6% – 66.9% 57.1% – 58.7% 53.8%

6.1. AIBO

Figure 7 shows the performance scores obtained when we combined the mean statistic
conversion technique with all the others. The first chart shows the mean aggregation
with layer 4. All of the combinations perform better than their x-vector baseline; however,
the mean technique had the best performance scores of 45.2% on the dev set and 44.0% on
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the test set. The second chart shows the mean statistic conversion technique with layer 5.
All of the combinations performed better here as well. The combination of mean, skewness,
standard deviation and kurtosis gave the best performance score of 45.3% on the dev set and
44.2% on the test set, but we can obtain almost the same without the kurtosis of 45.1% on
the dev set and 43.7% on the test set. We can state that the fifth layer can generalise better
if we use the combination of mean+ skewness+ standard deviation+kurtosis techniques,
and the fourth layer performs best with only mean statistic conversion. The mean and
standard deviation techniques always gave improvements. Instead of the fact that layer
5 had better performance scores than layer 4, we should note that calculating just one
aggregation requires less time and memory.

Figure 7. AIBO database classification results with development and test sets. We combine the mean
aggregation by SFS. We extract embeddings from layer 4 (first figure) and from layer 5 (second figure).

6.2. URTIC

Figure 8 shows the performance scores obtained when we combined the zero ratio
statistic conversion technique with all the others. We can see on the first chart the zero ratio
aggregation with layer 2. The best combination (zero ratio+ mean+ standard deviation)
had the same performance score (67.4%) on the dev set as the zero-ratio-only option. Note
that they have the same performance with the development set, but the combination gives
a better performance score (69.6%) on the test set. We can see on the second chart the zero
ratio aggregation with layer 4. The first three combinations can outperform the x-vector
baseline. If we combine two techniques, the best combination (zero ratio + mean) gives
67.7% with the dev set and 69.5 with the test set. We can state that the fourth layer has the
best generalisation if we use the combination of mean and zero ratio techniques. Kurtosis
and skewness aggregations always underperform the others. The standard deviation metric
can improve the performance with layer 2.

Figure 8. URTIC database classification results with development and test sets. We combine the zero
ratio aggregation by SFS. We extract embeddings from layer 2 (first figure) and layer 4 (second figure).
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6.3. iHEARu-EAT

Figure 9 shows the performance scores when we combine the standard deviation
(i.e., std) statistic conversion technique with all the others. The first chart shows the std
aggregation with layer 2. All of the combinations perform better than their x-vector baseline
on the development and test sets. In the case of combining four techniques, the zero ratio
slightly improves our model and increases its ability to generalise. The best combination
is std+kurtosis+zero ratio+mean and it produced a 74.9% performance score on the dev
set and 78.3% on the test. The second chart shows the std aggregation with layer 4. All
of the combinations perform better here as well. When we combined three techniques
(std+skewness+zero ratio), it slightly improved our model and gave a 76.0% performance
score on the dev set and 75.0% on the test set. We can state that model trained on features
from the second layer can generalise better if we use the combination of mean, zero ratio
and skewness techniques. The zero ratio always produces a good improvement.

Figure 9. iHEARu-EAT database classification results with development and test sets. We combine
the standard deviation aggregation by SFS. We extract embeddings from layer 2 (first figure) and
layer 4 (second figure).

A summary of our results from the second series is given in Table 3. We can say that
extracting embeddings from the fourth layer always gives the best performance scores.
Concatenating aggregations is always a good idea and it helps our model to generalise
better, but we should carefully select the techniques used because the best combination may
be task-dependent. We should always consider including the mean, standard deviation
and/or zero ratio in the combination.

Table 3. The best results obtained by SFS. The base aggregation and layers came from the best
corpus-specific aggregations.

AIBO URTIC iHEARu-EAT

Layer Combination DEV TEST Layer Combination DEV TEST Layer Combination DEV TEST

4 mean 45.2% 44.0% 2 zero 67.4% 68.8% 2 std 73.3% 74.4%

4 me-ze 44.4% 42.0% 2 ze-me 67.1% 70.0% 2 st-ku 74.8% 75.9%

4 me-ze-st 44.4% 44.3% 2 ze-me-st 67.4% 69.6% 2 st-ku-ze 74.8% 78.9%

4 me-ze-st-ku 44.4% 44.5% 2 ze-me-st-sk 66.6% 69.4% 2 st-ku-ze-me 74.9% 78.3%

5 mean 44.5% 42.3% 4 zero 66.9% 67.1% 4 std 70.5% 73.8%

5 me-sk 44.3% 40.2% 4 ze-me 67.7% 69.5% 4 st-sk 74.9% 74.8%

5 me-sk-st 45.1% 43.7% 4 ze-me-st 67.6% 68.5% 4 st-sk-ze 76.0% 75.0%

5 me-sk-st-ku 45.3% 44.2% 4 ze-me-st-sk 66.8% 67.9% 4 st-sk-ze-me 76.0% 74.3%
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7. Discussion

We trained a state-of-the-art hybrid acoustic HMM/DNN model on a large ASR corpus
and then used the DNN part to extract frame-level embeddings from smaller paralinguistics
corpora. Afterwards, to aggregate these features into utterance levels, we used statistics
computational techniques. We chose traditional aggregations, such as standard-deviation
and mean, and less traditional ones, such as skewness, kurtosis and zero ratio; these
aggregated vectors served as features in our computational paralinguistic classification
experiments. In our first experiments, we tested all aggregation techniques individually.
Our results indicate that the hybrid acoustic model performed better than the x-vector
did. The mean, standard deviation and zero ratio techniques achieve practically the same
performance scores.

After obtaining these results, we wanted to improve the expressive power of the
embeddings. We chose to investigate the performance of combined aggregation techniques.
We tested all the possible combinations of the five techniques. Our results indicate that
we were successfully able to extract features from different paralinguistic tasks with our
HMM/DNN hybrid acoustic-model-based feature extraction method. Using the second
or the fourth layer of the model is always a good choice. As for aggregations, the mean,
standard deviation and zero ratio always help improve the performance, but we have to
combine these techniques carefully. In the case of kurtosis and skewness aggregations,
we can observe varied behaviour in all databases. In the first stage of our research, when
we tested each aggregation separately, we could see the trends amongst them. They had
the worst performance in terms of each database and each layer. In the second stage of
our research, when we tested the combination of aggregations, we could see a similar
tendency. When we were deciding which aggregation should be combined next, skewness
or kurtosis gave the lowest scores in 13 of 18 cases. Based on these results, it can be stated
that skewness and kurtosis aggregation techniques are not able to significantly improve
the success rate of paralinguistic task processing.

In the case of aggregation combination, we can see that combining three techniques will
always improve our results in any paralinguistic task. On the other hand, the combination
of four techniques will behave inconsistently. Although it improves the results on the
development set, the results on the test set are often decreasing. This suggests that the
generalisation ability of our model is also decreasing. For this reason, when choosing
the number of aggregations to combine, it is worth taking into account Occam’s razor
principle, which states that unnecessarily complex models should not be preferred against
simpler ones.

The possible limitations of our approach include the potential language dependency
of the extracted embeddings. For further research directions, we see several opportunities.
Although our results were competitive even with a Hungarian HMM/DNN hybrid acoustic
model for German tasks, and although the x-vector method (used as feature extractor)
showed language-independency tendencies before [17], the effect of using an acoustic
model trained on the same language should be studied in the future. On the other hand,
each of the databases studied here is German-speaking, it could potentially be investigated
whether aggregations computed from x-vector embeddings behave similarly on databases
of different languages. Additionally, it is unclear how the amount of training material
affects the quality of the extracted features. Furthermore, training a DNN is inherently
a stochastic procedure due to random weight initialization; therefore, the variance in
the classification performance might also prove to be an issue. We plan to investigate
these factors in the near future. Another possible direction is whether these aggregations
computed from different neural network embeddings follow a similar trend.

Author Contributions: Conceptualization, methodology, supervision, HMM/DNN model training,
embedding calculation and writing—review and editing G.G. Aggregation, classification, formal
analysis, visualization, writing—original draft preparation, M.V. All authors have read and agreed to
the published version of the manuscript.
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Abstract: This paper presents a study on improving the performance of the acoustic piezoelectric
transducer system in air, as the low acoustic impedance of air leads to suboptimal system performance.
Impedance matching techniques can enhance the acoustic power transfer (APT) system’s performance
in air. This study integrates an impedance matching circuit into the Mason circuit and investigates
the impact of fixed constraints on the piezoelectric transducer’s sound pressure and output voltage.
Additionally, this paper proposes a novel equilateral triangular peripheral clamp that is entirely
3D-printable and cost-effective. This study analyses the peripheral clamp’s impedance and distance
characteristics and confirms its effectiveness through consistent experimental and simulation results.
The findings of this study can aid researchers and practitioners in various fields that employ APT
systems to improve their performance in air.

Keywords: APT system in air; piezoelectric transducer; impedance matching; clamp

1. Introduction

Wireless power transfer (WPT) is an innovative technology representing a crucial ad-
vancement in the domain of power transfer [1–3]. This method can potentially revolutionize
traditional energy utilization patterns in various applications, such as portable electronic
devices, implanted medical devices, integrated circuits, electric vehicles (EVs), and so on.
Unlike traditional wires, the WPT technique transmits energy from the power source to the
target through the air. Near-field and far-field transmissions constitute this new form of
energy. Near-field utilizes the inductive coupling effect of nonradiative electromagnetic
fields, which includes both inductive and capacitive mechanisms. Far-field WPT can be
achieved using acoustic, optical, and microwave energy carriers.

Acoustic power transfer (APT) is a newer wireless power transfer (WPT) form. Energy
transmission is accomplished using sound waves as intermediate energy carriers [4,5]. As
shown in Figure 1, piezoelectric transducers transform electrical energy into vibrations
and continuously propagate them as pressure waves. A receiver, situated at a specific
point along the wave’s path, converts the electricity back into sound energy. There are
three types of medium in which it can travel: gaseous, fluid, and solid. Compared with
other wireless powering techniques, such as inductive power transfer and midrange RF
power transmission, acoustic power transfer (APT) has some advantages, such as lower
tissue absorption, a shorter wavelength that enables more miniature transducers [6], and
an increase in power intensity threshold for safe operation. The main advantage of APT is
non-reliance on electromagnetic fields to transmit energy. It can be used in environments
with strong electromagnetic fields.

The performance of an acoustic power transfer (APT) system depends on several
factors, including the material properties of the piezoelectric transducers [7] and the size
and geometry of these transducers. For example, [8] optimized the converter to reduce the
system’s losses. Another crucial factor that significantly affects the system’s performance
is impedance matching. While APT technology is commonly used with solid and fluid
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mediums, its usage in air is rare. This is primarily because the acoustic impedance of
piezoelectric transducers differs significantly between air and other mediums, causing a
significant mismatch, as illustrated in Table 1. The acoustic impedance of piezoelectric
transducers is similar to that of solids and liquids.

Figure 1. Acoustic power transfer system.

Table 1. Acoustic impendence.

Medium
Acoustic Impendence
Z0 = ρc

Density
ρ (kg/m3)

Sound Speed
c (m/s)

Steel 39 × 106 7700 5000
Aluminium 14 × 106 2700 5200
Water 1.44 × 106 1000 1440
Air 410 1.2 340
PZT-5H 36 × 106 7500 4800

In contrast, it is considerably lower in air, resulting in substantial losses when using
APT systems in an airborne setting. Therefore, studying the energy transfer of APT in air is
of great importance. Due to its minimal impact on biological tissues and the environment,
APT can be applied to medical detection and monitoring inside the human body, and
it can also offer new technological support for developing smart homes, IoT, and other
fields. This paper aims to enhance APT systems’ performance in air by implementing
impedance matching.

Impedance matching enhances system performance and stability by minimizing re-
flection and loss during the energy transfer process. Generally, two impedance matching
methods are used for APT systems to facilitate energy transfer in air. One traditional ap-
proach addresses abrupt impedance changes near the interface of the propagation medium
and the piezoelectric transducer by inserting a reflective layer between them. Typically, this
layer consists of specialized materials. Ref. [9] proposed a method to quantify the impact
of acoustic impedance mismatches on performance and demonstrated that optimizing the
thickness of intermediary layers can resolve these impedance issues. The optimization of
transducer performance involves proposing fabrication methods and modelling for the
matching layers, as described in [10]. Other special materials such as polyether sulfone and
polystyrene foam can also be placed between the transducer and the propagation medium
to adjust the impedance [11–18]. The ideal intermediate matching layer in an APT system
should ideally have an impedance equal to the geometric mean of the propagation medium
and the transducer. However, materials with extremely low impedance, which are required
for this purpose, are typically not available in pure form or as a single phase. Moreover,
using multiple layers of material matching layers increases attenuation.

Alternatively, instead of traditional matching techniques, an acoustic meta-surface
can be employed. Acoustic meta-surfaces consist of ultrathin 2D building blocks that
allow for manipulation of sound phase. These meta-surfaces find applications in acoustic
lenses [19], sound diffusers [20], acoustic holograms [21], as well as impedance-matched
surfaces and wavefront engineering. For instance, a simple meta-surface composed of
thin membranes and tiny air cavities provides an efficient impedance matching surface
for water-to-air communication [22]. Ref. [23] proposed non-local waterborne acoustic
meta-surfaces (WAM) with highly non-local features for efficient underwater acoustic
control, taking into account fluid–solid interactions (FSIs) to manipulate underwater sound
with higher efficiency. However, this method increases the volume of the system.
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Finding an impedance matching method that satisfies both low attenuation and no
increase in volume is challenging. To overcome this problem, a new impedance matching
method for APT systems in air has been developed. The study found that the fixed position
of the piezoelectric transducer plays a crucial role in impedance matching, although there
are limited studies on this aspect. Typically, the back of the piezoelectric transducer is fixed.
To develop a contact model, a comprehensive impedance analysis is performed on systems
with structural connections and contact interfaces, using the principle of equivalence
between mechanical and electrical characteristics. In this paper, the piezoelectric transducer
is fixed on the back [24]. Ref. [25] proposed a self-detached APT system, which can be easily
installed and removed in harsh environments. However, it is still fixed on the back of the
piezoelectric transducer. However, different positions of the fixed piezoelectric transducer
result in different vibration patterns, which can impact system performance. Therefore,
studying the fixed position of the piezoelectric transducer is particularly important. In this
paper, the effect of impedance matching on the efficiency of the APT system is examined
using a one-dimensional circuit model, demonstrating its effectiveness. The influence of the
piezoelectric transducer’s clamp position on vibration patterns and sound pressure level is
simulated using COMSOL. Additionally, a novel detachable peripheral clamp is designed
using 3D printing, significantly reducing the cost. The output voltage of the APT system is
compared using both the novel peripheral clamp and the traditional clamp, revealing an
increase of nearly 200 mV with the new peripheral clamp, highlighting its effectiveness.

2. Matching Theory of Acoustic Impedance

Various modern technologies employ PTs for signal transmission, making PT a critical
area of research. However, there are many theories for studying PT, including classical
theory [26], Rayleigh’s theory [27], Bishop’s theory [28], and finite element model simula-
tions [29]. Among them, equivalent circuits are one of the most frequently used calculation
methods for PTs, which utilize mechanical properties to analogize circuit parameters. There
are several types of circuit models, but the Mason circuit is one of the most popular. As a
valuable tool for solving one-dimensional problems, network theory was utilized by Mason
to create a more precise equivalent circuit based on this approach. This circuit divides the
piezoelectric transducer into three ports, one electrical and two acoustic, using an ideal
electromechanical transformer, as shown in Figure 2 [30,31]. The electrical port represented
is made up of merely two capacitors, whose values are equal to C0, but the electrodes are in
opposite directions. N represents the electromechanical coupling, and the impedances (ZT,
ZS) stand for the mechanical properties. The other parameters of a Mason circuit are shown
in Table 2. Wu presented a novel equivalent circuit model for typical UWPT systems. They
chose the T network as the electro–ultrasound–electric channel description, which signifi-
cantly improved the calculation of circuit characteristics [32]. Mason equivalent circuits
have also developed a slew of other formulations, including analogue networks [33], KLM
circuits, and systems models [34]. However, there are only a few papers that investigate
impedance mismatch using these equivalent models.

Table 2. The parameters of piezoelectric components.

Material Properties Symbol Meaning

k2
t =

e2
33

CD
33εs

33
=

h2
33εs

33
CD

33
Γ = ω

vD
= ω

√
ρ
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33
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√

ρCD
33

N = C0h33 εs
33 Permittivity

C0 =
εs

33 A
t h33 = kt

√
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A Area
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(
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2

)
CD

33 Elastic stiffness
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Figure 2. Mason’s one-dimensional equivalent circuit.

2.1. Impedance Matching Equivalent Circuit

To verify that impedance matching can optimize system performance and that effi-
ciency is an important expression of system performance, we chose efficiency to verify that
impedance matching is effective for improving system performance. The method of this
research is to calculate the partial derivative of the system efficiency and the impedance
value of the matching layer in order to determine the value of impedance matching, which
is used to improve the system performance. However, deriving formulas using the origi-
nal Mason model would result in highly complex equations, impeding observation and
practical applications. Therefore, the Mason one-dimensional equivalent circuit was first
simplified, as shown in Figure 3. Figure 3a is a original Mason circuit, and Figure 3b is a
simplified Mason circuit. Equation (1) shows the system efficiency equation derived from
the simplified Mason circuit. However, the expansion of the efficiency formula is still very
complicated; some parameters with small resistance in the circuit are ignored. The ultimate
simplified efficiency formula is displayed in Equation (5), which can be derived by simplify-
ing Equation (1). Equation (2) is the equivalent impedance parameter. Equations (3) and (4)
are the currents I1 and I3 of the simplified Mason circuit in Figure 3b.

η1 =
Re[Vout I∗3 ]
Re

[
V I∗1

] (1)

Z11 = Zs1 + Zt1 + ZtL
Z12 = Zt1 + ZtL
Z22 = Zt1 + ZtL + Zt1 + Ztw + Zsw
Z21 = Zt1 + ZtL
Z23 = Zsw
Z33 = Ztw + Zsw + Zleq
Z32 = Zsw

(2)

I1 =
−(V · (Z22 · Z33 − Z23 · Z32))

(Z11 · Z23 · Z32 − Z11 · Z22 · Z33 + Z12 · Z21 · Z33)
(3)

I3 =
−(V · (Z21 · Z32))

(Z11 · Z23 · Z32 − Z11 · Z22 · Z33 + Z12 · Z21 · Z33)
(4)

η2 =
RLeq

RLeq +

∣∣∣∣ Z33
Z32

∣∣∣2Rt1+

∣∣∣∣ Z22Z33−Z23Z32
Z21Z32

∣∣∣2Rs1

(5)

η1 ≈ η2 (6)
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Figure 3. (a) Mason’s one-dimensional equivalent circuit; (b) simplified diagram of Mason’s one-
dimensional equivalent circuit; (c) Mason’s one-dimensional equivalent circuit with impedance matching.

From the derivation of Mason equation, it was discovered that there exists a minor
difference in the system performance between Equations (1) and (5). Observing the simula-
tion verification in Figure 4, Figure 4a is Equation (1) and Figure 4b is Equation (5). The
imaginary part and real part of the matching impedance will appear at the peak point of
the figure. The value of imaginary part and the real part of the impedance matching of
Equation (1) and simplified Equation (5) are almost identical, as is shown in Equation (6).
In addition, it shows that impedance matching is indeed effective in improving system
performance and can be calculated via circuit simplification, thereby reducing the amount
of calculation.

As shown in Figure 3c, the matched impedance circuit configuration is a T network.
Where the imaginary and real parts of the impedance matching are equal to the real
and imaginary parts of ZLeq, resulting in the peak point of the figure. Therefore, the
partial derivatives of the real part RLeq and the imaginary part XLeq of ZLeq are calculated,
respectively, based on Equation (5) to obtain the maximum efficiency value. Equation (7) is
the partial derivatives of the real part RLeq of ZLeq. Equation (8) is the partial derivatives of
the imaginary part XLeq of ZLeq. To simplify the lengthy formula, we replace the repeated
equations within the procedure with variables A, B, C, D, E, F, and G, as indicated in
Equation (9). Finally, the mathematical model is compared with the optimization module
in MATLAB and found that the results are very close. The correctness of the mathematical
model is proved. Additionally, it can be proved that the performance of the system can be
improved through impedance matching.

∂η
∂Rleq

= I
√

A
√

C√
((−R2

21−X2
21)(ARt1+BRs1)C)

× (R2
21R2

swRt1 + 2R2
21RswRt1 + R2

21R2
twRt1 + X2

21R2
swRt1

+2RswRt1RtwX2
21 + Rt1R2

twX2
21 + Rs1R2

swX2
22 + 2Rs1RswRtwX2

22 + Rs1R2
tw X2

22

−2R32Rs1RswX22X23 − 2R32Rs1RtwX22X23 + R2
32

Rs1X2
23
+ X2

32
Rs1X2

23
+ R2

23Rs1C

−2X22Rs1XleqX32X23 + R2
21Rt1X2

leq + X2
22Rs1X2

leq − 2X22Rs1XswX32X23 + 2R2
21Rt1XleqXsw

+2X2
21Rt1XleqXsw + 2Rs1X2

22XleqXsw + R2
21Rt1X2

sw + X2
21Rt1X2

sw + X2
22Rs1X2

sw

+2(ADRt1 + Rs1X22(−X32X23 + DX22))Xtw + (ARt1 + Rs1X2
22)X2

tw − 2R22Rs1X23((−Rsw − Rtw)

X32 + R32E)− 2R23Rs1(R22R32F + FX22X32 − X22R32E + R22X32E) + R2
22Rs1(F2 + E2))(

1
2 )

(7)
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∂η
∂Xleq

= 1
(Rt1 A+Rs1B) × (R22R32Rs1X23 + X22X32Rs1X23 + R23Rs1(R22X32 − X22R32)− Rs1R2

22G

−Rt1 AG − Rs1X2
22G)

(8)

A = R2
21 + X2

21 B = R2
22 + X2

22 F = Rsw + Rtw
C = R2

32 + X2
32 D = Xleq + Xsw G = Xsw + Xtw

E = Xleq + Xsw + Xtw

(9)

(a) 

(b) 

Figure 4. Efficiency comparison. (a) Original Mason circuit; (b) simplified circuit.

2.2. Proposed Approach for Impedance Matching—The Clamp of Piezoelectric Transducer

There are many methods of impedance matching [35–37], as shown in Figure 5. The
method of traditional impedance matching uses special materials to coat the surface of
the piezoelectric transducers, such as silver plating on the piezoelectric transducer, which
has a low degree of freedom of operation, and it is difficult to control the thickness and
uniformity of the application. A relatively new method of impedance matching is to
use a meta-surface with a special structure to change the impedance [38]. However, the
design and performance of an acoustic meta-surface are usually optimized for a specific
application, so it is difficult to tune and change.
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Figure 5. Method of impedance matching.

During this research, it was observed that the location of the fixed piezoelectric
transducer influenced the vibration modes, which consequently impacted the impedance
characteristics of the piezoelectric transducer. The traditional method is to fix the back
of the piezoelectric transducer. Which is to glue it with the bracket to become a non-
detachable, permanently bonded system. This method has many disadvantages, such as
poor adjustability and stability. It was discovered that fixing the side of the piezoelectric
transducer presents an effective means of adjusting impedance matching; however, this ap-
proach is scarcely mentioned in the existing literature. Even studies on detachable fixtures
are focused on metals or solid media and mainly target the backside of the piezoelectric
transducer, with no research on the side fixation, as is shown in Table 3. Therefore, this
study demonstrates high innovation and practical applicability. A peripheral clamp con-
sisting of three claws was proposed. The angle between each claw is 120 degrees, and the
width of each claw corresponds to 30 degrees, as shown in Figure 6. This is a detachable
clamp that can be adjusted for tightness, convenient, and flexible. A further advantage
of the peripheral clamp is that they are all made using 3D printing, which reduces the
price considerably.

Table 3. APT models based on separating media and excitation methods.

Method
Ref

Medium Power/Sound Detachable
Author Year

Special material
[9] Freychet 2020 Wall Power Non-detachable
[10] Zhou 2022 Air Power Non-detachable
[17] Rymantas 2017 Air Sound Detachable

Metasurface [22] Eun 2018 Air/water Sound Detachable
Clamp [25] Tseng 2022 Metal Power Detachable
This Research Air Power Detachable

(a) (b) 

Figure 6. The model of the peripheral clamp. (a) Front view and (b) side view.
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3. Simulation and Experimental Verification

The finite element simulation software COMSOL Multiphysics was used in this paper,
which is for experimental preparation and verification of the effectiveness of the novel
clamp. COMSOL Multiphysics is a finite element simulation software for multiphysics
coupling. It is based on the finite element method and realizes the simulation of natu-
ral physical phenomena by solving partial differential equations. It uses mathematical
techniques to solve physical phenomena in the real world.

In order to reduce the calculation, a 2D axisymmetric model was used for the simula-
tion. A model of the mesh is shown in Figure 7. A represents the axis of symmetry, B is the
input voltage side, C is the ground side, and D represents the fixed constraint. Ultrasonic
waves are generated by applying a voltage to a piezoelectric transducer. Therefore, the
boundary conditions must be considered simultaneously, as the mechanical and electrical
parts are related to the vibration applied to the piezoelectric transducer in the simulation.
Table 4 lists the settings of its boundary conditions. In addition, we have not set up any
additional air damping and only accounted for the losses in the materials.

Figure 7. Mesh throwing of piezoelectric transducer in finite element simulation.

Table 4. The boundary state used for FEM model in simulation.

Boundary Mechanical Status Electrical Status

A Axisymmetric Axisymmetric
B Free Terminal Voltage
C Free Ground
D Roller Support Zero Charge

3.1. The Clamp of Piezoelectric Transducers

As shown in Table 5, the commonly used physical quantity for sound measurement is
sound pressure, but usually, the sound pressure level describes the magnitude of sound
pressure. The conversion equation between sound pressure and sound pressure level is
shown in Equation (10). The variation in the vibration amplitude determines the sound
intensity. Sound intensity is calculated using energy and sound pressure when expressed by
pressure. Sound intensity is a vector; sound pressure is a scalar. The relationship between
sound intensity (I) and sound pressure (p) is shown in Equation (11), where ρ is medium
density and c is sound velocity. Sound power refers to the total energy the sound source
radiates to space per unit of time; the unit is W. The relationship between sound power and
sound intensity is shown in Equation (12), where A is the area through which the sound
wave passes vertically. This implies that the acoustic pressure becomes stronger as the
sound pressure level increases. A stronger acoustic pressure corresponds to a higher sound
intensity, and the acoustic power within a given area increases with greater sound intensity.
With the increase in acoustic power, the energy becomes more pronounced, indicating the
effectiveness of the clamp.

Lp = 20 × log 10
p
p0

(10)

I =
p2

ρc
(11)

P = IA (12)
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Table 5. Common physical quantities and their units.

Physical Quantity Unit

p (Sound pressure) Pa
Lp (Sound pressure level) dB
I (Sound intensity) W/m2

P (Sound power) W
T (Stress) Pa

The fundamental equations for piezoelectric transducers are shown in Equation (13),
where T is the stress and E is the electric field, with both being independent variables, and
where cD, h, and βS are the elastic stiffness coefficient, piezoelectric stiffness coefficient,
and dielectric isolation rate, respectively. These equations state that the vibration strength
and sound intensity increase with greater stress. Additionally, a higher sound intensity
is indicative of a greater energy. Therefore, in COMSOL, we assess the effectiveness of
different clamps by observing the sound pressure level and stress.

T = cDS3 − hD3
E = −hS3 + βSD3

(13)

We used the acoustic–structure interaction module in the built-in acoustic module
of COMSOL and added the Circuit module. The model of the APT system is established
in COMSOL, the distance is about 2 mm, and the frequency is 51.5 kHz. As shown
in Figure 8, the left is a schematic diagram, the dark colour is where the piezoelectric
transducer is fixed, and the right is the sound pressure distribution obtained through
COMSOL simulation. The dark part of Figure 8a is the back of the piezoelectric transducer.
When the piezoelectric transducer is fixed on the back, the maximum sound pressure level
of the total is 80 dB, which is considerably lower than that in Figure 8b. In the figure, the
distribution in the middle is the sound pressure level on the piezoelectric transducers,
and the surrounding distribution is the sound pressure level in air. The dark portion
of Figure 8b represents the side of the piezoelectric transducer. When the piezoelectric
transducer is fixed on the side, the maximum total sound pressure level is 100 dB, which is
strong and uniformly distributed. This phenomenon shows that different fixed positions
of piezoelectric transducers produce other effects. Setting the side of the piezoelectric
transducer achieves a higher sound pressure than fixing the back.

3.1.1. No Clamp

The model of the piezoelectric transducer with a free state is built in COMSOL, as
shown in Figure 9. It is the distribution of its total sound pressure level. In this context, we
need to emphasize the “free state.” Due to the inability of the piezoelectric transducer to
float in the air without any support, we applied fixed constraints in the COMSOL model.
However, compared with the constraint areas on the back and sides mentioned in the
paper, the constraint area in the no-clamp model is negligible. It is found that the energy of
the transmitting piezoelectric transducer is almost diffused to the surroundings when the
piezoelectric transducer is in a free state, and there is not much sound pressure transmitted
to the receiver. This situation poses significant challenges to efficient energy transmission
within the system. Therefore, the design of the fixture is very important.

3.1.2. Back Clamp

The traditional method to fix a piezoelectric transducer is to glue it with the bracket
to become a non-detachable, permanently bonded system. The holding clamp location is
usually on the back of the piezoelectric transducer, as shown in Figure 10a. The model of
the traditional clamp is established in COMSOL. The transmitter adds an input voltage
of 8 V, and the output terminal is set to an open circuit state. The frequency is about
50 kHz. The distance between the transmitter and receiver is 2 mm. Figure 10b shows the
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stress transformation of the piezoelectric transducer, and its peak value is about 50 kPa.
Figure 10c shows the change in its sound pressure level. The maximum value is about
80 dB. Compared with the free state, the stress has increased, but the peak value of the
sound pressure level has not changed much. Nevertheless, this traditional clamp still has
some influence on the distribution of sound pressure.

 
Figure 8. Total sound pressure level distribution of piezoelectric transducer. (a) Fixed piezo back;
(b) fixed piezo side.

 
Figure 9. COMSOL model with no clamp and no fixed constraints.
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(a) (b) (c) 

Figure 10. Fixed the back of piezo. (a) Schematic diagram of the back clamp; (b) the magnitude and
deformation of the stress on the back clamp; (c) the distribution and size of the total sound pressure
level on the back clamp.

3.1.3. Peripheral Clamp

A novel detachable clamp is designed in which the fixed position is on the side of the
piezoelectric transducer, as shown in Figure 11a. The peripheral clamp has a total of three
claws. The angle between each claw is 120 degrees, and the width of each claw corresponds
to 30 degrees. The model of the peripheral clamp is established in COMSOL, and an input
voltage of 8 V is added to the transmitter, and the output terminal is set to an open circuit
state. The distance between the transmitter and receiver is 2 mm. The frequency is about
50 kHz. Figure 11b is the stress transformation of the piezoelectric transducer, and its peak
value can reach 3 MPa. Figure 11c is the change in its sound pressure level; the maximum
value can be up to 130 dB. The system performance is improved compared with the back
clamp and no clamp. Noticeably, the sound pressure level has increased by nearly 50 dB.

(a) (b) (c) 

Figure 11. Fixed the side of piezo. (a) Schematic diagram of the peripheral clamp; (b) the magnitude
and deformation of the side stress of the peripheral clamp; (c) the distribution and size of the total
sound pressure level on the peripheral clamp.

3.1.4. Piezoelectric Transducer Array

Our current simulations and investigations are based on a single piezoelectric trans-
ducer, and the resulting values may be small compared with IPT. Additionally, because the
acoustic impedance of the air does not match the acoustic impedance of the piezoelectric
transducer seriously, its loss is very large. However, the research on APT systems in air
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is still very important, especially in biomedicine. For this reason, we made a simulation
model of the PT array to prove that if the number of PTs increases, the result will obviously
be improved. The model of the PT array is established in COMSOL, and the transmitter and
receiver are composed of four piezoelectric transducers with a radius of 25 mm connected
in parallel. The transmitter adds an input voltage of 8 V and sets the output to an open
circuit state. The frequency is about 50 kHz. The distance between the transmitter and
receiver is 2 mm. Figure 12a is the stress transformation of the piezoelectric array, and
its peak value is up to 18 MPa. Figure 12b shows the change in its sound pressure level,
with a maximum value up to 160 dB. The results can be nearly doubled compared with the
results with no clamp. It proves that the number of PTs increases, and the experimental
and simulation results will significantly improve.

(a) (b) 

Figure 12. COMSOL model with PT array. (a) The magnitude and deformation of the stress of
piezoelectric transducer array; (b) the distribution and size of the total sound pressure level of the
piezoelectric transducer array.

Furthermore, the model in Figure 13 consists of piezoelectric transducer arrays with
the same size and number of peripheral clamps. An input voltage of 8 V is applied to the
transmitters, and the output is set to an open circuit state with a frequency of approximately
50 kHz. In Figure 13a, the stress transformation of the piezoelectric array with a peripheral
clamp is presented with a peak value of up to 120 MPa. Figure 13b displays the change in
sound pressure level, with a maximum value of 200 dB. These results are significantly higher
than those of the piezoelectric array without a clamp, thus confirming the effectiveness of
the clamp once again.

3.2. Experimental Verification

Under the condition that the resonant frequency of the system is 51.5 kHz, firstly,
select the signal generator model Agilent 33250A and the ATA-122D Wide Band Amplifier
as the system’s power supply; the receiving end circuit is an open circuit. The transmitting
end uses a differential probe Agilent N2772A probe to detect waveform. The receiver uses
an oscilloscope probe to observe the waveform. The size of the piezoelectric transducer is a
circular ceramic sheet with a radius of 25 mm, and the piezoelectric material is PZT-4. The
components of the clamp are all manufactured by a FLASHFORGE 3D printer, and the 3D
material is PLA. An experimental diagram of the system is shown in Figure 14.
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(a) (b) 

Figure 13. COMSOL model of a piezoelectric transducer array with peripheral clamp. (a) Magnitude
and deformation of the piezoelectric transducer array with the peripheral clamp; (b) distribution and
size of the total sound pressure level of the piezoelectric transducer array with the peripheral clamp.

 
Figure 14. Experimental platform of APT system in air.

3.2.1. Impedance Characteristics

The impedance characteristics of a single piezoelectric transducer are measured in
different cases, including no clamp, with a back clamp, and with a peripheral clamp.
Figure 15a shows the impedance characteristic of a single piezoelectric transducer without
any constraints and clamp. Figure 15b is the impedance characteristic of conditions on the
back with the back clamp of a single piezoelectric transducer. Figure 15c is the impedance
characteristic of a single piezoelectric transducer with constraints on its sides with the pe-
ripheral clamp. The Agilent E4980A Precision LCR Meter is used to measure the impedance
of the piezoelectric transducer. The resonant frequency of a single piezoelectric transducer
is 51.5 kHz, and its real resistance is 5.5 kΩ. The resonance frequency of the piezoelectric
transducer fixed on the back is 51.5 kHz, and its real resistance is 16.3 kΩ; The resonance
frequency of the piezoelectric transducer fixed on the side is 51.5 kHz, and its real resistance
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is 27.41 kΩ. According to the measurement results, the piezoelectric transducer’s resistance
is higher when using fixed constraints and a clamp, especially when the constraints with
the peripheral clamp are added on the side. According to Equation (14), P is the sound
pressure, Z is the acoustic impedance, and c is the volume velocity. When c is constant, the
impedance is higher and the sound pressure is stronger.

P = c Z (14)

 
(a) 

 
(b) 

 
(c) 

Figure 15. Impedance characteristics of a single piezoelectric transducer. (a) Without fixed constraints;
(b) with fixed constraints on the back; (c) with fixed constraints on the sides.

3.2.2. Distance Characteristics

As shown in Figure 16, the red line is the experimental data about the relationship
between the output voltage and the distance between the transmitter and receiver. The
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blue line is the simulation data about the relationship between the output voltage and the
distance between the transmitter and receiver. These data were obtained under uniform
conditions. The transmitter adds an input voltage of 8 V and sets the output to an open
circuit state. The frequency is about 50 kHz. The trends of these two sets of values are
very similar, with decreasing output voltage as distance increases. This result validates the
simulation model.

Figure 16. Simulation and experimental verification of the peripheral clamp.

The experiment compared the relationship between different distances and the output
voltage with two additional clamps, as shown in Figure 17. The clamp that fixed the
piezoelectric transducer on the back is a cylinder with a radius of 8 mm. The clamp that set
the side of the piezoelectric transducer is distributed in an equilateral triangle with a fixed
angle of 30 degrees. The distance between the transmitter and receiver is from 1 mm to
10 mm. An input voltage of 8 V is applied to the transmitters, and the output is set to an
open circuit state with a frequency of approximately 50 kHz.

Figure 17. Distance characteristics of back clamp and peripheral clamp.
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The blue curve in Figure 17 is the peripheral clamp, and the red curve is the back clamp.
The trend of all curves decreases with increasing distance. It can be found that the output
voltage of the novel clamp is always higher than that of the fixed back clamp at different
distances. Therefore, the novel peripheral clamp proposed in this paper is effective.

4. Conclusions

In this paper, we introduced an impedance matching circuit to the Mason circuit and
examined the correlation between input impedance and system efficiency. We identified a
specific resistance value that maximizes efficiency, thus validating the efficacy of impedance
matching. Furthermore, we compared different piezoelectric transducer configurations,
including those with no fixed constraints, fixed constraints on the back, and fixed constraints
on the side. Our findings revealed that the transducers with fixed constraints on the side
exhibited higher sound pressure and output voltage compared with those without fixed
constraints or with fixed constraints on the back. Based on these results, we proposed a
novel peripheral clamp design, forming an equilateral triangle with a fixed width spanning
30 degrees at each point. This low-cost peripheral clamp can be entirely manufactured using
3D printers. We also investigated its impedance and distance characteristics, obtaining
experimental results that aligned with our simulation outcomes, thus confirming the
effectiveness of the novel peripheral clamp. While our studies primarily focused on a
single piezoelectric transducer, we also conducted simulations involving piezoelectric
arrays, demonstrating improved performance compared with performance with a single
transducer. Therefore, if the measurement data from a single transducer are unsatisfactory,
replacing it with a piezoelectric array can enhance the results.
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Abstract: We used an ultrasensitive, broadband optomechanical ultrasound sensor to study the
acoustic signals produced by pressurized nitrogen escaping from a variety of small syringes. Har-
monically related jet tones extending into the MHz region were observed for a certain range of flow
(i.e., Reynolds number), which is in qualitative agreement with historical studies on gas jets emitted
from pipes and orifices of much larger dimensions. For higher turbulent flow rates, we observed
broadband ultrasonic emission in the ~0–5 MHz range, which was likely limited on the upper end
due to attenuation in air. These observations are made possible by the broadband, ultrasensitive
response (for air-coupled ultrasound) of our optomechanical devices. Aside from being of theoretical
interest, our results could have practical implications for the non-contact monitoring and detection of
early-stage leaks in pressured fluid systems.

Keywords: jet tone; leak detection; air-coupled ultrasound; optical ultrasound detection; optomechanics;
buckled dome microcavity

1. Introduction

Sounds produced by flowing liquids and gases [1] play a central role in a myriad of
commonplace phenomena, including human speech [2], whistles produced by animals
and engineered objects [3], and, of course, the rich sounds produced by many musical
instruments (e.g., wind instruments and pipe organs [4,5]). In spite of their ‘everyday’
nature, the physics of flow-induced acoustics is quite complex [6] (and ‘fundamentally non-
linear’ [1]), such that exact theoretical treatments (even for relatively simple geometries)
are not routinely possible.

Nevertheless, the general features of flow-derived sound are well understood. Typ-
ically, acoustic signals arise due to turbulent conditions that correlate with vibrations
(i.e., pressure waves) of the flow medium itself [3]. If appropriate feedback is present, peri-
odically spaced vortexes can form in the turbulent flow and give rise to stable oscillations at
resonant frequencies corresponding to the generation of ‘flow tones’, or, in more common
terms, ‘whistling’. For a given geometry, periodic vortex shedding and associated discrete
tones typically arise for certain ranges of flow velocity [1]. A practical application of this
phenomenon is the so-called vortex flow meter [7], in which the vortex shedding is induced
via an engineered obstruction (i.e., a ‘bluff body’ [1]) placed in the flow path, and flow rates
are extracted from measurement of the vortex-shedding frequencies.

In the present work, we describe a detailed experimental study of ultrasound produced
by nitrogen gas jets emitted from a variety of syringes. Furthermore, we show that our
observations are consistent with historical studies on gas jets emitted from much larger
‘pipes’ [8–15], albeit scaled to significantly higher frequencies in the present case. The
results illustrate some unique capabilities of our recently reported [16] optomechanical
ultrasound sensors, in particular their ultrasensitive and omnidirectional response to air-
coupled ultrasound extending over a bandwidth of several MHz. Implications for practical

Sensors 2023, 23, 5665. https://doi.org/10.3390/s23125665 https://www.mdpi.com/journal/sensors
125



Sensors 2023, 23, 5665

applications, such as leak detection and metering of small-scale, high-pressure flows,
are discussed.

The sensor we employ in this study is based on a buckled-microcavity Fabry–Perot res-
onator. We previously conducted several studies on the optical properties of these devices,
including their suitability for quantum electrodynamics due to the high finesse (~103–104)
and small mode volumes (as low as ~1.5 λ3) routinely obtained [17–19], their applications
in microfluidics as open-access cavities for liquids [20], and their ability to be fabricated
with large birefringence and polarization mode non-degeneracy [21]. More recently, we
demonstrated that our devices function as extremely sensitive optomechanical sensors
for both static pressure differentials [22] and ultrasonic signals in air and water [16,23].
Notably, the ultrasonic force sensitivity is one or more orders of magnitude lower than
other air-coupled ultrasound sensors, with a bandwidth spanning several MHz [24–26].
These properties prompted us to investigate the feasibility of using our devices for gas leak
detection in industrial applications.

2. Materials and Methods

The sensor presented herein is based on a buckled-dome microcavity, where two
Bragg mirrors, one planar and one concave, are separated by a partially evacuated and
sealed cavity. Our previous work describes the buckled microcavity fabrication process
in detail [16,23]. Nevertheless, we also provide an overview here. Briefly, a 3.5 period
Si/SiO2 Bragg stack centered at 1600 nm and terminated with Si was deposited on a quartz
substrate via plasma-enhanced chemical vapor deposition (PECVD). Photolithography
was performed with AZ1512 resist to pattern circular anti-features with a diameter of
100 μm. A ~15 nm fluorocarbon layer was then deposited, and lift-off was performed,
leaving behind circular fluorocarbon pads that, ultimately, determined the dimensions
of the devices. A second, identical Bragg mirror was deposited directly on top of the
fluorocarbon layer and exposed bottom mirror. The substrate was then heated on a hotplate
to induce bucking at the fluorocarbon sites, resulting in the formation of half-symmetric
Fabry–Perot microcavities. Our previous work utilized a bulky optical table setup to
conduct optical and ultrasonic measurements with our devices. This setup is not ideal
for industrial applications, since rigid assembly is required to maintain optical alignment
in extreme environmental conditions. To address these shortcomings, we designed and
assembled a standalone probe unit using off-the-shelf optical components from Oz Optics
and Thorlabs. A substrate containing our fabricated devices was affixed to threaded
spacer (Thorlabs), which was then attached to a pigtail-style fiber focuser (Oz Optics).
The fiber focuser was then connected to an optical circulator (Thorlabs) for interrogation
and readout. A full description of the optical properties of our buckled dome microcavity
devices is provided in a previous work [16], along with a detailed description of the optical
interrogation and readout scheme. For the set of measurements presented herein, we used
~1 mW of optical power at ~1505 nm to couple to the dome mode and read out to the
photodetector (Resolved Instruments). The photodetector was set to an 80 MHz sampling
rate, and each measurement was averaged over 300 samples. No smoothing or additional
post-processing was performed.

The gas system consisted of a nominally 2500 PSI N2 tank (Linde) initially regulated
to 40 PSI. The regulator was connected to a toggle valve that was normally open during
experiments, and then to a needle valve (Swagelok) and pressure gauge (Baker Instruments),
providing a pressure resolution of 0.1 PSI over the range of interest. The output of the
pressure gauge was connected to the needle assembly under test. Needles of various gauges
(Becton Dickenson PrecisionGlide, with dimensions shown in Table 1) were attached to
syringes, which were then directly attached to a section of gas line tubing. A fitting
was attached to the other end of the tubing, allowing each needle assembly to be easily
attached or removed from the rest of the system. All measurements were performed in
ambient laboratory conditions without any specialized acoustic treatment. Figure 1 shows
a schematic representation of the gas handling system, along with a photograph of the
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probe/needle measurement configuration used throughout this manuscript. A photograph
showing the needle assemblies is available in the supplementary information.

Table 1. Nominal dimensions of needles used in this work.

Gauge Inner Diameter (mm) Outer Diameter (mm) Length (mm)

22 0.413 0.7176 38
26 0.260 0.4636 13
30 0.159 0.3112 25

Figure 1. Experimental scheme showing gas handling setup. The setup served to both generate jet
tones characteristic to the needle and simulate a controlled gas leak at an arbitrary pressure in range
0–40 PSI. The photograph shows the measurement configuration used throughout the manuscript,
unless otherwise specified.

3. Results

3.1. Observation of Jet Tones in the MHz Frequency Range

Controllable pressures were achieved by first opening the toggle valve to allow the
system to pressurize up to the supply side of the needle valve. The needle valve was
subsequently adjusted while monitoring the pressure gauge, resulting in a stable leak
through the needle orifice. Individual power spectral density (PSD) plots for the 30-gauge
needle at different pressures are shown in Figure 2, along with a colormap that characterizes
the PSD as a function of pressure. At low pressures, only low amplitude features that
were invariant with pressure and characteristic to the gas handling system were observed.
These features were also observed for the other needle gauges, as well as without a needle
assembly present, as shown in the Supplementary Information. At ~8 PSI, jet tones that
were evenly spaced in frequency began to emerge. Consistent with observations from
Anderson [11], the spacing of these features is not initially representative of the fundamental
tone, as the fundamental is often neither the highest amplitude nor the first-appearing
resonance. The true fundamental frequency spacing begins to appear near 11 PSI, and is on
the order of 60 KHz for the 30-gauge needle. These jet tones are positively correlated to
pressure and continue to increase with pressure until eventually combining with the noise
floor around 14 PSI, where the spectrum is dominated by white noise that extends into the
MHz range. This rising noise floor can also be observed through comparing the individual
PSD plots shown in Figure 2a,b.
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Figure 2. Generation of MHz frequency jet tones with a 30-gauge needle at various pressures. The
sensor was placed 1 cm from needle at a 90◦ angle, as shown in Figure 1. (a) A power spectral density
plot at 12.0 PSI. (b) A power spectral density plot at 13.0 PSI. (c) A colormap characterizing jet tones
as a function of pressure. Jet tones are present in the region 8~14 PSI, while other static features
inherent to gas handling system are present throughout a broader pressure range.

In addition to the 30-gauge needle, we performed similar characterization using both
22- and 26-gauge needles. Representative plots for each needle are shown in Figure 3,
demonstrating frequency spacing that is a function of both the pressure and the dimensions
of the needle. In general, the smaller the orifice diameter (i.e., higher needle gauge), the
greater the spacing between jet tone harmonics and the higher they persist in frequency. As
detailed in Section 4, our datasets are entirely consistent with historical observations [10,14]
of acoustic signals emitted by gas jets emanating from pipe-like orifices.
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Figure 3. Generation of jet tones with a variety of needles, showing a clear dependence on dimensions
of each needle. The sensor was placed 1 cm from needle at a 90◦ angle, as shown in Figure 1. (a) A
power spectral density plot for the 30-gauge needle at 12.6 PSI. (b) A power spectral density plot for
the 26-gauge needle at 3.4 PSI. (c) A power spectral density plot for the 22-gauge needle at 2.7 PSI. (d)
A comparison of the fundamental jet tone frequency for all needle gauges as a function of pressure
differential and orifice diameter.

3.2. Broadband Leak Detection

We now turn our attention to the characterization of high-pressure-differential signals
where jet tones were not typically observed. Figure 4 shows the acoustic content of the
30-gauge needle in the pressure range 15.0–30.0 PSI. We observed a white noise contribution
at high pressures, where the amplitude across the range 0~5 MHz was positively correlated
with pressure. While the spectral content could be viewed as white noise in a flow rate
sensing context, we note that the PSD is not entirely featureless, and could represent many
densely spaced resonances. Regardless, the presence of spectral content in the MHz region,
being orders of magnitude above the noise floor, clearly demonstrates the potential of our
sensor for industrial applications, particularly in noisy settings where analysis in lower
frequencies might not be possible.
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Figure 4. Sensing broadband frequency content of high-pressure nitrogen jets. Each trace shows
measured PSD as the pressure of gas line was varied. The sensor was placed 1 cm from needle
at a 90◦ angle, as shown in Figure 1. The plot illustrates that high pressure gas jets through small
orifices possess spectral content well into the MHz frequency range, and that our sensor can detect
such signals.

We found that while PSD generally increased across the frequency range 0~5 MHz,
higher frequencies seemed to be particularly sensitive to pressure. The inset of Figure 4
shows how the PSD evolves with pressure at three discrete frequencies (0.5 MHz, 1.0 MHz,
and 1.5 MHz). The power measured at a constant location is proportional to the acoustic
power emitted by the source (i.e., the gas jet) [27]. It is also the case that the power emitted
by the source is proportional to the mass flow rate of the gas, which scales with the square
root of pressure. These quantities can be related to the sound pressure level (SPL) using
the expression:

SPL ∝ 10 log(W/10−12) ∝ log(ṁRT/M). (1)

Here, W is the sound power level at the source, ṁ is the mass flow rate of the jet, R is
the gas constant, T is the temperature, and M is the molecular weight [27,28]. We plotted
the measured power at three distinct frequencies against the square root of the pressure
differential applied to the needle. A linear fit was applied for each frequency, revealing
excellent agreement (R2 > 0.99), though there was increasing deviation at higher frequencies.
We speculate that this result could be explained by a combination of attenuation in air and
the possibility that higher pressures possess higher frequency content. We also recognize
that understanding jet noise associated with highly turbulent flow is complicated in its
own right, and that numerous theories were previously proposed [29–33].

We also observed additional non-linear contributions from our sensor at sufficiently
high pressures in the form of a higher-order resonance feature near 4.8 MHz in some cases.
This feature was present regardless of the needle used, as shown in Figure 5. We attribute
this result to incoming pressure waves causing deflections that are a significant fraction of
the linewidth of the optical resonance. In such cases, the relationship between pressure and
optical power becomes non-linear, and harmonics of the natural vibrational modes of the
dome appear in the noise spectrum (e.g., the feature at 4.8 MHz is a second-order harmonic
of the dome fundamental vibrational resonance at 2.4 MHz). Figure 5 also illustrates that
the broadband frequency content associated with higher pressures is not specific to the
30-gauge needle primarily studied in this work; rather, it is present regardless of the orifice
size used. Additionally, the dynamic range between 0 and 20 PSI spans several orders of
magnitude in all cases.
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Figure 5. Broadband frequency content for additional needle gauges. Each needle was measured
using the 90◦ needle–sensor configuration shown in Figure 1. A control measurement with the gas
handling system depressurized is also presented for each case. (a) PSD plot for the 22-gauge needle
at 20.0 PSI; (b) PSD plot for the 26-gauge needle at 22.0 PSI.

3.3. Omnidirectional Detection

The comparatively small active area of our sensors (~100 μm), combined with the
nature of the buckled microcavity structure, provides inherent omnidirectionality [16]. To
demonstrate this fact, we varied the lateral distance between the needle and sensor, while
keeping the angle between them fixed at 0◦, as shown in Figure 6c, as opposed to the 90◦
configuration used in previous measurements (Figure 1) The PSD plots in Figure 6a,b show
results for two different lateral distances using the 30-gauge needle. We found that even in
this extreme configuration, the spectral content was still visible in the <500 MHz region,
above which air attenuation is suspected to be the limiting factor.

We also note that this distance is not representative of the ultimate device performance
we project to be possible. The primary performance-limiting factor for our probe was the
coupling between the interrogation laser and device, and better performance is anticipated
with future iterations. This aspect could be addressed by designing a custom probe assem-
bly with the ability to make small adjustments to correct for micron-scale misalignment.
Aside from this issue, future work will involve further investigating the impact of the
mirror layer structure and device size on the optomechanical performance.
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Figure 6. Omnidirectionality demonstration using the 30-gauge needle. PSD plots were recorded as
sensor was moved laterally with respect to needle tip. The gas system was held at a constant pressure
of 12.3 PSI. (a) PSD plot at a lateral distance of 1 cm; (b) PSD plot at a lateral distance of 10 cm;
(c) Schematic showing the configuration for each measurement.

4. Discussion

As mentioned, our observations are consistent with the theoretical framework devel-
oped for gas jets emitted from pipe-like orifices. Here, the syringe needle itself plays the role
of the pipe, and a gas flow through this needle is driven by a pressure differential between
the internal body of the syringe and the external lab environment. Regimes of behavior
can be understood using the well-known (and dimensionless) Reynolds (Re) and Strouhal
(St) numbers. Here, Re = ρvd/μ and St = fd/v, where ρ and μ are the density and dynamic
viscosity of the gas, v is flow velocity, d is a characteristic dimension (approximated by
the inner diameter of the needle here), and f is the ‘vortex shedding’ frequency. In many
flow problems, St is approximately constant over a wide range of Re, implying that the
observed vortex-shedding frequencies (and associated acoustic emissions) will scale as
f ~v/d. Thus, for the very small values of d studied here, we expect the acoustic noise and
jet tones to extend to much higher frequencies than could be detected using conventional
microphones in earlier studies [8–14], but which are well within the capabilities of our
broadband ultrasound sensors.

For the pressurized syringe, high-level details of the flow properties and acoustic
signals emitted can be understood as follows [9,10,12,15]:

i. Pressurized gas flows into the needle through an orifice termed the ‘vena con-
tracta’ [12], which is an effective aperture of diameter δ, being slightly smaller than
the inner diameter of the needle (e.g., δ~0.63 d). This orifice represents the primary
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obstruction in the flow path and is, thus, the appropriate characteristic dimension to
use in calculation of Re and St.

ii. For low Re, flow in the syringe needle is laminar, and negligible acoustic emissions
are observed. Above some critical value of Re, however, eddies are expected to form
near the needle entrance, resulting in a vortex trail forming along the inside walls of
the ‘pipe’ and flowing in the downstream direction [10]. Within a certain range of Re,
this vortex trail is approximately periodic, resulting in the emission of harmonically
related jet tones at the exit aperture of the needle. Notably, both harmonics and sub-
harmonics of the vortex-shedding frequency can be observed in the acoustic spectrum
within this ‘jet tone’ regime, as observed and explained by Anderson [9].

iii. For sufficiently high Re, the vortex formation becomes increasingly chaotic, and the
flow becomes increasingly turbulent. In this regime, jet tones are subsumed into a
broad background of ‘white’ noise, and the power spectral density of this ‘turbulent
noise’ continues to increase as the flow (i.e., Re) is increased.

The results reported in Section 3 (and the Supplementary Materials file) are in line
with these expectations. Using the relationship v = (2ΔP/ρ)1/2 [5], where ΔP is the pressure
differential across the syringe ‘pipe’, the curves plotted in Figure 3d verify the expected
scaling f ~v/d discussed above. It should be noted that it is the fundamental jet tone
frequency that is plotted. Since the tones observed at lower pressure spacings do not
necessarily exhibit the full spectrum of harmonics [11], full colormaps for each needle
were collected (and are available in the Supplementary Information), making it easier to
identify the harmonic eigenfrequencies. However, it was somewhat difficult to extract the
fundamental frequency for the 22-gauge needle due to the narrow pressure range where jet
tones were observed as well as their comparatively low amplitude. We fit the data from each
needle to a linear equation and found the slopes to be ~0.063 KHz/KHz, ~0.070 KHz/KHz,
and ~0.043 KHz/KHz for the 22-gauge, 26-gauge, and 30-gauge needles, respectively
(R2 > 0.99 in all cases). It is interesting, though perhaps expected, that all three needles seem
to exhibit similar slopes when the dependence on pressure and orifice diameter were taken
into account. We suggest that the variation in slope observed might result from the fact that
each gauge of needle has a different length, and that the characteristic dimension has some
dependence on both d and L [9,11]. Moreover, the manufacturer does not specify a tolerance
on any needle dimension, and we did not account for the needle bevel. Our data seem to
suggest the absence of a jet tone in the case of a pressure differential below some threshold
or for an infinitely large orifice diameter (in the form of an origin crossing), which is again
consistent with Anderson’s observations [9]. Anderson performed a similar experiment
with orifice plates affixed to a tube of length L (where L was the characteristic dimension of
the system) and noted nearly identical slopes. Another curiosity is that the slope for each
needle deviated near the upper pressure range where jet tones were observed, at least in
the case of the 22- and 26-gauge needles. We attribute this result to changes in the nature of
vortex formation at high Re values [12].

Each needle was found to exhibit a distinct range of pressures where jet tones, and
turbulent flow in general, were observed. This finding suggests the possibility of estimating
the size of a pinhole leak in an industrial setting if the pressure of the system is known.
The diameter of the orifice could be estimated using either the jet tone spacing or the
amplitude of the white noise at a given distance. The ability to measure fluid leaks has
wide appeal within the oil and gas industry, and significant effort was previously expended
in developing early detection systems based on ultrasonic technology [34–38]. However,
many of these systems are limited, at least in part, by their bandwidth and sensitivity. We
believe that the ability to measure leaks from sub-millimeter holes at low pressures far into
the MHz-frequency-range will be of particular interest for hazardous or explosive gases,
where electronic components cannot be placed in close proximity. Additionally, many
sources of ambient noise lie well below the MHz-range signals detected in the present
work, which is a significant potential benefit of the broadband capabilities of our sensor. In
future work, we hope to target the direct measurement of gas leaks in an industrial setting.
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One additional intriguing possibility suggested by our results is that a small needle
emitting a controlled gas jet could represent one way of generating a tunable acoustic
frequency comb, especially since the pressures used here should be accessible to any space
that already utilizes floating optical tables. This finding could represent a partial setup for
photo-acoustic comb spectroscopy without requiring expensive acousto- or electro-optic
modulators [39,40].

5. Conclusions

In summary, we have made three distinct contributions. First, as a compact probe
for all-optical detection of MHz-frequency range, air-coupled ultrasound was constructed.
Second, we generated MHz-range jet tones by passing pressurized nitrogen gas through a
collection of small syringes and showed that previously established theory can be extended
to this range. Finally, we showed that high-pressure gas leaks contain frequency content
that extends far into the MHz range, lying orders of magnitude above the noise floor of
our devices. Additionally, gas leaks can be sensed both off-axis and off-position. Our
buckled microcavity-based devices function as uniquely enabling leak sensors due to their
sensitivity, bandwidth, and omnidirectionality.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/s23125665/s1, Figure S1. A photograph of the needle assemblies
from the main manuscript, Figure S2. Generation of MHz frequency jet tones with 22- and 26-gauge
needles at various pressures, Figure S3. Extracted lineshape for the 30-gauge needle pressurized to
30.0 PSI, and Figure S4. Spectral content inherent to the gas system without a needle assembly in
place. Reference [41] is cited in the Supplementary Materials.
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Abstract: The mechanical properties of ice in cold regions are significantly affected by the variation
in temperature. The existing methods to determine ice properties commonly rely on one-off and
destructive compression and strength experiments, which are unable to acquire the varying properties
of ice due to temperature variations. To this end, an embedded ultrasonic system is proposed to
inspect the mechanical properties of ice in an online and real-time mode. With this system, ultrasonic
experiments are conducted to testify to the validity of the system in continuously inspecting the
mechanical properties of ice and, in particular, to verify its capabilities to obtain ice properties for
various temperature conditions. As an extension of the experiment, an associated refined numerical
model is elaborated by mimicking the number, size, and agglomeration of bubbles using a stochastic
distribution. This system can continuously record the wave propagation velocity in the ice, giving
rise to ice properties through the intrinsic mechanics relationship. In addition, this model facilitates
having insights into the effect of properties, e.g., porosity, on ice properties. The proposed embedded
ultrasonic system largely outperforms the existing methods to obtain ice properties, holding promise
for developing online and real-time monitoring techniques to assess the ice condition closely related
to structures in cold regions.

Keywords: ice; mechanical properties; embedded ultrasonic system; varying temperature; random
pore model; porosity

1. Introduction

In recent decades, research on ice has grown remarkably. Intensive research is being
performed on whether to examine global climate change [1–3], to break ice sheets in the
arctic with icebreakers [4], to investigate ice-covered electric antennas [5], to design ships
and offshore structures [6,7], to study the icing conditions in aviation [8], etc. In those
investigations, it is essential to obtain the mechanical properties of ice, which will change
with variations in ambient temperature.

Currently, diverse measurement methods of ice mechanical properties have been
developed in an experimental way, including uniaxial compression [9–11], triaxial com-
pression, and flexural strength tests [12]. Aksenov et al. [13] attained the preliminary
temperature-related stress-strain properties of the freshwater ice by performing short-time
uniaxial compression tests for cylindrical ice specimens at various specific temperatures.
Moslet [14] conducted the uniaxial compression strength tests on columnar sea ice in the
field on Svalbard, with the indication of a strong relationship between Young’s modulus
and ice porosity. Qiu et al. [15] obtained the compressive and tensile plastic properties of ice
based on the triaxial compression test of columnar ice. However, due to the brittleness of
the ice material itself, fracture is inevitable in the experiment. Moreover, the time between
the testing starting and the fracture ending is very short. Therefore, in a single experiment,
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it is not possible to obtain changes in ice properties caused by continuous temperature
changes. Additionally, those destructive tests are costly and inappropriate for structures
in service. In order to obtain the mechanical properties of ice that continuously change
with temperature without damaging the existing ice structure, a non-destructive testing
method is needed that can achieve real-time monitoring and is suitable for ice materials.
Accordingly, a non-destructive method for estimating the temperature-related mechanical
properties of ice is demanded.

The ultrasonic technique is one of the most commonly used non-destructive methods
in characterizations of material properties [16,17], derivations of dynamic responses [18],
and condition monitoring [19–23]. Relevant sensing techniques for wave generation and
measurement have been developed rapidly. Representative research works are as follows:
Bayón et al. [24] employed the measured Rayleigh wave velocity and the aspect ratio
of the elliptical trajectory amplitudes to obtain the Young’s constants of isotropic linear
materials. Further, Medina and Bayón [25] proposed a method for calculating the dynamic
Young’s constants of an anisotropic plate through the measured impact-echo resonance
and Rayleigh wave velocity. Medina and Bayón [25] determined the mechanical properties
and damage properties of a multilayer composite board by combining experimental and
numerical data simultaneously. Ultrasonic technology has also been implemented in the
estimation of ice properties. Bock and Polach [26] explored the applicability of the collected
long-period surface wave dispersions in the inversion of ice shell thickness. Gagnon [27]
presented an impulse-echo method to evaluate the longitudinal ultrasonic velocities of three
different types of specimens to calculate Young’s modulus. Noteworthy, a state-of-the-art
literature review specified that only a limited number of studies dealt with the utilisation of
ultrasonic techniques in the determination of ice properties, and there are still some crucial
issues to be solved. In addition, after obtaining the monitoring data, this study used the
methods mentioned in [28,29] to conduct the corresponding data modelling and analysis,
including regression analysis and spectral analysis.

In addition to experimental testing methods, numerical simulation is a valuable alter-
native method for estimating the ice properties by taking advantage of wave propagation
simulation techniques [22,30–33]. Various numerical models were established to represent
the ice materials, including Young’s non-linear behaviour model [34], the crushable foam
model [35,36], and the user-defined elastic-plastic material model [37,38]. Liu et al. [6]
proposed a quasi-static model on the basis of the strain rate-dependent plasticity theory
to simulate ice structural behaviour by combining the Tsai Wu yield surface criteria and
the associated flow rule. Bock and Polach [26] analysed the non-linear behaviour of the
aqueous model ice, concluding that the non-linear behaviour of ice is independent of its
crystal structure and chemical dopant. Gagnon et al. [27] adopted a “crushable foam”
material type in LS-DYNA to model the ice behaviour, with the numerical results of the
‘calibrated stress-volumetric strain relationship’ showing a good agreement with the exper-
imental ones. Noticeably, the existing numerical cases lacked studies on the influence of
temperature variations and ice porosities.

From the surveyed literature, it is observed that the current prevalent methods to
determine ice properties commonly rely on one-off and destructive compression and
strength tests, which are incapable of acquiring the temperature variation-induced changes
in ice properties. Moreover, ultrasonic technology, as one of the most commonly used
non-destructive methods for characterising material properties, is rarely applied to ice
mechanical properties. In addition, due to the unique nature of ice materials, it is necessary
to study how ultrasonic sensors can be embedded in ice. Furthermore, there is a lack of
numerical models for wave propagation in ice with different temperatures and porosities.
To address these issues, an embedded ultrasound system is proposed to test the mechanical
properties of ice, and its feasibility and effectiveness have been verified through ultrasound
experiments and numerical models.

The rest of this paper is organised as follows: Section 2 formulates a novel ultrasonic
method for determining the mechanical properties of ice. Section 3 builds the 2D and
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3D ice models, with the numerical results at different temperatures and porosities being
counted. Section 4 exhibits comparisons and discussions of experimental and numerical
results. Section 5 presents the conclusions.

2. Test-Based Identification of the Mechanical Properties of Ice

The current prevalent methods to acquire the mechanical properties of ice are typically
uniaxial compression, triaxial compression, and flexural strength experiments. However,
due to the brittleness of the ice material itself, fracture is inevitable in the experiment.
Moreover, the time between the testing starting and the fracture ending is very short.
Therefore, in a single experiment, it is not possible to obtain changes in ice properties
caused by continuous temperature changes. To address the deficiencies of existing methods,
an embedded ultrasonic system is built as an alternative to compression tests to obtain the
mechanical properties of ice at different temperatures.

2.1. Test Specimen
2.1.1. Actuators and Sensors

Piezoelectric material can be used as both actuators and transducers, which is beneficial
for its direct and inverse piezoelectric effects [39]. Figure 1c shows a piezoelectric ceramic
transducer (PZT), with its dimensions and material properties shown in Table 1. In the PZT,
the electric wires are welded to the positive and negative poles on their different sides. Both
sides are waterproof with the transparent insulating glues. The temperature sensor is made
of a 4 mm-diameter, waterproof platinum probe (shown in Figure 1d). The measurement
range is −50–+200 ◦C.

Figure 1. (a) Schematic diagram of ice sample structure; (b) ice specimen with sensors (scale 1:3);
(c) the PZT; and (d) the temperature sensor.

Table 1. Dimensions and material properties of PZT.

Diameter Thickness d33 KT3

20 mm 1 mm 460 × 10−12 m/V 1700

2.1.2. Ice Specimen and Sensing Strategy

(1) Ice specimen

The ice specimen is fabricated using distilled water with the purpose of avoiding
excessive impurities. The dimensions of the ice specimen are 150 × 150 × 200 mm3. Before
freezing, all the required sensors during the ultrasonic tests are fixed in the middle of the
mould with steel wires, as shown in Figure 1b.

The process for making ice samples is as follows: first, place the mould with distilled
water and sensors into a refrigerator with an initial temperature of −5 ◦C; second, when the
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surface water is frozen, progressively decrease the temperature of the refrigerator by 5 ◦C
per two hours; next, when the refrigerator temperature reaches −35 ◦C, the ice specimen
should be fully made; and finally, the newly-made ice specimen needs to be stored in a
refrigerator at −35 ◦C for at least 48 h to ensure a uniform temperature distribution in the
ice specimen. In this way, the ice cracks caused by big temperature variations could be
avoided.

(2) Sensing strategy

The PZTs and temperature sensor are set in the middle of the ice specimen. The
distance between the two PZTs is considered to be 70 mm. Additionally, the temperature
sensor is set at the uniform level of the PZTs due to the effect of temperature stratification
in ice.

(3) Considerations

Preliminary tests with a distance between the two PZTs are conducted to determine
the appropriate properties. Comparing the results at 25 mm, 50 mm, and 70 mm, it is found
that when the distance between the two PZTs is small, the wave packets of the longitudinal
wave and the shear wave cannot be distinguished. The reason is that the propagation
speed of the wave is very fast. When the shear wave propagates, the longitudinal wave
has not been fully received, which causes the longitudinal wave and shear wave to be
superimposed on each other, so it is difficult to distinguish a separate shear wave packet.

2.2. Velocity of the Transmitted Waves

Wave velocity, one of the key properties of wave propagation research, is defined as the
velocity at which a disturbance propagates in specified materials. It mainly depends on the
material properties, structural geometries, and external excitations. The longitudinal and
shear wave velocities are the most widely used variables in ultrasonic-structural analysis.
Their relationships with structural properties are formulated as follows:

Vl =

√
E(1 − μ)

ρ(1 + μ)(1 − 2μ)
, (1)

Vs =

√
E

2ρ(1 + μ)
(2)

According to Equations (1) and (2), the material properties (such as E, G, and μ) can be
achieved with the measured longitudinal and shear wave velocities (Vl and Vs) (shown in
Equations (3)–(6)). These relationships, which are the fundamentals of the characterizations
of the ice properties, can be written as follows:

μ =
V2

l − 2V2
s

2
(
V2

l − V2
s
) , (3)

E =
V2

s ρ
(
3V2

l − 4V2
s
)

V2
l − V2

s
, (4)

G = ρV2
s , (5)

K = ρ(V2
l − 4

3
V2

s ), (6)

where ρ is the density, E is Young’s modulus, μ is Poisson’s ratio, and Vl and Vs represent
the velocity of the longitudinal wave and the shear wave, respectively.
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2.3. Experimental Setup and Methods

(1) Test process

The experimental apparatus for the ultrasonic test is presented in Figure 2.

 

Figure 2. The experimental setup.

The excitation part includes the wave generator and desktop. Firstly, the waveform of
excitation is generated on the desktop. Then, a tone burst signal, consisting of sinusoids
modulated by the Hanning window [40], is utilised as the external excitation. This signal
can be expressed as follows [41]:

x(t) =
A
2

sin(2π fct)
[

1 − cos
(

2π fct
n

)]
, (7)

where A is the amplitude, n denotes the number of signal cycles, and fc represents the
central frequency.

The designated excitation is then transferred into the Agilent 33250A arbitrary wave
generator, which converts the excitation from a digital signal to an analogue one. The
output terminal of the waveform generator is connected to the PZT through a Bayonet
Nut Connector cable. Because of the positive piezoelectric effect, the PZT deforms in the
longitudinal direction of the ice, leading to the generation of longitudinal waves. The
output voltage of the waveform generator, which regulates the excitation amplitude, is set
to be 10 V in order to ensure a fully deformed piezoelectric ceramic sheet.

In the receiving part, the PZT transducer generates current due to the inverse piezo-
electric effect. Based on the characteristics of PZT, this generated current has a linear
relationship with its deformation. Thus, the captured current from the receiver can be
regarded as the propagated longitudinal wave in the ice. This received current is then am-
plified by a fixed-gain universal preamplifier, PXPA3, to increase its amplitude. The transfer
gain of the charge amplifier is 10 mv/pc. Then the current is introduced into the Agilent
DSO7034B oscilloscope to be converted into a digital signal. The sampling frequency of the
oscilloscope is set to 50 MHz. In particular, the application of the waterproof glue on the
surface of PZT not only makes the sensor insulated but also prevents the generated current
from leaking into the ice. In addition, there is no extra circuit other than the experimental
equipment. Therefore, the measured current from the receiver thoroughly originates from
the inverse piezoelectric effect caused by the longitudinal wave.

During the ultrasonic test, the ice specimen is covered with a foam box, which is a
common thermal insulation material in daily life and is used to slow down the impact of
external temperature on water, thus slowing down the speed of water icing. If the freezing
speed is too fast, it can cause the ice surface to expand and crack. Cracking ice will badly
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affect the experimental results. The internal temperature is monitored in real-time through
the temperature sensor. By continuously recording these internal temperatures and the
corresponding received signals, the non-destructive monitoring of wave propagation in ice
under the condition of temperature variation is realised.

(2) Determination of signal properties

Two properties (n and f c) on the right-hand side of Equation (7) need to be determined
in advance. Preliminary tests with different n and f c are conducted to determine the
appropriate properties. The measured ultrasonic signals with different n and f c are shown
in Figures 3 and 4, respectively.

In the preliminary test, the response signal results of 2 periods, 3 periods, 4 periods,
and 5 periods are compared and analysed. The experimental results in Figure 3 indicate
that the second peak of the measured signals can be more easily distinguished in cases of
having a smaller number of cycles (n = 2, 3) than in cases of having a larger number of
cycles (n = 4, 5).

On the other hand, the results in Figure 4 imply that the second peak of the measured
signals is easier to identify in cases of having larger central frequencies (fc = 250 kHz,
300 kHz, 350 kHz, 400 kHz, 450 kHz, and 500 kHz) than in cases of having smaller central
frequencies (fc = 150 kHz and 200 kHz).

Accordingly, a normalised 2-cycle 250 kHz tone burst signal (shown in Figure 5) is
employed as the external excitation in the experimental tests below.

Figure 3. Measured ultrasonic signals with the same centre frequency (250 kHz) and various number
of cycles: (a) n = 2, (b) n = 3, (c) n = 4, and (d) n = 5.
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Figure 4. Measured ultrasonic signals with the same cycles (2T) and various central frequencies:
(a) fc = 150 kHz, (b) fc = 200 kHz, (c) fc = 250 kHz, (d) fc = 300 kHz, (e) fc = 350 kHz, (f) fc = 400 kHz,
(g) fc = 450 kHz, and (h) fc = 500 kHz.

 
Figure 5. Waveform of the normalised 2-cycle 250 kHz tone burst signal.
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2.4. Experimental Results
2.4.1. The Threshold Denoising Based on the Wavelet Transform

The mode reflection/conversion is inevitable at the external and internal boundaries
of the ice specimen, contributing to a complex multi-mode wave signal. Moreover, the
measured signals could be adversely affected by environmental noise. Therefore, it is
necessary to rectify the measured signals to extract the inherent characteristics of the
interested signal rather than those induced by mode reflection/conversion and noise. In
this study, a wavelet transform-based threshold denoising process is adopted, with the
results presented in Figure 6.

Figure 6. Time domain and spectrogram of the response signal: (a) original response signal, (b) sig-
nal after denoising, (c) spectrogram of the original signal, and (d) spectrogram of the signal after
denoising.

2.4.2. Experimental Results

Considering the faster propagation of the longitudinal wave compared with the
shear wave, the first and second peaks of the ultrasonic waveform can be regarded as
the longitudinal wave and the shear wave, respectively. Figure 7 shows four denoised
ultrasonic waveforms measured at different temperatures. According to Figure 7, the first
peak of the presented waveforms cannot be clearly identified. Under these circumstances,
the first wave trough of the excitation cycle is selected as a reference to calculate the
propagation velocities of longitudinal and shear waves in the ice. Correspondingly, the
selected troughs of the longitudinal and transverse waves are annotated by the green
circleabaquss in Figure 7.

Figure 8 presents the calculated wave velocities with temperatures ranging from
−35 ◦C to −0.5 ◦C. Evidently, the velocities of longitudinal and shear waves are strongly
related to temperature. To explicitly interpret the relationship between temperature and
wave velocities, two quadratic functions are utilised to fit the velocity-temperature curves
in Figure 8, respectively, which are:

Vl = −0.01139 T2 − 4.36647 T + 3783.56, R = 0.99598, (8)
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Vs = −0.00401 T2 − 1.14069 T + 1797.705, R = 0.99449, (9)

where T represents the temperature and R is the correlation coefficient.

 
Figure 7. Four sets of measured waveforms.

(b)(a)

 

Figure 8. The relationship between wave velocity and temperature: (a) the relationship between
longitudinal wave velocity and temperature and (b) the relationship between shear wave velocity
and temperature.

Table 2 shows the longitudinal wave velocity in ice obtained from existing research.
The velocity values are in good agreement, which validates the accuracy of experimental
results in this study. The wave velocity and Young’s modulus strongly depend on properties
(such as salinity, impurity content, etc.) during the production of the ice, and the influences
of temperature and time are not taken into account in these experiments. This may be
the reason behind the deviation from the values, such as the distance of the transducers
measured in the present experiment.
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Table 2. Values of the longitudinal sound velocity in ice by different authors.

Studies Kupperman et al. [42] Gammon et al. [43] Randhawa [44] Present

Sound velocity (m/s) 3950 3892–4040 3980 3790–3960

In the experiments, the density of the utilised ice specimen was 890 kg/m3, which is the
average value determined by the drainage method [45–47]. Combined with Equations (3)–(6),
the mechanical properties of ice at different temperatures can be achieved, including the
Young’s modulus, shear modulus, Poisson’s ratio, and bulk modulus. The recognition
results are exhibited in Figure 9, with the vertical axis representing the corresponding
properties and the horizontal axis signifying the temperature variations. All the properties
presented in Figure 9 decline continuously with increasing temperature.

Figure 9. The changes of various properties with ice samples’ temperatures: (a) the Poisson’s factor
of ice versus temperature of ice; (b) the Young’s module versus temperature of ice; (c) the module of
volume versus temperature of ice; and (d) the module of shear versus temperature of ice.

3. Physics-Directed Numerical Simulations

In nature, ice contains pores, which are related to the growth process of ice. The
formation of ice from water is a process from the outside to the inside. After the surface
freezes, the air in the water cannot pass through the ice, forming pores inside the ice. These
pores vary in size and are randomly located, so randomly distributed circular pores are
used in the manuscript to simulate the pores inside the ice. The dimension, distribution,
and amount of the entrapped air bubbles highly affect the dynamic mechanical properties
of ice. Hou et al. [48] indicted that those bubbles in ice could neither be manufactured
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artificially nor obtained in the desired amount and distribution. Therefore, the influence of
the pores in the ice on the mechanical properties can only be studied by numerical methods.
In this study, a stochastic algorithm is presented to produce the sparsely distributed air
bubbles in the numerical model of ice.

3.1. Material Properties of the Ice Model

In order to better compare the numerical and experimental results, four sets of experi-
mental results were selected as the model material’s mechanical properties. The specific
values are shown in Table 3.

Table 3. Material mechanical properties of ice.

Temperature
T (◦C)

Density
ρ (kg·m3)

Poisson’s
Factor

μ

Young’s
Module
E (GPa)

Shear
Module G

(GPa)

Volume
Module
K (GPa)

−24.5 890 0.360 8.0375 2.954 9.581
−17.2 890 0.358 7.982 2.939 9.363
−8.8 890 0.356 7.889 2.908 9.143
−0.8 890 0.355 7.792 2.876 8.935

3.2. Two-Dimensional Ice Random Pore Model

In the numerical model, ice is treated as a linear solid without considering its nonlinear
behaviour or tensile or compressive damage. The dimensions of the tested specimens are
210 × 210 mm2, and the pores (air bubbles) are concentrated within a central region
of 180 × 180 mm2. Additionally, the round pores in the 2D model are utilised. Before
establishing the model, we observed and measured a large number of pores in natural and
artificial ice. These pores, except for those larger than 5 mm on the surface of the ice, are
very small in size inside the ice, some of which cannot be measured using conventional
measurement methods. In order to restore the uniformly distributed pores accumulated
in the ice, the porosity during simulation was fixed, the distribution was selected from
the range of most pore sizes, and the appropriate pore distribution was calculated using
MATLAB R2018a. They are classified into small pores having diameters of 0.5–1 mm and
large pores having diameters of 1–1.5 mm, with the volume ratios being 6:4. This volume
ratio was obtained through extensive testing, which not only meets the requirements of
achieving porosity within the model but also achieves a uniform distribution of pores
within the model. Moreover, the pores in the ice model are reciprocally independent,
with distances between the pores greater than 1.5 mm. In the modelling process, random
pores are first generated using MATLAB R2018a, and then the generated pore model is
imported into the ice model built in ABAQUS 6.14. The final model is obtained by cutting
out random pores from the original ice model. In the model, the excitation of the PZT
actuator is simplified by applying a concentrated force at the same position as the PZT
sensor [49]. The concentrated force is generated by the same 2-cycle 250 kHz tone burst
signal as the experimental test (as shown in Figure 5). In addition, the distance between
the actuator and receiver is 70 mm. In the model, the boundaries around the ice are the
boundaries of wave propagation.

The porosity is obtained using the calculation method of Cox and Weeks [50]. The
specific method can be expressed as:

va = 1 − ρ

ρi(Ti)
+ ρSi

F2(Ti)

F1(Ti)
, (10)

The density of pure ice ρi (g/cm3) is described as a function of temperature as [49]:

ρi(Ti) = 0.917 − 1.403 × 10−4Ti, (11)
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where va is the air volume ratio, ρi is the pure ice density, Si is ice salinity, and Ti is the ice
temperature. In this study, distilled water is used to make ice samples, so in the numerical
model Si = 0 is adopted. Therefore, Equation (10) becomes:

va = 1 − ρ

ρi(Ti)
. (12)

In the established numerical model, the density of the ice sample obtained from
the experiment is employed to calculate the porosity at different temperatures following
Equations (10)–(12).

Three 2D ice models (shown in Figures 10 and 11) with different porosities (0.5%, 1%,
and 3%) were established to investigate the influence of porosities on the wave propagations
in ice. The white dots in Figures 10 and 11 represent pores within the ice, while the green
areas in Figure 10 represent the ice. The blue part in Figure 11 shows the grid inside ice.
The mesh size is 1 mm, and the time step of numerical integration is 2 × 10−8 s. These small
computational properties can ensure the accurate capture of the propagative behaviour of
the ultrasonic wave.

Figure 10. Numerical model of the ice specimen with different porosities: (a) 0.5%; (b) 1%; and (c) 3%.

 
Figure 11. FEM meshes of the ice specimen with different porosities: (a) 0.5%; (b) 1%; and (c) 3%.
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3.3. Numerical Simulations of 2D Ice Random Pore Model
3.3.1. Wave Propagation Analysis with 0.5% Porosity

Figure 12 shows the wave propagation process of the ice model with 0.5% porosity at
different time values. Both the longitudinal and shear waves can be clearly distinguished
within a short period of time after being excited. The red circle in Figure 12d shows that
waves are superimposed on each other during propagation, and various waves cannot
be separated. Figure 12e shows a horizontal rebound wave at the red circle. The whole
specimen in Figure 12f is filled with mixed waveforms, and it is impossible to distinguish
between shear waves and longitudinal waves.

 

Figure 12. Wave propagation in a 2D ice model: (a–f) are the time slices of the wave propagation
process: (a) time = 1.0 × 10−5 s, (b) time = 2.0 × 10−5 s, (c) time = 3.0 × 10−5 s, (d) time = 4.0 × 10−5 s,
(e) time = 6 × 10−5 s, and (f) time = 7 × 10−5 s.

The waveforms received by the response point at four temperatures are extracted,
and the drawn waveform is shown in Figure 13. As can be seen in Figure 13, there is no
significant change in the morphology of the waves at the four temperatures. If the image is
not enlarged, it is difficult to detect the difference between the four curves. Therefore, we
believe that the change in temperature has little effect on the waveform. However, in the
red dashed circle in Figure 13, the results of amplifying the peaks show that the time of the
peaks appearing in the four curves is different, which means that the wave propagation
speeds corresponding to the four temperatures are different (because the distance between
the sensors remains constant).

With the application of ice properties from experiment tests, the numerical results of
longitudinal and shear wave velocities at different temperatures can be obtained, as shown
in Figure 14.

149



Sensors 2023, 23, 6045

 
Figure 13. Four sets of numerical simulation waveforms.

(a) (b)

 

Figure 14. The relationship between wave velocities and temperatures: (a) the relationship between
longitudinal wave velocity and temperature and (b) the relationship between shear wave velocity
and temperature.

3.3.2. Non-Porous 2D Ice Model

To reveal the existence of pores on the wave propagation in ice, this section compares
the numerical results attained by a non-porous ice model and a model with 3% porosity.
The result of −17.2 ◦C is randomly selected to demonstrate the process of wave propagation
in ice in numerical simulations. Of course, other temperature results can also be selected
for display. The selection of different temperatures has no effect on the propagation
process of waves in ice. The comparison results of wave propagations are depicted in
Figures 15 and 16. In Figure 15b,c, the longitudinal and shear waves can be apparently
inspected. According to the non-porous ice models in Figure 15b–f, no wave superpositions
are observed near the excitation point, demonstrating the boundary of the critical rebound
effect of the pore boundaries on the wave propagations in ice, even when the pore size
is small.
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Figure 15. Wave propagation in a non-porous ice model and a 3% porosity ice model. (a–f) are
the time slices of the wave propagation process: non-porous ice model (a) time = 2.0 × 10−5 s,
(b) time = 3.0 × 10−5 s, (c) time = 4.0 × 10−5 s, (d) time = 4.5 × 10−5 s, (e) time = 6 × 10−5 s, and
(f) time = 8 × 10−5 s.

 

Figure 16. Wave propagation in a 3% porosity ice model, (a–f) are the time slices of the wave
propagation process: (a) time = 2.2 × 10−5 s, (b) time = 3.2 × 10−5 s, (c) time = 4.0 × 10−5 s,
(d) time = 5.0 × 10−5 s, (e) time = 5.8 × 10−5 s, and (f) time = 8 × 10−5 s.

Figure 17 presents the normalized waveforms of the response point. The circles
represent the positions of the peaks used in velocity calculation, with the red circles

151



Sensors 2023, 23, 6045

indicating the peaks used for calculating the longitudinal wave velocity and the green
circles used for calculating the shear wave velocity. According to Figure 17, the presence or
absence of pores obviously affects the wave propagation speed. In Figure 17, the amplitude
in the first wave packet of the non-porous ice model is greater than that of the porous
ice model. However, in the range of 0.4–0.5 s, the amplitude of the porous ice model is
greater than that of the non-porous ice model. This is because the pore size in the porous
model is 0.5–1 mm, which is much smaller than the wavelength (about 1500 m). Therefore,
waves will form multiple reflections, refractions, and diffraction superpositions under the
rebound effect of the pore wall.

Figure 17. Comparison of the waveforms of the two models.

Figure 18 shows the normalised waveforms of the three porosities at −17.2 ◦C. The
circles in Figure 18 indicate the values used for calculating the wave velocities, with the
red circle is used for calculating the shear wave velocity and the green circles are used for
calculating the longitudinal wave velocity. It can be seen from Figure 18 that the higher the
porosity, the slower the wave propagation velocity.

 
Figure 18. Comparison of three porosity waveforms.
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3.4. Numerical Simulation Results of the 3D Ice Random Pore Model

In this section, the 3D random pore ice model is built by expanding the 2D model.
The dimensions of the investigated 3D model are 150 × 150 × 50 mm3, and the pores are
concentrated within a central cuboid range of 140 × 140 × 45 mm3. Similar to the 2D model,
the random pores in the 3D model are spheres, which are classified into the small size with
diameters of 0.5–1 mm and the large size with diameters of 1–1.5 mm. The ratio of small
and large pores is 6:4. Each pair of pores has a distance larger than 3 mm. Additionally,
the porosity of the 3D model can be designated in accordance with the porosity of the 2D
model (shown in Equations (10)–(12)). Three 3D ice models with porosities of 0.5%, 1%,
and 3% are counted below.

The coordinates of the centre and the diameter of the pores are randomly generated.
When the diameter rotates 360 degrees around the centre, a spherical pore is developed. All
pores of the entire model are shown in Figure 19a. By subtracting the pores from the whole
ice, the final 3D ice model with random pores, as shown in Figure 19b, can be obtained. In
addition, the three columns in Figure 19 represent three model diagrams with different
porosities.

Figure 19. Three-dimensional numerical model: (a–c) the spherical pore of the three different
porosities: (a) 0.5% porosity, (b) 1% porosity, and (c) 3% porosity; (d–f) three-dimensional ice random
pore model of the three different porosities: (d) 0.5% porosity, (e) 1% porosity, and (f) 3% porosity.

The excitation signal in the 3D model adopts the waveform signal of Figure 5 and acts
with concentrated force on the excitation point. The distance between the excitation and
the response points is 70 mm. The centre frequency of the sine wave is fc = 250 kHz. As
the mesh size of the model is 1 mm, the time step is 2 × 10−8 s. The grid map is shown in
Figure 20, where Figure 20b is a planned view of the model and Figure 20c is an enlarged
picture of the red circle of Figure 20b, which is used to highlight the grid at the gap. The
red circles in Figure 20c highlight the pores in the model.
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Figure 20. FEM meshes of the 3D ice model: (a) global view; (b) internal view; and (c) zoomed view
of the red circle in (b).

3.5. Numerical Results from the 3D Ice Model
3.5.1. Wave Propagation in Ice with 1% Porosity

Figure 21 presents the propagation process of waves in the 3D model. According to
Figure 21a–c, within a short period of time after excitation, the longitudinal and shear
waves can be clearly distinguished. Nevertheless, as time goes on, the longitudinal and
shear waves become bounced and superimposed on each other. Compared with the 2D
model, these bounces and superpositions of ultrasonic waves in the 3D model are more
serious and complex.

Figure 21. Wave propagation in the 3D ice model: (a–f) are the time slices of the wave propagation
process: (a) time = 1.0 × 10−5 s, (b) time = 1.7 × 10−5 s, (c) time = 2.0 × 10−5 s, (d) time = 3.1 × 10−5 s,
(e) time = 5.2 × 10−5 s, and (f) time = 6.3 × 10−5 s.

The mechanical properties of ice at various temperatures obtained from the experiment
are input into the 3D numerical model as the material properties, and the shear wave
together with the longitudinal wave velocities at different temperatures can be obtained.
Finally, all wave velocities are plotted as a scatter diagram, as shown in Figure 22.
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(a) (b)

 

Figure 22. Three-dimensional numerical simulation of the relationship between wave velocities and
temperatures: (a) the relationship between longitudinal wave velocity and temperature and (b) the
relationship between shear wave velocity and temperature.

Four groups of data are selected from all these numerical outcomes. The waveforms
of wave propagation in ice at these four temperatures are shown in Figure 23. It can be
seen that the shape of the waveforms at each temperature is similar, and there are obvious
differences in the speed of wave propagation at different temperatures. The positions of
the red circles in Figure 23 correspond to the first troughs of the longitudinal wave and the
shear wave, respectively.

 
Figure 23. Combination chart of four sets of 3D numerical simulation.

3.5.2. Comparisons

This part investigates the influence of porosity on wave propagation in ice using a 3D
model. The normalised waveforms at different porosities are shown in Figure 24. Similar to
the results in 2D, the porosity only affects the speed of wave propagation, and the influence
on the waveform can be ignored. The circles represent the peak positions used for velocity
calculation. Among them, the red circle and the green circle represent the peak values
used for calculating longitudinal wave velocity and shear wave velocity, respectively. The
cluttered waveforms at the tail (the wave propagation time t ≥ 5.5 × 10−5) in Figure 24
indicate the complex superposition and rebound of waves in the 3D model.
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Figure 24. Comparison of three porosity waveforms of 3D models.

4. Discussion of Experimental and Numerical Results

This section compares the numerical and experimental results to explicitly verify the
reliability of the established 2D and 3D numerical ice models. Taking the case of tempera-
ture −17.2 ◦C as an example, the corresponding numerical and experimental results are
presented in Figure 25. The figure shows that the waveform is normalised. The circles rep-
resent the peak positions used for velocity calculation. Among them, the red circle and the
green circle represent the peak values used for calculating longitudinal wave velocity and
shear wave velocity, respectively. According to Figure 25, both experimental and numerical
results can distinguish the transverse wave from the longitudinal wave. Moreover, the
waveforms are similar except for a certain difference in magnitude. Table 4 presents the
simulation errors of the established 2D and 3D ice models at various temperatures. The
relative errors are within the range of 0.15–5.7% according to the comparison of numerical
and experimental results. The errors in the 3D model are less than those in the 2D model,
which indicates that the 3D numerical ice model is more appropriate for wave propagation
analysis of ice.

 
Figure 25. Comparison of experimental data and simulation.
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Table 4 shows that the small deviation range demonstrates the reliability of both the
experimental tests and the numerical simulations. Moreover, the mechanical properties
of ice obtained from the experimental results are reasonable and applicable. In addition,
the 2D and 3D numerical ice models can prove that this method of simulating ice with
a random pore model is feasible. The ice model provides a reliable and feasible way for
further investigations of ice-related engineering problems.

5. Conclusions

In this study, a sophisticated embedded ultrasonic system is proposed to inspect the
mechanical properties of ice in real time and online. This embedded ultrasonic system
provides a platform to continuously obtain the response of the ice. With this system, the
ice properties under specific temperature conditions are identified based on the intrinsic
relationships between the wave propagation velocities and the mechanical properties of
ice. Furthermore, the feasibility and effectiveness of the proposed embedded ultrasonic
system-based method are validated via ultrasonic experiments and numerical simulations.
Both numerical and experimental results demonstrate the effectiveness of the proposed
embedded ultrasonic system-based method to inspect the mechanical properties of ice. The
conclusions can be summarised as follows:

(1) With the artificial ice specimen made of distilled water, the experiment results indicate
the velocities of wave propagation in the ice decrease gradually with the elevated
temperatures. Moreover, the velocity of the longitudinal wave is within the range
of 3954.8–3787.88 m/s, while the velocity of the shear wave is within the range of
1831.54–1797.64 m/s;

(2) The experimentally obtained wave velocities have been brought into known formulas
to calculate the material properties of ice at different temperatures, including Young’s
module, Poisson’s ratio, shear modulus, and bulk modulus. The results have shown
that the values of the four properties have a downward trend with the increase in
temperature;

(3) With the help of the numerical models, the wave propagation in ice has been investi-
gated, and the influence of varying temperatures on the wave propagation has been
discussed in detail. The relative errors are within the range of 0.15–5.7% according to
the comparison of numerical and experimental results, which proves the validity of
the experimental results and reasonability of the calculated ice mechanics properties;

(4) By comparing the waveform diagrams of the non-porous model and different porosity
models, it can be found that the porosity affects the wave propagation velocity. By
which, the greater the porosity, the slower the wave propagation velocity;

(5) This research proves that the random pore model can simulate ice well. Additionally,
by modifying the properties of the input model, more different ice models at different
temperatures can be obtained, which provides a reliable modelling method for later
research on ice.
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Abstract: Improving the operational efficiency and optimizing the design of sound navigation and
ranging (sonar) systems require accurate electrical equivalent models within the operating frequency
range. The power conversion system within the sonar system increases power efficiency through
impedance-matching circuits. Impedance matching is used to enhance the power transmission
efficiency of the sonar system. Therefore, to increase the efficiency of the sonar system, an electrical-
matching circuit is employed, and this necessitates an accurate equivalent circuit for the sonar
transducer within the operating frequency range. In conventional equivalent circuit derivation
methods, errors occur because they utilize the same number of RLC branches as the resonant
frequency of the sonar transducer, based on its physical properties. Hence, this paper proposes
an algorithm for deriving an equivalent circuit independent of resonance by employing multiple
electrical components and particle swarm optimization (PSO). A comparative verification was also
performed between the proposed and existing approaches using the Butterworth–van Dyke (BVD)
model, which is a method for deriving electrical equivalent circuits.

Keywords: sound navigation and ranging; particle swarm optimization; electrical equivalent circuit;
multiple resonant characteristics

1. Introduction

Sound navigation and ranging (sonar) systems detect underwater objects by utilizing
electrical energy-to-sound energy conversion. Sonar power systems consist of the following
components, as shown in Figure 1 [1–3]: (1) a direct current (DC) power supply, which
serves as the electrical energy source required for generating acoustic energy; (2) a power
converter, which converts the DC voltage into alternating current (AC) to provide the
desired electrical energy supply for the required sound signal intensity; (3) an LC filter
(or low-pass filter), which removes unnecessary frequencies for acoustic detection; (4) an
impedance-matching transformer, which eliminates the reactive power generated by the
material characteristics of the sonar sensor; and (5) a sonar sensor, which converts the input
electrical signal into an acoustic signal.

 
Figure 1. Sonar transducer power system.
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Sonar systems have been developed for precise and wide-ranging exploration aimed
at broadband operation [4,5], with high capacity, and high efficiency [6]. When designing
high-power and high-efficiency power converters for sonar systems, reactive power and
active power must be minimized and converted into acoustic energy [6]. After designing a
sonar power system that meets these requirements, it is essential to verify the sonar sensor’s
performance. However, the electrical characteristics of sonar sensors can vary depending
on the installation environment, such as terrestrial or submarine, the sensor type, and
the sensor array structure. Therefore, while designing and validating high-power and
high-efficiency power converters, accurate electrical equivalent models of the sonar sensor
are required. Equivalent circuit models can be of various types and reflect the physical
characteristics or operational features of the sonar sensors.

The equivalent circuit model originated from Mason’s one-dimensional (1D) model
of a piezoelectric transducer proposed in 1942 [7]. In this model, the physical movement
of the piezo-ceramic was compared with that of a spring, and an ideal transformer was
used to represent the electrical circuit. In 1961, Redwood proposed a method that used
electrical transmission lines to model the transient behavior of sonar sensors [7]. In 1970, the
Krimtholz, Leedom, and Mattthaei (KLM) model was proposed to simulate sonar sensors
operating in the high-frequency range [7–12]. In 1994, Leach proposed the Butterworth–van
Dyke (BVD) model as a replacement for the conventional Mason model and provided the
simplest approach for simulating multilayered sensor structures. Although this methodol-
ogy is not well suited for high-frequency characteristics and multiple resonances [7], its
application as a modeling circuit remains predominant owing to its remarkable accuracy at
the resonance points.

An analytical method using approximation techniques in a certain range of sonar
sensor impedances was employed to estimate the parameters of equivalent circuits [7,13].
However, this approach is ineffective when the impedance variation at the resonant fre-
quencies is small. To overcome this limitation, an alternative approach that calculates
the equivalent circuit parameters based on the resonance frequencies within the actual
impedance of the sensor was proposed. However, this method yielded inaccurate results
when deriving the parameters of an equivalent circuit [14]. Building on this calculation
method, Ramesh and Ebenezer [15] proposed a parameter estimation technique using
the least squares method. They assumed that each resonance point is independent and
treated the equivalent circuit for each resonance as a parallel RLC branch. They essen-
tially proposed a method for deriving an equivalent circuit and its parameters for a sensor
with two resonance frequencies [15]. A drawback of this method is that the estimation
errors increase when the resonance frequencies are close to each other. Consequently, to
accurately model sensors with abrupt impedance variations is challenging. To address
these limitations, recent studies have proposed parameter estimation approaches using
particle swarm optimization (PSO) [16]. However, owing to the limitations of the frequency
degrees of freedom of the equivalent circuit, even using such methods, the modeling of
rapidly changing impedance characteristics remains difficult. Therefore, in this study, we
devised an electrical equivalent circuit derivation approach by constructing an equivalent
circuit composed of multiple RLC components configured in series and parallel. The PSO
algorithm was employed to determine the physically realizable values of the equivalent
circuit component parameters. To validate the proposed approach, electrical equivalent
circuits of sonar sensors with single, dual, and multiple resonances were derived using
both conventional and proposed methods. The accuracy of the impedance estimation was
evaluated with respect to the change in the number of resonances.

2. Electrical Equivalent Circuit for Sonar Sensors

2.1. Conventional Electrical Equivalent Circuits

The BVD equivalent circuit, shown in Figure 2, is composed of an RLC branch con-
sisting of resistance (R1), inductance (L2), and capacitance (C3) to mimic the electrical
resonance frequency characteristics, along with a parallel capacitor (C0) representing the
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electrical capacitance properties of the piezoelectric component. Therefore, in this study,
to reduce sensor errors caused by physical and material factors, an enhanced equivalent
circuit with increased electrical resonance modes and RLC branches was employed within
the BVD model.

 
Figure 2. BVD equivalent circuit.

The electrical admittance of Figure 2 is determined as follows:

Y =
I
V

= jωC0 +
n

∑
i=1

1
Ri + jωLi +

1
jωCi

(1)

2.2. Proposed Electrical Equivalent Circuits

The equivalent electrical circuit in Figure 2 represents the resonances within the
operating frequency range by using an RLC branch for the nth resonance. However, such
equivalent models face challenges with regard to selecting different models based on the
observed resonances in the measured sonar impedance data and estimating the parameters
within the selected model.

Furthermore, based on the measured characteristics of the sonar sensor, an equivalent
circuit was determined. When using a large number of components, parameter estimation
required a relatively long time, resulting in more accurate results. Conversely, for a small
number of components, the estimation time was reduced, although the accuracy decreased,
thus exhibiting a trade-off relationship. Additionally, after deriving the corresponding pa-
rameters, a trial-and-error process was performed under human intervention for additional
calibration. Therefore, in this paper, we propose a high-degree model composed of 54 RLC
components, as depicted in Figure 3, which allows for the selection of different equivalent
circuits for each resonance frequency. Thus, the proposed model seeks to overcome the
conventional limitations of the sensor characteristic simulation due to the constraints on
the number of RLC components.
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Figure 3. Proposed equivalent circuits, high-degree model.

3. Estimation of Electrical Equivalent Circuit Using Particle Swarm Optimization

To derive the electrical equivalent model of the sonar sensor, the electrical character-
istics of the sensor must be analyzed and an appropriate type of equivalent model must
be selected. Once the equivalent model is determined, optimization algorithms are used
with the measured impedance magnitude and phase characteristics of the actual sonar
sensor in its operating frequency range as reference values. This allows for the extraction
of parameter values at the point where the combination of parameter values minimizes
errors in the impedance magnitude and phase.

As shown in Table 1, the least squares method, genetic algorithm (GA) and PSO have
their own characteristics. The least squares method faces the difficulty of achieving optimal
results in the presence of large errors. Meanwhile, the GA suffers from the lack of diversity
among individuals, leading to convergence to nonoptimal solutions.

Table 1. Characteristic of each type of parameter estimation algorithm.

Algorithm Type Characteristic

Least square The optimal solution is derived in the direction that minimizes the
total sum of errors between the reference and estimated values.

Genetic algorithm The optimal solution is found within a group, and the search is
repeated based on the selected solution to derive the optimal solution.

PSO algorithm Individual particles and clusters exchange error information based on
one reference value to derive the optimal solution.

In this study, the PSO algorithm was employed to derive the equivalent circuit param-
eters of a sonar sensor [17]. The PSO algorithm is based on swarm intelligence, which is
inspired by the collective behavior of flocks of birds and schools of fish. It has the advantage
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of obtaining results quickly because it only transmits the best global optimum information
instead of requiring overlap or mutation operations [18]. However, the PSO algorithm may
suffer from convergence to the local optima rather than the global optimum if the speed
and direction of the particles are inaccurate. To address this issue, the inertia weight (w) in
the PSO algorithm was examined so as to improve its performance [19].

3.1. Conventional Method

The electrical equivalent model of the sonar sensor was derived using the PSO algo-
rithm as shown in Figure 4, and related variables are shown in Table 2.

(1) Initialization phase: The necessary variables for the PSO algorithm are initialized, and
the initial values are set.

(2) Fitness calculation of the particles: The impedance characteristics of the sensor are
calculated based on the estimated parameter values of the equivalent circuit and the
variables obtained from the previous step. The calculated and measured impedance
characteristics are compared to evaluate the error level. The evaluation is performed
using Equation (2), where e represents the error value, kmag and kphase are the weight-
ing factors for the magnitude and phase errors, respectively, and Zmag and Zphase
represent the errors in the estimated impedance magnitude and phase, respectively.

e = kmagZmag + kphaseZphase (2)

(3) pbestk
id and gbestk

id update phase: In this phase, the evaluation values of each particle,
determined by the fitness function are compared to the previously recorded best
evaluation value of pbestk

id. If the current evaluation value is lower than the previous
best evaluation value, the parameter values are updated and assigned as the new
pbestk

id. Subsequently, among all the updated pbestk
id values, the value with the best

evaluation result of gbestk
id is compared with the previous best evaluation result

within the swarm. If the new evaluation result is superior, the derived parameters
are updated. Once all the updates are completed, the algorithm checks whether
the maximum number of iterations has been reached or if the evaluation result
satisfies the termination criterion. If either condition is satisfied, the PSO algorithm
terminates. This process ensures that the particles continuously update their personal
best positions and velocities, while also considering the global best position within
the swarm.

(4) xk+1
id calculation phase: In this phase, when the maximum number of iterations is

not exceeded and the evaluation result does not satisfy the termination criterion,
new parameter values (xid) are assigned for the next optimization operation. The
new parameter values are determined according to the PSO algorithm, as shown in
Equation (3). The velocity change (vid), representing the direction and magnitude of
the particle movement, is added to the current xid value, resulting in the derivation
of the new xid value, as shown in Equation (4). This calculation phase ensures that
each particle updates its position based on its previous position and the velocity
change determined by the PSO algorithm, allowing for continuous exploration and
refinement of the parameter space in the search for an optimal solution.

Vk+1
id = wVk

id + c1rk
i

(
pbestk

id − xk
id

)
+ c2rk

2

(
gbestk

d − xk
id

)
(3)

xk+1
id = xk

id + Vk+1
id (4)
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Figure 4. Conventional procedure for parameter estimation using PSO.

Table 2. Variable definitions for Equations (2)–(4).

Variables Name Definition

c1, c2 Acceleration constants
d Number of swarm
n Total number of parameters to derive PSO results

r1, r2 Uniformly distributed random numbers
ω Inertia weight factor
i Number of particles

pnum Total number of particles for the swarm
Vt

id Present velocity vector of the swarm
Vt+1

id Next velocity vector of the particle
xk

id Present position vector of the swarm
xk+1

id Next position vector of the particle
gbestd Optimal position vector of the swarm
pbestd Optimal position vector of the particle

3.2. Proposed Method

As shown in Figure 5, The process of deriving the parameters to simulate multiple
resonance characteristics and rapidly changing electrical impedance characteristics using
multiple electrical RLC components is as follows:

(1) Initialization phase: the necessary variables are initialized, and initial values are set
for the PSO algorithm.

(2) Multiple-component parameter derivation is through the PSO process, as shown in
Figure 4, and the electrical parameters of the entire set of RLC components are derived,
as shown in Figure 3.

(3) Selection of restricted component range: component parameters that are physically
difficult to implement are selected as the basis for defining the restricted range.
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(4) Selection of feasible components considering manufacturability: based on the up-
per and lower limits of the impedance determined in step 3, the RLC component
parameters that exceed the impedance thresholds are selected.

(5) PSO reiteration using the modified equivalent circuit: using the modified equivalent
circuit from step 4, the components that were not selected are excluded, and the PSO
derivation process is performed, as shown in Equations (3) and (4), to derive the
electrical equivalent circuit parameters.

 

Figure 5. Proposed procedure of PSO algorithm for parameter estimation of high-degree electrical
equivalent circuit.

4. Results

The results of the equivalent circuit parameter estimation for single, double, and
multiple resonant sonar sensors were compared to validate the accuracy of the proposed
equivalent circuit and parameter estimation algorithm. The average error rates between
the measured impedance magnitude and phase values (using Equations (5) and (6)) and
the estimated impedance characteristics were utilized to compare the accuracy of the
impedance characteristics. Here, Zmag_error_avg and Zph_error_avg, respectively, represent the
average error rates of the impedance magnitude and phase. Further, Zmag_real , Zmag_est,
Zph_real , and Zph_est denote the measured and estimated values of the impedance magnitude
and phase, respectively.

In this paper, the results of parameter derivation for circuit modeling are presented
by comparing the conventional equivalent circuit and PSO algorithm-based parameter

167



Sensors 2023, 23, 6636

derivation with the proposed method using an equivalent circuit and the PSO algorithm.
The results of the proposed algorithm for the parameters obtained in procedure (3) of
Section 4.2 are denoted by “·” for electrical shorts and “X” for electrical opens in the table.

Zmag_error_avg[%] =
1
n∑n

0

√(
Zmag_real − Zmag_est

)2
/
(

1
n∑n

0 Zmag_real

)
× 100 (5)

Zph_error_avg[%] =
1
n∑n

0

√(
Zphreal

− Zphest

)2
/
(

1
n∑n

0 Zphreal

)
× 100 (6)

4.1. Single Resonance Characteristic Results

As shown in Figure 6a, for a sonar sensor with a single resonant frequency within
the operating frequency range, a conventional equivalent circuit with an RLC branch was
constructed to simulate the single resonant mode in the BVD model. The equivalent circuit
parameters were derived by utilizing the PSO algorithm, illustrated in Figure 4, in which
the measured impedance data are represented by the red line, and the characteristics of the
equivalent circuit are denoted by the line of crosses in Figure 6b. The values obtained for
the four parameters of the equivalent circuit are presented in Table 3.

 
(a) (b) 

Figure 6. Results of deriving the equivalent circuit of a single resonant sensor using the conventional
method: (a) conventional equivalent circuit; and (b) electrical impedance characteristics.

Table 3. Results of deriving equivalent circuit parameters of a single resonant sonar sensor using the
conventional method.

Parameter Name Value Parameter Name Value

C0 19.91 nF L1 287.58 μH
R1 11.57 Ω C1 11.15 nF

To compare the proposed equivalent circuit and derivation approach for a single-
resonant sonar sensor, the results of deriving the equivalent circuit using the PSO algorithm
shown in Figure 5 are summarized in Figure 7. Specifically, Figure 7a,b show the config-
urations of the equivalent circuits with 54 RLC components [EA] each. After excluding
components with excessively large or small parameter values, which may appear electri-
cally open or short, the equivalent circuit was sorted, as shown in Figure 7b. The parameter
values for each component constituting the equivalent circuit are listed in Tables 4 and 5.
The component arrangement is organized in the order of subscripts from the top-left
RLC component of Z1 in the table, which corresponds to the 27 top-left RLC components,
as shown in Figure 7a. The electrical characteristics of these components are shown in
Figure 7c, wherein the blue and black lines represent the characteristic results.
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(a) (b) (c) 

Figure 7. Results of deriving the equivalent circuit of a single resonant sensor using the proposed
method: (a) high-degree equivalent circuit; (b) equivalent circuit after sorting unnecessary elements;
(c) electrical impedance characteristics.

Table 4. Results of deriving equivalent circuit parameters of a single resonant sonar sensor using the
proposed method before sorting.

R [Ω] L [mH] C [nF] R [Ω] L [mH] C [nF] R [Ω] L [mH] C [nF]

Z1

1.30 × 1031 2.49 × 1038 4.13 × 1035 1.34 × 1021 6.27 × 1032 7.34 × 1032 2.51 × 1030 9.87 × 1036 1.37 × 1035

3.09 × 1034 1.35 × 1028 6.33 × 1033 7.05 × 1040 2.08 × 1034 4.55 × 1041 3.00 × 1023 1.45 × 1032 1.31 × 1033

2.43 × 1033 8.11 × 1039 3.75 × 1038 8.72 × 1027 2.37 × 1038 3.74 × 1034 2.30 × 1028 2.59 × 1038 9.62 × 1032

Z2

3.22 × 1031 2.86 × 1037 7.54 × 1038 6.76 × 1026 1.97 × 1034 1.68 × 1029 0.0013 0.00013 7.14 × 1031

2.99 7.25 × 10−6 17.1 1.81 × 1031 6.38 × 1036 1.45 × 1034 4.14 × 1029 2.29 × 1040 2.04 × 1033

12.93 0.37 8.10 0.0025 0.018 8.30 × 1027 4.76 × 1032 1.16 × 1031 3.12 × 1037

Table 5. Results of deriving equivalent circuit parameters of a single resonant sonar sensor using the
proposed method after sorting.

R [Ω] L [mH] C [nF] R [Ω] L [mH] C [nF] R [Ω] L [mH] C [nF]

Z1

X X · X X · X X ·
X X · X X · X X ·
X X · X X · X X ·

Z2

X X · X X · · · ·
2.99 · 17.1 X X · X X ·

12.93 0.37 8.10 · 0.02 · X X ·

4.2. Dual Resonance Characteristic Results

Following the same procedure as that used for the comparison and validation of the
equivalent circuit for single-resonant sonar sensors, we also compared the precision of the
equivalent circuit results for sonar sensors with double resonant frequencies. The results of
PSO obtained in Figure 4 were utilized to derive the equivalent circuit of a dual-resonant
SONAR sensor, as presented in Figure 8 and Table 6 in the paper.
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(a) (b) 

Figure 8. Results of deriving the equivalent circuit of the dual resonance sensor using the conventional
method: (a) equivalent circuit; and (b) electrical equivalent characteristics.

Table 6. Results of deriving equivalent circuit parameters of the dual resonance sonar sensor using
the conventional method.

Parameter Name Value Parameter Name Value

C0 22 nF C2 390 nF
R1 3.3 kΩ R3 12 Ω
L1 425 mH L3 1.22 mH
C1 5.6 nF C3 680 nF

The results of the parameter estimation using PSO are presented in Tables 7 and 8. The
characteristics of the equivalent circuit based on the parameters listed in Tables 7 and 8 are
shown in Figure 9, wherein the reference sensor characteristics are in red and the equivalent
circuit characteristics are in blue.

Table 7. Results of deriving equivalent circuit parameters of the dual resonant sonar sensor using the
proposed method before sorting.

R [Ω] L [mH] C [nF] R [Ω] L [mH] C [nF] R [Ω] L [mH] C [nF]

Z1

6.78 × 1034 8.39 × 1028 7.80 × 1030 0.00012 0.019 1813.33 0.71 1.19 × 10−6 3637.09
1.37 8.47 × 10−7 15,210.46 8.18 × 10−5 9.64 2.59 × 1034 8.49 × 1038 1.60 × 1035 6.86 × 1032

4.38 × 1036 7.73 × 1034 1.39 × 1030 64.89 9.88 595.98 0.00023 7.59 1.16 × 1032

Z2

6.23 0.69 1910.65 0.00016 5.56 46,620.45 2.39 × 1037 3.95 × 1035 1.23 × 1041

5.62 × 1029 2.31 × 1036 7.21 × 1040 64.78 21.10 525.72 9.72 × 1037 1.16 × 1046 1.42 × 1033

0.81 1.34 4.75 × 108 4.64 × 1045 3.51 × 1034 3.49 × 1029 2.12 × 10−5 0.35 1.03 × 1044

Table 8. Results of deriving equivalent circuit parameters of the dual resonant sonar sensor using the
proposed method after sorting.

R [Ω] L [mH] C [nF] R [Ω] L [mH] C [nF] R [Ω] L [mH] C [nF]

Z1

X X · X X · X X ·
· · · · 9.64 · X X ·
X X · · 9.88 595.98 · 7.59 ·

Z2

· · X X · 46,620.45 X X ·
X X · 21.1 526 525.72 X X ·
· · · X X · · · ·
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(a) (b) (c) 

Figure 9. Results of deriving the equivalent circuit of a single resonant sensor using the proposed
method: (a) high-degree equivalent circuit; (b) equivalent circuit after sorting unnecessary elements;
and (c) electrical impedance characteristics.

4.3. Multiple Resonance Characteristic Results

To verify the feasibility of simulating multiple resonant characteristics and rapid
impedance changes with varying frequencies, we compared the existing and proposed
approaches based on the measured data for sensors with multiple resonant frequencies and
characteristics exhibiting rapid variations.

Owing to the phase characteristics of the multi-resonant sonar sensor, an additional
parallel L1 was included in the existing BVD model to construct an equivalent circuit.
The results of the parameter estimation using PSO are presented in Table 9. The charac-
teristics of the equivalent circuit based on the parameters listed in Table 9 are shown in
Figure 10, wherein the reference sensor characteristics are in red and the equivalent circuit
characteristics are in blue.

Table 9. Results of deriving equivalent circuit parameters of the multiple resonance sonar sensor
using the conventional method.

Parameter Name Value Parameter Name Value

L1 5.356 mH L7 11.844 mH
C2 806.5 nF C8 318.989 nF
R3 10 Ω R9 129.631 Ω
L4 6.344 mH L10 29.999 mH
C5 149.46 nF C11 380.17 nF
R6 90.877 Ω - -

 
(a) (b) 

Figure 10. Results of deriving the equivalent circuit of the multiple resonance sensor using the
conventional method: (a) equivalent circuit; and (b) electrical equivalent characteristics.
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To further compare and validate the proposed approach, we employed the PSO
algorithm to derive the equivalent circuit and parameters, as shown in Figure 11. The
results are presented in Tables 10 and 11. The electrical impedance characteristics of each
equivalent circuit in Figure 11c are represented by blue and black lines, as aforementioned.

  
(a) (b) (c) 

Figure 11. Results of deriving the equivalent circuit of the multiple resonant sensor using the
proposed method: (a) high-degree equivalent circuit; (b) equivalent circuit after sorting unnecessary
elements; and (c) electrical impedance characteristics.

Table 10. Results of deriving equivalent circuit parameters of the multiple resonant sonar sensor
using the proposed method before sorting.

R [Ω] L [mH] C [nF] R [Ω] L [mH] C [nF] R [Ω] L [mH] C [nF]

Z1

6.78 × 1034 8.39 × 1028 7.80 × 1030 0.00012 0.019 1813.33 0.709 1.19 × 10−6 3637.09
1.37 8.47 × 10−7 1.52 × 104 8.18 × 10−5 9.64 2.59 × 1034 8.49 × 1038 1.60 × 1035 6.86 × 1032

4.38 × 1036 7.73 × 1034 1.39 × 1030 64.89 9.88 595.98 0.00023 7.59 1.16 × 1032

Z2

6.23 0.69 1.91 × 103 0.00016 5.56 46,620.45 2.39 × 1037 3.95 × 1035 1.23 × 1041

5.62 × 1029 2.31 × 1036 7.21 × 1040 64.78 21.1 525.72 9.72 × 1037 1.16 × 1046 1.42 × 1033

0.81 1.34 4.75 × 108 4.64 × 1045 3.51 × 1034 3.49 × 1029 2.12 × 10−5 0.35 1.03 × 1044

Table 11. Results of deriving equivalent circuit parameters of the multiple resonant sonar sensor
using the proposed method after sorting.

R [Ω] L [mH] C [nF] R [Ω] L [mH] C [nF] R [Ω] L [mH] C [nF]

Z1

X X · · · 1813.33 0.71 · 3637.09
1.37 Short 15,210.46 · 9.64 · X X ·

X X · 64.89 9.88 595.98 · 7.59 ·

Z2

6.23 0.69 1910.65 · 5.56 46,620.45 X X ·
X X · 64.78 21.1 525.72 X X ·

0.81 1.34 · X X · · 0.35 ·

Table 12 lists the average error rates relative to the reference impedance characteristics
when different equivalent circuits were employed for each type of sensor. “Conventional”
refers to the approach of deriving an equivalent circuit for each sonar sensor by modifying
it based on the number of resonant frequencies. The terms “Before sorting” and “After
sorting” define the stages in the process of utilizing the proposed 54 [EA] components-
based equivalent circuit, where “Before” represents the initial result derived through
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the PSO algorithm, and “After” denotes the exclusion of certain components that are
physically unsuitable.

Table 12. Average error rate according to the equivalent circuit by sonar sensor type.

Sensor Characteristic

Equivalent Type Impedance Magnitude Error Ratio [%] Impedance Phase Error Ratio [%]

Conventional
Before
Sorting

After
Sorting

Conventional
Before
Sorting

After
Sorting

Single resonant sensor 0.063 0.055 0.055 0.11 0.031 0.031
Dual resonant sensor 1.31 1.43 1.51 3.93 0.061 0.078
Multi-resonant sensor 5.64 0.018 0.82 12.34 0.62 2.58

Based on the average error rates for each equivalent circuit, the existing approaches
were shown to have limitations in accurately estimating the impedance characteristics
when the impedance exhibited rapid variations at the resonant points and frequencies, with
maximum error rates of 5.64 and 12.34%, respectively. However, the proposed approach
utilizing multiple components for the equivalent circuit and optimization algorithm demon-
strated a relatively accurate simulation of the impedance characteristics, with maximum
error rates of 1.43 and 2.52%, respectively, achieving average error rates within 3%. This
validates the capability of accurately simulating the impedance characteristics and confirms
that the proposed equivalent circuit and algorithm enable the derivation of the equivalent
circuit of the sensor, regardless of the number of resonant frequencies.

5. Conclusions

In existing sonar sensor equivalent circuits, the circuits are modified based on the
resonant characteristics of the sensor, and the limitations of the number of passive compo-
nents within the circuit make it difficult to accurately reflect the impedance characteristics
and rapidly changing impedance characteristics at adjacent resonant frequencies. To over-
come these challenges, we developed an electrical equivalent circuit for sonar sensors
based on their impedance characteristics and devised an estimation approach to derive the
equivalent circuit.

To validate the proposed approach, we compared the average errors between the
measured reference values and the estimated results of the equivalent circuit parameters
for sensors with single, dual, and multiple resonances. The comparison results showed
that, when using the conventional approach, the maximum average errors were 5.64 and
12.34% for the impedance magnitude and phase, respectively. However, when utilizing the
proposed approach, the maximum errors were reduced to 0.8 and 2.58% for the impedance
magnitude and phase, respectively, demonstrating higher precision compared to the con-
ventional approach. Moreover, the proposed approach maintained high precision with
average error rates below 1%, even with variations in the number of resonances and in the
impedance characteristics of the sensor.

Furthermore, recent sonar sensors are not only operated at fixed frequencies but
over a wide frequency range to enhance detection performance. Impedance matching is
essential for overall system efficiency when operating a sensor across a wide frequency
range. It is crucial to reflect the frequency characteristics of the load accurately when
designing an impedance-matching circuit. The precision of the derived equivalent circuit,
as previously described, is expected to enable the accurate reflection of load characteristics
when designing amplifiers for sonar operation.
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Abstract: Monitoring tanks and vessels play an important part in public infrastructure and several
industrial processes. The goal of this work is to propose a new kind of guided acoustic wave sensor
for measuring immersion depth. Common sensor types such as pressure sensors and airborne
ultrasonic sensors are often limited to non-corrosive media, and can fail to distinguish between the
media they reflect on or are submerged in. Motivated by this limitation, we developed a guided
acoustic wave sensor made from polyethylene using piezoceramics. In contrast to existing sensors,
low-frequency Hanning-windowed sine bursts were used to excite the L(0,1) mode within a solid
polyethylene rod. The acoustic velocity within these rods changes with the immersion depth in the
surrounding fluid. Thus, it is possible to detect changes in the surrounding media by measuring the
time shifts of zero crossings through the rod after being reflected on the opposite end. The change in
time of zero crossings is monotonically related to the immersion depth. This relative measurement
method can be used in different kinds of liquids, including strong acids or bases.

Keywords: guided acoustic waves; piezo transducer; high density polyethylene; L(0,1) mode

1. Introduction

Monitoring fluids in vessels is an indispensable necessity in various applications in
the industrial, medical, and environmental fields. Traditional sensor concepts such as
pressure sensors offer high precision and are widely used. While they are independent of
the vessel they are submerged in, they are limited to water or other non-corrosive media.
In addition, they are influenced by sedimentation at the bottom of a liquid tank. On the
other hand, airborne ultrasonic echo sensors may be used for all types of liquids, or even
solids; however, foam building up inside the vessel can distort the measurements. To find a
solution for all of the aforementioned problems, sensors using guided acoustic waves may
present an adequate approach. In previous papers, aluminum rods have been used for the
L(0,2) mode as a waveguide [1]. Factors such as the immersion depth have been correlated
with the signal energy attenuation because of leakages of waves into the surrounding fluid.
Measuring attenuation to determine changes in fluid media is applicable to steel tubes using
the aforementioned L(0,2) mode [2]. One sensor concept has used the L(0,1) mode within a
nickel and iron wire by measuring the time of flight to determine the surface coverage of
the waveguide [3]. All of the mentioned works used metals to propagate acoustic waves,
which restricts their use in acidic or basic media. While there are metals resistant to certain
acids and bases, these are expensive compared to polyethylene. Here, we present a related
approach using polyethylene rods as waveguides. The possibility of exciting acoustic
waves within polyethylene and other polymers has been broadly discussed [4–14]. In
these papers, dispersion is a crucial feature that needs to be considered when using guided
ultrasonic waves, as it distorts wave packets, in turn leading to nonuniform propagation.
Therefore, the goal is to minimise both dispersion and attenuation.
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2. Materials and Methods

2.1. Acoustic Wave Propagation in Polyethylene Rods

Acoustic waves in rods propagate in three different types of modes: longitudinal,
flexural, and torsional [15–17]. The individual modes are influenced differently and in
a frequency-dependent manner when liquid is present. A suitable mode and working
frequency can be determined on the basis of dispersion diagrams [18,19]. In this work,
Disperse simulation software [19] was used to calculate the dispersion diagrams. Because
two different solid high-density polyethylene (HD-PE) rods (15 mm and 40 mm in diameter)
are investigated in the measurement section of this paper, dispersion graphs of these two
configurations are discussed in detail. These rod diameters were chosen because they are
common sizes that can easily be ordered in large quantities. The thicker rod has increased
stability compared to the smaller one which yields a conceptual advantage in industrial
applications. The material parameters of the rods are E = 2.2 GPa as the Young modulus,
ρ = 960 kg m−3 as the density, and ν = 0.38 as the Poisson ratio, with the following
parameters for the water: ρ = 1000 kg m−3 and v = 1500 m s−1 as the sound velocity.

The simulation was set up to have the rod fully immersed in either water or vacuum.
It can be seen that there is a difference between the phase velocity depending on the
surrounding medium (cp Figure 1). The phase velocities were decreased when submerged
in water, leading to the the time shift of the zero crossing positions appearing to be caused
by the immersion depth. Another feature to be extracted from these graphs is the desired
frequency to be used for exciting the L(0,1) mode. The higher the frequency, the larger the
difference in phase velocity due to the surrounding media. Therefore, it was important
to find the most adequate frequency that shows a significant difference in phase velocity
when submerged in water while analysing the signals and maintaining low dispersion. The
dispersion characteristics can be extracted from the graphs in Figure 2.

Figure 1. Simulated phase velocities of longitudinal (L) and flexural (F) modes for HD-PE rods with
varying diameters.

Sections of the group velocity diagram with high gradients indicate increased disper-
sion in burst signals, as mentioned in [20]. Looking at the graphs in Figure 2, the group
velocity for the 15 mm rod is quite constant for the vacuum scenario at low frequencies, but
declines much faster when submerged into water. The 40 mm rod shows a higher gradient
even at lower frequencies. This leads to the assumption that the range of frequencies that
can be used for measuring the liquid level is significantly smaller for rods with larger
diameter, which is comparable to the frequency and plate thickness product for Lamb
waves [21].
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Figure 2. Simulated group velocities of longitudinal (L) and flexural (F) modes for HD-PE rods with
varying diameters.

2.2. Signal Excitation

Piezoceramics are widely used for excitation of acoustic signals [22]. Depending on
their geometry and polarisation, they can be used for longitudinal, torsional, or flexural
waves. As the first concept for the approach of a guided acoustic wave sensor for measuring
changes in surrounding media was to use polyethylene tubes instead of rods as a way to
save both materials and costs, FEM simulations were performed in COMSOL Multiphysics
(Version 6.0 [23]) to evaluate the reflected signal of the piezo transducers in multiple
configurations. The simluation environment consisted of three different regimes, as can
be seen in Figure 3. The model was set up as a two-dimensional rotationally symmetrical
model that used the physics interfaces for solid mechanics and electrostatics and the
multiphysics interface for piezoelectricity. The HD-PE tube had an outer diameter of
16 mm, a wall thickness of 1.8 mm, and a length of 500 mm. The material parameters for
HP-PE matched the ones used in Disperse. To simulate the propagation of acoustic waves
within the tube, a five-period Hanning-windowed sine burst with a frequency of 14 kHz
was applied to the piezo. The acoustic wave coupled to the HD-PE tube was reflected on
the opposite end and coupled back into the piezo transducer. Thus, the change of electric
potential was recorded to evaluate the impulse echo propagation of this model. The piezo
transducer used the material parameters of the PIC 255 Material by PI Ceramic.

Figure 3. Simulation environment.
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In order to find the ideal piezo geometry, a number of parameter sweep simulations
were carried out. To match the shape of the tube, a ring shape was selected. Following
parameters were varied:

• inner diameter
• thickness
• backing thickness

In following figures, the amplitude of the reflected acoustic signal was examined
with varying piezo dimensions. The highest detected voltage (peak to peak,Vpp) of a
wavelet is displayed on the y-axis as a target value. Higher amplitudes are preferred in this
scenario. On one hand, this increases the signal to noise ratio and thus helps to stabilize any
evaluation algorithms. On the other hand, higher amplitudes allow the use of longer rods
due to high acoustic attenuation in HD-PE. In Figure 4, the influence of the inner diameter
of the ring piezo is displayed. The lower the “wall thickness” of the ring, the higher the
reflected amplitude. This can be explained by the decrease in mass that is to be moved by
the reflected wave coupling from the HD-PE body into the piezoceramic.

Figure 4. Influence of inner diameter of the piezo ring.

The influence of the piezo thickness is shown in Figure 5. There, it can be seen that
the height positively correlates to the detected signal amplitude. Therefore, thicker piezo
rings are to be preferred. The nonlinearity at 1 mm piezo height is caused by the simulation
environment. In this parameter configuration, the simulation lattice is too coarse to satisfy
the Courant–Friedrichs–Lewy condition [24].

Backings for piezoelectric transducers were used to increase the amount of energy
coupled into the HD-PE body from the piezo transducer. The effect of different backing
materials has been discussed in [25–27]. In this simulation, stainless steel with E = 200 GPa,
ρ = 7850 kg m−3 and ν = 0.3 was used. The backing was varied in thickness and compared
for two different piezo heights, with the results shown in Figure 6. An increase in backing
height leads to increased signal amplitudes. The simulated piezo transducer with a height
of 10 mm benefits more significantly from increased backing height.

2.3. Experimental Setup

To measure the change in wave propagation due to varying surrounding media, an
experimental setup with a measurement vessel connected to a pump and a surge tank was
assembled. This setup schematic is displayed in Figure 7. Six temperature sensors were
used to monitor the temperature inside the vessel at four heights near the sensor and in
the surge tank. A measurement software was built in Python (3.8, PyQt GUI) to control
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the valves connecting the two tanks, start and stop the pump, and control the immersion
heater. The software was connected to an oscilloscope (LeCroy Waverunner 604 Zi) as
well as a waveform generator (Agilent 33500B Series). To be able to measure reflected
signals through long solid HD-PE rods, the signal coming from the generator and the
reflection picked up by the piezo transducer needed to be amplified. An amplifier with a
built-in multiplexer was used to boost the excitation signal by approximately 37 dB and the
measured reflection by approximately 30 dB, leading to 190 V peak-to-peak applied to the
piezo transducer. The vessel featured a pressure sensor (fluid.iO HD-100) to compare the
acoustic measurements to those provided by the water pressure inside the vessel.

Figure 5. Influence of piezo height.

Figure 6. Influence of backing height with different piezo heights.

2.4. Zero Tracing

In order to relate the measured signals to the part of the rod immersed in the fluid, it
is necessary to track the shift of zero crossing times due to the medium surrounding the
rod. This can be achieved by tracing the zero crossings in the reflection of the L(0,1) mode.
An algorithm to track these zero crossings was implemented and is explained below. At
the beginning, the algorithm determines indices within the time and signal array centered
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around the maximum of the Hilbert transform of the signal in order to start tracing. To
discard the excitation signal, a minimum timestamp needs to be passed. After setting
the start indices, the algorithm finds points within the data array where a sign switch
happens. The two data points around the sign switch are used to interpolate the time
at which the zero crossing occurred. This algorithm is visualized in Figure 8. It can be
seen that there is a difference between the rising and falling flanks. Because the excitation
or signal frequency is known, phase jumps from one zero crossing to another within the
evaluated wavelet can be detected and compensated. Taking the first traced timestamp
into account, all following zero crosses can be determined by searching within a range of
multiple of signal periods, determined by an input parameter ε. These traced signals can
then be compared to a reference sensor. This type of tracing algorithm differs from pure
time-of-flight measurements. The zero crossing timestamps for minimum and maximum
immersion depth need to be known. Every measured timestamp between these values can
then be interpolated to display the current immersion depth.

(a) Test bench schematic
(b) Electronics schematic

Figure 7. Schematics of the experimental setup.

Figure 8. Flow chart of the zero tracing algorithm.
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3. Results

3.1. Piezo Dimensions

The simulated piezo parameters were used to order ring shaped piezos (PIC 151, PI
Ceramic) according to the simulated dimensions. These piezo transducers were mounted
on the solid HD-PE rods and tubes using epoxy glue (UHU plus Schnellfest). A stainless
steel backing cylinder was glued to the opposite site of the transducer to improve the energy
coupled from the transducer to the HD-PE rod. In order to examine the influence of the
backing (stainless steel, height 20 mm) on excited signals, a frequency sweep was measured
to compare the maximum of the envelope of the reflected signal in a tube (16 mm diameter,
0.9 m length) without being submerged in water. The resulting signals are visualised in
Figure 9.

(a) Signal at 14 kHz (b) Amplitudes over frequencies

Figure 9. Comparison of signal amplitudes with backing (20 dB amplification).

As can be seen, the amplitude increases significantly within a HD-PE tube when
using a backing for the piezo transducer. In addition, it is possible to extract an ideal
frequency to use for highest signal amplitudes. During our experiments, it turned out
that a large part of the energy coupled out into the water, meaning that the signals could
no longer be evaluated when the tube was immersed more than a few centimeters. Thus,
these tubes could not be used for measuring variations in sensor surface coverage. Thus,
the experiment was transferred to HD-PE rods, and the ideal excitation frequency was
determined similarly. The measurements are shown in Figure 10. It can be seen that the
overall signal amplitude is significantly higher for the 40 mm rod. Similar behaviour for
amorphous media was investigated in [28].

(a) 15 mm rod (b) 40 mm rod
Figure 10. Amplitudes (peak to peak) over various signal frequencies.

The ideal excitation frequency for the solid 15 mm rod was around 13 kHz, whereas
the 40 mm rod yielded the largest reflection amplitudes at 6 kHz. High amplitudes are to
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be preferred due to high attenuation in HD-PE. While these excitation frequencies should
be chosen to optimize the signal to noise ratio for measuring liquid levels, the frequencies
used in the following sections are predominantly lower, as mounting mechanisms for the
rods lead to additional reflections in the signal at these frequencies. The mount applies
mechanical stress to the top of the rod near the piezo transducer by clamping onto the rod;
one example can be found in Figure 11. There, the signal frequency of 3 kHz was stable
enough to use for immersion depth measurements.

(a) 3 kHz (b) 6 kHz
Figure 11. Measured signals of a 40 mm rod (1.7 m length).

3.2. Waveforms

To examine whether the L(0,1) mode could in fact be excited with the aforementioned
sensor design, we measured the wave propagation within a 15 mm rod with a laser Doppler
vibrometer. We then calculated the 2D-FFT transforms of these signals and compared them
to the simulated dispersion graphs. The two graphs overlapped in terms of the excited
modes. An example of this procedure can be seen in Figure 12.

Figure 12. Overlap of dispersion graphs and 2D-FFT transform from laser Doppler vibro-
meter measurements.

Looking at the measured waveforms, it was possible to see both the main reflection
propagating through the rod as well as the reflection at the fluid surface. One of these
signals is shown in Figure 13.

It can additionally be seen that the reflected signal coming from the rod is dispersive
and that there are multiple wave groups after the reflection of the L(0,1) mode. To further
visualize the effect of changing immersion depths on the propagated acoustic signal within
the rod, signals with two different immersion depths are shown in Figure 14.
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(a) 15 mm rod (b) 40 mm rod
Figure 13. Measured signals of different HD-PE rods.

Figure 14. Acoustic signal at two different immersion depths.

3.3. Zero Tracing

The algorithm used to trace zero crossings was then applied on signals of two HD-PE
rods. Figure 15 shows one measurement cycle of emptying and refilling the vessel. Both the
guided acoustic wave sensor and the pressure sensor tracked the falling and rising liquid
levels through their respective data points. The x-axis shows the number of measurements
that were carried out during one test cycle in the vessel. In contrast to the simulations
above, stable detection of reflections of the propagating waves was only possible with
much lower excitation frequencies (13 kHz and 6 kHz respectively). This was due to high
attenuation within long polyethylene rods (approximately 2 m). In early experiments, small
HD-PE probes were examined. There, reflections of excited waves with 50 kHz could still
be detected.

These traces already show one possible cause of error for using this principle as
an immersion depth. At low levels, the reflection of the liquid surface overlaps with
the reflection within the rod, leading to nonlinear tracing of the signal’s zero crossings.
Figure 16 displays this phenomenon in detail.
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(a) 15 mm rod (b) 40 mm rod
Figure 15. Zero tracing compared to pressure sensor voltages for rods of different diameter.

Figure 16. Nonlinear behaviour of traced zero crossing times at low immersion depths, showing a
zoomed-in view of Figure 15b.

3.4. Temperature Dependency

Material parameters vary greatly due to changing temperatures. The elastic modulus
of HD-PE decreases from 760 MPa to 407 MPa when the temperature increases from 23 ◦C
to 40 ◦C [29]. Therefore, acoustic wave propagation changes accordingly [30,31]. One
sample of a 40 mm rod was tested multiple times for water temperatures of 20 ◦C, 30 ◦C,
40 ◦C, and 50 ◦C. Two effects were predominantly apparent with temperature change,
namely, signal attenuation and dilation of time of flight. With rising temperatures, signal
amplitudes decrease and the dilation of the time of flight increases. These phenomena are
displayed in Figure 17.

Thus, it is important to compare the overall dilation in the time of flight caused by the
change in the surrounding medium to the one caused by temperature. The latter shows a
larger amount of dilation. For a 40 mm rod with a three-period 3 kHz sine burst, the average
range of zero crossing positions from fully submerged in water to not submerged at all
spanned about 80 μs, while the range of the time shift of the wave group due to changes in
temperature covered approximately 900 μs. The amplitude of the signal decreased by 42% at
50 ◦C compared to 20 ◦C. To compensate these variations in acoustic velocities, it is possible
to either set up measurements to thoroughly examine the sensor behaviour within a specific
temperature range and calculate compensation curves, or to try to excite additional acoustic
modes in order to use multiple propagation times to create a compensation mechanism [32].
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Figure 17. L(0,1) reflection at different temperatures.

4. Discussion

In this work, we present a novel approach to monitor changing fluid media in vessels
using polyethylene rods. Compared to similar articles, we used lower frequencies to excite
the acoustic waves due to attenuation and dispersion within amorphous media. Even
though the concept worked in a laboratory environment, there are significant challenges
that need to be overcome before this technique can be used in industrial applications. First,
because the dilation caused by temperature exceeds the measured effect of the changing
fluid media, the temperature drift needs to be thoroughly examined in order to calculate a
compensation curve. The mounting mechanism poses a challenge as well, as reflections or
multiples thereof can interfere with the desired pulse echo. In several of our experiments
this led to the reflection at the surface not being traceable. Another aspect to be investigated
is the possibility of amplifying both the excited signal and the received signal, as plastics
such as polyethylene have much higher attenuation compared to most common metals
used for guided acoustic waves. To conclude, this approach might bring advantages to
certain industrial applications where using metal rods as waveguides or different sensors
is generally not possible.

Author Contributions: Conceptualization, A.B. and K.L.; methodology, K.L.; software, K.L.; valida-
tion, K.L., A.B. and K.S.D.; formal analysis, K.S.D.; investigation, K.L.; resources, A.B.; data curation,
K.L.; writing—original draft preparation, K.L.; writing—review and editing, A.B. and K.S.D.; visu-
alization, K.L.; supervision, K.S.D.; project administration, K.S.D.; funding acquisition, K.S.D. All
authors have read and agreed to the published version of the manuscript.

Funding: This project was supported by the Federal Ministry for Economic Affairs and Climate
Action (BMWK) on the basis of a decision by the German Bundestag (KK 5048301DB0).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to secrecy.

Acknowledgments: Special thanks belong to our project partner for providing necessary compo-
nents to construct the measurement setup and the sensor rods as well as providing the amplifica-
tion electronics.

Conflicts of Interest: The authors declare no conflict of interest.

185



Sensors 2023, 23, 9892

Abbreviations

The following abbreviations are used in this manuscript:

HD-PE High Density Polyethylene
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