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1. Blue Biotechnology Framework

Besides the importance of our oceans as oxygen factories, food providers, shipping
pathways, and tourism enablers, oceans hide an unprecedented wealth of opportunities [1].
Marine organisms and microorganisms are valuable sources of primary and secondary
metabolites, biopolymers, and enzymes, which can be used as lead agents for drug dis-
covery, filling in the pharmaceutical industry pipeline and improving their development
processes (e.g., drug discovery, drug repurposing, absorption, distribution, metabolism,
elimination, and toxicity (ADMET) prediction, drug delivery, among others), especially
when applying computer-aided tools and methods, and also as a source of bio-inspired
material for numerous medical and biotechnological applications. The field of computer-
aided ligand- and structure-based methodologies for marine drug lead discovery is still
developing. By assisting in the structure elucidation of secondary metabolites, repurposing
known marine natural products (MNPs) for new therapeutic purposes, and identifying
novel hits or leads against selected therapeutic targets, computational approaches and
chemistry simulation methods can be successfully used in the discovery, design, and de-
velopment of new chemical agents for therapeutic applications [2–4]. The eminent marine
(blue) biotechnology field has gained visibility worldwide in many complementary sci-
entific fields, inspiring the creation of several legislative, infrastructural, and scientific
collaborative networks [5,6]. With computer-aided approaches playing a crucial role in
advancing this scientific field, the computational tools could ultimately become a significant
driver in economic development, the formation of innovative biotechnological applications,
and in the accomplishment of sustainable drug discovery approaches worldwide.

2. Objective of Marine Drug Discovery through Computer-Aided Approaches
Special Issue

The Special Issue “Marine Drug Discovery through Computer-Aided Approaches”
was created with the objective of mapping the current scientific actors in the field of
computer-aided approaches applied to blue biotechnology, and of providing a comprehen-
sive overview of the great variety of advanced computer-aided methods for the discovery
and identification of molecular agents with added value and health-promoting proper-
ties for the development of medical and biotechnological applications. This Special Issue
invited the blue biotechnology community working with computer-aided technology to
submit original research, reviews, and perspectives in all steps of the marine biotech-
nology development pipeline including computer-aided methods; from blue biotechnol-
ogy, drug discovery, drug repurposing, chemoinformatics, bioinformatics, dereplication,
MNPs databases, machine learning techniques, biological and chemical space, Quantitative
Structure–Activity Relationship (QSAR), molecular docking, Computer-Aided Drug Design
(CADD), and Computer-Assisted Structure Elucidation (CASE), generating a compilation
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of processes and technologies. The aim was also to develop a “guidebook” for maximizing
the impact of marine biotechnology development that can be used to start, improve, and
facilitate collaborations between related and complementary scientific fields, by providing
information, expert contacts, and their expertise that will, both directly and indirectly, im-
prove the discovery and innovation in blue biotechnology and boosting blue bioeconomy
using computing methodologies.

3. Topics of the Participating Research Community

The Special Issue “Marine Drug Discovery through Computer-Aided Approaches”
comprises nine articles reporting original research. These range from using computer soft-
ware, machine learning, molecular docking, in silico modelling and animal modelling for
dereplication, aiding MNPs structure elucidation, and the prediction of MNPs bioactivities
and protein binding targets. This Special Issue is a must read for those who want to start
using computer methods in marine biotechnology research. The nine contributions are
described below by publication date.

3.1. Predicting Antifouling Activity and Acetylcholinesterase Inhibition of Marine-Derived
Compounds Using a Computer-Aided Drug Design Approach

A CADD strategy combining ligand- and structure-based approaches was used for
predicting the antifouling properties of MNPs. The QSAR classification model was con-
structed using antifouling screening data from 141 organic compounds that were taken
from the ChEMBL database and the literature using the CADD ligand-based technique,
attaining a highest prediction accuracy score of up to 71%. The best QSAR model created
was also used to conduct a virtual screening campaign on 14,492 MNPs from Encinar’s
website and 14 MNPs that are currently in the clinical pipeline. The 125 MNPs chosen by the
QSAR approach were employed in molecular docking tests against the acetylcholinesterase
enzyme in the CADD structure-based approach. The most promising marine drug-like
leads as antifouling agents were identified as 16 MNPs, including macrocyclic lactam,
macrocyclic alkaloids, indole, and pyridine derivatives [7].

3.2. Uncovering the Bioactive Potential of a Cyanobacterial Natural Products Library Aided by
Untargeted Metabolomics

Numerous cyanobacteria are kept in the Blue Biotechnology and Ecotoxicology Culture
Collection (LEGE-CC), but little is known about their chemical diversity. A library of
natural compounds was created to speed up its bioactivity screening. Sixty strains were
examined for their cytotoxic potential against 2D and 3D models of human colon cancer
(HCT 116) and the non-cancerous cell line hCMEC/D3. Their metabolome was analyzed
and annotated using MolNetEnhancer and processed with MetaboAnalyst, allowing the
selection of seven out of sixty cyanobacterial strains for the discovery of anticancer drug
leads while dereplicating the chemical content of these cyanobacteria [8].

3.3. Application of Networking Approaches to Assess the Chemical Diversity, Biogeography, and
Pharmaceutical Potential of Verongiida Natural Products

A review of all isolated natural products (NPs) identified in the sponge’s order
Verongiida from 1960 to May 2020 was performed compiling detailed information on
their physico-geographical characteristics. Pharmacokinetic characteristics and possible
medicinal potential of NPs from Verongiida were inferred using physico-chemical data.
To comprehensively study the chemical space interactions between taxonomy, secondary
metabolites, and drug score variables, a network analysis was used for the NPs made by
Verongiida sponges, allowing the detection of differences and correlations within a dataset.
Bipartite connection networks and scaffold networks provided a platform for investigating
chemical diversity, and chemical similarity networks linking pharmacokinetic features with
structural similarities, which can be used for other sponge orders or families [9].
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3.4. Investigation of Marine-Derived Natural Products as Raf Kinase Inhibitory Protein
(RKIP)-Binding Ligands

Numerous illnesses, including cancer, Alzheimer’s, and diabetic nephropathy, are
associated with the aberrant expression of RKIP. RKIP also functions as a tumor suppressor,
making it a desirable therapeutic target. Only a few small molecules have been identified
to alter the activity of RKIP. A pharmacophore model was created to investigate the
characteristics of locostatin, the most effective RKIP modulator. A MNPs library was
then obtained after the generated model was put through a screening process. The in
silico hits may serve as strong RKIP modulators and disrupt interactions with RKIP’s
binding proteins [10].

3.5. Saliniquinone Derivatives, Saliniquinones G−I and Heraclemycin E, from the Marine
Animal-Derived Nocardiopsis aegyptia HDN19-252

The Antarctic marine-derived actinomycete Nocardiopsis aegyptia HDN19-252 was used
as a resource to produce four novel anthraquinone derivatives, including saliniquinones
G–I (1–3) and heraclemycin E (4). Extensive NMR, MS, and ECD investigations revealed
their structures, including absolute configurations. Saliniquinones 1 and 2 demonstrated
encouraging inhibitory action against six tested bacterial strains, including methicillin-
resistant coagulase-negative staphylococci (MRCNS), with MIC values ranging from 3.1 to
12.5 μM [11].

3.6. Efficacy of Chondroprotective Food Supplements Based on Collagen Hydrolysate and
Compounds Isolated from Marine Organisms

The prevalence of osteoarthritis is higher in older individuals and is one of the most
prevalent joint diseases in both humans and animals. The bioactivities of collagen hy-
drolysates, sulfated glucosamine, and specific fatty-acid-enriched dog rations were ex-
amined as prospective therapeutic options for early osteoarthritis using 52 dogs. The
possibility that these well-characterized compounds may function as efficient nutraceu-
ticals is supported by biophysical, biochemical, cell biology, and molecular modeling
techniques. Animal model and molecular modeling for the receptor proteins MMP-3,
TIMP-1 and ADAMTS-5 of intermolecular interactions strongly validated the applied col-
lagen hydrolysates as well as sulfated glucosamine compounds from marine organisms.
Molecular modeling simulations were employed to further evaluate the contact efficacy
of collagen fragments and glucosamines with protein receptor architectures. There are
potential advantages of using lipids, particularly eicosapentaenoic acid (extracted from fish
oil), sulfated glycans (such as sulfated glucosamine from crabs and mussels), and colla-
gen hydrolysates on biochemical and physiological processes for applications in dietary
supplements for human and veterinary medicine [12].

3.7. Solid-Phase Extraction Embedded Dialysis (SPEED), an Innovative Procedure for the
Investigation of Microbial Specialized Metabolites

In situ physical separation of the mycelium of filament-forming microorganisms, such
as actinomycetes and fungi, and the XAD-16 resin used to trap the secreted specialized
metabolites was accomplished using the novel solid-phase extraction embedded dialysis
(SPEED) technology. SPEED is made up of an internal dialysis tube holding XAD resin and
an exterior nylon cloth. The dialysis barrier chooses the molecular weight of the trapped
chemicals and stops biomass or macromolecules from accumulating on the XAD beads.
SPEED is a cultivation procedure assisted by a microbial biofilm since the external nylon
encourages its creation. Marine Streptomyces albidoflavus 19-S21, isolated from a core of a
submerged Kopara sampled at 20 m from a saltwater pond border, was subjected to SPEED
technology. Using dereplication techniques based on molecular networking and thorough
chemical analysis, the chemical space of this strain was successfully studied, demonstrating
the influence of the culture support on the molecular profile of the secondary metabolites
produced by Streptomyces albidoflavus 19-S21 [13].
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3.8. Potency- and Selectivity-Enhancing Mutations of Conotoxins for Nicotinic Acetylcholine
Receptors Can Be Predicted Using Accurate Free-Energy Calculations

Nicotinic acetylcholine receptor (nAChR) subtypes are important therapeutic targets,
however, because of their striking similarity in sequence identities, it is difficult to pharma-
cologically distinguish between them. Additionally, nAChR problems may be successfully
treated by using -conotoxins (-CTXs), which are naturally occurring selective and competi-
tive antagonists for nAChRs. The primary goal of most -CTX mutagenesis investigations is
to identify selectivity-enhancing mutations, although doing so with conventional docking
techniques is challenging due to the lack of crystal structures for -CTX and nAChR. This
study anticipates the structures of -CTXs bound to the nAChR subtypes 3 and 4 using
homology modeling and re-predicts the relative potency and selectivity of -CTX mutants
at these subtypes using free-energy perturbation (FEP). First, we employ the three crystal
structures of the acetylcholine-binding protein, a homologue of the nAChR. The relative
affinities of twenty point mutations made to the -CTXs LvIA, LsIA, and GIC using three
crystal structures of the nAChR homologue, acetylcholine-binding protein (AChBP) was
re-predicted, with an overall root mean square error (RMSE) of 1.08 ± 0.15 kcal/mol
and an R2 of 0.62, equivalent to experimental uncertainty. Then, with an overall RMSE
of 0.85 ± 0.08 kcal/mol and an R2 of 0.49, we employ AChBP as a template for 32 and
34 nAChR homology models linked to the -CTX LvIA and re-predict the potencies of eleven
point mutations at both subtypes. The commonly used molecular mechanics–generalized
born/surface area (MM-GB/SA) approach, which yields an RMSE of 1.96 ± 0.24 kcal/mol
and an R2 of 0.06 on the identical data, is substantially worse than this. Moreover, in con-
trast to MM-GB/SA, FEP correctly categorizes 32 nAChR selective LvIA mutants. FEP was
used to undertake a thorough scan for amino acid alterations in LvIA. Fifty-two of these
mutations will have greater than 100X selectivity for the 32 nAChR. FEP is ideally adapted
to properly forecast mutations that will increase the potency and selectivity of -CTXs for
nAChRs and to find alternative methods for discovering selective α-CTXs drugs [14].

3.9. In Vitro and In Silico Characterization of G-Protein Coupled Receptor (GPCR) Targets of
Phlorofucofuroeckol-A and Dieckol

Polyphenolic substances called phlorotannins are obtained from marine algae, par-
ticularly brown algae. Dieckol and phlorofucofuroeckol-A (PFF-A) are the two main
phlorotannins among many others, and although possessing a greater range of biolog-
ical activities, less is known about the G protein-coupled receptors (GPCRs) that these
phlorotannins target. Twenty major protein targets were predicted by in silico proteochem-
informatics modeling, and in vitro functional assays demonstrated that two phlorotannins’
primary GPCR targets had good agonist and antagonist effects at the 2C adrenergic receptor
(2CAR), adenosine 2A receptor (A2AR), glucagon-like peptide-1 receptor (GLP-1R), and
5-hydroxytryptamine 1A receptor (5-TH1AR). Additionally, PFF-A had a promising agonist
action at the cannabinoid 1 receptor and an antagonist effect at the vasopressin 1A receptor
(V1AR) while dieckol demonstrated an antagonist effect at the V1AR. In silico molecular
docking simulation enables the analysis and pinpointing of specific binding characteristics
of these phlorotannins to the target proteins. According to the docking data, dieckol and
PFF-A bind to the proteins’ crystal structures with good affinity and important interplaying
amino acid residues equivalent to reference ligands. The primary receptors for dieckol and
PFF-A are the 2CAR, A2AR, -OPR, GLP-1R, 5-TH1AR, CB1R, and V1AR [15].

Author Contributions: Conceptualization, S.P.G.; validation, S.P.G.; formal analysis, S.P.G.; writing
—original draft preparation S.P.G.; writing—review and editing, S.P.G. and F.P.; visualization, S.P.G.
and F.P.; project administration, S.P.G.; funding acquisition, S.P.G. and F.P. All authors have read and
agreed to the published version of the manuscript.
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Abstract: Biofouling is the undesirable growth of micro- and macro-organisms on artificial water-
immersed surfaces, which results in high costs for the prevention and maintenance of this process
(billion €/year) for aquaculture, shipping and other industries that rely on coastal and off-shore
infrastructure. To date, there are still no sustainable, economical and environmentally safe solutions
to overcome this challenging phenomenon. A computer-aided drug design (CADD) approach
comprising ligand- and structure-based methods was explored for predicting the antifouling activities
of marine natural products (MNPs). In the CADD ligand-based method, 141 organic molecules
extracted from the ChEMBL database and literature with antifouling screening data were used
to build the quantitative structure–activity relationship (QSAR) classification model. An overall
predictive accuracy score of up to 71% was achieved with the best QSAR model for external and
internal validation using test and training sets. A virtual screening campaign of 14,492 MNPs
from Encinar’s website and 14 MNPs that are currently in the clinical pipeline was also carried
out using the best QSAR model developed. In the CADD structure-based approach, the 125 MNPs
that were selected by the QSAR approach were used in molecular docking experiments against
the acetylcholinesterase enzyme. Overall, 16 MNPs were proposed as the most promising marine
drug-like leads as antifouling agents, e.g., macrocyclic lactam, macrocyclic alkaloids, indole and
pyridine derivatives.

Keywords: marine natural products (MNPs); blue biotechnology; quantitative structure–activity
relationship (QSAR); machine learning (ML) techniques; computer-aided drug design (CADD);
molecular docking; virtual screening; antifouling activity; acetylcholinesterase enzyme (AChE)

1. Introduction

Marine biofouling is the undesired accumulation of micro-organisms, e.g., bacteria,
cyanobacteria, unicellular algae and protozoa, and macro-organisms, e.g., seaweeds, barna-
cles, mussels and shells, on artificial water-immersed surfaces in a dynamic process that
starts immediately after water submersion and can be a fast or slow process taking only
hours or months to develop, respectively [1]. Marine biofouling creates risks to various in-
dustries, such as aquaculture and shipping, as well as for non-marine industries, e.g., paper
manufacturing, food processing, underwater construction, power plants and others [2,3].
Settlement on the vessel’s hull results in damage to the rudder and propulsion systems [2,4],
leads to an increasing drag of up to 60%, as well as a fuel consumption increase by 40%, in-
creasing carbon dioxide and sulfur dioxide emissions [5] and the spread of nonindigenous
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marine species into ecosystems worldwide, leading to environmental imbalances [6–10].
The most effective antifouling (AF) coatings contained biocides, such as tributyltin (TBT)
and tributyltin oxide (TBTO), which were found to be harmful to non-target organisms and
the environment [11] and thus were prohibited by the International Maritime Organization
from Ship Surfaces in 2008, generating the demand for new generations of non-toxic or
environment-friendly AF solutions [12–14].

Natural alternatives including primary or secondary metabolites isolated from marine
organisms have been reported in several reviews to inhibit the settlement of different
biofouling species [15–24]. The search for AF agents from marine sources began with
bromo-derived metabolites, among the 2-furanone bromine derivatives extracted from red
algae, which have been reported to prevent fouling [25], as well as bromopyrrole alkaloid
derivatives with AF activity isolated from sponges (oroidin), inspiring the design of more
than 50 synthetic analogues [26,27], and, more recently, antifouling bromotyrosine deriva-
tives of the synoxazolidinone and the pulmonarin families [28]. Several studies reported
MNPs with antifouling activity comprising the 2,5-diketopiperazine scaffold isolated from
the marine sponge Geodia barretti [29], 6-benzyl and 6-isobutyl 2,5-diketopiperazine deriva-
tives from marine-derived actinomycete Streptomyces praecox [30] and five diketopiper-
azines, cyclo-(L-Leu-L-Pro), cyclo-(L-Phe-L-Pro), cyclo-(L-Val-L-Pro), cyclo-(L-Trp-L-Pro)
and cyclo-(L-Leu-L-Val), from deep-sea Streptomyces fungicidicus [31]. Comprising a meroter-
penoid scaffold, napyradiomycin derivatives, isolated from marine-derived actinomycetes
Streptomyces aculeolatus, were investigated by our group as antifouling inhibitors, having
the advantage of inhibiting both micro- (antibiofilm activity) and macrofouling [32–34].

Computer-aided drug design (CADD) approaches have been used to guide decisions
concerning the in vivo and in vitro testing of isolated NPs and extracts [35–39], to assist in
the design of bioactive NP derivatives [40,41] and to virtually screen databases of known
or proposed NPs [40,42–44]. To the best of our knowledge, the antifouling activity was
quantitative structure–activity relationship (QSAR) modeled in only two previous works
for the settlement of Mytilus galloprovincialis larvae [45,46]. Almeida et al. built two QSAR
models using multilinear regression methods with, respectively, 19 and 16 nature-inspired
(thio)xanthone [46] and chalcone [45] derivatives, including in vitro antifouling activity
screening assays for the settlement of Mytilus galloprovincialis larvae.

Acetylcholinesterase (AChE) inhibitors are a class of drugs used for the treatment of
Alzheimer’s disease, glaucoma and autoimmune disorders [47–49]. The enzymes AChE [28]
and tyrosinase (Tyr) were associated with the adhesive processes in the settlement of
different biofouling species [28,46,50]. Almeida et al. reported a molecular docking study
conducted by modulation of Electrophorus electric (fish) AChE of the two most promising
(thio)xanthone antifouling agents [46]. Recently, Arabshahi et al. [50] reported an extensive
virtual Tetronarce californica (fish) AChE homology screening campaign for 10,000 small
organic molecules from the Chembridge library. The authors also reported the experimental
screening of the most promising AChE inhibitors proposed by the in silico model, against
five microfouling marine bacteria and marine microalgae macrofouling tunicate Ciona
savignyi, discovering a potent novel inhibitor of tunicate settlement [50].

Herein, we report comprehensive computational modeling for the prediction of an-
tifouling activities from two MNP libraries, by employing structure- and ligand-based
CADD methodologies. The two libraries comprised 14,492 MNP from Prof. Encinar
(http://docking.umh.es/downloaddb, accessed on 25 October 2021) and 14 MNPs from
the clinical pipeline of MNPs (eight drugs approved and six MNPs in Phase II and III clini-
cal trials). All the MNPs from the virtual screening libraries that were predicted to belong
to the active class, i.e., 125 MNPs, were selected to proceed to the CADD structure-based
method, where 125 MNPs selected by QSAR approach were screened by molecular docking
against the AChE enzyme. In this CADD approach, a virtual screening hit list comprising
19 MNPs was assented based on some established thresholds, such as the probability of
being active in the best antifouling model and the prediction of affinity between the AChE
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of selected MNPs by molecular docking. A total of 16 MNPs have been proposed as the
most promising marine drug-like leads as antifouling agents.

2. Results and Discussion

2.1. Chemical Space of the Antifouling Model

The whole data set (i.e., 141 small organic molecules) was randomly divided into
a training set of 127 molecules (comprising 57 active and 70 inactive molecules) and a
test set of 14 molecules (comprising six active and eight inactive molecules), which were
used for the development and external validation of the QSAR classification models,
respectively. The whole data set comprised seven structural classes or scaffold types,
which are represented in Table 1 along with their antifouling activity classes and scaffold
representative.

Table 1. Structural clusters and antifouling activity class counts within the seven structural clusters.

Clusters 1
# 2 (Active Class) Average MW (Da) 3 Average ALogP 4

Tr Te Tr Te Tr Te

I—acyclic derivative

 
11 (11) 0 (0) 361.65 0 2.86 0

II—O-heterocyclic derivative

 

 

28 (9) 3 (1) 328.09 334.64 3.18 3.22

III—N-heterocyclic derivative

 

 

19 (14) 1 (0) 363.92 493.04 2.50 3.65

IV—terpenoid derivative

 

22 (5) 6 (3) 264.64 341.76 3.00 4.49

V—diketopiperazine derivative

 

15 (10) 3 (2) 392.54 415.15 3.06 3.10
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Table 1. Cont.

Clusters 1
# 2 (Active Class) Average MW (Da) 3 Average ALogP 4

Tr Te Tr Te Tr Te

VI—chalcone derivative

 

16 (3) 0 (0) 352.37 0 4.56 0

VII—miscellaneous 16 (5) 1 (0) 1164.53 975.69 −0.88 −1.57
1 Cluster code and chemical structure of the cluster scaffold. 2 Number of molecules in the training (Tr) and the
test (Te) sets. 3 Molecular weight (MW) within the cluster for the training and test sets. 4 Octanol–water partition
coefficient prediction within the cluster for the training and test sets.

All seven structural clusters (I, acyclic derivative, II, O-heterocyclic derivative, III,
N-heterocyclic derivative, IV, terpenoid derivative, V, diketopiperazine derivative, VI,
chalcone derivative, and VII, miscellaneous) were well represented in the training set, each
comprising more than 10 molecules per class. The active class was more represented in
three structural clusters with a percentage higher than 50%, namely I—acyclic derivative
(100%), III—N-heterocyclic derivative (74%) and V—diketopiperazine derivative (67%).
In the test set, only five structural clusters were represented, II-V and VII. In Table 1,
the most representative scaffolds of the structural cluster are highlighted—for instance,
for cluster I, a polyacetylene derivative; II, a chromone and a xanthone derivative; III, a
pyrrole and a piperidine derivative; IV, a sesquiterpene derivative; V, a diketopiperazine,
VI, a chalcone derivative; and VII, various scaffolds such as peptides and nature-inspired
sulfated compounds. All clusters for the training and test sets, except for cluster VII, had
an average MW value of less than 500 Da.

2.2. Establishment of QSAR Classification Model

Random Forests (RF) [51] were used to build models for antifouling prediction, ex-
ploring well-established PaDEL fingerprints (FPP and descriptors, e.g., five different types
of FPs with different sizes (166 MACCS, MACCS keys; 307 Substructure; 881 PubChem
fingerprints; 1024 CDK, circular fingerprints; 1024 CDK Ext, extended circular fingerprints
with additional bits describing ring features) and 1376 1D&2D molecular descriptors (in-
cluding electronic, topological and constitutional descriptors)) [52]. The performance of the
models was successfully evaluated by internal validation (out-of-bag, OOB, estimation on
the training set); see Table 2.

Table 2. Evaluation of the predictive performance of FPs and 1D&2D molecular descriptors for
modeling the antifouling activity using the RF algorithm for the training set with an OOB estimation.
The best models are highlighted in bold.

Descriptors (#) TP 1 TN 2 FN 3 FP 4 SE 5 SP 6 Q 7 MCC 8

MACCS (166) 9 41 51 16 19 0.719 0.729 0.724 0.446
Sub (307) 9 41 53 16 17 0.719 0.757 0.740 0.476

PubChem (881) 9 43 48 14 22 0.754 0.686 0.717 0.438
CDK (1024) 9 42 47 15 23 0.737 0.671 0.701 0.406
ExtCDK (1024) 9 41 49 16 21 0.719 0.700 0.709 0.417

1D&2D (1376) 40 53 17 17 0.702 0.757 0.732 0.459

1 True positive. 2 True negative. 3 False negative. 4 False positive. 5 Sensitivity, the ratio of true positive to the sum
of true positive and false positive. 6 Specificity, the ratio of true negative to the sum of true negative and false
negative. 7 Overall predictive accuracy, the ratio of the sum of true positive and true negative to the sum of true
positive, true negative, false positive and false negative. 8 Matthews correlation coefficient. 9 Fingerprints, FPs.

From the seven sets of FPs and descriptors used to build the QSAR classification
model, the best set for each type, fragment FPs (Sub), circular FPs (ExtCDK) and molec-
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ular descriptors (1D&2D), were selected for further investigations; see Table 2. The 3D
descriptors had a well-established relationship with biological activity and were expected
to increase both the accuracy and robustness of the predictive models. After the exploration
of models derived with molecular descriptors and FPs, we investigated the inclusion of 3D
descriptors such as radial distribution function (RDF) descriptors (using a range of 128 and
partial atomic charge as an atomic property) and the selection of descriptors using the RF
descriptor importance parameter for the best three sets (Sub FPs, ExtCDK FPs and 1D&2D
descriptors). Three sets of descriptors (Sub + RDF, ExtCDK + RDF and 1D&2D + RDF) as
well as their selection were explored for modeling the antifouling activity using the RF
algorithm in Table 3, where the results for the training set in OOB estimation are presented.

Table 3. Evaluation of the predictive performance of RDF descriptors and descriptor selection for
modeling the antifouling activity using the RF algorithm for the training set with an OOB estimation.
The best models are highlighted in bold.

Model # SE 1 SP 2 Q 3 MCC 4

Sub + RDF 691 0.667 0.714 0.693 0.380

Selection 5 50 0.667 0.714 0.693 0.380
Selection 5 100 0.684 0.757 0.724 0.442
Selection 5 150 0.702 0.786 0.748 0.489

Selection 5 200 0.684 0.757 0.724 0.442

ExtCDK + RDF 1408 0.667 0.743 0.709 0.410

Selection 5 12 0.754 0.729 0.740 0.481
Selection 5 25 0.737 0.786 0.764 0.523

Selection 5 50 0.702 0.771 0.740 0.474
Selection 5 100 0.684 0.771 0.732 0.457

1D&2D + RDF 1760 0.719 0.714 0.717 0.432

Selection 5 50 0.807 0.800 0.803 0.605
Selection 5 100 0.825 0.786 0.803 0.607
Selection 5 150 0.807 0.800 0.803 0.605
Selection 5 200 0.842 0.786 0.811 0.625

Selection 5 250 0.772 0.800 0.787 0.571
1 Sensitivity, the ratio of true positive to the sum of true positive and false positive. 2 Specificity, the ratio of true
negative to the sum of true negative and false negative. 3 Overall predictive accuracy, the ratio of the sum of true
positive and true negative to the sum of true positive, true negative, false positive and false negative. 4 Matthews
correlation coefficient. 5 The descriptor selection was evaluated based on the importance assigned by the RF
model with the R program.

The 200 most important descriptors selected by the MeanDecreaseAccuracy parameter
of the 1D&2D + RDF model were identified by the RF algorithm and enabled the training
of a new RF model with better prediction accuracy in accordance with the Q and MCC
values than the model trained with the whole set of descriptors (Table 3). A comparison of
three machine learning (ML) techniques using the Weka software (support vector machines,
SVM), R software (RF) and Keras software (deep learning multilayer perceptron networks,
dMLP) for building the antifouling models with the 200 descriptors that were selected by
the RF is shown in Table 4 for the test set.

Table 4. Exploration of different ML algorithms using the 200 selected descriptors.

Model SE 1 SP 2 Q 3 MCC 4

RF 0.667 0.750 0.714 0.417
SVM 0.830 0.500 0.643 0.344

dMLP 0.670 0.750 0.714 0.417
1 Sensitivity, the ratio of true positive to the sum of true positive and false positive. 2 Specificity, the ratio of true
negative to the sum of true negative and false negative. 3 Overall predictive accuracy, the ratio of the sum of true
positive and true negative to the sum of true positive, true negative, false positive and false negative. 4 Matthews
correlation coefficient.
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The best models were accomplished with the RF and dMLP algorithms using the
200 1D&2D + RDF selected descriptors, which achieved, for both models, a Q and MCC
of 0.714 and 0.417 for the external test set. Majority voting predictions (consensus) were
obtained by the RF, SVM and dMLP models (the consensus model, CM), and did not
improve the results, with a Q and MCC of 0.571 and 0.167 for the test set; thus, in the next
step of the virtual screening, we used the best model obtained, RF, with the 200 selected
descriptors; see Tables 3 and 4).

The results obtained by the RF for the training and test sets that were in accordance
with the seven structural clusters (I–VII), reported in Table 1, are shown in Table 5.

Table 5. The predictions of the best RF model by the seven structural clusters for the training and test
sets. The best models are highlighted in bold.

Cluster # SE 1 SP 2 Q 3 MCC 4

Training set
I 11 1.000 - 1.000 1.000
II 28 0.889 0.789 0.821 0.640
III 19 1.000 0.400 0.842 0.574
IV 22 0.800 0.941 0.909 0.741
V 15 0.900 0.000 0.600 -
VI 16 0.000 1.000 0.813 -
VII 16 0.400 0.812 0.688 0.234

All 0.842 0.786 0.811 0.625
Test set

II 3 1.000 1.000 1.000 1.000
III 1 - 1.000 1.000 1.000
IV 6 0.333 1.000 0.667 0.447
V 3 1.000 0.000 0.667 -

VII 1 - 0.000 0.000 -
All 0.667 0.750 0.713 0.417

1 Sensitivity, the ratio of true positive to the sum of true positive and false positive. 2 Specificity, the ratio of true
negative to the sum of true negative and false negative. 3 Overall predictive accuracy, the ratio of the sum of true
positive and true negative to the sum of true positive, true negative, false positive and false negative. 4 Matthews
correlation coefficient.

There were three structural clusters (I, II and IV, bold highlighted in Table 5) in
which the predictions obtained were better than those obtained for the overall training set
simultaneously considering the Q and MCC values. An improvement in the RF model
prediction accuracies (Q = 0.821–1 and MCC = 0.64–1) was achieved for these three clusters
of the training set, when compared with the prediction accuracy obtained for all the
molecules of the training set (Q = 0.811 and MCC = 0.625). For the clusters II and V-
VII, lower prediction accuracies were obtained, Q = 0.6–0.842 and MCC = 0.234–0.574.
Interestingly, the best achieved predictions for structural clusters I and II were related to
the best performance obtained for the active class prediction, with SE values of 1 and 0.889,
respectively, compared to the SE value of 0.842 for all training sets. For example, for the
test set, the average of the Prob_active (a_Prob_active) obtained by the active molecules
predicted by the model as active, i.e., true positive (TP), was 0.59, which compares with
the value of a_Prob_active of 0.54 obtained by the predicted molecules by the model as
false positives (FP). The same relationship was obtained for molecules predicted as true
negatives (FN) and false negatives (FN), with an a_Pro_active of 0.44 and 0.48, respectively.
Additionally, it appears that, with a Prob_active higher than 0.59, there was no error in the
prediction and all molecules predicted as active were active.

2.3. Analysis of Fingerprints and Descriptors Identified as Relevant for Modeling the Antifouling Activity

The selected 200 descriptors included 164 1D&2D (115 topological descriptors, 48 count
type descriptors and one constitutional descriptor (Mannhold LogP, logarithm of the
octanol–water partition coefficient)) and 36 RDF 3D descriptors (12 of type a (a positive
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and a negative charge), 12 of type b (two positive charges) and 12 of type c (two negative
charges)). The 1D&2D descriptors comprised 72 autocorrelation topological descriptors,
which were 50 Broto–Moreau, 12 Moran and 10 Geary autocorrelation descriptors, weighted
by mass, charges, van der Waals volumes, Sanderson electronegativities, polarizabilities,
first ionization potential or I-state. Other topological descriptors, such as 6 Barysz matrices,
24 Burden-modified eigenvalues, 1 Detour matrix, 2 MDEs, 2 path counts, 3 topological
charges, 3 distance matrices, 1 walk count descriptor and 1 weighted path descriptor, were
also presented. The count type descriptors included 28 electrotopological state atom types,
10 extended topochemical atoms and 10 information content descriptors. A comparison of
the best twenty 1D&2D + RDF molecular descriptors selected by descriptor importance of
RF was used to build the QSAR classification models, which are presented in Tables 3 and 4,
and these were analyzed and are presented in Figure 1.
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Figure 1. The twenty most important 1D&2D +RDF descriptors selected in RF classification models,
where the first three descriptors in terms of importance are three Burden-modified eigenvalue
descriptors weighted by relative I-state, mass and Sanderson electronegativities, respectively; there
are several Broto–Moreau autocorrelations 4th–5th, 7th–8th, 14th, 16th–18th, 20th weighted by I-state,
mass, mass, first ionization potential, mass, polarizabilities, charge, Sanderson electronegativities
and I-state; two Moran autocorrelation descriptors, 6th and 15th weighted by charge and mass,
respectively; four electrotopological state atom type descriptors, 9th (>C<), 11th (weak hydrogen
bond acceptors), 13th (-CH2-), 19th (H bonded to B, Si, P, Ge, As, Se, Sn or P); one PaDEL weighted
path descriptor, 10th (sum of path lengths starting from nitrogens); and one topological charge
descriptor, 12th (mean topological charge index of order 1).

Interestingly, no 3D RDF descriptor appeared in the list of the twenty most important
descriptors and the first RDF descriptor appeared only in the 30th position (two positive
charges). Moreover, there were only seven out the twenty most important descriptors that
were more relevant in discriminating the active class, namely AATSC5m (5th), ATSC5m
(7th), AATS8i (8th), maxssssC (9th), ATSC8p (16th), AATSC5c (17th) and minHCsats (19th).
Of the nine Broto–Moreau autocorrelation descriptors existing in the list of the top 20, five
of them were more relevant to discriminate the active class and, on the other hand, they also
presented a lag higher than or equal to 5, which was related to a greater distance between
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the structural features of interest. In contrast, the four Broto–Moreau autocorrelation
descriptors that were more relevant for the inactive class presented a lag lower than or
equal to 5. The three most important descriptors in the top 20 list were three Burden-
modified eigenvalue descriptors and all of them were most relevant in the inactive class
discrimination. This eigenvalue was suggested as an index of molecular branching, the
smallest values corresponding to chain graphs (SpMin3_Bhe) and the highest to the most
branched graphs (SpMin5_Bhs and SpMin5_Bhm) [53]. A very interesting behavior was
observed with the two electrotopological state atom types, maxssssC (maximum atom-
type E-state: >C<) and SssCH2 (sum of atom-type E-state: -CH2-), which were more
relevant for the active and inactive classes, respectively. The maxssssC descriptor encodes
the maximum number of quaternary or asymmetric carbon atoms and could be seen as
encoding structural complexity. On the other hand, the SssCH2 descriptor encoded the
saturation of the molecule. Another very important descriptor to discriminate mainly the
inactive class is the PaDEL weighted path descriptor, WTPT-5, which is the sum of all path
weights starting from nitrogen atoms, revealing nitrogen-specific branching information.
In agreement with the present work, the two QSAR studies reported by Almeida et al.
highlighted the descriptors related to the branching, complexity and the influence of the
molecule’s interatomic distance for the modeling of the antifouling activity [45,46].

2.4. Application of the In Silico Antifouling QSAR Model in Virtual Screening

A virtual screening campaign was carried out to search for new lead-like antifouling
inhibitors. The best QSAR model, the RF model, was selected for the virtual screening
procedure using 14,492 MNPs from Prof. Encinar’s website and 14 MNPs in the pharmaceu-
tical pipeline (eight approved drugs and six MNPs in Phase II and III of clinical trials). The
antifouling virtual screening of the MNP library in the pharmaceutical pipeline allowed
us to assess the possibility of repurposing drugs of marine origin. Of these 14 MNPs
from the pharmaceutical pipeline, only one MNP in Phase II of clinical trials presented
activity against AChE, GTS-21 (DMXBA), a derivative of the NP, 2,4-dimethoxybenzylidene
anabaseine dihydrochloride. There were 13,902 MNPs that were predicted to be active by
the best QSAR model, of which 8349 MNPs were predicted to be active with a Prob_active
greater than 0.59 (limit defined for the test set for which there are no prediction errors).
From these MNPs, 5 (one approved drug and four MNPs in Phase II and III of clinical
trials) and 8344 MNPs were from the pharmaceutical pipeline and from Encinar’s database,
respectively. Interestingly, of the five MNPs from the MNP pharmaceutical pipeline pre-
dicted to be active with the highest Prob_active was DMXBA with a value of 0.658. A
more demanding limit has been defined for the CADD structure-based approach: all the
MNPs from the virtual screening libraries that were predicted as belonging to the active
class with a Prob_active greater than or equal to 0.68 were selected for molecular docking
experiments. In the CADD structure-based method, the 125 MNPs selected by the QSAR
classification approach were screened by molecular docking against acetylcholinesterase
enzyme (AChE).

The list of eleven lead-like AChE inhibitors against antifouling activity generated from
the AChE homology virtual screening, which were experimentally screened in in vitro
and micro- and macrofouling assays reported by Arabshahi et al. [50], was used in this
study as a second virtual screening library (Supplementary Data, Table S5). Only one
out of the eleven lead-like AChE inhibitors was predicted to have antifouling activity
with a Prob_active higher than 0.59 (Table S5), the morpholine derivative (Figure 2), in
which experimental antifouling activity IC50 = 16 μg/mL was reported (51.7 μM) [50].
However, none of the eleven compounds passed the established threshold, which was more
demanding (Prob_active ≥ 0.68), to be selected for the molecular docking experiments.
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Figure 2. Chemical structure of the morpholine derivative.

2.5. Molecular Docking against AChE Enzyme

The 125 MNPs from Encinar’s database selected by the QSAR classification approach
were screened by molecular docking against AChE enzyme (PDB ID: 6TT0) [54]. The
antifouling agents, synoxazolidinone A, synoxazolidinone C and donepezil, known as
AChE inhibitors [28], were used as positive controls and the phenolic derivative that
was predicted to not have antifouling activity in virtual screening was used as a nega-
tive control in the molecular docking experiments. A list of virtual screening hits com-
prising 19 MNPs was approved based on molecular docking experiments, in which a
threshold of ΔGB ≤ −7 kcal/mol was established for predicting the affinity between
AChE and selected MNPs. To prioritize the best marine drug-like leads as antifoul-
ing AChE inhibitors from the list of 19 selected MNPs by the antifouling QSAR model
and molecular docking of AChE enzyme, the absorption, distribution, metabolism, ex-
cretion and toxicity (ADMET) properties were predicted via in silico methods using
the pKCSM software (http://biosig.unimelb.edu.au/pkcsm/, accessed on 25 October
2021) [55]. Sixteen MNPs, a macrocyclic lactam (CAS 156310-18-8), seven macrocyclic alka-
loids (CAS 126622-63-7, 126622-64-8, 156310-18-8, 155944-26-6, 157536-35-1, 105305-54-2 and
105418-77-7), seven indole derivatives (CAS 142677-10-9, 134029-43-9, 134029-44-0, 134029-
45-1, 142677-09-6, 223596-72-3, 134779-34-3) and a pyridine derivative (CAS 59697-14-2)
were proposed as marine drug-like leads as antifouling AChE inhibitors. Three MNPs were
excluded due to their predicted toxicity to fish, namely against flathead minnows. The
Autodock Vina software (http://vina.scripps.edu/, accessed on 25 October 2021) [56] was
used to perform the flexible virtual screening of the 125 MNPs to find the most favorable
binding interactions, and the calculated free binding energies by the set of search space
coordinates are reported in Table 6 for the 16 MNPs selected, and the positive (synoxazo-
lidinone A and C; donepezil, an AChE inhibitor used for Alzheimer disease therapy) and
the negative (phenolic derivative derivative) controls.

Table 6. Structures and calculated free binding energies (ΔGB, in kcal/mol) of the sixteen
selected MNPs, the positive (synoxazolidinone A and C; donepezil) and negative (phenolic
derivative) controls.

CAS Chemical Structure
Name/Structural

Category
Natural Source Prob_A ΔGB (kcal/mol) 1

147362-39-8

 

cylindramide/lactam marine sponge 2 0.684 −11.3

126622-63-7

 

haliclamine
B/macrocyclic

alkaloid
marine sponge 3 0.682 −8.2
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Table 6. Cont.

CAS Chemical Structure
Name/Structural

Category
Natural Source Prob_A ΔGB (kcal/mol) 1

126622-64-8

 

haliclamine
A/macrocyclic

alkaloid
marine sponge 3 0.682 −7.8

156310-18-8
 

ingamine
B/macrocyclic

alkaloid
marine sponge 4 0.682 −7.8

155944-26-6

 

madangamines
A/macrocyclic

alkaloid
marine sponge 4 0.694 −7.7

105305-54-2

 

serain 3/
macrocyclic

alkaloid
marine sponge 5 0.686 −7.5

142677-10-9
 

chondriamide
B/indole red alga 6 0.682 −7.5

134029-43-9

 

nortopsentin A/indole marine sponge 7 0.702 −7.3

134029-44-0

 

nortopsentin B/indole marine sponge 7 0.698 −7.3

134029-45-1

 

nortopsentin C/indole marine sponge 7 0.700 −7.3

105418-77-7

 

serain 1/
macrocyclic

alkaloid
marine sponge 5 0.686 −7.2

142677-09-6

 

chondriamide
A/indole red alga 6 0.682 −7.2
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Table 6. Cont.

CAS Chemical Structure
Name/Structural

Category
Natural Source Prob_A ΔGB (kcal/mol) 1

223596-72-3

 

isobromodeoxytopsent/
indole marine sponge 8 0.680 −7.2

134779-34-3

 

nortopsentin D/indole marine sponge 7 0.688 −7.1

157536-35-1

 

keramaphidin
B/macrocyclic

alkaloid
marine sponge 9 0.684 −7.1

59697-14-2

 

nemertelline/
pyridine marine worm 10 0.680 −7.0

positive
control

 

synoxazolidinone A - - −6.5

positive
control

 

synoxazolidinone C - - −6.7

positive
control

 

donepezil - - −6.5

negative
control

 
phenolic - - −5.1

1 AChE enzyme: center X: 25.435 Y: 69.621 Z: 278.986; 2 Halichondria cylindrata; 3 Haliclona sp.; 4 Xestospongia ingens;
5 Reniera sarai; 6 Chondria sp.; 7 Spongosorites ruetzleri and Haliclona sp.; 8 Spongosorites sp.; 9 Amphimedon sp.; 10

Amphiporus angulatus.

The prediction of the ADMET properties of the sixteen selected MNPs by the antifoul-
ing QSAR model and molecular docking of AChE enzyme is presented in Table S1, in
the Supplementary Materials. In Figure 3, the interaction profile of the best-docked pose
for the two most probable lead-like antifouling AChE inhibitors, a lactam derivative—
cylindramide—and a macrocyclic alkaloid—haliclamine B—is represented.
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Figure 3. Interaction profiles of the best-docked poses for the two hits (a) cylindramide and
(b) haliclamine B.

New scoring functions based on more precise physics-based descriptors to better repre-
sent the protein–ligand recognition process have been developed. DockThor, a web service
for molecular docking simulation (https://dockthor.lncc.br/v2/, accessed on 6 January 2022),
was used to perform molecular docking of the two best macrocycle hits (cylindramine and
haliclamine B), the best non-macrocycle hit (indole derivative, CAS 142677-10-9) and the
positive and negative controls against the AChE enzyme (PDB ID: 6TT0). In DockThor, a set
of new empirical scoring functions to estimate protein–ligand binding affinity were devel-
oped by explicitly accounting for physics-based interaction terms based on the MMFF94S
force field combined with ML [57]. The DockThor scores obtained for the two best macro-
cycle hits (cylindramine and haliclamine B), the best non-macrocycle hit (indole derivative,
CAS 142677-10-9) and the positive (synoxazolidinone A and C; donepezil) and negative (phe-
nolic derivative) controls were −8.508 kcal/mol (−11.3 kcal/mol using Autodock Vina),
−7.008 kcal/mol (−8.2 kcal/mol using Autodock Vina), −8.634 kcal/mol (−7.5 kcal/mol us-
ing Autodock Vina), −7.749 kcal/mol (−6.5 kcal/mol using Autodock Vina), −7.56 kcal/mol
(−6.7 kcal/mol using Autodock Vina) and −6.416 kcal/mol (−5.1 kcal/mol using Autodock
Vina), respectively. The interaction profiles of the best-docked poses predicted by DockThor
for the two best macrocycle hits, the best non-macrocycle hit and the positive and negative
controls are presented in Figure 4.
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Figure 4. Interaction profiles of the best-docked poses for the two macrocyclic hits (cylindramide and
haliclamine B), the best non-macrocycle hit (indole derivative) and the positive (synoxazolidinone A
and C; donepezil) and negative (phenolic derivative) controls.

The peripheral anionic site (PAS) of AChE is composed of five residues (TYR-70, ASP-72,
TYR-121, TRP-279 and TYR-334) and is involved in the allosteric modulation of catalysis at
the active center [46]. This site is the target of various anti-cholinesterase inhibitors. In this
work, other residues (e.g., ARG-88, ASN-65, PRO-64, GLY-32, THR-62, TRP-58 and ASN-59)
forming the hydrophobic interactions in the PAS pocket are highlighted in Figures 3 and 4.
The binding of donepezil to the PAS of AChE is in accordance with its proposed peculiar
inhibitory mechanism, which involves a reversible double-binding site interaction with the
catalytic anionic site and PAS of the enzyme [54]. Unlike our approach and in other reported
studies [46,54], Arabshahi et al. [50] performed a virtual screening by molecular docking
of AChE at the catalytic anionic site and not at the PAS. Although none of the 11 reported
compounds [50] passed the QSAR model threshold to be subjected to molecular docking,
we still performed the molecular docking and the docking scores are presented in Table S5
(Supplementary Data). It was verified that none of these compounds exceeded the established
threshold in the molecular docking experiments, ΔGB ≤ −7 kcal/mol.

3. Materials and Methods

3.1. Data Sets/Selection of Training and Test Sets

The antifouling data set comprising 142 molecules, 63 and 79 organic molecules, was
extracted from the ChEMBL (https://www.ebi.ac.uk/chembl/, accessed on 21 July 2021) [58]
and by searching in the literature indexed in the Web of Science Core Collection until June
2021, respectively. The ChEMBL data set was obtained by searching for marine organisms
with antifouling activity, such as barnacles (e.g., Balanus amphitrite), mussels (e.g., Mytilus gallo-
provincialis), bushy bryozoan (e.g., Bugula neritina) and marine algae (e.g., Ulva conglobata). The
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antifouling activity was classified using two activity classes: (A, active)—inhibition % > 52%
and EC50, IC50 ≤ 25 μg/mL; (B, inactive)—inhibition % ≤ 52% and EC50, IC50 > 25 μg/mL.
After collecting these data sets, the duplicates were removed based on the IUPAC interna-
tional chemical identifier (InChI) codes; however, the chirality was considered, and racemic
compounds (or cases where no stereochemistry was indicated) were considered as one of
the possible stereoisomers. Thereafter, the final data set comprised 141 organic molecules
and was divided into a training set comprising 127 molecules (class A, 57 molecules and
class B, 70 molecules) and a test set comprising 14 molecules (class A, 6 molecules and class
B, 8 molecules). The partitioning of the data set into training and testing sets was performed
randomly according to the composition of the antifouling classes (active and inactive). The
composition of the 10 structural categories shown in Table 1 was not considered. The
built QSAR models were developed and externally validated using the training and test
sets, respectively.

The virtual data set comprised 14,492 MNPs from Prof. Encinar’s website (http://
docking.umh.es/downloaddb, accessed on 25 October 2021) saved in the MDL SDF data
format and 14 MNPs from the pharmaceutical pipeline set (eight approved drugs and six
MNPs in Phase II and III of clinical trials). Three duplicates with the training and test sets
were removed and the final virtual data set comprised 14,503 molecules.

A second virtual library comprising eleven lead-like AChE inhibitors against antifoul-
ing activity reported by Arabshahi et al. [50] was also used.

SMILES strings of the data sets, and the corresponding experimental and predicted
activities, are available as Supplementary Data, Tables S2, S3 and S5.

3.2. Calculation of Descriptors

The molecular structures of molecules in all data sets were standardized by nor-
malizing tautomeric and mesomeric groups and by removing small disconnected frag-
ments using the JChem Standardizer tool, version 5.7.13.0 (ChemAxon Ltd., Budapest,
Hungary). The optimization of the three-dimensional molecular structures was car-
ried out with CORINA version 2.4 (Molecular Networks GmbH, Erlangen, Germany).
PaDEL-Descriptor (Pharmaceutical Data Exploration Laboratory, Singapore) version 2.21
(http://www.yapcwsoft.com/dd/padeldescriptor/, accessed on 21 July 2021) [52] was
used to calculate empirical molecular fingerprints (FPs) and 1D&2D molecular descriptors.
FPs of various types were calculated and exploited to build QSAR models, namely 166
MACCS (MACCS keys), 307 Substructure (presence and count of SMARTS patterns for
Laggner functional group classification—Sub), 881 PubChem fingerprints (ftp://ftp.ncbi.
nlm.nih.gov/pubchem/specifications/pubchem_fingerprints.txt, accessed on 21 July 2021),
1024 CDK (circular fingerprints) and 1024 CDK extended (Ext circular fingerprints with
additional bits describing ring features). The 1D&2D molecular descriptors comprised
descriptors of various types, including electronic, topological and constitutional descriptors,
in a total of 1376 descriptors. Radial distribution function (RDF) pair descriptors [59] and
3D RDF descriptors were calculated by sampling the function of Equation (1) at 128 equally
distributed values of r between 0 and 12.8 Å:

RDF(r) =
N−1

∑
i=1

N

∑
j=1+1

pi pje
−B (r−rij)

2
(1)

where N is the number of atoms in the molecule, pi is the charge of atom i, B is a fuzziness
parameter (it was 100 in this study), and rij is the 3D distance between atoms i and j. The RDF
descriptors were separated into three sets of 128 descriptors per pair of atoms with (a) one
positive and one negative charge, (b) two positive charges and (c) two negative charges. The
partial atomic charges—natural bond orbital (NBO) partial atomic charges—were estimated
using an ML tool developed by Aires-de-Sousa and co-workers (http://joao.airesdesousa.
com/charges, accessed on 21 July 2021) [60].
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3.3. Selection of Descriptors and Optimization of QSAR Models

In the quest for QSAR models with the minimum possible number of descriptors,
descriptor selection was performed based on the importance of descriptors assessed by
the RF (computeAttributeImportance) algorithm [51] implemented in the R program [61].
Selection of descriptors was accomplished using this procedure, with the importance of
descriptors assessed by RF within an OOB methodology using the 12, 25, 50, 100, 150, 200
and 250 most important descriptors and RF algorithm as an ML technique employing the
following statistical metrics: true positives (TP), true negatives (TN), false positives (FP),
false negatives (FN), sensitivity (SE, prediction accuracy for active antifouling molecules),
specificity (SP, prediction accuracy for inactive antifouling molecules), overall predictive
accuracy (Q) and Matthews correlation coefficient (MCC).

3.4. Class Balancer

In general, class imbalance is more demanding for ML algorithms and this imbalance
introduces a bias due to their preference for the majority class [62]. Our antifouling activity
training set was unbalanced, and the imbalance ratio was 1:1.22 for the A: active and B:
inactive classes, respectively. To solve this problem, the classes were balanced using the RF
sampsize parameter with R version 3.6.1. [61]. This parameter was set to be of the same size
as the minority class (active class). With this parameter, some molecules belonging to the
minority class were used more than once.

3.5. Machine Learning (ML) Methods
3.5.1. Random Forest (RF)

The RF model [51,63] was built from a set of unpruned classification trees, which were
created using bootstrap samples from the training set. For each individual tree, the best
split at each node was defined using a randomly selected subset of descriptors. Each of the
individual classification trees was created using different training and validation sets. The
final prediction of the model resulted from the majority vote of classification trees in the
forest. Model performance was evaluated internally with the prediction error for molecules
left out in the bootstrap procedure (OOB estimation). The method quantifies the importance
of a descriptor by the increase in misclassification that occurs when descriptor values are
randomly permuted, correlated with the mean decrease in the precision parameter. RFs
also assigned a probability to every prediction based on the number of votes obtained
by the predicted class. RFs were grown with the R program [61], version 3.6.1, using the
random forest library [64]. As a result of the nature of the two-class imbalance, this problem
was alleviated by defining the class weight ranges of 1–57 and 1–57 for classes A and B,
respectively, using the sampsize parameter.

3.5.2. Support Vector Machines (SVMs)

SVMs [65] map the training data into a hyperspace through a nonlinear mapping
(a boundary or hyperplane) and then separate the classes of objects in this space. The
examples of the training set—the support vectors—allowed us to position the boundary.
To transform data into a hyperspace where classes become linearly separable, kernel
functions were used. In this study, SVMs were implemented with Scikit-learn [66] using the
LIBSVM package [67]. The type of SVM was set to C-SVM-classification and the radial basis
function was used for the kernel function. Hyperparameter tuning was performed using
ten-fold cross-validation with the GridSearchCV tool. C and γ values varied in the range
of 1 × 10−2 to 1 × 1013 and 1 × 10−9 to 1 × 1013, respectively. In total, 10,000 experiments
were performed. The C and γ values were finally set to 1 × 107 and 1 × 10−8, respectively,
and the other parameters were used with default values. To alleviate the imbalanced
two-class problem, the class_weight parameter was set to be “balanced”, in which the
smaller class was replicated until it had as many molecules as in the larger one class.
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3.5.3. Deep Learning Multilayer Perceptron Networks (dMLP)

The feed-forward neural networks were implement using the open-source software
library Keras [68] version 2.2.5 based on the Tensorflow numerical backend engine [69].
These popular software tools, written in Python, make it easy to develop and apply deep
neural networks; however, the main challenge in applying dMLP is the design of an
adequate network architecture. After several experiments, the final optimal hyperparameter
settings were selected for our study based on 10-fold cross-validation experiments with the
training set and are listed in Table 7.

Table 7. Hyperparameter settings of the best dMLP model.

Hyperparameter Setting

Initializer Glorot uniform
Number of hidden layers 2
Number of neurons in the 1st and 2nd layers 200
Number of neurons in the 3rd 2
Activation 1st–2nd layers Relu
Activation 3rd layer Sigmoid
Batch size 36
Optimizer Adadelta
Loss Binary crossentropy
Epochs 100

3.6. Molecular Docking

The virtual screening using the best QSAR model, the RF classification model using
the 200 most important 1D&2D + RDF molecular descriptors, allowed the prioritization
of a list of the 125 MNP virtual screening hits. OpenBabel software (version 2.3.1, freely
available under an open-source license from http://openbabel.org, accessed on 21 July
2021) [70] was used to convert mol2 files into PDBQT files. PDBQT files were used for
coupling to the AChE enzyme with Autodock Vina (version 1.1, Center for Computational
Structural Biology, Scripps Research Institute, CA, USA) [56]. The macromolecule cou-
pling target was the AChE enzyme from Tetronarce californica (PDB ID: 6TT0) [54]. Water
molecules, carbohydrate molecules and ligands (1R, 3S-cis- and 1S, 3R-cis-donepezil de-
rived enantiomers) were removed from 6TT0 [54] prior to docking using AutoDockTools
(http://mgltools.scripps.edu/, accessed on 21 July 2021). During enzyme preparation,
GTT0, explicit hydrogen atoms and Gasteiger charges for each atom were added. Autodock
Vina performed a flexible molecular docking in which the target’s conformation was con-
sidered a rigid unit while the ligands were flexible and adaptable to the target. Autodock
Vina looked for the lowest binding affinity conformations and returned ten different con-
formations for each ligand. The search space coordinates of the AChE enzyme were
maximized to allow the entire macromolecule to be considered for docking. The search
space coordinates were center X: 25.179 Y: 72.212 Z: 281.175; dimensions X: 20,000 Y: 20,000
Z: 20,000. AchE enzyme ligand tethering was performed by regulating the parameters of
the genetic algorithm (GA), using 10 runs of the GA criteria. DockThor, a web service for
molecular docking simulation (https://dockthor.lncc.br/v2/, accessed on 6 January 2022),
was used to perform molecular docking of the two best macrocycle hits (cylindramine
and haliclamine B), the best non-macrocycle hit (indole derivative, CAS 142677-10-9) and
the positive and negative controls against AChE enzyme (PDB ID: 6TT0) [57]. The search
space coordinates were center X: 25.179 Y: 72.212 Z: 281.175; dimensions X: 20,000 Y: 20,000
Z: 20,000. AChE enzyme ligand tethering was performed by regulating the parameters of
the GA, using 12,750 and 500,000 runs, population size and number of evaluations of the
GA criteria, respectively.

The docking binding poses were visualized with PyMOL Molecular Graphics System,
Version 2.0 (Schrödinger, LLC). Docking scores of 125 virtual hits against the AChE enzyme
are shown in Table S4, Supplementary Data.

22



Mar. Drugs 2022, 20, 129

4. Conclusions

A CADD approach relying on ligand- and structure-based methodologies was suc-
cessfully used to predict new inhibitory MNPs against antifouling AChE. Two MNPs,
cylindramide (CAS 147362-39-8) and haliclamine B (CAS 126622-63-7), were proposed as
the most promising marine drug-like leads as antifouling AChE inhibitors. To the best of
our knowledge, the CADD ligand-based study using a QSAR classification model, devel-
oped here in this study, is the largest study ever performed with regard both to the number
of molecules involved and to the number of structural families involved in the modeling
of the antifouling activity, and the best model achieved an overall predictive accuracy
score of up to 71% for both test and training sets. In future works, the proposed sixteen
marine drug-like leads against antifouling AChE enzyme may be validated experimentally.
These results enabled us to build virtual libraries of marine-derived drug-like leads, which
may be virtually screened using the best antifouling QSAR model and molecular docking
against the AChE enzyme. In addition, for MNPs that are experimentally confirmed to
have antifouling activity, the AChE inhibitory mechanism will be studied to determine the
type of action, e.g., reversible interaction with both the catalytic anionic site and the PAS,
sterically blocking ligands from entering and leaving the active site gorge and allosteric
alteration of the catalytic triad conformation.

Supplementary Materials: The following data are available online at https://www.mdpi.com/
article/10.3390/md20020129/s1, Tables S1–S5 (XLSX). The following files are available free of charge.
SMILES strings of the data set (training and test sets), the corresponding experimental and predicted
activities are available as Supplementary Materials, Tables S2 and S3, respectively. Moreover, SMILES
strings of the 14,492 MNPs from Encinar’s website and MNPs clinical pipeline sets, for the virtual
screening data set, the corresponding predicted activities are available as Supplementary Materials,
Table S4. Predictions of ADMET properties with in silico methods, using the pKCSM software for
a list of 16 selected MNPs by QSAR antifouling model and molecular docking of AChE enzyme
are available as Supplementary Materials, Table S1. The list of eleven lead-like AChE inhibitors by
Arabshahi et al. [50], the corresponding experimental, predicted activities and docking scores against
the AChE enzyme are available as Supplementary Materials, Table S5.
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Abstract: The Blue Biotechnology and Ecotoxicology Culture Collection (LEGE-CC) holds a vast
number of cyanobacteria whose chemical richness is still largely unknown. To expedite its bioactivity
screening we developed a natural products library. Sixty strains and four environmental samples
were chromatographed, using a semiautomatic HPLC system, yielding 512 fractions that were tested
for their cytotoxic activity against 2D and 3D models of human colon carcinoma (HCT 116), and
non-cancerous cell line hCMEC/D3. Six fractions showed high cytotoxicity against 2D and 3D cell
models (group A), and six other fractions were selected by their effects on 3D cells (group B). The
metabolome of each group was organized and characterized using the MolNetEnhancer workflow,
and its processing with MetaboAnalyst allowed discrimination of the mass features with the highest
fold change, and thus the ones that might be bioactive. Of those, mass features without precedented
identification were mostly found in group A, indicating seven possible novel bioactive molecules,
alongside in silico putative annotation of five cytotoxic compounds. Manual dereplication of group
B tentatively identified nine pheophytin and pheophorbide derivatives. Our approach enabled the
selection of 7 out of 60 cyanobacterial strains for anticancer drug discovery, providing new data
concerning the chemical composition of these cyanobacteria.

Keywords: natural products library; cyanobacteria; cytotoxicity; 3D spheroids; untargeted metabolomics;
MetaboAnalyst; GNPS

1. Introduction

Natural products continue to inspire many drug discovery programs; as such, more
than sixty percent of the approved drugs comprise natural products, their synthetic deriva-
tives, and their pharmacophore-inspired drugs [1]. Cyanobacteria have been regarded as
one of the most promising groups of organisms capable of producing metabolites with
pharmaceutical applications [2]. Since the 1970s, more than 1630 unique cyanobacterial
compounds have been described [3], mainly belonging to the classes of non-ribosomal pep-
tides (NRPs), ribosomally synthesized and post translationally-modified peptides (RiPPs),
polyketides (PKs), and the hybrid NRPs/PKs [3,4]. These hybrid molecules contribute to
the diversity of structural motifs found in cyanobacterial compounds. In addition, other
classes of secondary metabolites have also been isolated from cyanobacteria as alkaloids,
fatty acids, terpenes, and UV-protectant pigments [3,4]. Among the reported bioactivities,
a great deal of studies have focused on the characterization of the cytotoxic and anticancer
activity of cyanobacterial metabolites; among those, dolastatin 10, a tubulin polymerization
inhibitor, is the most well-known [3,5]. Its synthetic derivatives monomethylauristatins
yielded four approved antibody drug conjugates: Adcetris (2011) and Polivy (2019), used
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for the treatment of lymphoma; Padcev (2019), applied for the treatment of urinary tract can-
cers; and Blenrep (2020), for the treatment of relapsed and refractory multiple myeloma [6].

The Blue Biotechnology and Ecotoxicology Culture Collection (LEGE-CC, http://
www.ciimar.up.pt/legecc/), hosted at CIIMAR (Matosinhos, Portugal), is a unique bio-
logical resource that hosts more than 700 strains of cyanobacteria, covering a wide range
of geographical habitats. These are mainly represented by marine and freshwater wa-
ter systems, but there are also representative strains from brackish, hypersaline, and
terrestrial environments [7]. Regardless this biodiversity, this natural resource is still un-
derexplored in terms of the discovery of new chemical entities. Our bioactivity-guided
screening endeavors have delivered compounds such as lactylates of chlorinated fatty acids
(chlorosphaerolactylates A–D) with antimicrobial effects [8]; chlorophyll derivatives with
lipid reducing activity [9]; and compounds with anticancer activity, such as oxadiazine
Nocuolin A [10], alkylresorcinol hierridin B [11], and the NRPs portoamides A–B [12] that
also proved to have promising antifouling activity [13]. Despite these successes, our classic
approach for cyanobacterial natural products discovery is often time consuming, origi-
nates false positives (synergistic effects), and ends frequently in the unsuccessful isolation
of the active components due to their low concentrations. To overcome these problems
and encompass the growing number of new cyanobacterial strains entering LEGE-CC,
a new strategy for bioactivity screening is needed in order to accelerate our drug discovery
process. In this study, we describe the generation of a natural products library and its
assessment for potential cytotoxic activity. An untargeted metabolomics approach was
used to discover and highlight the putative bioactive molecules.

2. Results and Discussion

2.1. Cyanobacterial Natural Products Library (LEGE-NPL)

In the last 10 years, LEGE-CC has had a significant increase in the number of deposited
strains; nevertheless, its associated drug discovery has not been able to keep the same pace.
As a possible solution for this problem, we designed a methodology for a cyanobacterial
natural products library (LEGE-NPL). To test this approach, 60 cyanobacterial strains and
4 environmental samples were used (Table S1). The selected strains belong to different
cyanobacterial orders following the classification of Komárek et al. [14]: Synechococcales
(46%), Oscillatoriales (27%), Nostocales (15%), Chroococcales (10%), and Pleurocapsales
(2%), representing the phylogenetic diversity of LEGE-CC (Figure 1). In addition, these
orders have been considered to be a good asset for secondary metabolites research due to
the richness in biosynthetic gene clusters found in their genomes [3,5,15].

The LEGE-NPL was designed to have a solid inventory (MeOH extracts) and a liquid
inventory of fractions. The raw material that supplied the solid inventory was derived
from 4 L cultures of cyanobacteria that yielded on average 2.57 g of dry weight (Figure S1).
MeOH was chosen as solvent to produce the solid library because of its the ability to
extract components with different polarities; previous results using sequential extraction
did not show advantage of using different solvents over the single use of MeOH [9].
The average yield of extraction was 15.50% of the lyophilized biomass (Figure S1). The
liquid inventory, constituted by eight fractions (denominated from A to H) derived from
each MeOH extract, was designed to be fully compatible with a 96-well plate format for
bioactivity screening. It was produced in semiautonomous fashion using a HPLC system
coupled to an automatic injector, PDA detector, and an automatic fraction collector. Hence,
the 64 MeOH extracts were separated on a C8 column using a gradient of H2O/MeCN,
yielding a total of 512 fractions. The total run time, including gradient recovery, was 20 min
per strain. These chromatographic conditions were optimized to ensure a good mass
separation between all eight fractions that were estimated to have 2.50 mg. These plates
were dried using a centrifugal evaporation system, resuspended in DMSO, and stored in
96-deep well plates as mother plates. The choice of the stationary phase considered the
recent woks of the National Cancer Institute Program for Natural Products Discovery that
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indicated C8 as a preferred stationary-phase over the classical C18 or silica due to a better
separation between lipophilic and medium polarity compounds [16].

 

Figure 1. Maximum likelihood phylogenetic tree based on 146 partial 16S rRNA gene sequences of cyanobacteria. Gloeobacter
violaceus PCC 7421 and G. violaceus PCC 8105 were used as outgroup. LEGE-CC strains used in this work are indicated in
bold. The different color segments represent strain placement at order level following Komárek et al. [14]. Different colored
strips around the tree represent the environment from where strains were isolated. Bootstrap values over 50% are indicated
at the nodes. Black stars represent the strains whose sequences were obtained in this work.
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2.2. Bioactivity Screening

Another aim of this work was to use cancer spheroids in routine screenings of LEGE-
NPL. The cancer spheroids are characterized by a hypoxic core with quiescent cells and a
prolific outer shell, and thus, they more accurately simulate the tumor microenvironment
than 2D cultures. Due to this complexity, 3D culture systems are considered to be less prone
to showing effects of unspecific activities or to overestimate the activity of compounds,
increasing the chances of finding potent lead compounds [17].

The colon carcinoma cell line HCT 116 was chosen due to its ability to form uniform
spheroids using the liquid-overlay technique, and because it had already been used in
confirmation assays for cyanobacterial compounds [10,18]. Moreover, the assays using
HCT 116 cells were used to compare the 2D versus 3D hit selection. The endpoints and
readout techniques were adjusted accordingly to the nature of the cell culture system.
For 2D cell cultures, cell viability was assessed by the standard MTT assay after a 48 h
incubation period. This colorimetric assay was not suitable to measure cell viability in
spheroids (Figure S2). This was verified mainly due to the poor diffusion of the dye, which
can be attributed to the 3D matrices and tight cell–cell junctions present in the multilayer
cell spheroids [19], resulting in low differentiation of the metabolic activity of the cells.
Thus, for 3D cell cultures, cell viability was measured using the acid phosphatase assay
after 96 h (longer exposure times in 3D cell cultures increase the sensitivity of the assay and
reduce the false negative hits [19]). Moreover, to test the hypothesis that our methodology
would be able to detect active compounds in fractionated extracts, the strain Phormidium
sp. LEGE 05292 was included in the study set (as a positive control). This strain is known
to produce the cytotoxic peptides portoamides A and B in a proportion of 3:1 [12]. This
mixture presented IC50 values of 3.38 μM and 12.67 μM, respectively, to monolayer cultures
and multicellular spheroids of HCT 116 cells. These results indicated that an approximate
4-fold higher concentration is needed to induce cytotoxicity in spheroids [18].

The 512 fractions of LEGE-NPL (25 μg mL−1) were screened for their cytotoxic effect
on the colon carcinoma cells (2D HCT 116, 3D HCT 116) and a non-carcinogenic cell
line hCMEC/D3 (Figure 2). The non-carcinogenic cell line was not used to select hits;
instead it was used to test if the fractions exerted a generalized cytotoxicity or if they
had selectivity towards cancer cells. The results were expressed as the percentage of
cell viability normalized to the solvent control. To characterize the dynamic range of
the assays, the Z’ factor was calculated using the positive (LEGE 05292_C) and solvent
control (DMSO) data. The Z’ scores of 0.64–0.83 indicated that the mean and standard
deviation of the controls were well separated [20], and thus the criteria to select positive
hits was established as the mean viability of LEGE 05292_C plus three times its standard
deviation (μLEGE 05292C + 3σLEGE 05292C ). The monolayer assay with HCT 116 cancer cells
had a hit rate of 0.4%, selecting the active fractions LEGE 181150_D and LEGE 17548_C
(Figure 2). For the 3D HCT 116 cell assay, 11 active fractions were selected (2.1% hit rate)
that correspond to one environmental sample and eight cyanobacterial strains (Figure 2).
Contrary to what we expected, a higher hit rate was observed for the 3D spheroids than for
the monolayer counterpart. Hence, the cell viability data from the three cell models was
correlated in a 3D scatter plot to disclose any bioactivity tendency. As such, two bioactive
groups could be recognized (Figure 3). Group A contains 5 fractions that present strong
cytotoxicity towards the cancer and non-cancer cells (Table 1), whereas group B contains
fractions selected for their activity in HCT 116 spheroids despite the moderate activity in
the other monolayer assays. In light of these results, the fractions from both groups were
selected for metabolomics studies in order to discover the potential cytotoxic compounds.

30



Mar. Drugs 2021, 19, 633

 
Figure 2. Cytotoxicity screening of 512 fractions of LEGE-NPL (at 25 μg mL−1) against 3D cell
spheroids of HCT 116 cells, 2D HCT 116 cells, and hCMEC/D3. The percentage of cell viability was
normalized to DMSO. The threshold for selection of positive hits was defined as mean viability of
the cytotoxic faction LEGE 05292_C plus three times its standard deviation. All the assays were done
in triplicate.
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Figure 3. 3D plot correlation of the cytotoxic profile of 512 fractions on the different cell models
(3D HCT 116, 2D HCT 116, and hCMEC/D3). The x, y, and z axis represent the percentage of cell
viability (normalized to DMSO). Two groups were defined based on the cytotoxic profile: group A
and group B.

Table 1. Cytotoxic profile of the selected fractions of group A, B, and C.

Fractions
Cell Viability (%)

3D HCT 116 2D HCT 116 2D hCMEC/D3

Group A

LEGE 16572_C 57.54 ± 20.74 21.30 ± 8.79 12.97 ± 5.14
LEGE 17548_C 58.05 ± 11.10 16.33 ± 8.50 16.67 ± 11.84
LEGE 17548_D 58.74 ± 13.40 27.08 ± 17.23 36.52 ± 16.23
LEGE 15488_C 65.16 ± 10.30 25.69 ± 21.02 14.51 ± 8.65

LEGE 181150_D 75.95 ± 4.25 16.40 ± 3.26 13.80 ± 3.14
LEGE 05292_C 68.32 ± 4.60 9.13 ± 2.64 12.83 ± 3.35

Group B

LEGE XX358_D 72.28 ± 16.86 50.11 ± 20.43 44.60 ± 14.66
LEGE 16572_D 72.34 ± 6.05 58.15 ± 23.40 56.18 ± 19.94

JM1 Amb_D 75.25 ± 7.14 55.30 ± 3.11 22.77 ± 5.59
LEGE 15546_D 78.51 ± 7.16 58.44 ± 18.34 59.17 ± 15.65
LEGE 16502_E 81.53 ± 13.30 71.38 ± 13.24 58.29 ± 7.41

JM1 Amb_E 82.07 ± 3.02 56.16 ± 12.80 21.15 ± 5.76

Group C

JM5_amb_D 90.07 ± 1.24 52.49 ± 5.34 31.85 ± 4.39
JM5_amb_E 94.92 ± 5.66 48.11 ± 12.12 55.44 ± 7.66

LEGE 06078_D 99.29 ± 7.89 46.51 ± 12.42 69.21 ± 15.63
LEGE 07092_D 94.96 ± 6.94 47.77 ± 3.62 55.86 ± 3.63
LEGE 07167_C 85.76 ± 2.54 25.86 ± 1.36 56.83 ± 4.00
LEGE 07167_D 82.74 ± 3.25 49.51 ± 1.90 10.93 ± 2.87
LEGE 07167_E 99.70 ± 4.71 47.34 ± 1.59 53.96 ± 3.48
LEGE 08333_D 106.90 ± 5.38 85.02 ± 1.57 80.56 ± 5.12
LEGE 15488_D 99.09 ± 4.96 36.76 ± 23.26 20.17 ± 15.65
LEGE 181148_E 93.04 ± 6.94 64.14 ± 14.46 48.58 ± 4.75
LEGE 181148_F 93.49 ± 6.54 71.52 ± 20.38 48.44 ± 2.02
LEGE 181149_D 94.01 ± 7.29 64.47 ± 22.29 40.25 ± 2.66

Selection threshold LEGE 05292_C + 3σ 82.12 17.03
Staurosporine 31.67 ± 6.84 20.07 ± 4.40 12.05 ± 2.55

2.3. Group A: Metabolomics Analysis and Dereplication of the Putative Active Molecules

In an attempt to discover which metabolites could be responsible for the observed ac-
tivity, an untargeted metabolomics analysis was performed. The metabolomes of fractions
of group A were compared with a group of 12 fractions without activity on cancer spheroids
(group C; Table 1). The extracted mass features with MZmine 2 were submitted to fold
change (FC) analysis in MetaboAnalyst 5.0, which allowed for the potential differences
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in the metabolite profiles to be identified, and hence the bioactive compounds could be
highlighted.

The chemical space of A/C was then represented as a molecular network constructed
using the feature-based molecular networking workflow [21]. The characterization of the
molecular families and annotation of compounds were estimated based on the integration
of the in silico tools available from the Global Natural Product Social Molecular Networking
(GNPS) platform: DEREPLICATOR [22], MS2LDA [23], Network Annotation Propagation
(NAP) [24], and MolNetEnhancer [25]. The size of the nodes in the molecular networks
was represented relative to the log2(FC) (Figure 4A).

Figure 4. Feature-based molecular network of groups A/C annotated with MolNetEnhancer work-
flow. The nodes are color-coded accordingly to the ClassyFire super class classification, and their size
is related to their fold change log2(FC) value (A). Distribution of the nodes with log2(FC) higher than
2 through each ClassyFire super class (B).

The analysis of the molecular network revealed 191 nodes with log2(FC) between 2.00
and 28.45, of which 72 nodes were characterized as 13% lipids and lipid-like molecules,
8% organic acids and derivatives, 6% organic oxygen compounds, 6% organoheterocyclic
compounds, 4% organic polymers, and 1% phenylpropanoids and polyketides, according
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to the ClassyFire super class classification [26]. The 17 top features with highest fold change
(≥20) were distributed between the super classes’ organic polymers, organic acids and
derivatives, and the category of no matches (Figure 4B). Such high fold change values reflect
the uniqueness of these mass features among the studied metabolomes, which were found
for all the active fractions except for LEGE 15488_C (Table 2). Detailed examination of these
17 ions indicated the majority to be related to the cytotoxic compounds portoamides A, B,
and C, known to be produced by Phormidium sp. LEGE 05292 (Table 2) [27].

Table 2. Characterization and annotation of the putative cytotoxic molecules present in the active fractions of group A.

m/z Isotope/
Fragments

Rt (min) Log2(FC)
Super
Class

Direct
Parent

Molecular
Framework

Putative Annotation

LEGE 05292_C

1313.6991
[M+H]+ 7.21 25.71 3 8 9

Portoamide C
C62H96N12O19

Δ 0.27 ppm

1532.7887
[M+H]+ 7.51 28.18 2 10 9

Portoamide A
C74H109N13O22

Δ 0.27 ppm

1502.7780
[M+H]+ 7.74 26.34 2 10 9

Portoamide B
C73H107N13O21

Δ 0.18 ppm

LEGE 17548_C

1154.6172
[M+Na]+ 8.73 26.07 - - -

[Minutissamide A + CH3] *
C52H85N13O15
Δ −1.55 ppm

1118.6187
[M+H]+ 8.76 26.86 3 8 11

Minutissamide A
C51H83N13O15
Δ −1.55 ppm

LEGE 17548_C, LEGE 17548_D and LEGE 16572_C

762.5468
[M+H]+ 12.60 27.91 - - - -

LEGE 16572_C

703.5092
[M+H]+ 12.31 27.33 - - - -

LEGE 181150_D

895.0778 897.0759
[M+2 isotope] 7.92 25.98 - - - Leptochelin

851.1284 853.1257
[M+2 isotope] 7.81 17.43 - - - Leptochelin-like *

1011.8493 14.57 27.92 - - - -

LEGE 15488_C

655.3808 [M+H]+ 5.73 8.27 - - - -

858.5795 [M+H]+ 7.29 8.10 - - - -

331.2010 7.28 8.15 - - - -

528.3863 7.28 9.05 3 12 11 -

1520.7861
[M+H]+ 7.87 5.07 2 10 9

Portoamide-like *
C73H109N13O22

Δ −1.44 ppm

2—Organic polymers; 3—organic acids and derivatives; 8—cyclic peptides; 9—aromatic heteropolycyclic compounds; 10—polypeptides
11—aliphatic heteropolycyclic compounds; 12—Cyclic depsipeptides; * tentative identification.
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Moreover, in the fraction C of the unidentified Nostocales LEGE 17548 the cyclic
lipopeptide minutissamide A was putatively annotated, together with an ion at m/z
1154.6172 [M+Na]+, that could correspond to a methylated minutissamide A (+14.01 Da
mass shift). Minutissamide A was previously isolated from cultures of Anabaena minutissima
(UTEX 1613), and its antiproliferative activity characterized using HT-29 human colon
cancer cells (IC50 of 2.0 μM) [28], which correlates well with our bioactivity findings.
However, Anabaena minutissima (UTEX 1613) and the unidentified Nostocales LEGE 17548
fall in different clades according to our phylogenetic study, the latter being more related to
strains of the genus Halotia (Figure 1).

It is interesting to note that in the case of portoamides or minutissamides, the molecular
network was not able to form clusters containing related ions. The absence of clustering
led to poor propagation of library annotation as was observed for the sodium or potassium
adducts of portoamides and minutissamides that were classified as “no matches”.

Furthermore, four mass features, with significant fold change, could not be classi-
fied or dereplicated using the GNPS in silico tools or manual search in the databases
Dictionary of Natural Products and CyanoMetDB [29], making them potential targets
for the isolation of novel active compounds. Of these, the mass feature 897.0759 found
in fraction LEGE 181150_D (Table 2) formed a cluster with another ion at m/z 853.1257
(7.81 min; log2(FC) = 17.43); analysis of the mass spectrum showed that these masses
were in fact M + 2 isotope peaks, thus revealing the presence of halogenated atoms in
these molecules. The complexity of the isotopic pattern suggests a combination of chlorine
and/or bromine atoms (Figure 5). In addition, the mass difference of 43.94 Da between the
compounds might correspond to Cl ↔ Br change. Preliminary GNPS experiments led us
to two PhD theses reporting leptochelin (formerly phormidamide) [30,31], a compound
with m/z 895.0786 and whose mass spectrum and isotopic pattern are very similar to our
findings (m/z 895.0778; Δ 0.8 mDa). Nevertheless, the structure of this compound seems
to not be fully elucidated yet. According to both reports, the compound presented potent
cytotoxicity towards mouse neuro-2a neuroblastoma cells (LD50 = 1.2 μM) [30] and human
NCI-H460 lung cancer cells (IC50 = 153 nM) [31], which is in line with the strong reduction
of cell viability observed in our assays (Table 1). Leptochelin was isolated from the Red
Sea Leptolyngbya sp. RS02 and from the Indonesian Leptolyngbya sp. HB_3/1/2, which
share identical 16S rRNA gene sequences even though they were collected in different geo-
graphical locations. Interestingly, our strain, unidentified Synechococcales LEGE 181150,
was collected from a marine environment in the Cape Verde archipelago and falls in a
subclade apart from the Leptolyngbya strains (Figure 1), suggesting the compound to be
produced by a different genus of cyanobacteria. Nevertheless, all these locations fall in
the tropical region, which might suggest an ecological role subjacent to the production of
this compound.

For fraction C of Phormidium sp. LEGE 15488, there were no mass features with
striking values of fold change. This fact could be explained by the similarity in composition
to fraction LEGE 15488_D that was included in group C (Figure S3). Thus, for the fraction
LEGE 15488_C, the ions with the highest fold change will most probably be the ones
responsible for the cytotoxic activity. As such, three protonated molecules were cherry-
picked (Table 2). For these molecules, we could not retrieve any dereplication results either
using the GNPS tools or manual search in the databases (Dictionary of Natural Products
and CyanoMetDB). For the protonated molecule at m/z 1520.7861, the ClassyFire categories
Direct Parent (descriptor for the largest structural feature that defines a compound) and
Molecular Framework (descriptor for overall aliphaticity/aromaticity and number of cycles)
suggested this compound to have a scaffold of the cyclic peptide-type containing aromatic
amino acids. In addition to this in silico prediction, the presence of the doubly charged ion
at m/z 760.8961 [M+2H]2+ also reinforces the possible large structure of this compound.
Considering these observations and given the taxonomic position of Phormidium sp. LEGE
15488 and Phormidium sp. LEGE 05292 (Figure 1), we hypothesize that this mass could
correspond to an undescribed portoamide-type compound with a proposed molecular
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formula of C73H109N13O22 (calculated for 1519.7810). As for the parent mass 858.5795
[M+H]+, it was found to be associated with the ESI in-source fragments at m/z 331.2010
and 528.3863. For the latter, the in silico annotation can give insights into the nature of this
molecule, as it was categorized as a possible cyclic depsipeptide without aromatic amino
acids (Table 2).

 
Figure 5. Mass spectrum and the respective cluster of two halogenated compounds present in fraction D of the unidentified
Synechococcales LEGE 181150. The nodes are color-coded accordingly to the identity of the fraction. These mass features
were exclusively found in the unidentified Synechococcales LEGE 181150.

In this group of cytotoxic fractions, it is worth noting the following aspects: the group
is mainly constituted by polar fractions (fraction C); the in silico chemical classification
predicted the significant mass features to have a peptide-type scaffold (Figure 4B, Table 2);
and the in silico dereplication lead to the putative annotation/identification of known
peptides whose cytotoxic activity towards cancer cells had been previously described.
Given that these predictions worked correctly with Phormidium sp. LEGE 05292 (strain
producer of portoamides), we hypothesize that the strains Phormidium sp. LEGE 15488
(Amazon River, Brazil; Table S1) and the unidentified Nostocales LEGE 17548 (Mira lagoon,
Beira Litoral, Portugal; Table S1) might be potential producers of cytotoxic peptide-type
compounds. Furthermore, the strains Gloeothece sp. LEGE 16572 (isolated from a fountain,
Monchique, Portugal; Table S1) and unidentified Synechococcales LEGE 181150 have
potential for the discovery of totally unknown structures.

2.4. Group B: Metabolomics Analysis and Dereplication of the Putative Active Molecules

The same untargeted metabolomics approach described above was applied for group B.
The fold change analysis highlighted 34 mass features with log2(FC) between 2.14 and
17.13. Fifteen nodes were characterized, according to ClassyFire superclass, as organohete-
rocyclic compounds all belonging to the tetrapyrroles and derivatives class (23%) and
phenylpropanoids and polyketides (21%) (Figure 6). Contrary to group A, in group B
there were no mass features with high fold change values. In fact, the only three mass
features that presented log2(FC) higher than 10 were 636.4814, 1245.5650, and 1267.5473.
The m/z 636.4814 (12.9 min; log2(FC) = 17.14) was found in samples LEGE 16502_E and
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LEGE 15546_D, being characterized as a potential macrolide-type compound. However, its
manual query on the mass databases did not retrieve any identification.

 

Figure 6. Feature-based molecular network of groups B/C annotated with MolNetEnhancer work-
flow. The nodes are color-coded accordingly to the ClassyFire super class classification, and their size
is related to their fold change log2(FC) value.

The mass features 1245.5650 and 1267.5473, respectively, with log2(FC) of 15.85 and
11.59, were found to be the [2M+H]+ and [2M+Na]+ ions of the protonated molecule at m/z
623.2865 (11.68 min; log2(FC) = 7.54), predicted as a tetrapyrrole-type molecule. Despite
this classification, the putative annotation via GNPS tools was not successful. Thus, 132-
hydroxy-phaeophorbide a methyl ester, was tentatively identified by manual search in
the Dictionary of Natural Products and study of its MS2 fragmentation pattern (Table 3,
Figure S4). This compound was found to be one of the main components of the samples
LEGE 16572_D, LEGE 15546_D, and LEGE xx358_D (Figure 6, Table 3). This putative
pheophorbide appeared clustered with a protonated molecule at m/z 609.2706 (11.30 min;
log2(FC) = 3.90). The difference of 14.01 Da between the molecules suggested the loss of a
methyl group, and thus was tentatively identified as 132-hydroxy-pheophorbide a. This
molecule was found in the environmental sample of a cyanobacterial mat (JM1_amb_E)
and in the strain Brasilonema sp. LEGE 16502 (LEGE 16502_E). Moreover, further manual
dereplication led to the tentative identification of other pheophytins and pheophorbides
(Table 3). The lack of GNPS annotation for these compounds might be due to the fact
that the masses deposited in the GNPS database were acquired in low resolution mass
spectrometers, and thus, did not match with our search criteria.
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Table 3. Characterization and annotation of the putative cytotoxic molecules present in the active fractions of group B.

m/z Rt (min) Log2(FC) Super Class Precursor Intensity Tentative Identification

LEGE 16572_D, LEGE 15546_D and LEGE xx358_D

653.2971
[M+H]+ 12.12 7.72 1 1.19 × 1010

151-hydroxy-lactone-pheophorbide a ethyl ester
C37H40N4O7
Δ 0.19 ppm

623.2865
[M+H]+ 11.68 7.54 1 2.55 × 1010

132-hydroxy-phaeophorbide a methyl ester
C36H38N4O6
Δ 0.14 ppm

639.2813
[M+H]+ 11.88 5.99 2 2.44 × 109 151-hydroxy-lactone-pheophorbide a methyl ester

C36H38N4O7Δ −0.04 ppm

LEGE 16502_E, JM1_amb_E

593.2759
[M+H]+ 11.77 6.99 2 2.97 × 1010

pheophorbide a
C35H36N4O5
Δ 0.09 ppm

535.2704
[M+H]+ 12.24 4.18 2 3.85 × 109 pyrophaeophorbide a

C33H34N4O3Δ 0.06 ppm

609.2706
[M+H]+ 11.29 3.90 1 5.22 × 108

132-hydroxy-phaeophorbide a
C35H36N4O6
Δ −0.26 ppm

All samples

903.5618
[M+H]+ 14.41 4.58 2 1.47 × 1010 151-hydroxy-lactone-phaeophytin a

C55H74N4O7Δ −1.36 ppm

887.5664
[M+H]+ 14.30 3.67 4.80 × 1010 132-hydroxy-pheophytin a

C55H74N4O6Δ −1.93 ppm

JM1_amb_D, JM1_amb_E, LEGE 16502_E

917.5777
[M+H]+ 14.70 2.16 2 2.02 × 109

13-methyldioxy-phaeophytin a/
ficusmicrochlorin B

C56H76N4O7
Δ −1.07 ppm

1—No Matches, 2—Organic polymers.

These pheophytins and pheophorbides are products of the degradation pathway of
chlorophyll a, and their anticancer activity has been widely reported [32] Such molecules
are commonly found in photosynthetic organisms, which suggests that the bioactivity
results obtained for group B could be related to a higher content of these compounds in
the fractions. Future studies will help to elucidate this observation and address possible
ecological relationships.

3. Materials and Methods

3.1. Cyanobacteria Culture Conditions

The 60 cyanobacterial strains were obtained from the Blue Biotechnology and Ecotoxi-
cology Culture Collection (LEGE-CC) (Table S1). To establish the natural products library,
these microorganisms were cultured up to 4 L, in the appropriate growth media, and
maintained under standard laboratory conditions: 25 ◦C with light/dark cycle of 14/10 h
at a light intensity of 10–30 μmol photons m−2 s−1. The freshwater strains were cultured
using Z8 medium, while the marine strains were grown using Z8 medium supplemented
with 25‰ of synthetic sea salts (Tropic marin, Berlin, Germany) and 1‰ of vitamin B12
(Table S1). Depending on the strain, after 30 to 160 days of growth, the biomass was
harvested either by centrifugation for unicellular strains, or by filtration for filamentous
strains, through an appropriately sized mesh. All biomasses were freeze-dried (LyoQuest,
Telstar, Terrassa, Spain) before organic extraction.
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3.2. DNA Extraction, Amplification (PCR) and Sequencing

Twelve strains of cyanobacteria were characterized for the first time in this work
(Figure 1). For taxonomic studies, these strains were grown in 50 mL culture flasks and
cells were harvested after 15–20 days of cultivation. Genomic DNA was extracted using the
Genomic DNA Mini Kit (Invitrogen, Waltham, MA, USA), according to the manufacturer’s
instructions for Gram-negative bacteria. To obtain the complete sequence of 16S rRNA
gene, PCR amplification was performed using the oligonucleotide primers set 27F [33]
and 23S30R [34]. PCR reactions were performed in a final volume of 20 μL containing
1× Green GoTaq Flexi Buffer, 2.5 mM of MgCl2, 125.0 mM of each deoxynucleotide triphos-
phate, 1.0 μM of each primer, 0.5 U of GoTaq Flexi DNA Polymerase (Promega, Madison,
WI, USA), 10 mg mL−1 of bovine serum albumin (BSA), and 10–30 ng of template DNA,
on a TProfessional Standard thermal cycler (Biometra, Göttingen, Germany). The PCR
conditions were as follows: initial denaturation at 94 ◦C for 5 min, followed by 10 cycles
of denaturation at 94 ◦C for 45 s, annealing at 57 ◦C for 45 s, and extension at 72 ◦C for
2 min, followed by 25 cycles of denaturation at 92 ◦C for 45 s, annealing at 54 ◦C for
45 s, and extension at 72 ◦C for 2 min with a final elongation step at 72 ◦C for 7 min.
The PCR reactions were performed in duplicate. PCR products were separated by 1.5%
agarose gel stained with SYBR® safe (Invitrogen, Waltham, MA, USA) and DNA fragments
with the expected size were excised and purified using NZYGelpure (NzyTech, Genes
and Enzymes, Lisbon, Portugal) according to the manufacturer′s instructions. Since the
sequences were obtained by direct sequencing of purified amplicons, internal primers
CYA359F, CYA781R [35], and 1494R [33] were used to improve the quality of the sequences.
The sequencing was performed at GATC Biotech (Ebersberg, Germany) and the nucleotide
sequences obtained were manually inspected for quality and assembled using the Geneious
11.1.5 software (Biomatters Ltd., Auckland, New Zealand). Possible chimera formation
during the sequences was checked using the software DECIPHER [36] before any phyloge-
netic analysis. Sequences obtained were inserted in the BLASTn (Basic Local Alignment
and Search Tool for Nucleotides) database and the results were analyzed. The sequences
associated with this study were deposited in the GenBank database under the accession
numbers MW790910 to MW790921 (Table S1).

3.3. Phylogenetic Analysis

A total of 146 sequences were used in the final analysis, including 2 strains of Gloeobac-
ter violaceus as outgroup, 85 sequences of cyanobacteria including type and reference strains
retrieved from GenBank (National Center for Biotechnology Information, NCBI, Bethesda,
MD, USA), and 59 sequences of LEGE-CC strains from which 12 were obtained in this
work. Multiple sequence alignment was constructed using ClustalW in MEGA7 [37,38],
and sequences were manually proofread and edited. Maximum likelihood (ML) analysis
was carried out using substitution model GTR+G+I according to the Bayesian information
criterion (BIC) and Akaike information criterion (AIC) scores with 1000 bootstrap resam-
pling replicates using the MEGA7 software [38]. The final phylogenetic tree was edited on
iTOL (Interactive Tree of Life) [39].

3.4. Cyanobacterial Natural Products Library

The LEGE-NPL (natural products library) solid inventory is composed of crude ex-
tracts. Thus, freeze-dried biomass was extracted three times with MeOH, with a sonication
step of 5 min in between extractions, and was filtered and concentrated at 30 ◦C, using a
rotary evaporator. The yields of extraction are described in the Supplementary Material
(Figure S1). The extracts were then fractionated by reverse-phase HPLC in a Waters Alliance
e2695 Separations Module instrument, coupled to a photodiode array detector (Waters
2998 PDA) and an automatic Waters Fraction Collector III (Waters, Mildford, MA, USA).
Each crude was injected at 40 mg mL−1 (500 μL; 1 mL loop) and separated on an ACE 10
C8 column (50 ×10 mm, ACE, Reading, UK), using a H2O:MeCN gradient (Table 4). Hence,
each cyanobacterial extract was chromatographed into eight fractions (4 mL final volume,
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named A–H) into 48-deep well plates (Riplate, Ritter, Schwabmünchen, Germany), which
were then dried on a CentriVap Concentrator (LabConco, Kansas City, MO, USA). These
fractions were solubilized in 500 μL of DMSO and transferred to 96-deep well microplates
(Nest Scientific, Woodbridge Township, NJ, USA) and stored at −80 ◦C, thus forming the
LEGE-NPL liquid library (mother plates).

Table 4. HPLC chromatographic and collection program for generating the fractions for LEGE-NPL
liquid inventory.

Time (min)
Flow

(mL·min−1)
MeCN (%) H2O (%)

Collection Time
(min)

Fraction

0.0 3.0 10 90 1.00–2.30 A
2.0 3.0 80 20 2.30–3.60 B
3.0 3.0 80 20 3.60–4.90 C
4.0 3.0 100 0 4.90–6.20 D
8.9 3.0 100 0 6.20–7.50 E
9.2 3.5 100 0 7.50–8.80 F
12.0 3.5 100 0 8.80–10.36 G
12.3 3.0 100 0 10.36–11.50 H
14.0 3.0 100 0
15.0 3.0 10 90
18.0 3.0 10 90

3.5. Cell Culture

The human colon carcinoma cell line HCT 116 was obtained from Sigma-Aldrich
(St. Louis, MO, USA) and the human brain endothelial cell line hCMEC/D3 was kindly
donated by Dr. P. O. Courad (INSERM, Paris, France). HCT 116 was cultured with
McCoy′s 5A medium (CarlRoth, Kasruw, Germany) and hCMEC/D3 with Dulbecco’s
modified Eagle medium (DMEM) (Gibco, Thermo Fisher Scientific, Waltham, MA, USA),
both supplemented with 10% of fetal bovine serum (Biochrom, Berlin, Germany), 1%
of penicillin/streptomycin (Biochrom, Berlin, Germany), and 0.1% of amphotericin (GE
Healthcare, Little Chafont, Buckinghamshire, UK). Both cell lines were grown at 37 ◦C with
5% CO2 atmosphere.

3.6. Bioactivity Screening Using 2D Cell Models

The HCT 116 and hCMEC/D3 cells were seeded on 96-well plates, at a density of
3.3 × 104 cells mL−1 for 24 h. Then, the cells were incubated with 25 μg mL−1 of LEGE-NPL
fractions (0.5% DMSO final concentration) and 1.25 μM of staurosporine (positive control)
for 48 h. After this period of exposure, cell viability was evaluated by the MTT colorimetric
assay (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide). Thus, the cells were
incubated with 20 μL of MTT reagent, at a final concentration of 200 μg mL−1 over 3–4 h,
and afterwards 100 μL of DMSO was used to dissolve formazan crystals. Absorbance was
read at 550 nm on a multi-detection microplate reader (Synergy HT, Biotek, Bart Frederick
Shahr, Germany). All assays were repeated three times. Cell viability was calculated using
the following formula:

% cell viability (to negative control) =
x (Absorbancesample)

x (Absorbancenegative control)
× 100

3.7. Bioactivity Screening Using 3D Cell Models

The cancer spheroids were produced using the scaffold-free liquid-overlay technique [40].
Briefly, 200 μL of McCoy′s medium with a HCT 116 cell density of 5 × 104 cells mL−1 was
added to ultra-low attachment round-bottom 96-well plates (Costar, Corning, New York,
NY, USA). Cells were allowed to settle for 30 min, at room temperature, and then incubated
for 5 days, at 37 ◦C under 5% CO2 atmosphere, until the spheroids were properly formed.
After renewal of the culture medium, the spheroids were incubated with 25 μg mL−1 of
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LEGE-NPL fractions (0.5% DMSO final concentration) and 1.25 μM staurosporine (positive
control) for 96 h. Cell viability was evaluated using the acid phosphatase assay. Hence,
media was removed, the wells were carefully washed with PBS, and the spheroids were
incubated for 2 h in 100 μL of p-nitrophenyl phosphate (2 mg mL−1) in sodium acetate
buffer (0.1 M). To stop the reaction, 10 μL of NaOH (1 N) was added to each well and the
absorbance was read at 405 nm on a multi-detection microplate reader (Synergy HT, Biotek,
Bart Frederick Shahr, Germany). All assays were performed in triplicate and cell viability
was calculated according to the formula above. Graphics were designed using Plotly Chart
Studio [41].

3.8. Untargeted Metabolomics Analysis

To identify the putative cytotoxic compounds, an untargeted metabolomics approach
was performed. Groups A and B were constituted by the active fractions of the study
(Table 1, Figure 4). Group C was constituted by 12 fractions that were not considered
active: JM5_amb_D, JM5_amb_E, LEGE 06078_D, LEGE 07092_D, LEGE 07167_C, LEGE
07167_D, LEGE 07167_E, LEGE 08333_D, LEGE 15488_D, LEGE 181148_E, LEGE 181148_F,
and LEGE 181149_D. The liquid chromatography-high resolution electrospray ionization
tandem mass spectrometry (LC-HRESIMS/MS) data were acquired on a system composed
of a Dionex UltiMate 3000 HPLC with a MWD-3000RS UV/VIS detector, coupled to a
Q Exactive Focus mass spectrometer controlled by Xcalibur 4.1 software (Thermo Fisher
Scientific, Waltham, MA, USA). Then, 5 μL (1 mg mL−1 in MeOH) was separated on an
ACE UltraCore 2.5 SuperC18 column (75 × 2.1 mm, ACE, Reading, UK), at 40 ◦C, using
a gradient from 99.5 to 10% H2O/MeOH/formic acid (95:5:0.1, v/v) to 0.5 to 90% iso-
propanol/MeOH/formic acid (95:5:0.1, v/v) for 9.5 min, maintaining the last mixture until
15.5 min before returning to the initial conditions, with a flow rate of 0.35 mL min−1 [42].
The UV absorbance was monitored at 254 nm. HRESIMS-MS was obtained in positive
mode using a capillary temperature of 262.5 ◦C, spray voltage of 3.5 kV, full MS scan at the
resolution of 70,000 FWHM (m/z range of 150–2000), and data dependent MS2 (ddMS2, Dis-
covery mode) at the resolution of 17,500 FWHM (isolation window used was 3.0 amu and
normalized collision energy was 35). Raw data files were converted to the mzML format
with MSConvert, using the parameters recommended for the Global Natural Product Social
Molecular Networking (GNPS) [43]. MZmine 2 v.2.53 (http://mzmine.github.io/) was
used to generate the quantification file used in the fold change analysis of MetaboAnalyst
5.0 (https://www.metaboanalyst.ca/), and to generate the MS2 spectral summary file and
quantification file for feature-based molecular networking (parameters used in MZmine
2 for mass feature detection, chromatogram building, and alignment can be found in
Table S2). The appropriate files were uploaded to the GNPS web platform, and the feature-
based molecular networking (FBMN) was constructed using the default settings. This
molecular network was analyzed with the integrated GNPS tools DEREPLICATOR [22],
MS2LDA [23], and Network Annotation Propagation (NAP) [24], which were all combined
via the MolNetEnhancer [25] workflow. The web links that gave origin to the results are
provided in Table S3 and the structure database used for NAP can be found as Supplemen-
tary Material. For the fold change analysis with MetaboAnalyst 5.0, the data was uploaded
in comma separated values (.csv) format, with 18 unpaired samples (fractions) in columns
and mass features in rows (474 mass features for group A/C and 137 mass features for
group B/C; PCA and fold change charts are shown in Figure S5). No data filtering or data
normalization was performed, and missing values were replaced by 1. Cytoscape 3.8.2
was used to combine the GNPS and MetaboAnalyst results and visualize the resulting
molecular network. Manual dereplication was done by using the Dictionary of Natural
Products 30.1 Chemical Search (https://dnp.chemnetbase.com) and CyanoMetDB [29].

4. Conclusions

Cyanobacteria have acquired an indisputable role in natural products drug discovery.
Our in-house culture collection of cyanobacteria (LEGE-CC) harbors a great potential to
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explore for biotechnological applications, but in prior works, this was often very laborious
and unsuccessful. Therefore, there was a need to develop a new strategy to access the
chemical richness of LEGE-CC in a more expedited way. In summary, the semiautomated
HPLC fractionation of 64 crudes generated 512 fractions that were tested for their cytotoxic
potential using different cell models. The conjugation of monolayer assays and 3D cancer
spheroids lead to the selection of 11 active fractions, whose chemical space was studied
using an untargeted metabolomics approach. The putative annotation and identification of
several cytotoxic compounds contributed to expanding the knowledge of the biochemical
composition of 7 LEGE-CC strains that were characterized herein for the first time. This
study was relevant to prioritize the strains with potential to discover compounds of
unknown structure, work that will be addressed in the near future.
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used to determine the most sensitive method for evaluating cytotoxicity in cell spheroids. Figure S3:
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MS/MS spectrum of the protonated molecule at m/z 623.2865. The MS2 fragments and molecular
formula were consistent with the tentative identification of 132-hydroxy-phaeophorbide a methyl
ester. Figure S5: Principal component analysis (PCA) and fold change plots of the untargeted
metabolic analysis of group A/C (A) and group B/C (B).
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Abstract: This study provides a review of all isolated natural products (NPs) reported for sponges
within the order Verongiida (1960 to May 2020) and includes a comprehensive compilation of their
geographic and physico-chemical parameters. Physico-chemical parameters were used in this study
to infer pharmacokinetic properties as well as the potential pharmaceutical potential of NPs from
this order of marine sponge. In addition, a network analysis for the NPs produced by the Verongiida
sponges was applied to systematically explore the chemical space relationships between taxonomy,
secondary metabolite and drug score variables, allowing for the identification of differences and
correlations within a dataset. The use of scaffold networks as well as bipartite relationship networks
provided a platform to explore chemical diversity as well as the use of chemical similarity networks
to link pharmacokinetic properties with structural similarity. This study paves the way for future
applications of network analysis procedures in the field of natural products for any order or family.

Keywords: network analysis; cheminformatics; verongiida sponges; natural products; in silico mapping

1. Introduction

Marine sponges (phylum Porifera, Grant 1836 [1]) are benthic invertebrates that play
host to a rich and diverse number of microbial symbionts. Marine sponge holobionts or
their symbionts have been the source of an extraordinary number of biologically important
chemical compounds, termed natural products (NPs). The compounds isolated have
generally been of high chemical diversity and are often unique, not only in the structures
that they exhibit, but also in the broad range of biological activities that they display [2].
This array of bioactivity has sustained great interest in marine sponges as a source of
compounds with pharmaceutical potential.

Contemporary NP research is centred around the hypothesis that targeting organisms
or sampling sites with high biodiversity will lead to more chemically diverse compounds,
and thus a larger variety of bioactivities [3–5]. The understanding of biogeographical and
ecological diversity, and the distribution trends of organisms that produce NPs, can be
informative for future isolation efforts [6,7].

To date, the study of biogeographical trends which influence sponge NP produc-
tion has been hindered by the dynamic nature of sponge taxonomy, particularly those
within Verongiida Bergquist, 1978 [8], because the primary diagnostic tool is the structure
and architecture of the laminated fibres. This, together with both the tendency of these
organisms to occur in different forms under different environmental pressures, due to
natural morphological plasticity, and the presence of diverse microbial symbionts, can
create difficulty when deciding on the origin of compounds that are isolated from marine
sponges. With more widespread and accurate data having been accumulated regarding
taxonomy and the distribution of NPs across many families, the task of describing NP
diversity and distribution is becoming a more achievable one.

Mar. Drugs 2021, 19, 582. https://doi.org/10.3390/md19100582 https://www.mdpi.com/journal/marinedrugs
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A large body of work exists in the literature documenting and reviewing NPs isolated
from specific genera within the order Verongiida [9–13]. This distinct marine sponge order
is differentiated both phylogenetically and morphologically from other sponge orders [14].
The Verongiid sponges lack a mineral skeleton, displaying instead a heavily collagenous
mesohyl which obtains shape and structure from spongin fibres that exhibit a granulated
“pith” interior, together with a laminated “bark” exterior [14,15]. This marine sponge order
has seen particular interest from the NP community over the past 50 years, due in part
to the large number of bioactive bromotyrosine alkaloids (BTAs) that they produce [12].
BTAs from Verongiida show significant chemical diversity as a class, and provide effective
chemical defence for these sessile invertebrates against predation [16,17] and fouling
organisms [18,19].

Whilst these compounds are not exclusive to Verongiida [20], they do occur in greater
quantities and present more structural variants within this order than any other. Given the
taxonomic spread and geographic ubiquity of BTAs across this order, it is clear why they
are considered by many as a significant taxonomic marker for Verongiida sponges [21–23].

BTAs represent a compound class of interest due to their chemical diversity as well
as their propensity for wide ranging bioactivity [9–12]. Notable examples include the
disulphide-linked psammaplins, first isolated from an unidentified specimen of Psammaplysilla
Keller, 1889 (= Pseudoceratina Carter, 1885), in 1987 [24]. These compounds have inspired
further studies of Verongiid sponges as well as the design of synthetically targeted anti-
cancer drug libraries [25–27]. The BTA compounds from the Verongiid sponges show
enormous pharmaceutical potential, with many viewed as being promising targets within
the preclinical pipeline. Preclinical assays on BTAs have highlighted many candidates for
antimalarial [28,29], antibacterial [30–33], antiprotozoal [30,34], anticoagulant [28,35,36] as
well as potential central nervous system drugs [30,31,37,38]. This significant and broad-
spectrum activity has provided much impetus to further study this order of sponge and its
associated NPs.

Much debate has ensued regarding the origin of these NPs, with putative evidence sug-
gesting contradicting theories of host vs. symbiont origins from Verongiid sponges [39–42].
It has even been suggested that the biogenetic origins of these compounds begin within
sponge cells, followed by the translocation of intermediates for further biosynthetic trans-
formation performed by symbiont microbes [43]. Whichever the case, it is a process that is
poorly understood. Multi-omic related work on Verongiid sponges has shown a correlation
between the microbial and metabolic architectures of a range of species sampled from dif-
fering locations [39]. This assessment implies that despite the differing core microbiomes of
varying taxa of Verongiid sponges, there is chemical consistency when comparing species
from different locations. Moreover, this aligns with the current understanding of the core
microbiome as being highly species-dependent across differing geospatial and temperature
gradients [44–48]. However, species specificity has not brought us any closer to under-
standing the origin of NPs from the Verongiid sponges; instead, it has highlighted that
these organisms exist in a complex mutualistic ecosystem.

The geospatial and taxonomic conservation of microbiome architectures provides an
opportunity to better understand the biogeographic and chemotaxonomic distribution of
Verongiida NPs. With approximately 633 NPs reported from over 43 different species in
the literature, there appears to be a suitable number of compounds with a wide enough tax-
onomic spread of species to provide a solid foundation on which to base an understanding
of any trends in the distribution of NPs.

The goal of this data mining exercise was to characterise the geographical distribution
of all NPs produced by sponges within the order Verongiida, highlighting key trends that
may assist NP isolation efforts in the future. The work also addresses the distribution of NPs
across different genera within the order Verongiida to identify possible chemotaxonomic
or biosynthetic trends. Finally, the predicted structural similarities and pharmaceutical
activity of these NPs is discussed, utilising network analysis methodologies.
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2. Results and Discussion

In total, 215 papers were surveyed, which reported NPs that had been isolated from
four families (43 species) of Verongiid sponges across approximately 126 geographical
locations (see Supporting Information S1 for full reference list). Prior to this current study,
reviews had been published on the genus Aplysina Nardo, 1834 [49], and its associated NPs
in 2011 [10] and 2015 [11]. These reviews focused primarily on the listing and reporting of
13C NMR data and biological activity, as well as providing some insight into the proposed
biosynthesis of some BTA compounds. In 2019, a review was also published on the genus
Suberea Bergquist, 1995 [50], including compound lists as well as bioactivity and proposed
biosynthesis [9]. A 2005 review documented the bioactivity and biosynthesis of the marine
BTA derivatives as a compound class [12].

To date, there remains no review that encompasses the entire order of Verongiida. The
present work rectifies this situation and focusses on NPs reported between the period of
1960 to May 2020. Compound types that have been described from this order of marine
sponges are largely comprised of BTAs, including spiroisoxazolines (SIA) existing in both
mono- and bis-configurations (mSIA and bSIA), spirooxepinisoxazolines, brominated
phenolics, dibromocyclohexadienes, verongiabenzenoids, verongiaquinols, brominated
oximes, oxime disulfides, bromotyramines (BT), bromotyramine oximes (BTOx), bastadins
and hemibastadins. Further compounds that are not associated with the BTA biosynthetic
route which are also found in the order, include hydroquinones, pyrroles, quinolines,
guanidine alkaloids, indole alkaloids, benzonaphthyridines, benzofurans isoprenoids,
sesterterpenoids, sesquiterpenoids, merosesquiterpenoids and macrolides.

2.1. Biosynthesis and Distribution of BTAs

The SIA and BT classes form the basis of many sub classes of BTA including a large
array of mono- and bis- spiro isomers. In addition, both SIAs and BTs are incorporated to
create some of the higher molecular weight compound classes (Figure 1). Mono- and bis-
SIA compounds are also observed together with BTs that form end groups using cyclised
guanidine (Gdn) expressed as either imidazole, amino imidazole or imidazoline. These
three classes, SIA, BT and BTOx, represent approximately 48% of all the NPs reported for
Verongiida sponges and appear to be the major biosynthetic outcomes for these organisms.
The SIA, BT and BTOx units are then utilised as the building blocks to create many more di-
verse structures, somewhat reminiscent of combinatorial chemistry (Figure 1 and Table 1).
Approximately 18% of SIAs, BTs and BTOxs incorporate Gdn into their structures, result-
ing in either imidazole, imidazoline, imidazole amine or non-cyclic Gdn functionalities.
Biosynthetically, these groups are often found as chain-terminating entities, except in the
rare situations when Gdn can be found to reside between two SIA head groups. In this
situation, the NH group of an imidazole ring provides an attachment point for another SIA
head group.

SIAs appear to be the only spiro class of NP created by Verongiid sponges expressed
with bis configurations. A bis spirooxepinisoxazoline has yet to be observed, despite the
two classes supposedly originating from the same arene oxide intermediate. The formation
of bis compounds would appear to be exclusive to the spirocyclohexadiene structure shown
by SIAs. Conversion of the epoxide intermediate to either an SIA or a spirooxepinisoxazo-
line has been postulated to be enantioselective, rather than enantiospecific, as both (+) and
(−) SIAs have been reported in differing quantities, suggesting enantiodivergence from the
intermediate epoxide [51,52].
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Figure 1. Classes of SIA, BT and BTOx. Mono spiroisoxazolines (mSIA), bis spiroisoxazolines (bSIA), bis spiroisoxazoline
bromotyramine (bSIABT), mono spiroisoxazoline bromotyramine (mSIABT), mono spiroisoxazoline guanidine (mSIAGdn),
bromotyramine (BT), bromotyramine oxime (BTOx), bis spiroisoxazoline guanidine (bSIAGdn), mono spiroisoxazoline
bromotyrmamine oxime guanidine (mSIABTOxGdn), bromotyramine guanidine (BTGdn), bromotyramine oxime guanidine.

The distribution of these NPs (Table 1) across the order of Verongiida reflects that
the two most studied genera, Aplysina and Pseudoceratina Carter, 1885 [53], have a wide
variety of compound classes. Both genera have many species with reported bSIA and
mSIA compounds, which are indicative of the presence of compounds such as aerothionin,
homoaerothionin and purealidin R or purpuroacetic acid, respectively. Aplysina differs from
Pseudoceratina in the production of compounds that possess Gdn derived moieties. Aplysina
species appear to always express mSIAGdns, often in the form of aerophobin compounds,
but only A. archeri (Higgin, 1875) [54] and A. lacunosa (Lamarck, 1814) [55] have been
reported with other Gdn compounds. Comparatively, species of Pseudoceratina sponges
show more complex chemistry with a wider variety of SIA/BT/Gdn combinations. The
absence of Gdn also extends to the genus Ianthella Gray, 1869 [56], which has also displayed
an apparent absence of the BTOx class of NP. This probably arises from the apparent
tendency for Ianthella sponges to produce hemibastadins from their oxime bromotyramines
prior to any O-methylation, which then acts as the precursor for the macrocyclic bastadins.
This absence of BTOx compounds (other than hemibastadins) is informative, as they seem
to produce the required BT precursors for the BTOx compounds that are largely absent,
suggesting that the hemibastadins are the preferential biosynthetic route for Ianthella. The
scarcity of SIAs reported for Ianthella indicates significant biogenetic divergence of this
genus from the remainder of the Verongiid sponges, which is supported by its unique
mesohyl biology and differentiation within Verongiida in the family Ianthellidae Hyatt,
1875 [57].
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Table 1. Distribution of SIA and BT compound classes amongst Verongiida sponges (see Supporting Information S1 for
references).

Species mSIA bSIA
mSIA

BT
bSIA

BT
BT BTOx

mSIA
Gdn

bSIA
Gdn

BTGdn
BTOx
Gdn

mSIA
BTOxGdn

Aiolochroia crassa (Hyatt, 1875) + + + + +
Anomoianthella popeae (Bergquist, 1980) +
Aplysina aerophoba (Nardo, 1833) + + +
Aplysina archeri (Higgin, 1875) + + +
Aplysina caissara (Pinheiro and Hajdu, 2001) + +
Alplysina cauliformis (Carter, 1882) + + + +
Aplysina cavernicola (Vacelet, 1959) + + +
Aplysina fistularis (Pallas, 1766) + + + + +
Aplysina fulva (Pallas, 1766) + + + + +
Aplysina gerardogreeni (Gomez and Bakus, 1992) +
Aplysina insularis (Duchassaing and Michelotti, 1864) + + + +
Aplysina lactuca (Pinheiro, Hajdu and Custodio, 2007) + +
Aplysina lacunosa (Lamarck, 1814) + + + + + + + +
Aplysina laevis (=Pseudoceratina durissima Carter, 1885)
Aplysina solongeae (Pinheiro, Hajdu and Custodio, 2007) + +
Aplysina sp. (Nardo, 1834) + + + + + +
Aplysina thiona (=Aiolochroia thiona Laubenfels, 1930) +
Aplysinella rhax (de Laubenfels, 1954)
Aplysinella sp. (Bergquist, 1980) + + + +
Aplysinella strongylata (Bergquist, 1980)
Hexadella dedritifera (Topsent, 1913) +
Hexadella indica (Dendy, 1905) +
Hexadella sp. (Topsent, 1896) + +
Ianthella basta (Pallas, 1766) +
Ianthella flabelliformis (Linnaeus, 1759) +
Ianthella quadrangulata (Bergquist and Kelly-Borges, 1995) +
Ianthella reticulata (Bergquist and Kelly-Borges, 1995)
Ianthella sp. (Gray, 1869) + + +
Pseudoceratina arabica (Keller, 1889) +
Pseudoceratina crassa (=Aiolochroia crassa Hyatt, 1875) + + + + + +
Pseudoceratina durissima (Carter, 1885) + +
Pseudoceratina purea (=P. purpurea Carter, 1880) + + + + + + +
Pseudoceratina purpurea (Carter, 1880) + + + + + + + +
Pseudoceratina sp. (Carter, 1885) + + + + + + + + + +
Pseudoceratina verrucosa (Bergquist, 1995) + + + + + + + + +
Suberea clavata (Pulitzer-Finali, 1982) + + +
Suberea creba (Bergquist, 1995) + + +
Suberea ianthelliformis (Lendenfeld, 1888) + +
Suberea mollis (Row, 1911) + + + +
Suberea praetensa (Row, 1911) +
Suberea sp. (Bergquist, 1995) + + +
Verongula gigantea (Hyatt, 1875) + + + + +
Verongula rigida (Esper, 1794) + + + + + +
Verongula sp. (Verrill, 1907) + + +

The current literature also shows an apparent absence of low molecular weight veron-
giabenzenoids, dibromocyclohexadienes and verongiaquinols within species of Ianthella.
This evidence tends to contradict a postulate that no SIAs are observed due to biotransfor-
mation of these higher molecular weight compounds to lower molecular weight derivatives
via the hypothesised wound induced chemical defence process.

This same observation could be made for both Hexadella Topsent, 1896 [58] and
Aplysinella Bergquist, 1980 [59]; however, these two genera are far less well-studied than
Aplysina, Pseudoceratina and Ianthella. Despite this lack of SIAs for Aplysinella and Hex-
adella, it is still significant to note that only Hexadella sp. and Aplysinella sp. produced SIA
compounds, while the remaining species either produced BTs or BTOx type compounds
(Table 1). Aplysinella rhax (de Laubenfels, 1954) [60] and A. strongylata (Bergquist, 1980) [59]
showed the presence of only psammaplin and spirooxepinisoxazolines, respectively, pro-
viding many derivatives of the psammaplin and psammaplysin classes of compounds and
clearly displaying high biosynthetic preference toward these over SIAs.

Verongula Verill, 1907 [61] demonstrated the same trends as Pseudoceratina, with many
mSIA and bSIA compounds documented across all species. The major difference is the lack
of BT and BTOx compounds reported, which suggests that this genus efficiently converts
these classes into bSIABTs, mSIABTs, BTGdns or BTOxGdns.

The biosynthesis of BTAs has yet to be completely elucidated, but it is thought to
begin with the catalysed hydroxylation of phenylalanine to form tyrosine, followed by
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bromination through flavin-dependent halogenases. Brominated tyrosine is thought to
be the source of psammaplin compounds arising through reaction with, in the case of
psammaplin A, pre-psammaplin, which is derived from cysteine. Alternatively, the pro-
duction of methoxylated nitriles or oxidation of the amine group can produce an oxime
intermediate which provides the basis for a cascade of phenolic nitriles and amides created
through decarboxylation and dehydrogenation. The oxime intermediate can also com-
bine with bromotyramine to form, via the hemibastadin precursor, the bastadin series of
compounds. Epoxidation of the oxime intermediate can also yield the SIA ring system as
well as the spirooxepinisoxazolines and dibromocyclohexadienes. It has been suggested
that dibromocyclohexadienes might also be generated through the degradation of SIAs to
ultimately produce a highly bioactive dienone which provides part of a wound-induced
chemical defence against predation [11,62,63]. In addition, the oxime intermediate can also
combine with BT compounds to produce the class BTOx (Figure 2).

Figure 2. Proposed biosynthesis of BTAs from brominated tyrosine [9,11,12,64].

2.2. Biogeography and Hotspots for Verongiida NPs

Sponges of the order Verongiida are known to predominately inhabit tropical and
temperate regions of the world, being present in the Central Indo-Pacific, Tropical West-
ern Atlantic and Temperate Australasian realms (Figure 3). These sponges are found to
dominate deeper reefs in the Caribbean region and New Caledonian waters, as well as the
southern and eastern coasts of Australia, including the Great Barrier Reef (GBR).
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Figure 3. Known distribution of Verongiida sponges globally, data from Ocean Biodiversity Infor-
mation System (OBIS) (heat map) [65,66]. Locations where Verongiida sponges have been sampled,
yielding natural products (black dot).

Despite being relatively well-distributed throughout temperate and tropical environ-
ments, NP studies have been focused on specimens collected from the Central Indo-Pacific
and Tropical Atlantic regions. This is understandable, as these regions provide exceptional
biodiversity and are thus prime sampling locations for providing chemical diversity. How-
ever, this leaves several regions considerably understudied, including the western coast of
Brazil (within the Tropical Atlantic realm) as well as Temperate Northern Atlantic waters,
especially the Mediterranean and Adriatic Seas. These regions offer potentially untapped
NP resources that should be investigated in more detail.

Regions in Japan, north of the Okinawa prefecture, have been a rich source of
sponges from the genus Pseudoceratina, as have Hachijo-jima Island [67–69] and Oshima-
shinsone [70], and have all yielded NPs from Pseudoceratina sponges, despite not being
listed as regions of frequent habitation for Verongiida sponges by the OBIS. This has also
been true for regions in China, such as Hainan Island [71,72] and Yong Xing Island [73],
as well as Tonga [24,74] and the Gulf of Thailand, near Kho Chang Island [75]. This
same trend was also observed for Hexadella sponge samples sourced in Jervis Inlet, British
Columbia, Canada [76,77] and the Aplysinella sponges sampled from Pingelap Atoll, Mi-
cronesia [78]. These occurrences draw attention to the large body of biodiversity and
geographical distribution data that are still undescribed for the phylum Porifera [79].

Variation in distribution and sampling was observed across all families of Verongiida.
In some cases, geographical variation was linked to chemical differences even at the species
level. While this dataset cannot allow for a full description of metabolomic differences
between each species, it can still be instructive to explore the more apparent cases of
metabolomic divergence observed between NPs reported in the literature. The Central-
Indo Pacific realm, including the GBR, is an area that has shown the largest number of
sampled and studied Verongiida sponges across nearly all genera (Figure 4). The sheer
number of diverse NPs attests to this region’s biodiversity.
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Figure 4. OBIS distribution of Verongiida sponge families (heat map). Locations of Verongiida sponges that have been
sampled yielding NPs (coloured dots).

The genus Pseudoceratina, belonging to the family Pseudoceratinidae Carter, 1885 [53],
has been one of the major genera sampled and studied in this region, with the most highly
represented species being P. purpurea (Carter, 1880) [80] and Pseudoceratina. sp., although
sampling was not limited to these species, with P. durissima (Carter, 1885) [53,81] and
P. verrucossa (Bergquist, 1995) [50,82,83] also being studied from the GBR and New Caledo-
nian regions (Figure 4). The Tropical Atlantic realm, including the Bahamas, has yielded ex-
clusive species, including P. crassa Hyatt, 1875 (= Aiolochroia crassa Hyatt, 1875) [57,84–86],
and no other Pseudoceratinidae species. P. crassa displayed the presence of several veron-
giabenzenoids, as well as SIAs and BT compounds, together with cyclitol glycolipids,
which is unique to this species within the Verongiida order.

The Red Sea, in the Western Indo-Pacific, was another realm that showed species
specificity, proving to be the only location outside of Madagascar [87] where P. arabica
(Keller, 1889) [88] was sampled and studied for NPs [89–91]. This species yielded BTs,
verongiabenzenoids and spirooxepinisoxazoline compounds, with some exhibiting a rare
2-(methyl)cyclopent-4-ene-1,3-dione moiety as well as incorporating BTs into their struc-
ture [91]. However, no related mSIABT compounds were reported from this species despite
having the necessary BT precursors. Pseudoceratinidae sponges have been sampled and
studied from many of the regions that show high levels of distribution, except for the South
Pacific Ocean near the French Polynesian shelf.

Ianthellidae displays far more localised distribution, with much of the sampling
occurring within the Central-Indo Pacific realm surrounding the GBR and Papua New
Guinea (PNG) regions [92], although some species, such as I. flabelliformis (Linnaeus,
1759), can be found at more southerly latitudes, such as the Port Phillip Bay region in
Victoria, Australia. Comparisons of the NPs reported for I. flabelliformis sampled within
the southerly region of Port Phillip Bay [93], and its two North Australian counterparts
in Shelburne Bay, Queensland [94] and Darwin Harbour, Northern Territory [95], yielded
quite different chemistry. The Port Phillip Bay sample showed an interesting array of lactam
sesquiterpenes, as well as some more common indole alkaloids, two classes unrelated to
the BTA biosynthetic pathway, whereas the two northern locations displayed SIAs as well
as bastadins. Bastadins represented the more common biosynthetic outcome for Ianthella,
but SIAs proved to be a more significant find, as products of the isooxazoline biosynthetic

52



Mar. Drugs 2021, 19, 582

route are far more rare from Ianthella sponges [96]. Macrocyclic bastadin isomers where
also isolated from I. flabelliformis sampled from PNG [97].

The species I. basta (Pallas, 1766) [98] is the most studied sponge of the family Ianthel-
lidae, and has been sampled across a number of localities, including Guam [99,100],
PNG [97,101–103], Indonesia [104–109], GBR [110–112], and the Exmouth Gulf, West-
ern Australia [113,114]. All samples across all localities yielded a very similar chemistry,
proving I. basta to be a large producer of bastadins and their precursor, the hemi-bastadins.
The only notable difference was that sponges sampled from both Guam and the Exmouth
Gulf both exhibited sulfated monoesters of the bastadins and hemibastadins.

Ianthella quadrangulata (Bergquist, 1995) [92] was collected from three locations across
the GBR. The Heron Island collection, which was the most southerly of the three, produced
the most interesting chemistry [115,116]. This sample provided many bastadin congeners,
but more significantly several novel dimeric brominated benzofurans were discovered,
all of which were shown to have incorporated O-sulfate esters into their structures. This
indicated that perhaps this is a biosynthetic trend that persists throughout the genus
Ianthella and is not specific to a single species. Collections from Orpheus Island [37] and
Sykes Reef [117], which were more northerly locations, appeared to mostly yield bastadin
congeners, as well as an octopamine derivative. Interestingly, a number of sponges were
sampled from the GBR region that were only identified at the genus level, Ianthella. sp.
Additionally observed from this collection was a series of benzofuran compounds very
similar to those produced by I. quadrangulata [118,119]. Unfortunately, sample details only
reported GBR as the region of collection so it could not be confirmed if benzofurans are
more likely to be found in Heron Island Ianthella sponges. Collections of Ianthella. sp.
from the Bass Strait region of Australia yielded the most unique chemistry for the genus
Ianthella, including pyrrolidones, lamellerins, a new class of furanones and a rare class of
pyrrolidone–lamellerin hybrids called the dictyodendrins, all of which are highly unusual
for Ianthella [120,121]. This is significant, as it appears that Ianthella sponges sampled from
more southerly locations such as the Bass Strait and Port Phillip Bay appear to display
more chemistry which is independent of the brominated tyrosine biosynthetic pathway.

Aplysinidae Carter, 1875 [122], sponges are almost as extensively studied as Pseu-
doceratinidae sponges. The genus Aplysina accounts for a great deal of this, especially
in the Tropical Atlantic realm, where the biodiversity hotspots of the Bahamas, Puerto
Rico and Cuba have yielded large numbers of NPs, as well as those from the Temperate
Northern Atlantic within the Mediterranean region. A great deal of knowledge has been
accumulated regarding the distribution of BTAs within this genus, allowing Aplysina to be
used as an effective model in understanding the relationships between production of BTAs
and biogeographical trends involving the study of depth, spatial differences, and seasonal
variation on quantities of key BTAs.

The species A. aerophoba (Nardo, 1833) [123] and A. cavernicola (Vacelet, 1959) [124]
are found in large quantities in the Mediterranean region and show somewhat similar
chemistry, with both exhibiting SIAs as well as some characteristic pigments. Compara-
tive studies have been performed on A. aerophoba and A. cavernicola, illustrating specific
differences in the secondary metabolomes of these two species, despite both inhabiting
similar regions of the Mediterranean. Differences were found between the two species
in the relative concentrations of the key SIAs: aerothionin, aerophobin-2, isofistularin-3,
and aplysinamisin-1, indicating these to be appropriate markers to differentiate the two
species. During transplantation experiments, depth was found to play little or no role in
the variability of the production of key secondary metabolites [125]. Depth was also shown
to play little to no role in the chemical variability of A. aerophoba in a quantitative analysis
of key BTAs, with the largest amount of chemical variability being explained by spatial
scale between sampling sites. Interestingly, large variations were observed for sponges
that were sampled in close proximity as well as those that were sampled with larger dis-
tances between sites, seeming to indicate that while proximity plays a role in secondary
metabolism, there are also other factors contributing to this variability [126]. This became
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evident in a follow up study confirming the effect of seasonal variation on the quantitative
variation of metabolites within A. aerophoba [127]. Seasonal and water temperature effects
were also shown to be the major influences contributing to increased production of NPs
for A. cavernicola [128]. In the case of A. fulva (Pallas, 1766) [98], sampled from locations
in the Caribbean, USA (South Atlantic Bight, Georgia and Key Largo, Florida) as well as
the Brazilian coastline, it was observed that while both locations consistently yielded SIA
derivatives, only samples from the South Atlantic Bight location produced compounds
such as aerophobin-1 with an imidazole functional group [21,129–132].

The genus Verongula, family Aplysinidae, has been sampled in many of the same
Caribbean locations as Aplysina, as well as once from the Kho Ha Islets on the coast of
Thailand. The Verongula sponges exhibited the same plethora of SIAs and verongiaben-
zenoids [133–136] that could be found across much of the rest of the order Verongiida;
however, a unique array of brominated tryptamine-derived alkaloids, merosesquiter-
penoids and a benzonaphthyridine were also reported. As well as being new to the family
Aplysinidae, these compounds were also previously unreported within the order Verongi-
ida, and thus have no biosynthetic precedents within this order, making Verongula unique
amongst its Verongiida counterparts [137–141].

Aplysinella and Suberea, both within the family Aplysinellidae Bergquist, 1980 [59],
were sampled mainly from the Central Indo-Pacific realm and accounted for the majority
of NPs reported for this family. A. rhax was sampled from the GBR [142,143], Fiji [144],
Palau [145], Guam [16,145] and Micronesia [145]. The production of psammaplin type
compounds was conserved across all five locations with several derivatives of this class
being reported. These studies also confirmed that despite different sample locations,
the production of the pharmaceutically significant NP psammaplin A was conserved in
A. rhax. Within this genus, A. strongylata was also studied and appeared to exhibit a
different class of BTAs to A. rhax, and has yet to have any psammaplin type compounds
isolated from its crude extracts. A. strongylata was only sampled from Tulamben beach,
Bali, Indonesia, and produced large quantities of the spirooxepinisoxazoline compounds,
psammaplysins [146–148]. Unlike A. rhax, which produced the disulfide psammplins, A.
strongylata produced no BTAs that incorporated sulfur into their structure.

Aplysinella sp. specimens from Micronesia were reported with both spirooxepinisox-
azolines and SIAs representing both the spirocycloheptadiene and spirocyclohexadiene
ring structures [78,149–151]. This is of particular interest, as both spiro systems are thought
to be biosynthetically derived from the same arene oxide intermediate [9,12]. This sug-
gests that Aplysinella sponges possess the ability to produce NPs using both biosynthetic
pathways. A separate Aplysinella sp. yielded BT compounds that were also found to
be present in several Aplysina and Pseudoceratina sponges across many biogeographical
realms [38,151]. Another Aplysinella sp. was also sampled from the Red Sea, yielding a
very similar set of secondary metabolites to that of A. strongylata, with both producing
psammaplysin derivatives showing very little biosynthetic divergence in the secondary
metabolites isolated [152].

The genus Suberea showed similar geographic distribution to Aplysinella but dis-
played quite different chemistry. S. ianthelliformis (Lendenfeld, 1888) [153] sourced from
the GBR [32] and Solomon Islands [34] was reported to have BTs that contained higher-
molecular weight compounds than those of other genera, with many of the BTs appearing
to have incorporated putrescine into their structures, reminiscent of aerothionin. However,
S. ianthelliformis sampled from French Polynesia [154] was reported to produce unsaturated
BTs as well as some quinoline derivatives. Quinoline derivatives were also identified in
a study performed on a sample of S. creba (Bergquist, 1995) [50], sampled from the Coral
Sea, but were confirmed to be produced by the isolated symbiont Pseudomonas sp. [9].
Curiously, other samples of S. creba obtained from the Coral Sea showed the presence
of an array of common small molecular weight amides and nitriles such as subereaphe-
nols, dibromoverongiaquinols and aeroplysinins, making these two S. creba samples quite
distinct from each other [9]. The sponge S. clavata (Pulitzer-Finali, 1982) [155] was only
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sampled from the GBR and produced some species-specific clavatadines as well as some
SIA derivatives, all of which incorporated Gdn as a functionality [35,36].

Marine ecoregions were used to display the frequency of isolated NPs from Verongiida
sponges (Figure 5) and appear to suggest that the frequencies are highly location-dependent,
with regions such as the Caribbean, GBR, the Red Sea and the Okinawan coast producing
the largest numbers of NPs. Aside from the Okinawan coast, all these regions are known to
have sponges that yield NPs from all four families, making them both significant Verongiida
habitats as well as being diverse. However, this result may be misleading, as the regions
studied are likely to have been targeted because they are readily accessible and are known
to be rich sources of many tropical marine species, including sponges. Hence, the lack of
study may simply reflect a lack of opportunity, or a reduced interest in other regions.

Figure 5. Marine ecoregions of the world (MEOWs) (Black borders) [156] displaying the total number of NPs isolated from
Verongiida sponges in each region.

2.3. Natural Product Diversity across Genera of Verongiida—A Network Analysis Investigation

Many of the Verongiida species that have been studied possess NPs derived from
closely related biosynthetic pathways, and this raises the following questions:

1. To what degree do these genera differ with regard to their secondary metabolites?
2. What compound classes contribute to the largest amount of variance between the

genera studied?
3. Which sponges offer biosynthetic outcomes that are the most exploitable in terms of

drug discovery?

Answers to these questions were sought using bipartite networks and chemical scaf-
folding methods to explore NP inter-relationships and diversity. Initially, a direct compari-
son of shared metabolites was created using a bipartite network consisting of two distinct
classes of nodes. The first are nodes that represent every compound reported for the order
Verongiida. The second type of node represents species that have had compounds reported
in the literature. The network displays edges between compounds and species when a
compound has been reported in the literature for that species. In this situation, no edges are
created for species–species or compound–compound. To aid with analysis, node size was
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organised such that nodes with a higher degree (number of edge attachments) are larger
than those with a lower node degree. This approach highlights the species or compounds
that have the greatest interconnection, as illustrated in Figure 6.

Figure 6. Bipartite network representation of species (nodes, right) and compounds (nodes, left) that exist within species
(edges = curved lines) for the sponges in the order Verongiida.

Monopartite projection of this bipartite network with respect to the species nodes gives
the species network (Figure 7). In this projection, edges (curved lines) are drawn between
species that share at least one compound, with a thicker edge width (weight), indicating
the sharing of multiple compounds between species. The monopartite projection (Figure 7)
provides a valuable visualisation, clearly indicating which species share compounds with
each other. The sharing of a common compound between two species provides some
evidence of shared biosynthetic pathways between the two species, thereby supporting
taxonomic relationships [157]. As with the bipartite network, the node size is ordered
to represent node degree, and thus indicates which species share compounds with the
largest number of species within this order of sponges. Species from the genus Aplysina
are the most interconnected in this network representation, both within the genus Aplysina
and to external genera. This is largely due to the high numbers of common BTs and SIA
compounds that these species possess, which are shared by other prominently studied
species, such as the sponges from the genus Pseudoceratina.
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Figure 7. Monopartite projection of the bipartite network with respect to species (visualised using the Force Atlas layout
algorithm in Gephi).

The relatively central positioning of the Pseudoceratina nodes illustrates the common-
alities this genus displays with many other species from different families, including the
Ianthella genus. Ianthella forms a unique cluster, in the large part due to the high numbers
of shared bastadins that they all possess. While Ianthella is observed with many intra-genus
edges, nearly all inter-genus linkages observed for the entire genus Ianthella are with the
sponge species P. purpurea. The positional isolation of Ianthellidae sponges in Figure 7
seems to be conserved for other genera of this family, such as Anomoianthella Bergquist,
1980 [59] and Hexadella, which also exhibit very small node degrees, together with a ten-
dency to only form edge relationships within their respective genera or not at all. Figure 8A
shows the cross section of the Verongiida sponges by family, where Ianthellidae sponges
are shown to have the lowest number of inter-family compounds. Interestingly, sponges
of the genus Suberea display sharing of compounds with a higher number of inter-genera
species, whilst almost no intra-genera connections are observed. This can also be seen with
the genus Aplysinella, where Aplysinella. sp. shows wide ranging connections across several
species outside the Aplysinella genus.

Initially, it was thought that the amount of interconnection amongst other species
in the monopartite projection could simply be explained by the fact that species with a
higher total number of compounds reported in the literature would be more likely to
have a high node degree, or rather, a higher number of species with shared compounds.
However, this was shown to be false, as Figure 8C shows the distribution of node degree
from the monopartite graph with respect to the total number of compounds reported
for each species. Except for the two Pseudoceratina species that have higher than usual
numbers of reported compounds, there appears to be little or no correlation between the
total number of compounds reported and the number of species with shared compounds.
Whilst it is true that some Aplysina species have both high numbers of compounds and
high node degrees, it can also be concluded that some Ianthella species have a high total
number of compounds reported but a low node degree. This type of variance can also be
seen within the genus Suberea, where both situations can be observed.
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Figure 8. (A) Venn diagram for compounds distributed across families of Verongiida. (B) Total number of unique compounds
for each species. (C) Node degree for each species in monopartite projection. (D) Number of compounds that are shared
with at least one other species.

The distribution of the total compounds reported was mapped against both the num-
ber of unique compounds (Figure 8B) and the number of shared compounds (Figure 8D).
In both situations, a positive correlation was observed across all Verongiida sponges. In
Figure 8B,D, it is apparent that many of the Aplysina species exhibit far more common
chemistry than the other genera in Verongiida, as they display a lower number of unique
compounds per total reported compounds, as well as many shared compounds per total
reported compounds. Compounds from the genera Ianthella, Suberea and Aplysinella exhibit
greater uniqueness and a lower amount of relative sharing. Pseudoceratina shares many
compounds with a large number of species, as well as having many unique compounds

While Figure 8D shows a trend of shared compounds from one species to another,
it is not clear if the compounds are being shared according to any predictable pattern.
Keeping taxonomical distance in mind, one would expect species within the same genera
to share many compounds, as they have closer genetic ties, and their biosynthetic processes
are expected to be similar. As a way of investigating this ‘shared compound hypothesis’,
the total compounds reported were mapped against both the intra-genera sharing of
compounds and the inter-genera sharing of compounds, and the results are presented in
Figure 9A,B, respectively.

The data in Figure 9A support the earlier conclusion from the monopartite projection
graph, namely that the Suberea sponges appear to show minimal intra-genus compound
sharing, and that Aplysina sponges display both large intra- and inter-genus sharing of
compounds.
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Figure 9. (A) GR Value assessing overall intra- vs. inter-genera sharing of compounds. (B) Number of compounds shared
with species of the same genus. (C) Number of compounds shared with species of different genera.

To quantify this difference between intra- vs. inter-genus sharing of compounds, the
genus relationship (GR) value was calculated for each species according to Equation (1).
In this instance, species are compared via their number of intra-genus shared compounds
(Cintra) and their number of inter-genus shared compounds (Cinter). The genus relationship
value was then calculated with respect to total reported compounds (TC) and the total
number of species for a particular genus (GS), so comparisons are possible between species
across differing genera.

GR =
(Cintra − Cinter)

TC
÷ GS (1)

The results of the GR score for each species are illustrated in Figure 9C. Values that
are positive show a tendency for that species to share a larger proportion of compounds
with species in the same genus. Negative values show a higher propensity to share com-
pounds with inter-genera species. Figure 8C, derived from the monopartite projection,
indicates that species within the Aplysina genus of sponge appeared to share compounds
with many species of sponge within the order Verongiida. However, reference to Figure 9C
and the associated GR values of the Aplysina sponges indicates that much of the compound
sharing for the Aplysina sponges occurs within the genus Aplysina. This suggests that
Aplysina sponges are largely insular with regard to sharing compounds between species of
sponges. However, because the GR value focusses on the relationship between intra- and
inter-sharing, it misses an interesting cross section of Aplysina species that share the same
compounds both with intra-genus species and inter-genus species. The monopartite pro-
jection (Figure 7) shows the most intra-shared compounds for each major genus, together
with the compounds that are most shared between inter-genera species. In this instance, it
is evident that a large proportion of the most shared compounds within the Aplysina genus
are also shared with species from other genera, such as Pseudoceratina and Suberea.

Sponges within the genus Ianthella show similar trends to Aplysina, with largely
positive GR values; however, when considering Figure 8C, Ianthella sponges show lower
numbers of species that have shared compounds. Figure 8B also shows that Ianthella
sponges, as a genus, exhibit many more unique compounds compared to those of the
Aplysina sponges.
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Figure 8D shows that the Suberea sponges have a variety of species that contain shared
compounds, but only have negative GR values. This is noteworthy, because while Suberea
shows extensive inter-genus sharing of compounds, these species also have a significantly
larger number of unique compounds, as is the case for the Ianthella species.

It has been made clear from investigating the most shared compounds from both
intra- and inter-genera species that, with the possible exception of the bastadins found
in Ianthella sponges, there is no class of compounds that is shared almost exclusively in
an intra-genera manner specific to one genus and no other. Rather, there appears to be a
subset of compounds that are common to all, or nearly all, species across multiple genera.
There are also compounds that are specific to species in each genus, but this may also be
found outside that genus. This creates uniqueness for that species within its genus, but this
does not mean it is unique when considering the entire order.

Scaffold analysis was performed on compounds that were reported for each genus,
with the aim of investigating the frequency of each chemical scaffold for each genera,
together with assessing the diversity and novelty of the chemistry in each genera. Murcko
scaffolds (N) were created from NPs (M) and used to calculate genera diversity (N/M),
where the frequency of each Murcko scaffold indicated importance to the genera. Scaffolds
that existed in only one genus were termed scaffold singletons (Nsing) and used to calculate
genera novelty (Nsing/M) (Table 2) [158,159].

Table 2. Murcko scaffold analysis for NPs of all genera within the order Verongiida.

Genus
Natural
Products

(M)

Murcko
Scaffolds

(N)

Singleton
Scaffolds

(Nsing)

Diversity
(N/M)

Novelty
(Nsing/M)

Aiolochroia 15 8 0 0.533 0
Anomoianthella 1 1 0 1 0

Aplysina 140 44 20 0.314 0.143
Aplysinella 63 19 8 0.301 0.127
Hexadella 12 9 0 0.75 0
Ianthella 95 29 20 0.305 0.211

Pseudoceratina 232 67 35 0.289 0.151
Suberea 115 47 24 0.409 0.209

Verongula 51 28 13 0.549 0.255

A high diversity of scaffolds was reported for Verongula and Suberea, with diversity
scores of 0.549 and 0.409, respectively. These were significantly higher than other genera
such as Pseudoceratina and Aplysina, which appear to have a larger number of compounds
that are represented by a relatively low number of scaffold classes. Furthermore, they
also displayed low novelty scores and there were many shared scaffolds between the two
genera (Figure 10). While novelty and diversity are advantageous for drug discovery
efforts, a lack of these properties combined with many shared scaffolds could suggest
similarities in terms of the biosynthetic origins of the compounds produced by two genera,
thereby also providing chemotaxonomic value. It should be noted that although Aiolochroia
Wiedenmayer, 1977 [160], Anomoianthella and Hexadella also achieved much higher diversity
scores as well, it is likely that this is simply a result of the low number of NPs reported
in the literature for these genera. Cumulative scaffold frequency graphs of each genus
show Pseudoceratina to have the highest number of compounds represented by the lowest
number of scaffolds. Interestingly, the genus Aplysinella shows a similar trend, with a sharp
rise at the beginning of the curve indicating an upper end of scaffolds that dominate its
dataset.
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Figure 10. Cumulative scaffold frequency by genus (left). Number of shared scaffolds by genus (right).

Pseudoceratina has approximately 23.6% of its compounds represented by the benzene
Murcko scaffold (representative of phenolic nitriles, amides and BTs), as well as SIA (4.5%)
and BTOx (5.4% and 4.5%) scaffolds (Figure 11). Aplysinella, on the other hand, has many
more scaffolds created through the alternate biosynthetic route of spirooxepinisoxazolines.
Hexadella and Verongula both display curves representing a low ratio of molecules per
scaffolds, indicating the presence of only a small number of derivatives present in their
listed NPs. This type of data analysis can inform future isolations and could provide
evidence of two situations: (i) that the organism only produces single derivatives of the
same scaffold, or (ii) that there simply has not been many of these derivatives discovered.
Either way, the combination of high scaffold diversity and novelty that Verongula displays,
together with the low ratio of molecules to scaffolds, make this genus an ideal target for
drug discovery, with the potential to provide novel scaffolds as well as derivatives of
known scaffolds.

The number of shared scaffolds between Pseudoceratina and Aplysina, the two genera
with the highest number of reported NPs, implies a strong biosynthetic connection. Aplysina
and Pseudoceratina have many compounds represented by the SIA scaffold with 7.9% and
4.5% for each, respectively. This, together with the high frequency of benzene, demonstrates
the utilisation of a number of common biosynthetic routes to achieve these scaffolds.
However, Aplysina appears to produce more compounds that have lower MW Murcko
scaffolds such as BTs, cavernicolins, bromotyrosineketals and verongiaquinols, whereas
Pseudoceratina has higher MW scaffolds that are created from the NP classes of BTOx,
SIABTs or BTOxGdns. Suberea sponges exhibit a variety of scaffolds from Aplysinella,
Pseudoceratina and Aplysina, with a mixture of SIAs and spirooxepinisoxazolines. This
subset of common scaffolds, which are shared between the more widely studied genera
within the Verongiida order, suggests that all biosynthetic outcomes of the BTA class
of compounds are available to each genus, but variance is created at the species level.
Considering this, it would be useful to understand if species share more in common with
their intra-genus counterparts than with inter-genera species.
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Figure 11. Most frequently occurring Murcko scaffolds for each genus.

To this end, scaffold trees were created using the RDKit scaffolding package [161] and
were arranged to create a scaffold network (SN) as presented in Figure 12A. These networks
include nodes representing individual species, whole compounds (initialised compounds),
as well as common scaffolds created from whole compounds. Edges (links) between species
nodes (coloured) and initialised compounds (dark grey) represent a compound that has
been reported for that species. Each compound is iteratively fragmented into its substituent
scaffolds, and edges (links) are placed between the initialised compounds and the scaffolds
(light grey). This provides a chemical space where species are placed based on the structural
features of their associated secondary metabolites. Scaffolds exist between two species that
would have otherwise not been connected in a bipartite network projection due to them
not having a single metabolite in common. As species are distributed according to their
metabolites, it is possible to assess their likeness to each other with respect to their local
environments within the network. Environmental similarity was assessed using the python
networking tool SimRank [162], where a domain-specific view of each species was taken.
In this way, species were compared to each other based on their respective environments
where two objects are similar to each other if they are both connected to similar objects.
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Figure 12. (A) Scaffold network (SN) created using HierS type scaffolds that displays species (coloured), initialised
compounds (dark grey) and scaffolds (light grey). (B) SimRank score data calculated for each species comparison in the SN,
organised via genera comparing intra/inter genera relationships.

Figure 12B presents the box plot results of SimRank scores between all species nodes
in the SN created by considering intra-genera versus inter-genera similarity comparisons.
SimRank scores show similar trends to the GR score method of comparison when consid-
ering Ianthella and Aplysina, where there is a strong tendency towards similar chemistry
within their respective genera, as opposed to species from other genera. This trend is due
to the large number of unique bastadin compounds that are found in the genus Ianthella,
and the high density of common SIA compounds that are found in Aplysina, which are
extensively shared within the genus, whilst also exhibiting very similar scaffolding.

Suberea show very low numbers of shared compounds within the genus, but it appears
that there is a very similar number of common scaffolds both intra- and inter- genera
when considering the SimRank results for this genus. Suberea shares a large proportion
of SIAs with other genera, such as Aplysina and Pseudoceratina, but also displays many
compounds that are species-specific to Suberea and have similar scaffolds and overall
chemical structures.

The genera Aplysinella and Verongula appear to have more inter-genera shared com-
pounds when considering GR score, but when considering chemical features and common
scaffolds in the SN, there is a larger proportion of similar scaffolds in their intra-genera
species as opposed to inter-genera species. This is likely to be reflective of the fact that the
GR score, while useful for direct comparisons of shared compounds across species, does
not accurately depict the relative chemistry of species that have only very low numbers of
connections in the monopartite projection of shared compounds. If a species is present with
only a very low number of shared compounds for both inter- and intra-genus comparison,
there is little that can be concluded without further information regarding the chemical
classes present. A. rhax and A. strongylata have very limited interconnection with both
inter- and intra-genera species (Figure 7), leaving the trend for the genus Aplysinella to be
dictated entirely by Aplysinella. sp. This results in a misconception when comparing genera
via shared compounds, because it is entirely likely that species within a genus will produce
compounds that are structural variants and thus will not be reflected in sharing, but rather
in shared or common scaffolds. This means that while shared compounds can provide

63



Mar. Drugs 2021, 19, 582

a useful insight into shared biosynthesis, it needs to be considered together with shared
common scaffolds to provide context to the compounds that are not shared frequently, and
the compounds that are potentially missing from the data. This is most important, as not
all datasets are complete, especially in NPs research, where datasets are subject to how
rigorously each species has been investigated and by what methodologies.

2.4. Verongiida NP Drug Score and Drug-Likeness Assessment

The compounds produced by Verongiida sponges were assessed for their pharmaceuti-
cal potential using both the Lipinski/Veber rules and the drug score metric calculated on the
OSIRIS property explorer [163]. Chemical space was first represented using principal com-
ponent analysis (PCA) with chemical descriptors derived from the Lipinski/Veber rules,
such as molecular weight (MW), topological polar surface area (TPSA), number of rotatable
bonds (nRotB), total number of hydrogen bond donors and acceptors (nHBDon/Acc) and
the octanol water partition coefficient (cLogP), forming the basis of compound features,
with the results illustrated in Figure 13. Descriptive statistics of the PCA plots in Table 3
show that 93.5% of the cumulative variance of this data is described by the first three
principal components. Table 4 shows that PC1 has a strong positive correlation with the de-
scriptors MW, TPSA, nHBDon as well as nHBAcc; PC2 has a large positive correlation with
the cLogP coefficient and nRotB; while PC3, which contributes to only 8.4% of variance,
has a positive correlation with the nRotB descriptor and a negative correlation with cLogP.

Figure 13. PCA analysis of chemical descriptors MW, TPSA, nRotB, nHBDon, nHBAcc and cLogP.

Most outliers in these PCA plots are accounted for by variance in PC1, with a few
associated with variance in PC2. Some small cluster groupings can be observed where
compounds from Suberea, Pseudoceratina and Aplysinella form a cluster of spiroisoxazoline
compounds that have long lipidic tails. This cluster is formed due to the compounds dis-
playing unusually large cLogP and nRotB values, which corresponds to the two descriptors
showing large positive correlations with PC2 in Table 4. Some clustering was also observed
along the PC3 axes, which can be accounted for by the bastadin compounds, which are
found primarily in the genera Pseudoceratina and Ianthella and are unique, as they are the
only macrocyclic compounds found in this order of sponge. This often results in high MW

64



Mar. Drugs 2021, 19, 582

compounds that have very low numbers of nRotB. The psammaplins were also observed
to form a small cluster when comparing PC2 and PC3. These compounds exhibit the
only disulfide functionality across the entire order, and are found in Aplysinella, Ianthella
and Pseudoceratina sponges. Outliers in this analysis were found to be highly lipophilic
compounds that exhibited large cLogP values, MW and TPSA values.

Table 3. PCA descriptive statistics.

PC1 PC2 PC3 PC4 PC5

Eigenvalues 3.8916 1.2130 0.5068 0.2505 0.0841
Proportion of variance 0.649 0.202 0.084 0.014 0.009

Cumulative
proportion 0.649 0.851 0.935 0.991 1.000

Table 4. PCA loadings for all compound descriptors.

PC1 PC2 PC3 PC4 PC5

MW 0.472 0.147 −0.133 −0.476 −0.636
TPSA 0.458 −0.338 0.020 0.049 0.538

nHBAcc 0.471 −0.199 0.122 −0.453 0.277
nHBDon 0.420 −0.374 −0.153 0.681 −0.374

nRotB 0.307 0.522 0.748 0.270 −0.002
cLogP 0.273 0.642 −0.619 0.172 0.299

The Euclidean distance between each genus, which correlates with their degree of
relatedness, was studied and the results are summarised in Figure 14. Euclidean distance
measurements were performed using the PUMA cheminformatics server [164,165]. This
measurement of similarity between genera appeared to display similar trends to the
SimRank score plot, despite using pharmacokinetic features to describe molecular structure
rather than chemical scaffolds.

The genus Ianthella showed a smaller Euclidean distance of 3.21 when compared to
itself, whereas the inter-genus scores against all other genera were found to be larger in
magnitude. Aplysina had a short Euclidean distance value of 2.63; however, it showed
smaller distances when compared to Aiolochroia and Hexadella, which both scored distances
of 2.53. Pseudoceratina appeared to have higher inter-genus distances, compared to the
intra-genus value of 2.82, than Suberea, Verongula and Aplysinella, which showed values of
2.9, 2.94 and 3.52, respectively.

This contrasted with the values observed with other genera, which were all much
lower. Ianthella, Aplysinella and Verongula are suggested to have the most unique chemistry
based on the descriptors, and these provided the highest Euclidean distances. This tends
to agree with the SN results and the PCA plots. Aplysinella shows the greatest amount
of variance along PC2, due primarily to its compounds that have a large range of cLogP
values. It also has a single species in the SN that displays highly unique scaffolding and a
very large distance to other genera. The entire genus Ianthella shows unique scaffolding
in the SN and also relatively large data variance across all three principal components, as
shown in Table 3. Verongula appears to derive most of its uniqueness from the variance
along principal component 1 and the fact that, as with Aplysinella, it has a single species
that produces unique scaffolds in the SN.
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Figure 14. Euclidean distance of genera based on pharmacokinetic properties of compounds.

PCA analysis showed large numbers of compounds from Pseudoceratina, Verongula,
Suberea, Aplysina and Aplysinella occupying the chemical space of Lipinski/Veber-abiding
compounds. Many of the compounds that do not abide by these rules were discounted
due to excessively high MW, cLogP and/or nRotB values.

Figure 15. (A) Species drug score network. (B) Drug score distribution by genus. (C) Lipinski statistics by genus.

Figure 15A shows a network where the distribution of compounds amongst genera
can be observed as well as the compound’s associated drug score, as calculated by the
OSIRIS property explorer [163]. The drug score of a compound is used to assess its
potential pharmaceutical value, based on parameters such as cLogP, solubility, molecular
weight, drug likeness and any associated toxicity risks, on a scale between 0 and 1 (where
1 indicates a high potential to qualify as a drug). The drug score is a powerful value that
encapsulates core druglike descriptors and is particularly useful for providing a snapshot
of the compound’s drug feasibility, whilst also considering its predicted toxicity.
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The genera that exhibit the highest mean drug score for compounds are Hexadella,
Verongula, Pseudoceratina and Aiolochroia. The genera Aplysina has a relatively low drug
score profile for its compounds, as seen in Figure 15B, but it does display a number of
compounds with particularly high drug scores as outliers. In Figure 15A, it can be observed
that many of the high drug score compounds for Aplysina are found only within Aplysina
sponges. This contrasts with Pseudoceratina, where many of the high druglike compounds
are found to be shared amongst other genera such as Aplysinella, together with many high
drug score compounds that are exclusive to Pseudoceratina. Many other genera, especially
Ianthella, show the same trend as Aplysina, where the high drug score compounds are
not shared with inter-genus species. Despite having many compounds reported for both
Aplysina and Pseudoceratina, of which a relatively large percentage conform to all Lipinski
and Veber’s rules for druglikeness, (57.5% and 36.2%, respectively), Figure 15C shows
that an incredibly small percentage of these compounds possess appropriate properties to
achieve a drug score higher than 0.5, and this is attributed to the predicted toxicity and
mutagenic properties of these compounds being too high to allow for an effective drug
score.

To further explore the relationship between drug score and chemotype in this order
of sponges, chemical space networks (CSNs) [166] were used to create a chemical space
for compounds based on chemical similarity, as illustrated in Figure 16. Network analysis,
based on chemical similarity, provides a direct connection of cluster analysis with chemo-
type without loss of information due to dimensionality reduction, as would be observed
in PCA.

This type of network connects compounds (nodes) to other compounds based on
structural similarity as expressed via the Tanimoto score between two compounds. A
network threshold value of 0.5 was used to maximise the assortativity degree and average
clustering coefficient, whilst also minimising the number of singletons and providing
an appropriate network density. The Louvain clustering algorithm (default Gephi clus-
tering algorithm) was used to cluster the compounds in this network. This resulted in
20 clusters having three or more nodes. Major clusters represent the major chemotypes
present in this order of sponge, as can be seen in Figure 16A. Chemical assessment of
the major clusters in this network showed that the predominant chemotypes present are
SIAs (Cluster 1), BTOx (Cluster 2), BT’s (Cluster 3), spirooxepinisoxazolines (Cluster 4),
bastadins (Cluster 5), bromotyrasineketals and verongiaquinols (Cluster 6), as well as
cavernicolins and bromotyrosine lactone derivatives (Cluster 7).

The Lipinski/Veber rules and drug score ranking were then applied to this network,
as illustrated in Figure 16C,D, respectively. Figure 16C shows darker nodes for compounds
that comply with all the Lipinski/Veber rules. It should be noted that when comparing
Figure 16C,D, compliance with the Lipinski/Veber rules does not necessarily guarantee a
high drug score. This is likely due to the compounds having lower druglikeness values
and/or also having high predicted toxicity values for either mutagenic or irritant properties.
Upon comparing Figure 16D with Figure 16A, it was observed that the cluster of com-
pound classes that achieve the highest drug score ranking includes the BTOx compounds
(Cluster 2) and the simple BT compounds (Cluster 3). These two classes of compounds
are found widely across the order Verongiida and contribute to the mean drug score of
most genera.
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Figure 16. (A) Similarity network with Louvain clustering applied. (B) Average drug score for each cluster arranged by
genera. (C) Similarity network highlighting compounds that conform to the Lipinski/Veber rules. (D) Similarity network
ranking compounds based on their drug score.

For example, Verongula gains much of its high mean drug score in Figure 16B due to
the presence of high drug score compounds from cluster 2, achieving a mean drug score
from this cluster of 0.89, and from cluster 16, where compounds from this genus achieve a
mean drug score of 0.94. For genera such as Ianthella, which achieve a relatively low mean
drug score of 0.33 for its compounds, it can be inferred from Figure 16D that much of this
can be attributed to the high prevalence of bastadin-type compounds. The macrocyclic
bastadins exhibit high molecular weights, large numbers of nHBAcc and high cLogP values,
all contributing to low drug scores for the Ianthella genera set of compounds. While these
compounds lower the mean drug score for Ianthella, there are other clusters, such as cluster
16, where Ianthella shows a considerably higher mean drug score of 0.96 (see Figure 16B).
This seems to suggest that Ianthella sponges do produce compounds with a drug potential
that is higher than that of their most frequently occurring compound class, which are
the bastadins (cluster 5). Information such as this is important when considering future
isolation strategies and investigations for these species of sponges, as it would be wise
to use an approach that avoids the isolation of bastadins, and that preferentially aims to
isolate compounds such as those found in clusters achieving high mean drug scores, such
as components in clusters 2 (BTOx), 3 (BT) and 16 (Aplysinopsins). This does not mean
that the isolation of bastadins should be ignored, since as macrolides they may possess
useful membrane disrupting properties, but rather that they should not be the primary
targets for small molecule isolation.

This type of network analysis could conceivably be utilised to prioritise isolation
strategies for compounds with high drug scores, although it would not provide insight
into predicting which organisms would produce novel chemicals that are highly bioactive.
Nevertheless, it may still be of use in designing isolation strategies that target specific
chemotypes that are assessed as being likely drug candidates with higher drug scores.
This type of structure-based similarity network that relies on thresholds is useful for
identifying the major types of compounds present across a dataset and can provide insight
into structure–activity relationships in compounds. Compounds can be compared to each
other within a single network with a threshold value, but it is relatively difficult to compare
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those across multiple networks due to different network statistics. This, however, does
not invalidate this type of network analysis in terms of understanding chemotype–drug
viability relationships across chemical space.

Recent studies of BTA compounds have shown this class of compounds as being
promising candidates within the preclinical pipeline [25–38]. Despite this, the large majority
of BTAs from Verongiida sponges have been understudied when it comes to biological
activity and function, leaving a potentially untapped resource for drug development.

Figure 17 shows the compounds that have achieved a drug score of 0.75 or higher,
with all molecular descriptors displayed in Table 5. Many of the compounds that achieve
high drug scores are from clusters 2 (BTOx) and 3 (BT) of the CSN. In addition, a large
proportion of these compounds are from miscellaneous clusters that are either singletons or
simply have three nodes or fewer contributing to their cluster information. This suggests
that this type of network analysis is useful for observing activity trends only when the
dataset contains large numbers of compounds with high similarity, as can be observed in
clusters 2 and 3.

Figure 17. Compounds from Verongiida sponges that achieve a drug score of ≥0.75.

Table 5 presents molecular descriptors for compounds that achieve a drug score higher
than 0.75. Aplysamine-1 (7) was shown to be a weak H3 receptor antagonist compared to a
standard of conessine achieving an IC50 value of 0.34 μg/mL (0.83 μM) [167]. Compounds
24 and 25 (ceratamine A and B, respectively) are cytotoxic and antimitotic in a variety of as-
says covering a number of human and rat cell lines [168–170]. Compound 28 was assessed
as being a potent antifungal agent against the fungus Geotrichum candidum [171]. Com-
pound 29 showed some antidepressant activity during a rodent forced swim test [138,172].
Compound 32 has been reported to be antibacterial, antimycobacterial and an effective
inhibitor of human ETA receptors as well as neuropeptide Y1 receptors [173–175]. It is
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noteworthy that none of the other listed compounds have had any form of bioassay un-
dertaken despite being ideal drug candidates that achieve high drug scores and generally
conform to the Lipinski/Veber rules. This clearly presents an opportunity for further work
to evaluate the therapeutic potential of these compounds.

Table 5. Molecular descriptors for compounds that achieve a drug score ≥ 0.75.

Compound Cluster
Drug
Score

Genus MW TPSA nHBAcc nHBDon nRotB cLogP

1 3 0.81 Aplysina,
Suberea 323.03 23.47 2 1 3 2.82

2 3 0.84 Aplysina 337.05 12.47 2 0 4 3.09
3 3 0.79 Pseudoceratina 380.12 38.49 3 1 7 2.63
4 3 0.81 Pseudoceratina 396.12 58.72 4 2 7 1.56
5 3 0.79 Pseudoceratina 452.19 61.8 4 2 9 2.42
6 3 0.78 Pseudoceratina 407.1 49.77 4 1 7 1.89

7 3 0.75
Aplysina,
Suberea,

Pseudoceratina
408.18 15.71 3 0 8 3.25

8 2 0.77 Aplysina,
Pseudoceratina 460.13 99.6 6 4 7 2.56

9 2 0.88
Aplysinella,

Pseudoceratina,
Verongula

381.23 99.6 5 3 7 1.84

10 2 0.81 Aplysinella 323.23 118.2 5 3 6 0.14
11 2 0.8 Pseudoceratina 437.13 82.95 5 3 8 2.39
12 2 0.77 Pseudoceratina 475.14 118.83 7 5 7 1.84
13 2 0.77 Aplysinella 379.23 127.43 5 3 7 1.19
14 2 0.77 Pseudoceratina 460.13 99.6 5 3 7 2.56
15 2 0.77 Pseudoceratina 434.33 96.94 5 3 10 3.16
16 2 0.75 Hexadella 475.14 125.62 6 4 7 2.25
17 2 0.77 Pseudoceratina 461.11 136.62 6 5 6 1.98
18 2 0.89 Pseudoceratina 367.2 110.6 5 4 6 1.56
19 2 0.75 Pseudoceratina 475.14 125.62 7 5 7 2.25
20 16 0.96 Ianthella 254.29 63.19 3 2 1 1.01
21 16 0.91 Verongula 333.19 63.19 3 2 1 1.74
22 7 0.93 Suberea 201.61 66.4 3 2 0 −0.57
23 7 0.93 Aplysina 201.61 66.4 3 2 0 −0.57
24 21 0.79 Pseudoceratina 454.12 75.08 5 2 3 1.94
25 21 0.77 Pseudoceratina 468.15 66.29 5 1 3 2.19
26 42 0.94 Pseudoceratina 126.11 61.69 3 2 0 0.06
27 50 0.95 Suberea 154.17 97.92 4 5 2 −1.28

28 39 0.98 Pseudoceratina,
Verongula 137.14 46.92 2 1 0 0.38

29 19 0.81 Verongula 346.07 19.03 1 1 3 3.2
30 43 0.79 Pseudoceratina 185.23 53.6 3 2 2 0.02
31 66 0.97 Ianthella 256.31 63.19 3 2 2 0.8
32 57 0.97 Suberea 244.29 49.41 2 1 2 0.85
MW = molecular weight, TPSA = total polar surface Area, nHBAcc = number of hydrogen bond acceptors, nHBDon = number of hydrogen
bond donors, nRotB = number of rotatable bonds, cLogP = octanol/water partition coefficient.

3. Methodology

3.1. Collection of Chemical Compound Data

All compound data were manually curated from the literature and ‘data-mined’ from
the SciFinder database using keyword search phrases. Keyword searches were performed
on all genera that make up the order Verongiida. This process was assisted by using
reviews that focus on specific genera within this order [9,10]. Curation of the literature
data resulted in a library of 633 NPs that were reported from species within the order
Verongiida. This represents a comprehensive list of all secondary metabolites isolated
from Verongiida sponges within the period from 1960 to May 2020. It is important to note
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that since May 2020 to August 2021, a further 7 papers have been published concerning
secondary metabolites from this order that were not included in this analysis [176–182]. A
full reference list can be found in Supporting Information S1.

This library contains compounds isolated from 43 separate species from across 9
different genera. Of the 5 families that are contained within the order Verongiida, com-
pounds were reported from only 4 families (Aplysinellidae, Aplysinidae, Ianthellidae and
Pseudoceratinidae), as listed in Table 6.

Table 6. Taxonomy of sponges in the order Verongiida.

Order Family Genera (Total NPs)

Verongiida

Aplysinellidae
Aplysinella (63)

Patriciaplysina (0)
Suberea (115)

Aplysinidae
Aiolochroia (15)
Aplysina (140)
Verongula (51)

Ernstillidae Ernstilla (0)

Ianthellidae

Anomoianthella (1)
Hexadella (12)
Ianthella (95)
Vansoestia (0)

Pseudoceratinidae Pseudoceratina (232)

3.2. Network Considerations

Graphical presentations, or networks, are a useful tool when representing chemical
space that can otherwise seem inaccessible due to the sheer number of organic molecules
that exist within a dataset. This is especially true when considering the number of NPs that
have been documented. Networks are created by relationships observed between pairs
of data points. Vertices or nodes (V) are connected by edges (E) which can be expressed
by the relationship, G(Graph) = (V, E). Network distribution and topology can be defined
by several metrics, including degree, density, assortativity, modularity and clustering
coefficient (see Supporting Information S2).

Edges can represent either a one-way or two-way relationship between nodes, termed
either directed or undirected. Undirected networks display edges that are bidirectional,
meaning that the relationship between two nodes is equal in both directions. On the other
hand, a directed network displays only connections that exist in one direction. In this
study, the NP similarity data were calculated using the Tanimoto value which considers
the global similarity of the compound structures; hence, the networks in this study were
made with undirected edges.

Edges, whilst representing a relationship between nodes, can also have an associated
value or weight. Networks that incorporate edge weights are termed weighted networks.
In this situation, a nominal value dictates the significance of the relationship between two
nodes, thereby creating certain node relationships that are more significant than others
within the structure of a network. Furthermore, some networks can be both weighted and
directed. In this instance, networks display edges as arrows rather than lines and will often
display edge weight visually by increasing the physical thickness of edges in a network that
have higher weightings. All networks in this study were undirected, with some relying on
weighting values (monopartite projection network) and others being unweighted (scaffold
network).

Networks can also be defined as being either bipartite or monopartite. Monopartite
graphs are usually created by considering data that are of a similar kind to be represented
by nodes. The network is created to investigate the relationships of objects, as is the case
of graphs designed around investigating academic citation patterns, where nodes are the
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academics and the edges represent a single citation of one author by a second author [183].
In this situation, all nodes are the same type of data (academic authors). However, nodes
within networks do not always have to be the same type of object, such as in the case
when networking host–microbiota relationships in nature [184]. In this situation, it can be
appropriate to use bipartite networks where two distinct groups of nodes are identified
(predators and prey) and relationships, or edges, are defined between the two groups but
not within each group. The work described in this current study presents the exploration
of both types of networks within the scope of chemotaxonomy and in the assessment of
drug viability.

Network layout is another important factor when considering how to visualise a
network, as it can often have a significant influence over the utility and interpretation of
the created network. The layout of a network refers to the relative topology of the nodes
that comprise the network. Many layout designs exist, but the Fruchtermann Reingold
algorithm [185] is the most widely used in networking chemical space, with the force atlas
algorithm offered by the Gephi software [186] also being a popular choice, both of which
have been used in this study.

3.3. Molecular Fingerprints, Similarity and Scaffolding

Chemical similarity, as a concept, is relative and highly dependent on the methods
used to assign it. Considerations need to be made regarding how to view molecules when
comparing them, whether it be using global molecular topology (the molecule as a whole)
or whether sub-structure methodologies are employed to provide a more focused outlook
on important structural motifs (see Supporting Information S3).

Similarity is calculated by considering the features of molecules and comparing the
common features that two compounds share. A common method used to ascribe similarity
to molecules is the Tanimoto coefficient, sometimes referred to as the Jaccard index. For
molecules A and B, let Tc equal the Tanimoto coefficient, where the common features of
both A and B are divided by the total number of remaining features for both molecules, as
defined by Equation (2).

Tc(A, B) =
|A ∩ B|
|A ∪ B| (2)

Features that are compared by the Tanimoto coefficient are usually binary bit vectors
called structural keys. The structure key used in this study was the Morgan fingerprint
from the RDKit package, which is similar to the more common extended connectivity
fingerprint (ECFP).

The optimisation of networks requires the use of appropriate ‘threshold parame-
ters’ to prepare a network that achieves desirable aesthetic qualities without missing key
information (see Supporting Information S4).

3.4. Creation and Visualisation of Networks as Applied to Data for the Verongiida Sponge Order
3.4.1. Bipartite Networks

Bipartite networks were created from two different types of nodes: (i) NPs in the form
of Simplified Molecular Line-Entry System (SMILES) codes and (ii) species from the order
Verongiida. This network was created from the n x m matrix between all compounds and
all species. The matrix entries are either 0, where a compound is not found in that species,
or 1, where that compound has been reported.

The monopartite projections of this network show the relationship between species
based on their shared compounds. In these monopartite projections, two species are joined
by an edge if they each share a compound in the original bipartite network. Monopartite
projections of bipartite networks also exhibit edges that are weighted based on the number
of shared compounds between species. That is to say, the more compounds two species
share together, the thicker the edge will be in a monopartite projection. Bipartite graphs
and monopartite projections were created using the networkx library in Python. These
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were subsequently visualised using the Gephi networking software package version 0.9.2
(Supporting Information S5).

3.4.2. Scaffold Networks (SNs)

SNs are undirected non-weighted networks that consist of three distinct types of node:
(i) species nodes, which are nodes that are exclusively linked to initialising compound
nodes (only the compounds that are reported in the literature to be found in those species);(
ii) initialising compound nodes, which represent the full structure of a compound found
within one or many species and must be linked to at least one species node directly,
but are also linked to at least one scaffold node or possibly many; (iii) scaffold nodes,
which represent the scaffolds derived from the initialising compounds. The scaffolding of
compounds was performed using the RDKit scaffolds package, which follows the HierS
method of scaffolding [161,187]. The subsequent SNs were prepared using in-house python
applications and visualised using Gephi ver 0.9.2.

3.4.3. Chemical Similarity Networks (CSNs)

All compound similarity values that were used to create networks were calculated
on the basis of the Tanimoto coefficient and prepared in a similar fashion to the CSNs
created by Maggiora and Bajorath [166]. Compound similarity was calculated using the
Morgan fingerprint derived from the RDKit library in python. The compound library that
was curated from the literature was processed prior to fingerprint creation using in-house
python code to create both node and edge lists that displayed all associated attributes
of each compound. Network statistics were calculated using the networkx library in
python. The data curation and network creation process are summarised by the schematic
in Figure 18.

Figure 18. Conceptual scheme for networking NP compound libraries. (A) Collecting the NP literature obtained from
SciFinder database with an emphasis on keyword searches such as genus and species name. (B) Curating the literature
to form a database including all pertinent attributes of compounds such as species and sample location. (C) Reading and
canonising SMILES codes from the NP database using in house python code and RDKit library. (D) Creation of a unique
binary fingerprint for all molecules. (E) Calculating the Tanimoto similarity value for all possible compound comparisons.
(F) Combining similarity calculations into an edge list describing all edge information for networks and creation of a node
list including all nodes that will feature in the network and their attribute information from the NP database. (G) Using the
Gephi software package to input node and edge list information to visualise the network.
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3.5. PCA and Drug Score Assessment

Principal component analysis (PCA) was performed on compounds for each dataset
using common chemical descriptors (Lipinski/Veber parameters) that include: molecular
weight (MW), topological polar surface area (TPSA), number of rotatable bonds (nRotB),
total number of hydrogen bond donors and acceptors (nHBDon/Acc) and the octanol water
partition coefficient (cLogP) (Supporting Information S6). This, together with Euclidean
distance calculations, was performed using the Platform for Unified Molecular Analysis
(PUMA) and Minitab version 19.2 [164,165]. Druglikeness and the drug score for all
compounds were assessed using the OSIRIS Property explorer [163]. The drug score is a
value that incorporates the pharmacokinetic properties of each compound together with
predicted druglikeness and the associated toxicity risk for each compound.

3.6. Limitations

Once the collection and collation of the scientific literature related to this current
study were completed, some bias trends were noted in studies related to the extraction and
isolation of NPs. Whilst the recognition in these bias trends means that improvements are
being noted in more recent natural products publications, there is a need for these biases to
be further addressed in order to improve the validity of cheminformatic work seeking to
explore biogeographical NP trends as well as for further exploring secondary metabolite
distribution amongst specific taxa. The biggest issue concerning some of these publications
is related the missing or lacking taxonomic identification and geographical sampling
information. This problem could be addressed with the inclusion of appropriate DNA
identification of organisms for future NP studies, a suggestion made previously amongst
the chemosystematics community [188]. Given this limitation, it is possible that some of
the Verongiida sponge taxonomic classifications used in this current study may have been
incorrectly classified in the literature, or that they have recently been re-classified as other
species. Taxonomic reclassifications can occur many years after the initial studies and
many of these reclassifications have been noted herein. In this current study, the taxonomic
information obtained from the literature was taken on face value and in good faith. The
authors have not attempted to authenticate or to challenge the taxonomic assignments
reported in the research, as such a task was beyond the remit of the present work. Such
an undertaking would also not be straightforward, as many publications give little, or no,
details of how the taxonomy of the sponge was assigned.

Furthermore, many of the trends observed in this work may be subject to researcher
bias such as geographical trends, which may simply highlight the focus of researchers on
a certain area or species. For example, many data exist for the two genera Aplysina and
Pseudoceratina, more so than any other genus, which is primarily due to the focus of specific
NP research groups during the past 20 years. These sponges were also sampled from
specific areas in the Caribbean and the Indo-Pacific, resulting in many NPs being reported
from these genera and geographic locations, once again reflecting the bias of research focus.

This dataset is also subject to the bias inherent in the extraction and isolation proce-
dures used by the respective research groups investigating each species. The extraction
solvent plays a large role in the pool of secondary metabolites that become available for
investigation, providing bias across studies as well as in experimental design. Here, the
focus on the isolation strategy can affect the outcome of secondary metabolites identi-
fied. This is also apparent when comparing the general strategies of isolation seeking a
chemical novelty, with targeted approaches seeking a specific pharmaceutically relevant
chemotype using for instance, bioassay guided fractionation. Each method of extraction
and isolation can potentially miss important secondary metabolites that could be used for
cheminformatic style studies.

Data analysis provided its own set of limiting factors on top of data collection which
centred around the reduction in complexity when attempting to describe chemical com-
pounds using chemical fingerprints. The relative performance of these fingerprints is
discussed frequently amongst the cheminformatics community [189,190]. As much of the
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similarity and also fingerprint calculations did not amount to quantitative work, but rather
relative comparisons, this was deemed not pertinent to the outcomes in this current study.

4. Conclusions

This work has provided valuable insights into the use of network strategies to investi-
gate the distribution and drug potential of natural products within the order Verongiida.
Regardless of the true origin of BTA compounds, the review and subsequent networking
data investigation conducted herein have made it clear that many diverse NPs isolated
from this order require further investigation.

By using bipartite network analysis together with SNs, it has been demonstrated that
a variety of approaches can be utilised to display the chemical space of a set of NPs for the
purpose of genera group comparison. These methods have shown that species of sponges
within this order, overall and not unexpectedly, appear to follow a trend of having more
similar NP chemistry with their intra-genera counterparts as opposed to their inter-genera
counterparts. The comparison of secondary metabolites across the order Verongiida using
networking methodology supports the current systematics of the Verongiid sponges at the
family and the genus level.

The construction of similarity networks provided the basis for discussing the chemical
space and bioactivity assessment of the BTA derivatives produced by Verongiida sponges.
This was also investigated using PCA analysis of pharmacokinetic chemical descriptors
followed by Euclidean distance measurements. Each genus of sponge was assessed as a
set of secondary metabolites as well as via cluster analysis and the drug score, showing
differences across each genus in the predicted drug score. Differences in drug score were
discussed via apparent chemotype and assessed using cluster analysis of the similarity
networks. This showed that the genus Verongula is the most prolific at producing the
most chemotypes with the highest mean drug score. In addition, it was shown that the
BTA derivatives that contained an oxime moiety (Cluster 2) and the simple BT derivatives
(Cluster 3) had the highest mean drug scores.

A noteworthy outcome of this study has been the realisation that targeted isolation
strategies can be inferred from a consideration of the mean drug scores derived from
an ensemble of compounds of interest. Another significant outcome of this work is the
realisation that in the search for new pharmaceuticals among NP libraries, data mining,
using the network analyses described herein, can provide a rational approach to the
identification of likely lead candidates. While molecular networking schemes have seen
more frequent use in both the cheminformatics field and the NP drug discovery field, it
is apparent that the full utility of the tools provided by graph theory have yet to be fully
realised.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/md19100582/s1: Supporting Information S1: Genus Reference List, Supporting Information S2:
Network Considerations, Supporting Information S3: Molecular Fingerprints, Similarity and Scaffold-
ing, Supporting Information S4: Network Optimisation and Visualisation, Supporting Information S5:
Bipartite Network Compounds vs. Species (Full Size), Supporting Information S6: Physicochemical
Properties of Compounds and PCA Analysis, Supporting Information S7: References.

Author Contributions: Conceptualisation, J.L.; methodology, J.L.; software, J.L.; validation, C.R., S.U.
and J.L.; formal analysis, J.L.; investigation, J.L.; resources, J.L.; data curation, J.L.; writing—original
draft preparation, J.L.; writing—review and editing, C.R., S.U., R.B. and J.L.; visualisation, J.L.;
supervision, R.B. and S.U.; project administration, J.L.; funding acquisition, S.U. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by RMIT University in the form of a postgraduate scholarship.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

75



Mar. Drugs 2021, 19, 582

Data Availability Statement: The data presented in this study is available in the manuscript and in
the Supporting Information File.

Acknowledgments: The authors would like to acknowledge the advice provided by Arathi Arakala,
School of Science (Mathematics), RMIT University and the valuable discussions and contributions of
Stewart Lever and Oli Moraes (Centre for Urban Research), RMIT University.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Grant, R.E. Animal Kingdom. In The Cyclopaedia of Anatomy and Physiology; Sherwood, Gilber and Piper: London, UK, 1836;
pp. 107–118.

2. Carroll, A.R.; Copp, B.R.; Davis, R.A.; Keyzers, R.A.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2019, 36, 122–173.
[CrossRef] [PubMed]

3. De Vries, D.J.; Hall, M.R. Marine biodiversity as a source of chemical diversity. Drug. Dev. Res. 1994, 33, 161–173. [CrossRef]
4. Wiese, J.; Imhoff, J.F. Marine bacteria and fungi as promising source for new antibiotics. Drug Dev. Res. 2019, 80, 24–27. [CrossRef]
5. Sigwart, J.D.; Blasiak, R.; Jaspars, M.; Jouffray, J.-B.; Tasdemir, D. Unlocking the potential of marine biodiscovery. Nat. Prod. Rep.

2021, 38, 1235–1242. [CrossRef] [PubMed]
6. Leal, M.C.; Munro, M.H.; Blunt, J.W.; Puga, J.; Jesus, B.; Calado, R.; Rosa, R.; Madeira, C. Biogeography and biodiscovery hotspots

of macroalgal marine natural products. Nat. Prod. Rep. 2013, 30, 1380–1390. [CrossRef]
7. Leal, M.C.; Puga, J.; Serodio, J.; Gomes, N.C.; Calado, R. Trends in the discovery of new marine natural products from invertebrates

over the last two decades—Where and what are we bioprospecting? PLoS ONE 2012, 7, e30580.
8. Bergquist, P.R. Sponges; Hutchinson; University of California Press: Berkeley, CA, USA; London, UK; Los Angeles, CA, USA,

1978; pp. 1–268.
9. El-Demerdash, A.; Atanasov, A.G.; Horbanczuk, O.K.; Tammam, M.A.; Abdel-Mogib, M.; Hooper, J.N.A.; Sekeroglu, N.; Al-

Mourabit, A.; Kijjoa, A. Chemical Diversity and Biological Activities of Marine Sponges of the Genus Suberea: A Systematic
Review. Mar. Drugs 2019, 17, 115. [CrossRef]

10. Lira, N.S.; Montes, R.C.; Tavares, J.F.; da Silva, M.S.; da Cunha, E.V.; de Athayde-Filho, P.F.; Rodrigues, L.C.; da Silva Dias, C.;
Barbosa-Filho, J.M. Brominated compounds from marine sponges of the genus Aplysina and a compilation of their 13C NMR
spectral data. Mar. Drugs 2011, 9, 2316–2368. [CrossRef]

11. Niemann, H.; Marmann, A.; Lin, W.; Proksch, P. Sponge derived bromotyrosines: Structural diversity through natural combinato-
rial chemistry. Nat. Prod. Comm. 2015, 10, 219–231. [CrossRef]

12. Peng, J.; Li, J.; Hamann, M.T. The Marine Bromotyrosine Derivatives. Alkaloids Chem. Biol. 2005, 61, 59–262.
13. Rama Rao, M.; Venkatesham, U.; Sridevi, K.V.; Venkateswarlu, Y. Chemical constituents and their biological activities of the

sponge family Aplysinellidae: A review. Ind. J. Chem. 2000, 39B, 723–733.
14. Erwin, P.M.; Thacker, R.W. Phylogenetic analyses of marine sponges within the order Verongida: A comparison of morphological

and molecular data. Invertebr. Biol. 2007, 126, 220–234. [CrossRef]
15. Hooper, J.N.; Van Soest, R.W. Systema Porifera. A guide to the classification of sponges. In Systema Porifera; Springer:

Berlin/Heidelberg, Germany, 2020; pp. 1–7.
16. Thoms, C.; Schupp, P.J. Activated chemical defense in marine sponges—A case study on Aplysinella Rhax. J. Chem. Ecol. 2008, 34,

1242–1252. [CrossRef] [PubMed]
17. Thoms, C.; Wolff, M.; Padmakumar, K.; Ebel, R.; Proksch, P. Chemical defense of Mediterranean sponges Aplysina cavernicola and

Aplysina aerophoba. Z. Naturforsch. 2004, 59c, 113–122. [CrossRef]
18. Ortlepp, S.; Sjogren, M.; Dahlstrom, M.; Weber, H.; Ebel, R.; Edrada, R.; Thoms, C.; Schupp, P.; Bohlin, L.; Proksch, P. Antifouling

activity of bromotyrosine-derived sponge metabolites and synthetic analogues. Mar. Biotechnol. 2007, 9, 776–785. [CrossRef]
[PubMed]

19. Teeyapant, R.; Woerdenbag, H.J.; Kreis, P.; Hacker, J.; Wray, V.; Witte, L.; Proksch, P. Antibiotic and cytotoxic activity of brominated
compounds from the marine sponge Verongia aerophoba. Z. Naturforsch. 1993, 48c, 939–945. [CrossRef]

20. Wang, Q.; Tang, X.L.; Luo, X.C.; de Voog, N.J.; Li, P.L.; Li, G.Q. Aplysinopsin-type and Bromotyrosine-derived Alkaloids from the
South China Sea Sponge Fascaplysinopsis reticulata. Sci. Rep. 2019, 9, 1–10. [CrossRef] [PubMed]

21. Nuñez, C.V.; de Almeida, E.V.R.; Granato, A.C.; Marques, S.O.; Santos, K.O.; Pereira, F.R.; Macedo, M.L.; Ferreira, A.G.; Hajdu,
E.; Pinheiro, U.S.; et al. Chemical variability within the marine sponge Aplysina fulva. Biochem. Syst. Ecol. 2008, 36, 283–296.
[CrossRef]

22. Ciminiello, P.; Fattorusso, E.; Forino, M.; Magno, S. Chemistry of Verongida sponges VIII Bromocompounds from the Mediter-
ranean sponges Aplysina aerophoba and Aplysina cavernicola. Tetrahedron 1997, 18, 6565–6572. [CrossRef]

23. Ciminiello, P.; Fattorusso, E.; Magno, S.; Pansini, M. Chemistry of Verongiida sponges VI Comparison of the secondary metabolic
composition of Aplysina insularis and Aplysina fulva. Biochem. Syst. Ecol. 1996, 24, 105–113. [CrossRef]

24. Quinoa, E.; Crews, P. Phenolic constituents of psammaplysilla. Tetrahedron Lett. 1987, 28, 3229–3232. [CrossRef]
25. Kumar, M.S.L.; Ali, K.; Chaturvedi, P.; Meena, S.; Datta, D.; Panda, G. Design, synthesis and biological evaluation of oxime

lacking Psammaplin inspired chemical libraries as anti-cancer agents. J. Mol. Struct. 2021, 1225, 129173. [CrossRef]

76



Mar. Drugs 2021, 19, 582

26. Jing, Q.; Hu, X.; Ma, Y.; Mu, J.; Liu, W.; Xu, F.; Li, Z.; Bai, J.; Hua, H.; Li, D. Marine-Derived Natural Lead Compound
Disulfide-Linked Dimer Psammaplin A: Biological Activity and Structural Modification. Mar. Drugs 2019, 17, 384. [CrossRef]
[PubMed]

27. Bao, Y.; Xu, Q.; Wang, L.; Wei, Y.; Hu, B.; Wang, J.; Liu, D.; Zhao, L.; Jing, Y. Studying Histone Deacetylase Inhibition and
Apoptosis Induction of Psammaplin A Monomers with Modified Thiol Group. ACS Med. Chem. Lett. 2021, 12, 39–47. [CrossRef]
[PubMed]

28. Mayer, A.; Rodríguez, A.D.; Taglialatela-Scafati, O.; Fusetani, N. Marine pharmacology in 2009–2011: Marine compounds with
antibacterial, antidiabetic, antifungal, anti-inflammatory, antiprotozoal, antituberculosis, and antiviral activities; affecting the
immune and nervous systems, and other miscellaneous mechanisms of action. Mar. Drugs 2013, 11, 2510–2573.

29. Lebouvier, N.; Jullian, V.; Desvignes, I.; Maurel, S.; Parenty, A.; Dorin-Semblat, D.; Doerig, C.; Sauvain, M.; Laurent, D.
Antiplasmodial activities of homogentisic acid derivative protein kinase inhibitors isolated from a Vanuatu marine sponge
Pseudoceratina sp. Mar. Drugs 2009, 7, 640–653. [CrossRef] [PubMed]

30. Mayer, A.; Rodríguez, A.D.; Taglialatela-Scafati, O.; Fusetani, N. Marine pharmacology in 2012–2013: Marine compounds with
antibacterial, antidiabetic, antifungal, anti-inflammatory, antiprotozoal, antituberculosis, and antiviral activities; affecting the
immune and nervous systems, and other miscellaneous mechanisms of action. Mar. Drugs 2017, 15, 273.

31. Mayer, A.; Guerrero, A.J.; Rodríguez, A.D.; Taglialatela-Scafati, O.; Nakamura, F.; Fusetani, N. Marine pharmacology in 2014–2015:
Marine compounds with antibacterial, antidiabetic, antifungal, anti-inflammatory, antiprotozoal, antituberculosis, antiviral, and
anthelmintic activities; affecting the immune and nervous systems, and other miscellaneous mechanisms of action. Mar. Drugs
2020, 18, 5.

32. Xu, M.; Davis, R.A.; Feng, Y.; Sykes, M.L.; Shelper, T.; Avery, V.M.; Camp, D.; Quinn, R.J. Ianthelliformisamines A-C, antibacterial
bromotyrosine-derived metabolites from the marine sponge Suberea ianthelliformis. J. Nat. Prod. 2012, 75, 1001–1005. [CrossRef]

33. Pieri, C.; Borselli, D.; Di Giorgio, C.; De Meo, M.; Bolla, J.-M.; Vidal, N.; Combes, S.; Brunel, J.M. New ianthelliformisamine
derivatives as antibiotic enhancers against resistant Gram-negative bacteria. J. Med. Chem. 2014, 57, 4263–4272. [CrossRef]

34. Mani, L.; Jullian, V.; Mourkazel, B.; Valentin, A.; Dubois, J.; Cresteil, T.; Folcher, E.; Hooper, J.N.A.; Erpenbeck, D.; Aalbersberg, W.; et al.
New antiplasmodial bromotyrosine derivatives from Suberea ianthelliformis. Chem. Biodivers. 2012, 9, 1436–1451. [CrossRef]

35. Buchanan, M.S.; Carroll, A.R.; Wessling, D.; Jobling, M.; Avery, V.M.; Davis, R.A.; Feng, Y.; Hooper, J.N.A.; Quinn, R.J. Clavatadines
C-E Guanidine alkaloids from the Australian sponge Suberea clavata. J. Nat. Prod. 2009, 72, 973–975. [CrossRef] [PubMed]

36. Buchanan, M.S.; Carroll, A.R.; Wessling, D.; Jobling, M.; Avery, V.M.; Davis, R.A.; Feng, Y.; Xue, Y.; Oster, L.; Fex, T.; et al.
Clavatadine A, A natural product with selective recognition and irreversible inhibition of factor XIa. J. Med. Chem. 2008, 51,
3583–3587. [CrossRef] [PubMed]

37. Feng, Y.; Bowden, B.F.; Kapoor, V. Ianthellamide A, a selective kynurenine-3-hydroxylase inhibitor from the Australian marine
sponge Ianthella quadrangulata. Bioorg. Med. Chem. Lett. 2012, 22, 3398–3401. [CrossRef] [PubMed]

38. Tian, L.W.; Feng, Y.; Shimizu, Y.; Pfeifer, T.; Wellington, C.; Hooper, J.N.; Quinn, R.J. Aplysinellamides A-C, bromotyrosine-derived
metabolites from an Australian Aplysinella sp. marine sponge. J. Nat. Prod. 2014, 77, 1210–1214. [CrossRef]

39. Mohanty, I.; Tapadar, S.; Moore, S.G.; Biggs, J.S.; Freeman, C.J.; Gaul, D.A.; Garg, N.; Agarwal, V. Presence of bromotyrosine
alkaloids in marine sponges is independent of metabolic and microbiome architectures. Msystems 2021, 6, 1–17. [CrossRef]

40. Nicacio, K.J.; Ioca, L.P.; Froes, A.M.; Leomil, L.; Appolinario, L.R.; Thompson, C.C.; Thompson, F.L.; Ferreira, A.G.; Williams, D.E.;
Andersen, R.J.; et al. Cultures of the Marine Bacterium Pseudovibrio denitrificans Ab134 Produce Bromotyrosine-Derived Alkaloids
Previously Only Isolated from Marine Sponges. J. Nat. Prod. 2017, 80, 235–240. [CrossRef]

41. Thompson, J.E.; Barrow, K.D.; Faulkner, J.D. Localization of two brominated metabolites aerothionin and homoaerothionin in
spherulous cells of the marine sponge Aplysina fistularis. Acta. Zool. 1983, 64, 199–210. [CrossRef]

42. Turon, X.; Becerro, M.A.; Uriz, M.J. Distribution of brominated compounds within the sponge Aplysina aerophoba: Coupling of
X-ray microanalysis with cryofixation techniques. Cell Tissue Res. 2000, 301, 311–322. [CrossRef]

43. Ebel, R.; Brenzinger, M.; Kunze, A.; Gross, H.J.; Proksch, P. Wound activation of protoxins in marine sponge Aplysina aerophoba. J.
Chem. Ecol. 1997, 23, 1451–1462. [CrossRef]

44. Pita, L.; Turon, X.; Lopez-Legentil, S.; Erwin, P.M. Host rules: Spatial stability of bacterial communities associated with marine
sponges (Ircinia spp.) in the Western Mediterranean Sea. FEMS Microbiol. Ecol. 2013, 86, 268–276. [CrossRef] [PubMed]

45. Cardenas, C.A.; Bell, J.J.; Davy, S.K.; Hoggard, M.; Taylor, M.W. Influence of environmental variation on symbiotic bacterial
communities of two temperate sponges. FEMS Microbiol. Ecol. 2014, 88, 516–527. [CrossRef] [PubMed]

46. Steinert, G.; Taylor, M.W.; Deines, P.; Simister, R.L.; de Voogd, N.J.; Hoggard, M.; Schupp, P.J. In four shallow and mesophotic
tropical reef sponges from Guam the microbial community largely depends on host identity. PeerJ 2016, 4, e1936. [CrossRef]

47. Steinert, G.; Rohde, S.; Janussen, D.; Blaurock, C.; Schupp, P.J. Host-specific assembly of sponge-associated prokaryotes at high
taxonomic ranks. Sci. Rep. 2017, 7, 1–9. [CrossRef] [PubMed]

48. Pita, L.; Rix, L.; Slaby, B.M.; Franke, A.; Hentschel, U. The sponge holobiont in a changing ocean: From microbes to ecosystems.
Microbiome 2018, 6, 1–18. [CrossRef] [PubMed]

49. Nardo, G.D. De Spongiis. Isis von Oken 1834, 714–716.
50. Bergquist, P.R. Dictyoceratida, Dendroceratida and Verongida from the New Caledonia Lagoon (Porifera: Demospongiae). Mem.

Qld. Mus. 1995, 38, 1–51.

77



Mar. Drugs 2021, 19, 582

51. Salim, A.A.; Khalil, Z.G.; Capon, R.J. Structural and stereochemical investigations into bromotyrosine-derived metabolites from
southern Australian marine sponges, Pseudoceratina spp. Tetrahedron 2012, 68, 9802–9807. [CrossRef]

52. Ragini, K.; Fromont, J.; Piggott, A.M.; Karuso, P. Enantiodivergence in the Biosynthesis of Bromotyrosine Alkaloids from Sponges?
J. Nat. Prod. 2017, 80, 215–219. [CrossRef]

53. Carter, H.J. Descriptions of Sponges from the Neighbourhood of Port Phillip Heads, South Australia. Ann. Mag. Nat. Hist. 1885,
15, 107–117. [CrossRef]

54. Higgin, T. On a new sponge of the genus Luffaria, from Yucatan, in the Liverpool Free Museum. Ann. Mag. Nat. Hist. 1875, 16,
223–227. [CrossRef]

55. De Lamarck, J.B. Sur les polypiers empâtés. Ann. Mus. Natl. d’Hist. Nat. 1814, 20, 294–312.
56. Gray, J.E. Note on Ianthella, a new genus of keratose sponges. Proc. Zool. Soc. Lond. 1869, 1869, 49–51. [CrossRef]
57. Hyatt, A. Revision of the North American Poriferae; with Remarks upon Foreign Species. Part I. Mem. Boston Soc. Nat. Hist. 1875,

2, 399–408.
58. Topsent, E. Matériaux pour servir à l’étude de la faune des spongiaires de France. Mémoires Société Zool. France 1896, 9, 113–133.
59. Bergquist, P.R. A revision of the supraspecific classification of the orders Dictyoceratida, Dendroceratida and Verongida (class

Demospongiae). N. Zealand J. Zool. 1980, 7, 443–503. [CrossRef]
60. De Laubenfels, M.W. The Sponges of the West-Central Pacific; Oregon State Monographs: Studies in Zoology; Oregon State College:

Corvallis, OR, USA, 1954; pp. 35–41.
61. Verrill, A.E. The Bermuda Islands: Part V. An account of the Coral Reefs (Characteristic Life of the Bermuda Coral Reefs). Porifera:

Sponges. Trans. Conn. Acad. Arts Sci. 1907, 12, 330–344.
62. Teeyapant, R.; Proksch, P. Biotransformation of brominated compounds in the marine sponge Verongia aerophoba—Evidence for an

induced chemical defense? Sci. Nat. 1993, 80, 369–370. [CrossRef]
63. Teeyapant, R.; Kreis, P.; Wray, V.; Witte, L.; Proksch, P. Brominated secondary compounds from the marine sponge Verongia

aerophoba and the sponge feeding gastropod Tylodina perversa. Z. Naturforsch. 1993, 48, 640–644. [CrossRef]
64. Kunze, K.; Niemann, H.; Ueberlein, S.; Schulze, R.; Ehrlich, H.; Brunner, E.; Proksch, P.; van Pee, K.H. Brominated skeletal

components of the marine demosponges, Aplysina cavernicola and Ianthella basta: Analytical and biochemical investigations. Mar.
Drugs 2013, 11, 1271–1287. [CrossRef]

65. Ocean Biodiversity Information System. 2021. Available online: https://obis.org/ (accessed on 21 March 2021).
66. Van Soest, R.W.M.; Boury-Esnault, N.; Hooper, J.N.A.; Rutzler, K.; de Voogd, N.J.; Alvarez, B.; Hajdu, E.; Pisera, A.B.; Manconi, R.;

Schonberg, C.; et al. World Porifera Database. 2021. Available online: http://www.marinespecies.org/porifera (accessed on 6
June 2021).

67. Yagi, H.; Matsunaga, S.; Fusetani, N. Purpuramines A-I, New bromotyrosine-derived metabolites from the marine sponge
Psammaplysilla purpurea. Tetrahedron 1993, 49, 3749–3754. [CrossRef]

68. Tsukamoto, S.; Kato, H.; Hirota, H.; Fusetani, N. Ceratinamides A and B: New antifouling dibromotyrosine derivatives from the
marine sponge Pseudoceratina purpurea. Tetrahedron 1996, 52, 8181–8186. [CrossRef]

69. Tsukamoto, S.; Kato, H.; Hirota, H.; Fusetani, N. Ceratinamine: An unprecedented antifouling cyanoformamide from the marine
sponge Pseudoceratina purpurea. J. Org. Chem. 1996, 61, 2936–2937. [CrossRef] [PubMed]

70. Jang, J.H.; van Soest, R.W.M.; Fusetani, N.; Matsunaga, S. Pseudoceratins A and B, antifungal bicyclic bromotyrosine-derived
metabolites from the marine sponge Pseudoceratina purpurea. J. Org. Chem. 2007, 72, 1211–1217. [CrossRef]

71. Ma, K.; Yang, Y.; Deng, Z.; de Voogd, N.J.; Proksch, P.; Lin, W. Two new bromotyrosine derivatives from the marine sponge
Pseudoceratina sp. Chem. Biodivers. 2008, 5, 1313–1320. [CrossRef]

72. Huang, X.-P.; Deng, Z.-W.; van Soest, R.W.M.; Lin, W.-H. Brominated derivatives from the Chinese sponge Pseudoceratina sp. J.
Asian Nat. Prod. Res. 2008, 10, 239–242. [CrossRef]

73. Li, H.; Yu, H.; Wu, W.; Sun, P. Chemical constituents of sponge Pseudoceratina sp.; their chemotaxonomic significance. Biochem.
Syst. Ecol. 2020, 89, 104002. [CrossRef]

74. Jimenez, C.; Crews, P. Novel marine sponge derived amino acids 13. additional psammaplin derivatives from Psammplysilla
purpurea. Tetrahedron 1991, 47, 2097–2102. [CrossRef]

75. Kijjoa, A.; Bessa, J.; Wattanadilok, R.; Sawangwong, P.; Nascimento, N.S.J.; Pedro, M.; Silva, A.M.S.; Eaton, G.; van Soest, R.; Herz,
W. Dibromotyrosine derivatives, a maleimide, aplysamine-2 and other constituents of the marine sponge Pseudoceratina purpurea.
Z. Naturforsch. 2005, 60, 904–908. [CrossRef]

76. Morris, S.A.; Anderson, R.J. Brominated bis(indole) alkaloids from the marine sponge Hexadella sp. Tetrahedron 1990, 46, 715–720.
[CrossRef]

77. Morris, S.A.; Anderson, R.J. Nitrogenous metabolites from the deep water sponge Hexadella sp. Can. J. Chem. 1989, 67, 677–681.
[CrossRef]

78. Ichiba, T.; Scheuer, P.J. Three Bromotyrosine Derivatives, One Terminating in an Unprecedented Diketocyclopentenylidene
Enamine. J. Org. Chem. 1993, 58, 4149–4150. [CrossRef]

79. Van Soest, R.W.; Boury-Esnault, N.; Vacelet, J.; Dohrmann, M.; Erpenbeck, D.; De Voogd, N.J.; Santodomingo, N.; Vanhoorne, B.;
Kelly, M.; Hooper, J.N. Global diversity of sponges (Porifera). PLoS ONE 2012, 7, e35105. [CrossRef]

80. Carter, H.J. Report on Specimens dredged up from the Gulf of Manaar and presented to the Liverpool Free Museum by Capt.W.H.
Cawne Warren. Ann. Mag. Nat. Hist. 1880, 6, 35–61. [CrossRef]

78



Mar. Drugs 2021, 19, 582

81. Kernan, M.R.; Cambie, R.C. Chemistry of sponges, VII. 11, 19-Dideoxyfistularin 3 and 11-hydroxyaerothionin, bromotyrosine
derivatives from Pseudoceratina durissima. J. Nat. Prod. 1990, 53, 615–622. [CrossRef]

82. Benharref, A.; Pais, M. Bromotyrosine alkaloids from the sponge Pseudoceratina verrucosa. J. Nat. Prod. 1996, 59, 177–180.
[CrossRef]

83. Tran, T.D.; Pham, N.B.; Fechner, G.; Hooper, J.N.; Quinn, R.J. Bromotyrosine alkaloids from the Australian marine sponge
Pseudoceratina verrucosa. J. Nat. Prod. 2013, 76, 516–523. [CrossRef]

84. Kassuhlke, K.E.; Faulkner, J.D. Two new dibromotyrosine derivatives from the Caribbean sponge pseudoceratina crassa.
Tetrahedron 1991, 47, 1809–1814. [CrossRef]

85. Albrizio, S.; Ciminiello, P.; Fattorusso, E.; Magno, S. Chemistry of Verongida sponges. I. constituents of the caribbean sponge
Pseudoceratina crassa. Tetrahedron 1994, 50, 783–788. [CrossRef]

86. Ciminiello, P.; Fattorusso, E.; Magno, S. Chemistry of Verongida sponges, IV. comparison of the secondary metabolite composition
of several specimens of Pseudoceratina crassa. J. Nat. Prod. 1995, 58, 689–696. [CrossRef]

87. Rahelivao, M.P.; Lubken, T.; Gruner, M.; Kataeva, O.; Ralambondrahety, R.; Andriamanantoanina, H.; Checinski, M.P.; Bauer, I.;
Knolker, H.J. Isolation and structure elucidation of natural products of three soft corals and a sponge from the coast of Madagascar.
Org. Biomol. Chem. 2017, 15, 2593–2608. [CrossRef]

88. Keller, C. Die Spongienfauna des rothen Meeres (I. Hälfte). Z. Wiss. Zool. 1889, 48, 311–405.
89. Badhr, J.M.; Shaala, L.A.; Abou-Shoer, M.I.; Tawfik, M.K.; Abdel-Azim, H.M. Bioactive brominated metabolites from the Red Sea

sponge Pseudoceratina arabica. J. Nat. Prod. 2008, 71, 1472–1474. [CrossRef]
90. Shaala, L.A.; Youssef, D.T.; Sulaiman, M.; Behery, F.A.; Foudah, A.I.; Sayed, K.A. Subereamolline A as a potent breast cancer

migration, invasion and proliferation inhibitor and bioactive dibrominated alkaloids from the Red Sea sponge Pseudoceratina
arabica. Mar. Drugs 2012, 10, 2492–2508. [CrossRef]

91. Shaala, L.A.; Youssef, D.T.A.; Badr, J.M.; Sulaiman, M.; Khedr, A.; El Sayed, K.A. Bioactive alkaloids from the Red Sea marine
Verongid sponge Pseudoceratina arabica. Tetrahedron 2015, 71, 7837–7841. [CrossRef]

92. Bergquist, P.R.; Kelly-Borges, M. Systematics and biogeography of the genus Ianthella (Demospongiae: Verongida: Ianthellidae)
in the south-west Pacific. Beagle Rec. Mus. Art Galleries North. Territ. 1995, 12, 151–176.

93. Balansa, W.; Islam, R.; Gilbert, D.F.; Fontaine, F.; Xiao, X.; Zhang, H.; Piggott, A.M.; Lynch, J.W.; Capon, R.J. Australian marine
sponge alkaloids as a new class of glycine-gated chloride channel receptor modulator. Bioorg. Med. Chem. 2013, 21, 4420–4425.
[CrossRef] [PubMed]

94. Motti, C.A.; Freckelton, M.L.; Tapiolas, D.M.; Willis, R.H. FTICR-MS and LC-UV/MS-SPE-NMR Applications for the rapid
dereplication of a crude extract from the sponge Ianthella flabelliformis. J. Nat. Prod. 2009, 72, 290–294. [CrossRef]

95. Carroll, A.R.; Kaiser, S.M.; Davis, R.A.; Moni, R.W.; Hooper, J.N.A.; Quinn, R.J. A Bastadin with Potent and Selective δ-Opioid
Receptor Binding Affinity from the Australian Sponge Ianthella flabelliformis. J. Nat. Prod. 2010, 73, 1173–1176. [CrossRef]

96. Okamoto, Y.; Ojika, M.; Kato, S.; Sakagami, Y. Ianthesines A–D, Four Novel Dibromotyrosine-Derived Metabolites from a Marine
Sponge, Ianthella sp. Tetrahedron 2000, 56, 5813–5818. [CrossRef]

97. Jaspars, M.; Rali, T.; Laney, M.; Schatzman, R.C.; Diaz, M.C.; Schmitz, F.J.; Pordesimo, E.O.; Crews, P. The search for inosine
5′-Phosphate dehydrogenase (IMPDH) inhibitors from marine sponges. Evaluation of the bastadin alkaloids. Tetrahedron 1994, 50,
7367–7374. [CrossRef]

98. Pallas, P.S. Elenchus zoophytorum sistens generum adumbrationes generaliores et specierum cognitarum succintas descriptiones,
cum selectis auctorum synonymis. In Fransiscum Varrentrapp Hagae; Hagae-Comitum: Apud Petrum van Cleef: Hagae, The
Netherlands, 1766.

99. Pordesimo, E.O.; Schmitz, F.J. New bastadins from the sponge Ianthella Basta. J. Org. Chem. 1990, 55, 4704–4709. [CrossRef]
100. Masuno, M.N.; Hoepker, A.C.; Pessah, I.N.; Molinski, T.F. 1-O-Sulfatobastadins-1 and -2 from Ianthella basta (Pallas). Antagonists

of the RyR1-FKBP12 Ca2+ Channel. Mar. Drugs 2004, 2, 176–184. [CrossRef]
101. Miao, S.; Anderson, R.J. Cytotoxic metabolites from the sponge Ianthella basta collected in Papua New Guinea. J. Nat. Prod. 1990,

53, 1441–1446. [CrossRef] [PubMed]
102. Pettit, G.R.; Butler, M.S.; Bass, C.G.; Doubek, D.L.; Williams, M.D.; Schmidt, J.M.; Pettit, R.K.; Hooper, J.N.A.; Tackett, L.P.;

Filiatrault, M.J. Antineoplastic agents, 326. The stereochemistry of bastadins 8, 10, and 12 from the Bismarck Archipelago marine
sponge Ianthella basta. J. Nat. Prod. 1995, 58, 680–688. [CrossRef]

103. Pettit, G.R.; Butler, M.S.; Williams, M.D.; Filiatrault, M.J.; Pettit, R.K. Isolation and Structure of Hemibastadinols 1−3 from the
Papua New Guinea Marine Sponge Ianthella basta. J. Nat. Prod. 1996, 59, 927–934. [CrossRef] [PubMed]

104. Eguchi, K.; Kato, H.; Fujiwara, Y.; Losung, F.; Mangindaan, R.E.; de Voogd, N.J.; Takeya, M.; Tsukamoto, S. Bastadins, brominated-
tyrosine derivatives, suppress accumulation of cholesterol ester in macrophages. Bioorg. Med. Chem. Lett. 2015, 25, 5389–5392.
[CrossRef] [PubMed]

105. Park, S.K.; Jurek, J.; Carney, J.R.; Scheuer, P.J. Two more bastadins, 16 and 17, from an Indonesian sponge Ianthella basta. J. Nat.
Prod. 1994, 57, 407–410. [CrossRef]

106. Mathieu, V.; Wauthoz, N.; Lefranc, F.; Niemann, H.; Amighi, K.; Kiss, R.; Proksch, P. Cyclic versus hemi-bastadins. pleiotropic
anti-cancer effects: From apoptosis to anti-angiogenic and anti-migratory effects. Molecules 2013, 18, 3543–3561. [CrossRef]

107. Niemann, H.; Lin, W.; Muller, W.E.; Kubbutat, M.; Lai, D.; Proksch, P. Trimeric hemibastadin congener from the marine sponge
Ianthella basta. J. Nat. Prod. 2013, 76, 121–125. [CrossRef]

79



Mar. Drugs 2021, 19, 582

108. Park, S.K.; Park, H.; Scheuer, P.J. Isolation and structure determination of a new bastadin from an Indonesian sponge Ianthella
Basta. Bull. Korean Chem. Soc. 1994, 15, 534–537.

109. Aoki, S.; Cho, S.H.; Hiramatsu, A.; Kotoku, N.; Kobayashi, M. Bastadins, cyclic tetramers of brominated-tyrosine derivatives,
selectively inhibit the proliferation of endothelial cells. J. Nat. Med. 2006, 60, 231–235. [CrossRef]

110. Mack, M.M.; Molinski, T.F.; Buck, E.D.; Pessah, I.N. Novel modulators of skeletal muscle FKBP12/calcium channel complex from
Ianthella basta. J. Biol. Chem. 1994, 269, 23236–23249. [CrossRef]

111. Kazlauskas, R.; Lidgard, R.O.; Murphy, P.T.; Wells, R.J.; Blount, J.F. Brominated tyrosine-derived metabolites from the sponge
Ianthella basta. Aust. J. Chem. 1981, 34, 765–786. [CrossRef]

112. Butler, M.S.; Lim, T.K.; Capon, R.J.; Hammond, L.S. The Bastadins Revisited: New Chemistry From the Australian Marine Sponge
Ianthella basta. Aust. J. Chem. 1991, 44, 287–296. [CrossRef]

113. Franklin, M.A.; Penn, S.G.; Lebrilla, C.B.; Lam, T.H.; Pessah, I.N.; Molinski, T.F. Bastadin 20 and Bastadin O-Sulfate Esters from
Ianthella basta: Novel Modulators of the Ry1R FKBP12 Receptor Complex. J. Nat. Prod. 1996, 59, 1121–1127. [CrossRef]

114. Gartshore, C.J.; Salib, M.N.; Renshaw, A.A.; Molinski, T.F. Isolation of bastadin-6-O-sulfate and expedient purifications of
bastadins-4, -5 and -6 from extracts of Ianthella basta. Fitoterapia 2018, 126, 16–21. [CrossRef] [PubMed]

115. Greve, H.; Meis, S.; Kassack, M.U.; Kehraus, S.; Krick, A.; Wright, A.D.; Konig, G.M. New Iantherans from the Marine Sponge
Ianthella quadrangulata Novel Agonists of the P2Y11 Receptor. J. Med. Chem. 2007, 50, 5600–5607. [CrossRef]

116. Greve, H.; Kehraus, S.; Krick, A.; Kelter, G.; Maier, A.; Fiebig, H.-H.; Wright, A.D.; Konig, G.M. Cytotoxic Bastadin 24 from the
Australian Sponge Ianthella quadrangulata. J. Nat. Prod. 2008, 71, 309–312. [CrossRef] [PubMed]

117. Coll, J.C.; Kearns, P.S.; Rideout, J.A.; Sankar, V. Bastadin 21, a Novel Isobastarane Metabolite from the Great Barrier Reef Marine
Sponge Ianthella quadrangulata. J. Nat. Prod. 2002, 65, 753–756. [CrossRef] [PubMed]

118. Okamoto, Y.; Ojika, M.; Suzuki, S.; Murakami, M.; Sakagami, Y. Iantherans A and B, unique dimeric polybrominated benzofurans
as Na, K-ATPase inhibitors from a marine sponge, Ianthella sp. Bioorg. Med. Chem. 2001, 9, 179–183. [CrossRef]

119. Okamoto, Y.; Ojika, M.; Sakagami, Y. Iantheran A, a dimeric polybrominated benzofuran as a Na,K-ATPase inhibitor from a
marine sponge, Ianthella sp. Tetrahedron Lett. 1999, 40, 507–510. [CrossRef]

120. Zhang, H.; Conte, M.M.; Huang, X.C.; Khalil, Z.; Capon, R.J. A search for BACE inhibitors reveals new biosynthetically related
pyrrolidones, furanones and pyrroles from a southern Australian marine sponge, Ianthella sp. Org. Biomol. Chem. 2012, 10,
2656–2663. [CrossRef]

121. Zhang, H.; Conte, M.M.; Khalil, Z.; Huang, X.-C.; Capon, R.J. New dictyodendrins as BACE inhibitors from a southern Australian
marine sponge, Ianthella sp. RSC Adv. 2012, 2, 4209–4214. [CrossRef]

122. Carter, H.J. Notes introductory to the study and classification of the Spongida. Part II. Proposed classification of the Spongida.
Ann. Mag. Nat. Hist. 1875, 4, 126–145. [CrossRef]

123. Nardo, G.D. Auszug aus einem neuen System der Spongiarien, wonach bereits die Aufstellung in der Universitäts-Sammlung zu
Padua gemacht ist. Isis, Order Encyclopadische Zeitung Coll (Oken: Jena) 1833, 519–523. Available online: http://ras.biodiversity.aq/
aphia.php?p=sourcedetails=7979 (accessed on 1 October 2021).

124. Vacelet, J. Répartition générale des éponges et systématique des éponges cornées de la région de Marseille et de quelques stations
méditerranéennes. Recl. Trav. Stn. Mar. d’Endoume 1959, 16, 39–101.

125. Putz, A.; Kloeppel, A.; Pfannkuchen, M.; Brummer, F.; Proksch, P. Depth-related alkaloid variation in Mediterranean Aplysina
sponges. Z. Naturforsch. 2009, 64c, 279–287. [CrossRef]

126. Sacristan-Soriano, O.; Banaigs, B.; Becerro, M.A. Relevant spatial scales of chemical variation in Aplysina aerophoba. Mar. Drugs
2011, 9, 2499–2513. [CrossRef] [PubMed]

127. Sacristan-Soriano, O.; Banaigs, B.; Becerro, M.A. Temporal trends in the secondary metabolite production of the sponge Aplysina
aerophoba. Mar. Drugs 2012, 10, 677–693. [CrossRef]

128. Reverter, M.; Perez, T.; Ereskovsky, A.V.; Banaigs, B. Secondary Metabolome Variability and Inducible Chemical Defenses in the
Mediterranean Sponge Aplysina cavernicola. J. Chem. Ecol. 2016, 42, 60–70. [CrossRef]

129. Silva, M.M.; Bergamasco, J.; Lira, S.P.; Lopes, N.P.; Hajdu, E.; Peixinho, S.; Berlinck, R.G.S. Dereplication of bromotyrosine-derived
metabolites by LC-PDA-MS and analysis of the chemical profile of 14 Aplysina sponge specimens from the Brazilian coastline.
Aust. J. Chem. 2010, 63, 886–894. [CrossRef]

130. Ciminiello, P.; Costantino, V.; Fattorusso, E.; Magno, S.; Mangoni, A. Chemistry of Verongida sponges, II. Constituents of the
Caribbean sponge Aplysina Fistularis forma fulva. J. Nat. Prod. 1994, 57, 705–712. [CrossRef]

131. Rogers, E.W.; Fernanda de Oliveira, M.; Berlinck, R.G.S.; Konig, G.M.; Molinski, T.F. Stereochemical Heterogeneity in Verongid
Sponge Metabolites. Absolute Stereochemistry of (+)-Fistularin-3 and (+)-11-epi-Fistularin-3 by Microscale LCMS-Marfey’s
Analysis. J. Nat. Prod. 2005, 68, 891–896. [CrossRef] [PubMed]

132. Rogers, E.W.; Molinski, T.F. Highly polar spiroisoxazolines from the sponge Aplysina fulva. J. Nat. Prod. 2007, 70, 1191–1194.
[CrossRef]

133. Gunasekera, M.; Gunasekera, S.P. Dihydroxyaerothionin and aerophobin 1. Two brominated tyrosine metabolites from the deep
water marine sponge Verongula rigida. J. Nat. Prod. 1989, 52, 753–756. [CrossRef]

134. Mierzwa, R.; King, A.; Conover, M.A.; Tozzi, S.; Puar, M.S.; Patel, M.; Coval, S.J. Verongamine, a novel bromotyrosine-derived
histamine H3-Antagonist from the marine sponge Verongula gigantea. J. Nat. Prod. 1994, 57, 175–177. [CrossRef] [PubMed]

80



Mar. Drugs 2021, 19, 582

135. Ciminiello, P.; Fattorusso, E.; Magno, S. Chemistry of Verongida sponges, III. Constituents of a Caribbean Verongula sp. J. Nat.
Prod. 1994, 57, 1564–1569. [CrossRef]

136. Galeano, E.; Thomas, O.P.; Robledo, S.; Munoz, D.; Martinez, A. Antiparasitic bromotyrosine derivatives from the marine sponge
Verongula rigida. Mar. Drugs 2011, 9, 1902–1913. [CrossRef]

137. Ciminiello, P.; Dell’Aversano, C.; Fattorusso, E.; Magno, S.; Pansini, M. Chemistry of Verongida Sponges. 10. Secondary Metabolite
Composition of the Caribbean Sponge Verongula gigantea. J. Nat. Prod. 2000, 63, 263–266. [CrossRef] [PubMed]

138. Kochanowska, A.J.; Rao, K.V.; Childress, S.; El-Alfy, A.; Matsumoto, R.R.; Kelly, M.; Stewart, G.S.; Sufka, K.J.; Hamann, M.T.
Secondary Metabolites from Three Florida Sponges with Antidepressant Activity. J. Nat. Prod. 2008, 71, 186–189. [CrossRef]
[PubMed]

139. Jiso, A.; Kittiwisut, S.; Chantakul, R.; Yuenyongsawad, S.; Putchakarn, S.; Schaberle, T.F.; Temkitthaworn, P.; Ingkaninan, K.;
Chaithirayanon, K.; Plubrukarn, A. Quintaquinone, a Merosesquiterpene from the Yellow Sponge Verongula cf rigida Esper. J. Nat.
Prod. 2020, 83, 532–536. [CrossRef] [PubMed]

140. Kochanowska-Karamyan, A.J.; Araujo, H.C.; Zhang, X.; El-Alfy, A.; Carvalho, P.; Avery, M.A.; Holmbo, S.D.; Magolan, J.; Hamann,
M.T. Isolation and Synthesis of Veranamine, an Antidepressant Lead from the Marine Sponge Verongula rigida. J. Nat. Prod. 2020,
83, 1092–1098. [CrossRef]

141. Hwang, I.H.; Oh, J.; Zhou, W.; Park, S.; Kim, J.H.; Chittiboyina, A.G.; Ferreira, D.; Song, G.Y.; Oh, S.; Na, M.; et al. Cytotoxic
activity of rearranged drimane meroterpenoids against colon cancer cells via down-regulation of beta-catenin expression. J. Nat.
Prod. 2015, 78, 453–461. [CrossRef]

142. Graham, S.K.; Lambert, L.K.; Pierens, G.K.; Hooper, J.N.A.; Garson, M.J. Psammaplin Metabolites New and Old: An NMR Study
Involving Chiral Sulfur Chemistry. Aust. J. Chem. 2010, 63, 867–872. [CrossRef]

143. Pham, N.B.; Butler, M.S.; Quinn, R.J. Isolation of Psammaplin A 11‘-Sulfate and Bisaprasin 11‘-Sulfate from the Marine Sponge
Aplysinella rhax. J. Nat. Prod. 2000, 63, 393–395. [CrossRef] [PubMed]

144. Tabudravu, J.N.; Eijsink, V.G.H.; Gooday, G.W.; Jaspars, M.; Komander, D.; Legg, M.; Synstad, B.; van Aalten, D.M.F. Psammaplin
A, a chitinase inhibitor isolated from the Fijian marine sponge Aplysinella rhax. Bioorg. Med. Chem. 2002, 10, 1123–1128. [CrossRef]

145. Shin, J.; Lee, H.-S.; Seo, Y.; Rho, J.-R.; Cho, K.W.; Paul, V.J. New Bromotyrosine Metabolites from the Sponge Aplysinella rhax.
Tetrahedron 2000, 56, 9071–9077. [CrossRef]

146. Mudianta, I.W. Bioprospecting of the Balinese marine sponges and nudibranchs. J. Phys. Conf. Ser. 2018, 1040, 1–7. [CrossRef]
147. Mudianta, I.W.; Skinner-Adams, T.; Andrews, K.T.; Davis, R.A.; Hadi, T.A.; Hayes, P.Y.; Garson, M.J. Psammaplysin derivatives

from the Balinese marine sponge Aplysinella strongylata. J. Nat. Prod. 2012, 75, 2132–2143. [CrossRef]
148. Mandi, A.; Mudianta, I.W.; Kurtan, T.; Garson, M.J. Absolute Configuration and Conformational Study of Psammaplysins A and

B from the Balinese Marine Sponge Aplysinella strongylata. J. Nat. Prod. 2015, 78, 2051–2056. [CrossRef]
149. Ankudey, F.J.; Kiprof, P.; Stromquist, E.R.; Chang, L.C. New bioactive bromotyrosine-derived alkaloid from a marine sponge

Aplysinella sp. Planta Med. 2008, 74, 555–559. [CrossRef]
150. Liu, S.; Schmitz, F.J.; Kelly-Borges, M. Psammaplysin F, a New Bromotyrosine Derivative from a Sponge, Aplysinella sp. J. Nat.

Prod. 1997, 60, 614–615. [CrossRef] [PubMed]
151. Fu, X.; Schmitz, F.J. 7-Hydroxyceratinamine, a New Cyanoformamide-Containing Metabolite from a Sponge, Aplysinella sp. J. Nat.

Prod. 1999, 62, 1072–1073. [CrossRef]
152. Shaala, L.A.; Youssef, D.T.A. Cytotoxic Psammaplysin Analogues from the Verongid Red Sea Sponge Aplysinella Species.

Biomolecules 2019, 9, 841. [CrossRef] [PubMed]
153. Von Lendenfeld, R. Descriptive Catalogue of the Sponges in the Australian Museum, Sidney; Taylor & Francis: London, UK, 1888.
154. El-Demerdash, A.; Moriou, C.; Toullec, J.; Besson, M.; Soulet, S.; Schmitt, N.; Petek, S.; Lecchini, D.; Debitus, C.; Al-Mourabit,

A. Bioactive Bromotyrosine-Derived Alkaloids from the Polynesian Sponge Suberea ianthelliformis. Mar. Drugs 2018, 16, 146.
[CrossRef] [PubMed]

155. Pulitzer-Finali, G. Some new or little-known sponges from the Great Barrier Reef of Australia. Boll. Musei Ist. Biol. Dell’universitá
Genova 1982, 48, 87–141.

156. Spalding, M.D.; Fox, H.E.; Allen, G.R.; Davidson, N.; Ferdana, Z.A.; Finlayson, M.; Halpern, B.S.; Jorge, M.A.; Lombana, A.;
Lourie, S.A.; et al. Marine ecoregions of the world: A bioregionalization of coastal and shelf areas. Bioscience 2007, 57, 573–583.
[CrossRef]

157. Kerr, R.; Kelly-Borges, M. Biochemical and morphological heterogeneity in the Caribbean sponge Xestospongia muta (Petrosida:
Petrosiidae). In Sponges in Time and Space; van Soest, R.W.M., van Kempen, T.M.G., Braekman, J.C., Eds.; Balkema: Rotterdam,
The Netherlands, 1994; pp. 65–73.

158. Liu, N.; Lai, J.; Lyu, C.; Qiang, B.; Wang, H.; Jin, H.; Zhang, L.; Liu, Z. Chemical Space, Scaffolds, and Halogenated Compounds of
CMNPD: A Comprehensive Chemoinformatic Analysis. J. Chem. Inf. Model. 2021, 61, 3323–3336. [CrossRef] [PubMed]

159. Langdon, S.R.; Brown, N.; Blagg, J. Scaffold diversity of exemplified medicinal chemistry space. J. Chem. Inf. Model. 2011, 51,
2174–2185. [CrossRef]

160. Wiedenmayer, F. Shallow-Water Sponges of the Western Bahamas; Experientia Supplementum; Springer: Berlin/Heidelberg, Germany, 1977.
161. Kruger, F.; Stiefl, N.; Landrum, G.A. rdScaffoldNetwork: The Scaffold Network Implementation in RDKit. J. Chem. Inf. Model.

2020, 60, 3331–3335. [CrossRef] [PubMed]

81



Mar. Drugs 2021, 19, 582

162. Jeh, G.; Widom, J. Simrank: A measure of structural-context similarity. In Proceedings of the 8th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, Edmonton, AB, Canada, 23–26 June 2002; pp. 538–543.

163. OSIRIS Property Explorer. 2021. Available online: https://www.organic-chemistry.org/prog/peo/ (accessed on 21 March 2021).
164. Gonzalez-Medina, M.; Medina-Franco, J.L. Platform for Unified Molecular Analysis: PUMA. J. Chem. Inf. Model. 2017, 57,

1735–1740. [CrossRef]
165. DIFACQUIM: Computer-Aided drug design at UNAM. 2021. Available online: https://www.difacquim.com/d-tools/ (accessed

on 12 March 2021).
166. Maggiora, G.M.; Bajorath, J. Chemical space networks: A powerful new paradigm for the description of chemical space. J. Comput.

Aided Mol. Des. 2014, 28, 795–802. [CrossRef] [PubMed]
167. Zhao, C.; Sun, M.; Bennani, Y.L.; Gopalakrishnan, S.M.; Witte, D.G.; Miller, T.R.; Krueger, K.M.; Browman, K.E.; Thiffault, C.;

Wetter, J.; et al. The alkaloid Conessine and Analogues as potent Histamine H3 Reseptor Antagonists. J. Med. Chem. 2008, 51,
5423–5430. [CrossRef]

168. Nodwell, M.; Zimmerman, C.; Roberge, M.; Andersen, R.J. Synthetic analogues of the microtubule-stabilizing sponge alkaloid
ceratamine A are more active than the natural product. J. Med. Chem. 2010, 53, 7843–7851. [CrossRef]

169. Smith, S.E.; Dello Buono, M.C.; Carper, D.J.; Coleman, R.S.; Day, B.W. Structure elucidation of phase I metabolites of the
microtubule perturbagens: Ceratamines A and B. J. Nat. Prod. 2014, 77, 1572–1578. [CrossRef]

170. Pan, X.; Tao, L.; Ji, M.; Chen, X.; Liu, Z. Synthesis and cytotoxicity of novel imidazo[4,5-d]azepine compounds derived from
marine natural product ceratamine A. Bioorg. Med. Chem. Lett. 2018, 28, 866–868. [CrossRef]

171. Pahwa, S.; Kaur, S.; Jain, R.; Roy, N. Structure based design of novel inhibitors for histidinol dehydrogenase from Geotrichum
candidum. Bioorg. Med. Chem. Lett. 2010, 20, 3972–3976. [CrossRef]

172. Gao, J.; Caballero-George, C.; Wang, B.; Rao, K.V.; Shilabin, A.G.; Hamann, M.T. 5-OHKF and NorKA, Depsipeptides from a
Hawaiian Collection of Bryopsis pennata: Binding Properties for NorKA to the Human Neuropeptide Y Y1 Receptor. J. Nat. Prod.
2009, 72, 2172–2176. [CrossRef]

173. Fdhila, F.; Vazquez, V.; Luis Sanchez, J.; Riguera, R. DD-Diketopiperazines: Antibiotics Active against Vibrio anguillarum Isolated
from Marine Bacteria Associated with Cultures of Pecten maximus. J. Nat. Prod. 2003, 66, 1299–1301. [CrossRef] [PubMed]

174. Li, X.; Liu, N.; Zhang, H.; Knudson, S.E.; Slayden, R.A.; Tonge, P.J. Synthesis and SAR studies of 1,4-benzoxazine MenB inhibitors:
Novel antibacterial agents against Mycobacterium tuberculosis. Bioorg. Med. Chem. Lett. 2010, 20, 6306–6309. [CrossRef] [PubMed]

175. Campagnola, G.; Gong, P.; Peersen, O.B. High-throughput screening identification of poliovirus RNA-dependent RNA polymerase
inhibitors. Antivir. Res. 2011, 91, 241–251. [CrossRef] [PubMed]

176. de F. Cesario, H.P.S.; Silva, F.C.O.; Ferreira, M.K.A.; de Menezes, J.; Dos Santos, H.S.; Nogueira, C.E.S.; de L. Silva, K.S.B.; Hajdu,
E.; Silveira, E.R.; Pessoa, O.D.L. Anxiolytic-like effect of brominated compounds from the marine sponge Aplysina fulva on adult
zebrafish (Danio rerio): Involvement of the GABAergic system. Neurochem. Int. 2021, 146, 105021. [CrossRef] [PubMed]

177. Orfanoudaki, M.; Hartmann, A.; Alilou, M.; Mehic, N.; Kwiatkowski, M.; Johrer, K.; Nguyen Ngoc, H.; Hensel, A.; Greil, R.;
Ganzera, M. Cytotoxic Compounds of Two Demosponges (Aplysina aerophoba and Spongia sp.) from the Aegean Sea. Biomolecules
2021, 11, 723. [CrossRef]

178. Oluwabusola, E.T.; Tabudravu, J.N.; Al Maqbali, K.S.; Annang, F.; Perez-Moreno, G.; Reyes, F.; Jaspars, M. Antiparasitic Activity
of Bromotyrosine Alkaloids and New Analogues Isolated from the Fijian Marine Sponge Aplysinella rhax. Chem. Biodivers. 2020,
17, 1–9. [CrossRef]

179. Shaala, L.A.; Youssef, D.T.A. Pseudoceratonic Acid and Moloka’iamine Derivatives from the Red Sea Verongiid Sponge Pseudocer-
atina arabica. Mar. Drugs 2020, 18, 525. [CrossRef]

180. Chen, M.; Yan, Y.; Ge, H.; Jiao, W.-H.; Zhang, Z.; Lin, H.-W. Pseudoceroximes A-E and Pseudocerolides A-E—Bromotyrosine
Derivatives from a Pseudoceratina sp. Marine Sponge Collected in the South China Sea. Eur. J. Org. Chem. 2020, 2020, 2583–2591.
[CrossRef]

181. Tintillier, F.; Moriou, C.; Petek, S.; Fauchon, M.; Hellio, C.; Saulnier, D.; Ekins, M.; Hooper, J.N.A.; Al-Mourabit, A.; Debitus,
C. Quorum Sensing Inhibitory and Antifouling Activities of New Bromotyrosine Metabolites from the Polynesian Sponge
Pseudoceratina n. sp. Mar. Drugs 2020, 18, 272. [CrossRef]

182. Moriou, C.; Lacroix, D.; Petek, S.; El-Demerdash, A.; Trepos, R.; Leu, T.M.; Florean, C.; Diederich, M.; Hellio, C.; Debitus, C.; et al.
Bioactive Bromotyrosine Derivatives from the Pacific Marine Sponge Suberea clavata (Pulitzer-Finali, 1982). Mar. Drugs 2021,
19, 143. [CrossRef]

183. Van Eck, N.J.; Waltman, L. CitNetExplorer: A new software tool for analyzing and visualizing citation networks. J. Informetr.
2014, 8, 802–823. [CrossRef]

184. Massol, F.; Macke, E.; Callens, M.; Decaestecker, E. A methodological framework to analyse determinants of host-microbiota
networks, with an application to the relationships between Daphnia magna’s gut microbiota and bacterioplankton. J. Anim. Ecol.
2021, 90, 102–119. [CrossRef]

185. Fruchterman, T.M.J.; Reingold, E.M. Graph drawing by Force-directed Placement. Softw. Pract. Exp. 1991, 21, 1129–1164.
[CrossRef]

186. Jacomy, M.; Venturini, T.; Heymann, S.; Bastian, M. ForceAtlas2, a continuous graph layout algorithm for handy network
visualization designed for the Gephi software. PLoS ONE 2014, 9, e98679. [CrossRef] [PubMed]

82



Mar. Drugs 2021, 19, 582

187. Wilkens, S.J.; Janes, J.; Su, A.I. HierS: Hierarchical Scaffold Clustering using Topological Chemical Graphs. J. Med. Chem. 2005, 48,
3182–3193. [CrossRef] [PubMed]

188. Galitz, A.; Nakao, Y.; Schupp, P.J.; Wörheide, G.; Erpenbeck, D. A Soft Spot for Chemistry–Current Taxonomic and Evolutionary
Implications of Sponge Secondary Metabolite Distribution. Mar. Drugs 2021, 19, 448. [CrossRef] [PubMed]

189. Gao, K.; Nguyen, D.D.; Sresht, V.; Mathiowetz, A.M.; Tu, M.; Wei, G.-W. Are 2D fingerprints still valuable for drug discovery?
Phys. Chem. Chem. Phys. 2020, 22, 8373–8390. [CrossRef]

190. Hert, J.; Willett, P.; Wilton, D.J.; Acklin, P.; Azzaoui, K.; Jacoby, E.; Schuffenhauer, A. Comparison of topological descriptors for
similarity-based virtual screening using multiple bioactive reference structures. Org. Biomol. Chem. 2004, 2, 3256–3266. [CrossRef]

83





marine drugs 

Article

Investigation of Marine-Derived Natural Products as Raf
Kinase Inhibitory Protein (RKIP)-Binding Ligands

Shraddha Parate 1, Vikas Kumar 2, Jong Chan Hong 1,* and Keun Woo Lee 2,*

Citation: Parate, S.; Kumar, V.;

Hong, J.C.; Lee, K.W. Investigation of

Marine-Derived Natural Products as

Raf Kinase Inhibitory Protein

(RKIP)-Binding Ligands. Mar. Drugs

2021, 19, 581. https://doi.org/

10.3390/md19100581

Academic Editors: Susana

P. Gaudencio and Florbela Pereira

Received: 24 September 2021

Accepted: 14 October 2021

Published: 18 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center (PMBBRC),
Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea; parateshraddha@gmail.com

2 Division of Life Sciences, Department of Bio & Medical Big Data (BK4 Program), Research Institute of Natural
Sciences (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea;
vikaspathania777@gmail.com

* Correspondence: jchong@gnu.ac.kr (J.C.H.); kwlee@gnu.ac.kr (K.W.L.)

Abstract: Raf kinase inhibitory protein (RKIP) is an essential regulator of the Ras/Raf-1/MEK/ERK
signaling cascade and functions by directly interacting with the Raf-1 kinase. The abnormal ex-
pression of RKIP is linked with numerous diseases including cancers, Alzheimer’s and diabetic
nephropathy. Interestingly, RKIP also plays an indispensable role as a tumor suppressor, thus mak-
ing it an attractive therapeutic target. To date, only a few small molecules have been reported to
modulate the activity of RKIP, and there is a need to explore additional scaffolds. In order to achieve
this objective, a pharmacophore model was generated that explores the features of locostatin, the
most potent RKIP modulator. Correspondingly, the developed model was subjected to screening,
and the mapped compounds from Marine Natural Products (MNP) library were retrieved. The
mapped MNPs after ensuing drug-likeness filtration were escalated for molecular docking, where
locostatin was regarded as a reference. The MNPs exhibiting higher docking scores than locostatin
were considered for molecular dynamics simulations, and their binding affinity towards RKIP was
computed via MM/PBSA. A total of five molecules revealed significantly better binding free energy
scores than compared to locostatin and, therefore, were reckoned as hits. The hits from the present in
silico investigation could act as potent RKIP modulators and disrupt interactions of RKIP with its
binding proteins. Furthermore, the identification of potent modulators from marine natural habitat
can act as a future drug-discovery source.

Keywords: RKIP; marine natural products; pharmacophore modeling; virtual screening; molecular
docking; molecular dynamics simulations; binding free energy

1. Introduction

Raf kinase inhibitory protein (RKIP), also recognized as phosphatidylethanolamine-
binding protein 1 (PEBP1), is an evolutionarily conserved, small (23 kDa) cytosolic protein,
originally purified from bovine brain [1]. RKIP is broadly expressed in normal human
tissues and identified to have an essential role in numerous physiological processes includ-
ing neural development, spermatogenesis, cardiac output and membrane biosynthesis [2].
RKIP has been shown to be a vital modulator of various cell signaling cascades including
the G protein-coupled receptor (GPCR), mitogen-activated protein kinase (MAPK) and
the nuclear factor κB (NF-κB) pathways [1,2]. In particular, RKIP was acknowledged as an
endogenous regulator of the kinases involved in the aforementioned pathways. RKIP binds
specifically to the cytoplasmic serine/threonine Raf-1 kinase [3] and obstructs the Raf-1
dependent activation of MAPK/extracellular signal-regulated kinase (ERK) kinase (MEK),
thereby disturbing the activation of ERK [4]. Additionally, RKIP indirectly hampers GPCR,
which is an upstream activator of Raf-1. Therefore, when RKIP is released from Raf-1 after
phosphorylation by protein kinase C (PKC) at the Ser153 residue, it associates with the
kinase involved in the GPCR pathway, G protein-coupled receptor kinase 2 (GRK2) [5].
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The phosphorylated RKIP/GRK2 association results in an enhanced activation of GPCR,
thereby contributing to the overactivation of MAPK and downstream targets, as Raf-1 will
no longer be inhibited by RKIP. Moreover, RKIP can act as a negative modulator of NF-κB
signaling pathway by associating with upstream kinases NIK (NF-κB inducing kinase),
TAK (transforming growth factor beta (TGFB)-activated kinase 1), IKKα (inhibitory-κ
kinase α), IKKβ (inhibitory-κ kinase β) and inhibiting their kinase activity [4].

Owing to its essential role as an intracellular signaling pathway modulator, the dysreg-
ulated RKIP expression is implicated in several diseases, including cancer [6,7]. Literature
reviews suggested the association of RKIP with prostate cancer [8], glioma [9], breast
cancer [10], melanoma [11], colorectal cancer [12], lung cancer [13], thyroid cancer [14] and
nasopharyngeal carcinoma [15]. Additionally, dysregulated PEBP1 expression was also
observed to contribute to Alzheimer’s disease (AD) [16] and diabetic nephropathy [1,2].
Interestingly, RKIP was also identified as being a metastasis suppressor [17]. Subsequently,
RKIP has become a novel diagnostic marker for the associated pathologies. It is, therefore,
imperative to search for RKIP agonists or inhibitors, which might aid in developing drugs
to treat cell signaling-related abnormalities. The development of new probes for RKIP will
help in the effort of perturbing RKIP’s function and to define its seemingly conflicting roles.

Presently, only a few small molecules have been identified to modulate RKIP’s role in
pathological illnesses by binding to its conserved ligand-binding pocket. This pharmaco-
logical modulation has been accomplished through drugs encompassing Locostatin [18,19],
pranlukast [20], clofazimine [21] and suramin [22] (Figure 1). The non-antibacterial ox-
azolidinone derivative, UIC-1005, was identified as a cell sheet migration inhibitor of
RKIP [23] and later renamed as locostatin after its capability to inhibit cell locomotion in
multiple systems [24]. In particular, locostatin abrogates the ability of RKIP to interact
with Raf-1 kinase and also with GRK2, thereby functioning as a protein–protein interaction
inhibitor [18,19]. Additionally, Sun et al. reported a novel RKIP-binding ligand, pranlukast,
via structure-based virtual screening and demonstrated its binding on the conserved ligand-
binding RKIP pocket through NMR and fluorescence experiments [20]. Guo et al. and team
additionally identified Clofazimine and Suramin binding to RKIP through a combination
of NMR and molecular docking [21,22].

Figure 1. Chemical structures of small molecule RKIP modulators identified to date.

As secondary metabolites of microbes, plants, animals and marine organisms, natural
products play predominant roles in self-defense, physiological homeostasis and propaga-
tion [25]. Moreover, they are prolific sources of active constituents in therapeutic drugs,
featuring more structural diversity and complexity, fewer nitrogen or halogen atoms, more
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stereogenic centers and greater druggable pharmacophores than compared to synthetic
molecules [26]. Marine organisms can be considered as the most abundant source of bioac-
tive natural products as the diverse structures obtained from them reflect biodiversity of
genes, species and ecosystems [27]. Drug discovery from marine natural products (MNP)
has seen a resurgence in the past years with a growing number of molecules entering clini-
cal trials [28,29]. A recent literature survey revealed strong anticancer biological activities
concerning 170 MNPs and their semi-synthetic analogues [30]. MNPs have also exhibited
neuroprotective effects on therapeutic targets of AD, Parkinson’s disease (PD) and ischemic
brain stroke [31].

The small number of RKIP-binding ligands in the literature and the structural diversity
of compounds acquired from marine natural habitat prompted us to further explore poten-
tial therapeutics targeted for RKIP-related ailments. Accordingly, in the present in silico
study, RKIP-binding ligands were identified via auto pharmacophore-based virtual screen-
ing of MNPs. Correspondingly, a pharmacophore model was generated by exploiting the
features of a small molecule RKIP inhibitor, locostatin. Since locostatin has demonstrated
exceptional results as an RKIP inhibitor, we intended to exploit the pharmacophore features
manifested by its chemical scaffold. Subsequently, the attained model was escalated to
screen the MNP library. The pharmacophore-mapped drug-like MNPs were further docked
with the molecular structure of RKIP, and the compounds demonstrating better docking
scores than locostatin were refined by computational simulations under physiological
conditions. The MNPs exhibiting significantly better binding affinity scores than locostatin,
as computed by Molecular Mechanics Poisson–Boltzmann Surface Area (MM/PBSA), were
confirmed as hits and reported as potential therapeutics for RKIP-related diseases.

2. Results

The present investigation applied a sequence of computational methods for the identi-
fication of RKIP modulators via pharmacophore modeling from a single ligand structure of
locostatin by using the below summarized workflow (Figure 2).

2.1. Generated Auto-Pharmacophore Model

A pharmacophore model was generated utilizing locostatin, the most potent RKIP
inhibitor [18,19]. Prior to model generation, the Feature Mapping protocol in DS identified
eight features encompassing four hydrogen bond acceptor (HBA), two hydrophobic (HyP)
and two ring aromatic (RA) as the most occurring ones in locostatin. Subsequently, the
generated model revealed a total of four features, with 2HBA, 1HyP and 1RA representing
the most indispensable features of locostatin (Table 1). Upon scrupulous examination
of the superimposed model on locostatin, it was observed that the 2-oxazolidinone core
complements both the HBA features, the crotonyl moiety complements the HyP feature
and the benzyl moiety complemented the RA feature [32] (Figure 3).

Table 1. Auto-pharmacophore model summary with its generated features.

Pharmacophore Model Number of Features Feature Set *

Pharmacophore hypothesis 4 2HBA, RA, HyP
* HBA: hydrogen bond acceptor; RA: ring aromatic; HyP: hydrophobic.
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Figure 2. The in silico workflow depicting the sequence of computational techniques for identification of RKIP modulators.

 

Figure 3. Auto-pharmacophore model exploiting locostatin. (A) Pharmacophore features demon-
strated by locostatin- HBA (hydrogen bond acceptor), HyP (hydrophobic) and RA (ring aromatic).
(B) Interfeature distance between the mapped features of locostatin.
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2.2. Drug-Like Marine-Derived Compounds from Virtual Screening

From a total of 14,492 compounds available in the MNP library, the
auto-pharmacophore model generated from the above analysis mapped an aggregate
of 2557 MNPs representing the same features as acquired from locostatin. The large num-
ber of mapped compounds was further reduced by subsequent filtration on the basis of
Lipinski’s Rule of Five (Ro5) and Veber’s rule. A total of 889 MNPs followed the collective
Ro5 and Veber’s rules demonstrating molecular weight <500 kDa, number of hydrogen
bond donors ≤5, number of HBA ≤10, compound’s lipophilicity (logP) ≤5 and number of
rotatable bonds ≤10 [33,34]. Additionally, the evaluation of ADMET (absorption, distri-
bution, metabolism, excretion and toxicity) properties further reduced the total number
of compounds to 134 drug-like MNPs (Figure 2). These 134 MNPs displayed no blood–
brain barrier (BBB) permeability, no CYP2D6 binding, no hepatotoxicity, good intestinal
absorption and aqueous solubility. The procured 134 drug-like MNPs were escalated for
molecular docking with the RKIP ligand-binding pocket.

2.3. Molecular Docking of Screening-Derived Compounds with RKIP

Molecular docking studies divulge into crucial information regarding the binding
mode of ligands in the target protein pocket, thereby elucidating on the protein–ligand
interaction. The validation of docking parameters resulted in reproducing similar docked
poses as that observed for the co-crystallized PTR (Figure S1), establishing the efficiency of
GOLD. The virtually screened 134 marine compounds were docked with RKIP along with
locostatin as the reference (REF) compound. The REF compound demonstrated a Goldscore
of 48.64 and a Chemscore of −26.48, while a total of thirteen drug-like MNPs exhibited
higher Goldscores and lower Chemscores than compared to REF (Table 2). The thirteen
compounds also displayed interactions with the key residues of RKIP ligand-binding
pocket encompassing Asp70, Ala73, Pro74, Tyr81, Trp84, His86, Gly108, Gly110, Pro112,
His118, Tyr120, Tyr181 and Leu184. Therefore, the stability of these compounds and the
REF was confirmed in the RKIP ligand-binding pocket via processing them for molecular
dynamics (MD) simulations.

Table 2. The docking scores of reference (REF) compound, locostatin and Marine Natural Product
(MNP) library compounds with RKIP ligand-binding pocket (PDB ID: 2QYQ).

Compound No. MNP ID (CAS No *) Goldscore Chemscore

1 62541-09-7 67.72 −33.37
2 799246-91-6 64.48 −31.02
3 383191-01-3 60.85 −28.18
4 313951-44-9 59.03 −35.95
5 61897-90-3 58.61 −27.03
6 302924-16-9 58.39 −29.14
7 182806-09-3 58.37 −27.80
8 587875-53-4 57.76 −28.71
9 142677-12-1 57.18 −35.13
10 144385-02-4 57.07 −30.29
11 853885-48-0 56.93 −27.96
12 853885-46-8 56.04 −34.01
13 58115-31-4 55.01 −37.15
14 133812-16-5 (REF) 48.64 −26.48

* CAS: Chemical Abstracts Service.

2.4. Molecular Dynamics Simulation Analyses

MD simulations were executed for the thirteen identified MNPs and REF, docked
with RKIP, to elucidate their dynamic behavior at the physiological level. Along with
performing MD simulations, the binding free energies (BFE) were also computed to assess
the binding affinity of each ligand towards RKIP. This was instigated by the ‘g_mmpbsa’
program, and the BFE scores of thirteen compounds were computed (Table S1). The REF
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compound, locostatin, exhibited a BFE score of −90.909 ± 9.155 kJ/mol, while five MNPs
revealed better BFE scores. Therefore, the five MNPs were regarded as hits and were
ranked according to their BFE scores (Table 3, Figure 4C).

Table 3. The entropic distribution of the total binding free energy (BFE) scores of reference (REF) compound, locostatin and
identified hits from Marine Natural Products (MNP) library with RKIP (PDB ID: 2QYQ).

Hit
No.

MNP ID
(CAS No *)

Van Der Waals
(kJ/mol)

Electrostatic
(kJ/mol)

Polar Solvation
(kJ/mol)

SASA Energy
(kJ/mol)

BFE Scores
ΔGbind (kJ/mol)

HIT1 144385-02-4 −171.724 ± 13.242 −89.779 ± 8.171 143.371 ± 8.006 −17.151 ± 1.008 −135.283 ± 11.815
HIT2 799246-91-6 −159.666 ± 9.645 −66.487 ± 8.367 115.080 ± 11.961 −15.523 ± 0.756 −126.597 ± 8.883
HIT3 853885-46-8 −152.922 ± 10.576 −64.325 ± 7.461 117.843 ± 8.005 −15.684 ± 0.925 −115.088 ± 9.005
HIT4 383191-01-3 −144.389 ± 13.393 −68.213 ± 8.692 131.246 ± 6.782 −14.093 ± 0.641 −95.450±10.777
HIT5 587875-53-4 −118.918 ± 10.507 −78.010 ± 7.488 114.660 ± 4.794 −12.315 ± 0.793 −94.582 ± 8.703
HIT6 133812-16-5 (REF) −149.624 ± 7.721 −62.839 ± 5.691 134.966 ± 6.467 −13.413 ± 0.628 −90.909 ± 9.155

* CAS: Chemical Abstracts Service.

Figure 4. Molecular dynamics (MD) simulation analyses plots demonstrating the (A) backbone root mean square deviation
(RMSD), (B) backbone root mean square fluctuation (RMSF), (C) binding free energy (ΔGbind) values and (D) potential
energy of the reference (REF) compound, locostatin and identified hits with RKIP.

The stability of hits and REF was determined on the basis of their backbone root mean
square deviation (RMSD), root mean square fluctuation (RMSF) and potential energy plots.
As perceived from the RMSD plots, it was observed that all the systems remained stable
throughout the period of 50 ns, except for HIT2 which displayed slight instability towards
the 6 ns (Figure 4A). The RMSF analysis also demonstrated the stability of all residues
for the entire 50 ns of simulation run with an exception of HIT2, for which its residues
(Asp134-Ser142) exhibited minor fluctuation (Figure 4B). Additionally, the energy of all
the six systems remained stable as perceived from their potential energy plots (Figure 4D).
In order to further gain insight into their mode of binding at the ligand-binding pocket
of RKIP, the representative structures were extracted from the last 10 ns of stable MD
trajectories and superimposed. The hits exhibited a similar binding mode as that observed
for the locostatin (Figure 5).
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Figure 5. Binding mode of reference (REF) compound, locostatin and identified hits in the ligand-
binding pocket of RKIP.

The characteristic binding interaction of the five hits and locostatin was examined
on the basis of the average structure extracted from last 10 ns. The REF compound, loco-
statin, was observed to demonstrate one hydrogen bond with residue Tyr120 (bond length:
2.73 Å) (Figure 6A). In addition, REF also formed hydrophobic bonds with residues Trp84
(π–π stacked, bond length: 4.48 Å; π-alkyl, bond length: 4.97 Å), Val107 (π-alkyl, bond
length: 5.05 Å) and Tyr181 (π–π T-shaped, bond length: 4.93 Å) (Figure S2A). The residues
Asp70, Ala73, Pro74, Tyr81, His86, Gly108, Gly110, Pro111, Pro112, His118, Leu180 and
Leu184 also supported locostatin, characterized by carbon–hydrogen bonds and van der
Waals interactions (Figure S2A).

 

Figure 6. The three-dimensional (3D) intermolecular interactions of (A) reference (REF) compound,
locostatin and the (B−F) identified hits with the key residues of RKIP. The hydrogen bonding
interactions are displayed as dashed green lines.

The representative structure of HIT1 demonstrated hydrogen bonds with four RKIP
residues: Asp70 (bond length: 1.70 Å), Gly108 (bond length: 2.28 Å), Gly110 (bond length:
1.86 Å) and Tyr120 (bond length: 1.80 Å) (Figure 6B). Additionally, HIT1 formed hydropho-
bic bonds with residues Trp84 (π–π stacked, bond length: 4.75 Å), Gly110 (amide π-stacked,
bond length: 4.89 Å), Pro112 (alkyl, bond length: 4.51 Å), Tyr181 (π-alkyl, bond length:
4.10 Å) and Leu184 (alkyl, bond length: 5.13 Å) (Figure S2B). The residues Asp72, Ala73,
Pro74, Tyr81, His86, Val107, Ser109, Pro111, His118, Gly143, Leu180 and Ser185 also as-
sisted in the binding of HIT1 with RKIP via carbon–hydrogen bonds and van der Waals
interactions (Figure S2B).
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The average structure acquired for HIT2 exhibited hydrogen bonds with two RKIP
residues: Asp70 (bond length: 1.68 Å) and Gly110 (bond length: 2.09 Å) (Figure 6C).
Moreover, HIT2 exhibited hydrophobic interactions with Ala 73 (alkyl, bond length: 4.31 Å;
π-alkyl, bond length: 5.17 Å), Pro74 (alkyl, bond length: 4.08 Å), Tyr81 (π-sigma, bond
length: 3.74 Å), Trp84 (π-alkyl, bond length: 4.71 Å; π-alkyl, bond length: 5.28 Å; π-alkyl,
bond length: 4.17 Å), Pro112 (π-alkyl, bond length: 5.09 Å) and Tyr181 (π-alkyl, bond length:
4.62 Å; π-alkyl, bond length: 5.40 Å) residues (Figure S2C). The carbon–hydrogen bonds,
π-donor hydrogen bonds and van der Waals interactions with residues Pro74, Trp84, His86,
Val107, Gly108, Ser109, Pro111, His118 and Tyr120 also played a vital role in supporting
HIT2 in RKIP binding pocket (Figure S2C).

The representative HIT3 structure displayed hydrogen bonds with Asp70 (bond
length: 1.69 Å) and Gly110 (bond length: 1.69 Å) (Figure 6D). The residues Pro74 (alkyl,
bond length: 4.28 Å), Tyr81 (π-alkyl, bond length: 5.23 Å), Trp84 (π-alkyl, bond lengths:
3.53 Å and 4.46 Å), His86 (π-alkyl, bond lengths: 4.50 Å and 4.96 Å) and Tyr120 (π-alkyl,
bond length: 5.38 Å) established hydrophobic bonds with RKIP (Figure S2D). Furthermore,
residues Ala73, Val107, Ser109, Pro111, Pro112, His118, Val177, Leu180, Tyr181 and Leu184
also held a crucial role in assisting HIT3 via van der Waals interactions (Figure S2D).

The structure for HIT4, extracted as representative, exhibited hydrogen bonds with
Asp70 (bond length: 1.68 Å) and Gly110 (bond lengths: 2.46 Å and 2.57 Å), similar to
HIT2 and HIT3 (Figure 6E). Numerous types of hydrophobic bonds were formed by
residues- Ala73 (π-alkyl, bond length: 4.98 Å), Tyr81 (π-alkyl, bond length: 4.95 Å), Trp84
(π-π stacked, bond length: 4.90 Å), Gly110 (amide-π stacked, bond length: 4.05 Å),
Pro112 (alkyl, bond length: 5.49 Å) and Tyr181 (π–π T-shaped, bond length: 4.66 Å)
(Figure S2E). The residue His86 established a carbon–hydrogen bond, while Val107, Gly108,
Ser109, Pro111, His118, Tyr120, Leu180 and Leu184 interacted via van der Waals bonds
(Figure S2E).

The representative structure of HIT5 attained from MD analysis showed hydrogen
bonds with residues Asp70 (bond length: 1.62 Å), Gly110 (bond length: 2.42 Å) and Tyr120
(bond length: 1.96 Å) (Figure 6F). The residues Trp84 (π–π stacked, bond length: 4.77 Å)
and His86 (π-sulfur, bond length: 5.22 Å) established hydrophobic bonds (Figure S2F).
Additional residues including His86, Pro112 and His118 supported HIT5 via carbon–
hydrogen bonds, while numerous residues such as Ala73, Pro74, Tyr81, Pro111, Tyr181 and
Leu184 formed van der Waals interactions (Figure S2F).

The above overall analyses suggests that our hits displayed stability throughout 50 ns
of MD run and also formed interactions with vital residues of the RKIP ligand-binding
pocket. Most importantly, our hits demonstrated better binding affinity towards RKIP, as
observed from their binding free energies. We, therefore, anticipate that our identified hits
can provide potential scaffolds as RKIP agonists or inhibitors.

3. Discussion

RKIP/PEBP1 is involved in regulating several signaling pathways including Raf-
1/MEK/ERK, NF-κB and GPCR by directly interacting with and inhibiting Raf-1, MEK
and ERK protein kinases of the pathways, respectively [35]. RKIP was identified to con-
tribute to dysregulated expression in numerous diseases as well as recognized as being
a metastasis suppressor [17]. Only a few RKIP modulators have been identified to date
encompassing locostatin, pranlukast, clofazimine and suramin (Figure 1), and there is
still a need to search for additional ligands modulating the function of RKIP. Taking these
views into account, we pursued our research towards exploring the features of the most
potent cell sheet migration inhibitor of RKIP, locostatin [19]. As the X-ray crystallographic
structure of RKIP/locostatin is difficult to obtain owing to locostatin’s function to partially
aggregate in vitro [18,19], the single structure of locostatin was adapted for our study.
Therefore, an auto-pharmacophore model of locostatin was generated, which resulted
in a four-featured model (Figure 3). Since marine extracts have displayed a remarkable
potential as being a source of new drugs and is a relatively unexplored habitat, a MNP

92



Mar. Drugs 2021, 19, 581

library of 14,492 compounds by Prof. Encinar (http://docking.umh.es/chemlib/mnplib
accessed on 21 June 2021) was utilized for our study. Consequently, the library was screened
using the pharmacophore model, retrieving a total of 2557 compounds that mapped the
features of the pharmacophore. A drug-like database was generated from the above large
number of compounds by employing Lipinski’s Ro5, ADMET and Veber’s rules, reducing
the number to 134 compounds. The 134 drug-like compounds were taken forward for
molecular docking with the crystal structure of RKIP in complex with o-phosphotyrosine
(PTR) (PDB ID: 2QYQ) [36]. The RKIP/PTR is the first molecular structure providing a
model of how a ligand would possibly bind in the ligand-binding pocket of RKIP [18].
Molecular docking of aforementioned 134 drug-like ligands into the binding pocket of
RKIP resulted in the identification of thirteen compounds, which demonstrated better
docking scores (Goldscore and Chemscore) than locostatin (Table 2). Moreover, the thirteen
compounds also displayed similar interactions with RKIP, as observed for locostatin. Al-
though molecular docking is computationally proficient, its prediction of the protein-ligand
binding pose is not usually accurate. Therefore, these compounds were escalated to check
their stability in the RKIP binding pocket via MD simulations. The simulations were also
supplemented by calculating the binding affinity of each compound towards RKIP, and
this was performed via MM/PBSA. The MM/PBSA method has been extensively used to
gauge the poses from docking, determine their stability, predict the affinity towards the
target protein and also to identify the hotspots responsible for the affinity [37]. From a total
of thirteen drug-like compounds, five exhibited better binding affinities towards RKIP than
that of locostatin (Table S1). With the locostatin BFE value of −90.909 kJ/mol, HIT1, HIT2,
HIT3, HIT4 and HIT5 demonstrated the values of −135.283 kJ/mol, −126.597 kJ/mol,
−115.088 kJ/mol, −95.450 kJ/mol and −94.582 kJ/mol, respectively (Table 3). The total
number of free energy scores for each RKIP/HIT complex was characterized by individual
scores of van der Waals, electrostatic, polar solvation and SASA energy. It was observed
that the van der Waals and electrostatic forces played a major role in total binding free
energy, thereby explaining that the van der Waals and hydrophobic interactions have a
vital role in assisting the binding of hits with RKIP. From the RMSD, RMSF and potential
energy analysis, it was perceived that our hits also remained stable in the binding pocket
of RKIP (Figure 4). The representative structure was extracted from the last 10 ns of stable
trajectory for all hits as well as locostatin, and the interaction pattern was scrutinized. Lit-
erature survey revealed that the conserved ligand-binding pocket of RKIP can be defined
by 16 residues at the protein surface: Asp70, Ala73, Pro74, Tyr81, Trp84, His86, Val107,
Gly108, Gly110, Pro111, Pro112, His118, Tyr120, Leu180, Tyr181 and Leu184 [38]. In the
present study, our hits were observed to form bonds with the above-mentioned residues,
characterized by hydrogen, hydrophobic and van der Waals interactions. Most notably,
hydrogen bonds were perceived with residues Asp70, Gly108, Gly110 and Tyr120 of the
RKIP binding pocket (Figure 6). Furthermore, interactions with residues Ala73, Pro74,
Tyr81, His86, Val107, Gly108, Pro111, Pro112, His118, Leu180, Tyr181 and Leu184 were
mostly driven by van der Waals, hydrophobic or carbon–hydrogen bonds (Figure S2). In
order to identify the individual residues contributing considerably to the total binding
free energy of each compound, the per-residue energy decomposition was estimated by
MM/PBSA. The residues Trp84 and Tyr181 appeared to play an indispensable role in the
affinity of all hits towards RKIP (Figure 7). These two residues were also identified as major
contributing factors by Rudnitskaya et al. for RKIP/locostatin binding by MD simulation
and quantum mechanics/molecular mechanics (QM/MM) [19]. The above overall analyses
provide ample support for our hits as potential lead molecules to modulate RKIP. Individ-
ually, the identified hits portrayed the pharmacophoric features displayed by locostatin
(Figures 3 and S3).
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Figure 7. Energy decomposition of individual residues in RKIP contributing to the total binding free energy of (A) Locostatin,
(B) HIT1, (C) HIT2, (D) HIT3, (E) HIT4 and (F) HIT5, computed by MM/PBSA.

As a final evaluation and on the basis of IUPAC names of thirteen drug-like com-
pounds (Table S1), their source of origin was identified (Table 4). The hit compounds-
HIT1, HIT2 and HIT5 were identified as alkaloids derived from a fungus Stachybotrys
sp. [39], sponge Psammaplysilla purpurea [40] and annelid Cirriformia tentaculata [41], re-
spectively. HIT3 was identified as a metabolite of a marine sediment and obtained from
Streptomyces sp. [42], while HIT4 was isolated from the ascidian Hypsistozoa fasmeriana [42].
The chemical names and the source of additional molecules which demonstrated less
binding free energy scores towards RKIP were also identified and reported in our study
(Table 4). Overall, we believe that our hits can be utilized as potential alternatives to
modulate the role of RKIP. Even though the experimental validation is required to validate
our findings, auto-pharmacophore modeling from a single structure of a ligand can be
helpful for designing potent molecules with similar efficacies. Additionally, our study
represents a crucial platform for future drug optimization strategies from aquatic habitat.

Table 4. Molecular structures and chemical source of identified marine-derived drug-like compounds.

HIT/CAS No * Chemical Name (Source) Reference Molecular Structure

HIT1
(144385-02-4) Stachybotrin B (Stachybotrys sp.) [39]

HIT2
(799246-91-6) Purpurealidin G (Psammaplysilla purpurea) [40]

HIT3
(853885-46-8) Glaciapyrrole A (Streptomyces sp.) [42,43]

 

HIT4
(383191-01-3) (Hypsistozoa fasmeriana) [42]

94



Mar. Drugs 2021, 19, 581

Table 4. Cont.

HIT/CAS No * Chemical Name (Source) Reference Molecular Structure

HIT5
(587875-53-4) 2-Hexylpyrrole sulfamate (Cirriformia tentaculata) [41,42]

 

 

58115-31-4 Aurantiamide [44]

 

182806-09-3 Hemibastadinol 1 (Ianthella basta) [45]

 

61897-90-3 Fumitremorgin H. (Aspergillus fumigatus) [42]

142677-12-1 (Chondria sp.) [46]

313951-44-9 Lorneamide A [46,47]

302924-16-9 Secobipinnatin J (Pseudopterogorgia bipinnata) [42]

853885-48-0 Glaciapyrrole B (Streptomyces sp.) [42,43]

62541-09-7 Dehydrocoelenterazine (Watasenia
dehydropreluciferin) [42]

* CAS: Chemical Abstracts Service.

4. Materials and Methods

4.1. Auto-Pharmacophore Model Generation

Locostatin is a well-known inhibitor of cell migration and cell–substratum adhe-
sion, covalently binding RKIP and disrupting its association with Raf-1 kinase as well as
GRK2 [19]. The α,β-unsaturated carbonyl functionality of locostatin renders it potently
reactive towards RKIP and sterically hinders the binding of other ligands in the pocket [18].
Therefore, the chemical features shared by its 2-oxazolidinone core were exploited by
employing the Auto Pharmacophore Generation module in Discovery Studio (DS) v.2018
(Accelrys Inc. San Diego, CA, USA). This module predominantly considers the hydrogen
bond acceptor (HBA), hydrogen bond donor (HBD), hydrophobic (HyP), negative ionizable
(NEG_IONIZABLE), positive ionizable (POS_IONIZABLE) and ring aromatic (RA) features
to generate a selective pharmacophore model from a single ligand. Moreover, the module
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elects the pharmacophore with the highest selectivity depending on the prediction by
Genetic Function Approximation (GFA) model.

4.2. Virtual Screening of Marine-Derived Natural Products

The auto-pharmacophore model generated from the above step was utilized as a 3D-
query to retrieve the compounds, complementing the features of the model, from a Marine
Natural Products (MNP) library. The MNP library comprising a total of 14,492 natural com-
pounds was screened using the generated model by employing the Ligand Pharmacophore
Mapping module in DS [48]. The resulting MNPs complementing the pharmacophore fea-
tures were filtered by Lipinski’s Rule of Five (Ro5) [33,49] and Veber’s rules [34], followed
by further filtering their absorption, distribution, metabolism, excretion and toxicity (AD-
MET) properties. Accordingly, the Filter by Lipinski and Veber Rules and ADMET Descriptors
modules implanted in DS were employed for retrieving the drug-like MNPs. Subsequently,
the obtained drug-like MNPs were escalated for the next process of molecular docking
with the ligand-binding pocket of RKIP.

4.3. Molecular Docking of Drug-Like Molecules with RKIP Ligand-Binding Pocket

Molecular docking techniques are established in silico methods that are applied widely
in drug discovery for identifying novel compounds of therapeutic interest and predicting
their interactions within the catalytic sites of macromolecular target proteins [50]. The drug-
like MNPs acquired from the above virtual screening were further subjected to molecular
docking with the crystal structure of RKIP (PDB ID: 2QYQ) [36] in Genetic Optimisation
for Ligand Docking (GOLD) v5.2.2 docking software (CCDC software ltd., Cambridge,
UK) [51]. The drug-like MNPs were assessed on the basis of two default scoring functions,
implanted in GOLD-Goldscore and Chemscore [52–54]. Prior to docking, the retrieved 3D
crystallographic RKIP structure was prepared by employing the Clean Protein module in
DS and further removing the water molecules as well as the bound o-phosphotyrosine
(PTR). Consequently, both the RKIP protein structure and drug-like MNPs were minimized
by employing the Minimization and Minimize Ligands modules in DS [55]. A total of
50 conformers per ligand were allowed to generate for the drug-like MNPs and locostatin,
which was considered as reference (REF). Each compound was examined on the basis of its
obtained conformation in the largest cluster, high Goldscore, low Chemscore and molecular
interactions with the vital residues of the RKIP binding pocket. Only the drug-like MNPs
demonstrating better scores than locostatin and similar interactions were retained from
this process and escalated for molecular dynamics (MD) simulation studies.

4.4. Molecular Dynamics Simulation of Identified Marine-Derived Natural Products

MD simulation studies are widely used to provide the dynamical structural informa-
tion on biomacromolecules as well as knowledge about protein–ligand interactions at the
physiological level [56]. The docked complexes resulting from the above docking process
were subjected to MD simulations with GROningen MAchine for Chemical Simulations
(GROMACS) v2018 (University of Groningen, Netherlands; Royal Institute of Technology;
Uppsala University, Uppsala, Sweden) [57]. The topologies for RKIP and the compounds
were generated with CHARMm27 force field [58] and SwissParam (Swiss Institute of Bioin-
formatics) [59] fast force field generation tool, respectively. The solvation of all systems was
performed via a dodecahedron water box and TIP3P (transferable intermolecular potential
with 3 points) water model. Further neutralization of systems was carried out by supple-
menting them with Cl- ions. Bad contacts in the systems were dodged by performing initial
energy minimization followed by a two-step equilibration. The first step encompassed
the NVT (constant number of particles, volume and temperature) equilibration at 300 K
with a V-rescale thermostat for 500 ps. The second step involved NPT (constant number
of particles, pressure and temperature) equilibration at 1 bar pressure with a Parrinello–
Rahman barostat for 1000 ps [60]. Two algorithms, namely the LINear Constraint Solver
(LINCS) [61] and SETTLE [62], were employed in order to monitor bond constraints and
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the geometry of water molecules. The long-range electrostatic interactions were computed
by an N·log(N) method known as Particle mesh Ewald (PME) [63]. The systems after
equilibration by both NVT and NPT were subjected to production simulation runs of 50 ns
each. The results acquired after the production run were visualized in visual molecular
dynamics (VMD, University of Illinois, Urbana, IL, USA) in order to interpret the stability
of ligands in the RKIP pocket throughout the run [64]. Furthermore, the stability of all
systems was also assessed by plotting their root mean square deviation (RMSD), root mean
square fluctuation (RMSF) and potential energy plots for the entire 50 ns run [65].

4.5. Binding Free Energy Calculations of Identified Hits

The estimation of binding affinities of inhibitors with their macromolecular targets
plays a quintessential role in drug discovery [66]. The binding free energy (BFE) estimation
program, compatible with GROMACS, was utilized to predict the binding affinity of each
ligand with RKIP. The molecular mechanics/Poisson–Boltzmann surface area (MM/PBSA)
program is extensively utilized in drug discovery paradigms to compute the BFE of protein–
ligand complexes and has been revealed to be a precise estimator in terms of correlation
between experimental and theoretical values [67,68]. For computing this BFE, 25 snapshots
of RKIP-ligand complexes were selected evenly from 40 to 50 ns of MD trajectories, and the
resultant energy ΔGbind was calculated on the basis of the following equation.

ΔGbind = Gcomplex −
(

Gprotein + Gligand

)
(1)

The resulting RKIP-compound complexes with better BFE scores than RKIP-locostatin
were considered as hits from the present in silico investigation.

5. Conclusions

An auto-pharmacophore model, exploiting the features of the most potent RKIP in-
hibitor, locostatin, revealed key pharmacophoric features imperative for binding RKIP.
An orderly virtual screening process with the generated model as a 3D query, retrieved
2557 compounds from the Marine Natural Products (MNP) library and consequent filtra-
tion by Lipinski’s, Veber’s and ADMET was able to procure a total of 134 drug-like MNPs.
The process of molecular docking of drug-like MNPs with the ligand-binding pocket of
RKIP resulted in thirteen compounds with better docking scores than locostatin as well
as noteworthy intermolecular interactions with vital residues of the pocket. From a total
of thirteen compounds, only five demonstrated better binding free energy scores towards
RKIP than that obtained for locostatin. Therefore, the five compounds were deemed as
hit molecules from the current analysis. The per-residue energy contribution unveiled
Trp84 as the most significant residue contributing to binding affinity towards RKIP. The
biological origins of all thirteen compounds acquired from the present investigation was
identified as either marine sponge, coral or fungus. Above all, we believe that our marine-
derived hits provide scaffolds for future drug optimization studies against RKIP-related
diseases. In conclusion, bioactive compounds from marine natural origin provide diverse
scaffolds and represent a crucial platform for imminent drug discovery against various
pathological complications.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/md19100581/s1, Figure S1: Validation of GOLD docking parameters using co-crystallized
ligand, PTR (orange) and its docked pose (pink). Figure S2: The two-dimensional (2D) intermolecular
interactions of reference (REF) compound, locostatin and the identified hits with the key residues of
RKIP. Figure S3: The mapping of identified Marine Natural Products (MNP) hits onto the generated
pharmacophore model. All hits display the hydrogen bond acceptor (HBA), hydrophobic (HyP)
and ring aromatic (RA) pharmacophoric features. Table S1: The binding free energy (BFE) scores of
reference (REF) locostatin and drug-like Marine Natural Products (MNP) with RKIP (PDB ID: 2QYQ)
along with their IUPAC names.
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Abstract: Four new anthraquinone derivatives, namely saliniquinones G−I (1–3) and heraclemycin
E (4), were obtained from the Antarctic marine-derived actinomycete Nocardiopsis aegyptia HDN19-
252, guided by the Global Natural Products Social (GNPS) molecular networking platform. Their
structures, including absolute configurations, were elucidated by extensive NMR, MS, and ECD
analyses. Compounds 1 and 2 showed promising inhibitory activity against six tested bacterial
strains, including methicillin-resistant coagulase-negative staphylococci (MRCNS), with MIC values
ranging from 3.1 to 12.5 μM.

Keywords: anthraquinone derivatives; GNPS; Nocardiopsis aegyptia; MRCNS

1. Introduction

Saliniquinones are renowned antibiotics featuring a typical anthraquinone-γ-pyrone
skeleton [1] and a side chain with different substituents, such as methyl and allyl groups.
Since being first described in 1956, [2] more than 50 saliniquinone derivatives have been
isolated from various genera, mainly Streptomyces. As optically active metabolites, most
of them featured R configuration at C-15, with only six derivatives assigned as having
S configuration naturally. Saliniquinones show various biological activities, including
cytotoxic [3], antimicrobial [4], and DNA synthesis inhibitory effects [5], etc.

During our efforts in obtaining new bioactive metabolites from actinomycetes,
Nocardiopsis aegyptia HDN19-252 was selected for the intriguing UV absorption of EtOAc
extract. A comprehensive examination of EtOAc extract using the Global Natural
Product Social Molecular Networking (GNPS) platform [6,7], LC-MS-UV, and MarinLit
database indicated that the strain N. aegyptia HDN19-252 has potential saliniquinone
derivatives in the metabolite profile. Moreover, a number of nodes that could not
be retrieved in the GNPS platform [6,7] or other databases indicated the existence of
new saliniquinone analogues. Followed up by HPLC-UV and LC-MS profiles, three
saliniquinone derivatives and one new heraclemycin analogue (Figure 1) were isolated
from the crude extract of N. aegyptia HDN19-252. Among them, 1–3 represent the first
discovery of saliniquinones produced by Nocardia sp., and all of them possess the rare S
configuration at C-15. Compounds 1–4 were evaluated for antibacterial activity against
six bacterial strains, including methicillin-resistant coagulase-negative staphylococci
(MRCNS), B. subtilis, Proteus sp., B. cereus, Escherichia coli, and Mycobacterium phlei. As a
result, compounds 1 and 2 showed broad inhibitory effects. Herein, we report the details
of the isolation, structure elucidation, and bioactivities of these compounds.

Mar. Drugs 2021, 19, 575. https://doi.org/10.3390/md19100575 https://www.mdpi.com/journal/marinedrugs
101



Mar. Drugs 2021, 19, 575

Figure 1. Structures of 1–4.

2. Results

The actinomycete strain N. aegyptia HDN19-252 was isolated from an unidentified animal
(Figure S1) collected form the Antarctic sea. The strain was cultured under static conditions,
and the EtOAc extract (10.2 g) was fractionated by vacuum-liquid chromatography (VLC)
using an ODS column to obtain seven subfractions, which were further analyzed via the
GNPS web platform. A concentrated cluster with nodes attributed to subfractions 1–7 was
spotted within the whole molecular network (Figure 2a). Combining LC-MS-UV analysis and
the MarinLit database retrieval (http://pubs.rsc.org/marinlit, 15 June 2021) using the m/z
values of 389.067 and 425.124 suggested the reasonable candidate molecules heraclemycin
B [8] and bleomycin B [9]. Further analysis of the related molecular cluster indicated a series
of putative new saliniquinone-related analogues through MarinLit database and SciFinder
searches. Guided by LC-MS-UV, three undescribed saliniquinones, named saliniquinones
G-I (1–3), and a new heraclemycin E (4) were obtained by repeated separation by column
chromatography using silica gel, LH-20, and HPLC with an ODS column.

 
Figure 2. (a) Molecular network of all subfractions from Nocardiopsis aegyptia HDN19-252; (b) cluster
corresponding to compounds of the saliniquinone family observed in the molecular network.
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Saliniquinone G (1) was obtained as yellow powder with a molecular formula of
C22H18O7 deduced by HRESIMS, indicating fourteen degrees of unsaturation. The 1D
NMR data of 1 (Tables 1 and 2) are similar to those of saliniquinone F. [1] The difference
was the replacement of methyl at C-5 in saliniquinone F [1] by a hydroxymethyl (C-11,
δC 62.8, H2-11 δH 5.18) group, which was supported by the COSY correlation from OH-11
(δH 5.74) to H-11 (δH 5.18) and the HMBC correlation from H-11 to C-3 (δC 153.9), as well
as the replacement of an allyl group on C-15 by an ethyl group (Tables 1 and 2, Figure 3).
The absolute configuration of C-15 was determined as 15S based on the CD data, which
showed two negative Cotton effects at 267 nm and 372 nm (Figure S4), similar to those of
saliniquinone F [1].

Table 1. 1H NMR (600 MHz) spectroscopic data of 1–4 in DMSO-d6 (δ in ppm, J in Hz).

No. 1 2 3 4

4 8.55, s 8.55, s 8.01, s 7.60, s

6 7.73, d (7.5) 7.74, d (7.0) 7.73, d (6.3) 7.70, d (7.5)

7 7.81, t (8.0) 7.81, t (7.2) 7.81, t (8) 7.79, t (7.4)

8 7.43, d (8.8) 7.44, d (7.0) 7.44, d (8.4) 7.38, d (8.4)

11 5.18, d (6.3) 5.19, d (4.0) 2.93, s 2.28, s

13 6.49, s 6.54, s 6.22, s 3.00, m

14 - - - 1.07, d (7.2)

15 - - - 1.73, m, 1.34, m

16 1.61, s 1.51, s 1.85, s 0.88, t (7.5)

17 1.84, m
2.07, m 4.20, m 3.48, q (5.0) -

18
11-OH
15-OH
17-OH

0.83, t (7.5)
5.74, t
5.59, s

-

1.20, d (6.0)
5.73, t
5.42, s
4.67, d

1.22, d (5.2)
-
-
-

-
-
-
-

Table 2. 13C NMR (150 MHz) spectroscopic data of 1–4 in DMSO-d6 (δ in ppm).

No. 1 2 3 4

1 174.7, C 174.9 C 176.0, C 158.7, C
2 124.5, C 124.6, C 126.3, C 145.5, C
3 153.9, C 153.9, C 156.4, C 136.0, C
4
4a

119.3, CH
120.5, C

119.4, CH
120.5, C

125.6, CH
120.5, C

121.8, CH
114.9, C

5
5a

182.5, C
132.9, C

182.3, C
132.9, C

182.1, C
132.8, C

181.7, C
133.9, C

6 119.3, CH 119.3, CH 119.3, CH 120.0, CH
7 137.3, CH 137.3, CH 137.5, CH 138.1, CH
8 125.3, CH 125.3, CH 125.4, CH 125.1, CH
9
9a

161.9, C
117.5, C

163.3, C
117.4, C

161.8, C
117.4, C

161.9, C
116.6, C

10
10a

187.8, C
136.8, C

187.7, C
136.7, C

187.8, C
137.3, C

192.3, C
153.2, C

11 62.8, CH2 62.9, CH2 24.1, CH3 20.3, CH3
12 179.0, C 179.1, C 178.5, C 208.9, C
13 109.4, CH 110.2, CH 111.2, CH 48.2, CH
14 174.7, C 174.9, C 165.7, C 15.0, CH3
15 73.3, C 76.5, C 59.9, C 24.9, CH2
16 27.4, CH3 23.7, CH3 20.8, CH3 12.0, CH3
17 33.6, CH2 70.9, CH 62.2, CH -
18 8.5, CH3 17.4, CH3 13.7, CH3 -
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Figure 3. The key HMBC and COSY correlations in 1–4.

Saliniquinone H (2), obtained as red-yellow powder, has a molecular formula of
C22H18O8, according to the (−)-HRESIMS m/z 409.0931 [M−H]− (calcd. for C22H17O8,
409.0929). Examination of the NMR data (Tables 1 and 2) showed considerable resemblance
to those of 1. The differences between 2 and 1 were the presence of an additional hydroxyl
group at C-17 (δC 70.9) and the absence of one methylene on the side chain at C-15 (δC 76.5),
which was supported by the downfield shift of C-17 (Table 2) and the COSY correlation
from 17-OH (δH 4.67)/H-17(δH 4.20)/H3-18 (δH 1.20) (Table 1, Figure 3), as well as HMBC
correlations from H-18 to C-15 (δC 76.5) and C-17, H-17 to C-14 (δC 174.9), C-15, and
C-16 (δC 23.7), and H3-16 (δH 1.51) to C-14, C-15, and C-17. However, it was a challenge
to determine the absolute configurations of C-15 and C-17 due to a free rotation of the
C15–C17 single bond. Detailed analysis the ECD curve of 1 and saliniquinone C [1] allowed
us to draw the conclusion that the negative Cotton effect around 263 nm and 372 nm
indicated an S configuration. Accordingly, the hydroxy stereocenter at C-15 was an S
configuration due to its negative Cotton effect around 263 nm and 372 nm. Hence, there
are two relative configurations, named (15S*, 17S*)-2a and (15S*, 17R*)-2b, theoretically.
The 13C NMR chemical shifts for the two possible isomers were calculated at the B3LYP/6-
31+G(d)//B3LYP/6-311+G(d,p) levels and further checked by DP4+ probability [10,11].
The (15S, 17S)-2a isomer showed a striking predominance (100% probability) over the
(15S, 17R)-2b isomer (Figure S6), which allowed us to assign the relative configuration
of 2 as 15S*, 17S*. To determine the absolute configuration of C-15 and C-17 in 2, the
ECD calculations of the optimized conformation of (15S, 17S)-2 obtained at the B3LYP/6-
31+G(d) level were performed. The overall pattern of the experimental ECD spectrum was
in reasonable agreement with the calculated one of (15S, 17S)-2 (Figure 4), indicating the
absolute configuration of C-15 and C-17 in 2 as 15S, 17S.

Saliniquinone I (3) was obtained as yellow powder with a molecular formula of
C22H16O6 by HRESIMS. The 1D (Tables 1 and 2) and 2D NMR (Figure 3) data indicated
that 3 shares the same skeleton as 2. Instead of the hydroxymethyl group in 2, 3 has a
methyl group (C-11, δC 24.1) at C-3, which was supported by HMBC correlation from H3-11
(δH 2.93) to C-3 (δC 156.4) (Figure 3), and possesses an epoxide ring between C-15 (Figure 3)
and C-17, which is in agreement with the molecular formula as well as higher chemical shift
values of C-17 (δC 62.2 in 3 vs. 70.9 in 2) and C-15 (δC 59.9 in 3 vs. 76.5 in 2). The relative
configurations of C-15 and C-17 in 3 was evidenced by the NOESY correlations from H-17
(δH 3.48) to H3-16 (δH 1.85), which indicated 15S* and 17S* relative configurations of 3. To
determine the absolute configurations of C-15 and C-17, the optimized conformations of
(15S, 17S)-3 were obtained at the B3LYP/6-31+G(d) level and used for ECD calculations.
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The agreement of the experimental and calculated ECD curves (Figure 5) indicated the 15S
and 17S absolute configurations of 3.

 
Figure 4. Experimental ECD spectra of compounds 2 and the calculated spectra for (15S, 17S)-2.

 

Figure 5. Experimental ECD spectra of compounds 3 and the calculated spectra for (15S, 17S)-3.

Heraclemycin E (4) was obtained as a brownish oil with a molecular formula of
C20H18O5, as evidenced by HRESIMS. Comparison of the 1H and 13C NMR data of 4 with
those of the reported heraclemycin C [4] revealed that they shared a similar anthraquinone
skeleton. The difference between heraclemycin C and 4 is the substituent on C-2, being
2-methylhexanoyl in the former and 2-methylbutanoyl in the latter. This was confirmed
by the COSY correlations from H-14 (δH 1.07)/H-13 (δH 3.00)/H-15 (δH 1.73, 1.34)/H-
16 (δH 0.88) and HMBC correlations from H-13, H-14, and H-15 to C-12 (δC 208.9). The
absolute configuration of C-13 was determined to be S in 4 by comparison of the calculated
and experimental ECD spectra of 13S-4 (Figure 6).

 
Figure 6. Experimental ECD spectrum of compound 4 and the calculated spectra for (13S)-4.
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The new compounds (1–4) were evaluated for antibacterial activity against six bacterial
strains, including methicillin-resistant coagulase-negative staphylococci (MRCNS), B. subtilis,
Proteus sp., B. cereus, Escherichia coli, and Mycobacterium phlei [12]. Compounds 1 and 2

showed inhibitory effects against six strains, with MIC values ranging from 3.1 to 12.5 μM
(Table 3). The structure activity relationship indicated the extra hydroxyl group at C-17
seems to play an important role for the inhibition activity (1 vs. 2). It was noted that the
MIC values of 1 and 2 against MRCNS were 8-fold stronger than that of the positive control,
ciprofloxacin (CPFX) [13].

Table 3. Inhibition effects of 1–4 against six pathogenic bacteria.

Compd.
MIC (μM)

MRCNS B. subtilis P. species B. cereus E. coli M. Phlei

1 6.2 6.2 12.5 6.2 6.2 6.2
2 6.2 6.2 6.2 6.2 6.2 3.1
3 >50 >50 >50 >50 >50 >50
4 >50 >50 >50 >50 >50 >50

CPFX 50 0.01 0.2 3.1 3.1 1.5

3. Materials and Methods

3.1. General Experimental Procedures

The UV spectra were recorded on a Hitachi 5430 spectrophotometer (Hitachi Ltd.,
Tokyo, Japan). The ECD spectra and optical rotations were measured on a JASCO J-715
spectropolarimeter and a JASCOP-1020 digital (JASCO Corporation, Tokyo, Japan) po-
larimeter, respectively. IR spectra were obtained on a Bruker Tensor-27 (Bruker Corporation,
Billerica, MA, USA). spectrophotometer in KBr discs. HRESIMS data were measured on a
Thermo Scientific LTQ Orbitrap XL mass spectrometer (Thermo Fisher Scientific, Waltham,
MA, USA). NMR spectra were collected on JEOLJN M-ECP 600 (JEOL Ltd., Tokyo, Japan
and Agilent 500 MHz DD2 spectrometers (Agilent Technologies, Palo Alto, CA, USA),
and tetramethylsilane was used as an internal standard. Sephadex LH-20 (Amersham
Biosciences, NJ, USA) and silica gel (Qingdao Marine Chemical Factory, Qingdao, China)
were used as stationary phases in column chromatography. An ODS column (YMC-Pack
ODS-A, 10 × 250 mm, 5 μm, 3 mL/min, YMC Co., Ltd., Kyoto, Japan) was used for HPLC.

3.2. Actinomycete Material and Fermentation

Nocardiopsis aegyptia HDN19-252 (GenBank No. MN822699) was isolated from an animal
sample collected from Antarctica (61◦42′28” S, 57◦38′22” W). The strain was aerobic and Gram-
positive and produced beige to light-yellow aerial mycelium, brown substrate mycelium, and
straight to flexuous hyphae but no specific spore chains [14]. It was deposited at the Key
Laboratory of Marine Drugs, the Ministry of Education of China, School of Medicine and
Pharmacy, Ocean University of China, Qingdao, People’s Republic of China.

Nocardiopsis aegyptia HDN19-252 was cultured in 1 L Erlenmeyer flasks containing
200 g of culture medium composed of 80 g of rice and 120 g of seawater, pH = 7.0 (in seawa-
ter collected from Huiquan Bay, Yellow Sea) at 28 ◦C for 25 days on stable fermentation. A
total of 130 bottles of the culture medium were extracted with EtOAc (3 × 20 L) to generate
a crude extract (10.2 g).

3.3. LC-MS/MS and Molecular Networking Analysis

LC-MS/MS analysis was performed using a UHPLC system (Ultimate 3000, Thermo
Scientific) combined with a hybrid Quadrupole-Orbitrap mass spectrometer (QExactive,
Thermo Scientific). As a mobile phase, 0.1% formic acid in H2O (A) and HPLC-grade
MeCN (B) were used in negative-ionization conditions. The elution gradient conditions of
LC-MS/MS were as follows, based on times (t): t = 0–1 min, hold at 10% B; t = 1–23 min,
increased to 100% B linearly; t = 23–26 min, hold at 100% B; t = 26–30 min, returned to
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initial conditions and hold at 10% B to re-equilibrate the column. The elution velocity
and injection volume were 0.25 mL/min and 3 μL, respectively. All MS/MS data were
converted to mzXML format files by MSConvert software (Ver. 3.0.20169, MSConvert,
ProteoWizard). Molecular networking was established by GNPS data analysis workflow
and algorithms. The spectral network files were visualized through Cytoscape (Ver. 3.8.0,
Cytoscape, NRNB.)

3.4. Isolation and Purification of Compounds

The crude extract was applied over a VLC column and eluted with mixtures of CH2Cl2-
MeOH to give nine fractions (Fr.1–Fr.9). Fr.3–Fr.7 was combined as Fr.A, which was separated
by HPLC using an ODS column to obtain ten subfractions (Fr.A.1–Fr.A.10). Fr.A.6 was
purified by semi-preparative HPLC to obtain 2 (3 mg, tR = 15 min). Fr.A.7 was purified
by semi-preparative HPLC to afford 4 (2.5 mg, tR = 13 min). Fr.A.8 was separated on the
LH-20 column to obtain three subfractions (Fr.A.8.1–Fr.A.8.5). Fr.A.8.3 was purified by semi-
preparative HPLC using a stepped gradient elution to obtain 1 (1.5 mg, tR = 25 min). Fr.A.8.2
was purified by semi-preparative HPLC to afford 3 (2.1 mg, tR = 27 min).

Saliniquinone G (1): yellow powder, [α]25
D −12 (MeOH); UV (MeOH) λmax 240 (1.6),

417 (0.3) nm; IR (KBr) νmax 3414, 2926, 1679, 1211, 1139 cm−1; ECD (c 1.5mM, DMSO λmax
(Δ ε) 264 (−1.01), 372 (−0.22) nm; 1H and 13C NMR data, Tables 1 and 2; HRESIMS m/z
393.0978 [M−H]− (calcd for C22H17O7, 393.0980).

Saliniquinone H (2): red-yellow powder, [α]25
D −83 (MeOH); UV (MeOH) λmax (log ε) 240

(1.8), 419 (0.3) nm; IR (KBr) νmax 3409, 2927, 1687, 1210, 1138 cm−1; ECD (c 1.5mM, DMSO
λmax (Δ ε) 264 (−8.63), 335 (−3.32) nm, 385 (−1.02) nm; 1H and 13C NMR data, Tables 1 and 2;
HRESIMS m/z 409.0931 [M−H]− (calcd for C22H17O8, 409.0929).

Saliniquinone I (3): yellow powder, [α]25
D −83 (MeOH); UV (MeOH) λmax 241 (1.5),

417 (0.3) nm; IR (KBr) νmax 3437, 2925, 1679, 1215, 1140 cm−1; ECD (c 1.5mM, DMSO λmax
(Δ ε) 264 (−4.00), 335 (−1.37) nm, 385 (−0.53) nm; 1H and 13C NMR data, Tables 1 and 2;
HRESIMS m/z 375.0881 [M−H]− (calcd for C22H15O6, 375.0874).

Heraclemycin E (4): brownish oil, [α]25
D −12 (MeOH); UV (MeOH) λmax 225 (0.5), 380

(0.3) nm; IR (KBr) νmax 3435, 2929, 1696, 1210, 1156 cm−1; ECD (c 1.5mM, DMSO λmax (Δ ε)
264 (−0.91), 335 (−0.86) nm; 1H and 13C NMR data, Tables 1 and 2; HRESIMS m/z 337.1075
[M−H]− (calcd for C20H17O5, 337.1081).

3.5. Computation Section

Conformational searches were run, employing Spartan’14, [15] based on the MMFF
(Merck Molecular Force Field). All conformers were further optimized with DFT calcu-
lations at the B3LYP/6-31+G(d) level by using the Gaussian 09 program [16]. TDDFT
calculations were performed on the five lowest-energy conformations for 2, the lowest-
energy conformation for 3, and the six lowest-energy conformations for 4 (>5% population).
ECD spectra were obtained on the program SpecDis 1.71 software [17] by using a Gaussian
band shape with a 0.25 eV width for 2, a 0.3 eV width for 3, and a 0.25 eV width for 4 from
dipole-length rotational strengths. The calculated spectra were shifted by −25 nm for 2,
32 nm for 3, and 0 nm for 4 to facilitate comparison to the experimental data.

3.6. Assay of Antimicrobial Activity

Antibacterial activity of 1–4 was evaluated against MRCNS, B. subtilis, Proteus sp., B. cereus,
Escherichia coli, Mycobacterium phlei by a conventional broth dilution assay. Six strains were
cultured in 100 mL Erlenmeyer flasks at 28 ◦C for 24 h. Then, the culture medium was diluted
to a concentration of 106 cfu/mL and added into 96-well plates. Ciprofloxacin was used as
a positive control. The detailed methodologies for biological testing have been described in
previous reports [14].
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4. Conclusions

In summary, four new anthraquinone derivatives were isolated from Nocardiopsis
aegyptia HDN19-252 under the guidance of GNPS. Compared with saliniquinone I (3),
saliniquinone G (1) and saliniquinone H (2) exhibited significant antibacterial activity
against six tested bacterial strains, suggesting that a free hydroxyl group is an important
part of antibacterial activity. Compounds 1–3 represent a rare class of saliniquinones
with S configuration at C-15, indicating a stereospecific ketoreductase in strain N. aegyptia
HDN19-252. Additionally, this is also the first report of saliniquinones from Nocardia sp.
Notably, 1 and 2 specifically inhibited the growth of a drug-resistant MRCNS strain with
an MIC of 6.2 μM, which was even stronger than the positive control, CPFX (50 μM). Our
results highlight the potential for screening and developing therapeutic molecules from
actinomycete-derived saliniquinones.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/md19100575/s1, Figure S1: the picture of Antarctica animal, Figure S2: Nocardiopsis aegyptia
HDN19-252; Figure S3: HPLC analysis of the crude extract of HDN19-252; Figure S4: the experimental
curves of 1 and saliniquinones F; Figure S5: correlation plots of experimental 13C NMR chemical
shifts versus the corresponding calculated data for 2a and 2b; Figure S6: sDP4+, uDP4+ and DP4+
probabilities (%) for compound 2a and 2b; Figure S7-S38: 1D and 2D NMR spectra, HRESIMS spectra,
IR spectra of compounds 1–4; Table S1: deviations between the calculated and experimental 13C
NMR chemical shifts for stereoisomers 2a and 2b.
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Abstract: Osteoarthritis belongs to the most common joint diseases in humans and animals and
shows increased incidence in older patients. The bioactivities of collagen hydrolysates, sulfated
glucosamine and a special fatty acid enriched dog-food were tested in a dog patient study of 52 dogs
as potential therapeutic treatment options in early osteoarthritis. Biophysical, biochemical, cell
biological and molecular modeling methods support that these well-defined substances may act as ef-
fective nutraceuticals. Importantly, the applied collagen hydrolysates as well as sulfated glucosamine
residues from marine organisms were strongly supported by both an animal model and molecular
modeling of intermolecular interactions. Molecular modeling of predicted interaction dynamics was
evaluated for the receptor proteins MMP-3 and ADAMTS-5. These proteins play a prominent role in
the maintenance of cartilage health as well as innate and adapted immunity. Nutraceutical data were
generated in a veterinary clinical study focusing on mobility and agility. Specifically, key clinical
parameter (MMP-3 and TIMP-1) were obtained from blood probes of German shepherd dogs with
early osteoarthritis symptoms fed with collagen hydrolysates. Collagen hydrolysate, a chondropro-
tective food supplement was examined by high resolution NMR experiments. Molecular modeling
simulations were used to further characterize the interaction potency of collagen fragments and
glucosamines with protein receptor structures. Potential beneficial effects of collagen hydrolysates,
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sulfated glycans (i.e., sulfated glucosamine from crabs and mussels) and lipids, especially, eicosapen-
taenoic acid (extracted from fish oil) on biochemical and physiological processes are discussed here
in the context of human and veterinary medicine.

Keywords: osteoarthritis; collagen hydrolysate; sulfated N-acetyl glucosamine; sialic acids; eicos-
apentaenoic acid (EPA); MMP-3; ADAMTS-5

1. Introduction

Osteoarthritis is the most common joint disease in humans and animals and shows in-
creased incidence in older patients. Generally, NSAIDs (Non-Steroidal Anti-Inflammatory
Drugs) are used in the treatment of osteoarthritis [1,2]. However, their use is problematic
in that side effects cannot be excluded and liver and/or kidney damage can be present,
particularly in geriatric patients [2]. Therefore, conventional painkillers are of concern and
alternatives with less or no side effects are being sought. Chondroprotective compounds are
considered to be well tolerated and can be administered unhesitatingly over longer periods
of time. In this context, glucosamine sulfate as well as a special diet with fish oil belongs to
a standard therapy in veterinary medicine. However, collagen hydrolysate has not been
used in the same way of so-called chondroprotective drugs such as glucosamine-based
nutraceuticals [3]. Nevertheless, collagen hydrolysates were analyzed on a submolecular
level in various conditions [4–10]. Clinical studies in which potential effects of collagen
hydrolysate and sulfated glucosamine are directly compared with each other and discussed
in relation to molecular mechanisms are still missing. Beneficial effects of collagen- and
proteoglycan-fragments may be related to specific interactions with receptors like integrins,
especially in the case of collagen fragments [4] and aggrecan [11–13]. Beside these specific
interactions, unspecific contacts between collagen-strands [14–18], proteoglycans and fatty
acids within the extracellular matrix of the cartilage could also play a crucial role when
explaining the therapeutic effects on a sub-molecular size level. Therefore, we assessed
the effect of the applied substances on the cartilage health of animals under study by a
combination of biophysical, biochemical, cell-biological methods and molecular modeling
tools. Such an arsenal of methods has previously been used to assess the beneficial thera-
peutic effects of other bio-medical-relevant macromolecules. These macromolecules are
hyaluronic acid, proteoglycans and phospholipid species [19], sulfated poly- and oligosac-
charides [20–23], polysialic acid and sialic acid containg oligosaccharides [24–28] as well
as lysozymes and anti-microbial peptides in complex with oligosaccharides [29–31]. We
analyzed structure–function relationships and focused on molecular modeling calculations
that would allow us to better understand the details of intermolecular interactions between
sialic acids and relevant proteins. The collagen hydrolysate under study [32–37] was exam-
ined with high resolution NMR experiments, especially, DOSY NMR [4,7]. Additionally,
molecular modeling approaches such as molecular docking and molecular dynamics simu-
lations were carried out in order to obtain more information about the interaction potency
of collagen fragments and sulfated GlcNAc with receptor structures. As a result of this
study we are now able to formulate efficient encapsulation strategies [38–40] for an oral
application of peptides and proteins [41–44]. The concept of this study was to provide a
comparative examination of the potential benefits of nutraceuticals as chondroprotective
agents. Thereby, we tested two specific collagen hydrolysates of bovine and fish origin,
sulfated glucosamine from marine organisms as well as fish oil in lipid and vitamin en-
riched dog food. Collagen-hydrolysate is not a standard therapy in veterinary medicine
for the treatment of osteoarthritis symptoms. We therefore carried out this study in both
dogs and horses which both suffer from similar osteoarthritis symptoms to compare its
efficacy to standard therapy (sulfated GlcNAc). Molecular modeling studies of the applied
nutraceuticals are essential since they provide valuable hints on how these substances
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could influence biochemical processes not only in dogs and horses but as an extension of
this study also in humans.

The aim of this work was to examine and compare the influence of collagen hy-
drolysate and sulfated glucosamine in dogs with osteoarthritis with regard to their ability
to alleviate pain and to reduce the associated clinical orthopedic symptoms. In addition, a
smaller control group (trailing group) was employed in order to avoid a placebo group.
This group was administered a special food developed for joint protection since, due to
ethical considerations, it was necessary that all dogs under study were treated for the
symptoms of early osteoarthritis. The study was combined with cell assays and molecular
modeling calculations with the information obtained, providing a foundation on how the
results of this clinical study may be applied or be useful in the treatment of other species
(e.g., horses) with the same or different collagen hydrolysates (e.g., from fish skin or from
jellyfish collagen).

2. Results

2.1. Drug Administration and Sta†istical Analysis od Dog Treatment

All dogs (Table 1) were examined at the beginning of our study for the characteristic
symptoms of osteoarthritis. The body condition score (BCS) of the dogs is defined according
to Mele [45]. Level 1 (cachectic) to level 9 (obese). Level 5 is considered ideal.

Table 1. Characteristics of studied dogs grouped according to their treatment. The table shows the individual dog number,
the race, the age, the gender, the weight, the disease (coxosteoarthritis—CA, gonosteoarthritis—GA), the degree of lameness
(DL) and the body condition score (BCS). The abbreviations regarding the gender of the dogs are: f: female, fc: female
castrated, m: male, mc: male castrated. * problem with mocing but neither CA nor GA was diagnosed.

Group 1: Collagen Hydrolysate

Dog Nr. Race Age Gender Weight Disease DL BCS

2 Golden Retriever 10 m 43.7 CA 2 8

4 Cairn Terrier 8 m 11 CA stiff
movement 5

6 Boxer mix 13 fc 30.5 CA 1 5

14 Boerboel 3 f 45 GA 2 4

15 Magyar Vizsla 6 fc 24 CA 2 6

19 Leonberger 4 f 51 CA 0 7

20 Mixed breed 8 mc 16 GA 1 8

21 Bernese Mountain Dog 9 fc 38.6 CA 2 6

25 German Wirehaired
Pointer 5 m 46 CA 0 7

26 Shepherd mix 13 fc 34.9 GA 2 6

27 Labrador 3 m 40 CA 0 5

33 Shepherd mix 11 mc 38 CA 3 7

34 German Shepherd 2 f 26 CA 0 4

35 Gordon Setter 10 m 29.4 CA 1 5

37 Poodle 13 fc 9.4 CA 3 7

40 Appenzeller 8 fc 37.8 CA 1 7

45 Samoyed 4 fc 24.8 * 1 4

49 German Shepherd mix 2 fc 23.4 CA 1 5

51 Mixed breed 14 mc 29.7 CA 1 5
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Table 1. Cont.

Group 1: Collagen Hydrolysate

Dog Nr. Race Age Gender Weight Disease DL BCS

52 Border collie mix 2 fc 23.1 GA 0 3

Summary: Ø 7.35

m: 5
mc: 3

f:3
fc: 9

Ø 31.1
CA: 15
GA: 4

Ø 1.23 Ø 5.7

Group 2: Glucosamine

Dog Nr. Race Age Gender Weight Disease DL BCS

1 Schnauzer mix 5 mc 26.5 CA 2 to 3 6

3 Newfoundland Dog 7 fc 50 GA 2 6

5 Mixed breed 12 f 28 CA 3 7

7 Mixed breed 12 mc 28 CA/GA 3 5

8 Bernese Mountain Dog 6 m 41 CA 2 6

10 Mixed breed 8 m 40 CA 1 6

12 Mixed breed 7 mc 17 CA/GA 1 7

13 Cairn Terrier 8 mc 11 CA stiff
movement 5

16 Beagle 4 mc 16.8 CA 1 6

18 Swiss Mountain Dog 4 m 55 CA stiff
movement 5

22 Labrador 10 mc 32 CA 2 6

23 Newfoundland Dog 10 m 59 CA 2 3

28 Boxer 3 f 30 CA 2 5

29 Kangal 2.5 fc 50 CA 0 6

36 Yorkshire Terrier 6 fc 6.4 CA 2 5

39 German Shepherd 9 m 45.6 CA 1 7

41 Shepherd mix 6 m 32.2 CA 1 5

42 Belgian Shepherd Dog 10 f 36 CA 2 4

44 Ridgeback 1 fc 27.5 CA 2 3

48 Mixed breed 4 mc 29.4 CA 1 3

50 Labrador 8 fc 24.8 CA 0 3

Summary: Ø 6,8

m: 6
mc: 7
f: 3
fc: 5

Ø 32.7
CA: 18
GA: 1

GA/CA: 2
Ø 1.45 Ø 5.2

GROUP 3: Commercial Joint Diet

Dog Nr. Race Age Gender Weight Disease DL BCS

9 Shepherd mix 8 fc 42 GA 1 5

11 Shepherd mix 7 f 35 GA 2 5

17 German Shepherd 10 fc 34 CA 2 6

24 Mixed breed 9 m 23 CA 1 4

30 German Shepherd–
Sennendog-Mix 5 mc 37 CA 1 7
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Table 1. Cont.

GROUP 3: Commercial Joint Diet

Dog Nr. Race Age Gender Weight Disease DL BCS

31 Mixed breed 5 fc 33 CA 0 6

32 German
Shepherd–Husky-Mix 13 fc 40.5 CA 2 7

38 Pomeranian 8 mc 8 CA 2 8

43 Mixed breed 4 mc 38 GA 2 5

46 Golden Retriever 5 mc 29 CA 1 5

47 Mixed breed 10 fc 26 CA 1 6

Summary: Ø 7.6

m: 1
mc: 4
f: 1
fc: 5

Ø 31.4
CA: 8
GA: 3

Ø 1.32 Ø 5.8

Fifty-two dogs were treated during the 16 weeks of the therapy period. The treatment
resulted in improvements in agility of animals found in all three groups. To assess pain,
one of the symptoms of OA, and any therapeutic progress, palpation was performed
independently for the left and right femoral joint throughout the study. Notably, a reduction
in tenderness/pain was observed as early as four weeks into treatment (Figure 1). After
16 weeks (the end of the therapy), all groups (including the control group which contains
only the half number of patients) exhibited a reduction in the sensitivity of their femoral
joints to manipulation.

A key indicator of therapeutic value in any trial is the effect of the substances under
study on the quality of life (QOL). We therefore assessed QOL using previously published
guidelines [46–49]. The QOL score of dogs is shown on Figure 2. All substances under
study (collagen hydrolysate, sulfated glucosamine as well as the special dog food enriched
with fatty acids and vitamins) resulted in positive effects on the QOL score. Collagen
hydrolysate led to the most promising results in terms of displaying moderate to minor
symptoms or no joint problems at the focus of study.

Our observations suggest that the collagen hydrolysate applied in this dog-study
contains bio-active fragments that have a beneficial effect on OA symptoms, similar to that
observed for sulfated glucosamine. Cellular studies show that the collagen fragments in
the hydrolysate are responsible for the effects within the extracellular matrix of the joint
tissue. These effects can be supportive, non-supportive or even detrimental [8–10]. In order
to establish the correlation between structure and function of bio-active components of the
collagen hydrolysate applied in our study (Fortigel from Gelita) we further characterized
the relationship by well-established protocols [4,7–10].
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Figure 1. Canine dog patients with beginning OA symptoms were examined at the different time frames, i.e., beginning (0)
and after 4, 8 and 16 weeks of treatment concerning pain in their (A) left or (B) right femoral joint. Pain symptoms during
palpation were examined for all dogs in the three groups according to a clinical standard protocol. Four scores are given: no
pain reaction (blue), minor (orange), strong (red) and extra strong pain reaction (dark red). N on the y-axis corresponds to
the total number of dogs within a group.
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Figure 2. Agility and mobility of dogs with beginning OA symptoms. Marks/color coding: light
blue—no problems, blue—minor problems, orange—moderate problems, red—large problems, dark
red—extremely large problems. The marks were given by the animal-holders at different time-points
(see Figure 1 for details) for the groups of dogs as indicated. These marks correlate with the QOL.
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The grades, i.e., the degrees of lameness (DL) were determined by a veterinary expert.
The orthopedic examination concerning joint pain symptoms (Figure 1) was carried out
first. By presenting the dogs on a plane, non-slip floor covering at walk and trot, the degree
of lameness was assessed. Both the orthopedic examination and the lameness assessment
were documented on the standardized examination sheets by the veterinarian. The entire
movement cycle (walk and trot) including walking upstairs was examined. Since dogs
usually display a mixed lameness, it was not recorded whether this was a support-leg-
lameness or a sloping-leg-lameness. The decisive factor is the degree of lameness, which is
differentiated into five different degrees (zero means not detectable). The grade of lameness
(DL) in dogs (Figure 3) with chronic musculoskeletal disorders is given on a scale from zero
to four. Of the total of 52 dogs, 9 dogs showed no lameness during the entire study period
(4 animals in the collagen group, 3 animals in the glucosamine group and 2 animals in the
joint diet group). All other dogs were permanently or intermittently lame or had a stiff gait.
DL 4 could not be determined in any of the test subjects. At week 0 (initial examination) a
stiff gait could be observed in 3 dogs, DL 1 was present in 16 dogs and DL 2 was present in
22 patients. DL 3 was prevalent in two dogs. At week 16 (final examination), DL 3 was
present in one dog, DL 2 in 15 animals, DL 1 in 11 animals and a stiff gait pattern in 2 dogs.
A total of 19 dogs show no lameness (DL = 0).

Four dogs had to be removed from the study and were therefore not included in the
final examination. No statistically significant differences were found in the distribution of
the DL between the groups (p-value for week 0: 0.35; week 4: 0.85; week 8: 0.36; week 16:
0.59). There were roughly the same number of dogs free of lameness in all groups, with
mild or moderate lameness. The lameness of the dogs decreased significantly during the
investigation period (p-value 0.015), i.e., at the end of the investigation period significantly
more animals were free of lameness than at the beginning of the investigation. The collagen
and glucosamine groups had a comparable composition in regard to the degree of lameness.
There were no statistically significant differences. Within the three groups, the distribution
of the DL was shown as presented in Figure 3. In the group following the joint diet, only
minor changes in the DL were found during the study period. During the final examination
three animals were free of lameness, while at the beginning there were two in group 3.
Within the other two groups, significantly more animals were free of lameness at week 16.
In the younger dogs (2 to 5 years old), a relatively large number of them were still running
free of lameness, despite the x-ray evidence of arthritis. With increased age of the animals,
the number of dogs showing lameness increased. In particular, the proportion of dogs with
DL 2 was frequently represented with advancing age. When comparing group 1 (collagen)
with group 2 (glucosamine) at the end of the study period 9 in group 1 and 7 in group 2 are
completely free from lameness.

The distribution of grades in regard to an assessment of complaints after invalidation/
burden is shown differentially by color at 4-week intervals during the sixteen-week study
period (Figure S1). The complaints of all dogs under study after prolonged exposure
were rated with an average mark of 2.92 at the beginning of the study period. In the
collagen, glucosamine and joint diet groups the average mark was initially 2.64, 3.38 and
2.16, respectively. At the end of the study period, the average mark of all dogs was rated
2.42. In the individual collagen, glucosamine and joint diet groups, the average marks were
1.93, 2.8 and 2.46, respectively. As the diagram shows, the dogs in the glucosamine group
tend to have more severe symptoms after prolonged exercise.
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Figure 3. Lameness of dogs with beginning OA symptoms. The grades were given by a veterinarian
not further involved in the study but viewing and evaluating the video footage at both the beginning
and end of the therapy. Grades/color coding: light blue—no problems (M0), blue—minor problems
(marked SM—stiff movement), yellow—moderate problems (M1), orange—large problems (M2),
dark red—extremely large problems (M3).

The distribution of jumping ability is shown differentially by color at 4-week intervals
during the sixteen-week study period (Figure S2). The average mark for jumping was
rated with a mark of 3.24 at the beginning of the study period. In the individual collagen,
glucosamine and joint diet groups the average marks were 3.0, 3.63 and 2.86, respectively.
At the end of the study period the average mark was 2.6, with the collagen, glucosamine
and joint groups displaying marks 2.34, 2.79 and 2.68, respectively. Figure S2 shows that
the dogs in the glucosamine group tended to have more discomfort when jumping with a
smaller number of animals jumping completely symptom-free.

The distribution of back pain sensitivity as revealed by the patient holders is shown
differentially by color at 4-week intervals during the sixteen-week study period (Figure S3).
The touch sensitivity of the back was rated with an average mark of 1.85 at the beginning
of the study period. In the collagen, glucosamine and joint diet groups the averages were
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1.89, 1.85 and 1.78, respectively. At the end of the study period, the average was 1.59
and characterized by a certain degree of homogeneity. At the same time the collagen,
glucosamine and joint diet groups attained marks of 1.69, 1.48 and 1.63, respectively.

The distribution of joint pain sensitivity is shown differentially by color at 4-week
intervals during the sixteen-week study period (Figure S4). The distribution of grades is
shown differentially by color at 4-week intervals during the sixteen-week study period.
The touch sensitivity of the affected joint was rated with an average mark of 2.19 at the
beginning of the study period. In the collagen, glucosamine and joint diet groups the
average was 2.63, 1.78 and 2.22, respectively. At the end of the study period the average
was 1.97. In the collagen, glucosamine and joint diet the sensitivity score was 2.4, 1.63 and
1.94, respectively. By a descriptive point of view, a decrease in the sensitivity to touch was
found in the collagen and glucosamine groups during the study. Overall, the difference in
joint pain sensitivity between the groups was not striking at any time of the investigation
(p-value 0.23 week 0 and 0.21 week 16). However, a possible trend is apparent with touch
sensitivity decreasing for all three groups over the course of the study (grade 1.5–2.49).

The HCPI (Helsinki Chronic Pain Index [50]) of dog patients at the beginning and after
16 weeks of treatment is summarized in Table 2. We compared our data with the results of
an article about the ameliorative effects of omega-3 concentrate in managing coxofemoral
osteoarthritic pain in dogs [51]. Scores in the HCPI range from zero to four points, with
four points corresponding to highest degree of pain. The points were averaged for each
group with the expectation that with successful therapy the average score would decrease.

Table 2. HCPI (Helsinki Chronic Pain Index) of dog patients at the beginning and after 16 weeks of
Collagen hydrolysate, or Glucosamine or Special dog-food treatment.

Behavior

Collagen
Hydrolysate

Glucosamine Special Dog-Food

Start
16
Weeks

Start
16
Weeks

Start
16
Weeks

Mind and mood 0.5 0.26 0.55 0.35 0.78 0.67

Vocalization 0.36 0.43 1 0.88 0 0

Joy of playing 1.31 1 1.72 1.35 1.25 1

Joy of running 1.5 0.76 1.83 0.94 1.78 1

Will to trot 1.56 1 1.89 1.47 1.33 0.89

Will to gallop 2.06 1.5 2.33 1.82 2.22 2

Jumping 2.25 1.71 2.72 2 2.22 2.11

Laying down 1.44 1.29 1.56 1.29 1.78 1.67

Standing up 2.13 1.79 2.61 2 2.33 2.22

Difficulty moving
after a long break 2.38 2.14 2.61 1.94 2.22 2

Difficulty moving
after exercise 2.07 1.58 2.94 2.5 2 2

The impact of drugs and nutritional supplements on the mobility of randomly selected
dogs of the study (Table 3) was evaluated and documented by video at both the beginning
and end of the therapy. Our current observations are in full agreement with a horse-study
recently published [35].
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Table 3. Characteristics of randomly selected dogs shown in video presentation.

Dog Name
(#Number)

Treatment Breed Age (Years) Weight (kg)

Buddy (#1) glucosamine Schnauzer-mix 5 26.5

Cora (#3) glucosamine Newfoundland Dog 7 50

Sarabi (#14) collagen hydrolysate Boerboel 3 45

Tobi (#20) collagen hydrolysate Mixed-breed 8 16

Emma special dog-food with
lipids and vitamins German shepherd-mix 7 35

Representative videos (mp4 format) for two patients from the sulfated glucosamine
group, two from the collagen hydrolysate group and one dog from the control group are
available for download from the Supplementary Material.

Dog-patient handlers were able to easily perceive that dogs in the early stages of OA
already exhibited difficulty with stair climbing. The videos clearly display this observation
and demonstrate that sixteen weeks of therapy had a positive effect on the ability of
these dogs to climb stairs along with no new outwardly discernable negative aspects or
progression of disease.

2.2. X-ray and Statistics

X-ray data were recorded from each dog at the beginning of the study. There was no
significant statistical deviation in the x-ray data when comparing the left with the right
hip joint (Figure S6). This is also the case when comparing the left and the right knee joint
(p-value left knee joint: 0.12; right knee joint: 0.13; left hip joint: 0.11; right hip joint: 0.15).
We also recorded x-ray data from selected dogs at the end of the study. The number of
dogs was limited due to the necessity of obtaining the permission of the patient holders.
Furthermore, sedation of the dogs was necessary for X-ray imaging and our goal was
always to reduce unecessary risk in the dogs under study. While the symptoms of pain
and the QOL improved for a subset of the dogs under study, the X-ray data revealed that
the damage to the bone in the affected joints was not improved with any of the treatments.

In relation to the X-ray analysis measurements of the left thigh circumference at the
time of the initial examination resulted in an arithmetic mean of 39.7 cm (all patients
combined). The smallest value was 24 cm, the largest 56 cm. The standard deviation
was 8.1. A mean value of 38.5 cm was calculated for the collagen group, 39.6 cm for the
glucosamine group and 42.5 cm for the joint diet group. At the final examination, the values
were recorded in 46 patients. The mean value was 41.1 cm; the wingspan ranged from
21 cm to 57 cm. The mean value for the collagen group was 40.4 cm, for the glucosamine
group it was also 40.4 cm and for the joint diet group it was 44.0 cm. The right thigh
circumference at the time of the initial examination averaged 39.6 cm. In the collagen group
it was 38.4 cm, in the glucosamine group it was 39.6 cm and in the joint diet group it was
42.2 cm. The smallest value was 24 cm, the largest 57 cm. During the final examination,
the arithmetic mean of 40.98 cm was determined for all tested patients, 40.5 cm for the
collagen group, 40.1 cm for the glucosamine group and 43.9 cm for the joint diet group.
The wingspan ranged from 21 cm to 57 cm. The mean difference between the right and left
thigh muscles at the initial examination, all groups combined, was 1.1 cm. The wingspan
ranged from no difference up to 6 cm. In the collagen group the mean value was 1.3 cm, in
the glucosamine group 0.9 cm, and in the joint diet group 1.1 cm. At the final examination,
the arithmetic mean in the aggregation of all groups was 0.45 cm, in the collagen group
0.47 cm, in the glucosamine group 0.42 cm and in the joint diet group 0.5 cm. For the size
of the left thigh muscles, the p-value for time was 0.0037 and the p-value for the groups
was 0.67, i.e., there were only small differences between the groups that are not statistically
significant. With regard to time, however, significant differences could be found, which
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means indicating a statistically significant increase in muscle size during the study period.
The size of the right thigh muscles was similar. There were no statistically significant
differences between the groups (p-value 0.68). Here, too, there was a significant increase
in muscle size over time (p-value 0.01). The difference between the right and left thigh
muscles (delta value) also shows no decisive differences in relation to the two main groups
(p-value 0.33). Over time, however, there was a statistically significant reduction in the
difference between right and left muscle circumference (p-value 0.0001).

X-ray data and measurements of the muscle circumferences provide physically mea-
surable data, however, observation concerning pain symptoms and the mobility are also of
high importance in the evaluation of the efficacy of nutraceuticals. The data were collected
by the patient-holders (Figure 2 and Figures S1–S5) but also by experienced veterinarians
(Figures 1 and 3) at the four examination times (initial examination, first examination—4
weeks, second examination—8 weeks, final examination—16 weeks).

2.3. Cell Biology Tests and Blood Parameters

The differentiation of canine as well as of equine chondrocytes was studied in the
absence and in the presence of collagen hydrolysates and proteoglycan fragments. The
distinct time-dependent differentiation pattern (e.g., with respect to the known sialic acid
galactose linkage at the end of the saccharide chains of the corresponding glycoproteins is
well established [24], and can be used to test the respective impact of various substances in
cell culture very precisely [10]. A representative image displaying the expected pattern for
equine chondrocytes grown on collagen is presented in Figure 4A.

 

Figure 4. (A) Equine chondrocytes were grown on collagen media. The cell nuclei are highlighted by DAPI staining with
the growing collagen strands around the nuclei stained in light green. (B) The polysialic acid molecules on progenitor cells
from the subventricular zone of the mouse brain are colored in red. The glia cells are colored in dark green.

The induction of multi-directional differentiation processes of equine and canine chon-
drocytes strongly depends on the kind of collagen hydrolysate [10], as shown in Figure 4A
with the collagen hydrolysate under study. Furthermore, the nerve cell progenitor assay
can act as a test system to control the sialic acid dependent impact of collagen fragments on
cell migration and differentiation [24,26,52,53]. Figure 4B shows an example of a progenitor
cell assay from cells of the subventricular zone of the mouse brain. This indicates that sialic
acid staining is a feasible method to control the collagen dependent differentiation of glia.

Blood samples were analyzed for a homogenous group of dog patients (23 German
Shepherd dogs) in which collagen hydrolysate was tested as a food supplement. Previous
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studies were focused on a correlation between MMP-3 plasma levels and MMP-3 synovia
levels for dogs suffering from osteoarthritis [46,47]. Since MMP-3 is a highly proteolytic
enzyme, enhanced breakdown of cartilage tissue in the German shepherd dog OA group
could occur via degradation of collagen types II, IX, X [54] and aggrecan [55]. Additionally,
TIMPs are known inhibitors of MMP within tissues. We therefore examined MMP-3
(Figure 5A) and TIMP-1 levels (Figure 5B) in a back-to-back study of 23 German Shepherd
dogs (guard and protection dogs of the police) which were fed over a time of 8 weeks
with the same collagen hydrolysate provided to the 20 dogs in the collagen hydrolysate
group described above. The analysis of MMP-3 and TIMP-1 levels (presented in Figure 5)
was performed in accordance with Parkkonen et al. [56]. Notably, MMP-3 levels were
significantly reduced (p = 0.01) after 8 weeks of treatment. We did not find a significant
alteration in TIMP-1 levels during this same period.

Figure 5. (A) MMP-3 and (B) TIMP-1 levels in 23 German shepherd dogs with early OA in which their diet was supplemented
with collagen fragments. The concentration values (different scaling for MMP-3 and TIMP-1) at the y-axis correspond to
ng/mL. Shown are the levels at the beginning and after 8 weeks of treatment. Data in box plots are presented as medians,
25th and 75th percentiles (boxes), and 10th and 90th percentiles (whiskers).

The data presented here also support the data gained earlier at Tierärztliche Hochschule
Hannover [49]. Our results suggest that sulfated and non-sulfated glucosamines and small
collagen fragments may have a direct influence on the activity of matrix metalloproteinases.
Given this result, allosteric inhibition and stimulation as well as competitive inhibition
were considered as an additional mechanism to be investigated when using collagen
hydrolysates or proteoglycan fragments, i.e., sulfated and non-sulfated glucosamines
as nutraceuticals.

2.4. NMR Analysis of Fortigel Collagen Hydrolysate

Our studies indicated that pain reducing effects are detectable by an evaluation of
the mobility and agility of the animals under study. Furthermore, biochemical parameters
are also altered as found in our analysis of the blood-probes with respect to osteoarthritis
markers (e.g., TIMP-1, MMP-3). These observations are probably related to the occurrence
of certain bio-active collagen fragments within the hydrolysates. It was therefore of interest
to determine whether the positive effect on cartilage health for dog patients with beginning
osteoarthritis symptoms can be correlated with the applied collagen fragment mixture. We
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therefore conducted TOCSY, NOESY and DOSY NMR experiments as described previously.
Since the collagen hydrolysates differed in their composition, we further characterized
them to provide a more detailed molecular analysis. In the present study, we used TOCSY
and NOESY experiments to identify specific amino acid residues (e.g., Arg residues) of
these bio-active compounds (Figure 6). This type of analysis allowed us to characterize
the collagen hydrolysate unambiguously. The NMR results indicate that the size-range of
the collagen fragments in the collagen hydrolysate food supplement is between 2.9 and
8.1 kDa, with no triple helical collagen structures present. Since the collagen hydrolysates
differed in their composition, we further characterized them to provide a more detailed
molecular analysis. In the present study, we used DOSY to identify specific amino acid
residues (e.g., Arg residues) of these bio-active compounds (Figure 7). This type of analysis
allowed us to characterize the collagen hydrolysate unambiguously.

Figure 6. NOESY NMR spectrum of the collagen hydrolysate Fortigel® from Gelita applied in our dog study. F1 and F2 are
the frequency axes which display both the chemical shifts of the aromatic- and NH-region of the collagen protons (in ppm).
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Figure 7. (A,B) Parts of a two-dimensional DOSY spectrum of the used collagen hydrolysate, Fortigel®. The aromatic- and
NH-region (A) as well as the aliphatic region (B) were used to determine the diffusion constant. F2 displays the chemical
shift of the collagen protons (in ppm). F1 is the frequency axis which provides information about the diffusion constant of
the collagen fragments.
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2.5. Molecular Modeling

We utilized the available PDB structural data for MMP-3 (2JT6.pdb) and ADAMTS-
5 (2RJQ.pdb) as the starting geometries for molecular modeling tasks. Although their
experimental geometries also exhibit ligands in their binding sites, we were also interested
in how sialic acid and GlcNAc in standard and sulfated forms can bind to MMP-3 and
ADAMTS-5. Thus, we were equally interested in the prediction of all possible binding sites
(BS) for these two proteins. Three binding sites were predicted using the SiteMap program
for MMP-3, whereas the prediction of BS for ADAMTS-5 was three times higher. The
number of predicted binding sites is in agreement with the size/weight of these proteins
(18.54 kDa for MMP-3 and 42.84 kDa for ADAMTS-5).

In the next step, we calculated how N-Acetyl glucosamine (GlcNAc) and N-Acetyl
neuraminic acid (Neu5Ac) (both in standard and sulfated forms) can bind into all predicted
binding sites. We used the Glide program to determine binding poses and the energetics of
binding for the four carbohydrates.

The Glide analysis for all binding sites and all carbohydrates resulted in more than
one thousand protein–ligand complexes. Table 4 presents the lowest energy binding poses
for MMP-3 and ADAMTS-5.

Table 4. Summary of the lowest docking scores for carbohydrate–protein complexes for all predicted
binding sites. The lower value in the comparison standard versus the sulfated form of the carbohy-
drates is shown in italics; the lowest binding scores in comparison to the four carbohydrates in the
particular binding site are highlighted in bold. Carbohydrates bound to the MMP-3 binding site and
three preferred binding sites for ADAMTS-5 (marked *) are visualized in Figure 8.

Docking Score (kcal/mol)

Protein
PDB
Code

Binding
Site

GlcNAc GlcNAc-sulf Neu5Ac Neu5Ac-sulf

MMP-3 2JT6
BS1 −8.16 −8.23 −11.48 * −8.76
BS2 −9.20 −9.12 −8.68 −9.43 *
BS3 −5.24 −6.27 −6.88 −7.42 *

ADAMTS-5 2RJQ

BS1 −6.28 −6.96 −7.61 −8.09*
BS2 −7.05 −7.94 −9.00 −9.22 *
BS3 −5.94 −5.45 −5.87 −5.78
BS4 −7.25 −9.16 −8.61 −9.35 *
BS5 −6.99 −5.73 −8.61 −7.73
BS6 −4.47 −4.89
BS7 −7.07 −7.31 −8.35 −8.88
BS8 −6.07 −5.85 −8.86 −8.19
BS9 −6.68 −6.81 −8.82 −7.93
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Figure 8. Glucosamines in binding sites of (A) MMP-3 (2JT6.pdb) and (B) ADAMTS-5 (2RJQ.pdb). The protein–ligand
complexes are shown as a ribbon representation in the left set of figures; the protein surfaces (colored according the
electrostatic potential) zoomed into binding sites are in the middle set of figures whereas the details of the protein–ligand
interaction profiles are visualized in the right set of figures.
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The ribbon presentation for MMP-3 together with the ligand–protein interaction
analysis is illustrated in Figure 8A. Equivalent figures for ADAMTS-5 are presented in
Figure 8B.

It is interesting to note Neu5Ac is predicted to bind preferably (apart from BS3 of
ADAMTS-5) over GlcNAc. The sulfated forms of glucosamines in most cases bind better
than the unsulfated molecules. The exception is Neu5Ac in BS1 of MMP-3. This is a special
case (illustrated in Figure 8A-BS1) because this binding site appears below the protein loop
and the carbohydrate molecule also interacts with the amino acids of the loop.

The next modeling step dealt with explicit modeling of the proteins with collagen
fragments. We used the HEX program here to generate (based on shape and electrostatics
complementarity) around 100 protein–collagen complexes for both proteins. The lowest-
energy forms from the HEX modeling were used as the starting structures for molecular
dynamics (MD) simulations.

MD simulations were performed in a water environment in order to evaluate the
stability of the protein–collagen complexes. Figure 9 presents part of the results from a
50 ns simulation. The structure at the start of simulation plus 10 time-dependent structures
extracted from the saved simulation trajectory at 5 ns intervals were superposed and are
shown on Figure 9 in order to present the time-evolved conformational changes. The
“simulation quality analysis” of Maestro/Desmond (Figures 8C and 9A) indicated that the
standard deviation of all analyzed parameters like total energy, potential energy or volume
is below 0.01% of the average value variables that were a result of the MD simulations.

PLIP analysis and the consequent Access processing of the MD trajectory geometries
allowed a comparison of overall hydrogen bonding versus hydrophobic interactions for
both MMP-3/collagen and ADAMTS-5 collagen. Similar data were obtained with both
systems with hydrogen bonding predominating with an incidence of 68% for ADAMTS-5
and 66% for MMP-3 complexes. In comparison, hydrophobic interaction stabilization
accounted for 34% in the case of MMP-3 and 32% in the case of ADAMTS-5.

The carbohydrate entity present on the protein surface in the case of ADAMTS-5
interacts with the collagen structure as shown in Figures 8D and 9B. Accordingly, the
sulfate groups present at the glycan chains of proteoglycans can mediate interactions with
collagen—triple helix structures of collagen present in cartilage.
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Figure 9. Molecular dynamics simulation results of solvated MMP-3/collagen (starting structure based on 2JT6.pdb +
1EI8.pdb) and ADAMTS-5/collagen (starting structure based on 2RJQ.pdb + 1EI8.pdb) supramolecular complexes. (A) and
(C)—Simulation quality analysis of 50 ns DESMOND simulation as visualized in Maestro. Color coding: blue—total
energy of the simulated system; dark blue—potential energy; violet—temperature; black—pressure; dark green—volume.
(B,D)—Superposition of protein–collagen structures resulted from the MD simulations. Only selected structures (shown as
ribbons) of the supramolecular complexes saved in 5 ns time intervals are visualized. The ligands of the proteins are shown
in ball and stick models (grey carbons), whereas the GlcNAc present in ADAMTS-5 is shown with green carbons. The
ribbons for A, B, C chains of the collagen fragments are visualized grey; the ribbons of D, E, F chains are shown in orange.
The water molecules/ions present in the solvation box are not visualized.
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3. Discussion

The ability to treat early stages of osteoarthritis with minimal side effects is a prime
consideration in any treatment. Our study was focused on candidate dogs with early onset
osteoarthritis.

Symptoms of pain noted during palpation by the attending veterinarian, mobility
and agility marks evaluated by the patient-holders as well as an independent video-based
assessment of the mobility of all the dogs in the study are displayed in Figures 1–3. As
revealed by the data in the glucosamine group and even more clearly in the collagen
hydrolysate group: the lameness of dogs with mild symptoms clearly improved, Figure 3.
Intermolecular interactions of the glucosamine entity present on the ADAMTS-5 protein
surface (as presented in Figure 9B) can influence the triple-helical structure of collagen
present in the cartilage. Beside the administration of glucosamine sulfate the interactions
of collagen fragments with matrix metalloprotease–carbohydrate complexes underline the
importantance of glycobiological aspects of cartilage health.

A visible difference in the thigh musculature between healthy and diseased legs
clearly decreased in all three groups. Additionally, there was a striking reduction in pain
during palpation of the knee joint in both the collagen group and glucosamine groups.
During the study period, this was accompanied by a significant reduction in symptoms
while standing, climbing stairs, jumping and after prolonged strain. An obvious reduction
in touch sensitivity of the affected joint and the spinal cord, respectively, as well as an
obvious increase in running pleasure was also found in these two groups. Similarly, a clear
reduction in the symptoms while standing and a reduced touch sensitivity of the affected
joint and an increase in running pleasure was found in the joint diet group. This group
displayed minimal improvement in the other four parameters. The HCPI (Helsinki Chronic
Pain Index; Table 2) and the QOL (Quality of Live score) improved in all three groups. The
observed clinical improvements, particularly through the administration of glucosamine
sulfate and collagen hydrolysate, indicate a positive effect for these two compounds.

It was impossible to detect the effect of the standard dog food in this study. In order to
observe the effect of standard food a placebo group has to be created, comprising dogs fed
in an ordinary way. This was forbidden due the fact that the animals were sick and needed
to be treated. Consequently, group 3 was entitled as commercial joint diet group. It was
the fatty acid-related group where we expected healing success as well. The food in group
3 was changed completely (no collagen or glucosamine enrichment) and the dogs were
administered with power food only. The food for this group can be entitled as power food
because it was designed to contain valuable fatty acids. The feeding in group 1 and 2 was
different. The dogs obtained standard dog food but enriched with collagen hydrolysate
(Group 1) or sulfated glucosamine (Group 2). While the feeding within Group 2 or Group
3 matched standard feeding protocols, fish-oil-enriched collagen hydrolysate feeding is
more or less a novel protocol. Independently of the therapeutic options used for Groups
1 to 3, the beneficial effect of treatment (but slightly different) was monitored in all three
groups of the dogs.

Our combined clinical, cell biological, biochemical, biophysical and molecular model-
ing approach on canine and equine patients is a feasible strategy to answer a number of
questions related to collagen hydrolysates, sulfated glycans and lipids as chondroprotective
food supplements. Articular cartilage destruction is mediated by the loss of collagen type II
and proteoglycans and this loss is a characteristic feature of osteoarthritic (OA) symptoms.
Our results show that it is possible to correlate the influence of collagen hydrolysates on
cartilage tissue [32–34] through specific biochemical pathways and cell–biological pro-
cesses [4,7,8]. We found that collagen hydrolysates were able to alter the levels of MMP-3
without changing the level of TIMP-1 (Tissue Inhibitors of MetalloProteinases-1; data not
shown). In addition, we recognized the involvement of collagen hydrolysates and sulfated
glucosamine in several key biochemical processes which are directly correlated with carti-
lage health. As noted, collagen hydrolysates contain mixtures of collagen fragments of vari-
ous length. We show here that modeling is a useful tool in evaluating specific interactions in
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protein binding sites and interactions between these proteins and collagen fragments. The
impact of sulfation in the case of glucosamine is discussed here in detail. In comparison to
sulfated GlcNAc, we analyzed the interactions of sulfated Neu5Ac, which is an interesting
member of the sialic acid family with bio-medical relevance [24,25,27,28,30,57]. In addition,
the effect of chondroprotective collagen hydrolysate of fish or jellyfish origin on cell cul-
tures is similar to the effect of collagen hydrolysate of bovine origin used in the present dog
study. We note that the EU Community approval/registration of fish or jellyfish originated
collagen hydrolysate is not completed yet. No doubt further investigation on the impact
of these interactions on protein activity in relation to targeting diseases will be crucial in
further evaluating their effect on the extracellular matrix and therapeutic value.

Cartilage markers (MMP-3 and TIMP-1, Figure 5A,B) were analyzed over a time period
of 8 weeks from a homogenous group of 23 German Shephard dogs of nearly the same
weight. This was important in order to determine a daily dose of 20 g. One could argue
that a dose for smaller dogs with a lower body weight has to be adapted to these patients.
Since collagen hydrolysate and sulfated glucosamine are nutrition supplements without
any toxic effect, overdosing in smaller dogs theoretically could have led to increased
positive effects. This, however, was not observed during our study. Cell assays, molecular
modeling studies, examination of eight horses and one dog in a long-time study were
necessary in order to find out in which way our results can be extended to different species
(including humans) and to collagen hydrolysates from other resources (e.g., fish skin
and jellyfish). Therefore, Figure 4A,B is not shown in order to document a state before
and after a treatment with collagen hydrolysate. The effects of collagen hydrolysates
on equine cells have been documented in detail in the literature (Raabe et al., 2010). It
is also feasible to analyze the impact of collagen hydrolysate on the migration of nerve
cells (Zhang et al., 2016). In this context Figure 4B demonstrates that it was possible to
observe the differentiation of stem cells treated with collage hydrolysate by staining with
polysialic acid.

To figure out whether the positive effects of collagen hydrolysate may be detectable or
useful in other species that display osteoarthritis related problems in their movements, we
also treated selected horses (50 g/day for a normal-sized horse and 25 g/day for a smaller
horse e.g., a Shetland pony) In the case of a Holstein horse, a Hanoverian horse, an Arabian
horse, an American Quarter horse, a Trotter, an English Blood horse, a Shetland pony
and a Trakehner horse positive responses were detectable with corresponding methods as
discussed here for the dog patients.

Overall, all three therapies have a positive effect on dogs’ health, justifying their indi-
vidual use. However, the data presented here along with the supplementary data indicated
that sulfated glucosamine and collagen hydrolysate used as supplementary nutraceuticals
are more effective than high-quality dog food alone, with collagen hydrolysate and sulfated
glucosamine having similar positive effects on cartilage health. However, importantly
the data indicate that supplementing a dog’s diet with collagen has the greatest effect on
reducing lameness, thus suggesting that the goal of increasing collagen levels should be
incorporated into a treatment regime that targets the OA symptom of lameness.

4. Materials and Methods

4.1. Dog Osteoarthritis and Drug Administration

Dogs were chosen based on a thorough anamnestic workup, a general and an ortho-
pedic examination (including an X-ray examination) as well as a blood draw. Subsequently,
52 dogs were randomized into three groups. 20 dogs received collagen hydrolysate, 21
dogs received glucosamine sulfate and 11 dogs received the special diet. The animals in all
three groups were fed with the supplements or the special diet over a period of 16 weeks.
During this time, follow up examinations were carried out after 4, 8 and 16 weeks. Data
from a separate study of 23 German Shepard dogs were used in our study to analyze the
MMP-3 data over a time-period of 8 weeks. Furthermore, 8 horses (including a pony) were
examined in order to determine the efficacy of this treatment design in other species.
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Various dogs with early osteoarthritis (OA) were examined in a randomized clinical
study examining the therapeutic effect of nutraceuticals. Specifically, the impact of (A)
a collagen hydrolysate, (B) tablets of sulfated glucosamine and (C) a high-quality dog-
food, i.e., Hills-JD (containing vitamins and enriched with fatty acids, especially EPA)
on joint health was evaluated. The dogs were fed Hills-JD instead of a placebo, since
the dogs already displayed osteoarthritis symptoms and were therefore already being
treated accordingly. The main lipid-component of HillsJD is eicosapentaenoic acid (EPA)
which is enriched in sea-fishes such as salmon and herring. The administered peptides,
carbohydrates and lipids were delivered via the gastro-intestinal tract into the blood-
stream and administered in this way to the crucial target tissues in the organism. A dose
of 20 g collagen hydrolysate was administered per day and dog patient (based on the
daily collagen requirements in food for wolves). The dose was not reduced for smaller
dogs since a higher amount of this nutraceutical is completely harmless (as tested in a cell
biological assays).

Sulfated GlcNAc in the form of tablets, collagen hydrolysate from Gelita dry powder,
Hills JD high quality dog-food were used to target dogs’ osteoarthritis. Fish collagen
hydrolysate is produced by the skin of deep water ocean fish (cod, haddock and pollock).
The fish collagen (Norland Products Inc., Cranbury, NJ, USA) consisted primarily of alpha
1 and alpha 2 chains in a 2:1 ratio with a MW between 4.5 and 21 kDa [7,10].

The QOL-score (Quality of life) combines the mood of the animal, its mobility and
agility, joy of playing, sounds of pain and problems with climbing stairs. Dog-patient
handlers were provided with a questionnaire which evaluated the QOL score. In addi-
tion, to remove any perceived bias, a veterinary doctor, not involved in the study in any
other capacity, assessed video footage of the treated animals to provide an independent
QOL estimate.

4.2. Cell Biology Tests and Blood Parameters Determination

The cell biology tests used are the same as those described in our former publications
Raabe et al. [10], Zhang et al. [26] and Petridis et al. [53]. We focused on the impact of
collagen hydrolysates on the differentiation of chondrocytes as well as on the role of sialic
acids as contact structures of the cell surface as differentiation markers.

Blood samples were obtained from all dogs and horses under study in order to clarify
any existing medical condition. The blood samples were taken after stasis and disinfection
with 70% alcohol on the anterior vein cephalic with a 7.5 mL S-Monovette (Sarstedt) and
an attached cannula (Sarstedt). An amount of 16 IU served as anticoagulant Heparin.
The blood was centrifuged at 3000 rpm for 10 min after collection. A large blood count
(hematology), an organ profile and an IgG/IgM borreliosis antibody titer were created for
each dog in the Synlab Augsburg laboratory. Blood was drawn as part of the treatment.

The samples obtained were labelled and stored in a deep freezer until evaluation.
MMP-3: A mouse anti-dog stromelysin-1 monoclonal antibody MAC-084 (UCB Cell-

tech, Slough, UK) was used to coat the ELISA plates (Greiner Bio-One GmbH, Kremsmün-
ster, Austria) by incubation of 10 g/50 mL PBS buffer. After overnight incubation at 4 ◦C.,
the blood plasma samples were applied undiluted to the ELISA plates and incubated
at 4 ◦C for two hours. The second antibody, a rabbit anti-dog stromelysin-1 polyclonal
antibody (Biotrend Chemikalien GmbH, Köln, Germany) was added at a 1:8000 dilution
and incubated again for two hours at 4 ◦C. The last two-hour incubation at 4 ◦C was carried
out with a peroxidase-labeled goat anti-rabbit antibody (Sigma Aldricks, Saint Louis, MO,
USA) at a 1:20,000 dilution. The amount of bound peroxidase as a measure of the concen-
tration of MMP-3 present in the sample was determined using tetramethylbenzidine as
the peroxidase substrate. Three washing steps are carried out between each new antibody
coating in order to separate unbound antigens from the sample. The enzyme reaction was
stopped by the addition of sulfuric acid. Prostromelysin (UCB Celltech, Slough, UK) in a
concentration of 126 ng/mL was used as the standard. The resulting yellow color change
was measured at 450 nm in a Spectra Photometer (Tecan, Männedorf, Switzerland).
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TIMP-1: The ELISA plates (Greiner) were treated with an anti-dog TIMP-1 monoclonal
antibody MAC-080 (Celltech) in a concentration of 5.7 g/50 mL PBS buffer with incubation
overnight at 4 ◦C. The blood plasma samples were applied to the ELISA plates at a 1:7
dilution. After a two-hour incubation at room temperature on the Thermostar (13MG), a
rabbit anti-human TIMP-1 polyclonal antibody (Biotrend) in a 1:2000 dilution was used
as the second antibody. After a further incubation of two hours at room temperature
on the Thermostar, coating was carried out with a peroxidase-labeled goat anti-rabbit
antibody (Sigma) at a 1:4000 dilution. The amount of bound peroxidase as a measure of the
concentration of TIMP-1 present in the sample was determined using tetramethylbenzidine
as the peroxidase substrate. Several washing steps were carried out between each new
antibody coating in order to separate unbound antigens from the sample. The enzyme
reaction was stopped by the addition of sulfuric acid. Recombinant dog TIMP-1 was used
to generate a standard curve with a concentration range of 27.5 ng/mL. The resulting
yellow color complex was measured at 450 nm in a Spectra Photometer (Tecan) [49].

4.3. Statistical Analysis

Preliminary data processing started with Microsoft Excel (Office 2000 package, Mi-
crosoft, Redmond, WA, USA). The biomedical data of animals under study were evaluated
on the computers in the local computer network (LAN) of the Biomathematics and Data
Processing unit of the Veterinary Medicine Department of the Justus Liebig University in
Gießen. The statistical evaluations were carried out using the BMDP/Dynamic, Release
8.1 (Statistical Solutions Ltd., Cork, Ireland) [58] program package. Missing data in Tables
are marked with *. Consequently, the given entry is treated as a missing value by the
BMDP program. To describe the data, arithmetic means (x−), standard deviations (s),
minima (xmin), maxima (xmax) and sample sizes (n) were calculated and presented in a
table for quantitative, approximately normally distributed characteristics. The qualitative
characteristics were counted separately according to groups and presented in the form
of frequency tables. To statistically test the group and time influence for significance,
a two-factor analysis of variance with repeated measurements with regard to time was
carried out with the program BMDP2V in groups 1 and 2 with approximately normally dis-
tributed characteristics. If the values were missing, this was conducted using the BMDP5V
(so-called “forest test”). With regard to the quantitative characteristics, the group com-
parison of these two groups with normal distribution used the t-test and otherwise the
Wilcoxon-Mann–Whitney test (BMDP3D). For the semiquantitative characteristics, the
exact Wilcoxon-Mann–Whitney test using the “StatXact” program (V1, Cytel, Waltham,
MA, USA) was applied to compare the two groups. For the comparison of qualitative
characteristics, frequency tables were generated for all three groups with the program
BMDP4F. The qualitative characteristics were checked in the case of two expressions re-
garding significant correlations for each point in time only for groups 1 and 2 with the
exact test by Fisher. The Fisher–Freeman–Halton test was used for more than two values.
The “StatXact” program was used here (Cytel, 2010 [59]). The evaluation of the statistical
significance was based on the significance level α = 0.05; this means results with p ≤ 0.05
were given as statistically significant. In addition, the exact p-value was given, if possible.
Group 3, as a trailing group, was not included in the significance calculation.

4.4. Nuclear Magnetic Resonance (NMR) Spectroscopy

Proton NMR was applied to analyze the Fortigel collagen hydrolysate in terms of its
fragment size distribution (DOSY [7]) and possible identification of certain amino acid types
(TOCSY/NOESY). Mass-spectrometry and NMR previously provided a detailed molecular
analysis of the collagen hydrolysates under study [4,7–9]. In the NMR tubes, collagen
hydrolysates were dissolved at an amount of 3 mg in 0.5 mL water (90% H2O/10% D2O).
The NMR experiments were performed on a 600 MHz Bruker Avance III spectrometer
(Bruker, Karlsruhe, Germany) at 298 K. 2D-TOCSY experiments (DIPSI-2; mixing time 80
ms) and 2D-NOESY (mixing times 200 or 400 ms) were recorded with 512 (F1) × 1024 (F2)
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complex data points and a spectral widths of 7212 Hz (12 ppm). Water suppression was
performed using excitation sculpting and, per increment, 16 scans were accumulated with
an inter-scan recovery delay of 1.5 s. For processing we used zero-filling to 1024 (F1) ×
2048 (F2) data points prior to Fourier transformation, followed by baseline correction in
both dimensions. Spectra were calibrated on internal water.

4.5. Molecular Modeling

The structures of glucosamines, i.e., N-Acetyl Glucosamine (GlcNAc) and N-Acetyl
Neuraminic acid (Neu5Ac; also sialic acid) were downloaded from PUBCHEM (https:
//pubchem.ncbi.nlm.nih.gov/, accessed on 12 July 2019) in SDF format and imported into
the Maestro V. 12.3.013 (Schrödinger LLC, New York, NY, USA) [60] project table. Both
molecules were then sulfated using the Maestro molecular builder option. Their molecular
structures are presented in Scheme 1. An advanced conformational search for carbohydrate
side chain orientations were then carried out maintaining their 4C1 forms for GlcNAc and
GlcNAc-sulf and 1C4 for Neu5Ac and Neu5Ac-sulf ring conformations. The geometries
of five selected low-energy conformations of the four carbohydrates were ab initio (DFT
B3LYP 6-31G**) optimized (releasing all geometric parameters) with the Gaussian [61]
program (G09 version, Wallingford, CT, USA) and were then used as input ligands for
molecular docking into matrix proteins like MMP-3 and aggrecanases (e.g., ADAMTS-5),
present in the dog and horses organisms.

Scheme 1. Molecular structures of the carbohydrates in standard and sulfated forms. (A) 2-Acetamido-2-deoxy-
D-glucopyranoside (GlcNAc); (B) 6-O-Sulfoxy-2-Acetamido-2-deoxy-D-glucopyranoside (GlcNAc-sulf); (C) N-Acetyl-
Neuraminic Acid (Neu5Ac); (D) 9-O-Sulfoxy-N-Acetyl-Neuraminic Acid (Neu5Ac-sulf).

The atomic coordinates of MMP-3 (2JT6.pdb [13]), ADAMTS-5 (2RJQ.pdb [12]) and a
collagen fragment (1EI8.pdb [62]) structures were downloaded from the protein database
and imported into Maestro. All protein geometries were processed (adding missing atoms,
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fixing bond orders, assign partial charges) by “Protein Preparation Wizard” of the Maestro
program (V12.3.013, Schrödinger LLC, New York, NY, USA) [60].

The possible binding sites of MMP-3 and ADAMTS-5 were evaluated using the
SiteMap program (V3.9, Schrödinger LLC, New York, NY, USA) [63,64] of Schrödinger LLC.
The G09-optimized conformations of four ligands (Scheme 1) were docked into all SiteMap
predicted binding sites of MMP-3 and ADAMTS-5 using the GLIDE program [65–68]. While
flexible docking was considered for all side chains of the carbohydrates, the pyranose rings
were fixed in 4C1 for 1C4 forms as stated above. All protein–ligand complexes resulting
from GLIDE flexible were optimized (OPLS-2005 force field) and were tableted/ordered
according their GLIDE docking scores.

The HEX program [69] was used to generate and preoptimize the geometries of the
MMP-3/collagen and ADAMTS-5/collagen supramolecular complexes. From around 100
generated complexes the lowest-energy ones were selected for further molecular dynamics
(MD) studies.

These HEX-output files were imported into Maestro and were processed by standard
methods (as indicated above by “Protein Preparation Wizard”) to obtained the structures
prepared for MD runs using the Desmond [60,70] program The OPLS-2005 force field
(the up-to-date version of the OPLS force field family [71,72]) was used to carry out the
simulation studies. The protein–collagen complexes were initially solvated in Maestro
(SPC water model [73] with the water molecules added within a 1 nm buffer around the
proteins) and the resulting structures were then minimized and equilibrated for 5ns. The
final structures after equilibration were submitted for 50 ns NPT (pressure at 1.01325 bar)
molecular dynamics (MD) simulations with the Desmond program at 300 K. Molecular
geometries resulting from simulations were saved at 10 ps intervals and were used for fur-
ther analysis. These geometries (5000 altogether) from each simulation were exported into
pdb format and were used for analysis of interaction profiles using the PLIP program [74].
The xml files resulted from the PLIP calculation were imported into Microsoft Access for
analysis and data mining.

Schrödinger’s Maestro [60] was used for visualization of molecular structures, their
complexes and protein–carbohydrate ligand interaction profiles.

5. Conclusions

The experimental and computational methods applied were found to be useful tools
in providing valuable information on the relationship between therapeutic value and
mechanism. Such approaches will be key prior to these or other similar compounds being
adopted further as potential medical therapies.

Collagen hydrolysate and sulfated glucosamine and potentially the fatty acid and
vitamin rich food diet in the control group show similar benefits with respect to a treatment
of early osteoarthritis symptoms. The positive effects in all three groups seems to be
comparable, however, in contrast to sulfated glucosamine, collagen-hydrolysate provides
more options for an improved therapy. Collagen hydrolysates are defined mixtures of
short, long and medium-sized collagen fragments. Fortigel, used here, is a well-defined
collagen hydrolysate that can be considered the gold-standard. Our NMR and molecular
modeling techniques in combination with cell assays described here were essential in better
defining possible mechanisms contributing to the improvement of the dog-patients. Fur-
thermore, they provide a foundation for follow-up studies. These follow-up studies would
include further examining the effect of this treatment in other species (e. g. horses) and a
comparable analysis of various collagen hydrolysate compositions (e.g., fish skin, jellyfish).
We note that even if the collagen-hydrolysates are from one species their compositions can
be different depending on the formulation used by the supplier [8].

The positive effects we observed in the glucosamine (group 2) and the trailing group
(group 3) were not surprising given their known use in the treatment of osteoarthritis.
However, the clear and positive results in the collagen hydrolysate group (group 1) were
not predictable at the beginning of the study. During the 16 weeks study period muscle
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and leg circumferences increased and pain symptoms were significantly reduced with this
treatment. The study also clearly shows that there is variability among individual dogs,
with some reacting well while others react weakly to the nutraceuticals under study. Since
this may be based on the individual genetic makeup of the dog and subtle differences in
the stage of disease having a third option becomes a desirable option that may provide
added benefit to some animals. Additionally, sulfated glucosamine belongs to the standard
therapies in the treatment of early osteoarthritic symptoms while only limited information
exists about the molecular background of its beneficial effect, especially with respect to
the impact of the sulfate group. Additionally, in the case of collagen hydrolysate, which is
not part of a standard therapy, a number of structural questions which are related to its
therapeutic functions are still open. Therefore, we combined the feeding study with intense
molecular modeling calculations describing the stability of, e.g., complexes of MMP-3 with
the nutraceuticals of group 1 and group 2. These data have provided us with an initial
insight into unravelling key mechanisms of action for these compounds and avenues for
future study and for treatment.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/md19100542/s1: Figure S1. Assessment of Complaints after invalidation/ burden. Figure S2.
Jumping study of the dog patients. Figure S3. Back pain touch sensitivity of the dog patients.
Figure S4. Joint pain sensitivity of the dog patients. Figure S5. Joy of running marks of the dog
patients as revealed by the patient-holders. Figure S6. X-ray data of the left and right femoral joints
(A left; B right) obtained from each dog at the beginning of the study. Figure S7. Canine dog patients
with beginning OA symptoms were examined at the different time frames. Figure S8. Agility and
mobility of dogs with beginning OA symptoms. Figure S9. Lameness of dogs with beginning OA
symptoms. Video S1: Mp4 video file illustrating the behaviour of the dogs.
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Abstract: Solid-phase extraction embedded dialysis (SPEED technology) is an innovative procedure
developed to physically separate in-situ, during the cultivation, the mycelium of filament forming
microorganisms, such as actinomycetes and fungi, and the XAD-16 resin used to trap the secreted
specialized metabolites. SPEED consists of an external nylon cloth and an internal dialysis tube
containing the XAD resin. The dialysis barrier selects the molecular weight of the trapped compounds,
and prevents the aggregation of biomass or macromolecules on the XAD beads. The external nylon
promotes the formation of a microbial biofilm, making SPEED a biofilm supported cultivation process.
SPEED technology was applied to the marine Streptomyces albidoflavus 19-S21, isolated from a core of
a submerged Kopara sampled at 20 m from the border of a saltwater pond. The chemical space of
this strain was investigated effectively using a dereplication strategy based on molecular networking
and in-depth chemical analysis. The results highlight the impact of culture support on the molecular
profile of Streptomyces albidoflavus 19-S21 secondary metabolites.

Keywords: solid-phase extraction SPE; XAD resin; molecular networking; Streptomyces; specialized
metabolites; dereplication

1. Introduction

Specialized metabolites (also known as secondary metabolites) produced by living
organisms represent an inexhaustible source of molecules of biological interest to solve
current and future public health challenges. This area of research, especially in the field of
metabolites from micro-organisms, was accelerated by the development of genome-based
technologies [1,2]. The era of drug lead discovery from culturable bacteria is not nearing
its end, however its success relies on researchers’ ability to innovate in strategies used to
collect samples from the environment [3] and methods used to trap specialized metabolites
from culture media [4]. Nevertheless, one of the major persisting drawbacks is the isolation
of sufficient quantities of compounds to carry out chemical and biological investigations.

Among various concentration techniques, Amberlite XAD resin trapping of organic
compounds gained recent interest and finds application in plant [5,6] marine invertebrate [7,8],
and microbial [9–18] specialized metabolite extraction.

We have recently extended the exploitation of in-situ XAD-16 extraction of mycelium
forming microorganisms, actinomycetes and fungi [9–18], known as the major providers of
valuable bioactive compounds [19,20]. Compared to submerged cultivation, we showed
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that in-situ XAD-16 extraction significantly impacts the diversity and the yields of target
compounds [9,18].

Although this approach strongly facilitates the extraction of target products with
considerable savings in the use of organic solvents, application of in-situ XAD-16 extraction
to mycelium forming micro-organisms leads to significant entrapment of the resin beads
into the filamentous network, and complicates the separation of these two compartments.
As a consequence, during the elution step of the resin/mycelium mixture by appropriate
solvents, the analytical profile is often contaminated with undesired compounds, which
compromises the purification steps. The solid-phase extraction embedded dialysis (SPEED
technology) is based on a physical separation between the microbial biomass and the
resin used for in-situ solid phase extraction. It includes a two-layer barrier consisting of
an external nylon filter cloth (NFC) and an internal dialysis tube (DT) containing the resin
beads. According to the molecular cut of the DT, only molecules with appropriate molecular
weight can flow from the cultivation broth to the resin. This selectivity added to the ease of
recovering clean resin beads and eluate, makes SPEED technology an indisputable added
value to the study of microbial specialized metabolites. The SPEED technology is reported
in this paper for the first time and summarized in Figure 1.

Figure 1. Schematic representation of SPEED technology.

In order to develop and optimize SPEED technique, a case-study was needed.
An ongoing project from our consortium appeared to provide an ideal framework to-
wards this end. In our efforts to isolate and investigate micro-organisms from under-
explored ecosystems, samples from microbial mats called ‘Kopara’ were collected from
Rangiroa atoll, in French Polynesia. Kopara mats were previously described as vertically
organized cyanobacteria strata of 20 to 50 cm thickness. The Kopara geomorphology,
physico-chemistry and microbial diversity were previously reported [21–23], however only
bacterial pigments and exopolymers (exopolysaccharides and poly-β-hydroxyalkanoates)
were studied and were shown to be secreted by some Kopara microbial isolates [24,25].
Our running program is dedicated to the isolation, for the first time, of filament-forming
microorganisms, actinomycetes and fungi, from Kopara samples. To do so, 56 Kopara
samples and 37 other materials (water, animals) from different locations of Rangiroa atoll
at different depth from surface to −20 cm or more were collected (Figure 2).
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Figure 2. Kopara sampling location reported in this work.

Facing a large number of samples and to avoid the rediscovery of known compounds,
which is the major issue in natural product chemistry, the immediate identification of
known compounds and prioritization of interesting strains that produce potential new
compounds deserve intense effort. To meet this challenge, the dereplication strategy using
metabolomics profiling based on mass spectrometry has been employed to perform the
potential interesting strain screening program. Indeed, molecular networking approach
allows the organization of untargeted tandem mass spectrum datasets according to their
spectral similarity and generates clusters of structurally related metabolites. This approach
has become a powerful tool for navigating the chemical space of complex biological
systems and can be used to view the chemical constituents of a wide variety of extracts in
a single map [26].

2. Results and Discussions

2.1. Collection Site and Strain Identification

Starting from the Kopara sample (see Section 4), the stain Streptomyces albidoflavus
19-S21 was isolated and purified by serial inoculation on Potatoes Dextrose Agar slants.
From the phylogenetic analysis based on the 16S rRNA sequence, the isolate was found
in the albidoflavus group (Figure 3). Since all of the species in this clade (S. canescens,
S. champvatii, S. coelicolor, S. felleus, S. globisporus ssp caucasicus, S. griseus ssp. solvifaciens,
S. limosus, S. odorifer, S. sampsonii) were previously classified as heterotypic synonyms of
S. albidoflavus [27], we have named the isolate Streptomyces albidoflavus 19-S21 with the
GenBank® accession number MW446171.
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Figure 3. Maximum-likelihood tree obtained from 16S rRNA sequence alignment of the isolate
and Streptomyces spp. of the albidoflavus group of species and close relatives selected from [28].
Bootstrap values are reported as percentages (1000 replicates). GenBank® accessions are mentioned
between brackets.

2.2. S. albidoflavus 19-S21 Cultivation according to SPEED Technology

As described above, the main advantage of SPEED technology is the physical sepa-
ration of the strain mycelium and the XAD-16 resin beads, used for in-situ SPE. The DT
barrier is a second advantage as it discriminates between large biomolecules and secondary
metabolites. The 1.4 kD cut-off of the dialysis membrane guarantees permeability to all
families of specialized metabolites [29].

Beyond these substantial improvements, we made an unexpected and intriguing
observation which was not only reproducible for the strain S. albidoflavus 19-S21, but
also for other actinomycetes and fungi (S11). Thus, compared to the submerged culti-
vation in which the mycelium/resin mixture is homogenously spread in the medium
(Figure 4A), under SPEED condition, the mycelium formed a dense and stable biofilm
attached to the external nylon filter cloth (NFC), with almost no mycelium floating in the
medium (Figure 4B). When the SPEED tube was recovered, the biofilm remained sticking to
the NFC (Figure 4D,E), and was removed by gentle scraping under running water, before
removing the dialysis tube (DT). Therefore, SPEED technology cannot be assimilated to
a classical submerged cultivation as the biomass adopts a biofilm type organization.

At the end of the SPEED cultivation period and the removal of the NFC, the DTs
were recovered easily and cleanly (Figure 5). The subsequent steps consist of the classical
recovery of the resin and metabolite elution as reported in Section 4.
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Figure 4. Difference between submerged and SPEED cultivation of S. albidoflavus 19-S21 in PDB
medium: (A) 11 days submerged cultivation with in-situ SPE with XAD-16 resin; (B) 11 days SPEED
cultivation; (C) SPEED tube after removal of the biofilm layer; (D) SPEED tube with the biofilm layer;
(E) Focus on D showing the biofilm layer attached to the NFC.

 

Figure 5. Dialysis tubes (DT) recovery: (A) after SPEED cultivation of S. albidoflavus 19-S21 in PDB
medium; (B) Focus showing colored resin inside the DT.

Microbial biofilm association to nylon nets and cloth is well documented, mainly in
the aquaculture context [30] and treatment of polluted water [31]. Nylon was also used to
support and promote algal biofilm growth [32].
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2.3. Molecular Networking-Based Chemical Exploration of S. albidoflavus 19-S21
Specialized Metabolites

The strain was cultivated in different conditions (see Section 4). Resins and media
were extracted with ethyl acetate and methanol consequently. In LSF, insignificant quantity
and diversity of metabolites were observed. This was also the case for all methanol extracts.
On the other hand, the ethyl acetate extracts of the resins showed various metabolic HPLC
profiles. In order not to miss any compound, all ethyl acetate and methanol extracts of the
resins were analyzed.

SPEED extracts were submitted to UPLC-MS/MS profiling and the resulting data
were processed following the feature-based molecular networking workflow [33]. The
global molecular network was color-tagged according to multiple culture conditions
and the solvents used for the extraction. The MS/MS data were annotated using the
GNPS spectral library (Figure S1) [34]. The network consists of 2714 nodes, consisting of
136 clusters and regrouping nodes with related structures.

All library hits resulting from GNPS dereplication are listed in Table S1 in Supporting
Information. The nodes with annotation are also visualized in Cytoscape® 3.7.2 [35]
and filled by different color codes to easily distinguish the dereplicated nodes from the
non-dereplicated ones (Figure S2).

According to the global molecular network, the strain specialized metabolites varied
according to the different culture conditions. One cluster of surugamides (Figure 6A) has
been found to be produced only in solid culture Surugamides belonging to a known family
of cyclic octapeptides, initially isolated from a Marine Streptomyces sp. JAMM992 and
has also been proved to possess anticancer and antifungal properties [36]. One cluster
of desferioxamines (Figure 6B), which are siderophores produced by bacteria, has been
found mainly in methanol extracts and produced by the strain in liquid culture condition.
Antimycin A1 along with three other antimycins (antimycins A2, A3, and A4) were anno-
tated and produced by the strain in different culture conditions (Figure 6C). Antimycins
include various scaffolds due to the differences in the size of the lactone and its substi-
tution patterns. These compounds have been described for many Streptomyces sp. and
exhibited interesting biological activities, such as antifungal, insecticidal, nematocidal, and
piscicidal activities, because of their ability to block the electron transport in mitochondria.
Several antimycin classes have also been reported to possess potent anti-inflammatory and
antitumoral activities [37,38].

One unannotated cluster (D in Figure 6) has been detected on the global molecular
network. A compound in this cluster at m/z = 335.1459, attracted our attention because of its
salient production in SPEED culture condition (node encircled in red color in Figure 6). As
a way to dereplicate this node, the molecular formula related to its exact mass was gen-
erated and then searched against the AntiBase® database (Wiley) and the Dictionary of
Natural Products®. The database search yielded 125 hits with only one molecule, tetrode-
camycin, being reported from the species Streptomyces nashvillensis MJ885-mF8 [39]. All the
125 hit compounds and their biological source are listed in Table S2.

2.4. Isolation of Representative Compounds

In order to confirm HRMS-based dereplication of the compounds at m/z = 335.1459
along with the annotations provided by the GNPS, we used the resin extract to purify
the representative compounds of major molecular node. S. albidoflavus 19-S21 was culti-
vated according to two procedures involving XAD-16 in-situ extraction during the culture;
LSF-SPE [9] and SPEED technology. The resins were extracted by ethyl acetate followed
by methanol, and the aqueous filtrated medium was concentrated under vacuum. These
three fractions were analyzed by thin layer chromatography (TLC) and HPLC confirm-
ing that almost all the formed metabolites were recovered in the ethyl acetate extract.
Figure 7 represents a superposition of the ELSD chromatograms of LSF-SPE (dashed
line) and SPEED extracts (continuous line). One of the major compounds at 20.2 min
is produced only in SPEED condition (Figure 7A,B). The molecular formula was estab-
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lished as C18H23O6 based on its HR-ESIMS data ([M + H]+ at 335.1496) (Figure S5). The
compound was identified as tetrodecamycin by comparison of its 1H and 13C NMR data
with those reported in literature (Figures S6 and S7) [39]. The other major non-polar
compounds eluted after 40 min were also investigated. These compounds were char-
acterized as fatty acids by comparison with literature [40]. The experimental data of
14-methylpentadecanoic acid, which is one of the fatty acids, were mentioned in the
Supplementary Information (Figures S8–S10). The compounds between 22 and 40 min
belong to the antimycin-type depsipeptides. To demonstrate the performance of the
dereplication approach based on molecular networking, compound with m/z 507.2339
(Figures 6C and 7A) was further isolated (Figure 6C) and fully characterized. The structural
data are reported in the experimental section and compared to literature as actinomycin A4a
(Figures S3 and S4) [41,42].

Figure 6. The molecular network built from different crude extracts of the strain Streptomyces albidoflavus. Some clusters
with annotation are highlighted in this figure: (A) Cluster of surugamide family; (B) Cluster related to desferrioxamines;
(C) Antimycin-type depsipeptide clusters; and (D) Unannotated cluster mainly produced in SPEED culture condition. In
this figure, EA stands for ethyl acetate and M stands for methanol. The control condition represents different ethyl acetate
and methanol extracts of resin XAD from different culture conditions and also those of PDB agar, which were not inoculated
by the strains.
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Figure 7. Comparison of HPLC profiles under SPEED and LSF-SPE culture conditions: (A) HPLC-ELSD analysis of the
SPEED (continuous line) and LSF-SPE (dashed line). According to the UV spectrum of compounds we can delimit three
zones: (B) containing mainly tetrodecamycin; (C) zone containing mainly antimycin-type depsipeptides; and (D) fatty
acid zone.

3. Discussion

Molecular networking offers the possibility to map additional information, such
as biological, analytical, and taxonomic details over networks [43]. Hence, the strain
Streptomyces albidoflavus 19-S21 was prioritized for further study based on its chemical
originality after examination of a multi-informative annotated global molecular network.
This strain was isolated from a core of a submerged Kopara, sampled at 20 m from the
border of a saltwater pond. The strain was cultivated in Potatoes Dextrose Broth (PDB)
under different conditions including SPEED technology.

SPEED technology, as disclosed in this paper, opens a new area in microbial cultivation.
The biofilm formed could be assimilated to a solid culture which may explain the difference
in the formed metabolites compared to LSF-SPE liquid culture. It is well documented
that the life cycle of filamentous micro-organisms, actinomycetes and fungi, is drastically
impacted by the cultivation support; and that the regulators of cell cycle phases impacts in
parallel the expression of specialized metabolites clusters [44,45]. The life cycle including
filament, sexual organs, and fructifications production takes place naturally on living
supports like roots, bark, and leaves in plants, or on rocks, soil, or dead wood. In the marine
ecosystem, these microorganisms are mainly associated to sponges and corals [46,47].

In plants, the formation of biofilm provides major advantages to symbionts and
impacts the strain metabolome [48,49]. Recent attempts have been reported in the literature,
aiming at culturing marine microorganisms on a cotton scaffold [50]. Microbial colonies
were formed on the cotton fibers and the metabolites profile was significantly impacted. In
SPEED procedure, the molecular cut-off discrimination of the internal dialysis tube, and
the biofilm-like growth on the external nylon cloth are the main advantages. The XAD
resin inside the dialysis tube allows the solid phase extraction of metabolites below the
dialysis molecular cut, and the nylon tissue pores separate physically the mycelium from
the resin, which made in-situ SPE very easy to handle and the biomass to grow as this
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sticky and dense biofilm. The next step is to convert this proof of concept to a technological
device, allowing the scale-up and automation of the experiments.

4. Materials and Methods

4.1. Strain Isolation

In September 2018, a Kopara sample was collected from a core of a submerged Kopara
mat located at 20 m from the border of a saltwater pond at the Rangiroa atoll, French
Polynesia (Sampling coordinates 14◦55′58.8′ ′ S 147◦51′00.7′ ′ W). The Kopara sample was
ground and homogenized in sterile water and decanted. The suspension was serially
diluted, plated on PDB agar slants, and incubated at 28 ◦C for 1 to 6 weeks. The strain was
cultivated in Potatoes Dextrose Broth (PDB Difco, Fisher Scientific, Illkirch, France). The
stain Streptomyces albidoflavus 19-S21 was isolated and purified by serial inoculations on
Potatoes Dextrose agar slants.

4.2. Phylogeny Investigation

Genomic DNA isolation and amplification of the ITS region was performed as de-
scribed previously [51]. Amplicons were sequenced by Sanger sequencing and the se-
quences were aligned against the 16S ribosomal RNA database of the Targeted Loci project
of NCBI using MUSCLE. The alignment was manually inspected and gaps were removed.
The evolutionary history was inferred by using the maximum likelihood method and
Tamura-Nei model [52] with 1000 replicates. The initial tree for the heuristic search was
obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of
pairwise distances estimated using the maximum composite likelihood (MCL) approach,
and then selecting the topology with superior log likelihood value. Evolutionary analyses
were conducted in MEGA X version 10.1.7 [53].

4.3. Strain Cultivation with In-Situ SPEED Technology

Streptomyces albidoflavus 19-S21 mycelium was conserved at −20 ◦C in 20% glycerol
and was revived for 5 days on a 3 × 15 cm Petri plates (NUNC DISH 150 × 10, Thermo
Fisher Scientific, Les Ulis, France) containing PDB agar (Difco, Thermo Fisher Scientific).
For liquid cultivation, sterile water was poured onto the plates (16 mL per plate), and
the mycelium recovered by gentle scratching of the surface with a scalpel. Then, 10 × 2 L
Erlenmeyer containing 1 L of PDB medium and a SPEED tube before sterilization (Figure 1) were
inoculated. Each DT tube was filled with 40 g of XAD-16 resin (AMBERLITE® XAD®16HP
N, DOW France SAS, Saint-Denis, France). The mycelium suspension was then introduced
in each Erlenmeyer (4 mL) and the strain cultivated for 13 days under stirring (130 rpm,
28 ◦C). After cultivation, the SPEED tubes were taken out from the Erlenmeyer, rinsed
thoroughly under running water to remove the sticking biomass. The external NFC tube
was removed and the DT recovered and washed back under running water. The XAD resin
was then recovered from the DT, placed in a Büchner funnel, washed extensively with
water, then dried under vacuum to remove the residual water. Then, 425 g of XAD-16 resin
was recovered from the 10 L cultivation and was submitted to the extraction steps. The
strain was cultivated in 5 conditions:

- Agar-state fermentation (AgSF);
- Liquid-state fermentation (LSF);
- SPEED cultivation;
- Agar-state fermentation coupled to SPE (AgSF-SPE) [11];
- Liquid-state fermentation coupled to SPE (LSF-SPE).

4.4. Extraction/Purification Procedures

The 425 g of XAD-16 resin were transferred in a 2 L glass bottle (Duran) and the
trapped compounds gently eluted with 3 × 1 L of ethyl acetate (4 h per extraction). The
extracts were pooled, dried on anhydrous sodium sulfate, and evaporated under reduced
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pressure to offer 577 mg of extract. The resin is extracted back with 2 × 1 L of methanol
(4 h per extraction) and the methanol evaporated leading to 1.15 g of extract.

The classical purification procedure involves a flash chromatography step followed
by semi-preparative HPLC purification of the flash chromatography fractions.

4.5. Characterization, Isolation, and Structural Elucidation Experiments

The analytical HPLC system consisted of an Alliance Waters 2695 controller coupled
with a PhotoDiode Array detector Waters 2996 (UV), an evaporative light-scattering de-
tector (ELSD) Waters 2424 detector and a mass detector Waters QDa (MS) (Waters SAS,
Saint-Quentin-en-Yvelines, France). A Sunfire C18 column (4.6 × 150 mm, 3.5 μm) was
used with a flow rate of 0.7 mL/min. The elution gradient consisted of a linear gradient
from 100% solvent A to 100% solvent B in 40 min, then 10 min at 100% B (Solvent A: H2O
+ 0.1% HCOOH, Solvent B: ACN + 0.1% HCOOH). Preparative HPLC was performed
using the same gradient on a semi-preparative Sunfire C18 column (10 × 250 mm, 5 μm)
using a Waters autosampler 717, a pump 600, a photodiode array detector 2996, and an
ELSD detector 2420 (Waters SAS, Saint-Quentin-en-Yvelines, France). Pre-packed silica
gel Redisep columns were used for flash chromatography using a Combiflash-Companion
chromatogram (Serlabo, Entraigues-sur-la-Sorgue, France). All other chemicals and sol-
vents were purchased from SDS (SDS, Peypen, France). NMR experiments were per-
formed using a Bruker Avance III 600 MHz spectrometer equipped with a TCI cryo-probe
head, and a Bruker Avance 500 MHz spectrometer (Bruker, Vienna, Austria). The spectra
were acquired in CD3OD (δH 3.31 ppm and δC 49.15 ppm), in CDCl3 (δH 7.26 ppm and
δC 77.16 ppm).

4.6. Data Dependent LC-ESI-HRMS2 Analysis

UPLC-ESI-HRMS2 analyses were achieved by coupling the UPLC system to a hybrid
quadrupole time of-flight mass spectrometer Agilent 6546 (Agilent Technologies, Massy,
France) equipped with an ESI source, operating in both positive and negative ion mode.

A ZORBAX® Eclipse Plus C18 UPLC column (2.1 × 50 mm; i.d. 1.8 μm, Agilent) was
used, with a flow rate of 0.5 mL·min–1 and a linear gradient from 5% B (A: H2O + 0.1% formic
acid, B: Acetonitrile + 0.1% formic acid) to 100% B over 15 min. Source parameters were
set as followed: capillary temperature at 320 ◦C, source voltage at 3500 V, sheath gas flow
rate at 11 L·min–1. The divert valve was set to waste for the first 3 min. MS scans were
operated in full-scan mode from m/z 100 to 1200 (0.1 s scan time) with a mass resolution of
67,000 at m/z 922. A MS1 scan was followed by MS2 scans of the five most intense ions above
an absolute threshold of 3000 counts. Selected parent ions were fragmented at a collision
energy fixed at 35 eV and an isolation window of 1.3 amu. In the positive-ion mode, purine
C5H4N4 [M + H]+ ion (m/z 121.050873) and the hexakis (1H,1H,3H-tetrafluoropropoxy)-
phosphazene C18H18F24N3O6P3 [M + H]+ ion (m/z 922.009 798) were used as internal lock
masses. In the negative-ion mode, trifluoroacetic acid (CF3CO2H, m/z 112.98559) and the
trifluoroacetate adduct with m/z 1033.988109 were used. A permanent MS/MS exclusion
list criterion was set to prevent oversampling of the internal calibrant. LC-UV and MS
data acquisition and processing were performed using MassHunter® Workstation software
(Agilent Technologies, Massy, France).

4.7. MS Data Processing and Feature-Based Molecular Networking—GNPS

The MS2 data files, related to the 21 extracts were converted from the .d (Agilent)
standard data-format to .mzML format using the MSConvert software, part of the Pro-
teoWizard package [54]. All .mzML were then processed using MZmine 2v53 [55]. The
mass detection was realized keeping the noise level at 10,000 at MS1 level and at 1000 at
MS2. The ADAP chromatogram builder was used using a minimum group size of scans of 2,
a group intensity threshold of 3000, a minimum highest intensity of 3.0E3 and m/z tolerance of
0.005 m/z or 50 ppm. The chromatogram deconvolution was performed using the Wavelets
(ADAP) with the following settings: m/z range for MS2 scan pairing (Da) = 0.06, RT range for
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MS2 scan pairing (min) = 1, S/N threshold = 5, S/N estimator = Intensity window SN, min
feature height = 3000, coefficient/area threshold = 2, Peak duration range = 0.00–0.90 and
RT wavelet range = 0.00–0.09 [56]. Isotopes were grouped using the isotopic peaks grouper
algorithm with an m/z tolerance of 5 ppm and a RT tolerance of 0.2 min with the most
intense peak. The peak alignment algorithm was used with the following settings: m/z tol-
erance of 0.004 or 5 ppm, weight for m/z of 1, retention time tolerance of 0.1, and weight for
RT of 1. The resulted peak list was filtered to keep only rows with MS2 features. The .mgf
and .csv (for RT, m/z, peak areas) files were exported using the dedicated “Export/Submit
to GNPS/FBMN” option. The raw data files related to the LC-MS/MS analysis of the
fractions were deposited on the public MassIVE repository under the accession number:
MSV000087546. The MS/MS spectrum of tetrodecamycin was deposited in the GNPS
spectral library under the identifier: CCMSLIB00006581621.

4.8. Molecular Networking Parameters

A molecular network was created using the online FBMN workflow (version re-
lease_27) at GNPS (http://gnps.ucsd.edu, accessed on 7 March 2021) with a parent mass
tolerance of 0.02 Da and an MS/MS fragment ion tolerance of 0.02 Da. A network was
then created where edges were filtered to have a cosine score above 0.6 and more than
3 matched peaks. Further edges between two nodes were kept in the network if and only
if each of the nodes appeared in each other’s respective top 10 most similar nodes. The
spectra in the network were then searched against GNPS spectral libraries. All matches
kept between network spectra and library spectra were required to have a score above
0.6 and at least 4 matched peaks. The analog search has also performed. The molecular
networking data were analyzed and visualized using Cytoscape® (ver. 3.7.2) [36].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/md19070371/s1.
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Abstract: Nicotinic acetylcholine receptor (nAChR) subtypes are key drug targets, but it is challenging
to pharmacologically differentiate between them because of their highly similar sequence identities.
Furthermore, α-conotoxins (α-CTXs) are naturally selective and competitive antagonists for nAChRs
and hold great potential for treating nAChR disorders. Identifying selectivity-enhancing mutations
is the chief aim of most α-CTX mutagenesis studies, although doing so with traditional docking
methods is difficult due to the lack of α-CTX/nAChR crystal structures. Here, we use homology
modeling to predict the structures of α-CTXs bound to two nearly identical nAChR subtypes, α3β2
and α3β4, and use free-energy perturbation (FEP) to re-predict the relative potency and selectivity
of α-CTX mutants at these subtypes. First, we use three available crystal structures of the nAChR
homologue, acetylcholine-binding protein (AChBP), and re-predict the relative affinities of twenty
point mutations made to the α-CTXs LvIA, LsIA, and GIC, with an overall root mean square error
(RMSE) of 1.08 ± 0.15 kcal/mol and an R2 of 0.62, equivalent to experimental uncertainty. We
then use AChBP as a template for α3β2 and α3β4 nAChR homology models bound to the α-CTX
LvIA and re-predict the potencies of eleven point mutations at both subtypes, with an overall
RMSE of 0.85 ± 0.08 kcal/mol and an R2 of 0.49. This is significantly better than the widely used
molecular mechanics—generalized born/surface area (MM-GB/SA) method, which gives an RMSE
of 1.96 ± 0.24 kcal/mol and an R2 of 0.06 on the same test set. Next, we demonstrate that FEP
accurately classifies α3β2 nAChR selective LvIA mutants while MM-GB/SA does not. Finally, we use
FEP to perform an exhaustive amino acid mutational scan of LvIA and predict fifty-two mutations
of LvIA to have greater than 100X selectivity for the α3β2 nAChR. Our results demonstrate the
FEP is well-suited to accurately predict potency- and selectivity-enhancing mutations of α-CTXs for
nAChRs and to identify alternative strategies for developing selective α-CTXs.

Keywords: conotoxin; nicotinic acetylcholine receptor; selectivity; free-energy perturbation

1. Introduction

Nicotinic acetylcholine receptors (nAChRs), members of the pentameric ligand-gated
ion channel family and commonly referred to as Cys-loop receptors [1], are divided into
muscle-type and neuronal-type. Neuronal-type receptors are homopentamers or heteropen-
tamers of various subunit compositions. Each interface is made up of the principal side
(+) of an α subunit (α2–α10) and the complementary side (−) of an α subunit (α7, α9) or
β subunits (β2–β4) in homo and heteropentamers, respectively, which have distinct bio-
physical and pharmacological properties [2,3]. Subunits are composed of an extracellular
domain (ECD), a transmembrane domain (TMD), and an intracellular domain arranged
similarly to barrel staves to form a cation-conducting central pore. The binding pocket
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for acetylcholine lies in the “orthosteric site” at the interface of adjacent principal and
complementary subunits in the extracellular domain. The nAChRs play important roles in
vital physiological processes (α3β2 nAChR) and in diseases, including schizophrenia (α7
nAChR), addiction (α3β4 nAChR, α4β2 nAChR), and pain (α9α10 nAChR) [4–6]. The high
degree of sequence identity between interchangeable nAChRs subunits (57–70%) makes
selective inhibition of a specific nAChR difficult and increases the risk of unwanted side
effects due to activity at off-target nAChRs [1].

α-Conotoxins (α-CTXs) are small, disulfide-rich peptides (usually ~12 to 20 amino
acids in length) that are isolated from the venom of predatory marine cone snails, which
have attracted special interest as possible nAChR therapeutics and tool compounds due
to their ability to discriminate between similar nAChRs [7–9]. These conotoxins bind to
orthosteric sites on nAChRs and function as competitive antagonists by inhibiting activity
of the channel [7]. The so-called “4/7” α-CTXs have been proven to be particularly adept at
discerning differences between closely related nAChRs [10]. NMR structures have revealed
that these conotoxins contain two disulfide bonds with four residues in the first intercys-
teine loop (loop 1) and seven residues in the second intercysteine loop (loop 2), as well as a
variable number of N-terminal residues and often C-terminal post-translational modifica-
tions. Some principles for improving the selectivity of these conotoxins via mutagenesis
have begun to emerge [11], such as focusing efforts on loop 2 vs. loop 1. In addition, the
locations and thermodynamics of water sites in the peptide toxin binding pockets of ion
channels, as computed by inhomogeneous solvation theory implemented in the WaterMap
algorithm, have recently been shown to explain structure–activity relationships (SAR)
for bungarotoxin and the muscle-subtype nAChR [12]; however, accurately predicting
selectivity-enhancing mutations is still an arduous process with much uncertainty that
would benefit from new approaches [13].

Free-energy perturbation (FEP) is a rigorous computational method for estimating rel-
ative binding free energies (RBFE) that has been used to successfully predict the selectivity
profiles of small molecules for kinases and phosphodiesterases [14,15]. For peptides, FEP
can compute the RBFE between a wild-type and point mutant (ΔΔGFEP) via an “alchemical
transformation” that “mutates” the wild-type (WT) sidechain to the mutant sidechain
through a series of intermediates known as λ windows (Figure 1) [16,17]. Notably, FEP
incorporates sampling of all degrees of freedom via molecular dynamics (MD) simulations
to account for conformational variations in ligand–receptor interactions and permits the
displacement and introduction of explicit waters during the simulation [18]. This contrasts
with the widely used molecular mechanics–generalized born/surface area (MM-GB/SA)
method, in which no alchemical transformation is performed, a static structure is used, and
an implicit representation of the solvent is employed [19]. In principle, using FEP to predict
the selectivity of conotoxin mutants at nAChRs is straightforward—FEP simulations of
the conotoxin mutation of interest are run at the target and off-target nAChRs and then
selectivity is calculated through the differences in the resulting ΔΔGs; however, to date
no crystal or cryoelectron microscopy (Cryo-EM) structure of the pentameric nicotinic
receptor ECD in complex with an α-conotoxin has been obtained [20]. As a result, low-
resolution homology models of α-CTXs bound to nAChRs based on soluble homologues
of the ECD of nAChRs [21,22], acetylcholine-binding protein (AChBP) from the mollusks
Aplysia californica (Ac-AChBP) or Lymnaea stagnalis (Ls-AChBP), must be employed instead
(Figure 2A,B). Ac-AChBP has low sequence identity to nAChR subtypes (<30%), but shares
an overall architecture and key binding site residues with nAChRs and is highly amenable
to co-crystallization with α-CTXs [23]. While such nAChR homology models can be suc-
cessful at qualitatively rationalizing the selectivity profiles of α-CTX mutants [24,25], the
ability to use them to quantitatively predict potency and selectivity is undetermined.
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Figure 1. FEP calculation of the relative binding free energy due to a mutation. The peptide being mutated is represented
in orange and the receptor to which it is bound is depicted in gray. Water molecules are shown as lines, with oxygens
colored red and hydrogens colored white. The λ window is shown in the upper right-hand corner of each frame. In
particular, λ = 0 represents the unmutated sidechain (Asn-9, leftmost frame) and λ = 1 represents the fully mutated sidechain
(Lys-9, rightmost frame). For clarity, only six λ windows are shown, although significantly more are used in a typical
FEP calculation.

In this study, we use FEP to retrospectively predict potency and selectivity data for an
archetypical system, the α-CTX LvIA from Conus lividus, which is naturally 18-fold more
selective for the α3β2 nAChR than the highly similar α3β4 nAChR [26] (Figure 2C,D). The
α3β2 nAChR is involved in a variety of physiological processes and the α3β4 nAChR is
implicated in nicotine addiction [11]. This conotoxin and nAChR pair serves as a rigorous
test for FEP selectivity calculations because the ECDs of the α3β2 and α3β4 nAChRs are 68%
identical and point mutants of LvIA with a wide range of selectivity levels, some of which
are counterintuitive, have been identified [26]. For example, LvIA[N9A] is >2000-fold
more selective for the α3β2 nAChR than the α3β4 nAChR, although this mutant does not
make significantly different contacts between the subtypes [26] (Figure 2C,D). We begin by
examining the suitability of AChBP/α-CTX complexes as templates for nAChR/α-CTX
homology models by using FEP and MM-GB/SA to retrospectively predict radioligand
binding data for the conotoxins LvIA and GIC at Ac-AChBP and the conotoxin LsIA at
Ls-AChBP [13,26,27] (Figure 2E). Second, we build homology models of the α3β2 and
α3β4 nAChRs and retrospectively test the accuracy of FEP and MM-GB/SA in predicting
the potency and selectivity of a set of point mutations of LvIA at these subtypes [26]. Third,
in silico we mutate each non-cysteine position on LvIA to every genetically encoded amino
acid (except cysteine) and use cloud-based FEP simulations to predict the selectivity levels
of the resulting 225 mutants. Taken together, this study expands the domain of applicability
of FEP to include selectivity calculations for α-CTXs and nAChRs, illustrates in principle
how such an approach could be employed in a biologics drug discovery program devoted
to this ion channel target and peptide modality, and identifies approaches for engineering
selectivity into α-CTXs.
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Figure 2. Overview of chemical systems: (A) extracellular view of LvIA (orange surface) and AChBP (gray cartoon);
(B) transmembrane view of LvIA (orange surface) and AChBP (gray cartoon); (C) binding interface of LvIA and α3β2
nAChR; (D) binding interface of LvIA and α3β4 nAChR. LvIA (orange), AChBP (gray), α3 (green), β2 (pale cyan), and β4
(blue) are depicted in above images. Residues shown in pink differ between β subunits, lie within the binding interface of
LvIA, and have a sidechain pointing towards the binding pocket (E) sequences of LvIA, LsIA, and GIC and their respective
IC50s for different receptors. An asterisk (*) indicates an amidated C-terminus. Lines connecting cysteines labeled with
Roman numerals indicate disulfide bonds.
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2. Results

2.1. Performance of FEP and MM-GB/SA on Mutagenesis Data
2.1.1. Performance for AChBP

First, we sought to examine the suitability of AChBP/α-CTX complexes as templates
for nAChR/α-CTX homology models. Using a test set of twenty mutants for three different
α-CTXs bound to AChBP receptors, we were able to re-predict the experimental affinities of
the mutants relative to the WT (converted into ΔΔGEXP), with an overall root mean square
error (RMSE) of 1.08 ± 0.15 kcal/mol and an R2 of 0.62 (Table 1 and Figure 3A) using FEP.
MM-GB/SA was also used but performed worse, with an RMSE of 2.77 ± 0.54 kcal/mol and
R2 of 0.18 (Table 1 and Figure 3B). The reported prime MM-GB/SA energies were rescaled
by a factor of three in accordance with previous publications [19,28]. The performance by α-
CTX is broken down in Table 2. LvIA bound to Ac-AChBP had comparable performance for
FEP and MM-GB/SA, with RMSE values of 1.03 ± 0.19 kcal/mol and 1.83 ± 0.37 kcal/mol
and R2 values of 0.76 and 0.60, respectively. GIC bound to Ac-AChBP had a lower RMSE
value with FEP as compared to MM-GB/SA, with values of 1.27 ± 0.42 and 2.98 ± 1.03,
respectively; however, for both methods, there were no correlations. For LsIA, MM-
GB/SA predictions had an RMSE of 4.58 ± 1.62 kcal/mol and an R2 of 0.93, but an inverse
correlation. For FEP, the RMSE was 0.75 ± 0.26 kcal/mol with an R2 of 0.80 when run
using the OPLS3e force field. Interestingly, when the same mutations for LsIA were run
with OPLS4, as performed for all other systems, the performance degraded, with a higher
RMSE value of 2.34 ± 0.65 kcal/mol (Table S1).

Table 1. Performance by receptor.

Receptor Number of Mutations Potency Range (kcal/mol)
FEP MM-GB/SA

R2 RMSE R2 RMSE

AChBP 20 −1.90–3.66 0.62 1.08 ± 0.15 0.18 2.77 ± 0.54
nAChR 22 −1.19–2.51 0.49 0.85 ± 0.08 0.06 * 1.96 ± 0.24

Total 42 −1.90–3.66 0.58 0.96 ± 0.09 0.07 2.37 ± 0.31

* Negative correlation coefficient.

Figure 3. Quantitative prediction of the relative affinity of α-CTX mutants for AChBP: (A) scatter plot of ΔΔGFEP vs.
ΔΔGEXP; (B) scatter plot of ΔΔGMM-GB/SA vs. ΔΔGEXP with unity (solid, black line), ±1 kcal/mol error bands (solid gray
lines), and ±2 kcal/mol error bands (dashed, gray lines) superimposed. The error bars show the standard error of the mean
(SEM) from three independent FEP simulations.
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Table 2. Performance by conotoxin.

Toxin Receptor Number of Mutations Potency Range (kcal/mol)
FEP MM-GB/SA

R2 RMSE R2 RMSE

Ac-AChBP 11 −1.90–3.36 0.76 1.03 ± 0.19 0.60 1.83 ± 0.37
LvIA α3β2 nAChR 11 −1.19–2.51 0.82 0.93 ± 0.11 0.03 * 2.04 ± 0.26

α3β4 nAChR 11 −0.85–1.77 0.12 0.77 ± 0.10 0.11 * 1.88 ± 0.47

GIC Ac-AChBP 6 0.41–2.32 0.00 1.27 ± 0.42 0.05 * 2.98 ± 1.03
LsIA Ls-AChBP 3 −0.38–1.45 0.80 0.75 ± 0.26 0.93 * 4.58 ± 1.62

* Negative correlation coefficient.

2.1.2. Performance for α3β2 and α3β4 nAChRs

With the AChBP/α-CTX complexes validated by FEP, we proceeded to use these struc-
tures to build homology models of the α3β2 and α3β4 nAChRs in order to retrospectively
test the ability of FEP to predict the potency and selectivity levels of various α-CTX point
mutants bound to these nAChR subtypes. FEP was able to accurately predict the relative
potencies of twenty-two mutations using homology models of the two subtypes, with an
RMSE of 0.85 ± 0.08 kcal/mol and an R2 of 0.49 (Table 1 and Figure 4A). MM-GB/SA
performed worse than FEP, with an RMSE of 1.96 ± 0.24 kcal/mol and an R2 of 0.06 (Table 1
and Figure 4B). For the α3β2 and α3β4 nAChRs, FEP re-predicted the experimental ΔΔGs,
with RMSE values of 0.93 ± 0.11 kcal/mol and 0.77 ± 0.10 kcal/mol and R2 values of
0.82 and 0.12, respectively (Table 2). MM-GB/SA performed significantly worse, with an
RMSE of 2.04 ± 0.26 kcal/mol and an R2 of 0.03 for the α3β2 nAChR and with an RMSE of
1.88 ± 0.47 kcal/mol and an R2 of 0.11 for the α3β4 nAChR.

Figure 4. Quantitative prediction of the relative potency levels of LvIA mutants at the α3β2 and α3β4 nAChRs: (A) scatter
plot of ΔΔGFEP vs. ΔΔGEXP; (B) scatter plot of ΔΔGMM-GB/SA vs. ΔΔGEXP with unity (solid, black line), ±1 kcal/mol error
bands (solid gray lines), and ±2 kcal/mol error bands (dashed, gray lines) superimposed. The error bars show the standard
error of the mean (SEM) from three independent FEP simulations.

2.1.3. Performance of FEP by Type of Mutation

The performance of FEP and MM-GB/SA was also broken down by the type of
mutation (Table 3). Charge-change mutations, which are typically difficult for FEP to
predict [29], showed an RMSE of 0.82 ± 0.22 kcal/mol with FEP, performing better than

160



Mar. Drugs 2021, 19, 367

MM-GB/SA that had an RMSE of 2.87 ± 0.67 kcal/mol. The correlation for charge-change
mutations was higher than the overall R2 values for both FEP and MM-GB/SA, with
R2 values of 0.79 and 0.22, respectively. Neutral mutations were also comparable to the
overall FEP and MM-GB/SA performance, with RMSE values of 1.02 ± 0.10 kcal/mol and
2.11 ± 0.35 kcal/mol and an R2 values of 0.39 and 0.00, respectively. We also categorized
the mutations by the differences between heavy atoms in the WT and mutant residue.
When mutating a bigger residue to a smaller one, FEP and MM-GB/SA had RMSE values
of 0.95 ± 0.09 kcal/mol and 2.06 ± 0.22 kcal/mol, respectively. Small residues that were
mutated to bigger residues had a higher RMSE for FEP, with a value of 1.41 ± 0.40 kcal/mol.
The RMSE for MM-GB/SA was also higher, with a value of 3.00 ± 1.04 kcal/mol. Mutations
that had no difference in heavy atoms had an RMSE of 0.87 ± 0.14 kcal/mol for FEP but a
value of 3.36 ± 1.16 kcal/mol for MM-GB/SA.

Table 3. Performance by charge and size change.

Type of Mutation
Number of
Mutations

Potency Range (kcal/mol)
FEP MM-GB/SA

R2 RMSE R2 RMSE

By charge

Charge-Change 13 −1.90–3.36 0.79 0.82 ± 0.22 0.22 2.87 ± 0.67
Neutral 29 −1.19–2.51 0.39 1.02 ± 0.10 0.00 2.11 ± 0.35

By size

Big-to-Small 32 −1.90–3.36 0.60 0.95 ± 0.09 0.16 2.06 ± 0.22
Small-to-Big 5 0.73–1.89 0.24 1.41 ± 0.40 0.07 3.00 ± 1.04

No change in heavy atoms 5 −0.94–1.77 0.48 0.87 ± 0.14 0.11 * 3.36 ± 1.16

* Negative correlation coefficient.

FEP also performed better than MM-GB/SA in classifying mutations as having
a gain in potency or affinity (ΔΔG < 0 kcal/mol) versus a loss in potency or affinity
(ΔΔG > 0 kcal/mol). The area under the curve (AUC) of a receiver operating characteristic
(ROC) plot for FEP was 0.94, with a statistically significant p-value of <0.01 and a 95%
confidence interval (CI) of 0.88 to 1.0 (Table 4), whereas MM-GB/SA performed worse,
with an AUC of 0.66 with a p-value of 0.09 (Table 4). FEP had an accuracy of 88%, while
MM-GB/SA had an accuracy of 71%. For twenty-four mutations at AChBP, FEP had an
AUC of 0.98, as compared to MM-GB/SA with an AUC of 0.76 (Figure 5A). For mutations
at nAChRs, FEP performed significantly better than MM-GB/SA, with AUC values of
0.92 and 0.60, respectively (Figure 5B).

Table 4. Performance in classifying gain of potency mutations.

Receptor Number of Mutations Potency Range (kcal/mol) FEP AUC MM-GB/SA AUC

AChBP 24 −1.90–3.66 0.98 (0.93 to 1.0) 0.76 (0.47 to 1.0)
nAChR 32 −1.19–3.83 0.92 (0.82 to 1.0) 0.60 (0.40 to 0.80)

Total 56 −1.90–3.83 0.94 (0.88 to 1.0) 0.66 (0.49 to 0.82)

2.2. Performance in Classifying Selective LvIA Mutants

We next assessed the ability of FEP and MM-GB/SA to accurately classify LvIA
mutants >100X selective for the α3β2 nAChR over the α3β4 nAChR. FEP was able to cor-
rectly classify all four selective mutants, namely LvIA[N9L], LvIA[N9K], LvIA[N9I], and
LvIA[N9A] (Figure 5C), with only one mutation, Lv1A[V10A], being incorrectly classified
as selective. In contrast, MM-GB/SA predicted all four selective mutants as unselec-
tive (Figure 5D). The most notable mutation is LvIA[N9A], which has an experimentally
measured 2032-fold selectivity [26], with experimental ΔΔG values of −1.19 kcal/mol
and 1.61 kcal/mol at the α3β2 and α3β4 nAChRs, respectively. FEP correctly predicted
this selectivity, with a predicted ΔΔG of −2.56 ± 0.61 kcal/mol at the α3β2 nAChR and
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0.60 ± 0.08 kcal/mol at the α3β4 nAChR, equivalent to a predicted 3690-fold selectivity. In
contrast, MM-GB/SA predicted LvIA[N9A] to have a ΔΔG of 1.81 kcal/mol at the α3β2
nAChR and ΔΔG of 1.13 kcal/mol at the α3β4 nAChR, equivalent to a predicted 6-fold
selectivity, which is an underestimate by about three orders of magnitude. Overall, FEP
had an accuracy of 91% in classifying mutations as being selective or non-selective, with a
significant p-value of 0.015, as calculated by Fisher’s exact test, whereas MM-GB/SA had
an accuracy of 55%, which was not statistically significant. We also tested how sensitive
the MM-GB/SA accuracy was to the specific protein conformation employed by repeating
the calculations with poses of the α3β2 and α3β4 nAChRs extracted from three different
points along the homology modeling and simulation workflows (Figure S1). In all cases,
the accuracy was less than 65%, and at most half of the selective mutations were correctly
identified. Performing the MM/GB-SA calculations using an ensemble of ten poses did
lead to the correct classification of LvIA[N9K] as selective, but overall did not result in a
statistically significant improvement in accuracy (Figure S2).

Figure 5. Classification of potency- and selectivity-enhancing LvIA mutants: (A) ROC plot comparing the ability of FEP
and MM-GB/SA to classify mutations to LvIA, GIC, and LsIA that gain affinity for AChBP relative to WT; (B) ROC plot
comparing the ability of FEP and MM-GB/SA to classify LvIA mutations that gain potency for the α3β2 or α3β4 nAChR
relative to WT; (C) classification of the selectivity of LvIA mutants by FEP; (D) classification of the selectivity of LvIA
mutants by MM-GB/SA.
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Although FEP can correctly classify selective mutations, understanding the structural
basis for the selectivity of LvIA for the α3β2 nAChR over the α3β4 nAChR could provide
insight for future mutagenesis studies. Because the 18-fold selectivity of LvIA for the α3β2
nAChR cannot be readily explained by the differential interactions it makes between the
two subtypes (Figure 2C,D), we hypothesized that computing and visualizing the water
thermodynamic maps in the binding sites of the two subtypes could explain the selectivity
of LvIA. To test this hypothesis, “apo” WaterMap simulations (conotoxin not present) were
run for both the α3β2 nAChR and α3β4 nAChR and the locations of the unstable water sites
(medium-energy or high-energy) were compared to the pose of LvIA. WaterMap placed
a total of 61 water sites within 3 Å of LvIA at α3β2 nAChR and a total of 66 water sites
within 3 Å of LvIA at the α3β4 nAChR, allowing us to compare the two WaterMaps further
and investigate differences in the water site energetics. At the α3β2 nAChR, thirty-three
of these unstable water sites overlapped with the binding mode of LvIA (overlap factor
greater than 0.1) (Figure 6A,C) versus seventeen at the α3β4 nAChR (Figure 6B,D). Taken
together, these results suggest that LvIA displaces more and higher-energy unstable waters
when binding to the α3β2 nAChR than the α3β4 nAChR, which could account for why it
is more potent in the former subtype. These findings are consistent with a previous study
in which water thermodynamics was used to explain mutagenesis data for a variety of
peptide toxins for different ion channels [12].

2.3. In Silico Scan for Putative Selectivity-Enhancing Mutations with FEP

Although an alanine scan of LvIA succeeded in identifying a mutation such as
LvIA[N9A] that is ~2000X selective [26], we were curious to see if mutations with an
even greater degree of selectivity could be identified in silico. To address this question, an
exhaustive amino acid scan of LvIA was performed. Each non-cysteine position on LvIA
was mutated to every amino acid (except cysteine). We then predicted the ΔΔGFEP values of
these 225 point mutations at both the α3β2 and α3β4 nAChRs and the resulting selectivity
ratios (Figure 7). Our scan predicted selective mutations at nine different residues, includ-
ing all four residues in loop 1 and five in loop 2. No mutations were predicted to be selective
at the N-terminal LvIA[G1]. In loop 1, 6% of mutations at LvIA[S4], 21% of mutations at
LvIA[H5], 78% of mutations at LvIA[P6], and 6% of mutations at LvIA[A7] were predicted
to be selective. In loop 2, 67% of mutations at LvIA[N9], 39% of mutations at LvIA[V10],
53% of mutations at LvIA[D11], no mutations at LvIA[H12], 11% of mutations at both
LvIA[P13] and LvIA[E14], and no mutations at LvIA[I15] were predicted to be selective
(Figure 7A). Overall, out of 225 mutations, fifty-two were predicted to be >100X selective,
with four predicted to be >10,000X selective. Of the mutations predicted to be selective,
38% were located on loop 1 and 62% were located on loop 2 (Figure 7B, left panel). We
also examined the ΔΔGFEP at the two receptors to understand why these mutations were
predicted to be selective (Figure 7B, right panel). Overall, 65% were predicted to be selective
due to an increase in potency at the α3β2 nAChR (ΔΔGFEP < 0) and decrease in potency
at the α3β4 nAChR (ΔΔGFEP > 0). Interestingly, nine mutations predicted to be selective
had a gain of potency at both receptors, but the magnitude of the gain was much larger
at the α3β2 nAChR than at the α3β4 nAChR (ΔΔGFEP(α3β2) << 0, ΔΔGFEP(α3β4) < 0).
For example, a charge-change mutation at position ten on LvIA had a predicted ΔΔG of
−2.12 kcal/mol at the α3β2 nAChR and a predicted ΔΔG of −0.84 kcal/mol at the α3β4
nAChR. Finally, nine mutations were predicted to be selective due to a loss in potency
at both receptors, but with a much greater loss in potency at the α3β4 nAChR than at
the α3β2 nAChR (ΔΔGFEP(α3β2) > 0, ΔΔGFEP(α3β4) >> 0) (Figure 7B, right panel). For
example, a mutation at position five on LvIA had predicted ΔΔG values of 1.02 kcal/mol
and 3.3 kcal/mol at the α3β2 and α3β4 nAChRs, respectively. Although these findings
remain to be experimentally validated, taken together they suggest that additional highly
selective mutations for LvIA may exist.
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Figure 6. WaterMaps of nAChR subtypes. The apo (A) α3β2 nAChR binding site and (B) α3β4 nAChR binding site
are shown with their respective WaterMaps. LvIA is shown as an orange, semi-transparent cartoon for reference but
is not present during the WaterMap simulations. (C) Extracellular view of α3β2 nAChR binding site and WaterMap
(D) Extracellular view of α3β4 nAChR binding site and WaterMap. A semi-transparent orange surface is shown around
LvIA. Medium-energy water sites with predicted ΔG > 1.5 kcal/mol are colored yellow and high-energy water sites with
predicted ΔG > 3.5 kcal/mol are colored red. For clarity, only medium-energy or high-energy water sites that overlap with
the position of LvIA in the bound state are shown.
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Figure 7. In silico exhaustive mutagenesis of LvIA: (A) Fold selectivity levels of LvIA point mutants
predicted by FEP (blue points) and measured experimentally (orange points) are plotted by residue,
with box plots overlaid. The black dashed line denotes the cutoff for a mutation to be considered
selective (100X), while the red dot-dashed line denotes the fold selectivity of the WT LvIA (18X);
(B) Pie charts show the compositions of point mutations predicted to be selective by the loop they are
on (left panel) and by their predicted ΔΔGs at each nAChR subtype (right panel).

3. Discussion

The ability to accurately predict how a mutation to an α-CTX will affect its potency
and selectivity for nAChRs is a “grand challenge” in the field [30]. Computational methods
have the potential to help meet this challenge, but their ability to recapitulate known
data must be rigorously assessed using challenging test cases before they can be used
prospectively [12,31]. Here, we performed such a study by examining the ability of FEP to
retrospectively predict a wide range of potency and selectivity levels of LvIA mutants for
the highly similar α3β2 and α3β4 nAChRs.
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3.1. FEP Quantitatively Predicts the Relative Changes in Free Energy of Conotoxin Mutants for
AChBPs and nAChRs with Accuracy

We sought to build on the previous success in finding a correlation between measured
and predicted potency levels [32,33] of α-CTX mutants for nAChRs by quantitatively
predicting the magnitudes and signs of the ΔΔGs due to the mutations. For the two
nAChRs, FEP gave an overall RMSE of 0.85 ± 0.08 kcal/mol and an R2 of 0.49, suggesting
this aim was achieved (Table 1 and Figure 4). In contrast, the more widely used MM-GB/SA
method gave an RMSE of 1.96 ± 0.24 kcal/mol and R2 of 0.06 (Table 1 and Figure 4).
These results are consistent with the emerging view that accounting for the dynamics
of α-CTX/nAChR interactions, as is the case in FEP, is necessary to accurately model
them [30,34,35]. They are also consistent with the results of a similar study in which FEP
was retrospectively applied to homology models of small molecules bound to proteins [36].

Of the five systems modeled in this study, LsIA/Ls-AChBP required additional effort
to be modeled accurately. The LsIA/Ls-AChBP system was purposefully included, despite
only having three mutational data points, because it is the sole example of an α-CTX crys-
tallized in complex with Ls-AChBP. From a structural biology perspective, the LsIA[R10F]
and LsIA[R10M] mutations involve altering a complex network of contacts between WT
LsIA[R10] and Ls-AChBP that include a cation-π interaction with Ls-AChBP[Y164] and
a salt bridge interaction with Ls-AChBP[D160], the latter of which may be influenced by
crystal contacts [27]. FEP predictions on these mutations were degraded with the OPLS4
force field [37] compared to the OPL3e forcefield [38] (Table S1). This was likely caused by
a reduction in the salt bridge strength in the updated parameterization and the absence of
an explicit cation-π term in the forcefield [39].

Finally, two specific sets of mutations also proved difficult for FEP. The first was the
GIC/Ac-AChBP system, for which the R2 value was 0 and the RMSE was 1.27 ± 0.42 kcal/mol.
Although this RMSE is within the error range of the 1 kcal/mol RMSE considered desirable
for FEP models, the R2 value may be low due to the small sample size and dynamic range
of the data [40]. FEP also performed less well for the ‘small-to-big’ group of mutations,
with an R2 value of 0.24 and an RMSE of 1.41 ± 0.40 kcal/mol. This could reflect the fact
that mutations that gain size can lead to protein reorganization, which is difficult to sample
on the timescale of FEP simulations [17]. Nonetheless, these caveats should not obscure the
main finding of this study, which is that overall FEP can accurately retrospectively predict
the free-energy changes of α-CTX mutants for nAChRs.

3.2. FEP Accurately Classifies Conotoxin Mutations That Enhance Selectivity for an nAChR

Overall, FEP was able to correctly classify conotoxin mutations that gain selectivity
for one nAChR subtype over another. We found that FEP classified all four LvIA mutants
with >100X fold selectivity for the α3β2 nAChR over the α3β4 nAChR as true positives at
the cost of only one false positive prediction, with an overall accuracy of 91% (Figure 5).
In contrast, MM-GB/SA did not identify any selective mutations correctly and had an
overall accuracy of 55%. The ability of FEP to classify selectivity-enhancing mutations is an
indication of the method’s predictive power and suggests it might be complementary to
experimental methods, such as alanine scanning, which are expensive and time-consuming.
Future studies may focus on going beyond the classification of selectivity to quantitatively
predicting its magnitude. However, this is an intrinsically more difficult problem due to
the propagation of uncertainty in the final selectivity prediction (i.e., the difference between
two predictions with 1 kcal/mol error each will have a propagated error of 1.4 kcal/mol if
they are uncorrelated) [14]. Higher-resolution α-CTX structures complexed with different
nAChR ECD subtypes may enable such calculations. More broadly, our dynamics-based
approach in FEP for computing selectivity is in line with a similar study that found that
inclusion of multiple frames in MM-GB/SA calculations could be an important factor in
prospectively identifying selective mutations of the conotoxin RegIIA for the α3β2 nAChR
over the α3β4 nAChR [41].
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3.3. An Exhaustive In Silico Scan Predicts Additional Selectivity-Enhancing Point Mutations May
Exist for LvIA

We assessed our ability to computationally identify putative selectivity-enhancing
mutations by exhaustively mutating LvIA at each position to every (permissible) genetically
encoded amino acid, except cysteine, and used FEP to predict the resulting ΔΔGs at both
nAChR subtypes. Out of 225 mutations, 23% were predicted to have >100X selectivity
for the α3β2 nAChR over the α3β4 nAChR (Figure 7A). In general, our results are in
accordance with previous studies and findings. For example, 67% of prospective mutations
to LvIA[N9] were predicted >100X selective (Figure 7A), in agreement with the critical
role that this residue is known to play in enhancing selectivity for LvIA and other 4/7
α-CTXs [26]. Furthermore, consistent with the hypothesis that residues on loop 2 govern
subtype selectivity [42], 62% of the mutations predicted to be selective were present on
loop 2 (Figure 7B). One unexpected finding that emerged was that 78% of mutations made
to LvIA[P6], which is located on loop 1, were predicted to have some degree of selectivity
(Figure 7A). Since proline at this position is highly conserved amongst α-CTXs [10], these
predictions are counterintuitive and could be false positives; however, given the excellent
retrospective performance of FEP in classifying selective mutations and the fact that proline
mutants were not simply indiscriminately predicted to be selective (e.g., those at LvIA[P13]
were not), these mutations may warrant future experimental investigation.

Finally, our large-scale in silico scan revealed new strategies for engineering selective
α-CTXs. While we found that the majority of the mutations predicted to be selective had the
“expected” changes in potencies at the two subtypes (predicted gain in potency for α3β2
nAChR and loss in potency for α3β4 nAChR), two less conventional possibilities emerged
as well. In 17% of the cases, predicted selectivity was achieved through loss of potency at
both subtypes, although the magnitude of the loss was predicted to be much greater at
the α3β4 nAChR. In contrast, a predicted gain in potency for both subtypes, with a larger
gain for α3β2 nAChR, was also observed 17% of the time. Taken together, these findings
suggest alternate ways to engineer selectivity into conotoxins beyond mutating residues
to attempt to “clash” with the off-target nAChR subtype. More generally, computational
methods that embrace the dynamics of α-CTX/nAChR interactions [30,41] are increasingly
being used to prospectively identify selectivity-enhancing mutations. With the passage of
α-CTX antagonists of nAChRs towards clinical trials [43–45], our findings set the stage for
the prospective use of FEP to advance such drug discovery efforts.

4. Materials and Methods

4.1. AChBP Protein Preparation

All calculations were performed using the 2021-1 release of Maestro (Schrödinger,
Inc., New York, NY, USA), unless otherwise noted. LsIA and Ls-AChBP (PDB: 5T90), LvIA
and Ac-AChBP (PDB: 5XGL), and GIC in complex with Ac-AChBP (PDB: 5CO5) were all
downloaded from the Protein Data Bank (PDB). For the LsIA/Ls-AChBP structure (PDB:
5T90), the model was manually inspected to adjust sidechain rotamers and rebuild any
poorly resolved loops with Coot [46], followed by a round of macromolecular structure
refinement with Phenix/OPLS3e (a version of Phenix [47], whereby the OPLS3e force
field [38] and VSGB2.1 solvation model [48] are used to calculate energies and gradients;
2020-3 release of Maestro). Each structure was aligned and truncated to include two
receptor chains and one toxin bound. The Protein Preparation Wizard was used to cap the
N- and C-termini with acetyl and N-methyl amide groups, respectively. Missing sidechains
and loops were filled in using Prime. Protonation states were assigned using PROPKA
at pH 7.4 and hydrogen bond networks were optimized using the “H-bond assignment”
panel. Restrained minimization was carried out using the OPLS4 force field [33], with
heavy atoms converged to a root mean square deviation (RMSD) of 0.3 Å.
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4.2. nAChR Homology Model Construction

Homology models were built using the ‘build homology model’ panel in the Multiple
Sequence Viewer/Editor Panel in Maestro. The target sequence was imported from Uniprot
using the respective ECD sequence for Rattus norvegicus β2 (P12390), Rattus norvegicus β4
(P12392), or Rattus norvegicus α3 (P04757). The template structure used was 5XGL after
preparation, as described in the previous section. Rattus norvegicus β2 and β4 sequences
were each aligned to 5XGL chain A, while the Rattus norvegicus α3 sequence was aligned to
5XGL chain B. The LvIA peptide sequence (L8BU87) was used as the target sequence and
aligned to 5XGL chain C.

The initial homology model for each subtype was then subject to refinement. Us-
ing the ‘protein–protein’ selection tool, all residues at the binding interface between the
conotoxin, principal subunit, and complementary subunit were selected and refined using
the ‘predict sidechains’ panel in Maestro. Once sidechain prediction was completed, the
structure underwent the protein preparation protocol described in Section 4.1, except only
hydrogens were subjected to restrained minimization. Next, an MD simulation was per-
formed to ensure structural integrity and resolve any remaining steric clashes. Using the
‘system builder’ panel, an SPC solvent model was placed on the structure. No neutralizing
counterions or salt were added. An MD simulation with Desmond (Desmond Molecular
Dynamics System, D. E. Shaw Research, New York, NY, USA, 2020. Maestro-Desmond
Interoperability Tools, Schrödinger, New York, NY, USA, 2020) was performed for 15 ns
on 4 GPUs on a GPU cluster consisting of NVIDIA Pascal-generation GPUs. Following
manual inspection, a single representative frame without steric clashes and with low RMSD
to the starting model was then selected from the trajectory (the 19th frame for the α3β2
nAChR and the 1st frame for the α3β4 nAChR). These frames were then used as inputs for
FEP and MM-GB/SA calculations.

4.3. Selection of Mutants

Forty-two IC50’s due to mutations to LsIA, GIC, and LvIA were gathered from
three sources [13,26,27] and all mutations with reported IC50 values were used for FEP
benchmarking. Fourteen additional IC50’s due to mutations were used to assess classi-
fier performance but not RMSEs, because they were qualified data points at the top of
the assay. To convert reported IC50 values to ΔΔGEXP, the relation ΔΔGEXP = R × T ×
ln(IC50(MUT)/IC50(WT)) was used, in which IC50(MUT) is the IC50 of the mutant peptide,
IC50(WT) is the IC50 of the WT (unmutated) peptide, R is the universal gas constant, and T
is the temperature at 298 K with R × T = 0.593 kcal/mol. The specific WT IC50 measured in
each study was used when converting that study’s mutational data into free energies.

4.4. WaterMap Calculations

WaterMap calculations were set up and run using the WaterMap panel in Maestro as
previously described [12]. The toxin chain was selected as the ligand and waters within
10 Å of the selected ligand were analyzed. An “apo” (toxin not retained in calculations)
WaterMap was run. For the WaterMap analysis, the overlap factor was set to 0.1 to identify
water sites that overlap with the coordinates of LvIA. A custom script was then used
to categorize water sites based on their free energy. Medium-energy water sites were
colored yellow (1.5 < ΔG < 3.5 kcal/mol) and high-energy water sites were colored red
(ΔG ≥ 3.5 kcal/mol) [12].

4.5. RBFE Calculations with MM-GB/SA

MM-GB/SA calculations were set up in the ‘residue scanning’ panel. After undergoing
the refinement procedure described in Section 4.2, the structure was imported into the
‘residue scanning’ panel and the ‘stability and affinity’ calculation type was selected. The
toxin chain was chosen to bind to the other two chains in the input structure. Default
settings were used for all residue scanning calculations, along with a 0 Å cutoff for sidechain
prediction with backbone minimization (only the residue being mutated was permitted to
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repack). The predicted affinities calculated by MM-GB/SA were then rescaled as described
previously by dividing each predicted ΔΔG by a factor of three [19,28]. Additionally,
MM-GB/SA calculations were repeated using an ensemble of ten evenly spaced frames
selected from the 25 ns MD trajectory of the WT LvIA FEP simulation (described in
Section 4.6). The RBFE was then calculated over this ensemble using an in-house script,
thermal_mmgbsa.py [49].

4.6. RBFE Calculations with FEP

Retrospective FEP calculations were carried out as follows. The same input structure
used for MM-GB/SA calculations was imported into the Protein FEP panel in Maestro and
the selectivity calculation type was selected. For each system, the toxin chain was chosen
to bind to the two receptor chains. Defaults were used for all parameters other than the
simulation time, which was increased to 25 ns, as well as the number of λ windows, which
was set to 24 for all perturbation types. The FEP job was run on 4 GPUs on a GPU cluster
consisting of NVIDIA Pascal-generation GPUs. Finally, when performing charge-change
mutations with FEP, it can be important to perturb to the neutral form of the residue
when it is in close proximity to other charged residues and a hydrogen bond network is
involved [28]; therefore, for the LsIA[N9D] mutation, N9 was mutated into protonated Asp
(ASH), while for the LvIA[N9K] mutation at both the α3β2 nAChR and α3β4 nAChR, N9
was mutated into neutral Lys (LYN). Finally, FEP calculations for LsIA/Ls-AChBP were
also performed as described above but using the 2020-3 release of Maestro, which employs
the OPLS3e forcefield [38].

4.7. Point Mutation Scan

An amino acid scan was performed at LvIA, in which every non-cysteine residue was
mutated into every residue except cysteine, and the resulting RBFEs at the α3β2 nAChR
and α3β4 nAChR were computed with FEP. The structure file was imported into the FEP
panel and the selectivity calculation was selected. The toxin chain was chosen to bind to
the two receptor chains. For each residue, all standard amino acid mutations that were
possible for that residue were selected. This resulted in a total of 225 mutations for LvIA
at both the α3β2 and α3β4 nAChRs. Mutations to histidine were performed for all three
tatuomer and charge forms (HID, HIE, HIP) and the state predicted as being most selective
upon mutation was used for plotting and analysis. Default parameters were used with the
exception of simulation time, which was set to 20 ns, as well as the number of λ windows,
which was set to 24 for all perturbation types. The FEP job ran on FEP+ Web Services,
which is a service provided by Schrödinger to run FEP calculations on cloud computing
resources using NVIDIA Tesla-generation GPUs.

4.8. Selectivity Calculations

Upon completion of FEP and MM-GB/SA RBFE calculations at the α3β2 nAChR and
α3β4 nAChR subtypes, the predicted α3β4/α3β2 selectivity ratio, R, was computed using
the relation R = F × exp(ΔSelectivity/0.593), where F = IC50(α3β4)/IC50(α3β2) for the WT
LvIA and ΔSelectivity = ΔΔGMUT(α3β4) − ΔΔGMUT(α3β2) in kcal/mol.

4.9. Statistics

Statistical analysis of the FEP results and their comparison to experimental data were
performed following accepted best practices [50]. To minimize the effects of trial-to-trial
variability in ΔΔGFEP, every retrospective mutation was run in triplicate with a differ-
ent random seed and the ΔΔGFEPs from each of the three independent simulations were
averaged to arrive at a mean ΔΔGFEP, which was used in all analyses. Bootstrapped es-
timates for RMSE and MUE were calculated using the FEP+ panel software in Maestro.
For binary classification, the AUC of a ROC plot and its associated CI were computed
using Prism 9 with default options (GraphPad Software: San Diego, CA, USA). Muta-
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tions with a ΔΔGEXP < 0 were classified as having a gain in potency. Mutations with
IC50(α3β4)/IC50(α3β2) > 100 were classified as selective.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/md19070367/s1, Figure S1: MM-GB/SA selectivity predictions for LvIA mutants using
different nAChR conformations, Figure S2: Performance of MM-GB/SA using an ensemble of
conformations, Table S1: Comparison of FEP affinity predictions for LsIA mutations using OPLS3e
and OPLS4 forcefields.
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Abstract: Phlorotannins are polyphenolic compounds in marine alga, especially the brown algae.
Among numerous phlorotannins, dieckol and phlorofucofuroeckol-A (PFF-A) are the major ones
and despite a wider biological activity profile, knowledge of the G protein-coupled receptor (GPCR)
targets of these phlorotannins is lacking. This study explores prime GPCR targets of the two
phlorotannins. In silico proteocheminformatics modeling predicted twenty major protein targets and
in vitro functional assays showed a good agonist effect at the α2C adrenergic receptor (α2CAR) and
an antagonist effect at the adenosine 2A receptor (A2AR), δ-opioid receptor (δ-OPR), glucagon-like
peptide-1 receptor (GLP-1R), and 5-hydroxytryptamine 1A receptor (5-TH1AR) of both phlorotannins.
Besides, dieckol showed an antagonist effect at the vasopressin 1A receptor (V1AR) and PFF-A
showed a promising agonist effect at the cannabinoid 1 receptor and an antagonist effect at V1AR. In
silico molecular docking simulation enabled us to investigate and identify distinct binding features
of these phlorotannins to the target proteins. The docking results suggested that dieckol and PFF-A
bind to the crystal structures of the proteins with good affinity involving key interacting amino acid
residues comparable to reference ligands. Overall, the present study suggests α2CAR, A2AR, δ-OPR,
GLP-1R, 5-TH1AR, CB1R, and V1AR as prime receptor targets of dieckol and PFF-A.

Keywords: phhlorotannins; GPCRs; agonist; antagonist; dieckol; PFF-A; molecular docking

1. Introduction

G protein-coupled receptors (GPCRs) are a family of membrane receptors that regulate
human pathophysiology and are the leading target class for pharmaceuticals. At present,
GPCRs mediate the effect of approximately one-third of the FDA-approved drugs [1–3].
However, these drugs target mainly biogenic amine receptors, which comprise around
30 members of the GPCR family [3]. There is, therefore, an immense potential within
pharmaceuticals/natural products to exploit, considering the remaining family members
for which no existing ligands have been identified.

In the traditional drug development process, the high-throughput screening (HTS)
approach against drug targets of choice is the very first step to uncover new drugs, which
has now been augmented by the in silico method to maximize the probability of novel leads
discovery. Traditional Chinese medicine (TCM) is an important research object of network
(TCM herbs, targets, diseases, and syndromes) pharmacology, which aims to understand

Mar. Drugs 2021, 19, 326. https://doi.org/10.3390/md19060326 https://www.mdpi.com/journal/marinedrugs
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the network-based biological basis of complex diseases [4], and natural polyphenols are
abundant in plant-based foods whose network proximity to disease proteins is predictive
of the molecule’s known therapeutic effects [5].

Secondary metabolites from seaweeds have gained much interest in natural drug
discovery, because the marine source is a huge reservoir of natural products with signif-
icant biological activities. In addition, secondary metabolites (carotenoids, polyphenols,
and polysaccharides) with numerous biological activities make them a potential source of
leads. Among marine organisms, marine alga, i.e., green algae (Chlorophyta), brown algae
(Phaeophyta), and red algae (Rhodophyta), are rich sources of bioactive compounds with
various biological activities. These macroalgae are well known by seaweeds and have been
widely recognized as food, functional food, and potential drug sources for decades. Brown
algae are the largest type of seaweed and so far, scientists have identified the therapeutic
potential of brown algae-derived secondary metabolites (particularly phloroglucinol-based
polyphenols, known as phlorotannins) including, but not limited to antioxidant [6,7], an-
timicrobial [8], anti-diabetic [9], anti-Alzheimer’s disease [10–12], anti-inflammatory [13],
neuroprotective [14,15], anti-obesity [16], hepatoprotective [17], monoamine oxidase in-
hibitor [18], antihypertension [19] and anti-viral [20] activity. Ecklonia stolonifera OKA-
MURA (E. stolonifera) is an edible brown alga of the Laminariaceae family that is widely
distributed along the Eastern and Southern Korean coast and rich in phlorotannins [19,21].
Dieckol and phlorofucofuroeckol-A (PFF-A) are common phlorotannins in E. stolonifera
and in our recent study, we had reported human monoamine oxidase (hMAO) inhibi-
tion, dopamine D3R/D4R receptor agonist effect, dopamine D1/5-hydroxytryptamine 1A
(5-HT1A)/neurokinin 1 (NK1) receptor antagonist effect [22], and β-secretase and acetyl-
cholinesterase inhibition by dieckol and PFF-A [10,11]. Nonetheless, other promising
targets of these phlorotannins are yet to be identified.

Therefore, the main objectives of this study were to: (a) predict prime protein targets of
dieckol and PFF-A (Figure 1) via proteocheminformatics modeling (PCM), (b) validate the
PCM prediction by evaluating the modulatory effect on predicted receptors via cell-based
functional GPCRs assays, and (c) look at the specific binding interactions of test ligands
and target receptors via molecular docking simulation.

Figure 1. Chemical structures of dieckol and phlorofucofuroeckol-A.

2. Results

2.1. In Silico Target Prediction

Proteocheminformatics (PCM) modeling is a quantitative bio-modeling technique that
can predict the affinity and potency of a ligand against multiple different protein targets
simultaneously by combining chemical and biological information from the ligand and
related targets into a single machine learning model [23]. From in silico PCM modeling,
the highest-ranked twenty potential protein targets were predicted for the phlorotannins.
Table 1 presents a list of the target proteins with an average score value.
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Table 1. List of top 20 protein targets from proteocheminformatics modeling (PCM) prediction of dieckol and
phlorofucofuroeckol-A, respectively.

Rank
Dieckol Phlorofucofuroeckol-A

Protein Name Average Score Protein Name Average Score

1 Vasopressin 1A receptor 0.513 Vasopressin 1A receptor 0.797
2 Vasopressin 1B receptor 0.742
3 Oxytocin receptor 0.737
4 B2 bradykinin receptor 0.735
5 B1 bradykinin receptor 0.727
6 Histamine H1 receptor 0.721
7 Serotonin 1D receptor 0.717
8 Type-1 angiotensin II receptor 0.716
9 Dopamine D2 receptor 0.713

10 Cannabinoid receptor 1 0.711
11 Prostanoid EP3 receptor 0.710
12 Rho-associated protein kinase 1 0.710
13 Muscarinic acetylcholine receptor M3 0.709
14 Cholecystokinin A receptor 0.709
15 Serotonin 1A receptor 0.706
16 Neurokinin 1 receptor 0.706
17 Cysteinyl leukotriene receptor 1 0.706
18 Alpha-1D adrenergic receptor 0.705
19 Cholecystokinin B receptor 0.704
20 Serotonin 1B receptor 0.704

As shown in the Table 1, the V1A receptor was predicted as a top target for dieckol and
PFFA. For PFF-A, 5-hydroxytryptophan 1A (5-HT1AR), 5-hydroxytryptophan 1B (5-HT1BR),
and cannabinoid 1 (CB1R) receptors were among the predicted top twenty protein targets.
Based on this prediction and reported biological activities of the phlorotannins in the
literature, we proceeded to validate adenosine A2A receptor (A2AR), alpha-2A adrenergic
receptor (α2AAR), alpha-2C adrenergic receptor (α2CAR), δ-opioid receptor (δ-OPR), CB1R,
free fatty acid receptor 1 (FFA1R or GPR40), glucagon-like peptide-1 receptor (GLP-1),
V1AR, 5-HT1AR, and 5-HT1BR cell-based functional assays.

Firstly, the functional effect of dieckol and PFF-A was screened at a 100-μM concen-
tration. As shown in Table 2, dieckol showed an agonist effect on α2CAR (52.4 ± 4.24%)
and V1AR (106.73 ± 2.97%) and an antagonist effect on A2AR (55.55 ± 4.03%), δ-OP
(66.95 ± 0.92), CB1R (158.75 ± 17.81%), and GLP-1R (101.0 ± 8.20%).

Likewise, PFF-A showed an agonist effect on α2CAR (83.8 ± 0.07%) and CB1R (113.8
± 3.68%) and an antagonist effect on A2AR (66.6 ± 2.26%), δ-OP (73.55 ± 5.44), and GLP-1R
(105.7 ± 1.27%). These phlorotannins were either mild active or inactive at other tested
protein targets as depicted by the negative and/or low value of % stimulation or inhibition
(Table 2).

Based on the functional effect above 50% at 100 μM, the concentration-dependent
effect was further tested and compared with the reference agonists and antagonists
(Figures 2 and 3 and Tables 3 and 4) followed by molecular docking simulation. Molec-
ular docking simulation of test ligands to the crystal structures of target proteins and
comparison with the reference ligands results revealed the mechanism of ligand–target-
protein interaction.
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Table 2. Agonist and antagonist effect of 100 μM dieckol and phlorofucofuroeckol-A at several GPCRs.

GPCRs

Functional Effect at 100 μM Concentration

Dieckol Phlorofucofuroeckol-A

Agonist Effect Antagonist Effect Agonist Effect Antagonist Effect

Adenosine A2A receptor (A2AR) −0.1 ± 1.41 55.55 ± 4.03 −0.7 ± 0.57 66.6 ± 2.26
Alpha-2A adrenergic receptor (α2AAR) 13.4 ± 19.87 46.15 ± 20.15 −0.5 ± 0.85 20.95 ± 1.77
Alpha-2C adrenergic receptor (α2CAR) 52.4 ± 4.24 −1.2 ± 6.08 83.8 ± 0.07 19.2 ± 9.76

δ-opioid receptor (δ-OPR) −5.7 ± 0.14 66.95 ± 0.92 14.7 ± 7.35 73.55 ± 5.44
Cannabinoid receptor 1(CB1R) −23.3 ± 12.09 158.75 ± 17.18 113.8 ± 3.68 21.35 ± 0.49

Free fatty acid receptor 1 (FFA1R) (GPR40) 0.2 ± 1.56 22.55 ± 5.44 −1.0 ± 0.07 30.15 ± 0.78
Glucagon-like peptide-1 receptor (GLP-1) −16.3 ± 1.13 101 ± 8.20 −15.5 ± 2.55 105.7 ± 1.27

Vasopressin 1A receptor (V1AR) 106.73 ± 2.97 57.77 ± 0.32 b 38.45 ± 7.14 a 56.90 ± 5.37 b

5-hydroxytryptophan 1A (5-HT1AR) 1.75 ± 0.64 a 91.0 ± 3.11 1.65 ± 0.49 a 77.00 ± 11.03
5-hydroxytryptophan 1B (5-HT1BR) −7.3 ± 3.96 −18.5 ± 2.69

a Value was extracted from our previous study [22]. b The test compound induces at least a 25% agonist effect at this concentration, which
results in an apparent inhibition.

Figure 2. Dose-dependent agonist effect of dieckol and/or phlorofucofuroeckol-A on hα2CAR (A), hV1AR (B), and hCB1

(C) receptors.

Figure 3. Dose-dependent antagonist effect of dieckol and phlorofucofuroeckol-A against hA2A (A), δ-opioid (hδ-OP) (B),
hGLP-1 (C), hV1AR (D), and h5-HT1AR (E) receptors.
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2.2. Dieckol and PFF-A as A2AR Antagonists

Dieckol inhibited the 3 nM epinephrine bitartrate response by 17.5%, 56.0%, and
62.43% at a concentration of 50, 100, and 150 μM, respectively, and yielded an IC50 value
of 87.18 ± 2.63 μM (Table 3 and Figure 3A), while PFF-A inhibited the response of the
reference agonist by 64.7%, 92.2%, and 99.93% at a concentration of 50, 100, and 150 μM,
yielding an IC50 value < 50 μM (Figure 3A).

In the docking simulation, dieckol formed two H-bond interactions with Ile80 and
Asp170 (Figure 4B) while four H-bond interactions (His278, Ala59, Ala81, Ser67) were
observed for PFF-A (Figure 3C). The binding of reference ligands to the A2AR crystal
structure showed the involvement of residues Phe168, Leu249, Asn253, and Met270. The
total number of hydrophobic and electrostatic interactions involved in dieckol binding was
greater than that of PFF-A binding (Table S2). Interestingly, only one interacting residue
(Leu249) was in common with the reference ligand. However, PFF-A had two common
interacting residues (Leu249 and Phe168) with reference antagonist ZM241385 (Table S1).

Figure 4. Molecular docking of dieckol and phlorofucofuroeckol-A in the active site of hA2AR (A), hα2CAR (D), and hδ-OPR
(G) along with reported agonist (yellow stick) and antagonist (black stick). Detailed hA2AR–ligand (B) for dieckol and
(C) for phlorofucofuroeckol-A), hα2CAR–ligand (E) for dieckol and (F) for phlorofucofuroeckol-A), and hδ-OPR–ligand
interactions (H) for dieckol and (I) for phlorofucofuroeckol-A) on a 2D diagram.
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2.3. Dieckol and PFF-A as α2CAR Agonists

Evaluation of the concentration-dependent agonist effect of phlorotannins (Table 3
and Figure 2A) at α2CAR depicted dieckol as a moderate agonist (EC50: 98.80 ± 7.71 μM)
and PFF-A as a good agonist (EC50: 23.67 ± 3.32 μM). Even at a 25-μM concentration,
PFF-A stimulated the effect of 1 μM epinephrine by 55%. The reference agonist epinephrine
had an EC50 value of 0.86 nM. To further support the functional effect and delineate the
difference in activity between the two phlorotannins, a molecular docking simulation of
test ligands and target protein was performed.

As shown in Figure 4D,E, dieckol interacted with Asn111, Ser108, Cys202, Asp206, and
Gly203 via H-bond (Figure 2B). Similarly, PFFA also displayed four H-bond interactions
with Val414, Asp131, Ser401, and Gln413 (Figure 4F). H-bond interaction with Asp131
was a typical interaction observed for the reference agonist (epinephrine) and PFF-A, but
absent in dieckol binding. Between two test ligands, hydrophobic interactions with Phe419,
Tyr405, and Leu204 were common (Table S1).

2.4. Dieckol and PFF-A as δ-OPR Antagonists

The dose-dependent antagonist effect at the δ-opioid receptor depicted PFF-A as
a potent natural antagonist. As shown in Table 4 and Figure 3B, even at the 50-μM
concentration, PFF-A inhibited the effect of 25 nM [D—Pen2, D—Pen5]enkephalin (DPDPE)
by 89.03 ± 0.70%, while the effect was 23.23 ± 4.04% for the same concentration of dieckol.
Dieckol had an IC50 value of 80.46 ± 13.74 μM, but the value was <50 μM for PFF-A.
The reference antagonist naltriben mesylate had an IC50 value of 9 nM. The binding of
dieckol to the crystal structure of 4ej4 (Figure 4G,H) showed an involvement of three H-
bond interactions (Asp128, Met132, Cys198) and numerous hydrophobic and electrostatic
interactions (Met132 (Sulfur-O, π-alkyl), Lys108 (π-cation, π-Alkyl), Asp128 (π-anion),
Val281 (π-sigma), Ile304 (π-sigma), Cys198 (π-sulfur), Ile277 (π-alkyl), and Val197 (π-
alkyl)). Likewise, as shown in Figure 4I, PFF-A formed four H-bond interactions with
Leu200, Lys214, Ile304, and Asp128 and five hydrophobic and electrostatic interactions
with Asp128 (π-anion), Asp210 (π-Anion), Tyr129 (π-lone pair), Tyr308 (π-π stacked), and
Leu200 (π-alkyl).

The reference antagonist naltrindole showed an H-bond interaction with aspartic
acid residue (Asp128) and numerous hydrophobic interactions with tryptophan residues -
Trp284 (π-π-T-shaped), Trp284 (π-alkyl), and Trp274 (π-alkyl). Only Asp128 was a common
interacting residue among the test and reference ligands while Tyr308 was observed for
PFF-A and reference ligand binding, but not for dieckol (Tables S1 and S2).

2.5. PFF-A as a CB1R Agonist

Only PFF-A showed a full CB1R agonist effect (113.8 ± 3.68%) at the 100-μM concen-
tration. Therefore, the effect at lower concentrations was tested and, as shown in Table 3
and Figure 2C, PFF-A stimulated the effect of 10 nM CP 55940 by 46.7, 80.3, and 96.45%
at 12.5, 25, and 50 μM, respectively. Hence, the log concentration vs. % simulation graph
yielded an EC50 value of 13.42 ± 2.03 μM. Reference agonist CP 55940 had an EC50 value
of 0.21 nM. To predict the binding affinity and characterize the binding mode of PFF-A and
CB1R, molecular docking simulation was performed (Figure 5A). As tabulated in Tables
S3 and S4, PFF-A interacted with the active-state CB1R (6kqi) by forming three H-bonds
(Ser173, His178, and Met363) and numerous hydrophobic interactions—Phe177, Phe268,
Trp279, Val196, Leu193, and Met363. Interactions with Ser173, Phe268, Phe177, Trp279,
Val196, and Leu193 are a common observation in the binding of PFF-A and CP 55940
with the active-state CB1R (6kqi). The reference antagonist taranabant interacted with the
inactive-state CB1R (5u09) by forming hydrogen-bond interactions with Ser173, Phe189,
and Lys192 via the −CF3 group. Likewise, other hydrophobic interactions involved in
taranabant–5u09 binding were phenylalanine residues (Phe170, Phe174, Phe189, Phe268,
and Phe379), Trp279, His178, Leu192, Leu193, Ile267, and Met363 (Figure 5B).

180



Mar. Drugs 2021, 19, 326

Figure 5. (A) Molecular docking of phlorofucofuroeckol-A (purple stick) in an active-state of hCB1R (PDB ID: 6kqi)
along with reported agonist (yellow stick). Structure of reported antagonist taranabant docked into the inactive state of
hCB1R (PDB ID: 5u09, gray ribbon) is shown as black stick. (B) Detailed hCB1R–ligand interactions on a 2D diagram for
phlorofucofuroeckol-A. (C) Molecular docking of dieckol (green stick) and phlorofucofuroeckol-A (purple stick) in an
inactive-state of hGLP-1 (PDB ID: 5vex, blue ribbon) along with reported antagonist, NNC0640 (black stick). Structure of
reported agonist PF-06882961 docked into the active-state of hGLP-1 (PDB ID: 6x1a, gray ribbon) is shown as yellow stick.
(B,C) Detailed hGLP-1–ligand interactions on a 2D diagram (D) for dieckol and (E) for phlorofucofuroeckol-A.

2.6. Dieckol and PFF-A as GLP-1R Antagonists

Results from the functional assay on mouse GLP-1 receptor-expressed βTC6 cells
demonstrated dieckol and PFF-A as full antagonists of the GLP-1 receptor. At a concentra-
tion of 100 μM, both the compounds inhibited the effect of 0.3 nM GLP-1(7–37) by 100%.
However, at the 25-μM concentration, PFF-A inhibited the reference agonist-response by
57.37% and dieckol by 21.23%. Additionally, a dose-dependent response curve yielded IC50
values of 47.19 ± 2.46 and 21.56 ± 2.16 μM for dieckol and PFF-A, respectively (Table 4 and
Figure 3C). The potency of PFF-A was two-fold higher than that of dieckol. The reference
antagonist exendin-3(9–39) had an IC50 value of 4.6 nM. From the molecular docking
study, hydrogen-bond interactions with Ser352 and Thr355 (Table S3) and hydrophobic
interactions with Leu354, Lys351, and Val405 (Table S4) were common observations in
test ligands and reference antagonist NNC0640 binding with an inactive-state GLP-1R
(5vex) (Figure 5C–E) in our molecular docking simulation. An unfavorable contact between
dieckol and GLP-1R receptor was observed via the Asn407 residue.

2.7. Dieckol as Agonist and PFF-A as Antagonist of hV1AR

The agonist effect of dieckol at V1AR was first tested at 100 μM to compare with
the effect of PFF-A that we reported earlier [22]. As tabulated in Table 2, dieckol at
100-μM concentration stimulated the percentage agonist effect of 1 μM arginine vasopressin
(AVP) by 106.73 ± 2.97% and inhibited the percentage of control agonist response by
57.77 ± 0.32%. In the hV1AR antagonist assay, the 100-μM concentration of dieckol induced
at least a 25% agonist effect. In comparison, PFF-A induced a 38.45 ± 7.14% stimulation
and 56.90 ± 5.37% inhibition of the control agonist response at 100 μM. Furthermore, the
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concentration-dependent dose–response curve depicted dieckol as a hV1AR agonist (EC50:
39.12 ± 2.12 μM) (Table 3 and Figure 2B) and PFF-A as an antagonist (IC50: 42.25 ± 0.41 μM)
(Table 4 and Figure 3D).

Molecular simulation of dieckol and PFF-A along with reference ligands to a crystal
structure of hV1AR predicted that both test ligands bind with high affinity (Figure 6A).
Dieckol formed H-bond interactions with Gln131, Ala334, and Asp112, and hydrophobic
interactions with Lys128, Met135, Trp204, Ala101, and Ala334 (Figure 6B). Reference agonist
AVP formed H-bond interactions with Asp202 (Salt-bridge), Glu54, Asp112, and Ile330 and
hydrophobic interactions with Trp204, Ile330, Ala101, Ala334, Val132, and Met135. This
shows that dieckol and AVP have numerous residues in common that involve binding with
the receptor.

Figure 6. Molecular docking simulation of hV1AR (A) and h5-HT1AR (D) binding with dieckol (green stick) and
phlorofucofuroeckol-A (purple stick) along with reported agonist (yellow ribbon or stick) and antagonist (black stick).
Detailed hV1AR–ligand (B) for dieckol and (C) for phlorofucofuroeckol-A) and h5-HT1AR–ligand interactions (E) for dieckol
and (F) for phlorofucofuroeckol-A) on a 2D diagram.

Likewise, PFF-A bound to the hV1AR via five H-bond interactions (Ser338, Cys203,
Met135, Glu54, Ala101) and other hydrophobic interactions with Lys128, Met220, Phe189,
Phe307, Val132, Val100, Ala101, Met135, Ala334, Ala205, and Val105 (Figure 6C). Three
H-bond interactions with Gln131, Gln108, and Lys128, and hydrophobic interactions with
Phe307, Trp204, Val132, Met135, Met220, Ala334, Ala205, Gln131, and Thr333 were observed
for SR49059 binding. The docking result shows that, respective to their functional effect,
dieckol and PFF-A interact with residues that were involved in the binding of the reference
agonist and antagonist (Tables S5 and S6).

2.8. Dieckol and PFF-A as 5-HT1AR Antagonists

An antagonist effect was observed for dieckol and PFF-A in a cell-based functional
assay. At 100-μM concentration, dieckol and PFF-A inhibited the response of 30 nM
serotonin by 91.0 ± 3.11% and 77.00 ± 11.03%, respectively (Table 2). A concentration-
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dependent dose–response showed that dieckol and PFF-A inhibited the 50% response of
30 nM serotonin at 43.31 ± 3.22 and 17.75 ± 3.42 μM, respectively (Table 4 and Figure 3E).
However, the agonist effect at 5-HT1AR was negligible for both the compounds when tested
at the 100-μM concentration. As a result, the EC50 value was not determined. Reference
drug serotonin had an EC50 value of 0.72 nM and antagonist GR55562 had an IC50 value of
4.4 nM.

Docking of test and reference ligands to the active site of 5-HT1AR demonstrated
that aspartic acid residue Asp116 is one of the important binding residues (Figure 6D).
Dieckol formed an H-bond interaction with Asp116, Thr200, Ser190, Asn386, and Tyr96
while PFF-A did with Thr188, Glu372, Tyr96, and Asn386 (Figure 6E,F). Reference ligands
serotonin and WAY 100635 formed an H-bond interaction with Asp116 via a salt-bridge.
Interactions with Thr200, Phe361, and Val117 were observed for test ligands and serotonin
binding (Tables S5 and S6).

3. Discussion

Dieckol and PFF-A are phloroglucinol (1,3,5-trihydroxybenzene)-based polyphenols
with a varied number of phloroglucinol units attached via dibenzofuran and dibenzodioxin
linkages. Dieckol is a phloroglucinol hexamer and PFF-A is a phloroglucinol pentamer.
A structure–activity relationship between phloroglucinol and its oligomers in our recent
study [22] showed that more than three repeating phloroglucinol units are necessary
for hMAOs inhibition and D3/D4 receptor agonist effect. Likewise, oligomerization of
phloroglucinol with more than five repeating units is essential for the antagonist effect at D1,
NK1, and 5-HT1A receptors. Here, although the monomer phloroglucinol is not included
in the study, the pentamer (PFF-A) showed better activity than a hexamer (dieckol). An
interesting observation in this study is that regardless of the receptors at which these two
phlorotannins showed functional effects (except the hV1AR), PFF-A was two-fold more
potent than dieckol. In contrary to the findings that the phenolic -OH groups attached to
the benzene ring of polyphenols play a vital role in the antioxidant effect [24–26] and that
an increase in the number of hydroxyl groups increases antioxidant activity, the functional
effect of PFF-A at tested GPCRs was higher than that of dieckol despite having a lower
number of hydroxyl groups. The possible reason underlying this might be the structure or
orientation of PFF-A that enables it to reach the core active site cavity of receptors where it
binds to conserved interacting residues leading to conformational change.

Adenosine is an endogenous autacoid that regulates cellular physiology via adenosine
A1, A2A, A2B, and A3 receptors. These receptors are expressed in several cells and tissues
throughout the body and play a crucial role in regulating the pathophysiology of the human
body, suggesting a potential drug target. Of different adenosine receptor subtypes, A2AR is
the main receptor subtype in the striatum colocalized with dopamine D2 receptor and it
modulates motor function [27,28]. Activation of A2AR decreases the binding affinity of D2R
for agonists, implying A2AR antagonists as novel therapeutics for Parkinson’s disease [29].
At the synapse, A2AR facilitates glutamate release and potentiates NMDA receptor effects.
It also stimulates glutamate release in astrocytes by inhibiting glutamate transporter-1
(GLT-1), and the level of A2ARs in neurons and glia is significantly high in depression
and Schizophrenia [30]. Hence, A2ARs antagonists are effective as antidepressants and
anti-anxiety agents. Here, dieckol and PFF-A showed an antagonist effect at hA2AR with
IC50 values of 87.18 ± 2.63 and <50 μM, respectively. Furthermore, molecular docking
simulation showed that dieckol and phlorofucofuroeckol-A strongly interact with the
Phe168 residue, which is known as one of the important residues for ligand binding, via
pi–pi interaction [31]. Structurally, dieckol and PFF-A are powerful radical scavengers [32]
and as such, dieckol, in a recent study [33], protected dopaminergic neuronal cells by
preventing α-synuclein aggregation via antioxidant mechanism. In a previous study [34],
dieckol suppressed LPS-induced excessive microglial activation and protected neuronal
cells by downregulating extracellular signal-regulated kinases, protein kinase B (PKB/Akt),
and nicotinamide adenine dinucleotide phosphate hydrogen (NADPH) oxidase-mediated
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pathways. Likewise, PFF-A inhibited glutamate-induced apoptotic PC12 cell death in a
caspase-dependent manner [35].

Similarly, at α2CAR, PFF-A showed a strong agonist effect and formed an H-bond with
the Asp131 of α2CAR, which is the conserved active site residue. Adrenergic receptors are
targets for epinephrine and norepinephrine and are involved in maintaining homeostasis.
Among several types of adrenergic receptors, highly expressed α2 adrenoreceptors in
astrocytes, and in glutamatergic and GABAergic neurons act by increasing intracellular Ca2+

levels [36]. The α2CAR subtype mediates cold-induced vasoconstriction, inhibits dopamine
release in basal ganglia [37], and serotonin in the mouse hippocampus [38]. Therefore,
α2CAR selective ligands have a therapeutic role in neuropsychiatric disorders [38] and
α2CAR agonists are implicated in the treatment of neuropathic pain [39–41].

Serotonin (5-hydroxytryptamine, 5-HT) is a monoamine neurotransmitter that plays a
crucial role in physiological functions, and of a total of 14 subtypes of 5-HT receptors, the
5-HT1A receptor is a prominent target for the treatment of various neuropsychiatric and
neurological disorders, prominently depression [42]. In the functional assay, dieckol and PFF-
A showed a good antagonist effect at 5-HT1AR. Furthermore, they interacted with conserved
aspartate residue (Asp116) of 5-HT1AR via H-bond and pi–anion binding, respectively.

Vasopressin is an antidiuretic hormone that plays a vital role in the central nervous
system (CNS) and peripheral nervous system (PNS). The vasopressin receptor is one of the
promising targets for CNS drugs, and vasopressin antagonists represent a novel approach
for the treatment of stress, mood, and behavioral disorders [43]. Likewise, as a peripheral
role, V1AR is responsible for vasoconstriction, myocardial contractility, platelet aggregation,
and uterine contraction [44]. Similarly, in a recent study [45], upregulated vasopressin 1
receptor (V1R) expression in hepatocytes of ischemia-reperfusion injury mouse model was
identified and the V1R/Wnt/β-catenin/FoxO3a/Akt pathway was highlighted as vital for
hepatoprotection.

Cannabinoid CB1 receptors are among the most abundant GPCRs in the brain and
they modulate CNS activity [46]. Cannabinoid CB1 receptor agonist activation of the
CB1 receptor leads to decreased levels in cellular cAMP via inhibition of adenylyl cyclase.
Moreover, CB1 activation inhibits voltage-gated Ca2+ channels and activates K+ channels,
and these overall intracellular signaling activities reduce cellular excitability [47]. Likewise,
studies also indicate high expression levels of CB1R in various types of cancer [48,49].
Interestingly, a new study demonstrated a higher orexigenic effect of the CB1R agonist
AM11101 than tetrahydrocannabinol [50]. This shows that CB1R agonists could be used as
an appetite stimulant in underweight patients. In the present study, only PFF-A showed a
promising agonist effect at CB1R with an EC50 of 13.42 ± 2.03 μM. Several reports on PFF-A
show neuroprotective effects mainly via antioxidant mechanisms [14,35,51]. Likewise,
a recent study suggested the ATF3-mediated pathway as a possible mechanism of PFF-
A-induced apoptosis in human colorectal cancer cells [52]. However, it remains unclear
whether the neuroprotective and anticancer effect of PFF-A is via CB1R agonist activity.

The human CB1 receptor is an important therapeutic target for obesity and obsessive
disorders and the mechanism of its transition state (either active or inactive) is vital for
understanding the regulatory action of the receptor [53]. A salt bridge between conserved
Asp-Arg-Tyr (DRY) motif in the C-terminal region of transmembrane 3 (TM3) and trans-
membrane 6 (TM6) characterizes the active or inactive conformation of the rhodopsin-like
GPCRs [54]. In an inactive conformation of CB1R, TM6 packs against TM3 and transmem-
brane 5 (TM5) and G protein-interacting residues—Phe200 (helix III) and Trp356 (helix
VI) are obstructed [55]. The reference inverse agonist (taranabant) is bound to the inactive
state crystal structure by forming an H-bond interaction between the NH of taranabant
and the hydroxyl of Ser383 and the −CF3 group with Ser173, Phe189, and Lys192. This
result corroborates the findings of a previous study [56] which concluded that a strong
H-bond between the -NH group of taranabant and the hydroxyl of Ser383 was vital for
superior affinity to CB1R. Likewise, the agonist CP55940 formed π–π interactions with
Phe170 and Phe268, and two H-bond interactions with Ser173 and Ser383 in a similar

184



Mar. Drugs 2021, 19, 326

fashion, as reported earlier [56]. PFFA also formed a stable pi–pi interaction with Phe268
and an H-bond interaction with Ser173 of the active state crystal structure (6kqi), which
could explain the agonist potency of PFFA in vitro.

Among the tested protein targets, CB1R, GLP-1, and GPR40 are obesity/T2DM related
GPCRs and in the functional assays, PFF-A showed a good agonist effect at CB1R, while
both the dieckol and PFF-A showed an antagonist effect at the GLP-1 receptor. Their effect
at GPR40 was mild agonist. A gut-derived incretin hormone GLP-1 stimulates insulin
and suppresses glucagon secretion, inhibits gastric emptying, and reduces appetite and
food intake. In a previous study, intracerebroventricular injection of exendin (9–39), a
specific GLP-1 antagonist, blocked the inhibitory effect of GLP-1 on food intake [57]. Hence,
GLP-1 agonists represent a new class of antidiabetic agents [58]. In a recent study on the
anti-diabetic effect in the zebrafish model [59], dieckol treatment reduced liver glucose-
6-phosphate and phosphoenolpyruvate carboxykinase, and enhanced glucose transport
and insulin sensitivity via protein kinase B (Akt) phosphorylation. It is of note that dieckol
and PFF-A showed a good antagonist effect at GLP-1. Thus, the in vivo effects of these
phlorotannins in GLP-1-mediated signaling are urgent.

In conclusion, the present study characterizes the receptors hA2AR, hα2CAR, hδ-
OP, CB1R, GLP-1, hV1AR, and h5-HT1AR as prime protein targets of dieckol and PFF-A.
Moreover, the binding mechanism of test ligands with the target proteins strengthens the
study and warrants further in vivo studies.

4. Materials and Methods

4.1. Chemicals and Reagents

A transfected Chinese hamster ovary (CHO), Hela, a murine interleukin-3 dependent
pro-B (Ba/F3), PC12, and rat basophil leukemia cell lines were obtained from Eurofins
Scientific (Eurofins-Cerep, Le Bois I’Eveque, France). Buffers—Dulbecco’s modified Eagle
medium (DMEM) buffer, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES)
buffer, and Hank’s balanced salt solution (HBSS) buffer—were purchased from Invitrogen
(Carlsbad, CA, USA). The reference agonists: 5′-N-ethylcarboxamidoadenosine (NECA),
epinephrine bitartrate, epinephrine, DPDPE, CP 55940, linoleic acid, GLP-1(7–37, arginine
vasopressin (AVP), and serotonin, and antagonists: ZM 241385, RX-821002, rauwolscine,
naltriben mesylate, AM 281, exendin-3(9–39), [d(CH2)5

1, Tyr (Me)2]-AVP, (S)-WAY-100635,
and GR55562) were obtained from Sigma-Aldrich (St. Louis, MO, USA). All other chemicals
and reagents purchased from Merck and Fluka were of the highest available grade unless
otherwise stated.

4.2. Isolation of Phlorotannins

Phlorotannins—dieckol and PFF-A were isolated from the ethyl acetate fraction of E.
stolonifera ethanolic extract, as described previously [11,22].

4.3. In Silico Prediction of Targets

To predict potential protein targets for the phlorotannins, a proteocheminformat-
ics modeling (PCM) in silico target prediction method was employed, as described re-
cently [60]. For full information on the model, readers are further directed to a previous
report [61].

4.4. Functional GPCR Assay

The functional assay using transfected cells expressing human cloned receptors, PC12
cells for adenosine A2A receptor, rat basophil leukemia cells for human adrenergic alpha2A
receptor, human delta opioid (δ-OP) receptor, CHO cells for adrenergic alpha2C receptor,
human cannabinoid CB1, and vasopressin (V1AR), human embryonic kidney 293 (HEK-
293) cells for free fatty acid receptor 1 (FFA1R or GPR40), βTC6 cells for the glucagon-
like peptide-1 receptor (GLP-1), Ba/F3 cells for serotonin (5-HT1A), and Hela for 5-HT1B
receptors were carried out at Eurofins laboratory (Eurofins-Cerep, Le Bois I’Eveque, France).
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The in-house assay protocol and experimental conditions are reported in our previous
reports [15,22,62]. The functional effect of dieckol and PFF-A was characterized based on
their modulation effect on cytosolic Ca2+ ion mobilization using a fluorimetric detection
method or by measuring their effect on cAMP modulation using homogeneous time-
resolved fluorescence (HTRF) detection.

4.5. Measurement of cAMP Level

Functional activity of phlorotannins over hA2AR, hα2CAR, hCB1R, GLP-1R, and h5-
HT1BR was determined by measuring their effects on cAMP production by the HTRF
detection method using transected cells expressing human cloned receptors.

4.5.1. Functional Activity over hA2AR

In brief, the PC12 cells were suspended in HBSS buffer (Invitrogen) complemented
with 20 mM HEPES (pH 7.4), 0.2 U/mL ADA, and 100 μM rolipram, then distributed in
microplates at a density of 2.103 cells/well and preincubated for 5 min at room temperature
(RT) in the presence of HBSS (basal control), the test compound, or the reference agonist
or antagonist. For stimulated control measurement, separate assay wells contained 3 μM
NECA. Following 10 min incubation at RT, the cells were lysed and the fluorescence
acceptor (D2-labeled cAMP) and fluorescence donor (anti-cAMP antibody labeled with
europium cryptate) were added. After 60 min at RT, the fluorescence transfer was measured
at λex = 337 nm and λem = 620 and 665 nm using an EnVision microplate reader EnSpire
(PerkinElmer, Waltham, MA, USA). The cAMP concentration was determined by dividing
the signal measured at 665 nm by that measured at 620 nm (ratio). Agonist result was
expressed as a percent of the control response to 3 μM NECA while the antagonist effect as
percent inhibition of the control response to 100 nM NECA. The standard reference agonist
was NECA and the antagonist was ZM 241385, which were tested in each experiment at
several concentrations to generate a concentration–response curve from which their EC50
and IC50 values were calculated.

4.5.2. Functional Activity over hα2CAR

Briefly, the transfected CHO cells suspended in HBSS buffer (Invitrogen) comple-
mented with 20 mM HEPES (pH 7.4) and 500 μM IBMX were distributed in microplates at a
density of 104 cells/well in the presence of either of the following: For agonist assay—HBSS
(basal control), epinephrine 1 μM (stimulated control) or various concentrations (EC50 de-
termination), or the test compounds. For antagonist assay—HBSS (stimulated controls),
rauwolscine 10 μM (basal control) or various concentrations (IC50 determination), or the
test compounds. The reference agonist epinephrine and the adenylyl cyclase activator NKH
477 were added at respective final concentrations of 100 nM and 5 μM. For basal control
measurements, epinephrine was omitted from the wells containing 3 μM rauwolscine.
After 10 min at 37 ◦C, the cells were lysed and the fluorescence acceptor (D2-labeled cAMP)
and fluorescence donor (anti-cAMP antibody labeled with europium cryptate) were added.
After 60 min at RT, the fluorescence transfer was measured at λex = 337 nm and λem = 620
and 665 nm using a microplate reader (Envision, Perkin Elmer). The concentration of
cAMP was determined by dividing the measured signal at 665 nm by that measured at
620 nm (ratio). The agonist result are shown as a percent of the control response to 1 μM
epinephrine and the antagonist result are expressed as a percent inhibition of the control
response to 30 nM epinephrine. Epinephrine and rauwolscine were the standard reference
drugs used in each experiment at different concentrations.

4.5.3. Functional Activity over hCB1R

The transfected CHO cells were suspended in HBSS buffer (Invitrogen) complemented
with 20 mM HEPES (pH 7.4). Then, the cells were distributed in microplates at a density
of 5.103 cells/well in the presence of either of the following: For agonist assay—HBSS
(basal control), 30 nM CP 55940 (stimulated control) or various concentrations (EC50
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determination), or the test compounds. For antagonist assay—HBSS (stimulated controls),
10 μM AM 281 (basal control) or various concentrations for IC50 determination, or the test
compounds. Thereafter, the reference agonist CP 55940 and the adenylyl cyclase activator
forskolin were added at respective final concentrations of 1 nM and 25 μM. For basal control
measurements, CP 55940 was excluded from the wells containing 10 μM AM 281. After
30 min of incubation at 37 ◦C, the cells were lysed and the fluorescence acceptor (D2-labeled
cAMP) and fluorescence donor (anti-cAMP antibody labeled with europium cryptate) were
added. The fluorescence transfer was measured at λex = 337 nm and λem = 620 and 665 nm
using an Envision microplate reader (PerkinElmer, Waltham, MA, USA) after 60 min at RT.
The agonist results are expressed as a percent of the control response to 10 nM CP 55940
and the antagonist results are expressed as percent inhibition of the control response to
1 nM CP 55940. CP 55940 and AM 281 were standard reference drugs that were tested in
each experiment.

4.5.4. Functional Activity over GLP-1R

The HBSS buffer (Invitrogen) complemented with 20 mM HEPES (pH 7.4) and 500 μM
IBMX was used to suspend and distribute the βTC6 cells at a density of 1.5x104 cells/well.
The plate was then incubated for 10 min at RT in the presence of HBSS (basal and stimulated
control), the test compound, or the reference agonist and antagonist. In the agonist assay,
separate assay wells containing 100 nM GLP-1(7–37) were prepared for the stimulated
control measurement, while in the antagonist assay, the reference agonist GLP-1(7–37) was
added at a final concentration of 0.3 nM, and separate assay wells contained HBSS for basal
control measurements. Following incubation, the cells were lysed and the fluorescence
acceptor (D2-labeled cAMP) and fluorescence donor (anti-cAMP antibody labeled with
europium cryptate) were added. After 60 min at room temperature, the fluorescence
transfer was measured at λex = 337 nm and λem = 620 nm and 665 nm using an Envision
microplate reader (PerkinElmer, Waltham, MA, USA). The results are expressed as either a
percent of the control response to 100 nM GLP-1(7–37) or a percent inhibition of the control
response to 0.3 nM GLP-1(7–37). The standard reference agonist was GLP-1(7–37) and the
antagonist was exendin-3(9–39).

4.5.5. Functional Activity over 5-HT1BR

Concisely, a plasmid containing the GPCR gene of interest (5-HT1B) was transfected
into Hela cells. The resulting stable transfectants were suspended in HBSS buffer (Invit-
rogen, Carlsbad, CA, USA) containing 20 mM HEPES (pH 7.4), 400 mM NaCl, 1 mg/mL
glucose, and 500 μM IBMX and distributed in microplates at a density of 2 × 104 cells/well.
The plates were then incubated for 20 min at RT in the presence of either of the following:
HBSS and 0.1% BSA (basal control), serotonin at 10 μM (stimulated control) or various
concentrations for EC50 determination, or the test phlorotannins. Thereafter, the adenylyl
cyclase activator NKH 477 (5 μM) was added and the plates were incubated at 37 ◦C for
20 min. Then, the cells were lysed and a fluorescence acceptor (D2-labeled cAMP) and
fluorescence donor (anti-cAMP antibody with europium cryptate) were added following
60 min incubation at RT. After incubation, the fluorescence transfer was measured using
an Envision microplate reader (PerkinElmer, Waltham, MA, USA) and the results are ex-
pressed as a percentage of the control response to 10 μM serotonin for the agonist effect
and as percent inhibition of the control response to 100 nM serotonin.

4.6. Measurement of Intracellular [Ca2+] Level

Functional activity of phlorotannins over human adrenergic α2A (hα2A), human δ-
opioid (hδ-OP), free fatty acid receptor 1 (FFA1R/GPR40), human vasopressin 1A (hV1A),
and human serotonin 1A (h5-HT1A) receptors was assessed by measuring their effect on
cytosolic Ca2+ ion mobilization at the transected cells expressing human cloned receptors
using a fluorimetric detection method.
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4.6.1. Functional Activity over hα2AAR

The rat basophil leukemia cells were distributed in microplates at a density of 1.1 × 104

cells/well after suspending in a HBSS buffer (Invitrogen) containing 20 mM HEPES. Then,
the fluorescent probe (Fluo8, AAT Bioquest) mixed with probenecid in HBSS buffer (In-
vitrogen) complemented with 20 mM Hepes (Millipore) (pH 7.4) was added into each
well incubated for 60 min at 30 ◦C. Thereafter, the assay plates were positioned in a mi-
croplate reader (FlipR Tetra, Molecular Device) and we added test compounds, reference
agonist/antagonist or HBSS buffer (basal control). Change in fluorescence intensity which
varies proportionally to the free cytosolic Ca2+ ion concentration was measured. For stimu-
lated control measurements, separate assay wells containing 0.1 μM epinephrine bitartrate
were prepared. The agonist effect was calculated as a % of control response to epinephrine
bitartrate at 0.1 μM. Similarly, for the antagonist effect, % inhibition of the control response
to epinephrine bitartrate at 3 nM was evaluated. Epinephrine bitartrate and RX-821002
were used as reference agonists and antagonists, respectively.

4.6.2. Functional Activity over hδ-OPR

At first, rat basophil leukemia cells were suspended in HBSS buffer (Invitrogen) com-
plemented with 20 mM HEPES, and distributed in microplates at a density of 2.768 × 104

cells/well. Thereafter, a mixture of fluorescent probe (Fluo8, AAT Bioquest) and probenecid
in HBSS buffer (Invitrogen) complemented with 20 mM Hepes (Millipore) (pH 7.4) was
added and plates were incubated for 60 min at 30 ◦C. Then, the assay plates were positioned
in a FlipR Tetra microplate reader (Molecular Device, San Jose, CA, USA) for the addition of
the test compound, reference agonist/antagonist, or HBSS buffer (basal control). Change in
fluorescence intensity that varies proportionally to the free cytosolic Ca2+ ion concentration
was measured.

For stimulated control measurements, 1 μM DPDPE was added in separate assay
wells. The results are expressed as a percent of the control response to DPDPE at 1 μM or
a percent inhibition of the control response to DPDPE at 25 nM. The standard reference
agonist and antagonist were DPDPE and naltriben mesylate, respectively.

4.6.3. Functional Activity over FFA1R/GPR40

In general, transfected HEK-293 cells suspended in DMEM buffer (Invitrogen) con-
taining 1% FCSd were distributed in microplates at a density of 2.104 cells/well. Then,
the mixture of fluorescent probe (Fluo4 Direct, Invitrogen) and probenecid in HBSS buffer
(Invitrogen) complemented with 20 mM Hepes (Invitrogen) (pH 7.4) was added into each
well and incubated for 60 min at 37 ◦C, followed by 15 min incubation at 22 ◦C. Thereafter,
the assay plates were positioned in a CellLux microplate reader (PerkinElmer, Waltham,
MA, USA) which was used for the addition of the following: For agonist assay—test com-
pound, reference agonist, or HBSS buffer (basal control). Linoleic acid at 100 μM was added
in separate assay wells for stimulated control measurement. For antagonist assay—test
compound or HBSS buffer (basal and stimulated control), then, 5 min later, 20 μM linoleic
acid. Agonist results are expressed as a percent of the control response to 100 μM linoleic
acid while antagonist results are expressed as percent inhibition of the control response to
20 μM linoleic acid.

4.6.4. Functional Activity over hV1AR

Briefly, CHO-V1AR cells were separately suspended in DMEM buffer (Invitrogen,
Carlsbad, CA, USA) complemented with 0.1% FCSd and distributed into microplates
(4.5× 104 cells/well). Then, fluorescent probe (Fluo4, Invitrogen) mixed with probenecid
in HBSS buffer (Invitrogen, Carlsbad, CA, USA) supplemented with 20 mM HEPES, pH 7.4
(Invitrogen) was added to each well, allowing to equilibrate with the cells for 60 min at
37 ◦C, then 15 min at 22 ◦C. Thereafter, the assay plates were positioned in a CellLux
microplate reader (PerkinElmer, Waltham, MA, USA) and dieckol and PFF-A (12.5, 25, 50,
100, and/or 150 μM), reference agonist, or HBSS buffer (basal control) was added. For
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stimulated control measurements, AVP at 1 μM was added in separate assay wells. The
agonist effect on V1AR was calculated as a % of control response to 1 μM AVP. Similarly, for
the antagonist effect, % inhibition of the control response to 10 nM AVP was evaluated. AVP
and [d(CH2)5

1, Tyr (Me)2]-AVP were used as reference agonist and antagonist, respectively.

4.6.5. Functional Activity over h5-HT1AR

In brief, Ba/F3-5HT1AR cells were first suspended in HBSS buffer (Invitrogen, Carls-
bad, CA, USA) complemented with 20 mM HEPES buffer (pH 7.4). Then, the cells were
distributed into microplates at a density of 1 × 106 cells/well. Subsequently, fluorescent
probe (Fluo8, AAT Bioquest) mixed with probenecid in HBSS buffer (Invitrogen, Carlsbad,
CA, USA) supplemented with 20 mM HEPES (Invitrogen) (pH 7.4) was added to each well,
and the plates were incubated for 60 min at 37 ◦C. Thereafter, plates were fixed in a FlipR
Tetra microplate reader (Molecular Device, San Jose, CA, USA) and dieckol and PFF-A (12.5,
25, 50, 100 and/or 150 μM), reference agonist, or HBSS buffer (basal control) was added.
Fluorescence intensity was measured which varied in proportion to the free cytosolic Ca2+

ion concentration. Agonist effect on 5-HT1AR was calculated as a % of control response
to 2.5 μM serotonin. Similarly, the percentage inhibition of the control response to 30 nM
serotonin was calculated for the antagonist effect. Serotonin and (S)-WAY-100635 were
used as reference agonists and antagonists, respectively.

4.7. Homology Modeling and Molecular Docking

The primary sequence of the human 5-HT1AR and human V1AR was obtained from
UniProt (ID: P08908 and P37288, respectively). Based on the SWISS-MODEL, the 5-HT1B
receptor (PDB: 5V54) was selected as a template for homology modeling of human 5-HT1A
because it showed a good sequence similarity (0.42), sequence identity (42.97), and quater-
nary structure quality estimate (QSQE) (0.32) to this receptor. Similarly, μ-opioid receptor
(PDB: 4DKL) was selected as a template for homology modeling of human V1AR, because
it showed a good sequence similarity (0.32), sequence identity (24.54), and QSQE (0.19) to
this receptor. The constructed model was refined using the ModRefiner server. Automated
docking simulations were carried out with the AutoDock 4.2. program [63]. The structures
of dieckol and PFF-A were generated and converted into 3D structures using Marvin
Sketch (v17,1,30, ChemAxon, Budapest, Hungary). Structures of dieckol and PFF-A were
energy-minimized using a molecular mechanics 2 (MM2) force field. X-ray crystallographic
structures of GPCRs were obtained from the RCSB protein data bank (PDB) with respec-
tive PDB IDs—hA2AR (3eml) [31], hα2CAR (6kuw), hδ-OP (4ej4) [64], hCB1R (6kqi) [65],
and hGLP-1 [66]. The structures of reported agonists (5′-N-ethylcarboxamidoadenosine
(NECA), epinephrine, DPI-287, CP 55940, PF-06882961, AVP, and serotonin, and antagonists
(ZM241385, RS-79948, naltrindole, taranabant, NNC0640, SR49059, and WAY 100635) were
downloaded from PubChem or PDB. For each ligand–protein complex, 10 docking poses
were generated using the same grid parameters (size and center) and docking parameters
(genetic algorithm and run options). The pose for the lowest binding energy was chosen
for the final docking result. When the root-mean-square deviation (RMSD) value between
our docking result and the original crystallographic structures of the protein was less than
0.15 nm, we considered our docking protocol to be valid and performed the simulation.
Results were analyzed and visualized using Discovery Studio (v17.2, Accelrys, San Diego,
CA, USA).

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/md19060326/s1, Table S1: Hydrogen bonding interaction residues between ligand–GPCRs
(hA2AR, hα2CAR, and hDOP), Table S2: Hydrophobic and electrostatic interaction residues between
ligand–GPCRs (hA2AR, hα2CAR, and hDOP), Table S3: Hydrogen, halogen, or electrostatic bonding
interaction residues between ligand–GPCRs (hCB1R and hGLP-1), Table S4: Hydrophobic interaction
residues between ligand–GPCRs (hCB1R and hGLP-1), Table S5: Hydrogen bonding interaction
residues between ligand–GPCRs (hV1AR and h5-HT1AR), and Table S6: Hydrophobic and electrostatic
interaction residues between ligand–GPCRs (hV1AR and h5-HT1AR).
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