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1. Introduction

Geohazards, such as landslides, rock avalanches, debris flow, ground fissures, and
ground subsidence, pose significant threats to people’s lives and property [1]. Recently, ma-
chine learning (ML) has become the predominant approach in geohazard modeling [2–13],
offering advantages, like an excellent generalization ability and accurately describing com-
plex and nonlinear behaviors. However, the utilization of advanced algorithms in deep
learning remains poorly understood in this field [7,8]. Additionally, there are fundamental
challenges associated with ML modeling, including input variable selection, uncertainty
quantification, and hyperparameter tuning [3,5–13].

This Special Issue presents original research exploring new frontiers and challenges
in applying ML for the spatial-temporal modeling of geohazards. The topics covered
include geohazard modeling, spatial-temporal prediction, ML, deep and reinforcement
learning, the metaheuristic optimized ML approach, and physics-based and data-driven
hybrid modeling.

2. Overview of Contribution

This Special Issue titled “Machine Learning Modeling for Spatial-Temporal Prediction
of Geohazard” comprises eleven high-quality papers, including one systematic review
article and ten original research articles conducted by researchers from Canada, China, Iran,
Malaysia, Pakistan, and Sweden. These ten research articles can be categorized as follows:
the susceptibility analysis of glacier debris flow and landslides (contributions 1–3), the dis-
placement prediction of reservoir landslides (contributions 4–6), slope stability prediction
and classification (contributions 7–8), building resilience evaluation (contribution 9), and
the prediction of rainfall-induced landslide warning signals (contribution 10). Modern
ML techniques, including metaheuristic optimized ML, deep learning, and automated
ML, have been applied to the spatial-temporal modeling of geohazards in various regions,
such as Kurdistan in Iran, Karakorum Highway in Pakistan, and Chongqing, G318 Linzhi
Section, and the Three Gorges Reservoir area in China.

Geohazard susceptibility mapping is the central theme of this Special Issue (contribu-
tions 1–3). For instance, the susceptibility mapping of glacier debris flows along the G318
Linzhi Section in China was generated using remote sensing imagery and a convolutional-
neural-network-based image segmentation model, DeepLabv3+ (contribution 1). In the
context of landslide susceptibility mapping, a deep learning model that combines extreme
machine learning, a deep belief network, back propagation, and a genetic algorithm has
been proposed and validated in Kamyaran in the Kurdistan Province, Iran (contribution
2). The proposed deep learning models achieved satisfactory performances, with values
exceeding 0.90 (contributions 1 and 2), underscoring the effectiveness of deep learning in

Sensors 2023, 23, 9262. https://doi.org/10.3390/s23229262 https://www.mdpi.com/journal/sensors
1



Sensors 2023, 23, 9262

geohazard susceptibility mapping. In the research conducted by Hussain et al. (contri-
bution 3), landslide susceptibility mapping was compared using random forest, extreme
gradient boosting, k-nearest neighbor, and naive Bayes in a case study along Karakorum
Highway in Northern Pakistan.

Another significant focus of this Special Issue is the prediction of reservoir landslide
displacements. Due to seasonal rainfall and periodic reservoir fluctuations, the deforma-
tions of reservoir landslide are characterized by a step-like behavior. Innovative approaches
based on the decomposition and ensemble principle have been introduced to predict
displacements in the cases of the Shiliushubao (contribution 4), Baijiabao (contribution
5), and Baishuihe landslides (contribution 6). These approaches incorporate mode de-
composition, input variable selection, individual prediction, and ensemble prediction to
achieve a satisfactory performance, nearly optimizing the goodness of fit. Decomposition
techniques, such as complete ensemble empirical mode decomposition (contributions 4
and 5) and variational mode decomposition (contribution 6), are utilized to break down
cumulative displacement into trend, periodic, and random components. Methods like
edit distance for real sequence (contribution 4), gray relational analysis, and association
rule mining (contribution 6) have been proposed for the selection of input variables. For
individual prediction, various methods, including metaheuristic optimized support vector
regression (contribution 4), back propagation neural networks (contribution 6), and gated
recurrent unit deep learning (contribution 5), are employed to predict the decomposed
displacements, which are then aggregated into a final ensemble prediction. In particular,
Zhang et al. (contribution 4) evaluate the performance of hyperparameter tuning using
metaheuristic techniques, such as the bat algorithm, grey wolf optimization, dragonfly al-
gorithm, whale optimization algorithm, grasshopper optimization algorithm, and sparrow
search algorithm. The abovementioned works (contributions 4–6) contribute significantly
to the field of model decomposition, input variable selection, and hyperparameter tuning.

Slope stability prediction and classification (contributions 7 and 8) represent another
prominent theme in this Special Issue. Wu et al. (contribution 7) developed a stability
prediction model for slope with predetermined shear planes with Box–Jenkins’ modeling
approach using a mechanical-informed dataset. For the first time, an automated ML model
for slope stability classification has been developed with minimal human intervention
by Ma et al. (contribution 8). The AuotML model provides an attractive alternative to
traditional ML practice, especially for early-stage researchers with limited expertise in ML.

In the work by Zhang et al. (contribution 9), an ML-based model for assessing the
resilience of buildings was developed and evaluated in Banan District, a typical moun-
tainous city in Chongqing, China. Furthermore, Zhang et al. (contribution 10) proposed a
hybrid model that combines an attention-based temporal convolutional neural network
with entropy weight methods for predicting rainfall-induced landslide warning signals.

Additionally, in a review article entitled “Scientometric Analysis of Artificial Intelli-
gence (AI) for Geohazard Research”, Jiang et al. (contribution 11) conducted a scientometric
review of artificial intelligence for geohazard research based on thousands of records from
the Web of Science core collection. This analysis identified and visualized the most pro-
ductive researchers, institutions, and emerging research topics using animated maps, and
it also provided recommendations for future directions. This scientometric review holds
promise in offering a comprehensive and objective overview of publication characteristics
and emerging trends for researchers in the field.

3. Conclusions

This Special Issue provides a forum for presenting original research that delves into
novel frontiers and confronts challenges in utilizing ML for geohazard susceptibility map-
ping, geohazard prediction, slope stability prediction, building resilience evaluation, and
landslide early warning systems. Within these domains, advanced ML techniques, includ-
ing deep learning, metaheuristic optimized ML, ensemble learning, and AutoML, have
been introduced. We anticipate that these innovative techniques and approaches will be
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valuable contributions that are warmly received by both researchers and practitioners in
the field.
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Abstract: Geohazard prevention and mitigation are highly complex and remain challenges for
researchers and practitioners. Artificial intelligence (AI) has become an effective tool for addressing
these challenges. Therefore, for decades, an increasing number of researchers have begun to conduct
AI research in the field of geohazards leading to rapid growth in the number of related papers.
This has made it difficult for researchers and practitioners to grasp information on cutting-edge
developments in the field, thus necessitating a comprehensive review and analysis of the current
state of development in the field. In this study, a comprehensive scientometric analysis appraising
the state-of-the-art research for geohazard was performed based on 9226 scientometric records from
the Web of Science core collection database. Multiple types of scientometric techniques, including
coauthor analysis, co-citation analysis, and cluster analysis were employed to identify the most
productive researchers, institutions, and hot research topics. The results show that research related to
the application of AI in the field of geohazards experienced a period of rapid growth after 2000, with
major developments in the field occurring in China, the United States, and Italy. The hot research
topics in this field are ground motion, deep learning (DL), and landslides. The commonly used
AI algorithms include DL, support vector machine (SVM), and decision tree (DT). The obtained
visualization on research networks offers valuable insights and an in-depth understanding of the key
researchers, institutions, fundamental articles, and salient topics through animated maps. We believe
that this scientometric review offers useful reference points for early-stage researchers and provides
valuable in-depth information to experienced researchers and practitioners in the field of geohazard
research. This scientometric analysis and visualization are promising for reflecting the global picture
of AI-based geohazard research comprehensively and possess potential for the visualization of the
emerging trends in other research fields.

Keywords: geohazard; artificial intelligence (AI); scientometric; visualization; research cluster

1. Introduction

According to the Occupational Safety and Health Administration (OSHA, https://
www.ccohs.ca/oshanswers/hsprograms/hazard_risk.html, accessed on 3 October 2022), a
hazard is any source of potential damage, harm, or adverse health effects on something
or someone under certain conditions at work. Geohazards refer to events caused by
geological conditions or processes that pose a threat to human life, property, or the natural
environment [1]. According to the Emergency Events Database (EM-DAT, https://public.
emdat.be/, accessed on 7 July 2022), a global database of technical and natural disasters,
1877 large-scale geohazards occurred worldwide between 1 January 1990 and 7 July 2022.
These disasters killed 2.43 million people, left 25.74 million people homeless, and caused
$862 million in damages. Japan and China are the countries with the highest losses due
to geohazards, which caused approximately $392 million and $114 million in damages,
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respectively (Figure 1a). As shown, the number of geohazards increased from 1990 to
2000. Asia and the Americas, which account for 55.5% and 22.9% of the total number
of geohazards worldwide, respectively, have suffered the most from geohazards (see
Figure 1c).

Figure 1. (a) The distribution of geohazard loss (Source: https://public.emdat.be/data, accessed on
7 July 2022) and the number of papers. Different colors indicate different degrees of geohazard loss
and the size and color of the circles indicate the number of papers published in that country. (b) The
change in the number of geohazards and the number of publications over time. (c) The regional
distribution of the number of geohazards.

Great efforts have been made in geohazard prevention and mitigation [2–4]. However,
geohazards are characterized as complex and uncertain [5,6]; thus, challenges remain for
researchers and practitioners [7]. Recently, artificial intelligence (AI) has become popular
among researchers and practitioners and has led to considerable advances in geohazard
research. Affected by multiple triggering factors [8,9], the monitoring data of the geohazard
are usually characterized with complex and nonlinear relationships. For example, due
to seasonal rainfall and periodic reservoir fluctuation, the landslide movements in the
Three Gorges Reservoir area are characterized with step-like deformation, which makes
the displacement predictions remain as challenges. AI is able to analyze these complex and
nonlinear characteristics well by establishing a mapping between the input feature data and
the output final results [10]. AI has proven its capability in dealing with high-dimensional
and large-scale datasets by providing satisfactory predictions [11]. Moreover, AI, a data-
driven approach, relies less on expertise and clear understanding of physical processes [12].
Based on previous review works [13,14], AI is widely used in the geohazard field [15,16] (see
Figure 2). For example, Kalantar et al. and Xia et al. [17,18] modeled landslide susceptibility
using the support vector machine (SVM) algorithm, logistic regression (LR) algorithm,
and artificial neural network (ANN) algorithm. Ghorbanzadeh et al. [19] evaluated the
application of deep learning (DL) in landslide identification. Zhang et al. [20] used ML
algorithms such as decision tree (DT) and random forest (RF) to map landslide susceptibility.
Mousavi et al. [21] proposed a DL model for simultaneous seismic detection and phase
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selection. Wu et al. [22] used AI algorithms such as SVM for tunnel collapse risk assessment.
Choubin et al. [23] adopted AI algorithms such as multivariate discriminant analysis for the
prediction of avalanche hazards. Valade et al. [24] implemented intelligent monitoring of
global volcanic activity using AI techniques on multisensory satellite-based imagery from
Sentinel-1. The rapid development of AI research in geohazards has led to a rapid increase
in the number of publications on the subject. This makes it difficult for researchers and
practitioners to keep abreast of cutting-edge research information and the overall status of
research in this field, which can easily lead to meaningless and repetitive studies. To solve
this problem, a scientometric analysis and review of the current state of recent research in
this area is necessary.

Figure 2. Main AI algorithms and applications in geohazard prevention mitigation.

Several researchers have previously conducted review studies in this field. For exam-
ple, Dikshit et al. [13] provided a qualitative analysis of the application of AI in geohaz-
ards highlighting the direction of development in this field. Huang et al. and Merghadi
et al. [25,26] analyzed the application of DL in the field of landslide susceptibility evalu-
ation. Xie et al. [27] provided an overview of the applications and prospects of machine
learning (ML) in the field of seismic research. Despite their important contributions to the
development of the field, these review studies have some limitations. Most of these review
studies are qualitative or are limited to the application of a particular AI to a certain type of
geohazard; thus, there is a lack of quantitative and comprehensive review studies of the
development of AI in geohazard research. In addition, the current review studies in the
field do not include an analysis of the publication characteristics of existing papers, the
main authors, institutions, and countries or the studies related to the identification of hot
research in the field. Therefore, the current review studies do not provide a comprehensive
and objective description of the current state of research of AI in the field of geohazards.

A scientometric analysis, which refers to the quantitative study of science and commu-
nication in science [28], is promising for addressing the abovementioned limitations as it can
handle large volumes of publications; thus offering a visualization of research networks of
key scholars, institutions, fundamental articles, and salient topics. Therefore, scientometric
reviews have been applied to various research fields [29–32]. However, so far, no previous
reviews have conducted the scientometric analysis of AI-based geohazard research by
identification of the salient term and research trend and mapping interconnection.

To fill the gap in quantitative analysis research in geohazard reviews and promote de-
velopment, quantitative analysis methods are used in this study to analyze and summarize
the development of AI in geohazard research from 1990 to 2022. This study contributes to
the development of the field of geohazards by objectively presenting the current research
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status and future directions of AI in this field. The main researchers, institutions, coun-
tries, and hot research topics are identified. The advantages and limitations of popular AI
algorithms in the field of geohazards are analyzed, and future directions are discussed.

2. Materials and Methods

Scientometric analysis is a method of scientific analysis that shows the logic and
connections between documents by mapping, mining, ranking, and analyzing them [33].
Various techniques, such as BibExcel, HistCite, and CiteSpace are available to achieve
this goal. CiteSpace (version 5.4. R1 64 bit) [34,35] was chosen in this study because
the clarity and interpretability of the resulting visualizations are better than those of
other scientometric analysis tools. In the present study, a scientometric analysis of AI for
geohazard research was performed based on the following three procedures (see Figure 3).

Figure 3. Flow chart for scientometric analysis of AI for geohazard research.

Data collection: Web of Science (http://apps.webofknowledge.com, accessed on 7
March 2022) is a comprehensive database with high-quality citation analysis [36] that is
based on high-quality citation data, publication standards, and expert judgment. This
database is of higher quality, contains more specialized data than other databases (such as
Scopus and Google Scholar [37]) and can support a longer period of citation analysis. Thus,
in this study, Web of Science was adopted for data collection. A search was performed for
the topic (TS) query in Web of Science using the following formula “TS = ((fuzzy sets or
naive Bayes or linear regression or random forests or gradient boosting or reinforcement
learning or meta heuristics or AI or artificial intelligence or optimization algorithm or ma-
chine learning or deep learning or computational intelligence or decision tree or prediction
model) AND (geohazard or landslide or slope or rockfall or collapse or earthquake or debris
flow or hazard or tsunami))”. Based on the literature search publications in the English lan-
guage were selected. The year of publication ranged from 1 January 1990 to 1 January 2022,
and the subject categories were refined to GeoScience Multidisciplinary and Engineering
Geological. A total of 9226 documents were retrieved for scientometric analysis.

Data filtering and refining: Subject terms were identified, subject searches were
performed in the Web of Science database (“title, abstract, author keywords, and KeyWords

8



Sensors 2022, 22, 7814

Plus”), and Boolean operators (OR/AND) were used to expand the search and exclude
irrelevant papers. After filtering and refining the search results to determine the time frame,
the search results were downloaded and prepared for the next step of the analysis.

Data analysis and visualization: After filtering and refining the papers, the data
were visually represented by using the visualization tool CiteSpace. Cluster analysis,
an exploratory data mining technique, was adopted for the identification of the salient
term and context, research trend, and interconnection. Log-likelihood ratio was used
as the clustering index due to advantages of high-quality classification with high intra-
class similarity and low inter-class similarity. A cluster overlap indicates that there are
relationships between keywords of these different clusters. CiteSpace was used as a tool
for performing cluster analysis. A visualization map generated by CiteSpace consists of
color-coded nodes and links that describe co-citations or cooccurrences between these
nodes. Each representative node, which is made up of a “tree ring” of different colors,
denotes one specific item (e.g., country, institution, keyword, author, cited reference, or
cited journal). The spectrum of colors denotes the temporal order: oldest in blue and
newest in orange. The size of the ring represents the frequency of the corresponding item
in a particular year. A red ring present in a particular year denotes a burst, that is, a surge
of occurrences or citations in that year. Based on the data visualization, scientometrics
and content analysis of the search results in the field are performed and discussed and the
results are derived.

3. Results

3.1. Analysis of Publication Characteristics
3.1.1. Publication Distribution Characteristics

The characteristics of the publications on AI for geohazard research over time are
shown in Figure 4. As shown, since 1990, the number of papers published in this field has
continued to increase. After entering the 21st century, with the rapid development of AI
technology, AI technology in the field of geohazards has developed quickly. As shown in
Figure 1b, after 2000 there was an overall decreasing trend of geohazards. At the same time
the research of AI in the field of geohazards began to grow rapidly, which to some extent
reflects the help of AI in geohazard prevention and mitigation.

Figure 4. Characteristics of publications of AI for geohazard research by year.

The spatial distribution characteristics of publications are shown in Figure 1a. The
circles of different colors and sizes in the figure indicate the total number of papers pub-
lished in the countries where the circles are located. As shown, China and the United States,
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with a total of 2320 publications and 1993 publications, respectively, are the two countries
with the highest total number of publications in this field. In addition, the total number of
national papers is positively related to geohazard losses in that country.

3.1.2. Publication Source Characteristics

To provide researchers with references to authoritative publication sources and to
facilitate access to relevant and cutting-edge papers, the top 15 sources of AI for geohazard
research are shown in Table 1. The sources of the top 15 papers are all journals and there are
no conference papers; these data suggest that researchers prefer to publish their papers in
journals rather than academic conferences. In addition, the papers from the top 15 sources
account for 48.46% of the total number of papers. Among them, Natural Hazards and
Remote Sensing, with 5.96% and 4.58% of the total number of papers, respectively, are
among the top two source journals in this field. Among the top 15 sources, Geomorphology

(17,656 citations), Journal of Hydrology (13,417 citations), and Catena (12,810 citations) are
the most cited. Those results correspond well with the bibliometric review of Wu et al. [38]
in the field of AI. Among the top 15 sources, Geomorphology (61.52), Earthquake Spectra

(50.59), and Catena (47.62) have the highest average number of citations. Geomorphology

and Catena not only have a high total number of citations but also a high average number
of citations. Therefore, they are considered to be the most active journals in this field.

Table 1. Top 15 source journals according to the number of publications in AI for geohazard research
(1990–2022).

No. Source
Total

Papers
Total

Citations

Average
Citations per

Paper

Percentage
of Total
Papers

1
Natural Hazards

(https://www.springer.com/journal/11069, accessed
on 3 September 2022)

550 12,286 22.34 5.96%

2
Remote Sensing

(https://www.mdpi.com/journal/remotesensing,
accessed on 3 September 2022)

423 6376 15.07 4.58%

3
Journal of Hydrology

(https://journals.elsevier.com/journal-of-hydrology,
accessed on 3 September 2022)

314 13,417 42.73 3.40%

4
Bulletin of Earthquake Engineering

(https://www.springer.com/journal/10518/,
accessed on 3 September 2022)

306 6068 19.83 3.32%

5

Soil Dynamics and Earthquake Engineering
(https://www.sciencedirect.com/journal/soil-

dynamics-and-earthquake-engineering, accessed on 3
September 2022)

306 4060 13.27 3.32%

6
Environmental Earth Sciences

(https://www.springer.com/journal/12665, accessed
on 3 September 2022)

298 7798 26.17 3.23%

7
Engineering Geology

(https://www.sciencedirect.com/journal/
engineering-geology, accessed on 3 September 2022)

290 11,417 39.37 3.14%

8
Geomorphology

(www.elsevie r.com/locate/geomorph, accessed on 3
September 2022)

287 17,656 61.52 3.11%

9
Catena

(www.elsevier.com/locate/catena, accessed on 3
September 2022)

269 12,810 47.62 2.92%
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Table 1. Cont.

No. Source
Total

Papers
Total

Citations

Average
Citations per

Paper

Percentage
of Total
Papers

10
Natural Hazards and Earth System Sciences

(https://www.natural-hazards-and-earth-system-
sciences.net/, accessed on 3 September 2022)

264 6611 25.04 2.86%

11
Landslides

(https://www.springer.com/journal/10346, accessed
on 3 September 2022)

262 8970 34.24 2.84%

12
Arabian Journal of Geosciences

(https://www.springer.com/journal/12517, accessed
on 3 September 2022)

243 3298 13.57 2.63%

13
Earthquake Engineering & Structural Dynamics

(https://onlinelibrary.wiley.com/journal/10969845,
accessed on 3 September 2022)

233 7756 33.29 2.53%

14
Earthquake Spectra

(https://journals.sagepub.com/home/eqs, accessed
on 3 September 2022)

213 10,776 50.59 2.31%

15
Geophysical Research Letters

(https://agupubs.onlinelibrary.wiley.com/journal/
19448007, accessed on 3 September 2022)

213 5269 24.74 2.31%

3.1.3. Publication Keyword Characteristics

Figure 5 shows the 10 keywords with the strongest citation burst of AI research
citations in the field of geohazards, representing the main interests of researchers in the field.
As shown, researchers have been interested in researching AI techniques in geohazards
since 2012 when fuzzy logic was a popular research topic in the field. New research hotspots
have gradually emerged. In 2016, the analytical hierarchy process appeared. In 2017, SVM
became the third most cited keyword in this citation burst. Subsequently, LR, DL, and many
other ML algorithms began to be widely applied in geohazards and became hot topics in
the field. Furthermore, the different sizes of circles in Figure 5 indicate different occurrence
frequencies; the larger the circle is, the higher the occurrence frequency. Among them, LR
appeared 671 times and was the most popular keyword in the field. Moreover, an increasing
number of AI algorithms have been applied to the field of geohazards by researchers.

Figure 5. Citation burst of AI in geohazard research during 1990–2022 (logarithmic scale).
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3.2. Analysis of Authors, Institutions, and Countries
3.2.1. Most Productive Authors in AI Research in the Field of Geohazards

The affiliations of the top 15 most productive authors in terms of AI research in the
field of geohazards and their H-index, total number of papers, and total number of citations
are shown in Table 2. As shown in this table, each of these authors published 26 or more
papers. These authors have published a cumulative total of 732 papers, which accounts
for 7.93% of the papers published by researchers worldwide. Six of these researchers are
affiliated with Asian institutions, with three researchers from China and three from Iran.
Therefore, AI in the field of geohazards is considered to be developing rapidly in Asia, with
China and Iran being the main participating countries in this field of research.

Table 2. Top 15 most productive authors for AI research in the field of geohazards (1990–2022).

No. Name
Institution,

Country
Total

Papers
Total

Citations

Average
Citations
per Paper

H-Index
Related

Citations
Impact

1 Pradhan,
Biswajeet

University of Technology Sydney,
Australia 136 13,146 96.66 94 1.39

2 Dieu Tien Bui University of South-Eastern Norway,
Norway 70 5604 80.06 68 1.16

3 Pourghasemi,
Hamid Reza Shiraz University, Iran 65 6332 97.42 66 1.41

4 Chen, Wei Xi’an University of Science and
Technology, China 63 4104 65.14 53 0.94

5 Lee, Saro Korea Institute of Geoscience and Mineral
Resources, KIGAM, Korea 63 3880 61.59 64 0.89

6 Hong,
Haoyuan Universität Vienna, Austria 52 3637 69.94 45 1.01

7 Binh Thai
Pham

University of Transport Technology,
Vietnam 45 2851 63.36 26 0.91

8 Arabameri,
Alireza Tarbiat Modares University, Iran 32 684 21.38 29 0.31

9 Bradley,
Brendon A. University of Canterbury, New Zealand 32 583 18.22 36 0.26

10 Xu, Chong Institute of Geology, China Earthquake
Administration, China 31 1693 54.61 29 0.79

11 Shahabi,
Himan University of Kurdistan, Iran 30 2538 84.60 52 1.22

12 Xu, Qiang Chengdu University of Technology, China 30 659 21.97 43 0.32

13 Rahmati, Omid
Agricultural Research, Education and

Extension Organization (AREEO),
Vietnam

29 2231 76.93 36 1.11

14 Prakash, Indra Bhaskaracharya Institute for Space
Applications and Geoinformatics, India 28 1551 55.39 37 0.80

15 Blaschke,
Thomas Universität Salzburg, Austria 26 1235 47.50 50 0.69

Note: The H-index in the table header means that the author has H papers cited H times.

The most productive authors are Pradhan, Biswajeet (136); Dieu Tien Bui (70); and
Pourghasemi, Hamid Reza (65); who are also the most cited authors. Six of the top
15 authors have a higher number of average citations (i.e., higher than 69.30) than the
rest. They are Pourghasemi, Hamid Reza (97.42); Pradhan, Biswajeet (96.66); Shahabi,
Himan (84.60); Dieu Tien Bui (80.06); Rahmati, Omid (76.93); and Hong, Haoyuan (69.94).
Four authors have an H-index above 60: Pradhan, Biswajeet (94); Dieu Tien Bui (68);
Pourghasemi, Hamid Reza (66); and Lee, Saro (64). Six authors have a relative citation
impact greater than 1 relative to the other top 15 authors. They are Pourghasemi, Hamid
Reza (1.41); Pradhan, Biswajeet (1.39); Shahabi, Himan (1.22); Dieu Tien Bui (1.16); Rahmati,
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Omid (1.11); and Hong, Haoyuan (1.01). According to these data, Pradhan, Biswajeet; Dieu
Tien Bui; and Pourghasemi, Hamid Reza have better performances under all parameters.
Therefore, they are considered to be strong influential researchers in the field.

3.2.2. Most Productive Institutions in Terms of AI Research in the Field of Geohazards

Among 9226 scientometric records of AI studies in the field of geohazards, 841 in-
stitutions are identified. Table 3 shows the data related to the top 15 most productive
institutions. At each of these institutions, 83 or more papers have been published. These
papers (1806 total) account for 19.58% of the cumulative number of papers in the field. The
institutions with the most published papers are the Chinese Academy of Sciences (384),
China University of Geosciences (158), and U.S. Geological Survey (156). The Chinese
Academy of Sciences has not only published the most papers but also has the highest
total citations and is one of the most active research institutions in AI research in the field
of geohazards. Those results correspond well with the bibliometric review of Ho and
Wang [39] in the field of AI.

Table 3. Top 15 most productive institutions in terms of AI research in the field of geohazards
(1990–2022).

No. Institution
Total

Papers
Total

Citations

Average
Citations per

Paper

Relate
Citations
Impact

1 Chinese Academy of Sciences
(https://english.cas.cn, accessed on 3 September 2022) 384 9088 23.67 0.83

2 China University of Geosciences
(https://en.cug.edu.cn, accessed on 3 September 2022) 158 3303 20.91 0.73

3 U.S. Geological Survey
(https://www.usgs.gov, accessed on 3 September 2022) 156 8928 57.23 2.00

4 University of Chinese Academy of Sciences
(https://english.ucas.ac.cn, accessed on 3 September 2022) 115 1264 10.99 0.38

5 Chengdu University of Technology
(http://www.cdut.edu.cn. accessed on 3 September 2022) 101 1549 15.34 0.54

6 Tongji University
(https://en.tongji.edu.cn, accessed on 3 September 2022) 100 1749 17.49 0.61

7 University of California, Berkeley
(https://www.berkeley.edu, accessed on 3 September 2022) 97 4938 50.91 1.78

8 University of Technology Sydney
(https://www.uts.edu.au, accessed on 3 September 2022) 93 2583 27.77 0.97

9 Duy Tan University
(https://duytan.edu.vn, accessed on 3 September 2022) 91 3278 36.02 1.26

10 University of Tehran
(https://ut.ac.ir/en. accessed on 3 September 2022) 88 2027 23.03 0.81

11 Islamic Azad University
(https://iau.ae, accessed on 3 September 2022) 86 3074 35.74 1.25

12 China Earthquake Administration
(https://www.cea.gov.cn, accessed on 3 September 2022) 85 2431 28.60 1.00

13 Sejong University
(https://en.sejong.ac.kr/eng/index.do, accessed on 3 September 2022) 85 3640 42.82 1.50

14 Tarbiat Modares University
(https://en.modares.ac.ir, accessed on 3 September 2022) 84 2309 27.49 0.96

15 Kyoto University
(https://www.kyoto-u.ac.jp/en, accessed on 3 September 2022) 83 1238 14.92 0.52

The average citations per paper for all papers related to AI research in the field of
geohazards from the top 15 institutions is 28.46%. Six institutions have higher average
citations per paper than the others. These institutions include the U.S. Geological Survey
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(57.23); University of California, Berkeley (50.91); Sejong University (42.82); Duy Tan
University (36.02); Islamic Azad University (35.74); and China Earthquake Administration
(28.60). From 1990 to 2022, the relative citation impact of the top 15 most productive
institutions relative to the total global research output of AI in geohazards was 1.00. Five
institutions exceeded this relative citation impact, including the U.S. Geological Survey
(2.00); University of California, Berkeley (1.78); Sejong University (1.5); Duy Tan University
(1.26); and Islamic Azad University (1.25).

According to average citations per paper and relative citation impact, the U.S. Geolog-
ical Survey; University of California, Berkeley; and Sejong University are considered to be
the most active institutions in this field.

3.2.3. Top Countries in Terms of AI Research in the Field of Geohazards

Information on publications by country and region is closely related to publication
characteristics but reflects different information (see Table 4). This table shows that China is
the country with the most publications in this field during 1990–2022, with 2349 historical
publications. The United States and Italy rank second and third with a total of 1993 and
894 publications, respectively. In addition, the United States has the highest total citations
with 61,656 historical citations, followed by China (41,179) and Italy (27,388). Malaysia has
the highest average citations per paper with an average of 75.71, followed by Norway and
Vietnam with an average of 56.19 and 41.37 citations per paper, respectively. In the area of
intercountry cooperation, the United States is the most influential country in this field and
has the highest number of collaborations among 10 countries, including China, Italy, and
the United Kingdom. In addition, the United States and China are the closest collaborators,
with 279 collaborations.

Table 4. Top 20 countries or regions in terms of number of publications.

Country
Total

Papers
Total

Citations

Average
Citations
per Paper

Closest
Collaborating

Country

Number
of Total

Collaborators

China 2349 41,179 17.53 United States 279

United States 1993 61,656 30.94 China 279

Italy 894 27,388 30.64 United States 72

Iran 629 19,302 30.69 Vietnam 85

England 572 18,371 32.12 United States 111

Japan 505 11,036 21.85 China 83

India 504 9430 18.71 Vietnam 63

Australia 443 11,376 25.68 China 100

Germany 410 11,086 27.04 United States 51

Canada 409 14,586 35.66 United States 78

France 386 10,326 26.75 United States 51

South Korea 323 10,793 33.41 Australia 65

Turkey 289 9311 32.22 United States 34

Spain 277 7582 27.37 Italy 47

Switzerland 240 7625 31.77 United States 42

Netherlands 239 9496 39.73 United States 35

Vietnam 182 7529 41.37 Iran 85

Greece 174 4913 28.24 Italy 26

Malaysia 171 12,946 75.71 Iran 52

Norway 162 9103 56.19 Vietnam 45
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Figure 6 shows the cooperation of major countries and regions in this field. The figure
clearly shows that China, the United States, Italy, and Iran are the countries with the most
AI studies in geohazard research. They are also the countries with the highest number of
papers published. Among them, China has the highest number of publications and the
second highest number of collaborations with other countries after the United States. The
United States is the second most published country and has the most collaborations with
other countries. In addition, China and the United States are the countries that cooperate
most closely with each other. Italy has published more papers than Iran but has collaborated
less with other countries than Iran. These results indicate that China and the United States
are the two most representative countries in AI research in the field geohazards. Those
results correspond well with the previous bibliometric review of Ho and Wang and Wu
et al. [38,39]. Additionally, Italy and Iran also have a productive role in the AI-based
geohazard research.

Figure 6. Cooperation between countries and regions.

3.3. Identification of Salient Research Clusters

In this study, we selected papers ranked in the top 40% of references each year as the
prominent research clusters for identifying the development of AI in geohazard research. By
applying the log-likelihood ratio algorithm, 10 prominent research clusters were identified
based on the keywords of the top-cited references (see Table 5). The identified clusters
for #0 to #9 are ground motion, DL, GIS, landslide, impact, segment linkage, prediction,
root reinforcement, debris flow, validation, respectively. Figure 7 and Table 5 show the
prominent research clusters obtained based on the Web of Science search results. The
silhouette value, a measure of the homogeneity of individual clusters, ranges from −1 to 1.
The clustering results are considered convincing only when the silhouette value is greater
than 0.5. As shown in Table 5, the silhouette values determined in this study ranged from
0.81 to 1, which indicates that the clustering results are convincing and that the members of
each cluster have good consistency. For brevity, only the first five clusters (#0 to #4) were
analyzed in this study and are discussed below.
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Table 5. Research clusters of AI in geohazard research between 1990 and 2022.

Cluster ID Size Silhouette Cluster Label Representative Document

#0 70 0.81 Ground motion Boore & Atkinson [40]

#1 64 0.91 Deep learning Bui et al. [41]

#2 61 0.97 GIS Guzzetti et al. [42]

#3 54 0.91 Landslide Pradhan [43]

#4 47 0.92 Impact Kim et al. [44]

Figure 7. Research cluster network for AI in geohazard research.

Ground motion: The largest cluster (#0) is labeled ground motion, with a total of
70 members and a silhouette value of 0.81. A representative paper is that by Boore and
Atkinson [40]. Ground motion usually refers to the surface movement of an area caused by
an earthquake or explosion that results from waves generated by the sudden sliding of a
fault or the sudden appearance of pressure from an explosion source and propagates along
the surface of the Earth.

Deep learning: The second largest cluster (#1) is labeled DL, with 64 members and a
silhouette value of 0.91. A representative paper is that by Bui et al. [41]. DL, a major branch
of ML, is an algorithm for learning representations of information based on ANNs [45].
With the development of DL, its powerful nonlinear data processing capability has received
increasing attention from geohazard researchers. DL is very powerful in geohazard process-
ing and is effective in information extraction. It has since been introduced into geohazard
analysis and prevention [14], including landslide and mudflow detection, seismic data
interpolation and noise reduction.

GIS: The third largest cluster (#2) is labeled GIS, with 61 members and a silhouette
value of 0.97. A representative paper is that by Guzzetti et al. [42]. GIS, or geographic
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information systems, is a comprehensive discipline of geography, cartography, and com-
puter technology and is now widely used in the field of geohazards. GIS technology has
contributed to quantitative studies of geohazard risk assessment and mapping. It has made
important contributions in delineating geohazard susceptibility and sensitivity maps, land
planning and utilization, and disaster loss reduction [46].

Landslide: The fourth largest cluster (#3) is labeled landslide, with a total of 54 mem-
bers and a silhouette value of 0.91. Landslides are one of the most common geohazards,
causing large economic losses and safety threats to people every year. Representative
papers include those by Pradhan [43], Tien Bui et al. [47], and Pourghasemi et al. [48]. These
papers consider specific applications of AI in landslide hazards. AI is commonly used in
landslide hazards such as displacement prediction and susceptibility mapping.

Impact: The fifth largest cluster (#4) is labeled impact, with 47 members and a profile
value of 0.92. The impact label includes both the impact factors and the impacts caused by
geohazards. In representative papers by Kim et al. and Ma et al. [44,49], the impact factors
of geohazards were studied. Claessens et al. [50] studied the impact of geohazards.

3.4. Top Algorithms and Future Trends in AI Research of Geohazards

In addition to the keyword characteristic analysis of publications, the 10 keywords
with the strongest keyword citation burst are all related to AI technology. Seven of these
keywords are AI algorithms. This also indicates that AI algorithms have become an
important method in geohazard research. Therefore, it is necessary to summarize and
analyze the AI algorithms commonly used in geohazard research. Table 6 shows a brief
summary and some advantages and limitations of some common AI algorithms in the
field of geohazards. Among them, NB, DT, and SVM are the classic ML algorithms. These
common single ML algorithms had seen citation outbreaks one after another in 2017 and are
widely used by researchers of geohazards. Recently, DL methods, including autoencoders
and convolutional and recurrent neural networks, have been widely used by researchers
because of their greater processing power of raw natural data [51] and higher accuracy of
qualitative hazard prediction [16] than traditional ML methods. DL is the second largest
cluster in the cluster analysis and a silhouette of 0.91 is a convincing result. Therefore, it
can be considered that DL is one of the trends of AI in geohazards.

Table 6. Summary of popular AI algorithms in the field of geohazards.

1

Naive Bayes

Summary
NB classifiers are simple probabilistic classifiers based on the Bayes theorem and the strong (naive)

independence assumption between features [52].

Advantages

• NB is simple, efficient, and reliable [53];
• The NB classifier does not require a complex iterative parameter estimation scheme and is easy to

construct [54];
• The NB classifier handles correlated noise and irrelevant attributes and has very good robustness [55].

Limitations

• NB determines the posterior probability by using the prior probability and data to determine the
classification, so there is a certain error rate in the classification decision [56];

• NB classifiers require strong independence between attributes [57].

2

Decision Tree

Summary
The DT is a basic classification and regression method. The DT model has a tree-like structure and

represents the process of classifying instances based on features in a classification problem [58].

Advantages

• DT can solve complex problems [59];
• It provides expressive representation for learning discrete functions;
• The time complexity of the decision tree is small [60].

Limitations

• A large amount of storage is required to store all classifier results [61];
• It is difficult to understand the reasoning process when multiple classifiers are involved in the

decision [58];
• It is easy to overfit the data [62].
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Table 6. Cont.

3

Support Vector Machine

Summary
SVM is a supervised learning machine proposed by Vapnik et al. [63,64]. It is a powerful tool for solving
pattern classification problems and regression problems [65] and has been used in various fields [66–68].

Advantages

• SVM can achieve better results with fewer samples [25];
• SVM is insensitive to dimensionality and outliers [69];
• SVM is very robust and accurate [70].

Limitations
• The SVM algorithm has high time complexity and memory training complexity [64];
• The SVM principle is complex and computationally expensive [71].

4

Artificial Neural Networks

Summary
ANNs are algorithmic models inspired by biological neural networks. They are massively parallel systems
with a large number of interconnected simple processors [72].

Advantages

• ANNs have significant advantages in data classification and regression [73];
• ANNs are not constrained by predefined mathematical relationships between variables [74];
• ANNs have a powerful ability to handle complex nonlinear problems.

Limitations

• The model is considered a black box, making it difficult to understand the internal mechanism [74];
• ANNs have a high demand for computing resources;
• ANNs can easily fall into the local minima and sometimes it is difficult to adjust the structure [75].

5

Extreme Learning Machine

Summary
The ELM is a single-layer feedforward neural network that overcomes the difficulty of parameter
initialization. It is one of the most widely used algorithms for predicting time series data [76].

Advantages

• The theoretical basis of an ELM is relatively simple [76];
• ELM can achieve global minimum optimization and has powerful generalization [77];
• ELM computes much faster than other feedforward neural networks.

Limitations
• An ELM with a fixed number of hidden layer nodes reduces model prediction accuracy [78];
• When the training dataset is relatively small ELM has more erroneous results [76].

6

K-Nearest Neighbor

Summary
KNN is a nonparametric method that is considered one of the top 10 data mining algorithms because of its
simplicity, efficiency, and implementation power for classification [79].

Advantages
• The structure of the KNN algorithm is relatively simple and has good portability [80];
• KNN algorithms are powerful in classification with good effectiveness and implementation [79].

Limitations

• Outliers in KNN algorithms can have a large adverse effect on the results [79];
• The problems of similarity measurement of two data points and K-value selection in the KNN

algorithm still need to be solved [81].

7

Logistics Regression

Summary
LR analysis is a statistical technique for analyzing the relationship between an independent variable and
two dependent variables (dichotomous variables) and is widely used in various fields [82,83].

Advantages

• A regression relationship is formed between the dependent variable and one or more independent
variables [84];

• LR algorithms are independent of the data distribution [85];
• Continuous explanatory variables can be used [86].

Limitations
• LR is more sensitive to multiple linear data [87];
• A large sample size is required for goodness-of-fit measurements [59].
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8

Ensemble Methods

Summary
EMs refer to the combination of individual AI models into one model that has higher accuracy and
stronger generalization ability than the individual AI models [88,89].

Advantages

• The results of the integrated approach are more accurate than those predicted by individual
models [90–92];

• EMs can avoid overfitting and local optima [93];
• EMs have better generalization ability than a single AI algorithm [88,94].

Limitations

• EMs tend to ignore local clustering diversity [95];
• The accuracy of EMs is determined by the choice of the base model [88];
• Much maintenance is required.

9

Deep Learning

Summary
DL is a branch of machine learning based on ANN [96]. It has excellent performance in processing a large
amount of high level data and has a wide range of applications in various fields [97–99].

Advantages

• DL has powerful feature learning and expression capabilities [100];
• DL is highly efficient in processing high-dimensional data [96];
• DL has more frameworks to use and is more compatible.

Limitations
• DL requires much data and computing power and the computational cost is high [101,102];
• DL requires high hardware requirements due to its high computing power.

4. Future Directions

AI has been extensively applied to geohazard research, yielding tremendous success.
Based on the scientometric analysis of the literature to date, we recommend the following
aspects should be addressed for AI-based geohazard research.

4.1. Establishment of Benchmark Database

AI modeling is driven by data [103]; therefore, the quantity and quality of the data may
directly affect the performance of AI [14]. However, some fundamental constraints remain
for data acquisition and preparation. Firstly, the high cost of monitoring equipment limits
the coverage of field monitoring and limits researchers’ access to high-quality field data.
Another impediment is the lack of large and generalized geohazard datasets. Although
tens of thousands of papers have been published for AI-based geohazard research, it is
difficult to extract and utilize openly available, curated, and labeled training data. Generally,
researchers from different institutions often use different datasets and research methods
for their studies, with the terminology and data completeness in the papers varying
tremendously. This has led to strong calls from researchers for the establishment of a
benchmark database, data sharing, and standardization of data reporting [104] which
will be an important boost for the development of AI-based geohazard researches. Some
researchers have already started data sharing work. For example, Ji et al. [105] shared a
large landslide dataset (http://study.rsgis.whu.edu.cn/pages/download/, accessed on
4 October 2022) containing landslide images, landslide boundary information, landslide
area DEM data, etc. Mousavi et al. [100] contributed a large number of high-quality seismic
analysis datasets (https://github.com/smousavi05/STEAD, accessed on 4 October 2022)
which contain local seismic waveforms, seismic noise waveforms, and no seismic signals.
These publicly available high-quality datasets can be used as benchmark datasets for
the evaluation of the performance of different AI algorithms in this field and provide a
reproducible evaluation environment. In addition, a standardized baseline database not
only provides researchers with high-quality datasets but also eases the work of researchers
in data management [106]. Therefore, a standardized geohazard benchmark database is
desired by researchers.
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4.2. Integration of AI with Physical Processes

AI techniques provide good performances in geohazards such as landslide susceptibil-
ity evaluation [20], earthquake identification and phase selection [21], and volcanic activity
monitoring [24]. However, researchers and practitioners still face challenges in enhancing
the reliability [107]. To improve the reliability of AI, some researchers have attempted to
integrate AI and physical processes to embody the powerful data processing capabilities of
AI techniques and the reliability of physical processes in an ensemble algorithm [108]. For
example, Jiang et al. [108] proposed an algorithm to improve the geoscientific knowledge
of AI. Depina et al. [109] used an algorithm for the study of unsaturated groundwater
flow using a combination of AI and physical processes. The reliability has been enhanced
by adopting data-driven components to improve the unrepresentable parts of physical
processes and integration of the evolution of physical processes in AI algorithms.

4.3. Auto ML

A strong mastery of expert knowledge is required for AI-based geohazard research.
A general workflow for AI modeling usually consists of data preprocessing, feature engi-
neering, selection of a machine learning model, and optimization of the associated hyper-
parameters [110,111]. Reducing the requirement of expert knowledge and automating all
the processing steps is a common expectation among researchers. Some researchers have
offered auto ML platforms that have somewhat overcome the problems of algorithm selec-
tion and hyperparameter optimization, reducing the need for expertise in AI algorithms.
For example, Auto-sklearn optimized hyperparameter selection using a Bayesian algorithm
and automated policy selection using meta-learning and integration structures [112]. Auto-
WEKA implements the automatic selection of algorithms and hyperparameter optimization
based on Bayesian optimization techniques [113]. These auto ML platforms have proven
their capacity in the fields of medicine [114], mechanics [115], and geoscience [116].

4.4. Uncertainty Quantification

AI analyzes geohazard data by building corresponding models to predict the occur-
rence of geohazards and provide evidence and suggestions for its prevention and mitigation.
In this process, the uncertainties existing in the data and models may bias the analysis
results. Data uncertainty is generated due to class overlap and noise in the training data
and is non-approachable due to limitations in how the data are collected. Epistemic uncer-
tainty results from errors caused by model inference or model performance [117]. With the
widespread use of AI in geohazards, it is becoming more and more crucial to evaluate the
validity and reliability of AI systems before using their analysis results.

Currently, accurate uncertainty quantification is the key to enhance the reliability
and accuracy of AI analysis results and the future direction of AI in the field of geohaz-
ards. A few researchers have started research on uncertainty quantification. The most
common approaches can be divided into Bayesian uncertainty quantification that focuses
on specifying the training set to approximate the posterior probability distribution, such
as Monte Carlo [118] and Markov Chain Monte Carlo [119], and ensemble uncertainty
quantification that obtains improved accuracy by combining multiple models [120] such as
deep ensemble [121] and Dirichlet Deep Networks [122].

4.5. Interpretable AI

Some AI algorithms cannot provide a reasonable interpretation for their results which
makes researchers and practitioners distrust results obtained from AI. This has limited
the development of AI-based geohazard research to a large extent and has brought in-
creasing attention to interpretable AI [123]. Based on previous studies, research methods
for interpreting AI techniques are maturing [124,125], terminology and metrics are being
harmonized [126,127], and there is some development in the evaluation of interpretable
AI and interpretation of AI. Some primary research methods are currently being used to
study AI “black boxes”; for example, by decomposing model components into small parts
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that we can explain [128] and by visualizing the weights of different models to improve
the interpretability of DL for seismic monitoring and phase selection [21]. Future works
should include overcoming the obstacles to development caused by the uncertainty of
quantitative AI interpretation methods, causal interpretation, feature dependence, and
other problems [129].

5. Conclusions

AI has been extensively applied to geohazard research and yielding tremendous suc-
cess. The present study performed a scientometric-assisted review for AI-based geohazard
research by visualization of the research status quo and identification of the salient term and
context, research trend, and mapping interconnection based on 9226 scientometric records.
The analysis of the research publication trend indicates that AI has obtained continuous
development in geohazard research over the past 30 years and entered a period of rapid
growth beginning in 2000. An analysis of publication source characteristics has revealed
that Natural Hazards and Remote Sensing are the top two source journals. Geomorphol-

ogy and Catena are considered to be the most active journals in this field. The analysis of
keyword features revealed that ML is a popular research method in this field. Pradhan,

Biswajeet; Dieu Tien Bui, and Pourghasemi, Hamid Reza are among the three most pro-
ductive researchers in this field. Three organizations including the U.S. Geological Survey;
University of California, Berkeley; and Sejong University are considered to be the most
productive institutions in this field. China, the United States, and Italy are the countries
with the highest number of publications and the highest number of total citations among
all countries. Identification of salient research clusters indicates that ground motion, DL,
GIS, and landslides are current research hotspots.

Future studies on AI-based geohazard research themes may focus on the establishment
of benchmark database, integration of AI with physical processes, Auto ML, uncertainty
quantification and interpretable AI.

This scientometric review offers useful reference points for early-stage researchers and
provides valuable in-depth information to experienced researchers and practitioners in the
field of geohazard research. This scientometric analysis and visualization are promising
for comprehensively reflecting the global picture of AI-based geohazard research and are
potential for visualization the emerging trends in other research fields.
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Abstract: Glacial debris flow is a common natural disaster, and its frequency has been increasing
in recent years due to the continuous retreat of glaciers caused by global warming. To reduce the
damage caused by glacial debris flows to human and physical properties, glacier susceptibility
assessment analysis is needed. Most research efforts consider the effect of existing glacier area and
ignore the effect of glacier ablation volume change. In this paper, we consider the impact of glacier
ablation volume change to investigate the susceptibility of glacial debris flow. The susceptibility
to mudslide was evaluated by taking the glacial mudslide-prone ditch of G318 Linzhi section of
Sichuan-Tibet Highway as the research object. First, by using a simple band ratio method with manual
correction, we produced a glacial mudslide remote sensing image dataset, and second, we proposed
a deep-learning-based approach using a weight-optimized glacial mudslide semantic segmentation
model for accurately and automatically mapping the boundaries of complex glacial mudslide-covered
remote sensing images. Then, we calculated the ablation volume by the change in glacier elevation
and ablation area from 2015 to 2020. Finally, glacial debris flow susceptibility was evaluated based on
the entropy weight method and Topsis method with glacial melt volume in different watersheds as
the main factor. The research results of this paper show that most of the evaluation indices of the
model are above 90%, indicating that the model is reasonable for glacier boundary extraction, and
remote sensing images and deep learning techniques can effectively assess the glacial debris flow
susceptibility and provide support for future glacial debris flow disaster prevention.

Keywords: geological hazards; glacial debris flow; remote sensing; deep learning

1. Introduction

Glacier debris flow is a kind of mountain natural disaster caused by ice melting,
which is characterized by suddenness, large scale, and hazard. In the context of global
warming, glacier retreat is accelerating, and the frequency and scale of glacier debris flows
are increasing [1,2]. Therefore, accurate assessment and prediction of glacial debris flow
susceptibility is important to protect people’s lives and properties and to maintain the
ecological environment.

Remote sensing images and deep learning techniques have an important role in the
analysis of glacier debris flow susceptibility. Remote sensing images can provide large-scale,
high-resolution surface information, including topography, vegetation, and hydrology [3],
which provides basic data for the formation and occurrence of glacier debris flows. Deep
learning techniques can quickly and accurately identify potential glacier debris flow hazard
areas by feature extraction and classification of remotely sensed images [4], providing an
effective means for glacier debris flow prediction and early warning. Therefore, glacier
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debris flow susceptibility analysis based on remote sensing images and deep learning has
important research significance and application value [5].

Glacier debris flow susceptibility analysis is important research work that can help
people better understand the formation mechanism and influencing factors of glacier debris
flows, so as to take effective prevention and control measures. In recent years, with the
continuous development of remote sensing technology and deep learning algorithms,
the analysis of glacier debris flow susceptibility based on remote sensing images and deep
learning has also gained wide attention. The occurrence of glacial debris flow has obvious
indicators of catastrophic changes, such as increased density of hanging glacier crevasses,
enhanced glacier velocity, and rapid increase in glacial lake area.

The influencing factors of its glacial debris flow susceptibility analysis mainly include
the following aspects: (1) Topographic factors: Topography is one of the important factors
in the formation of glacial debris flow, including topographic height difference, slope,
and slope direction [6]. In remote sensing images, topographic information can be obtained
by data such as digital elevation model (DEM). (2) Climatic factors: Climatic factors
also have an important influence on the formation and development of glacier debris
flows, including rainfall, temperature, and humidity. Remote sensing images can obtain
meteorological data, such as rainfall. (3) Geological factors: Geological factors are also
one of the important factors in the formation of glacial debris flow, including lithology,
faults, and earthquakes. Remote sensing images can obtain geological information, such
as lithology, faults, etc. (4) Vegetation factor: Vegetation cover also has some influence on
the formation and development of glacial debris flow. Remote sensing images can obtain
vegetation information, such as vegetation cover, etc. [7]. Glacier debris flow susceptibility
analysis based on remote sensing images and deep learning can obtain glacier debris
flow susceptibility information by feature extraction and classification of remote sensing
images. Commonly used deep learning algorithms include convolutional neural networks
(CNN), recurrent neural networks (RNN), etc. The prediction results of glacier debris
flow susceptibility can be obtained by training and testing the remotely sensed images.
In conclusion, the analysis of glacier debris flow susceptibility based on remote sensing
images and deep learning can provide an important scientific basis for glacier debris flow
prevention and control [8].

In recent years, there has been a new research trend aimed at glacier debris flow
susceptibility assessment through remote sensing images and deep learning techniques.
For example, Ji et al. used deep learning and remote sensing image analysis to establish a
mudslide susceptibility assessment model based on topographic and geomorphological
features, and validated it in the Bijie City area of northwestern Guizhou, showing that the
model can more accurately assess mudslide susceptibility in the area [9]. Ref. [10] used
high-resolution remote sensing image data for glacier prediction. As for the method of
remote sensing image susceptibility analysis, Lin et al. considered the influence of the
change in glacier ablation volume and conducted a mudslide susceptibility analysis using
the G217 glacier mudslide-prone trench on the Dukku Highway in Xinjiang. This study
showed that accurate prediction of glacier mudslide susceptibility could be achieved using
high-resolution remote sensing image data and machine learning algorithms [11].

However, these methods have some limitations, such as low accuracy in conducting
glacier debris flow susceptibility assessment. Therefore, we need more accurate models for
glacier debris flow susceptibility assessment.

In recent years, deep learning techniques have been widely used in remote sensing
image processing [12]. Among them, the DeepLabv3+ model is a deep convolutional-
neural-network-based method with high segmentation accuracy and fast operation speed.
This model improves the accuracy of image segmentation by optimizing the traditional
convolutional neural network through the null convolution and decoder modules. Using
this model, we can semantically segment glacier debris flows by labelling them as “Ice”
category and other terrain as “Background” category. This method not only ensures high
accuracy segmentation results, but also fast evaluation, avoiding the errors in traditional
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methods. In addition, the method can actively reduce the harm caused by glacier debris
flow to humans and the natural environment.

We chose the G318—Linzhi section of the Sichuan-Tibet Highway, which has been
affected by global warming in recent years, and the glacial melt in the Linzhi area has accel-
erated, resulting in frequent glacier debris flow disasters and serious hazards. According
to incomplete statistics, which are only from April 2006 to September 2007, the mud-slide
disaster in the Linzhi area endangered the safety of 264 villagers in 17 villages, resulting
in one death and seven people missing. A comprehensive analysis of mudslide disasters
and environmental factors in the Linzhi region shows that the current glacier debris flow
disasters in the Linzhi region are at a high incidence and seriously affect the local economic
development. Therefore, it is important to study the development pattern of mudslide
under climate change in the Linzhi region for monitoring, early warning and prevention of
mudslide disasters in the Linzhi region and the whole of southeast Tibet.

Our contributions in this paper can be summarized as follows: (1) the ablation zone
of the study area was determined by comparing the glacier boundary in 2015 and the
glacier boundary in 2020; (2) the amount of glacier ablation was calculated based on the
changes in glacier elevation and ablation area from 2015 to 2020; and (3) an evaluation
of the susceptibility of glacial debris flow by using the melting amount of glaciers in
different basins.

2. Study Area

The Linzhi section of National Highway 318 is located in Linzhi City, Tibet Au-
tonomous Region of China, with a total length of about 287 km, connecting Linzhi City
with Chengdu City in the southwest of Sichuan Province. The starting point of the Linzhi
section is located in the town of Motuo within Linzhi City, and the end point is located in
the county of Yajiang. The road traverses several natural scenic areas such as the Hengduan
Mountains, the Sichuan-Tibet Plateau, and the Yarlung Tsangpo River Grand Canyon.

The Linzhi section is a typical area prone to glacial debris flow. There are many glaciers
and rocks piled together, and the geomorphologic conditions are such that glacial debris
flow occurs easily. The study area has typical alpine valley and mountain valley landforms
developed due to crustal uplift, strong river undercutting, and strong tectonic activity.
In the context of high stress, the potential risk of strong earthquakes is high [13]. The Linzhi
section has abundant research resources, such as existing satellite remote sensing images
and ground monitoring data, to facilitate the implementation of glacier debris flow analysis.

The average elevation of the study area is about 3000 m, the lowest elevation is 115 m
in the territory of Murdoch County, the highest elevation is more than 7000 m in Namcha
Barwa Peak, which is the zone with the largest vertical landform drop in the world, and the
relative elevation difference is generally around 1000–2000 m. The slope of the mountain
slope is generally not less than 30°, and the slope of the canyon area is mostly around 80°.

The national highway G318 crosses Gongbu Jiangda County, Bayi District, and Bomi
County, respectively, the details of which are shown in Figure 1. Gongbu Jiangda County is
located in the transition zone from the valley of southern Tibet to the high mountain valley
area of eastern Tibet, bounded by the eastern extension of the Gangdis Mountains in the
south and the Tanggula Mountains in the north, with mountains and valleys spreading
in an east–west direction. Bayi district in the south for the Gangdis Mountain remnants,
the north belongs to the Nianqing Tanggula Mountain branch alpine section. The average
elevation of the territory is 3000 m, and the highest peak is Galabaek Peak, which is 7300 m
above sea level, while the lowest place is Bayu Village, which is 1600 m above sea level,
with a relative height difference of 4700 m. Bomi County is located in the eastern section
of Tanggula and the eastern end of the Himalayas, with high north and low south and
continuous high mountains, and the central part of the Palongzangbu River Valley and the
Egonzangbu River Valley, with the highest elevation of 6648 m and the lowest of 2001.4 m
in Bomi County. With the change in topography and geomorphology, the geological effect
is also changing. glacier debris flow hazards are generally developed on the margins
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of modern glaciers and snowpacks, and the topography and excessive relative elevation
differences in this region provide favourable spatial conditions for the formation and
development of glacier debris flow hazards [13].
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Figure 1. Geographical location of the glacier study area.

While the climate of this study area is obviously influenced by the crustal uplift and
more prominently influenced by the topography, the average temperature in the southern
part of Dongjiu Township is around +12 °C. The cold-temperate zone becomes more pro-
nounced as we move upstream of the Yarlung Tsangpo River, and Bomi County is known
as the centre for modern glaciers because it has high mountains with perennial snow accu-
mulation below 0 °C. In recent years, the glacier area has been retreating, which is mainly
influenced by the continuous increase in temperature, and the change in precipitation
has little effect on glacier changes [14]. Therefore, we chose Bomi County as our typical
study area. The average annual temperature in Kumbumgangda County is +8.7 °C, with a
maximum temperature of +31.5 °C and a minimum temperature of −10.4 °C. The average
annual rainfall is 640.1 mm, with a maximum annual rainfall of 808.3 mm and a maxi-
mum daily rainfall of 45.2 mm. The seasonal distribution of rainfall is uneven, with 80%
of the rainfall concentrated between May and September. Bayi district is influenced by
the warm and humid airflow of the Indian Ocean, and has a temperate humid monsoon
climate with abundant rainfall. The annual average temperature is +8.5 °C, the highest
temperature +29 °C, and the lowest temperature −1.8 °C. The average annual rainfall is
654 mm, mainly concentrated in May–September, accounting for about 90% of the annual
rainfall. The average annual temperature in Bomi County is +8.5 °C, with a maximum
temperature of +31.1 °C and a minimum temperature of −1.8 °C. The average annual
rainfall is 977 mm. Since the mid-twentieth century, rising temperatures have led to the
melting of many glaciers at unsustainably high rates of melting, resulting in diminishing
ice storage [15]. Temperature and rainfall conditions are important factors in triggering the
occurrence of glacier debris flow hazards [16,17], and it is important to fully understand
and investigate this aspect.
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3. Methods

3.1. Overview

In this paper, we investigate the susceptibility of glacier debris flow along the G318
Linzhi section based on remote sensing imagery and deep learning. First, high-quality
remotely sensed images are acquired and pre-processed prior to segmentation. Second,
the processed images are used to generate a sample set. Third, after the segmentation
results are output, post-processing procedures such as boundary extraction, small polygon
removal, and edge lubrication are applied to obtain glacier profiles.

Our research is divided into three sections: (1) remote sensing image processing;
(2) the glacier ablation volume was calculated by combining elevation data; and (3) eight
influencing factors were used to evaluate the susceptibility of glacial debris flow. A flow
chart of the study is shown in Figure 2.

Figure 2. Workflow of the susceptibility analysis of glacier debris flow.

3.2. Step 1: Data Acquisition and Pre-Processing

In this paper, we have obtained freely available Landsat 8 data from the US Geological
Survey [18], covering the period of 2015 to 2020. In recent years, remote sensing imagery
has been widely used in physical geography and environmental research, especially in
areas such as glacier monitoring and geological hazard control. Because of its advantages
of high resolution and confidentiality, it often charges fees or provides a limited number of
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images, making it difficult to achieve long-term monitoring over large areas [19]. Landsat
8, as a high-resolution multispectral satellite, can effectively improve the identification
accuracy over large areas and has obvious advantages for glacier identification. Taking into
account the climatic conditions, glacier distribution, and change characteristics of the study
area, remote sensing images with less cloud shadow in summer were selected. We also
selected two global elevation remote sensing data: Copernicus DEM downloaded from the
Copernicus Open Access Centre (Available online: https://scihub.copernicus.eu/ (accessed
on 12 March 2023)) mapped in 2015, and the latest global 30 m resolution DEM data
currently available—NASA DEM was released by NASA on 18 February 2020, and NASA
DEM will be the highest resolution, best quality, and widest coverage DEM product in the
foreseeable future [20].

Furthermore, in this paper, we generate the corresponding glacier remote sensing
dataset with the help of the above-mentioned channels for constructing semantic segmen-
tation models. We selected the Band2 (Blue), Band3 (Green), and Band6 (SWIR 1) bands
from the Landsat 8 data and synthesised them as pseudo-colour images. In the synthesised
image, the ice appears blue and the bare ground is red, whereby we annotated the obtained
remote sensing image with glaciers, as shown in Figure 3.

Figure 3. The dataset of semantic segmentation. Examples show the sample labels of glaciers in
different images. (a) True-colour composite of the Landsat 8 imagery; (b) the white polygon indicates
the glacier, and black is the background. (Band2 (Blue), Band3 (Green) and Band6 (SWIR 1)).

Due to the influence of external factors such as topographic relief, solar radiation
and cloud cover, remote sensing images may suffer from distortions and other problems
during the imaging process [21]. Therefore, pre-processing of the raw remote sensing
data, including data format conversion, radiometric calibration, atmospheric correction,
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and geometric correction, is required before classifying the glaciers [22]. Extraction of
information, such as elevation and area of the study area, allows for debris flow hazard
assessment and predictive analysis, as well as final output of study results and visualisation
images, hazard evaluation maps, prediction analysis maps, etc.

3.3. Step 2: Model Architectures and Training

In this section, we detail the model architecture of a deep-learning-based approach to
accurately and automatically map complex debris-covered glaciers from remotely sensed
images. First, we generate sample sets for training and testing. Afterwards, we perform
model training by employing a semantic segmentation model with weight optimisation.
The following is an example of the basic process for processing remotely sensed images as
Figure 4.

Figure 4. The processing of remote sensing images (a) False-colour images; (b) labelled images;
(c) identified images.

DeepLabv3+ is a convolutional-neural-network-based image segmentation model for
segmenting objects in images [23]. We use a deep convolutional neural network called
Mobilenet as the backbone network for extracting image features. By leveraging the
capabilities of DeepLabv3+, the research aims to achieve accurate and reliable segmentation
of glacier debris and surrounding terrain from remote sensing imagery. The model’s high
accuracy can enhance the quality of the susceptibility analysis results. Furthermore, to
extend the perceptual field of the convolutional kernel, DeepLabv3+ adds a null convolution
layer. Null convolution adds a certain number of voids inside the convolution kernel,
allowing larger convolution kernels to process features over large regions without using
too many parameters [24]. DeepLabv3+ uses spatial pyramidal pooling for aggregation of
multi-scale image features. Specifically, the model samples the feature maps at different
scales using separate pooling kernels to capture the features of object regions at different
scales. A full convolution decoder is also used for reducing the feature maps extracted in the
backbone network to segmented images of the same size as the input image. This decoder
obtains results by upsampling and stitching high-resolution features with low-resolution
semantic segmentation maps. DeepLabv3+ achieves efficient extraction of multi-scale
image features and accurate segmentation of glacier regions by using Mobilenet networks
with operations such as null convolution, spatial pyramid pooling and a full convolution
decoder [25]. The DeepLabv3+ architecture is shown in Figure 5.
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Figure 5. DeepLabv3+ architecture for semantic segmentation (figure adapted from [24]).

3.4. Step 3: Model Architectures and Training

We used the DeepLabv3+ model for glacier debris flow remote sensing image clas-
sification, which allows us to obtain information on the susceptibility of glacier debris
flow remote sensing images. In evaluating the Deeplabv3+ model, we learned that the
accuracy assessment of glacier identification relies heavily on the quality of the sample set.
The samples were divided into training and validation sets in a 9:1 ratio for training the
model and evaluating its accuracy, respectively. The main evaluation metrics for semantic
segmentation are MPA, MIoU, and pixel accuracy, which are calculated based on the confu-
sion matrix. The four basic elements that make up the confusion matrix are true positive
(TP), false positive (FP), true negative (TN) and false negative (FN). The performance
accuracy of a glacier or non-glacier can be defined based on MPA, MIoU, and pixel accuracy.
The following formulas are quoted from [24].

MPA =
1

k + 1

k

∑
i=0

PAi (1)

MIoU =
1

k + 1

k

∑
i=0

TP
FN + FP + TP

(2)

Pixel − Accuracy =
TP + TN

TP + TN + FP + FN
(3)

We use the DeepLabv3+ model to train the annotated remote sensing images and
carry out model optimisation to improve the model prediction performance and to evaluate
the ease of occurrence. At the same time, there are some limitations and challenges to its
application. On the one hand, the model requires a large amount of high quality data for
training, which is demanding in terms of data quality and data volume, which may create
some limitations in areas of study where there is insufficient data. On the other hand, if the
amount of training data is too small or unbalanced, over-fitting can easily occur. In addition
to this, the model is relatively complex and requires parameter tuning, which requires a
certain level of technical skill and practical experience on the part of the user. When using
the DeepLabv3+ model for glacial mudslide susceptibility assessment, these issues need to
be considered thoroughly to ensure accurate and reliable results.

3.5. Step 4: Glacial Debris Flow Susceptibility Assessment

In conducting the analysis of glacial debris flow susceptibility, we conducted a com-
prehensive analysis and judgment of eight factors that affect the occurrence of glacial debris
flows, including the volume of physical sources, catchment area, maximum daily rainfall,
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longitudinal slope drop of the main gully, length of the main gully, glacier volume, total
glacial lake area, and vegetation area [26]. Based on our study, we replaced glacier area with
the glacier ablation volume in the previous study, and calculated the volume of meltwater
by calculating the volume of glacier ablation within the glacial debris flow basin over a
five-year period, and combined it with other factors to arrive at a more accurate evaluation
method for glacial debris flows.

We first calculated the values of each factor in the glacier debris flow basin in the
study area, and then used the entropy weighting method to calculate the weight of each
factor on glacier debris flow susceptibility. Finally, we used the Topsis method to score
the susceptibility of each glacial debris flow by combining the weights of each factor,
and evaluated the susceptibility of glacial debris flows based on the scores.

4. Results and Analysis

4.1. Experimental Environment and Settings

The experimental environment for this paper uses the Python programming language,
the windows 11 operating system, a 12th Gen Intel® Core™ i7-12700H CPU, an NVIDIA
GeForce RTX 3060 Laptop GPU, the PyTorch framework, and Mobilenet for the backbone
network. A larger value is better for parallel computing, while a smaller value affects the
GPU’s performance. When the batch size is set to 16 or 32, too large a batch may lead to a
lack of memory. Finally, considering the convergence speed and random gradient noise
and device performance, the batch size was chosen to be 4 for the freezing phase and 2
for the thawing phase. The number of iterations is the number of times the training set is
fed into the neural network for training. Usually, when to stop iterating depends on the
predictive performance of the model. When the number of iterations is chosen to be 600,
overfitting can occur because the number of iterations is too large. It needs to be simplified.
When the number of iterations is chosen to be 500, the difference between the test error rate
and the training error rate is small and the current number can be considered appropriate.
The learning rate is the size of the network weights update in the optimisation algorithm.
The maximum learning rate of the model defaults to 0.01 when the learning process is
adaptively adjusted according to the current batch_size. The training set is then fed into
the DeepLabv3+ network for iteration. As described above, the training parameters were
continuously adjusted to finally obtain a weight-optimised semantic segmentation model,
which we used to predict the glacier boundary in the study area and to calculate the glacier
ablation volume over a five-year period in combination with the elevation data.

4.2. Glacier Boundary Identification Model Training and Evaluation

Before the training, the extracted remote sensing images were divided into 3690 images
according to a size of 128*128. If the whole image is trained directly without cropping, it
may consume too much computer memory during the training process, resulting in the
interruption of the training process. According to 9:1, the data set was divided into the
training set and the verification set, which were 3354 and 336 pieces, respectively. In this
model training, we used the test set as the validation set and did not divide the test set
separately any more, and the remaining training set was used to learn the discriminative
information between glaciers and non-glaciers.

We conducted several training sessions of the glacier boundary recognition model,
selected several different batch_sizes, obtained several model files, and evaluated their
model training performance. Figures 6 and 7 show the relevant evaluation parameter
changes for 200 and 500 epochs of model training, respectively.

The analysis of the glacier segmentation results based on different model architectures
was performed by continuously adjusting the parameters to obtain weight optimisation.
The segmentation results for the test data based on Landsat 8 images are shown in Figure 8
in comparison to the corresponding original false colour images. We can see that the pixel
points discriminated as glacier-like are given a green mask during the model prediction
process, while the pixel points discriminated as non-glacier-like are left unchanged.
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Figure 6. Model parameters after 200 epochs of training: (a) loss; (b) MIoU.

Figure 7. Model parameters after 500 epochs of training: (a) loss; (b) MIoU.

Figure 8. Comparison of the original image and the segmentation model results of glacier bound-
ary part.

The discrimination from these remote sensing images alone is not comprehensive
enough for us to quantitatively evaluate the trained glacier boundary recognition model.
Therefore, we assessed the quality of the model training through the values of MPA, MIoU,
and pixel accuracy to reflect the accuracy of the model discrimination. For the DeepLabv
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3+ model performance from the Landsat 8 dataset, the values of MIoU were 90.85%, MPA
96.09%, and pixel accuracy 96.64%, all of which were above 90%, indicating that our trained
model can perform reasonable glacier boundary extraction.

In general, the DeepLabv3+ model can extract mudslide susceptibility information
from remote sensing images well, but the evaluation needs to consider a variety of indica-
tors and combine with other factors such as topography and rainfall to make a comprehen-
sive analysis and judgment. At the same time, the model results need to be revised and
validated by combining the experience of historical mudslide events and actual measure-
ment data when making predictions.

4.3. Assessment Results of the Vulnerability of Glacial Debris Flow

In the analysis of the susceptibility of glacier debris flows, we have addressed material
source conditions, slope, precipitation, glacial geological conditions, etc.

We summarised eight influencing factors that have a significant impact on the oc-
currence of glacier debris flows: volume of physical source (X1), catchment area (X2),
maximum daily rainfall (X3), longitudinal slope drop of the main gully (X4), length of the
main gully (X5), glacier volume (X6), total glacial lake area (X7), and vegetation area (X8).
We found a raw data matrix of 132 glacier debris flow gullies in Linzhi city classified by the
above influencing factors.

To qualitatively analyse the formation factors of glacier debris flows, we normalised the
raw data and used the entropy weighting method to derive the weight of each influencing
factor on the susceptibility of glacier debris flows. The weights are shown in the Table 1.

Table 1. Evaluation metrics based on the entropy weighting method (EWM).

Influencing Factors X1 X2 X3 X4 X5 X6 X7 X8

Weights 0.205 0.156 0.006 0.042 0.009 0.219 0.358 0.005

Combining the weights given, we scored the mudslide gullies in the study area using
the Topsis method and graded the results as Table 2.

Table 2. Scores for six glacier debris flows based on the Topsis method of analysis.

No. 1 2 3 4 5 6

Score 0.060 0.071 0.055 0.097 0.083 0.048

Figures 9 and 10 shows our evaluation of the susceptibility of six glacier debris flows
in the study area and the evaluation of their susceptibility in previous studies.

The direct result of the remote sensing image vulnerability assessment of the G318
Linzhi section of the national highway is an image map with different coloured areas, each
colour representing the corresponding mudslide vulnerability level. The red areas represent
areas of very high susceptibility, the orange areas represent areas of high susceptibility,
the yellow areas represent areas of medium susceptibility, and the green areas represent
areas of low susceptibility. These different coloured areas provide a visual indication of the
mudslide susceptibility of the area and provide important reference information for the
prevention of mudslide disasters. The results of our evaluation are highly accurate when
compared with the mudslide susceptibility assessment of the glaciers obtained after the
field survey.
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Figure 9. Glacial debris flow susceptibility mapping of the study area.
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Figure 10. Previous glacial debris flow susceptibility mapping of the study area.

4.4. Different Factors’ Influence on the Results

In conducting the glacial debris flow susceptibility analysis, we considered eight fac-
tors, namely material source volume, catchment area, maximum daily rainfall, longitudinal
slope drop of the main gully, length of the main gully, glacier volume, total glacial lake
area, and vegetation area, for comprehensive analysis and judgement.
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4.4.1. Volume of Material Source

Loose material is one of the most important precipitating conditions for glacial debris
flows, and loose material plays an important role in the estimation of the volume of the
material source. The product of the material distribution area and the average thickness is
the estimate of the volume of the material source. Based on this method, and combined
with remote sensing images, it can be concluded that: 60.1% of the 145 glacier debris flows
in the study area have a material source volume greater than 10× 106 m3 , 34% are between
1 × 106 and 10 × 106 m3, and 5.9% are less than 1 × 106 m3. This shows that the glacier
debris flows in this study area have abundant reserves of material sources, providing
conditions for the initiation of glacier debris flows, as shown in Figure 11.

0 4 8 12 162
Kilometers

Figure 11. Comparison of the volume of the physical source in the study area.

4.4.2. Catchment Area

The catchment area is the area of water within a valley or watershed that is formed by
ground form, precipitation, snow melt, and other factors. Within the catchment area, water,
such as precipitation or snow melt and ice melt, collects through the gully and surface to
become a river or stream, and eventually flows into the convergence point. The area of the
convergence point and its upstream area is called the glacier debris flow catchment area.
There are 145 glacier debris flows in the study area, of which the smallest is 0.93 km2 and
the largest is 349 km2, with 64.7% of the catchments measuring 10 km2 to 100 km2. Glacial
debris flows have a strong erosion and accumulation effect on the landscape, forming
natural catchment areas such as ice buckets and troughs, so the catchment area in this study
area is large, as seen in Figure 12.

4.4.3. Maximum Daily Precipitation

The maximum daily precipitation is an important factor in measuring rainfall. The role
of rainfall among the many triggering factors for glacier debris flows is obvious. The study
area is rich in rainfall and, according to statistics the maximum daily rainfall in the Linzhi
section, is very close to the standard for heavy rainfall, which fully meets the requirements
for the formation of glacier debris flows. The amount of rainfall influences the confluence of
glacier debris flow slopes and the runoff from the gully. Strong rainfall can lead to erosion
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collapse, while weak rainfall manifests itself as liquefaction of the glacier debris flow slope,
as seen in Figure 13.
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Kilometers

Figure 12. Comparison of catchment areas in the study area.
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Figure 13. Comparison of maximum daily rainfall in the study area.

4.4.4. Longitudinal Slope Drop of the Main Ditch

The longitudinal slope drop of the main ditch is the change in height difference be-
tween the length of the ditch in the direction of the river, and its value is mainly determined
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by two important basic parameters, the length of the main ditch and the height difference.
The main ditch longitudinal slope drop is calculated as follows:

W =
H
L

(4)

where W is the longitudinal slope drop of the main gully, H is the relative height difference
of the watershed along the main gully, and L is the length of the main gully.

The longitudinal slope drop of the main gully is one of the factors necessary to cause
large-scale glacial debris flow hazards, and therefore the analysis of the longitudinal slope
drop of the main gully is an integral part of the study of glacial debris flows, as seen in
Figure 14.
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Figure 14. Comparison of the longitudinal slope drop of the main ditch in the study area.

4.4.5. Length of Main Gully

A main gully is a gully with a certain slope, a pronounced gully, and a high water
table or surface flow rate, formed by natural factors such as glaciers, rivers, and wind.
The length of the main gully is then the length of the main gully within the gully belt or
valley. It is closely related to the longitudinal slope drop above, as seen in Figure 15.

4.4.6. Glacier Volume

Modern glaciers are necessary for the formation of glacier debris flows. Glacier volume
is proportional to the number of glacier debris flows that occur. Most of the mudslide gullies
in the study area contain large volumes of modern glaciers. The freezing and thawing of
glaciers produces loose solid material that can trigger glacier debris flows. The analysis of
glacial debris flows therefore requires an analysis of the volume of glaciers in the study
area. The volume of the glacier and its volume of water is better reflected by combining
two-dimensional remote sensing images with elevation than by the area of the glacier. This
value has a more accurate impact on the analysis of susceptibility than glacier area, as seen
in Figure 16.
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Figure 15. Comparison of the length of the main ditch in the study area.
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Figure 16. Comparison of glacier volumes in the study area.

4.4.7. Total Glacial Lake Area

A lake formed by glacial melt, flash floods, etc., with ice and glacial water as the main
components is a glacial lake. The size and variation in the glacial lake area can reflect the
activity and melting rate of the glacier, and is important for the analysis of the susceptibility
of glacial debris flow, as seen in Figure 17.
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Figure 17. Comparison of the total glacial lake area in the study area.

4.4.8. Vegetation Area

Vegetation plays a suppressive role in the formation of glacier debris flows, with its
roots penetrating deep into the soil and interlocking in a web-like pattern, acting similarly
to anchors, anchoring the soil against erosion and scouring. The area of vegetation is
therefore also an important indicator of the formation and susceptibility of glacier debris
flows, and is one of the factors necessary for their analysis, as seen in Figure 18.
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Figure 18. Comparative map of vegetation area in the study area.
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In addition, there are a number of other factors that affect the accuracy of glacial debris
flow susceptibility assessment. For example, the quality of remote sensing image data,
the higher the quality of the data, the more reliable the prediction results; for the coarse and
fine classification of feature classes, too fine or too coarse classification of feature classes will
affect the model prediction results; for the adjustment of parameter settings in the model,
including the adjustment of multi-scale image cropping, learning rate, number of training
rounds, etc., will affect the model prediction results; for the characteristics of the sample
itself, if the sample classes are unbalanced, it will easily make the mudslide susceptibility
class is off from reality; and for the model structure and performance, different types
of model structure, size of convolution kernel and other factors will affect the model
prediction effect.

Different combinations of the above factors may produce different forms of impact
effects, such as less accurate prediction results, failure to meet accuracy requirements,
or weaker generalisation ability. Therefore, when analysing the susceptibility of remote
sensing images of glacier debris flows in the Linzhi section of National Highway G318,
these factors need to be taken into account and optimised and adjusted in the process of
model training and prediction in order to improve the prediction effect of the model. At the
same time, a comprehensive analysis of the actual terrain and other important factors is
also needed to obtain more scientific and reliable prediction results.

5. Discussion

In this paper, we investigate the susceptibility of glacier debris flow along the G318
Linzhi section based on remote sensing imagery and deep learning. The segmentation
results demonstrate the effectiveness and accuracy of the method. Its strengths and limita-
tions are discussed below, and our future work to address the drawbacks is noted.

5.1. Advantages

The applications of remote sensing image and deep learning technology are important
progress for the field of glacier debris flow analysis. This method provides a more effective
and accurate means to study and predict the susceptibility of debris flow on glaciers.
In contrast, previous studies may have relied on traditional methods, which were time-
consuming and imprecise. The study of the Linzhi section of National Highway 318 is a case
study, but its impact extends beyond a specific region. Glacial debris flow is a worldwide
phenomenon, and the methods adopted in this study can be applied to other glacial regions
around the world. This contributes to a global body of knowledge and provides a valuable
tool for assessing and managing glacial debris flow risks in different regions.

The DeepLabv3+ model can significantly improve the accuracy and effectiveness of
remote sensing image sensitivity analysis of glacier debris flow in the Linzhi section of the
G318 National Highway. The model uses high-resolution image segmentation capability
to finely segment high-resolution remote sensing images at the detail level and accurately
extract key features of debris flow susceptibility [27]. In addition, the DeepLabv3+ model
has stable prediction results, multi-scale input and zero convolution technology can im-
prove the robustness and noise resistance of the model and reduce errors and outliers in the
sensitivity analysis of glacial debris flow. The model has strong adaptability and transfer-
ability, and can maintain the segmentation effect and obtain good prediction results even in
different study areas. In terms of vulnerability prediction, the model provides accurate and
intuitive vulnerability map of glacier debris flow, and realizes the visualization of regional
debris flow vulnerability information, which is of great significance for preventing and
mitigating glacier debris flow disasters.

In addition, replacing the glacier area with the glacier ablation volume can more
accurately assess glacier debris flow susceptibility. Sensitivity assessment based on deep
learning reduces the high error rate of manual recognition while improving efficiency,
especially for large-scale remote sensing images.
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In summary, this study introduced research methods, extracted the boundary of glacier
debris flow, obtained the vulnerability analysis diagram of glacier debris flow, identified the
risk factors, verified the results, provided inspiration for disaster management, and made
progress in the study of glacier debris flow. These advances help to understand and
mitigate the risks associated with glacier debris flow and enhance the safety and resilience
of affected areas.

5.2. Limitations

We know from our research literature that in an evaluation of the changes in elevation
and surface velocity of Iran’s largest and most dynamic detritus-covered glacier (Alamk-
ouh Glacier) during 2018–2020, The high-resolution images of the UAV were obtained
and processed into a digital elevation model (spatial resolution of about 15 cm) and an
orthophoto image (spatial resolution of about 8 cm), and the changes in glacier thickness
were obtained. However, in our study, we only used satellite images, and the accuracy
could not reach the centimetre level [28]. It is extremely difficult to detect glacier surface
flow rates in rugged and alpine Himalayan terrain using traditional surface techniques.
Karimi, Neamat et al. used the differential band composite method for the first time to
estimate the glacier surface velocity in the non-detrital covered area and the detrital covered
area of the glacier, respectively. The accuracy is relatively considerable [29].

The assessment of glacier debris flow susceptibility requires a large amount of fine-
grained data, and the acquisition of remote sensing images is critical to the accuracy of
the assessment results. The remote sensing elevation image data contains the regional
topographic information needed for the susceptibility evaluation of glacial debris flow,
which is of great significance. However, in practice, it is often difficult to obtain high
quality remote sensing images for glacier debris flow vulnerability assessment. First of
all, in order to meet the evaluation needs, a large number of remote sensing images need
to be obtained continuously over a long time scale, and obtaining these continuous high-
quality remote sensing image data is an insurmountable challenge. Second, the lack of
high-quality remote sensing imagery in many areas requires an extensive review of relevant
sources to obtain more comprehensive topographic information. Finally, the process of
remote sensing image pre-processing is also very complicated, and it is usually necessary
to perform multiple steps to obtain high-quality remote sensing image data. Therefore,
the acquisition and processing of high quality remote sensing image data is an important
part of the susceptibility assessment of glacier debris flow, and sufficient attention should
be paid in the evaluation work.

The integration of remote sensing image and deep learning technology is an important
progress in the field of glacier debris flow analysis, while this study demonstrates the
effectiveness of these methods in the specific context of the G318 Linzhi section, it is
necessary to evaluate how these techniques compare to existing methods used in different
parts of the globe. Exploring the limitations and potential improvements of these techniques
helps to gain a more complete understanding of their applicability and effectiveness in
different glacial environments.

5.3. Outlook

Glacial debris flow susceptibility analysis using deep learning and remote sensing
imagery techniques has a wide range of applications. In order to improve the accuracy
of the glacier debris flow susceptibility analysis model in response to this phenomenon,
integration of multiple sources of information, including topographic data, land cover
data, meteorological data, etc., can be considered. In addition, integrating multiple remote
sensing data modalities such as optical images, infrared images, and radar images can
help to improve the robustness and prediction accuracy of the model. Once the model has
the capability to identify areas of glacier debris flow susceptibility, the scope and number
of training sets and the use of global or national remote sensing data from international
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agencies will need to be expanded to further improve the generalisability and accuracy of
the method.

6. Conclusions

In this research, we explore the vulnerability of glacier debris flow along the G318
Linzhi section using remote sensing imagery and deep learning techniques. We have come
to the following conclusions: (1) the precursors of glacier debris flows can be monitored
and warned in real time using remote sensing technology; (2) glacier retreat and glacial
lake formation are important factors in glacier debris flow susceptibility areas and should
be given priority consideration; (3) with the help of remote sensing data, slopes, river
valleys, cliffs, and water bodies can be effectively identified; and (4) by obtaining glacier
morphological parameters, topographic slope and elevation data, and using deep learning
techniques to construct complex predictive models, we can predict the susceptibility of
glacier debris flows more accurately.

In the future, we will consider how to more accurately monitor changes in glacier
edges, and use state-of-the-art deep learning methods to address monitoring changes in
glacier edges, observing changes in glaciers, and providing data support for applications
such as environmental protection.
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Abstract: We mapped landslide susceptibility in Kamyaran city of Kurdistan Province, Iran, using a
robust deep-learning (DP) model based on a combination of extreme learning machine (ELM), deep
belief network (DBN), back propagation (BP), and genetic algorithm (GA). A total of 118 landslide
locations were recorded and divided in the training and testing datasets. We selected 25 conditioning
factors, and of these, we specified the most important ones by an information gain ratio (IGR)
technique. We assessed the performance of the DP model using statistical measures including
sensitivity, specificity, accuracy, F1-measure, and area under-the-receiver operating characteristic
curve (AUC). Three benchmark algorithms, i.e., support vector machine (SVM), REPTree, and NBTree,
were used to check the applicability of the proposed model. The results by IGR concluded that of the
25 conditioning factors, only 16 factors were important for our modeling procedure, and of these,
distance to road, road density, lithology and land use were the four most significant factors. Results
based on the testing dataset revealed that the DP model had the highest accuracy (0.926) of the
compared algorithms, followed by NBTree (0.917), REPTree (0.903), and SVM (0.894). The landslide
susceptibility maps prepared from the DP model with AUC = 0.870 performed the best. We consider
the DP model a suitable tool for landslide susceptibility mapping.

Keywords: landslide susceptibility; extreme learning machine; deep belief network; genetic algo-
rithm; GIS; Iran

1. Introduction

Landslides occur in a variety of materials and undergo various styles of movement at
different rates [1]. Landslides play an important geomorphological role in the evolution
of landscapes, impacting the natural (soils, ecosystems, aquatic habitat, etc.) and built
(residential areas, roads, pipelines, etc.) environment [2,3]. Landslide hazards are often
exacerbated by land use practices such as road building, and deforestation, and may be
made worse by increases in precipitation [4]. Therefore, it is important to identify areas
that have a high potential for landslides and mitigate landslide damage.
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Landslide risk assessment methodologies can be classified into three dominant groups:
qualitative, quantitative, and artificial intelligence approaches. Qualitative approaches
often rely on air photo and field interpretation and expert judgment (e.g., Schwab and Geert-
sema [5]). Quantitative methods are based on mathematical rules and expert judgment [6].
Artificial intelligence techniques can use subjective knowledge or pattern recognition tech-
niques to solve a set of mathematical equations. Selection of the most appropriate model is
usually based on the type of data available, the scale of the case study and analysis, and
the knowledge of the researcher [7].

In recent decades, with the rapid development of geographic information systems
(GIS) remote sensing (RS) techniques and improvements in the computing power of artifi-
cial intelligence algorithms, machine learning has played an important role in increasing
the accuracy and reliability of landslide predictions [8]. Machine learning methods depend
on field observations and statistical calculations [9]. Machine learning uses computer algo-
rithms for analyzing and forecasting information by learning training datasets [10]. They
have a high ability to detect landslide occurrence behavior using distribution estimation
algorithms, they have a data-driven nature, and they utilize high repetition of the modeling
process. In several studies, these methods have proven their comparative advantage over
bivariate and multivariate statistical models [11,12].

Several machine-learning methods have been applied in landslide susceptibility assess-
ment, such as logistic regression (LR) [13], naive Bayes (NB) [14,15], fuzzy logic (FL) [16],
support vector machines (SVM) [17–19], kernel logistic regression (KLR) [20,21], Bayesian
logistic regression (BLR) [17,22], artificial neural network (ANN) [23,24], random for-
est (RF) [25–28], rotation forest [29,30], random subspace (RS) [31], neuro-fuzzy infer-
ence system (ANFIS) [32,33], decision tree (DT) [26], classification and regression tree
(CART) [34–36] and many other methods [37].

Despite the logical results and high performance of different models, geoscientists are
always looking for new methods to more accurately identify landslide-prone areas and
produce reliable maps needed for environmental planning. Therefore, presenting a new
approach based on artificial intelligence algorithms, deep learning and GIS-RS techniques
for landslide modeling is of high necessity in landslide hazards management [38].

One of the major challenges in mountainous areas is the occurrence of landslides,
of which the occurrence is naturally inevitable and cannot be completely prevented but
can be managed. In this study, we are looking for a technique that can be combined with
several methods to achieve an algorithm with higher predictive power than conventional
machine-learning algorithms to predict landslide prone areas. Despite the logical results
and high performance of different models, geoscientists are always looking for new meth-
ods with quantitative criteria to more accurately identify landslide-prone areas and reliable
maps needed for environmental planning. Therefore, presenting a new approach based on
artificial intelligence algorithms and remote sensing techniques for landslide modeling is
of high necessity in landslide management. We applied and developed a deep-learning
model based on ELM, DBN, and BP optimized by GA for landslide susceptibility mapping.
This model has been used earlier in spatial prediction against floods [39] and also has been
applied to predict cancer [40]; however, its ability has not been evaluated to landslide sus-
ceptibility mapping so far. The model has been confirmed by some statistical measures and
compared with some state-of-the-art benchmark machine-learning algorithms including
SVM, NBTree and REPTree. We developed this model in MATLAB 2018a and all landslide
susceptibility maps were produced in ArcGIS 10.5. The purpose of this study is to evaluate
a robust deep-learning model that will support landslide susceptibility mapping. Here, we
build on previous landslide susceptibility modelling for this study area using landslide
data belonging to Asadi et al. [41], but with a different set of algorithms.
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2. Study Area and Data

2.1. Description of the Study Area

Our study area, around Kamyaran city, is a mountainous area of nearly 150 km2 in
the southwest of the Kurdistan Province, Iran (Figure 1). The elevation ranges from 850
to 2328 m and has a mean annual temperature that varies between 11.3 ◦C and 17 ◦C
and mean annual precipitation of 528 mm. Geologically, the study area is in the Sirvan
drainage basin, located in the structural zone of Sanandaj-Sirjan and Zagros. Bedrock
lithologies include outcrops from Cretaceous to Quaternary rocks, the oldest of which
include Micrite limestone and dark gray shale. Most of the study areas are covered by
Mesozoic and Cretaceous formations, which include Basaltic pillow lava and dark grey
shale with intercalations of volcanic rocks. Holocene sediments of the Old Testament
include alluvial fans and alluvial barracks. The predominant land covers in the study area
are semi-dense forests and dry farming. In addition, dense pasture, semi-dense pasture,
low-dense forest and woodlands are other types of land cover/land use in the study area.
The area is significantly prone to landslides associated with road developments.

Figure 1. Geographical location of the study area in (a) Iran and (b) Kurdistan province.

2.2. Data
2.2.1. Landslide Inventory Map

It is necessary to prepare a landslide distribution map for landslide modeling because
the assumption of the modeling process is that future landslides occur in the same con-
ditions as in the past [42]. That “the past and the present are key to the future” is one of the
most important principles in earth science. This means landslides that have occurred in
the past and present under specific topographic, geological, hydrogeological, and climatic
conditions in an area can provide useful information to predict the potential for future land-
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slides in that area [43]. A map showing such information is useful for studying the spatial
relationships between landslide distribution and factors affecting landslide occurrence [44].
Galli et al. [45] have mentioned that the quality of a landslide inventory map can lead to
reasonable results in landslide modeling. From a total of 118 landslide points detected in
the study area, 94 points (~80%) were used as the training dataset, and 24 points (~20%)
were considered as the validation dataset. A total of 118 landslide locations used in this
study were a part of a total of 175 landslide locations of Asadi et al. [41].

2.2.2. Landslide Conditioning Factors

The selection of the factors affecting the occurrence of landslides is one of the most
important steps in landslide susceptibility studies [46]. In this study, we selected 25 condi-
tioning factors that were slope angle, aspect, elevation above sea level, curvature, profile
curvature, plan curvature, solar radiation, valley depth (VD), terrain ruggedness index
(TRI), vector ruggedness measure (VRM), stream power index (SPI), topographic wetness
index (TWI), length slope (LS), topographic position index (TPI), land use, normalized dif-
ference vegetation index (NDVI), lithology, soil, distance to fault, distance to river, distance
to road, fault density, river density, road density, and rainfall (Figure 2). We used some
conditioning factors for this study area that were earlier published by Asadi et al. (2022).

Figure 2. Cont.
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Figure 2. Cont.
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Figure 2. Landslide conditioning factors used in this study: (a) slope angle, (b) aspect, (c) elevation,
(d) curvature, (e) plan curvature, (f) profile curvature, (g) solar radiation, (h) VRM, (i) VD, (j) SPI, (k)
TWI, (l) TRI, (m) TPI, (n) LS, (o) land use, (p) NDVI, (q) rainfall, (r) distance to fault, (s) distance to
road, (t) distance to river (u), fault density, (v) road density, (w), river density, (x) lithology, and (y)
soil texture.

Slope Angle

Landslide hazard is often linked to slope angle, with shear stresses increasing on
steeper slopes [47]. The supply of soil available for sliding often thins dramatically on
steeper slopes above 25 degrees [48]. In other words, on high slopes, the type of material
is more often stone and outcrops, such that medium slopes are more prone to landslides.
This layer in the present study was extracted from the digital elevation model (DEM) and
classified into eight intervals: 0–13, 14–22, 23–30, 31–42, and >43 (Figure 2a).
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Aspect

Slope direction affects the occurrence of landslides by controlling the parameters
related to soil moisture concentration, sunlight, dry winds, rainfall (saturation degree), and
discontinuities [49]. This layer was extracted from DEM and categorized into nine classes:
flat (−1–39.08), north (39.08–79.16), northeast (79.16–119.24), east (119.246–159.32), south-
east (159.32–199.41), south (199.41–239.49), southwest (239.49–279.57), west (279.57–319.65),
and northwest (319.65–359.74) (Figure 2b).

Elevation

The influences of elevation on landslides are often displayed as indirect relationships
or by means of other factors [50]. The altitude factor of each region is one of the effective
layers in creating slope instabilities. This factor indirectly determines many causes of
landslides such as annual rainfall, heavy rainfall, temperature, frost changes, ice melting,
etc. [51]. Maximum elevation of the region is 2328 m, and the minimum elevation is 850 m,
hence the general elevation variance is 1478 m. The elevation map was extracted from
DEM and then classified into eight classes: (1) 850–1000, (2) 1000–1200, (3) 1200–1400,
(4) 1400–1600, (5) 1600–1800, (6) 1800–2000, (7) 2000–2200, and (8) 2200–2400 (Figure 2c).

Curvature

Curvature maps show the extent to which the surface deviates from the flatness, or in
other words, the convexity and concaveness of the slope [52]. The curvature of the slope
represents the shape of the topography so that the positive concavity represents the surface
where the pixels are convex (Convex, Coves, Hollows), Negative concavity indicates a
surface where the pixels are concave (Concave, Noses) and zero indicates a surface that
has no slope and is straight (Flat, Straight). These three types of slope shapes have a great
effect on slope instability by controlling the concentration and diffusion of surface and
subsurface water in the slopes [53]. Convexity and concavity of the slope curvature map
using distances between consecutive topographic lines in the GIS were extracted from
the DEM of the region and classified into five classes (1) highly concave (−51.20)–(−3.79),
concave (−3.79)–(−1.12), (3) flat (−1.12)–(0.54), (4) convex (0.54)–(3.21) and (5) very convex
(3.21)–(33.9) (Figure 2d).

Plan Curvature

Plan curvature indicates changes in direction along a curve. This factor affects the
divergence and convergence of water and materials containing a landslide in the path of
motion. Plan curvature was extracted from DEM and divided into five classes: (1) [(−28.51)–
(−1.43)], (2) [(−1.43)–(−0.44)], (3) [(−0.44)–(0.34)], (4) [(0.34)–(1.53)], and (5) [(1.53)–(21.09)]
(Figure 2e).

Profile Curvature

Profile curvature is an important factor that affects the stress resistance due to land-
slides in the path and indicates the intensity of water flow and transportation and deposition
processes [54]. The positive values in the transverse curvature of the slope indicate con-
cavity (decrease in flow rate) and the negative values indicate convexity (increase in flow
rate) [55]. Profile curvature was extracted from DEM and constructed in five categories: (1)
[(−23.05)–(−2.29)], (2) [(−2.29)–(−0.519)], (3) [(−0.519)–(0.272)], (4) [(0.272)–(2.05)], and (5)
[(2.05)–(27.4)] (Figure 2f).

Solar Radiation

The average convergence of solar radiation per pixel over a year is called the intensity
of solar radiation, which is expressed in kilowatt hours per square meter [56]. The impor-
tance of this index is that its larger value indicates more vapor than the soil surface in an
area. This index also controls the amount of vegetation on the slope. The less solar radiation
that reaches a slope, the more vegetation appears on the slope, and as a result, the slope be-
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comes more stable [57,58]. In the present study, the solar radiation layer was extracted from
DEM in ArcGIS and categorized into five classes: (1) 80,000–43,000, (2) 440,000–540,000, (3)
550,000–630,000, (4) 640,000–700,000, and (5) 710,000–810,000 (Figure 2g).

Vector Ruggedness Measure

Vector ruggedness measure (VRM) factor was suggested by Hobson et al. [59]. It
provides a way to measure terrain ruggedness as the variation in the three-dimensional
orientation of grid cells within a neighborhood: slope and aspect are captured into a single
measure and used to decouple terrain ruggedness from just slope or elevation [60]. The
VRM map was created from DEM in the SAGA GIS software environment and then it was
divided into five classes: (1) 0–0.0302, (2) 0.0303–0.0795, (3) 0.796–0.151, (4) 0.152–0.274, and
0.275–0.699 (Figure 2h).

Valley Depth

The valley depth (VD) factor can also be considered one of the fundamental layers
in assessing landslide susceptibility. This index was prepared based on DEM map in the
SAGA GIS software, and after exporting to ArcGIS it was classified into five classes: (1)
0–37.9, (2) 38–87.7, (3) 87.8–149, and (4) 150–233 and (5) 234–508 m (Figure 2i).

Stream Power Index

Stream Power Index (SPI) is a criterion derived from the DEM that might affect
landslide occurrence, and it reflects the erosive power of slope surface run-off [61,62]. It
can be formulated as follows:

SPI = As × tanβ (1)

where As is the specific basin area and tanβ represents the slope angle. In this study, it was
prepared based on DEM in the SAGA GIS software and then exported to ArcGIS software
to map. The SPI layer was then extracted in five intervals: (1) 0–1510, (2) 1520–1600,
(3) 1610–3110, (4) 3120–26,500, (5) 26,600–390,000 (Figure 2j).

Topographic Wetness Index

Topographic wetness index (TWI) represents a theoretical component of flow accumu-
lation at any point in a watershed or region that is used to describe the spatial pattern of
soil moisture [63]. This index is generally used for topographic control over hydrological
processes and its high values are generally used in landslide bodies. The TWI can be
formulated as follows:

TWI = Ln
(

As

tanβ

)
(2)

where As is cumulative drainage upstream area at one point and tan the angle of slope at
the point. The TWI was prepared in five classes: (1) 0.0895–2.62, (2) 2.63–3.32, (3) 3.33–4.15,
(4) 4.16–6.26, and (5) 6.26–10.70 (Figure 2k).

Terrain Ruggedness Index

Terrain Ruggedness Index (TRI) was introduced by Riley [64], and it is actually the
difference in the height of one pixel with the eight pixels around it. Equation (3) is provided
to calculate this index:

TRI = √ 8

∑
p=1

ZMD (3)

where p is the number of pixels in the region and ZMD is the average difference of eight
pixels around each pixel. The TRI map was prepared in five classes: (1) 0–2.64, (2) 2.65–4.75,
(3) 4.76–7.74, (4) 7.75–13.4, and 13.5–44.9 (Figure 2l).
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Topographic Position Index

Topographic position index (TPI) compares the height of each pixel in the digital ele-
vation model with the specified pixel around that pixel [65]. To calculate TPI (Equation (4)),
the height of each cell in a digital elevation model compared with the average height of
neighboring cells is examined. Finally, the average height decreases from the height value
in the center. Areas higher than the surrounding points (hills) are indicated by positive TPI
values; negative TPI values denote areas lower than their surroundings (valleys). Zero and
near-zero values also illustrate flat areas (where the slope is close to zero) or areas with a
fixed slope [66].

TPI = Z0 − ∑n−1 Zn/n (4)

where Z0 is the point height of the model under evaluation, Zn is the height of the grid and
n is the total number of surrounding points considered in the evaluation. We prepared TPI
in five classes: (1) (−75.7)–(−9.77), (2) (−9.77)–(−2.83), (3) (−2.83)–(2.94), (4) (2.94)–(11.03),
and (5) (11.03)–(71.7) (Figure 2m).

Slope Length

The slope length (LS) factor, which is a combination of the slope angle and length of
the slope, is a fundamental factor in the study of landslides because this factor refers to
the sediment transport capacity created by the landslide through the daily (direct) flow.
Carrara [67] stated that there is a relationship between landslide density and slope length.
Therefore, this factor is examined in this study [67]. Mathematically, this equation is
expressed as:

LS =

(
As

22.13

)0.4( sinβ

0.0896

)1.3
(5)

where As is the specific catchment area and β is the degree of local slope gradient. This
index was prepared based on DEM in the SAGA GIS software, and after exporting in the
GIS environment it was classified into five classes: (1) 0–6.88, (2) 6.89–13.1, (3) 13.2–19.6,
(4) 19.7–28.2, and (5) 28.3–87.8 (Figure 2n).

Land Use/Land Cover

Land use is one of the important indicators in the instability of slopes, and it affects
the characteristics of the land and changes its behavior [53]. In this study, the land use layer
was prepared and extracted from an Iranian land use map. Land use/cover classes in the
current research are dry-farming, semi-dense forest, low-dense forest, semi-dense pasture,
dense pasture, and woodland (Figure 2o).

Normalized Difference Vegetation Index

The normalized difference vegetation index (NDVI) factor shows the ability to detect
growth and vegetation levels in an area [68,69]. It is obtained by subtracting the reflection
values of red band (Red) or visible spectrum (0.6–6.7 μm) and near-infrared band (NIR)
(0.7–1/1 μm). Equation (6) is used to calculate this index:

NDVI = (NIR− RED)/(NIR + RED) (6)

The minimum and maximum values of this index, respectively, are (−1) and (+1). The
NDVI map was produced in five classes: (1) (−0.351)–(−0.064), (2) (−0.064)–(0.008), (3)
(0.008)–(0.099), (4) (0.099)–(0.260) and (5) (0.260)–(0.759) (Figure 2p).

Rainfall

Rainfall intensity and duration play a major role in landslide initiation [70]. Here, we
obtained the rainfall data of eight meteorological stations from the Iranian Meteorological
Organization. A rainfall map of the area was built with the inverse distance weighting
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(IDW) method with five classes: (1) 438–440, (2) 440–480, (3) 480–520, (4) and 520–560
(Figure 2q).

Distance to Fault

Large-scale structures such as faults and thrusts can influence the distribution of
landslides [71]. In this study, distance to fault was calculated by the “Euclidean Distance”
tool in ArcGIS software, in terms of distance from each pixel from the study area to the
nearest fault. Based on these results, buffers were constructed around the fault with
distances of 100 m, and this map was extracted into five classes: (1) 0–100, (2) 101–200,
(3) 201–300, (4) 301–400, and (5) >400 (Figure 2r).

Distance to Roads

Both cut and fill slopes and improper road drainage structures associated with road
construction can contribute to slope instability [72]. In this study, distance to road was
calculated by the “Euclidean Distance” tool in ArcGIS software, in terms of distance from
each pixel from the study area to the nearest road. Distance to roads was mapped with five
categories: (1) 0–100, (2) 101–200, (3) 201–300, (4) 301–400, and (5) >400 m (Figure 2s).

Distance to Rivers

Another conditioning factor that directly impacts landslide susceptibility is distance
to river. Flowing water is one of the factors increasing the potential for instability in the
slopes, playing an effective role in mass movements. Distance to river was calculated by
the “Euclidean Distance” tool in the ArcGIS software in meters of each pixel from the study
area to the nearest stream line. The map was created with five classes: (1) 0–100, (2) 101–200,
(3) 201–300, (4) 301–400, and (5) >400 m (Figure 2t).

Fault Density

Slope instabilities are more likely to occur in areas where the number of faults is
high and particularly when the faults are active [73]. Fault density is the ratio of the total
length of faults in a given watershed or a given area to the total area of the watershed
or the area surrounding those faults [74]. The higher the density of faults in an area, the
greater the split in rocks and the reduction in shear strength of rocks and slope constituents
due to weathering. As a result, the risk of slope instability and landslides increases on
the slopes [75]. Fault density was extracted with five classes: (1) 0–0.67, (2) 0.671–1.84,
(3) 1.85–3.01, (4) 3.02–4.41, and (5) 4.42–7.12 km/km2 (Figure 2u).

Road Density

Road density is the ratio of the total length of roads in a given watershed or a given
area to the total area of the watershed or the area surrounding those roads [76]. Although
the quality of roads and drainage control are important, road density can also influence
landslide occurrence [77]. Road density was calculated using the “Line density” tool in the
ArcGIS software for modeling, and the factor was classified into five classes: (1) 0–0.440,
(2) 0.440–1.210, (3) 1.210–1.914, (4) 1.914–2.772, and (5) 2.772–5.610 km/km2 (Figure 2v).

River Density

Another influence controlling landslides is river density [78]. River density is the
ratio of the total length of rivers in a given watershed within a given area to the total area
of a watershed or area containing those rivers [79]. We used the “Line density” tool in
the ArcGIS software to extract five classes of river density: (1) 0–0.5551, (2) 0.5551–1.4608,
(3) 1.4608–2.4542, (4) 2.4542–3.7983, (5) 3.7983–7.4505 (Figure 2w).

Lithology

Lithology often strongly influences slope stability [80], in part due to variable strength
characteristics of certain bedrock types [81]. Therefore, to determine the susceptibility of
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various lithological formations to produce landslides, we extracted lithological units of the
case study of Kamyaran geology sheet with a scale of 1:100,000. The number of lithological
units in the study area was divided into 10 classes (Figure 2x).

Soil Texture

Landslides that involve soils are influenced by the type of soil they occur in [82]. Soil
texture influences properties such as permeability and cohesion, which can influence the
style of movement [83]. Primarily, landslides change soil features by exposing parent
material (the C horizon) by removing organic mats and the horizon A [84]. Changes
in soil texture occur when a landslide moves or removes various materials to a specific
location [85]. From the study area, 20 soil samples in different lithological units were
collected to determine soil texture using the hydrometric method. We used the soil texture
triangle to classify textural groups. The soil map was created into five classes: (1) Silty
Loam (2) Clay Loam (3) Loam (4) Sandy Loam (5) Silty Clay (Figure 2y).

3. Modeling Process

Figure 3 shows the workflow of our study. In step 1, we collect and interpret landslide-
conditioning factors. In step 2, we divide landslide locations into the training and the
validating datasets. In step 3, we conduct landslide modeling using the DL (deep learning)
model and the three benchmark models (SVM, NBTree, and REPTree). In the DL model,
we computed landslide susceptibility index (LSIs) for each pixel of the study in five steps:
(i) constructing DBN using RBMs as pretraining on the dataset; (ii) parameter tuning in
ELM to obtain the weights matrix from the last restricted Boltzmann machines (RBMs),
(iii) fine tuning the training of the whole network by BP, (iv) optimizing the obtained
weights from the network by the genetic algorithm (GA), and (v) assigning the optimum
weights to the pixel of the study to map the landslide susceptibility. In step 4, we generate
the landslide susceptibility maps using the outcomes of step 3. Finally, we compare and
validate the performance of the models using a suite of statistical measures.

 

Figure 3. Flowchart of the study.

4. Mathematical Background of the Methods

4.1. Deep Belief Network

One of the most common deep neural networks (DBN) training techniques is the
use of unsupervised pretraining, which initializes the network using only unlabeled data.
Network initialization has been shown to be a good starting point for fine-tuning with the
next observer, and greatly reduces the risk of being trapped at the local minimum according
to Kustikova and Druzhkov [86]. One of the methods used to teach deep networking is
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the deep belief network. The deep belief network [87,88] has become a popular approach
in machine learning due to its advantages such as fast inference and the ability to encode
richer and higher-order network structures. DBN operates a hierarchical structure with
several finite Boltzmann machines, and operates through a layered learning process [89]. A
deep belief network with two Boltzmann machines bounded for one problem to n inputs
and one output is shown in (Figure 4).

Figure 4. Deep belief network model used in the study.

Usually, with pretraining, the deep belief network training process includes the fol-
lowing steps [90]:

Step 1: Pretraining step: a sequential training of learning modules, greedily, one layer
at a time, using unsupervised data;

Step 2: First fine-tuning step: use random weights for the last layer (matrix W3 in
Figure 4);

Step 3: Second fine-tuning step: use back propagation to fine-tune the entire network
using supervised data.

4.2. Extreme Learning Machine

The extreme learning machine (ELM) [91] was first proposed by Huang in 2004 for the
single hidden-layer feedforward neural networks (SLFNs) with the aim of reducing the
costs imposed by the post-error propagation procedure during the training process, and
then extending to SLFNs where latent layer neurons do not need to be the same. Over the
past decade, the extreme learning machine has been extensively studied due to its high
productivity, effectiveness, and easy implementation [92]. The ELM has the advantage
of a fast learning rate and high generalizability [93]. In ELM, the hidden layer does not
need to be adjusted; that is, the connection weights from the input layer to the hidden
layer as well as the hidden biases, and neurons are generated randomly without additional
adjustment. The efficient least squares method is used to computationally calculate the
connection weights from the hidden layer to the output layer [94].

4.3. Structure of the Deep-Learning Model

In the proposed model, for network training, the deep belief network training process
mentioned in the DBN section is used; the difference is that in the first fine-tuning step, the
ELM is applied to teach the weights between the last hidden layer and the output layer
(W3 in Figure 4). The optimal network structure is also derived from GA. The steps of the
genetic algorithm are as follows:

Step 1: Chromosome coding and population initialization. The chromosome is di-
rectly counted by taking positive integers (to a predetermined population N). The number
of genes on each chromosome indicates the number of hidden deep layer layers and
the amount of each gene indicates the number of neurons. Chromosome genes are also
randomly initialized.

Step 2: Assessment. Each chromosome is trained by the proposed hybrid model using
training data. Then, the classification accuracy is calculated and considered as the fit value
of that chromosome.
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Step 3: Selection. The known mechanism of selecting the roulette wheel has been used
to choose the parents for the combination and jump.

Step 4: Combination. To search the problem space, the one-point compound operator,
which is one of the most common compound operators in the literature, has been used.

Step 5: Mutation. The mutation operator produces a new chromosome by randomly
selecting a gene/layer and decreasing or increasing its amount. The purpose of this operator
is to prevent the algorithm from being trapped in the local optimization by discovering
new solution spaces.

Step 6: Selection of survivors. After arranging the chromosomes of the current popula-
tion and the chromosomes resulting from the combination and mutation based on their
proportional values, the superior N chromosomes are selected as the survivors.

Step 7: Stop criteria. When the number of generations reaches the predetermined
value, the algorithm stops and the best chromosome returns as the answer; otherwise, it
returns to step 3. The flowchart of the deep-learning model used in this study is shown in
Figure 5.

Figure 5. The flowchart of the deep-learning model [39,40].

4.4. Benchmark Methods
4.4.1. Support Vector Machine

The support vector machine (SVM) algorithm is based on the theory of statistical
learning that uses the inductive minimization principle of structural error leading to
an overall optimal solution [95,96]. In recent years, this algorithm has attracted a lot
of attention due to its good classification performance and good generalizability. The
SVM includes the two operations, (i) nonlinear mapping of an input vector into a high-
dimensional feature space that is hidden from both the input and the output and (ii)
construction of an optimal hyperplane to separate the features. The structure of this model
is explained as follows:

Xi = (i = 1, 2, . . . , n) (7)
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The training vectors included two classes of Yi = ±1; the purpose of this model is to
find a differentiated hyperplane of −N dimensional by the maximum gap. The description
is as follows:

1/2 = ‖W‖2 (8)

Subject to the following constraints.

Yi = ((W . Xi) + b) ≥ 1 (9)

where ‖W‖ is the norm of the normal of the hyperplane, (.) is a specific numerical produc-
tion and b is a scalar base.

4.4.2. REPTree

The reduced error-pruning tree (REPTree) as a fast decision-tree learning process that
combines two kinds of algorithms as a hybrid method involving reduced-error pruning
(REP) and decision tree (DT) [97]. The main structure of this method is based on classifica-
tion and regression problems. The REP minimizes the complexity of tree structure if the
DT’s performance is high [98]. The REPTree method uses the pruning mechanism to over-
come the backward overfitting problem. Additionally, this technique uses the post-pruning
method to obtain the minimal version of the most-accurate tree [99].

4.4.3. NBTree

Naïve Bayes tree (NBTree) was used due to its simplicity and linear runtime method,
combining the J48 algorithm and the naïve Bayes algorithm [100]. This method is used
for classification problems, especially to evaluate and pick the class that maximizes the
subsequent class’s likelihood. Hence, NBTree can solve problems of big data that relate to
the Naïve Bayes algorithm and the data fragmentation of the J48 algorithm. The important
distinguishment of this model from other machine-learning methods is that it is based on
a minimal training data structure that uses a classification system to evaluate important
parameters [101]. To build a Naïve Bayes classifier for detection of landslide occurrence
points in the area, NBTree uses information obtained from the root node to a given leaf
node down the tree, and then utilizes the training cases that fall into that leaf node [102].

4.5. Information Gain Ratio

In the present study, the information gain ratio (IGR) was applied as the basis of
judgment for factor selection and to determine important comparative factors for model-
ing. For landslide susceptibility assessment, selecting the most effective factors as input
dataset is fundamental. IGR was proposed by Quinlan [103] to define the quantitative
predictive strength of the effective parameters and to select important conditioning factors
for modeling. The higher the IGR value, the higher the prediction utility of a factor for
modeling [19]. This method enhances the power of prediction of landslides, discarding
noise factors with lower IGR. Assuming that the training data T contain n samples, Ci
(landslide, nonlandslide) is a classification set of sample data, and the information entropy
of the factors is calculated as follows:

In f o (T) = −
2

∑
I=1

n(Ci, T)
|T| log2

n(Ci, T)
|T| (10)

Estimating the amount of information (T1, T2 and Tm) from T considering causal factor
F takes the form of the following Equation (11):

In f o (T, F) = −
m

∑
I=1

Ti
|T| log2 In f o (T) (11)

Eventually, the IGR of the landslide causal factor F can be calculated by:
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IGR (Y, F) =
In f o (T)− In f o (T, F)

Split In f o (T, F)
(12)

where Split Info denotes the potential information produced by dividing the training data T
into m subsets. The formula of Split Info is shown as:

SplitIn f o (T, F) = −
m

∑
I=1

|Ti|
|T| log2

|Ti|
|T| (13)

If IGR > 1, the probability of landslide incidence is higher than average; if IGR = 0,
the probability of landslide is equal to average; and if IGR < 0, the probability of landslide
incidence is less than average [104].

4.6. Performance Metrics

To evaluate the performance of all the models, we used a number of statistical index-
based metrics: sensitivity (SST), specificity (SPF), accuracy (ACC), F1-measure, and receiver
operative characteristic curve (AUC). All statistical metrics were computed based on true
positive (TP), true negative (TN), false positive (FP), and false negative (FAN). Table 1
shows the mentioned statistical index-based metrics and their descriptions.

Table 1. Performance metrics and their descriptions to assess the performance of the models.

Metric Formula Description

TP True positive Number of landslides (positive) that are truly classified as landslide [105].

TN True negative Number of nonlandslides (negative) that are truly classified as nonlandslide [106].

FP False positive Number of nonlandslides that are incorrectly classified as landslides [107].

FN False negative The number of landslides that are incorrectly classified as non-landslides [9].

SST SST = TP
TP+FN

The ratio of landslides that are correctly classified as landslide. This indicates the good
predictability of the landslide model for classifying landslides [108].

SPF SPF = TN
FP+TN

The ratio of nonlandslides that are correctly classified as non-landslide. This depicts good
predictability of the landslide model for classifying nonlandslides [108].

ACC ACC = TP+ TN
TP+TN+FN+FN

The ratio of landslides and nonlandslides that are correctly classified [109]. This shows how well
the landslide model works.

F1-measure F1−measure = 2TP
2TP+FP+FN F-measure is a way to combine and balance both precision and recall into a single measure [110].

AUC AUROC = ∑ TP + ∑ TN
P + N

The ROC curve is plotted by sensitivity and 1-specificity, respectively, on the y-axis and x-axis [111].
The area under the ROC curve (AUC) illustrates the power prediction of a model [112].

MSE
RMSE

MSE = 1
N

N
∑

i=1

(
xm − xp

)2

RMSE =

√
1
N

N
∑

i=1

(
xm − xp

)2

MSE and RMSE measure the difference between measurements (xm) and predictions (xp) and
indicate modeling error [113]

5. Results

5.1. The Most Important Conditioning Factors

We obtained the relative importance of the factors influencing landslide occurrence
based on average merit (AM) as IGR score through the k-fold cross-validation technique
(Table 2). Results indicated that in the lower folds (1 and 2 folds), the number of removing
factors with less predictive power was higher (13 factors) than the higher folds (10-fold;
9 factors). According to Table 2, the results pointed out that from 1-fold to 10-folds cross-
validation, distance to road (AM = 0.177), road density (AM = 0.118), lithology (AM = 0.079)
and land use (AM = 0.055) were the first four most important factors for landsliding in the
study area. These four influencing factors are followed by NDVI (AM = 0.04), elevation
(AM = 0.04), soil (AM = 0.031), aspect (AM = 0.025), solar radiation (AM = 0.021), VRM
(AM = 0.015), slope angle (AM = 0.014), distance to fault (AM = 0.014), TWI (AM = 0.013),
LS (AM = 0.011), TRI (AM = 0.008), and rainfall (AM = 0.006). Further, the results showed
that profile curvature, curvature, plan curvature, distance to river, VD, fault density, river
density, TPI, and SPI, because of having AM = 0, were removed from the modeling process.
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5.2. Performance of the Deep-Learning Model

Figure 5 shows the results of training the DL model. Figure 6a,b illustrates how well
the landslide (target) and nonlandslide (output) values fitted based on the training and
testing datasets, respectively. A well-trained model with a high goodness of fit also has
a high agreement between the target and output by the training dataset. However, high
prediction accuracy of the model is inferred by the agreement between the target and output
of the testing dataset. The two statistical quantitative metrics of MSE (mean squared error)
and RMSE (root-mean-square error) show the modeling error of the DL model (Figure 6c,e).
The values of MSE and RMSE in the training dataset were 0.0435 and 0.0208, respectively
(Figure 6c); however, these values for the testing dataset were 0.079 and 0.281 (Figure 6e).
The StD (standard deviation) and mean for the training dataset were, respectively, 0.04 and
0.280, and for the testing dataset these values were 0.01 and 0.208, respectively (Figure 6d,f).

5.2.1. Parameter Tuning

The success rate of a model depends on selecting the optimal value of the parameters
of that model. The parameter can be tuned by offline and online approaches. In the offline
technique, the values of different parameters are fixed, whereas in the online approach the
parameters are dynamically or adaptively controlled and updated [114]. In this study, we
used the online parameter tuning approach and the results are shown in Tables 3–5.

Table 3. The optimal value of the genetic algorithm parameters.

Parameter Optimal Parameter Value

Number of generations 50
Population size 200
Crossover rate 0.8
Mutation rate 0.15

Number of genes Random in (1, 5)
Value of genes Random in (1, 200)

Table 4. Optimal parameters of the DBN and BP models.

Parameters
DBN BP

Value Value

Learning rate 1 0.1
# of learning epochs 10 60

#: Number of...

Table 5. The optimal value of parameter of the benchmark methods.

Method Parameter Value

SVM

Debug: False; BuildLogisticModels: False; c: 1.0; ChecksTurnedOff:
False; Debug: False; Epsilon: 1.0 × 10−12; FilterType;

Nonormalization/standardization; Kernel: Poly Kernel; NumFolds:
−1; RandomSeed: 1; ToleranceParameter: 0.001

REPTree
Debug: False; MaxDepth: −1; MinNum: 2; MinVarianceProp: 0.001;

NoPruning: False: NumFolds: 3; Seed:1
NBTree Debug: False
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Figure 6. Performance of the DL model: (a) target and output for the training dataset, (b) target and
output for the testing dataset, (c) magnitude of the errors for the training dataset, (d) distribution of
the errors for the training dataset (e) magnitude of the errors for the testing dataset, (f) distribution of
the errors for the testing dataset.
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5.2.2. Classification Performance

After selecting the optimal parameter values for each model, we ran the models to
obtain the highest evaluation measures but the least error. Our findings for the validation
phase using the testing dataset, which are briefly reported below and in Table 6, show that
the DL model outclassed and outperformed the three benchmark models. The sensitiv-
ity, specificity, accuracy, F1-measure, and AUC metrics were obtained based on the four
possibilities from the confusion matrix of TP, TN, FP, and FN (Table 6).

(1) The highest sensitivity (0.667) was obtained by the DL model in which the DL model
correctly classified 66.7% of landslides as landslide. It is followed by NBTree, REPTree,
and SVM algorithms (Table 6).

(2) The DL model acquired the highest specificity values (0.958), indicating that the DL
model correctly classified 95.83% of nonlandslides as nonlandslide. SVM, REPTree,
and NBTree yielded the same specificity values based on the validation dataset of
0.953 (Table 6).

(3) The DL model had the highest accuracy on the testing dataset (0.926). It indicated
that 92.6% of landslides and nonlandslides were correctly classified, respectively, as
landslide and nonlandslide. It was followed by the NBTree (0.917), REPTree (0.903),
and SVM (0.894) models (Table 6).

(4) The DL model had the highest value of the F1-measure (0.667), followed by NBTree
(0.625), REPTree (0.533) and SVM (0.465) (Table 6).

(5) The DL model yielded the highest value of AUC (0.893) using the testing dataset. It
indicated that the DL model had the highest prediction accuracy of all the models
including NBTree (0.866), SVM (0.853), and REPTree (0.817) (Table 6).

Table 6. The predictive performance of the deep-learning model and the three benchmark models.

Metric DL SVM REPTree NBTree

TP 16 10 12 15

TN 184 183 183 183

FP 8 9 9 9

FN 8 14 12 9

Sensitivity 0.667 0.417 0.500 0.625

Specificity 0.958 0.953 0.953 0.953

Accuracy 0.926 0.894 0.903 0.917

F1-mesaure 0.667 0.465 0.533 0.625

AUC 0.893 0.853 0.817 0.866

5.3. Preparing Landslide Susceptibility Maps

We ran the DL model and also the three benchmark models (SVM, NBTree, and
REPTree) and computed landslide susceptibility index (LSIs) for each pixel of the study
area. We then assigned the LSIs from the DL and benchmark machine-learning models to
each pixel of the study area to produce landslide susceptibility maps (Figure 7a–d). We
classified the maps into the five susceptibility classes: very low susceptibility (VLS), low
susceptibility (LS), moderate susceptibility (MS), high susceptibility (HS), and very high
susceptibility (VHS). In DL, the range of the classes were, respectively, 0.0000875–0.0092,
0.0312–0.0446, 0.0447–0.125, 0.126–0.333, and 0.333–0.868 (Figure 7a). These classes in SVM
(Figure 7b) for the VLS, LS, MS, HS, and VHS were, respectively, 0.001–0.092, 0.0921–0.0293,
0.0294–0.0789, 0.079–0.201, and 0.202–0.5. For NBTree (Figure 7c) these classes were VLS
(0.001–0.01299), LS (0.013–0.03783), MS (0.03784–0.09404), HS (0.09405–0.2128), and VHS
(0.02129–0.468). Consequently, in REPTree (Figure 7d) the classes were VLS (0–0.03), LS
(0.03001–0.0993), MS (0.09931–0.1067), HS (0.1068–0.2556), and VHS (0.2557–0.406).
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Figure 7. Cont.
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Figure 7. Landslide susceptibility maps produced by the (a) DL, (b) SVM, (c) NBTree, and (d) REPTree
models.

5.4. Validation and Comparison of the Models

The prediction accuracy of the DL model and the benchmark machine-learning algo-
rithms were assessed by AUC using the testing dataset (Figure 8). As shown in Figure 8,
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results indicated that the DL model had a high prediction accuracy (AUC = 0.870). In
contrast, AUC for the SVM, NBTree, and REPTree models were somewhat lower, at, 0.861,
0.837, and 0.834, respectively (Figure 8). Overall, the DL model was superior compared to
the other three benchmark machine-learning models in terms of prediction accuracy.

Figure 8. AUC of the models based on the testing dataset.

6. Discussion

In recent years, the demand for accurate prediction of landslides and the production
of landslide susceptibility maps has increased, in part due to the improvement of data pro-
cessing techniques, but also due to the importance of landslide prediction and susceptibility
mapping in more effective land-use planning and management. There are numerous ap-
proaches and methods for producing landslide susceptibility maps, but machine-learning
methods based on GIS-automated techniques offer advantages such as low cost, wide scope,
fast analysis, and the option for periodically updating outputs. Each machine-learning
method has its specific advantages and disadvantages, and depending on the software
capabilities and input data, its outputs may differ from that of other methods. The chal-
lenge many researchers face is selecting the most appropriate method. Thus, comparative
analysis of the predictive performance of different machine-learning methods is a major
topic in the landslide literature [115,116]. With a desire to produce a landslide susceptibil-
ity map with high prediction accuracy, we compared the predictive performance of four
machine-learning methods. We first investigated the usefulness of the conditioning factors
for the modeling using the information gain ratio technique with 10-fold cross-validation.
The results revealed the landslides that have occurred in our study area were significantly
associated with road networks, such that the distance to roads and road density factors
were identified as the most influential landslide-conditioning factors. Jaafari et al. [117]
and Schlögl and Matulla [118], and Sultana and Tan [119] have also reported on the strong
associations between road networks and the frequency of landslide occurrences. Therefore,
these regions should be the priority targets for landslide mitigation measures [119,120].

We measured the predictive performance of the models using several widely used
metrics [115,121,122] and found that the DL model has obtained the first rank in all met-
rics used, and therefore successfully outperformed the benchmark models (i.e., NBTree,
REPTree, and SVM) that have been previously used for landslide susceptibility mapping in
many regions around the world [121–125].
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DL algorithms are powerful types of machine-learning algorithms, which utilize nu-
merous hidden layers to model complex relationships among data for pattern recognition
and classification tasks, such as landslide prediction. In contrast to traditional shallow
learning algorithms (e.g., backpropagation neural networks, logistic regression, and deci-
sion trees) that generate decision boundaries directly based on the original datasets [126],
DL algorithms hierarchically analyze the original datasets to extract the most relevant
features for the data classification [127].

Despite the infrequent applications of the DL model for the prediction of natural
hazards, the superiority of this model to other models derived from machine learning
has been confirmed. For example, Wang et al. [128] reported the first application of
DL for landslide prediction and achieved better prediction accuracy than that of SVM.
Sameen et al. [123] reported that the DL model outperformed ANN and SVM for landslide
prediction. Huang et al. [129] reported that the DL model was superior to ANN and SVM
for landslide prediction. Dao et al. [130] showed that the DL model could provide a more
accurate prediction of landslide susceptibility compared to quadratic discriminant analysis,
Fisher’s linear discriminant analysis, and ANN. Dou et al. [131] reported that DL provided
greater AUCs than the ANN and LR methods for landslide prediction. In a recent study,
Mandal et al. [132] demonstrated improved accuracy for landslide prediction using the DL
model compared to RF, ANN, and Bagging. Overall, the DL model has proven efficiency
for landslide modeling and has been identified as an attractive alternative to traditional
machine-learning methods.

7. Conclusions

We illustrated the robustness of a deep-learning model against three benchmark mod-
els (SVM, NBTree, and REPTree) for the prediction of landslide susceptibility in Kamyaran
city, Kurdistan Province, Iran. First, the landslide inventory map with 118 past landslides
was produced using different sources and randomly divided into two groups: 80% for
the model training and 20% for the model validation. Next, using the models, the past
landslides were linked to 25 conditioning factors. The performance of the models was
evaluated using sensitivity, accuracy, specificity, F1-mesaure and AUROC. The results
showed that although all models had acceptable performance, the deep-learning model
outperformed the other models. This indicates that the DL model can be considered as a
promising technique for preparing landslide susceptibility in mountainous areas prone
to landsliding. Based on the results obtained from the deep-learning model, an accurate
landslide susceptibility map is developed to complement previous research. The findings
of this study can be used for future planning, land management, land use allocation, and
government policy making, to prevent or reduce landslides in Kamyaran city. In future
studies, we suggest integrating the current framework with other individual and metaclas-
sifiers from machine learning to achieve a higher prediction accuracy for landslides, and
perhaps other natural hazards.
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Abstract: Landslides are the most catastrophic geological hazard in hilly areas. The present work
intends to identify landslide susceptibility along Karakorum Highway (KKH) in Northern Pakistan,
using landslide susceptibility mapping (LSM). To compare and predict the connection between
causative factors and landslides, the random forest (RF), extreme gradient boosting (XGBoost),
k nearest neighbor (KNN) and naive Bayes (NB) models were used in this research. Interferometric
synthetic aperture radar persistent scatterer interferometry (PS-InSAR) technology was used to
explore the displacement movement of retrieved models. Initially, 332 landslide areas alongside
the Karakorum Highway were found to generate the landslide inventory map using various data.
The landslides were categorized into two sections for validation and training, of 30% and 70%. For
susceptibility mapping, thirteen landslide-condition factors were created. The area under curve (AUC)
of the receiver operating characteristic (ROC) curve technique was utilized for accuracy comparison,
yielding 83.08, 82.15, 80.31, and 72.92% accuracy for RF, XGBoost, KNN, and NB, respectively. The
PS-InSAR technique demonstrated a high deformation velocity along the line of sight (LOS) in model-
sensitive areas. The PS-InSAR technique was used to evaluate the slope deformation velocity, which
can be used to improve the LSM for the research region. The RF technique yielded superior findings,
integrating with the PS-InSAR outcomes to provide the region with a new landslide susceptibility
map. The enhanced model will help mitigate landslide catastrophes, and the outcomes may help
ensure the roadway’s safe functioning in the study region.

Keywords: CPEC; random forest; landslides; susceptibility; PS-InSAR; ArcGIS

1. Introduction

The China–Pakistan Economic Corridor (CPEC) demonstrates the flagship project of
the “One Belt, One Road” policy. It is also thought to hold Pakistan’s financial prospects,
which are receiving a lot of interest. The Karakoram Highway was built in 1974–1978 and
inaugurated in 1979 and runs alongside the CPEC in Northern Pakistan. It is regularly
closed for a few months each year because of landslides.

Local topography, tectonic features, geomorphology, landcover, geology and human
interference all have an influence on the spatial likelihood of landslides, which is then
examined to determine landslide susceptibility (LS) [1]. Landslide vulnerability assessment
models frequently assume that historical and current landslide conditions would be con-
stant in the future [2]. LS methodologies can be quantitative or qualitative; quantitative
methods evaluate the likelihood of landslide incidence in a susceptible zone, whereas
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qualitative methods introduce subjectivity into illustrative susceptibility zonation [1,3].
The analytical hierarchy model (AHP) [4–6], weight of evidence model [7,8], frequency
ratio [4,5,9] and certainty factor [4] are all commonly used landslide susceptibility models.
A growing trend is to compare the outcomes of implementing two or more models and
the result is a landslide susceptibility model (LSM). However, most studies still use only
one model for LSM [1,10]. Reichenbach et al. [1] suggest using numerous models to assess
landslides and developing an “optimal” zonation map to reduce risk prediction errors and
its integrity to be used for land-use planning. Our literature review of the investigated
area demonstrates several statistical approaches for LS such as frequency ratio and weight
of evidence [11,12], AHP, and Scoops3D [13], the weighted overlay technique, and the
AHP [14] were used in the research region. Several investigations [15,16] provide bivariate
analyses that measure the geographical links between particular variables and landslides
that influence their occurrence. However, the key disadvantages of these models are that
they change the ambiguity of risk processes, are typically static, incorporate geometrical
assumptions, and are costly and difficult for the gathering of hydrological and geotechnical
data, especially when examining vast and different locations.

In recent years, advances in ML algorithms, computing power, and geospatial innova-
tions have made it easier to create landslide susceptibility (LS) maps [17]. The precision of LS
maps can be improved using machine learning algorithms. Knowledge-based methods [18],
multivariate logistic regression methods [19–21] and multivariate binary logistic regression [22]
have all been presented in recent papers. General linear model [23,24], quadratic discrim-
inant analysis [10,24], boosted regression tree [23,25], random forest [26–29], multivariate
adaptive regression splines [30,31], classification and regression tree [23,32], support vector
machine [33–35], naïve Bayes [36,37], generalized additive model [24,32], neuro-fuzzy and
adaptive neuro-fuzzy inference [38–40], fuzzy logic [41], artificial neural networks [42–47],
maximum entropy [48,49] and decision tree [19,50,51] are some of the ML models used in
LSM. Qing et al. [52] used various ML techniques for LSM alongside the China–Pakistan
Karakoram Highway. In two South Korean catchments, Pradhan and Kim [53] compared the
precision consequences of deep neural network (83.71%), and XGBoost (76.73%) approaches
for LS mapping. Merghadi et al. [54] assessed the performance and competency of various
ML techniques in the literature and discovered that tree-based ensemble optimization algo-
rithms outcompete other ML algorithms. In a comparison analysis, Sahin [55] found that
CatBoost had the best precision (85%), followed by XGBoost (83.36%) since the proportion
of samples of the model was determined by Catboost was more precisely anticipated than
other models. The primary advantages of ML and probabilistic processes are their objective
statistical foundation, repeatability, capacity to quantitatively analyze the effect of variables on
landslide evolution, and capacity to update them regularly. Machine learning models can be
built using a variety of landslide-conditioning factors (slope, aspect, and elevation). Several
studies on landslide susceptibility evaluation have been undertaken using remote sensing
and GIS techniques [56–58].

Furthermore, remote sensing (RS) is an effective method for determining the motion of
landslides [59–61]. It provides a solution in surveys or enhanced detection in places where
catastrophic landslides occur frequently and quickly [62–65]. Furthermore, interferometric
algorithms to radar images effectively map large-scale landslide mapping and detection.
It may aid in the development of landslide inventory maps. In particular, decrypt ADIn-
SAR and PS-InSAR [66,67], coherence pixel technique [68], SqeeSAR [69], small baseline
subset [70,71], Stanford method for persistent scatterers [72], stable point network [73,74],
and interferometric point target analysis [75] have created various useful case research. As
noted in past studies [75–77], these approaches are involved with mapping and identifying
landslide occurrences.

A diversity of researchers in northern Pakistan has analyzed landslides using historical
records, field observations, tectonic characteristics, and geological data [78–81]. Previous
studies [14,82–85] concentrated on probabilistic and statistical relationships and regression
interpretation of landslides with parameters. For the first time, the PS-InSAR approach eval-
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uated the surface displacement in the study area using RF, XGBoost KNN, and NB models,
making it a distinctive method of identifying landslide movements. Persistent scatterer
interferometry (PSI), interferometric synthetic aperture radar (InSAR), and area under curve
(AUC) of ROC techniques were used along the KKH to assess displacements and the preci-
sion of the models used. Single landslides in hazardous areas can be identified and defined
using PS-InSAR. Landslides can also be detected using a spatial statistical method based on
a multitemporal assessment of SAR images that calculate slow landslide movements [71].

The current work seeks to develop a susceptibility model and a complete visually inter-
preted landslide inventory utilizing recently developed ML models, including RF, XGBoost,
KNN, and NB. The second goal is to quantify the deformation velocities of slow-moving
landslides using PS-InSAR to identify high-susceptibility zones for future landslide disaster
management. The third goal is to select the most susceptible model based on accuracy
and AUC value and then combine it with PS-InSAR outcomes to produce a new landslide
susceptibility map for the research area. These prediction approaches will help lead future
development and land management efforts in the area. These susceptibility maps will aid
in avoiding and limiting human and economic losses along this critical corridor.

2. Methods

2.1. Study Area

The research region is 178 km long and has a 5 km radius buffer zone along KKH
(Figure 1). The KKH in northern Pakistan is a crucial component of the CPEC; nevertheless,
it is frequently disrupted due to several hydro-climatological and geological risks along the
route. Landslides are the most common and devastating to highways, human lives, and
economic activity.

The research region experiences harsh winters and mild summers. The region’s annual
rainfall ranges from 120 mm to 130 mm: the maximum and minimum temperatures vary from
16 ◦C to −21 ◦C (Meteorological Department of Pakistan). The lithology of various sources
with thicknesses of up to 100 m is irregularly scattered [86,87]. The majority of these deposits
are weakly consolidated, making them conducive to landslides in the form of rockfalls and
debris flows [80]. The combination of complex topography, high erosion rates, human causes,
and active tectonics makes this area one of the most susceptible to landslides.

2.2. Geological Setting of the Area

The rocks in the region are mostly Paleozoic, Proterozoic, and Mesozoic in age
(Figure 2). According to the geological map prepared by Searle et al. [88], the study area is
comprised of the following lithology.

The Chilas complex in the study area comprises mafic and ultramafic plutonic rocks
and Kohistan batholiths composed of granodiorite, granite, and diorite. The Gilgit com-
plex metasedimentary rocks are slates, minor phyllite, quartzite, and dolomite limestone.
Komila amphibolite comprises of plutonic and meta plutonic rocks with intrusion of dior-
ite granodiorite and granite. In Paleozoic metasedimentary rocks are marble, dolomite,
and quartzite.

2.3. Landslide Susceptibility Mapping

Geological maps, remote sensing data, and meteorological data were gathered from
various sources for the study (Table 1). The Alaska Satellite Facility dataset contained an
Advanced Land Observing Satellite, Phased Array type L-band Synthetic Aperture Radar
DEM (Digital Elevation Model) with a resolution of 12.5 m (https://search.asf.alaska.edu/
(accessed on 20 January 2022)). Sentinel-2 images with a resolution of 10 m were extracted
from the USGS (https://earthexplorer.usgs.gov (accessed on 20 January 2022)) dataset
to create a landcover map for the research area. The geological map for the area was
digitized in the ArcGIS environment to comprehend surficial geological characteristics.
PS-InSAR processing was used to compute the deformation velocity using Sentinel-1
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(https://search.asf.alaska.edu/ (accessed on 8 February)) (31 images in descending path
and 33 images in ascending path). Figure 3 depicts the approach used in the investigation.

Figure 1. The 541 band combination Landsat image showing the area under investigation. (a) Pakistan,
(b) District boundaries, (c) Study area in red outline.
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Figure 2. Regional geological map of the study area.

Table 1. Information on landslide conditioning factors.

S.NO Factors Description/Extraction Category

1 Elevation, aspect, curvature, slope, profile
curvature, TWI, plan curvature, roughness

ALOS-PALSAR DEM
(https://search.asf.alaska.edu/ (accessed

on 20 January 2022))
Topography

2 Geology, distance to fault Geological Survey of Pakistan Geology

3 Landcover

Land cover classes
(https://earthexplorer.usgs.gov) (accessed

on 20 January 2022)
(Sentinel-2 images)

Conditioning factor

4 NDVI Normalized Different Vegetation Index
(Landsat-8, 2021) Landcover

5 Precipitation Annual rainfall
(Pakistan Metrological Department) Triggered factor
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Figure 3. Flow chart of research.

2.4. Landslide Inventory

The landslide inventory is the stage in estimating susceptibility since it provides details
on all sorts of past landslides in the research area. This is the most important stage since the
required precision of the landslide inventory to fine tune the models influences the LSM
accuracy [15,89,90]. As a result, the more accurate and high-quality the landslide inventory,
the more improved the prediction execution of the SM [89]. The evaluation of landslide haz-
ard begins with creating realistic and detailed landslide inventory maps that show the type
of landslide, geographic extension, the date of the event, and location [89,91]. The produced
landslide inventory maps are then associated with contributing geo-environmental param-
eters such as land cover, topography, geology, geomorphology, and other factors to assess
the likelihood of terrain causing a landslide allocated to a susceptibility level [1,9,92–94].

Inventory maps contain information on all active and historical landslide distributions
based on field surveying, aerial image interpretation, and previous report data [80]. In this
research, we were using actual data of landslide occurrences obtained from the Geological
Survey of Pakistan (GSP) publications [95–97], Frontier Works Organization road clearance
logs, a research article [98], and Google Earth imagery to produce a multitemporal landslide
inventory along the highway. On the other hand, the landslide inventory was created by
the visual interpretation of Sentinel-2 photos with 10 m resolution (2020) and from Google
Earth and was validated using earlier reports and a field assessment of the research area.
Polygon shapes were constructed on satellite images for clearly visible landslides (based on
GSP and FWO data). Debris flow (188 locations) and scree slopes (51 locations) are mostly
found in the research area as a result of unconsolidated sediments on barren mountains and
rainfall, although rock falls (93 locations) are also common as a result of seismic activity and
toe cutting of steep slopes by anthropogenic activities for various causes (Figure 4). There
were 332 landslides mapped, shown in Figure 5. Of these landslides, 30% (100 landslides)
and 70% (232 landslides) were chosen for training for model validation [99].
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Figure 4. Showing the debris flow, rockfall, and scree slopes in the research area.

Figure 5. Landslide inventory of study area. (a) Shows the rockfall and scree slopes near the Sazin
area, (b) rockfall and debris flow near the Drang area.

2.5. Landslide Causative Factors

Landslides’ spatial distribution is influenced by triggering, and conditioning variables were
chosen based on the region’s morphology, geology, hydrology, and anthropogenic activities.
There are no general criteria for choosing independent factors for LSM [71]. The concepts
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are that the factors must be non-redundant, non-uniform, operational, and measurable [100].
ArcGIS is commonly used to extract important susceptibility conditioning factors from digital el-
evation models, including elevation, slope, profile curvature, aspect, curvature, and topographic
wetness index (TWI) [101]. Land cover, geology, precipitation, roughness, normalized difference
vegetation index (NDVI), distance to faults, TWI, slope, plan curvature, curvature, elevation,
profile curvature, and aspect were all utilized to estimate the landslides’ disaster susceptibility
in the research area (Table 1). All of these maps were converted to a 12.5× 12.5 m pixel raster
format for the models, which was up to digital elevation model resolution. In the resampling
method, the cell size of each factor was kept at 12.5 m so that the overlay assessment would
obtain the pixels at the same scale, and the output was also the same scale. The maps were
digitized at various scales, and the pixel resolution was kept at 12.5 m while converting them to
raster format. The DEM with a pixel of 12.5 m was used to extract the majority of the factors,
and all other factors were brought to a similar resolution. The thirteen landslide factors are
depicted in Figures 6 and 7.

 

Figure 6. Landslides factors used in the research study.

The modeling procedure included machine learning model fitting, identification,
and development.

I. The model unit in this investigation was the grid unit (12.5 m). The spatial resolu-
tion of DEM and RS data corresponds to 12.5 m, and all assessment variables have
been recalculated at this level.

II. A condition property reached thirteen causative variables and a landslide decision
attribute (1 indicates landslides, 0 indicates non-landslides), with each row creating
an object.

III. Each column represents an object’s attribute and has been converted into training
(70%) and testing the two-dimensional matrix (30%). Training data were used to
assemble the models, and test data was used to make forecasts.
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IV. The landslide susceptibility index maps were created using the forecast values of
every model unit per group. The findings of the four algorithms were exported
into GIS.

V. The Jenks natural breaks [102] classifications were used to categorize LS: very low,
low, moderate, high, and very high. The ROC curve and the area under the ROC
curve were used to test the four models.

 

Figure 7. Landslides factors used in the research area.

2.6. RF

One of the most widely used methods for regression and classification is the random
forest, which was designed by [103]. RF has a lot of important features for classification
tasks. Because RF is a non-parametric, non-linear approach, it can handle big datasets
with numerical and category data and complicated nonlinearity and interactions between
factors. Secondly, it can deal with the situation with more predictors than data and integrate
the connection between different predictors. Third, random forest can manage missing
values while maintaining precision for missing data.

Furthermore, unlike other ML approaches such as support vector machines and
artificial neural networks, RF does not need extensive hyper-parameter tuning. In many
instances, utilizing the default parameter values yields good results. When compared
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to other tree-ensemble approaches (boosting), random forest is relatively fast. Decision
trees are built during the training phase, and the output class is based on the classification
or regression mode of each individual tree’s decision trees. In order to train random
forests, the general method of bootstrap aggregation (also known as “bagging”) is used
for tree learners. This bootstrapping approach improves model performance by reducing
the model’s variance without raising the model’s bias [104]. Random forest has been
extensively utilized for classification applications and large-scale mapping in LSM [26,28]
ecology [105], flood mapping [106] and soil science [107].

R statistical software was used to develop the RF model [108]. Because the analysis
in the RF model was grid-based, gridded cells (12.5 by 12.5 m) were derived from the
randomly shaped sample spatial polygons of landslides and non-landslides, respectively.

The RF model operates by developing numerous decorrelated decision trees as a base
learner, with replacement, utilizing a percentage of randomly chosen landslide-predicting
variables and landslide observation. Every tree was trained using two-thirds of the ran-
domly chosen training samples, while the remaining one-third of the training samples,
called out-of-bag (OOB), was utilized to verify the prediction result. Finally, a pixel was
assigned to a class using the majority vote or mode rule [109]. In this research, this model
has employed the “randomForest” package in R-studio.

Table 2 lists the three significant parameters: the number of features that are appropri-
ate for dividing (mtry), the minimum number of a sample can also be taken arbitrarily in
each bootstrap sample to balance any tree with recursive portioning (ntree) [110].

Table 2. Parameters used in RF model.

Parameters Values

Node size 14
mtry 10
ntree 500

2.7. XGBoost

According to Stanford statistics professor Fridman, the gradient boosting algorithm
was developed in 2001 to estimate gradient descent approaches [111]. As the supervised
classification model in this work, the XGBoost approach [112] was applied. The approach
was invented by the gradient tree boosting algorithm [113,114], which is a powerful ma-
chine learning approach. It employs the regularized boosting strategy to prevent overfitting
and improve model precision. XGBoost provides scalability for various scenarios, sparse
data handling, thorough documentation, minimal computing resource requirements, good
performance (i.e., speed), and easy implementation [112]. The approach was chosen since
it has won several data science contests [112]. Further adjustments to the approach are
needed for extremely unbalanced datasets (e.g., [115]).

Algorithms that boost or lift data are known as “lifting tree models” or “XGBoost”.
Their key innovations are summarized below [113].

I. They optimize their loss function.
II. The candidate split value may be quickly and accurately generated using the

parallel approximation histogram method.
III. In addition to a novel sparsity-aware linear tree learning algorithm, they offer an

efficient cache-aware block structure for out-of-core tree learning.

In this research, this model has employed the “XGBoost” package in R-studio. Several
model preview parameters must be selected for the XGBoost model. User-friendly settings
are needed for three of the most important ones: colsample_bytree (column ratio subsam-
ples when each tree is constructed), nrounds (maximum number of iterations boosting),
and subsamples (the training instance subsample ratio); (Table 3).
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Table 3. Parameters used in XGBoost model.

Parameters Values

nround 210
colsample_bytree 1

subsample 1
max_depth 6

eta 0.05
gamma 0

2.8. KNN

The KNN algorithm is one of the most fundamental machine learning techniques. It
has recently been used in several other disciplines, including LSM [116,117]. KNN uses
the k nearest training examples in the components space as input. When it comes to
classification difficulties, class membership possibilities describe the degree of uncertainty
with which a particular given item may be assigned to any given class [118]. The attributes
of the nearby data points are used to classify a data point using a KNN algorithm [119]. It
is a more effective version of the ball tree idea [120] that may be used in bigger dimensions.
The approach is commonly employed in SM applications [116], and the categorization of a
data point’s nearest neighbors determines the chance of it being assigned to any class [118].
The data point chooses the categorization that classifies the greatest number of neighbors.
The number of K will be determined through a tuning procedure to obtain better outcomes.

According to Chen et al. [121], they propose that in KNN, objects are evaluated based
on the opinions of a majority of their immediate neighbors. The highest consistent closeness
of its adjacent neighbors is used to assign the item. If k = 1, the object is solely transferred
to the single contiguous neighbor’s class.

2.9. NB

NB is a statistical classifier predicated on the Bayesian principle [122]. The Bayes
theorem enables this methodology, which is a classification method. The NB maintains that
each attribute impacts classification outcomes individually to make estimating the posterior
likelihood of observed instances in training data easier [123]. The conditional self-reliance
assumption holds that all variables are completely self-sufficient of one another given the
output class [124].

The NB technique’s most notable benefits include its robustness to noise and irrelevant
variables, ease of use, and lack of reliance on time-consuming iterative procedures [125].
Numerous studies have used the NB approach for LSM [36,37,126]. The following equation
can be used to estimate the spatial prediction of landslides using NB:

yNB = P(yi)
n

∏
i=1

P
(

xi
yi

)
(1)

where P(xi/yi) is the conditional probability of each attribute and P(yi) is the prior proba-
bility of target class yi (landslide).

2.10. PS-InSAR

PS-InSAR is an enhanced InSAR technology designed for gradual deformation mon-
itoring or long-term displacement. InSAR is a time series-based method that is broadly
classified into two classes: small baseline (SBAS) approaches that focus on spatial cor-
relation and dispersed scattering and PS-InSAR techniques that work on the locations
of persistent scatterers (PS) [127]. PSI is a multi-interferometric SAR technique that can
estimate ground movement with millimeter precision [128]. The PS-InSAR process uses
multitemporal SAR images wrapping the same region to analyze the consistency of the
phase and amplitude, which identifies the pixels that are less influenced by spatiotemporal
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decorrelation and then determines specific deformation details on the constituents of the
phase which must be collectively evaluated and modeled to eliminate inconsistencies [129].

We employed Sentinel-1 C-band SAR pictures recorded along both ascending and
descending orbit tracks in this investigation. To complete the analysis in C-band data,
the PSI [68] requires at least 20 SAR pictures [130]. The PSI monitors surface displace-
ment over months or years, accounting for signal noise, atmospheric, and topographic
impacts. This sensor has a ground resolution of around 20 m in the azimuth direction
and 5 m in the range direction [131]. This sensor has several acquisition modes, including
interferometric wide (IW), wave (Wave), extra-wide swath (EW), and strip map (SM). This
study gathered images from the Sentinel-1A IW sensor and analyzed them in SARPROZ
software (12 days of temporal resolution). The line of sight (LOS) displacement velocity
(VLOS) was determined using 0.7 as the coherence threshold in PS-InSAR processing, as
shown in Table 4. The InSAR approach computes surface deformation values along the
LOS; however, the deformation rate in the LOS direction is inadequate for representing
the actual slope displacement [71]. The following equation was used to determine slope
velocity (Vslope), which is actually deformation velocity [132]:

Vslope =
VLOS
cos∅

(2)

where VLOS is deformation and Ø is the incident angle.

Table 4. Details of PS-InSAR processing.

Specification Ascending Descending

Temporal range 1 May 2020–20 May 2021 14 May 2020–9 May 2021
No. of images 33 31
No. of PS/DS 526,815 450,990

Minimum VLOS (mm/year) −98 −34
Maximum VLOS (mm/year) 31 73

Finally, the calculated result was used for comparative analysis with susceptibility
models generated by RF, XGBoost, KNN, and NB methods. The Vslope points were
converted into 12.5 × 12.5 grid cells to provide a more precise LSM-like ML model and
integrated to enhance the susceptibility degree of those cells defined by ground deformation,
minimizing missed alerts, while cells stable and consisting of high susceptibility degrees
according to SAR interferometry were not altered [128].

3. Results

3.1. The Significance of Landslide Variables

To compute the significance of the landslide variables in this study, we utilized
R-Studio Software. In comparison, the RF model performed better in estimating the rele-
vance of each element in causing landslides.

Figure 8, using origin software, depicts the significance of the factors using the RF
model. The slope and elevation had the greatest impact, according to Figure 8, and
profile curvature, roughness, distance to fault, and NDVI were almost equal on landslides
in the research region. The slope is critical for landslides in the region (Figure 8); it
encourages landslides and makes an area susceptible to landslides. Weathered rocks and
medium height frequently define high elevation zones, and slopes are usually overlaid
by thin colluvium, making them more prone to landslides [112]. The barren ground is in
close contact with climatological factors such as sunlight and precipitation, causing rock
deterioration and increasing the likelihood of landslides [133]. Because shear zones and
active faults strongly influence landslide activities in the region, the buffer class nearest
to the fault line is more susceptible [14]. The bulk of the debris flow, rockfalls, and other
slides in the area are caused by monsoon rains [134]. Annual average precipitation data
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were utilized in this study, which found that while precipitation was not a significant
causal factor, there were more landslides in locations with high precipitation (Figure 8).
The aspect and plan curvature had a minor impact on the landslide in the studied region.
The majority of landslides in the research area are northward facing and south-facing.
Arabameri et al. [135] employed RF models for LSM in Iran and found that aspect has a
minor impact on LSM. The Komila amphibolite and Gilgit complex metasedimentary rocks
are the most vulnerable formations in the study area [11,12,14,101]. The rocks in research
area are highly fractured and deformed.

Figure 8. Factors important in the research region using the RF model.

The outcomes of employing the four LSM models obtained using the LPI are de-
picted in Figure 9. The greater the LPI, the more probable it is that a landslide may
happen [136]. The likelihood value of LS was categorized into five classes using the natural
break (Jenks) [102] method: very high, high, moderate, low, and very low (Figure 10).
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Figure 9. Landslide susceptibility index maps (i) RF, (ii) XGBoost, (iii) KNN, (iv) NB.

 

Figure 10. LSM using (i) RF, (ii) XGBoost, (iii) KNN, and (iv) NB models.

The precision of the maps was evaluated using a confusion matrix, as suggested
by [137]. A confusion matrix illustrates the capabilities of the RF, XGBoost, KNN, and NB
models during the training stage (Table 5). The RF model shows a high accuracy (0.830) in
the research area. Validation was accomplished using the ROC approach [36]. A ROC curve
is created in this approach by plotting “sensitivity” versus “specificity” on cut-off values,
but it does not fully explain the model’s efficiency; so, the AUC of the ROC curve was
utilized to analyze the quantitative functioning of the models [138]. A larger proportion of
the area below the curve suggests that the model is more accurate. In contrast, a smaller
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percentage of the area below the curve shows that the model is less accurate in predicting
future occurrences of the phenomena [139]. The AUC of the prediction rate curve was
determined to be 88.83, 87.44, 83.38, and 72.80% for the RF, XGBoost, KNN, and NB models,
respectively (Figure 11).

Table 5. Confusion matrix of models.

Models Observation
Predicted

Accuracy
No Yes

RF
No 35 12 0.830

Yes 43 235

XGBoost
No 33 13 0.821

Yes 45 234

KNN
No 32 18 0.803

Yes 46 229

NB
No 39 49 0.729

Yes 39 198

 
Figure 11. Receiver operating characteristic plots of models.

3.2. PS-InSAR Based Validation

PS-InSAR approaches were utilized to evaluate and verify the models by checking the
displacement in the area. The Interferometric Synthetic Aperture Radar (InSAR) approach
has been well documented for identifying and tracking mass movements during the previous
decade due to its extensive high spatial–temporal resolution, spatial coverage, and operating
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capacity in all-weather conditions [93]. Many PS-InSAR studies have been conducted to
determine the temporal or spatial landslide deformation patterns or the kinematic resolution
of slow-moving landslides to quantify the scale of slow-moving landslides [140]. The estimated
result was compared to the RF model’s susceptibility model.

The line of sight (LOS) displacement velocity (VLOS) was determined using 0.7 as the
coherence threshold in PS-InSAR processing (Figure 12). PS-InSAR was also shown to be a
useful technique for monitoring slow landslide movement in non-vegetation regions. The In-
SAR approach computes surface deformation values along the LOS; however, the deformation
rate in the LOS direction is inadequate for representing the actual slope displacement [71].

Figure 12. Landslide deformation velocity map along LOS direction for ascending and descending
paths using PS-InSAR.

PS-InSAR analysis was performed for both descending and ascending geometries,
with VLOS approved deformation in the region. The total number of PS/DS target points
acquired with LOS direction deformation results varying from −98 to 73 mm/year was
obtained. Using the transformation formula, the VLOS was changed to Vslope. The
greatest slope deformation velocity was determined to be −100 mm/year. VLOS indicates
just one direction’s deformation based on the satellite’s LOS, which is determined to
evaluate slope orientation velocity (Vslope). Because most landslides or ground surface
displacements occur along the direction of steep terrain in the event of landslide assertion,
Vslope is the main ingredient employed to define landslide advancement. The calculated
Vslope for ascending and descending pathways was added together (Figure 13). The only
displacements in RF’s highly sensitive zone-produced susceptible model were depicted
in an ultimate deformation map (Figure 14). The PSI findings revealed that most of the
mapped landslides were in deforming zones, although slow-moving landslides were
forecasted more precisely because of the Sentinel-1A sensor’s extended revisiting period.
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Figure 13. Showing the deformation velocity along slope direction for both ascending and descending
paths using PS-InSAR.

 

Figure 14. PSI distribution of LOS deformation velocity on Google Earth using RF landslide suscepti-
bility index.
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Finally, the RF-based LSM was combined with Vslope to improve the region’s precise
susceptibility map. The Vslope points were converted into 12.5 × 12.5 grid cells to provide
a more precise LSM-like RF model and integrated to enhance the susceptibility degree of
those cells defined by ground deformation, minimizing missed alerts, while cells stable
and consisting of high susceptibility degrees according to SAR interferometry were not
altered [128]. The contingency matrix was used to improve an LSM for the region to
a Vslope and RF-based susceptibility model (Figure 15). In other words, the degree of
difference for each cell was evaluated using the newly created LSM, which was generated
using the RF model.

Figure 15. Final LSM via Vslope.

4. Discussion

The findings demonstrate that the RF, XGBoost, KNN, and NB data-mining techniques
have comparable precision for LSM along the KKH, with the RF outperforming the others
in terms of AUC value and accuracy. Our results conform to the consequences outlined in
other work [11,12,14,52,101].

The overall precision values found in this research (RF, 83.0%) were compared to
Youssef et al. [23]; it was discovered that the precision values found in this study were
higher than the RF (81.2%) in other ML models of the revealed research. Sevgen et al. [29]
compared ANN, logistic regression, and RF for LSM and found that the RF model shows
the best classification precision with respect to ANN and LR. Taalab et al. [26] evaluated the
RF algorithm for landslide in northwest Italy and found that the RF model performed well
compared to other tree-based models. Chen et al. [141] reassembled the random forest (RF),
logistic model tree (LMT), and classification and regression tree (CART) models to map
LS. The LMT (74%) and CART (73%) models showed slightly lower precision values than
the RF model (77%); RF performed better in LSM. Zhang et al. [142] demonstrated that the
random RF model outperformed the C5.0 decision tree model by comparing it to the C5.0
decision tree model. The RF technique has an advantage over other ML models. It can use
multiple input parameters without removing them and provide a limited number of classes
with good forecast precision [143]. This model’s categorization precision is determined by
the training dataset’s type, scale, number, and accuracy. The combination of all appropriate
parameters boosts the precision of this model. Furthermore, compared to other models, RF
has a greater capacity to implement a large number of data [144]. Arabameri et al. [135]
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employed RF models for spatial modeling of gully erosion in Iran and found that RF
performed best. Zhang et al. [145], when compared to neural networks, decision trees,
and the RF, obtained the best results for debris flow susceptibility with the RF method in
Shigatse Area, China. In areas with debris flow and rockfalls, we discovered that the RF
model is the best predictive technique for LSM.

Recently, InSAR approaches for producing and updating landslide inventories have
been created [146]. The findings of the InSAR techniques are thought to be more pre-
cise [147], yielding susceptibility maps with high production precision. The LOS velocity
statistics only reveal the velocities along the slopes in the highly sensitive zones of both
models. PS-InSAR was also shown to be a useful technique for monitoring slow landslide
movement in non-vegetation regions. The ROC curve AUC was used to evaluate prediction
capabilities, and it predicts 88.83, 87.44, 83.38, and 72.80% for RF, XGBoost, KNN, and
NB, respectively, confirming the model’s accuracy. The collected susceptibility map was
categorized into five groups using the Jenks natural breaks [102]: very low, low, moderate,
high, and very high. In comparison, the RF model performed better in estimating the
relevance of each element in causing landslides.

LSM was performed using the RF, XGBoost, KNN, and NB in this work. Nonetheless,
several limitations caused misclassification in the results, such as (1) the accuracy of the
landslide inventory and (2) the accuracy of data connected to each landslide variable.
Because of the severe environment along KKH, only 332 landslides have been mapped for
this research region. It resulted in considerable misclassification inaccuracies for the LSM,
emphasizing the significance of upgrading the LSM utilizing PS-InSAR results. Surprisingly,
when paired with the PS-InSAR data, the novel LSM reduced misclassification in which
landscape altered by slope deformity was categorized as extremely low and very low.

Another problem is that the landslide susceptibility mapping merely represents antici-
pated landslide dispersion in regions rather than interactive displacement processes through
time. Variations in landslide behavior over time, on the other hand, are a serious challenge for
decision-makers [148]. In conjunction with the PS-InSAR outputs, a new landslide susceptibil-
ity map can depict the real conditions of landslides. It can be designed for quantitative hazard
assessment and preliminary landslide mapping at the province level [149].

The LSM creates a susceptibility map for landslides, identifies the important variables
that cause landslides, and evaluates the effect and their contribution [27,150]. Land cover,
geology, slope, precipitation, NDVI, distance to faults, elevation, curvature, plan curvature,
TWI, profile curvature, roughness, and aspect were all utilized to estimate the probability of
landslides disaster in the research area. The main contributors of landslides in the area are
slope, elevation. The slope is critical for landslides in the region (Figure 8); it encourages
landslides and makes an area susceptible to landslides. Weathered rocks and medium
height frequently define high elevation zones, and slopes are usually overlaid by thin
colluvium, making them more prone to landslides [112]. Because shear zones and active
faults strongly influence landslide activities in the region, the buffer class nearest to the
fault line is more susceptible [14].

Previous studies such as [13] in this area relied mainly on statistical models, and
a considerable number of landslides were missing in the inventory. As a result of the
inadequate landslide inventory, the LSM is ineffective. This work focused on complete
mapping of landslides to identify primary landslide triggers and define high susceptible
zones using the PS-InSAR approach, which will be used in the future to mitigate landslide
risks in the region.

5. Conclusions

Landslides are one of Pakistan’s most devastating natural disasters, generating major
risks to lives and socioeconomic damage each year. So far, the process of landslide mapping
has been highly difficult and volatile to perform correct and quick estimation of landslides
in most places. Multiple attempts have been made to improve reliability based on many
forecast models for mapping the landslide susceptibility, targeting different locations for

95



Sensors 2022, 22, 3119

this goal. Decision-makers must construct more relevant landslide susceptibility maps
to improve the prediction model’s performance. This study concentrated on complete
landslide mapping to determine the fundamental causes of landslides and designate high-
risk zones, which will be useful in the future to mitigate landslide threats in the region. The
study’s distinctive feature is that it provides more accurate LSM by employing ML models
verified by PS-InSAR processing.

This study used RF, XGBoost, KNN, and NB ML algorithms to enhance the LSM of the
Karakoram Highway using the PS-InSAR approach. This study assessed the vulnerability
using elevation, precipitation, slope, land cover, roughness, NDVI, curvature, distance to
faults, plan curvature, aspect, profile curvature, geology, and TWI. Slope, elevation, and
profile curvature are the primary causes of landslides in the region. The susceptibility model
created will be used to identify zones for construction growth and improved management
planning along the KKH. The LSM illustrates the just forecast landslide distribution in
regions, not the dynamic displacement process over time. Variations in landslide activity
eventually, on the other hand, are a main consideration for decision-makers. The newly
developed LSM, when merged with the PS-InSAR results, may show the true situation of
landslides and should be utilized for quantitative hazard analysis and preparatory landslide
mapping at the regional level. Geotechnical and other slope stabilization procedures are
necessary to minimize future landslide catastrophes in an environment. We conclude that
our approach can give valuable insights into highway safety measures.
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Abstract: With the widespread application of machine learning methods, the continuous improve-
ment of forecast accuracy has become an important task, which is especially crucial for landslide
displacement predictions. This study aimed to propose a novel prediction model to improve accuracy
in landslide prediction, based on the combination of multiple new algorithms. The proposed new
method includes three parts: data preparation, multi-swarm intelligence (MSI) optimization, and dis-
placement prediction. In the data preparation, the complete ensemble empirical mode decomposition
(CEEMD) is adopted to separate the trend and periodic displacements from the observed cumula-
tive landslide displacement. The frequency component and residual component of reconstructed
inducing factors that related to landslide movements are also extracted by the CEEMD and t-test, and
then picked out with edit distance on real sequence (EDR) as input variables for the support vector
regression (SVR) model. MSI optimization algorithms are used to optimize the SVR model in the
MSI optimization; thus, six predictions models can be obtained that can be used in the displacement
prediction part. Finally, the trend and periodic displacements are predicted by six optimized SVR
models, respectively. The trend displacement and periodic displacement with the highest prediction
accuracy are added and regarded as the final prediction result. The case study of the Shiliushubao
landslide shows that the prediction results match the observed data well with an improvement in
the aspect of average relative error, which indicates that the proposed model can predict landslide
displacements with high precision, even when the displacements are characterized by stepped curves
that under the influence of multiple time-varying factors.

Keywords: landslide displacement prediction; complete ensemble empirical mode decomposition
(CEEMD); edit distance for real sequence (EDR); multi-swarm intelligence (MSI); support vector
regression (SVR)

1. Introduction

Landslides reactivated by the impoundment of a reservoir or rainfall can cause catas-
trophic losses such as casualties, road burying, and house damages, which seriously
threaten the property and life safety of human society [1,2]. In 2019, there were approxi-
mately 6181 geological hazard events in China, causing economic losses of 2.77 billion yuan.
Among these, 4220 were landslides, accounting for 68% of the geological hazards [3]. The
development of more accurate and effective landslide displacement prediction methods is

Sensors 2021, 21, 8352. https://doi.org/10.3390/s21248352 https://www.mdpi.com/journal/sensors
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of great significance for the early warning of catastrophic landslide movements and is an ac-
tive research area [4–7]. Through the information obtained from the prediction approaches,
the landslide status can be evaluated, and the corresponding mitigation measures can be
taken in advance to reduce the destructive effects of landslides.

Landslide prediction models can generally be divided into physical–mechanical and
phenomenological models [8,9]. The physical–mechanical models are generally recognized
as originating from the empirical formula proposed by Saito in 1965 [10], and a series
of models have been developed based on creep theory in the following decades [11,12].
Owing to the complexity, strict application conditions, and time-consuming shortcomings
of the physical–mechanical models, research on phenomenological models is becoming
more and more popular nowadays [13]. By means of mathematical statistics and machine
learning, measured landslide displacements are analyzed and modeled while considering
the related factors, such as rainfall, the reservoir water level, groundwater level, etc.,
allowing for the prediction of landslide displacements [12,14].

The support vector machine (SVM) is a frequently used method among all phenomeno-
logical models. Nevertheless, when solving regression problems, the performance of the
SVM model, also known as support vector regression (SVR), is highly influenced by the
determination of penalty parameter C and kernel parameters g [15]. Therefore, research
has focused on improving the predictive ability of SVR models for landslide displacements
through optimization algorithms. In addition to some classical optimization algorithms
such as the genetic algorithm (GA) [16], particle swarm optimization (PSO) [17–19], artifi-
cial bee colony (ABC) [20], and ant colony optimization (ACO) [21], recently, studies have
advanced with the times, and some newly developed optimization algorithms start to be
used [22,23]. Moreover, the continuous enhancement process of the optimization algorithm,
as well as the evaluation of the prediction effect after using different frameworks, are also
carried out at the same time. Miao et al. [24] adopted a variety of algorithms to optimize
the SVR model and achieved a good application effect in the prediction of Baishuihe land-
slide displacement. Zhang et al. [25] made comparisons of the predictive capability of the
SVR model optimized by ACO and GA and found the advantage of ACO-SVR with the
consideration of the inducing factors’ frequency component. At present, the application of
optimization algorithms on SVR-based landslide prediction model parameter optimization
is limited. It is still necessary to apply new optimization algorithms to these SVR-based
models and compare their performance in landslide prediction.

Although based on the no free lunch (NFL) theorem, any optimization algorithms are
equivalent when their performance is averaged across all possible problems; the swarm
intelligence optimization algorithms (SIs) still show competitive results in solving opti-
mization problems [26]. Similar to evolutionary algorithms (EA) [27] and artificial neural
network algorithms (ANN) [28], the SIs also belong to the nature-inspired metaheuristics
method [29]. With its high robustness, the SIs have been applied in many fields, including
data clustering, network traffic forecast, data classification, UAV control, etc. Liu et al. [30]
proposed a model of a global artificial fish swarm algorithm optimized support vector
regression (GAFSA-SVR) for the network traffic forecast; the simulation shows an improve-
ment of forecast precision and is superior to GA and chaos particle swarm optimization
(CPSO)-optimized SVR model. Ali et al. [31] adopted the ant lion optimization algorithm
(ALOA) in optimal allocation and sizing of renewable distributed generation sources in
various distribution networks and results confirmed the effectiveness of the proposed
algorithm. Jiang et al. [32] proposed an opposition-based seagull optimization algorithm
(OSOA) to overcome the shortage of classification models such as slow computation, in-
stability, and sensitivity to noise. In this paper, six new SIs proposed after 2010, including
the bat algorithm (BA) [33], grey wolf optimization (GWO) [34], dragonfly optimization
algorithm (DA) [35], whale optimization algorithm (WOA) [36], grasshopper optimization
algorithm (GOA) [37], and sparrow search algorithm (SSA) [38], have been tested and
compared in the proposed model, and the most suitable optimization algorithm has been
identified.
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Decomposition of landslide displacement is also a vital step in a prediction model
and will directly affect the prediction effect. At present, decomposition method based on
signal processing technology, for instance, Fourier transform (FT), discrete wavelet trans-
forms (DWT), wavelet transform (WT), empirical mode decomposition (EMD), variational
mode decomposition (VMD), and ensemble empirical mode decomposition (EEMD), are
massively used in this field [39–42]. With these methods, the landslide displacement can
be decomposed into a trend term and a periodic term, and then these components of the
displacement can be predicted by different models. However, when using the CEEMD
(complete ensemble empirical mode decomposition), the residual term shows a trend of
first decreasing and then increasing, which is difficult to predict as a trend term compared
with the residual terms of EMD and EEMD (Figure 1). Hence, a novel prediction model
needs to be designed when the CEEMD is adopted in the decomposition of landslide
displacement.

 
Figure 1. Residual terms of Baishuihe landslide displacements obtained through EMD, EEMD, and CEEMD.

The screening of input parameters for an SVR model from related factors is an im-
portant part of prediction model optimization. Grey relational analysis (GRA) is a usual
approach for this and has achieved convincing results [43]. Meanwhile, many other statisti-
cal methods such as maximal information coefficient (MIC) [23] and mean influence value
(MIV) [44] have also been tried for this purpose. Zhang et al. [25] found that, as a similarity
measuring method of time series, dynamic time warping (DTW) can be employed and
works well in optimal input parameters selection of the SVR model. However, the DTW
has the limitation of insensitive to the noise of the time series. To overcome this, the edit
distance on real sequence (EDR) has been chosen and utilized in this study [45]. The EDR
method is a classic trajectory similarity measurement that calculates the minimal number
of editing operations needed for altering one sequence to another. With the advantages
of robustness and accuracy, it has been utilized in traffic trajectory classification, physical
movement similarity, and fiber segmentation, etc. [46]. It can also be applied in the related
components selection for the prediction of landslides. Through calculating the similarity
between restructured related factors sequence and periodic displacements sequence after
normalization, two restructured related factors with minimum EDR value are the input
variables of the SVR model.
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This paper aims to improve the accuracy of landslide displacement prediction by
constructing a novel model combined with the EDR method and multi-swarm intelligence
(MSI). The new method can provide useful predictions of landslide displacements, allow-
ing for the landslide status to be evaluated and the corresponding landslide mitigation
measures to be taken before destructive movements occur.

In this paper, the next content is arranged as follows. In Section 2, the CEEMD, EDR,
and MSI algorithms are briefly introduced. Section 3 considers the geological conditions
and deformation features of the study case, the Shiliushubao landslide. The data prepa-
ration and statistical analysis of related factors are shown in Section 4. The predicted
results and analysis are shown in Section 5. Section 6 discusses the proposed method, and
conclusions are given in Section 7.

2. Methodology

2.1. Data Preprocessing with CEEMD

The CEEMD method is an effective improvement of the EMD method and EEMD
method. By adding the white noise in the way of positive and negative pairs to the initial
sequence of data, the residual auxiliary noise in the reconstruction signal can be better
eliminated. Furthermore, the number of noise sets added can be very low, resulting in
higher calculation efficiency. In CEEMD, based on local characteristics, the sequence can
be converted to a limited number of intrinsic mode functions (IMF) and a residue. The
operation of CEEMD includes three steps [47]:

Step 1: Add white noise consisting of positive and negative pairs to the original
sequence data. [

P
T

]
=

[
1 1
1 −1

][
η(t)
N

]
(1)

where the original sequence is η(t), N is the added white noise, and P and T are two reverse
white noise. The number of the decomposed sequences is 2n, with j as the jth sample.

Step 2: Obtain a series of IMFs by decomposing P and N with the EMD method to
generate two sets of IMFs. ⎧⎪⎪⎨⎪⎪⎩

P =
m
∑

i=1
IMF+

ji

T =
m
∑

i=1
IMF−ji

(2)

where IMF+
ji is the ith IMF after adding the positive white noise, IMF−ji is the ith IMF after

adding the negative white noise, and m is the number of IMFs.
Step 3: Repeat step 1 and step 2 to get the corresponding IMF terms, and calculate the

average of all the IMFs:

IMFj =
∑n

i=1

(
IMF+

ij + IMF−ij
)

2n
(3)

Through this method, the original sequence can be expressed as the sum of some IMFs
and a residue rn(t).

Zhang et al. pointed out that the CEEMD method combined with a t-test can obtain
the high-frequency and low-frequency components from related factors such as rainfall and
the reservoir water level through a fine-to-coarse reconstruction [25]. Moreover, according
to the time series theory, the landslide displacement can be separated into a trend term and
a periodic term by methods presented in the Introduction section. In this paper, the CEEMD
is adopted as the decomposition method, and the obtained residual term is considered as
the trend term. The result after the trend term is subtracted by the cumulative displacement
of the landslide is regarded as the period term. Due to the special shape of the trend
displacement time series after CEEMD decomposition, the displacement trend term and
the period term will be predicted by the SVR model, respectively, later.
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2.2. Selection of Optimal Related Factors via EDR

The EDR, which is based on Levenshtein distance, is a traditional and well-established
similarity measurement method proposed by Chen et al. [45] and has been used for judging
trajectory similarity since [48,49]. The EDR calculates the number of insertions, deletions,
or replacement operations required to change the sequence R to T when the threshold is ε.
It reduces the effect of noise by quantifying the distance into 0 and 1, and the Levenshtein
distance method itself improves the local time-shifting situation (especially when the local
time-shifting is not very large). Based on this, the displacement trend term sequence and
residue of restructured related factors sequence were set as a reference sample sequence
R = {r1, r2, . . . , rn} and a test sample sequence T = {t1, t2, . . . , tm} after normalization.
Then, the EDR(R, T) can be calculated as follows:

match
(
ri, tj

)
= true; i f

∣∣rix − tjx
∣∣ ≤ ε and

∣∣riy − tjy
∣∣ ≤ ε (4)

DEDR(R, T) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
n; i f m = 0
m; i f n = 0

Min

⎧⎨⎩
DEDR(Rest(R), Rest(T)) + subcost,
DEDR(Rest(R), T) + 1,
DEDR(R, Rest(T)) + 1

; otherwise
(5)

subcost =
{

0, match(r1, t1) = true
1, otherwise

(6)

where the real number 0 < ε < 1 is the matching threshold. The cost for a replace, insert,
or delete operation is set to 1. Therefore, through calculating the edit distance between two
sequences, the smaller the EDR is, the greater the similarity will be. After calculating the
EDR between the displacement trend term sequence and residues of original related factors
sequence and restructured related factors sequence, three residues with the highest similar-
ity were chosen as the input variable of the SVR model for predicting the displacement
trend term.

Similarly, three optimal input variables for predicting the displacement periodic term
with an SVR model can be obtained by calculating the EDR between displacement periodic
term sequence and original related factors, restructured related factors and related factors
frequency sequence.

2.3. Support Vector Regression (SVR)

The support vector regression (SVR) algorithm is a classic landslide displacement
prediction model developed from statistical learning theory. With a powerful generalization
ability and robust performance, the SVR model can easily solve quadratic programming
problems with constraints. The main steps of an SVR model are summarized as follows [50].

Suppose that a nonlinear sample set in low dimensional space is: {xi, yi}, where
xi =

{
xi1, xi2, . . . , xip

}
is the input vector, yi is the corresponding output vector, i is the

number of samples and j is the number of input vectors. Then, the regression estimation
function is:

f (x) = wT ϕ(x) + b (7)

where w is the weight vector, ϕ(x) is the nonlinear mapping function and b is the offset.
Through minimizing the following equation, the value of w and b can be obtained:

minJ =
1
2
‖w‖2 + C

n

∑
i=1

(
ξ+i + ξ−i

)
(8)

s.t.

⎧⎨⎩
yi − wT ϕ(xi)− b ≤ ε + ξ+i
wT ϕ(xi) + b− yi ≤ ε + ξ−i
ξ+i , ξ−i ≥ 0, i = 1, 2, ..., n

(9)
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where C and ε are the penalty parameter and the size of the insensitive loss function,
respectively. ξ+i and ξ−i are the relaxation factors. By solving the quadratic optimization
problem, the weight vector w can be expressed as:

w =
n

∑
i=1

(β∗i − βi)ϕ(xi) (10)

where β∗i and βi are Lagrange multipliers. Therefore, the SVR model can be denoted as
follows:

f (x) =
n

∑
i=1

(β∗i − βi)K
(
xi, xp

)
+ b (11)

where K
(
xi, xp

)
is the kernel function. The SVR kernel function has various forms; in this

study, the Gaussian radial basis function (RBF function) is chosen and adopted. Since
algorithms for the determination of the penalty factor and the kernel function parameter
(C, g) vary, the approach for selecting C and g must be further studied. Different forms of
MSI algorithms were explored for the parameter optimization of the SVR model and all of
them are briefly described next.

2.4. Multiple Swarm Intelligence
2.4.1. Bat Algorithm (BA)

The bat algorithm (BA), proposed in 2010 by Yang et al., is a novel swarm intelligence
optimization technique that simulates the echolocation behavior of microbats [33]. Based
on iteration, this algorithm describes the echolocation of microbats and uses it to minimize
any objective function and solve optimization problems. In BA, after initializing a group of
random solutions, the optimal solution is searched by iteration, and a new local solution
is generated by a random flight around the optimal solution, which strengthens the local
search. BA is an accurate and effective method of finding the optimal parameter values for
an SVR model with few parameters to adjust.

2.4.2. Grey Wolf Optimization (GWO)

The grey wolf optimization (GWO) algorithm is a new swarm intelligent optimization
algorithm proposed by Mirjalili et al. [23,51]. Based on the predatory behavior and strict
social dominant hierarchy of grey wolves, this algorithm first randomly generates a group
of gray wolves in the search space. Then, the wolves are divided into four social hierarchies
according to the fitness from high to low, each marked with alpha, beta, delta, and omega.
The location and distance between the grey wolves and the prey, which is the possible
solution of the optimized SVR model, is obtained through iterative calculation. Finally,
through the evolution of the wolf group itself, the distance between them is gradually
reduced to realize the optimal hunting of prey. The algorithm has the advantages of strong
convergence, few parameters, and easy implementation.

2.4.3. Dragonfly Algorithm (DA)

The dragonfly optimization algorithm (DA) is a swarm intelligent optimization algo-
rithm proposed by Mirjalili et al. [35,52]. The algorithm is based on the dynamic and static
swarm behavior of dragonflies in nature, which includes separation behavior, alignment
behavior, cohesion behavior, foraging behavior, and distraction from enemy behavior. By
establishing a mathematical model of all these behaviors, the dragonfly’s latest position
vector, which is a possible solution of the objective function, is calculated. This algorithm
has the advantages of simple calculation, low complexity, few control parameters, and fast
convergence speed.
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2.4.4. Whale Optimization Algorithm (WOA)

The WOA algorithm is a new heuristic optimization algorithm. The key idea is to
simulate the behavior of humpback whales [36]. The humpback whales hunt in a special
way using bubble nets, which can be described as two mechanisms: upward spirals and
double loops. The WOA optimization algorithm has three steps: searching and encircling
prey, the bubble-net argument attacking method (exploitation phase), and search for prey
(exploration phase). Through this, the position vector of humpback whales with the best
fitness value can be obtained by satisfying a termination criterion, and the final position
vector is chosen as the best solution of the optimized SVR model parameters. The algorithm
has the advantages of simple operation, few parameters to adjust, and a strong ability to
jump out of a local optimum.

2.4.5. Grasshopper Optimization Algorithm (GOA)

The grasshopper optimization algorithm (GOA), proposed by Saremi et al., in 2017,
is a metaheuristic bionic optimization algorithm that mimics the swarming behavior
of grasshoppers during population migration (exploration) and foraging behavior (ex-
ploitation) [37]. The grasshoppers’ position vector is equal to the value of an objective
function [53]. When the grasshoppers reach a food source, the parameters reach the optimal
variable, and the optimal value of the SVR model parameters is obtained. The algorithm
provides a balanced condition between local and global search operators to achieve the
final target. Two forces in grasshoppers, attraction and repulsion, provide global search and
local search, respectively. To obtained effective solutions, the influence of the grasshopper’s
current position, its relative position to other grasshoppers, and the position of the target
point are regarded as the effective agents to determine the search vector. It has higher
search efficiency and faster convergence speed, and its special adaptive mechanism can
balance the global and local search processes with better optimization accuracy.

2.4.6. Sparrow Search Algorithm (SSA)

The sparrow search algorithm (SSA), as proposed by Xue et al. [38], was mainly
inspired by the foraging behavior and anti-predation behavior of sparrows. Some sparrows
are in charge of seeking food and providing locations for the entire population, while
the remaining sparrows use the locations to obtain food. Meanwhile, when a sparrow is
aware of the danger and alarms, the entire population will immediately take anti-predation
behavior. Although idealized, these behaviors are formulated with corresponding rules,
and the algorithm classifying the sparrows into producers and scroungers. Their positions
are updated according to their own rules, separately. In SSA, the position of each sparrow is
equal to a possible solution of the objective function, and the best solution can be obtained
when meeting iteration conditions. The algorithm is novel and has the advantages of a
strong optimization ability, fast convergence speed, fewer adjustment parameters, and
simple calculation.

2.5. Procedure of the Proposed Hybrid Algorithm

The framework of the proposed ensemble prediction model is shown in Figure 2.
The entire forecasting process is divided into three steps: data preparation, multi-swarm
intelligence (MSI) optimization, and displacement prediction. In the data preparation step,
the time-sequences of factors related to the landslide movements, such as rainfall and
reservoir water level, are restructured. The frequency component and residual component
of all original and restructured sequences are then obtained through the combined appli-
cation of CEEMD and t-test. In the MSI optimization step, MSI optimization algorithms
are used to select the optimal C and g for the SVR model. In the displacement prediction
step, the trend and periodic displacements are extracted from the observed cumulative
landslide displacement through CEEMD. Then EDR is used to select the input variables of
the periodic displacement prediction SVR model by calculating the EDR value between
the periodic displacement and original related factors, restructured related factors, and
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frequency related factors after normalization. Similarly, the input variables of the trend
displacement prediction SVR model are obtained by calculating the EDR value between
the trend term displacement and all residue terms after normalization. Finally, the predic-
tions of the trend and the periodic displacements are performed separately, and the total
predicted displacement is obtained by adding them together.

 
Figure 2. Framework of the proposed ensemble prediction model, (a) data preparation step, (b) displacement prediction
step, and (c) MSI optimization step.

2.6. Performance Evaluation Formula

The most commonly used indicators to evaluate the performance of prediction models
are coefficient of determination (R2), root mean square error (RMSE), mean absolute error
(MAE), and mean average percentage error (MAPE). These indicators were used in this
study and are defined as:

R2 = 1− ∑N
i=1(yt − ŷt)

2

∑N
i=1

(
yt − ŷt

)2 (12)
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RMSE =

√√√√ 1
N

N

∑
i=1

(
(yt − ŷt)

2
)

(13)

MAE =
1
N

N

∑
i=1
|yt − ŷt| (14)

MAPE =
1
N

(
N

∑
i=1

∣∣∣∣ ŷt − yt

yt

∣∣∣∣
)
× 100% (15)

where yt is the tth measured value, yt is the mean of the measured value, ŷt is the tth

predicted value, and ŷt is the mean value of the prediction.

3. Cases Study

3.1. Geological Conditions

The Shiliushubao landslide is part of the famous Huanglashi landslide group, one of
the large-scale landslides in the Three Gorges Reservoir Area (TGRA). It is located on the
north bank of the Yangtze River, 1.5 km east of Badong county, 66 km away from the Three
Gorges Dam (TGD) (Figure 3). The landslide’s geographical coordinates are 110◦26′ east
longitude and 31◦02′ north latitude. The Shiliushubao landslide is bordered by the Lijiawan
valley on the east and the Gan valley on the west, with a tongue-like shape. It is bigger
than the well-known Baishuihe landslide with an estimated volume of 11.8 × 106 m3 and
covers an area of 0.34 km2. The top of the landslide is at an elevation of 340 to 358 m with a
width of 140 m, and the toe of the landslide is at an elevation of 68 to 80 m with a width of
570 m.

 
Figure 3. Location (a,b) and an oblique view (c) of Shiliushubao landslide captured by UAV, October 2020.
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The cross-section of the ground surface is shown in Figure 4 by the profile B-B’. The
average slope angle is 26◦ along the sliding direction. However, the slope contains a gently
sloping bench at an elevation near 200 m, and the slope is much steeper than 26◦ above
and below the bench. The slope angle is up to 40◦ at elevations below the reservoir level.

Figure 4. Geological section of the Shiliushubao landslide (B-B’).

The geological profile B-B’ in Figure 4. shows that the Shiliushubao landslide occurs
in the Triassic Badong Group consisting of red mudstone, siltstone, gray-green marl,
and limestone. These rocks are characterized by high clay mineral content (about 68%).
Exposure of the rock to water allows the rock to soften and weaken. The sliding mass
also includes near-surface Quaternary soils. The rear edge of the landslide is mainly
a loose accumulation of gravel and clay. This soil is weak and is prone to collapses or
sliding along the bedrock surface. The sliding zone consists of clay or silty clay with
some gravel. The thickness of the sliding zone varies from 1.0 to 4.9 m, with an average
thickness of 2.0 m.

The topography of the lower part of the Shiliushubao landslide was mostly altered
by the newly formed Hengping landslide (Figure 5), and some landslide materials under
100 m elevation have been removed by erosion. There are some small gullies near the
landslide’s front edge caused by surface water runoff, which are the main channels for
gathering and draining surface water.

3.2. Rainfall and Reservoir Levels

The Shiliushubao landslide is located in a subtropical zone, in which rainfall is con-
tinuous and concentrated in the summer. The rainy season generally occurs from May
to September, which accounts for 70% of the yearly rainfall. Rainfall is one factor that
increases the movement of the Shiliushubao landslide. Fluctuation in the reservoir level in
the TGRA is another factor influencing the landslide movements, especially the sudden
reservoir drops before the flood season.
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Figure 5. Geological map and monitoring points for the Shiliushubao landslide.

3.3. Deformation Characteristics

Since the reservoir was first impounded in June 2003, the toe area of the slope has
experienced repeated small collapses (Figure 6). From 4 to 14 June 2004, four sliding events
occurred during a period of rainfall, involving an estimated volume of 6000 m3. The toe
area is very unstable, and slope movements at the toe affect the rest of the slope. At present,
the slope’s deformation processes are causing small collapses under the influence of rainfall
or reservoir level fluctuations.

Slope movements have created ground fissures that have gradually intensified. Areas
of subsidence have also occurred. While the existing main cracks continued to expand,
a series of new cracks gradually formed at the landslide’s rear edge. These cracks have
connected and coalesced inside the sliding mass. The maximum crack length obtained by
field monitoring is 345 m with opening widths up to 0.5 m and depths over 1 m. Many
cracks have occurred in a concrete-lined drainage ditch at the front edge of the landslide.
Moreover, some feathery cracks are also scattered along both sides of the landslide.
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3.4. Landslide Monitoring

From February 2004 to December 2009, field monitoring was conducted to study the
Shiliushubao landslide movements, based on which, the deformation evolution charac-
teristics and development trend of the Shiliushubao landslide can be mastered. A total
of sixteen GPS monitoring points and 15 boreholes were arranged on the surface of the
sliding mass (Figure 5). Some monitoring points were destroyed due to rainfall, landslide
movement, and other reasons. Thus, only monitoring data from February 2004 to December
2009 have been recorded and preserved. The cumulative displacement data from GPS
points G1, G2, G4, G8, plus the rainfall and reservoir water levels were selected and shown
in Figure 7.

 
Figure 6. The ground collapses (a,b) and cracking (c,d) in the toe area captured by UAV, October 2020.

3.5. Analysis of Monitoring Data

Monitoring data show that the displacement of the sliding mass increases with time
in an obvious stepped shape. From February 2004 to December 2009, due to rainfall, the
five displacement jumps occurred in the rainy season (May to September). After the rainy
season, the landslide resumes movement at a slow, roughly constant speed.

The fluctuation of the reservoir water level is another factor affecting the deformation
of the sliding mass. When the reservoir level drops sharply, the movement of the sliding
mass accelerates. For example, from January to May 2007, the water level dropped from
155.4 m to 144.7 m, and the landslide displacement rate reached 16.2 mm/month in March
when the water level dropped by 5 m. In May, when the water level dropped by 10.7 m,
the landslide displacement rate was 44.4 mm/month. Similarly, when the reservoir water
level fell in other periods, such as January to July 2009, the landslide displacement rate
increased from 1.5 to 47.1 mm/month.
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Figure 7. Displacement data from GPS points G1, G2, G4, G8, and rainfall and reservoir level data.

For a better understanding of this seasonal deformation acceleration’s related factors,
a correlation analysis between displacement velocity at G1 (located at the northeast edge
of the landslide) and rainfall, rate of reservoir level change, and reservoir level are shown
in Figure 8. The size of the bubbles represents the deformation velocity. The larger bubbles
tend to plot where the rainfall is higher. Meanwhile, the large bubbles are mainly con-
centrated where the reservoir level is between 140 and 150 m and are located where the
reservoir level fluctuates slowly (between−4.4 and 9.0 m/month). This indicates that reser-
voir level fluctuations mainly trigger accelerated landslide movements when the reservoir
level is low. The maximum size bubble appears where the rainfall is about 325 mm/month,
and the water level rises between 4.5 and 9.0 m/month. The combined effect of heavy
rainfall and rising reservoir level on landslide deformation is more significant than low
rainfall combined with reservoir level drawdown.

Inclinometer D7 indicates that the main sliding zone is located at a depth of 22 to
26 m (Figure 9). The data show that before June 2003, the shear deformation in the slip
zone was slow. Then, with the operation of the TGRA, the displacement in the shear zone
increases. Therefore, it can be judged that the Shiliushubao landslide is in the stage of
accumulative creep deformation, and the deformation tends to be intensified under the
influence of reservoir water.
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Figure 8. Correlation of displacement velocity at G1 versus the reservoir level, rainfall, and fluctuation
of reservoir level.

 
Figure 9. Lateral deformation versus depth in inclinometer D7.
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In conclusion, the formation of the Shiliushubao landslide is the result of a series of
related factors including internal inducing factors and external inducing factors. Weak
rock formations are the inherent cause of deformation. In the Badong Formation, soft rocks
characterized by high clay mineral content account for about 68%. The hydrophilicity
of the rock determines that the rock has the characteristics of easy softening, muddy
and weathering, and lays the material foundation for the deformation and failure of the
slope. Water is the external cause of deformation. The impact of concentrated high intensity
rainfall and periodic water storage activities in the TGRA, especially the sudden drop before
the flood season, are main external inducing factors for the reactive of the Shiliushubao
landslide.

4. Data Processing and Statistical Analysis

4.1. CEEMD Decomposition of Landslide Displacement Versus Time Data

Since all displacements at the Shiliushubao landslide show a similar step-like defor-
mation curve, only the displacement data at site G1 is chosen for model validation in this
study. The CEEMD method can be used to extract the trend displacements and the periodic
displacements. The following parameters were used [2]:

• ensemble member = 200
• standard deviation of added white noise in each ensemble member = 0.2
• threshold variance = 0.2
• threshold for first iteration = 4

The landslide displacement sequence was decomposed into a few IMFs and a residue
through CEEMD. The residue is considered to be the trend displacement of the landslide,
and the periodic displacement was obtained by adding all the IMFs together.

The results show that the trend displacement component of G1 has local fluctu-
ations and an increasing trend over time, which is consistent with a long-term trend
of cumulative displacements. The periodic displacement component shows a cyclical
variation in displacements ranging from −800 to 917 mm. The maximum variation
range of periodic displacement occurred in the 2007 rainy season when the TGR was
first impounded. As the periodic displacement and trend displacement are important
components of the cumulative displacement, they will be separately modeled and pre-
dicted. Once the best prediction for each component is obtained, the best prediction for
cumulative displacement is obtained.

The displacement data are divided into training and testing data sets to establish
the SVR prediction model of periodic and trend displacements (Figure 10). The SVR
model is organized with the training dataset to establish the regression relationships
between displacement and selected variables. The trained SVR model can then be used to
predict the current month periodic displacement and compared with the testing dataset
to verify the model’s accuracy. In this study, the displacement data from February 2004
to September 2008 were selected as the training dataset, and the rest were used as the
testing dataset.

4.2. CEEMD Decomposition of Related Factors

Before selecting the input various parameters, the factors related to the landslide
deformation are usually restructured first [24]. Original related factors such as the rainfall,
reservoir level, and date of displacement were restructured. The current monthly rainfall
sequence (L1) was restructured as the accrued precipitation of the previous two months
(L2), as were the accrued precipitation of the previous month and the current month (L3),
and the accrued precipitation of the previous two and the current month (L4). The current
monthly reservoir level data (X1) were restructured as the reservoir level monthly change
(X2) and the change of reservoir level between two months (X3). The displacement data (D)
were restructured as the previous month displacement (D1) and the accrued displacement
of the previous month and the current month (D2).
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Figure 10. Periodic and trend displacement at site G1 obtained through CEEMD.

Keeping the CEEMD parameters fixed, L1–L4, X1–X3, and D1–D2, can be decomposed
into a few IMFs sorted by frequency from highest to lowest and a residue. The mean of
IMF1 was compared to the other IMFs by a paired t-test with a significance set at 0.05
(two-tailed) for each decomposed and restructured factor. If the significance values of IMFi
are greater than 0.05, the difference between IMF1 and IMFi is not significant. Therefore,
the superposition of IMFs from IMF1 to IMFi is the high-frequency component, and the
superposition of the remaining IMFs is the low-frequency component. The IMFs of each
restructured factors are shown in Figure 11, and the results of the paired t-test are shown
in Table 1.

The results reveal that the IMFs obtained from the decomposition of all factors show
a certain periodicity. Their frequency varies, and IMF1 usually has the highest frequency
and fluctuation amplitude. Since there is only one IMF after the CEEMD decomposition
of D2, it is considered that there are only high-frequency components in D2. The paired
t-test results indicate that only IMF3 in X1 and IMF4 in X3 has a significance value that
is less than 0.05, which denotes that the low-frequency components only exist in X1 and
X3. Taking these two as the low-frequency components of X1 and X3, the high-frequency
components of the other factors will be the sum of the remaining IMFs. Therefore, in
addition to the variables mentioned above, new variables can also be chosen as input to
an SVR model of the periodic displacements after reconstruction: high-frequency current
monthly rainfall sequence (L1H), high-frequency accrued precipitation of the previous two
months (L2H), high-frequency accrued precipitation of the previous month and the current
month (L3H), high-frequency accrued precipitation of the previous two and the current
months (L4H), high-frequency current monthly reservoir level data (X1H), low-frequency
current monthly reservoir level data (X1L), high-frequency reservoir level monthly change
(X2H), high-frequency change of reservoir level between two months (X3H), low-frequency
change of reservoir level between two months (X3L), high-frequency previous month
displacement (D1H), and high-frequency accrued displacement of the previous month and
the current month (D2H).
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Figure 11. IMFs of restructured factors derived through CEEMD.

Table 1. Paired t-test results of all decomposed IMF.

Groups
Restructured

Factor
Component t Sig.

Mean
(mm)

Std. Deviation
(mm)

Rainfall

L1

IMF2 0.22 0.83 1.50 56.92
IMF3 −0.20 0.84 −1.23 50.75
IMF4 0.60 0.55 3.02 42.24
IMF5 0.10 0.92 0.41 36.49

L2
IMF2 0.47 0.64 6.16 110.1
IMF3 −1.34 0.18 −10.09 63.28

L3
IMF2 0.23 0.82 3.05 111.1
IMF3 −1.70 0.09 −12.42 61.56
IMF4 −1.08 0.28 −6.75 52.48

L4
IMF2 0.38 0.70 5.43 120.1
IMF3 −0.61 0.54 −5.02 69.11

Reservoir water
level

X1
IMF2 0.47 0.64 0.26 4.73
IMF3 2.07 0.04 0.66 2.70

X2
IMF2 0.22 0.83 2.91 111.6
IMF3 −1.58 0.12 −11.65 62.23
IMF4 −0.98 0.33 −6.13 52.64

X3
IMF2 −0.17 0.86 −0.37 18.16
IMF3 −0.52 0.61 −1.49 24.30
IMF4 −2.19 0.03 −10.94 42.05

Displacement D1
IMF2 −0.04 0.97 −1.16 229.4
IMF3 −1.07 0.29 −40.82 320.5
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The residue terms of restructured factors derived through CEEMD are shown in
Figure 12. The results demonstrate that, except for L1, all the residue terms show a roughly
increasing trend that is similar to the trend displacement term. This suggests that the
residual terms roughly reflect the trend of the cumulative displacement, allowing the
residue terms to be used as input parameters for the SVR to predict the displacement trend
term.

Figure 12. Residue term of restructured factors derived through CEEMD.

4.3. Factors Affecting Landslide Displacement Selected by EDR

Previous analyzes demonstrated a strong association between the landslide displace-
ment and the aforementioned factors. Thus, it is vital to determine which factors that
have the greatest influence on landslide displacement. The EDR distance was determined
between each factor and the displacements to determine the specific factors most closely
related to the landslide’s periodic displacement and trend displacement, respectively. This
helps to identify the best factors to use the SVR model. The original restructured factors and
their frequency components were chosen to compute the EDR distance with the periodic
displacement. Simultaneously, the residue term for each factor and restructured factors
were utilized to compute the EDR distance with the trend displacement. Normalization
can be used to eliminate the influence of the numerical magnitude on analysis results due
to the dimension difference between the displacement time series and the related factors.
The calculated EDR distances are shown in Table 2.
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Table 2. EDR distance between periodic displacements and related factors.

Groups Component
Periodic Displacement Trend

DisplacementOrigin High Low

Rainfall

L1 61 60 / 68
L2 56 53 / 24
L3 56 53 / 42
L4 54 49 / 42

Reservoir
level

X1 53 33 44 22
X2 56 53 / 41
X3 69 41 58 60

Displacement D1 67 21 / 3
D2 66 32 / 2

After dividing all the related factors into rainfall, reservoir water level, and displace-
ment groups, the factors with a smaller EDR distance can be regarded as more interrelated
with the landslide displacement component in each group. The results show that, for
periodic displacement, the high-frequency accrued precipitation of the previous two and
current months (L4H), the high-frequency current monthly reservoir level data (X1H), and
the high-frequency previous month displacement (D1H) are the most relevant factors in
each group. Thus, when predicting periodic displacement, L4H, X1H, and D1H are the
input variables for the periodic displacement SVR model. Similarly, related factors for
predicting trend displacement are the residual terms of L2, X1, and D2 according to the
EDR results in each group, and these were chosen as the input parameters for the trend
displacement SVR model.

To verify the effectiveness of the EDR method, grey relational analysis (GRA), a
common method for selecting input variables in landslide displacement prediction, was
used to calculate the grey relational degree (GRD) between the selected factors and the
displacement component. The periodic displacement component is chosen as the research
object, and the factor’s GRD and periodic displacement velocity are shown and compared in
Figure 13. The factors with a GRD value higher than 0.6 are regarded as closely interrelated
with the periodic displacement. Therefore, the high-frequency accrued precipitation of
the previous two and current months (L4H), the high-frequency current monthly reservoir
level data (X1H), and the high-frequency previous month displacement (D1H) are the most
relevant related factors in each group, which is consistent with the results selected by EDR.

 

Figure 13. Landslide periodic displacement compared with selected factors affecting landslide
movement.
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5. Prediction Results and Comparison

5.1. Parameter Optimization

For quantitatively measuring the optimization performance of the six SIs adopted
in this study, three selected benchmark functions (Table 3) with different features are
employed as test functions and results are shown in Figure 14. Different from F2(x) and
F3(x), the F1(x) is smoother and has a unique extreme point in the solution space of x1
and x2. The calculation results and process show that the slopes of the convergence curves
of SSA and GWO are close, indicating that the convergence performance of the two is
close and is the best among the six algorithms. The solutions obtained by each SI in F1(x)
and F3(x) are relatively scattered, and some algorithms (such as BA) will fall into a local
optimum.

Table 3. Three benchmark functions.

Function Range Theoretical Minimum Value

F1(x) = ∑n
i=1 x2

i xi ∈ [−100, 100], i = 1, 2 0
F2(x) = ∑n

i−1 ix4
i + random(0, 1) xi ∈ [−1.28, 1.28], i = 1, 2 0

F3(x) = ∑n
i=1

[
x2

i − 10 cos(2πxi) + 10
]

xi ∈ [−5.12, 5.12], i = 1, 2 0

Figure 14. Iterative curves of three benchmark functions solved using multiple-SI.

Determining the optimal value of the penalty factor C and the kernel function param-
eter g of the SVR model is a vital procedure dominating the accuracy of a displacement
prediction. The parameters C and g in this study are optimized with MSI algorithms and
are conducted independently for periodic and trend terms. For each MSI algorithm, the
parameters C and g make a two-dimensional searching space. A population of simple
agents communicate locally with each other and with their environment and move in
specific patterns to search for the best result. The parameter settings and initial conditions
in the MSI algorithm jointly affect the result. The parameter settings are iteratively adjusted
and recalculated according to the optimal prediction effect. The results of the optimization
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are shown in Table 4. The optimized C and g are later used in the SVR-based model to
predict the periodic and trend displacements.

Table 4. Parameter and results of each optimization algorithm.

Algorithm Parameters
Periodic Trend

C g C g

BA-SVR

Sizepop = 20 Max_iter. = 200 A = 0.2

220.67 0.00109 657.16 0.00106Lb = 1 × 10−2 Ub =1 × 102 r = 0.5

Freq_min = 0.1 Freq_min = 0.2 Alpha = 0.2

DA-SVR

Sizepop = 30 Max_iter. = 200 e = f = 0.1

66506 0.00001 83702 0.00001lb = 1 × 10−5 ub = 1 × 105 c = 0.7

w = 0.5 s = 0.1 a = 0.1

GOA-SVR
Sizepop = 30 Max_iter. = 200 l = 1.5

16.13 0.00100 29.68 0.01000
lb = 1 × 10−3 ub = 1 × 103 f = 0.5

GWO-SVR
Sizepop = 30 Max_iter. = 200 dim = 2

474.94 0.00100 706.29 0.00100
lb = 1 × 10−3 ub = 1 × 103 /

SSA-SVR
Sizepop = 30 Max_iter. = 200 pNum = 20%

16.17 0.00100 9677.9 0.00014
lb = 1 × 10−4 ub = 1 × 104 sNum = 20%

OA-SVR
Sizepop = 20 Max_iter. = 200 dim = 2

1.74 0.01000 48277.4 0.00001
lb = 1 × 10−5 ub = 1 × 105 b = 1

5.2. Prediction of Periodic and Trend Displacements

An MSI-based SVR prediction model was developed with the optimized input factors
to predict the periodic displacements and the trend displacements separately, as shown in
Figure 15. The prediction accuracy and error of each model are shown and compared in
Figure 16. For the periodic displacements, the prediction accuracy with the largest R2 and
smallest MAPE, RMSE, and MAE was obtained using the DA algorithm among all of the
given models. The corresponding result of MAPE, RMSE, MAE, and R2 is 3.654173, 63.0435,
119.2786, 0.824217, respectively. Meanwhile, the GWO-based SVR model gave the best
prediction for the trend displacements compared to the other optimization algorithms, with
the result of MAPE, RMSE, MAE, and R2 being 0.010273, 95.9178, 184.4194, and 0.99473,
respectively. Overall, the prediction results provided by the SVR model optimized by MSI
matched well with the observation results.

5.3. Prediction of Cumulative Displacements

The predicted cumulative displacements of the Shiliushubao landslide can be obtained
by adding the predicted periodic and trend displacements. The predicted cumulative
displacements are shown in Figure 17, and these are in good agreement with the observed
displacements. The maximum relative error of monthly displacement is generally less
than 3% and the average relative error of less than 1%. The results show the usefulness of
the proposed model. The most appropriate optimization algorithm and the most relevant
landslide related factors were selected and applied.
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Figure 15. Comparison of prediction results by MSI-SVR model with monitoring data.

 
Figure 16. Rose diagram for each model’s performance.
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Figure 17. Comparison of predicted displacement and observed displacement.

To further verify the effectiveness of the proposed prediction model, the displacement
at ZG93 of the well-known Baishuihe landslide is chosen as another case and predicted.
The prediction accuracy of each SI and cumulative displacement prediction result are
shown and compared in Table 5 and Figure 18.

Table 5. Prediction accuracy of each SI in Baishuihe landslide.

Optimization
Algorithm

Periodic Displacement Trend Displacement

MAPE RMSE MAE R2 MAPE RMSE MAE R2

BA 0.688 13.691 30.118 0.757 0.395 1065.132 926.683 0.8621
DA 0.788 13.652 30.367 0.761 0.008 20.448 66.336 0.9997

GOA 0.692 13.663 30.110 0.758 0.008 19.649 66.214 0.9997
GWO 0.680 13.592 29.558 0.751 0.008 20.448 66.336 0.9997
SSA 0.786 13.589 30.307 0.762 0.009 22.766 64.733 0.9998

WOA 0.788 13.629 30.329 0.761 0.008 20.448 66.336 0.9997

Figure 18. Comparison of predicted displacement and measured displacement.
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The SSA method has achieved the best results in predicting both periodic displacement
and trend displacement, with the largest value of R2, which is 0.762 and 0.9998, respectively.
The cumulative displacement prediction results are in good agreement with the measured
displacement, with an absolute error of monthly displacement that is generally less than
67mm and the maximum relative error of monthly displacement that less than 3%. The
average relative error of the proposed prediction model is 0.898%, which is slightly smaller
than the result obtained by the prediction model of Deng et al. [54]. The comparative study
shows the effective improvement of the proposed model in terms of prediction performance
and the universality of it to predict the displacement of slow-moving landslides all around
the world.

6. Discussion

This paper aims to improve the accuracy of landslide displacement prediction by
constructing a novel prediction model combined with the CEEMD method, EDR method,
and multi-swarm-intelligence (MSI) algorithm. The new prediction model can forecast
landslide movements so that the landslide status can be evaluated, and appropriate sta-
bilization measures can be implemented in advance to reduce the destructive effects of
landslide movements. The CEEMD method was first employed for the landslide dis-
placement decomposition, and a new prediction based on this was proposed to overcome
its defect by optimizing the model’s framework. The trend displacement obtained from
CEEMD decomposition can reflect the long-term trend of landslide deformation. The
periodic displacement obtained from CEEMD decomposition shows a cyclical variation
in displacements consistent with periodic changes of related factors such as rainfall and
reservoir levels. The frequency components of related factors that change periodically can
be decomposed by the CEEMD. Combining with the t-test, the high-frequency and low-
frequency components of related factors can be separated. With the EDR method, the most
relevant factors related to the landslide displacements among the original related factors,
reconstruction related factors, and frequency related factors can be selected by calculating
the distance between all related factors and the extracted displacement component. The
relevant factors that were identified are consistent with the results obtained by GRA.

The factors related to landslide displacement prediction can be separated into three
groups: rainfall, reservoir level, and previous displacement. The most relevant factors
for the Shiliushubao landslide’s periodic displacement are L4H, X1H, and D1H, and the
most relevant factors for the trend displacements are the residual terms of L2, X1, and D2.
MSI (BA, DA, GOA, GWO, SSA, and WOA) was used to optimize the proposed prediction
model. For the Shiliushubao landslide, the DA-based SVR model performs best to predict
periodic displacements, and the GWO-based SVR model works best for predicting trend
displacements. The prediction of cumulative displacements is in good agreement with the
measured displacements with a maximum relative error of monthly displacement of less
than 3%. The trail of the proposed model on the Baishuihe landslide, another landslide in
the reservoir area, is also satisfied with the average relative error of 0.898%, which performs
slightly better than that from the previous study.

While the proposed methodology yielded satisfactory results, there are also some
limitations. First, the CEEMD method has limits in the decomposition of measured displace-
ments and related factors when the time series does not have enough extreme points, which
limits the applicability of this method. When there is only one IMF sequence after CEEMD
decomposition, a t-test cannot be carried out, and the IMF itself is high frequency. Second,
the trend displacement and residue term for related factors after CEEMD decomposition
may still have local fluctuations. It might contain some periodic fluctuation information,
which can lead to prediction error, which needs to be further studied in the future. Third,
the values of thrsh, sthresh, N, and alpha used in CEEMD will have an indirect impact on
the prediction results. The appropriate range of these parameters and their influence on
the results are still unclear. Fourth, when using MSI to optimize the parameters of the SVR
model, the search for the g value is usually close to the lowest value of the search interval,
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and the result does not gradually increase as the search boundary continues to widen.
Different SI optimization algorithms may perform differently for different landslides, so
for new landslide data, the trial of different optimization algorithms for the best results is
needed.

The deformation and failure of landslides are usually closely bonded with the ground-
water effect [55]. The evaluation of the landslide stability with groundwater nowadays has
developed into several hotspot branches, which includes analytical methods, such as the
Limit Equilibrium Analysis with the Reliability Analysis and the Intelligent Algorithms on
sliding zone searching, and numerical methods, such as the Fast Lagrange Analysis, the
Finite Element Method, and the Discrete Element Method coupled with hydraulic calcula-
tions. These advanced evaluation methods have their status in the practical industry on the
slope stability and deformation assessment, based on the current state and data gathered
in the field and laboratory; however, these mechanism-based methods took insufficient
account of the history state and data of the slope. The novel prediction model proposed in
this paper can consider the historical influence of rainfall and reservoir fluctuation that pre-
cisely related to the displacement periodic component and displacement trend component
with the help of the CEEMD method and EDR, thus improving the accuracy of landslide
displacement prediction. It is a profitable attempt and a good way to improve the accuracy
of landslide movement prediction. Although some in-depth research in consideration
of historical factors of inducing factors has been carried out in this study, the predictive
capability of the proposed model is still flawed in the sense that they cannot say anything
about changes that are caused by external factors not captured by the available data series.
Therefore, it is very important to develop multi-field (displacement field, seepage field,
stress field, etc.) monitoring technology for the landslides, and the innovative prediction
models based on this can more reflect the evolution process of the sliding mass.

Landslides in complex water environments could develop different deformation pat-
terns, both categorized by history data and potential failure mechanism [4]. The pattern
is highly related to the interaction between soil and water in a certain engineering geo-
logical condition. In the proposed novel displacement prediction model, the interaction
mechanism is still not included, which limits the adaptability and comparability among
different landslide cases. A better insight into the landslide development patterns is to
be developed, combining the failure-mechanism-based evaluation method, in the future
model for displacement prediction. Other than from the pure displacement prediction
based on displacement, rainfall, and water level data sequence, an evaluation of the critical
rainfall intensity and critical water level fluctuation rate is needed to be conducted under
certain landslide development patterns in the further study.

In addition, landslide displacement is a noisy and non-stationary process that varies
with time, which is highly affected by internal factors such as formation lithology and
geological structure and external factors such as the rainfall, reservoir water level, and snow
melting. Due to the complex nonlinear relationship between all these various inducing
factors and landslide displacement, the landslide displacement prediction is subject to
considerable uncertainties [56]. The limitations of the machine learning model, parameter
selection, and data noise will increase the uncertainty of prediction [57]. The prediction
model proposed in this paper is a deterministic point prediction model which cannot
estimate the variability and uncertainty related to a given landslide displacement prediction,
which limits its reliability under uncertain conditions. This should be addressed in the
future study.

7. Conclusions

A reservoir landslide’s movement is closely associated with the related factors includ-
ing reservoir level fluctuations, rainfall intensity, and previous deformations. The complex
nonlinear relationship between all these various inducing factors and landslide displace-
ment increased the challenge of forecasting in the form of considerable uncertainties. In
this study, a novel prediction model for landslide displacement prediction was proposed

127



Sensors 2021, 21, 8352

to improve the accuracy by the combination of multiple algorithms. The EDR method can
identify the most relevant factors influencing a landslide’s movements to use as input vari-
ables for an SVR model. The CEEMD method is suitable for the decomposition of various
time series and can be used to extract the trend displacement of slow-moving landslide
displacement. The CEEMD method can also highlight local fluctuations in the time series
of related factors, and the frequency components of these time series can be extracted by
combining the t-test method. With the help of MSI optimization algorithms, the optimal
value of the penalty factor C and the kernel function parameter g for an SVR model can be
obtained. This paper proposes an SVR model based on the CEEMD method, EDR selection,
and MSI optimization algorithm that can capture the deformation characteristics of the
landslide before failure.

Measurements of landslide displacements for the Shiliushubao landslide in the TGRA
were used to demonstrate the novel displacement prediction model. The predicted displace-
ments, including season fluctuations and the long-term trend, were found to be consistent
with the observed data, which indicates that the proposed model has good predictive
performance, even when the displacement characteristics are cyclic and complex. The DA-
and GWO-based SVR model provided the best prediction of periodic displacement and
trend displacement, respectively. The prediction model proposed in this paper has wider
applicability. It can enhance the prediction of landslide displacements characterized by
slow-moving, step-like displacements that are influenced by multiple related factors with
frequency conversion characteristics.
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Abstract: It is crucial to predict landslide displacement accurately for establishing a reliable early
warning system. Such a requirement is more urgent for landslides in the reservoir area. The
main reason is that an inaccurate prediction can lead to riverine disasters and secondary surge
disasters. Machine learning (ML) methods have been developed and commonly applied in landslide
displacement prediction because of their powerful nonlinear processing ability. Recently, deep ML
methods have become popular, as they can deal with more complicated problems than conventional
ML methods. However, it is usually not easy to obtain a well-trained deep ML model, as many
hyperparameters need to be trained. In this paper, a deep ML method—the gated recurrent unit
(GRU)—with the advantages of a powerful prediction ability and fewer hyperparameters, was applied
to forecast landslide displacement in the dam reservoir. The accumulated displacement was firstly
decomposed into a trend term, a periodic term, and a stochastic term by complementary ensemble
empirical mode decomposition (CEEMD). A univariate GRU model and a multivariable GRU model
were employed to forecast trend and stochastic displacements, respectively. A multivariable GRU
model was applied to predict periodic displacement, and another two popular ML methods—long
short-term memory neural networks (LSTM) and random forest (RF)—were used for comparison.
Precipitation, reservoir level, and previous displacement were considered to be candidate-triggering
factors for inputs of the models. The Baijiabao landslide, located in the Three Gorges Reservoir
Area (TGRA), was taken as a case study to test the prediction ability of the model. The results
demonstrated that the GRU algorithm provided the most encouraging results. Such a satisfactory
prediction accuracy of the GRU algorithm depends on its ability to fully use the historical information
while having fewer hyperparameters to train. It is concluded that the proposed model can be a
valuable tool for predicting the displacements of landslides in the TGRA and other dam reservoirs.

Keywords: reservoir landslide; displacement prediction; time series analysis; complementary ensemble
empirical mode decomposition; gated recurrent unit

1. Introduction

Landslides are one of the most catastrophic disasters and are widely distributed in
numerous parts of the world [1–4]. In China, annual reports from China Institute of Geo-
Environment Monitoring (IGEM) show that landslides account for more than 50% of all
geological hazards in recent years [5]. In 2020, for instance, 7840 geology-related hazards
occurred in China, resulting in 139 deaths or people missing, 58 people injured, and a
direct economic loss of CNY 5.02 billion. Among these geological disasters, 4810 were
landslides, accounting for 61.3% of the total. Other types of hazards in 2020 included 1797
avalanches, 899 debris flows, 183 ground collapses, 143 ground fissures, and 8 cases of
ground subsidence.
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As one of the most landslide-prone areas in China, the Three Gorges Reservoir Area
(TGRA) has been given much attention concerning severe landslides [6]. One main reason
is that the construction of the Three Gorges Dam (TGD) has significantly changed the
regional hydrogeological conditions [7,8]. Some landslides in the TGRA (e.g., Bazimen
landslide) have deformed continuously for several decades, whereas some landslides
(e.g., Woshaxi landslide) have achieved a displacement of 28,065.9 mm, and the deformation
is still increasing [9,10]. Once landslides in dam reservoirs occur, they can cause severe
damage along both sides of the reservoir area. In addition, these reservoir landslides can
induce secondary surge disasters, endangering the shipping and bridges along the river
and its tributaries [11]. The Honyanzi landslide, which occurred on 24 June 2015, was such
an example, initiating a reservoir tsunami that resulted in two deaths and severe damage
to shipping facilities (Figure 1) [12]. These risks can be mitigated if one can establish
reliable early warning systems. As landslide displacement can represent its evolution
intuitively, accurate landslide displacement prediction is an effective means of establishing
such reliable early warning systems [10,13,14].

Figure 1. Location map of landslides in TGRA mentioned in the paper.

In situ displacement monitoring techniques have been available since the 1940s,
especially the global positioning system (GPS) technique [15–17]. These techniques make it
possible to acquire real-time monitoring information. These monitoring data have been
applied extensively in landslide displacement prediction (LDP). The research of LDP dates
back to the 1960s with the presentation of the Saito model. Subsequently, numerous LDP
theories and models have been successively proposed [18]. The development of LDP
research can be summarized into three stages [14,19,20]. The first stage (from the 1960s to
1970s) is the phenomenological and empirical prediction, mainly based on the macroscopic
deformation phenomenon before landslide failure. The prediction accuracy is usually
unsatisfied because of a high dependence on the gained experience. The second stage (dur-
ing the 1980s) is the displacement-time statistical analysis prediction, leading qualitative
prediction to quantitative prediction. Benefiting from the development of mathematical
sciences, various statistical mathematical models have been proposed and applied to the
LDP (e.g., grey system theory) [21]. Without considering influencing factors, these models
are built from statistics and mathematics. Hence, these approaches are primarily valid for
landslides with similar deformation characteristics [22]. The third stage (from the 1990s to
the present) is the nonlinear prediction and intelligent integrated prediction. Numerous
nonlinear and intelligent LDP models have been proposed and applied in cases. These
models can build relationships between landslide displacement and multiple triggering
factors. Their prediction performance has shown encouraging improvement.

As intelligent algorithms, machine learning (ML) models have been extensively
utilized to predict landslide displacements because of their nonlinear processing abil-
ity. These models, such as the back-propagation (BP) neural network [23,24], extreme
learning machine (ELM) [25–29], random forest (RF) [30,31], and support vector machine
(SVM) [32–34], have become popular and have been adopted in some landslide cases in the
TGRA. Influencing factors and displacement are set as the input and output of the models,
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respectively. The trained models have achieved encouraging performances. Zhou et al. [27]
selected an artificial bees colony (ABC) to optimize the parameters of a kernel-based ex-
treme learning machine (KELM) for LDP. Li et al. [28] proposed an ensemble-based ELM
and copula model to predict the displacement of the Baishuihe landslide in the TGRA.
Hu et al. [30] developed an integrated LDP model by combining the Verhulst inverse
function (VIF) and RF algorithm, which provided a practical approach for predicting the
long-term deformation of landslides. Bui et al. [34] adopted ABC optimization to model the
least squares support vector regression (LSSVR). These forecasting models belong to static
models, whereas the evolution of landslides is a complex nonlinear dynamic process [35].
The deformation conditions of landslides at one time can be affected by that of the former
time [36]. A dynamic model—long short-term memory (LSTM) neural networks—was
applied to LDP [9]. Jiang et al. [37] combined the support vector regression (SVR) algorithm
and LSTM model to forecast the displacement of the Shengjibao landslide in the TGRA.
As a deep ML method, LSTM can deal with more complicated time series predictions.
With the increment of the number of available monitoring data and the improvements in
computer hardware and software, the LSTM model has become a priority choice to deal
with more complicated time series prediction [38,39]. One drawback of LSTM is that it has
more parameters to be trained than classical ML methods, which makes it challenging to
obtain the optimum of all parameters simultaneously [10]. An improved version of the
LSTM—the gated recurrent unit (GRU)—is proposed and adopted in LDP. GRU replaced
the three gates (input gate, forget gate, and output gate) of LSTM with two new gates (reset
gate and update gate). This structure of GRU makes it possible to reduce the number of hy-
perparameters required for training. Thus, it can be easier for GRU to obtain a well-trained
model than the LSTM [31].

In general, the LDP in the dam reservoir involves decomposing the total displacement
into several components (trend term, periodic term, and stochastic term) according to time
series analysis and then through predicting each component by different methods. Each
displacement component has clear mathematical and physical significance. This treatment
of LDP has been proven to be effective in previous studies [10,23,31,33,36,40–42]. Several
decomposition methods have been adopted, such as the average moving method [10,33],
double exponential smoothing [10], variational mode decomposition (VMD) [40], empirical
mode decomposition (EMD) [37], ensemble empirical mode decomposition (EEMD) [40],
and wavelet transform (WT) [41]. It is critical to forecast periodic displacement accurately
to ensure the good prediction performance of accumulated displacement for landslides [23].
The prediction of periodic displacement is a heated topic, and the predictive models
are summarized as mentioned above. The trend displacement is usually modeled and
predicted by fitting the curve of displacement–time with polynomial functions [23,31,33].
A piecewise curve may need several polynomial functions [10]. Another displacement
component—the stochastic term—is usually ignored [10,32,37,43]. The main reason is
that stochastic displacement is influenced by varied, ever-present, and unquantifiable
stochastic factors.

This paper decomposed accumulated displacement into a trend term, periodic term,
and stochastic term by CEEMD. A univariate and a multivariable GRU model were used
to predict the trend and stochastic displacements, respectively. A multivariable GRU
model was adopted to predict periodic term displacement, and another two popular ML
methods—LSTM and RF—were used for comparison. The proposed model was applied
in the displacement prediction of the Baijiabao landslide in the TGRA. The deep dynamic
model has the advantages of a powerful prediction ability with a simpler structure and
fewer trained hyperparameters. In addition, the stochastic displacement, neglected in most
exiting prediction models, was considered in the proposed model.
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2. Approach to Model Displacements in Three Gorges Dam Reservoir

2.1. Time Series Decomposition

The change in landslide accumulated displacement is determined by geological con-
ditions, triggering factors, and stochastic factors [10,33]. Geological conditions involve
internal factors, such as the geological structure, topography, lithology, etc. Triggering
factors for landslides in the TGRA are mainly the seasonal rainfall and reservoir level
fluctuation. Stochastic factors appear with uncertainties, including earthquakes, traffic
load, wind load, etc. The displacement components induced by the above three factors
can be represented as trend displacement, periodic displacement, and stochastic displace-
ment, respectively. Consequently, the accumulated displacement can be expressed as
Equation (1):

A = T + P + S (1)

where A is accumulated displacement, T is trend displacement, P is periodic displacement,
and S is stochastic displacement.

2.2. Complementary Ensemble Empirical Mode Decomposition

Empirical mode decomposition (EMD) was firstly proposed by Huang et al. [44]. They
implemented EMD by converting a nonlinear sequence into a set of stationary sequences
that consisted of several intrinsic mode functions (IMFs) and a residual. EMD, however,
has the disadvantage of mode mixing, and thus ensemble empirical mode decomposition
(EEMD) was presented by Wu et al. [45]. In EEMD, uncorrelated finite white noise is
added into the original signal, and the final IMF is obtained by averaging all the IMFs.
Due to the dependence of the added noise in EEMD, Yeh et al. [46] presented a modified
algorithm of EEMD named complete ensemble empirical mode decomposition (CEEMD)
to decompose the signal into different scale IMFs. By adding opposite random white noise
into the decomposition results of EEMD, CEEMD realized the advantages of an improved
decomposition, better denoising, and higher computational efficiency. The following steps
settle the process of CEEMD decomposing the original time series.

The first step is to add positive and negative white noise pairs to the original time series.[
Bi(t)
Ci(t)

]
=

[
1 1
1 −1

][
Si(t)
ai(t)

]
(2)

where Bi(t) and Ci(t) are the time series after adding positive and negative white noise,
respectively, Si(t) is the original time series, and ai(t) is the added white noise.

Subsequently, the EMD algorithm is used to decompose Bi(t) and Ci(t).⎧⎪⎪⎪⎨⎪⎪⎪⎩
Bi(t) =

J
∑
j

IMF+
ij

Ci(t) =
J

∑
j

IMF−ij
(3)

where J is the number of IMF after decomposing, and IMF+
ij and IMF−ij are the jth compo-

nents of IMF after adding positive and negative white noise, respectively.
N sets of IMFs can be obtained after repeating the above two steps.⎧⎨⎩

{{
IMF+

1j , IMF+
2j , · · · , IMF+

Nj

}}{{
IMF−1j , IMF−2j , · · · , IMF−Nj

}} ⎫⎬⎭ (4)

We can obtain the final jth IMF by averaging its positive and negative components.

IMFj =
1

2N

N

∑
i=1

(
IMF+

ij + IMF−ij
)

(5)
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Finally, the time series Si(t) is decomposed as Equation (6):

S(t) =
N

∑
j=1

IMFj (6)

2.3. Machine Learning Methods
2.3.1. Long Short-Term Memory Neural Network

Long short-term memory (LSTM) neural networks are in the category of dynamic
recurrent neural networks (RNN). Due to the issues of gradient vanishing and gradient
exploding in conventional RNN, they cannot handle the dependency of a long time series.
To avoid such disadvantages of conventional RNN, Hochreite and Schmidhuber [47]
proposed LSTM in 1997. In LSTM, a memory block is used as the basic unit of its hidden
layer, consisting of a memory cell and three gates, named the input gate, forget gate, and
output gate (Figure 2) [48].

Figure 2. Architecture of LSTM neural network.

The input gate controls the flow of input activations into the memory cell. The
information from the hidden state at step t − 1 (ht-1) and the current input value (xt) is
firstly passed along to the sigmoid function (σ). Then, the information of input data from
the current step and previous data from the last step is used to update and generate a new
vector. The forget gate is responsible for filtering information by means of passing along
useful information to the next step and abandoning useless information. The output gate
controls the transfer of useful information into other memory blocks.

We recorded the input sequence as x = (x1, x2, . . . , xT), and can obtain the output
sequence y = (y1, y2, . . . , yT) by treating Equation (7) to Equation (12).

it = σ(Wxixt + Whiht−1 + Wcict−1 + bi) (7)

ft = σ
(

Wx f xt + Wh f ht−1 + Wc f ct−1 + b f

)
(8)

ct = ftct−1 + it tan h(Wxcxt + Whcht−1 + bc) (9)

Ot = σ(Wxoxt + Whoht−1 + Wcoct−1 + bo) (10)

ht = ot tan h(ct) (11)

yt = Whyht + by (12)

where it, ft, ot, and ct are the values of the input gate, forget gate, output gate, and a
memory cell at time t; bi, b f , bo, and bc are their corresponding bias values; Wx are the
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weights between input nodes and hidden nodes; Wh are the weights between hidden nodes
and cell memory; Wc are the weights connecting the memory cell to output nodes; σ is
the sigmoid activation function; tan h is the hyperbolic tangent function mapping data
to [−1, 1]; and ht is the hidden state, containing information about the history of earlier
elements in the series.

2.3.2. Gated Recurrent Unit

The gated recurrent unit (GRU) is an improved version of LSTM. Compared with
LTSM, GRU has the advantages of fewer hyperparameters and faster training by using two
new gates (update gate and reset gate) (Figure 3). These two gates are utilized to store as
much information as possible for a long time series [49,50]. The reset gate is responsible for
determining how much information at the previous moment is passed along, and resets
the information at the current moment. The update gate controls the extent of information
from both the previous time step and the current time step that will be passed along to the
memory cell. The equations in GRU are given as follows:

ut = σ(Wxuxt + Whuht−1 + bu) (13)

rt = σ(Wxrxt + Whrht−1 + br) (14)

h′ = tan h(Wxhxt + (rt 
 ht−1)Whh + bh) (15)

ht = (1− ut)
 h′ + ut 
 ht−1 (16)

where ut and rt are the values of the upset gate and reset gate, respectively; h′ is the value
after resetting; W and b are the weights and deviations, respectively;
 represents pointwise
multiplication between tensors. Other parameters indicate the same meaning as those
in LSTM.

Figure 3. Structure chart of GRU.

2.3.3. Random Forest

Random Forest (RF) is an ensemble ML method that has been well-developed for
classification, regression, and other tasks [51]. This method has some advantages, including
great robustness, data adaptability, and low overfitting [52]. The RF algorithm is realized
based on multiple decision trees by sampling from the original dataset (both samples and
their features) [53].
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To build a decision tree, we divide the predictor space into the number of J regions
that are distinct and non-overlapping and represented as R1, . . . , Rj. The division is
implemented by minimizing the root of the sum of squares.

J

∑
j=1

∑
i∈Rj

(
yi − ŷRj

)2
(17)

where yi is the observation belonging to Rj, and ŷRj is the mean response for the training
observations within the jth region.

Bagging is used to select training sets from the original dataset, and each training set
is utilized for building a decision tree. The final prediction result ŷbag can be achieved by
averaging the results of all decision trees (Equation (18)), which can improve the prediction
accuracy by doing so.

ŷbag =
1
M

M

∑
i=1

ŷi (18)

where ŷi is the prediction result of the ith decision tree and M is the number of decision trees.

2.4. Prediction Process with the Proposed Model

In the establishment of the proposed model (Figure 4), we adopted CEEMD to de-
compose the monitored accumulated displacement into a trend component and a periodic
component. Subsequently, we used a univariate GRU model and a multivariate GRU
model to predict the trend term and periodic term, respectively. The univariate GRU
model described the trend displacement versus time, whereas the multivariate GRU model
described the relationships between periodic displacement and influencing factors. A mul-
tivariate LSTM model and a multivariate RF model were also utilized for forecasting
periodic displacement to verify the prediction performance of the GRU model. We adopted
a multivariate GRU model to predict stochastic displacement.

The error analysis introduces the root mean square error (RMSE), mean absolute
percentage error (MAPE), and the goodness of fit (R2) for validations. Smaller values of
RMSE and MAPE and a larger value of R2 reflect a better prediction performance.

RMSE =

√√√√ 1
N

N

∑
i=1

(xi − x̂i)
2 (19)

MAPE= 100%× 1
N

N

∑
i=1

∣∣∣∣ xi − x̂i
xi

∣∣∣∣ (20)

R2 = 1− N ∑(xi − x̂i)
2

N ∑ x2
i −∑ x̂i

2
(21)

where xi and x̂i represent the ith observed displacement and predicted displacement,
respectively, and N is the record number of displacement.
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Figure 4. Flowchart of the proposed predictive model.

3. Baijiabao Landslide Case Study

3.1. Overview of the Baijiabao Landslide
3.1.1. Geological Conditions

The Baijiabao landslide is located on the west bank of the Xiangxi River and belongs
to Zigui County, Hubei Province, China (Figure 5). The Xiangxi River is a major tributary
of the Yangtze River, approximately 2.5 km upstream from the estuary. The main sliding
direction of the landslide is perpendicular to the Xiangxi River and orientated at N 82◦ E.
The front part of the landslide is submerged in the Xiangxi River, whereas the interface
between bedrock and soil bounds the upper edge. The left and right boundaries are
defined by seasonal homologous gullies (Figure 6). The landslide has a leading-edge
elevation of 160–175 m, a trailing-edge elevation of 265 m, a width of approximately 550 m,
a length of approximately 400 m, an average thickness of 45 m, and an estimated volume of
9.9 × 106 m3 [25].

The sliding mass is mainly composed of silty clay and fragmented rubble. These
sliding materials form a loose and disordered structure of the slope. The slip bed is silty
mudstones and muddy siltstones of the Jurassic Xiangxi group, which dig into the hill by a
direction of 260◦ with an angle of 30◦ [9]. The sliding surface is defined by the interface
between colluvial materials and subjacent bedrock. The sliding zone is mainly composed
of silty clay (Figure 7).

The Baijiabao landslide experienced large deformations since the impoundment of the
Three Gorges Dam (TGD) in 2003 and kept deforming in the following years. In June 2007,
tensile cracks with a length of 160 m and depth of 10 cm occurred at both side boundaries
of the landslide close to the trailing edge. In May 2009, tensile cracks were observed on the
road in the front and right parts of the landslide. A similar road deformation appeared in
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the middle of the landslide. In June 2012, cracks of the trailing edge showed a connecting
tendency. Besides, cracks of the boundaries extended to the front part of the landslide. In
June 2015, several tensile cracks, both on the right boundary and Zi-Xing road, became
larger. Before the impoundment of the TGD, 165 residents used to live in the landslide area,
whereas now, only 20 residents live there.

Figure 5. (a) Location of the Baijiabao landslide; (b) overall view of the Baijiabao landslide.

Figure 6. Monitoring arrangement in the Baijiabao landslide.
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Figure 7. Schematic geological cross-section A–1′ of the Baijiabao landslide.

3.1.2. Monitoring Data and Deformation Characteristics of the Landslide

Four GPS stations numbered ZG323, ZG324, ZG325, and ZG326 were installed in the
landslide area to monitor the surface displacements at one time per month since late 2006.
Another two stations numbered ZG320 and ZG321 were established as the datum stations.
Monitoring data from January 2007 to July 2018 were acquired (Figure 8). The displacements
of the four monitoring stations showed a similar trend of step-wise, which meant that the
landslide deformed distinctly in steps during April and September (especially from May to
July) and became unremarkable in other times of the year.

Figure 8. Accumulated displacement in the Baijiabao landslide.

Cao et al. [25] analyzed the deformation characteristics and evolution of the Baijiabao
landslide. The analysis showed that the Baijiabao landslide deformed as an entity. Station
ZG324, located in the central position of the landslide, was chosen as a representative
for establishing the displacement forecasting model. Figure 9 displayed the accumulated
displacements at station ZG324, monthly rainfall, and reservoir water level, and all the data
were obtained by measurement. The annual displacement, displacement during step-wise
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deformation period (from May to September), and the maximum monthly displacement
were summarized in Figure 10.

Figure 9. Rainfall, reservoir water level, and accumulated displacement at ZG324, Baijiabao landslide.

Figure 10. Annual displacement increment, displacement during step-wise deformation period, and
the maximum monthly displacement at ZG324, Baijiabao landslide.

It can be seen that a sharp displacement increment occurred every few years (2009,
2012, and 2015) that was more than 200 mm (204.81 mm, 206.18 mm, and 216.92 mm,
respectively). The displacement in other years increased by less than 100 mm. Another
phenomenon was that the displacement during the step-wise deformation period (from May
to September) contributed to the majority of the displacement in the whole year, especially
from May to July, which contributed to more than 70% of the annual displacement. The
maximum monthly displacement occurred in June or July each year, except 2015 (occurred
in August). For example, the yearly displacement in 2012 was 206.18 mm; the displacement
increment between May and July was 187.55 mm and occupied 91% of the whole year
displacement. The maximum monthly rainfall occurred in June and was up to 164 mm.
The reservoir level dropped between May and July 2012, and the cumulative rainfall rose
to 349.73 mm. Thus, the time from May to July can be the critical early warning period
for step-wise landslides. The deformation during this period was mainly controlled by
reservoir water level decline and heavy rainfall.
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3.2. Accumulated Displacement Decomposition

The monitored data of station ZG324 from January 2007 to July 2017 and from Au-
gust 2017 to July 2018 were selected as training and testing data sets, respectively. An
appropriate decomposition method is crucial in establishing a landslide displacement
prediction model. Several methods have been used in accumulated displacement decom-
position, as mentioned in the introduction, and each has advantages and disadvantages.
Zhu et al. [54] and Fu et al. [55] have demonstrated that CEEMD is an effective method
for reconstructing landslide displacement, with the advantages of a high stability and
complete decomposition. Therefore, the CEEMD method was adopted here to decompose
accumulated displacement into trend term and periodic term displacements.

In the training of the forecast model, we tested 200 trials and set the standard deviation
of the added white noise in each ensemble to 0.25. We used the CEEMD to decompose the
accumulated displacement into several IMFs and a residual, while the residual represented
a trend component. Subsequently, we can obtain the periodic displacement by summing up
all of the IMFs or subtracting the trend term from the accumulated displacement. Figure 11
displayed the trend and periodic components of ZG324 in the Baijiabao landslide.

Figure 11. Displacement decomposition at ZG324.

3.3. Trend Displacement Prediction

Controlled by “internal” conditions, the trend displacement increases monotonically
with time [23]. Some researchers forecasted trend displacement by fitting the displacement–
time curve, and a polynomial was commonly used [33,37]. However, a single function
can be insufficient to fit the curve properly [10]. A univariate GRU model was adopted
to forecast the trend displacement in this study, and the established model achieved an
excellent prediction performance (Figure 12). The prediction results of RMSE, MAPE, and
R2-values were 2.09 mm, 0.14%, and 0.9984, respectively.
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Figure 12. Predicted and measured trend displacement.

3.4. Periodic Displacement Prediction
3.4.1. Triggering Factors Selection

Triggering factors selection is essential to guarantee the accuracy of a displacement
predictor. According to the monitoring data of the Baijiabao landslide (Figures 9 and 10),
rainfall and reservoir water level fluctuation are two major factors triggering its step-wise
deformation. Selby [56] proposed that the evolutionary state of landslides was also an
influential factor in the dependence of the movement on external factors. By referring to
the research [9,25,31,36] and our previous work [42], seven candidate triggering factors
were considered here.

Gray relational analysis (GRA) was used to check the degree of correlation between
the periodic displacement and candidate triggering factors [57]. In GRA, we chose periodic
displacement and candidate triggering factors as primary sequence and sub-sequences,
respectively. All the sequences were normalized in the following way:

Xk(i)′ = Xk(i)/
1
n

n

∑
i=0

Xk(i) (22)

where i = 0, 1, · · · , n; k = 0, 1, · · · , m; n is the number of data points; m is the number
of candidate triggering factors. The correlation coefficients were thus obtained by
Equation (23):

δ
(
(x0(i)′, xk(i)′

)
=

p + ρq
|Xk(i)′ − X0(i)′|+ ρq

(23)

p = min
k

min
i

(
Xk(i)′ − X0(i)′

)
(24)

q = max
k

max
i

(
Xk(i)′ − X0(i)′

)
(25)

where ρ is the resolution coefficient and is usually set to 0.5.
The grey relational grade (GRG) was adopted to evaluate the correlation between

variables, and was calculated by Equation (26):

r(x0, xi) =
1
n

n

∑
k=1

δ
(
(x0(i)′, xk(i)′

)
(26)

The GRG values vary from 0 to 1, with GRG values above 0.6 indicating a strong
correlation between variables. The results were summarized in Table 1. GRG values
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between all the variables were above 0.6, suggesting that the candidate triggering factors
can be used as the input of the prediction model.

Table 1. Candidate factors for the periodic displacement of Baijiabao landslide.

Inputs 1–7 Grey Relational Grade (GRG)

Input 1: the 1-month antecedent rainfall 0.68
Input 2: the 2-month antecedent rainfall 0.68

Input 3: average reservoir elevation in the current month 0.69
Input 4: change in reservoir level over the last month 0.72

Input 5: the displacement over the past month 0.71
Input 6: the displacement over the past two months 0.70

Input 7: the displacement over the past three months 0.69

3.4.2. Establishment of the Prediction Model

The training dataset was divided into training and validation sections, and they
accounted for 70% and 30% of the total [9,35]. The triggering factors and periodic displace-
ment were normalized to [−1, 1], and they were used as the input sequence and output
sequence of the models, respectively. In this experiment, all the models used in the paper
were implemented on MATLAB R2021a software, where the ML toolbox and deep ML
toolbox were used. The GRU model had three layers: two were GRU layers, and the other
one was a hidden layer. In the established GRU model, the number of hidden units was 200.
The values of maximum epochs, minimum batch size, and initial learning rate were 250, 10,
and 0.05, respectively. Those parameters of LSTM were 250, 1, and 0.01, respectively. In the
RF model, the number of predictors and trees were 5 and 10, respectively.

The predicted values of GRU, LSTM, and RF models in the training process were
shown in Figure 13. The prediction accuracy of the trained models was shown in Table 2. It
indicated that the predicted displacements fitted well with the measured displacement in
the trained LSTM and GRU models and were more satisfied than the RF model.

Figure 13. Measured and predicted displacements of GRU, LSTM, and RF models in training.
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Table 2. Prediction accuracy of the trained models.

Model RMSE (mm) MAPE (%) R2

GRU 3.12 21.22 0.9929
LSTM 3.67 30.04 0.9916

RF 15.95 109.21 0.8009

3.4.3. Predicted Periodic Displacement

Figures 14 and 15 compared the measured and predicted periodic displacement at
locations ZG324 using the GRU, LSTM, and RF models. The prediction accuracy of each
model was summarized in Table 3. The GRU model gave the best agreement with the
measured values in the three models, with RMSE, MAPE, and R2 values of 1.21 mm, 11.87%,
and 0.9952. Another deep ML method—LSTM—showed a lower prediction accuracy than
the GRU model. Its RMSE, MAPE, and R2 were 3.67 mm, 26.67%, and 0.9672, respectively.
Compared with the two deep ML methods—LSTM and GRU—the ensemble model RF did
not demonstrate a satisfied prediction performance, and the accuracy factors were 7.35 mm,
69.84%, and 0.8517.

Figure 14. Training and prediction process of each model.
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Figure 15. Predicted and measured periodic displacement.

Table 3. Prediction accuracy of periodic displacement.

Model RMSE (mm) MAPE (%) R2

GRU 1.21 11.87 0.9952
LSTM 3.67 26.67 0.9672

RF 7.35 69.84 0.8517

The predicted displacements of GRU and LSTM aligned well with the measured
displacement, including in the critical early warning period of the step-wise landslides
(from May to July). During May to July 2018, the reservoir water level decreased from
160.39 m to 145.33 m, and the cumulative precipitation rose to 397.83 mm. The above two
influencing factors caused the displacement to increase sharply. Several local peaks existed
in the curve of the predicted results for the RF model. The error of each prediction time
point (each month) was distributed disorderly.

It should be noted that the GRU model showed a better prediction performance than
the LSTM and RF models on the whole rather than at every time point. For example, for
the displacement prediction of March, 2018, the absolute error (AE) and relative error (RE)
of the GRU model were 0.38 mm and 1.72%, whereas the indicators of the RF model were
0.27 mm and 1.25%.

3.5. Stochastic Displacement Prediction

According to displacement component composition, stochastic displacement can
be obtained by removing the trend term and the periodic term from the accumulated
displacement series. The results were shown in Figure 16, which indicated that stochastic
displacement varied with time disorderly.

In this paper, the stochastic displacement of the Baijiabao landslide was trained and
predicted by a multivariate GRU model. All of the impact factors and stochastic displace-
ments were converted to a [−1, 1] format in sample data preprocessing. The prediction
results were shown in Figure 17. The RMSE, MAPE, and R2 values were 1.48 mm, 94.36%,
and 0.0793, respectively. The prediction accuracy was not satisfied, whereas the whole vari-
ant trend between the predicted value and measured stochastic displacement was identical.

3.6. Accumulated Displacement Prediction

According to the accumulated displacement composition, the total displacement
can be obtained by making the sum of the predicted trend and periodic and stochastic
displacements. Figure 18 showed that the predicted accumulated displacements compared
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well with the measured displacement. The RMSE, MAPE, and R2 values were 1.48 mm,
0.09%, and 0.9936.

Figure 16. Stochastic displacement at ZG324.

Figure 17. Predicted and measured stochastic displacement.

Figure 18. Predicted and measured accumulated displacement.
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4. Discussion

It is critical to forecast periodic displacement accurately in the prediction of accumu-
lated displacement for landslides with step-wise deformation [23]. Multiple ML methods
have been proposed and adopted in the periodic displacement prediction, such as BPNN,
ElM, SVM, RF, etc. The evolution process of landslides is a dynamic, complex, and nonlin-
ear system. With the advantages of handling complex nonlinear problems and considering
the dynamic evolution, a deep dynamic model—GRU—is thus selected to predict landslide
periodic displacement.

The performance of the model was validated with the observations of the Baijiabao
landslide. Another two popular models, LSTM and RF, were adopted for comparison.
The results showed that GRU achieved the best prediction accuracy in the three models.
Compared with RF, GRU has the ability to establish connections between adjacent time
steps, and this structure contributes to improving the prediction performance of the models.
Compared with LSTM, GRU has a simpler structure and fewer hyperparameters. Thus,
it can be easier to establish a well-trained GRU model and achieve a better prediction
accuracy. It should be noted that though GRU indicated a higher prediction accuracy for
one monitoring point in the Baijiabao landslide, this does not mean that the model applies
to all landslides. The limitation of generalization inherent in the GRU model makes it
difficult to predict all cases accurately. Such a limitation exists in all models [37]. To deal
with this problem, ensemble models can be established by combining several models with
different weights of the individual model [58]. In addition, switched prediction methods
can be adopted to select the appropriate individual prediction model from several candidate
models for a landslide [59].

Although the GRU model achieved an encouraging prediction accuracy, it has some
drawbacks. One drawback is that the GRU uses the stochastic gradient descent optimization
algorithm to update weights, which risks falling into local optimization [60]. Another
drawback is that the deep GRU model demands a larger dataset size than conventional
ML models [10]. The monitoring frequency is one time per month for the GPS data used
in the Baijiabao case. It may take years to obtain enough data for the prediction model.
If not enough training samples are available, the neural network cannot be fully trained,
and therefore the prediction accuracy of the model will be affected. This drawback of GRU
places a higher requirement on the monitored data of landslide deformation.

The stochastic displacement is induced by some stochastic factors, including earth-
quakes, wind load, and vehicle load, which make it a disordered series (Figure 14). This
feature contributes to the difficulty in stochastic displacement accurate prediction. Little re-
search on stochastic displacement prediction has been reported [33]. If a slope is marginally
stable or even unstable, a slight stochastic “load” can lead to disequilibrium and intense
deformation. The ignorance or underestimation of stochastic displacement may make
landslide planners carry out nothing, thus increasing the possibility of landslide accidents.
In this paper, stochastic component displacement was considered in accumulated displace-
ment prediction. The stochastic displacement was determined by deducting the trend and
periodic displacements from accumulated displacement, and was predicted by a multi-
variable GRU model. The prediction performance was unsatisfactory due to the varied,
ever-present, and unquantifiable stochastic factors. The work is still a helpful experiment
for understanding landslide displacement components and serves as an early warning
for landslides. One should consider methods to develop optimal models for predicting
stochastic displacement in the future [37].

The temporal prediction of landslides is one of the main components of early warning
systems [61]. Empirical methods based on the trend of landslide rate and semi-empirical
practices based on the displacement rate and acceleration can provide an estimation of
landslide failure time [62]. In addition, multiple parameters relating to displacement,
such as the displacement rate, displacement acceleration, and tangential angle, have been
proposed as thresholds to suggest a probable failure, although these approaches cannot
provide a time frame for such an occurrence [63]. Realizing the temporal prediction
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of landslides at slope-scale based on relating the displacement would require a deeper
dissertation in future work.

5. Conclusions

Displacement prediction is a vital and economic measure for landslide risk reduction
and always emphasizes landslide research. This paper decomposed accumulated displace-
ment into different displacement components by CEEMD. A univariate GRU model and
a multivariable GRU model were used to predict the trend and stochastic displacements.
A multivariable GRU model was used to establish a predictor for periodic displacement
prediction, and two other popular ML models—LSTM and RF—were adopted for com-
parison. The predicted accumulated displacement was gained by the superposition of the
three predicted displacement components. The results showed that predictors of deep ML
methods—GRU and LSTM—had a higher prediction accuracy than the RF model in the
studied case, which revealed the superiority of deep ML methods in long time series predic-
tion. Both as deep ML methods, the GRU model achieved a better prediction performance
than the LSTM model. One main reason is that the GRU algorithm has fewer hyperpa-
rameters to be trained in the model establishment than the LSTM algorithm. A prediction
model with the structure of CEEMD—univariate GRU (trend displacement), multivariable
GRU (periodic displacement), and multivariable GRU (stochastic displacement)—was
proposed and achieved an encouraging prediction performance. The proposed model can
be a potential tool for landslide risk reduction in the dam reservoir.
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53. Krkač, M.; Gazibara, S.B.; Arbanas, Ž.; Sečanj, M.; Arbanas, S.M. A comparative study of random forests and multiple linear

regression in the prediction of landslide velocity. Landslides 2020, 17, 2515–2531. [CrossRef]
54. Zhu, S.; Lian, X.; Wei, L.; Che, J.; Shen, X.; Yang, L.; Qiu, X.; Liu, X.; Gao, W.; Ren, X.; et al. PM2.5 forecasting using SVR with

PSOGSA algorithm based on CEEMD, GRNN and GCA considering meteorological factors. Atmos. Environ. 2018, 183, 20–32.
[CrossRef]

55. Fu, Z.; Long, J.; Chen, W.; Li, C.; Zhang, H.; Yao, W. Reliability of the prediction model for landslide displacement with step-like
behavior. Stoch. Environ. Res. Risk Assess. 2021, 35, 2335–2353. [CrossRef]

56. Selby, M.J. Landslides causes, consequences and environment. J. R. Soc. N. Zealand 1988, 18, 343. [CrossRef]
57. Tan, F.; Hu, X.; He, C.; Zhang, Y.; Zhang, H.; Zhou, C.; Wang, Q. Identifying the main control factors for different deformation

stages of landslide. Geotech. Geol. Eng. 2018, 36, 469–482. [CrossRef]
58. Li, J.; Wang, W.; Han, Z. A variable weight combination model for prediction on landslide displacement using AR model, LSTM

model, and SVM model: A case study of the Xinming landslide in China. Environ. Earth Sci. 2021, 80, 386. [CrossRef]
59. Lian, C.; Zeng, Z.; Yao, W.; Tang, H. Multiple neural networks switched prediction for landslide displacement. Eng. Geol. 2015,

186, 91–99. [CrossRef]
60. Saud, A.S.; Shakya, S. Analysis of gradient descent optimization techniques with gated recurrent unit for stock price prediction:

A case study on banking sector of Nepal stock exchange. J. Inst. Sci. Technol. 2019, 24, 17–21. [CrossRef]
61. Intrieri, E.; Gigli, G.; Gigli, N.; Nadim, F. Brief communication “Landslide Early Warning System: Toolbox and general concepts”.

Nat. Hazards Earth Syst. Sci. 2013, 13, 85–90. [CrossRef]
62. Intrieri, E.; Carlà, T.; Gigli, G. Forecasting the time of failure of landslides at slope-scale: A literature review. Earth-Sci. Rev. 2019,

193, 333–349. [CrossRef]
63. Xu, Q.; Yuan, Y.; Zeng, Y.; Hack, R. Some new pre-warning criteria for creep slope failure. Sci. China Technol. Sci. 2011, 54, 210–220.

[CrossRef]

151





Citation: Miao, F.; Xie, X.; Wu, Y.;

Zhao, F. Data Mining and Deep

Learning for Predicting the

Displacement of “Step-like”

Landslides. Sensors 2022, 22, 481.

https://doi.org/10.3390/s22020481

Academic Editor: Domenico

Calcaterra

Received: 5 December 2021

Accepted: 8 January 2022

Published: 9 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Data Mining and Deep Learning for Predicting the
Displacement of “Step-like” Landslides

Fasheng Miao 1,2, Xiaoxu Xie 1, Yiping Wu 1,* and Fancheng Zhao 1

1 Faculty of Engineering, China University of Geosciences, Wuhan 430074, China; fsmiao@cug.edu.cn (F.M.);
xiexx@cug.edu.cn (X.X.); zhaofancheng@cug.edu.cn (F.Z.)

2 Engineering Research Center of Rock-Soil Drilling & Excavation and Protection, Ministry of Education,
Wuhan 430074, China

* Correspondence: ypwu1971@163.com or ypwu@cug.edu.cn; Tel.: +86-027-6788-3124

Abstract: Landslide displacement prediction is one of the unsolved challenges in the field of geologi-
cal hazards, especially in reservoir areas. Affected by rainfall and cyclic fluctuations in reservoir water
levels, a large number of landslide disasters have developed in the Three Gorges Reservoir Area. In
this article, the Baishuihe landslide was taken as the research object. Firstly, based on time series
theory, the landslide displacement was decomposed into three parts (trend term, periodic term, and
random term) by Variational Mode Decomposition (VMD). Next, the landslide was divided into three
deformation states according to the deformation rate. A data mining algorithm was introduced for
selecting the triggering factors of periodic displacement, and the Fruit Fly Optimization Algorithm–
Back Propagation Neural Network (FOA-BPNN) was applied to the training and prediction of
periodic and random displacements. The results show that the displacement monitoring curve of the
Baishuihe landslide has a “step-like” trend. Using VMD to decompose the displacement of a landslide
can indicate the triggering factors, which has clear physical significance. In the proposed model, the
R2 values between the measured and predicted displacements of ZG118 and XD01 were 0.977 and
0.978 respectively. Compared with previous studies, the prediction model proposed in this article
not only ensures the calculation efficiency but also further improves the accuracy of the prediction
results, which could provide guidance for the prediction and prevention of geological disasters.

Keywords: Three Gorges Reservoir; Baishuihe landslide; data mining; displacement prediction;
VMD-FOA-BPNN

1. Introduction

Landslides occur frequently around the world and are one of the most destructive
geological disasters in the world [1,2]. Landslide displacement prediction is one of the geo-
logical engineering problems that at present has not been solved, especially for mountain
and reservoir areas. Reservoir impoundment usually affects the surrounding geological
environment, resulting in landslide disasters. As the largest power station in terms of
installed capacity in the world since 2012, the water level of the Three Gorges Reservoir
fluctuates between 145 and 175 m all year round. Hence, a large number of landslide
disasters have developed in the Three Gorges reservoir [3,4]. Because the Three Gorges
reservoir plays an important role in flood control and power generation, it is of great
significance to study geological landslides in the Three Gorges Reservoir area [5,6].

Landslide displacement prediction is a hot topic at the forefront of natural hazard
research [7]. Displacement prediction is the basis of early warning systems for landslide
disasters. Accurate landslide displacement prediction can reduce the losses caused by such
disasters as much as possible, so as to ensure the safety of people’s lives and property.
Due to the complex geological environment, the accuracy of current methods for directly
predicting total displacement is not sufficient [8]. Hence, landslide displacement should
be divided into several parts by the decomposition technique. At present, landslide
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displacement decomposition mainly adopts two methods. The first is the time series
and simple moving average method [9,10]. This method is simple and practical, and the
displacement component obtained has a clear physical meaning. However, due to defects of
the decomposition method itself, the random displacement cannot be obtained. The second
is empirical mode decomposition (EMD), wavelet analysis, and ensemble empirical mode
decomposition (EEMD), which can divide the total displacement into a specific number of
components, so it has clear physical significance [11–13].

The landslide displacement prediction model has experienced rapid development
in the past 50 years, which was from the initial empirical model to the mathematical
statistical model, and then to the non-linear theoretical model and the comprehensive
model [14]. Nowadays, with the development of high-speed computers, various machine
learning models including deep learning have been widely used for predicting landslide
displacement, such as ELM (Extreme Learning Machine) [15], EML (Evaluating Machine
Learning) [16], BPNN (Back Propagation Neural Network) [17,18], SVR (Support Vector Re-
gression) [19], KELM (Kernel Extreme Learning Machine) [20,21], LSTM (Long Short-Term
Memory) [9,22], and so on. Many algorithms have been used to optimize the parameters for
the prediction models, including GS (Grid Search algorithm) [10], PSO (Particle Swarm Op-
timization) [23], GA (Genetic Algorithm) [24], FOA (Fruit Fly Optimization Algorithm) [25],
GWO (Grey Wolf Optimizer) [26], and so on. Therefore, selection of the influencing factors
plays a crucial role in the development of landslide prediction. Besides, for landslides
in a reservoir area, the fluctuation of the reservoir level and rainfall are usually used as
the hydrologic triggering factors of landslide deformation and failure [27]. However, the
increase of input factors does not necessarily lead to higher prediction accuracy in the
model of landslide displacement prediction. Based on the above facts, for different types of
displacement, it is necessary to select the appropriate inducing factor as the input layer to
establish the model. At present, data mining technology has been widely used in the field
of geological hazards. Nevertheless, the research on data mining technology in landslides
mostly focuses on association criterions and thresholds of triggering factors, while there are
few publications on the joint use of data mining technology and deep learning. In order to
optimize the triggering factors to find the most suitable factors for displacement prediction,
data mining technology could be used.

In this paper, the Baishuihe landslide was taken as an example, which was in the east
of Three Gorges Reservoir area. Data mining and deep learning were used for predicting
the displacement. Based on the time series analysis of landslides, the displacement and
triggering factors are decomposed by VMD. Periodic and random terms were predicted by
FOA-BPNN. A flow chart of this work is shown in Figure 1.

 

Figure 1. Flow chart of the displacement prediction.
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2. Methodology

2.1. Two-Step Clustering

The two-step clustering algorithm is usually applied to deal with large-scale types
of data, which divides and integrates data through a two-step process of pre-clustering
and clustering to complete the data classification [28]. For sample data including both
numerical and subtype variables, the two-step clustering algorithm usually uses a log-
likelihood function. If clustered into j classes, it is defined as:

l =
J

∑
j=1

∑
i∈Ij

logp(Xi | θi) =
J

∑
j=1

lj (1)

where, p is the likelihood function; Ij is the set of samples of jth class; θj is the parameter
vector of jth class; J is the number of clusters. For all samples, the log-likelihood clusters
are obtained as the aggregation of the log-likelihood clusters for each category.

For the certain ith class and jth class, the combination is noted as <i, j>, and then their
distance can be defined as:

d(i, j) = ξi + ξ j − ξ〈i,j〉 (2)

where ξi and ξj are the log-likelihood distance of ith class and jth class, respectively. ξ<i,j>
is the log-likelihood distance of the combination of <i, j>. ξ is the specific form of the
log-likelihood function:

ξv = −NV

(
KA

∑
k=1

1
2

log
(

σ̂2
k + σ̂2

vk

)
+

KB

∑
k=1

Evk

)
(3)

where,
∧

Evk = −
Lk

∑
l=1

Nvkl
Nv

log
Nvkl
Nv

(4)

where KA is the number of numerical variables; KB is the number of categorical variable; σ̂2
k

and σ̂2
vk denote the total variance of the kth numerical variable and the variance in vth class

respectively; Nv and Nvkl are the sample size of category v and the first category in the kth
subtype variable; Lk is the category of the kth subtype variable.

After ith class and jth class are combined, −ξ<i,j> is greater than ξi + ξj, and hence
d(i,j) is less than 0. Moreover, the smaller d(i,j) is, the more it means that the merging of ith
class and jth class will not cause a significant increase in intra-class differences. Specially,
when d(i,j) is less than the threshold C, ith class and jth class can be merged. Conversely,
when d(i,j) is greater than the threshold C, indicating that merging will cause a significant
increase in variability within the clustered clusters, and the ith class and jth class cannot
be merged.

The threshold value C is given by:

C = log(V) (5)

V = ∏
k

Rk∏
m

Lm (6)

where Rk is the range of values of the kth numeric variable; Lm is the sample size of the mth
subtype variable.

2.2. Apriori Algorithm

The a priori algorithm was proposed by Agrawal [29]. This algorithm can deal only
with categorical variables rather than numeric variables. The algorithm mainly includes
two steps: (1) generating frequent item sets that meet the minimum support values, and (2)
generating association rules that satisfy the minimum credibility in the frequent item set
generated in the first step.
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The frequent item set T contains item a (frequent item set). If its support is equal to or
greater than the support threshold specified by the user, as shown in Equation (1), the a
priori algorithm uses the iterative method of layer-by-layer searching to generate frequent
item sets.

|T(a)|
|T| ≥ min supp (7)

Frequent k-item sets are used to explore and generate (k + 1)-item sets. The algorithm
implementation process is shown in Figure 2.

 

Figure 2. The implementation process of the a priori algorithm.

Simple association rules are generated from the frequent item sets, and association
rules with confidence levels greater than the threshold value are selected to form an effective
rule set. If CL′→(L−L′) is greater than the confidence threshold specified by the user (see
Equation (2)), then the association rule can be generated.

CL′→(L−L′) =
|T(L)|
|T(L′)| ≥ min con f (8)

2.3. VMD

Based on the EMD model, the VMD model was proposed in 2013, which is an adaptive
method for signal processing and modal variation [30]. The constraint variation can be
expressed as: ⎧⎪⎪⎨⎪⎪⎩

min
{uk}{ωk}

{
K
∑

k=1
‖ ∂t

[(
σ(t) + j

πt

)
∗ uk(t)

]
e−jωkt ‖2

2

}
s.t.

K
∑

k=1
uk = f (t)

⎫⎪⎪⎬⎪⎪⎭ (9)

where f (t) is the original signal, K is the number of components, ∂t denotes the Dirac
function, {ωk} denotes the actual central frequency, {uk} denotes the component obtained
after decomposition,

(
σ(t) + j

πt

)
∗ uk(t) denotes the analytical signal of each component,

e−jωkt denotes the estimated central frequency of each analytical signal, and * denotes the
convolution operator. We then obtain the following:

L({uk}, {ωk}, λ) = α ∑
k
‖ ∂t

[(
σ(t) +

j
πt

)
∗ uk(t)

]
e−jωkt ‖2

2 + ‖ f (t)−∑
k

uk(t) ‖2
2 +

〈
λ(t), f (t)−∑

k
uk(t)

〉
(10)

where λ denotes the Lagrange multiplier.
By using the alternative direction method of multipliers (ADMM), the saddle point

of the model without an upper constraint can be obtained, which is the optimal solution
of the constrained variational model, so that the original signal can be decomposed into
IMF components.
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2.4. FOA-BPNN

The BPNN is a multilayer feedforward neural network based on error back propa-
gation algorithm training, which was first proposed by Rumelhart and McClelland [31].
BPNNs have arbitrary complex pattern classification and good multidimensional function
mapping ability. In addition, it can solve XOR and other problems that simple perceptrons
cannot solve. Structurally, BPNNs are composed of an input layer, a hidden layer, and an
output layer. The BP algorithm takes the network’s square error as the objective function
and uses the gradient descent method to calculate the minimum objective function.

In addition, as proposed by Wen-Tsao Pan [32], the FOA is a new method of global
optimization, which is based on the foraging behavior of Drosophila melanogaster. Because
the fruit fly is superior to other species in terms of smell and vision, the olfactory organ of
Drosophila can collect all kinds of smells floating in the air, even the smells of food sources
40 km away. Then, after flying to the vicinity of the food location, they can use their sharp
vision to find the food or observe the gathering position of their companions, and fly in
that direction. The optimization procedure of the FOA-BPNN is shown in Figure 3.

 

Figure 3. Optimization procedure of an FOA-BPNN.

3. Case Study

3.1. Geological Settings of Three Gorges Reservoir Area

The Three Gorges reservoir is an artificial lake formed after the completion of the
Three Gorges hydropower station, situated in the middle part of China. The total lengths
of the Yangtze River and surrounding area are 660 km and 1084 km2 respectively. The
altitude drops from the highest part to the west and east, forming a hilly landform and
medium altitude mountains, respectively. The trend of the mountains is controlled by the

157



Sensors 2022, 22, 481

main geological structures. The strata in the Three Gorges Reservoir area are from pre
Sinian to Quaternary. Jurassic red strata are dominant in the Three Gorges Reservoir area,
mainly exposed in the west of Zigui county east of Fengjie county (the red strata refer to
sandstone, mudstone, and sandstone interbedded with mudstone layers). In addition, other
sedimentary rocks (limestone, marl, and dolomite) also exist in the area between Fengjie
and Zigui. These hard rocks form a steep canyon in Fengjie–Zigui area. Metamorphic
complexes and magmatic rocks appear in the area near the dam site on a relatively small
scale. Controlled by the complex geological conditions, coupled with seasonal rainfall and
periodic fluctuation of reservoir water level, a large number of geological disasters have
developed in the Three Gorges Reservoir area. A total of 4429 geological disasters have
been found up to the present time, most of which are landslides, rock falls, and debris
flows [4]. A geological map of the Three Gorges Reservoir area is shown in Figure 4.

 

Figure 4. Geological map of the Three Gorges Reservoir area.

3.2. Local Environmental Conditions

The Baishuihe landslide is in the Zigui County area of the Three Gorges Reservoir
area, located in the middle latitude, belonging to a subtropical continental monsoon climate
zone, with a warm and humid climate, sufficient light, abundant rainfall, and distinct
seasons. The average annual rainfall of Zigui County is 1493.2 mm. Rainfall is generally
concentrated in the flood season in this area, and the maximum daily rainfall has historically
reached up to 358 mm. The monsoon is mainly southerly. Limited by the terrain, the wind
speed is generally low. The Yangtze River is the lowest erosion base level in this area and
flows through the front edge of the landslide from west to east. The cross section of the
river valley is a “V” shape, steep to the north and gentle to the south. There are several

158



Sensors 2022, 22, 481

gullies short in length and depth in the landslide area, all of which are trunk gullies. Only
temporary flood flows are formed after rainstorms, which constitute the primary discharge
channel of surface water in the area.

The Baishuihe landslide is located on the south bank (convex bank) of the Yangtze
River. The elevation of the landslide gradually decreases from south to north. The elevation
of the toe and rear edges is about 70 m and 400 m, and the bedrock ridge is the boundary
between the eastern and western sides. The deformation of the middle and front part of the
landslide is relatively strong. Pinnate fissures are continuously distributed on both sides
of the boundary, and the boundary between the east side and the rear edge is basically
connected. The slope of the landslide is 30◦ to 35◦, and the landslide has an average
thickness of 30 m with a volume of 1.26 × 107 m3. The topographic map and a schematic
geological profile of the Baishuihe landslide are shown in Figures 5 and 6.

 

Figure 5. (a) Location of the Baishuihe landslide; (b) Topographic map of the Baishuihe landslide;
(c) Overall view of the Baishuihe landslide © 2022 Springer Nature [33].

 

Figure 6. Schematic geological profile of the Baishuihe landslide (II–II’) © 2022 Springer Nature [10].

159



Sensors 2022, 22, 481

3.3. Deformation of the Landslide

The Baishuihe landslide has been monitored since June 2003, and the layout of the
monitoring surface layout is shown in Figure 5b. According to the characteristics of the
surface monitoring displacement and surface macro-deformations, the Baishuihe landslide
can be divided into two areas; however, the active area (area A) is the middle and front
part of the landslide, which has strong deformation. After the completion of the Three
Gorges Dam, the landslide has produced obvious displacement due to the impoundment
of the reservoir. Several transverse tension cracks have appeared in the east of the landslide.
Specifically, the eastern and posterior boundaries are basically connected, and the western
boundary’s cracks are in the shape of pinnately distributed cracks. From August 2005 to
August 2006, there were many landslides on the inner side slope of the riverside highway
with an elevation of about 220 m, and many subsidence and tension cracks appeared on the
surface of the landslide. Approximately 100,000 m3 of landslide debris piled on the road
towards the rear of the active area in June 2007 (Figure 7).

 

Figure 7. Macroscopic deformation of the Baishuihe landslide © 2022 Springer Nature [33].

3.4. Analysis of the Monitoring Data

There are three monitoring sections and six GPS monitoring points in the active
Baishuihe landslide area. Among them, the monitoring points ZG93 and ZG118 have
been in place since June 2003; XD01 and XD02 were added in May 2005, and XD03, XD04
were added in October 2005. Note that the displacement of all the monitoring points is
synchronous. The monitoring period of Points ZG93, ZG118, and XD01 is long, meaning
that they are representative and can reflect the entire movement process of the landslide.
Therefore, in this study, these three points were taken for detailed analyses (Figure 8).
According to the filling scheduling of the reservoir, the monitoring data can be divided into
three stages for analysis, as described below.

 

Figure 8. Long term monitoring data of the Baishuihe landslide (displacement, reservoir level, precipitation).
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(1) Phase I (from June 2003 to June 2006): The water level of the reservoir started at
135 m in September and reached its highest level of 139 m in October. The maximum
displacement of ZG93 and ZG118 was 25.8 mm and 30.6 mm, respectively, during
the three impoundment periods. During Phase I, the reservoir basically maintained
the highest water level from November to January of the next year. The maximum
monthly displacement rates of these three points were below 13 mm/month during
this period, which was relatively slow. The water level began to drop in February each
year and reached the lowest level (135 m) in July. During this period, the minimum
increase of these three points was over 80 mm, and the maximum increase was over
150 mm. Especially in May and June, the rate of increase in landslide displacement was
the largest. From the end of July to the beginning of September, the reservoir water
level remained at the lowest level, but the landslide displacements first continued to
grow rapidly and then basically remained the same. In this stage, the water level of
the Yangtze River changed from having the natural water level for many years to the
manually adjusted reservoir water level, and the landslide was still in the adaptation
period of adjustment of the reservoir’s water level. Therefore, we can consider that
the deformation of the landslide in this stage was mainly affected by the decline in
the reservoir’s water level. In particular, the heavy rainfall in July 2005 did not cause
an obvious increase in the displacement of the landslide.

(2) Phase II (from July 2006 to June 2008): The water level of the reservoir fluctuated
between 145 and 155 m, which dropped from 155 m to 145 m for the first time during
April to June 2007. Alternatively, a drastic drop in the water level led to an increase in
the hydrodynamic pressure inside the landslide, which caused the displacement of
each monitoring point to suddenly increase for the first time, increasing by more than
1000 mm.

(3) Phase III (from July 2008 to December 2016): The water level of the reservoir fluctu-
ated between 145 and 175 m. Before 2015, the annual displacement rate showed a
downward trend.

In summary, the fluctuation in the reservoir’s water level resulted in the significant
extension of the fluctuating range and immersion range of the reservoir’s water level, then,
in turn, the stress field, seepage field, and rock–soil structure characteristics of the sliding
mass changed significantly, which had a significant impact on the evolution process of
the Baishuihe landslide. In addition, owing to the different stages of the reservoir’s water
level operations, there were some differences in the degree of impact on the deformation
evolution process of the landslide. Moreover, although the landslide has undergone some
adjustment, its shear deformation energy has been released to a certain extent. However,
when external effects such as rainfall and the reservoir water level change dramatically
again, the landslide will tend to be unstable.

4. Results

4.1. Triggering Factors

Rainfall and periodic fluctuation of reservoir water level are the main inducing factors
of landslide deformation [34,35]. The periodic fluctuation of the water level in the Three
Gorges causes dynamic osmotic pressure in the slope, resulting in landslide deforma-
tion [36]. On the one hand, rainfall can increase the weight of the landslide mass, thus
increasing the sliding force of landslides; on the other hand, it can weaken the mechanical
strength of the landslide rock and soil mass, resulting in landslide deformation [37,38].
Therefore, rainfall and reservoir water level can be used as trigger factors for landslide
deformation [39]. In this research, a total of 10 triggering factors were selected to carry
out displacement prediction research, including 5 reservoir level related factors (monthly
average water level h; monthly maximum daily drop of water level Δhdailydrop

max ; monthly
maximum daily rise of water level Δhdailyrise

max ; monthly fluctuation of water level Δhmonth;
bimonthly fluctuation of water level Δh2month), 4 rainfall related factors (monthly maximum
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effective continuous rainfall qe f f ective
continuous; monthly cumulative rainfall qmonth; bimonthly cu-

mulative rainfall q2month; monthly maximum daily rainfall qday
max), and 1 deformation factor

(last monthly velocity of deformation v), as shown in Table 1. In this study, the monitoring
data of ZG93 were selected for landslide prediction. In addition, because the monitoring
points ZG118 and XD01 have similar deformation characteristics to ZG93, the monitoring
data of ZG118 and XD01 were added to increase the sample size and overcome model
overfitting errors, as well as to provide a more representative prediction of the overall
landslide displacement. The triggering factors are shown in Table 1.

Table 1. Triggering factors used to carry out displacement predictions.

No. Factors Category

F1 Monthly average water level (h) (m) Reservoir water
F2 Maximum monthly daily drop in water level (Δhdailydrop

max ) (m/day) Reservoir water
F3 Maximum monthly daily rise in water level (Δhdailyrise

max ) (m/day) Reservoir water
F4 Monthly fluctuation of the water level (Δhmonth) (m/month) Reservoir water
F5 Bimonthly fluctuation of the water level (Δh2month) (m/2 months) Reservoir water
F6 Maximum monthly effective continuous rainfall (qe f f ective

continuous) (mm) Rainfall
F7 Cumulative monthly rainfall (qmonth) (mm) Rainfall
F8 Cumulative bimonthly rainfall (q2month) (mm) Rainfall
F9 Maximum monthly daily rainfall (qday

max) (mm) Rainfall
F10 Monthly velocity (v) (mm/month) Deformation

4.2. Clustering Results

In the two-step clustering algorithm, the minimum and maximum categories of the
triggering factors were set as 2 and 10 respectively. In clustering algorithms, there are two
commonly used clustering criteria: the Akaike Information Criterion (AIC) and the Bayesian
Information Criterion (BIC). When the number of samples is large, the BIC criterion can
effectively avoid the model complexity caused by high model accuracy. Therefore, in
this study, the BIC was chosen as the cluster criterion, and the distance measurement
method was Euclidean distance. The clustering results of the external triggering factors are
shown in Tables 2 and 3. Monthly velocity (v) was clustered into three categories (Low, V1;
Medium, V2; High, V3), as shown in Table 4.

Table 2. Clustering results of the reservoir water level factors (ZG93, ZG118, XD01).

No. Factors Clustering Results Count

F1 h
(135.13~138.95) High Water Level (F11) 97
(144.21~158.02) Medium Water Level (F12) 186
(160.14~174.74) Low Water Level (F13) 183

F2 Δhdailydrop
max

(−0.14~0.58) Slow Daily Drop (F21) 339
(0.63~1.87) Medium Daily Drop (F22) 92
(1.91~3.69) Sharp Daily Drop (F23) 35

F3 Δhdailyrise
max

(−0.43~0.04) Slow Daily Rise (F31) 129
(−1.70~−0.49) Sharp Daily Rise (F32) 337

F4 Δhmonth (0~6.18) Smooth Fluctuation (F41) 349
(6.59~18.25) Sharp Fluctuation (F42) 117

F5 Δh2month
(0~6.50) Non-fluctuation (F51) 250

(6.68~14.15) Smooth Fluctuation (F52) 126
(14.91~28.71) Sharp Fluctuation (F53) 90
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Table 3. Clustering results of the rainfall factors (ZG93, ZG118, XD01).

No. Factors Clustering Results Count

F6 qe f f ective
continuous

(1.50~30.30) Light Effective Rainfall (F61) 182
(31.30~66.00) Moderate Effective Rainfall (F62) 151
(67.70~110.50) Medium Effective Rainfall (F63) 92

(125.00~239.40) Heavy Effective Rainfall (F64) 41

F7 qmonth

(3.10~66.10) Light Effective Rainfall (F71) 198
(69.90~163.70) Moderate Effective Rainfall (F72) 191

(168.50~291.50) Medium Effective Rainfall (F73) 60
(357.50~517.60) Heavy Effective Rainfall (F74) 17

F8 q2month
(18.40~135.20) Light Effective Rainfall (F81) 197

(143.60~362.90) Moderate Effective Rainfall (F82) 212
(367.20~726.30) Heavy Effective Rainfall (F83) 57

F9 qday
max

(1.30~25.60) Light Daily Rainfall (F91) 234
(26.50~51.30) Moderate Daily Rainfall (F92) 151

Table 4. Clustering results of the monthly velocity (ZG93, ZG118, XD01).

Monthly Velocity (v) (mm/month) Clustering Results Count

(−9.61~21.66) Low (V1) 358
(22.35~81.89) Medium (V2) 81

(137.70~313.24) High (V3) 27

4.3. Association Rules

In the a priori algorithm, the minimum conditional support was set to 0.01 and the
minimum rule confidence was set to 100% to ensure that the mining association criteria
were absolutely correct. In total, 5447 association rules were generated, most of which
were V1 and V2 stages (4247 and 1008, respectively). The main factors controlling V1
deformation of the landslide were smooth fluctuations of the reservoir’s water level and
light rainfall. The main factors controlling V2 deformation of the landslide were sharp
fluctuations of the water level and medium to heavy rainfall. The main factor controlling
V3 deformation of the landslide was heavy rainfall. Nevertheless, there may be some time
correlation between these nine factors. In general, a drop in reservoir water and heavy
rainfall were the main factors causing landslide deformation in the Three Gorges Reservoir
area. It can be seen from Figure 7 that the water level of the Three Gorges reservoir has
had a period of slow decline (175 m–165 m) from January to April and a rapid decline
(165 m–145 m) from April to June since 2008. The heavy rainfall is concentrated from
June to September every year. Moreover, this is also a critical period when the landslide
produces severe deformation.

The statistical results of the data mining and association rules are shown in Table 5.
The total support, average support, and the contribution without support of each triggering
factor were counted, and the comprehensive contribution was the mean value of these three
contributions. The comprehensive contribution of each factor according to the association
rules is shown in Figure 9. Factors with a degree of contribution less than 0.3 were
eliminated and were not used as input layers in the prediction model. Therefore, eight
triggering factors were taken as the input layer in the V1 and V3 prediction models (F1, F3,
F5, F6, F7, F8, F9, and F10), and eight triggering factors were taken as the input layer in the
V2 prediction model (F1, F2, F5, F6, F7, F8, F9, and F10).
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Table 5. Statistical results of the data mining and association rules.

Contribution F1 F2 F3 F4 F5 F6 F7 F8 F9

V1

Association rules 2860 1936 2071 1683 2673 2780 2610 2770 2630
Total support 4480.98 1867.49 3231.69 1557.06 3723.31 3776.06 3579.76 3800.01 3744.18

Average support 1.57 0.96 1.56 0.93 1.39 1.36 1.37 1.37 1.42
Contribution without support 0.67 0.45 0.49 0.40 0.63 0.65 0.61 0.65 0.62
Comprehensive contribution 0.41 0.23 0.33 0.21 0.36 0.37 0.35 0.37 0.36

V2

Association rules 632 463 308 392 630 654 694 628 725
Total support 453.26 344.78 195.09 289.57 438.03 467.48 506.75 447.84 478.52

Average support 0.72 0.74 0.63 0.74 0.69 0.71 0.73 0.71 0.66
Contribution without support 0.63 0.46 0.31 0.39 0.63 0.65 0.69 0.62 0.72
Comprehensive contribution 0.36 0.30 0.21 0.27 0.35 0.37 0.39 0.36 0.38

V3

Association rules 130 48 109 0 111 133 126 105 124
Total support 83.43 29.45 69.32 0 70.54 81.59 80.98 67.26 76.07

Average support 0.64 0.61 0.64 0 0.64 0.61 0.64 0.64 0.61
Contribution without support 0.71 0.26 0.60 0 0.61 0.73 0.69 0.58 0.68
Comprehensive contribution 0.42 0.23 0.37 0 0.38 0.42 0.41 0.37 0.40

 

Figure 9. Comprehensive contribution of each factor according to the association rules (V1: Low
monthly velocity; V2: Medium monthly velocity; V3: High monthly velocity; F1: Monthly average
water level; F2: Maximum monthly daily drop in water level; F3: Maximum monthly daily rise in
water level; F4: Monthly fluctuation of the water level; F5: Bimonthly fluctuation of the water level;
F6: Maximum monthly effective continuous rainfall; F7: Cumulative monthly rainfall; F8: Cumulative
bimonthly rainfall; F9: Maximum monthly daily rainfall).

4.4. Decomposition of Displacement

The non-stationary time series theory indicated that the time series consisted of three
parts: the trend term, the periodic term, and the random term. For the landslide displace-
ment, the time series can be divided into three parts: (1) trend displacement, which is
controlled by internal factors, such as geological conditions, geomorphology, geological
structure, rock and soil properties, etc.; (2) periodic displacement, which is controlled by
external factors, such as rainfall, the reservoir’s water level, wind load, air temperature,
etc.; and (3) random displacement, which is controlled by random factors, such as hu-
man activities, engineering construction, vehicle loads, vibration loads, etc., as shown in
Figure 10.

X(t) = α(t) + β(t) + γ(t) (11)
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Figure 10. Relationship among trend displacement, periodic displacement, and random displacement.

Here, X(t) denotes the observed value of landslide displacement, and α(t), β(t), and
γ(t) denote the trend, periodic, and random displacements, respectively.

Therefore, K was set to 3 and 2 in the VMD decomposition of the landslide displace-
ments and triggering factors, respectively. The penalty parameter a and the rising step τ
(a = 1.5 and τ = 0.1) were finally determined through multiple trials as follows. (1) In the
displacement decomposition, a = 1.5 and τ = 0.1. (2) In the triggering factors decomposing,
a = 700 and τ = 0.5. The decomposition results are shown in Table 6 and Figure 11.

Table 6. Composition of training and prediction samples.

Samples Training Samples Prediction Samples

Monthly velocity V1 V2 V3 V1 V2 V3
ZG93 116 30 5 10 2 0
ZG118 119 24 8 10 2 0
XD01 93 22 13 10 1 1

Total samples 328 76 26 30 5 1

4.5. Displacement Prediction
4.5.1. Trend Term Prediction

The displacement of the trend term showed a distinct piecewise function. Therefore,
the trend term of ZG93 was divided into three phases: Phase 1 (June 2003~June 2007),
Phase 2 (June 2007~June 2014), and Phase 3 (June 2014~December 2016). Multiple fitting
results showed that good fitting results can be obtained by using a cubic function and the
robust least squares method. The fitting function can be defined as:

S = at3 + bt2 + ct + d (12)

The fitting results and parameters are shown in Figure 12 and Table 7, which indicate
that the prediction accuracy’s R2 and the RMSE of the trend term were 99.4% and 4.063.
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Figure 11. VMD decomposition of displacements at the monitoring points (ZG93, ZG118, XD01).

 

Figure 12. Fitting and prediction curves of the trend term.
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Table 7. Parameters of the trend term of displacement based on polynomial fitting.

Phase a b c d R2 MSE RMSE

Phase 1 0.012 −0.610 21.208 2.698 0.990 518.271 22.766
Phase 2 0.003 −1.072 124.836 −2752.830 0.993 780.995 27.946
Phase 3 −0.036 15.684 −2272.588 111,207.893 0.999 20.876 4.569

All training samples / / / / 0.994 563.729 23.743
Prediction samples / / / / 0.991 16.510 4.063

4.5.2. Periodic and Random Term Prediction

The periodic and random displacements were trained and predicted by FOA-BPNN. In
general, a model’s performance is usually affected by its own structure. Through extensive
sensitivity analysis, the most reliable structure can be obtained [40,41]. Therefore, in the
process of FOA optimization, 12 different structures with population sizes between 10 and
120 (10 intervals) were tested [42,43]. Each network was executed with 100 repetitions,
and the MSE (between the actual and predicted periodic displacements of the landslide)
was defined as the objective function used to evaluate the performance error of the model.
It is worth noting that each structure was tested five times to evaluate its repeatability.
The sensitivity curves are shown in Figure 13, which indicate that the MSE of the model
decreases with an increase in the population size. However, because FOA-BPNN integration
reduces the error in the training process, the model is less sensitive to population size. The
computing time of models with different population sizes is shown in Figure 14. After
consideration of the calculation costs and error, the population size of FOA-BPNN model
was determined as 10. In total, six FOA-BPNN models were built, including individual
periodic prediction models for V1, V2, and V3, and individual random prediction models
for V1, V2, and V3, as shown in Figure 15.

 

Figure 13. A population-based sensitivity analysis for the FOA-BPNN model.
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Figure 14. Computing time of different population sizes in MATLAB2019 software.

 

Figure 15. Training and prediction curves of the periodic and random terms.

Figure 15 indicates that the proposed models achieved good prediction results. According
to the results of the residual error analysis, in the training process of the model, the residual
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error of displacement was relatively stable, which also verified the robustness and reliability
of the model. For the prediction samples, there were some fluctuations in the residual error.
The prediction accuracy of the model will be analyzed in the Discussion section.

4.5.3. Total Displacement

The total displacement prediction results of the landslide can be obtained by super-
imposing the prediction results of all three types of displacement, as shown in Figure 16,
which shows that the prediction model achieved good accuracy for monitoring point ZG93.
In June 2007, there was a significant difference between the total displacement training
value and the actual value, resulting in the obvious mutation of the residual error. This
was because in the three parts of landslide displacement (trend, periodic, random), the
trend displacement accounts for more than 85%. In June 2007, it was the boundary between
Phase 1 and Phase 2, where there were some differences in the training results of the two
polynomial fitting functions, resulting in a large residual error in the total displacement.
However, the residual error was relatively stable for the prediction samples.

 

Figure 16. Training and prediction curves of the total displacement.

5. Discussion

As mentioned above, the landslide displacement contains three parts: (1) trend dis-
placement, which is controlled by internal factors; (2) periodic displacement, which is
controlled by external factors; and (3) random displacement, which is controlled by random
factors. Generally, in predictions of landslide displacement, the selection of triggering fac-
tors is based on monitoring data such as rainfall and the reservoir’s water level, which are
the main factors causing periodic displacement. Therefore, taking these factors as the input
of periodic displacement will not only have clear physical significance but will also signifi-
cantly improve the accuracy of landslide displacement predictions. When the time series
analysis method was used to predict the landslide displacement, the displacement trend
was relatively easy to predict. Therefore, choosing the appropriate periodic displacement
prediction model is the key to improving the effect of landslide displacement predictions.
Moreover, landslide prediction models have experienced rapid development in the past
50 years, and various machine learning models have been widely used for predicting
landslide displacements. However, each algorithm has its limitations. For instance, SVM
has low computational complexity but it is sensitive to the choice of parameters and kernel
function. The decision tree model does not need any prior assumptions on the data, but the
required sample size is relatively large, and its ability to deal with missing values is quite
limited. ELM uses the principle of least squares and a pseudo-inverse matrix to solve the
problem, which is only suitable for single-hidden-layer neural networks. BPNN has strong
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self-learning, self-adaptive ability, and good generalization ability but it is prone to slow
convergence. In this study, based on the VMD and data mining results, the FOA-BPNN was
used to predict the periodic and random terms of monitoring point ZG93′s displacement.
The BPNN, SVM, and ELM algorithms were chosen as the comparison models (Models 2–4).
The performance of various displacement prediction models of the Baishuihe landslide are
shown in Table 8 and Figure 17. The prediction accuracy of the FOA-BPNN model was the
highest. The R2 reached 0.977 and its RMSE was only 10.041. In contrast, the proposed
model could improve the accuracy of landslide displacement predictions.

Table 8. Performance of various displacement prediction models of the Baishuihe landslide.

Model Algorithm’s Combination
Prediction Term

R2 MSE RMSE

Model 1 VMD + FOA-BPNN 0.977 100.828 10.041
Model 2 VMD + BPNN 0.923 340.481 18.452
Model 3 VMD + SVM 0.944 282.566 16.81
Model 4 VMD + ELM 0.877 940.462 30.667

 

Figure 17. Prediction curves of the total displacement.

In this study, ZG93’s monitoring data were selected for predicting displacement, and
the monitoring data of points ZG118 and XD01 were added to increase the sample size and
overcome the model’s overfitting error, and to provide a better representative prediction of
the overall landslide displacement. The accuracy of various models in terms of predicting
ZG93’s displacement has been discussed. The monitoring points ZG118 and XD01 in
2016 were used for the model validation. The measured and predicted displacements of
ZG93, ZG118, XD01 are shown in Figure 18. The R2 values between the measured and
predicted displacements of ZG118 and XD01 were 0.977 and 0.978, respectively. The RMSE
of these two monitoring points was 12.40 and 16.04, respectively. In the previous study [10],
cumulative displacement was divided into trend term and periodic term by time series
model and moving average method. A cubic polynomial model was proposed to predict
the trend term of displacement. Then, multiple algorithms were used to determine the
optimal support vector regression (SVR) model and train and predict the periodic term. In
this paper, data mining technology is used to screen the trigger factors of periodic items,
and the more advanced FOA optimization algorithm is used to optimize the parameters
of the machine learning model. Furthermore, this paper uses a VMD model to divide
the landslide displacement data, which makes great progress compared with the moving
average model, and will be more conducive to the integration and automation of the
landslide prediction model. Therefore, the prediction accuracy obtained in this paper
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(R2 = 0.977 and 0.978) is significantly higher than that of previous studies (R2 = 0.963 and
0.951). In general, the model proposed in this study has achieved good results in terms
of predicting the displacement of different monitoring points of the landslide, which has
high practicability and application value in the study of landslide displacement predictions.
However, it is worth noting that due to the small amount of displacement data in the V3
state of the monitoring point (Table 6), the prediction results of XD01 have obvious errors
for July 2016. Therefore, in order to obtain satisfactory prediction results, the monitoring
data of various states should be supplemented as much as possible.

 

Figure 18. Measured and predicted displacements of ZG93, ZG118, and XD01.

6. Conclusions

In this paper, the Baishuihe landslide in the Three Gorges Reservoir area was taken as
an example. Data mining and deep learning were used for displacement prediction. The
following conclusions can be reached:

(1) Using VMD to decompose the displacement of Baishuihe landslide can correspond to
the triggering factors, which had clear physical significance.

(2) The association rules showed that the main factors controlling the V2 and V3 de-
formation of the landslide were the sharp fluctuation of reservoir water level and
medium–heavy rainfall.

(3) R2 between the measured and prediction displacements of ZG118 and XD01 were 0.977
and 0.978. RMSE of these two monitoring points were 12.40 and 16.04, respectively.

(4) An integrated approach for landslide displacement prediction including data mining
and deep learning was proposed, which could guide the managers of geological disas-
ters to improve the prediction accuracy, so as to reduce the losses caused by landslides.

Author Contributions: Writing—original draft, F.M.; data curation, X.X.; writing—review and
editing, Y.W.; investigation, F.Z. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was supported by the National Natural Science Foundation of China
(42007267, 41977244), Science and Technology Project of Hubei Provincial Department of Natural
Resources (ZRZY2020KJ12), and the National Key R&D Program of China (2017YFC-1501301).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

171



Sensors 2022, 22, 481

References

1. Hong, H.; Pourghasemi, H.; Pourtaghi, Z. Landslide susceptibility assessment in Lianhua County (China): A comparison between
a random forest data mining technique and bivariate and multivariate statistical models. Geomorphology 2016, 259, 105–118.
[CrossRef]

2. Juang, C.H.; Dijkstra, T.; Wasowski, J.; Meng, X. Loess geohazards research in China: Advances and challenges for mega
engineering projects. Eng. Geol. 2019, 251, 1–10. [CrossRef]

3. Wu, Y.; Miao, F.; Li, L.; Xie, Y.; Chang, B. Time-varying reliability analysis of Huangtupo Riverside No. 2 landslide in the Three
Gorges Reservoir based on water-soil coupling. Eng. Geol. 2017, 226, 267–276. [CrossRef]

4. Tang, H.; Wasowski, J.; Juang, C.H. Geohazards in the three Gorges Reservoir Area, China–Lessons learned from decades of
research. Eng. Geol. 2019, 261, 105267. [CrossRef]

5. Miao, F.; Wu, Y.; Li, L.; Tang, H.; Li, Y. Centrifuge model test on the retrogressive landslide subjected to reservoir water level
fluctuation. Eng. Geol. 2018, 245, 169–179. [CrossRef]

6. Li, H.; Xu, Q.; He, Y.; Fan, X.; Li, S. Modeling and predicting reservoir landslide displacement with deep belief network and
EWMA control charts: A case study in Three Gorges Reservoir. Landslides 2020, 17, 693–707. [CrossRef]

7. Intrieri, E.; Carlà, T.; Gigli, G. Forecasting the time of failure of landslides at slope-scale: A literature review. Earth-Sci. Rev. 2019,
193, 333–349. [CrossRef]

8. Lenti, L.; Martino, S. The interaction of seismic waves with step-like slopes and its influence on landslide movements. Eng. Geol.
2012, 126, 19–36. [CrossRef]

9. Yang, B.; Yin, K.; Lacasse, S.; Liu, Z. Time series analysis and long short-term memory neural network to predict landslide
displacement. Landslides 2019, 16, 677–694. [CrossRef]

10. Miao, F.; Wu, Y.; Xie, Y.; Li, Y. Prediction of landslide displacement with step-like behavior based on multialgorithm optimization
and a support vector regression model. Landslides 2018, 15, 475–488. [CrossRef]

11. Huang, F.; Huang, J.; Jiang, S.; Zhou, C. Landslide displacement prediction based on multivariate chaotic model and extreme
learning machine. Eng. Geol. 2017, 218, 173–186. [CrossRef]

12. Shihabudheen, K.V.; Pillai, G.N.; Peethambaran, B. Prediction of landslide displacement with controlling factors using extreme
learning adaptive neuro-fuzzy inference system (ELANFIS). Appl. Soft Comput. 2017, 61, 892–904.

13. Lu, X.; Miao, F.; Xie, X.; Li, D.; Xie, Y. A new method for displacement prediction of “step-like” landslides based on VMD-FOA-SVR
model. Environ. Earth Sci. 2021, 80, 542. [CrossRef]

14. Ska, B.; Dbk, A.; Tsa, C. Investigating the potential of a global precipitation forecast to inform landslide prediction. Weather Clim.
Extrem. 2021, 33, 100364.

15. Deng, L.; Smith, A.; Dixon, N.; Yuan, H. Machine learning prediction of landslide deformation behaviour using acoustic emission
and rainfall measurements. Eng. Geol. 2021, 293, 106315. [CrossRef]

16. Goetz, J.N.; Brenning, A.; Petschko, H.; Leopold, P. Evaluating machine learning and statistical prediction techniques for landslide
susceptibility modeling. Comput. Geosci. 2015, 81, 1–11. [CrossRef]

17. Chen, H.; Zeng, Z. Deformation prediction of landslide based on improved back-propagation neural network. Cogn. Comput.
2013, 5, 56–62. [CrossRef]

18. Zhang, Y.; Tang, J.; Liao, R.; Zhang, M.-F.; Zhang, Y.; Wang, X.-M.; Su, Z.-Y. Application of an enhanced bp neural network model
with water cycle algorithm on landslide prediction. Stoch. Environ. Res. Risk Assess. 2021, 35, 1273–1291. [CrossRef]

19. Liu, Y.; Xu, C.; Huang, B.; Ren, X.; Liu, C.; Hu, B.; Chen, Z. Landslide displacement prediction based on multi-source data fusion
and sensitivity states. Eng. Geol. 2020, 271, 105608. [CrossRef]

20. Zhou, C.; Yin, K.; Cao, Y.; Intrieri, E.; Ahmed, B.; Catani, F. Displacement prediction of step-like landslide by applying a novel
kernel extreme learning machine method. Landslides 2018, 15, 2211–2225. [CrossRef]

21. Li, L.; Wu, Y.; Miao, F.; Xue, Y.; Huang, Y. A hybrid interval displacement forecasting model for reservoir colluvial landslides with
step-like deformation characteristics considering dynamic switching of deformation states. Stoch. Environ. Res. Risk Assess. 2021,
35, 1089–1112. [CrossRef]

22. Xu, S.; Niu, R. Displacement prediction of Baijiabao landslide based on empirical mode decomposition and long short-term
memory neural network in Three Gorges area, China. Comput. Geosci. 2018, 111, 87–96. [CrossRef]

23. Zhou, C.; Yin, K.; Cao, Y.; Ahmed, B. Application of time series analysis and PSO–SVM model in predicting the Bazimen landslide
in the Three Gorges Reservoir, China. Eng. Geol. 2016, 204, 108–120. [CrossRef]

24. Li, X.Z.; Kong, J.M. Application of GA-SVM method with parameter optimization for landslide development prediction. Nat.
Hazards Earth Syst. Sci. 2014, 14, 525. [CrossRef]

25. Wang, J.; Di, Y.; Rui, X. Research and application of machine learning method based on swarm intelligence optimization. J.
Comput. Methods Sci. Eng. 2019, 19, 179–187. [CrossRef]

26. Guo, Z.; Chen, L.; Gui, L.; Du, J.; Yin, K.; Do, H.M. Landslide displacement prediction based on variational mode decomposition
and WA-GWO-BP model. Landslides 2020, 17, 567–583. [CrossRef]

27. Hong, H.; Chen, W.; Xu, C.; Youssef, A.M.; Pradhan, B.; Bui, D.T. Rainfall-induced landslide susceptibility assessment at the
Chongren area (China) using frequency ratio, certainty factor, and index of entropy. Geocarto Int. 2017, 32, 139–154. [CrossRef]

28. Wu, X.; Zhan, F.; Zhang, K.; Deng, Q. Application of a two-step cluster analysis and the apriori algorithm to classify the
deformation states of two typical colluvial landslides in the three gorges, china. Environ. Earth Sci. 2016, 75, 146. [CrossRef]

172



Sensors 2022, 22, 481

29. Agrawal, R.; Srikant, R. Fast algorithms for mining association rules. Int. Conf. Very Large Data Bases VLDB 1994, 1215, 487–499.
30. Dragomiretskiy, K.; Zosso, D. Variational mode decomposition. IEEE Trans. Signal Processing 2013, 62, 531–544. [CrossRef]
31. McClelland, J.; Rumelhart, D.; PDP Research Group. Parallel distributed processing. Explor. Microstruct. Cogn. 1986, 2, 216–271.
32. Pan, W.T. A new fruit fly optimization algorithm: Taking the financial distress model as an example. Knowl. Based Syst. 2012, 26,

69–74. [CrossRef]
33. Miao, F.; Wu, Y.; Li, L.; Liao, K.; Xue, Y. Triggering factors and threshold analysis of baishuihe landslide based on the data mining

methods. Nat. Hazards 2021, 105, 2677–2696. [CrossRef]
34. Song, K.; Wang, F.; Yi, Q.; Lu, S. Landslide deformation behavior influenced by water level fluctuations of the Three Gorges

Reservoir (China). Eng. Geol. 2018, 247, 58–68. [CrossRef]
35. Huang, D.; Gu, D.M.; Song, Y.X.; Cen, D.F.; Zeng, B. Towards a complete understanding of the triggering mechanism of a large

reactivated landslide in the Three Gorges Reservoir. Eng. Geol. 2018, 238, 36–51. [CrossRef]
36. Wang, G.; Sassa, K. Factors affecting rainfall-induced flowslides in laboratory flume tests. Geotechnique 2001, 51, 587–599.

[CrossRef]
37. Wang, J.; Xiao, L.; Zhang, J.; Zhu, Y. Deformation characteristics and failure mechanisms of a rainfall-induced complex landslide

in Wanzhou County, Three Gorges Reservoir, China. Landslides 2020, 17, 419–431. [CrossRef]
38. Wu, L.Z.; Zhu, S.R.; Peng, J. Application of the Chebyshev spectral method to the simulation of groundwater flow and rainfall-

induced landslides. Appl. Math. Model. 2020, 80, 408–425. [CrossRef]
39. Xiong, X.; Shi, Z.; Xiong, Y.; Peng, M.; Ma, X.; Zhang, F. Unsaturated slope stability around the Three Gorges Reservoir under

various combinations of rainfall and water level fluctuation. Eng. Geol. 2019, 261, 105231. [CrossRef]
40. Mehrabi, M.; Pradhan, B.; Moayedi, H.; Alamri, A. Optimizing an adaptive neuro-fuzzy inference system for spatial prediction of

landslide susceptibility using four state-of-the-art metaheuristic techniques. Sensors 2020, 20, 1723. [CrossRef]
41. Moayedi, H.; Mehrabi, M.; Bui, D.T.; Pradhan, B.; Foong, L.K. Fuzzy-metaheuristic ensembles for spatial assessment of forest fire

susceptibility. J. Environ. Manag. 2020, 260, 109867. [CrossRef] [PubMed]
42. Moayedi, H.; Mehrabi, M.; Kalantar, B.; Mu’Azu, M.A.; Rashid, A.S.A.; Foong, L.K.; Nguyen, H. Novel hybrids of adaptive neuro-

fuzzy inference system (ANFIS) with several metaheuristic algorithms for spatial susceptibility assessment of seismic-induced
landslide. Geomatics. Nat. Hazards Risk 2019, 10, 1879–1911. [CrossRef]

43. Moayedi, H.; Mehrabi, M.; Mosallanezhad, M.; Rashid, A.S.A.; Pradhan, B. Modification of landslide susceptibility mapping
using optimized PSO-ANN technique. Eng. Comput. 2019, 35, 967–984. [CrossRef]

173





Citation: Wu, T.; Yu, H.; Jiang, N.;

Zhou, C.; Luo, X. Slope with

Predetermined Shear Plane Stability

Predictions under Cyclic Loading

with Innovative Time Series Analysis

by Mechanical Learning Approach.

Sensors 2022, 22, 2647. https://

doi.org/10.3390/s22072647

Academic Editor: Francesca Cigna

Received: 28 February 2022

Accepted: 28 March 2022

Published: 30 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Slope with Predetermined Shear Plane Stability Predictions
under Cyclic Loading with Innovative Time Series Analysis by
Mechanical Learning Approach

Tingyao Wu 1, Hongan Yu 2, Nan Jiang 1,*, Chuanbo Zhou 1 and Xuedong Luo 1

1 Faculty of Engineering, China University of Geosciences (Wuhan), Wuhan 430074, China;
wutingyao@cug.edu.cn (T.W.); cbzhou@cug.edu.cn (C.Z.); cugluoxd@foxmail.com (X.L.)

2 CCCC Second Highway Consultants Co., Ltd., Wuhan 430056, China; hh5-106yha@163.com
* Correspondence: happyjohn@foxmail.com

Abstract: We propose a mechanical learning method that can be used to predict stability coefficients
for slopes where slopes with predetermined shear planes are subjected to cyclic seismic loads under
undrained conditions. Firstly, shear tests with cyclic loading of different parameters were simulated
on designated slip zone soil specimens, in which the strain softening process leading to landslide
occurrence was closely observed. At the same time, based on the limit equilibrium analysis of
the Sarma method, the variation of slope stability coefficients under different cyclic loads was
investigated. Finally, a Box–Jenkins’ modeling approach is used to predict the data from the time
series of slope stability coefficients using a mechanical learning approach. The simulation results
show that (1) reduction in coordination number can be an accurate indicator of the level of strain
softening and evolutionary processes; (2) the gradual reduction of shear stress facilitates the soil strain
softening process, while different cyclic loading stress amplitudes will result in rapid penetration or
non-penetration of the fracture zone by means of particulate flow. Although the confining pressure
of the slip zone soil can inhibit the increase of fractures, it has a limited inhibitory effect on strain
softening; (3) based on field observations of the slope stability factor and stress field, two possible
landslide triggering mechanisms are described. (4) Mechanical learning of time series can accurately
predict the changing pattern of stability coefficients of slopes without loading. This study establishes
a potential bridge between the geological investigation of landslides and the theoretical background
of landslide stability coefficient prediction.

Keywords: slip zone soils; cyclic loading; strain softening; fracture zone; landslide triggering mechanisms;
mechanical learning

1. Introduction

Landslides are geological phenomena that can occur on land, but also under the
seabed due to earthquakes, tsunamis, etc. At the same time, they include various types
of movements, such as slope failures, rock falls, or mudslides [1]. Landslide were also
defined as a mass of rock, debris, or earth, moving or sliding down a slope [2]. Landslides
are one of the most frequent geological hazards. It has long been believed that one of the
main triggers of landslides is earthquakes, which can induce large-scale and catastrophic
landslides with the loss of human lives or property damage [3,4]. According to statistics
for many countries, landslides cause serious social and economic impacts globally, for
example, between 2007 and 2015, more than 7200 landslides were recorded worldwide,
causing more than 26,000 deaths and costing more than $1.8 billion in damages [5]. Mean-
while, Japan is known to contain a frequency of catastrophes, such as earthquakes, volcanic
eruptions, landslides, and typhoons [6–11]. According to the Japan Meteorological Agency
(JMA), 230 aftershocks occurred between 6 September and 11 September 2018, killing over
44 people and injuring over 660 [12]; this also had a significant impact on Hokkaido’s
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infrastructure, causing a combined economic loss of US$2 billion in damage to transporta-
tion and utilities [13]. In addition, the transboundary Koshi River basin, located in the
central Himalayas, is shared by China, Nepal and India. The triggering mechanism and
landslide number were counted based on remote sensing findings, providing information
that 5858 rainfall-triggered landslides occurred in the study area between 1992 and 2015,
and an additional 14,127 seismic landslides were mapped after the 2015 Gorkha earth-
quake [14]. In China, landslides are the second most frequent natural cause of damage to
man-made structures after earthquakes, so it is foreseeable that the potential increase in the
number of extreme weather events, combined with the concentration of population and
infrastructure in mountainous areas, will lead to an increase in landslide-related casualties
in the future [15–17]. A better understanding of landslide triggering mechanisms and
monitoring the early movement of soil mass, along with effective evacuation strategies as
early as possible, are essential for landslide mitigation [18].

Landslides are related to different factors, such as topography, geology, tectonic history,
weathering erosion history and land use. However, landslides are usually considered to be
triggered by only one factor [19]. A trigger is considered to be an external stimulus, such
as a strong rainfall event, an earthquake of different magnitudes, a volcanic eruption, a
storm, or rapid flow in the form of erosion leading to a rapid increase in stress or strain
on the landslide and a decrease in the slip zone soil material [19–21]. Based on classical
elastoplastic mechanics theory, the strain softening process is reduced to a series of brittle
plasticity processes, and thus the solution for the strain softening problem is reduced to
the solution of a series of brittle plasticity problems, also, the strain softening behavior is
the result of the soil reaching the peak stress point and then the stress decreasing as the
strain continues to increase, i.e., the strength of the soil decreases with increasing strain, as
a result of the spatial rearrangement of the soil particles and the forces between the phases
and particles in the soil [22]. Moreover, higher cyclic stress ratios accelerate the softening
behavior of soils, and different super consolidation ratios have a great influence on the
softening of soils [23–25], and changes in the principal stress direction can cause structural
remodeling of clays, which leads to a reduction in clay strength. Therefore, it is essential
to investigate the strain softening characteristics of soil under cyclic loading. Examining
the rupture mechanism is necessary if the stress state of the soil wants to be understood,
especially the characteristics of the particle arrangement inside the soil. However, it is not
practical to directly measure the soil distribution characteristics, especially the soil particle
arrangement. Considering the close relationship between stress and strain, the majority of
laboratory experiments have specialized in the characterization of displacements. Mounting
strain gauges and displacement gauges on the surface of the device loaded with soil material
are the most straightforward and simplified methods for measuring stress and deformation
in laboratory tests. There are also some parts that use non-touch optical technology, such as
electronic photography and other related technologies [26,27]. However, the placement of
CT is somewhat limited due to the three-dimensional stress state and difficult exposure of
the slip zone soils [28,29]. The main point to be made is that stress-strain relationships in
soils are often full of randomness and strongly depend on the stress state and structural
characteristics of the various materials. Although the empirically determined principal
structure equations can be easily derived from the stress-strain values of soils, they are
sometimes questionable.

Meanwhile, in the study of landslide mechanisms, typically landslide trigger and
formation mechanisms are studied by various methods, such as traditional field surveys,
satellite remote sensing, and three-dimensional imaging by drones. Numerical simulations
and model experiments have also been used, but the studies have focused on macroscopic
and microscopic parameters for the analysis. As in field testing, regarding the characteriza-
tion of landslide studies, size and velocity, depth, impact pressure, or displacement all play
an important role, and different types of mass movements are different. Volume may be a
more important landslide feature than size, but this is difficult to measure because it re-
quires specific geophysical or geotechnical methods. In order to solve the above-mentioned
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problems, researchers generally also go through numerical simulation software to study
the triggering mechanism of landslides, for example, there are now two main methods for
numerical simulation of landslides: continuum (finite element) and discontinuity (discrete
unit). However, most previous studies have focused on the analysis of slope stability or dy-
namic response characteristics. To our knowledge, no attempt has been made to use PFC3D
for inverse analysis of the microscopic mechanisms of landslides. Although earthquakes are
the most important landslide causative factor, the relationship between cyclic microseismic
loading and landslides has rarely been analyzed in detail, and no specific vibration control
thresholds have been identified for specific shallow landslides [30,31]. At the same time,
the precise onset of landslide damage is often unknown. In addition, the most destructive
landslides are usually those caused by damage associated with deep-seated landslides.
For such landslides, the relationship between cyclic micro seismic loading parameters and
landslide occurrence is very complex [32,33].

With regard to the safety protection of slopes, the first thing to do is to clarify the
safety state of the slope, but most of the existing research tools are used to obtain the
stability state of the slope through the traditional quantitative solution approach, which has
certain limitations. The safety of slopes contains many parameters and randomly variable
laws, which leads to a relatively complex calculation process, and with the rapid rise of
machine learning technology, a new way of thinking is proposed for the study of slope
safety and stability. Decision trees [34], random forests, support vector machines [35–37]
and plain Bayesian [38] algorithms have been widely used in slope research. By collecting
and analyzing 250 slope data, 31 variables were identified and their functional relationships
were explained with the help of Principal Component Analysis (PCA), thus constructing
an algorithmic model to assess the stability of slopes with good generalization to the test
data [39]. The slopes of the Klang Valley were studied with the help of a back-propagation
neural network and calculated the weights of 11 relevant influencing factors, such as slope
rate and slope height [40]. Genetic algorithms have been utilized to study specific problems
in geotechnical slopes [41]. Multiple logistic regressions were carried out, while various
methods, such as random forests, K-nearest neighbors’ algorithms and decision trees were
also used to explore the steady state of the slopes [42].

However, various machine learning tools have emerged, mainly artificial neural
networks and multiple regression analysis as the two classical models of machine learning,
which have been widely used in solving various prediction problems. However, the weight
analysis of the influence factors of these two models is not comprehensive enough, lacking
a comprehensive comparison between the weight analysis based on correlation tests and
the weight analysis based on intelligent models, while not considering the randomness and
periodicity of time series data, resulting in large errors in forecasting.

Therefore, based on the work of Wong et al. (1998) and Zhang et al. (2021), the focus
of this study is on the quantification of damage extent and estimation of shear stress in slip
zone soils. Then, the effect of different parameters on the shear strain-softening behavior
of the slip zone soils can be investigated, including the cyclic loading parameters (cyclic
loading stress amplitude and the number of cyclic loading) and the confining pressure
applied to the numerical soil model. The relationship between shear stress and soil fine-
scale damage variables will also be discussed in detail in the paper. Meanwhile, comparing
the results of discrete element numerical simulations with the changes in slope stability
coefficients, the influence of simulation results on landslide formation will be interpreted.
Finally, in combination with the Box–Jenkins modeling approach, the stability of slopes
under different cyclic loads are systematically and comprehensively predicted from time
series data of slope stability coefficients using a mechanical learning approach.

2. Numerical Methodology

2.1. Conceptual Model for Cyclic Shear Failure Behavior in Slip Zone Soils

The simulated situation can be interpreted as an advancing layered rock landslide,
where the deformation is progressive from the trailing edge of the landslide to the front
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of the level flattening type cascading rock landslide, meanwhile, a detailed scheme for
the evolutionary model of advancing layered rock landslides is presented in the specific
work [43,44], as shown in Figure 1, where Figure 1 is a simplified model of a conceptual
mechanics model that is designed to give the reader a more intuitive understanding of
the landslide triggering mechanism. The gray grid in Figure 1 is the slope surface and
bedrock, and the red part is called the anchored section of the landslide, which is the slip
zone soil not affected by cyclic loading, but as the landslide evolution stage develops,
the red part gradually becomes white, which means that the slip zone soil is affected by
cyclic loading and its mechanical strength gradually weakens, and the unaffected part of
the slip zone soil gradually becomes less and the safety factor of the landslide gradually
decreases, that is, progressively enlarging the weakened upper zone while reducing the size
of the lower locking block. The causes of landslides are mainly due to the strain softening
rate of the slip zone soil at the trailing edge of the landslide under the cumulative effect
of the cyclic loading. Moreover, under the action of long-term tension stress, deep and
large tension fractures are produced at the trailing edge of the landslide. The mechanical
properties of the trailing edge of the landslide are weaker than that of the leading edge
of the landslide, and there is a phenomenon of gradually spreading development from
the trailing edge to the leading edge, which means that the trailing edge of the landslide
is destroyed first and the leading edge of the landslide is destroyed later. The process of
landslide being triggered by cyclic loading has the characteristics of the trailing edge of
landslide extruding to the leading edge of the landslide and locking of the leading edge.
The evolutionary development of the advancing landslide can be divided into the following
stages: (i) tension fractures are formed under the cumulative effect of the cyclic loading,
and the fractures develop from the slope to the depth until they cut the underlying soft
interlayer, and the tension fractures develop at the trailing edge of the landslide (Figure 1a);
(ii) The mechanical structure of the soil in the slip zone at the trailing edge of the landslide is
gradually destroyed, and the mechanical strength of the slip zone soil gradually decreases.
As the landslide evolution advances, the weakening zone of the slip zone soil also gradually
expands toward the leading edge (Figure 1b); (iii) with the expansion of the weakening zone,
the length of the landslide locking section decreases accordingly. When the weakening zone
expands to a certain length and the landslide resistance is insufficient to resist the sliding
force of the landslide, the locking section is sheared out and the landslide is triggered along
the penetrating slip surface (Figure 1c).

Figure 1. Evolutionary model of advancing layered rock landslide: (a) undamaged stage; (b) initial
stage of damage; (c) end stage of damage.

Based on the assumption of cyclic shear failure behavior, the conceptual model has to
be able to (i) allow the rupture of interparticle links and (ii) characterize the microstructural
features of the soil. For the first aspect, the discrete element method (DEM) was used
considering its unique ability to characterize microfractures. The most commonly used
DEM model for simulating soil strain softening is the linear Parallel Bond Model (PBM),
the linear PBM includes two classical interface behaviors: a linear-elastic model interface
containing only forces and a viscoelastic model interface containing both forces and mo-
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ments. In the first interface, rotation is not applicable and only one direction of motion can
be performed according to the forces, while the second model interface can accommodate
the rotational action of the forces and also the motion under the forces, while the second
model interface is automatically transformed into the first model interface when the forces
between the particles exceed the defined yield value of the connection bonds. Meanwhile,
the basic object studied by PFC3D is the contact between particles and particles, which can
directly simulate the physical problems of motion and interaction between particles. The
large particles of arbitrary shapes can be created by connecting two or more small particles,
and the combined particles made by the connection can be studied as independent particle
bodies. It avoids the study of mechanical properties of materials by obtaining an intrinsic
model from traditional empirical data while studying the mechanical behavior of bulk
media from a fine-scale perspective, and the method overcomes the macroscopic continuity
assumption of traditional mechanical models of continuous media [45]. The engineering
properties of soils are simulated numerically at the fine view level and the macroscopic
mechanical behavior is analyzed by using the study of fine view parameters.

For this purpose, the slip zone soil fabrics are prepared and then covered with the base
PBM, the grain boundary properties are simulated by modifying the intra-grain contact (see
Figure 2c), and the length of the discrete microfractures are described by the midpoint of the
line segment connected by two centers of mass and the average of their radii, respectively.
By applying different types of cyclic loading to the numerical soil model, the accumulation
of micro-fractures in the soil gradually forms macro-fractures, which eventually lead to
shear failure damage of the slip zone soil due to soil strain softening. Therefore, it is
promising to use this PBM to study the interaction and connection of microfractures under
the action of cyclic loading. In order to consider the mechanical properties of shear failure
of slip zone soil under cyclic loading, a detailed scheme for numerical modeling of slip
zone soils is proposed. The concept of observing soil strain softening behavior tests and
numerical modeling of slip zone soils at a laboratory scale is shown in Figure 2. The size
of the discrete element model of slip zone soil is 150 mm × 150 mm × 150 mm (X∗Y∗Z),
which means it is a tiny unit in the slip zone soil. The purpose of this selection is to analyze
the variation of shear strength of slip zone soil particles under different dynamic loads
from a fine viewpoint. Table 1 lists the calibrated microparameters of the slip zone soils.
Slip zone soil was collected from an open pit of mine in Tieshan District, Huangshi City,
Hubei Province, China.

Figure 2. Concept of observing strain softening behavior tests and numerical modeling of slip zone
soils at laboratory scale: (a) the slope with slip zone soil; (b) laboratory direct shear test; (c) linear
Parallel Bond Model (Table 1 shows the meaning of the symbols of the parameters in the model);
(d) numerical model of slip zone soil; (e) numerical model of walls for applying servo-control stress.

179



Sensors 2022, 22, 2647

Table 1. Calibrated microscopic parameters of PFC3D particles.

Microparameter of Slip Zone Soil Unit Value

Minimum particle radius, Rmin mm 1
Maximum particle radius, Rmax mm 2

Density, ρ g/cm3 2.36
Particle-particle contact modulus, Ec GPa 0.03

Friction coefficient, μ - 1
Particle normal stiffness to shear stiffness, kn/ks - 1.3

Parallel bond normal to shear stiffness ratio, kn/ks - 1.0
Parallel bond friction angle, ϕ deg 25

Parallel bond connection modulus, E GPa 0.01
Parallel bond tensile strength σc MPa 16.5

Parallel bond cohesion C MPa 16.5

2.2. Measurement Indicators- Coordination Number

The numerical simulation software PFC3D contains a set of more effective statistical
methods to record the changes in variables between particles within the numerical model
throughout the numerical simulation process, such as the forces and deformations, as well
as the development of fractures [46]. One advantage of DEM simulations is the ability to
obtain information that cannot be acquired from continuum-based techniques or physical
experiments such as fabric analysis. In this regard, fabric tensor and coordination number
provide a global description of contact orientations and packing stability. This criterion
was used to assess the onset of instability (liquefaction) as loading progressed. Assuming
that there are N particles in the measurement area, the coordinate number Cn is defined as
the average number of active contacts per body, and is computed as [47]:

Cn =
∑
N

nc
/

N
(1)

where nc is the number of contacts per particle. Once the contact force between the particles
exceeds the limit value defined before the numerical calculation, then the contact between
the particles will break due to the excessive force, followed by microscopic fractures being
generated, while the number of contacts between the particles will be further reduced and
the number of defined coordinates will gradually decrease. The decrease of coordination
number implies breakage of particle contacts, which is called a fracture.

2.3. Verification of the Accuracy of the Numerical Model and Details of the Applied Cyclic Loading

The numerical simulation test process for slip zone soil materials consists of three
parts: (i) stress initialization of the numerical model, (ii) servo control of the numerical
model in predetermined confining pressure, and (iii) implementation of cyclic loading.

2.3.1. Stress Initialization of the Numerical Model

The specimen consists of several particles, and after generating the particles, the parti-
cles and the wall are attributed with their own mechanical properties, and simultaneously
with the connection properties between the particles and between the wall and the particles.
Then, a certain porosity is attributed between the particles, and the particles are allowed to
adjust freely to reach an equilibrium state without confining stress, i.e., stress initialization
of the numerical model.

2.3.2. Servo Control of the Numerical Model in Predetermined Confining Pressure

Following the generation of the sample, a servomechanism was applied iteratively to
isotropically consolidate the specimen to the desired confining stress. The servomechanism
uses the feedback of the stresses on the walls to determine if the isotropic stress is more or
less than the desired value and adjusts the wall positions accordingly (Itasca, 2014).
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2.3.3. Implementation of Cyclic Loading

Seismic waves generated by blasting are random waves, and it is better simulated
if the original waveform is fed into the numerical calculation model for blasting vibra-
tion. However, because of the difficulty of frequency conversion and amplitude variation
during the numerical test, all sinusoidal waveforms were used for the input vibration
waveforms in the numerical test. In addition, in order to better compare the effects of
amplitude and number of cycle loads on slope stability, simple waves were used for all
studies in the full paper. At the same time, sinusoidal waves have most of the properties
that seismic waves have and also have the advantage of simplifying calculations [48–50].
Therefore, after the consolidation phase, the sample was subjected to a strain-controlled
sinusoidal cyclic loading pattern. During loading, the volume of the sample was conserved
to simulate undrained conditions. The implementation of cyclic loading applied to the
numerical model is the key to this simulation. Cyclic loading in laboratory tests is mainly
controlled by inputting vibration waves to the test apparatus, while in PFC3D, it is mainly
through the definition of wall velocity to achieve cyclic shear loading, which is essentially
a displacement-controlled loading method. In the PFC3D simulation, the stress values
between the loading wall and the particles are monitored to obtain the shear stress in the
soil during cyclic loading. Based on the vibration parameters in the numerical model, a
direct shear test is conducted mainly by the lower shear box, and a sine wave is an input
to adjust the motion direction of the wall in real time, to achieve cyclic loading of the slip
zone soil material. That is, the same shear rate is specified for walls 1#, 2#, 3#, 4#,5#, 9#
and 10# in Figure 2. Figure 2 shows a schematic diagram of the cyclic loading process
of the numerical model. During the numerical simulation, the PFC3D program mainly
includes the measurement of the numerical model shear stress and the application of the
wall velocity during cyclic loading. As shown in Figure 2 for the shear box, the force on the
lower shear box is the sum of the contact force on wall 8 and the contact force on wall 6,
while the force on the upper shear box is the sum of the contact force on wall 9 and the
contact force on wall 4, and the number of cycle loading include 750, 1500, 2250, 3000, 3750,
4500, 5250, 6000, 7500, 9000, 11,500, 12,000, and cyclic loading stress amplitude include
0.5 cm/s, 0.9 cm/s, 1.5 cm/s, 2.2 cm/s, where cyclic loading stress amplitude is equivalent
to the peak ground velocity (PGV) of a natural earthquake.

The applied maximum shear strain (γmax) follows the periodic (sinusoidal) pattern
shown in the left part of Figure 3. By controlling strain, the displacement can be controlled,
and then the velocity amplitude (cyclic loading stress amplitude) can be obtained by
calculation. From the sine wave in Figure 3, it can be seen that when the maximum strain
amplitude reaches the maximum shear strain (γmax), then the value remains constant until
the cyclic loading stops. Cyclic loading is applied gradually and the strain amplitude can
be varied to cover a wide range of strain amplitudes. The use of numerical simulations
makes it easy to repeat the test on the same specimen while changing one parameter of
the sine wave compared to laboratory tests. Once the specimen (at a specific porosity) is
generated and isotopically consolidated, the exact same specimen can be tested numerous
times and subjected to various signals without changing the initial conditions.

Figure 3. Schematic diagram of the cyclic loading process of the numerical model.
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2.4. Comparison of Numerical Simulation and Laboratory Tests

The contact and interaction between numerous particles in a PFC model often ex-
hibits macroscopic mechanical behavior. In order to obtain a suitable set of microscopic
parameters matching the particles, the calibration of the numerical model is usually tested
by comparing the parameters of the macroscopic mechanical behavior of the numerical
simulation with the results obtained in the laboratory [46]. The mechanical parameters
involved in PFC3D are fine parameters characterizing the properties of the particles, which
have a random nature and a complex relationship with the macroscopic mechanical proper-
ties, and the calibrated parameters are generally considered reasonable when the obtained
macroscopic mechanical properties are consistent with the actual test results through basic
mechanical tests [51]. Therefore, based on the macro-mechanical parameters of slip zone
soil, the shear stress-strain curve of the slip zone soil is simulated to find and determine the
fine-scale parameters of the shear strength of the numerical model corresponding to the
appropriate curve. Combined with the recommendations of the work of Hofmann et al.
(2015) on the calibration process of the numerical model [52], the numerically simulated
mechanical curves that match well with the laboratory tests are obtained, as shown in
Figure 4. Table 1 lists the microparameters related to the slip zone soils.

 
Figure 4. Comparison of straight shear stress-strain curves from laboratory direct shear test and
numerical simulation.

3. Analysis for Strain Softening Characteristics of Slip Zone Soil

3.1. Coordination Number Analysis for Strain Softening Characteristics

The coordination number varies widely under different working conditions, and in
order to distinguish the degree of variation of the coordination number, the percentage of
coordination number is defined as Pc.

Pc = (Cn − Cni)/Cni ∗ 100 (2)

where Cn and Cni are the current and initial coordination numbers in the simulation model,
respectively. In the different conditions, the values of Pc of the numerical model are plotted
versus the cyclic loading times in Figure 5. In this study, we consider a particle contact
breakage rate of 5% (i.e., Pc = −5%) as the maximum limit that can be achieved by particle
motion. When the Pc reduction is greater than 5%, significant breakage is assumed. After
close observation of Figure 5, when the cyclic loading stress amplitude is 0.5 cm/s, the
initial change of Pc does not exceed 10%, which is because this is a small loading rate,
which only makes a part of the particles in the numerical soil model move, and even with
the increase of cyclic loading, the change of Pc is not significant. Meanwhile, the rate of
Pc reduction gradually increased when the cyclic loading stress amplitude increased from
0.9 cm/s to 2.2 cm/s.
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Figure 5. Change of coordination number characterizing the softening process of the slip zone soil:
(a) 50 kPa; (b) 100 kPa; (c) 200 kPa.

In order to highlight the level of strain softening of the slip zone soil material under
cyclic loading, when the number of cyclic loading is 12,000, the 100% stacking bar graph in
Figure 6 shows the final Pc estimates for the slip zone soil material under different operating
conditions, and their values are indicated separately in the corresponding segments. For
example, when the slip zone soil material is subjected to a predetermined confining pressure
of 50 kPa, at cyclic loading stress amplitudes of 1.5 cm/s and 2.2 cm/s, it can be seen that
the strain softening of the slip zone soil corresponds to Pc values of −34.8% and −53.0%
in Figure 6. On the other hand, it is obvious from Figure 6 that the cyclic loading stress
amplitude is the main factor controlling the number of fractures generated. When observing
the effect of different loading stress amplitudes on the Pc of fractures, i.e., the Pc values at
different loading stress amplitudes in Figure 5a–c, it is not difficult to find that the change
in the fracture is greatest for loading stress amplitude equal to 2.2 cm/s compared with
other cyclic loading stresses, which shows that the soil strain softening effect becomes
more pronounced with the increase in the number of cyclic loading at larger cyclic loading
stresses. This indicates that the cyclic loading stress amplitude plays a deterministic
role in the occurrence of fractures (level of strain softening). On the other hand, as the
predetermined confining pressure of the slip zone soil increases, i.e., when the confining
pressure of soil increases from 50 kPa to 200 kPa (as observed in Figure 5a,c, the number
of cyclic loading is 12,000), it is easy to find that when the loading stress amplitude is
0.9 cm/s, the Pc values are −16.6% and −4.12% respectively, and the above discussion
reveals that when the confining pressure is reduced from 200 kPa to 50 kPa (the relationship
between the confining pressures values is four times), fractures are four times more easily
generated in the 50 kPa model than in the 200 kPa model. However, when observing
Figure 6, when the cycle loading stress amplitude increase from 0.5 cm/s to 2.2 cm/s
(the relationship between the cycle loading stress amplitude values is almost four times),
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the multiplication of the increase in Pc values is 5.6, 12.5, and 84.9 for the confinement of
50 kPa, 100 kPa, and 200 kPa, respectively. Therefore, we are able to reach the interesting
conclusion that although the confining pressure of the slip zone soil can inhibit the increase
of fractures, it has a limited inhibitory effect on strain softening, and it is the cyclic loading
stress amplitude that is the most key factor in strain softening process of soil.

Figure 6. Comparison of the percentage reduction of the coordination number (the number of cyclic
loading is 12,000).

3.2. Stress Analysis for Strain Softening Characteristics of Slip Zone Soil

The above discussion reveals that the variation of Cn is an indicative parameter of slip
zone soil under the action of cyclic loading and predetermined confining pressure, while
the essential cause of the strain softening characteristics of slip zone soil is the variation
of shear stress. The variation trend of shear stress of slip zone soil obtained by using the
program servo control in numerical simulation, the change law of shear stress of slip zone
soil under different predetermined confining pressure and the different number of cyclic
loading are discussed, as shown in Figure 7, the change of fractures in the numerical model
of slip zone soil is shown in Figure 8, in which red fractures represent tensile fractures and
green fractures represent shear fractures, also the information of the numerical model is
shown in Figure 2.

 

Figure 7. Evolutions of shear stress of slip zone soil under different cycle loading in (a) confining
pressure = 200 kPa, (b) confining pressure = 100 kPa, (c) confining pressure = 50 kPa.
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Figure 8. Change of fractures in the numerical model of slip zone soil under different cycle loading in (a–d)
confining pressure = 200 kPa, (e–h) confining pressure = 100 kPa, and (i–l) confining pressure = 50 kPa.
(a) V = 0.5 cm/s, confining pressure = 200 kPa. (b) V = 0.9 cm/s, confining pressure = 200 kpa.
(c) V = 1.5 cm/s, confining pressure = 200 kPa. (d) V = 2.2 cm/s, confining pressure = 200 kPa.
(e) V = 0.5 cm/s, confining pressure = 100 kPa. (f) V = 0.9 cm/s, confining pressure = 100 Kpa.
(g) V = 1.5 cm/s, confining pressure = 100 kPa. (h) V = 2.2 cm/s, confining pressure = 100 kPa.
(i) V = 0.5 cm/s, confining pressure = 50 kPa. (j) V = 0.9 cm/s, confining pressure = 50 kPa.
(k) V = 1.5 cm/s, confining pressure = 50 kPa. (l) V = 2.2 cm/s, confining pressure = 50 kPa.

From a close view of Figures 7 and 8, it can be seen that the peak shear strength of the
slip zone soil material increases with an increase in the predetermined confining pressure,
while the cyclic loading stress and the number of cyclic loading also have a positive effect
on the strain softening of the slip zone soil. When the cyclic loading stress amplitude is low
(less than or equal to 1.5 cm/s), the shear strength decay of the slip zone soil is dominated
by the cumulative weakening effect. That is, with the operation of the cyclic loading, the
strain softening of the slip zone soil gradually develops and the shear stress gradually
decreases, while at a higher cyclic loading amplitude (equal to 2.2 cm/s), the mechanical
parameter weakening of the slip zone soil shows the inertial damage characterized by the
action of cyclic loading. In this form, there are only two stages of weakening of the slip zone
soil mechanical parameters. In the first stage, there is a tendency for rapid decay with the
operation of cyclic loading, which means that the slip zone soil is immediately damaged by
the loading in this stage. In the second stage, the strength parameters of the slip zone soil
have reached the damage limit range, and basically do not change significantly with the
increase of the number of cyclic loading. Through the A1 in Figure 8a, it is not difficult to
find that fractures appear first at the intersection of the upper and lower shear boxes, which
is due to the joint motion of the left upper retaining wall and the right upper retaining wall,
which causes the wall to drive the particles attached to the retaining walls on both sides to
carry out horizontal motion, thus indirectly transferring them to the center. So based on
the diagram of fractures of A1 in Figure 8a, it is easy to know that the first location of the
fractures is almost at the junction of the upper and lower shear boxes. When the number
of cyclic loading is increased to 6000, the number of fractures appearing at the junction of
the shear box further increases, while the location where the fractures exist expands from
the junction to the middle of the numerical model, which is caused by the rearrangement
and movement of the particles in the middle of the numerical model. Moreover, with the
action of cyclic loading, the interaction between the numerical model particles makes more
and more particles subject to cyclic loading, and the chain reaction caused by their mutual
motion increases geometrically. Therefore, when the number of cyclic loading is 12,000,
there is an abrupt increase in the number of fractures in the numerical model of the soil in
the slip zone, and a penetrating fracture zone appears inside the model as can be seen by
C1 in Figure 8a. The analysis and extension for 200 kPa is applied to 100 kPa and 50 kPa.
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There is no doubt that the smaller the predetermined confining pressure, the smaller the
restraint on the rate of fractures growth, and thus the more pronounced the increase of
fractures in the slip zone soil, i.e., the greater the degree of slip zone soil strain softening.

On the other hand, the increase of the cyclic loading stress amplitude also contributes
to the penetration of the slip zone soil fractures. From Figure 8a–l, it is not surprising
to observe that the greater the cyclic loading stress amplitude, the more obvious the
failure damage behavior of the slip zone soil, the more fractures increase, so the larger
the macroscopic fracture zone range of the slip zone soil is under the cyclic loading.
Interestingly, when the loading stress amplitude is equal to 2.2 cm/s, although the shear
stress in the slip zone soil has stabilized after reaching a certain value under different
limiting pressures, the number of fractures still increases with the number of cyclic loading.
This is because as the number of cyclic loading increases, although the development of
fracture is gradually restrained, the cyclic loading causes more particles close to the wall to
form a directional arrangement, and the next cyclic loading to be transmitted to the middle
of the numerical model needs to pass through particles that have already undergone shear
damage behavior.

Moreover, the residual shear strength of this part of the particles is also the constant
friction coefficient between the particles that will continuously consume the energy of the
cyclic loading, thus leading to the increase of fractures in the slip zone soil model becomes
more and more difficult as the number of cyclic loading increases. Therefore, according
to the measurement mechanism of shear stress mentioned above, when the macroscopic
fracture zone in the middle part of the slip zone soil model has been formed, the connection
between particles far from the interface part becomes more vulnerable to disruption than at
the beginning of cyclic loading, so once the larger and dense fracture zone is penetrated, the
slip zone soil shear stress values are not significantly correlated with the growth of fractures
anymore. That is, landslide occurrence is particularly potent in practical engineering when
significant deformation of the slip zone soil occurs due to particle rotation and sliding,
followed by a penetrating fracture zone. In general, the development of soil stresses and
fractures in the slip zone under different confining pressures and different cyclic loading
exhibited a comparable trend of evolution. It is shown that the cyclic loading stress field
varies similarly for slip zone soils, and the shear stress decreases monotonically under the
cyclic loading. At the same time, penetration of the fracture zone is more likely to occur
under higher cycle loading stress and lower confining pressures, as in (Figure 8g,h,k,l).
Moreover, after the formation of the macroscopic fracture zone of the slip zone soil, the
damage to the strain softening of the slip zone soil by cyclic loading will gradually develop
towards the internal changes of the soil. As for A3 in Figure 8, the increase in the number
of cyclic loading and the increase in the cyclic stress amplitude will accelerate the strain
softening rate of the soil.

4. Impacts of Landslide Formation

4.1. Mechanical Model of Landslide Mechanism

It is well accepted that the trigger mechanism of landslides is reflected by the change
in the stability coefficient of the slope. The stability coefficient of the slope is calculated
according to the limit equilibrium analysis of the Sarma method, where the change of
shear strength is obtained in the previous Section 3.2. Meanwhile, Figure 9 shows the force
applied to any block i in the landslide body, which was used for studying the theoretical
principle of the Sarma method, the horizontal seismic inertial force is applied to the block,
the transient stability factor on the slip zone soil is equal to one.
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Figure 9. Schematic diagram of the force applied to any block i in the landslide body.

According to the principle of static balance, the following Equations (2)–(4) are obtained.

∑ X = 0, ∑ Y = 0 (3)

Ti cos αi − Ni sin αi − KcWi − FXi − Xi+1 sin δi+1 + Xi sin δi − Ei+1 cos δi+1 + Ei cos δi = 0 (4)

Ti sin αi − Ni cos αi −Wi + FYi − Fi + Xi+1 cos δi+1 − Xi cos δi − Ei+1 sin δi+1 + Ei sin δi = 0 (5)

where KcWi is the horizontal seismic inertial force acting on the block. Ti and Ni are,
respectively, the shear force and normal force acting on the bottom surface of the block i;
Wi is the weight of block i; Xi and Xi+1 are, respectively, acting on the shear force of the
block i side and the i + 1 th side; is Ei the normal forces acting on the block i side, and Ei+1
is the normal forces acting on the block i + 1 side; Fi is the external load acting on the top
of the slope; the angle between the block i side and the vertical direction is δi, the angle
between the block i + 1 side and the vertical direction is δi + 1 the angle between the sliding
surface of the block i and the horizontal direction is αi;

According to the Mohr-Coulomb criterion, Equations (5)–(7) can be obtained:

Ti = (Ni −Ui) tan φBi + cBibi sec αi (6)

where Bi is the width acting on the bottom surface of block i; Ui is the water pressure acting
on the bottom surface of block i, and ϕBi, CBi is the shear strength parameter of the bottom
surface of block i.

Xi = (Ei − PWi) tan φSi + cSidi (7)

Xi+1 = (Ei+1 − PWi+1) tan φSi+1 + cSi+1di+1 (8)

where di is the length of the block i side, di+1 is the length of the block i + 1 side; PWi
is the water pressure acting on the side of the block i, and PWi+1 is the water pressure
acting on the side of the block i + 1, ϕSi, CSi are the shear strength parameter of the block i
side. Different horizontal seismic inertial forces are calculated through different stability
coefficients. When the horizontal seismic inertial force acting on the block is equal to 0, the
stability coefficient of the slope is the slope stability coefficient in the natural state.

4.2. Calculation of Stability Coefficient

The section of the slope with slip zone soil is selected as the research section, as shown
in Figure 1, in which it is assumed that the slope is a laminated structure, the thickness
of the slip zone soil is relatively uniform, and the shear strength parameters of the soil
material in the slip zone at different places are the same. In order to reasonably analyze the
relationship between the shear strength of the slip zone soil and slope stability, the change
of slope stability is discussed and analyzed under different numbers and stress amplitude
of cyclic loading. Figure 10 shows a schematic diagram of a section of the slope with the
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slip zone soil. The sliding section examined includes the slip zone soil, the unloading
boundary line and the bedrock. The potential landslide body is divided into strips, and the
potential landslide body is divided into eight vertical strips. The cohesion of the potential
landslide body and bedrock is 466 KPa and the internal friction angle is 29◦, meanwhile,
the cohesion between strips from bar 1 to bar 8 is 400 KPa and the internal friction angle
is 25◦. To simplify the calculation process, the strength parameters of bars 1–8 adopt the
uniformity value, the strength parameters of the slip zone soil are the data obtained from
the above Section 3.2.

 
Figure 10. Schematic diagram of section of slope with the slip zone soil.

According to the results obtained by analyzing the slope stability, the change of slope
safety factor is statistically analyzed under different loading numbers and different loading
stress amplitude, whose change is shown in Figure 11 and Table 2.

 
Figure 11. Change of slope safety factor.

Table 2. Change of slope safety factor under different loading number and different loading stress
amplitude.

Number of Case
Loading Stress

Amplitude/(cm/s)
Loading Number Slope Safety Factor Number of Case

Loading Stress
Amplitude/(cm/s)

Loading Number Slope Safety Factor

0 0.5 0 2.87 13 1.5 1500 2.3
1 0.5 1500 2.6 14 1.5 3000 1.9
2 0.5 3000 2.3 15 1.5 4500 1.72
3 0.5 4500 2.1 16 1.5 6000 1.6
4 0.5 6000 1.8 17 1.5 9000 1.35
5 0.5 9000 1.6 18 1.5 12,000 1.02
6 0.5 12,000 1.4 19 2.2 1500 1.57
7 0.9 1500 2.4 20 2.2 3000 1.01
8 0.9 3000 2.2 21 2.2 4500 0.52
9 0.9 4500 1.9 22 2.2 6000 0.48

10 0.9 6000 1.7 23 2.2 9000 0.35
11 0.9 9000 1.56 24 2.2 12,000 0.25
12 0.9 12,000 1.1

The stability coefficient of the slope decreases with the increase of stress amplitude
and the number of cyclic loading, as can be seen in Figure 11. The calculation in Section 3.2
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shows that the strain of the slip zone soil gradually softens under the cyclic loading. The
change of shear stress is not only caused by the confining pressure of soil but also the
cyclic loading stress plays a key role in the expansion of fractures. However, sometimes the
gradual decrease of shear stress is not necessarily all the effect of cyclic loadings, such as
the continuous erosion of groundwater and the gradual increase of pore water pressure,
which will lead to the gradual decrease of shear stress in the slip zone soil. Meanwhile, by
a close analysis of Figure 11, the continuous development and extension of fractures lead
to the continuous reduction of the landslide anchorage section, and the stability coefficient
of the slope is decreasing, which is one of the key driving factors for landslide occurrence.

Therefore, two possible landslide triggering mechanisms are described. For mode 1,
by analyzing A1 and A2 in Figure 8a–c,e–g,i–k, the shear stress gradually decreases with
the increase in the number of cyclic loading, and the fracture is also gradually expanded
into a penetrating fracture zone, that is, the strain softening behavior occurs slowly with
cyclic loading. Additionally, the same analysis applies to the stability coefficient of the
slope when cyclic loading stress amplitude is less than or equal to 1.5 cm/s in Figure 11.
On the other hand, model 2 can be easily obtained by analyzing A3 in Figure 8d,h,l, it can
be seen that when the shear stress no longer increases with the number of cyclic loading,
the number of fractures still continues to increase, indicating that the landslide has been
triggered. Mode 2 shows that when the cyclic loading stress is larger, the shear stress in
the slip zone soil tends to decay rapidly as the number of cyclic load loading increases.
Therefore, this phenomenon infers that if the amplitude and number of cycle loading stress
are large enough, the strain rate of the slip zone soil will gradually accelerate and a large
shear fractures zone is likely to occur, followed by a landslide occurrence, which means
that the strain softening behavior of slip zone soils is the result of inertial forces, which
expand at a very fast development rate, which is also verified by the data in Figure 11 that
is equal to 2.2 cm/s.

4.3. Application of Mechanical Learning-Based Time Series Analysis to Slope Stability Prediction

Time series analysis is a highly applied branch of probability statistics, with mathematical
tools and theories used in many fields, such as finance and economics, meteorology and
hydrology, signal processing and mechanical vibration [53,54]. Although the analysis of
long-term trends and cyclical fluctuations control the basic style of time series movements,
it is after all not the whole picture of time series movements, and it is more reasonable and
superior to use the theory of stochastic processes and statistical theory to examine the time
series of long-term trends, seasonal variations and other factors that act together. The analysis
of time series is based on the theory of stochastic processes and statistical theory, leading to
the stochastic analysis of time series. Stochastic time series analysis enables, on the one hand,
the creation of mathematical models that more accurately reflect the dynamic dependencies
contained in the series and thereby forecast the future of the system and, on the other hand,
statistical methods that more accurately reveal the dynamic structure and laws of the system.

Stochastic analysis of time series usually utilizes the Box–Jenkins modeling approach.
The steps for modeling using the Box–Jenkins method are as follows.

(1) Calculate the correlation coefficient and the bias correlation coefficient for a sample
of the observed series.

The easiest way to determine whether the data is smoothed or not is to use the
image and other analyses using the sample autocorrelation function and sample partial
autocorrelation function. When we have a sample series xt, we can calculate the covariance
of the samples as shown in Equations (8)–(12).

μ =
∑n

t=1 xt

n
(9)

s2 =
∑n

t=1 (xt − μ)(x(t) − μ)

n− 1
(10)
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γk = 1/n∑n
t=k+1 (xt − μ)(x(t−k) − μ) (11)

ρk =
γk
s2 (12)

where n is the number of sample series,μ is average, s2 is variance, γk is covariance, ρk is
sample autocorrelation function.

Xt = Φk1xt−1 + Φk2xt−2 + . . . + Φkkxt−k + ut (13)

Each regression coefficient in the autocorrelation function represents the autocorrela-
tion coefficient between xt and xt−k after excluding the effect of its intermediate variables
xt−1, xt−2,..., xt−k+1, i.e., the partial autocorrelation function.

Each of the regression coefficients in the autocorrelation function (Φkk) represents the
autocorrelation coefficient between xt and xt−k after excluding the effect of its intermediate
variables xt−1, xt−2,..., xt−k+1, i.e., Φkk is the partial autocorrelation function.

(2) Pattern recognition: check whether the sequence is a smooth non-white noise
sequence. If the series is a white noise series, the modeling is finished; if the series is a
non-stationary series, the modeling method of non-stationary time series is used to build
an autoregressive model (ARIMA model) or auto-regressive sliding average model (MA
model); if the series is a stationary series, an auto-regressive sliding average model (ARMA
model) is built.

(3) Initial order and parameter estimation: after the model is identified, the highest
order of the model to which it belongs is framed; then the model is fitted and tested from
low to high order within the identified type.

There are a number of criteria that can be used to model {εt}. The criteria are mainly
based on the following function (13) shown below.

δ
(

p′
)
= n log

(
σ̂2

p′
)
+ p′g(n) (14)

{εt} is the residual of the data xt, δ(p′) is a function of constant order, p′ is a constant
order, and

(
σ̂p′

)
is an estimate of the variance of the residual obtained when taking order

p′, which is the Bayesian information criterion (BIC) criterion when g(n) = log n, if the value
of δ(p′) is smaller, then the prediction model is better.

(4) Goodness-of-fit test: different models are compared using the fixed-order method
to determine the most suitable model.

(5) Fit test: the selected model is tested for fit and parameters to further determine the
most appropriate model from the selected model.

(6) Prediction: using the prediction model developed, the data is then predicted.
The order in the model identification process was first set to 1, and then the ARIMA

(1,1,1)(1,1,1) model was established, and the display model fit measure was selected through
Equations (1)–(6), which ultimately allowed the parameter estimate value and standard
BIC values to be obtained, as shown in Tables 3 and 4, and the most appropriate model
was selected to determine the most appropriate model by obtaining estimates of the model
parameters, and the probabilities of the statistics of the independent variables.

Table 3. Statistics of the parameter estimate value and probability of the data statistic for ARIMA
(1,1,1)(1,1,1) model.

Type of Model Parameter Estimate Value
Probability of the

Data Statistic

Constant 0.227 0.616
AR Lag1 0.019 0.762

Difference 1
MA Lag1 0.714 0.000
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Table 4. Statistics of the Stationary R-squared and normalized BIC value.

Type of Model Stationary R-Squared Normalized BIC Sratistics Probability of t Data Statistic

AR 0.425 10.16 2.526 0.748
MA 0.225 12.16 3.526 0.648

As can be seen from Table 3, the parameter estimate for AR(1) is 0.019 and the prob-
ability of the data statistic is 0.762, which means that the original hypothesis, that AR(1)
is zero, is accepted. The parameter estimate for MA(1) is 0.714 and the probability of the
data statistic is 0, which rejects the original hypothesis that MA(1) is zero. So, the model
is not optimal and the analysis of the data is not very appropriate. Therefore, the AR
model was selected for another adjustment to obtain the most appropriate model. After the
analysis in Tables 3 and 4 above, it is clear that the data is a non-stationary time series, so
the goodness of fit of the ARIMA(1,1,0)(0,1,1) model is established, including all values of
the goodness of fit adjusted for R-Square, normalized BIC, etc. The standard BIC value of
8.160 can be seen in Table 5, which is somewhat smaller than the standard BIC value of the
ARIMA(1,1,1)(1,1,1) model. At the same time, the probability of the data statistic is 0.848.

Table 5. Statistics of the Stationary R-squared and normalized BIC value for ARIMA(1,1,0)(0,1,1) model.

Stationary
R-Squared

Normalized BIC Sratistics
Probability of the

Data Statistic

0.747 8.16 9.526 0.848

Therefore, this model is a suitable model, so the data in Table 2 are modeled and
predicted according to this validated model, as shown in Figure 12. It is easy to see through
Figure 12 that the stability coefficients of slopes under different load cases are well predicted,
while the difference error between the two is very small. This model can be used for the
prediction of stability coefficients of slopes, and also provides an accurate and efficient
mechanical learning method for stability analysis of slopes under cyclic loading.

 
Figure 12. Mechanical learning-based time series analysis to slope stability prediction.

5. Conclusions

For rocky slopes containing weak structural surfaces at specified dips, the theory of
anchored sections in the slip zone is widely mentioned, where the continuous development
and extension of fractures lead to the continuous reduction of the landslide anchorage
section (as shown in Figures 7–11), which is considered to be a key factor in the occurrence
of landslides. The quantitative examination of the correlation between fracture and shear
stress will allow us to infer the evolution of landslide occurrence with greater confidence.
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From this perspective, we developed a three-dimensional slip zone soil numerical model
in this study, which aims to incorporate the intermediate mechanism of strain softening.
However, it is particularly important to note that we propose a mechanical learning method
that can be used to predict stability coefficients for slopes where slopes with predetermined
shear planes are subjected to cyclic seismic loads under undrained conditions.

Another important insight into the microfracture mechanism comes from the compari-
son of shear stress and Cn in slip zone soils. When the cyclic loading stress amplitude is
large, the slip zone soil will be weakened rapidly, immediately after the shear stress no
longer changes significantly, but the number of fractures in the slip zone soil still increase.
Meanwhile, the gradual change of confining pressure of the slip zone soil rather gently pro-
motes the growth of microfractures. Nevertheless, there are two possible effects associated
with sharp changes in the shear stress of slip zone soils: cumulative progressive damage
and significant inertial damage. In the second case, the strain softening of the slip zone
soils can be explained by the rearrangement of the particles.

Based on the simulation results, possible field observations are illustrated in the
context of landslide occurrence, which evolves from changes in the stability coefficient of
the slope. The change of stability coefficients of the slope is compared with the development
of fractures in the slip zone soil, and two possible landslide triggering mechanisms have
been inferred. The strain of the slip zone soil gradually softens under cyclic loading. The
shear stress gradually decreases with increasing confining stress, while cyclic loading stress
plays a key role in the crack extension. The continuous development and extension of the
fracture lead to the continuous reduction of the stability coefficient of the slope, which is
another key driving factor for the occurrence of landslides. When the cyclic loading stress
is larger, the shear stress of the slip zone soil tends to decay rapidly with the increase in the
number of cyclic loadings.

The mechanical learning model proposed in this paper can be used for the prediction
of stability coefficients of slopes, and also provides an accurate and efficient mechanical
learning method for stability analysis of slopes under cyclic loading. Furthermore, it has to
be highlighted once again that the stability of slopes is influenced by a number of factors,
including drainage conditions, slope stress states, other forms of dynamic loading, etc.
Therefore, the types of slopes mentioned in this paper are actually limited to the layered
rock landslides with predetermined shear planes subjected to seismic loading in undrained
conditions, which is only a small part of the complex slope stability phenomena.
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Abstract: Slope failures lead to large casualties and catastrophic societal and economic consequences,
thus potentially threatening access to sustainable development. Slope stability assessment, offering
potential long-term benefits for sustainable development, remains a challenge for the practitioner
and researcher. In this study, for the first time, an automated machine learning (AutoML) approach
was proposed for model development and slope stability assessments of circular mode failure. An
updated database with 627 cases consisting of the unit weight, cohesion, and friction angle of the
slope materials; slope angle and height; pore pressure ratio; and corresponding stability status has
been established. The stacked ensemble of the best 1000 models was automatically selected as the
top model from 8208 trained models using the H2O-AutoML platform, which requires little expert
knowledge or manual tuning. The top-performing model outperformed the traditional manually
tuned and metaheuristic-optimized models, with an area under the receiver operating characteristic
curve (AUC) of 0.970 and accuracy (ACC) of 0.904 based on the testing dataset and achieving a
maximum lift of 2.1. The results clearly indicate that AutoML can provide an effective automated
solution for machine learning (ML) model development and slope stability classification of circular
mode failure based on extensive combinations of algorithm selection and hyperparameter tuning
(CASHs), thereby reducing human efforts in model development. The proposed AutoML approach
has the potential for short-term severity mitigation of geohazard and achieving long-term sustainable
development goals.

Keywords: automated machine learning (AutoML); slope stability classification; circular mode
failure; hyperparameter tuning; stacked ensemble

1. Introduction

Natural hazards like landslide and subsidence have been acknowledged as a major
factor disturbing sustainable development in developing countries [1–4]. For example, a
catastrophic landfill slope failure occurred on 20 December 2015, in Guangming, Shenzhen,
China, took the lives of 69 people [5]. The risk assessment and management of natural
hazard will have a short-term benefit for severity mitigation and a long-term benefit for
achieving sustainable development goals [1].

The evaluation of slope stability is of primary importance for natural hazard risk
assessment and management in mountain areas. Numerous efforts have been made for
slope stability assessment [6–9]. However, slope stability assessment for circular mode
failure, a typical problem, still remains a challenge for the practitioner and researcher
due to inherent complexity and uncertainty [10]. An extensive body of literature exists
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regarding slope stability assessments of circular failure, and significant progress has been
achieved. Three main categories of assessment approaches have emerged: analytical
approaches, numerical approaches, and machine learning (ML)-based approaches [11–13].
Limited equilibrium methods, such as the simplified Bishop, Spencer, and Morgenstern-
Price methods, are commonly used analytical approaches and have been routinely used in
practice. Generally, geometrical data, physical and shear strength parameters (unit weight,
cohesion, and friction angle), and the pore pressure ratio are required in limited equilibrium
methods [14,15]. However, the results vary across different methods due to different
assumptions [9]. Numerical approaches (e.g., finite element methods) have been widely
adopted for slope stability assessment. However, due to the requirement of numerous
expensive input parameters, these models can be applied only in limited cases [16]. Recently,
ML-based approaches have led to giant strides in slope stability assessment. A summary
of the slope stability assessments of circular failure using ML approaches is given in
Table 1. Among the various ML approaches used, artificial neural networks (ANNs) are
widely utilized for slope stability assessment due to their simple structure and acceptable
accuracy [11,17,18]. Recently, sophisticated ML algorithms, including but not limited
to support vector machine (SVM), decision tree (DT), extreme learning machine (ELM),
random forest (RF), and gradient boosting machine (GBM) algorithms, have been utilized
for slope stability assessment. Hyperparameter tuning is a fundamental step required for
accurate ML modeling [19,20]. As listed in Table 1, grid search (GS) and metaheuristic
methods, such as the artificial bee colony (ABC) algorithm, genetic algorithm (GA), and
particle swarm optimization (PSO), have been utilized for hyperparameter tuning in ML-
based slope stability assessment. For example, Qi and Tang [16] simultaneously trained
six firefly algorithm (FA)-optimized ML models, including multilayer perceptron neural
network, logistic regression (LR), DT, RF, SVM, and GBM models, based on 148 cases of
circular mode failure. The FA-optimized SVM was selected as the final model, with an
area under the receiver operating characteristic curve (AUC) of 0.967 for the testing dataset.
The performance of eight ensemble learning approaches was compared by [12] based on a
dataset with 444 cases of circular mode failure. A stacked model was selected as the final
model, with an AUC of 0.9452 for the testing dataset.

Table 1. Summary of the slope stability assessment of circular mode failure using MLs.

Reference
Data Size

(Stable/Failure)
Input

Features
Data

Preprocessing
ML Algorithm

Selection
Hyperparameter

Tuning
Final Model and Performance

[21] 82
(38/44)

γ, c, ϕ, β,
H, ru

/ BP Trial and error
GA

GA-optimized BP was selected as the
final model, with an AUC of 0.455 for

the testing dataset.

[22] 32
(14/18)

γ, c, ϕ, β,
H, ru

/ ANN Trial and error The ANN achieved an ACC of 1.00 for
the testing dataset in two cases.

[23] 46
(17/29)

γ, c, ϕ, β,
H, ru

Data
normalization SVM PSO PSO-SVM achieved an ACC of 0.8125

for the testing dataset.

[24] 168
(84/84)

γ, c, ϕ, β,
H, ru

Data
normalization LSSVM FA The FA-optimized LSSVM achieved an

AUC of 0.86 for the testing dataset.

[25] 168
(84/84)

γ, c, ϕ, β,
H, ru

Data
normalization

RBF
LSSVM

ELM

Orthogonal least
squares

GA
Trial and error

The GA-ELM was selected as the final
model, with an AUC of 0.8706 for the

testing dataset.

[26] 82
(49/33)

γ, c, ϕ, β,
H, ru

/ NB / NB achieved an ACC of 0.846 for the
testing dataset.

[27] 107
(48/59)

γ, c, ϕ, β,
H, ru

/

RF
SVM
Bayes
GSA

Ten-fold CV
The GSA was selected as the final

model, with an AUC of 0.889 for the
testing dataset.
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Table 1. Cont.

Reference
Data Size

(Stable/Failure)
Input

Features
Data

Preprocessing
ML Algorithm

Selection
Hyperparameter

Tuning
Final Model and Performance

[17] 168
(84/84)

γ, c, ϕ, β,
H, ru

Data
normalization

GP
QDA
SVM

ADB-DT
ANN
KNN

Classifier
ensemble

GA
The optimum ensemble classifier was

selected as the final model, with an
AUC of 0.943 for the testing dataset.

[16] 148
(78/70)

γ, c, ϕ, β,
H, ru

Data
normalization

LR
DT
RF

GBM
SVM
BP

FA
GS

The FA-optimized SVM was selected
as the final model, with an AUC of

0.967 for the testing dataset.

[18] 221
(115/106)

γ, c, ϕ, β,
H, ru

Data
normalization

ANN
SVM
RF

GBM

Five-fold CV
The GBM-based model was selected as
the final model, with an AUC of 0.900

for the testing dataset.

[28] 87
(42/45)

γ, c, ϕ, β,
H, ru

/ J48 Trial and error J48 achieved an ACC of 0.9231 for the
testing dataset.

[13] 257
(123/134)

γ, c, ϕ, β,
H, ru

/

XGB
RF
LR

SVM
BC

LDA
KNN

DT
MLP
GNB
XRT

Stacked ensemble

ABC
PSO

The stacked ensemble was selected as
the final model, with an AUC of 0.904

for the testing dataset.

[11] 153
(83/70)

γ, c, ϕ, β,
H, ru

Data
normalization

and outlier
removing

KNN
SVM
SGD
GP

QDA
GNB
DT

ANN
Bagging

ensemble
Heterogeneous

ensemble

GS

An ensemble classifier based on
extreme gradient boosting was

selected as the final model, with an
AUC of 0.914 for the testing dataset.

[29] 19
(13/6)

γ, c, ϕ, β,
H, ru

Data
normalization K-means cluster HS

K-means clustering optimized by HS
achieved an ACC of 0.89 for all

datasets.

[12] 444
(224/220)

γ, c, ϕ, β,
H, ru

Data
normalization

AdaBoost
GBM

Bagging
XRT
RF

HGB
Voting
Stacked

GS
A stacked model was selected as the

final model, with an AUC of 0.9452 for
the testing dataset.

[30] 422
(226/196)

γ, c, ϕ, β,
H, ru

Data
normalization MDMSE GS The MDMSE model achieved an AUC

of 0.8810 for the testing dataset.

Note: Abbreviations in this table are explained in Abbreviations.

Although ML-based models have been widely applied, some studies have been based
on a small number of samples, which may affect the generalization ability of the classifier.
Moreover, most ML models have been manually developed by researchers with expert
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knowledge in a trial-and-error approach. In fact, exhaustive steps, including data prepro-
cessing [31], feature engineering [32], ML algorithm selection [33], and hyperparameter
tuning, are involved in practical applications of ML. Among them, model selection and
hyperparameter tuning remain challenges for successful ML-based modeling [34]. Based
on the no-free-lunch theorem [35], there is no algorithm that outperforms all others in
all problems. Therefore, at present, according to prior experience, candidate off-the-shelf
models are trained with a training dataset and validated by researchers. The ML model
that provides the best performance is considered the final model and tested with an out-
of-box testing dataset. This traditional workflow makes the model development process
knowledge-based and time-consuming [36], and might yield unsatisfactory results [37].
However, most practitioners and researchers lack the knowledge and expertise required
to build satisfactory ML models. Hence, an objective workflow with less human effort is
needed, providing a basis for the concept of automated ML (AutoML) [38].

From the perspective of automation, AutoML is a systematic framework that auto-
mates algorithm selection and hyperparameter tuning and explores different combinations
of factors with minimal human intervention [34,39–41]. AutoML has been successfully ap-
plied for ML modeling in a variety of fields, including tunnel displacement prediction [36],
tunnel boring machine performance prediction [34], and earthquake casualty and economic
loss prediction [42]. Thus, the generalization ability of this approach has been confirmed.

In the present study, an updated database with 627 cases consisting of the unit weight,
cohesion, and friction angle of the slope materials: slope angle and height, pore pressure
ratio, and corresponding stability status of circular mode failure, has been collected. For
the first time, an AutoML approach was proposed for slope stability classification. The top
model was selected from 8208 trained ML models by exploring numerous combinations of
algorithm selection and hyperparameter tuning (CASHs) with minimal human intervention.

The major contribution of this paper is highlighted as follows:

(a) A large database consisting of 627 cases has been collected for slope stability classification.
(b) Based on the updated dataset, an AutoML approach was proposed for slope stability

classification without the need for manual trial and error. The proposed AutoML
approach outperformed the existing ML models by achieving superior performance.

The rest of this paper is organized as follows: the updated database and method-
ology are presented in Sections 2 and 3, respectively. Section 4 presents and discusses
experimental results. Finally, the conclusions and further work are presented in Section 5.

2. Database

As listed in Table 1, the input features relevant to the slope stability assessment of the
circular failure model (schematic illustrated in inset of Figure 1) mainly include the unit
weight, cohesion, and friction angle of the slope materials, the slope angle and height, and
the pore pressure ratio. Moreover, these features are fundamental input parameters for limit
equilibrium methods, such as the simplified Bishop method [15,43]. Based on the previous
research listed in Table 1, an updated database consisting of 627 cases was obtained from
previous studies [11,12,16,24,30,44] and is listed in Appendix A. The database consists of
the unit weight, cohesion, and friction angle of the slope materials, the slope angle and
height, the pore pressure ratio, and the corresponding stability status. The numbers of
positive (stable) and negative (failure) samples are 311 and 316, respectively. The statistics
of the input features are summarized in Table 2. To better visualize the collected dataset,
ridgeline plots showing the density distributions of the input features based on kernel
density estimation [3] are presented in Figure 1. As shown, the collected dataset was
distributed in a wide range of regions, and the distribution was not symmetric.
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Figure 1. Ridgeline plots showing the density distributions of the input features. The inset shows a
schematic diagram of the circular failure model.

Table 2. Summary of the input feature statistics.

Input Feature Notation Range Median Mean Std.

Unit weight (kN/m3) γ 0.492–33.160 20.959 20.185 7.044

Cohesion (kPa) c 0–300.00 19.690 25.600 31.036

Friction angle (◦) ϕ 0–49.500 28.800 25.308 12.331

Slope angle (◦) β 0.302–65.000 34.980 32.605 13.711

Slope height (m) H 0.018–565.000 45.800 90.289 120.140

Pore pressure ratio ru 0–1.000 0.250 0.254 0.260

The Pearson correlation coefficient (R) was adopted to further reveal the linear correla-
tions between input features and the slope stability status and is shown in the lower left
half of the panels in Figure 2. As shown, relatively poor linear correlations with correlation
coefficients lower than 0.5 were observed between the input features and the slope stability
status. Significant linear correlations (R = 0.71, 0.71, and 0.68) were noted for the unit
weight, friction angle, and slope angle. Additionally, a moderate correlation (R = 0.51) was
found between the unit weight and slope height.
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Figure 2. Scatter matrix showing the collected dataset. The panels in the upper right show the data
points, and the lower left half of the figure shows the correlation coefficients between the features
and the slope stability status.

Furthermore, the multivariate principal component analysis (PCA) technique [45]
was applied to enhance the visualization of the statistical relationships among features.
The PCA results shown in Figure 3 demonstrate that the first three principal components
(PC1-PC3) account for 79.09% of the entire multivariate variance in space. PC1 is mainly
associated with the unit weight, friction angle, and slope angle. PC2 corresponds to the
pore pressure ratio. Moreover, overlapping among failure and stability classes can be
clearly observed. In other words, the decision boundary for separating slope failure and
stability is highly nonlinear and complex.

202



Sensors 2022, 22, 9166

Figure 3. 3D PCA score plot of the input features.

3. Methodology

3.1. AutoML

From the perspective of automation, AutoML is a systematic model that automates
the algorithm selection and hyperparameter tuning processes and explores different
CASHs with minimal human intervention [34,39,40]. More formally, the CASH prob-
lem can be stated as follows. Let A =

{
A1, A2, · · · , AR} be a set of ML algorithms,

Λ =
{

Λ1, Λ2, · · · , ΛR
}

be the corresponding hyperparameters, and L be the loss function.
When adopting k-fold cross validation (CV), the training dataset Dtraining is divided into

subsets
{

D(1)
training, D(2)

training, · · · , D(k)
training

}
and

{
D(1)

validation, D(2)
validation, · · · , D(k)

validation

}
. The

CASH problem is defined as

A∗λ∗ ∈ argmin
A(j)∈A,λ(j)∈Λ

1
k

k

∑
i=1

L(A(j)
λ , D(i)

training, D(i)
validation) (1)

Generally, AutoML consists of the following three key components: a search space,
a search strategy, and a performance evaluation strategy [40] (schematically illustrated
in Figure 4). The search space refers to a set of hyperparameters and the range of each
hyperparameter. The search strategy refers to the strategy of selecting the optimal hyper-
parameters from the search space. Grid search and Bayesian optimization are commonly
used search strategies. The performance evaluation strategy refers to the method used to
evaluate the performance of the trained models.
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Figure 4. Schematic diagram showing the workflow of AutoML.

Various open-source platforms, such as AutoKeras, AutoPyTorch, AutoSklearn, Auto-
Gluon, and H2O AutoML, have been developed to facilitate the adoption of AutoML [46].
Previous studies [47,48] have demonstrated the strong feature of H2O AutoML for pro-
cessing large and complicated datasets by quickly searching the optimal model without
the need for manual trial and error. Moreover, H2O AutoML provides a user interface for
non-experts to import and split datasets, identify the response column, and automatically
train and tune models. Therefore, in the present study, the H2O AutoML platform was
adopted for the automated assessment of slope.

The H2O AutoML platform includes the following commonly used ML algorithms:
generalized linear model (GLM), distributed random forest (DRF), extremely randomized
tree (XRT), deep neural network (DNN), and GBM algorithms [49]. The abovementioned
ML algorithms in the H2O AutoML platform are briefly described as follows.

GLM is an extended form of a linear model. Given the input variable x, the conditional
probability of the output class falling within the class c of observations is defined as follows:

ŷc = Pr(y = c|x) = exT βc + βc0
K
∑

k=1
(exT βk + βk0)

(2)

where βc is the vector of coefficients for class c.
The DRF is an ensemble learning approach based on decision trees. In the DRF training

process, multiple decision trees are built. To reduce the variance, the final prediction was
obtained by aggregating the outputs from all decision trees.

Similar to the DRF, XRT is based on multiple decision trees, but randomization is
strongly emphasized to reduce the variance with little influence on the bias. The following
main innovations are involved in the XRT process: random division of split nodes using
cut points and full adoption of the entire training dataset instead of a bootstrap sample for
the growth of trees.

The DNN in H2O AutoML is based on a multilayer feedforward artificial neural net-
work with multiple hidden layers. There are a large number of hyperparameters involved
in DNN training, which makes it notoriously difficult to manually tune. Cartesian and
random grid searches are available in H2O AutoML for DNN hyperparameter optimization.

GBM is an ensemble learning method. The basic idea of GBM is to combine weak
base learners (usually decision trees) for the generation of strong learners. The objec-
tive is to minimize the error in the objective function through an iterative process using
gradient descent.

In addition, stacked ensembles can be built using either the best-performing models
or all the trained models.
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3.2. Search Space and Search Strategy

In the present study, a random grid search was adopted for hyperparameter tuning
in the search space. When adopting k-fold CV, the hyperparameter tuning process can be
described as follows (schematically illustrated in Figure 5). First, possible combinations of
the tuned parameters are generated. Then, CV is performed using a possible parameter
combination. The training dataset is divided into k equal-sized subsets. A single subset is
treated as the validation subset, while the remaining subsets are adopted for classification
training. The average accuracy from k validation sets is computed and adopted as the
performance measure of the k-CV classifier model. The above process is repeated for all
possible parameter combinations. A ranking of all trained classifiers by model performance
is obtained. The classifier that yields the highest accuracy is selected.

 

Figure 5. Schematic diagram showing hyperparameter tuning based on the k-fold CV and random
grid search methods.

3.3. Performance Evaluation Measures

In the present study, widely applied criteria, including the accuracy (ACC), AUC, sen-
sitivity (SEN), specificity (SPE), positive predictive value (PPV), negative predictive value
(NPV), and Matthews correlation coefficient (MCC), were adopted for performance evalua-
tion (Table 3). The AUC can be interpreted as follows: an AUC equal to 1.0 indicates perfect
discriminative ability, an AUC value from 0.9 to 1.0 indicates highly accurate discriminative
ability, an AUC value from 0.7 to 0.9 indicates moderately accurate discriminative ability,
an AUC value from 0.5 to 0.7 demonstrates inaccurate discriminative ability, and an AUC
less than 0.5 indicates no discriminative ability.

Table 3. Confusion matrix and performance measures for slope stability assessment.

Actual

Predicted
Stable Failure

Stable True positive (TP) False negative (FN) Sensitivity: SEN = TP
TP+FN

(The ideal value is 1, whereas the worst is zero.)

Failure False positive (FP) True negative (TN) Specificity SPE = TN
FP+TN

(The ideal value is 1, whereas the worst is zero.)

Positive predictive
value (PPV)

PPV = TP
TP+FP

(The ideal value is 1,
whereas the worst

is zero.)

Negative predictive
value (NPV)

NPV = TN
FN+TN

(The ideal value is 1,
whereas the worst

is zero.)

Accuracy ACC = TP+TN
TP+FN+FP+TN

(The ideal value is 1, whereas the worst is zero.)
Matthews correlation coefficient

MCC = TP·TN−FP·FN√
(TP+FP)·(TP+FN)·(TN+FP)·(TN+FN)

(The ideal value is 1.)
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3.4. Slope Stability Assessment through AutoML

In the present study, the H2O AutoML approach was adopted for ML model develop-
ment for slope stability classification (schematic illustrated in Figure 6). First, the database
listed in Appendix A was randomly divided into training and testing datasets at a ratio of
80% to 20%, respectively. ML models, including GLM, DRF, XRT, DNN, and GBM were
automated and developed (schematic illustrated in Figure 6). To enhance the reliability and
performance, the common 10-fold CV was performed. A full list of tuned hyperparameters
and the corresponding searchable values are given in Table 4. Stacked ensembles were
developed based on the best-performing models and all the tuned models. A leaderboard
ranking the mode performance accuracy was achieved. The leader models were saved and
evaluated on the testing dataset.

Figure 6. Flowchart of the AutoML-based slope stability classification.
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Table 4. The hyperparameter search space for GS optimization for AutoML-based slope
stability classification.

Algorithm Parameter Searchable values

DNN

Adaptive learning rate time smoothing factor (epsilon)
{

10−6, 10−7, 10−8, 10−9
}

Hidden layer size (hidden)

Grid search 1: {20}, {50}, {100}

Grid search 2: {20, 20}, {50, 50}, {100, 100}

Grid search 3: {20, 20, 20}, {50, 50, 50}, {100, 100, 100}

Hidden_dropout_ratio

Grid search 1: {0.1}, {0.2}, {0.3}, {0.4}, {0.5}

Grid search 2: {0.1, 0.1}, {0.2, 0.2}, {0.3, 0.3}, {0.4, 0.4}, {0.5, 0.5}

Grid search 3: {0.1, 0.1, 0.1}, {0.2, 0.2, 0.2} {0.3, 0.3, 0.3}, {0.4, 0.4, 0.4}, {0.5, 0.5, 0.5}

Input_dropout_ratio {0.0, 0.05, 0.1, 0.15, 0.2}

Adaptive learning rate time decay factor (rho) {0.9, 0.95, 0.99}

GLM Regularization distribution between L1 and L2 (alpha) {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}

GBM

Column sampling rate (col_sample_rate) {0.4, 0.7, 1.0}

Column sample rate per tree (col_sample_rate_per_tree) {0.4, 0.7, 1.0}

Maximum tree depth (max_depth) {3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17}

Minimum number of observations for a leaf (min_rows) {1, 5, 10, 15, 30, 100}

Minimum relative improvement in squared error reduction (min_split_improvement)
{

10−4, 10−5
}

Row sampling rate (sample_rate) {0.50, 0.60, 0.70, 0.80, 0.90, 1.00}

The AutoML process was implemented using H2O AutoML (3.36.1.2) with an Intel(R)
Xeon(R) E-2176M @ 2.70 GHz CPU with 64 GB RAM. The maximum time allotted to run
generation classifiers, except for the stacked ensembles, was set to 3600 s.

4. Results and Discussions

4.1. Performance Analysis

A total of 8208 ML models, including bypass CV models, were trained with the H2O
AutoML platform and saved. The top five models from the leaderboard were selected and
listed in Table 4 for testing. The performance evaluation metrics for the top five models on
the testing dataset are listed in Table 5.

Table 5. Comparison of the performance of the selected top-five models from AutoML in slope
stability assessments of circular mode failure based on the selected test data.

Model
ID

Model Type Hyperparameters AUC Confusion Matrix
Performance

Measures

H2O1
Stacked

ensemble

The base models are the top-1000 trained models, and
the metalearner is a GLM. A logit transformation is used

for the predicted probabilities.
0.970

Actual

Predicted
Stable Failure

SEN = 0.968
SPE = 0.841
PPV = 0.857
NPV = 0.964
ACC = 0.904
MCC = 0.815

Stable 60 2

Failure 10 53

H2O2 GBM

score_tree_interval = 5; ntrees = 105; max_depth = 7;
stopping_metric = logloss; stopping_tolerance = 0.045;

learn_rate = 0.1; learn_rate_annealing = 1; sample_rate =
1; col_sample_rate = 0.4;

col_sample_rate_change_per_level = 1;
col_sample_rate_per_tree = 0.7

0.968
Actual

Predicted
Stable Failure

SEN = 0.903
SPE = 0.937
PPV = 0.933
NPV = 0.908
ACC = 0.920
MCC = 0.840

Stable 56 6

Failure 4 59

H2O3 DRF Ntrees = 50; max_depth = 20 0.963
Actual

Predicted
Stable Failure

SEN = 0.839
SPE = 0.968
PPV = 0.963
NPV = 0.859
ACC = 0.904
MCC = 0.815

Stable 52 10

Failure 2 61

H2O4 XR

score_tree_interval = 5; max_after_balance_size = 5;
max_confusion_matrix_size = 20; ntrees = 50; max_depth

= 20; stopping_metric = logloss; stopping_tolerance =
0.045; sample_rate = 0.632

0.963
Actual

Predicted
Stable Failure

SEN = 0.871
SPE = 0.937
PPV = 0.931
NPV = 0.881
ACC = 0.904
MCC = 0.810

Stable 54 8

Failure 4 59

H2O5 GBM

score_tree_interval = 5; ntrees = 97; max_depth = 7;
stopping_metric = logloss; stopping_tolerance = 0.045;

learn_rate = 0.1; learn_rate_annealing = 1; sample_rate =
0.8; col_sample_rate = 0.8;

col_sample_rate_change_per_level = 1;
col_sample_rate_per_tree = 0.8

0.960
Actual

Predicted
Stable Failure

SEN = 0.968
SPE = 0.810
PPV = 0.833
NPV = 0.962
ACC = 0.888
MCC = 0.786

Stable 60 2

Failure 12 51
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As listed in Table 5, the stacked ensemble of the best 1000 models (H2O1) ranked
as the top-performing model. The corresponding ROC curves are shown in Figure 7,
which clearly indicates that the top-performing model is capable of providing highly
accurate discriminative ability, with AUC of 0.999 and 0.970 for the training and testing
dataset, respectively. The model performance was further evaluated using gain and lift
charts (Figure 8). A gain chart measures the effectiveness of a classifier based on the
percentage of correct classifications obtained with the model versus the percentage of
correct classifications obtained by chance (i.e., the baseline). As shown, for the top model,
only 30% of the population is required to achieve an accuracy of 60%, compared to 30% for
the random model. The top classifier is capable of achieving a maximum lift of 2.1. In other
words, when only 10% of the sample was selected, the average accuracy of the top model
was approximately two times higher than that of the random model.

 

Figure 7. ROC curve of the top-performing model (H2O1) from AutoML.

Figure 8. Cumulative gain and lift charts for the top-performing model (H2O1) based on testing data.
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Figure 9 demonstrates the correlation between NPV and PPV for the obtained top-
five classification models based on the testing dataset. As shown, the top-performing
model (H2O1) falls within zone 2, in which the obtained NPV is greater than the PPV.
This result indicates that the top-performing model (H2O1) tends to classify slope status
as a failure (negative status) more often than stable (positive status). In other words, the
top-performing model (H2O1) may overestimate stability.

Figure 9. Correlation between the NPV and PPV values of the classification models based on the
testing dataset.

4.2. Model Interpretation

In the present study, the partial dependence plot graphically revealing the input–
output relationship was adopted for model interpretation. The partial dependence plot has
been considered as one of the most popular model agnostic tools due to the advantages of
simple definition and easy implementation. The partial dependence relations of the input
features in the top-performing model (H2O1) are shown in Figure 10. In partial dependence
plots, features with greater variability have more significant effects on the model [18,50].
As shown, the top-performing model (H2O1) is highly influenced by the slope height and
friction angle.

4.3. Validation of the AutoML Model in ACADS Example

Furthermore, the predictive capacity of the top-performing model (H2O1) was val-
idated on the Australian Association for Computer-Aided Design (ACADS) referenced
slope example EX1, which is a simple homogeneous slope. The slope is 20 m long and 10 m
high. The geometry and material properties are shown in Figure 11. With the parameters
listed in Figure 11, the example slope was estimated to fail [43]. The top-performing model
(H2O1) successfully classified the slope example as a failure case.

4.4. Comparison with Exiting Models

To further assess performance, the top-performing model (H2O1) from the AutoML
approach was further compared with a manually derived ML model for slope stability
assessment (Table 6). As shown in Table 6, in the previous studies, the firefly algorithm
optimized SVM (FA-SVM) provides the best performance with an AUC of 0.967 [16], fol-
lowed by ensemble classifiers on the extreme gradient boosting (XGB-CM) [11]. Obviously,
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the top-performing model (H2O1) is of better generalization ability than the existing mod-
els shown in Table 6 with the largest AUC and ACC values. These comparative results
clearly indicate that the top-performing model (H2O1) from AutoML approach is capa-
ble of providing better generalization performance than the manually derived ML and
metaheuristics-optimized model.

 

Figure 10. Partial dependence plots of the input features in the top-performing model (H2O1) for
the classification of slope stability. (a) Unit weight and pore pressure ratio, (b) cohesion and friction
angle, (c) slope angle and slope height, (d) unit weight, (e) cohesion, (f) friction angle, (g) slope angle,
(h) slope height, and (i) pore pressure ratio.

 

Figure 11. ACADS reference slope example EX1 (Unit: m).
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Table 6. Comparison of different ML models for slope stability assessments of circular mode failure.

Reference Model AUC ACC Reference Model AUC ACC

[24]

BDA
LM-ANN
SCG-ANN

RMV
SVM

RBP-ANN
MO-LSSVM

0.75
0.79
0.81
0.83
0.83
0.84
0.86

/ [25]
RBF

LSSVM
ELM

/
0.81

0.8706
0.8400

[17]

GA-GP
GA-QDA
GA-SVM
GA-ANN

GA-ADB-DT
GA-KNN
GA-OEC

0.893
0.798
0.908
0.877
0.936
0.908
0.943

/ [27]

RF
SVM
NB

GSA

0.833
0.556
0.667
0.886

/

[16]

FA-LR
FA-DT

FA-MLP
FA-RF

FA-GBM
FA-SVM

0.822
0.854
0.864
0.957
0.962
0.967

/ [18]

ANN
SVM
RF

GBM

0.888
0.889
0.897
0.900

/

[13]

XGB
RF
LR

SVM
BC

LDA
KNN

DT
MLP
GNB
XRT

Stacked
ensemble

0.77
0.79
0.83
081
0.71
0.80
0.78
0.72
0.83
0.7.
0.74
0.90

/ [11]

KNN
SVM
SGD
GP

QDA
GNB
DT

ANN
B-KNN
B-SVM
B-ANN

RF
AB

GBM
XGB

Heterogeneous
ensemble

0.931
0.796
0.688
0.933
0.817
0.775
0.829
0.817
0.938
0.892
0.933
0.904
0.910
0.929
0.950
0.950

0.839
0.806
0.710
0.839
0.774
0.806
0.774
0.806
0.871
0.871
0.839
0.806
0.839
0.774
0.903
0.806

[12]

GBM
Bagging

Adaboost
XRT
RF

HGB
Voting
Stacked

0.9199
0.9291
0.9199
0.9519
0.9268
0.8970
0.9588
0.9382

/ [30]

SVM
DT
LR
NB

Boosting
MDMSE

/

0.8452
0.8333
<0.75
<0.75
0.8214
0.8810

Current
study

H2O1 (Stacked
Ensem-

ble_Best1000)
0.970 0.904

Note: The best results are shown in bold italics. The results for relatively small sample sets (less than 100) are not
presented or compared.

4.5. Advantages and Limitations of the Proposed Approach

Generally, the traditional ML models require workflows which encompass data pre-
processing, feature engineering, ML algorithm selection, and hyperparameter tuning to be
constructed, and are often developed based on prior experience. Due to varying levels of
knowledge, the traditional ML model may not fully exploit the power of ML, resulting in
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less optimal results than those obtained with other models. Therefore, it is not objective
to claim that one algorithm outperforms another without adjusting the hyperparameters.
In contrast, AutoML is capable of automatically implementing the above processes and
extensively exploring different workflows with minimal human intervention, resulting in a
better model. In fact, previous studies [51,52] have reported that AutoML outperformed
traditional ML models that were manually developed by data scientists. Moreover, it takes
less computational time to train AutoML, with hundreds of optional pipelines, than it does
to train a manually derived ML model, often requiring days to tune. In fact, based on
the collected dataset, the computational time of AutoML with 8408 pipelines is one hour.
Moreover, various commercial and open-source AutoML platforms have been developed,
and many successful implementations have been reported. For example, an AutoML vision
model was implemented for production recommendation using Google Cloud AutoML
without hiring ML engineers [40]. These results may suggest that AutoML is preferred
in some cases. However, due to the complex and involved process required to build an
AutoML system from scratch, AutoML is still in an early stage of development. At present,
AutoML is not fully automated [37,40]. For example, human efforts are still needed for data
collection and data cleaning. For now, clear objectives based on high-quality data must be
defined for AutoML. Nevertheless, the AutoML approach holds limitations such as black
box, and is computationally expensive for large-scale datasets due to extensive searching
of different pipelines.

5. Conclusions

In the present study, an updated database consisting of 627 cases was collected for
slope stability classification of circular failure model. For the first time, an AutoML ap-
proach was proposed for ML model development. Instead of manually building a pipeline
for ML algorithm selection and hyperparameter tuning, AutoML is capable of automati-
cally implementing model development and performing extensive searches of different
pipelines with minimal human intervention. The stacked ensemble of the best 1000 models
was selected as the top model from 8208 ML trained models. The top-performing model
provided highly accurate discriminative ability, with an AUC of 0.970 and an ACC of
0.904 for the testing dataset, achieving a maximum lift of 2.1. The trained AutoML model
outperformed traditional manually tuned and metaheuristic-optimized models. AutoML
was verified as an effective tool for automated ML model development and slope stability
assessments of circular failure.

Given the successful use of AutoML for classification of slope stability for circular
mode failure, it seems that such a methodology could be useful for short-term severity
mitigation of geohazard and achieving long-term sustainable development goals.

Although the proposed AutoML approach shows promising results, it still has some lim-
itations. Beyond the black box nature, among the major shortcomings of AutoML, a solution
is their computational complexity. Future works should focus on developing explainable
and interpretable ML models by coupling data-driven models with physical models.
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AB: adaptive boost; ABC: artificial bee colony; ACC: accuracy; ACADS: Australian Association
for Computer Aided Design; ADB: adaptive boosted decision tree; ANN: artificial neural network;
AUC: area under the receiver operating characteristic curve; AutoML: automated machine learning;
B-ANN: bagging artificial neural network; BC: bagging classifier; BDA: Bayes discriminant analysis;
B-KNN: bagging k-nearest neighbors; BP: back-propagation; B-SVM: bagging support vector machine;
CASHs: combinations of algorithm selection and hyperparameter tuning; CV: cross validation; DNN:
deep neural network; DRF: distributed random forest; DT: decision tree; ELM: extreme learning
machine; FA: firefly algorithm; GA: genetic algorithm; GBM: gradient boosting machine; GLM:
generalized linear model; GNB: Gaussian naive bayes; GP: Gaussian process; GS: grid search; GSA:
gravitational search algorithm; HGB: hist gradient boosting classifier; HS: harmony search, KNN:
k-nearest neighbors; LDA: linear discriminant analysis; LM: Levenberg–Marquardt; LR: logistic
regression; LSSVM: least squares support vector machine; MDMSE: margin distance minimization
selective ensemble; ML: machine learning; MLP: multilayer perceptron; MO: metaheuristic optimized;
NB: naive Bayes; NPV: negative predictive value; OEC: optimum ensemble classifier; PC: principal
component; PCA: principal component analysis; PPV: positive predictive value; PSO: particle swarm
optimization; QDA: quadratic discriminant analysis; RBF: radial basis function; RBP: resilient back-
propagation; RF: random forest; RMV: relevance vector machine; SCG: scaled conjugate gradient;
SEN: sensitivity; SGD: stochastic gradient descent; SPE: specificity; Std.: standard deviation; SVM:
support vector machine; XRT: extremely randomized tree.

Appendix A. Updated Dataset for Slope Stability Assessments of Circular

Mode Failure

No γ (kN/m3) c (kPa) ϕ (◦) β (◦) H (m) ru Status

1 17.98 4.95 30.02 19.98 8 0.3 Stable
2 18 5 30 20 8 0.3 Stable
3 21.47 6.9 30.02 31.01 76.8 0.38 Failure
4 21.51 6.94 30 31 76.81 0.38 Failure
5 21.78 8.55 32 27.98 12.8 0.49 Failure
6 21.82 8.62 32 28 12.8 0.49 Failure
7 22.4 10 35 30 10 0 Stable
8 21.4 10 30.34 30 20 0 Stable
9 22.4 10 35 45 10 0.4 Failure

10 27.3 10 39 41 511 0.25 Stable
11 27.3 10 39 40 470 0.25 Stable
12 22.4 10 35 30 10 0.25 Stable
13 21.4 10 30.34 30 20 0.25 Stable
14 27 10 39 41 511 0.25 Stable
15 27 10 39 40 470 0.25 Stable
16 27.3 10 39 40 480 0.25 Stable
17 21.36 10.05 30.33 30 20 0 Stable
18 19.97 10.05 28.98 34.03 6 0.3 Stable
19 22.38 10.05 35.01 30 10 0 Stable
20 22.38 10.05 35.01 45 10 0.4 Failure
21 19.08 10.05 9.99 25.02 50 0.4 Failure
22 19.08 10.05 19.98 30 50 0.4 Failure
23 18.83 10.35 21.29 34.03 37 0.3 Failure
24 16.5 11.49 0 30 3.66 0 Failure
25 16.47 11.55 0 30 3.6 0 Failure
26 19.03 11.7 27.99 34.98 21 0.11 Failure
27 19.06 11.7 28 35 21 0.11 Failure
28 19.06 11.71 28 35 21 0.11 Failure

213



Sensors 2022, 22, 9166

No γ (kN/m3) c (kPa) ϕ (◦) β (◦) H (m) ru Status

29 19.06 11.75 28 35 21 0.11 Failure
30 14 11.97 26 30 88 0 Failure
31 19.63 11.97 20 22 12.19 0.41 Failure
32 14 11.97 26 30 88 0.45 Failure
33 19.63 11.97 20 22 21.19 0.4 Failure
34 18.5 12 0 30 6 0 Failure
35 18.5 12 0 30 6 0.25 Failure
36 19.6 12 19.98 22 12.2 0.41 Failure
37 13.97 12 26.01 30 88 0 Failure
38 18.46 12 0 30 6 0 Failure
39 13.97 12 26.01 30 88 0.45 Failure
40 27.3 14 31 41 110 0.25 Stable
41 27 14 31 41 110 0.25 Stable
42 18.84 14.36 25 20 30.5 0 Stable
43 18.84 14.36 25 20 30.5 0.45 Failure
44 18.84 14.36 25 20.3 50 0.45 Failure
45 18.8 14.4 25.02 19.98 30.6 0 Stable
46 18.8 14.4 25.02 19.98 30.6 0.45 Failure
47 18.8 15.31 30.02 25.02 10.6 0.38 Stable
48 18.84 15.32 30 25 10.67 0.38 Stable
49 20.56 16.21 26.51 30 40 0 Failure
50 20.6 16.28 26.5 30 40 0 Failure
51 27.3 16.8 28 50 90.5 0.25 Stable
52 27 16.8 28 50 90.5 0.25 Stable
53 20.96 19.96 40.01 40.02 12 0 Stable
54 21.98 19.96 36 45 50 0 Failure
55 19.97 19.96 36 45 50 0.25 Failure
56 19.97 19.96 36 45 50 0.5 Failure
57 18.77 19.96 9.99 25.02 50 0.3 Failure
58 18.77 19.96 19.98 30 50 0.3 Failure
59 21.98 19.96 22.01 19.98 180 0 Failure
60 21.98 19.96 22.01 19.98 180 0.1 Failure
61 22 20 36 45 50 0 Failure
62 20 20 36 45 50 0.25 Failure
63 20 20 36 45 50 0.5 Failure
64 18 24 30.15 45 20 0.12 Failure
65 17.98 24.01 30.15 45 20 0.12 Failure
66 18.83 24.76 21.29 29.2 37 0.5 Failure
67 20.41 24.9 13 22 10.67 0.35 Stable
68 20.39 24.91 13.01 22 10.6 0.35 Stable
69 18.5 25 0 30 6 0 Failure
70 18.5 25 0 30 6 0.25 Failure
71 18.46 25.06 0 30 6 0 Failure
72 18.77 25.06 19.98 30 50 0.2 Failure
73 18.77 25.06 9.99 25.02 50 0.2 Failure
74 27.3 26 31 50 92 0.25 Stable
75 27 26 31 50 92 0.25 Stable
76 18.68 26.34 15 35 8.23 0 Failure
77 18.66 26.41 14.99 34.98 8.2 0 Failure
78 28.4 29.41 35.01 34.98 100 0 Stable
79 28.44 29.42 35 35 100 0 Stable
80 18.77 30.01 9.99 25.02 50 0.1 Stable
81 18.77 30.01 19.98 30 50 0.1 Stable
82 20.96 30.01 35.01 40.02 12 0.4 Stable
83 18.97 30.01 35.01 34.98 11 0.2 Stable
84 27.3 31.5 29.7 41 135 0.25 Stable
85 27 31.5 29.7 41 135 0.25 Stable
86 27 32 33 42.6 301 0.25 Failure
87 27 32 33 42.4 289 0.25 Stable
88 27 32 33 42 289 0.25 Stable
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No γ (kN/m3) c (kPa) ϕ (◦) β (◦) H (m) ru Status

89 20.39 33.46 10.98 16.01 45.8 0.2 Failure
90 20.41 33.52 11 16 45.72 0.2 Failure
91 20.41 33.52 11 16 45.7 0.2 Failure
92 20.96 34.96 27.99 40.02 12 0.5 Stable
93 27 35 35 42 359 0.25 Stable
94 27 37.5 35 37.8 320 0.25 Stable
95 27 37.5 35 38 320 0.25 Stable
96 28.4 39.16 37.98 34.98 100 0 Stable
97 28.44 39.23 38 35 100 0 Stable
98 27 40 35 43 420 0.25 Failure
99 19.97 40.06 30.02 30 15 0.3 Stable
100 19.97 40.06 40.01 40.02 10 0.2 Stable
101 20.96 45.02 25.02 49.03 12 0.3 Stable
102 17.98 45.02 25.02 25.02 14 0.3 Stable
103 25 46 35 47 443 0.25 Stable
104 25 46 35 44 435 0.25 Stable
105 25 46 35 46 432 0.25 Stable
106 25 46 35 46 393 0.25 Stable
107 25 48 40 49 330 0.25 Stable
108 26.43 50 26.6 40 92.2 0.15 Stable
109 26.7 50 26.6 50 170 0.25 Stable
110 27 50 40 42 407 0.25 Stable
111 25 55 36 45.5 299 0.25 Stable
112 25 55 36 44 299 0.25 Stable
113 18.84 57.46 20 20 30.5 0 Stable
114 18.8 57.47 19.98 19.98 30.6 0 Stable
115 26.8 60 28.8 59 108 0.25 Stable
116 31.3 68 37 47 213 0.25 Failure
117 31.3 68 37 46 366 0.25 Stable
118 31.3 68.6 37 47 305 0.25 Failure
119 16 70 20 40 115 0 Failure
120 15.99 70.07 19.98 40.02 115 0 Failure
121 22.38 99.93 45 45 15 0.25 Stable
122 22.4 100 45 45 15 0.25 Stable
123 25 120 45 53 120 0 Stable
124 24.96 120.04 45 53 120 0 Stable
125 26.49 150 33 45 73 0.15 Stable
126 26.7 150 33 50 130 0.25 Stable
127 26.89 150 33 52 120 0.25 Stable
128 26 150 45 30 200 0.25 Stable
129 26 150.05 45 50 200 0 Stable
130 25.96 150.05 45 49.98 200 0 Stable
131 26.81 200 35 58 138 0.25 Stable
132 26.57 300 38.7 45.3 80 0.15 Failure
133 26.78 300 38.7 54 155 0.25 Failure
134 19.9652 19.95665 36 44.997 50 0.25 Failure
135 25.6 38.8 36 25 26 0 Stable
136 22.88 0 31.78 36.86 45.45 0.54 Failure
137 23.5 25 20 49.1 115 0.41 Stable
138 16 7 20 40 115 0 Failure
139 27.3 37.3 31 30 30 0 Stable
140 22 0 36 45 50 0.25 Stable
141 27 31.5 30 41 135 0.25 Stable
142 18.8008 14.4048 25.02 19.981 30.6 0 Stable
143 19.6 17.8 29.2 46.8 201.2 0.37 Stable
144 18.84 15.32 30 25 10.7 0.38 Stable
145 25 46 36 44.5 299 0.25 Stable
146 19.63 11.98 20 22 12.19 0 Failure
147 25 12 45 53 120 0 Stable
148 18.7724 30.01 9.99 25.016 50 0.1 Stable
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No γ (kN/m3) c (kPa) ϕ (◦) β (◦) H (m) ru Status

149 25 46 35 47 443 0.29 Stable
150 18.7724 25.05835 9.99 25.016 50 0.2 Failure
151 30.95 30.79 27.08 39.77 131.22 0.22 Stable
152 17.4 14.95 21.2 45 15 0.4 Failure
153 23.1 25.2 29.2 36.5 61.9 0.4 Stable
154 21.51 6.94 30 31 76.8 0.38 Failure
155 20.9592 45.015 25.02 49.025 12 0.3 Stable
156 27 32 33 42.6 301 0.29 Failure
157 15.9892 70.07335 19.98 40.015 115 0 Failure
158 12 0 30 45 8 0.29 Failure
159 25 46 35 50 285 0.25 Stable
160 13.9728 12.004 26.01 29.998 88 0.45 Failure
161 18.68 26.34 15 35 8.23 0.25 Failure
162 18.7724 30.01 19.98 29.998 50 0.1 Stable
163 22 0 40 33 8 0.35 Stable
164 20 0 36 45 50 0.25 Failure
165 31.3 68.6 37 47 305 0 Failure
166 22 10 35 45 10 0.403 Failure
167 18 5 26.5 15.52 53 0.4 Failure
168 21.7 32 27 45 60 0 Failure
169 14 11.97 26 30 88 0.25 Failure
170 18.84 14.36 25 20 30.5 0.25 Stable
171 12 0 30 45 4 0.25 Stable
172 18 5 22 15.52 53 0.4 Failure
173 26.2 44.14 32.26 37.71 359.04 0.21 Stable
174 19.9652 19.95665 36 44.997 50 0.5 Failure
175 22 20 36 45 50 0.25 Failure
176 12 0 30 35 4 0 Stable
177 25 120 45 53 120 0.25 Stable
178 31.3 68 37 46 366 0 Failure
179 26.5 36.1 31 35 39 0 Stable
180 20.9592 30.01 35.01 40.015 12 0.4 Stable
181 27.3 10 39 40 470 0.29 Stable
182 27.3 36 1 50 92 0.29 Stable
183 18.84 0 20 20 7.62 0.45 Failure
184 26.2 41.5 36 35 30 0 Stable
185 27.4 38.1 31 25 42 0 Stable
186 26.93 0 41.13 31.68 8.16 0.3 Stable
187 20.8 15.6 20 30 45 0 Failure
188 27 27.3 29.1 34 126.5 0.3 Failure
189 30.33 15.62 24.21 52.5 85.76 0.25 Failure
190 19 11.9 20.4 21.04 54 0.75 Stable
191 18.8 9.8 21 19.29 39 0.25 Failure
192 21.1 34.2 26 30 75 0 Failure
193 20 0.1 36 45 50 0.29 Failure
194 24 0 40 33 8 0.3 Failure
195 24.45 11.34 39.31 44.03 9.79 0.43 Failure
196 18 0 30 33 8 0.303 Stable
197 20.41 24.91 13 22 10.67 0.35 Stable
198 21.8 31.2 25 30 60 0 Failure
199 20 0.1 36 45 50 0.503 Failure
200 24 0 40 33 8 0.303 Stable
201 26.78 26.79 30.66 43.66 249.7 0.25 Stable
202 31.25 25.73 27.97 48.23 91.55 0.21 Failure
203 12 0.03 30 35 4 0.29 Failure
204 22 0 36 45 50 0.25 Failure
205 25 55 36 45 239 0.25 Stable
206 23 24 19.8 23 380 0 Failure
207 21.2 0 35 23.75 150 0.25 Failure
208 20.9592 34.96165 27.99 40.015 12 0.5 Stable
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No γ (kN/m3) c (kPa) ϕ (◦) β (◦) H (m) ru Status

209 12 0 30 45 8 0.25 Failure
210 27 70 22.8 45 60 0.32 Stable
211 18.7724 19.95665 19.98 29.998 50 0.3 Failure
212 28.44 29.42 35 35 100 0.25 Stable
213 20.8 15.4 21 30 53 0 Failure
214 19.596 12.004 19.98 21.995 12.2 0.405 Failure
215 22.1 24.2 39.7 45.8 49.5 0.21 Stable
216 22.4 29.3 26 50 50 0 Failure
217 20 0 24.5 20 8 0.35 Stable
218 25 55 36 45.5 299 0 Stable
219 17.55 22.08 0 34.99 5.88 0.35 Failure
220 20.52 14.06 26.23 25.38 9.86 0.37 Stable
221 21.9816 19.95665 22.005 19.981 180 0.1 Failure
222 18.46 12.004 0 29.998 6 0 Failure
223 20.45 16 15 30 36 0.25 Stable
224 21.1 33.5 28 40 31 0 Failure
225 22 20 36 45 30 0.29 Failure
226 17.6 10 16 21.8 9 0.4 Stable
227 31.3 68.6 37 47 270 0.25 Failure
228 23.4 15 38.5 30.3 45.2 0.28 Failure
229 16.472 11.55385 0 29.998 3.6 0 Failure
230 23.47 0 32 37 214 0.25 Failure
231 24.86 45.6 39.8 36.31 386.08 0.21 Stable
232 17.2 10 24.25 17.07 38 0.4 Stable
233 14.8 0 17 20 50 0 Failure
234 17.86 0 24.38 22.44 8.23 0.39 Stable
235 18.82 25 14.6 20.32 50 0.4 Failure
236 18.8292 10.35345 21.285 34.026 37 0.3 Failure
237 18.84 57.46 20 20 30.5 0.25 Stable
238 31.3 68.6 37 47 305 0.25 Stable
239 28.01 9.5 37.36 41.86 538.1 0.23 Stable
240 25 63 32 44.5 239 0.25 Stable
241 18.6 0 32 21.8 46 0.25 Stable
242 25.8 38.2 33 27 40 0 Stable
243 31.3 68 37 49 200.5 0.29 Failure
244 16 70 20 40 115 0.25 Failure
245 22 0 40 33 8 0.393 Stable
246 25 46 35 50 284 0.25 Stable
247 20.6 27.8 27 35 70 0 Failure
248 22 40 30 30 196 0 Stable
249 18.9712 30.01 35.01 34.98 11 0.2 Stable
250 26.2 43.8 38 35 68 0 Stable
251 17.9772 4.95165 30.015 19.981 8 0.3 Stable
252 22.4 28.9 24 28 35 0 Failure
253 25.6 39.8 36 30 32 0 Stable
254 19.36 19.8 38.49 43.41 48.88 0.43 Failure
255 20.41 24.9 13 22 10.7 0.35 Stable
256 23.5 10 27 26 190 0 Failure
257 17.4 20 24 18.43 51 0.4 Failure
258 17.6 10 8 21.8 9 0.4 Stable
259 22.3792 10.05335 35.01 29.998 10 0 Stable
260 21.7828 8.55285 31.995 27.984 12.8 0.49 Failure
261 19.63 11.97 20 22 12.19 0.405 Failure
262 25 48 40 45 330 0.25 Stable
263 25.8 39.4 33 25 45 0 Stable
264 27 40 35 47.1 292 0.25 Failure
265 12 0 30 35 8 0.25 Failure
266 22.3792 99.9333 45 44.997 15 0.25 Stable
267 16.5 11.49 0 30 3.66 0.25 Failure
268 25.8 34.7 33 30 50 0 Stable
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No γ (kN/m3) c (kPa) ϕ (◦) β (◦) H (m) ru Status

269 26.62 0 31.78 42.72 51.48 0.4 Failure
270 24 0 40 33 8 0.3 Stable
271 18.84 0 20 20 7.62 0 Failure
272 18.7724 25.05835 19.98 29.998 50 0.2 Failure
273 22 21 23 30 257 0 Failure
274 23.2 9.5 39.69 39.34 10.49 0.44 Failure
275 21.78 0 34.2 35 7.13 0.32 Stable
276 14.8 0 17 20 50 0.25 Failure
277 31.3 68 37 47 213 0 Failure
278 21.8 32.7 27 50 50 0 Failure
279 21.8 28.8 26 35 99 0 Failure
280 26.2 42.8 37 30 37 0 Stable
281 22 10 35 30 10 0.29 Stable
282 19.6 21.8 29.5 37.8 40.3 0.25 Stable
283 18.6 0 32 26.5 46 0.25 Stable
284 27.3 10 39 41 511 0.29 Stable
285 28.07 35 38.93 44.54 361.51 0.24 Stable
286 19.63 11.97 20 22 12.2 0.41 Failure
287 27 50 40 42 407 0.29 Stable
288 21.73 9.21 30.6 33.06 19.78 0.29 Stable
289 27.3 14 31 41 110 0.29 Stable
290 26.69 50 26.6 50 170 0.25 Stable
291 26.5 35.4 32 30 21 0 Stable
292 26.5 41.8 36 42 54 0 Stable
293 18.7724 19.95665 9.99 25.016 50 0.3 Failure
294 29.7 38.09 32.92 45.48 410.4 0.26 Stable
295 26.2 42.3 36 23 36 0 Stable
296 20.6 16.28 26.5 30 40 0.25 Failure
297 20.9592 19.95665 40.005 40.015 12 0 Stable
298 20.6 28.5 27 40 65 0 Failure
299 17.29 0 37.22 44.55 42.3 0.28 Failure
300 12.34 0 25.92 46.82 8.08 0.43 Failure
301 27 37.5 35 37.8 320 0.29 Stable
302 24.9636 120.04 45 53 120 0 Stable
303 22.1 45.8 49.5 45.8 49.5 0.21 Stable
304 11.94 0 31.75 32.49 3.92 0.11 Stable
305 17.9772 45.015 25.02 25.016 14 0.3 Stable
306 20.6 32.4 26 30 42 0 Failure
307 18.8 8 26 21.8 40 0.4 Failure
308 31.3 68 37 47 360.5 0.25 Failure
309 26.83 13.98 35.46 43.5 96.14 0.23 Stable
310 21.2 0 35 23.75 150 0.25 Stable
311 22 0 36 45 50 0 Failure
312 17.9772 24.008 30.15 44.997 20 0.12 Failure
313 20 20 36 45 30 0.503 Failure
314 24.57 9.98 41.31 35.46 526.13 0.27 Stable
315 21.5 29.8 26 40 70 0 Failure
316 27.1 22 18.6 25.6 100 0.19 Failure
317 22 10 36 45 50 0.29 Failure
318 21.6 6.5 19 40 50 0 Failure
319 20.97 21.8 31.81 38.09 57.75 0.24 Failure
320 26.8 37.5 32 30 26 0 Stable
321 25.9576 150.05 45 49.979 200 0 Stable
322 19.9652 10.05335 28.98 34.026 6 0.3 Stable
323 22.54 29.4 20 24 210 0 Stable
324 26 42.4 37 38 55 0 Stable
325 20.41 24.9 13 22 10.67 0 Stable
326 21 20 24 21 565 0 Stable
327 31.3 68 37 49 200.5 0.25 Failure
328 20.6 32.4 26 35 55 0 Failure
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329 16.05 11.49 0 30 3.66 0 Failure
330 25 46 36 44.5 299 0 Stable
331 19.43 11.16 0 32.34 5.35 0.36 Failure
332 20 30.3 25 45 53 0 Failure
333 21.9816 19.95665 36 44.997 50 0 Failure
334 27.3 31.5 29.703 41 135 0.293 Stable
335 21.5 15 29 41.5 123.6 0.36 Stable
336 20.8 14.8 21 30 40 0 Failure
337 25.8 43.3 37 30 33 0 Stable
338 20.41 33.52 11 16 45.72 0 Failure
339 27 40 35 47.1 292 0 Failure
340 24 40.8 35 35 50 0 Stable
341 22.4 100 45 45 15 0.25 Failure
342 25 63 32 46 300 0.25 Stable
343 18 24 30.2 45 20 0.12 Failure
344 26.81 60 28.8 59 108 0.25 Stable
345 28.35 44.97 33.49 43.16 413.42 0.25 Failure
346 19.0848 10.05335 9.99 25.016 50 0.4 Failure
347 27 27.3 29.1 35 150 0.26 Failure
348 31.3 68 37 8 305.5 0.25 Failure
349 25 48 40 49 330 0 Stable
350 18.8008 57.46915 19.98 19.981 30.6 0 Stable
351 27 32 33 42 301 0.25 Failure
352 25 46 35 46 393 0 Stable
353 18.84 0 20 20 7.6 0.45 Failure
354 20.3912 24.9083 13.005 21.995 10.6 0.35 Stable
355 26 15 45 50 200 0 Stable
356 31.3 58.8 35.5 47.5 438.5 0.25 Failure
357 18.6588 26.4088 14.985 34.98 8.2 0 Failure
358 21.1 10 30.34 30 20 0 Stable
359 25.8 41.2 35 30 40 0 Stable
360 21.4704 6.9023 30.015 31.005 76.8 0.38 Failure
361 23.47 0 32 37 214 0 Failure
362 20 0 20 20 8 0.35 Stable
363 23 20 20.3 46.2 40.3 0.25 Stable
364 31.3 58.8 35.5 47.5 502.7 0.25 Failure
365 26 39.4 36 25 30 0 Stable
366 27.3 10 39 40 480 0 Stable
367 21.8 27.6 25 35 60 0 Failure
368 21.4 28.8 20 50 52 0 Failure
369 19.9652 40.06335 30.015 29.998 15 0.3 Stable
370 20 8 20 10 10 0 Failure
371 23.8 31 38.7 47.5 23.5 0.31 Stable
372 26.6 42.4 37 25 52 0 Stable
373 28.4 39.16305 37.98 34.98 100 0 Stable
374 21.51 17.82 31.75 47.03 49.92 0.52 Failure
375 22 0 40 33 8 0.35 Failure
376 23 0 20 20 100 0.3 Failure
377 21.43 0 20 20 61 0 Failure
378 26.6 40.7 35 35 60 0 Stable
379 27.83 45.01 35.95 47.83 456.38 0.25 Stable
380 25 46 35 44 435 0.29 Stable
381 18.71 4.75 28.12 18.81 8.62 0.31 Stable
382 26.6 44.1 38 35 42 0 Stable
383 28.4 29.4098 35.01 34.98 100 0 Stable
384 19.028 11.7039 27.99 34.98 21 0.11 Failure
385 18.45 0 18.58 17.82 7.55 0.43 Failure
386 27 35 35 42 359 0.29 Stable
387 31.3 68.6 37 47.5 262.5 0.25 Failure
388 31.3 68 37 46 366 0.25 Failure
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389 27 43 35 43 420 0.29 Failure
390 12 0 30 35 4 0.25 Stable
391 26.18 159 44.93 31.5 172.98 0.1 Failure
392 19.32 0 19.44 20.2 68.48 0.45 Failure
393 30 27.38 34.57 43.46 319.21 0.27 Failure
394 12 0 30 45 8 0 Failure
395 28.51 42.34 32.2 43.25 453.6 0.25 Stable
396 11.82 0 33.7 31.26 3.91 0.42 Stable
397 18.84 15.32 30 25 10.67 0 Stable
398 27 35.8 32 30 69 0 Stable
399 18 21 21.33 21.8 40 0.4 Failure
400 17.8 21.2 13.92 18.43 51 0.4 Stable
401 27.3 16.2 28 50 90.5 0.29 Stable
402 22.3 20.1 31 40.2 88 0.19 Stable
403 22.5 20 16 25 220 0 Stable
404 13.9728 12.004 26.01 29.998 88 0 Failure
405 25 46 35 46 432 0.29 Stable
406 20 30 36 45 50 0.29 Failure
407 23.2 31.2 23 30 33 0 Failure
408 25.4 33 33 20 35 0 Failure
409 26 150.05 45 50 200 0.25 Stable
410 19.9652 40.06335 40.005 40.015 10 0.2 Stable
411 20.3912 33.46115 10.98 16.006 45.8 0.2 Failure
412 28.44 39.23 38 35 100 0.25 Stable
413 21 10 30.343 30 30 0.29 Stable
414 22 29 15 18 400 0 Failure
415 27.8 27.8 27 41 236 0.1 Stable
416 26.5 42.9 38 34 36 0 Stable
417 18.8292 24.75825 21.285 29.203 37 0.5 Failure
418 21.9816 19.95665 22.005 19.981 180 0 Failure
419 18.8008 15.3051 30.015 25.016 10.6 0.38 Stable
420 21.83 8.62 32 28 12.8 0 Failure
421 22.85 8.46 38.12 25.67 11.34 0.56 Stable
422 18.5 25 0 30 6.003 0.29 Failure
423 27 38.4 33 25 22 0 Stable
424 24 41.5 36 30 51 0 Stable
425 21.43 0 20 20 61 0.5 Failure
426 26 150 45 30 230 0.29 Stable
427 18.5 12 0 30 6.003 0.29 Failure
428 22.3792 10.05335 35.01 44.997 10 0.4 Failure
429 20.5616 16.2054 26.505 29.998 40 0 Failure
430 31 68 37 46 366 0.25 Failure
431 21.3568 10.05335 30.33 29.998 20 0 Stable
432 25 46 35 50 284 0 Stable
433 27 32 33 42.2 239 0.29 Stable
434 25.6 36.8 34 35 60 0 Stable
435 20 0 36 45 50 0.5 Failure
436 19.0848 10.05335 19.98 29.998 50 0.4 Failure
437 33.16 68.54 41.11 51.98 188.15 0.44 Failure
438 21.2 0 35 18.43 73 0.25 Stable
439 20.6 26.31 22 25 35 0 Failure
440 18.46 25.05835 0 29.998 6 0 Failure
441 22.3 0 40 26.5 78 0.25 Stable
442 12 0 30 35 4 0.29 Stable
443 18.12 10.57 30.84 32.45 21.77 0.11 Failure
444 19.6 29.6 23 40 58 0 Failure
445 27 27.3 29.1 37 184 0.22 Failure
446 25 55 36 45 299 0.25 Stable
447 22.5 18 20 20 290 0 Stable
448 18.8008 14.4048 25.02 19.981 30.6 0.45 Failure
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449 12 0 30 45 4 0 Stable
450 23.47 0 32 37 214 0 Stable
451 20.41 33.52 11 16 10.67 0.35 Stable
452 25.4 33 33 20 35 0 Stable
453 27.3 31.5 30 41 135 0.25 Stable
454 21.4 10 30 30 20 0.25 Stable
455 18.66 8.8 15 35 8.2 0 Failure
456 28.4 9.8 35 35 100 0 Stable
457 25.96 50 45 50 200 0 Stable
458 18.46 8.35 0 30 6 0 Failure
459 21.36 3.35 30 30 20 0 Stable
460 15.99 23.35 20 40 115 0 Failure
461 20.39 8.3 13 22 10.6 0.35 Stable
462 19.6 4 20 22 12.2 0.41 Failure
463 20.39 11.15 11 16 45.8 0.2 Failure
464 19.03 3.9 28 35 21 0.11 Failure
465 17.98 1.65 30 20 8 0.3 Stable
466 20.96 6.65 40 40 12 0 Stable
467 20.96 11.65 28 40 12 0.5 Stable
468 19.97 3.35 29 34 6 0.3 Stable
469 18.77 10 10 25 50 0.1 Stable
470 18.77 10 20 30 50 0.1 Stable
471 18.77 8.35 20 30 50 0.2 Failure
472 20.56 5.4 27 30 40 0 Failure
473 16.47 3.85 0 30 3.6 0 Failure
474 18.8 4.8 25 20 30.6 0 Stable
475 18.8 19.15 20 20 30.6 0 Stable
476 28.4 13.05 38 35 100 0 Stable
477 24.96 40 45 53 120 0 Stable
478 18.46 4 0 30 6 0 Failure
479 22.38 3.35 35 30 10 0 Stable
480 21.98 6.65 36 45 50 0 Failure
481 18.8 5.1 30 25 10.6 0.38 Stable
482 18.8 4.8 25 31 76.8 0.38 Failure
483 21.47 2.3 30 30 88 0.45 Failure
484 13.97 4 26 45 20 0.12 Failure
485 17.98 8 30 45 15 0.25 Failure
486 22.38 33.3 45 45 10 0.4 Stable
487 22.38 3.35 35 45 50 0.25 Failure
488 19.97 6.65 36 45 50 0.25 Failure
489 19.97 6.65 36 45 50 0.5 Failure
490 20.96 15 25 49 12 0.3 Stable
491 20.96 10 35 40 12 0.4 Stable
492 19.97 13.35 30 30 15 0.3 Stable
493 17.98 15 25 25 14 0.3 Stable
494 18.97 10 35 35 11 0.2 Stable
495 19.97 13.35 40 40 10 0.2 Stable
496 18.83 8.25 21 21 37 0.5 Stable
497 18.83 3.45 21 34 37 0.3 Failure
498 18.77 8.35 10 25 50 0.2 Failure
499 18.77 6.65 10 25 50 0.3 Failure
500 19.08 3.35 10 25 50 0.4 Failure
501 18.77 6.65 20 30 50 0.3 Failure
502 19.08 3.35 20 30 50 0.4 Failure
503 21.98 6.65 22 20 180 0 Failure
504 21.98 6.65 22 20 180 0.1 Failure
505 20 20 36 45 50 0 Failure
506 27 27.3 29.1 21 565 0.26 Failure
507 27 27.3 29.1 35 150 0.22 Failure
508 27 27.3 29.1 37 184 0.3 Failure
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509 0.657 0.176 0.333 0.66 0.041 0 Failure
510 1 0.196 0.778 0.66 0.5 0 Stable
511 0.914 1 1 0.943 1 0 Stable
512 0.65 0.167 0 0.566 0.03 0 Failure
513 0.752 0.067 0.674 0.566 0.1 0 Stable
514 0.563 0.467 0.444 0.755 0.575 0 Failure
515 0.718 0.166 0.289 0.415 0.053 0.7 Stable
516 0.69 0.08 0.444 0.415 0.061 0.81 Failure
517 0.767 0.057 0.711 0.528 0.064 0.98 Failure
518 0.718 0.223 0.244 0.302 0.229 0.4 Failure
519 0.67 0.078 0.622 0.66 0.105 0.22 Failure
520 0.633 0.033 0.667 0.377 0.04 0.6 Stable
521 0.738 0.133 0.889 0.755 0.06 0 Stable
522 0.738 0.233 0.622 0.755 0.06 1 Stable
523 0.703 0.067 0.644 0.642 0.03 0.6 Stable
524 0.661 0.2 0.222 0.472 0.25 0.2 Stable
525 0.661 0.2 0.444 0.566 0.25 0.2 Stable
526 0.661 0.167 0.444 0.566 0.25 0.4 Failure
527 0.724 0.108 0.589 0.566 0.2 0 Failure
528 0.58 0.077 0 0.566 0.018 0 Failure
529 0.662 0.096 0.556 0.377 0.153 0 Stable
530 0.662 0.383 0.444 0.377 0.153 0 Stable
531 1 0.261 0.844 0.66 0.5 0 Stable
532 0.492 0.08 0.578 0.566 0.44 0 Failure
533 0.879 0.8 1 1 0.6 0 Stable
534 0.65 0.08 0 0.566 0.03 0 Failure
535 0.788 0.067 0.778 0.566 0.05 0 Stable
536 0.774 0.133 0.8 0.849 0.25 0 Failure
537 0.662 0.102 0.667 0.472 0.053 0.76 Stable
538 0.662 0.096 0.556 0.377 0.153 0.9 Failure
539 0.756 0.046 0.667 0.585 0.384 0.76 Failure
540 0.492 0.08 0.578 0.566 0.44 0.9 Failure
541 0.633 0.16 0.67 0.849 0.1 0.24 Failure
542 0.788 0.666 1 0.849 0.075 0.5 Stable
543 0.788 0.067 0.778 0.849 0.05 0.8 Failure
544 0.703 0.133 0.8 0.849 0.25 0.5 Failure
545 0.703 0.133 0.8 0.849 0.25 1 Failure
546 0.738 0.3 0.556 0.925 0.06 0.6 Stable
547 0.738 0.2 0.778 0.755 0.06 0.8 Stable
548 0.703 0.267 0.667 0.566 0.075 0.6 Stable
549 0.633 0.3 0.556 0.472 0.07 0.6 Stable
550 0.668 0.2 0.778 0.66 0.055 0.4 Stable
551 0.703 0.267 0.889 0.755 0.05 0.4 Stable
552 0.633 0.165 0.473 0.551 0.185 1 Failure
553 0.633 0.069 0.473 0.642 0.185 0.6 Failure
554 0.661 0.167 0.222 0.472 0.25 0.4 Failure
555 0.661 0.133 0.222 0.472 0.25 0.6 Failure
556 0.672 0.067 0.222 0.472 0.25 0.8 Failure
557 0.661 0.133 0.444 0.566 0.25 0.6 Failure
558 0.672 0.067 0.444 0.566 0.25 0.8 Failure
559 0.774 0.133 0.489 0.377 0.9 0 Failure
560 0.774 0.133 0.489 0.377 0.9 0.2 Failure
561 17.6 39.5 30.2 50 38 0.04 Stable
562 17.3 39 30 50 35 0.04 Stable
563 17.8 38.7 30.5 60 26 0 Stable
564 17.9 39 31.2 55 25 0.15 Stable
565 17.3 39 30 50 26 0.2 Stable
566 17.3 37.9 30 45 29 0.37 Stable
567 17.5 38.5 29 50 33 0.2 Stable
568 17.5 39.2 29.7 55 31 0 Stable
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569 17.8 39.8 31.3 45 32 0.34 Stable
570 17.3 39 30 48 30 0.03 Stable
571 18.3 57.2 38.6 38 31 0.64 Stable
572 17.4 5 43.5 58 29 0.05 Failure
573 17.8 14 44.2 65 31 0.07 Failure
574 17.4 0 43.7 60 26 0.4 Failure
575 19.8 57.5 41.3 62 23 0.19 Stable
576 20.5 6.5 12.5 42 70 0 Failure
577 21.4 7.1 16.7 44 70 1 Failure
578 21.5 9.5 11.5 40 75 0 Failure
579 20.6 6.7 9.4 45 30 0 Failure
580 20.9 9.7 18.5 39 38 1 Failure
581 21.4 9.4 21.8 30 106 1 Failure
582 19.9 6.8 19.4 30 80 1 Failure
583 20.2 14.9 18.5 40 70 1 Failure
584 19 9 15.2 45 27 0 Failure
585 19.7 16.4 21.4 30 55 1 Failure
586 21.2 7.8 22.4 45 25 1 Failure
587 19.9 7.4 15.6 44 30 1 Failure
588 19.9 7.1 21.2 30 55 0 Failure
589 22.2 10.7 25.2 35 45 1 Failure
590 21.8 7.2 17.8 40 34 1 Failure
591 21.8 7.2 17.8 42 41 1 Failure
592 21.96 34.77 14.15 28 60 0 Stable
593 21.96 34.77 14.15 24 115 0 Stable
594 22.93 32.33 19.73 30 50 1 Stable
595 22.15 19.47 13.29 28 110 1 Stable
596 23.4 20 9 36.5 50 0 Stable
597 21.8 18.05 9.72 30 40 0 Failure
598 23.98 32.77 17.28 40 100 0 Failure
599 20.57 24.8 15.53 40 50 1 Stable
600 21.2 24.88 17.29 44 52 0 Failure
601 22.15 5 19 45 40 1 Failure
602 21.8 18.05 9.72 35 40 0 Failure
603 23.75 36.78 22.63 42 43 1 Failure
604 20.98 23.59 20 45 65 0 Failure
605 22.6 24.06 14.04 26 190 1 Stable
606 22.29 27.54 10.1 40 70 0 Stable
607 22.1 24.67 16.2 40 70 1 Stable
608 20.25 32.4 11.99 45 36 1 Failure
609 20.8 15.57 8.74 29.7 35 1 Failure
610 21.17 15.44 16 33 32 1 Failure
611 22.94 33.77 23.29 27 170 1 Stable
612 22.95 46.49 25.11 30 42 1 Stable
613 21.92 19.4 15.5 35 80 1 Failure
614 21.42 28.9 16.2 40 30 1 Stable
615 20.8 40.25 19.39 45 123 1 Failure
616 20.1 34.61 24.69 22 94 0 Stable
617 19.19 19.69 17.68 34 43 1 Failure
618 19.18 12.8 9.45 45 20 0 Failure
619 17.8 22.2 6.05 40 51.6 1 Failure
620 19.6 15.53 15.88 35 97 1 Failure
621 19.81 33.75 19.46 20 120 1 Stable
622 19.81 19.97 11.08 35 35 0 Failure
623 19.7 17 9.38 45 20 1 Failure
624 20.2 21.2 19.89 35 62 1 Failure
625 17.96 24.01 28 40 60 1 Failure
626 25 55 36 44.5 299 0.25 Stable
627 21.98 19.96 22.01 19.98 180 0.01 Failure
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Abstract: ‘Resilience’ is a new concept in the research and application of urban construction. From
the perspective of building adaptability in a mountainous environment and maintaining safety
performance over time, this paper innovatively proposes machine learning methods for evaluating
the resilience of buildings in a mountainous area. Firstly, after considering the comprehensive effects
of geographical and geological conditions, meteorological and hydrological factors, environmental
factors and building factors, the database of building resilience evaluation models in a mountainous
area is constructed. Then, machine learning methods such as random forest and support vector
machine are used to complete model training and optimization. Finally, the test data are substituted
into models, and the models’ effects are verified by the confusion matrix. The results show the
following: (1) Twelve dominant impact factors are screened. (2) Through the screening of dominant
factors, the models are comprehensively optimized. (3) The accuracy of the optimization models
based on random forest and support vector machine are both 97.4%, and the F1 scores are greater
than 94.4%. Resilience has important implications for risk prevention and the control of buildings in
a mountainous environment.

Keywords: building resilience; machine learning; evaluation model; factor screening;
model optimization

1. Introduction

‘Resilience’, derived from the Latin word ‘resilio’ [1], was first introduced into the field
of ecology by Holling [2] in the 1970s. Subsequently, scholars have broadened the definition
of ‘resilience’ to various research fields [3–7]. Different research and application fields have
different definitions [8,9], corresponding to different evaluation methods. In the fields of
engineering and construction, resilience is the ability to absorb or avoid damage without
suffering complete failure and is an objective of design, maintenance and restoration for
buildings and infrastructure, as well as communities [10,11]. At present, there are different
research methods regarding resilient cities and resilient communities [12], but most of them
consider the assets (economy, society, environment and infrastructure) and functions (social
capital, community function, transportation and communication links and planning) of
the community. Buildings, an important part of infrastructure, are inevitably damaged to
varying degrees in the actual use and operation process, resulting in property and even life
loss. The building resilience in a mountainous area [13] can be understood as the ability of
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buildings that are under the conditions of the mountainous environment to still maintain
their normal function and resist damage or to recover from the comprehensive effects of its
various attributes, natural environment and the passage of time.

Many scholars have carried out a series of studies from different perspectives on the
issue of building resilience. A resilience-based performance evaluation [14] is employed
within a multiobjective optimization methodology for the design optimization of 4, 7, 10
and 15-story buildings under seismic hazard using both life span and conditional analyses.
Himoto et al. [15] developed a computational framework using a multi-layer zone model
to evaluate the fire resilience of buildings. Dong et al. [16] proposed a method to evaluate
the seismic resilience of a steel structure considering economic, social and environmental
aspects. For key infrastructure such as hospitals, Bruneau [17] explored the operational
and physical resilience of acute care facilities.

In recent years, machine learning algorithms have attracted increasing attention in the
field of risk assessment management [18–21]. Riedel et al. [22] carried out seismic vulnera-
bility assessment of urban environments in moderate-to-low seismic hazard regions using
association rule learning and support vector machine methods. Xie et al. [23] reviewed the
promise of implementing machine learning in earthquake engineering. Some scholars have
also used machine learning methods to study the building classification problem [24,25].
Several works [26] have described a hybrid information fusion approach to quantitatively
evaluate the seismic resilience of Nepal by formulating nine indicators at the geological,
building and social dimensions. Mangalathu et al. [27] used discriminant analysis, k-nearest
neighbors, decision trees and random forests to study the damage degree of houses after
an earthquake. Zhang et al. [28] used the support vector machine to study the physical
resilience evaluation of landslide disasters in cities.

At present, the research on building resilience mainly considers the single factor effect
represented by earthquakes. Moreover, it mainly considers the building structure, ignoring
the complexity of the interaction between time and the internal and external factors of
buildings combined. Studies on resilience in a mountainous environment are limited. Barua
et al. [29] studied the resilience of rural mountain communities in relation to climate change
and poverty in a mountainous region of India. Mountains are among the regions most
affected by climate change [30,31], and climatic factors have an impact on building resilience.
Meanwhile, the geographical and geological conditions in a mountainous environment
are complex, and natural disasters such as collapse and landslide are likely to occur.
Therefore, it is necessary to study the building resilience in mountainous environments
specifically. With reference to the provisions of the technical guidelines for rural housing
safety appraisal [32] and standards for dangerous building appraisal [33] in China, this
paper classifies buildings as Grade I, II and III with regards to building resilience in
mountainous areas (Table 1).

With the development of spatial and information technologies, a large amount of
temporal and spatial data can be collected, processed and presented [34]. The objective
of this study is to develop models for evaluating the resilience of mountainous buildings
that take into account the combined effects of the various internal building properties,
the natural environment and the passage of time. Firstly, the evaluation index system of
building resilience in a mountainous area is constructed, and the dominant factors are
screened using the feature recursive elimination method. Secondly, the building resilience
models are completed by machine learning methods, including random forest and support
vector machine, and the model evaluations are performed by confusion matrix. Finally,
the predicted data are substituted into the model to obtain the classification evaluation of
building resilience in the area to be studied. The original determination of the resilience
grade requires a personal visit by professionals, which is labor-intensive. Through the
machine learning method, the building resilience rating of the area to be studied can be
determined quickly without visiting the site and without spending considerable time
and manpower. This method provides additional value and reference significance in risk
prevention and the control of buildings in a mountainous environment.
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Table 1. Resilience grades of typical buildings.

Building Resilience
Grades

Grade I Grade II Grade III

Grading criteria Buildings whose structure is
basically safe for use

Local dangerous buildings in
which a part of the load-bearing

structure cannot meet the
requirements of safe use.

Whole dangerous buildings in
which the load-bearing structure
cannot meet the requirements of

safe use.

Pictures from the
scene

2. Study Area

Banan District is located in the south of Chongqing central city, with an area of
1825 square kilometers and a built-up area of 84.5 square kilometers. It is a typical moun-
tainous county. The gap between urban and rural areas is large, and there are huge
differences in the quality of buildings and their ability to withstand natural environmental
disasters. The selection of Banan District as the research area of building resilience in a
mountainous area has high theoretical value and practical significance.

Our research team and Chongqing Municipal Public Housing Administration Office
collected and analyzed data through field research. They obtained data from 1387 build-
ings in Banan District, including 122 buildings with resilience grade Ⅰ , 352 buildings
with resilience grade Ⅱ and 913 buildings with resilience grade Ⅲ . Figure 1 shows the
geographical location of Banan District and the distribution of surveyed buildings.

Figure 1. Location and buildings’ distribution of Banan District.
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3. Data and Methods

3.1. Data
3.1.1. Data Selection

The resilience of buildings in a mountainous area is affected by a combination of
various internal and external factors, such as geographical and geological factors, meteoro-
logical and hydrological factors, environmental factors and building factors [35,36]. Based
on the above four dimensions, 21 factors were select to establish the factor database of build-
ing resilience evaluation in a mountainous area. They are as follows: elevation, slope, slope
aspect, slope position, curvature, plan curvature, profile curvature, micro-landform [37],
terrain humidity index (TWI), terrain roughness index (TRI), lithology, average annual
rainfall (AAR), aridity, temperature, distance from fault, distance from roads, distance from
rivers, building structure, construction time, building storey and building category.

Geographical and geological factors fully consider the particularity of mountain
building topography. Elevation affects climate and human activities. Slope affects the stress
distribution of rocks and soil. Slope aspect and slope position influence hydrogeology.
Curvature affects soil erosion through water flow on the slope. Plan curvature refers to the
change rate of surface aspect at any point on the ground. Section curvature refers to the
change rate of surface slope at any point on the ground. Micro-landform is a small terrain
fluctuation with the surface complexity of large geomorphology, which affects the strength
and weathering degree of rock and soil. TWI considers comprehensively the influence of
terrain and soil characteristics on water distribution. TRI refers to the degree of concavity
of the soil surface, reflecting the effects of wind and water erosion on the soil. Due to
the different formation times and weathering degrees, the bearing capacity of different
lithologies is also different. Meteorological and hydrological factors take into account the
effect of time, average annual rainfall, aridity and temperature. They affect the durability
of buildings. Environmental factors affect the original rock stress and slope stability of
buildings through natural (fault, rivers) and human engineering activities (roads). Building
factors are internal factors that lead to differences in housing quality and ability to resist
natural disasters. Different building structures, categories, storeys and construction times
lead to different building materials, weights and aging degrees.

3.1.2. Data Source

Data were obtained from 1387 buildings in Banan District, including the building
structure, construction time, building storey and building category, through field investiga-
tion by the School of Civil Engineering of Chongqing University and Chongqing Municipal
Public Housing Administration Office. DEM of ArcGIS was used to extract and process
the data of slope, slope aspect, slope position, curvature, plan curvature, profile curvature,
micro-landform, TWI and TRI. Other data sources, types and scale are shown in Table 2.

Table 2. Statistics of data sources.

Category Data Data Source Scale

Geographical and
geological factors

Elevation ASTER 30 m
Lithology National Geological Archives of China 1:200000

Meteorological
and hydrological

factors

Average annual
rainfall

China Meteorological Data Service
Centre-Resource and Environment

Science and Data Center
30 m

Aridity Resource and Environment Science and
Data Center 500 m

Temperature Resource and Environment Science and
Data Center 1000 m

Environmental
factors

Fault National Geological Archives of China 1:200,000
Roads Google remote sensing images 1:250,000
Rivers Google remote sensing images 1:250,000
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3.1.3. Data Processing

The factors were quantified and reclassified. The continuous factors such as elevation,
slope, curvature, plan curvature, profile curvature, TWI, TRI, average annual rainfall,
aridity and temperature were classified by ArcGIS natural breaks method (Jenks). The 360◦
was divided into eight regions on average, and the flat was assigned separately, so the slope
aspect was divided into nine categories. The distances from fault, roads and rivers were
obtained by multiple ring buffer of fault, roads and rivers, respectively, through ArcGIS. The
qualitative factors such as slope position, micro-landform, lithology, building structure and
building category were classified according to their respective characteristics. In this paper,
building structure categories were distinguished mainly based on building materials. The
structures, which include timber structure, adobe–timber structure, brick–timber structure,
brick–concrete structure, as well as steel and reinforced concrete structure, were named
directly using the names of materials. The simple structure referred to the building with
simple materials such as brick or wood panels. In addition, only a few buildings built of
stone–timber and stone–concrete materials were situated in the study area, which were
collectively referred to as mixed structures. The construction time was grouped by a
minimum of ten years based on data distribution. The building storey adopted the original
data. According to their different uses, the buildings in this paper were divided into several
categories, including residential building, commercial building, teaching building, auxiliary
building and other building. Auxiliary buildings refer to buildings with auxiliary functions
as their main purpose. For rural areas, they include buildings such as toilets and those
used for storage of agricultural production tools, breeding of farm animals, drying and
storage of food crops, etc. For urban areas, they comprise buildings such as public toilets,
gatehouses, those used for auxiliary housing and public services, etc. Buildings that did
not meet the above criteria were classified as other buildings. The reclassification of impact
factors is shown in Table 3.

Table 3. Reclassification of impact Factors.

Category Impact Factors
Number of
Categories

Classification Criteria

Geographical
and

geological
factors

Elevation (m) 9
(1) ≤244; (2) 244~312; (3) 312~377; (4) 377~448;

(5) 448~525; (6) 525~605; (7) 605~691; (8)
691~802; (9) ≥802

Slope (◦) 9

(1) ≤5.03◦; (2) 5.03◦~8.70◦; (3) 8.70◦~12.33◦;
(4) 12.33◦~16.07◦; (5) 16.07◦~20.08◦; (6)

20.08~24.57; (7) 24.57~29.88; (8) 2 9.88~36.94;
(9) ≥36.94

Slope aspect 9 (1) Flat; (2) N; (3) NE; (4) E; (5) SE; (6) S; (7)
SW; (8) W; (9) NW

Slope position 6 (1) Valleys; (2) Lowslope; (3) Flat; (4)
Midslope; (5) Uppslope; (6) Ridge

Curvature 9
(1) ≤−4.09; (2) −4.09~−2.46; (3) −2.46~−1.29;
(4) −1.29~−0.47; (5) −0.47~0.35; (6) 0.35~1.17;

(7) 1.17~2.24; (8) 2.24~4.09; (9) ≥4.09

Plan curvature 9
(1) ≤−1.97; (2) −1.97~−1.21; (3) −1.21~−0.65;
(4) −0.65~−0.23; (5) −0.23~0.19; (6) 0.19~0.61;

(7) 0.61~1.17; (8) 1.17~2.00; (9) ≥2.00

Profile
curvature 9

(1) ≤−2.88; (2) −2.88~−1.70; (3) −1.70~−0.95;
(4) −0.95–0.41; (5) −0.41~0.12; (6) 0.12~0.66;

(7) 0.66~1.41; (8) 1.41~2.59; (9) ≥2.59

Micro-landform 10

(1) Canyons, deeply incised streams; (2)
Midslope drainages, shallow valleys; (3)

Upland drainages, headwaters; (4) U-shape
valleys; (5) Plains; (6) Open slopes; (7) Upper
slopes, mesas; (8) Local ridges hills in valleys;
(9) Midslope ridges, small hills in plains; (10)

Mountain tops, high ridges
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Table 3. Cont.

Category Impact Factors
Number of
Categories

Classification Criteria

Geographical
and

geological
factors

TWI 9
(1) ≤4.68; (2) 4.68~5.87; (3) 5.87~7.16; (4)

7.16~8.56; (5) 8.56~10.18; (6) 10.18~12.12; (7)
12.12~14.71; (8) 14.71~17.95; (9) ≥17.95

TRI 9
(1) ≤1.018; (2) 1.018~1.041; (3) 1.041~1.071; (4)
1.071~1.108; (5) 1.108~1.155; (6) 1.155~1.217;
(7) 1.217~1.304; (8) 1.304~1.450; (9) ≥1.450

Lithology 7

(1) Lower Triassic; (2) Middle Triassic; (3)
Upper Triassic; (4) Triassic; (5) Middle-Lower

Jurassic; (6) Middle Jurassic;
(7) Upper Jurassic

Meteorological
and

hydrological
factors

Average annual
rainfall (mm) 9

(1) ≤117.0; (2) 117.0~119.2; (3) 119.2~120.7; (4)
120.7~122.3; (5) 122.3~124.0; (6) 124.0~125.8;
(7) 125.8~127.7; (8) 127.7~129.9; (9) ≥129.9

Aridity 9
(1) ≤0.808; (2) 0.808~0.828; (3) 0.828~0.852; (4)
0.852~0.881; (5) 0.881~0.907; (6) 0.907~0.927;
(7) 0.927~0.948; (8) 0.948~0.971; (9) ≥0.971

Temperature (◦) 9

(1) ≤16.214; (2) 16.214~16.889; (3)
16.889~17.401; (4) 17.401~17.807; (5)
17.807~18.139; (6) 18.139~18.431; (7)

18.431~18.715; (8) 18.715~19.048; (9) ≥19.048

Environmental
factors

Distance from
fault (m) 6 (1) ≤1000; (2) 1000~2000; (3) 2000~3000; (4)

3000~4000; (5) 4000~5000; (6) ≥ 5000
Distance from

roads (m) 6 (1) ≤10; (2) 10~20; (3) 20~30; (4) 30~40; (5)
40~50; (6) ≥ 50

Distance from
rivers (m) 6 (1) ≤100; (2) 100~200; (3) 200~300; (4) 300~400;

(5) 400~500; (6) ≥500

Building
factors

Building
structure 7

(1) Timber structure; (2) Simple structure; (3)
Adobe–timber structure; (4) Brick–timber
structure; (5) Brick–concrete structure; (6)
Hybrid structure; (7) Steel and reinforced

concrete structure

Construction
time 7

(1) before 1939; (2) 1940~1949; (3) 1950~1959;
(4) 1960~1969; (5) 1970~1979; (6) 1980~1999;

(7) after 2000;
Building storey 8 (1) 1; (2) 2; (3) 3; (4) 4; (5) 5; (6) 6; (7) 7; (8) ≥8;

Building
category 5

(1) Residential building; (2) Commercial
building; (3) Teaching building; (4) Auxiliary

building; (5) Other building

After reclassification, the impact factors’ data were normalized. All values were nor-
malized to the distribution between (0,1). All factors were in the same order of magnitude
in order to facilitate correct and rapid modelling. The normalization formula is denoted as
follows

X∗ = (X− Xmin)/(Xmax − Xmin) (1)

In the formula, X∗ is the normalized data, X is the original data, Xmax and Xmin are
the maximum and minimum of the data, respectively.

For better data management and visual representation, the corresponding thematic
layers were constructed by ArcGIS, as shown in Figure 2. The specific distribution of the
impact factors of geographical and geological factors, meteorological and hydrological
factors, environmental factors and building factors can be displayed visually. However, due
to the small building area and the large study area, the buildings were only shown as points
under the full view of the study area. Figure 2r shows the construction of building factor
layers of ArcGIS with the building storey as an example. The attribute table corresponding
to the building recorded all the information of each building, including building structure,
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construction time, building storey and building category. Changing its fields in properties
switches it to other building factor layers.

Figure 2. Cont.
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Figure 2. Thematic layers of impact factors: (a) Elevation; (b) Slope; (c) Slope aspect; (d) Slope
position; (e) Curvature; (f) Plan curvature; (g) Profile curvature; (h) Micro-landform; (i) TWI;
(j) TRI; (k) Lithology; (l) Average annual rainfall; (m) Aridity; (n) Temperature; (o) Distance from fault;
(p) Distance from roads; (q) Distance from rivers; (r) Building factors.

3.2. Methodology
3.2.1. Random Forest

Random forest (RF) is a data mining algorithm that contains multiple decision trees.
Based on each decision tree, the final classification result is obtained by voting [38]. Random
forest model has strong robustness and accuracy in data processing. This study selected
random forest as one of the processing algorithms of the model.

By calling the random forest program package through R language, the data obtained
from the 1387 buildings containing all the information of influencing factors in the study
area were regarded as the total samples, which were randomly divided into 971 training
samples and 416 test samples according to the ratio of 7:3. The ratio of 7:3 is an empirical
value that has been used by many researchers. The optimal parameter mtry was selected by
cyclic iteration, and it was substituted into the code to view the error stability of the model
and find the optimal ntree. Mtry refers to the number of variables used for binary trees in
nodes, and ntree refers to the number of decision trees contained in random forests.

3.2.2. Support Vector Machine

In recent years, many scholars have carried out in-depth research on disaster risk
assessment using the support vector machine (SVM) algorithm [39–41]. The basic idea
is to use kernel function to project nonlinear separable samples into high-dimensional
space to construct linear separable samples. According to the spatial distribution of sample
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features, the optimal hyperplane solution with the farthest distance between the two groups
of classifications was found, so as to correctly divide the data set. This project used the
ksvm function of kernlab software package [42]. For the three-classification problem, ksvm
used ‘one-to-one’ method to construct three secondary classifiers by permutation and
combination, and judged the resilience grade of buildings in mountainous area by voting.
In this study, the SVM model was selected as another prediction model to measure the
reliability of the RF model.

In the support vector machine model, the parameters were also optimized first. The
kernlab package was called by R language, and the optimal parameter combination sigma
and C value were selected in the for-loop iteration through the tenfold cross validation.
Sigma determines the width of the kernel function, and C refers to the tolerance of allowing
classification errors. Then, the above optimal parameter combination was substituted to
establish the model.

3.2.3. Feature Recursive Elimination

In machine learning, not all the results of variable prediction are related. Some
irrelevant variables may have a negative impact on the model prediction accuracy. Through
feature selection, the results of model effect optimization can be achieved. The main idea of
feature recursive elimination method is to eliminate the factor with the smallest ranking
criterion score at each time on the basis of all the initial influencing factors and to construct
the model repeatedly until the final feature set is obtained [43]; the ranking of features is
obtained at the same time.

3.2.4. Model Evaluation Methods

In this paper, the resilience of buildings in mountainous area is divided into grades
I, II and III. The prediction effect is analyzed by confusion matrix analysis model. The
confusion matrix is an error matrix that measures the predicted and actual values, which
can be used to evaluate the accuracy and stability of machine learning algorithms. In order
to simplify the expression, the data are referred to by the combination of the real value
before and the predicted value after (Table 4). Nij (I = 1,2,3; j = 1,2, 3) represents the number
of samples that actually belong to i but are predicted to be j [44].

Table 4. Three-classification confusion matrix.

Predicted Grade

I II III

Actual grade
I N11 N12 N13
II N21 N22 N23
III N31 N32 N33

Accuracy rate refers to the proportion of samples with correct prediction, considering
the total samples. It is the most basic, intuitive and simple method to measure the evaluation
effect of classification model. Precision refers to the proportion of the true values of a grade,
considering all the samples predicted as a certain grade, reflecting the precision of the
model prediction. Recall rate represents the proportion that is predicted accurately in the
actual sample of a certain grade. In order to take both precision and recall into account, the
harmonic mean F1 score was used as another reference index. The calculation formulas are
as follows

Accuracy =
3

∑
i=1

Nii/
3

∑
i=1

3

∑
j=1

Nij (2)

Precisioni = Nii/
3

∑
k=1

Nki (3)

235



Sensors 2022, 22, 1163

Recalli = Nii/
3

∑
k=1

Nik (4)

F1score = 2× Precisioni × Recalli/(Precisioni + Recalli) (5)

4. Results and Discussion

4.1. Optimization Models of Building Resilience Based on Dominant Factors
4.1.1. Screening of Dominant Factors

This paper selected the feature recursive elimination (FRE) method to filter the domi-
nant factors for model optimization. Based on the R language call code, when the number
of impact factors was 12, the model worked best (Figure 3). The dominant factors screened
were elevation, lithology, TRI, aridity, temperature, average annual rainfall, distance from
roads, distance from rivers, building structure, building category, construction time and
building storey.

Figure 3. Screening diagram of dominant factors by using FRE.

4.1.2. Optimization models’ results of building resilience based on dominant factors

The dominant factor was used as input layer, while mountain building resilience
grade was used as output layer. After debugging, in the random forest model, the optimal
parameters mtry = 8 and ntree = 1000 were selected. In the support vector machine model,
the optimal parameter combination kpar = list (sigma = 0.21) and C = 5 were selected. Thus,
the confusion matrix of the prediction results of the training samples, test samples and total
samples based on the random forest and support vector machine algorithm was obtained
(Figure 4). The nine data in the matrix center are the direct output results of the confusion
matrix. The three data on the left side of the last line are the precision of building resilience
grades I, II and III. The three data above the last column are the recall of their respective
grades. The data in the bottom-right corner are the model accuracy.

Based on random forest and support vector machine, the accuracies of the building
resilience optimization models in mountainous area are calculated using training samples,
test samples and total samples, respectively. For training samples, the model accuracies
based on random forest and support vector machine are 99.7% and 98.7%, respectively. For
test samples, both are 97.4%; for the total samples, they are 99.0% and 98.3%, respectively.
Accuracy is a metric in confusion matrix for evaluating the mountainous building resilience
model, and a larger accuracy rate indicates a better model. Observing the precision of the
model in the test samples, RF and SVM are very good in the prediction of grade I buildings.
In the prediction of grade II buildings, the random forest model is better than the support
vector machine model. The support vector machine model is better in the prediction of
grade III buildings. All precisions are above 94.9%. Observing the recall of the model in
the test samples, RF and SVM are very good in the prediction of grade I buildings. In the
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prediction of grade II buildings, the SVM model is better than the RF model, while the RF
model is better in the prediction of grade III buildings. All recalls are above 93.0%. The
F1 score comprehensively considers the precision and recall. The two models have good
prediction effect on grade I buildings. There are occasional misjudgments in grade II and
grade III buildings, but all values are greater than 94.4%.

Figure 4. Confusion matrices of optimization models based on machine learning: (a) Training samples-
RF; (b) Training samples-SVM; (c) Test samples-RF; (d) Test samples-SVM; (e) Total samples-RF;
(f) Total samples-SVM.
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In summary, the prediction accuracy, precision, recall and F1 scores of random forest
and support vector machine are high, which proves that the machine learning method is
reliable for resilience evaluation of buildings in mountainous area.

4.2. Optimization Effect Comparison

The training samples were used to construct the model, and all the evaluation indexes
in the confusion matrix are the maximum values. The total samples cover part of the
modelling data, and the values are between the training samples and the test samples. The
test samples do not participate in model building, but can better detect model performance.
The effects of model optimization are analyzed for the test samples.

Accuracy is the most basic evaluation index of the model. After optimization, the
accuracy of the random forest model was improved from 95.7% to 97.4%, and the accuracy
of the support vector machine model was improved from 95.4% to 97.4% (Figure 5).

Figure 5. Comparison of test samples’ accuracy before and after optimization.

As shown in Figure 6, compared with the pre-optimization state, the minimum value
of each index of the model based on the dominant factors’ screening improved from 88%
to 93%. The model effect was comprehensively improved. The best optimization effect of
SVM was that the precision of grade II increased by 5.6%, and the best optimization effect
of RF was that the recall of grade II increased by 5%. The range of variation of indicators
for each building’s resilience grade was inconsistent, which may be due to the quantity
and quality of the data themselves. The two machine learning algorithms have different
emphases on model optimization but the effects are remarkable.

4.3. Discussion
4.3.1. Comparison of Two Machine Learning Models

In the test samples, the evaluation indexes of RF and SVM optimization models were
compared (Table 5). It was observed that the two machine learning methods have the same
evaluation results for accuracy rate, recall, F1 score of grade I buildings and F1 score of
grade III buildings. The RF model is superior to the SVM model in the evaluation of the
precision of grade II buildings and the recall of grade III buildings. The SVM model is better
than the RF model in the evaluation of grade III buildings’ precision, grade II buildings’
recall and F1 score. Both methods have advantages and disadvantages in each evaluation
index, but the absolute value of the difference does not exceed 1%. It was proved that RF
and SVM are reliable in the evaluation of building resilience in a mountainous area.
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Figure 6. Comparison of test samples’ evaluation indexes before and after optimization: (a) Precision-
RF; (b) Precision-SVM; (c) Recall-RF; (d) Recall–SVM; (e) F1 score-RF; (f) F1 score-SVM.

Table 5. RF and SVM optimization model evaluation indexes for the test samples.

Accuracy
Precision Recall F1 score

Ⅰ Ⅱ Ⅲ Ⅰ Ⅱ Ⅲ Ⅰ Ⅱ Ⅲ 

RF 97.4% 100% 95.9% 97.5% 100% 93% 98.6% 100% 94.4% 98.0%
SVM 97.4% 100% 94.9% 97.9% 100% 94% 98.2% 100% 94.5% 98.0%

Difference 0 0 1% 0.4% 0 1% 0.4% 0 0.1% 0
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4.3.2. Importance of Resilience Impact Factors

The importance ranking of impact factors reflects the contribution of variables to the
resilience evaluation model of buildings in a mountainous area. Random forest provides
two methods for ranking the importance of features: Mean Decrease Accuracy (MDA) and
Mean Decrease Gini (MDG) [45]. MDA is the change in the error rate of model results
caused by disrupting the value of an impact factor in the test set. MDG is the sum of all
decreases in Gini impurity due to a given variable. Based on the study by Han et al. [46],
this paper combined MDA and MDG for a comprehensive measure. The 12 variables were
assigned scores of 12, 11, . . . , 2, and 1 based on the values of MDA and MDG from highest
to lowest, respectively. The scores obtained from both were then added and re-ranked to
obtain the combined ranking results of the importance of the influencing factors (Table 6).

Table 6. Ranking the importance of impact factors.

Category Impact Factors Value of MDA Score of MDA Value of MDG Score of MDG
Score of MDA

and MDG
Comprehensive

Ranking

Geographical
and geological

factors

Elevation 27.15 4 6.81 2 6 10
TRI 86.78 11 91.35 11 22 2

Lithology 37.78 7 11.50 3 10 8

Meteorological
and

hydrological
factors

Average
annual rainfall 18.16 3 5.24 1 4 12

Aridity 44.21 9 16.84 7 16 4
Temperature 42.91 8 13.10 6 14 5

Environmental
factors

Distance from
roads 11.72 1 12.02 4 5 11

Distance from
rivers 33.80 6 13.00 5 11 7

Building
factors

Building
structure 91.26 12 170.82 12 24 1

Construction
time 33.02 5 50.37 9 14 5

Building storey 16.66 2 23.27 8 10 8
Building
category 56.82 10 68.79 10 20 3

The results are in the following order: building structure, TRI, building category,
aridity, construction time, temperature, distance from rivers, lithology, building storey,
elevation, distance from roads and average annual rainfall. For the optimized dominant
factor index, all building factors, all meteorological and hydrological factors, three geo-
graphical and geological factors, and two environmental factors are selected, which are
comprehensive and representative. The alternate arrangement of internal and external
factors fully illustrates the necessity of exploring the combined effect of various factors on
buildings in a mountainous area. Figure 7 shows the degree of importance of each impact
factor clearly.

4.3.3. Model Improvement Options

The building resilience models in a mountainous area work well, but there is still
room for improvement. Regarding improvement from the perspective of impact factors,
more impact factors such as extreme temperature should be considered in the preliminary
selection stage. Moreover, regarding improvement from the perspective of machine learning
methods, data imbalance should be the focus in subsequent research. The classification
algorithm will produce a certain bias when processing the data set according to the amount
of data in different categories. For unbalanced data sets, assigning different weights for
processing should be considered.
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Figure 7. Impact factors’ assignment score chart.

5. Conclusions

Based on machine learning, this paper proposed a resilience evaluation method for
buildings in a mountainous area. Considering the multi-dimensional effects of geographical
and geological conditions, meteorological and hydrological factors, environmental factors
and building factors, the database of impact factors was constructed. The models were
trained and optimized by machine learning methods, including random forest and support
vector machine, and the resilience evaluation models of buildings in a mountainous area
were established. Then, the predicted data were substituted into the model to obtain the
classification evaluation of building resilience in the area to be studied.

(1) By combining MDA and MDG to form a comprehensive measure, the impact factors
of the optimization models were ranked in order of importance: building structure,
TRI, building category, aridity, construction time, temperature, distance from rivers,
lithology, building storey, elevation, distance from roads and average annual rainfall.
In the respective rankings of MDA and MDG, the impact factors in the top three
rankings are the same, and the remaining impact factors tend to differ between
the two. The alternate arrangement of internal and external factors fully illustrates
the necessity of exploring the combined effect of various factors on buildings in a
mountainous area.

(2) Through the screening of dominant factors, the minimum value of each index in
the model test sets was increased from 88% to 93%, the models were comprehen-
sively optimized, demonstrating the need for factor screening. The two machine
learning algorithms have different emphases on model optimization, but the effects
were remarkable.

(3) The accuracy of the optimization models based on random forest and support vector
machine were both 97.4%, and the F1 scores were greater than 94.4%, which proves
that the machine learning method is reliable for resilience evaluation of buildings
in a mountainous area. This study has the advantages of accuracy, efficiency and
visualization. It provides additional value and reference significance in risk prevention
and the control of mountainous environment building construction.
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Abstract: The capture and prediction of rainfall-induced landslide warning signals is the premise
for the implementation of landslide warning measures. An attention-fusion entropy weight method
(En-Attn) for capturing warning features is proposed. An attention-based temporal convolutional
neural network (ATCN) is used to predict the warning signals. Specifically, the sensor data are
analyzed using Pearson correlation analysis after obtaining data from the sensors on rainfall, moisture
content, displacement, and soil stress. The comprehensive evaluation score is obtained offline using
multiple entropy weight methods. Then, the attention mechanism is used to weight and sum different
entropy values to obtain the final landslide hazard degree (LHD). The LHD realizes the warning
signal capture of the sensor data. The prediction process adopts a model built by ATCN and uses
a sliding window for online dynamic prediction. The input is the landslide sensor data at the last
moment, and the output is the LHD at the future moment. The effectiveness of the method is verified
by two datasets obtained from the rainfall-induced landslide simulation experiment.

Keywords: rainfall-induced landslide; attention mechanism; entropy weight methods; an attention-
based temporal convolutional neural network; landslide hazard degree

1. Introduction

Rainfall-induced landslides are geological hazards triggered by prolonged rainfall
or short-term heavy rainfall. Scholars have conducted in-depth research on landslide
susceptibility mapping [1], data modeling [2], and mechanism analysis [3].

Machine learning (ML) and deep learning (DL) are important methods for landslide
prediction because of their ability to achieve complex nonlinear modeling. Many ML and
DL methods are used for landslide detection and prediction with better performance than
traditional methods. Wei et al. proposed an attention-constrained neural network with over-
all cognition (OC-ACNN) to capture features to predict landslides [4]. Ghorbanzadeh et al.
used different deep convolutional neural networks (CNNs) for landslide remote sensing
images and achieved better results in landslide mapping [5]. An integrated framework of
DL models with rule-based object-based image analysis (OBIA) to detect landslides was
explored by Ghorbanzadeh et al. [6]. Wang et al. optimized the Elman neural network with
the genetic algorithm and used it to implement the prediction of landslide displacement [7].
Wang et al. compared five machine learning methods for reservoir displacement predic-
tion, and the Hodrick–Prescott filter decomposed the cumulative displacement into trend
displacement and periodic displacement [8]. Wang et al. predicted the intrinsic evolution
trend of landslide displacement by (double exponential smoothing, DES) DES-VMD-LSTM,
based on the Gaussian process regression (GPR) model to assess the uncertainty in the first
prediction [9]. Miao et al. applied the fruit fly optimization algorithm back-propagation
neural network (FOA-BPNN) for the prediction of random displacements [10]. Gong et al.
considered the problem of interval prediction of landslide displacements and proposed
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a new method of interval prediction of landslide displacements combining dual-output
least squares support vector machine (DO-LSSVM) and particle swarm optimization (PSO)
algorithms [11]. Time series analysis and long short-term memory neural networks are used
in landslide displacement prediction [12,13]. Lin et al. analyzed the internal relationship
between rainfall, reservoir water level, and periodic landslide displacement and used the
double-bidirectional long short-term memory (Double-BiLSTM) model to predict landslide
displacement [14]. Zhang et al. proposed a method based on Gated Recurrent Unit (GRU)
and Fully Integrated Empirical Decomposition of Adaptive Noise (CEEMDAN) for the
dynamic prediction of landslide displacement [15]. The application of hybrid methods
based on metaheuristics (MH) in the field of geohazards is a recent research direction in
disaster prediction. Ma et al. conducted a comparative study on MHs and proposed a
new hybrid algorithm, namely MH-based support vector machine regression (SVR) [16].
The hybrid method has high performance in terms of accuracy and reliability for landslide
displacement prediction. Meanwhile, the hybrid method combined with a multiverse
optimization (MVO) for hyperparameter optimization of MHs [17] improves the reliability
of disaster prediction modeling.

Rainfall is commonly used for early warning as an important trigger for landslides.
Cost-sensitive rainfall thresholds were investigated by Sala et al. and sensitivity analysis
was performed [18]. However, rainfall thresholds that are difficult to standardize cannot be
used as early warning signals for the occurrence of landslides. Changes in soil moisture
are an important factor in landslides. Domínguez-Cuesta et al. focused on the role of
rainfall and soil moisture as triggering and evolutionary factors for unstable events [19].
Soil moisture saturation and sudden rainfall are more likely to lead to landslides. Chen et al.
analyzed the role of soil moisture index (SWI) in landslides based on 279 mass movements
that occurred in Taiwan during 2006–2017 [20].

These data-driven approaches effectively implement the displacement prediction
problem for landslides; however, these models do not consider correlations among multiple
sensor data and do not capture warning signals in sensor data well. Entropy value, as
a physical quantity describing the degree of data chaos, has also been used to analyze
landslide risk [21]. However, landslide hazard analysis using the information entropy
value method does not take into account the effects of different entropy values on landslide
sensor data. A single entropy value method for landslide warning feature analysis failure
will result in the possibility of misclassification.

Challenges: First, there are many landslide monitoring sensors, but the methods of
effectively capturing warning signals are less studied. Second, there are correlations among
different types of landslide sensor data, which need to be analyzed. Third, the accuracy of
data-driven rainfall-induced landslide hazard prediction models needs to be improved.

Contributions:

• We combine an attention mechanism with multiple entropy weight methods and
propose an attention-fusion entropy weight method (En-Attn) to capture warning
signals based on massive landslide sensor data.

• We propose an attention-based temporal convolutional neural network for landslide
warning signals prediction based on massive sensor data.

• We carry out the experimental simulation of rainfall-induced landslides, collect sensor
data when landslides occur, analyze the precursory warning characteristics of the data,
and use a variety of entropy weight methods to analyze the characteristics of warning
signals offline.

• Our model is validated on two datasets obtained from rainfall-induced simulation
experiments, and our model has high accuracy compared with similar landslide
warning capture and prediction methods.
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2. Methods

2.1. Capture Models of Landslide Warning Signal

We obtain massive sensor data from landslide simulation experiments, including
rainfall, the soil moisture content in shallow layers, the soil moisture content in deep layers,
soil stress, and displacement. The evaluation of landslide warning signals is to extract the
warning features from these massive sensor data to characterize the landslide warning
situation. The entropy weight methods (EWM) can be used to assess the degree of landslide
hazard [21].

2.1.1. Entropy Weight Methods

Entropy is a measure of uncertain information. The smaller the entropy value, the
greater the amount of information and the greater the weight. The entropy weight method
(EWM) [22] is an objective weighting method. The canonical EWM uses information
entropy (InEn) [23] as the basis for calculation. In fact, there are many entropy methods,
namely approximate entropy [24], sample entropy [25], fuzzy entropy [26], and permutation
entropy [27]. Therefore, an improved entropy method can be obtained by replacing the
information entropy in the canonical entropy weight method with the following four
entropy values: approximate entropy (ApEn), sample entropy (SampEn), fuzzy entropy
(FuzzyEn), permutation entropy (PeEn).

The calculation process of the EWM [28] has five steps.
Step 1: Data normalization using Equation (1).
Step 2: Calculate the entropy value using Equation (2).
Step 3: Calculate the coefficient of variation using Equation (3).
Step 4: Calculate weights using Equation (4).
Step 5: Calculate the entropy weight score using Equation (5).

xij = zij/
N

∑
i=1

zij (1)

ej = fEn(xij), i ∈ [1, N], ej ∈ [0, 1] (2)

dj = 1− ej (3)

ωj = dj/
N

∑
j=1

dj (4)

si =
M

∑
j=1

ωjxij, i = 1, 2, · · · , N (5)

where
zij is the raw data at row i and column j in the sensor dataset.
xij is the data normalized by zij.
ej is the entropy value of xij.
fEn is the method for calculating the entropy values using Equations (6)–(26) for the

specific formula.
N is the number of rows in the sensor dataset.
dj is the coefficient of variation of xij.
ωj is the corresponding weight of each column of data obtained by the EWM.
si is the weight entropy score.
M is the number of columns in the sensor dataset.
Information entropy (InEn) [23] can be calculated by Equation (6).

f InEnj = −
1

ln N

N

∑
i=1

xij ln xij, ej ∈ [0, 1] (6)
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where
ln denotes the natural logarithm.
f InEnj denotes the information entropy value.
The calculation of ApEn can also be understood as the degree of self-similarity of a

sequence in the pattern. For the change of a signal sequence, the change of the approximate
entropy value can be used to achieve the purpose of effective identification. The biggest
advantage of the approximate entropy calculation is that it does not require a large amount
of data, most of the measured time series can meet the requirements, and the obtained
results are robust and reliable [29]. The calculation of approximate entropy (ApEn) is
as follows:

Xi = [x(i), x(i + 1), · · · , x(i + m− 1)]
(7)

d[Xi, Xj] = max
∣∣x(i + k)− x(j + k)

∣∣, k ∈ (0, m− 1) (8)

Bi(r) = num
{

d[Xi, Xj] < r
}

(9)

Φm
i (r) =

Bi
N −m + 1

(10)

fApEn = Φm(r)−Φm+1(r) (11)

where
d[Xi, Xj] denotes the distance between the vector Xi and Xj.
Bi is the number of items that satisfy the condition d[Xi, Xj] < r.
r denotes the similarity tolerance threshold.
Φm

i denotes the ratio of the approximate quantity to the total quantity, namely the
approximate ratio.

fApEn denotes the approximate entropy value of sequence Xi.
m is the dimension of Xi, which is an artificially set parameter value.
ApEn characterizes the complexity of a sequence. The value of ApEn is less affected

by the amount of data and is suitable for non-stationary and nonlinear sequences. ApEn
preserves the time series information in the original signal sequence and reflects the char-
acteristics of the signal sequence on the structural distribution. The entropy value of the
fault signal will be greater for fault data present in a set of continuous data, so ApEn is
often used to detect the fault signal. The fault signal here refers to the presence of multiple
abnormal signals in a set of sequential signals.

SampEn is an improved method based on ApEn [29]. The SampEn has better consistency.
If one time series has a higher SampEn value than another time series, then the other r and
m values also have higher SampEn values. Meanwhile, SampEn is not sensitive to missing
data [29].

The calculation of sample entropy (SampEn) is as follows:

Bm
i (r) =

1
N −m

num
{

d[Xi, Xj] < r
}

(12)

Bm(r) =
1

N −m + 1

N−m+1

∑
i=1

Bm
i (r) (13)

fSampEn = − ln(Bm+1(r)/Bm(r)) (14)

where
Bm

i denotes the ratio of the number of d[Xi, Xj] < r to the total number of vectors N-m,
for a given threshold r (r > 0).

fSampEn denotes the sample entropy value of the sequence Xi.
In the definitions of ApEn and SampEn, the similarity of vectors is determined by

the difference in absolute values of the data. Correct analysis results cannot be obtained
when there are slight fluctuations in the data used or baseline drift. FuzzyEn removes
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the influence of baseline drift through mean operation, and the similarity of vectors is
no longer determined by the absolute amplitude difference, but determined by the shape
of the fuzzy function determined by the exponential function, thereby fuzzifying the
similarity measure [26]. The FuzzyEn uses an exponential function to fuzzify the similarity
measurement formula. The continuity of the exponential function makes the fuzzy entropy
change continuously and smoothly with the parameter change.

The calculation of fuzzy entropy (FuzzyEn) is as follows:

Yi = [x(i), x(i + 1), · · · , x(i + m− 1)]− x0(i), i = 1, 2, · · · , N −m + 1 (15)

x0(i) =
1
m

m−1

∑
j=0

x(i + j) (16)

dm
i,j = d[Yi, Yj] = max

k∈(0,m−1)

∣∣∣∣x(i + k)− x0(i)− x(j + k)− x0(j)
∣∣∣∣ (17)

Dm
i,j = exp

[
−
(dm

i,j)
n

r

]
(18)

ψm+1(r) =
1

N −m + 1

N−m+1

∑
i=1

(
1

N −m

N−m+1

∑
j=1,j �=i

Dm
i,j

)
(19)

fFuzzyEn = − ln(ψm+1(r)/ψm(r)) (20)

where
m denotes the embedding dimension.
Y denotes the sequence after the phase space reconstruction of X.
x0 is the mean of m consecutive x(i + j).
dm

i,j denotes the maximum value of the difference between the corresponding endpoints
of Yi and Yj.

Dm
i,j is the similarity between Yi and Yj after using the fuzzy membership function.

ψm is a function defined like Φm
i and Bm

i .
fFuzzyEn denotes the fuzzy entropy value of sequence Xi.
Permutation entropy (PeEn) is a method to detect the randomness and dynamic muta-

tion behavior of time series. The PeEn has the characteristics of simple and fast calculation,
strong anti-noise ability, and can realize the characteristics of online monitoring of mutation
signals. PeEn introduces the idea of permutation when calculating the complexity between
reconstructed subsequences.

The calculation of permutation entropy (PeEn) is as follows:

Yi = [x(i), x(i + τ), · · · , x(i + (m− 1)τ)], i = 1, 2, · · · , N −m + 1 (21)

x(i + (j1 − 1)τ) ≤ x(i + (j2 − 1)τ) ≤ · · · ≤ x(i + (jm − 1)τ) (22)

S(l) = (j1, j2, · · · , jm), l = 1, 2, · · · , k, and k ≤ m! (23)

Pi =
Number(Yi)

N − (m− 1)τ
(24)

PE(m) = −
k

∑
i=1

(Pi ln Pi) (25)

0 ≤ fPeEn = PE/ ln(m!) ≤ 1 (26)

where
m denotes the embedding dimension.
τ denotes the time delay factor.
k = N − (m− 1)τ, j = 1, 2, · · · , k
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S is a set of symbol sequences consisting of the index of each element position column
after each reconstructed component is rearranged in ascending order.

jm is the column index of the position of the mth element in the vector.
Pi is the probability of occurrence of each sort.
PE denotes the permutation entropy value of the sequence.
fPeEn denotes the normalized value of the permutation entropy.
The matrix has k reconstruction components in total, and each reconstruction com-

ponent has m-dimensional embedded elements. Arrange the jth category in the matrix in
ascending order according to the size of the array using Equation (22).

j1, j2, · · · , jm represents the subscript index value of each element in the reconstructed
component. Note that the above sequence has a parameter τ, namely the time delay
factor, which must be a positive integer. In fact, this parameter can be understood as
the downsampling of the sequence. For example, when τ = 3, it is sampling every three
data points. When τ = 1, the sequence is the same as the sequence definition of the ApEn
and SampEn.

2.1.2. Attention-Fusion Entropy Method

The attention mechanism can pay attention to important parts of the sequence data [2,30].
Queries and key-value pairs are mapped to outputs. The calculation process of the attention
mechanism is shown in Figure 1.

Figure 1. Overview of attention mechanism.

Equation (27) shows the score function, and Equation (28) shows the attention calcula-
tion process. The score function is essentially seeking a degree of similarity, and the Softmax
function is to normalize the weights at all positions so that the sum is equal to one [31].

f (Q, K) =
QTK√

d
(27)

C = Attention(Q, K, V) = So f tmax( f (Q, K))V (28)

where
Q denotes the queries, and Q = Wqi Xt, where Wqi is the weight corresponding to Q.
K denotes the keys K = Wki Xt, where Wki is the weight corresponding to K.
V denotes the values V = Wvi Xt, where Wvi is the weight corresponding to V.
C denotes the result of the weighted summation of weights and variables.

1√
d

denotes the scaling factor.
The role of the scaling factor is to keep the dot product of Q and K from becoming too

large [31]. Once the dot product is too large, the activation function Softmax enters a region
with a small gradient. The attention mechanism is used for the calculation to fuse multiple
EWMs, and the fused entropy method is obtained, which is named as En-Attn.

Figure 2 shows that the input of the En-Attn model is historical sensor data, including
rainfall, shallow moisture content, deep moisture content, displacement, and soil stress.
The three types of data are calculated by three EWMs for comprehensive evaluation scores.
The difference between these three entropy weight methods is that the entropy is different,
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namely InEn, FuzzyEn, and PeEn. The reason why ApEn and SampEn are not used in the
En-Attn model is that FuzzyEn is an improvement on SampEn and ApEn. Meanwhile, in
the actual dataset, the difference between these three methods is not obvious. For the
same datasets, the result of getting almost the same output needs to be computed three
times, which consumes computation time and occupies the memory of the computation
space. Therefore, FuzzyEn is chosen instead of the three EWMs to reduce the time and
space complexity of the En-Attn method. The demonstration of the details of these three
EWMs for landslide sensor data processing is presented in Section 4.1.

Figure 2. Overview of an attention-fusion entropy weight method (En-Attn).

The attention mechanism is used to fuse the outputs of the three EWMs (InEn, FuzzyEn,
and PeEn) and finally outputs landslide hazard degree (LHD). Algorithm 1 elaborates the
specific calculation steps.

Algorithm 1: Attention-fusion entropy weight method (En-Attn).

Initialization: M, m, r, d, W
Input: the raw data z
Entropy weight methods

For j = 1:M
Data normalization using Equation (1).
Calculate InformEn using Equation (6).
Calculate FuzzyEn using (15)~(20).
Calculate PeEn using (21)~(26).
Calculate the coefficient of variation using Equation (3).
Calculate weights using Equation (4).
Obtain the entropy weight scores using Equation (5).

End if
Output: SInEn, SFuzzyEn, SPeEn
Attention calculation

Q = K = V = W · [SInEn, SFuzzyEn, SPeEn]

SEn−Attn = So f tmax
(

QT K√
d

)
V

LHD = normalize(SEn−Attn)
Output: LHD.

2.2. Prediction Model of Landslide Warning Signal

The prediction model of the hazard degree of rainfall-induced landslides is based on
temporal convolutional neural networks (TCNs). TCNs have a good predictive effect on
the processing of time series data [32,33]. We add an attention module to the data before
TCN input to extract the prediction features of the input data; we also add an attention
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module to the output data of TCN to extract the features of the output data to improve the
performance of TCN.

The TCN incorporating the attention mechanism is shown in Figure 3, including the
attention mechanism (I-Attn) in the input stage, the attention mechanism (T-Attn) after the
TCN output, and the TCN that plays the main prediction role. The input of I-Attn is sensor
data at time t and the hidden layer at time t − 1, and the output is the attention weight
at time t. The input of T-Attn is the hidden layer at time t, and the output is the size of
the attention weight at time t and the weight value of the TCN’s output, which is the final
predicted output value. TCN is composed of multiple residual blocks [32]. The output of
the previous residual block is the input of the next residual block. The 1D convolution in
TCN enables equal lengths of the input and output sequences [34]. Causal convolution
ensures that the prediction process does not suffer from data leakage. TCN enlarges the
convolutional field size, which can be obtained from Equation (29). The calculation of the
number of residual blocks is obtained from Equation (30).

r = 1 +
n−1

∑
i=0

2(k− 1)bi = 1 + 2(k− 1)
bn − 1
b− 1

(29)

n =

[
logb

(
(l − 1)(b− 1)

2(k− 1)
+ 1

)]
(30)

where
k denotes the size of the convolutional kernel.
B denotes the size of the dilated base.
N denotes the number of residual blocks.
L denotes the length of the input tensor.

Figure 3. The overall framework of the attention-based temporal convolutional neural network (ATCN).
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In the actual landslide experiment, the sensor data are transmitted back to the host
computer as a continuous string of arrays. The dynamic sliding prediction of the ATCN
model is implemented using a sliding window as a way to process the dynamic data, as
shown in Figure 4. The input of the sliding window is the five-dimensional sensor data of
Ti length, and the output is the landslide hazard degree (LHD) of To length. The sliding
window moves forward with the time step while the predicted value is output. Algorithm 2
illustrates the specific steps of the landslide warning signals prediction model (ATCN). The
performance of the ATCN is experimentally verified in Section 4.2.

Algorithm 2: Attention-based temporal convolutional neural network (ATCN).

Input: xt =
{

x1
t , x2

t , · · · , xTi
t

}
Data normalization using Equation (1).
I-Attn calculation:

Qi = Ki = Vi = Wi·xt

x̃t = So f tmax
(

Qi
T Ki√
di

)
Vi

Predictor:

ht = fTCN(x̃t)
T-Attn calculation:

Qo = Ko = Vo = Wo·ht

yt = So f tmax
(

Qo
T Ko√
do

)
Vo

Output: yt =
{

y1
t , y2

t , · · · , yTo
t

}
Update xt ← xt+1 , and repeat the above steps.

Figure 4. Sliding window for dynamic prediction of sensor data.

3. Data Acquisition and Processing

3.1. Landslide Simulation Platform

The landslide simulation platform (LSP) is built to simulate the occurrence of rainfall-
induced landslides. The landslide simulation platform (LSP) simulates a small monitoring
area in a mountain rather than a large area such as a natural landslide itself. This is because
simulating a mountain in nature is actually very challenging, and all we can do is simulate
a certain monitoring area. In nature, multiple monitoring zones work together on a large
mountain. The analysis of a monitoring zone is a prerequisite for data analysis and early
warning of a large mountain. Figure 5 shows the physical objects of the LSP. The structure
of the LSP includes the simulated rainfall system and the sensor measurement system.
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Figure 5. Landslide simulation platform (LSP). (a) Main view of the LSP; (b) Side view of the LSP.

The simulated rainfall system consists of the following components: rainfall sprinklers,
soil-carrying box, hydraulic support rods, and lift bars. The rain sprinklers simulate the
natural rainfall environment, and controlling the amount of rainfall can simulate the
rainstorm. The soil-carrying box contains rock and soil mass to simulate natural slope
conditions. The hydraulic support rods and the lifting bars can adjust the angle of the
soil-carrying box to simulate the angle of the potential landslide body in nature. Water
will seep out of the tube wall as it passes through the porous ceramic tube, simulating
underground water in the rock and soil mass.

The experimental process includes five steps:
Step 1: Place the rock and soil mass inside the soil box.
Step 2: Install five types of sensors at the appropriate positions.
Step 3: Use the hydraulic support rod to adjust the soil box to a suitable angle. Here,

we chose 30◦.
Step 4: Turn on the rain sprinklers for rainfall simulation and use the monitoring

software to monitor the sensor data and save it to the database.
Step 5: Analyze and process the sensor data after the experiment is completed.
In the landslide simulation experiment platform, we installed five types of sensors: a

tipping bucket rain gauge, a draw-wire displacement sensor, a soil stress gauge, and two
moisture content sensors. The installation positions of the sensors are shown in Figure 6.

The locations of the sensors installed in the experiment are as follows:

1. The tipping bucket rain gauge is located in the center of the soil-carrying box, with its
opening facing upwards for better rain reception.

2. The position of the draw-wire displacement sensor is in the front third of the soil-
carrying box. It monitors the change in soil displacement as the leading edge of the
landslide moves.

3. The soil stress gauge is positioned in the front third of the soil-carrying box to monitor
the stress changes within the soil at the leading edge of the landslide.

4. The location of the soil moisture sensor for monitoring the shallow moisture content
is about 30 cm from the surface, and the location of the soil moisture sensor for
monitoring the deep moisture content is about 80 cm from the surface.

Note that the above sensor installation locations are limited by the LSP and are only
used as a reference criterion for experiments.
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Figure 6. Schematic diagram of sensor installation in the landslide disaster simulation platform.
(a) Side view of sensor installation schematic; (b) Top view of sensor installation schematic.

3.2. Landslide Data Processing

We carry out two experiments on rainfall-induced landslides and obtain datasets for
L1 and L2. The rainfall, soil stress, and displacement in the datasets are normalized to
obtain the sensor data curves in Figure 7.

Figure 7. Curve of landslide datasets L1 and L2. (a) Dataset L1. (b) Dataset L2.

The ordinate on the left of Figure 7 is moisture content, and the ordinate on the right
is the percentage of data. After a period of time, the moisture content of the soil in the
shallow layer begins to rise, and the moisture content of the soil in the deep layer rises in
response. The reason why the relationship between the two moisture contents in Figure 7b
is not significant is that before rainfall, the deep soil moisture content is high and close
to saturation.

The Pearson correlation coefficient method is used to analyze the landslide sensor
datasets to analyze the correlation between different types of sensor data.

The Pearson correlation coefficient is suitable for two columns of spaced variables
(continuous variables) in a normal distribution. The correlation coefficient and the proba-
bility of the correlation can be obtained for two columns of data using Equation (31) when
they have the same number of data and correspond to each other.

rp =
Cov(X, Y)

σXσY
=

n
∑

i=1
(Xi − X)(Yi −Y)√

n
∑

i=1
(Xi − X)

2
√

n
∑

i=1
(Yi −Y)2

(31)

where
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rp denotes Pearson correlation coefficient.
X represents senor data.
Y represents sensor data other than X.
σX denotes the standard deviation of X.
σY denotes the standard deviation of Y.
The Pearson correlation coefficient ranges between −1 and 1. When the Pearson

correlation coefficient is 0, the X and Y vectors are not correlated. When its value is greater
than 0.8, X and Y are highly correlated.

We let X and Y be one of the five types of sensor data, respectively, and the heatmaps
are obtained in Figure 8 after the calculation of Equation (31).

Figure 8. Heatmaps of landslide datasets L1 and L2. (a) Pearson heatmap of L1. (b) Pearson heatmap
of L2.

In Figure 8a, the rainfall and displacement show a high correlation with the magnitude
of soil stress and a moderate correlation with the shallow moisture content and the deep
moisture content. The shallow moisture content and the deep moisture content are highly
correlated states. The shallow moisture content shows a weak correlation with the dis-
placement amount. Soil stress shows a strong correlation with displacement. In Figure 8b,
rainfall displays a strong correlation with displacement, soil stress, and deep moisture
content and a moderate correlation with shallow moisture content. The correlation between
shallow moisture content and other sensor data is weak. The relationship between the
landslide process and different sensor data is analyzed as follows:

1. The amount of rainfall directly affects the moisture content of the shallow soil. Surface
water will exist when the surface seepage rate is less than the rainfall.

2. The moisture content of deep soil is significantly higher than that of shallow soil due
to groundwater action during the initial stage of rainfall. The moisture content in
the deeper layers of the soil would gradually increase as surface water gradually
infiltrates into the ground as rainfall continues. However, its moisture content does
not exceed the shallow moisture content at this stage. The growth rate of the shallow
moisture content would gradually decrease, and the size of the deep moisture content
would eventually be approximately equal to the shallow moisture content throughout
the entire landslide formation process.

3. The soil stress also varies as the soil layer’s moisture content varies. The shear strength
of the soil is characterized by soil stress. The soil stress increases quickly for a while
when there is no significant displacement of the surface, after which the surface
gradually becomes significantly displaced during the sliding phase. As the soil’s
moisture content rises, the clay in the soil softens and loses some of its slip resistance.
It also loses shear strength.

4. The soil moisture content tends to become saturated before the landslide body enters
the catastrophic slip phase. When the soil stress increases, the landslide body enters
the severe sliding stage. When a landslide reaches the severe slip stage, the surface
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displacement dramatically rises, and erosion-created depressions and gullies start to
show up near the body’s front edge.

5. After entering the stabilization stage, the surface displacement of the landslide body
no longer increases, but due to the effects of rainfall and groundwater, the surface and
underground runoff still play a role in triggering the secondary landslide.

4. Experiments and Results

In this section, we describe experiments on landslide warning signals and signal
prediction. We present the results of two experiments to demonstrate the effectiveness of
En-Attn as well as ATCN in landslide warning signal capture and prediction.

4.1. Landslide Hazard Degree and Results

We apply the En-Attn model to process the landslide datasets L1 and L2. Figure 9
illustrates the landslide hazard degree (LHD) obtained by En-Attn as well as the three
EWMs. The LHD obtained by all six methods shows an increasing trend, indicating a
gradual increase in the characteristics of the hazard level during landslide formation. The
LHD ranges from 0 to 1. LHD = 0 means no warning feature, and LHD = 1 means the
landslide warning feature is significant and enters a very urgent warning situation. For
dataset L1, the LHD increases gradually, and when the time step is greater than 14,000, the
LHD increment rate increases. For dataset L2, the incremental rate of LHD increases when
the time step is greater than 10,000, while the volatility of LHD is greater compared to L1.

Figure 9. Landslide hazard degree (LHD) of the landslide datasets L1 and L2. (a) LHD of L1. (b) LHD
of L2.

Note that the differences in the LHD obtained by ApEn, SampEn, and FuzzyEn are
not significant, and the differences exhibited by the local enlarged image are shown in
Figure 8a,b. The reason that only FuzzyEn is considered in the En-Attn model and not both
ApEn and SampEn is because the differences between the three methods are not significant.

The single entropy value method is prone to fluctuations in the calculation of LHD, as
in the case of PeEn in Figure 8b. The LHD obtained by the En-Attn model not only demon-
strates landslide warning characteristics but also exhibits better stability and robustness.
The En-Attn model overcomes the drawbacks of the single EWM and adapts better to the
case of multi-sensor data to evaluate landslide warning features.

4.2. Prediction Experiments and Results

We apply the ATCN model to process the landslide datasets L1 and L2 and their
LHD. The ATCN model is elaborated in Section 2.2. We conducted experiments to test the
performance of the ATCN model, comparing long short-term memory neural networks
(LSTM) [35], grated recurrent units (GRU) [36], temporal neural networks (TCN) [32,34],
convolutional long short-term memory neural networks (ConvLSTM) [37], and dual-stage
attention-based recurrent neural networks (DA-RNN) [30]. The metrics [2] for evaluating
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the performance are root mean square error (RMSE), mean absolute error (MAE) and mean
absolute percent error (MAPE), and the specific equations are shown in Equations (32)–(34).

MAE =
1
N

N

∑
t=1
|ŷt − yt| (32)

RMSE =

√√√√ 1
N

N

∑
t=1

(ŷt − yt)
2 (33)

MAPE =
100%

N

N

∑
t=1

∣∣∣∣ ŷt − yt

yt

∣∣∣∣ (34)

where
N is the total number of test data.
yt is the true value at the tth time step.
ŷt is the predicted value at the tth time step.
The model tests are divided into two types of sliding windows, “100-10” and “100-50”,

which reflect different input data lengths and prediction lengths. The hyperparameters of
the TCN and ATCN models are set as follows: filters = 32, batch size = 128, kernel size = 8,
where the activation function of the attention mechanism is Softmax. The hyperparameters
of the LSTM and GRU models are set as follows: the number of units is 16. The activation
function is ReLU, the optimization algorithm is Adam, the initial learning rate is 0.001,
and the learning rate can be adjusted according to the loss function subsequently. The
hyperparameter experiments of ATCN are shown in Appendix A. All models are run
20 times, and the predicted values are obtained after testing the datasets L1 and L2. The
average values of RMSE, MAE, and MAPE are shown in Tables 1 and 2.

Table 1. Comparison of LHD prediction effects of different models for dataset L1.

Model Metric
Size of Sliding Window

100-10 100-50

LSTM
RMSE 0.04973 0.05987
MAE 0.03483 0.03988

MAPE (%) 3.45876 4.48301

GRU
RMSE 0.04296 0.11422
MAE 0.02916 0.10989

MAPE (%) 3.21155 4.70642

ConvLSTM
RMSE 0.01511 0.02480
MAE 0.01162 0.02307

MAPE (%) 1.31189 2.70816

DA-RNN
RMSE 0.02606 0.02044
MAE 0.01825 0.01590

MAPE (%) 1.96037 1.68211

TCN
RMSE 0.02009 0.03222
MAE 0.01500 0.02192

MAPE (%) 1.68965 2.42844

ATCN
RMSE 0.00892 0.01827
MAE 0.00718 0.01411

MAPE (%) 0.82503 1.59699
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Table 2. Comparison of LHD prediction effects of different models for dataset L2.

Model Metric
Size of Sliding Window

100-10 100-50

LSTM
RMSE 0.04465 0.10245
MAE 0.03571 0.09849

MAPE (%) 3.74129 6.12409

GRU
RMSE 0.03632 0.06781
MAE 0.02316 0.05799

MAPE (%) 2.41790 4.88399

ConvLSTM
RMSE 0.02937 0.05297
MAE 0.02369 0.03579

MAPE (%) 2.56583 3.82107

DA-RNN
RMSE 0.01633 0.02966
MAE 0.01360 0.02266

MAPE (%) 1.44912 2.38209

TCN
RMSE 0.02540 0.03209
MAE 0.02059 0.02687

MAPE (%) 2.16727 2.84709

ATCN
RMSE 0.01082 0.01899
MAE 0.00950 0.01463

MAPE (%) 1.02798 1.54598

Tables 1 and 2 demonstrate the RMSE, MAE, and MAPE of ATCN and its counterparts.
Table 1 shows that the RMSE, MAE, and MAPE metrics of ATCN are lower for dataset L1,
which implies better performance of ATCN.

The ATCN outperforms other models in the prediction of LHD. Compared with the
TCN model, the RMSE, MAE, and MAPE of ATCN decreased by 55.60%, 52.13%, and
51.17%, respectively, with the sliding window set to “100-10”. The ATCN can effectively
capture the characteristics of landslide prediction. The ATCN also outperforms other
models when the sliding window is “100-50”. In comparison to the TCN model, the
performance of the three metrics is decreased by 43.30%, 35.63%, and 34.24%, respectively.
The poor performance is due to the absence of attention mechanisms in the LSTM, GRU,
and ConvLSTM, as well as the insignificant features obtained from the complex landslide
sensor signals.

Figure 2 displays the metrics for dataset L2, which is similar to dataset L1. The classical
recurrent neural network models, LSTM and GRU, performed poorly because the predictive
properties shown by the sensor data in dataset L2 are not obvious. The performance of DA-
RNN and ATCN with the addition of the attention mechanism is outstanding. The three
metrics of ATCN are decreased by 33.74%, 30.15%, and 29.06%, respectively, in comparison
to DA-RNN when the sliding window is set to “100-10”. The three metrics of ATCN are
decreased by 35.97%, 35.44%, and 35.10%, respectively, compared to DA-RNN when the
sliding window is set to “100-50”.

Comparing the model performance with different prediction lengths, it can be seen that
the shorter the prediction length, the smaller the performance metrics, and the better the
prediction effect. When the prediction length is long, the attention mechanism captures the
long-term dependency characteristics more and more prominently, and the performance
of DA-RNN and ATCN with the attention mechanism is better than the other models.
Comparing the DA-RNN and ATCN models, ATCN has better prediction results and stable
performance when the sliding windows are “100-10” and “100-50”. The ATCN model has
the lowest error and the best prediction, as seen in Tables 1 and 2. The two sliding windows
can be compared to demonstrate that the model’s error increases with prediction length.
ATCN’s prediction accuracy is greater.
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5. Discussion and Conclusions

This work adopts the attention mechanism to integrate the multi-entropy values to
capture the landslide warning signals and explores the ATCN to realize landslide hazard
prediction. Compared with its counterparts, our model has the characteristics of higher
accuracy. Compared with current landslide hazard prediction methods, our methods have
the following characteristics:

1. Exploring deep learning algorithms combined with big landslide data is an extension
of deep learning application scenarios. This model uses a simple attention mechanism
combined with a temporal convolutional neural network. Although this model is
simple, its prediction effect is better than other complex deep learning models.

2. Effective landslide hazard capture. In the traditional sense, the capture of rainfall-
induced landslide hazards is either directly replaced by the landslide displacement
or only a single EWM is used to realize the signals capture. The model uses the
attention mechanism to integrate a variety of EWMs, and the obtained landslide
warning signals are more reliable.

3. Note that our model cannot be adapted for landslide hazard prediction with a small
amount of data, as massive data is the basis of our model.

In the future, we intend to design a software system that integrates the algorithms for
actual landslide sites. Further, we intend to consider different types of sensor data because
more kinds of sensor data represent more comprehensive landslide disaster information.
Furthermore, we plan to consider the sensor data of the landslide simulation platform in
relation to soil thickness. We use landslide simulation experiments in this study. However,
we could not achieve the exact same processes in the laboratory as in nature. For example,
simulating different soil layers, which would take millions of years to form in nature.
Our future research work will take into account multiple natural environmental factors to
improve the experimental setup, including slope angle and dynamics of water extinction.
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Appendix A. Hyperparameter Experiments of the ATCN

The hyperparameters in ATCN can directly affect the high performance of the landslide
prediction model. The kernel size, filters, and training batch size in the model has a large
impact on ATCN. With dataset L2, performance comparison experiments are carried out
on the kernel sizes, filters, and batch sizes in the ATCN model. The comparison metrics
are RMSE, MAE, and MAPE, and the experiments of each hyperparameter are repeated
20 times, and the mean values of the 20 experiments are counted. The statistical results are
shown in Tables A1–A3.
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Table A1. Comparison of different batch sizes in the ATCN model.

Batch Size Metric
Size of Sliding Window

100-10 100-50

16

RMSE 0.01452 0.01928
MAE 0.01325 0.01723

MAPE (%) 1.63992 1.86792

32
RMSE 0.01213 0.01989
MAE 0.01069 0.01907

MAPE (%) 1.08400 2.37950

64
RMSE 0.01614 0.01734
MAE 0.01609 0.01609

MAPE (%) 1.11208 1.73150

128
RMSE 0.00954 0.01929
MAE 0.00943 0.01606

MAPE (%) 1.00213 0.91316

256
RMSE 0.01619 0.01892
MAE 0.01825 0.01838

MAPE (%) 2.19243 1.99731

Table A2. Comparison of different filters in the ATCN model.

Filter Metric
Size of Sliding Window

100-10 100-50

4
RMSE 0.01674 0.01937
MAE 0.01531 0.01334

MAPE (%) 1.64269 1.56591

8
RMSE 0.01016 0.01102
MAE 0.01158 0.00934

MAPE (%) 1.31589 1.13547

16
RMSE 0.01023 0.01803
MAE 0.01709 0.00949

MAPE (%) 1.82595 1.86010

32
RMSE 0.01953 0.01597
MAE 0.01897 0.01504

MAPE (%) 1.07723 1.88453

64
RMSE 0.11779 0.01696
MAE 0.01085 0.01360

MAPE (%) 1.42817 1.63355

Table A3. Comparison of different kernel sizes in the ATCN model.

Kernel Size Metric
Size of Sliding Window

100-10 100-50

4
RMSE 0.01148 0.01582
MAE 0.01810 0.01442

MAPE (%) 1.47336 1.54591

8
RMSE 0.00984 0.01074
MAE 0.09313 0.00943

MAPE (%) 1.39457 1.03825
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Table A3. Cont.

Kernel Size Metric
Size of Sliding Window

100-10 100-50

16
RMSE 0.00949 0.00965
MAE 0.00809 0.00807

MAPE (%) 0.89151 0.98417

32
RMSE 0.10553 0.00963
MAE 0.01805 0.00909

MAPE (%) 1.37068 1.08417

64
RMSE 0.00959 0.10772
MAE 0.01168 0.10620

MAPE(%) 1.21431 1.05872

Table A1 shows the metrics of ATCN for different batch sizes tested with kernel
size = 16, filters = 8. The results in Table A1 show that the RMSE, MAE, and MAPE metrics
of the model for both sliding window cases are the smallest for batch size = 128. Table A2
provides the metrics of ATCN with different filters tested for batch size = 128 and kernel
size = 16. The sliding window “100-50” model exhibits the smallest RMSE, MAE, and
MAPE metrics when filter = 8, according to Table A2. Table A3 demonstrates the metrics of
ATCN for different kernel sizes with batch size = 128 and filters = 8. The results in Table A3
demonstrate that for the sliding window “100-10” with kernel size = 16, the RMSE, MAE,
and MAPE metrics are minimum. The smallest MAE and MAPE metrics are for the sliding
window “100-50” with kernel size = 16. The optimal combination of hyperparameters for
the ATCN model is batch size = 128, kernel size = 16, and filters = 8.

Note that our model code runs on Windows 10, NVIDIA GeForce GTX 1650 GPU, and
the deep learning framework is TensorFlow 2.6.0.

References

1. Kavzoglu, T.; Colkesen, I.; Sahin, E.K. Machine learning techniques in landslide susceptibility mapping: A survey and a case
study. Landslides Theory Pract. Model. 2019, 50, 283–301.

2. Zhang, D.; Yang, J.; Li, F.; Han, S.; Qin, L.; Li, Q. Landslide Risk Prediction Model Using an Attention-Based Temporal
Convolutional Network Connected to a Recurrent Neural Network. IEEE Access 2022, 10, 37635–37645. [CrossRef]

3. Cheng, Q.; Yang, Y.; Du, Y. Failure mechanism and kinematics of the Tonghua landslide based on multidisciplinary pre- and
post-failure data. Landslides 2021, 18, 3857–3874. [CrossRef]

4. Wei, R.; Ye, C.; Ge, Y.; Li, Y. An attention-constrained neural network with overall cognition for landslide spatial prediction.
Landslides 2022, 19, 1087–1099. [CrossRef]

5. Ghorbanzadeh, O.; Blaschke, T.; Gholamnia, K.; Meena, S.R.; Tiede, D.; Aryal, J. Evaluation of different machine learning methods
and deep-learning convolutional neural networks for landslide detection. Remote Sens. 2019, 11, 196. [CrossRef]

6. Ghorbanzadeh, O.; Shahabi, H.; Crivellari, A.; Homayouni, S.; Blaschke, T.; Ghamisi, P. Landslide detection using deep learning
and object-based image analysis. Landslides 2022, 19, 929–939. [CrossRef]

7. Wang, C.; Zhao, Y.; Bai, L.; Guo, W.; Meng, Q. Landslide Displacement Prediction Method Based on GA-Elman Model. Appl. Sci.
2021, 11, 11030. [CrossRef]

8. Wang, Y.; Tang, H.; Huang, J.; Wen, T.; Ma, J.; Zhang, J. A comparative study of different machine learning methods for reservoir
landslide displacement prediction. Eng. Geol. 2022, 298, 106544. [CrossRef]

9. Wang, H.; Long, G.; Liao, J.; Xu, Y.; Lv, Y. A new hybrid method for establishing point forecasting, interval forecasting, and
probabilistic forecasting of landslide displacement. Nat. Hazards 2022, 111, 1479–1505. [CrossRef]

10. Miao, F.; Xie, X.; Wu, Y.; Zhao, F. Data Mining and Deep Learning for Predicting the Displacement of “Step-like” Landslides.
Sensors 2022, 22, 481. [CrossRef]

11. Gong, W.; Tian, S.; Wang, L.; Li, Z.; Tang, H.; Li, T.; Zhang, L. Interval prediction of landslide displacement with dual-output least
squares support vector machine and particle swarm optimization algorithms. Acta Geotech. 2022, 17, 1–19. [CrossRef]

12. Lin, Z.; Ji, Y.; Liang, W.; Sun, X. Landslide Displacement Prediction Based on Time-Frequency Analysis and LMD-BiLSTM Model.
Mathematics 2022, 10, 2203. [CrossRef]

13. Lin, Z.; Sun, X.; Ji, Y. Landslide Displacement Prediction Model Using Time Series Analysis Method and Modified LSTM Model.
Electronics 2022, 11, 1519. [CrossRef]

262



Sensors 2022, 22, 6240

14. Lin, Z.; Sun, X.; Ji, Y. Landslide Displacement Prediction Based on Time Series Analysis and Double-BiLSTM Model. Int. J.
Environ. Res. Public Health 2022, 19, 2077. [CrossRef] [PubMed]

15. Zhang, Y.; Tang, J.; Cheng, Y.; Huang, L.; Guo, F.; Yin, X.; Li, N. Prediction of landslide displacement with dynamic features using
intelligent approaches. Int. J. Min. Sci. Technol. 2022, 32, 539–549. [CrossRef]

16. Ma, J.; Xia, D.; Wang, Y.; Niu, X.; Jiang, S.; Liu, Z.; Guo, H. A comprehensive comparison among metaheuristics (MHs) for
geohazard modeling using machine learning: Insights from a case study of landslide displacement prediction. Eng. Appl. Artif.
Intell. 2022, 114, 105150. [CrossRef]

17. Ma, J.; Xia, D.; Guo, H.; Wang, Y.; Niu, X.; Liu, Z.; Jiang, S. Metaheuristic-based support vector regression for landslide
displacement prediction: A comparative study. Landslides 2022, 1–23. [CrossRef]

18. Sala, G.; Lanfranconi, C.; Frattini, P.; Rusconi, G.; Crosta, G.B. Cost-sensitive rainfall thresholds for shallow landslides. Landslides
2021, 18, 2979–2992. [CrossRef]

19. Domínguez-Cuesta, M.J.; Quintana, L.; Valenzuela, P.; Cuervas-Mons, J.; Alonso, J.L.; Cortés, S.G. Evolution of a human-induced
mass movement under the influence of rainfall and soil moisture. Landslides 2021, 18, 3685–3693. [CrossRef]

20. Chen, C.-W.; Hung, C.; Lin, G.-W.; Liou, J.-J.; Lin, S.-Y.; Li, H.-C.; Chen, Y.-M.; Chen, H. Preliminary establishment of a mass
movement warning system for Taiwan using the soil water index. Landslides 2022, 19, 1779–1789. [CrossRef]

21. Zhang, N.; Li, Q.; Li, C.; He, Y. Landslide Early Warning Model Based on the Coupling of Limit Learning Machine and Entropy
Method. J. Phys. Conf. Ser. 2019, 1325, 012076. [CrossRef]

22. Fagbote, E.; Olanipekun, E.; Uyi, H. Water quality index of the ground water of bitumen deposit impacted farm settlements using
entropy weighted method. Int. J. Environ. Sci. Technol. 2014, 11, 127–138. [CrossRef]

23. Omar, Y.M.; Plapper, P. A survey of information entropy metrics for complex networks. Entropy 2020, 22, 1417. [CrossRef]
[PubMed]

24. Pincus, S.M. Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. USA 1991, 88, 2297–2301. [CrossRef]
[PubMed]

25. Song, K.-S. Limit theorems for nonparametric sample entropy estimators. Stat. Probab. Lett. 2000, 49, 9–18. [CrossRef]
26. Chen, W.; Wang, Z.; Xie, H.; Yu, W. Characterization of surface EMG signal based on fuzzy entropy. IEEE Trans. Neural Syst.

Rehabil. Eng. 2007, 15, 266–272. [CrossRef]
27. Bandt, C.; Pompe, B. Permutation entropy: A natural complexity measure for time series. Phys. Rev. Lett. 2002, 88, 174102.

[CrossRef]
28. Park, E.; Ahn, J.; Yoo, S. Weighted-Entropy-Based Quantization for Deep Neural Networks. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 5456–5464.
29. Delgado-Bonal, A.; Marshak, A. Approximate entropy and sample entropy: A comprehensive tutorial. Entropy 2019, 21, 541.

[CrossRef]
30. Huang, B.; Zheng, H.; Guo, X.; Yang, Y.; Liu, X. A Novel Model Based on DA-RNN Network and Skip Gated Recurrent Neural

Network for Periodic Time Series Forecasting. Sustainability 2021, 14, 326. [CrossRef]
31. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need.

Adv. Neural Inf. Process. Syst. 2017, 30, 5998–6008.
32. Chen, Y.; Kang, Y.; Chen, Y.; Wang, Z. Probabilistic forecasting with temporal convolutional neural network. Neurocomputing 2020,

399, 491–501. [CrossRef]
33. Pelletier, C.; Webb, G.I.; Petitjean, F. Temporal convolutional neural network for the classification of satellite image time series.

Remote Sens. 2019, 11, 523. [CrossRef]
34. Xu, Y.; Hu, C.; Wu, Q.; Li, Z.; Jian, S.; Chen, Y. Application of temporal convolutional network for flood forecasting. Hydrol. Res.

2021, 52, 1455–1468. [CrossRef]
35. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
36. Zhang, Y.-G.; Tang, J.; He, Z.-Y.; Tan, J.; Li, C. A novel displacement prediction method using gated recurrent unit model with

time series analysis in the Erdaohe landslide. Nat. Hazards 2021, 105, 783–813. [CrossRef]
37. Petersen, N.C.; Rodrigues, F.; Pereira, F.C. Multi-output bus travel time prediction with convolutional LSTM neural network.

Expert Syst. Appl. 2019, 120, 426–435. [CrossRef]

263





MDPI
St. Alban-Anlage 66

4052 Basel
Switzerland

www.mdpi.com

Sensors Editorial Office
E-mail: sensors@mdpi.com

www.mdpi.com/journal/sensors

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are

solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s).

MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from

any ideas, methods, instructions or products referred to in the content.





Academic Open 

Access Publishing

mdpi.com ISBN 978-3-0365-9787-4


