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1. Introduction and Scope

According to the International Energy Agency, clean energy transitions significantly
increase strategic minerals demand. As evidence suggests, from 2017 to 2022, overall
demand for lithium increased by 300%, 70% for cobalt, and 40% for nickel. Regarding the
forecasts, under the Net-Zero emissions by 2050 Scenario, critical mineral production is
projected to increase by 350% of the values reached in 2030 [1] unless there are significant
changes in urban infrastructure, transportation, and everyday practices [2]. Industry
observers caution that a pervasive sense of urgency to meet the growing mineral demands of
the energy transition can deepen social and environmental injustices if proper engagement
procedures such as Free, Prior and Informed Consent are not followed, as a majority of
potential new mineral developments are located on or near land held by Indigenous and
land-dependent people [3].

Producing mineral raw materials has faced many challenges in providing the necessary
supplies to almost any production chain. In addition to the traditional search for more
efficient processes, cleaner and safer operations, and higher levels of community benefit
and social acceptance, there is a need for the mining industry to become more sustainable,
aiming to become a significant factor in the circular economy, decarbonization, and digital
transformation processes. The articles in this Special Issue “Envisioning the Future of
Mining” advance our knowledge of the interlinked technical, environmental, and social
challenges facing the sector.

2. The Challenges in Future Mining

The trends of recent decades Indicate that current and future scientific and techno-
logical development will be marked by what could be called the “Era of Technological
Convergence” [4]. Since the middle of the 20th century, a phenomenon of integration
between different sciences and technologies has been taking place on an ever-increasing
scale. Fields of science and technology that in past times did not seem to have any apparent
relationship are now the protagonists of an unprecedented interaction that is shaping a new
scientific–technological paradigm. This conception of research work makes it possible to
address and attempt to solve complex problems, which are systemic in nature and common
to different areas of knowledge, through inter-, multi- and transdisciplinary cooperation.

The term converging technologies was first used by researchers Roco and Bain-
bridge, who were the editors of the report “Converging Technologies for Improving
Human Performance” [4]. For Roco and Bainbridge, the term converging technologies
refers to the synergistic combination of four strategic areas of science and technology,
each of which continues to progress on its own at an accelerated pace: (1) Nanoscience
and nanotechnology; (2) Biotechnology and biomedicine, including genetic engineering;
(3) Information technologies, including advanced computing and communication; and
(4) Cognitive sciences, including neurosciences. To express this integration of approaches
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and knowledge in simplified form, the acronym NBIC (Nano, Bio, Info, Cogno) is used.
The distinctive character of converging technologies lies in the strong complementarity
between them in the study and the possibilities of controlled manipulation of interactions
between living and artificial systems. The basic units of study that are fundamental to all
converging technologies originate at the nanoscale.

Yet there is a high risk that the societal transformations driven by the convergence of
physical, digital and biological technologies will lead to exaggerated technological opti-
mism and transhumanist visions. In this case, it is important to insist that new technologies
ought to adjust to the needs of society rather than society adapt to the progress of technolo-
gies. In this sense, the discussion on technological development should move beyond its
technical feasibility and debate on the potential ethical, moral and social implications and
limitations in the medium and long term.

Mining activity is not indifferent to these transformations and must be carefully
considered in the future.

Technical challenges are top of mind in ensuring an adequate supply to the predicted
exponentially growing demand. The Technology and Innovation challenge refers to the sus-
tainable mining requirement of adopting new technologies and practices, which can be
costly and require significant research and development. Often, these new technologies
and practices are responses to environmental goals. For example, the Energy Consumption
challenge addresses the vast amount of energy mining operations need, often from non-
renewable sources. A transition to sustainable energy sources is occurring on many mine
sites, and more could be spurred by recent multi-million-dollar investments in clean energy
demonstrations on minelands by the United States Department of Energy.

Mining activity brings environmental change that must be better managed. The
consumption of vast quantities of water in mining, which can lead to local water scarcity and
contamination, constitutes the Water Management challenge. Sustainable mining practices
need to reduce water consumption and manage it responsibly.

Not properly conducting mining operations can lead to deforestation, soil erosion,
water pollution, and habitat destruction. The Environmental Impact challenge refers to
sustainable mitigation through responsible land reclamation, reduced waste generation,
and adequate water management. The Waste Management challenge is becoming ever more
pressing, as mines generate larger and larger amounts of waste, including tailings and slag,
as the ore grades of remaining mineral resources are generally lower than those of previous
and current mines. Some companies are addressing this challenge by finding ways to
reprocess tailings to recover more minerals. Finally, the Biodiversity Conservation challenge
tackles the risk of disruption of local ecosystems and biodiversity threats due to improper
management of mining operations. Sustainable mining should consider the protection and
restoration of affected ecosystems. Without proper management, environmental problems
can quickly become social conflicts [5].

Community challenges address the potential impact of mining operations on local com-
munities, including displacement, loss of livelihoods, and health concerns [6]. Sustainable
mining involves community consent and engagement, fair labour practices, and benefit-
sharing agreements. Mining operations often face resistance from environmental groups
and the general public, as is evident in the growing difficulties of permitting new mines, so
gaining and maintaining social acceptance and trust is an ongoing challenge for sustainable
mining. While many frame this challenge as one of public perception, which focuses on
changing opinions about mining, this challenge could be reframed as one of alignment,
which would instead focus on designing and operating mines in ways that are consistent
with local expectations and values [7,8]. The Legal and Regulatory Compliance challenge
signals that sustainable mining requires navigating complex and continually changing
legal and regulatory frameworks, often across national borders. Lastly, the Human Rights
challenge is essential: protecting the rights of workers and local communities is a funda-
mental aspect of sustainable mining. Ensuring fair labour practices avoiding human rights
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violations presently and in the future has no possible debate. The sense of urgency to plan
and permit new mines cannot trump the protection of human rights.

The Carbon neutral operations challenge is ramping up in importance. With this, efforts
are intensifying to find new materials that can totally or partially replace those that are
traditionally exploited, using CO2 capture methods, replacing traditional fossil fuels with
alternative fuels and increasing efficiency in the production process, as well as seeking new
uses and opportunities for traditional materials and their wastes by developing materials
that are increasingly durable over time, among other impact measures.

In line with this objective and following the needs expressed in the industry, the
importance of promoting the development of projects focused on the circular economy
within the mining industry, within the framework of environmental sustainability, is
recognised. The objective is based on promoting the adoption of circular practices in
mining by identifying opportunities to reduce waste or generate new products from it,
reuse materials and optimise extraction and production processes. Through research and
collaboration with different actors in the sector, we seek to create innovative solutions
that contribute to minimising the environmental impact of mining and preserving natural
resources. The potential of the circular economy is considered fundamental to positively
transform the mining industry and thus encourage its implementation through projects
that foster sustainability and promote a responsible and efficient approach to the use
of resources.

Finally, we can consider the Global Supply Chain challenge [9]. As mining operations
are often part of complex global supply chains, ensuring responsible sourcing of minerals,
traceability and transparency throughout the supply chain can be challenging but neces-
sary [10]. The practice of artisanal and small-scale mining, and urban mining, are central
to this challenge, as these activities are often performed informally, outside of the view of
states and the private industry.

In the European context, the recently presented Raw Materials Act [11] proposes a
regulatory framework designed to address the challenges faced by the European Union
in the strategic sectors of decarbonisation, digitalisation, and aerospace and defence. The
proposal establishes benchmarks for minimum shares of E.U. demand to be covered by
domestically produced and recycled raw materials. Also, it aims to reduce dependencies
on single third-country suppliers in all supply chain steps, stressing the importance of
increasing supply security and sustainability through circularity, standardisation efforts,
skill development, and strategic actions for research and innovation [12].

3. An Overview of the Published Articles

The Aguayo et al. article (Contribution 1) addresses the Technology and Innovation
Challenge, discussing the potential productivity and safety benefits that incorporating a
surge loader may bring to the load and haul system by analysing the system, component
characteristics, and mine planning aspects. With the available data on the operation of
this equipment and the incident data from Chile and Peru, they point out that the surge
loader addition to the shovel–truck system is an innovation that can improve both the
productivity and the safety of the loading and hauling activities.

The article by Afolayan et al. (Contribution 2) focuses more on the Community
Challenge, dealing with health and safety issues and legal and regulatory ones in the case
of barite mining in Nigeria. The exposure of artisanal miners to polluted air, water, and
soil is thoroughly evaluated. Some recommendations are presented on the need for annual
medical outreach to mining sites and the use of technology (Al) for future mining.

Contribution 3 (Young and Rogers) revisits the Technology and Innovation Challenge
on mine hauling, focusing on dumping operations and proposing a method for gener-
ating high-fidelity models of dump profiles. They develop photogrammetric models of
dumps using unmanned aerial vehicles with mounted cameras. The research identify the
factors that influence these profiles, mainly the truck’s location relative to the dump crest,
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the movement of the underlying dump material during the dumping process, and the
differences in the dump profile before dumping.

Continuing with the same technological challenge, Amoako et al. (Contribution 4)
introduce machine learning algorithms to model rock fragmentation in mine blasting
operations. The paper successfully demonstrates the potential of achieving higher accuracy
in mean rock fragment size prediction using a multilayered artificial neural network and
support vector regression, improving the conventional Kuznetsov empirical model. The
trained models could be incorporated into existing fragmentation analysis software to
provide blasting engineers with more accurate estimations.

Contribution 5 (Mammadli et al.) also addresses computational tools, but in this case,
the analysis focuses on evaluating co- and by-products. The proposed methodology is
applied to assess the production status of different commodities in a polymetallic deposit
located in Azerbaijan. The evaluation outcomes quantify the production potentials for
several commodities in the deposit. The authors justify using this tool to evaluate all kinds
of polymetallic deposits concerning the co- and by-production of several minor critical
raw materials.

In the case of Contribution 6 (Talebi et al.), the focus leaps again to health and safety
issues, but this time using advanced I.T. procedures. In particular, the paper provides an
approach to using operational data sets to find the leading indicators of truck operators’
fatigue. A machine learning algorithm is used to model the individual’s fatigue, and a
model is proposed with the algorithm and an extensive data set. The results show that the
model can find the importance of the individual factors along with work and environmental
factors among operational data sets.

Bao et al. (Contribution 7) review the electrification alternatives for open pit mine
haulage, facing one of the most significant challenges posed by the net zero emissions
target to the mining sector. In the paper, the authors examine options for decarbonising
the haulage systems in large surface mines, comparing electrification alternatives for large
surface mines, including In-Pit Crushing and Conveying (IPCC), Trolley Assist (T.A.) and
Battery Trolley (B.T.) systems. These emerging technologies provide mining companies
and associated industries with opportunities to adopt zero-emission solutions and help
transition to an intelligent electric mining future.

The Schlezak and Styer article (Contribution 8) directly addresses the Community
Challenge with the proposal of the inclusive urban mining concept. They illustrate that
inclusiveness and the circular economy can come together in new forms of urban mining,
analysing the cases of construction and demolition waste and e-waste sectors in Colombia
and Argentina from a sociotechnical perspective. As a result, they highlight the impor-
tance of promoting community-based research methods and concepts to be included in
mining, materials, metallurgical science, and engineering academic programs to address
these challenges.

Contribution 9 (Smith et al.) stresses the importance of a sociotechnical approach
to future engineers of natural resources to understand and promote social justice and
sustainability in professional development. The future changes that current challenges
will produce need the engineer contribution and promotion as active parts of society.
This research is carried out with two different groups of engineering students from the
Colorado School of Mines and the Universidad Nacional de Colombia. The researchers find
that collaborative, interdisciplinary teaching about authentic problems enhances student
abilities to understand their professions from a sociotechnical perspective.

Finally, Contribution 10 (El Hiouile et al.) presents a case study of the application of
artificial intelligence to monitor a screen unit in a phosphate processing plant. Using artifi-
cial intelligence and image processing techniques, this research evaluates the performance
of machine learning and deep learning models to detect the screening unit malfunction in
the open pit of the Benguerir phosphate mine in Morocco. The results prove the robustness
of models based on convolutional neural networks (CNN) and the Histogram of Oriented
Gradient (HOG) technique.
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4. Conclusions

Under the sustainable development principles framework, further insight must be
gained to overcome the potential challenges in mineral raw material production [13]. This
issue, “Envisioning the Future of Mining”, covers new sources of raw materials (urban
mining, deep sea mining, ultradeep mining, extraterrestrial mining), the continuously
growing levels of digitalisation and automation, and the use of safer, healthier and cleaner
technologies in raw material processing and extracting. It also spans or scales from artisanal
to large-scale mining activities and includes perspectives from education research that
point the way to training the next generation of industry professionals to address these and
other challenges in sustainable and socially responsible ways.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: The open pit mining load and haul system has been a mainstay of the mining industry
for many years. While machines have increased in size and scale and automation has become an
important development, there have been few innovations to the actual load and haul process itself in
recent times. This research highlights some of the potential productivity and safety benefits that the
incorporation of a surge loader may bring to the load and haul system through an analysis of the
system, discussion of component characteristics, and mine planning aspects. The incorporation of
the surge loader into open pit loading and haulage operations also enables improved safety. This is a
result of a reduction in shovel–truck interactions and the reduced likelihood of truck overfilling and
uneven loading. This paper details the number of mine worker deaths that a surge loader may have
prevented within the Peruvian and Chilean mining industries.

Keywords: surge loader; mine safety; load and haul; truck and shovel; open pit mining; haulage
systems

1. Introduction

The minerals industry is required to process increasingly lower grade ores [1] in
order to meet an insatiable demand for raw materials that is being driven by the general
advancement of humanity, and in particular, the global transition toward cleaner forms of
energy and its respective storage and transmission. This is occurring against a backdrop of
heightened community awareness of environmental, social, and governance issues that
have sadly plagued the industry for too long. To meet the challenges associated with having
to extract and process greater quantities of ore material at a price that remains reasonable,
it is necessary to increase the productivity of operations [2] through innovations.

The safety of operations is essential in the mining industry [3]. This is why the
objective of any innovation should also be to increase the safety of operations while lifting
their productivity at the same time [3]. Even though it may be challenging, this is the key
reason why innovation in the mining industry needs to look beyond small-scale incremental
improvements of current systems. Step-change innovation will only occur if new ways to
redesign the various stages of the operation are achieved [3].

In current open pit mining operations, one of the highest costs lies in the loading and
hauling stage [4]. During the loading and hauling stage, material at the working face is
loaded by an excavator/shovel into trucks, which have positioned themselves as best as
possible to receive this material. The truck then proceeds to haul this material to either a
processing plant, waste dump, or stockpile. Although the current Shovel-Truck (ST) system
presents numerous advantages, particularly over inflexible conveyor-based continuous
mining systems, it is nevertheless costly and becomes more cost as the operation matures.
For this reason, it is vital for the future of open pit operations to find ways to improve the
Shovel-Truck system. In this context, the incorporation of a surge loader into this system is
worthy of further investigation.

Mining 2021, 1, 167–179. https://doi.org/10.3390/mining1020011 https://www.mdpi.com/journal/mining
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This research highlights some of the potential productivity and safety benefits that
the incorporation of a surge loader may bring to the load and haul system through an
analysis of the system, discussion of component characteristics, mine planning, and design
aspects. While the authors are aware of some in-house studies conducted by various
mining companies into the use of surge loaders, very few studies are available in the open
literature. This paper thus presents a detailed discussion into the potential productivity
and safety benefits that the introduction of a surge loader into the open pit loading and
haulage system may present. This is the first of a series of papers that the authors envisage
will ultimately delve in-depth into the technical aspects of the use of a surge loader.

2. Background

The open pit mining value chain is comprised of initial prospecting and exploration,
resource modelling and mine planning, mine production including drilling and blasting
followed by loading and hauling, comminution to liberate and separate the valuable
mineral, followed by further refining, and finally, transportation to market [5]. In open
pit mining operations, the loading and hauling stage is very important in the overall
production of the mine. This is because the performance in this stage largely determines
the production rate that the mining operation can achieve. Often the loading and hauling
stage is the limitation or bottleneck across the whole open pit mining value chain [6].
As such, an efficient, safe, and well-functioning loading and hauling system is essential to
maximising mine productivity [7,8] and value for all stakeholders.

The purpose of the loading and hauling stage is to move the material previously
fragmented by the drilling and blasting process. The first step in this process consists of
loading the material from the bench or working face of the mine into trucks. The next step
involves transporting this material to its destination (stockpile, waste dump, or processing
plant), via a haul road that generally spirals up the pit walls and is specially designed and
maintained to accommodate large haulage trucks of up to a 400-tonne capacity [9].

Depending on operational characteristics and site geometry, the loading and hauling
of material typically represent between 35–55% of the operational costs of an open pit
mine [10,11]. As open pit mining operations mature and additional resources are discov-
ered, extensions to mine life are common. This results in greater pit depths and thus longer
hauls. Ultimately, the cost of material transportation takes a larger and larger share of the
operational costs of the site [6,11]. For this reason, one of the challenges for open pit mining
operations is to continually optimize the loading and hauling stage. Any improvement
could ultimately mean being able to extract additional ore at a greater depth, which would
lead to a further increase in the useful life of the open pit mining operation [5].

3. Shovel-Truck System

Currently, the most common system for the loading and hauling stage in open pit
mining is the Shovel-Truck system (ST) [9,12]. This comprises of a shovel loading blasted
material into a truck, which transports the material from the dig face to a destination
(stockpile, dump, or primary crusher) where it is unloaded. The truck then returns to the
shovel and the cycle repeats, as shown in Figure 1. This has been the mainstay of open pit
mining for many years. This system is simple and easy to implement in mining operations
and is considered as being very reliable, flexible, and effective [9,13]. One of the main
advantages of this system is its versatility as it only needs roads suitable for the movement
of trucks without the need for more complex infrastructure such as conveyors. A substitute
truck may also be rapidly dispatched to replace any breakdown. This allows the system
to easily change and fit to the design of the mine and is thus more likely to prevent the
Shovel-Truck system from becoming a limitation in any mine production expansion [14,15].

The Shovel-Truck system has undergone multiple improvements over time. One of
these improvements involves optimization of the travel route, whereby the most efficient
route for the system is selected through production and topographic analysis. This reduces
cycle time, transport cost, and increases the productivity of the system [16,17]. All these
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changes have improved the productivity of the system as a whole, however, they have not
altered the cycle itself (Figure 1) and thus only generate incremental improvements.

Figure 1. Cycle of the Shovel-Truck system.

Although the Shovel-Truck system has proven its functionality over the years, some
safety aspects remain [18–20]. The various interactions between the shovel and the truck
also lack precise control over the truck’s fill factor.

4. Surge Loader System

While the concept of the surge loader has been in existence for many years, it is only
recently that an equipment manufacturer is offering this as a standard product to the
broader traditional open pit mining industry. In conjunction with the further development
of scanning and sensing technologies, the latest surge loader now has additional capabilities
that it previously did not. This now makes the surge loader a new and exciting proposition
for many open pit mining operations around the world. As with any new potential
equipment purchase, a thorough study should be conducted to understand if the ongoing
additional revenue as a result of productivity improvements is able to offset the initial
substantial capital cost associated with the purchase and commissioning of a surge loader.

In order to introduce this piece of equipment and due to a lack of alternatives, this
paper contains illustrations mostly of the ‘Fully Mobile Surge Loader’ from MMD. The
MMD Fully Mobile Surge Loader is the first of its kind in the world. It is designed to
revolutionize the loading of haul trucks; making the process faster, more efficient, and safer.
It should be noted that the authors have no affiliation with this product or its manufacturer.

The surge loader is a device designed for use in the loading process, whose main
function is to receive the material from the shovel and to then load trucks [21]. It thus
serves as an intermediary between the shovel and the truck. The result is an increase in
the safety and productivity of the loading and hauling stage, as it divides the cycle of the
Shovel-Truck system into two independent cycles [21] as shown in Figure 2.

The cycle of the Shovel-Truck system is divided into two cycles as a result of the surge
loader. This means that the shovel and the truck no longer directly interact. Rather, the
surge loader acts as an intermediary, which allows functional independence between the
loading machine and trucks, respectively.

The surge loader consists of a hopper with a capacity that is generally about 2.5 times
(but not always) the capacity of the truck used in the mining operation [22]. The hopper
receives material from the shovel which it then transfers to a truck, as shown in Figure 3.
With the surge loader, the shovel no longer depends on the immediate presence of a truck
to complete its cycle. The continued operation of the shovel now only depends on the
remaining available capacity of the hopper. This eliminates direct dependence between
the shovel and the truck that exists in the classic Shovel-Truck system [23]. The hopper is
track mounted which gives it the mobility and ability to be completely autonomous [23]
and to accompany the shovel under normal bench operating conditions [21]. This is a
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great advantage when compared to other loading and transport systems used in open
pit mining with limited mobility and autonomy, such as In-pit Crusher and Conveyor
(IPCC) systems [24]. However, it must also be recognized that the surge loader is an
additional item of equipment that may breakdown and require maintenance. While
planned maintenance may take place to minimize the disruption to productivity as much
as possible, any unplanned maintenance as a result of a breakdown is likely to cause a
larger disruption to production than it otherwise would.

Figure 2. New Shovel-Truck system.

 
Figure 3. Fully Mobile Surge Loader [21].

4.1. Feeding System

The surge loader feeding system utilises a ‘Heavy Duty Apron Plate Feeder’ [23].
Figure 4 shows a surge loader feeding system in operation within a coal mine in Colom-
bia. This installation has made it possible for the manufacturer to test its functionality
under different operational scenarios, in addition to proving its efficiency in the loading
process [23].

The feeding system consists of a conveyor belt that carries the material from the
hopper to the truck. The use of the conveyor belt allows the average filling of 330-tonne
trucks in 60 s [23]. This represents a significant reduction of approximately 50% in the time
taken to load trucks compared to the traditional Shovel-Truck system [1].
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Figure 4. Feeding and Loading equipment (Colombia) [23].

The feeding system is comprised of high resistance plates, designed to handle high
impact and abrasive materials [25]. These plates are designed for low maintenance re-
quirements, long useful life, and robustness and reliability. They feature overlapping
edges which prevent spillage between the plates and are fixed to chains with bolts that are
positioned between the grousers, protecting the bolt heads from damage caused by the
material being conveyed as illustrated in Figure 5 [25].

 
Figure 5. Conveyor belt [25].

The main features of the apron plate feeder are the heavy-duty chains and rollers
(manufactured by Caterpillar as part of the MMD system), which are attached to the main
frame, as shown in Figure 6. These stand out for their high resistance and elimination of
impact energy, which is initially absorbed by the conveyor plates, by deforming within
their elastic limits. The impact rails then transmit the forces which are dissipated into the
main frame construction.

 
Figure 6. Mobility and impact methods of the feeding system [25].

4.2. Receiving and Loading of the Material

The transfer of material between the surge loader and the truck is carried out through
a conveyor belt that carries the material previously deposited into the hopper by the shovel
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to the truck as shown in Figure 7. The belt, through strategically placed sensors, is capable
of measuring the volume and weight of the material that is being delivered, managing to
accurately control the fill factor of the truck [20,21]. Through these sensors, the surge loader
is capable of detecting the presence of large rocks which can affect how this material is
transported [23,26,27]. Together with the information of the material already loaded into the
truck, this allows the monitoring system to decide if the truck is capable of transporting this
larger rock without exceeding safety limitations [23]. In this case, if the result is negative,
the surge loader stops loading and gives the signal for the truck to continue its cycle with
the material that was already loaded. In addition to this, the system leaves enough material
between the large rock and the material discharge point to serve as a cushion for the impact
of the large rock discharging (Figure 8) into the truck tray. The on-board sensor system
gives the surge loader a great advantage over the conventional material transfer system
(Shovel-Truck system), by accurately controlling the fill factor of the truck and significantly
narrowing the fill factor variance [22]. Controlling the fill factor in the classic system
(Shovel-Truck system) is carried out by appropriately matching the capacities of the shovel
and the truck. Fill factors in the classic system are also influenced by manoeuvrability,
the distribution of the material in the shovel bucket, material fragmentation, and operator
competence [28]. The effects of many of these items are diminished with the incorporation
of a surge loader.

 
Figure 7. Material transfer sequence [23].

 

Figure 8. Presence of a large rock on the conveyor belt [23].

From a review of its components, it is evident that a surge loader is a large piece of
equipment and requires a significant geometrical footprint. As a result of this, the mine
design and subsequent plan may have to be altered in order to accommodate this machine.

5. Effect of the Surge Loader on Truck Productivity

In the classic Shovel-Truck system (without the inclusion of the surge loader) the
truck fill factor depends entirely on the shovel and how much material it can load into
the truck. This generates three possible scenarios. The first is when the truck exceeds its
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payload (overfill), which generates an increase in the risk associated with the transport of
material [18–20]. For this reason, the on-board measurement system seeks to avoid this
and promptly cuts the material supply from the transfer conveyor. The second scenario
is when the opposite occurs and the truck is loaded with less than its payload (underfill).
This scenario is the most common and causes a decrease in the designed productivity of the
truck. The third scenario is where the truck is loaded with its exact payload capacity. This
scenario is optimal, but due to different factors such as the loading capacity of the shovel
or the competence of the operator, it is very difficult to obtain. This makes the choice of
shovels and trucks dependent on each other from a productivity viewpoint. Shovels that
can load trucks in as few cycles as possible is thus favoured as it minimises the deviation
in the truck fill factor.

The surge loader, through its feeding system, allows for the controlled loading of
material into the truck. This is not only practical from the point of view of reducing the
loading time, but the feeding system also allows for the control of the fill factor, which
is now not dependant on the loading capacity of the shovel but rather on the payload of
the truck. This makes it possible to consistently achieve filling factors as close to 100%
as possible [23]. This, in turn, allows operations to close the gap on the ideal scenario,
which is to achieve maximum truck productivity safely and without increasing the cost
of haulage. Given that the truck fill factor of the classic Shovel-Truck system tends to be
approximately 90% on average [29], raising this to close to 100% represents a significant
potential improvement in productivity for the same number of trucks. In some cases, this
productivity improvement may even require a smaller trucking fleet. For other operations,
improved trucking productivity may change the production bottleneck from the mine to
another aspect of the operation.

The use of the surge loader also results in shovels and trucks operating independently
of each other, since the surge loader eliminates the interaction between this equipment.
This independence potentially allows for a greater range of shovels and trucks that could
be utilized in the operation. This allows the option of having different types and capacities
of trucks operating together to undertake the hauling of material, which allows for a more
dynamic loading and hauling stage that may better adapt to the different types of materials
in the mine at the various stages of extraction.

6. Safety Features

In recent years, great efforts have been made to improve the health and safety of mine
workers through innovation in the methods and machines used in mining operations [3,30,31].

6.1. Sensors and Cameras System

The use of autonomous equipment is increasingly common in mining. The surge
loader [3] can also operate autonomously. For autonomous vehicles to operate successfully
they need to be aware of the distance between themselves and other vehicles with enough
time to make safe and reliable mission plans [32,33]. The use of cameras and sensors are
therefore not only essential for the correct operation of these vehicles and equipment but to
also maintain the high standards of safety necessary in the mining industry [18,20].

The surge loader uses a network of sensors and cameras to detect their surroundings
including the approach and departure of trucks. This system determines when a truck
is approaching the loading point as shown in Figure 9. Then, using Radio Frequency
Identification (RFID) (RFID uses electromagnetic fields to automatically identify and track
tags attached to objects) sensors, it is capable of detecting when the truck is at the exact
loading point required for the surge loader. As shown in Figure 10, a signal is sent to the
truck to stop. Finally, the surge loader returns a signal to the truck when it is loaded to
continue its journey. This detection system is completely computerized and both cameras
and sensors are remotely controlled. This allows for the material transport process to be
automated and eliminates the need for a human operator inside the truck to determine the
stopping point.
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Figure 9. Camera system [23].

 

Figure 10. Sensor system [23].

While the use of sensor and scanning technology is no doubt having profound impacts
across many industries, the environment in which these are used in mining operations is
often prone to dust, which may hinder the full capability of some sensors and scanners.

6.2. Travel Routes

The routes that trucks take in the material transport process of the Shovel-Truck
system are an essential aspect since they influence the productivity achieved by the truck.
That is why it is important to work with optimal routes that improve the productivity
of the truck [17]. In the classic Shovel-Truck system, however, although truck routes are
optimized, there are ‘dead’ sections where the transportation process is delayed [34] and
these sections cannot be eliminated. One of these sections corresponds to the manoeuvres
carried out by the truck to locate itself appropriately at the loading point [34].

The surge loader eliminates the need for the truck to maneuver multiple times to be
located appropriately near the shovel. This is a very common process in the classic Shovel-
Truck system. The use of cameras and sensors mounted on the surge loader facilitates the
automation of trucks by enabling an intelligent communication system between the surge
loader and the truck. In addition, trucks will take simpler routes (without positioning
maneuvers) often by facilitating the drive-by-loading method as shown on the right-hand-
side of Figure 11. The inclusion of the surge loader to the Shovel-Truck system thus allows
for working with more continuous loading routes. On these new routes, manoeuvring
times are largely eliminated. In addition to reducing truck loading time, this reduces the
overall truck cycle time.
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Figure 11. Truck routes with the surge loader [23].

The proximity detection system of the surge loader reduces operational maneuvers
of trucks (turns, reversing, stopping, or exiting the route), due to the ability to detect
and eliminate blind spots [32,35]. The decrease in the probability of collisions during
normal driving, parking, or maintenance maneuvers is another benefit associated with the
detection system. Consequently, this results in extensions of the useful life of rims, tires,
and suspension systems [32,35]. The main benefit of the detection system is an increase
in safety (by preventing accidents). Other benefits likely include reduced maintenance
costs [32,35]. While these benefits are not direct improvements to the loading and hauling
stage, they are benefits that affect the mine, its financial viability, and the planning process.

6.3. Safety

Increasing safety is a priority in modern mining operations [19,29,31]. One of the
current challenges is to find new ways to achieve greater levels of safety without, or,
with minimal reduction, in the productivity of operations [5]. In this context, one of the
main risks present in open pit mining is the loading and hauling stage [18–20,36,37], since
the Shovel-Truck system (typically used in this stage) requires direct interaction of large
equipment [36]. In general, any accident that occurs in the loading and haulage stage
results in a delay and decrease in mine productivity [36]. Considering that in open pit
mining the loading and haulage stage determines the productivity of the operation [5], it is
very important in this type of operation to keep accident rates to a minimum [31,36].

On the world stage in the field of mining, Peru and Chile are both leaders in the pro-
duction of vital metals including copper, gold, manganese, and zinc. Both have positioned
themselves as leaders, which has been achieved through their mining policies, high export
rates, and their large number of active mines. Records of fatal accidents occurring in the
mining industries of Peru and Chile are tabulated in Tables 1 and 2, respectively.

Table 1 shows the fatal mining accidents registered by the Ministry of Energy and
Mines (MINEM) of Peru between 2000 and 2016. It can be seen that 41 accidents out of
842 correspond to accidents that occurred in the loading and haulage stage.

While the number of accidents may seem high it should be noted that most of the
registered accidents are concentrated in the first seven years of the sample (2000–2007).
As shown in Table 1, the largest source of recorded accidents corresponds to accidents
related to falling rocks (representing 32%). Although the loading and hauling stage is not
the main source of accidents, this activity represents 5% of the total registered, which is
still very important considering that these are accidents involving deaths.

In the case of Chile, the records of the Chilean National Geology and Mining Service
(SERNAGEOMIN), observed in Table 2, show that between 2010 and 2019, Chile recorded
228 accidents in the mining industry, of which 41 correspond to accidents that occurred in
open pit mining.
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Table 1. Number of accidents resulting in death in Peru (2000–2016).

Type of Accident Number of Accidents

Rock fall 271

Fall of workers 82

Vehicle traffic 76

Others 65

Landslide 63

Intoxication and suffocation 70

Loading and haulage 41

Explosions 33

Equipment maneuvering 54

Electric energy 38

Material handling 19

Burial by subsidence of land 23

Tools 7

Total 842
Source: Ministry of Energy and Mines (MINEM), Government of Peru.

Table 2. Number of accidents resulting in death in Chile (2010–2019).

Location Number of Accidents

Underground mine 117

Open pit mine 41

Port 2

Workshops 4

Others 7

Road 17

Tailings dump 4

Processing plant 30

Surface installation 6

Total 228
Source: Geology and Mining Service (SERNAGEOMIN), Government of Chile.

Although the highest number of registered accidents corresponds to accidents related
to underground mining (more than double the accidents than open pit mining operations),
the second-highest source of accidents corresponds to accidents that occurred in open pit
mining, representing 18% of the total. As in the case of Peru, the recorded accidents are
fatal so this is still very significant.

The various operational mechanisms that the surge loader would negate, including
(1) loading the truck without it approaching the shovel, (2) not needing to perform ad-
ditional maneuvers to accommodate itself, (3) controlling the loading of the material to
avoid overfilling, and (4) the transportation of poorly balanced loads due to the presence of
large rocks, would increase the safety of the loading and haulage stage of open pit mining
operations. Table 3 shows the data in Tables 1 and 2 broken down into further categories.
It can be observed that, of the fatal accidents mentioned previously, 27 accidents in the
case of Peru could have been avoided. This represents 66% of all accidents related to the
loading and haulage stage, with fourteen accidents avoidable with the use of the feeding
system, six accidents with the use of the new routes, and seven with the surge loader as an
intermediary step (Table 3). In the case of Chile, the use of the surge loader would have
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prevented seven fatal accidents (Table 3). This number can be perceived as low, but, it
represents 17% of the open pit mine accidents, with four accidents being avoidable with the
use of the feeding system, one with the use of new routes, and two with the surge loader
as an intermediary step. The use of the surge loader could have avoided around 3% of the
total fatal accidents in each registry (Peru: 3.21%, Chile: 3.07%). This percentage represents
accidents related to truck rollovers on the road because of overfill accidents that occurred
due to inappropriate positioning of the truck at the loading point.

Table 3. Avoidable accidents.

Open Pit Mine Accidents Number Accidents PERU Number Accidents Chile

Truck accidents due to overfill 14 4
Avoidable with the

use of the surge
loader

Truck and Shovel crash accidents 6 1
Accidents in the process of loading material

from the shovel to the truck 7 2

Not avoidable with the use of the surge loader 14 34
Total 41 41

Source: Ministry of Energy and Mines (MINEM), Government of Peru, Geology and Mining Service (SERNAGEOMIN), Government
of Chile.

The main aspect of the surge loader that would avoid most of these accidents is its
feeding system. This prevents the overfilling of trucks, which, as can be seen from the data
recorded in Peru and Chile, is one of the leading reasons for fatal accidents in the loading
and haulage stage.

7. Conclusions

In conclusion, adding equipment such as the surge loader to the Shovel-Truck system
allows for significant improvement in the production cycle of the loading and hauling stage
in open pit mines. The surge loader not only allows for productive independence of both
the shovel and the truck but also allows for greater freedom of choice in the selection of
trucks. With the incorporation of the surge loader, the shovel and the truck no longer have
to maintain a certain match in their capacities. This broadens the catalog of equipment
available for the loading and hauling stage.

The surge loader makes it possible to simplify the travel routes of the trucks, which
speeds up the transport of material by reducing maneuvering times. In addition, the
material unloading system of the surge loader allows for control over the fill factor of the
trucks, which increases the efficiency of the loading process. For these reasons, the new
cycle that the surge loader applies not only separates the shovel cycle from the truck cycle
but also improves the loading and hauling stage.

From a safety point of view, research shows that the different features of the surge
loader decrease the risks of the loading and hauling stage by avoiding interactions between
the equipment. Its feeding system also manages better control over the fill factor of the
trucks than present Shovel-Truck systems. This avoids any possibility of generating an
overfill of the truck which increases the risk of accidents as seen in the fatal accident data
of Chile and Peru. Its incorporation could have prevented 3% of the fatal mining accidents
that occurred in Chile and Peru.

Although there is still very limited data on the operation of this equipment in the field,
both its characteristics and the analysis of the accident data from Chile and Peru show that
adding the surge loader to the Shovel-Truck system is an innovation that would improve
both the productivity and the safety of the loading and hauling stage. The modern surge
loader, therefore, represents a potentially new way for future loading and haulage that
would be fundamental for the future of open pit mining.
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8. Future Research

Several of the aspects of the surge loader requires further investigation. First and
foremost, a detailed simulation for the new loading and haulage system that incorporates
the surge loader should be undertaken to determine the true impact on productivity. This
might consist of a simulation of the shovel productivity and the truck fleet productivity in
isolation from each other followed by a simulation that combines the entire loading and
haulage fleet.

While conventional thinking suggests that the capacity of the surge loader should
be 2.5 times the capacity of the truck, it is yet to be proven in the literature that this is
optimal. Another simulation should therefore alter the size of the surge capacity to identify
its impact. In addition to this, a mixed truck fleet of varying capacities should also be
investigated to determine this impact.

The size and footprint of a surge loader also need to be taken into account in the mine
planning and design process. Likely, the deployment of a surge loader onto an operating
bench within an open cut mine could warrant the use of a wider pushback. If this is the
case, a redesign and of the mine will be required, which will have follow-on impacts on
productivity and financial metrics.

While scanning and sensor technology has improved immensely, the impact of dust
on the potential disruption of scanners and sensors to prevent adequate communication
between equipment should be fully investigated. The dust that can be generated in an
open pit mining environment can be significant. It is therefore important that the most
suitable type of scanning and sensing technology is used.

While the surge loader reduces several of the typical risks associated with conventional
Shovel-Truck loading and haulage, a detailed and thorough investigation should take place
to identify any additional risks that the surge loader may introduce into the system. A
detailed risk assessment should also determine the consequences and likelihood of these
and identify potential mitigation strategies.
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Abstract: Barite, used in mud formulation, is mined in several places to support the industry.
However, there is insufficient literature on the downside of mining and associated hazards, especially
in the artisanal barite mining sector. This paper contains three parts. The initial section reviews major
causes of mining accidents and health hazards in Nigeria. The second section examines existing but
weak institutional frameworks and policies for artisanal and small-scale mining (ASM) in Nigeria. In
the third part, data from questionnaires and heavy metal contamination assessment are compared
with health and environmental standards to identify and characterize hazards. It was observed that
54% had health challenges traceable to illicit drugs, and 54% were ignorant about the use of safety
kits. The UV-Vis, AAS, and ICP-MS analyses confirmed lead, barium, zinc, copper, and iron in the
water samples. Index of geoaccumulation (Igeo) and contamination factor (CF) show that water
samples are moderate to highly polluted by Pb2+, Ba2+, and highly contaminated. The chronic daily
intake assessment and health quotient analysis revealed that the accumulation of lead and barium is
possible and can initiate chronic diseases in humans over a long time. Certain safe mining protocols
and controls are recommended.

Keywords: mining hazard; safe mining; miners; artisanal barite mining; mining sites

1. Introduction

Mining is one of the world’s most dangerous occupations [1]. Over the years, many
mining-associated accidents have occurred in various parts of the world, often with sig-
nificant loss of life [1–10]. Such mining accidents remind us of how dangerous mining
jobs can be and how explicitly hazardous underground mining continues to be [11,12].
Similarly, surface mining blasting-related risks (although not specific to underground
mining operations) and their consequences could be worsened and may result in mass
widespread accidents [13–15].

Mining accidents and fatalities among the Artisanal and Small-scale miners (ASMs)
occur in the process of mining metals, minerals, and energy materials (i.e., not construction
materials), as shown in Table 1. Thousands of miners die from these mining accidents each
year, especially in coal and hard rock mining [16]. Although surface mining is usually less
hazardous than underground mining [2,17,18], the participation of artisanal and small-
scale miners in barite mining fields has increased the number of mining fatalities across
the upper and middle Benue Trough. Artisanal and small-scale mining (ASM) in Nigeria
employed about 0.5 million as of 2015 [19], and in 2021 over 2 million. These miners’ and
mining communities’ contribution to societal development is vital. Both occupational and
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environmental health and safety issues must be addressed at the mines and workplaces
objectively.

Table 1. Some cases of mining hazards in Nigeria.

Case Study Damages/Sources/Causes Remedy References

Concentration of 226Ra, 232Th, and
40K in mining dumps.

radiological hazards, high lifetime
cancer risk index

No emerging medical health issues
were observed. Regular medical

Check-up of miners was
recommended for early detection

and treatment of potential
health hazards

[20]

Concentration of Tl, K, Ca, Na and
Mg in Au, Pb, and Zn

mines’ tailings.

High contamination index of
Thallium, high ecological and

health risks.

Remediation method was
recommended, awareness creation [21]

Concentration of 40K, 238U, and
232Th in tailings from granite mine.

Radiological hazard is within the
permissible limit based on

UNSCAR

Bioaccumulation/transfer factor
level to be monitored [22]

Concentration of air-borne lead and
respirable silica from dry lead ore

grinding and processing

high risk of lead poisoning, silicosis
and tuberculosis

Wet spray misting used to reduce
the mean airborne Pb and

respirable silica
[23–25]

Concentration of Cu, Cr, Pb, Cd and
Zn in iron ore tailings

serious non-carcinogenic health risk
in children, high carcinogenic risk

in adults.

research-industry- miners nexus
was advocated [26]

Concentration of As, Sn, Nb, Ta and
Cd in surface water and mine

tailings (alluvial) soil

moderate arsenic and cadmium
Contamination and

Geo-accumulation index (CI & GAI)

enforcement of environmental and
mining laws to control pollution

Sources: [20,22–27].

Heavy metal contamination due to mining and mineral processing (washing) has
become one of the most silent but significant environmental side effects [28,29]. Studies in
the literature have reported on acidification and acid mine drainage associated with the
mining of coal, gold, and other minerals containing pyrite and galena (FeS2 and PbS) [27,30].
Barite is one mineral or ore that has not been examined to pose such a threat [28]. Barite
mineral, although non-carcinogenic, may be associated with lead sulphide (PbS) and
encrusted with pyrite or iron pyrite microcrystal [31,32]. Sulphuric acid mine runoff is
unavoidable when barite tailings containing sulphide minerals are exposed to water and
oxygen. The consequence is acidification of water and can increase the release of other
heavy metals such as iron, zinc, copper, lead, cadmium, arsenic, and barium.

Previous reviews on safety and risk analysis have shown the relevance of workplace
safety models in the safety-critical assessment of risks, either at mines or in any other
activities where dangerous tools are used. Several safe assessment methods have been
developed to address the quality and productivity of workers that sustain severe accidents
at work and uncovered the adverse effect of heavy metal contaminants and other critical
environmental threats to human health [33–37]. Researchers have examined ways to
domesticate some of these advanced safe mining methods in Nigeria but with little positive
results [36,38]. This is because many local miners believed the “advance” safe mining
strategies have no direct correlation and cannot provide solutions to the type of mining
hazard peculiar to them [19,39]. Moreover, nothing much seems to have changed regarding
miners’ and government attitudes to mineral exploration. Miners appear to have nothing to
worry about despite the dozens of unreported cases of mining accidents. The significance of
wearing safety kits such as mining boots, hand gloves, eye goggles, and clothes specifically
designated for mining only at the site should be communicated again. There is also a claim
that the institutional policy guilds’ activities of artisanal and small-scale miners (ASM)
caters to chemical contamination due to barite mining. However, the miners’ and mining
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sites’ managers are unaware of the safety data sheet, which is a minimum requirement for
the operation of mines. Therefore, it is helpful to engage these local miners in discussing
prevalent mining accidents and fatalities that have profound health implications and
develop safe assessment methods, processes, and programs to prevent the reoccurrence of
mining hazards.

This paper reviews mining activities by the artisanal and small-scale miners in Nigeria
and presents safe mining strategies. It identifies mining accidents that are peculiar to
artisanal and small-scale miners (ASMs), revises existing but weak and inadequate mining
policy, and assesses potential mining risks to human health due to mining and social
lifestyles of the miners. Questionnaires were administered to local miners (part-time and
full-time) within the middle Benue Trough of Nigeria to identify hazards. Water from barite
ponds and effluents was also analyzed to characterize associated risks and recommend
safe mining protocols and controls, especially for the barite mining sector. Two research
questions were investigated in the study. These are: (1) Certain mining accidents and
their adverse effect on miners are traceable to miners’ refusal to use safe mining kits
and (2) Artisanal barite mining contributes to severe heavy metal contamination. Field
survey and heavy metal contamination assessment of water in barite ponds and recycled
wastewater at barite mine sites validated the research questions.

2. A Review of Status of Artisanal and Small-Scale Mining (ASM) and Safe Mining
Practices in Nigeria

2.1. Legal, Regulatory, and Institutional Frameworks of Artisanal and Small-Scale Mining

There are legal and regulatory documents and institutions that govern the activities
of artisanal and small-scale miners in Nigeria. Figures 1 and 2 show the existing legal,
regulatory, and institutional frameworks for Nigeria’s mining sector. Aside from the
frameworks, policy objectives guide the everyday activities within the mineral value-chain.
These objectives include but are not limited to comprehensive actions on the acquisition
of rights, mine ownership requirement and restrictions, minerals processing and export,
transfer mineral rights, land use, environmental, mineral titles, health and safety, and
constitutional law. Despite these frameworks, Nigeria’s mining sector is yet to reach its full
potential [40–42].

Figure 1. Legal framework for mining in Nigeria (adapted from [40]).
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Figure 2. Institutional framework for mining in Nigeria (Modified from [40]).

Research has shown that enacting an Act and introducing laws or policies to drive
Nigeria’s mining sector can strengthen the regulatory frameworks [40,41,43,44]. However,
there were no prior works on health, mine safety, and mining hazard prevention procedures
until March 2016, when the Nigerian government acknowledged mercury and lead (Pb)
health risks. Mining accidents are not limited to chemical hazards. It also includes every
form of harm against the miners, mining communities, and resources located within the
mining environment. This set of rules is mandatory and must be enforced by every player
within the mining and mineral business [41,42,44].

2.2. Mining Hazards in Nigeria

The sources of hazards associated with the sector include chemical, physical, and
mechanical [21,45–53]. Major mining accidents occur due to the use of crude and sharp
tools by artisanal and small-scale miners to extract minerals. Some of past and current
mining hazards or accidents in different parts of Nigeria are shown in Table 2 and Figure 3.
These hazards are traceable to the illegal mining and mineral extraction practices done
by artisanal miners in Nigeria. Stone quarrying and solid minerals exploration dominate
artisanal and small-scale mining (ASM) activities in Nigeria [45], as shown in Table 2 and
Figure 3.

Table 2. Some mining activities and accidents in communities within the Nigerian States.

Mining Hazard/Accidents Activities/Year Locations References

Air pollution (dusts, airborne Si,
Ca), eyes damage asthma, damage

to farm and cola-nut plantation

limestone quarry, cement
production, lead mining

(2013 till date)

Shagamu, Ewekoro (Ogun State),
kalambana, Wumo, Kwakuti

(Sokoto State), Ashaka (Gombe
State), Jakura

[21]

Flooding, mysterious death,
abandoned mines, contaminated

lands, exposure to
carcinogenic/radioactive

substances.

Tin, columbite and clay mining
(1960 till date)

Barkin-Ladi, Bukuru, Bossa, Riyom
district (Plateau State). [27]
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Table 2. Cont.

Mining Hazard/Accidents Activities/Year Locations References

Heavy metals water contamination,
damaged ecosystem. airborne silica,

land degradation

Coal, gold, and sand mining
(2010–2013)

Enugu, Igun-Ijesha (Oguin State),
Efikpo (Ebonyi State), Abeokuta,

Owode, Ifo, Ado-Odo, Ofa,
Ewekoro, Shagamu (Ogun State),

Lagos State

[54]

Water and land degradation,
pollutions Marble mining (2010–2014)

Azara, Wuzue, Benu, Uywa, Lafia
(Nassarawa) Luku, Minna (Niger

State), Onyeama (Enugu State)
[54]

Death, mine collapse Gold mining Zawan (Plateau State)

Sources: [23,24,54,55].

 
Figure 3. Mining Hazard Map of Nigeria [24,54,56].

2.3. Safe Mining Methods for Local and Global Mining: Precautions and Control Measures

Within the last 25 years, there have been increased safety regulations, safer machinery
development, training, and education initiatives for miners in Nigeria and Africa in general.
However, this has not changed the fact that mining is still a dangerous profession [1]. Before
discussing potential accidents and risks in mining, it is vital to consider the average miner
work shift based on human resource management. Typically, miners work in a 12 h
shift at the underground mine while others work throughout the whole week or remain
at a mining camp for months before returning home [17]. Miners are expected to be
physically, mentally, and psychologically sound and healthy to achieve overall safety in
mines. Strict adherence to safety procedures such as the use of respirators, ventilation
systems, and ear protectors will go a long way to reduce cases of mining accidents, injuries,
and fatalities [2]. Some of the safety practices and challenges include those involving
behavioural guidelines, communication, vehicle interactions, explosives, and the role of
enforcement agencies [2,17,57–62].
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3. Materials and Methods

3.1. Survey of Miners

The state of hazards within the barite mining industry was examined using survey-
ing tools. Thirty-eight (38) unstructured questionnaires were distributed to miners who
specialize in barite mining. Twenty-seven (27) out of thirty-five (~35) barite miners in the
community completed and returned the questionnaires. The questionnaire was designed
strictly as safety information-seeking procedures based on the major objective of the safety
training. The questionnaire also serves as a pre-training/pre-workshop tool or quiz used
to identify and assess miners’ health concerns, and to develop training manual(s)/choose
efficient communication method(s) that address the peculiar needs of the miners under
the study.

Approval for the research was obtained from relevant authorities. No medical pro-
cedures were observed, as no human body fluids or organs were used for any form of
analysis or medical tests. The survey examines why miners refused to use mining boots,
gloves, goggles, and clothes contained in the safety mining kits. The entire study attempts
to assess and characterize potential health hazards caused by artisanal and small-scale
mining (ASM) activities. Questions were read to miners who could not read.

3.2. Chemical Analysis and Risk Assessment

Quantitative risk assessment and health hazard analysis were done in accordance with
environmental standards and procedures. Water samples were collected from abandoned
barite ponds and wastewater from barite washing and stored in polyethylene bottle (PET) at
room temperature. Two ml of the water samples were measured into the cuvette and filled
to a mark. The dissolved elements in water samples such as Pb2+, Ba2+, Zn2+, Fe2+, and
Cu2+ were analyzed colorimetrically using a Shimadzu UV-1900 UV-Vis Spectrophotometer.
Tailings effluents was prepared in accordance to standards reported in [63]. The metallic
content in the water samples were analyzed using atomic absorption spectrophotometer
(AAS), Model: A-Analys 100. The liquid-liquid extraction method (LLEM) was employed
in the absorption or digestion of the sample [64]. The elemental composition of the samples
was measured using PerkinElmer ICP mass spectrometer, NexIONTM 350X. The digestates
of barite tailings or extracts were diluted to 1% (100 times).

The index of geoaccumulation (Igeo), contamination factor (CF), chronic daily intake
(CDI), and health risk (HQ & HI) are computed for Pb2+, Ba2+, Zn2+, Fe2+, and Cu2+ using
the data from the USEPA (United States Environmental Protection Agency) and DEA (South
Africa Department of Environmental Affairs). Igeo, CDI, CF, and HQ, were computed
according to procedures reported in the literature. Each parameter was calculated using
Equations (1)–(4) [48,56,65–71]

Igeo = log2
Cn

1.5 × Bn
(1)

Contamination f actor =
Mean metal concentration

Concentration o f elements in background sample
(2)

CDI
(

μg
kg day

)
=

CMW × IR
BW

(3)

HQ =
CDInon carcinogenic

R f D
(4)

where Cn is the concentration of metal in water samples, Bn is the metal concentration in
water before the introduction of metals due to mining activities, CMW is the concentration of
heavy metals in water, BW , and IR are the body weight and daily water ingestion rate, HQ
is hazard quotient, RfD: reference dose factor, NOAEL: No-Observable Adverse effect level.
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4. Results

4.1. Characteristics of Survey Respondents

Figure 4 revealed the level of awareness of mineworkers about the minimum safety
required during the mining operations. More than 92% of the miners surveyed were male,
and ~64% of the miners who answered the survey were above 25 years-old. It was clear
that most miners are young adults, and over 50% of the barite artisanal miners in the study
have only basic school education or had no formal education. The miners’ biodata showed
that many miners only understand local languages and may need to be trained on safe
mining methods using local language to communicate essential details.

 
Figure 4. Characteristics of survey respondents (barite miners) showing human participation and
performance at the barite mining site.

4.2. Health Hazards of Miners

Part of the survey sought to know the previous and present health challenges of
miners within the barite field under the study. Figure 5 shows that ~54% of the miners that
responded to the survey agreed they have health challenges traceable to illicit drug intake
such as stimulants; 17.9% of the respondents had experienced specific symptoms such as
headache, stomach-ache, body weakness, and difficulty breathing. Such health issues may
be traceable to rigorous mining activities and exposure to poisonous substances [72,73].
In comparison, 28.7% argued that they do not have any health issues. Also, 53.6% of the
miners were ignorant of the benefits of using safety kits for mining, while 46.4% of the
miners use safety kits but not at all times. Mine workers were exposed to certain risks,
either knowingly or ignorantly, and become most vulnerable to sickness, air-borne diseases,
and perhaps death because of insufficient knowledge about the risks associated with the
mining profession.

Miners are subjected to long-time exposure to heavy metals contamination. Water
used for washing minerals accumulates in ponds near the mining sites and are used for
domestic purpose. Potential oral and dermal ingestion are assessed by analyzing water
from barite ponds and tailings.
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Figure 5. Health and safety issues in the mining sites under study.

The ultraviolent-visible (UV-Vis) spectra in Figure 6 identify absorbance bands show-
ing the weak d-d transition of some identified transition metal complexes in the water
samples. This indicates the formation of complexes of the transition metals in the octahe-
dral fields as the d-orbital splits. The calibrated UV-visible spectrophotometer signifies
and matches the transition metals in solution using the colour of the d-block compound.
The peak absorbance wavelength of 675 nm is assigned to Cu2+, and the visible absorbance
band that stretches from 960–980 nm indicates electronic excitations for Fe2+, V4+, and
Ni2+. Similarly, the atomic absorption spectroscopy (AAS) identifies and measures the
concentration of Zn2+, Pb2+, Cd2+, Fe2+, and Cu2+, as shown in Table 3. The result indicates
that Zn2+, Pb2+, Cd2+, Fe2+, and Cu2+ as transition metal ions may be present in the water
samples associated with the mining site, as indicated by the barite tailings. However, the
concentration of copper and cadmium available in the site is less when compared with
the World Health Organization (WHO) Standards or limits. The available concentration of
lead and iron were 113.8 mg/kg and 15.6 mg/kg, respectively. In contrast, the WHO limits
for these elements are pretty small, as shown in Table 3. Fe, Pb, and Cu exceed the WHO
allowable limit and remain a potential threat to the mine workers and the host community.

Table 3. AAS analysis water sample TB (completely leached tailings) showing the concentration of
heavy metals at barite mining sites in the Middle Benue Trough, Nigeria (Results were compared to
WHO data in [3,17]).

Heavy Metals
Proportion

Barite Mining Site (mg/L) WHO Allowable Limit (mg/L)

Zinc 3.905 3.000
Iron 15.6094 0.300

Copper 0.3024 2.000
Lead 113.8127 0.010

Cadmium 0.0008 0.0030
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Figure 6. UV-Vis spectrograph for the elemental composition of water from the mined pits (UV-
visible spectra of transition metals complexes identified in the water samples showing weak d-d
absorbance bands at 675 nm and is assigned to Cu2+, and absorption bands that stretch from 960 to
980 nm posted to Fe2+, V4+, and Ni2+, respectively).

The inductively coupled plasma mass spectroscopy (ICP-MS) results in Figure 7 shows
that zinc, copper, and cadmium are below the maximum allowable limit set by World
Health Organization (WHO), European Union (EU), Nigerian Industrial Standards (NIS),
United States Environmental Protection Agency (USEPA), and China Ministry of Health
National Standards (CMHNS) for ecological and health safety. However, the content of Fe in
TB1 is relatively higher than the maximum allowable limits set by the governing standards.
Similarly, Pb in TB1 is above the health and environmental risk levels recommended by
the local and international agencies. This outcome indicates that the water used in the ore
washing will result in water pollution and heavy metals’ ingestion if returned to rivers and
streams used by people. On the contrary, there was no evidence of cadmium contamination
in the digestates of mine tailings or tailing effluents in the current study, as shown in
Figure 7.

Contamination assessment of mine water samples in Table 4 shows that the index of
geoaccumulation (Igeo) for Ba, Cu, and Fe in TB1 is between 0 and 1. The barite ponds and
rivers are moderately polluted by Ba, Cu, and Fe. Similarly, Igeo of Pb in TB1 is above 6
(≥6). This indicates Pb extremely pollutes the ponds. The contamination factor (CF) of Ba
in TB2 and Fe in TB2, Zn, and Cu in both samples are less than 1 (CF < 1). This implies
that the water samples are lowly contaminated by Ba, Fe, Zn, and Cu and cannot pose any
substantial risk to the health of miners and residents of the mining sites.

Figure 7. Cont.
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Figure 7. ICPMS Analysis. The concentration of heavy metals associated with artisanal barite mining (ABM) at some
mining sites within the Middle Benue Trough, Nigeria. WHO (World Health Organization); EU (European Union); NIS
(Nigerian Industrial Standard); USEPA (United States Environmental Protection Agency); CMHNS (China Ministry of
Health National Standards).

Table 4. Contamination Assessment of Heavy metals in mines water and tailing effluents.

Elements Ba Pb Zn Cu Fe

(Igeo)

TB1 0.344 7.659 –6.546 0 0.510

TB2 –1.985 2.821 –8.118 –10.966 –7.243

(CF)

TB1 1.906 303.2 1.61 × 10−2 9.2 × 10−3 2.132

TB2 0.379 10.600 5.4 × 10−3 1.5 × 10−4 0.010

(CDI) Adult

TB1 4.47 × 10−2 1.78 × 10−2 9.45 × 10−4 7.50 × 10−3

TB2 8.90 × 10−3 6.22 × 10−4 3.17 × 10−4 1.17 × 10−5 3.52 × 10−5

(CDI) Child

TB1 4.17 × 10−2 1.66 × 10−2 8.82 × 10−4 7.00 × 10−3

TB2 8.30 × 10−3 5.80 × 10−4 2.95 × 10−4 1.10 × 10−5 3.29 × 10−5

On the other hand, the CF for Ba in TB1 and Fe in TB1 is between 1 and 2.999,
and Pb in TB1 also exceeds 6 (>6). Pb moderately contaminates the barite ponds and
other water resources. Also, the chronic daily intake (CDI) for Ba, Pb, Zn, Fe, and Cu in
barite ponds or mine water and tailing effluents is between 1.17 × 10−5 mg/kg day and
4.47 × 10−2 mg/kg day for an adult, 1.10 × 10−5 mg/kg day, and 4.17 × 10−2 mg/kg day
for children. The result presents the possible consequence of long-term exposure to heavy
metals and classifies the toxicity level as acute or chronic.

Table 5 indicates that health quotients (HQs) of Zn, Cu, and Fe for the tailings (TB1
& TB2) are less than 0.1. Such HQ is classified as No risk (HQ < 0.1) and cannot lead to
adverse health implications in a short time. The presence of Ba and Pb in TB2 poses a
relatively low risk to health which shows that some precautionary measures should be
taken to avert negative health consequences. However, Pb in TB1 contributes medium to
high risk (for 1 < HQ < 4, and HQ > 4). Thus, an adverse effect non-carcinogenic risk is
expected. Table 5 also shows that health indexes (HIs) of heavy metals in TB2 for adults
and children are below 1. However, HIs for TB1 are greater than 1. For children and adults
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that drink up to 2 L of water from water sources contaminated by TB1, a cumulative HI of
5.81 indicates elevated non-carcinogenic risks (Table 5).

Table 5. Risk characteristics [Hazard Quotient (HQ) and health index (HI)] of Heavy metals in mines water and tailing
effluents.

Elements
Health Quotient (HQ)

Health Index
Ba Pb Zn Cu Fe

(HQ) Adult

TB1 6.39 × 10−1 1.27 × 101 3.15 × 10−2 1.07 × 10−2 1.34 × 101

TB2 1.27 × 10−1 4.45 × 10−1 1.06 × 10−2 2.94 × 10−4 5.03 × 10−5 5.83 × 10−1

(HQ) Child

TB1 5.97 × 10−1 1.19 × 101 1.11 × 10−2 4.91 × 10−3 1.25 × 101

TB2 1.19 × 10−1 4.15 × 10−1 9.86 × 10−3 2.74 × 10−4 2.30 × 10−5 5.44 × 10−1

5. Discussion

The survey results shown in Figure 4 agree that artisanal barite mining is dominated
by men (mostly young adults) and has a lower literacy level as reported on the general
status of artisanal and small-scale mining (ASM) in Nigeria. Previous research has shown
that artisanal miners of gold, gemstones, diamond, galena, limestone, zinc have similar
gender distribution and are exposed to peculiar risks and difficult tasks associated with
their profession. Miners are predominantly unskilled and semi-skilled, as observed with
artisanal miners that specialize in gold, gemstone, granite, and sand mining. This agrees
with the general state of several mining sites managed by artisanal and small-scale miners
in Nigeria [19,74–78].

In the current survey, it was quite true that some of the miners felt their present
medical conditions are due to factors other than mining, as shown in Figure 5. Several
works reported in the literature have shown that all miners are vulnerable to mining
hazards aside from previous medical conditions, except for those using complete protective
kits during mining [45,73]. Artisanal miners are exposed to dust risk, which lowers the
Forced Expiratory Volume (FEV) and Forced Vital Capacity (FVC). Such results have
shown that miners that abuse drugs as stimulants may not experience reduced lung
function (fibrosis), defective oxygen diffusion, and impaired pulmonary function in the
short term. However, exposure to heavy metal contamination would further worsen the
present medical conditions [19,45,73,79–81].

Post-survey discussion with miners reveals that artisanal barite miners do not have
the financial capacity to fund bills of medical examinations. Most artisanal miners earn
lower than the cost of medical treatment. They would prefer self-medication or visit a
traditional medical practitioner for medical consultation and treatment as no medical
facilities and personnel available. Miners illicitly use nicotine to fight body weakness
and other symptoms that requires an adequate medical examination. Also, it is uncertain
whether owners of mining sites offer medical care to miners as there is no part of the mining
policy or institutional frameworks that compelled or enforced employers to provide for the
medical care of miners. Miners are encouraged to use safety kits during mining and seek
medical attention when necessary. The need for annual medical outreach to mining sites is
recommended for medical counseling, diagnosis, treatments, and referral of miners with
severe medical conditions to access medical facilities.

High values of HQs for Ba and Pb increase HI’s value for water sample TB1. However,
the case is different for sample TB2, posing no observable hazard to human health. The
use of such water for various applications and eating aquatic lives such as fishes loaded
with heavy metals is unsafe. Also, the heavy metal contamination risk assessment revealed
that water from barite ponds and wastewater returned into the river are contaminated

31



Mining 2021, 1

by lead and barium. The chronic daily intake (CDI), health quotient (HQ), and health
index (HI) for these heavy metals in the water samples suggest that an adverse effect due
to non-carcinogenic risk is expected. The use of affordable water filters such as carbon
filters specifically designed to remove lead and Ba will help to reduce the quantity of heavy
metals consumed in drinking water.

5.1. Major Inhibitors to Safe Mining Methods in Nigeria

The foremen, managers, and owners of mining sites, mineral processors within the
mining industries, and academia, as stakeholders, were interviewed verbally to identify
major inhibitors to safe mining in Nigeria. The inhibitors identified include funding, lack
of enforcement, infrastructural needs, and insecurity.

Project Funding: The Nigerian government has done a lot through the Federal Min-
istry of Mines and Steel Development (MMSD) in the reform of institutional framework,
establishment of ASM Directorate, Solid Minerals Development Fund (SMDF), Mineral
Sector Support for Economic Diversification Project. However, some of the stakeholders in
the industry and research institutions complained that funds for the projects hardly get to
the mine inspectors to develop safety procedures and protocols.

Regulations and Sanctions: Although many regulations and sanctions have been
established, implementation has been lacking. Mine inspectors hardly visit mine sites, and
minimal awareness is created among the miners on safety and health hazards.

Infrastructural Collapse and Decay: The infrastructural imbalance within the country
has completely paralyzed the power, transportation, mines, and minerals sector of the
economy. However, the outright privatization of electricity generation and distribution
and rail transportation should encourage investments in mining equipment importation
for local mineral beneficiation and development of mines.

Security and illegal mining: Most recent and ongoing security challenges within
the middle belt, Northeastern and Niger-delta regions of Nigeria can be addressed by
developing a robust corporate social responsibility program to alleviate the suffering of
the people living within the mineral mining and processing communities. The enactment
of the mining act and collaborations among the foreign investors and experts will assist
the Nigerian government in the development of a workable mining framework and a road
map significantly required for relevance within an acceptable safe mining operation [17,82].

5.2. Impact of COVID-19 on Health of Miners

The first official case of the coronavirus disease 2019 (COVID-19) pandemic was an-
nounced in Nigeria on February 27, 2020 [83,84]. In the advent of the COVID-19 pandemic,
Nigeria’s mining industry experienced sudden downtime, reducing its contribution to
the national gross domestic product (GDP). The recent drop-in commercial activities and
demand for minerals has also worsened the situation. Also, there are cohorts of individuals
facing health and financial challenges during the pandemic. Aside from the older people,
miners and mining community’ respiratory health is at stake due to the fact that some
miners have pre-existing medical complications [73,80,85]. There is, however, no specific
data or literature on incidents of COVID-19 related cases or the death of miners. Other
subsidiary concerns among the artisanal and small-scale miners, who do not have a stable
income for feeding and medical tests, surround the ability to continue routine medical
examination and treatment during the pandemic. Therefore, the participation of private
health providers and global aid agencies is critical at this point.

In the real sense, the right time to implement innovative and strategic plans, cultivate
safety information-seeking behavior in artisanal and small-scale miners (ASMs), and
enforce safe mining practices to ensure that miners and the mining activities are safe, is
now. Such plans are not limited to remote collaboration, adoption of digital capabilities,
safety training on the use of safe mining kits, strict observance of work ethics, occupational
and environmental health safety protocols, and personal hygiene in addition to local CDC
protocols on COVID-19 prevention, and vaccination of miners. Also, in collaboration with
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the Capstone team in the United Kingdom, the Nigerian government is reassessing the
existing roadmap for mineral exploration amidst new challenges and opportunities due to
the pandemic [40,86,87].

5.3. Policy Imperatives and Strategies for Fostering Safe Mining

Mining in Nigeria is regulated by the Constitution of the Federal Republic of Nigeria,
1999, the Nigerian Minerals and Mining Acts, 2007. The Nigerian Minerals and Mining
Regulations, 2011 are the significant regulations and policies that control the artisanal
and small-scale mining (ASM) activities in Nigeria. These policies directly address issues
related to mineral exploration, environmental protection, and safety [19,88–90]. Policies
on the environment, health, and safety have been the focus of this study. Although laws
should enforce strict observance of these policies for all miners, only legal holders of
mineral titles can be tracked. There are reports on Nigeria’s government effort to formalize
over 1.5 million artisanal and small-scale miners (ASMs) into cooperative groups [40,89,91].
However, information available to miners is limited.

Mine Inspectors and Mine Cadastral Officer are responsible for information dissimila-
tion, but their ratio to ASMs is about 1:200 to 1:10,000. There is an urgent need to strengthen
information aids and sources to formalize artisanal and small-scale miners in Nigeria. An
information sharing framework can be supported by government declaration for a Min-
ers’ Day, a public holiday entirely given to massive sensitization on safe mining issues,
safety education and awareness, medical outreaches, and miners networking. Considering
mining as a hazardous endeavor, formalizing ASMs into groups will ensure adequate
operations management and encourage the participation of relevant stakeholders such as
Medical Doctors and Paramedics, rock mechanics, and mining engineering experts. Given
the above, existing policies should guarantee safe mining at all mining sites in Nigeria.

There exists a generalized future mining plan in Nigeria called Nigerian Mining Road
Map, but the content only speaks to the public without any commitment to ensure its
compliance. As earlier mentioned, owners of mining sites and the government are more
concerned with the business of mining and not the quality of mineral extraction, safety of
life, and the mining environment. The road map proposes the path to mining prosperity
and not to ensuring a responsible and sustainable mineral extraction. However, as part
of the plan to diversify the economy due to the pandemic, the Ministry of Mines and
Solid Minerals Development (MMSD) is considering using Science and Technology in solid
mineral exploitation. This includes the use of satellites for mining data acquisition for solid
mineral exploration and Artificial Intelligence (Al) to ensure mining safety and efficiency
of mineral processing methods. There is a need to adopt an automated safe mining strategy
or incorporate mine-based technology such as mine remoting and an automated mining
system. This is key to envisioning sustainable barite mining; however, a stable power
supply (electricity) is needed to drive this technology contained in the mining road map.

6. Conclusions

This study identifies and reviews mining accidents peculiar to artisanal and small-
scale mining (ASM) to re-iterate that mining accidents have severe consequences on miners
and their environment. It revises existing but weak and inadequate mining policy, assessing
potential mining risks to human health due to the mining and social lifestyles of the miners.
Results show that artisanal miners are exposed to polluted water, air, and farmland. The
consumption of water from barite ponds poses a relatively high risk to human health over
a long period of time. Therefore, it can be concluded that mineworkers are exposed to a
certain level of risks either knowingly or ignorantly due to artisanal barite mining. Adverse
non-carcinogenic risks due to Pb and Ba in water and a worsening of health via illicit drug
intake are expected. Operational therapy and practices such as sensitization on the danger
of drugs to health, the importance of taken sufficient rest, and the use of safety tools and
affordable water filter have been recommended to ensure safer artisanal mining activities.
To envision the future of barite mining, detailed recommendations on the need for annual
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medical outreach to mining sites and the use of technology (Al) for future mining were
presented. Some peculiar safe mining protocols and controls to reduce the daily chronic
intake (CDI) of heavy metals in water (barite pond and tailings) are also mentioned.
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Abstract: Dumping is one of the main unit operations of mining. Notwithstanding a long history of
using large rear dump trucks in mining, little knowledge exists on the cascading behavior of the run-
of-mine material during and after dumping. In order to better investigate this behavior, a method for
generating high fidelity models (HFMs) of dump profiles was devised and investigated. This method
involved using unmanned aerial vehicles with mounted cameras to generate photogrammetric
models of dumps. Twenty-eight dump profiles were created from twenty-three drone flights. Their
characteristics were presented and summarized. Four types of dump profiles were observed to exist.
Factors that influence the determination of these profiles include the location of the truck relative to
the dump crest, the movement of the underlying dump material during the dumping process and the
differences in the dump profile prior to dumping. The HFMs created in this study could possibly be
used for calibrating computer simulations of dumps to better match reality.

Keywords: dumping; digital transformation; high-fidelity modelling

1. Introduction

Mine-to-mill optimization is a longstanding goal of the mining industry [1–4]. This
approach focuses on optimizing the entire process around run-of-mine (ROM) material
characteristics, rather than optimizing the unit operations to material characteristics in-
dividually. The primary motivation for this approach is ensuring that the priority for
optimization is given to the most demanding and costly process (grinding) [5]. Despite
its success, one difficulty in holistic mine-to-mill optimization stems from a lack of under-
standing around material behavior during and between unit operations [4].

Unit operations are defined within the context of mining as the basic steps used to
produce mineral value from a deposit. They generally fall into either the category of
rock fragmentation or materials handling [6]. Materials handling, for surface truck and
shovel mines, comprises three steps, known as loading, hauling and dumping. Dumping
commonly consists of the haul truck spotting itself into position and dropping ROM
material from the back. This material forms a small heap if it is dumped on a flat surface,
or cascades along the edge of a dump face if dumped over a developing dump, stockpile or
dump/heap leach [7]. While there are minor differences in each of these earthworks, for
the simplification of this article, they are referred to as rock piles [8].

Notwithstanding a long history of using large rear dump trucks in mining, little
knowledge exists on the cascading behavior of ROM material during and after dumping.
At least two schools of thought comprise the knowledge that does exist. The first school
of thought studies ROM cascading behavior from an external perspective. The second
seeks to understand the smorgasbord of characteristic properties that govern this behavior
internally. Since this paper focuses primarily on the external viewpoint, only a sample of
the literature pertaining to the internal philosophy is presented in order to call attention to
some of its challenges. McLemore et al. [8] provide a robust review that includes a trove of
references from each school of thought, should readers wish to dive deeper.
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Work related to factors that influence ROM material behavior from an internal philos-
ophy are numerous, and a complete review of their literature is not within the scope of this
paper. A plethora of material property variables relate to these factors, which include shear
strength, bulk density, particle size and shape distribution, cohesive properties, friction
angle, moisture content, etc. [8,9]. Several issues confound the ability to fully isolate and
understand these variables. First, the size, shape and variability of the ROM material
are greatly dependent on blasting, which is not yet a fully understood process [10,11].
Second, the successful testing of material property variables depends heavily on sampling
and statistical estimation [12]. Furthermore, dump faces are hazardous, and observation
of the dumping process is challenging [13]. Additionally, dozers and other equipment
handle the material subsequent to dumping, which compound with the issues mentioned
previously [7]. Moreover, some complex engineering issues, such as reclamation and slope
stability, are commonly considered to be linked to factors involving these material property
variables in ways not fully understood, which increases the debate related to them [13–15].
Mines may also be under the assumption that understanding these factors must originate
from a first-principles approach, rather than a data-driven statistical and mathematical
approach [16].

Traditional viewpoints and operational strategies within the mining industry generally
hinder innovation [17,18]. This might be particularly true for each of the three kinds of
rock piles. Stockpiles have been seen as only useful to mines as a buffer against production
variability [19–21]. Dump/heap leach design optimization involves many meticulous
considerations that take precedence over understanding the minutia of the dumping
process, which may be considered to be optimized under simple guidelines [22]. Waste
dumps have been reserved for material below the economic cut-off grade and, as a result,
have historically been given little attention beyond safety and risk management [23]. While
these traditional viewpoints would need to change in order for rock pile innovation to be
successful, they need only be challenged in order for research in these areas to be justified.

Literature and news articles provide both cases and causes for some changing per-
spectives that motivate and support the endeavor of this paper. First, even though the
primary function of stockpiles remains the same [24], COVID-19 and global supply chain
disruptions have placed increased demand on their use [25–34]. Increased knowledge of
stockpile assets as the result of understanding the dumping process might afford mining
companies a competitive edge in a post-pandemic world [35–38]. Second, while much
of the seminal work in heap leach modelling involved small laboratory column studies
operating at the particle scale [39–41], there has been a recent shift towards modelling bulk
scale phenomena (inter-/intra-particle diffusion, liquid holdup and hysteresis, gas flow,
etc. [42,43]) as well as understanding the factors more closely correlated with the dumping
process (stratification, segregation, breakage induced by ore stacking, etc. [44–46]). It is
true that a better understanding of the dumping process will likely not lead to changes in
the construction of heap leaches. However, it may yield an understanding of the gestalts
about the bulk phenomena in existing heap leaches, and aid in the development of models
that increase their profitability [47]. Third, what was once considered to be below cut-off
grade may later become mineable ore [48–52]. Therefore, a deeper understanding of the
dumping process as it relates to waste dumps may prove valuable for operations, where
old waste dumps become economically viable [53–56]. Finally, the perfunctory amount of
documented work, aimed at capitalizing on the opportunities hypothesized previously,
may have less to do with the merit of such hypotheses, and more to do with the mining
sector’s lag in innovation [17,18,57].

To improve the understanding of end-dumping and rock pile construction, we present
a method for creating a high-fidelity model (HFM) of the dumping process through a digital
transformation approach. Digital transformation [57,58], employs an external philosophy
for understanding ROM behavior, and is a process whereby real-world assets and processes
are digitally transformed in ways that add value for decision makers. Innovation [59]
and emerging technologies [60] make digital transformation possible. Unmanned aerial
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vehicles (UAVs), also known as drones, are an emerging technology [61] that allows for
the digital transformation of the dumping process through data collection. Rock pile faces
span large areas, and the nature of the material requires multiple vantage points for sensors
or traditional surveys to be effective. By using photogrammetry, UAVs are capable of
capturing multiple angles and covering large difficult areas, such as a dump face [47,62].
Thus, an investigation into whether photogrammetry can create the HFM of an individual
truck end dump is of interest to the issue of better understanding the dumping process and
rock pile construction.

HFMs act as reference systems to reality [63]. These models are commonly used in
engineering to calibrate simulation models [64] where there is a need to rapidly prototype
many different design permutations [65], or where measuring the real data being modelled
is not practical [66]. HFMs are modular elements, and HFM integration is a modular
framework that allows each aspect of the full model to be worked on independently [67].
This modularity means that simulations to match HFMs can be worked on independently
from the work used to improve how HFMs match with reality.

Digital transformation techniques are fairly new, and little work has been conducted
to digitally transform the process of rock pile construction via haul truck end-dumping.
Zahl et al. [9] accurately assert that the formation and shape of mine rock piles are based
mainly on topography. While this work is foundational to the engineering of rock pile con-
struction, it offers little for the purposes of rock pile digital transformation. Mclemore et al. [8]
provide an extensive review on the construction, the factors influencing the shear strength
of soil, characterization, the effects of weathering and the stability of rock piles throughout
the world. Their review is more informative than that of Zahl et al.; however, it likewise
does not consider a digital approach. Zhao [68] developed a real-time 3D modelling and
mapping technique for the stockpiles formed by stacking/reclaiming machines for iron ore.
Zhao’s work is pioneering in the area of the digital transformation of small, intermediary
stockpile construction, but does not consider the large rock fills made by haul truck end-
dumping. The authors of this present paper previously illustrated a method for modelling
and mapping large heap-filled stockpiles using fleet management system (FMS) data [7].
However, while these data were amicable to modelling, no external data were available
for the validation of the model. Zhang and Liu [47] employed UAV aerial photography
and performed image analysis to investigate particle size distribution along the face of a
dump leach. However, while they demonstrated the ability of UAV aerial photography to
capture relevant data, they did not capture the volumes of individual dump profiles that
could be used as a baseline to digitally transform the end-dumping rock pile construction
process. Servin et al. [4] present a digital transformation technique for holistic mine-to-mill
distributed particle simulation where the gaps between unit operations are simulated using
data from control systems and sensors. While other frameworks for similar integration
have been proposed in the past, the focus Servin et al. place on a unit operation-centered
framework is consistent with the aims of this paper and the future direction of research in
this area.

The method presented in this work demonstrates how to create 3D HFMs of ROM
end-dumping from photogrammetry. The method presented is very similar to that of Zhang
and Liu [47]. The resulting HFMs are akin to the model developed by Zhao [68], only
they involve end-dumped rock piles as opposed to stacker-made intermediary stockpiles.
These HFMs could be potentially suitable for the technique presented by Servin et al. [4] for
holistic mine-to-mill optimization, which includes large end-dumped rock piles. They may
also be used as a modular test bed for the calibration of future simulations of mine haul truck
dumping activity. The end goal of the HFMs this method creates is the parameterization
of dumping as a unit operation process. Essentially, while the foundational work of
Zahl et al. [9] explains that topography is the main factor influencing rock pile shape, the
method presented in this paper may be used to increase our understanding of the expected
variability and parameters in such topography common to the end-dumping and rock
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pile construction process, thereby making these shapes more predictable and amicable
to modelling.

2. Materials and Methods

2.1. Material and Haulage Equipement

The material studied was low-grade run-of-mine (ROM) gold ore from a surface
mining operation near Perth, WA. No additional characterization of the material is re-
quired for presenting the concept of this method, although future simulation and mod-
elling work will require more detailed characterization in order to ensure that models are
properly calibrated.

The ore was transported and dumped using CAT 793F haul trucks with a payload of
approximately 231 metric tons, a struck capacity of 112.6–151 m3 and an inside bed width
of 7334 mm.

2.2. UAV Flights and Photogrammetry Methodology

Field work and UAV flights were conducted in coordination with the mine’s survey
crew and through the use of their equipment. A total of 23 flights were recorded over the
course of five day-shifts. These flights were performed using a DJI Matrice M200 drone
with a Zenmuse X5S camera (DJI-Innovations Company Limited, Shenzhen, China). Table 1
shows details about the camera and flight settings used in these flights.

Table 1. Camera and Flight Details.

Camera Details Flight Details

Sensor Type
Sensor Size

(mm)
Focal Length

(mm)
Image Size

(Pixels)
Flight Height

(m)
Average Flight

Area (m2)
Average

Photos Taken
Flight Style

M4/3 CMOS 12.8 × 8.6 8.6 5472 × 3648 60 74,500 65 Snaking Grid

The methodology for the flights was as follows:

1. An initial flight was performed to create and update the local orthomosaic map
(approximately 6 min);

2. Ground control points (GCPs) were marked and surveyed (3 to 7 GCPs were used for
each flight);

3. A second flight was performed with an adjusted flight path to include ground control
points (approximately 7 min);

4. A Quick Map was created from the second adjusted flight path so that the area of
interest (dump area) could be readied, and the working flight path programmed;

5. Once steps 1 through 4 were completed, flights were repeated using the site scan
Quick Fly software function in the same area along the same flight path to capture
the dump face during different time intervals and thereby capture before and after
photos of the dumping process during regular operation (60 m flight height, 6 min
flight times).

Once the flights were completed, pictures were uploaded to the 3DR cloud processing
system, and photogrammetric point clouds were generated from the flight photos using
Pix4D software (mapper 4.1 version, Pix4D SA, Lausanne, Switzerland). Absolute and
relative accuracy were calculated for each GCP in the X, Y and Z coordinate directions.
These calculations were performed automatically as part of the 3DR cloud processing.

Figure 1 shows a top view (XY plane) of an example flight plan with GCP locations
and the corresponding image overlap map generated from the flight. All flight plans were
similar to Figure 1, with the only changes being the location of different GCPs. The thick
black curved line in Figure 1 represents the upper crest of the dumping area, and it is a
close approximation to the actual dump crest. As demonstrated by Figure 1, the dump
crest area for each flight was photographed with 5 or more images of overlap.
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Figure 1. Top (XY Plane) view of a typical flight plan. Stars represent locations of ground control
points (GCPs). The dashed line shows the flight path of the UAV. The shaded area is an approximation
of the dump area. The color represents the number of overlapping images in accordance with the
scale shown.

2.3. Point Cloud Analysis

Maptek™ PointStudio (2021.1 version, Maptek/KRJA Systems Inc, Golden, Colorado,
USA) was used to model and analyze the resulting point cloud data. These data were
imported as individual files and converted into triangulation solids. Then, they were
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analyzed for overlapping areas where dumps had occurred. Polygons were created around
the dump areas, and the two triangulations were processed into extracted solids. These
extracted solids are considered to be 3D volumetric HFMs of individual haul truck dump
profiles within the simulation and modelling context described in the introduction. The
reason these software tools, as well as the drone equipment, were used is because they
were what was available and provided by the mine. The results section details the HFMs
created by this study. All HFM files are available at the link, https://zenodo.org/record/
5789951#.YgQiqJbMKUl.

2.4. Classification Method

Little taxonomic terminology yet exists for the information presented in this article.
Classification involved qualitative analysis by the authors on the HFMs, with an emphasis
on attributes hypothesized to be of interest to characterizing the final position and geometry
of the dump profile. From the qualitative analysis, the categories and characteristics of the
dumps were created, and each dump was assigned to the matching category. Data on the
resulting classification are presented along with the statistical information of each category.

3. Results

3.1. UAV Flights and Field Work Results

Tables 2 and 3 show the root mean square (RMS) error values and the ground sampling
distance (GSD) of the models computed from the drone flight data, respectively. Errors be-
tween the modelled coordinates of a GCP and its known survey coordinates are frequently
used to represent the accuracy of a photogrammetry model [69].

Table 2. RMS Error Values by Coordinate Direction.

Coordinate
Direction

Relative RMS Errors (m) Absolute RMS Errors (m)

Minimum Average Maximum
Standard
Deviation

Minimum Average Maximum
Standard
Deviation

X 0.000565 0.011916 0.03008 0.008417 0.684995 2.410617 3.931733 0.790573

Y 0.000574 0.009329 0.032239 0.008137 1.128254 2.119136 3.641948 0.610887

Z 0.001044 0.017912 0.046895 0.011906 0.881072 7.083288 15.086508 4.262623

Table 3. GSD Values of the Photogrammetry Models.

GSD Values (cm/pixel)

Minimum Average Maximum Standard Deviation

1.72 2.2 2.52 0.26

RMS errors represent the quadratic means of these errors in the X, Y and Z coordinate
directions. Both absolute and relative RMS error values are given. Absolute error represents
the error in the coordinate location of the GCPs to their actual location on earth. Relative
error represents the error in coordinate location of the GCPs as they relate to each other.
Relative error is of more interest to this study, since the integrity of the HFMs is reliant on
achieving a low relative error in the photogrammetry models.

Low ground sampling distance (GSD) values are required for accurate photogram-
metry [69]. GSD is the physical distance represented between the centers of two adjacent
pixels, and it can be estimated in advance of a flight based on the camera and flight details.
With the drone flying at a 60 m height, a GSD of 1.64 cm/pixel is considered to be the
lowest possible GSD value based on the camera specifications. Slight deviations due to
perspective, the vibrations of the camera, blur, depth of field and other factors lead to
variations in GSD at every point of a photogrammetric model. The GSD values calculated
for the photogrammetry models of this study can be found in Table 3.
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In Tables 2 and 3, the accuracy of the photogrammetry models is given. These accuracy
values are important to consider, since they determine the granularity of the HFM models.
The accuracy error of a given model will be at least the GSD value in each coordinate
direction. Considering that the highest average GSD value of all flights was 2.52 cm/pixel,
an accuracy error of at least 16 cm3 (2.52 cm × 2.52 cm × 2.52 cm) to the volume of the HFM
is expected to exist. Another way to confirm these accuracy errors is to multiply the RMS
errors (Table 2) for each coordinate direction. The multiplication of the maximum relative
errors for each coordinate direction, as shown in Table 2, gives 45.48 cm3, which is roughly
2.8 times the accuracy error obtained by cubing the GSD. This discrepancy is consistent
with other photogrammetry models that have been correctly scaled and reconstructed,
which typically contain accuracy errors between one to three times that of the GSD value.
In summary, the accuracy of the volumes generated from the photogrammetry models
used in this study can generally be considered to be accurate to within 50 cm3.

3.2. Point Cloud Analyses and Results

Of the 23 flights flown, 14 solids were extracted, from which 29 dump activities
were identified and 28 were considered useable HFMs of the dumping process. Of these
28 HFMs, four types of dump profiles were determined to exist. The four dump types are
named after their shape, as follows:

A. Oval,
B. Comet,
C. Rectangular,
D. Sloughed Heap.

Oval-type dump profiles are the most commonly occurring type of dump profile.
These dump profiles are characterized by their oval shape when viewed from a vantage
point normal to the dump face. These dumps have narrow ends at the crest and toe of
the dump face, and a maximum width midway through the dump face. Comet dump
profiles are characterized by a large volume near the base of the dump and a narrow trail
of material extending upwards along the dump face. Rectangular dump profiles cover
the entire dump face (or a large portion of it) evenly to a uniform width. Sloughed heap
profiles occur when a portion of the material is not dumped over the edge of the berm, but
rather on the floor of the upper level of the dump. This causes a portion of the material to
bunch near the dump berm, and a part of it to slough over the edge of the dump.

Table 4 shows example grayscale renderings of what is observed in PointStudio for
each of the four types of dumping profiles determined by a qualitative analysis of the dump
HFMs. These example grayscale renderings are showcased via both front and side views.
The front view shows the perspective facing the dump and in-line/parallel to the dump,
with the dumping process proceeding from top to bottom. The side view represents the
perspective perpendicular to the front view, with the dumping direction proceeding from
top right to bottom left. Measurements of these profiles were performed using software
functions found within PointStudio.

The HFM solids created in PointStudio were classified using the following variables:
volume (in cubic meters), maximum height, length, width and thickness (in meters) and
angle (in degrees) from bottom left to top right. Volume was determined by querying
the properties of the HFM solids after their creation. Maximum height and maximum
length were considered to be the vertical and horizontal legs of the right triangle formed by
connecting the bottom left and top right points of the HFM solid. Maximum width was
considered to be the distance between the two farthest horizontal points of the HFM solid
from the front-view perspective. Thickness was considered to be the distance between the
two farthest horizontal points of the HFM solid from the side-view perspective. Angle was
considered to be the inner angle of the right triangle formed by connecting the bottom-left
and top-right points of the HFM solid. These measurements are tabulated in Table 5. An
additional visualization of the HFMs data containing all of the extracted solids is available
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in the data cache associated with this article. The link accessed to this data can be found in
the “Supplementary Materials” section.

In total, 28 dumps were profiled and classified via qualitative analysis. Table 5 shows
information from all of the dump profiles. With the exception of dumps 1, 2 and 3, all
dumps were along the edge of a 30 m high dump crest. Table 5 reveals that large volume
does not always indicate large maximum width, height or length. High angles do not
indicate large volume, but seem to increase the maximum width, height or length. In the
case of sloughed heaps, the low angle is due to the fact that it is not measuring to the top of
the berm, but to the extent of the dump profile, which occurs on the floor of the upper level
of the dump area.

Table 4. Example front and side views of grayscale renderings of the HFM solids created in PointStu-
dio for each of the four dump profile types.

Dump Profile Type
Front View

(Direction of Dumping ↓)
Side View

(Direction of Dumping ←)

Oval

10 m

Comet

10 m

Rectangular

10 m

Sloughed Heap

10 m
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Table 5. Summary of Classification Data for All Dump Profiles.

Dump Volume (m3) Max. Width (m) Max. Height (m) Max. Length (m) Angle (◦)
Max.

Thickness (m)
Shape

1 2 131 15 15 23 33 1.187 Oval
2 2 125 1 12 16 25 31 0.957 Rectangular
3 2 125 1 14 16 25 31 0.893 Rectangular
4 121 1 11 16 29 28 1.431 Sloughed Heap
5 121 1 14 30 44 36 0.368 Oval
6 121 1 13 31 43 36 1.207 Oval
7 155 20 20 32 33 1.016 Comet
8 119 1 22 26 39 34 1.123 Comet
9 119 1 17 18 26 35 1.256 Comet

10 119 1 11 32 46 34 1.006 Oval
11 134 20 28 40 35 0.887 Oval
12 125 1 15 21 35 31 1.675 Comet
13 125 1 19 19 29 33 2.011 Comet
14 137 1 16 19 27 29 1.053 Sloughed Heap
15 137 1 12 31 44 35 1.306 Oval
16 137 1 23 19 20 32 2.032 Comet
17 137 1 15 23 34 34 0.899 Oval
18 137 1 19 20 28 30 1.081 Sloughed Heap
19 128 20 21 30 36 0.953 Oval
20 138 1 16 28 39 31 1.000 Sloughed heap
21 138 1 16 25 36 35 1.202 Oval
22 117 11 7 16 12 2.062 Sloughed Heap
23 94 16 26 35 36 0.601 Oval
24 149 1 14 30 41 36 0.882 Rectangular
25 149 1 17 29 40 35 1.140 Oval
26 149 1 13 21 29 36 1.036 Rectangular
27 129 1 12 9 13 16 1.647 Sloughed Heap
28 129 1 17 26 37 35 1.033 Oval

1 Volumes are averages from the total volume of the combined extracted solid containing the dump profiles. 2

These had a 15 m dump height.

In order to investigate the statistical differences among the classification data of each
type, box plots of their data for each variable are shown in Figures 2–7. In the box plots, the
black dot represents the mean average value within the data, the line represents the median
value, the box edges represent 50% of the data between the first and third quartiles and the
lines above and below the box represent the maximum and minimum values of the data.

Figure 2. Box Charts of Volume (m3) by Dump Profile Shape.
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Figure 3. Box Charts of Angle (◦) by Dump Profile Shape.

Figure 4. Box Charts of Max. Height (m) by Dump Profile Shape.

Figure 5. Box Charts of Max. Length (m) by Dump Profile Shape.
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Figure 6. Box Charts of Max. Width (m) by Dump Profile Shape.

Figure 7. Box Charts of Max. Thickness (m) by Dump Profile Shape.

Figure 2 shows that the comet and rectangular dump types have a slightly higher
average volume compared with the oval and sloughed heap types. Volume is influenced
by how much material was loaded into the truck before dumping, and also by how much
material in the dump face moved at the time of dumping. This increase in the average
volume of material for the comet and rectangular dumps may be due to the fact that
both dump types seem to involve the movement of additional material contained in the
dump face.

Figure 3 shows a lot of similarity in the average angles of the comet, oval and rectan-
gular dump types. Sloughed heap angles are lower because the material does not typically
extend the full length of the dump face. Where the material of the sloughed heap extends
along the dump face, the angle of the material matches the angles for the other dump types.

Figure 4 shows that the oval and rectangular dumps have the highest dump height.
Dump height is a measurement of how much of the vertical dimension of the dump is
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covered by the dump profile. Sloughed heap and comet height values are lower because
the material does not typically extend the full length of the dump face.

Figure 5 shows the same general differences between dump types as Figure 4. This is
likely due to the fact that length is a measurement of how much of the horizontal dimension
of the dump is covered by the dump profile. Length values are lower for sloughed heap-
and comet-type dump profiles compared to the other dump types. This may be related to
the same reason why height values for these types are also lower.

Figure 6 shows that comet dump profiles tend to be the widest. This may be the result
of additional material from the dump face aggregating with the dump mass as it cascades,
resulting in an increase in width. Rectangular dump profiles tend to have the lowest width
values, which is interesting because they typically have the highest volume values, and this
might be explained by a low amount of frictional resistance on the dump face compared to
the cohesion of the dump mass.

As shown in Figure 7, the comet and sloughed heap dump profiles typically have a
higher thickness than the oval and rectangular ones. Assuming that the dumps are of similar
total volume, this is to be expected, since oval and rectangular dump profiles typically have
higher height and length. Therefore, the dump material for oval and rectangular dumps
is spread thinner across more surface area, which leads to less thickness. Comet dump
profiles may also interact with loose material on the dump surface, and the resulting solid
might include some of that material in the thickness, as it might with the total volume.

4. Discussion

4.1. Modelling Discussion

The HFMs presented in this paper offer a novel look at individual dumps. These HFMs
can be used as a basis to calibrate future simulation models of dumps via the V-model
for calibration described by Quist [63], Hofmann [66] and others. Figure 8 illustrates the
V-model for simulation calibration and validation, which occurs over three levels. At the
bottom level, validation is carried out by calibrating the individual parameters of particles
in a laboratory setting. The second level involves calibration based on the aggregated
behavior of the particles through multiple flow regimes. The third level compares simulated
outcomes with real industrial-scale operations.

Figure 8. The V-model for DEM calibration and validation (adapted from [63]).

To the knowledge of the authors, no work has been conducted to validate dumping
behavior at a real mine against simulated outcomes; however, much work has been per-
formed to calibrate and validate ROM material simulations at lower levels of the V-model,
particularly for mineral processing applications [70]. In instances such as dumping, where
reality cannot be used to calibrate models, calibration involves adjusting parameters to
fit HFMs instead. There is no mention of a method for creating HFMs of mine haul truck
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dumping activity in the literature. The method used for this study is easily achievable for
any mine operation where UAVs and photogrammetry are presently in use.

4.2. Dump Profile Discussion

Even though this study found only four types of dump profiles, there may exist
additional types. The factors that determine which type a dump will be categorized into
are many. These factors likely fall into several categories, including the way the material is
loaded into the truck, how the truck dumps the material, how the pre-existing dump face
interacts with the dumped load and how the material behaves on its own. None of these
factors were investigated in this paper

How the truck is loaded directly influences the volume of the resulting dump profile.
It may also influence the determination of the dump profile type, forming either comet, oval
or rectangular profiles. For example, if the truck is unevenly loaded with more material
in the back than towards the front, this may cause the resulting dump profile to favor a
comet format. However, the exact interplay between how the trucks were loaded and the
resulting dump profiles remains unclear, and no information on truck loading was gathered
during this study.

How the truck dumps the material clearly influences whether or not the dump profile
becomes a sloughed heap or one of the other types. This is because if the truck dumps far
from the crest of the dump face, it will create a sloughed heap. When the truck dumps
against the crest of the dump face, the type of the resulting dump profile is either comet, oval
or rectangular; however, it is unclear which one it will become from this information alone.

4.3. Terminology Discussion

The lack of terminology around dump profile behavior is one challenge to improving
our understanding. The authors present new terminology here for the four types of dump
shapes, but much more terminology is likely needed to fully describe and characterize
dump profiles. This is made true by the fact that many dump profiles display characteristics
of more than one type and, therefore, additional description may be required to fully classify
them. For example, a sloughed heap may slough into a comet shape at the bottom of the
dump, or an oval may have an extremely long rectangular section. There also needs to be
reflection around how much effort should be spent creating terminology, since it is well
known that the shape of mine rock piles is mainly based on topography [9].

4.4. Practicality Discussion

Admittedly, some findings in this study may not offer much practical applicability,
especially considering the status quo of the mining industry. It is unknown whether the
HFMs presented in this study represent the global characteristics of the dumping process
across all mines, or whether they are limited to the mine used for the study. However, the
method used for data capture was seamlessly incorporated into routine operation, and
was practical from the standpoint of simplicity and ease of realization. Many mines are
capable of measuring their own dump characteristics and creating HFMs for themselves. It
is entirely probable that many other shapes of fallow land exist, and their discovery and
classification can increase our understanding of the cascading process of ROM material.

Additionally, as has been previously stated, the findings of this study are practical for
the purpose of verifying the accuracy of the simulation modelling of individual truck end
dumps. Without an HFM to verify simulations against, there would be less confidence in
the accuracy and relevance of the simulation. It is computationally intensive to simulate an
entire dump area. Simulating individual dumps may allow for larger areas to be simulated
with less computational power through the use of pseudo-particles [4].

Dumps generally conform to whatever shape the local topography provides, but
knowledge of the common shapes provided via a routine dumping process for a particular
ore at a given mine has historically been mostly speculatory. Speculation of this kind causes
engineers and mine planners to place an unknown amount of dependance on operators
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that work with the material constantly to ensure the process is conforming to plan. In
future autonomous mining scenarios, this dependance will not be allowed. Thus, digitally
transforming the dumping process is hypothesized to support continuity in the transition
towards autonomous mining. Without operators at the helm, there is little knowledge to
ensure that dumping is occurring correctly. Additionally, without a basic reference, there
would be no way to determine the performance quality of the autonomous equipment.
The fact that autonomous equipment will be covered in sensors to map the work area
continuously will mean very little, unless it is known what conformity should actually
looks like.

As another hypothesis, there might be a relationship of practical synergy between
predictive modelling and UAV surveys. UAV surveys have become increasingly ubiqui-
tous at mines, and can accomplish tasks to a level of quality unachievable by traditional
survey crews within a greatly reduced timeframe. They could be made to occur at such
frequent intervals as to overwhelm mining engineers and long-range planners. The HFMs
described in this article demonstrate the parameterization of the dumping process, which
could facilitate the training and validation of predictive models to help automate design
conformity to UAV surveys of rock piles, thereby decreasing the cognitive load placed on
the domain experts.

5. Conclusions

HFMs of dump profiles for 28 dumps were created. These HFMs show characteristic
behaviors classifiable into four types, named comet, oval, rectangular and sloughed heap.
These classifications may make it easier to examine the dumping process as a whole. While
more terminology and modelling will be required to gain a complete understanding of the
dumping process, the HFMs examined here provide a basis to articulate new terminology
and calibrate new modelling.

Since further investigation is required, some recommendations for future study in this
area include:

• Investigate factors that determine the classification of a given dump profile;
• Isolate additional variables that influence the cascading behavior of ROM from haul trucks;
• Simulate and calibrate particle modelling using HFMs;
• Validate and test the ability to accurately simulate and predict the dump characteristics

beforehand;
• Correct for the difference between GPS coordinates recorded as dump locations and

the true centroid coordinates of the dumped material;
• Develop constraints and map FMS data to rock piles;
• Prove the accuracy of these mapping/modelling techniques through a robust

sampling campaign;
• Adapt this or a similar method for dozers and other equipment that frequently handle

material at dumps and stockpiles;
• Review and analyze correlated phenomena (bulk phenomena in heap leaches, stratifi-

cation, slope stability, etc.);
• Incorporate simulated predictions into a larger mine-to-mill optimization model.

Supplementary Materials: The dump geometries can be downloaded at: https://zenodo.org/
record/5789951#.YgQiqJbMKUl.
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Abstract: While empirical rock fragmentation models are easy to parameterize for blast design,
they are usually prone to errors, resulting in less accurate fragment size prediction. Among other
shortfalls, these models may be unable to accurately account for the nonlinear relationship that
exists between fragmentation input and output parameters. Machine learning (ML) algorithms are
potentially able to better account for the nonlinear relationship. To this end, we assess the potential of
the multilayered artificial neural network (ANN) and support vector regression (SVR) ML techniques
in rock fragmentation prediction. Using geometric, explosives, and rock parameters, we build ANN
and SVR models to predict mean rock fragment size. Both models yield satisfactory results and
show higher performance when compared with the conventional Kuznetsov model. We further
demonstrate an automated means of analyzing a varied number of hidden layers for an ANN using
Bayesian optimization in the Keras Python library.

Keywords: rock fragmentation prediction; machine learning; Kuz–Ram model; fragmentation
models; fragment size distribution; artificial neural network; support vector regression; blasting;
open-pit mines

1. Introduction

Rock fragmentation is the process by which rock is broken down into smaller size
distributions by mechanical tools or by blasting. The resulting fragment size distribution
may be characterized by a histogram showing the percentage of sizes of particles, or as a
cumulative size distribution curve [1]. The primary means of rock fragmentation in mining
is blasting. A good blast produces a size distribution that is well suited to the mining system
it feeds, maximizes saleable fractions, and enhances the value of saleable material [2].
Blasting efficiently saves significant amounts of money that would otherwise be spent
on secondary blasting [3]. It also yields significant savings on the costs of downstream
comminution processes, i.e., crushing and grinding.

The results of a blast depend on several parameters, which are broadly categorized
as controllable and uncontrollable [4,5]. Controllable parameters can be varied by the
blasting engineer to adjust the outcome of blasting operations. Controllable parameters
can be grouped into geometric, explosives, and time parameters. Geometric parameters
include drill hole diameter, hole depth, charge length, spacing, burden, and stemming
height. Explosives parameters include the type of explosive, explosive strength and energy,
powder factor, and priming systems. Time parameters include delay timing and initiation
sequence. A blasting engineer’s ability to change these controllable parameters dynamically
in response to as-drilled information is critical to achieving good fragmentation [3]. The
uncontrollable parameters constitute the geological and geotechnical properties of the
rock mass. These parameters are inherent, and thus, cannot be varied to adjust blasting
outcomes. They include rock strength, rock-specific gravity, joint spacing and condition,

Mining 2022, 2, 233–247. https://doi.org/10.3390/mining2020013 https://www.mdpi.com/journal/mining
57



Mining 2022, 2

presence and depth of water, and compressional stress wave velocity [6]. Though these
parameters cannot be varied by the blasting engineer, adequately accounting for them in a
blast design helps to achieve good fragmentation. Figure 1 is a bench blast profile showing
a variety of design parameters.

Figure 1. Blast design terminology [5].

Several studies have sought to predict fragment size distribution based on the param-
eters used in blast design. The accurate prediction will give blasting engineers control over
the outcome of blasting operations. Consequently, engineers will know which controllable
parameters to modify, and to what extent the modification should be. Having an accurate
prediction model leads to good post-blast results, and this comes with enhanced loader
and excavator productivity along with numerous downstream benefits. However, the pre-
diction exercise proves to be challenging considering that numerous parameters influence
fragmentation. Additionally, the rock mass may be heterogeneous and/or anisotropic in
its structures of weakness. To this end, it is impossible to develop a predictive tool solely
based on theoretical and mechanistic reasoning [5]. Researchers have thus mostly resorted
to empirical techniques in predicting the outcome of fragmentation, with the Kuz–Ram
being the most widely used. The empirical models are favored and widely used in daily
blasting operations because they are easily parameterized. A major shortfall, however, with
the empirical methods is that certain significant parameters are not accounted for, and this
leads to less accurate results. Cunningham [2], notes that essential parameters omitted by
empirical techniques include rock properties and structure, e.g., joint spacing and condition,
detonation behavior, and mode of decking. Other parameters include blast dimensions and
edge effects from the borders of the blast. Over the years, researchers have modified exist-
ing models and formulated new ones in an attempt to improve prediction accuracy. While
this has contributed to significant improvement, none of the ensuing models incorporate
all the important parameters, and accuracy is still of concern. In some instances, highly
simplified or inappropriate procedures were used for estimating the properties of structural
weakness in the rock mass [5]. Furthermore, the relationship between fragmentation input
and output parameters is highly nonlinear, and empirical models may not be well suited
for such modeling.

To this end, researchers, in recent years, have sought to implement machine learning
(ML) techniques for fragmentation prediction. The objective was to capture as much of the
inherent nonlinearity using limited input parameters and subsequently improve accuracy.
Kulatilake et al. [5] and Shi et al. [7] have respectively exploited the potential of using
artificial neural network (ANN) and support vector regression (SVR) for this purpose, and
have achieved satisfactory results. ANN and SVR are machine learning techniques that
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are proven to possess high nonlinearity-recognition properties. However, ANN models in
the rock fragmentation literature were limited to only one hidden layer, and do not exploit
the potential of the multilayered network (ANN with more than one hidden layer), which
could potentially lead to achieving higher accuracy. In this research, we implement SVR
and a variety of multilayered ANN for predicting mean fragment size.

Machine learning (ML) is a branch of artificial intelligence (AI) that allows computer
systems to improve their performance at a task through experience (learning) for the
purpose of predicting future outcomes [7,8]. It is a multidisciplinary field that relies
significantly on specialized subject areas such as probability and statistics, and control
theory. ML techniques are broadly classified as supervised and unsupervised learning.
Supervised learning is concerned with predicting an outcome given a set of input data.
It does so by making use of the already established relationship between representative
sets of input and output data that were used for model training. Unsupervised learning
is concerned with data segmentation based on pattern recognition. Unsupervised ML
techniques can infer patterns from data without reference to known outcomes. They are
useful for discovering the underlying structure of a given data set. The rock fragmentation
problem is a regression problem that is suited to tools of supervised machine learning
such as multivariate regression analysis, artificial neural network (ANN), and support
vector regression (SVR). The last two comprise algorithms that are more robust to nonlinear
relationships between input and output data [5,9]. They are thus considered in this study
since rock fragmentation input and output parameters are nonlinearly related.

2. Preliminary Background

We provide a fundamental explanation of the machine learning techniques used in this
study. The section describes the architecture of the artificial neural network and support
vector regression.

2.1. Artificial Neural Network (ANN)

Artificial neural network (ANN) is a machine learning technique that is inspired
by the way the biological neural system works, such as how the brain processes infor-
mation [7,8,10]. Information processing in ANN involves many highly interconnected
processing elements known as neurons that work together to solve specific problems. The
learning process involves adjustments to the synaptic connections existing between the
neurons [7,11]. In the biological neural system, a neuron consists of a cell body, known
as soma, an axon, and dendrites. The axon sends signals, and the dendrites receive these
signals. A synapse connects an axon to a dendrite. Depending on the signal it receives, a
synapse might increase or decrease electrical potential. An ANN consists of a number of
neurons similar to human biological neurons. These neurons are known as units and are
connected by weighted links that transmit signals from one neuron to the other [7,12]. The
output signal is transmitted through the neuron’s outgoing connection, which is analogous
to the axon in the biological neuron. The outgoing connection splits into a number of
branches that transmit the same signal. The outgoing branches terminate at the incoming
connections (analogous to dendrites) of other neurons in the network [7].

An ANN has three types of neurons, and these are known as input, hidden, and output
neurons. They are stacked in layers, and receive input from preceding neurons or external
sources, and use this to compute an output signal using an activation function. The activa-
tion function is a mathematical formula for determining the output of a neuron based on
the neuron’s weighted inputs. The output signal is then propagated to succeeding neurons.
While this is ongoing, the ANN adjusts its weights in order to record an acceptable minimal
error between input variables and the final output variable(s) [13]. The complexity of the
ANN architecture makes it well suited for solving both linear and nonlinear problems [10].
Advancement in computational power has enhanced its use in the fields of engineering,
industrial process control, medicine, risk management, marketing, finance, communication,
and transportation.
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2.2. Suport Vector Regression (SVR)

Support vector regression (SVR) is a type of supervised machine learning that is
based on statistical learning theory [14]. Just like the ANN, SVR is efficient at modeling
nonlinearly related variables and does well at solving both classification and regression
problems. It works by nonlinearly mapping, i.e., transforming, a given data set into a
higher dimensional feature space, and then solving a linear regression problem in this
feature space [9,15]. That is, it seeks to predict a single output variable (ŷ) as a function of n
input variables (x) using a function f (x) that has at most ε deviation from the actual values
(y) for all the training data [16]. Equation (1) expresses this function in its simplest form as
a linear relationship [9]:

f (x) = b + w · ϕ(x) (1)

In Equation (1), the function ϕ(x) denotes the high dimensional kernel-induced feature
space. Kernel refers to the mathematical function used in the data transformation process.
Different kernels are available for use in SVR analysis. They include the linear, polynomial,
radial basis function (rbf), and sigmoid kernels. Parameter w in Equation (1) is a weight
vector, and b is a bias term. Both w and b are calculated by minimizing a regularized cost
function. Figure 2 is a graphical representation of the SVR concept. The ±ε deviation from
the actual values (y) can be described as a tube that contains the sample data with a certain
limit ε [16]. This implies that the function f (x) is constrained by the ±ε limits to form a
tube that represents the data set with the expected deviations.

Figure 2. Graphical representation of support vector regression [17].

3. Literature Review

The ability to accurately predict fragment size distribution from a given blast design
will give blasting engineers control over the outcome of blasting operations. Engineers
will be able to identify which controllable parameters to modify, and to what extent the
modification should be. To this end, several studies have sought to predict fragment size
distribution based on the parameters used in blast design. These studies have resulted in
empirical prediction models, with the Kuz–Ram being the commonest model in use. Others
include the CZM, two-component model (TCM), Kuznetsov–Cunningham–Ouchterlony
(KCO), SveDeFo, and Larson’s equation [4,18]. The reliance on empirical models stems from
the complexity that comes with the attempt to develop explicit theoretical and mechanistic
equations to predict the outcome of fragmentation [2,4,5]. This complexity is primarily
attributed to the fact that there are so many parameters that affect a blast, coupled with
geological heterogeneity [5,9].

The Kuz–Ram model is essentially a three-part model consisting of a modified version
of the Kuznetsov equation, the Rossin–Rammler equation, and the Cunningham uniformity
index. The parameters defined by these equations constitute the output of the prediction
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model [4]. The Kuznetsov equation is for predicting mean fragment size (X50), and the
original version is given by Kuznetsov [19] as:

X50 = A
(

V
Q

)0.8
Q0.167 (2)

In Equation (2), X50 is the mean fragment size (cm); A is the rock factor (7 for medium
hard rocks, 10 for hard but highly fissured rocks, 13 for very hard, weakly fissured rocks);
V is the rock volume (m3); and Q is the weight of TNT (kg) equivalent in energy to the
explosive charge in one borehole. A shortfall of the equation is that the rock mass categories
it defines are very wide, and thus need more precision [5]. Cunningham [20,21] provides a
modified version of the equation as follows:

X50 = AK−0.8Q
1
6

(
115

RWS

) 19
20

(3)

In Equation (3), A is the rock factor, and varies between 0.8 and 22 depending on
hardness and structure; K is the powder factor, defined as the weight of explosive, in kg,
per cubic meter of rock; Q is the mass, in kg, of the explosive in the hole; and RWS is the
weight strength relative to ANFO (115 is the RWS of TNT).

The role of the Rosin Rammler equation is to estimate the complete fragmentation
distribution. For a given mesh size or screen opening, X, this equation is able to estimate
the percentage of fragments retained. It is given as [22]:

Rx = exp−
(

X
Xc

)n
(4)

where Rx is the proportion of fragments larger than the mesh size X (cm), and Xc is
the characteristic fragment size (cm). The characteristic size is one through which 63.2%
of the materials pass. If the characteristic size and the uniformity index are known, a
size distribution curve can be plotted for the rock fragments [18]. The curve is plotted
as percentage passing vs. mesh size. The former is obtained by subtracting Rx from
one. Equation (4) can be rewritten to make direct use of the mean fragment size, X50, as
follows [20,21]:

Rx = exp−0.693
(

X
X50

)n
(5)

From Equations (4) and (5), the characteristic size can be deduced as:

Xc =
X50

0.693
1
n

(6)

The third part of the Kuz–Ram model is the uniformity index, developed by Cun-
ningham through several investigations which involved consideration of the effects of
blast geometry, hole diameter, burden, spacing, hole length, and drilling accuracy [4]. This
equation is given as [20,21]:

n =

(
2.2 − 14B

d

)√√√√(
1 + S

B
2

)(
1 − W

B

)(
abs

(
BCL − CCL

L

)
+ 0.1

)0.1 L
H

(7)

where B is the burden (m); S is the spacing (m); d is the hole diameter (mm); W is the
standard deviation of drilling precision (m); L is the charge length (m); BCL is the bottom
charge length (m); CCL is the column charge length (m); and H is the bench height (m).
Equation (7) is multiplied by 1.1 when using a staggered pattern. The value of n is essential
in determining the shape of the size distribution curve, and is usually between 0.7 and 2.
High values indicate uniform sizing, while low values indicate a wide range of sizes,
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including both oversize and fines [18,23]. Equations (3), (5), and (7) are what constitute the
typical Kuz–Ram model.

Cunningham [2] makes modifications in the model twenty years on, mainly as a result
of the introduction of electronic delay detonators. This leads to what is now known in the
literature as the modified Kuz–Ram model. The adjustments by Cunningham incorporate
the effects of inter-hole delay and timing scatter. The changes also incorporate correction
factors for the rock factor and uniformity index. These changes lead to the modification of
Equations (3) and (7) as follows [2]:

X50 = AATK−0.8Q
1
6

(
115

RWS

) 19
20

C(A) (8)

n = ns

√(
2 − 30B

d

)√√√√(
1 + S

B
2

)(
1 − W

B

)(
L
H

)0.3
C(n) (9)

where AT is a timing factor for the effect of inter-hole delay, C(A) is a correction factor
for the rock factor, ns is the uniformity factor for the effect of timing scatter, and C(n) is a
correction factor for the uniformity index. Thus, the modified Kuz–Ram model comprises
Equations (5), (8) and (9).

A major shortfall of the Kuz–Ram model is the underestimation of fines. Extensions
to the model have, thus, emerged with the objective of improving the prediction of fines.
The CZM and TCM are such models [18]. Kanchibotla, Valery, and Morrell [24] address
the issue of fines via the CZM model, which provides fragment distribution based on the
coarse and fine parts of the muck pile. The authors note that during blasting, two different
mechanisms control rock fragmentation, i.e., tensile fracturing and compressive-shear
fracturing. Tensile fracturing produces coarse fragments, while compressive fracturing
produces the fines. The model predicts the coarser part of the size distribution using the
Kuz–Ram model. The size distribution of the finer part is predicted by modifying the values
of n and Xc in the Rosin–Rammler equation. Djordjevic [25] develops a two-component
model (TCM) based on the same mechanisms of failure captured by Kanchibotla et al. [24]
in their work. The model utilizes experimentally determined parameters from small-scale
blasting, and parameters of the Kuz–Ram model to obtain an improved prediction of
fragment size distribution.

Ouchterlony [26] develops the KCO model which ties in the Kuz–Ram, CZM, and
TCM models. The KCO model replaces the original Rosin–Rammler equation with the
Swebrec function to predict rock fragment size distribution. The replacement stems from
the author’s recognition that the Rosin–Rammler curve has limited ability to follow the
various distributions from blasting. The Swebrec function proves to be more adaptable and
is able to predict fines better. The model is given by Equations (10) and (11) as follows [26]:

P(x) =
1

[1 + f (x)]
(10)

f (x) =

⎡
⎣ ln

(
Xmax

X

)
ln
(

Xmax
X50

)
⎤
⎦

b

(11)

where P(x) is the percentage of fragments passing a given mesh size, X; Xmax is the
upper limit of fragment size; X50 is the mean fragment size; and b is the curve undulation
parameter. Just like the Rosin–Rammler model, the Swebrec function has the mean fragment
size (X50) as its central parameter but introduces an upper limit to fragment size (Xmax).
While the aforementioned extensions to the Kuz–Ram model improve the distribution of
fines, they introduce yet another factor into a predictive model that is already somewhat
extended [2].
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With the advancement in computational power, attention is being drawn to the use of
machine learning (ML) in rock fragmentation prediction. Over the last decade, researchers
have used multivariate regression (MVR) analysis, artificial neural network (ANN), and
support vector regression (SVR) to predict fragment size distribution. In their work,
Hudaverdi, Kulatilake, and Kuzu [27] use MVR analysis to develop prediction equations
for the estimation of the mean particle size of muck piles. They develop two different
equations based on rock stiffness. The equations incorporate blast design parameters
(i.e., burden, spacing, bench height, stemming, and hole diameter) expressed as ratios,
explosives parameters (i.e., powder factor), and rock mass properties (i.e., elastic modulus
and in situ block size). Comparative analysis involving results of the prediction equations,
Kuznetsov empirical equation, and the actual values prove the capability of the proposed
models in offering satisfactory results. The authors make use of a diverse database (the
largest ever used in research at the time) representing blasts conducted in different parts
of the world. This makes their prediction models robust to a wide range of blast design
parameters and rock conditions.

Building upon the work of Hudaverdi et al. [27], Kulatilake et al. [5] developed MVR
and ANN models for the same set of data used in the former authors’ work. The authors
train a single hidden layer neural network model to predict the mean particle size for each
of two groups of data, as distinguished by the rock stiffness. The authors perform extensive
analysis to determine the optimum number of neurons for the hidden layer. Comparative
analysis reveals that the MVR and ANN models perform better than the conventional
Kuznetsov model. Shi et al. [9] build upon the work of Kulatilake et al. [5] by exploiting
the potential of using support vector regression (SVR) for predicting rock fragmentation.
Using the same data set as the previous authors, Shi et al. [9] develop an SVR model for
predicting mean fragment size. They compare the results of the SVR model with those of
ANN, MVR, Kuznetsov, and the actual values. The comparison shows that SVR is capable
of providing acceptable prediction accuracy.

The effectiveness of prediction models is assessed via comparative analysis involving
post-blast measurement. Post-blast measurement techniques have been developed over
the years for determining the true fragment size after a blast was completed. An accurate
predictive model will record insignificant deviation from the true fragment size. The
available techniques for measuring fragmentation output can be classified as direct and
indirect [3]. The direct methods include sieve analysis, boulder count, and direct measuring
of fragments. The most accurate method of determining fragmentation is to sieve the whole
muck pile. However, because muck piles are large, the use of sieving and the other direct
methods can be tedious, time-consuming, and costly [5]. Thus, they are not practicable
for muck pile fragment distribution. They can, however, be used for smaller amounts of
fragment materials, and for very special purposes [3].

The indirect methods of fragment size measurement include digital image processing,
and measurement of parameters, which can be correlated to the degree of fragmentation [3].
Digital image processing involves the use of sophisticated software and hardware for
measuring fragment size. It is the latest fragmentation analysis tool and has largely
replaced the conventional methods. The use of this tool comprises the following steps:
image capturing of muck pile, image scaling, image filtering, image segmentation, binary
image manipulation, measurement, and stereometric interpretation [5]. Though quick and
cost-effective, this tool has some challenges. Non-uniform lighting, shadows, and a large
range of fragment sizes can make fragment delineation very difficult. Another challenge
is the overestimation of fines since the computer treats all undigitized voids between the
fragments as fines. Thus, to obtain accurate estimation, a correction must be applied.
Additionally, the wide variations in size may require different scales of calibration [5,28].
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4. Data and Methodology

This section discusses the data and methods employed in this study. The data set com-
prises 102 blasts. Using this data set, we develop a multilayered artificial neural network
and support vector regression models that satisfactorily predict mean rock fragment size.

4.1. Data Source and Description

The data set used in this work is obtained from the blast database compiled by
Hudaverdi et al. [27], and subsequently used by Kulatilake et al. [5] and Shi et al. [9].
The compilation consists of blast data from various mines around the world. The data,
therefore, represents a diverse range of blast design parameters and rock formations.
Having such a diverse range of data is good for the purpose of this study, i.e., training
machine learning models for prediction. The implication here is that the predictive ability
of the ensuing models would span a wide variety of rock formations. The compilation by
Hudaverdi et al. [27] represents one of the largest and most diverse blast data collections in
the literature, and thus fits the purpose of this study.

Table 1 shows a sample of the data. A summary of the individual research projects
from which Hudaverdi et al. [27] compiled the data is provided hereafter. Blasts with labels
“Rc”, “En”, and “Ru” are from research by Hamdi, Du Mouza, and Fleurisson [29], and Aler,
Du Mouza, and Arnould [30] at the Enusa and Reocin mines in Spain. The Enusa Mine is
an open-pit uranium mine in a schistose with moderate to heavily folded formation. The
Reocin Mine is an open pit and underground zinc mine. Blasts designated “Mg” are from a
study by Hudaverdi [31] at the Murgul Copper Mine, an open-pit mine in northeastern
Turkey. Those designated “Mr” are from a study by Ouchterlony et al. [28] at the Mrica
Quarry in Indonesia. The rock formation is mainly andesite. Blasts with the “Sm” label are
from an open-pit coal mine in Soma Basin, in Western Turkey [32]. Blasts labeled “Db” are
from the Dongri-Buzurg open-pit manganese mine in Central India. The rock formation is
generally micaceous schist and muscovite schist [33]. Blasts labeled “Ad” and “Oz” are,
respectively, from the Akdaglar and Ozmert quarries of the Cendere basin in northern
Istanbul. Rock formation at both quarries is sandstone [27].

Table 1. Sample blast data [5,9,27–33].

ID S/B H/B B/D T/B Pf (
kg
m3 ) Xb (m) E (Gpa) X50 (m)

En1 1.24 1.33 27.27 0.78 0.48 0.58 60 0.37
En2 1.24 1.33 27.27 0.78 0.48 0.58 60 0.37
En3 1.24 1.33 27.27 0.78 0.48 1.08 60 0.33
Rc1 1.17 1.5 26.2 1.08 0.33 0.68 45 0.46
Rc2 1.17 1.5 26.2 1.12 0.3 0.68 45 0.48
Rc3 1.17 1.58 26.2 1.22 0.28 0.68 45 0.48
Mg1 1 2.67 27.27 0.89 0.75 0.83 50 0.23
Mg2 1 2.67 27.27 0.89 0.75 0.78 50 0.25
Mg3 1 2.4 30.3 0.8 0.61 1.02 50 0.27
Ru1 1.13 5 39.47 1.93 0.31 2 45 0.64
Ru2 1.2 6 32.89 3.67 0.3 2 45 0.54
Ru3 1.2 6 32.89 3.7 0.3 2 45 0.51
Mr1 1.2 6 32.89 0.8 0.49 1.67 32 0.17
Mr2 1.2 6 32.89 0.8 0.51 1.67 32 0.17
Mr3 1.2 6 32.89 0.8 0.49 1.67 32 0.13
Db1 1.25 3.5 20 1.75 0.73 1 9.57 0.44
Db2 1.25 5.1 20 1.75 0.7 1 9.57 0.76
Db3 1.38 3 20 1.75 0.62 1 9.57 0.35
Sm1 1.25 2.5 28.57 0.83 0.42 0.5 13.25 0.15
Sm2 1.25 2.5 28.57 0.83 0.42 0.5 13.25 0.19
Sm3 1.25 2.5 28.57 0.83 0.42 0.5 13.25 0.23
Ad1 1.2 4.4 28.09 1.2 0.58 0.77 16.9 0.15
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Table 1. Cont.

ID S/B H/B B/D T/B Pf (
kg
m3 ) Xb (m) E (Gpa) X50 (m)

Ad2 1.2 4.8 28.09 1.2 0.66 0.56 16.9 0.17
Ad3 1.2 4.8 28.09 1.2 0.72 0.29 16.9 0.14
Oz1 1 2.83 33.71 1 0.48 0.45 15 0.27
Oz2 1.2 2.4 28.09 1 0.53 0.86 15 0.14
Oz3 1.2 2.4 28.09 1 0.53 0.44 15 0.14

The data set features blast design parameters that can be categorized as geometric,
explosives, and rock parameters. The geometric parameters include burden, B (m), spacing,
S (m), stemming, T (m), hole depth, H (m), and hole diameter, D (m). These are represented
in the data set as ratios and include hole depth to burden (H/B), spacing to burden (S/B),
burden to hole diameter (B/D), and stemming to burden (T/B) ratios. The powder factor,
Pf ( kg

m3 ), represents the explosives parameter and shows the distribution of explosives in
the rock. The elastic modulus, E (GPa), and the in situ block size, Xb (m), represent the
rock parameters. Specifically, in situ block size represents the rock mass structure, while
the elastic modulus represents the intact rock properties [27]. In effect, a total of seven
rock fragment size prediction parameters are in the data set, and these will constitute the
input parameters (independent variables) for the SVR and ANN models. The data set also
features a post-blast parameter, i.e., X50(m), which is the actual mean fragment size. This
will be the output parameter (dependent variable) to be predicted by the models. Table 2
shows the summary statistics of the seven input parameters and the mean fragment size
for the entire data set.

Table 2. Summary statistics.

Variable Minimum Maximum Mean Standard Deviation

In
pu

t

S/B 1 1.75 1.20 0.11
H/B 1.33 6.82 3.46 1.60
B/D 17.98 39.47 27.23 4.91
T/B 0.5 4.67 1.27 0.69

Pf (kg/m3) 0.22 1.26 0.55 0.24
Xb (m) 0.29 2.35 1.16 0.48
E (Gpa) 9.57 60 30.18 17.52

Output X50 (m) 0.12 0.96 0.31 0.18

4.2. Model Development

Support vector regression (SVR) and artificial neural network (ANN) models are built
for a total of 102 blasts. We split the data into training and test sets comprising 90 and
12 blasts, respectively. The test set has Kuznetsov predictions matching the actual fragment
size. This is for the purpose of comparative assessment of results. The data set is scaled
within the range 0–1 since the parameters have different orders of magnitude. The scaling
is performed using the MinMaxScaler function of the Scikit-learn Python library [34].
The SVR and ANN models are built using the Scikit-learn and Keras Python libraries,
respectively [34,35].

4.2.1. SVR Modeling

Using Scikit-learn, we develop and train a support vector regression model for predic-
tion. The modeling process involves iterating over several combinations of the following
support vector hyper-parameters: regularization (C), epsilon (ε), and kernel (k). Four
kernels are considered for modeling, i.e., radial basis function (rbf), polynomial (poly),
sigmoid, and linear. Twenty-five different values of C are considered in the interval [1:10],
and twenty-seven different values of ε are considered in the interval [1 × 10−6:0.3]. This
yields a total of 2700 combinations of hyper-parameters, each representing a unique SVR

65



Mining 2022, 2

model. The process of searching for the optimal combination of these hyper-parameters
(adjustable parameters which control the support vector) is known as hyper-parameter
tuning. To aid with this process, the GridSearchCV function in Scikit-learn is used [34].
It involves building SVR models using each of these hyper-parameter combinations and
subsequently using cross-validation to assess model performance. We adopt the five-fold
cross-validation technique. This means that for each hyper-parameter combination, the
data are split into five folds. The hyper-parameter combination undergoes five runs of
model training, and during each run, a distinct fold (one-fifth of the training data) is set
aside for validation purposes. The final score assigned to the hyper-parameter combination
is the average validation score from the five runs. This process is repeated for all other
hyper-parameter combinations. We retrieve the best performing combination of hyper-
parameters, and these are C = 5.25, ε = 0.04, and kernel = rbf. The final SVR model is thus
built using these hyper-parameters.

In this study, retrieval of the best performing combination is based on the mean
squared error (MSE) scoring metric. The MSE is a statistical metric that provides a means
of assessing performance between two or more models. For each model, the MSE measures
the average squared difference between the actual and predicted values. A perfect model
would yield an MSE of zero, signifying that the actual values are perfectly predicted by the
model, i.e., there is no error in prediction. In machine learning, the best-performing model
among alternatives will be the one with MSE closest to zero. We show the MSE values for
selected hyper-parameter combinations for the training and test data in Figure 3. From the
figure, we observe that models with rbf kernels have better generalization abilities in respect
of unseen, real-world data, i.e., data not included in the training process. This is represented
by the test data. The best-performing model retrieved from the hyper-parameter tuning is
of the rbf kernel type. It yields the lowest MSE value for the test data.

Figure 3. MSE plot for selected SVR hyper-parameter combinations.

4.2.2. ANN Modeling

Using Keras, we develop a variety of multilayered ANNs with up to four hidden
layers for prediction. In each instance, hyper-parameter tuning is performed to obtain an
optimal number of neurons (units) for the hidden layers under consideration. In all cases,
the input and output layers have fixed neurons, being seven and one, respectively. These
represent the seven input parameters, and the output parameter (X50), which we seek to
predict. Figure 4 is a schematic representing the general architecture of the ANNs used in
this study.

For each instance of hidden layers, hyper-parameter tuning is performed using the
Bayesian optimization object in Keras [35]. The process involves iterating over several
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combinations of neurons for a given instance of hidden layers and returning the com-
bination that yields the best performance. This process can be very cumbersome and
time-consuming when carried out manually. The use of Bayesian optimization saves time
by automating the search process for the best combination of neurons for a given number of
hidden layers. During the search process, 20% of the training data is set aside for validation
purposes using the MSE scoring metric. The remaining data are used for training, and this
involves running 1500 epochs to yield an acceptable reduction in prediction error.

Figure 4. ANN architecture for rock fragmentation prediction.

Table 3 shows the results for the various hidden layers considered. For each instance
of hidden layers, the table shows the optimal number of neurons returned via hyper-
parameter tuning. The neural network with four hidden layers is selected as the final
ANN model. This is based on the test scores, which represent the ability of the models to
generalize to unseen, real-world data. The four-hidden-layer architecture has the lowest
test score.

Table 3. Optimal neurons for hidden layers.

Number of Hidden Layers
Optimal Neurons for

Hidden Layers
MSE for Test Data Selected Model

1 90 0.0059
2 25-BN-45 0.0039
3 60-195-190 0.0040
4 115-40-180-35 0.0031 �

In the second configuration of hidden layers, the batch normalization (BN) technique
serves to control model overfitting, so as to improve model generalization in respect of
unseen, real-world data. Batch normalization applies a transformation that maintains the
mean output close to zero and the output standard deviation close to 1, thereby standardiz-
ing the inputs to a given layer [35]. We show the performance of selected hyper-parameter
combinations for the various hidden layer instances in Figure 5. The figure shows how
the final ANN model (M8) compares with other models from the hyper-parameter tuning
exercise. Model M5 has the worst generalization performance while model M8 has the best
generalization performance.
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Figure 5. MSE plot for selected ANN hyper-parameter combinations.

5. Results and Discussion

Through hyper-parameter tuning, we obtain the final SVR and ANN models. For the
purpose of assessing model generalization, we subject these models to testing. The test data
set comprises 12 blasts; these are not used for training. The performance of the model on
this data shows how well it will perform when deployed in the real world. Table 4 shows
the performance of the final models on the training and test sets using the mean squared
error (MSE) as a scoring metric.

Table 4. Model performance.

Model
Mean Squared Error (MSE)

Training Test

SVR (C = 5.25, ε = 0.04, kernel = rbf) 0.0026 0.0044
ANN (115-40-180-35) 0.0028 0.0031

For the purpose of comparative assessment, the Kuznetsov empirical technique, i.e.,
Equation (3), is used to predict the mean rock fragment size for the test data. Test results
obtained for the ANN and SVR models are compared with those for the Kuznetsov tech-
nique and the actual values. Table 5 and Figure 6 show the results for all three modeling
techniques. It is observed that the ANN model records the least error while the Kuznetsov
records the highest error. The coefficient of determination (r2) measures the proportion
of the variation in the dependent variable (mean fragment size) that is accounted for by
its relationship with the independent variables. It ranges between zero and one. A model
with r2 closer to one is said to be reliable in predicting the dependent variable. The fore-
going indicates that the ANN and SVR models are better able to model the relationship
between the dependent and independent variables than the Kuznetsov empirical model.
They show superior performance to the Kuznetsov as a result of their inherent ability to
model complex, nonlinear relationships, such as exist between rock fragment size and blast
design parameters.
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Table 5. Results for test data.

Blast Number

Mean Fragment Size (m)

Actual
Predictions

ANN SVR Kuznetsov

1 0.47 0.44 0.38 0.48
2 0.64 0.68 0.64 0.71
3 0.44 0.38 0.41 0.42
4 0.25 0.25 0.25 0.33
5 0.20 0.15 0.14 0.27
6 0.35 0.21 0.52 0.09
7 0.18 0.19 0.19 0.38
8 0.23 0.17 0.18 0.22
9 0.17 0.17 0.19 0.25
10 0.21 0.21 0.20 0.12
11 0.20 0.21 0.19 0.13
12 0.17 0.24 0.26 0.23

Coefficient of
determination (r2) 0.87 0.81 0.58

Figure 6. MSE plot for test data.

6. Conclusions and Future Work

The paper successfully demonstrates the potential of achieving higher accuracy in
mean rock fragment size prediction using multilayered artificial neural network (ANN)
and support vector regression (SVR). Using varied blast data sets from different parts of
the world, we obtain training and test sets comprising 90 and 12 blasts, respectively, for
building multilayered ANN and SVR models. Both models perform satisfactorily and
better than the conventional Kuznetsov empirical model. The paper further demonstrates
the possibility to analyze a varied number of hidden layers for a neural network in a
less cumbersome way using Keras. Keras makes it less time-consuming to consider the
performance of a wide variety of hidden layers and neurons via the Bayesian optimization
feature. Thus, multilayered ANN analysis of rock fragmentation, which is typically time-
consuming, can be carried out in a relatively shorter time. The end goal here is that blasting
engineers would be able to fully exploit the potential of the multilayered ANN architecture
for improved performance without having to do manual hyper-parameter tuning. The
trained ANN and SVR models could be incorporated into existing fragmentation analysis
software to give blasting engineers more accurate options for mean rock fragment size
estimation. This incorporation would make it possible for blasting engineers to have access
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to results from both empirical and machine learning techniques. Blasting engineers would
then be able to conduct post-blast analysis to verify the improved accuracy offered by the
machine learning techniques. Commercial fragmentation software providers could adopt
this integrated approach to gradually build client confidence in the use of machine learning
techniques with time.

In the future, we seek to improve model performance via data augmentation. We
intend to do this using the variational autoencoding (VAE) technique. VAE is a deep
learning technique that fits a probability distribution to a given data set, and then samples
from the distribution to create new unseen samples. Thus, the VAE offers a means of
augmenting the data set used in this study to improve model training, and thus enhance
pattern recognition and prediction. We also seek to build additional rock fragmentation
models using other machine learning techniques. The final phase of this project will
involve developing robust machine learning-based fragmentation software that will not
only predict the mean fragment size but the entire fragment size distribution.
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Abstract: Despite their significance in numerous applications, many critical minerals and metals
are still considered minor. Since most of them are not found alone in mineral deposits, their co-
or by-production depends on the production of base metals and other major commodities. In
many cases, the concentration of the minor metals is low enough not to be considered part of the
production. Hence, their supply is not always secured, their availability decreases, and their criticality
increases. Many researchers have addressed this issue, but no one has set actual impact factors
other than economic ones that should determine the production of these minor commodities. This
study identified several parameters, the number and diversity of which gave birth to developing a
computational tool using a multi-criteria-decision analysis model based on the Analytical Hierarchical
Process (AHP) and Python. This unprecedented methodology was applied to evaluate the production
status of different commodities in a polymetallic deposit located in Chovdar, Azerbaijan. The
evaluation outcomes indicated in quantifiable terms the production potentials for several commodities
in the deposit and justified the great perspectives of this tool to evaluate all kinds of polymetallic
deposits concerning the co- and by-production of several minor critical raw materials.

Keywords: multi-criteria decision analysis; AHP; Python; minor critical metals; mining co- and
by-products

1. Introduction

From the Ages of Antiquity to the present day, humanity has exploited minerals
and metals found on the Earth’s crust. Prehistoric man is known to have used only a
handful of metals including copper, iron, gold, silver, tin, and lead. Thousands of years
later, the Industrial Revolution heralded an unprecedented age of rapid industrial and
economic growth that was substantially driven by the exploitation of many more minerals
and metals. Undoubtedly, the evolution of the modern world has played a significant role
in the constantly increasing production of many more minerals and metals used to perform
specialized functions or have found applicability in several new applications [1,2].

However, only few metals such as copper, tin, lead, and iron can be found in relatively
high concentrations worldwide and are produced in relatively high volumes [3]. From
a geological point of view, these metals can either be found alone or mostly as hosts in
polymetallic geological formations. Unlike these “major” metals, there are “minor” metals
occurring in polymetallic deposits in concentrations sometimes low enough not to be
considered feasibly exploitable on their own [2,4]. These metals are deeply embedded in
our high-tech products and despite their increasing demand, they are produced in relatively
low volumes. In fact, several of these critical metals are recovered only as by-products from
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a limited number of geographically concentrated ore deposits, thus making their markets
dependent on geopolitical strategies and raising concerns regarding their supply [2].

Several researchers have investigated this matter in detail. In 1979, Skinner [4] was
one of the first to talk about the sustainable supply of minor metals and referred to possible
resource limitations in the future. A few years later, Campbell [5] presented short-run
supply curves for primary and secondary metals, indicating the individual behavior and
the interconnection between primary, co-, and by-products in terms of their connected
supply and the impact this has on their prices. Wellmer et al. [6] justified Campbell’s theory
and mentioned that many metals are produced exclusively as by-products of other minerals
and metals, meaning that their production is strictly limited by the production of the “host”
materials to which they are associated.

In recent years, research has intensified, given that new uses and applications for many
more minerals and metals have been developed. Verhoef et al. [7] introduced a system of
linked cycles in the form of a metals’ wheel, showing metal linkages in natural resource
processing while illustrating the capacity of available metallurgical processes dealing with
impurities in their primary or secondary feed. Reuter et al. [8] introduced a different
metal wheel showing the complex interactions between different metals and the economic
and thermodynamic recoverability of (co-)elements. Buchert et al. [9] introduced a group
of “green minor metals”, emphasizing their significant applicability in renewable energy
resourcing, and how some minor critical metals are dependent on the mining development
of major metals. Willis et al. [10] conducted research on critical by-products of copper, lead,
zinc, and nickel with relatively small volumes of production.

Wellmer and Hagelüken [11] published their work related to the security of supply of
secondary resources under conditions of economic viability and environmental sustain-
ability. They introduced a feedback control cycle of mineral supply. Their “metal wheel”
summarizes the standard technologies for the metallurgical treatment of metal associations
involving major and minor metals. The concentric rings of the wheel demonstrate the
interconnectivity between the main metals as carrier metals and the co- and by-product
metals. Inspired by Reuter et al. [8], Nassar et al. [2] introduced a periodic table of compan-
ionability and their metal wheel version (Figure 1). In this wheel, the principal host metals
form the inner circle, while companion elements appear on the outer circle at distances
proportional to the percentage of their primary production.

 
Figure 1. The wheel of metal companionability [2].
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Efforts have also been made to quantify the recoverable sources of by-product metals,
in the case of cobalt [12] or the case of gallium, germanium, and indium [13,14]. It is worth
mentioning that a Minor Metals Trade Association was founded in 1973, when by-product
metals were starting to be used in growing mass applications. The Association was formed
to guide those involved in the nascent minor metals industry and currently comprises
companies from across the globe engaged in all aspects of minor metals activity.

The interconnection of major and minor metals is undeniable, but so is the criticality
of several minor metals. However, the concerns about the sustainable supply of critical
metals are rarely considered. The selling prices, the additional product extraction costs, and
the primary commodity market conditions determine the policies regarding co- and by-
products in mining projects. Van Schaik and Reuter [15] tried to associate the sustainability
of companion products by linking three core domains: the resource cycle (materials and
energy), the natural cycle (society and environment), and the technology cycle (engineering
and science). Although this work is mainly related to the recyclability of materials, it
is the first effort made to connect the metal wheel with the other cycles. To quantify
the recoverable resources of by-product metals, and specifically cobalt, Mudd et al. [12]
mentioned a few key parameters to make a realistic estimate of anticipated companion
metal availability. The authors focused not only on the economic aspects but also discussed
the recovery efficiencies for the minor metals and the benefits of companion metal recovery.
Frenzel et al. [13,14] also mentioned the impact of new processing technologies on the by-
product production of gallium, germanium, and indium. In other studies, the development
of technology has been mentioned to increase by-product recovery efficiency or even reuse
waste tailings to recover metals such as rare earth elements [16–18].

Valero et al. [19] adopted the concept presented by Mudd et al. [12] and mentioned that
even a single metal may be treated differently within a mining project based on differing
grades and quantities. However, their focus was mainly on factors such as the tonnage
and commercial prices of commodities. Finally, Renner and Wellmer [20] discussed the
impact of volatility drivers on the metal market of both major and minor metals across
the globe. According to this study, volatility can result from the fluctuation of commodity
prices and political instability, market speculation, and policy responses. Hitch et al. [21]
mentioned that the treatment of wastes is not only a matter of new technologies for the
feasible recovery of metals but also because of their reactivity characteristics that raise
environmental concerns. Thus, waste may turn into a valuable by-product or material for
alternative use, while, at the same time, environmental pollution can be prevented.

A series of global supply and demand changes lie at the heart of current developments.
Research has shown that the supply of by-product elements is potentially riskier than that
of primary elements because the economic health of their associated primary commodity
market depends on their recovery [2,22,23]. These changes have led to increased calls
for policy responses during the co- and by-production of such products, particularly the
most critical ones. For instance, the use of several methods in waste management and the
extraction of metals from waste has been expanded in the concept of the circular economy
and zero waste production [24,25].

Several mining projects are discussed hereinafter in this study, in which the status
of co- and by-products changed during mining operations and production due to several
factors. Hence, in addition to costs and revenues, other parameters can also impact the
co- and by-production decision before, during, or even after mining operations. However,
there is no existing literature that deals directly with this issue. Hence, this work intends
to cover this research gap by identifying all possible parameters that can impact the
decisions regarding co- and by-product production. In addition to identifying, for the first
time, all the impact factors, another objective was to evaluate them in an unprecedented
quantitative way overall. This is because the conditions in any mining project vary, and so
does the significance of the different parameters. For this reason, a multi-criteria decision
analysis technique (MCDA), namely the Analytical Hierarchical Process (AHP) [26], was
implemented in the developed methodology, to evaluate all the criteria simultaneously.
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Initially, the AHP calculations were undertaken using Microsoft Excel. Nevertheless,
the vast number of identified factors and the complexity of the co- and by-production
assessment stimulated the development of a new computational tool using Python. The
computational power makes this novel tool easier and faster to use while increasing its
flexibility by allowing the user to adjust the number of evaluation parameters according
to the conditions of any mining project. The final objective of this work was to apply
these parameters and their evaluation to a mining case study in Chovdar, Azerbaijan,
where a polymetallic deposit based on gold production is exploited. The justification of the
methodology through the specific case study denotes the significance of this work.

The purpose of this paper is to present an innovative easy-to-use computational tool
that can be applied to any polymetallic project, assist stakeholders to make proper decisions
regarding co- and by-production, and thus contribute toward a more secure supply of
several critical minor metals and a more sustainable mining industry.

2. Literature Review

A thorough literature review was conducted, regarding the status of primary and
companion products, including of waste and tailings in many mining projects that had
changed due to various reasons other than economic ones, thus impacting mining plans
and production strategies.

2.1. Scandium Production from Red Mud

When the limited availability of a metal is combined with a sudden increase in demand
and market volatility, there are several new reasons to proceed with production. This is the
case with rare earth elements (REEs) and the extensive publicity they received after the REE
crisis of 2011 when fears of supply disruption drove prices up nearly tenfold [27]. The crisis
was short-lived, and the prices declined rapidly, but the criticality of REEs remained and,
thus, new REE deposits were explored around the world. Parallel to this, several ongoing
mining projects, in which rare earths already existed but in small concentrations and were
characterized as waste, started investigating their possible production as co- or by-products,
including from the waste rock and tailings. For example, rare earth elements, particularly
scandium, are occasionally found in bauxite residues, also known as red mud [28,29]. The
concentration of rare earths in bauxite residue may vary between 500 and 1700 mg/kg [30].
The increasing importance and the newest developments in processing technology made
some mining companies rethink producing REE from waste. For example, a pilot plant
is under construction in Greece to investigate the efficiency of leaching and ion exchange
on an acid basis to recover scandium from red mud [31,32]. Similar research is being
conducted in China [33].

2.2. Borates and Lithium Mining

Similarly, the demand for lithium has increased since its application in batteries has
proved highly efficient [34–36]. The exploration boom for battery raw materials included
investigations of tailings. Rio Tinto has mined borates in California, US, since 1927 and
has recently commenced the production of battery-grade lithium from waste rock at a
lithium demonstration plant, being the first top diversified miner to add lithium output to
its portfolio, and enhancing the idea of re-evaluating waste rock and tailings [37]. Given
the dynamic market of several minor metals, the advanced developments in processing
technologies and the need for less waste production, even more producers are reconsidering
the possibility of treasures hiding in their tailings. Even tailings from mines having seized
operations could also be exploited to recover precious metals, treat the tailings, and mitigate
further environmental pollution caused by acid mine drainage. Projects are working toward
this direction, such as the Penouta mining project in which tailings are being investigated
to recover tantalum and niobium [38], or the Tiouit gold–silver–copper mine in Morocco,
where the desulfurization of the old tailings has been investigated [39].
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2.3. Mercury Extraction

In modern mining, preserving the environment is considered a top priority. Thus,
in addition to the treatment of tailings, dangerous elements such as naturally occurring
radioactive materials (NORMs) and toxic elements also receive special treatment. Some of
these, such as uranium, thorium, and mercury, are extracted from the waste and treated as
by-products even in low non-profitable concentrations. In 1997, Garcia-Guinea and Harffy
published a paper in the journal Nature with a questioning title about whether mercury
mining is undertaken at a profit or a loss [40]. The paper argued how mercury prices
have dropped since the 1960s due to many environmental and health problems caused
not only by its mining but also by the metal itself. Several publications about mercury
pollution [41–43] have built a legacy about how dangerous this element is. Mercury is
found mainly in China, Spain, and California, US. The mining district in Almaden, Spain,
used to be responsible for 25% of the world’s production until operations stopped in 2001
due to the prohibition of mercury mining in Europe [43]. By-product mercury production
is expected to continue from large-scale gold–silver mining and processing. There are
also reports of small-scale, artisanal mining of mercury in China, Russia (Siberia), Outer
Mongolia, Peru, and Mexico [44].

2.4. Marble Quarrying

Primary, co-, and by-products can also be produced from the same commodity but
with different quality standards, and different selling prices for different applications. A
typical example is steel slag, a by-product of steel making produced during the separation
of the molten steel from impurities in steel-making furnaces. Generally, this may not be the
case for many metals, but it can be a significant parameter for several industrial minerals,
and construction materials in different shapes, sizes, textures, and weights.

Marble, for example, is a dimension stone that is either sold as a whole block or cut
into tablets. The size of the block or tablet and the purity of marble are quality standards
that affect the price of the final product. Blocks that do not meet the quality standards are
crushed, milled, and roasted to become dry pulverized products in different grain sizes.
These marble dust and calcium carbonate powders (fillers) are sold for different industrial
applications. Dionyssomarble in Attica, Greece, has a long history of exploiting white
marble deposits [45]. However, not all products were produced from the beginning. Since
1975, the company has expanded its processing facilities and produced exceptionally clean,
aggregate crystalline calcium carbonate powder filler in controlled granular sizes.

2.5. Salt and Potash Rotating Production

Production of some metals such as iron, and some industrial minerals such as salt
and potash, can be determined by local demand and supply conditions. Layers of salt
and potash follow in geological formations such as bedding planes [46] and can be mined
either together or successively. Their co-production flourished in Germany during the
1950s, in the aftermath of World War II, when the reconstruction of the country was at a
peak. The German car industry was booming, and the national road network increasingly
comprised paved roads. However, the newly paved roads were icy during winter, making
driving dangerous. Authorities applied an effective de-icing procedure using salt to clean
the roads [47,48].

Production of salt and potash in Germany has focused either on the one commodity
or the other, depending on a series of factors that can alter their priority and, in turn, the
classification of the two commodities as primary, co-, or by-products. In Sondershausen,
Germany, potash production (KCl) started in 1893 and stopped in 1991 (Table 1) due to
economic and political reasons (German reunion). However, salt production for de-icing
started in the mine in 2004 and continues today [49]. At the Sigmundshall mine, potash
production started in 1898, and after 2001, additional production of “Special” potash
(MgSO4) took place and expanded the life of the mine (Table 1). The recoverable reserves
were depleted in 2018 and the mine finally closed [50]. Furthermore, the Bernburg mine
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started producing potash in the 1900s and, from 1939, started also producing rock salt. In
1973, the mine stopped producing potash and focused only on salt because a neighboring
mine in Zielitz had started potash production in 1969 [51].

Table 1. Potash and salt production history in German mines.

Mine Potash (KCl) Potash (MgSO4) Rock Salt

Sondershausen 1893–1991 2004–today
Sigmundshall 1898–2018 2001–2018

Bernburg 1900s–1973 1939–today

2.6. Production History of a Silver-Based Polymetallic Deposit

Moving to the eastern part of Germany, we discuss the exploitation of the polymetallic
deposit in Freiberg and how different parameters have affected the change in co- and
by-products through time. The lead–zinc deposit in Freiberg was discovered in 1168,
and it initially attracted interest for its mineralization-bearing silver. Silver was the only
mining product until the 18th century. In 1710, the General Melting Administration was
founded. Since then, the revenues have also been based on the content of copper and
lead [52]. The latter, and the further development of the metallurgical technology, resulted
in commencement of the production of lead officially as a by-product in approximately
1820 (Figure 2).

Figure 2. The history of production in Freiberg (modified after Bayer [53]).

The decline of Freiberg’s silver mining began with the introduction of gold currency
(Goldmark) in the German Empire by law in 1873. The price of silver decreased by
half from 1880 to 1898 due to silver deliveries from South America. The prices of by-
products lead and zinc decreased massively due to overproduction worldwide. Hence, from
1903–1913 it was decided to shut down all mines [53]. However, due to the preparations in
Germany for World War II, there was an increased demand for non-ferrous metals from
1933 onwards. Therefore, from 1935, Freiberg mining resumed. Lead and zinc became the
primary commodities for geostrategic reasons, while silver was mined as a by-product.
After the end of the war, the mining and metallurgical plants were nationalized in 1961 and
closed for economic reasons in 1969 [53].

2.7. Coal and Uranium Rotating Production

Not far from Freiberg, in the Döhlen Basin, coal (initially) and uranium (afterwards)
were produced from the same mine site. Mining for hard coal in the area is known
to have taken place since the 15th century with rural extraction [54]. Until 1930, small
mining companies exploited the area for coal. In 1947, however, SAG/SDAG Wismut
started mining uranium bound to hard coal for nuclear armament purposes of the former
Soviet Union. Mine ownership alternated between Wismut and the local hard coal mining
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companies several times. The mining of hard coal for energy purposes stopped in 1967. In
1968 the mine was transferred for one last time to SDAG Wismut. From that time on, until
1989, coal was only mined for its uranium content [54].

3. Materials and Methods

The research methodology developed in this work was initially based on collecting
and analyzing information and data from a substantial quantity of literature sources and
actual mining projects, some of which have been discussed in the previous sections. What
is specific about these mining projects is that, through the years of mining operations and
production, the status of their co- and by-products changed due to several factors. These
data sets were then used to identify and classify all possible factors that can impact the
determination of primary, co-, and by-products in a mining project.

The substantial number and diversity of criteria led to using a multi-criteria-decision-
analysis (MCDA) process such as the Analytical Hierarchical Process (AHP) to simultane-
ously evaluate all the parameters. This MCDA technique has been used in making decisions
based on multiple criteria in numerous case studies from a wide range of disciplines.

Depending on the different conditions of any given mining project, these parameters
have different levels of importance each time. Therefore, AHP compares the factors and
applies weights to them. Accordingly, the multiple final options for each product can also
exist. Thus, AHP was further applied to prioritize the final decisions, calculate percentages,
and indicate which are preferable on every occasion. As a result, an MCDA tool was
developed that can be applied in the evaluation of any polymetallic mining project to
determine the main, co-, and by-products. The developed algorithm was computed with
the help of Python to create a smart computational tool that will help run the calculations
faster and more efficiently.

Data and information from a polymetallic mining project were implemented in the
newly developed MCDA tool to test its efficiency. The case study is a gold mining project
in Chovdar, Azerbaijan, where gold is the main product, and silver and mercury are
produced as by-products. Azergold is the mining company that runs the Chovdar open-pit
mining project. The ongoing exploration has revealed additional resources that extend to
a substantial depth. For this reason, the company is investigating the possibility of soon
transiting to underground mining. Interestingly, in the additional discovered resources,
there are a series of other minerals and metals in lower concentrations than those of gold
and silver. Accordingly, the developed computational tool was used to determine whether
these minerals and metals can be defined as co- or by-products.

4. Setting the Evaluation Parameters

Based on the existing literature, the ore grade and the prices, costs, and reserves
determine the revenues of a commodity in a mining project. In some mining projects,
when additional resources are found, and the concentrations of some minor elements are
significantly increased, this indicates that such elements’ status may change from waste
to by-product or from by-product to co-product. Parameters other than the price that can
interact with the ore grade are the recovery rate during the processing of the ore and the
environmental effects if the commodity with the high ore grade happens to be a toxic or
radioactive element.

Hence, market, technological, environmental, and socio-political factors were identi-
fied, in addition to the apparent economic parameters. The availability of a commodity
is an important parameter directly associated with the supply of the commodity in the
market, especially for minor metals, and depends on the mining production and processing
of the primary commodities. The imbalances between metal supply and demand, actual or
anticipated, have inspired the concept of metal criticality [55]. However, the criticality of a
commodity is not only dependent on this one parameter. A detailed criticality evaluation
includes data from widely varying fields and sources of information, including geology,
mineability, technology, the environment, human behavior, the assessment of experts, and
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many more. Thus, environmental implications, lack of efficient processing techniques and
capacity, vulnerability to supply restrictions, and geopolitical issues are some of the most
critical factors affecting certain commodities’ criticality.

Like the two parameters mentioned above, the market volatility of a commodity is
another equally significant factor that can determine the production status of metals. When
the limited availability of a commodity is combined with market volatility and a sudden
increase in demand, then it seems that there are several new reasons to produce this metal.
Finally, another market parameter that needs to be considered is the local demand for
commodities and how this can affect their production status.

The local demand is not a factor that applies to most metals traded worldwide. How-
ever, it would undoubtedly affect minor minerals and metals that could be produced as
by-products, contribute to the revenues, lower the waste production and disposal, and
finally meet the demands of local societies. The locality of a mining product is directly
related to the extraction and logistic costs, prices, and socio-political factors.

Through technology, the mining industry has overcome many obstacles. New options
for increasing productivity are being generated by the evolving technology of the mining
industry [56]. A significant technological factor regards the quality standards that a product
shall meet to be determined as a primary, co-, or by-product, or waste. It may seem this
parameter does not apply to many metals but only to some industrial minerals and dimen-
sion stones, as shown in the literature review. However, even regarding the processing and
refinement of metal alloys, if the end products do not meet the quality standards of the
market or a specific customer, then their value is depreciated, and their feasible production
may well be at risk. Low production efficiency can affect extraction costs, not to mention the
quality standards. High production efficiency can boost the feasible production of minor
and low concentration elements in a deposit and determine them as potential by-products.
Most importantly, increased production efficiency offsets declining ore grades and mining
cost inflation that threaten the mining industry. In addition, the metal recovery rate, also
known as the mineral recovery percentage, indicates the percentage at which valuable
metals are expected to be available for sale after the refining process has taken place.

Mining will always impact people and the environment, either positively or negatively.
The presence and content of NORMs and other toxic compounds can entail high environ-
mental risks and may require particular attention and close monitoring [57]. Such metals
require special treatment either as products or waste, and, even though they are usually
found in small concentrations, it is often cheaper to process them as by-products rather than
treat them as waste. Another group of potential contaminators is that of the greenhouse
gases responsible for the greenhouse effect primarily associated with coal mining [58,59].
An additional factor interconnecting with the presence of NORMs and toxic compounds
from the extraction of minerals and metals regards the treatment and disposal of wastes
and tailings [60].

Evaluation is also needed of the “mining friendliness” of the commodities produced
in a mine. Not all commodities are easy and environmentally friendly to extract. Some
elements have gained a reputation for being extremely hazardous when mined. Even
when the actual risk of contamination is low due to insignificant concentrations or when
the actual contamination is minimized due to sufficient safety measures, opposition to
mining-specific commodities can be substantial. In fact, the mining industry considers
the Social License to Operate as the most important business risk to be revoked by local
communities if unsatisfactory conditions occur [61,62].

Therefore, the social acceptance of extracting specific commodities in a mine is an
essential factor. It is also significant to evaluate the legislation status that governs the
mining industry in a country and the specific legislation acts that may support or prohibit
the production of specific commodities. Finally, the strategic importance of specific com-
modities is an important factor that should never be neglected. The classification of a metal
as strategic and critical not only for economic but also for political and strategic reasons
may influence its production status from waste to a by-product or even co-product. The
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strategic importance of a commodity can affect the criticality, availability, and volatility of
its market, not to mention its price. It can also affect the social acceptance and amendment
of legislation related to its production.

Accordingly, 18 qualitative and quantitative parameters were determined and classi-
fied into five categories according to the relevance of the criteria in the respective categories
(Figure 3). Many of these parameters have never been considered before, and no similar
classification has been introduced in the literature. Some of the parameters may overlap
with others. At the same time, factors can be attributed to more than one of the main
categories in which they are classified in their simultaneous evaluation. The clustered
criteria are structured in such a way that, in each category, they do not exceed the number
of 7 ± 2 because of the general limitations of the human mind, which is capable of handling
only so many conceptual objects and discrete figures at a time [63,64]. Hence, criteria
belonging to the same category can be easily evaluated and compared on a pair-wise basis.

 
Figure 3. Classification of the parameters for the determination of co- and by-products production.

The overall classification is hierarchical so that all criteria are rightfully prioritized.
Nevertheless, depending on the deposit properties and the conditions of the examined
mining project, not all criteria need to be evaluated in every case study. When a specific
parameter is neutral or does not affect the product status determination, it can be excluded
from the evaluation.

5. Development of the Decision Tool

Whether a mining product is characterized as primary, secondary, or waste based
on so many factors is a sophisticated process. Such a complicated problem needs to be
decomposed into simple assessments without neglecting that some elements have a more
significant impact on the decision making than others.

Decision making, in general, is explained as a selection process in which the best
alternative is chosen from alternative sets to reach an aim or multiple aims. The process
alone is not concerned with defining the objectives, designing specific alternatives, or
evaluating consequences; decision making offers simple techniques and procedures to
reveal preferences and choices in multivariable problems. Such techniques are described as
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multi-criteria decision analysis (MCDA) or multiple-attribute decision making (MADM).
These techniques solve problems in which discrete alternatives can be selected from a
finite set [65,66]. Existing MCDA methods include value measurement models, such as the
Analytical Hierarchical Process (AHP) and Multiple-Attribute-Utility Technique (MAUT);
goal-, aspiration-, or reference-level models, such as the Technique for Order Preference by
Similarity to Ideal Solution (TOPSIS); and outranking models, such as the Elimination and
Choice Translating the Reality (ELECTRE) and Preference Ranking Organization Method
for Enrichment Evaluation (PROMETHEE) methods [65]. Each method has its strengths
and weaknesses in different areas, and it is difficult to say one is better than another;
ultimately, it depends on the specific problem that needs to be solved.

Considering the nature of the decision-making problem in this work, AHP was se-
lected over the other MCDA methods. This technique is preferred for its ability to rank
alternatives in order of their effectiveness when conflicting objectives or criteria must be
satisfied [67,68]. Furthermore, AHP can detect inconsistent judgements and estimate their
degree of inconsistency [67]. Moreover, the parameters determined in the previous section
are classified into separate categories, making AHP the ideal decision-making method to
decompose the problem and build hierarchies of the individual criteria. Finally, the AHP
preferences and pair comparisons can be easily computed.

Initially, the algorithm was developed in Microsoft Excel and later in the form of a
Python computational tool to make the calculations faster and more efficient. The following
sections discuss the development of the algorithm and the computational tool.

5.1. Development of the Product Decision Tool

The decision-making algorithm is mapped into a generic AHP hierarchy (Figure 4), in
the order of the five categories, the 18 criteria, and the three product options. To facilitate
easier data manipulation in the evaluation process, the categories, criteria, and options
were coded (Tables 2–4).

 

Figure 4. Hierarchy structure of the Product Decision Tool.
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Table 2. Category names and codes.

Codes Categories

ECO Economic
MAR Market
TEC Technological
ENV Environmental
SOC Sociopolitical

Table 3. Criteria names and codes.

Codes Criteria

C1 Commodity price
C2 Ore grade
C3 Extraction costs
C4 Logistic costs
C5 Availability
C6 Criticality
C7 Volatility
C8 Locality
C9 Quality standards
C10 Production efficiency
C11 Recovery rate
C12 NORMs
C13 Toxic compounds
C14 Greenhouse gasses
C15 Waste production
C16 Social acceptance
C17 Legislation
C18 Strategic importance

Table 4. Codes for the product options.

Codes Categories

PRPRO Primary product
BYPRO By-product
WASTE Waste

The purpose of AHP is to assist decision makers in organizing their judgements to
make more effective product decisions by bringing the evaluation to the level of pair-
wise comparisons of components with respect to attributes and alternatives. The AHP
method uses both qualitative and quantitative variables, and it is not only useful for making
decisions, but also for prioritizing tangible and intangible criteria by setting weight factors
on them. To make these comparisons, a fundamental scale introduced by Saaty [26] is
used to indicate how many times more important one element is over another (Table 5).
The result of the pairwise comparisons over n criteria is summarized in a n × n reciprocal
matrix (Table 6), where elements represent the pair-wise comparisons. Each entry of the
matrix represents the importance of one criterion relative to the other.

The next step is to compute the vector of weights based on the theory of eigenvector
procedure in two steps. First, the matrix is normalized, and the criteria weight vector
is then built. The sum of all elements in the weight vector is equal to 1 and shows the
relative weights among the compared criteria. Since the comparison is based on subjective
evaluations, the consistency of the comparisons is checked using a consistency index. If the
degree of inconsistency in judgements is acceptable, the efficiencies of all alternatives on a
criterion are normalized to eliminate the effect of different units of measure. The matrix
of the normalized efficiency outcomes is finally multiplied by the eigenvector to obtain
the aggregated AHP priority score. The decision is then made based on the logic that the
higher the AHP priority score for an alternative, the more preferable this alternative.
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Table 5. The fundamental scale of AHP [26].

Relative Intensity Definition Explanation

1 Of equal value Two elements are of equal value
3 Slightly more value Experience slightly favors one element over another
5 Essential or strong value Experience strongly favors one element over another
7 Very strong value An element is strongly favored, and its dominance is demonstrated in practice
9 Extreme value The evidence favoring one over another of the highest order of affirmation

2, 4, 6, 8 Intermediate values When compromise is needed

Table 6. Pair-wise comparison matrix of the main categories.

ECO MAR TEC ENV SOC Weights

ECO 1 aeco,mar aeco,tec aeco,env aeco,soc weco
MAR 1/aeco,mar 1 amar,tec amar,env amar,soc wmar
TEC 1/aeco,tec 1/amar,tec 1 atec,env atec,soc wtec
ENV 1/aeco,env 1/amar,env 1/atec,env 1 aenv,soc wenv
SOC 1/aeco,soc 1/amar,soc 1/atec,soc 1/aenv,soc 1 wsoc

To ease the assessment process, pair-wise comparisons of the criteria are separately
undertaken for each category. A pair-wise comparison of the categories is also undertaken
to show their respective relevant importance. Hence, six matrices are generated but, for the
sake of space, only the pair-wise comparison of the categories is illustrated in Table 6. This
process applies weight factors to all categories and criteria.

Like probabilities, weights are absolute dimensionless numbers between zero and one.
Depending on the problem, “weight” can refer to importance, preference, and likelihood,
or the decision makers can consider another relevant parameter. Weights are distributed
in a hierarchy according to their architecture, and their values depend on the information
entered by users of the process [26]. The criteria weights and options are intimately related
but need to be considered separately. The priority of the goal and the alternatives always
add up to 1 (or 100%). This can become complicated with multiple criteria levels but, if
there is only one level, their priorities also add to 1.

Two additional concepts apply when a hierarchy has more than one level of elements,
like in this case where we have the categories and the involved parameters: local and
global priorities. The local weights here (wi) represent the relative weights of the nodes
within each closed group of siblings (criteria) concerning their parent (category). These
local priorities of each group of criteria add up to 1.000 or 100% (Equations (1) and (2)).
The global weights (gwi) are then obtained by multiplying the local weights of the siblings
(criteria) by their parent’s (category) global priority (Equation (3)). Hence, the global
weights for all parameters in the level add up to 1 or 100% (Equation (4)).

weco + wmar + wtec + wenv + wsoc = 1 (1)

wi + wi+1 + . . . + wn = 1 (2)

gwi = wzzz × wi (3)

gwi + gwi+1 + . . . + gwt = 1 (4)

where:
n is the number of parameters in each category;
zzz represents each of the five categories (ECO, MAR, TEC, ENV, and SOC);
t is the total number of criteria (in this case t = 18).
The next step is to compare all three options (primary or co-product, by-product, and

waste) per criterion. This process will generate 18 3 × 3 matrices, the general version of
which is illustrated in Table 7. The priorities (wyCi) for the (y = 3) options are calculated
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with the same procedure as for the categories and criteria. Consequently, the weights in
each matrix calculation add to 1.

Table 7. Pair-wise comparison matrix of the options with respect to criterion Ci.

PRPRO BYPRO WASTE Weights

PRPRO 1 aprpro,bypro aprpro,waste w1Ci
BYPRO 1/aprpro,bypro 1 abypro,waste w2Ci
WASTE 1/aprpro,waste 1/abypro,waste 1 w3Ci

Each weight (wyCi) is multiplied by the global weight (gwi) of the respective criterion
and summed to the score for each option (Equation (5)).

OPTIONy = (gwi × wyCi) + (gwi+1 × wyCi+1) + . . . + (gwt × wyCt) = 1 (5)

The outcome for all preferences indicates which product option is the most suitable.
The sum of all options is equal to 1 or 100%. The stronger an option, the more apparent the
decision that needs to be made. However, when two options are close to each other, more
detailed evaluations may need to be made.

The procedure is separately conducted for each mineral or metal. It needs to be
individually repeated for all minerals and metals, indicating whether each should be
considered a primary product, co-product, or by-product, or be treated as waste. The
criteria and the options are evaluated (comparing pairs) without neglecting the priority
and importance of any categories or parameters. The classification is done according to the
relevance of the criteria in the respective categories, even though some parameters could
be included in other categories, and several criteria are interconnected. Depending on the
properties of the element under evaluation and the conditions of the examined mining
project, not all criteria need to be evaluated. When a specific parameter is neutral or does
not affect the product selection, it can be excluded from the evaluation.

This was an issue during the initial development of the algorithm in Microsoft Excel.
Changing the tool’s structure by adding or excluding criteria to meet the conditions of each
element or project under examination required time and effort. This problem was solved
with the development of the Python computational tool, which will be discussed in the
following sections. Another solution was to modify Saaty’s fundamental scale (Table 4).
While keeping the general structure of the scale the same, the assigned relative densities
of unusable parameters can be rearranged to acquire the lowest possible weights. The
same adjustments can be made during the evaluation of the options. The consistency of the
calculations can be checked again after the rearrangements.

5.2. Development of the Computational Tool

The next step was to convert the developed algorithm to Python Code and use Tkinter,
which is the standard graphical user interface (GUI) library for Python, to build an easy-
to-use and fast-calculating computational tool. The developed tool uses three types of
input data: general input data, data based on the number of categories and criteria, and
data based on the number of options. The categories and options numbers are the primary
input values (Figure 5); other input variables, including the names of categories, number of
criteria, and names of options, are dependent on the primary input values (Figure 6a,b).
Next is the comparison of the categories and criteria in pairs in the generated n × n matrices.
The reciprocity of the matrices allows for the automatic generation of half the inputs. In
addition, the user can insert fractions when the comparisons favor the second parameter
over the first (Figure 7). In AHP, pairwise comparisons can be made by more than one
decision maker, and a geometric mean can be used to consider all the options.
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Figure 5. Main window of the computational tool.

  
(a) (b) 

Figure 6. Insertion of: (a) the names of categories and numbers of criteria; (b) the names of options.

 

Figure 7. Pair-wise comparisons inserted in the generated matrices.
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The tool generates the local and global weights for all criteria (Figure 8) and checks
the consistency of the comparisons. Separate calculations are made to evaluate the three
options for each weighted criterion. The overall process output is given in percentages
of preference for each of the three options (Figure 9). Hence, the user can identify the
preferences for the mineral or metal under investigation as a potential primary, co-product,
or by-product, or if it shall be treated as waste.

 

Figure 8. Generation of the global weights for all criteria.

 
Figure 9. Generation of the preferences for all three options.
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The computation of an AHP algorithm in Python is a sophisticated process carried
out under various functions’ directions (Figure 10a). Several lists and dictionaries were
required to overcome the calculations’ complexity, considering that local and global weights
had to be generated and consistency had to be checked (Figure 10b).

 

 
(a) (b) 

Figure 10. Flowcharts for: (a) generating matrices to input and collect values; (b) the calculation of
weights and consistency indexes.

The outcomes of all calculations can be exported in CSV files and further processed in
Microsoft Excel. The next step toward optimizing the developed tool is to allow the user to
insert data from CSV or ASCII files.

6. Results and Discussion

Following the theoretical development of the AHP decision tool, the assessment of
one case study is described in this work. The Chovdar gold mining project in Azerbaijan
was selected for the application of the computational tool. Gold is the main product of this
mine, and silver is a by-product. However, detailed exploration activities have revealed
the presence of other minerals and metals in smaller concentrations.

The exploitation is scheduled in two phases; the first phase has already started, and
surface mining is applied, while a feasibility study is also being prepared for the second
phase, in which exploitation will transition to underground mining operations. The con-
centrations of all metals other than gold and silver are insignificant during the first phase.
However, in the second phase, the resources to be mined include higher concentrations
of metals such as copper, iron, and bauxite. It has not been clarified whether the mining
company—Azergold—will exploit these additional elements as co- or by-products. Hence,
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applying the developed tool in this case study may significantly contribute to the actual
decision making.

All authors’ calculations and assessments were made together and are based on pub-
licly available data and information provided by the managers, engineers, and personnel of
Azergold during a three-month internship (September–November 2019) of the first author
at the mine site in Chovdar, Azerbaijan. Feasibility Study and Environmental Impact As-
sessment reports for the deposit are pending and, thus, not enough technical and economic
data are available for a more precise assessment of the potential products. Nevertheless,
existing data can yield a first good estimation for all commodities.

6.1. The Chovdar Polymetallic Deposit in Azerbaijan

Chovdar is known as a sizeable gold-sulfide deposit discovered relatively recently
(in 1998) and run by Azergold in an area known for its several gold–silver–copper-low-
sulfide occurrences and mineralization points. It is in western Azerbaijan’s northern part,
approximately 45 km west of Ganja and 370 km west of Baku [69]. The main exploration
activities lasted until 2011, and mining operations commenced in 2012.

Two natural types of ores have been established in the Chovdar gold ore deposit:
oxidized and primary sulfides distinguished by mixed semi-oxidized ores (Figure 11). The
oxide mineralization constitutes the upper section of the breccia deposit and varies in thick-
ness from 60 to 80 m. Below the weathered material, the thickness of the primary sulfide
mineralization ranges from 100 to 200 m, and extends to about 250 m below the surface.

 

Figure 11. Scheme of oxidized primary sulfide and mixed ores’ location of Chovdar field [70].

The indicated and inferred mineral resources for the oxidized part of the deposit
are estimated at 4.4 Mt. For the sulfide phase of the deposit, the resource estimate is
13.7 Mt [69,70]. The cut-off-grade for the mineral resource reporting is set at 0.5 gr/tonne of
gold. The exploration results resulted in exploiting the mineralization in two phases. Phase
One is to exploit the oxidized mineral reserves from an optimized open pit, and Phase
Two is to develop an underground mine to subsequently exploit the remaining oxidized
mineralization and sulfide mineralization [69].

The Chovdar process plant is located approximately one kilometer south of the open
pit. It comprises the entire treatment process from ore size reduction, beneficiation, heap
leaching, carbon processing, electro-winning, refining, cyanide recovery, copper recovery,
and, finally, cyanide destruction before tailings discharge [69]. The end-product is in the
form of gold–silver alloys, shipped to Switzerland for further processing [71]. Although
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present in low concentrations, mercury cannot be disposed of as waste on-site; thus, it is also
shipped off-site. Further mercury data are unavailable due to confidentiality restrictions of
the company.

Exploration continues through the strategic phases of thorough assessment and evalu-
ation during the life of a mine. Azergold has started geophysical and drilling operations
to increase the reserves on the near and far flanks of the deposit. An interesting piece of
information to note while transitioning from the oxide to the sulfide phase is the changing
of concentration percentages in several metals found in the mineralization of Chovdar.
Gold is the main product, silver is mined as a by-product, and mercury is extracted as
waste. Various metals such as copper, iron, zinc, and aluminum, among others, are found
in relatively low and uneconomic concentrations [69,71].

However, in the sulfide phase, the concentration of some minor metals is increasing to
be significant enough, and should attract the attention of the project managers and make
them reconsider their production. A detailed analysis was carried out for the chemical
composition of the elements based on samples. The gold content ranges from 0.65 to
3.85 ppm, and is the leading commercially valuable component in all considered samples.
Silver, having content ranging from 2.5 to 23.2 ppm, is particularly interesting for the
following extraction. Moreover, a relatively high content of copper (0.825%) has been
revealed in some samples. This suggests the possibility of the subsequent efficient extraction
of the metal from the primary-sulfide ore types of the deposit [70]. Similarly, increased
grades of iron and aluminum indicate that further techno-economic analysis should be
undertaken for the potential production of these elements. Raising iron and aluminum ore
grades may not be as economically attractive as for copper, but it certainly should attract
the interest of the project managers.

The transition from the oxide to sulfide phase will probably require a significant change
in the processing method. Gold particles in the sulfide phase are mostly encapsulated
in pyrite and, thus, are not amenable to cyanidation. Pre-oxidation of the pyrite was
necessary to liberate gold particles or provide a path for cyanide to contact the gold. This
will probably require the process plant to be modified before sulfide exploitation.

6.2. Evaluation of Products in the Chovdar Mining Project

Six potential products were individually evaluated: gold, silver, copper, iron, alu-
minum, and mercury. Based on the history of production during the oxidized phase, gold
was the first commodity to be evaluated, followed by silver. Assessments of copper, iron,
aluminum, and mercury were then conducted. Once each metal was evaluated, the results
were also considered for the following commodities’ assessment.

In each evaluation, the first action is to prioritize the categories between them and
then separately make cross-comparisons of the criteria in each category. Hence the global
weights are generated for all parameters. Then, the three options for each commodity
(primary product, by-product, waste) are evaluated for suitability to the respective metal
concerning every parameter. Finally, options preferences (in %) are calculated for each
commodity. Table 8 discusses the global weights calculated for all potential products.

The evaluation of gold indicates that the economic parameters are considered with
the highest priority, and the market and sociopolitical factors follow in percentages. The
environmental criteria are relatively less important, and the technological parameters are
ranked last. The price and grade of gold in the deposit are the most significant factors,
followed by its criticality and strategic importance. The toxic compounds used in the
processing (cyanide) also seem to have a remarkable impact on the evaluation.
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Table 8. Calculated global criteria for all potential products in the Chovdar deposit.

Criteria Gold (%) Silver (%) Copper (%) Iron (%) Aluminum (%) Mercury (%)

Commodity price 19.3 16.2 12 13.8 13.9 0.5
Ore grade 19.3 16.2 33.8 31.1 31.5 0.5
Extraction costs 4 1.8 5.5 5.7 5.8 2.7
Logistic costs 2.1 1.8 2.6 2.5 2.6 0.5
Availability 5.6 8.7 3.1 3.6 3 1.2
Criticality 10.8 17.3 3.1 3.6 3 1.2
Volatility 5.6 8.7 3.1 3.6 3 1.2
Locality 0.8 1.2 3.1 7.1 6 1.2
Quality standards 0.4 0.4 1.2 1.6 1.7 1.1
Production efficiency 2.4 3 7.5 2.9 3.1 10
Recovery rate 3.4 3.8 11.2 5.2 5.6 10
NORMs 0.7 0.6 0.5 1.9 2.1 2.4
Toxic compounds 6.6 5.2 2 1.9 2.1 21.6
Greenhouse gasses 0.7 0.6 0.5 1.9 2.1 2.4
Waste production 3.5 2.7 3.8 3.9 4.1 14.4
Social acceptance 1.5 1.2 2.3 3.2 3.5 9.3
Legislation 4.5 6 2.3 3.2 3.5 18.8
Strategic importance 8.9 4.8 2.3 3.2 3.5 1
Total (%) 100 100 100 100 100 100

These results seem logical since the ore grade of gold in Chovdar (2.39 gr/tonne) can
be characterized as high for an open-pit mining operation and the average grade for an
underground mining operation. The criticality of gold is prioritized to be high enough;
its value as a metal makes it always a critical commodity of great strategic importance.
It is interesting to note that the technological parameters are low. This can be explained
by the fact that the recovery rate is already high enough, and the metallurgical tests and
evaluations for the extended processing plant show excellent results.

Data and information derived from the evaluation of gold were also considered for the
assessment of silver. This kind of information includes the facts that gold will most probably
remain the main product at Chovdar, all costs will be covered by gold production, and silver
will continue being shipped together with gold for refinement to Switzerland. Like gold,
silver’s price and ore grade are essential parameters to its criticality. The latter is higher than
that of gold because of silver’s by-production dependence on gold. Nevertheless, the grade
is high enough to make silver production efficient and is combined with the commodity’s
importance. Silver may not be as powerful as gold, but it is also considered a strategic
metal. The existence of toxic compounds during processing is also of notable priority.

Copper was the next metal to be evaluated as a potential product at Chovdar, consid-
ering the evaluation results of both gold and silver. Importance is given to the increased
concentration of copper in the sulfide phase of the deposit and the fact that there is a high
copper zone present in this phase.

In the oxidized phase of production, copper has been characterized as waste, rather
than as a product. Hence, the economic parameters seem to be the most important, and the
ore grade of the commodity is the most significant parameter by far. The price of copper
will also play a role in the evaluation, whereas the extraction costs are mainly covered
by the main product (gold) and are of less importance. The technological factors, and
particularly the recovery rate, also have a significant weight. This makes sense since the
higher the recovery of copper, the greater its chances of creating profit for the company.

Judging by the weights attributed to the parameters, it is evident that copper will be
treated differently than gold and silver. Copper has low criticality and high availability as
a metal worldwide, and its economic balance is the determining factor when deciding its
production. The increase in concentration cannot go unnoticed, and is highlighted in the
prioritization of the parameters.
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The next metal, the concentration of which is increasing in the sulfide phase of the
deposit, is iron. In this case, the ore grade elevation may not be as high as it is for copper,
and there no high iron zone is identified. Nonetheless, the concentration is also high enough
to attract interest and proceed with evaluating this commodity. The same procedure is
followed for assessing iron, considering the boundary conditions at Chovdar, the market
prices for iron, its importance and availability as a metal, and the potential environmental
concerns that its production might raise.

Similarly, the most critical parameters for iron, as for copper, are the economic criteria,
followed by the market criteria. The ore grade is the most significant factor, and the price
of iron is ranked second. However, the third most crucial parameter is the impact that iron
production is expected to have in the local markets.

This result is due to the wide variety and diversity of applications that iron has in daily
products and services in local societies. The metallurgical process of iron is well known
and can be applied near a mine site; thus, the produced iron could be channeled to the
local markets, thus reducing the logistic costs. Nevertheless, the price and ore grade of iron
combined with the additional extraction costs will be the main determining factors for its
classification as a by-product or waste in this project.

Aluminum was assessed next. The resemblance to the properties of iron both as a
commodity in general and as a potential product at Chovdar is remarkable, and so are the
evaluation results. The increase in concentration for aluminum seems to be greater than
that for iron, yet not significantly different.

Once again, the economic parameters seem to play a significant role when deciding
whether to produce aluminum. The market conditions follow in percentage terms, and the
remaining three categories (technological, environmental, and socio-political parameters)
are of equally lower importance in this case. Following the same pattern, the essential
parameters are the ore grade of aluminum and its price in global markets. The locality is
also evaluated as a crucial parameter, followed by the additional extraction costs and the
recovery rate of aluminum.

Generally, aluminum has a much higher price as a commodity than iron. In addition,
the ore grade of aluminum at Chovdar is also higher than that of iron. Consequently, even
though the evaluation parameters have the same weights, the evaluation of the options
with respect to the parameters led to slightly different preference results.

Mercury was the last of the commodities to be evaluated in this case study using the
multi-criteria decision tool. Unlike the previous metals discussed, mercury has a different
treatment and production evaluation. The same group of parameters is implemented in the
tool, to be evaluated concerning the properties of mercury in the Chovdar mining project,
in addition to the general conditions that govern the treatment of this metal globally.

Contrary to the evaluation results in the previous paragraphs, the most important
parameters, in this case, are the environmental parameters, followed by the sociopolitical
parameters. The technological factors have an observable percentage. More specifically, the
most significant parameters overall are the presence of toxic compounds, the production of
waste, the legislation status that governs the production and treatment of mercury and, of
course, the social acceptance of having it as a product or treating it as a waste.

These results are different from those discussed above regarding the other commodi-
ties. For example, the price of mercury and its marketability are not as important. The
recovery rate is an essential factor, but not in terms of yielding more profit. In this scenario,
the higher the recovery of mercury from the ore and tailings, the less the risk of environ-
mental contamination. As already discussed in this work, mercury must be produced
as a by-product to preserve the surrounding ecosystem, follow the rules, and meet the
social requirements. In addition, when extracted and shipped off-site, the costs needed
to treat mercury as waste in the tailings are eliminated, and thus can be considered an
indirect profit.
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6.3. Comparative Analysis of the Results

Overall, six commodities were evaluated individually but under the same circum-
stances and considering the same conditions of the Chovdar project. The results are rational
and detailed enough, given the difficulties of deriving data when no actual economic
assessments have been conducted to date for the second phase of exploitation at Chovdar.

Gold remains the leading product of the mine (Table 9), since no other commodity
is classified as a co-product or will cover all the extraction costs. The transition to under-
ground mining operations will increase the operating costs; however, gold production is
expected to yield a significant profit for the company. Its strategic importance is essential
not only for the relatively remote area, but also for the state of Azerbaijan. Hence, the
mining project enjoys the government’s trust and the society’s acceptance.

Table 9. Comparative analysis of production results.

Commodities Primary Product Co-Product By-Product Waste

Gold 79.6% - 15.5% 4.9%
Silver - 34.4% 61.6% 4.0%

Copper - 12.6% 49.1% 38.3%
Iron - 13.5% 40.6% 45.9%

Aluminum - 13.9% 43.5% 42.6%
Mercury - 8.4% 51.9% 39.7%

Silver will be produced again as a by-product and significantly contribute to the
project’s revenues. Most likely, copper will be the second by-product after silver. Although
the by-product option has the highest percentage, it does not have an absolute majority,
indicating that a more detailed and careful evaluation must be made to decide whether
copper can be feasibly extracted. Contrary to the results for copper, iron is preferably
classified as waste. Nevertheless, a more detailed economic analysis is also needed for this
commodity and market analysis should be undertaken to investigate the product sales
prospects in the local markets. Aluminum is also not classified as a by-product or waste,
although there is a slightly higher preference for it being produced as a by-product than
iron. Accordingly, detailed economic and market analyses also need to be conducted for
this potential product. Finally, mercury is treated differently, and the respective results
justify its classification as a by-product, with a far more preferable 52%.

This last result justifies the scope for developing this production decision tool and the
attempt to determine all the potential parameters, in addition to the economic parameters,
that can affect the production of a commodity. The percentages of 4.9% in the preferences
for gold as waste or 8.4% for mercury as a co-product are worth mentioning. These can
be attributed to two reasons: the first is the using of all parameters, even the less relevant
ones, in this evaluation. In these assessments, the options of co-product, by-product, or
waste were equally important. Although these parameters have very low weights, their
overall sum yields a higher-than-expected percentage for the option. The second reason is
the lack of accurate data and information that would allow decision makers to make more
precise cross-comparisons.

Compared to the Excel workbook outcomes, the results derived from the computa-
tional tool were very similar, if not identical. The insignificant differences may be attributed
to the number of decimal places applied in the calculations. Nevertheless, the similarity of
results justifies the efficiency of the computational tool. Python has gained traction over
recent years and the quote that “Python is the new Excel” is becoming more frequent.

7. Conclusions

This work managed a large amount of information and data sets to identify and
classify 18 parameters that can impact the determination of co- and by-products in a mining
project. This list is not exhaustive; criteria can be added or removed, given the conditions
governing each project under examination.
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Using Python and a GUI, an evaluation tool was developed based on a multi-criteria-
decision analysis model to assess the production perspectives in polymetallic projects.
The tool allows for fast and efficient calculations, and the variation in the parameters
is not an impediment. An advantage of the developed tool is that it considers more
diverse parameters and yields detailed results, not only for the final options, but also for
the importance of all parameters and those having the highest impact when evaluating
each commodity.

To reduce subjectivity in decision making, a careful assessment needs to be made each
time the tool is used concerning the boundary conditions of each project and the precision
of the data and information provided for the evaluations.

The tool’s efficiency was tested by implementing data from a polymetallic deposit in
Chovdar, Azerbaijan. In this project, operations are transitioning from surface to under-
ground, in which the mineralogy is also changing. Hence, a re-evaluation of the perspec-
tives of the included metals aiming at their production feasibility was deemed necessary.

Overall, the evaluation results from the tool justified the production of gold, silver, and
mercury that is already taking place in Chovdar, indicating that the tool works efficiently
and can be used accordingly for the other commodities. Therefore, the results for the
remaining potential products indicate the approach for the company to investigate whether
any of these metals can become by-products of the project.

Mining companies, industry consultants, academics, and other stakeholders could use
the developed tool in the assessments of several polymetallic projects. In this manner, the
tool can be further tested and optimized, and the use of additional parameters can be deter-
mined. Consequently, the necessity of producing minor metals will be further highlighted,
not only with words but with the demonstration of detailed results and percentages.
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Abstract: Many factors influence the fatigue state of human beings, and fatigue has a significant
adverse effect on the health and safety of the haulage operators in the mine. Among various fatigue
monitoring systems in mine operations, currently, the Percentage of Eye Closure (PERCLOS) is
common. However, work and other environmental factors influence the fatigue state of haul truck
drivers; PERCLOS systems do not consider these factors in their modeling of fatigue. Therefore,
modeling work and environmental factors’ impact on individual operations fatigue state could yield
interesting insights into managing fatigue. This study provides an approach of using operational
data sets to find the leading indicators of the operators’ fatigue. A machine learning algorithm is used
to model the fatigue of the individual. eXtreme Gradient Boosting (XGBoost) algorithm is chosen for
this model because of its efficiency, accuracy, and feasibility, which integrates multiple tree models
and has stronger interpretability. A significant number of negative and positive samples are created
from the available data to increase the number of datasets. Then, the results are compared with other
existing models. A selected algorithm, along with a big data set was able to create a comprehensive
model. The model was able to find the importance of the individual factors along with work and
environmental factors among operational data sets.

Keywords: machine learning; XGBoost algorithm; PERCLOS system; fatigue

1. Introduction

Fatigue is an occupational hazard and can be attributed to the health and safety of the
worker. It affects the health and safety of both the employees and their colleagues adversely.
Fatigue is a complex phenomenon that can be associated with many factors. Fatigue
can be defined as a state of feeling tired, weary, or sleepy that results from prolonged
physical or mental work, extended periods of anxiety, exposure to harsh environments,
or lack of sleep [1]. Fatigue varies from weakened function of alertness during tasks to
drowsiness, micro-sleep or completely falling asleep. It can affect worker performance
and impair their mental alertness, which can cause dangerous errors [1]. Fatigue presents
several challenges for the mining industry. Various accidents have been reported at mine
operations, which could be associated with the loss of control due to the fatigue and
sleepiness of mineworkers [2]. The mining industry is certainly not alone in facing the
challenge of addressing worker fatigue. In fact, many of the characteristics of fatigue
in the mining industry mirror the similarities of fatigue in other industries. Hence, any
fatigue management applications, training, or interventions from other industries can be
borrowed and applied to mining. However, some have argued that mining, in particular,
is especially susceptible to increases in the presence of fatigue due to the multifaceted
combination of factors in mining environments associated with fatigue: dim lighting;
limited visual acuity; hot temperatures; loud noise; highly repetitive, sustained, and
monotonous tasks; shiftwork; long work hours; long commute times due to mine site
remoteness; early morning awakenings; and generally poor sleep habits [3]. Although
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the full burden of fatigue on mineworkers has not yet been measured, some technologies
can monitor operator fatigue, such as the video-based technology, percentage of eyelid
closure over the pupil over time (PERCLOS) system, and Electroencephalography (EEG)
cap. While such technologies can detect the fatigue of the operator, they do not necessarily
prevent or mitigate fatigue from happening [3]. These technologies have their pros and
cons. Video-based technology (PERCLOS) uses eyelid closure as the main measure to detect
driver fatigue. However, it has some drawbacks that limit its success, such as darkness
limitations and practical hurdles like the distraction of the drivers [4]. On the other hand,
the EEG cap uses electrodes to get the signal from the brain and translate it to the status
of the driver fatigue. These electrodes and caps have been shown to cause discomfort
for drivers, limiting their widespread adoption [5]. Therefore, they are not suitable for
long-term monitoring. There is another technology called WOMBATT (Worldwide Online
Monitoring By Alerting Tired Travelers), can determine a person’s level of fatigue by
analyzing a recording voice [6]. PERCLOS, EEG, WOMBATT and other technologies can
detect fatigue, but they cannot recognize factors that affect fatigue such as work-demand
factors.

The Job Demand-Resources model (JDR) of worker stress and health shows that too
much job demand and not enough resources can result in injuries due to physiological and
physical costs [3]. The core part of the JDR model is related to risk factors associated with
job stress. These factors can be classified into two general categories, job demands and job
resources [7–9]. Job demands refer to the physical, psychological, social, or organizational
aspects of the job that require physical and psychological effort or skills. However, job
demands are not necessarily negative; they may turn into job stressors when those demands
require high effort from the employee, which is hard to recover [7]. Job resources refer to
the physical, psychological, social, or organizational aspects of the job that are functional in
achieving work goals, decreasing job demands, or stimulating personal growth, learning,
and development [7–9].

2. Previous Studies

Fitness for duty in mining is an important issue which is affected by individual’s
physical and psychological fitness. Fatigue is one of the driver of fitness for duty in mining,
which greatly is caused by excessive work hours and shiftwork [10,11]. Fatigue in the
workplace often results in a reduction in worker performance. Fatigue must be controlled
and managed since it causes significant short-term and long-term risks [12–15]. Other than
the health and safety consequences on workers, fatigue can result in damage or loss of
valuable mine equipment like haul trucks. So, the mining industry measures operational
risk losses to estimate capital allocation and manage operational risks [16,17].

Drews et al. (2020) studied fatigue in the mining industry and mentioned that fatigue
in the mining industry is different from other industries because of the specific environ-
mental factors in the mining industry [18]. They also provided some other factors that
drive fatigue like repetitive and monotonous tasks, long work hours, shiftwork, sleep
deprivation, dim lighting, limited visual acuity, hot temperatures, and loud noise [18].
Multiple psychological and physiological issues impacted the fatigue of the workers, which
makes fatigue management difficult. Some technologies can monitor drivers’ fatigue, such
as tracking eye movement and head orientation (PERCLOS) or hard hats with electroen-
cephalogram (EEG) activity tracking, with their pros and cons. However, considering these
technologies, other studies show that there is no obvious approach to control and mitigate
the fatigue of workers in mine operations [3].

Machine learning (ML) can be used to predict leading indicators and help manage-
ment make appropriate decisions [19,20]. ML is flexible to operate without any statistical
assumptions. It also is able to identify any relationships within the phenomena and is-
sues [19,21,22]. Previous study offers that finding leading indicators to predict fatigue in
the mining industry can be useful [18]. Due to the complexity of fatigue, using machine
learning (ML) algorithms on the real-time data captured from the existed technologies can
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be helpful to model fatigue. Such a model could identify predictive elements of workers’
fatigue. Some studies are done with the collected data to predict fatigue [18]. However,
a comprehensive study using a wider range of available data sets can find more possible
independent variables in the model to find top predictive factors. If these factors can be
used as fatigue predictive elements, they will enhance safety and health decisions in an
earlier time in the fatigue cycle.

In an earlier study done by E. Talebi et al. (2021), machine learning (ML) models
were created using aggregated operational data sets from a mine [23]. The findings of that
study confirm that fatigue is caused by a wide variety of factors, which are very difficult
to quantify. Fatigue prediction is a matter of predicting the complex interactions between
human behavior and the changing work environments at mine operations [23]. The model
outcome had a low R2 value that captures relationships that quantify a relatively high
amount of variance in a complex relationship. This high amount of variance is likely largely
due to the difficulty of generalizing a model that can predict fatigue due to the complex
psychological and physiological factors associated with fatigue at the group level. Only
operational data and weather data are utilized in these models aggregated at the mine
level [23].

The machine learning model selected for that analysis was a random forest (RF)
regression algorithm. This algorithm was chosen because it can be applied well to a
wide variety of problems with a rapid speed of training. This analytical tool shows what
features of the model have higher effects on the predictions of the model and estimates
how marginal changes in those features impact these predicted outcomes [23].

The model output identifies the variables that have the highest impact on all fatigue
events. The previous model results offer some interesting insights into the factors that
potentially cause fatigue. It shows that while it is not surprising that shift type (night
or day) causes fatigue, it is interesting that maintenance processes such as unscheduled
downtime and production rates, as well as other operational variables, can affect fatigue
among haul truck drivers. Having identified these additional predictors for fatigue, these
indicators can be used by managers to prioritize safety management efforts. However, this
model was aggregated and averaged out at the mine level. Would a model at a lower level
of granularity, say, at the individual level, rather than aggregated at the mine level yield
better results? This was the primary difference and guiding research question for the model
presented in this paper.

XGBoost algorithm is applied to data to model fatigue. This algorithm is used because
it has more power to handle complicated relations. XGBoost is a powerful machine
learning (ML) algorithm that has shown strong power to pick up patterns in the data
and automatically tune learnable parameters. What is novel in this study compared to the
previous study is a higher score of the model to predict fatigue.

3. Case Study

3.1. Data Description

This study used approximately four years of data from a single, large, operating
surface mine. Table 1 shows a brief overview of the data sets that were used for modeling
fatigue with details of the types of information and the range of dates. The site utilized a
PERCLOS monitoring system, which used cameras to track and monitor the eye movements
of haul truck drivers to model and detect fatigue. When the camera detected certain eye
movements, eye closure, or blinking, the PERCLOS system can determine fatigue based
on a preset model. In a situation when the eyes were closed for more than 3 s, the system
alerted operators, supervisors, and dispatchers for more action. Data captured from the
system was categorized based on the type of event. If the event was a micro-sleep, which
was an actual fatigue event, it would be categorized as a low or critical fatigue event.
Previous studies by the authors showed that fatigue events captured by fatigue monitoring
systems are important indicators of fatigue [10]. Therefore, micro-sleep data was used to
model fatigue for this study.
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Table 1. Data sets details.

Data Source Key Factors Date Range

Fatigue monitoring Micro-sleeps (low and critical
fatigue) 2016–2020

Time and attendance Hours worked, overtime, etc. 2016–2020

Fleet management system
(production and status)

Production cycles, down
equipment,
delayed equipment, etc.

2016–2020

More details of fatigue events are shown in Table 2. This table demonstrates the
number of events by type of fatigue events and the percentage of these fatigue events for
comparison. The data shows more low fatigue compared to critical fatigue, representing
69% of the fatigue events that were captured by the system. All fatigue events are reviewed
after recording from the fatigue monitoring system, and critical fatigue events are the ones
when operators have micro-sleep, while low fatigue events are the ones that just show
drowsiness.

Table 2. Count and percentage of fatigue event by type.

Fatigue Event Review Type Number of Fatigue Events Percentage of Fatigue

Low Fatigue 741 69%
Critical Fatigue 332 31%

Data from the fleet management system (FMS) tracked the production and status
of equipment. It offers a good perspective on the job demands of haul truck drivers
throughout the shift. Status event or status of the equipment can be used to determine if a
piece of equipment is down for maintenance, in production activity, in standby mode, or
ready for production. This information can be used to find the status of the haul truck at the
time of proceeding the fatigue events. Other information in the FMS database included the
load cycle data. A production cycle showed the load and dump cycles of a truck. Detailed
steps were also provided, such as loading, dumping, running empty, running loaded, etc.,
are shown. The most important data for this study was the production cycle state of the
truck when fatigue events happened.

Time and attendance data are provided to show hours worked by employees. The
mine used a swipe-in/swipe-out time keeping system to process and load into a time and
attendance database. A data set of attendance from this database was used to measure
worked hours and overtime of the employees.

3.2. Data Pre-Processing

For the application of machine learning algorithms, data must be pre-processed in
a mathematically feasible format. Therefore, data needs to be pre-processed to make it
appropriate for the application of the modeling. Data pre-processing techniques included
data reduction, data projection, and missing-data treatment. In data reduction, the size of
the datasets decreases by means of feature selection. Data projection intends to transform
all features into a conformed format and range. Missing-data treatments include deleting
missing values and replacing them with the estimates if needed. Therefore, data needs to
be pre-processed to make it appropriate for the application of the modeling.

3.2.1. Data Integration

Each data set was linked to the fatigue monitoring data set based on a unique key. The
FMS system separates equipment status and states. These tables also had to be integrated
into a complex join. Data from FMS system, including status events of the equipment, were
joined to the fatigue data by using a unique key. In order to have a categorized model,
positive and negative samples are created from the fatigue monitoring data set, which
are from the time operators were fatigued or not. After creating samples, other data from
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the attendance database such as overtime, worked hours and number of cycles from the
Load-Dump cycles, were attached to them. In addition, the state of the haul truck at the
time of the fatigue is integrated into the samples from the Load-Dump cycles data set.
Finally, positive and negative samples are integrated together for the purpose of the model.

3.2.2. Data Cleaning

All of the datasets were cleaned, and missing data removed prior to input to the model.
The process of cleaning data included correcting data types, removing incorrect, duplicate,
incomplete, and corrupted data. The next step is handling missing values, like replacing
them with anticipated data or dropping out the whole row from the data. In some cases,
unwanted data has to be dropped from the data. In addition, the type of the data sets may
need to be updated. Finally, multiple datasets should be merged.

In this study, missing data either was filled out with the estimated value, or the whole
rows of them were dropped. Missing values can be handled by deleting the rows having
null values. The rows which are having one or more column values as null can be dropped.
In the case that we want to keep the row, Random Forest algorithm is used to fill out the
missing values. It looks at the same data and predicts the missing value. Data are trained
by the rows that have all values and predict values for the rows we have missing values. In
order to join dump and load data, load IDs were created, which were comprised of shift
index, shovel ID, Truck ID and arrive time. Some of these arrive times were missing; in
which case an estimate was used based on the load-cycle data at the closest date and time.
In the loads-dumps data set, almost 500,000 records were missing. Moreover, some of the
data types and formats were changed for modeling purposes. Additionally, unwanted,
duplicated, corrupted, and incorrect data were omitted from the data source.

3.2.3. Negative and Positive Samples

In this section, the process of how samples are created is explained. In this study, the
categorical machine learning (ML) model is used. It means that data includes different
data categories, which are positive and negative samples. The model predicts if the data
is related to the positive sample, which means fatigue happened, or negative samples,
which are related to the time without fatigue. Positive samples are derived from the fatigue
monitoring data sets when a fatigue event is flagged by the system.

Negative samples were made from time frame when fatigue events did not happen.
This sampling was done for each employee and equipment. In the process of data engi-
neering, fatigue data is merged with status event data. Two factors are used for making
negative samples. First, in order to find the number of samples, we looked at the ratio of
the time frame that fatigue did not happen during a shift time for each employee. Second,
we looked at each status event in a shift in a way that we have at least one sample for each
status event. Therefore, these negative samples are created in an acceptable proportion
ratio for the time frame that fatigue did not happen in a shift time and for each status event.

After these samples are created, other variables like time and attendance data, number
of cycles, and overtime are merged with these samples. Moreover, other feature engineering
is done for these samples. Finally, negative and positive samples are combined to have a
big data set for the purpose of making the model. More details of what is done on the data
in this process are explained in the feature engineering section.

3.2.4. Feature Engineering

Features are the numerical or categorical variables from the data sets that can de-
termine the model prediction. They are independent, and ideally, there is little to no
correlation between the features. Feature engineering has a vital role in data analysis and
machine learning. Feature engineering meets a need for the generation and selection of
useful features. It includes different steps of engineering as will be explained. Feature
transformation, feature generation, and feature extraction are about making a feature from
existing features [24]. Feature selection is about selecting a small set of features from the
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datasets to make it computationally feasible to use in a certain algorithm. Feature analysis
and evaluation are the processes of evaluating the usefulness of the features, which is
usually a part of feature selection [24].

In this study, all datasets are engineered in an appropriate way to be used in an
XGBoost algorithm [25]. Fatigue data provided from the fatigue monitoring system were
reviewed and divided into different categories. Among them, micro-sleeps and drowsiness
were identified as the fatigue events of workers with low and critical fatigue levels. They
were dependent variables of the model. All other available data like fleet management data,
production cycles, and time and attendance were modeled as predictors and independent
variables of the model. All features and variables used in different iterations of the modeling
are shown in Table 3.

Table 3. List of the variables based on the data source.

Data Source Variables Data Type and Example Data

Time and attendance

Employee ID Integer (5 to 89,021)
Common Equipment ID Integer (205 to 841)
Year Integer (2014 to 2020)
Month Integer (1 to 12)
Week Integer (1 to 54)
Day Integer (1 to 31)
Day of week Integer (1 to 7)
Day of year Integer (1 to 366)
Shift is end of month Categorical Integer (0 and 1)
Shift is start of month Categorical Integer (0 and 1)
Shift is end of quarter Categorical Integer (0 and 1)
Shift is start of quarter Categorical Integer (0 and 1)
Shift is end of year Categorical Integer (0 and 1)
Shift is start of year Categorical Integer (0 and 1)
Worked hour Integer (0 to 13)
Overtime Integer (0 to 1)
Overtime of previous shift Integer (0 to 1)

Fleet management system
(production and status)

Status—Delay
Status—Down
Status—Ready
Status—Standby
Number of cycles
Number of cycles of previous
shift
Work Type Scheduled
Work type Unscheduled
Fleet_HTE—KOM960
Fleet_HTE—LEB282
Fleet_HTM—CAT793
Reason Description (Included
of 70 different variables)
State of Truck—Empty
Driving
State of Truck—Full Driving
State of Truck—Loading
State of Truck—None
State of Truck—In Queue
Waiting for Loading
State of Truck—Spotting for
Load
Status Event Duration

Categorical Integer (0 and 1)
Categorical Integer (0 and 1)
Categorical Integer (0 and 1)
Categorical Integer (0 and 1)
Integer (1 to 121)
Integer (1 to 121)
Categorical Integer (0 and 1)
Categorical Integer (0 and 1)
Categorical Integer (0 and 1)
Categorical Integer (0 and 1)
Categorical Integer (0 and 1)
Categorical Integer (0 and 1)
Categorical Integer (0 and 1)
Categorical Integer (0 and 1)
Categorical Integer (0 and 1)
Categorical Integer (0 and 1)
Categorical Integer (0 and 1)
Categorical Integer (0 and 1)
Integer (2 to 167,932)

Fatigue
monitoring

system
Is Fatigue Categorical Integer (0 to 1)

102



Mining 2022, 2

3.2.5. Features

This model was aggregated at the individual level (haul truck operators), with positive
and negative samples as it is explained before. Since this model is a categorical model, a
dependent variable is added to the data to show if a row of data is related to the fatigue
event or not (True or False). Therefore, data are categorized into positive and negative
samples. Positive samples are the rows of input data of the model that show actual fatigue
events. Negative samples are the rows of data that are not fatigue events.

All the features were created for both positive and negative samples. Two different
features were provided from the time and attendance data sets, overtime of current or
previous shift and worked hours of the same shift for each sample. Moreover, some
variables like day, week, month, and year were built from the attendance datasets. Loads
and dumps data were part of the fleet management data represented by the load-dump
cycle of the haul truck. They were used to create a feature of the number of cycles for the
current shift and previous shift. Another feature that was provided from the cycle data is
the states of the haul truck for each positive and negative sample. They were categorized
into Queue Waiting for Load, Spotting for Load, Loading, Full Driving, Dumping, and
Empty Driving. Status events datasets are used to find the status of the haul truck for the
samples, such as Unscheduled work, Scheduled work, Ready, Delay, Down, Standby, and
Event duration.

3.3. Data Visualization

Before creating any machine learning model and after data cleaning, it is necessary
to do exploratory analysis. First, data should be examined before training the model. The
Pandas library in Python was used to load data into a DataFrame structure for further
manipulation. Then, some basic statistical analyses were generated, for example, the distri-
bution of each countable variable (Figure 1). Other analyses produced linear correlations to
observe the relationship between independent variables. Figure 2 displays the significant
correlation of the variables.

As Figure 1 shows, 75% of the employees have 0.5 to 1.5 h of overtime, which can
be seen from the worked hour data as well. On the other hand, the average number of
cycles from the previous shift is almost 20 for most of the data. It also shows the right-
skewed distribution, which identifies that most of the data have more than 50 cycles of the
previous shift. Same data as overtime data from the worked hour graph shows that more
than 75% of employees worked more than 12 h a shift. Other graphs display which day,
month, and year have the higher rate of fatigue. The last graph shows which equipment
ID has a higher rate of fatigue compared to others. Figure 2 demonstrates that some of
the independent variables have a positive or negative correlation with more than R2 = 0.7,
which has darker red or blue color. Therefore, one of them is removed from the model to
reduce the possibility of overfitting.

103



Mining 2022, 2

Figure 1. Distribution of the variables.

Figure 2. Correlation of the variables.
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4. Methodology

Over the past several years, the UMODEL lab at University of Utah’s mining engineer-
ing department has been studying and modeling mine workforce fatigue. The approach has
been examining fatigue through direct surveys of crews, developing tracking technology,
and modeling fatigue using operational technology. This study investigates a model of the
fatigue of individuals based on job demands and environmental factors. Therefore, it uses a
machine learning (ML) algorithm applied to data from a surface mine to identify indicators
of fatigue in operational datasets. The process and steps of this study are provided in
Figure 3.

Figure 3. Process of study.

4.1. Modeling Approach

In general, there are three types of Machine Learning (ML) algorithms: supervised
learning, unsupervised learning, and reinforcement learning. This study involves super-
vised learning, which includes a target variable (dependent variable) and a given set of
predictors (independent variables or features) [25]. Dependent variables are predicted by
the independent variables. An algorithm that maps inputs to desired outputs will be made
with these independent variables. After the model is created, the training process continues
until there is a satisfactory level of accuracy in the model [25]. Some of the examples of
supervised learning consist of regression, decision tree, Random Forest (RF), K-Nearest
Neighbour (KNN), logistic regression, etc. The algorithm used in this study is called eX-
treme Gradient Boosting (XGBoost), which is an optimized distributed gradient boosting
library [25]. It is designed to be highly efficient, flexible, and portable. It accomplishes
machine learning algorithms under the Gradient Boosting framework. Gradient boosting
gives a prediction model in the form of an ensemble of weak prediction models, which are
typically decision trees. XGBoost algorithm provides a parallel tree boosting that can run
them at the same time and solve many data science problems fast and accurately.

The fundamental idea of boosting is to integrate hundreds of simple trees with low
accuracy to make a more accurate model. Every iteration will generate a new tree for the
model. There are thousands of methods to generate a new tree. A common method is
called the Gradient Boosting Machine [25]. It uses gradient descent to make the new tree
based on previous trees. For this purpose, the objective function should be derived toward
the minimum gradient direction.

XGBoost Algorithm

XGBoost model is a learning framework based on Boosting Tree models. XGBoost is
based on gradient boosted decision trees designed for speed and performance. It has a
strong expansion and flexibility and integrates multiple tree models to build a stronger ML
model. Additionally, XGBoost uses a variety of methods to avoid overfitting [26].
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In this study, the following parameters, known as hyperparameters, were adjusted to
make the XGBoost model perform at its best:

1. n_estimators: is the number of iterations in training. A very small n_estimators can
result in underfitting, which diminishes the learning ability of the model. However,
very large n_estimators will cause overfitting, which is not good either [26].

2. min_child_weight: identifies the summation of sample weight of the smallest leaf
nodes to prevent overfitting.

3. max_depth: is the maximum depth of the tree. The bigger depth of the tree makes the
tree model more complex and the fitting ability stronger. However, the model is more
likely to overfit.

4. subsample: is the sampling rate of all training samples.
5. colsample_bytree: is the feature sampling rate when constructing each tree. In this

task, this is equivalent to the sampling rate of the landmark gene.
6. learning_rate: is a tuning parameter in an algorithm that defines the weight at each

step while moving toward a minimum of a loss function. It is a very important
parameter that needs to be adjusted in every algorithm. It greatly affects the model
performance. To make the model more robust, we can decrease the weight of each
step.

4.2. Model

For this study, different iterations of the model were conducted using available data
subsets as dependent variables. The machine learning procedure diagram is displayed
in Figure 4. All of the features (independent variables) were created from the available
data sets for each individual. The dependent variable predicts true fatigue events from
non-fatigue events. True fatigue events are classified as positive and non-fatigue events are
considered negative. All independent variables in these models, also known as features,
are representations of some of the mine’s operation data sets. These features contain values
such as the status of the haul truck in the operation cycle, over time, and the working hours
of the operator (see Table 3).

Figure 4. Machine learning model procedure diagram to predict fatigue.
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Data were divided into two sets: 80% constituted the training data set, and 20%
constituted the validation data set. The purpose of these models was to determine the
features that can predict fatigue to maximize model scores. In these models, only data
subsets with micro-sleeps were modeled. From 209,710 possible events, only 1073 contained
micro-sleep with critical and low fatigue reviews in the data sets to train and validate the
XGBoost algorithm. After initial data exploratory analysis, this study refined models
to predict operator fatigue. Then, possible iterations to choose the best features were
conducted to predict fatigue and the possibility of including all available feature sets that
drive fatigue. Data for these models were constrained to the number of days contained in
the fatigue data. Thus, the models were created using data from 7 November 2014 to 23
June 2020.

After engineering data, data should be numeric for applying the selected algorithm.
Therefore, every feature is checked, and its format is changed to be numeric. All of the
categorical features are used to make several features with 0 and 1 values as they can be
appropriate for this model. The status events and production datasets create over fifty
numerical variables, including status, reason description, work type, and the state of the
haul truck in the time of fatigue.

In order to get the best possible results out of the selected algorithm and leverage
the maximum power of the algorithm, hyperparameters should be tuned. This selected
algorithm provides an extensive range of hyperparameters. XGBoost is a powerful machine
learning (ML) algorithm that has shown strong performance at picking up patterns in the
data by automatically tuning thousands of learnable parameters. In tree-based models,
like XGBoost, the learnable parameters are the choice of decision variables at each node,
creating more design decisions and, as a result, a wider range of hyperparameters. These
parameters were specified by hand to the algorithm and fixed throughout a training phase.
As mentioned earlier, for this model, there are hyperparameters including maximum depth
of the tree, number of trees to grow, number of variables to consider when building each
tree, minimum number of samples on a leaf and fraction of observations used to build
a tree. These are some of the model parameters used in this study: learning rate: 0.05,
maximum depth of tree: 5, number of trees: 100, minimum child weight: 500, fraction of
observations used to build a tree (subsample): 1.

4.2.1. Model Iterations

For the first iteration of the modeling, all the available features were used to model
fatigue. Variables for the second, third and fourth iterations of modeling are determined
by results from the first iteration. Two top features from the first model iteration are the
number of cycles and overtime of the employees. In order to see the effect of other features,
they are removed for the second iteration of the modeling. Another top feature of the
first model was employee ID. It shows that some individuals have a higher rate of fatigue
compared to others. Therefore, two different models were created based on the employee
ID: employees with higher rates of fatigue and employees with lower rates of fatigue.
Results from both models demonstrate that different indicators affect fatigue of these two
groups.

4.2.2. Model Evaluation

After data training and model debugging, each model result was interpreted, and
if the result is accepted, the model is evaluated. Different approaches are available for
evaluating the model. One way of the model evaluation is the model score or R2. This score
is usually from the validation data set. The higher the model score, the better the model
performs. Next for each tree-based algorithm is Gini index. The Gini index calculates the
degree of probability of a specific variable that is wrongly being classified when chosen
randomly for each tree, which works on categorical variables. The degree of Gini index
varies from 0 to 1:

• Where 0 describes that all the elements be allied to a certain class.
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• The Gini index of value as 1 denotes that all the elements are randomly distributed
across various classes.

• A value of 0.5 shows the elements are uniformly distributed into some classes.

The next method of model evaluation, which is used here, is the confusion matrix.
Since this model used classification predictions, there are four types of outcomes that could
occur, which are often plotted on a confusion matrix as an outcome of the model.

• True positives: when the model predicts a fatigue event which is an actual fatigue
event in the data sets.

• True negatives: when the model predicts that an event is not fatigue and it is not an
actual fatigue event in the data sets.

• False positives: when the model predicts a fatigue event that is not an actual fatigue
event in the data sets.

• False negatives: when the model predicts that an event is not fatigue and it is an actual
fatigue event in the data sets.

5. Results

5.1. Model Results

Different iterations of the model were created, and five of them were selected as they
performed better. All of these model iterations work well as their scores are acceptable. The
first model with all of the features works great. It shows that employee ID, event duration,
worked hour, number of cycles from the previous shift, shift index, day, day of year, day of
week, and overtime of the previous shift have the biggest effect on the fatigue of the haul
truck operators. It shows that some individuals have a higher rate of fatigue compared
to others, as the top feature of the model shows. Crews seem to have outliers that are the
main drivers of fatigue events [6]. Another parameter from this model is overtime from
the previous shift, which denotes more fatigue happened for employees who have more
overtime from the previous shift. Moreover, it demonstrates that the state of the haul truck
categorized to such as empty-driving and full-driving can drive fatigue of the operator. All
the top features are displayed in Table 4.

For the second iteration of the model, the number of cycles and overtime of the
employee from the previous shift substitutes with the number of cycles and overtime of
the same shift. The same result as the previous model shows that employee ID has the
highest effect on fatigue. Some of the other top features of this model are shift index, event
duration, number of cycles, common equipment ID, worked hour, day of year, week, work
type unscheduled, and shovel machine.

After analyzing two first model outcomes, to see the effect of the top features on the
model prediction, some of them are removed from the data set to run the third step of the
modeling. Hence, the third model was created with all features except the number of cycles
and overtime of the previous shift and the same shift. The top feature of the third model is
employee ID, which shows the same information as the two first models. Other topmost
features are shift index, event duration, worked hours, and equipment ID. It shows that
some specific fleets have a higher rate of fatigue compared to others. Overall, it shows
other important features from the model like day, week, work type, and state of the haul
truck are more effective on fatigue.

A top feature of the first three models is employee ID. Therefore, to see the effect of
employee ID on the model prediction, we decided to create the fourth and fifth steps of
the modeling for two groups of employees with a higher and lower rate of fatigue. The
fourth model also performs well for employees with a higher rate of fatigue. It shows that
top features are included in the status shift index, followed by the equipment ID, event
duration, day, worked hour, day of year, shovel machine, day of week. It also demonstrates
that the state of haul truck of full driving has a higher effect compared to empty driving.

Another iteration of the model was conducted for the employees with a lower rate of
fatigue. Model outcome shows that shift index event duration, shovel machine, day of year,
and worked hours, followed by equipment ID, day, day of week, work type unscheduled,
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and week have effects on the fatigue. Other top features of this model are the state of haul
trucks and also shows that some fleets have higher fatigue compared to others. In Table 4,
the results of the best-performed model are displayed. Later, a comparison of the model
iterations is presented.

Table 4. Model performance results.

Model Independent Variables Score Top Features

First model

Employee ID
Common Equipment ID
Year
Month
Week
Day
Day of week
Day of year
Shift is end of month
Shift is start of month
Shift is end of quarter
Shift is start of quarter
Shift is end of year
Shift is start of year
Worked hour
Overtime of previous shift
Status—Down
Status—Standby
Number of cycles of previous shift
Work Type Scheduled
Work type Unscheduled
Fleet_HTE—KOM960
Fleet_HTE—LEB282
Fleet_HTM—CAT793
Reason Description (Included of
70 different variables)
State of Truck—Empty Driving
State of Truck—Full Driving
State of Truck—Loading
State of Truck—None
State of Truck—In Queue Waiting for
Loading
State of Truck—Spotting for Load
Status Event Duration

0.98

1. Employee ID
2. Event Duration
3. Worked Hour
4. Number of Cycle Previous Shift
5. Shift Index
6. Day
7. Day of year
8. Day of week
9. Overtime Previous Shift
10. Common Equipment ID
11. Is Quarter End
12. Shovel Machine
13. Month
14. Week
15. State Truck Full Driving
16. State Truck Empty Driving

Second model

Employee ID
Common Equipment ID
Year
Month
Week
Day
Day of week
Day of year
Shift is end of month
Shift is start of month
Shift is end of quarter
Shift is start of quarter
Shift is end of year
Shift is start of year
Worked hour
Overtime
Status—Down
Status—Standby
Number of cycles
Work Type Scheduled
Work type Unscheduled
Fleet_HTE—KOM960
Fleet_HTE—LEB282
Fleet_HTM—CAT793
Reason Description (Included of
70 different variables)
State of Truck—Empty Driving
State of Truck—Full Driving
State of Truck—Loading
State of Truck—None
State of Truck—In Queue Waiting for
Loading
State of Truck—Spotting for Load
Status Event Duration

0.83

1. Employee ID
2. Shift Index
3. Event Duration
4. Number of Cycle
5. Common Equipment ID
6. Worked Hour
7. Day of Year
8. Week
9. Work Type Unscheduled
10. Shovel Machine
11. Work Type Scheduled
12. Day of Week
13. Day
14. State Truck Full Driving
15. State Truck Empty Driving
16. Fleet HTE—KOM960
17. State Truck Queue Waiting for

Load
18. Fleet HTE—CAT793
19. Fleet HTE—LEB282
20. Year
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Table 4. Cont.

Model Independent Variables Score Top Features

Third model

Employee ID
Common Equipment ID
Year
Month
Week
Day
Day of week
Day of year
Shift is end of month
Shift is start of month
Shift is end of quarter
Shift is start of quarter
Shift is end of year
Shift is start of year
Worked hour
Status—Down
Status—Standby
Work Type Scheduled
Work type Unscheduled
Fleet_HTE—KOM960
Fleet_HTE—LEB282
Fleet_HTM—CAT793
Reason Description (Included of
70 different variables)
State of Truck—Empty Driving
State of Truck—Full Driving
State of Truck—Loading
State of Truck—None
State of Truck—In Queue Waiting for
Loading
State of Truck—Spotting for Load
Status Event Duration

0.82

1. Employee ID
2. Shift Index
3. Event Duration
4. Worked Hour
5. Common Equipment ID
6. Day of Year
7. Week
8. Shovel Machine
9. Day
10. Day of Week
11. Work Type Unscheduled
12. Work Type Scheduled
13. State Truck Full Driving
14. Fleet HTE—KOM960
15. State Truck Empty Driving
16. State Truck Queue Waiting for

Load
17. Year
18. Fleet HTE—LEB282
19. Fleet HTE—CAT793
20. Month

Fourth model
(With employees with a higher rate of fatigue)

Common Equipment ID
Year
Month
Week
Day
Day of week
Day of year
Shift is end of month
Shift is start of month
Shift is end of quarter
Shift is start of quarter
Shift is end of year
Shift is start of year
Worked hour
Status—Down
Status—Standby
Work Type Scheduled
Work type Unscheduled
Fleet_HTE—KOM960
Fleet_HTE—LEB282
Fleet_HTM—CAT793
Reason Description (Included of
70 different variables)
State of Truck—Empty Driving
State of Truck—Full Driving
State of Truck—Loading
State of Truck—None
State of Truck—In Queue Waiting for
Loading
State of Truck—Spotting for Load
Status Event Duration

0.83

1. Shift Index
2. Common Equipment ID
3. Event Duration
4. Day
5. Worked Hour
6. Day of year
7. Shovel Machine
8. Day of Week
9. State Truck Full Driving
10. Week
11. State Truck Empty Driving
12. Year
13. Month
14. State Truck Queue Waiting for

Load
15. Fleet HTE—KOM960
16. Work Type Unscheduled
17. Is Month End
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Table 4. Cont.

Model Independent Variables Score Top Features

Fifth model
(With employees with a lower rate of fatigue)

Common Equipment ID
Year
Month
Week
Day
Day of week
Day of year
Shift is end of month
Shift is start of month
Shift is end of quarter
Shift is start of quarter
Shift is end of year
Shift is start of year
Worked hour
Status—Down
Status—Standby
Work Type Scheduled
Work type Unscheduled
Fleet_HTE—KOM960
Fleet_HTE—LEB282
Fleet_HTM—CAT793
Reason Description (Included of
70 different variables)
State of Truck—Empty Driving
State of Truck—Full Driving
State of Truck—Loading
State of Truck—None
State of Truck—In Queue Waiting for
Loading
State of Truck—Spotting for Load
Status Event Duration

0.82

1. Shift Index
2. Event Duration
3. Shovel Machine
4. Day of year
5. Worked Hour
6. Common Equipment ID
7. Day
8. Day of Week
9. Work Type Unscheduled
10. Week
11. Work Type Scheduled
12. State Truck Full Driving
13. State Truck Empty Driving
14. Fleet HTE—KOM960
15. Fleet HTE—LEB282
16. State Truck Loading
17. State Truck Queue Waiting for

Load
18. Month
19. Fleet HTE—CAT793
20. Is Month End

All the model outputs illustrate that the state of the haul truck can increase the fatigue
of the operators. Among all the different states of the haul truck, empty driving has a
greater impact, which is not surprising since the truck needs to be moving for the system
to work. Another observation from the models is that, after empty driving, full driving
also has an effect on the fatigue of the operators. It may be because of the monotonous task
while driving to the destination of dumping of loading. It also may be due to long-distance
driving.

5.2. Gini Index

The Gini index or Gini coefficient computes the degree of probability of a specific
variable that is wrongly being classified when chosen randomly. The Gini index estimates
the amount of probability of a specific feature that is incorrectly classified when selected
randomly in the decision tree. If all the elements are linked with a single class, then it
can be called pure. The Gini index varies between values 0 and 1, where 0 identifies the
purity of classification, and all the elements belong to a specified class or only one class
exists there, and 1 expresses the random distribution of elements across different classes.
Additionally, the value of 0.5 shows an equal distribution of elements over some classes. In
every decision tree algorithm, Gini index can help to find the best-chosen samples for the
best-performed tree. The best-chosen samples for the decision tree for each iteration of the
models are shown in Table 5. Gini index is the evaluation method during the process of the
model training; however, a confusion matrix is calculated after the model is made.

Table 5. Gini index of the models.

Model Gini Index

First model 0
Second model 0.46
Third model 0.48
Fourth model 0.37
Fifth model 0.47
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5.3. Confusion Matrix

Confusion matrices demonstrate counts from predicted and actual values. It shows
the score of the model and how accurate the model predicted testing data. In the confusion
matrix, there are four different values. The output TN means True Negative, which shows
the number of negative samples classified by the model accurately. Likewise, TP stands for
True Positive, indicating the number of positive samples predicted by the model accurately.
FP shows False Positive values, the number of actual negative examples classified by the
model as positive. FN stands for False Negatives value, which is the number of actual
positive samples classified by the model as negative. Figures 5–9 represent the confusion
matrices of all four model iterations. One of the commonly used metrics for classification
models is accuracy. The accuracy of the model can be calculated by summation of accurate
prediction over a summation of all classified samples in the confusion matrix, as Equation
(1) shows. Table 6 represents the accuracy of the models.

(
TN + TP

TN + TP + FP + FN
), (1)

Figure 5. Confusion matrix of the first model.

Figure 6. Confusion matrix of the second model.

Figure 7. Confusion matrix of the third model.
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Figure 8. Confusion matrix of the fourth model.

Figure 9. Confusion matrix of the fifth model.

Table 6. Model accuracy.

Model Accuracy

First model 0.99
Second model 0.63
Third model 0.60
Fourth model 0.74
Fifth model 0.60

5.4. SHAP Values of the Models

SHAP values are based on Shapley values, a concept coming from game theory. This
game theory requires a game and some players. Here, in the machine learning model,
the game reproduces the outcome of the model, and the players are the features included
in the model. Shapley quantifies the contribution of each player to the game, and the
contribution of each feature brings to the prediction of the model. In fact, SHAP is about
the local interpretability of a predictive model. Therefore, SHAP values of the five different
iterations of the models are provided in Figures 10–14.

They show the feature value on the model and the SHAP value of each value of the
features. Red presents the higher value of the feature, and blue presents the lower value
of the feature. For instance, the employee ID with the higher value positively impacts the
model output. Adversely, unscheduled work type negatively impacts the fatigue model
output, which means that a higher value of the unscheduled work type increases the fatigue
of the operator. Another interesting finding from the SHAP value plot is that in the case
of driving with a full haul truck, a higher value has a negative effect on the fatigue model
output. Therefore, these plots can be utilized to interpret the result of the model in detail
and in a more nuanced way.
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Figure 10. SHAP value of the first model.

Figure 11. SHAP value of the second model.
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Figure 12. SHAP value of the third model.

Figure 13. SHAP value of the fourth model.
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Figure 14. SHAP value of the fifth model.

5.5. Model Iterations Comparison

As discussed previously, several different model iterations were created to explore
which features have the higher effects on fatigue. Five different iterations are provided for
comparison. Details of them are provided in Table 7 for comparison. For the first iteration,
all of the available engineered features such as the number of cycles and overtime of the
previous shift are used. This model has a score of 0.98. Figure 4 displays the confusion
matrix of the models, which shows that the model works decently. As it illustrates, only
20 samples are not predicted correctly. It shows that employee ID has the highest effect on
fatigue. Employee ID illustrates that each individual has a different rate of fatigue events.
Moreover, it shows employee ID, event duration, worked hours, and shift index has effects
on the fatigue of the individuals. It also shows that the number of cycles of the previous
shift has an effect on fatigue. For the second iteration, the same features are used, except
the number of cycles and overtime from the previous shift are dropped from the model,
and instead, those features from the same shift are used. However, the score of the model
is lower, and it demonstrates the same top features as the first model, with employee ID
having the highest effect on the model.

Table 7. Comparison of the models.

Model Top Feature Score
Percentage of
Samples That
Predicted Correctly

First model Employee ID 0.99 100%
Second model Employee ID 0.83 63%
Third model Employee ID 0.82 60%
Fourth model Shift Index 0.83 74%
Fifth model Shift Index 0.82 60%

For the third model iteration, employee ID and for the fourth and fifth models, shift
index is a top feature. The second, third, fourth, and fifth models are not performing
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well as the first model, but they demonstrate other important features of the model. For
example, event duration, shovel machine, equipment ID, and day are the features that
model outcome shows as top features. The confusion matrix for these models shows that
the model has some errors in predicting fatigue in these models. The second model has
a significant error in predicting samples, 13,306 and 37,098, respectively true and false
samples are predicted wrong by the model. The third model could not predict 17,817 true
samples and 36,526 false samples correctly. The fourth model also predicted 1055 and
5483 true and false samples wrong. In the last model, 26,657 and 17,242 true and false
samples are predicted wrong. As the confusion matrix represents, fatigue is predicted by
the second, third, and fourth models mostly when a sample is a fatigue event, which means
they are positive samples. However, the fifth model predicts better when the sample is not
a fatigue event, which means that samples are negative samples.

6. Discussion

The model output identifies the variables that have the greatest impact on all fatigue
events. Table 8 illustrates the most important features and their data sources from the best-
performed model (first model). The model results admit current understanding of fatigue, at
the same time providing some interesting new insights into work and environmental factors
that potentially cause fatigue for individuals. Fatigue events are clustered consistently
within a group of individuals. Since the model outcome represents employee ID as one
of the top factors, we can conclude that individual factors greatly affect fatigue. Based on
the study by Drews F. (2020), this can be because of different factors like individual sleep
efficiency, clinical conditions, life and event stressors, and personality factors [18]. From
the model outcome and as it is expected, each individual has a different rate of fatigue.

Table 8. Top features by data classification.

Data Category Feature Rank Feature

Time and attendance

1 Employee ID

3 Worked Hour

5 Shift index

6 Day

7 Day of year

8 Day of Week

9 Overtime Previous Shift

11 Is quarter end

13 Month

14 Week

Fleet management system
(production and status)

2 Event Duration

4 Number of Cycle Previous Shift

10 Common Equipment ID

12 Shovel Machine

15 State Truck Full Driving

16 State Truck Empty Driving

Drews F. (2020) conceptual fatigue model examines previous shift factors that have
effects on the sleep history and, finally, fatigue of the individual [18]. It also represents
work demand as a big factor of fatigue, which has physiological and psychological impacts
on the individual. A similar result from this study outcome shows that overtime work and
the number of cycles of the previous shift highly impact fatigue. The number of cycles and
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overtime show the burden of the work demand for the operators. Similarly, the state of
the haul truck driver is another factor that drives fatigue. They demonstrated the state
of the haul truck in the load-dump cycle when fatigue happened. Another finding from
these models shows that the shift index is a factor that drives fatigue, which shows fatigue
rate is higher in some specific shifts. Additionally, the outcome from the models shows
that full-driving and empty-driving have a higher fatigue rate than other states, which
full-driving affects fatigue more compared to empty-driving. It can be because of the
monotonous task for a long time compared to when they dumped, loaded, or waited in a
queue. Moreover, model results offer that some specific work types, like unscheduled ones,
increase the rate of fatigue. It implies that any unscheduled tasks like delays in the cycles
make the operator more vulnerable to fatigue due to waiting time. It also shows that cycles
after that will have a higher risk of fatigue. Other variables from the model are shovel
machine, equipment ID, day, week, month, and is the end of the month, which suggest a
pattern in the fatigue time for individuals. As the model shows, the higher duration of the
fatigue event, the more fatigue event happens for the operator, which shows a more serious
issue.

Results from the model with higher rates of fatigue and lower rates of fatigue demon-
strate that different indicators affect the fatigue of these two groups. In addition, they
display that some fleets have a higher rate of fatigue compared to other fleets. These models
also show that unscheduled work type has a higher impact on the fatigue of the employees
with a higher rate of fatigue.

These outcomes can help the health and safety managers understand the magnitude
of the mine site’s fatigue issues. Looking at the significant effect of the individual factors
on fatigue and work environment factors propose more attention to individuals by the
health and safety managers. The model can be used to justify targeted fatigue training for
each individual that has a higher fatigue risk to take care of their individual factors like
sleep quantity and quality. Another approach would be providing insight to managers
and supervisors to target more flexible interventions (shift schedule, breaks, etc.) for
individuals with a higher rate of fatigue or a greater fatigue duration. Supervisors can
have more targeted engagement with operators during monotonous tasks like empty haul
state. The number of cycles shows if they worked the whole shift or had some equipment
downtime. The high number of cycles shows high work-demand during the shift. Similarly,
overtime shows the burden of the work, which even asks for work after the shift ends.
From the health and safety perspective, they can manage to support and check individuals
with a lower rate of break. Another issue is the delay in production, which supervisors can
manage by being alert to check these operators more often.

These model outcomes proved that factors that drive fatigue for each individual are
different, and the mining industry needs to have individualized flexibility of health and
safety programs versus a common general program or a tool to detect fatigue. Current
fatigue monitoring systems are not able to consider these individual differences in a com-
prehensive way. A more comprehensive fatigue monitoring and prediction program can
likely prevent the consequences earlier than lagging systems. Looking at the individual’s
condition is very important and helpful in improving health and safety situations. More-
over, work demand is another factor that health and safety programs could look at to
control fatigue. Such as having specific controls and supervision in a time of higher work
demand.

7. Conclusions

Although this study tries to show the application of machine learning algorithms
in health and safety management mining operations, its finding helps to understand the
individual’s fatigue. This finding, along with a previous study from the authors, confirms
that fatigue is caused by a wide variety of individual and work environmental factors.
Some of them are easy to quantify, and some are difficult. Since fatigue is the complex
interaction between human behavior and the dynamic work mines environment, it is tough
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to make a comprehensive model that shows all of the variables driving the fatigue of each
individual. Previous models examined the issues at an aggregated level using operational
data sets; this study clearly shows individualized factors from the operational data sets
that have effects on the individual’s fatigue.

As it is mentioned before, JDR model is related to risk factors associated with job stress,
such as job demands and job resources [8]. Our model uses these job demands factors that
could contribute to physical or physiological stressors for the operators like the number of
cycles, overtime, worked hours, and other production variables, etc. However, this model
is limited by the available variables from the data sets, it would be helpful to add other
job-related factors for the next study, like off days and any break time for the operators.
In addition, other personal factors like sleep duration, efficiency, exercise, food and drink
consumption would also aid in developing a more comprehensive understanding of fatigue
risk for individuals.

All developed models have a high score greater than 0.8, but the first iteration has
the highest score by far. However, this model is used for guiding other iterations of the
additional models. These subsequent models did not achieve as high a score as the initial
model. Findings of the first model show that fatigue is clustered around certain Individual’s
and factors from the previous shift are very important. The important point is how to
find these factors from the available data. It is recommended for the next research to use
individual factors like fitness, sleep history, commute hours, diet, and other individual
factors to explore more possible indicators of fatigue. Another recommendation is to use
the Neural Network model to understand the combination of the parameters that have
effects on the individual’s fatigue.
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Abstract: Truck-Shovel (TS) systems are the most common mining system currently used in large
surface mines. They offer high productivity combined with the flexibility to be rapidly relocated
and to adjust load/haul capacity and capital expenditure according to market conditions. As the
world moves to decarbonise as part of the transition to net zero emission targets, it is relevant to
examine options for decarbonising the haulage systems in large surface mines. In-Pit Crushing
and Conveying (IPCC) systems offer a smaller environmental footprint regarding emissions, but
they are associated with a number of limitations related to high initial capital expenditure, capacity
limits, mine planning and inflexibility during mine operation. Among the emerging technological
options, innovative Trolley Assist (TA) technology promises to reduce energy consumption for lower
carbon footprint mining systems. TA systems have demonstrated outstanding potential for emission
reduction from their application cases. Battery and energy recovery technology advancements are
shaping the evolution of TAs from diesel-electric truck-based patterns toward purely electrified BT
ones. Battery Trolley (BT) systems combined with autonomous battery-electric trucks and Energy
Recovery Systems (ERSs) are novel and capable of achieving further significant emission cuts for
surface mining operations associated with safety, energy saving and operational improvements. This
article reviews and compares electrification alternatives for large surface mines, including IPCC,
TA and BT systems. These emerging technologies provide opportunities for mining companies and
associated industries to adopt zero-emission solutions and help transition to an intelligent electric
mining future.

Keywords: decarbonization; IPCC; trolley assist; battery trolley; battery-electric trucks; electrifica-
tion alternatives

1. Introduction

The current effects of climate change have created a worldwide consensus on the need
for decarbonization [1]. In order to achieve the 2030 emission reduction task announced
by governments, more specific technology measures will need to be applied to achieve
measurable decarbonization. As an energy-intense sector, the mining industry is more
dependent on fossil fuel energy than others. To date, Truck-Shovel (TS) systems are still
the dominant open-pit mining haulage system, while In-Pit Crushing and Conveying
(IPCC) has become an option to overcome long-distance transport in deep open pit mines.
As a proven technology, Trolley Assist (TA) has shown excellent performance in saving
diesel fuel and reducing emissions. With significant volatility in fuel markets, stricter
environmental and social requirements, and the further advance of technologies, Battery
Trolley (BT) systems are likely to guide an electrification revolution to create the first zero-
emission truck fleet, which is a transition from the current diesel-electric trolley operation
to battery-electric trolley haulage.

This paper investigates the current world energy outlook in carbon emissions, Aus-
tralian mining sector emissions projection, renewable energy development, decarbonization
technology trends and mining challenges to conclude that equipment electrification is a
potential zero-emission direction. Except for conventional TS systems, there are several
electrification alternatives for open pit haulage: IPCC systems, TA systems and future
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conceptual BT systems. At the time of this writing, due to hydrogen storage, infrastructure
and logistic challenges, there is no hydrogen-power alternatives discussion in this paper. In
these systems, conventional diesel-powered TS systems belong to a high-emission haulage
alternative, while Fixed IPCC, Semi-Fixed IPCC, Semi-Mobile IPCC and TA systems belong
to low-emission haulage alternatives. Furthermore, Fully mobile IPCC and BT systems
belong to zero-emission haulage alternatives. This paper introduces all these haulage
alternatives’ configurations, operations, characters, and pros and cons. As an electrification
revolution to create the first zero-emission truck fleet solution, BT systems combinate
several state-of-the-art technologies, including autonomous trucks, battery-electric power
drivetrains, TA and energy recovery technologies. Like IPCC systems, BT systems have
various configurations according to charging methods, whether to build a battery station
and energy recovery approaches on the downhill ramp, which are:

1. Dynamic charging BT systems;
2. Stationary charging BT systems;
3. Dual trolley BT systems.

According to mining haulage systems’ requirements, there is a comparison between
diesel TS, IPCC, TA and BT systems from perspectives such as flexibility, energy efficiency,
CAPEX, OPEX, and others.

This paper introduces the background of worldwide decarbonization targets and
mining challenges, and presents evaluation parameters to compare all mining haulage
systems’ pros and cons. It reviews conventional TS systems’ operating processes and
characteristics, and introduces current electrification alternatives for open pit mine haulage.
This paper reviews IPCC and TA systems’ advantages and disadvantages compared with
the TS system and presents the conceptual BT systems’ theory, operating process and
configurations. Finally, it compares the parameters between diesel TS, Semi-Fixed/Mobile
IPCC, Full-Mobile IPCC, TA, Dynamic Charging BT, Stationary Charging BT and Dual
Trolley BT.

2. Decarbonization and Mining Challenges

2.1. World Energy Outlook in Carbon Emissions

Figure 1 shows CO2 emissions in the World Energy Outlook. The Stated Policies
Scenario (STEPS) takes account only of specific policies that are in place or have been
announced by governments [2]. The Announced Pledges Case (APC) assumes that all
announced national net zero pledges are achieved in full and on time, whether or not they
are currently underpinned by specific policies [2]. The “implementation gap” between
reported lowered emissions commitments and the regulatory frameworks and particular
actions they need is highlighted by the 2.6 Gt difference in emissions between the STEPS
and the APS in 2030. Pledges must be supported by robust, reliable policies and long-term
strategies to become a reality [3]. In addition to underlining the need for specific policies
and immediate measures necessary for long-term net-zero commitments, the divergence
in trends between the APC and the STEPS demonstrates the potential effect of existing
net-zero pledges. The APC shows, however, that existing net-zero pledges, even if fully
achieved, fall well short of what is required to achieve net-zero global emissions by 2050 [2].
It clarifies what further steps must be taken to move beyond these proclaimed commitments
and onto a path with a high probability of avoiding the worst impacts of climate change [3].
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Figure 1. CO2 emissions in the World Energy Outlook—2021 scenario over time (Source: Interna-
tional Energy Agency (IEA). World Energy Outlook 2021) Note: STEPS = Stated Policies Scenario;
APS = Announced Pledges Scenario; SDS = Sustainable Development Scenario; NZE = Net Zero
Emissions by 2050 Scenario.

2.2. Australian Mining Sector Emissions

Figure 2 from the Australian Department of Industry, Science, Energy and Resources
indicates that from 1990 to 2020, Australian stationary energy emissions increased at
an average annual rate of 1.5%. As more decarbonization measures were implemented
in 2020, emissions are expected to increase more slowly, at an average rate of less than
0.1% annually. The leading causes of growing global GHG levels are emissions from
transportation, electricity generation, and industrial expansion, which have pressured
many industry sectors to come up with strategies to cut emissions drastically in the future.
Energy efficiency, electrification equipment, and replacing fossil fuels with low-emission
alternatives in the electricity generation process are essential to achieving the APC pledges,
particularly over the period to 2030 [2].

Figure 2. Australian stationary energy emissions, 1990 to 2030, Mt CO2-e (Source: Department of
Industry, Science, Energy and Resources).

Corresponding to the mining industry, a large mining base, fossil-fuel reliance, and
increasing truck fleet size are the key contributors to rising CO2 emissions [4]. The emis-
sions from the mining subsector as whole are projected to increase from 19 Mt CO2-e in
2020 to 21 Mt CO2-e in 2030 because of mining needs. This increase is slowed due to
technological advancements, including superior engine technology, increasing automation,
and the electrification of mining equipment. Along with emissions reductions, these tech-
nological advancements also offer operating benefits such as fuel savings and productivity
improvements [5].
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2.3. Renewable Energy Development

The energy transition from fossil fuels to renewable energy resources is now one of the
main challenges in achieving sustainable development goals [6]. Due to more significant
widespread deployment, there have been considerable technological breakthroughs and
cost reductions in wind and solar PV production during the last ten years [4]. From the
most current developments in energy storage and renewable generation are reviewed, due
to the growing price of fossil fuels, the adoption of carbon tax policies in some areas, and
the falling capital costs of renewable generation and energy storage technology, renewables
are becoming more cost-competitive [4].

A vast landmass and abundant sunshine and wind make Australia one of the world’s
most renewable energy-rich nations [7]. In Australia, solar and wind resources are plentiful
enough to supply renewable energy needs. Figures 3 and 4 show the Australian solar and
wind source maps [8]. In these figures: solar availability (good 1200–1600 MWh/m2, very
good 1600–2000 MWh/m2, and excellent 2000–2400 MWh/m2); wind availability (good
6–7 m/s, very good 7–8 m/s, and excellent 8–9 m/s, wind speed measured at 100 m). Solar
power was the primary thermal-displacing electricity source in Queensland and South
Australia. In Tasmania, a mix of wind power and hydroelectricity, and in Western Australia,
New South Wales and Victoria, a mixture of solar and wind power [9].

(a) (b)

Figure 3. (a) Australian solar source map, (b) Australian wind source map. (Source: Australian
Renewable Energy Agency; The Australian Government Bureau of Meteorology Average daily solar
exposure dataset; the CSIRO DATA61 Mesoscale Wind Atlas Data dataset).

Figure 4. Historical Australia Diesel TGP Data (Source: AIP-Australian Institute of Petroleum).
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Australian National Electricity Market (NEM) renewables are projected to supply over
30 percent of electricity in 2021 and 55 percent in 2030. Emissions in the NEM will decline
by more than 26 percent below 2005 levels by 2022 [5].

2.4. Technology Trends

All sectors of society must support decarbonization. The mining sector must encourage
the use of renewable energy technology and other cost-effective low-emission technologies
as a means of combating climate change [8]. It is possible to become competitive with and
replace high-emission incumbents by making the electrification of mining equipment a
priority technology [5]. Through the development of electrification and battery technologies,
diesel-powered equipment at mining sites and transportation may be gradually replaced
with a combination of electricity-power and energy storage technology. The mining sector
will likely place more emphasis on electricity generation and battery storage as a result of
the switch to an “all-electric” mine [8].

Transportation is crucial in reducing emissions associated with mining operations,
particularly the mining truck fleet [4]. The mining sector is replacing fossil fuels by using
renewable electricity to reduce the influence of fuel price volatility and decarbonization.
Especially for remote mines that rely heavily on diesel generation on-site, renewable
electricity generation and zero-emission truck fleets are critical to achieving a considerable
emission reduction in the total mining facility emissions [4].

2.5. Mining Challenges

With the strong demand for minerals and the depletion of high-quality resources,
there are many challenges facing the mining sector. These include:

1. Greater depths and lower grades: Open pit mining depths have significantly ex-
panded over the last two decades. Some open pit mines go down more than 1000 m
in depth [10]. It is worth noting that future deposit extraction will inevitably be
conducted at greater depths and lower grades compared to current practices, and this
tendency is anticipated to continue [11,12].

2. High operating cost: As mines become deeper and stripping ratios increase with a
lower grade, more waste material needs to be extracted. The haulage truck fleet grows
correspondingly, requiring more operators and maintenance staff and a subsequent
increase in diesel consumption [12–14]. In addition, as copper ore grades decline, more
ore needs to be processed to attain similar metal production. A decrease in copper
ore grade between 0.2% to 0.4% requires seven times more energy than present-day
operations [15,16]. Reducing the cost of truck haulage, which makes up about half of
the operating expenses of a mining operation, is now more essential than ever [17].

3. Fuel price volatility: Fossil fuel price volatility significantly impacts mining viability
but is outside the control of most miners [9]. Figure 4 shows historical Australia diesel
Terminal Gate Price (TGP) data. In the short term, the price of fossil fuels shows a
propensity towards volatility, while it shows a significant rise from the long-term
perspective.

3. Methodology

TS and IPCC systems have been widely deployed in existing open pit mines. TA
systems have been proven in several mine sites and will spread to more current operating
mines, while BT is still largely a conceptual decarbonization mining system, which will
be put to the test in pilot mine sites. For the purpose of evaluating the selection of a
mining haulage system, it is necessary to compare all these mining systems from many
mining metric points, which are beneficial for mining decision-makers to select an optimum
mining operating system for their mine sites. This paper adopts a mining system evaluation
approach by analysing systems’ operations, configurations, and characteristics to measure
their reasonable implementation scopes, pros and cons from mining haulage requirements
perspectives. The following is the mining haulage system evaluation important parameters:
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1. Safety and productivity are indicators to measure system implementation scenarios.
2. Energy efficiency, CAPEX, OPEX, maintenance requirements, service life, additional

infrastructure requirements and heat generation are system financial metrics.
3. Emissions and environmental footprint (noise/dust/DPM/vibration) are system

environmental parameters.
4. Flexibility, Capacity, Scalability, Refuelling/Recharging/Swapping methods are sys-

tem productivity parameters.

4. Conventional Truck-Shovel Systems

4.1. Conventional Truck-Shovel System Operating Process

Conventional TS systems continue to dominate open pit mines because diesel-powered
trucks are extremely flexible in handling various materials with good grade capabilities
and easy manoeuvrability [18]. The classic TS system consists of various operating pro-
cesses, including manoeuvres and queues to the load point, spotting, loading, hauling the
material, manoeuvres and queues to the offload point, spotting, dumping, exit tipping
point, returning [19–21], which has been shown in Figure 5. To date, TS systems are the
most viable, flexible and widely used mining system, and autonomous trucks have further
enhanced their safety and effectiveness [19,22].

Figure 5. Conventional TS systems operating process.

4.2. Truck-Shovel Systems’ Characteristics

Truck-Shovel system continues to be the predominant mining hauling system of choice
for surface mines because of its ease of implementation, high flexibility, and high scalability.

1. Ease of implementation

The majority upfront expenditures of TS systems are trucks and loaders (e.g., excava-
tors and electric shovels). A greenfield project mine may begin operations with a relatively
small truck-shovel fleet and expand production capacity by purchasing larger units as the
mine matures [18]. In terms of mining design and layout, several hauling segments with
suitable road design, such as grade and road width, are required to complete the transport
cycle. From the commencement of mines, trucks and loaders are a very predictable and
controllable means of haulage from economic and operational points of view [17].

2. High flexibility

TS systems’ high flexibility that they have become the dominant system in surface
mining [23]. As TS systems are comprised of discrete elements, mine operators can dispatch
each unit to a tailored working face to fulfil mine production requirements. Due to fewer
mine design limitations and no infrastructure relocation, it’s easy to change the truck fleet
deployment schedule and mining tasks. Most importantly, trucks are capable of adapting
to different orebody shapes and geology conditions to adapt to unforeseen changes in an
open pit mine.

3. High scalability

As a mine matures, additional trucks will be added to accommodate longer haul cycles,
and larger trucks and shovels will be used to take advantage of economies of scale [24].
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Additionally, the number and type of trucks and loaders used can be readily adjusted to
change the production rate [17].

However, there are plenty of challenges with conventional TS system:

1. High operating costs

Approximately 40–60% (depending on the combination of hauling equipment) of
operating costs are attributable to haulage and material handling, notably TS opera-
tions [20,25,26]. The transportation distance starts to grow as mines become deeper, which
dramatically reduces truck productivity. In order to reach the nominal mine production rate,
the number of trucks in deployment needs to be increased. The demand for operating costs,
including capital expenditures, fuel consumption, workforce, haul road size, maintenance,
and repair service centres, all grow as the number of trucks increases [17].

2. CO2 and diesel particular emissions

Diesel-powered trucks emit a considerable amount of gas emissions and unique toxic
materials caused by diesel engines [27]. According to ABB statistics, a single mining truck
emits up to 1000 tonnes of CO2 annually. It would take 46,000 trees to absorb [28].

3. Labour force shortage

It is estimated that a conventional truck requires approximately seven people to
operate (including operating and maintenance) [24]. A two 12-h-shift-day roster consists
of 4.4 operators (0.4 to account for covering vacations and absences) and 2.7 maintenance
workers [11], which makes it difficult for a remote mine to recruit enough people to meet
its more significant truck fleet needs.

4. Fuel price volatility

Fuel energy cost is one of the most significant expenditures in the mining sector,
accounting for 15 to 40% (depending on mining system components) of total mine operating
costs on average [15]. The classic TS system is susceptible to the volatility of the fossil
fuel market since a significant portion of its energy derives from diesel fuel. Energy
consumption, chiefly by diesel-powered truck operations, is anticipated to increase further
as mining activity expands and demand for clean energy transformation metals rises [15].

5. Safety risks

As the most prevalent kind of transportation equipment, haul trucks are involved
in many accidents at operating mine sites, inspiring research interest in high potential
incidents and serious accidents [29]. According to a report, approximately one-third of the
deaths in Australian open pit mines are attributed to vehicle collisions [18].

6. Maintenance

Internal combustion trucks are complex, requiring highly skilled mechanics and high
maintenance costs for diesel-based engines. Another high cost is off-highway tyres because
tyre wear will be severe as increasing truck units. In the meantime, ancillary equipment
(e.g., grader, water truck and dozer) are applied to keep haul road and reduce environ-
mental footprint with a good maintenance condition to support TS system performance.
The maintenance cost of a conventional TS system is a significant portion of the hauling
operating expenditure.

Leveraging the economies of scale over the past two decades, mines prefer to use
larger trucks to increase productivity and reduce operating costs. However, larger trucks
cannot eliminate TS disadvantages, and they have other negative impacts on downstream
processes (crushing and milling). High benches and larger blasting patterns make it more
difficult to separate ore from waste and cause uncontrollable dilution. Consequently, a
substantial portion of ore material that meets the cut-off grade requirement becomes waste
or marginal due to dilution. Again, a larger proportion of oversize material would make
the comminution stage of the crushing and milling process more costly. From the whole
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mine-to-mill perspective, as feed grade is decreased, the processing recovery will result in
a greater percentage of valuable input materials being transferred into waste [17,30].

Large open pit mines have increasingly invested in Autonomous Haulage Trucks
(AHTs). A significant reduction in collision risks has been achieved with AHTs, along with
high levels of productivity and tire performance [31]. While autonomous technologies can
mitigate operator costs and improve energy efficiency, which is a significant portion of
the haulage cost, they require a higher investment compared to conventional trucks with
the same capacity [32]. Even with this sophistication, including the necessary hardware
and software, these AHTs cannot overcome the many problems with increased travel
distance [17]. More importantly, although AHTs are more fuel efficient, they cannot achieve
the actual decarbonization of the mining industry.

4.3. Truck-Shovel Systems’ Energy Consumption

The science of measuring the performance (productivity and energy consumption)
of mining equipment has evolved and reached maturity in terms of the truck haul cycle.
During ramp climbs, Siemens (2009) [33] estimates that 70–80% percent of diesel fuel is
consumed during haul operations. For an ultra-class dump truck, more than 40% of total
energy is consumed to return the vehicle’s mass to the ramp’s top [33].

5. Electrification Alternatives for Open Pit Mine Haulage

5.1. In-Pit Crushing and Conveying Systems
5.1.1. IPCC Systems’ Configurations

IPCC systems were first used in open pit mining operations in 1956 as an alternative
to the classic TS haulage technique [34]. Using a continuous mining operation method
often overcomes many of the drawbacks of the TS system. More specifically, compared
to the conventional transportation system, it is possible to reduce the labour force, fuel
consumption, and material size [14,28,35,36]. While most IPCC systems were used for coal
and ore materials in the past, which is beneficial for downstream processes, it is seen as an
unnecessary operating cost for overburden waste materials [18]. To date, however, IPCC
systems have been increasingly introduced for stripping waste operations in response to
the increasing hauling distance and stripping workload.

IPCC systems consist of crushers, in-pit conveyors (fully mobile), stationary conveyors,
conveyor crossings, tripper car spreaders (waste), slewing spreaders (waste) and radial
stackers (mineralized material). There are a variety of IPCC system alternatives available.
In general, there are four distinct sorts of IPCC systems, each with unique characteris-
tics. The four broad categories are: Fixed, Semi-Fixed, Semi-Mobile, and Fully Mobile
systems [11,13,24,37] and each characteristic shows in Table 1.

Table 1. IPCC systems’ characteristics.

IPCC Systems Type Fixed IPCC Semi-Fixed IPCC Semi-Mobile IPCC Fully Mobile IPCC

Crusher Type Gyratory or jaw Gyratory or jaw Twin roll or sizer Twin roll or sizer
Locations Near the pit rim and crest A strategic junction point in the pit Near the operational level Bench level in production

Relocations Time Rarely or never relocated Relocations every 3 to 5 years Relocations every 6 to 18 months Relocations as required to
follow the shovel

Feed Systems Shovel-Trucks Shovel-Trucks Shovel-Trucks and/or dozers Shovels

Use Deep hard rock mines—ore Deep hard rock mines -waste or ore Not common in deep hard rock
mines -waste or ore

Not common in deep hard
rock mines -waste or ore

1. Fixed In-pit Crushing and Conveying systems (F-IPCC)

In F-IPCC systems, the crusher is installed at a fixed location during the lifetime of the
mine with rarely relocated, usually near the pit rim and the crest of the pit. Within the pit,
the material is transported from the working face to the crusher unit using conventional
truck haulage. After being crushed, the material is fed into a conveying system that moves
it to either a spreader (waste material) or a stacker (mineralized material). F-IPCC system
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has its best application in deep, pre-existing pits, with low vertical advance rates, where a
single crusher location can service the operation for an extended period.

2. Semi-Fixed In-pit Crushing and Conveying systems (SF-IPCC)

In SF-IPCC systems, the crusher is fixed at a strategic junction point in the pit stage
for a certain period (usually 3 to 5 years). Truck haulage is also used within the pit to
move material between the working face and the crushing unit, just like with F-IPCC. The
differences are: SF-IPCC is designed to decrease the haulage distance to the crusher much
more than F-IPCC, and in order to relocate SF-IPCC, the entire crusher station must be
disassembled into multiple parts or modules.

3. Semi-Mobile In-pit Crushing and Conveying systems (SM-IPCC)

SM-IPCC is designed with a modular architecture to allow for the periodic movement
of the crusher every 6 to 18 months as the working face deepens, where the crusher is
operating near the mine working face (Figure 6). As the mine matures and increases in
depth, the crusher is relocated deeper into the pit approximately every two to five benches
(depending on the vertical advance rate) to maintain a short transport distance for the
truck portion. Trucks feed crushing units, and dozers can directly push materials to feed
crushers with a considerable cost reduction. Due to the continuous usage of trucks and the
possibility of deploying the crusher at appropriate locations, SM-IPCC systems are the most
easily accessible for current conventional hauling operations, which is also why SM-IPCC
is the most flexible hauling system of all types of IPCC. Most importantly, by leveraging
dozers or transport crawlers, the crusher can be relocated in hours without disassembling
it, significantly reducing unproductive downtime.

 

Figure 6. Semi-Mobile In-pit Crushing and Conveying systems (Source: Sandvik Mining and
Construction).

4. Fully Mobile In-pit Crushing and Conveying systems (FM-IPCC)

This system is distinguished by the loading unit dumping straight into the hopper of
a fully mobile crusher that follows it (Figure 7). Once crushed, the material is transported
straight from the working face to its destination through a network of conveyors. Utilizing
a comprehensive continuous mining system and eliminating the requirement for truck
haulage during steady state operation can dramatically save operational expenditure.
However, as FMIPCC’s flexibility is drastically constrained, the mine design must suit the
system’s requirements. In the meantime, truck haulage may still be required during each
sinking phase of a mine because FMIPCC needs to be capable of completing mining tasks
in complex geological conditions.
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Figure 7. Full-Mobile In-pit Crushing and Conveying systems [38] (Source: McCarthy, 2013).

5.1.2. IPCC Systems’ Characteristics

According to the literature review and mine site production experience, IPCC systems
offer the following benefits compared to TS alternatives. The advantages of the IPCC are:

1. Operational expenditure

As a mine’s activity grows, the pit deepens and the size of the waste dumps increases,
leading to a longer truck haul cycle and the need for more trucks to meet production
requirements. Compared to IPCC methods, truck haulage is often thought to be more
costly as distance and elevation increase [33]. With savings opportunities arising from
energy saving, workforce reduction, weight efficiency and maintenance, it is possible to
significantly reduce material transport operating expenses (OPEX) by using an IPCC system
compared to a truck haulage system. When other unit operations are considered, such
as drilling, blasting, loading and ancillary services, estimates prepared at the University
of Queensland put total mining costs at around 24% less in comparison to equivalent TS
operations [14].

2. CO2 emissions

IPCC systems are capable of a substantial reduction in CO2 emissions because of fuel
switching. An iron ore mine in Brazil with two installed FM-IPCC systems with a combined
capacity of 7800 t/h, resulting in an expected decrease in diesel use of 60 million litres per
year (ML/a), is an example of IPCC practice [11]. Reduced diesel consumption directly
translates into reduced CO2 emissions on site. In the same Brazilian mine, diesel savings
of 60 ML/a equate to an approximate reduction of 130,000 t/a of CO2. Considering that
the average passenger vehicle emits approximately 3.552 t of CO2 equivalent per year
(Commonwealth of Australia, 2012), this is equivalent to taking more than 36,000 cars
off the road per year [14]. The IPCC study [16] shows that when only fossil fuel-based
energy was used, the CO2 emissions per tonne of ore for the IPCC system were 67 kg
CO2 e/t as opposed to the TS system’s 70 kg CO2 e/t, a 3 kg decrease. It is possible to
reduce greenhouse gas emissions by 14 kg CO2 e/t ore using power generated from natural
gas [17]. With renewable energy, e.g., solar-based and wind-based electricity, IPCC can be
regarded as a decarbonization transport mining system.

3. Energy saving

Conveyor haulage naturally uses less energy per unit weight of material transported
than truck haulage. Another important aspect is that conveyors use more (81%) of the
consumed energy for the transportation of the payload in comparison to trucks (39%) [11].
More precisely, during a truck cycle, only 39% of the energy is used to move the payload;
the other 61% is needed to move the truck’s weight. Because the conveyor’s upper and
lower portions weigh much less than the overall amount of material for each metre of its
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length, just 19% of the energy used to move the material is wasted [17,39]. On the other
hand, IPCC can reduce a mine’s dependency on diesel fuel due to electricity-based [40].

4. Production efficiency

For the purpose of moving ore or waste to the appropriate areas, IPCC offers a
continuous transportation system method, which typically improves production rates [36].
Conveyor haulage provides superior production efficiency on comprehensive metrics of
assessing equipment performance, according to a comparison of the two systems (TS/IPCC)
based on utilized time, operating time, and valuable operating time metrics [33]. While the
truck fleet enables much higher available time and utilization time, IPCC achieves higher
operating time and valuable operating time, which means higher production efficiency
compared to the truck fleet [33].

5. Environmental footprint (noise and dust)

Since conveyors operate at a lower decibel level than conventional diesel-powered
trucks, IPCC systems may help minimize noise pollution. Reducing the number of trucks
on the road may significantly reduce the source of dust emissions, while some water will
still be needed in conveyor systems to suppress dust at transfer points [11]. In other words,
IPCC creates a better mining environment for the workforce from both noise and dust
perspectives.

6. Maintenance

IPCC usage decreases reliance on large off-highway tyres, which account for a large
portion of the truck fleet cost. Large off-highway tyre shortages will significantly impact
truck fleet availability and mining production rate. In addition to reducing haul truck
numbers, conveyors have been reported to reduce the need for ancillary equipment (graders,
dozers and water trucks) by 25–30% [11].

7. Workforce reduction

IPCC offers more opportunities to remote open pit mines with limited labour avail-
ability and high workforce cost, in some cases, as low as one operator for each major
component (crusher, conveyor, spreader/stacker), with minimal maintenance staff [24]. For
example, a FM-IPCC system has a total workforce requirement of around 80 people [37],
including operators and maintenance personnel. The exact staffing numbers will depend
on the number and installed length of conveyors. In comparison, it is estimated that a large
ultra-class mining truck requires staffing of 7 people per year. Thus, from a workforce point
of view, an IPCC system becomes an attractive alternative if it can replace approximately
12 trucks [14].

8. Safety

Abbaspour [29] demonstrated that these transportation systems behave differently
in terms of safety and social metrics by creating a simulation model over the whole mine
life, including TS and four types of IPCC systems. In conclusion, FM-IPCC stood first in
terms of safety, while the TS system was ranked fifth. A reduced truck fleet size will reduce
the possibility of vehicle collisions, which is a leading cause of safety incidents in surface
mining operations [14]. Because TS systems work in collaboration to feed fixed, semi-fixed
and semi-mobile IPCC systems [18], FM-IPCC is able to arrive at the lowest safety risk
indicator by eliminating the truck fleet.

9. Total cost operation over the mine life

In 2012, the typical capital expenditure for an IPCC system was between USD180 million
and USD250 million (depending on the types of IPCC, the number was estimated to be and
installed length of conveyors) [41]. For a 360-ton haul truck, the cost in 2009 was around
USD5 million [42]. It can be seen from Figure 9 that IPCC requires more significant capital
investment. The considerable gap causes plenty of greenfield project mines to embrace the
TS system when they hope to recover capital as quickly as possible. However, the IPCC’s
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accessories, such as the crusher and conveyor, are generally replaced every 20 to 25 years
(about 150,000 h), whereas the economic replacement age for trucks is around seven to
ten years of operation (between 45,000 and 60,000 h). This indicates that two truck fleet
replacements will be required for a mining project that is 25 years old (i.e., where the red
line drops in Figure 8). The conveyor system will require a lower total cost operation over
the mine life [17]. It is estimated that the operating expenses (OPEX) of conveyor haulage
are around one-third that of a comparable TS system. However, when capital expenditure
(CAPEX) is considered, the reduction in the total cost of operation over the mine life is
around 50 per cent [14].

 

Figure 8. The cumulative net present value comparison of TS and IPCC systems [11].

In the meantime, there are several disadvantages to IPCC versus TS:

1. Flexibility

Its flexibility is the most significant factor that hinders the commercial take-up of IPCC
systems when a mine considers an available mining system. Of the four types of IPCC
systems, SM-IPCC shows the best flexibility, while FM-IPCC is the worst. Mine design,
relocation and capability are limiting IPCC application.

(a) Mine design limitation. The decision-makers must cater to the installation require-
ments of the IPCC systems when they design the mine layout. Take FM-IPCC as
an example, the optimization of ultimate pit limit (UPL), considering the geometric
constraints connected with the installation of FM-IPCC systems, is one study field
that requires substantial further investigation [11]. Throughout each sinking phase
of a mine, truck haulage may still be required, but the distance of the haul may be
decreased by deploying and scheduling the trucks to dump into the fully mobile
crusher close to the mining activity [14].

(b) Relocation limitations. The IPCC has its specific extraction sequence. It is crucial to
design its optimal location and relocation strategy to minimize operating costs. Mine
designers need to trade-off large bench widths against production for an optimal
location and relocation strategy [37]. For instance, because FM-IPCC systems are
better suited to flat or gently dipping applications such as coal overburden or iron ore
mining, it reduces the ability of a mine to switch mining to a different zone to adapt
to unforeseen changes in market conditions or geology [14].

(c) Capacity limitations. Compared with the TS system, IPCC systems cannot be scaled
up or down as mining requirements change [38]. This is because IPCC’s major
components (crusher, conveyor, spreader/stacker) have their own capacity limitations.
An IPCC system also has a rated capacity, which reduces the ability to scale mining
rates up or down according to market conditions.
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2. Reliability

As IPCC systems are a series of connected systems, an unplanned delay or maintenance
outage in one piece of equipment will affect the throughput of the entire system [14]. The
availability of the whole IPCC system depends not only on the availability of the crusher
but on the availability of each of the conveyors that comprise the whole system; the more
components there are, the lower the reliability of IPCC systems [24].

3. Material requirements

The material requirements of IPCC transportation focus on material size and ma-
terial properties. In order to transport material via conveyor, particle size distribution
should be such that the largest material does not exceed approximately one-third of the
belt width [14]. On the material properties side, the ability to sustain high throughput rates
(4000–10,000 t/h) through a mobile crusher is key to IPCC system performance. Compre-
hensive knowledge of the material characteristics of the deposit and waste rock is required
to specify the correct crusher type [14].

4. Contractual constraints

IPCC systems are not available as off-the-shelf solutions. The current approach for
acquiring IPCC systems is via engineering, procurement, construction and management
contract, which adds cost and delay to a mining project. This procedure will likely change
once IPCC technology matures and gains greater acceptance [14].

Overall, the comparison results indicated that the IPCC system is superior for mining
activities requiring strict environmental management, long lifespan, high production rate,
and long-haul distances [17]. Generally speaking, the use of an IPCC continuous mining
system will lower the energy consumption and significant emissions in the haulage sector
of a mine, as well as reduce the cost of the haulage mine sector as a whole by millions of
dollars, which will ultimately boost the mining sustainability and economy [13].

5.2. Trolley Assist Systems
5.2.1. Theory of Trolley Assist

After the oil supply crisis in the mid-1970s, the surface mining industry turned its
attention to this fuel-saving technology. Several surface mines equipped with large off-
highway electric trucks considered introducing TA into their operations. The overall view
of the TA system is shown in Figure 9. As a solution that is a practical first step on the
path to low-emission mine sites, TA is a proven technology capable of providing external
electrical power to diesel-electric equipment. Recent advances in electric control technology
have made this type of haulage an attractive alternative to conventional diesel-electric
haulage [43].

The objective of mine decision-makers is to transport the highest volume of payload
per hour while minimizing operating costs over one haul cycle of the trucks within accept-
able risk boundaries [44]. Therefore, the power supply module which produces power
from a diesel engine may be integrated with overhead trolley electricity to achieve further
fuel savings [45,46]. The TA system is the most cost-effective on the ramps, where the
majority of the total energy is used [44].

As Figure 10 shows, after operators manoeuvre diesel-electric trucks leaving the
workface to arrive at the trolley ramp, operators determine the most appropriate time and
approach speed to enter trolley mode to raise the pantograph. The truck switches to trolley
electricity when the pantograph is activated and connected to the overhead power lines.
Additionally, the truck’s diesel engine enters idle mode, significantly saving fuel energy and
reducing CO2 emissions [45]. Because the electric wheel motor power commonly exceeds
engine power, the electric wheel motors’ full power capacity can achieve accelerating speed
in trolley mode [47]. From a power aspect, with pantographs, diesel-electric hauling trucks
could draw power from an overhead trolley line. However, diesel-electric power is still
required in the pit, surrounding the loader/crusher, during hauling level segments, and on
return travel [44].
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(a) 

 
(b) 

Figure 9. (a)The overall view of Trolley Assist system (source: ABB). (b) The detail of Trolley Assist
on the ramp.

Figure 10. A schematic of a typical TA operation and power process.

5.2.2. Configuration of Trolley Assist

Trolley Assist systems supplement the power requirements of diesel-electric haul
trucks via an external power source. Diesel-electric haul trucks are powered by a diesel
engine generating an Alternative Current (AC) that powers the rear wheel motors to deliver
torque to the wheels. Under Trolley Assist, the wheel motors are powered by an external
Direct Current (DC) power source, commonly an overhead power distribution system. TA
systems consist of three subsystems: power supply to the pit, overhead power distribution,
and trucks with TA capability (Figure 11) [48].
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Figure 11. System design of TA.

1. Power Supply to the Pit

Transmission lines from a utility source deliver AC power to strategically positioned
rectifier substations, providing DC power to the trolley line along the haul road. Rectifier
substations should be skid-mounted for mobility to accommodate changes in the haul
route [48]. The rectifier substations deliver power to the overhead power distribution
system along the haul route.

2. Overhead Power Distribution

Overhead power distribution is achieved by a catenary system that supplies electrical
power along the haul road. The catenary system allows the trucks to drive underneath
and connect to the DC power. The voltage supplied by the catenary system depends on
the wheel motors in the trucks using TA [49]. The catenary system is supported by poles
spaced approximately 20–30 m along the haul road. The supporting poles’ actual design
and spacing depend on the haul road characteristics.

3. Trucks with Trolley Assist Capability

Figure 12 illustrates a truck operating under TA. The truck conversion was required in
trolley mode when Trolley Assist systems were implemented, which in some cases required
rewiring the wheel motor circuit to operate in series during TA. A pantograph system was
required to connect the truck’s electrical circuit to the overhead power, which operators
determine the most appropriate times to raise or lower.

 

Figure 12. Truck with Trolley Assist capability operating on ramp (Source: ABB).
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5.2.3. Advantages and Disadvantages of Trolley Assist System

In each of the TA applications, there was widespread publicity of various benefits
resulting from the conversion to TA. The performance estimates of the TA system were
derived from an analysis of several South African fleets that had used the technology in the
past [48]. According to available reports and mine site production experience, TA systems
offer the following benefits compared to TS alternatives. The advantages of TA are:

1. Reduced Emissions

The most crucial advantage is significantly reducing truck fleet CO2 emissions [49].
According to ABB statistics, a single mining truck emits around 1000 tons of CO2 per
year [28]. Trolley Assist systems are most effective on the ramps, where most diesel energy
is consumed, and the emissions are emitted.

2. Reduced diesel fuel consumption

A substantial saving in diesel fuel is made possible on the ramp with the use of a TA.
According to a study case, the usage of TA decreases diesel consumption for ramp haulage
by 19 litres per kilometre per truck [50]. The value of the resulting savings depends on the
relative pricing of diesel fuel versus electricity. Indeed, relatively inexpensive electricity
is more popular than diesel, and fossil fuel prices have continued to rise in the past few
years. On the other hand, it is interesting to note that the several mines converted to TA
systems are located in southern Africa, where the region faced the most severe oil supply
problems during the 1970s. Reduced diesel fuel consumption can relieve the pressure on
remote mines with oil supply problems [51].

3. Productivity improvements

Electric motors also offer more torque at low speeds than traditional combustion
engines [52], which means electrified trucks are able to accelerate faster and provide better
speed performance on a ramp [49]. Due to the trucks’ higher gradient capability while
operating under grid power, the TA system makes it simpler to access the deeper portions of
the mine as mining depth increases. The use of TA on uphill hauls usually increases haulage
system productivity. The report shows the resulting benefits are truck speed increases
on a ramp from 13 km/h to 27 km/h [48]. The overall increase in truck productivity
depends on the relative length and road grade of the uphill ramps in the haul cycle, and
this productivity increase favours the use of TA for long uphill hauls.

4. Increase engine and wheel motor life

All the mines with TA systems have reported a substantial increase in engine and
wheel motor life cycles and running time. Increased speed on ramps results in shorter
times during which the wheel motors are at the full load; thus, motor overheating is less
likely to occur. With the same motors, longer ramps may be negotiated without undue
wheel motor wear, thus improving the haulage system for deep pit capacity.

5. Reduced fleet size

In a TA system, a single truck can complete one cycle in a shorter time due to its
higher speed, which means the TA fleet can transport the higher possible payload per
hour. Therefore, reducing the number of required trucks is likely to achieve production
requirements. Fewer trucks lead to reduced maintenance and workforce costs, plus reduced
capital expenditure.

6. Lower maintenance cost

Under TA haulage, a truck’s diesel engine idling reduces the duty on the engine
and increases the engine life. From a single truck perspective, trolley trucks need less
maintenance than conventional diesel trucks because of reduced truck engine maintenance
and fewer overhauls. On the downside, it is considered that the savings would be offset by
the increased cost of electric wheel maintenance and trolley system maintenance [50].
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7. Lower overall operating cost

Due to infrastructure and truck retrofit costs, although the TA system requires high
upfront capital expenditure, the overall operating cost can be lower than conventional
diesel trucks because TA is capable of reducing emissions (depending on carbon tax policy),
energy consumption, the number of trucks, and maintenance costs.

In the meantime, there are several disadvantages to TA versus T:

1. High upfront capital outlay

The TA system is more complex than the conventional TS system with respect to the
infrastructure of power supply to the pit, overhead power distribution, and the retrofit
of trucks with TA capability, which means a high upfront capital outlay. According to
research, the infrastructure cost per truck for adaptive measures and TA systems, which
need an overhead cable, is around 75% of the overall truck price [53].

2. Mine design and planning restriction

The most significant advantages of off-highway haulage are its flexibility to mine
schedule and ease of adjustment to a specific feature of the mined deposit. The installation
of a TA system has imposed several restrictions on the flexibility of mine design and
planning. While the trolley lines can be relocated, the relocation requires a skilled workforce,
specialized equipment, and time. Time lost during critical stages of mining operations may
have severe financial consequences. The cost and restrictions associated with the trolley
shifting operation are likely to discourage frequent haul road relocations and restrict traffic
patterns. Trolley shifting is another challenge in trolley ramp structural design, which
affects trolley system performance. While not all the restrictions may apply to each mining
situation, the associated costs for those that do apply should be evaluated and accounted
for. More importantly, the TA system still preserves the majority of benefits in flexibility by
using diesel-electric trucks. Although TA system flexibility is less than the conventional TS
system, it is higher than IPCC systems.

3. Trolley Assist system maintenance

The reported experience with the existing TA system indicates that the distance
between the trolley wire and the haul road surface must be closely controlled [54]. The need
to maintain smooth haul routes and tight tolerances between the haul road surface and
overhead lines is currently experienced with trucks operating under a TA system where
wheel path wander is minimal due to the requirement to position the pantograph under the
power lines. In this case, more ancillary equipment is necessary to maintain road quality.
In addition, the maintenance costs include infrastructure maintenance and inventory of
related spare parts and materials.

4. System capacity

The trolley sections have a limited capacity and are only able to accommodate a given
number of trucks due to grid power limitations. When this number is on the section, the
next truck cannot be accepted, and it must wait or travel powered by its diesel engine.
Furthermore, slow-moving equipment, such as water trucks and graders, may slow the
Trolley Assisted truck down. Truck schedules need to balance production tasks and
maintenance requirements while considering TA technology’s capacity. Bunching of trucks
frequently occurs in TA operations, resulting in potential productivity loss. Therefore,
considering system capacity limitations, the TA fleet needs a more effective dispatch
strategy.

5. Access to Electricity

Installation of a TA system will require additional electrical power capacity. The TA
system becomes an option for mine sites that can increase their electrical power capacity
(i.e., readily available power or excess capacity). The adoption of the truck haulage system
outside South Africa indicates that TA may be economically feasible in situations without
very high diesel-to-electricity cost ratios. For remote mines, renewable energy sources, such
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as wind turbines and solar PV, may be used as alternatives to fulfil the electrical power
requirement of the TA system, which will be driven by decarbonization.

6. Operator requirement

Operator training is essential to the truck haulage system because operators determine
the most appropriate times to raise or lower the pantograph. The higher truck speeds
combined with narrower steer paths demand more excellent skill and concentration from
an operator. Greater awareness of the truck’s dimensions is required to avoid collision with
the catenary system supporting poles. If the truck loses contact with the trolley wire on the
ramp due to erroneous driving, it will cause a severe bunching phenomenon because of
lower speed and loss of potential productivity.

In most cases, a permanent, long-haul route with TA on the ramp out of the pit
will result in the best economic benefit for Trolley Assist. The TA system’s economic
feasibility depends on several factors, including the availability of alternative electricity,
diesel fuel and electricity costs, the cost of employing operators, and resulting maintenance
requirements.

5.3. Battery Trolley Systems
5.3.1. Theory of Battery Trolley

The mining industry is working on a series of projects to achieve zero-emissions fleet
requirements. Battery Trolley deployment is one such option [4,46]. Battery Trolley aims to
offer a haulage mining system using the full source of electrical power as a decarbonization
technology through autonomous high-intensity battery-electric trucks, TA systems and
energy recovery systems.

5.3.2. Technology Uptake

It is advanced technology development that gives BT a chance to be a reality. Battery-
electric power, autonomous deployment, TA and energy recovery technologies are the
critical drivers for the BT to achieve the decarbonization pathway, which are core compo-
nents in the future plans for deeper phases [31].

1. Battery-electric power technology

Electromobility, defined as the development and usage of electric-powered vehicles, is
an industry-wide technical trend [31]. BEVs are one of the choices available to accomplish
ambitious decarbonization goals. New battery designs with superior usage performance
and lower cost will boost BEVs’ competitiveness in the mining sector. Battery electric
trucks have fewer mechanical systems and control logic than conventional hybrid ones,
which results in reduced failure rates and more straightforward maintenance [45]. Nev-
ertheless, battery size, energy density, battery swapping and charging, battery health
and management are challenges facing the mining sector when thinking about applying
battery-powered trucks.

2. Autonomous technology

According to statistics collected by GlobalData, by May 2022, there were 1068 au-
tonomous haul trucks operating worldwide, a 39% yearly growth. Caterpillar and Komatsu
supply 86.5% of the trucks monitored by the Mining Intelligence Centre, with the 793F
and 930E being the two OEMs’ most popular models, respectively [55]. That is because
autonomous solutions can improve safety, equipment availability, and overall productivity
on any mine site without machine operators sitting in the cab. As for the BT, determining
the most appropriate times by leveraging autonomous technology to raise or lower the
pantograph is the best option. BT systems are capable of taking advantage of autonomous
trucks from both safety and productivity perspectives.

3. Trolley Assist technology

Battery electric vehicles are one option for mining trucks. However, in order to
overcome battery size and energy density defects, mining trucks need TA technology to
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provide ascending energy on an uphill where the most energy is consumed. TA technology
makes BT available by offering electric power to battery trucks, which enables battery
trucks to haul for a long time.

4. Energy recovery system

The BT is able to leverage an energy recovery system to recuperate braking energy,
which is used to charge the onboard battery when returning downhill [47]. The depth
alterations connected with mining development bring significant variations in haul cycles
and recoverable potential energy per cycle [56].

5.3.3. Battery Trolley Advantages and Disadvantages

Battery Trolley makes it possible to achieve the first zero-emissions truck fleet as a
green solution, which is available to remove the reliance on fossil fuels by using battery-
electric power in mining haulage systems. Except for decarbonization, reducing energy
costs and TA’s advantages, the BT can achieve lower maintenance costs for a single truck
without a diesel engine. Additionally, from the overall mine operating life, the operating
costs of BT are less than the conventional diesel truck fleet because of using electricity as
end-use energy, which is similar to IPCC.

In spite of the advantages associated with BT, decision-makers may be reluctant
to use it for some reasons. From diesel-electric to battery-electric power, this transition
would significantly increase the mine’s electricity cost and demand, as well as the power
infrastructure and station capital expenditure. Additionally, the battery truck fleet has to
face many challenges, such as battery size and performance, high upfront capital outlay,
feasibility, availability, capability, truck fleet dispatching, mine design restrictions, and
ancillary equipment maintenance schedule arrangement.

5.3.4. Battery Trolley Systems Configurations

Like IPCC systems, there are three possible configurations for BT. Each type has its
pros and cons, which can be used in unique mining situations.

1. Dynamic charging BT configuration

Dynamic charging technology enables the ability for grid power to be used to power
the electric drive motors and charge the onboard vehicle battery simultaneously. The
dynamic charging BT consists of the battery-electric truck, the TA systems and dynamic
charging technology.

Figures 13 and 14 are, respectively, the dynamic charging BT systems operational
process and power source. Battery-electric trucks load and haul with battery power,
switching to trolley mode after arriving at the trolley ramp. The battery consumes energy at
a much lower rate for cooling and idling. At the same time, the grid power is simultaneously
used to charge the on-board battery and provide the wheel motors output power on the
trolley ramp. When the battery-electric truck comes onto an ex-pit flat road, it returns to
battery power mode to complete hauling, queueing, dumping and returning manoeuvres.
The battery-electric truck then enters energy recovery mode on the downhill ramp. The
energy recovery system transforms truck braking power into electric energy that can be
stored on the battery. The battery-electric truck then reuses battery power to return to the
loading point.
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Figure 13. A schematic of dynamic charging BT systems operational process.

Figure 14. A schematic of dynamic charging BT systems power source.

2. Stationary charging BT configuration

In stationary charging method, a battery station is necessary for battery charging/
swapping. As for choosing charging method or swapping method, it depends on charging
C-rate and swapping time. The location of battery station is selected on the crest of pit for
providing enough permanent room to build infrastructure and park trucks. The stationary
charging Battery Trolley consists of the battery-electric truck, the TA systems and battery
station.

Figures 15 and 16 are, respectively the stationary charging BT systems operational
process and power source. Battery-electric trucks load and haul with battery power,
switching to trolley mode after arriving at the trolley ramp. The battery consumes energy
at a much lower rate for cooling and idling. At the same time, the grid power is capable
of providing the max wheel motors output power to operate in a faster speed on the
trolley ramp. When the battery-electric truck comes onto an ex-pit flat road, it returns to
battery power mode to complete hauling, queueing, dumping and returning manoeuvres.
According to on-board battery size design and energy consumption, the battery-electric
truck needs to charging/swapping battery within each cycle or every two/three cycles.
The battery-electric truck then enters energy recovery mode on the downhill ramp. The
energy recovery system transforms truck braking power into electric energy that can be
stored on the battery. The battery-electric truck then reuses battery power to return to the
loading point.

Figure 15. A schematic of stationary charging BT systems operational process.
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Figure 16. A schematic of a typical BT systems power source.

3. Dual trolley BT configuration

Research shows that for downhill hauls, a bidirectional substation enables energy
feedback to the grid [44]. It is reasonable to install a dual trolley system for better energy
capture performance in a BT system: the uphill ramp trolley enables the ability for grid
power to be used to power the electric drive motors while the downhill ramp trolley
captures braking energy and returns it to the grid. The dual trolley BT consists of battery-
electric trucks and a double trolley system.

Figures 17 and 18 are, respectively, the dual trolley BT systems operational process
and power source. Battery-electric trucks load and haul with battery power, switching to
trolley mode after arriving at the trolley ramp. The battery consumes energy at a much
lower rate for cooling and idling. At the same time, the grid power is capable of providing
the max wheel motors output power to operate in a faster speed on the trolley ramp. When
the battery-electric truck comes onto an ex-pit flat road, it returns to battery power mode to
complete hauling, queueing and dumping manoeuvres. According to on-board battery size
design and energy consumption, the battery-electric truck needs to charging/swapping
battery within each cycle or every two/three cycles. The battery-electric truck needs to
charging/swapping batteries on returning travel when it passes a battery station located
on the pit’s crest. The battery-electric truck then enters energy recovery mode downhill
by engaging the trolley line, which captures braking energy back to the grid. The battery-
electric truck then reuses battery power to return to the loading point.

Figure 17. A schematic of dual trolley BT systems operational process.

Figure 18. A schematic of dual trolley BT systems power source.
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6. Discussions

In order to achieve optimum make-decision in mining haulage systems, it is necessary
to use the mining system analysis method for evaluating each mining system parameter in
Table 2.

Table 2. Comparison between diesel TS, IPCC, TA and BT.

Parameter Diesel TS SF/M IPCC FM-IPCC TA
Dynamic

Charging BT
Stationary

Charging BT
Dual Trolley BT

Flexibility High Medium Low Medium Low Medium Medium
Energy

Efficiency Low Medium High Medium High High High

CAPEX Low High High High High High High
OPEX High Medium Low Low Low Low Low

Maintenance
Requirements High Medium Low Medium Medium Medium High

Service Life Short Medium Long Long Long Long Long
Additional

Infrastructure No No No Yes Yes Yes Yes

Refuelling/
Recharging/
Swapping

Fast None None Fast None Low Low

Emissions High Low None Low None None None
Heat Generation High Medium Low Medium Low Low Low
Environmental

Footprint
(Noise/Dust/

DPM/Vibration)

High Medium Low Medium Low Low Low

Reliability High Medium Low Medium Low Medium Low
Scalability High Low Low Medium Low Medium Low
Capability No Yes Yes Yes Yes Yes Yes

Safety Low Low Medium Low Medium Medium Medium

According to Table 2, diesel TS shows the best performances in flexibility, CAPEX, refu-
elling, reliability, scalability, and capability, which explains why classic TS are prevalent in
all kinds of greenfield and brownfield mining projects. IPCC is capable of mitigating the TS
disadvantages from energy efficiency, maintenance, refuelling, emissions, heat generation,
and environmental footprint points. However, flexibility, CAPEX, reliability, scalability,
and capability characteristics are the constraints for IPCC, especially FM-IPCC, to large-
scale applications in mine sites. Due to diesel-electric power and trolley limitations, TA
shows medium performance in almost all parameters. In the dynamic charging alternative,
because the onboard battery energy source is from grid charging uphill and energy capture
downhill, the battery-electric trucks cannot complete one haul cycle without enough trolley
lines charging. Therefore, dynamic charging BT has lower flexibility, reliability, scalability
and capability compared with stationary charging BT, while no recharging/swapping
battery need in the battery station is the most significant merit for dynamic charging BT
systems. Because of flexibility limitations and considerable capital outlays, dual trolley BT
is unlikely to be popular in large-scale BT deployment. However, dual trolley BT is suitable
for some unique mine site conditions like super-depth copper mines.

7. Conclusions

The mining industry is now at a crossroads with surface mining fleets as it works to
meet interim reduced emissions and final net-zero targets. A big part of that is moving
away from diesel to electricity alternatives. This paper depicts the various haulage systems
from diesel-based power trucks to electric-based power IPCC, diesel-electric power TA
systems and battery-electric power BT systems. IPCC and TA are ramping up due to
reasonable economic and emission reduction, whilst trucks operating in conjunction with a
conceptual BT system could decarbonise haulage mining systems in open pit mines. All
these haulage systems are interrelated and complementary. They cannot be determined
in isolation, which requires further comparison and analysis of their mine sites’ practice
performance, whereby all advantages and disadvantages are considered simultaneously.
Large open pit mines may require a combination of different systems, e.g., SM-IPCC and
BT systems, to achieve the decarbonization haulage system.
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Abbreviations

TS Truck-Shovel
IPCC In-pit Crushing and Conveying
TA Trolley Assist
BT Battery Trolley
ERSs Energy Recovery Systems
CAPEX Capital Expenditures
OPEX Operating Expenses
STEPS Stated Policies Scenario
APC Announced Pledges Case
SDS Sustainable Development Scenario
NZE Net Zero Emissions
IEA International Energy Agency
GHG Greenhouse Gas
PV Photovoltaic
NEM National Electricity Market
TGP Terminal Gate Price
DPM Diesel Particulate Matter
AHTs Autonomous Haulage Trucks
FIPCC Fixed In-pit Crushing and Conveying
SFIPCC Semi-Fixed In-pit Crushing and Conveying
SMIPCC Semi-Mobile In-pit Crushing and Conveying
FMIPCC Fully Mobile In-pit Crushing and Conveying
UPL Ultimate Pit Limit
AC Alternative Current
DC Direct Current
BEVs Battery-electric vehicles
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Abstract: With the understanding that the mining industry is an important and necessary part of
the production chain, we argue that the future of mining must be sustainable and responsible when
responding to the increasing material demands of the current and next generations. In this paper,
we illustrate how concepts, such as inclusiveness and the circular economy, can come together in
new forms of mining—what we call inclusive urban mining—that could be beneficial for not only
the mining industry, but for the environmental and social justice efforts as well. Based on case
studies in the construction and demolition waste and WEEE (or e-waste) sectors in Colombia and
Argentina, we demonstrate that inclusive urban mining could present an opportunity to benefit
society across multiple echelons, including empowering vulnerable communities and decreasing
environmental degradation associated with extractive mining and improper waste management.
Then, recognizing that most engineering curricula in this field do not include urban mining, es-
pecially from a community-based perspective, we show examples of the integration of this form
of mining in engineering education in first-, third- and fourth-year design courses. We conclude
by providing recommendations on how to make inclusive urban mining visible and relevant to
engineering education.

Keywords: urban mining; circular economy; sustainable development; engineering education;
humanitarian engineering; community development

1. Introduction

The first reference to urban mining is claimed to be in The Economy of Cities by the
Urban Theorist Jane Jacobs in 1969 [1]. In her piece, the author described future cities as
mines with huge, rich, and diverse raw materials [1,2]. However, the origins of this concept
are still under discussion [3], and differences in definitions arise based on the contrasting
ideologies and priorities of stakeholders yielding the term.

In general, an “urban mine” is understood as the urban accumulation of anthropogenic
materials aboveground [2,4], and “urban mining” could be interpreted as the activity that
converts “wastes” into resources [5]. Aldebei et al. [2] understand urban mining as a
metaphor for describing the same activities of prospecting, exploration, development, and
exploitation as traditional mining. For the purpose of this article, we will utilize the follow-
ing definition proposed by Cossu and Williams, “Urban Mining extends landfill mining to
the process of reclaiming compounds and elements from any kind of anthropogenic stocks,
including buildings, infrastructure, industries, products (in and out of use), environmental
media receiving anthropogenic emissions, etc.” [6] (p. 1).

The term “urban mining” is assumed to be applicable to many kinds of waste [5].
However, this work is based on two specific streams, namely construction and demolition
waste (C&DW) and waste of electrical and electronic equipment (widely known as WEEE
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or e-waste). These are two of the most relevant anthropogenic sources in terms of quantity
and economic incentive [7]. E-waste mainly motivates research and practice because of
its high concentration of rare earth minerals, and buildings and infrastructure waste are
the largest anthropogenic stock worldwide. In other words, C&DW is “the largest urban
mine” [2] (p. 6).

As a direct consequence of the population growth, urbanization, and excessive con-
sumption that characterize the last century, the exploitation of natural resources and the
generation of waste have increased radically [5]. Under these circumstances, the concept
of urban mining of anthropogenic wastes has been introduced for almost four decades as
an alternative to the conventional way of extracting raw materials, which is particularly
important to decrease their depletion and lower the mining footprint [8]. For example,
managing electrical and electronic equipment under the circular economy approach can
reduce the use of raw materials to produce new devices by up to 80% [7].

Urban mining also serves as an approach to sustainable waste management in cities
and can be a source of new job opportunities for young people and/or immigrants [7]. As
an anthropologist studying informal e-waste management in Tanzania observed, “( . . . )
recycling offers a skilled vocation, with a sense of stepped progression, secure revenue and
entrance into a social support network that sustains and enhances local lives” [9] (p. 7).
Therefore, urban mining also has the potential to become inclusive by contributing to the
production of goods and offering services while simultaneously pursuing social objectives
to enhance the quality of life of vulnerable communities.

Although it is promising as an economic, social, and environmental activity, urban
mining still has its limitations. The recent efforts in legislation to promote urban mining
that have been implemented in Europe and other regions, for example, the WEEE Directive
(2012/19/EU) and its recent amendments that have become international models for e-
waste management [10–12], are not enough to deal with the 82% of electrical and electronic
equipment that is not treated in a sound environmental manner [7,12] and the 35% of
C&DW that still ends up in landfills globally [13]. The causes of these figures include low
recovery efficiency rates as a consequence of inefficient product design, lack of develop-
ment and effective implementation of regulations and certifications to promote the use of
reused materials, negative perceptions about second-hand materials and products, lack of
awareness about the benefits of urban mining and the impacts of e-waste and C&DW, space
scarcity in urban centers to store materials, high costs of best-quality recycling processes
that make it difficult to afford for small and medium-sized enterprises (SMEs), and high
competitiveness of landfilling associated with immature local markets and poor economic
incentives for the circular economy [7,14].

In Latin America, despite advances in this field, much work still needs to be un-
dertaken to improve the low e-waste recovery rate below 2% [12] and C&DW recovery
rate below 10% [15]. As a result, a significant part of the waste with economic potential
is abandoned in open spaces [2] or exported, resulting in lower efficiency of the waste
management systems [16]. Furthermore, this situation limits green job opportunities in the
region, especially for informal waste pickers and recyclers, who currently play a key role in
the circular economy [17,18].

In the last decade, many international organizations have focused on this issue, and
financial resources have been allocated in this field, e.g., the 2018–2022 UNIDO-GEF PREAL
project for the Environmentally Sound Management of POPs in Waste of Electronic or Elec-
trical Equipment [19]. However, projects and research are, in general, led by stakeholders
interested in industrial ecology, waste management, environmental health, and the circular
economy rather than academics and researchers from the mining sector with an interest in
the potential of urban mining as an alternative economic activity of material extraction and
social empowerment [18].

While the traditional training of mining, metallurgical, and materials engineers might
not focus on urban mining [18], we agree that “shortly, our society is undergoing an ac-
celerating transition from virgin mining of linear economy to urban mining of circular
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economy” [20] (p. 104), and we suggest these groups should be part of this transition.
Johansson et al. [18] claim that, as was the case for traditional and deep-sea mining, the
development of technology could make urban mining attractive as an economic activ-
ity. They also highlight that even if the nature of mining changes, as with any mining
activity, engineers and researchers specialized in materials composition, collection, extrac-
tion, separation, and recovery are crucial to overcoming current technological challenges
for implementation.

In light of the need for further research and initiatives, there is a potential for science
and engineering education to contribute to these global challenges. Some scholars reported
a constant declining interest in mining studies worldwide [21] and proposed a focus on
sustainable development to generate new competencies and subjects and promote inno-
vative solutions and technologies by emphasizing environmental and social aspects [21].
Literature has reported the positive impacts of incorporating non-traditional mining areas
into traditional engineering programs, for example, the case of incorporating artisanal
and small-scale gold mining (ASGM) into the curriculum of an engineering college in the
US [22,23], an approach that was also recommended by organizations, such as USAID
and UNITAR as a crucial step towards formalization of the activity [24,25]. In this context,
urban mining could also be proposed as an alternative to attract more students into the
mining sector.

2. Objectives

Understanding that the mining industry is an important and necessary part of the
production chain that should be aligned with international environmental agreements and
goals, e.g., the United Nations 2030 Agenda and the Sustainable Development Goals, the
future of mining must be sustainable and responsible when responding to the increasing
material demands of the current and next generations. With this in mind, in this paper,
we illustrate how concepts, such as inclusiveness and the circular economy, can come
together in new forms of mining—what we call inclusive urban mining—that could be
beneficial not only in mining engineering curricula and the mining industry but also for
environmental and social justice efforts aimed at empowering vulnerable groups in regions,
such as Latin America.

Population movement from rural areas to urban centers has created increasing demands
for employment, often for individuals with low levels of education and literacy [26–28]. In
this context, cities play a role in offering stable, secure, formal, economically sufficient,
and dignified green jobs, including in the waste management sector [7]. Taking this into
account, we begin by demonstrating how, if recognized, inclusive urban mining could
present an opportunity to benefit society across multiple echelons, including empowering
vulnerable communities (Section 5.1) and decreasing environmental degradation associated
with extractive mining and improper waste management (Section 5.2). To do so, we use
our research experiences in the C&DW and e-waste sectors in Colombia and Argentina to
show how present and future urban miners are or can be empowered to build livelihoods
out of treating what is traditionally seen as waste and how their path could be extended to
prospective miners. Then, recognizing that most engineering curricula in this field (e.g.,
mining, environmental, and materials engineering) do not include urban mining, especially
from a community-based perspective (Section 6.1), we show examples of the integration
of this form of mining in engineering education in first-, third- and fourth-year design
courses (Section 6.2). Finally, we conclude by providing recommendations for how to
make inclusive urban mining visible and relevant to engineering education in different
institutional contexts.

Given the few works found in the literature that introduce these ideas and perspectives,
we challenge the status quo by proposing a conversation on a new paradigm that completely
changes how we understand and treat material stocks. In this regard, we understand that
the novelty of this study should be highlighted.
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3. Description of Study Sites

3.1. C&WD in Colombia

In the past decade, there has been a rise in research and literature on C&DW man-
agement issues [29], and several countries, such as Germany, Spain, and Belgium are
adopting strategies to treat and handle this type of waste [30]. However, Latin America
lags in this area, and some countries, such as Colombia, despite generating vast amounts
of C&DW, have not made noteworthy progress in managing it [31]. An estimated 35% of
C&DW is disposed of in landfills without further treatment [32]. In their article, Colorado
et al. attempt to obtain the first quantified values of C&DW in Colombia [13]. However,
information on the management of C&DW in Colombia is very scarce, and Colorado et al.
concluded that no reliable data depicting the amount of C&DW generated annually in
Colombia exists. Similarly, most countries in Latin America do not collect data on the
generation and quantification of C&DW [13].

Nevertheless, within a thesis project from 2003, author García Botero detailed C&DW
in Bogotá, Colombia and examined if the sustainable development needs of the city are
being met [33]. He concluded that approximately 99% of C&DW in the context of Bogotá
is “useable”, and a majority of this C&DW is made up of concrete, asphalt, brick, blocks,
sand, gravel, earth, and mud. Furthermore, Méndez-Fajardo’s article argues that recycling
and reusing C&DW can produce significant positive impacts for citizens; however, these
potential values are often overlooked [34]. These positive impacts can be seen at multiple
echelons, including the environmental, social, cultural, economic, and even political level.

To study how to promote and support inclusive C&DW management in Colombia for
the empowerment of low-income communities, we worked with Community A, a small,
low-income community located just outside Girardot in the department of Cundinamarca.
Girardot is a popular vacation spot and houses many recreational activities due to its
warmer, tropical climate and proximity to Bogotá, the capital of Colombia which is home
to over seven million people.

Unfortunately, not much is officially known about Community A. Based on our
estimates, about 200 families live in the community, many of which do not have access to
sewage systems. This site was considered relevant for our study because of their desire to
take part in the project as well as the occupational profile of the inhabitants. While many of
the men in the community work in construction practices, most of the women work in the
informal sector (selling products, such as soda, avocados, and arepas from their homes or
on carts either in the city or on the surrounding roads) or are unemployed. Furthermore,
despite their occupational status, all the women in Community A are caretakers in their
homes as well, for their children, parents, pets, and households. The local knowledge
and the gender-related disparity in terms of job opportunities made Community A an
interesting sample to study inclusive urban mining. The members in the community we
spoke with wanted to learn how to extract value from C&DW and how they could make
it profitable for themselves and their families. Thus, the goals of this project were refined
with the guidance of the community, to increase education about C&DW and find a way to
make this effort profitable.

3.2. E-Waste in Argentina

Despite the fact that Argentina had the highest generation of e-waste in 2019 (328 kt)
out of the 13 countries studied by Wagner et al. [35], the management of this waste stream in
Argentina is considered to be at a nascent stage, and little is known about it. Recent reports
developed by national authorities confirmed a data gap [36], and the lack of regulations
reveal that electronic waste management is a pending issue in the country. However, there
are communities whose income depends on these materials. Some sources estimate that in
2017, nationally there were 600 people working in the informal e-waste recycling sector,
and the number grew to around 2000 workers in 2019 [37]. A different source indicated
that there were 2800 workers in 2019 in only 14 municipalities in the province of Buenos
Aires [37].
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The province of Buenos Aires and the City of Buenos Aires were selected as study sites
in Argentina because they agglomerate the largest population and contain the enterprises
and cooperatives that process the highest amount of e-waste [35,37]. In order to address
the topic of inclusive urban mining, four cooperatives were studied. Cooperatives are
“autonomous associations of persons united voluntarily to meet their common economic,
social and cultural needs and aspirations through a jointly owned and democratically con-
trolled enterprise” [38]. Three of the cooperatives under study are exclusively dedicated to
e-waste, and one is a cooperative dedicated to solid waste but brings together workers who
individually recover e-waste materials. Additionally, we included one university extension
program currently offering e-waste management services in the province. The names and
specific details of these facilities are protected, so they cannot be easily recognized.

• Facility A (cooperative): It started in 2018 as a solid waste cooperative, and since 2022,
its members have decided to explore e-waste processing as an additional source of
income. The e-waste sector now has five workers and one coordinator. They are in the
process of formalizing their activity in relation to e-waste management.

• Facility B (cooperative): It is a solid waste cooperative that started almost ten years
ago. They have more than 150 members, and almost half of them individually recover
e-waste material from the streets. This cooperative is interested in e-waste, but its
members do not yet have experience with this waste stream.

• Facility C (cooperative): With almost 20 workers, this cooperative is one of the
province’s most advanced small social businesses. They have already obtained legal
permission to manage e-waste, their main activity.

• Facility D (cooperative): It has over 20 years of experience in the business and employs
more than 25 workers. The cooperative is recognized as a formal e-waste operator and
treats almost 1,400 tons of waste per year.

• Facility E (University extension program): It began as an academic extension program
and now is one of the few e-waste operators in the province. Since 2009, they have
trained 1168 students and treated 217 tons of e-waste.

4. Methods

4.1. Methodological Framework and Ethical Considerations

As the local knowledge of communities is crucial for developing sustainable and just
solutions [39], our research methods were participatory and we took a qualitative approach
to understand the neglected knowledge, expertise, and values of the communities we
worked with, as well as the complex systems that shape their lives. Qualitative method-
ologies, such as semi-structured interviews, participant observation, focus groups as well
as workshops, were utilized to build this understanding. Figure 1 summarizes the logical
items of this study.

Both projects were approved by the Colorado School of Mines Human Subjects Re-
search Team and exempted from the Institutional Review Board (IRB) process requirements.
The research in Colombia was developed in partnership with a Colombian university,
Corporación Universitaria Minuto de Dios or Uniminuto. The groups specifically working
on this project were the Parque Científico de Innovación Social (PCIS)/the Social Innovation
Science Park, a research group led by Civil Engineering and Occupational Health and Safety
Professors with social justice aims entitled Ingeniero a tu Barrio, the international studies
group in Uniminuto-Girardot, as well as communication specialists including Professor
Martha Liliana Herrera Gutiérrez, who was responsible for translation, facilitation, and
communication. Together we worked directly with a low-income community in Colombia,
Community A, to study how recycling C&DW, specifically concrete, could empower them.
Approval for this research was also obtained from local Colombian authorities, including
Uniminuto’s PCIS as well as their research ethics committee. Additionally, the research in
Colombia adheres to Uniminuto’s Social Innovation Route Framework [40], a five-phase
community engagement framework developed by PCIS.
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Figure 1. Schematic representation of the logical items of this study.

4.2. Semi-Structured Interviews

Throughout the six weeks of fieldwork on C&DW completed in Colombia during June
and July 2022, we interviewed 17 women and 12 men from differing backgrounds, includ-
ing low-income community members, community leaders, engineers, academics, students,
waste management experts, and government officials. During each interview, translation
services were provided by professors from Uniminuto. Within these interviews, we asked
our interlocutors to describe their backgrounds, knowledge of concrete and C&DW, risks
and barriers they believed could prevent recycling C&DW in low-income communities,
and if any groups could be disproportionately affected by these risks. Additionally, as
this project had specific social justice goals to contribute to women’s empowerment in
low-income communities, our focus was to speak mostly with women in the commu-
nity to understand their interpretations of women’s empowerment and define how they
specifically wanted this project to empower them.

A series of exploratory interviews were conducted during June and July 2022 for the
research on e-waste. A total of 15 government representatives, researchers, and members
of e-waste cooperatives and programs were interviewed. The meetings, each lasting
approximately one and a half hours, were held virtually. The interviews aimed to obtain
preliminary information on the current situation of e-waste management in Argentina, with
a particular focus on the province and the city of Buenos Aires. Participants were asked to
describe their workplaces, e-waste-related practices and dynamics, the challenges the sector
faces, and their opinions on past and current waste management strategies. Additional
unrecorded interviews with e-waste workers and government officials were also conducted
during the participatory observation visits described in the next section.

4.3. Participatory Observation

Upon beginning our fieldwork session in Colombia, the Uniminuto team immediately
began facilitating meetings with Community A. As the Uniminuto team had already
collaborated with this community in the past, many community members already knew
most people on our team. However, building rapport with the community during these
meetings was essential for the group members who had not previously worked with
Community A. Thus, time was spent introducing ourselves and our goals and conversing
with the community members. To understand the community’s goals for this project, it
was essential to understand the context of the community, their values, beliefs, journeys,
destinations, language, knowledge, and more through participant observations. We spent a
lot of time trying to understand the knowledge community members had about C&DW
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and recycling. We learned the community was already utilizing C&DW in their homes and
on shared roads but in unsustainable ways. While there is a Junta de Acción Comunal for
the community (a legally protected organized civil structure made up of members of the
community), there are also natural leadership structures and leaders as well. Despite this
divide in power structures, both groups wanted to find a way to make recycling C&DW
profitable and beneficial for the community. The understanding of these relationships
contributed to the understanding of urban mining potential in the community.

In Buenos Aires, jointly with the representatives of two local government agencies,
three visits to e-waste facility A and two to facility B were conducted in August 2022. In
facility A, the researcher was accompanied by a team consisting of one toxicologist and
three social workers, and in facility B an environmental professional led the visit. Three
other e-waste facilities in the province of Buenos Aires were visited by the researcher.
During these encounters, neither video nor audio recordings were made. Photographs of
the workspace, machinery, devices, and waste were taken with the previous authorization
of participants. The objective of this observation was to understand the different contexts
of e-waste workers, their work dynamics, power distributions, needs, concerns, and desires.
These interactions helped identify new actors and refine data on materials and equipment,
collection and treatment practices, and the value chain characteristics.

4.4. Workshops

Through the preliminary analysis of the data gathered on C&DW and Community A
during interviews and participant observations, we formulated a common theme, which
was the desire to bring educational opportunities to the community and conduct workshops
to give community members, especially women, skills to generate income. To follow our
commitment to a community-centered research approach, we developed a participatory
workshop with Community A that took place in March 2023. This workshop presented an
opportunity for women and low-income community members in Colombia, specifically
targeted towards Community A in this approach, to engage one another in the process of
learning about recycling concrete from C&DW and develop a plan for how this can become
actionable in their community. The workshop had five key sections: C&DW Composition
and Values, Environmental Aspects, and Necessary Permits; C&D Recycling Processes and
Technologies; Occupational Health, and Safety; Applications and Entrepreneurism; and
Pathways Forward. We worked with community members through virtual communica-
tions and surveys to ensure that the included components were necessary and relevant.
Additionally, to centralize local knowledge and build local capacity we invited Colombian
subject matter experts to lead each of the key sections.

For e-waste communities, two workshops were held with each group of workers from
facilities A and B. The main objective of the workshops was to analyze workers’ perceptions
regarding the chemical risks related to their activity, train them in basic concepts of risk pre-
vention and management, and collect their opinions on a proposed intervention to prevent
the open burning of cables. All the e-waste workers at facility A (five males) participated
in the workshop with their coordinator (one male). At site B, since the cooperative is not
formally working with e-waste, the associated urban recyclers with e-waste experience
were invited to participate. In total, 37 (17 females, and 20 males) and their coordinator
(1 male) participated in the workshop. The activities were conducted in two hours and
included: (1) Initial general risk identification activity, (2) E-waste risk perceptions activity,
(3) Discussion about a cable stripper prototype, and (4) Community mapping of burning
sites, metal buyers, and collection points (only at site A). Audio recordings were taken with
the prior permission of the participants.

4.5. Research Extension with the Undergraduate Students of the Colorado School of Mines

Following the teaching philosophy of the Colorado School of Mines (CSM) Human-
itarian Engineering and Science program [41], three graduate–undergraduate research
extension activities were carried out with CSM undergraduate students. First, the topic
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”Empowering People: Extracting Value from Waste Through Urban Mining” was proposed
as project motivation in the “Design I” course in Fall 2022, aimed at more than 600 first-year
engineering students. Second, for a senior design course, specific sociotechnical challenges
related to C&DW and e-waste were proposed to the students. Third, a new version of
the ”Engineering and Sustainable Community Development” course was delivered to
24 undergraduate students in Spring 2023, based on three e-waste technical challenges
defined by a community of recyclers in Bogotá, Colombia.

4.6. Preliminary Review of the Mining Engineering Curricula

To describe the approach of urban mining and inclusive urban mining as topics in
the engineering curricula, we conducted preliminary research on curricular databases
from universities in the United States. We selected the top universities in mining engi-
neering, as listed on the National Mining Association website [42], and then we examined
each university’s website and online course catalog individually, solely looking at their
minimum requirements for obtaining a Mining Engineering Bachelor of Science in the
2022–2023 academic year. University, general education, and B.S. course requirements
were not included. When examining each catalog, we searched each course description to
determine if urban mining concepts and sociotechnical approaches were explicitly stated
as learning goals in required courses. To search for urban mining concepts, we utilized the
following search terms: “urban mining”, “construction and demolition waste”, “C&DW”,
“electronic waste”, and “e-waste”. We also searched for sociotechnical learning approaches
by searching for the terms “community”, ”sociotechnical”, “social”, “societal”, or “human”.
Acknowledging the limitations of this approach because of its subjectivity related to the
lack of detailed information describing the material reviewed within the required courses
as well as the research projects being conducted within these universities external to course
curricula, we incorporated our findings as a preliminary set of data that could be further
analyzed in future works.

5. Inclusive Urban Mining in Latin America

Currently, in most Latin American countries, the “resource recoverers” [43] or, as
we refer to them in this paper, “urban miners”, are not yet integrated into the regulatory
framework. Their working conditions are often precarious, exposing them to hazardous
chemicals, including heavy metals and halogenated compounds [44]. Although they
provide a critical environmental service, waste workers have historically been stigmatized
and excluded within society [43].

With growing interest, but still nominal in comparison with traditional mining, some
countries in the region are facing the challenge of regulating the activity of urban mining,
integrating informal workers, and promoting improvements in processes and technologies
to increase productivity and promote sustainable local economic development [35,36].

To help overcome the challenges and barriers enumerated, we present below the
current and potential benefits of urban mining for communities and the environment with
a special focus on Latin America. We support our claims by providing evidence from our
literature research and experiences with communities in Argentina and Colombia interested
in treating waste not only as a source of income but also as a way of empowerment. We
introduce inclusive urban mining as a concept that has its roots in inclusive solid waste
management, an activity with a long history in these two countries [45,46].

5.1. Why Should Urban Mining Be Inclusive? Some Examples of Its Social Benefits
5.1.1. Women’s Empowerment: Through Recycling C&DW

When asked about their role in their community, household, and workplace, many
of the women in Community A in the Colombia research claimed to be a leader of some
kind. They either defined that as having a position of power and knowing they could tell
others what to do, or being a mentor or a friend to people when they needed something.
Some also cited their age when asked about their role, stating that because they are older,
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they are wiser and therefore better leaders. When asked about the problems women face
in their community, problems with children were often cited, such as children being left
alone or turning to illegal activities to make money. Another problem that often arose was
unemployment, sometimes due to the lack of transportation or job opportunities. Finally,
when asked about solutions to these problems and how the term women’s empowerment
was understood, people often brought up workshops that had been conducted in the
community in the past. These workshops often focused on cosmetology, such as doing
hair and nails, art practices, baking, or cooking. Many people mentioned education and
the importance of learning, and some brought up making money and having the ability to
secure and spend money for themselves or their family while in the confines of their own
homes. When asked about women’s empowerment, one leader in the community stated,
“[Women’s empowerment] is the idea that women can work on their own with their own
capacities”. She also discussed the importance of bringing opportunities to the community
and doing workshops to give women tools to find jobs.

As illustrated in the semi-structured interviews conducted with women in Community
A, in this context, it was found that urban mining can best empower them helping them gen-
erate more income and advance their education to gain additional skill sets. While financial
and economic decision-making power is a common dimension of women’s empowerment,
the details of how exactly this pursuit could be more beneficial and empowering to women
in Community A were developed through a dialogue and an understanding of the commu-
nity context. For example, the women demonstrated the need for the time and capacity to
care for their families alongside these pursuits, thus making this a homebound endeavor.

While urban mining shows promise to contribute to empowerment opportunities for
multiple vulnerable groups, including women, it must be acknowledged that these contri-
butions can be maximized through a contextual understanding of the complex systems that
shape the lives of these groups. As such, there is a need for academic institutions, especially
those related to engineering and design, to work alongside communities to understand
how pursuits, such as urban mining, can empower them. Moreover, to ensure relevant
empowerment to vulnerable groups, it is essential to take an interdisciplinary approach, as
empowerment is contextually situated; thus, different ideas of empowerment exist within
different contexts and are reflective of their own specific communities and cultures.

5.1.2. Social Transformation and Digital Inclusion in the E-Waste Sector

In our visits to e-waste facilities, we observed the pride of workers regarding their
role as green actors in a context where circular economy policies and regulations, although
necessary, are still pending. This role is one of their motivations when facing the many
obstacles presented to them. To name a few, they have little bargaining power vis à vis
buyers—mostly intermediaries—and limited access to information and technologies to
maximize waste recovery. Even with all the challenges, these groups of workers, mostly
born and raised in vulnerable conditions, go through a collective process of what they call
“subsistence, resistance, and transformation”. Some are young adults who have never kept
a job for more than a couple of months, but in their cooperatives, they become resilient
and learn not only specific knowledge relevant to their business, but also the general rules
of the labor industry, such as complying with the schedule and attendance. Hence, as an
interlocutor told us once, ”We [the cooperative] not only recycle materials, but people”.
Therefore, it is not arbitrary that some cooperatives have included words, such as “dignity”
or “justice” in their names. We see, then, that the feeling of belongingness that the activity
generates in workers has the potential to contribute to the education on labor conduct,
becoming a transforming process for specific groups, including young recyclers.

For workers in general, as in any other labor space, learning new skills and developing
new knowledge are essential, and urban miners are not exempted from this process. They
learn to repair and disassemble e-waste by gaining specific knowledge about electronics,
IT, mechanics, and sometimes material composition and chemistry. However, particularly
for this sector and especially in the Latin American context, learning these disciplines goes
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beyond training workers in their roles. This learning process also means a step towards
their insertion in an increasingly demanding digital society. This is an additional benefit
of urban mining, illustrated by the case of a worker who, during a workshop, told us,
“Since they [the cooperative] gave me a computer, I was able to use one for the first time in
60 years”. This worker’s access to technology, although based on the objective of training
him on electronics repairing, ended up meaning his access to a digital world that is often
hampered for people his age.

In urban mining cooperatives, we have observed how not only materials but also
people are transformed. Understanding this opens the way to many study areas that are
scarcely explored today by the academic community. We question what other social benefits
do urban mining cooperatives bring? Could the social benefits be externalities that account
for the comparison between urban and traditional mining? We wonder, in particular, for
the e-waste management sector, how could actors dedicated to digital inclusion and actors
dedicated to e-waste management interact? What impacts would a more inclusive digital
society have on the use, disposal, and management of electrical and electronic devices?
Could the circular economy based on e-waste become a mechanism for digital inclusion?

5.1.3. The Value of Local Knowledge for the Global Development of Urban Mining:
Examples from the E-Waste Sector

Although many of the e-waste recoverers did not perceive themselves as producers
of knowledge or technology, as a result of our visits and workshops, we learned that the
knowledge of these workers is as important as any other certified by an academic degree.
For example, some workers can quickly identify components and materials with high
efficiency, and some apply craft and ingenious low-cost plastic identification methods
(e.g., by their texture, smell, or color). Others have perfected techniques, such as man-
ual disassembly or burning, to improve the quality of the metals they obtain, even in
conditions that create major health problems for them and their communities because of
their exposure to hazardous chemicals [44]. Likewise, some workers with more than a
decade of experience in the sector have undertaken the important task of sharing their
knowledge with less experienced peers, providing in-person training and written material.
The information is exchanged between the workers themselves. They themselves are the
referents of the activity and share their knowledge. A good example is the free and public
guidance document “Cooperación y reciclado para un mundo sustentable” (“Cooperation
and recycling for a sustainable world”) edited by Salcedo et al. in 2019 [47].

In the literature, waste workers are usually pigeonholed into informality [48], and
under a global gaze that proposes external strategies to deal with local problems. We
believe that to avoid the traditional labels of “lacking” or “informal,” and put an end to the
historical marginalization of the recyclers, waste pickers, and waste workers in general, it is
necessary to study their resilient learning, improvement, and knowledge-transfer processes.
Johansson et al. [18] claim that “the informal sector can nevertheless teach us how to change
our perception of technospheric stocks and view them not as a problem but as a resource”
(p. 42). We thus wonder how their voices could be amplified so that larger audiences know
how their inventiveness and persistence can overcome the barriers of the context in which
they work and how these skills and knowledges can help alleviate the global challenge of
e-waste, C&DW, and other relevant waste streams. We then ask what can Latin American
urban miners contribute to the global conversation on waste management? How can local
knowledge improve foreign technological processes? These proposals are not in opposition,
but on the contrary, they seek to promote a synergistic interaction between the development
of knowledge and technologies in Latin American countries and countries of other regions.

5.2. Environmental Benefits of Urban Mining

Present-day demand for material resources combined with concerns about the sustain-
ability of extraction practices and the effects of waste have increased the interest of both
practitioners and scholars in the concept of the circular economy. In this context, urban
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mining is gaining momentum from various perspectives [49]. First, this practice rejects
linear approaches to production, replacing the “end-of-life” stage of traditional waste
management with reusing, recovering, and recycling processes throughout a product’s
life [50]. Second, many scholars agree that urban mining improves resource fulfillment by
advancing the circular economy and minimizing environmental burdens [51]. Obtaining
materials from discarded items can also contribute to climate change mitigation since
metal recovery consumes less energy than the extraction of primary raw materials [51].
For instance, the energy needed for the manufacturing and transportation of building
materials could be reduced by about 29% if these materials are recycled [7,52,53]. Third,
urban mining provides a solution for uncontrolled waste management, which remains a
significant global challenge [14] due to factors, such as the exposure of the environment
and humans to hazardous substances and biological vectors. The accelerated growth of
waste on a global scale results in valuable aboveground stocks in quantities that are often
comparable to or exceed natural stocks [6]. For example, Grant et al. [3] indicate that “thirty
smartphones contain as much gold as one ton of mine rock from a traditional gold mine”
(p. 7). Thus, these resources have become attractive to those that acknowledge the gradual
depletion of economically minable resources [49].

Environmental Benefits of Recycling C&DW in Colombia and E-Waste in Argentina

The construction industry is a main contributor to carbon dioxide emissions across
the globe due to it containing many elements with high carbon footprints, such as cement
and concrete production, transportation, and C&DW generation [54]. In 2020, the United
Nations Environment Program (UNEP) stated that the buildings and construction sector
accounted for 38% of the total global energy-related CO2 emissions in 2019 [55]. The
cement industry alone contributes to about 8% of the global CO2 emissions [56]. Effectively
managing C&DW is a critical component of preserving our environment, natural resources,
economy, and society [57]. Despite this, C&DW mismanagement is a widespread issue.

Around the world, the problem of C&DW is worsening, thereby exacerbating environ-
mental and social issues [58]. In Colombia, the expansion of the construction industry is
aggravating these issues through the disposal of C&DW in an insufficient and unregulated
manner and the increased illegal extraction of aggregate materials [59]. These increasing
environmental and social issues are gaining national recognition in Colombia, as seen in
Resolution 472, which outlines the management of C&DW in Colombia in light of the
inadequate disposal and increased generation of C&DW in cities across the country, in-
cluding Bogotá, Medellín, Santiago de Cali, Manizales, Cartagena, Pereira, Ibagué, Pasto,
Barranquilla, Neiva, Valledupar and San Andrés [60] as well as other legislation released
over the past couple years [61–63]. Recycling C&DW could contribute to reducing the
inadequate and unregulated disposal of C&DW and decrease the illegal extraction of
aggregate materials.

Regarding e-waste in Argentina, a national report estimates that 465,000 tons of this
waste stream are generated per year [36] and only 4% is managed in an environmentally
sound manner [35]. Roughly, following the methodology in Forti et al. [12], we calcu-
lated that this low percentage contributed to a net saving of 8 kt of CO2, equivalent to
emissions from the recycling of secondary raw materials substituted to virgin materials.
If this percentage increases up to the goal of 30% under Target 3.2 of the ITU Connect
2030 Agenda [64], it might help save up to 60 kt of CO2 equivalent emissions.

6. Inclusive Urban Mining in US Engineering Curricula

6.1. Preliminary Screening of Urban Mining Content in the US Engineering Programs

Table 1 summarizes the preliminary research findings on curricular databases from the
universities in the United States with Mining Engineering Bachelor of Science programs.
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Table 1. Preliminary review of Mining Engineering Curricula related to urban mining and sociotech-
nical learning approaches * in the US.

Mining Engineering University

Number of Required Courses 1 2 3 4 5 6 7 8 9 10 11 12 13

Urban Mining Concepts 0 0 0 0 0 0 0 0 0 0 0 0 0
Sociotechnical Concepts 0 2 0 1 0 1 0 4 3 1 0 0 0

Number of Non- Required Courses 1 2 3 4 5 6 7 8 9 10 11 12 13

Urban Mining Concepts 0 0 0 0 0 0 0 0 0 0 0 0 0
Sociotechnical Concepts 1 3 3 2 0 2 0 4 3 1 0 0 1

* Search terms: “urban mining”, “construction and demolition waste”, “C&DW”, “electronic waste”, “e-waste”,
“community”, ”sociotechnical”, “social”, “societal”, “human”.

There are 13 universities in the United States with Mining Engineering programs.
Within these programs, urban mining was not explicitly listed as a learning goal in any
course descriptions found within the universities’ websites or online course catalogs de-
picting the minimum course requirements for obtaining a Mining Engineering Bachelor of
Science in the 2022–2023 academic year. The programs include courses with sociotechnical
approaches, or at least discuss human-based concepts to a certain extent; however, these
approaches were found more often within the non-required courses.

To reiterate, our findings should be viewed as a preliminary set of data that could be
further analyzed in future works due to the limitations of this approach, including its sub-
jectivity related to the lack of detailed information describing the material reviewed within
the required courses in course descriptions found on university websites. Additionally,
this screening did not include research projects being conducted within these universities
external to course curricula.

It is not the intention of this work to only focus on the US curricula but to call on
global engineering and technology academic institutions to involve current waste man-
agement challenges in their programs as motivators for technological innovation projects.
Through the examples described below, we want to emphasize that urban mining could be
a significant research subject and an excellent educational opportunity for organizations
specializing in traditional mining, as these organizations could take advantage of their
existing technical knowledge in material extraction and processing.

6.2. Approaches to Include Urban Mining in the US Engineering Curricula
6.2.1. Introducing Urban Mining to First-Year Engineering Design Courses

The faculty in the design 1 and 2 courses at CSM are diverse in terms of academic
and professional backgrounds. They mostly have STEM majors, such as design, civil
engineering, electrical engineering, and other traditional engineering disciplines. Some
have experience in the industry, and some others are senior researchers. This diversity gives
the students exposure to different industries and “real-world problem-solving and design
experiences”, as our interviewee claimed. In total, they teach 25 groups of 25 first-year
engineering students by applying an ambitious but enriching approach involving problem
formulation, design thinking, and stakeholder engagement.

The purpose of their teaching approach is to expose students to stakeholders and
communities they did not know about and to make them reflect on how engineering projects
might affect those communities. Its purpose is also to broaden students’ perspectives
in ways they might never find out on the news or social media. This approach is not
exempt from resistance, either from the faculty or students. According to the instructor,
many students tend to separate the technical and the social and only focus on the technical
challenge because, in the end, “the majority is going to end up in traditional engineering jobs
one day, and that is just the path they want”. Some other students understand the complex
issues that low-income communities are facing, but they just do not want to get involved. In
this context, the instructors try to emphasize the importance of integrating knowledge. They
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explain to students that engaging with stakeholders and considering the specific contexts,
geographies, cultures, and expectations are key stages in the design process. “You cannot
do technical in a vacuum”, our interviewee claimed. As an example, he asks students,
“Could you design a technical solution without considering government regulations”?

The efforts of going beyond the boundaries of traditional engineering are huge for
the faculty, and despite some room for improvement in terms of genuine stakeholder
engagement, those instructors with traditional engineering backgrounds are proud of what
they are doing in this class. They are aware that even if it is an introductory course, they
provide additional techniques that are not usually offered in the first year in other programs
in the US.

At CSM, students receive a “call for proposal” (CFP) broad enough so they can
elaborate on the problem after a series of research stages that can involve literature research
and consultation with subject experts, potential users, and other stakeholders. In 2022, for
the very first time, the CFP was developed in collaboration with two graduate students
from the Humanitarian Engineering and Science program, who are the authors of this paper.
The topic, “Empowering People: Extracting Value from Waste Through Urban Mining”
was innovative since it introduced urban mining, life cycle, and waste management as
motivations for design. The students received a brief description of the general situation of
waste management systems in low-income communities and the specific challenges and
opportunities in the study sites that we present in this paper.

The way the CFP was developed allowed students to set the boundaries of the prob-
lems by themselves, encouraging them to think creatively and “out of the box”, to look
at things outside their own immediate context, and to familiarize with the processes that
happened after “the magic truck comes by and picks up the purple bin”.

From a total of approximately 625 students, 110 students grouped in 25 teams achieved
the 20% best-scored projects. Among the winning teams, the distribution of themes was
Food/organic waste (5), E-waste (4), Plastic/packaging waste (4), Household effluents (2),
Medical waste (2), Textile waste (2), and Others/Out of scope (6).

The CFP motivated students to reflect further down the line at the end of product
life. For example, some students worked on recycling technologies to be applied locally.
Others looked at extending the life cycle by redesigning products or tried to look for
upcycling opportunities at the source. A number of students preferred to address the
specific challenges related to the settings and contexts that we have presented. They
usually choose their path according to what they are exposed to and tend to lean towards
stakeholders that they already know. The groups interacted with recycling, electronics,
processing companies, big warehouses, consumers, and professional users.

Although the experience was enriching for both students and professors, introducing
a new way of mining provoked tensions in a school well-known for its mining tradition.
Some mining professionals asked, “Why are they calling this mining”? and claimed, “This
is not our definition of mining. This is not what mining engineering is”. We wonder,
then, what does it take for the traditional disciplines to extend their boundaries? In the
end, changes in the curricula that in the past seemed far off, such as the inclusion of the
social aspects in a first-year engineering design course, became a reality seven years ago.
We wonder, what is urban mining lacking to be considered as a topic of relevance by the
traditional mining sector? What are the differences? What are the convergence points?

6.2.2. Introducing Urban Mining in Elective Courses: The Case in an Engineering and
Sustainable Community Development course

For the very first time, in Spring 2023, the course Engineering and Sustainable Commu-
nity Development (ESCD) was taught in a project-based format, involving direct interaction
with communities. This course gathered twenty-five third-year and graduate students to
work collaboratively with a Colombian recycling association to improve three processes: e-
waste plastic identification, copper separation from cables, and precious metals separation
from circuit plastic boards. From the instructor’s perspective, urban mining is not the initial
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motivation of students that join this course. These students care about community-based
projects in general, and even if they have education in specific disciplines (Environmen-
tal Engineering, Civil Engineering, Mechanical Engineering, Chemical Engineering, and
Design Engineering), they are curious about the different ESCD opportunities for practice.
Addressing a waste-related topic and how other communities interact with it stimulates
students to think in ways they never have.

According to the instructor, urban mining could be framed as the future of mining. He
thinks it has the potential to convene students, researchers, and industry professionals who
are not usually involved in traditional mining (for example, electrical and civil engineers)
that would be able to apply their knowledge and skills to transform anthropogenic waste
stocks into valuable materials. In this sense, traditional mining institutions could see urban
mining as a way to expand their curricula, staff, and areas of expertise. The expansion,
however, will not be easy for those that have a traditional mining background, he said. It
will require not only their willingness but the comprehension of new knowledge to deal
with mines not located in the mountains but in the cities. Therefore, the challenge ahead
will be to deal with the technical differences as well as the intricate relationship between
material extraction and urban systems.

When we asked him how to make urban mining visible and relevant, the instructor
did not hesitate to claim that extending graduate research into first and third-year design
courses is an important grassroots step that could eventually position the topic as an
institutional priority from the top-down. He explained that improving urban mining not
only contributes to the circular economy but also provides employment opportunities for
marginalized groups of people, such as those displaced by violence, poverty, or climate
change. In this sense, applying a community-based approach in the engineering curricula
gains more significance when urban mining is seen as an employment solution. He
acknowledged that engineers could address urban mining from an industrial, automated,
and large-scale perspective, but in doing so, they might be ignoring and neglecting the
current labor problems that cities are facing and the minor waste streams that are managed
in small neighborhoods. “All those stocks of waste are always going to exist, and all those
people needing employment are always going to exist irrespective of the big machinery
that you put in place”. Hence, he emphasizes the need for more engineers and engineering
students to be trained to co-work with marginalized communities with the aim of improving
their processes, products, and labor conditions.

The instructor also pointed out some important parallels between artisanal small-
scale gold mining (ASGM) and urban mining. Less than a decade ago, the Minamata
Convention forced countries to focus on reducing and, when feasible, eliminating the
use of mercury. ASGM became a major area of interest for many institutions, including
well-known traditional mining schools and research centers in the Global North. This
new area of interest opened opportunities for research and practice in fields, such as
engineering and social sciences. The recurrent presence of informality and the way in
which communities engage in these activities, sometimes ending up exposing them and
their families to hazardous chemicals, are other points of commonality between ASGM and
urban mining. Furthermore, ASGM and urban miners both “are for the most part invisible
to mainstream society”, the professor said. Taking this into account, we wonder if similar
drivers, such as the global concern about scarce materials, including rare earth elements,
metals, and minerals, might have the same result for urban mining. Will inclusive urban
mining become a field of research and practice in the way that artisanal scale gold mining
did, even with the tensions and resistance that it generates?

6.2.3. Introducing Urban Mining Projects in Third and Fourth-Year Project-Based
Design Courses

In an effort to offer the upper-level engineering students opportunities to learn more
about human-centered design and humanitarian engineering challenges, CSM offers a
three-semester hour project-based design course targeted towards junior- and senior-level
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students. Within the Fall 2022 semester, multiple graduate students from the Humanitarian
Engineering and Science program—including the authors of this paper—were able to work
with project teams in this course on specific real problems affecting real people. Overall, of
the 23 students registered for this course in the Fall 2022 semester, 10 students worked on
urban mining-related projects. One group of four students worked on a C&DW-related
project, while two groups of three students were devoted to e-waste-related projects.

The faculty member responsible for facilitating the course in the Fall 2022 semester
described urban mining as an opportunity, not only to “emphasize reclamation of precious
materials in environmentally friendly ways that are also economically beneficial to disad-
vantaged populations” but to push back on the negative connotation associated with the
term “mine” due to the often-harmful activities, practices, and ramifications of the industry.
The professor believes urban mining is a way to “reclaim the word ‘mine’ for positive appli-
cations”, and institutions responsible for the progression of the often damaging activities,
practices, and ramifications of traditional mining processes, such as universities including
CSM, should be at the forefront of developing “more environmentally friendly and socially
equitable ways of mining and engineering”, such as urban mining. The inclusion of urban
mining in the curricula to atone for the negative externalities involved in traditional min-
ing can also be an opportunity to enhance mining engineering education by facilitating
understandings of concepts, such as life cycle analysis.

In addition, the professor stressed the importance of understanding the local context
of projects, such as the cultural, socioeconomic, and environmental dimensions of the cities
with which they work, and utilizing approaches from the social sciences and environmental
sciences to develop solutions that are “most appropriate to their target population and do
the least harm to the same population as well as their environment”. He stated that this
utilization and understanding was even more essential than technical foundations, such as
the engineering mindset, to arrive at a point where the technical solutions were appropriate.
Furthermore, to develop the best solutions possible, the professor argued that stakeholder
engagement, particularly empathetic stakeholder engagement (“which is culturally sen-
sitive, appropriate for local contexts, aware of potential unintended consequences, and
ultimately in search of the greatest number of ‘win-win’ situations as possible, where the
environment is also a key stakeholder”), is essential. We the question how critical social
and environmental science approaches can have a space in engineering curricula, as these
topics (particularly the social sciences), despite their importance, are traditionally shunned
in engineering education.

7. Limitations of This Study

There are two major limitations in this study that could be addressed in future research.
The first limitation is related to the number and selection of participants included in our
interviews and workshops, which were relevant in terms of the qualitative analysis of the
C&DW and e-waste contexts in Colombia and Argentina presented but not statistically
representative for a quantitative analysis. The second limitation is related to the reduced
scope of our curricular review, since courses in departments other than Mining Engineer-
ing should be explored, including Chemical Engineering, Environmental Engineering,
Resources Engineering, and Materials Engineering, among others.

8. Conclusions

As illustrated above, urban mining has a leading role in the circular economy that is
currently developing. However, in particular contexts, such as in Latin American countries,
this activity poses additional benefits that can be maximized if they are understood and
studied. We state that the study of urban mining from an interdisciplinary approach could
contribute to this field in order to achieve a much more inclusive and sustainable activity.

For urban mining, cities are the locations where the extraction, circulation, and ac-
cumulation of materials take place. Hence, to favor inclusive urban mining it is not only
necessary to understand collection and extraction processes but also to understand cities
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and their context. Contextualizing this activity means analyzing local legal frameworks,
stakeholders involved, their history, ideologies, culture, alliances and power differentials,
the flow of materials, current technologies, and processes. In light of our findings, we
argue that the future challenges associated with inclusive urban mining are sociotechnical
in nature. Thus, we highlight the importance of promoting community-based research
methods and concepts from the Engineering and Sustainable Community Development
practices [65] to be included in mining, materials, metallurgical science, and engineering
academic programs as a way to address these challenges.

It is not without reason that we have argued the case for working alongside commu-
nities to solve problems in a participatory way, as the knowledge of the local community
members is crucial for developing sustainable and just solutions. However, this effort makes
it necessary to promote knowledge sharing throughout the entire problem-solving process
within and between multiple fields, disciplines, and communities and it also exemplifies
the importance of fostering sustainable networking pathways. Productive interactions
between groups are fundamental to maximizing the capacity to collaboratively find a viable,
just, and long-term solution to community problems. To understand effective knowledge
sharing, we argue that studying groups that are already doing this successfully is essential.
Uniminuto, a Colombian University, is a prime example of an academic institution striving
to create a positive social impact and uplift the vulnerable communities. Through knowl-
edge and experience gained in PCIS projects, they have developed the “Social Innovation
Route Framework” [40], a five-stage framework outlining community engagement projects,
which is a powerful tool that academic institutions, especially those related to engineering
and design, can utilize to take a proactive role in (1) working with vulnerable groups to
improve their labor and environmental conditions and (2) understanding the sociotechnical
dimensions of their projects.

Our observations also reflect the benefits of educational proposals that combine engi-
neering knowledge with concepts from the sustainable community development frame-
work, which is based on the social sciences. Thus, the interdisciplinary approaches that
motivate students to make a contextual analysis of their projects, including history, politics,
ideology, ethics, and culture, influence the way in which they develop their inventions.
These approaches could also bring them closer to the Latin American context without
falling into methodologies of the North–South dominance.

To answer the questions that were raised in this work, we propose some additional
areas for future research. First, there is a need for a deeper analysis of the US and Latin
American science engineering curricula to understand the lack of urban mining content
and identify synergistic opportunities with overseas academic entities. Second, further
work needs to be undertaken to screen current educational programs in the US since our
study is limited. Third, future efforts within the engineering education field should be
focused on developing an outline of an Inclusive Urban Mining course with the insights
from this research that could be then included in the US engineering programs. Fourth,
additional topics that should supplement the study of inclusive urban mining should be
identified. Some topics that we believe could be beneficial to include are understanding
the material politics of what is traditionally viewed as “waste” as well as learning social
science approaches, such as contextual and empathetic stakeholder engagement strategies,
to properly understand cities and their context.
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Abstract: The greatest challenges for contemporary and future natural resource production are so-
ciotechnical by nature, from public perceptions of mining to responsible mineral supply chains. The
term sociotechnical signals that engineered systems have inherent social dimensions that require
careful analysis. Sociotechnical thinking is a prerequisite for understanding and promoting social
justice and sustainability through one’s professional practices. This article investigates whether and
how two different projects enhanced sociotechnical learning in mining and petroleum engineering
students. Assessment surveys suggest that most students ended the projects with greater appre-
ciation for sociotechnical perspectives on the interconnection of engineering and corporate social
responsibility (CSR). This suggests that undergraduate engineering education can be a generative
place to prepare future professionals to see how engineering can promote social and environmental
wellbeing. Comparing the different groups of students points to the power of authentic learning
experiences with industry engineers and interdisciplinary teaching by faculty.

Keywords: engineering education; sociotechnical thinking; global sociotechnical competency; corporate
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1. Introduction

The future of mining and other natural resource industries will require engineers who
can take a sociotechnical approach to the challenges they face and the decisions they make
in their working lives. The term sociotechnical recognizes that issues that appear to be
technical in nature have an inherent social dimension [1–3]. For example, the coming energy
transition will require massive amounts of minerals and metals, from the copper and iron
necessary for power generation, transportation, and use, to the lithium, cobalt, and nickel
required for electric vehicles. A recent review of around 30 energy transition minerals
found that more than half are located close to vulnerable communities, specifically “on or
near the lands of Indigenous and peasant peoples, two groups whose rights to consultation
and free prior informed consent are embedded in United Nations declarations” [4]. Many
of these populations already experience significant social and environmental injustices, and
efforts to fast track mining projects central to the energy transition run the risk of adding
more burdens [5]. Designing or selecting a particular technology that relies on one of these
minerals, therefore, also implicates an entire supply chain of people, places, and injustices.
To support more sustainable and responsible natural resource production, engineers need
to be able to evaluate technologies and materials from a more holistic viewpoint, beyond
narrow technical and economic considerations.

In general, there is a lack of preparation among engineering students to face the increas-
ingly complex sociotechnical challenges of contemporary natural resource production. An
ethnographic study of engineers practicing in the mining and oil and gas industries found
that all had encountered sociotechnical challenges in their work, but felt underprepared to
manage them [6,7]. The engineers described learning how to manage conflict, for example,
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as a trial by fire in which they learned on the fly, experimenting as they went along. This
under-preparation largely stems from the structure of undergraduate engineering curricula
in the United States–and likely elsewhere–placing a heavy emphasis on technical training,
with very few opportunities for students to learn about the inherent social dimensions of
the industries and infrastructures that will form the contours of their work [8]. Majors and
courses frequently create an artificial technical/social dualism [9] that defines social and
political concerns as external to engineers’ domain [10].

Our educational research aims to address these structural challenges by nurturing
sociotechnical thinking among engineering undergraduate students. We build on field
evidence from the projects we have carried out in our countries, particularly in the United
States and Colombia, in the teaching of mining and petroleum engineering, and put
these into conversation with a broader movement of engineering educators seeking to
disrupt the social/technical dualism by positioning engineering as “both technical and
non-technical (taken to refer to the social, economic, political, ethical, etc.) from the
start” [11]. Sociotechnical thinking involves students recognizing the “interplay between
relevant social and technical factors in the problem to be solved” [8] and “to identify
and address issues with an understanding of the complex ways in which the social and
technical aspects of these issues are interconnected” by “holding both the technical and
the social in one’s mind simultaneously” [12]. Sociotechnical thinking is a prerequisite for
students to be able to understand and promote social justice and sustainability through
their professional practices.

Our research shows the value of using a sociotechnical perspective to teach and learn
about themes related to sustainability and social responsibility. Engineering education
research around the world assesses students’ learning about these themes, though this
field is too vast and growing too quickly to summarize here. The contributors to a special
issue of the journal Sustainability focused on “Innovation in Engineering Education for
Sustainable Development” (Sánchez-Carracedo 2020) captures current research in this area.
A study of the International Center for Engineering Education in China found promise in
its governance techniques to promote engineering education for sustainable development
(Chen et al. 2022). A study of water and environmental engineers in Finland found corre-
spondence between their sustainability education and required work skills, underlining
the potential for engineers to play central roles in promoting sustainability (Vehmaa 2018).
A group of US graduate students who traveled to India to study electronics manufacturing
ended the trip reflecting on the ethical dimensions of regulations, gender roles, resources,
and waste, including tensions among their multiple responsibilities (Berdanier 2018). Rich
in-class discussions can also enhance student engagement and receptivity to sociotechnical
thinking, especially given that the open-ended nature of these themes can prompt resistance
(Blacklock et al. 2021).

In this article, we share the results of two efforts to nurture sociotechnical thinking
among engineering undergraduate students. The first focuses on petroleum engineers at
the Colorado School of Mines (Mines), where we integrated a critical approach to corporate
social responsibility into multiple places in the curriculum. The second focuses on the
Responsible Mining and Resilient Communities project that brought together engineering
students from Mines, the United States Air Force Academy (USAFA), the University of
Texas at Arlington (UTA), and the Universidad Nacional de Colombia-Medellín (UNAL).
These students came from multiple disciplines but were all focused on artisanal and small-
scale gold mining. We describe our methods and results case by case.

2. Materials and Methods

2.1. Sociotechnical Approaches to Corporate Social Responsibility in Petroleum Engineering

Our efforts to cultivate sociotechnical thinking in the undergraduate petroleum en-
gineering program at Mines were part of a multi-year “Ethics of Extraction” research
project, funded by the US National Science Foundation, that investigated the intersection
of engineering and corporate social responsibility (CSR) [6]. Teaching students to recognize
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the inherent CSR dimensions of their work as engineers required taking a sociotechnical
approach to both engineering, which is often viewed as a “technical” endeavor, and CSR,
which can be viewed as a “social” endeavor. The type of CSR we taught was what Auld
et al. [13] refer to as “new CSR,” which encompasses activities that change core business
practices to create social, economic, and environmental value for stakeholders as well
as companies, in contrast with “old” CSR that is grounded in philanthropy. Changing
core business practices in the mining and natural resource industries necessarily involves
shifting engineering mindsets and practices.

For the project, we created an original survey instrument and custom enhancements
for courses in petroleum and mining engineering at the Colorado School of Mines, Virginia
Tech, South Dakota School of Mines and Technology, and Marietta College [6,14]. As
a whole, our teaching reached over 1200 students. In our prior research [6], we found
that students in all of the courses improved in defining CSR, especially in recognizing its
intertwined social, environmental, and economic dimensions and in recognizing a broader
array of stakeholders. Depending on the course, the majority (between 70–100%) ended
the courses believing that CSR would be relevant to their careers as engineers, which
potentially upsets the social/technical dualism that would define engineering as purely
technical work and CSR as the responsibility of social scientists. We did not, however,
find that students ended our courses expressing greater desires to work for companies
with positive reputations for CSR, perhaps because they took a pragmatic view of their job
market possibilities.

This article builds on that prior research by investigating whether and how our teach-
ing shifted petroleum engineering students’ understanding of the sociotechnical nature
of both CSR and engineering. To assess the impact of our teaching enhancements on
students’ knowledge, attitudes, and skills, we developed and validated a survey instru-
ment [14]. It included themes of corporate social responsibility, the ethical dimensions of
engineering practice, engineers’ agency in the workplace, students’ career desires, and
demographic information. In each course, all students took the survey at the beginning
and end of the semester so that we could compare their responses before and after our
course activities. We assigned each student who provided informed consent to participate
in the research a unique and anonymous ID to match their pre- and post-course surveys
(and track them year-by-year, for cohorts that participated in multiple classes) and calcu-
lated average responses for each class. We coded the qualitative responses. Finally, we
collected end-of-semester reflections for the two senior level courses to generally assess
student attitudes.

We focus on five classes of petroleum engineering students in two course offerings in
this paper: three semesters of Summer Field Session I (summers 2017, 2018, and 2019), and
two semesters of Senior Seminar (Fall 2016 and 2017). Both courses are required, meaning
that they enroll the full cohort of petroleum engineering majors. The full demographic
information for those courses can be found in [14], though we note that female students
usually comprise a minority of the classes (30% and below) and there is a significant number
of international students, especially from the Middle East (around 20%). The Summer
Field Session enrolled students between their sophomore and junior year. The students
traveled as a group and were introduced to the petroleum engineering industry through
site visits, company tours, guest speakers, and facility tours. The Senior Seminar was
designed to build their professional skills in the final year of their undergraduate program.
The curriculum included approaching CSR through role-playing activities, a series of case
studies based on actual experiences of an alumnus, industry speakers, and projects focused
on controversial issues in the petroleum industry. For both of these course offerings, the
intent was to promote interest, value, and motivation for learning about CSR; connect it to
future careers; and integrate social and technical dimensions of petroleum engineering.
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2.2. Sociotechnical Approaches to ASGM in Mining Engineering

The second area of research and teaching we analyze is the NSF-funded Responsible
Mining, Resilient Communities (RMRC) project, which is an international and interdisci-
plinary effort to co-design socially responsible and sustainable gold mining practices with
communities, engineers, and social scientists. The project focuses on artisanal- and small-
scale gold mining (ASGM) in Colombia and Peru. While ASGM is an internally variegated
field of practice, it generally refers to “labour-intensive, low-tech mineral exploration and
processing” [15]. Most ASGM is done by individuals or small crews and happens without
a title, making it an informal economic activity–and sometimes an illegal one–that exists in
tension with government entities.

A key focus of the project is training undergraduate engineering students to approach
ASGM from a sociotechnical perspective. In our research, we are investigating whether
program activities enhance students’ global sociotechnical competency. Building from prior
research [16–18], we define global sociotechnical competency as being built from sociotech-
nical coordination; understanding and negotiating engineering and relevant national or
local cultures; navigating ethics, standards, and regulations; and socially responsible en-
gineering [19]. Table 1 provides an overview of the knowledge, skills, and attitudes that
relate to each of these dimensions, using ASGM as an example.

Our prior research investigated whether participation in an intensive summer RMRC
fieldwork session with Colombian faculty, students, and stakeholders enhanced U.S. under-
graduate students’ global sociotechnical competency. Because of the COVID-19 pandemic,
we were able to test three different types of field sessions: one fully in person, in which
US students traveled to Colombia (2019); one fully remote, in which students participated
in activities on virtual platforms from their own work spaces (2020); and one hybrid, in
which U.S. students studied together on a college campus but connected virtually with
Colombian stakeholders (2021). We found that all three field sessions enhanced students’
global sociotechnical competency. In particular, students ended the field sessions with a
greater ability to identify the inherent social dimensions of problems that appear to be
“technical” and with a greater ability to identify diverse stakeholders [19].

The current article builds on that prior research by investigating whether and how
a week-long exchange at the Colorado School of Mines influenced how the Colombian
students thought about the sociotechnical nature of ASGM. The delegation of visitors
included twelve students and one faculty from the Universidad Nacional de Colombia’s
School of Mines in Medellín, plus one faculty from SENA’s Centro Minero Ambiental in El
Bagre (Colombia). They were hosted by RMRC faculty and students from Mines and the
University of Texas at Arlington.

The delegation of Colombian students consisted of twelve students, ten women and
two men, from the School of Mines of the Universidad Nacional de Colombia in Medellín.
Eleven were from the Mining Engineering and Metallurgy program and one student came
from the Environmental Engineering program. All the students had completed and passed
more than 80% of the academic program and all of them were active members of the
student chapter of SME (Society for Mining, Metallurgy, and Exploration). Most of them
had participated in the joint work programs with the Colorado School of Mines in the two
previous years. In their training they had a sociotechnical approach to mining projects in
Colombia, primarily artisanal and small-scale gold mining. The students came from similar
socioeconomic backgrounds. Some had relatives linked to the mining activity in Colombia,
either as engineers or workers in a national mining company. One student came from an
artisanal mining family. It is important to highlight that although all the students had a
very good level of English, the exchange was the first opportunity for many of them to
travel outside of the country.
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Table 1. Global socio technical competency framework, originally published in [19].

Content Dimensions

Learning Outcomes

Sociotechnical
Coordination

Understanding and
Negotiating
Engineering and
National Cultures

Navigating Ethics,
Standards and
Regulations

Socially Responsible
Engineering

Knowledge
Understanding ASGM as
a sociotechnical system

Understanding the
history and political
economy of ASGM in
different countries

Understanding the
history and political
economy of
engineering in different
countries with ASGM

Understanding legal
dimensions of mining,
labor & environmental
management that
affect ASGM

Understanding power
differentials, how to
have empathy, build
trust, and treat expert
and non-expert
stakeholders involved
in ASGM

Skills

Ability to identify
different stakeholders
in the ASGM life cycle
and mediate among
their needs and desires

Ability to see how
“technical” and “social”
dimensions of ASGM
co-constitute each other

Ability to operate
differently in ASGM in
different countries

Ability to work with
engineering faculty
from different countries
with ASGM

Ability to consult
experts to ensure that
sociotechnical
innovations/design
projects comply with
legal and other
regulatory standards
relevant to ASGM

Ability to listen, engage
in perspective taking,
operate within different
power positions, and
work with expert and
non-expert
stakeholders involved
in ASGM

Attitudes

Willingness to work
with expert and
non-expert
stakeholders along the
ASGM lifecycle

Willingness to open up
engineering decision
making to a variety of
social perspectives

Willingness to work
with different ASGM
perspectives in
different countries and
engineering faculty
from different countries

Willingness to ensure
that sociotechnical
innovations/design
projects comply with
legal and other
regulatory standards
relevant to ASGM

Willingness and desire
to engage in
perspective taking

Willingness and desire
to work with expert
and non-expert
perspectives during
project and
after graduation

Willingness and desire
to use engineering to
serve underprivileged
populations

Confidence in being
able to make positive
changes in communities
through engineering

The exchange included a mix of field trips, lectures, and workshops. Participants took
a field trip to a historic mining region in the Colorado mountains, where they were able to
visit one of the world’s largest molybdenum mines and the National Mining Museum and
Hall of Fame. Students toured labs and centers at Mines, including a geoscience-themed
makerspace, the Space Resources lab, the Earth Mechanics Institute, and the Geology
Museum. They met and listened to presentations from engineering and social science
faculty from the university’s Humanitarian Engineering program, Payne Institute for
Public Policy, and Instituto para Iniciativas Latino Americanas (Institute for Latin American
Initiatives). They participated in workshops on asset-based community development,
social innovation, and creative capacity building that were led by faculty and practitioners
from MIT’s D-Lab (whose mission is design for a more equitable world); Corps Africa
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(a non-profit that trains Africans in international development); and the Universidad
Minuto de Dios (Colombia) Parque Científico de Innovación Social (Scientific Park for
Social Innovation).

At the end of the exchange, students filled out a survey that included previously
validated questions about their global socio technical competency.

3. Results

3.1. Sociotechnical Learning in Petroleum Engineering

We begin with a quantitative analysis of student responses to a survey question that
asked students to evaluate CSR activities:

Q: CSR is a diverse field of practice that varies by industry, location, and company. In
this survey we use an umbrella definition for CSR: an approach to business in which com-
panies collaborate with stakeholders to create shared economic, social and environmental
value. How would you evaluate the following activities as potential examples of CSR?

The possible responses ranged from primarily “social” activities (such as community
training) to those that were sociotechnical and directly engaged engineering itself (such
as rerouting a problematic pipeline). Students characterized each as being an excellent
example of CSR, an okay example of CSR, or not CSR, with the option of selecting “I don’t
know”. Of the possible responses, the three that most reflect a sociotechnical approach to
engineering and CSR are underlined:

• A company providing training for members of a local community who want to open
their own small businesses

• A team of engineers redesigning an industrial process to minimize potential spills of
hazardous materials after learning that residents are worried about pollution

• A company giving college scholarships to children in the community where they operate
• A company accurately and transparently reporting how much money it spends in

another country
• Employees doing charity or volunteer work in their free time
• A company constructing a municipal wastewater treatment plant for a city that desires

but does not have one, so that the company can reuse the treated wastewater in its
own production process

• An engineer reporting an unsafe practice to management or government authorities
• A company prioritizing local residents when making hires for new jobs
• An engineer changing the route of a pipeline to mitigate community conflict even

though it will cost the company more money

Overall, the five courses were effective in helping students identify the three under-
lined “technical” decisions as also CSR decisions. In each course, more students ended
the semester being able to identify at least two of the three sociotechnical CSR examples
(the first two columns of Figure 1). In only one course (Fall 2017 Senior Seminar) did large
numbers of students move away from “OK example” to either “excellent,” “not CSR,” or “I
don’t know.” We explain potential reasons for this outcome below.

The full data set is available in Table 2 summarizes student assessments from five
Petroleum Engineering classes for the three underlined options. We received unique
responses from 427 students over the five classes.

Table 2 shows that the changes we observed in the student responses from the be-
ginning to the end of the semester varied by both course and year. For example, fewer
students in the Fall 2016 Senior Seminar ended the semester assessing redesigning an
industrial process as excellent CSR (down to 70% from 81%), but more judged building a
water treatment plant and rerouting a pipeline as excellent (up to 64% and 64% from 58%
and 53%, respectively). The 2017 cohort showed improvements in judgements of excellent
for each example. In the 2017 and 2019 summer field sessions, there were larger jumps in
improvement for recognizing each example as excellent, but in 2018 fewer students judged
building the treatment plant as excellent at the end.
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Figure 1. Course outcomes for Mines students (out of a total of 5 courses).

There was much more uncertainty indicated for the 2017 Senior Seminar cohort across
all three questions, as indicated in the increase from pre- to post-survey responses of “not
CSR” and “I don’t know.” Growing awareness of the complexities of practicing engineering,
along with the beginning of a serious downturn in the petroleum industry may have led
to more polarization in the students’ views of CSR. During this time, several students’
job offers were rescinded and oil and gas companies had more and more challenges
keeping their doors open, and less money to incorporate multiple stakeholders’ needs.
This polarization is illustrated well with this student end-of-semester reflection on the
seminar course:

Personally, I think this class is very interesting and perhaps my favorite, contrary to
most of the people I’ve asked. I feel it is super important to broaden our horizon into the
non-technical aspects of the industry, especially for those who would like to be leaders in
the industry and make a positive impact. However, some/most of my colleagues think
otherwise . . . . I believe that a lot of the student’s frustrations with the course are tied to
lack of opportunities in the industry, and the fact that this course “steals” time for other
studying to be conducted. Especially in a time where students are trying to boost their
GPA, with the belief that it is their best method to increase chances of employment.

There was more uncertainty and skepticism present in each of the senior seminars,
which is likely due to the timing of the courses in the students’ undergraduate progression.
The field session is taken by students just entering the petroleum engineering major, while
the seminar is taken by students who are typically in their last year of the program. This
difference may have led to more skeptical evaluations of potential CSR activities by the
senior students, as many of them would have had much more exposure to technical topics
along with possible internships related to the petroleum industry. Thus their views are
much more sophisticated, technical, and prone to influence from companies and current
events. With increased technical knowledge, yet limited broad industrial knowledge, for
example, seniors may only interpret “redesigning industrial processes” as a technical
intervention, rather than making the connections to the ways these changes may serve the
public. Additionally, the seminar course was offered during the most intensive semester
of petroleum engineering courses for these students. This led to many not taking it very
seriously. One student commented that offering it a semester later could lead to more
students valuing the course material and taking it personally: “ I believe a relatively
reduced course load in the Spring, combined with the fact that (some) students will finally
realize that “the end of academics is near”, will provide a sobering feeling that they need to
broaden horizon to learn more about ‘what’s out there”.
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Table 2. Student assessments of CSR activities.

Redesigning Industrial Processes Building Treatment Plant Rerouting Pipeline

S
e
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r
S

e
m
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r
F

a
ll

2
0

1
6

Pre Post Pre Post Pre Post

Excellent
Example 81.08% 69.90% 58.11% 63.59% 52.74% 63.78%

OK Example 13.51% 19.90% 25.68% 25.13% 30.14% 27.55%

Not CSR 4.73% 8.67% 13.51% 9.23% 13.01% 4.59%

I don’t know 0.68% 1.53% 2.70% 2.05% 4.11% 4.08%

Total students 148 196 148 195 146 196
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e
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F

a
ll

2
0

1
7

Excellent
Example 82.05% 79.49% 61.54% 74.36% 76.92% 80.77%

OK Example 16.67% 7.69% 33.33% 12.82% 17.95% 12.82%

Not CSR 1.28% 8.97% 5.13% 7.69% 3.85% 3.85%

I don’t know 0.00% 3.85% 0.00% 5.13% 1.28% 2.56%

Total students 78 78 78 78 78 78
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F
ie

ld
S

e
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2
0

1
7

Excellent
Example 61.54% 74.36% 61.54% 76.92% 51.28% 71.79%

OK Example 23.08% 20.51% 28.21% 20.51% 30.77% 23.08%

Not CSR 15.38% 5.13% 7.69% 2.56% 12.82% 2.56%

I don’t know 0.00% 0.00% 2.56% 0.00% 5.13% 2.56%

Total students 39 39 39 39 39 39
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e
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2
0

1
8

Excellent
Example 73.77% 83.61% 50.82% 45.90% 55.74% 73.33%

OK Example 19.67% 13.11% 27.87% 36.07% 29.51% 18.33%

Not CSR 6.56% 3.28% 16.39% 14.75% 9.84% 5.00%

I don’t know 0.00% 0.00% 4.92% 3.28% 4.92% 3.33%

Total students 61 61 61 61 61 60
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S
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ss
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n

2
0

1
9

Excellent
Example 77.78% 88.89% 53.70% 64.81% 62.96% 70.37%

OK Example 14.81% 7.41% 29.63% 27.78% 27.78% 25.93%

Not CSR 5.56% 1.85% 14.81% 7.41% 7.41% 1.85%

I don’t know 1.85% 1.85% 1.85% 0.00% 1.85% 1.85%

Total students 54 54 54 54 54 54

There were also several end-of-semester reflections from students about the difficulty
of balancing the needs and desires of so many groups with different aims, which also
point to an increasing sophistication in perception of how CSR plays a role in the work
they hoped to do. This is summed up well with this student perspective: “The one thing I
struggle with is finding a balance between the business side of myself, and the empathetic
side of myself. The business side can easily come up with the key stakeholders that need
to be addressed, but often overlooks the fact that the people with no voice and no one to
protect them, desperately need advocates within the oil and gas industry to make sure they
are not overrun. On the other hand, the empathetic side of me could happily take forever,
and come up with a solution which perfectly fits everyone’s needs-even though a perfect
solution that makes everyone happy usually doesn’t exist”.

Student reflections and general instructor observations also provide some insight into
how students’ thinking shifted regarding CSR, socio-technical thinking, and reconciling
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CSR and its complexities into their professional practice. Many students originally per-
ceived CSR to be about environmental stewardship but came to appreciate that CSR also
included social dimensions. Initially, students justified CSR as a way to make profits, share
wealth, satisfy shareholders, and create jobs. That view became more nuanced as they also
learned the importance of protecting reputation, mitigating risk, and maintaining a social
license to operate. They shifted from viewing CSR as a way to promote the public good
in general, to CSR as a specific way to implement sustainable community development
and improve local quality of life. Concurrently, there was a noted shift from defining CSR
as sharing benefits and being philanthropic to CSR better aligning with the Auld et al.
definition of “new” CSR or redesigning core business practices. Student reflections indi-
cated that many believed CSR to encompass more complex social responsibilities such as
maintaining transparency and seeking mutual understanding. All of this was undergirded
by a shift from examining problems as technical challenges to sociotechnical problems.
Students observed that issues many stakeholders face regarding petroleum engineering
projects are more-than-technical, and thus, they needed to find more-than-technical ways
to address concerns. They also noted that many people had major concerns regarding the
petroleum industry and that people want to be heard and understood, rather than being
“assaulted” by facts. This suggests that they were able to see the “problem” of petroleum
engineering depended on who was defining it, and that stakeholders could define the
problem differently than a petroleum engineer.

3.2. Sociotechnical Learning in Mining Engineering

All students who participated in the exchange completed the survey and wrote brief
reflections at the end of the session. Table 3 summarizes the average student responses to the
survey questions related to global sociotechnical competency, which focused on working in
unfamiliar places, collaborating with people from different backgrounds, empathizing, and
feeling confident in being an engineer.

We found that students ended the exchange expressing strong desires to work and live
abroad (5.0 out of 5.0) and serve underprivileged populations (4.9). Importantly, they also
expressed confidence in working with engineering students from different backgrounds
(4.8) and learning from professors with different backgrounds (4.9). Empathy is a crucial
dimension of global sociotechnical competency, and students expressed comfort and enjoy-
ment learning about unfamiliar people and places (4.6), talking with people from different
backgrounds (4.7), asking people questions about their experiences (4.4), and seeing other
people’s point of view (4.6). They also expressed strong self-efficacy, including confidence in
their abilities as engineers (4.4), and positive views of engineering as a fulfilling profession
(4.5) that makes it possible to make positive changes in com-munities (5.0).

The survey also explicitly asked students about whether the visit provided them “new
perspectives on engineering as a sociotechnical activity” and helped them “understand the
social, environmental, and economic dimensions of mining.” Students responded positively
to both questions, with average responses of 4.9 out of 5 for the former and 4.8 out of 5 for
the latter.

It seems likely that this more holistic view of engineering in general and ASGM in
particular is related to the overwhelming sense that the exchange provided professional
growth opportunities. In their written comments, students described the exchange as
being a “mind changer” that gave them the “opportunity to see new perspectives in the
mining industry,” and as an experience that opened their eyes to “new possibilities” for
their professional careers. Many of them referenced the sociotechnical theme of week–and
seeing how they can contribute to ethical goals through their professional practice–as being
transformative. The following are quotes from students:

• “Now, I understand that there must be a balance between many aspects such as:
ethical, humanitarian and environmental.”

• “It is a mind change to become a person that contributes to community development
from science.”
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• “I had a huge desire to contribute to science but [now I know] that I want to con-tribute
to science but also serve underprivileged communities.”

• “The most valuable aspect to me was being able to integrate all the social, environmen-
tal and technical aspects of mining engineering. It was a very enriching experience
that would allow me to continue improving as a professional and a person.”

• “This visit reinforced my ideals of combining social knowledge with technical knowledge
and I was able to make many contacts with excellent professors from different universities.”

• “This visit allowed me to open my mind to more possibilities in the mining sector that
I didn’t know so far. I was able to discover how topics I have always been passionate
about can have applications in mining.”

Table 3. Average student self-assessments on a scale of 1 to 5 (1 = not at all like me; 3 = neutral;
5 = very much like me).

Question (1 Is Low, 5 Is High) Average

I like to learn about people and places unfamiliar to me. 4.6

I feel comfortable talking with people from different backgrounds. 4.7

I like to ask people questions about their experiences. 4.4

It is easy for me to see other people’s points of view. 4.6

I feel confident working with engineering students from different backgrounds. 4.8

I enjoy learning from professors from different backgrounds. 4.9

I would like to study or work internationally at some point in my career. 5.0

I would like a career that allows me to serve underprivileged populations. 4.9

I am confident in my abilities as an engineer. 4.4

I find fulfillment in engineering. 4.5

I can make positive changes in communities through engineering. 5.0

After this experience, the students reflected on how they had broadened their knowl-
edge of new ways of learning. They developed a greater tolerance to work in difficult
conditions and an approach to other methodologies of interaction with the environment,
both large-scale, which some of them already knew, and small-scale, which represented a
novelty for others. All of them highlight this experience as very positive and formative and
appreciate the sustainability of mining as a central axis of their professional performance.

4. Discussion

Both sets of students–the Mines petroleum engineering students and the Colombian
mining engineering students–ended their experiences with a greater knowledge of the
sociotechnical nature of their chosen professions. The significant differences between the
students, their experiences, and the assessments guard against tight comparisons. For
example, almost all of the Colombian students were much more energized by the experience
of coming to view mining engineering as a sociotechnical activity and described it as a
formative moment in their professional development. We noted similar excitement in a
portion of the petroleum engineering students, but that was tempered by resistance to
the course material and activities among others. In a sense, more petroleum engineering
students articulated more strongly that the “social” material was external to their core
identity and responsibilities as engineers. This difference could be attributed to the different
paths that led to the students participating in the sociotechnical learning opportunities:
the Colombian students had all volunteered for the exchange and were not being graded
on their performance, whereas the Mines students were required to take the courses for
grades. Grades took on an added significance when the petroleum market downturn made
competition for jobs fierce.
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While one of the interesting findings among the Mines students was the increased
polarization of opinion and uncertainty by their senior year, our instruments for the
Colombian exchange did not allow us to measure uncertainty and polarization. We do note
relative uniformity in the students’ answers to the survey question: almost all students
responded to questions with either a 4 or 5 on a 5-point scale, with 5 representing the most
positive answer. It could be that the students were eager to show their appreciation for the
trip, and so answered the questions extra positively.

The comparison of the student groups seems to point to the significance of real-world
experiences as transformative for students’ learning. Both the petroleum engineering
field session and the Colombian mining exchange included visits to industrial sites and
interactions with industry professionals, in addition to learning from their professors. In the
senior seminars, the professor created multiple opportunities for industry connections–such
as through invited guest speakers–but most of the activities took place in the classroom.
These observations underscore our previous research that also showed that connections
with practicing engineers was especially transformative for student learning about social
responsibility [6].

Finally, we underline that all of the petroleum engineering courses and the Colombian
exchange were the result of interdisciplinary collaborations among faculty from engineering
and social science backgrounds. These kinds of collaborations are particularly well-suited
to sociotechnical teaching and learning [3,8].

5. Conclusions

Some of the greatest contemporary challenges facing the mining and petroleum in-
dustries are sociotechnical in nature, dealing with thorny issues of public acceptance and
social and environmental justice. Training the next generation of engineering students to
approach problems from a sociotechnical perspective is a key strategy for addressing those
challenges and developing industry projects that are responsive to local concerns and needs.
Undergraduate education is a time in which students are not just developing technical
expertise, but their own identities as engineers. Presenting students with social content
directly inside of their majors is a powerful strategy for defining societal concerns as central
to their responsibilities as engineers. Our teaching and research with two different groups
of students–petroleum engineering students enrolled at the Colorado School of Mines
(though hailing from around the U.S. and the world) and Colombian mining, metallurgical,
and environmental engineering students from their School of Mines–found that collabora-
tive, interdisciplinary teaching about authentic problems enhanced students’ abilities to
understand their professions from a sociotechnical perspective. This recognition is a crucial
step to being able to then practice engineering in a way that promotes sustainability and
social justice.
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Abstract: Phosphorus is a limited resource that is non-replaceable worldwide. Its significant role as a
fertilizer underlines the necessity for prudent and strategic management. The adequate monitoring
of the phosphate extraction process mitigates anything that can influence the quantity or quality of
the product. The phosphate extraction process’s most important phase is the screening unit, which
can be used to separate phosphate minerals from unwanted materials. Nevertheless, it encounters
several anomalies and malfunctions that influence the performance of the whole chain. This unit
requires continuous automated control to avoid any blockages or risks caused by malfunctions. Using
artificial intelligence and image processing techniques, the main goal of the investigations described
in this paper was to evaluate the performances of machine-learning and deep-learning models to
detect the screening unit malfunction in the open pit of the phosphate mine in Benguerir-Morocco.
These findings highlight that the CNN and HOG-based models are the most suitable and accurate for
the given case study.

Keywords: open-pit phosphate mine; phosphate ore screening unit; anomaly detection; intelligent
monitoring system; machine learning; deep learning

1. Introduction

The phosphate industry is one of the most essential industries in the world since phos-
phorus is an irreplaceable resource in agriculture and, at the same time, it is limited in terms
of availability [1]. The phosphorus fertilizer is in high demand for crop production [2–4]
because its use can improve yields by up to 50% [5]. Phosphorus fertilizers consume more
than 80% of the phosphorus produced. Otherwise, phosphorus and its compounds are used
in animal feed, detergents, and operations for metal processing [2]. Therefore, this resource
must be managed adequately to prevent or at least minimize future supply limitations.
A part of this stewardship plan is to perform quality control analyses through real-time
monitoring to ensure the final product’s quality and improve extraction yields.

Manual monitoring is more than monotone and leads to errors that are overlooked by
humans; it is also often impractical, even as production volume increases, not to mention
costly. In fact, the surveillance officer can only maintain an acceptable level of attention for
up to 20 min when observing and analyzing video surveillance monitors and can keep an
attentive eye on 9 to 12 cameras for up to 15 min [6]. Thus, intelligent video surveillance
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systems could provide a solution to the limitations of manual human monitoring. This kind
of intelligent system is one of the primary objectives of the Fourth Industrial Revolution.

Thus, constructing intelligent plants to modernize manufacturing processes is key to
innovation, growth, and sustainable profitability. Several works have explored various
aspects of intelligent monitoring. For example, in our specific context, work [7] presents
a complete system that was designed to facilitate the condition monitoring of railway
tunnels by structural examiners. This technology increases accuracy and robustness while
reducing the time required for visual inspection. On the other hand, ref. [8] illustrates an
example of intelligent video surveillance that was designed to automatically detect hex
head bolts used to fasten rails to sleepers. This system is based on MLPNC (Multi-Layer
Perceptron Neural Classifier) and FPGA (Field-Programmable Gate Array) technologies.
Ref. [9] classifies the current mining applications of UAVs (Unmanned Aerial Vehicles)
from exploration to reclamation. At the same time, video surveillance has been used in the
mining context to anticipate risks and improve mining safety and productivity, as shown
in the work [10]. The latter proposes a hybrid CNN-LSTM (convolutional neural networks
and long short-term memory networks) prediction model to accurately anticipate miners’
health quality index and CH4 gas concentration. Finally, paper [11] presents a model to
automatically identify and monitor open-pit mines in Hubei province, China, by exploiting
Gaofen-2 and Google Earth satellite data using the R-CNN (region convolutional neural
network) and transfer learning. These works contribute substantially to the progress of
intelligent monitoring in different areas. However, notable gaps remain in the intelligent
monitoring of the phosphate production chain associated with its unique challenges. Our
research seeks to fill these gaps and provide insights into the specific challenges of the
phosphate screening unit, which fundamentally influences the entire production process.
This monitoring offers multiple benefits by automating the control of the screening unit and
detecting anomalies, thereby considerably improving the yield of the phosphate production
chain. Simultaneously, it significantly reduces machine maintenance costs, representing a
significant financial advantage for mining operations.

Thus, we aim to provide a reliable and effective video surveillance system that can
detect malfunctions in the Benguerir phosphate mine screening unit using computer vision
and artificial intelligence tools. In previous works [12,13], we demonstrated that certain
models provide enhanced results in the classification of anomalies within the screening unit.
However, in this work, we extended our investigation by evaluating additional techniques
known for their robustness in anomaly classifications. Our aim was to identify the most
effective models capable of maintaining their performance in the presence of various future
perturbations. The rest of this paper is organized as follows: Section 2 illustrates phosphate
industry malfunctions/anomalies in the Benguerir mining site and their consequences,
explaining the need for intelligent solutions. Section 3 explains the methods and materials.
Section 4 presents the implementation process with the obtained results. Finally, we provide
a discussion and then a conclusion.

2. Malfunctions of the Phosphate Production Chain in the Benguerir Mining Site

Morocco holds three-quarters of the world’s phosphate reserves, making it the world’s
leading exporter with around a 1/3 of international trade, the world’s leading exporter of
phosphoric acid (50% of the international market), and the world’s third largest phosphate
producer. Despite its economic importance and beneficial effects, this status represents
a major responsibility and a real challenge regarding the safeguarding of this resource
against any loss or damage.

Malfunctions in any production process mean product loss, which negatively impacts
the production line’s yield. In the phosphate industry, malfunctions and phosphate losses
really affect ore recovery rates. There are two main sources of phosphate losses during
mining [14]:
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• Project losses: there are losses of phosphate in places that have been abandoned and
not mined; they involve the abandonment of phosphate levels whose mining generates
very high ratios and is, therefore, economically unfeasible.

• On-site losses: there are losses linked to different operational stages, from the kinematic
chain that extracts the various phosphate layers to the final loading of the product.

At the Benguerir phosphate mine, operations begin with extracting phosphate layers,
which consists of the following stages: drilling, blasting, stripping, and phosphate ore
recovery. Once the ground has been drilled, explosives are placed in the holes and then
blasted to reshape the ground and make it crumbly for easy stripping. Stripping is the
operation that consists of removing the overburden or intervening layers to expose and
recover the layer of ore to be exploited. Next, the ore (phosphate) is recovered once
stripping is complete. The ore then undergoes a series of treatments, mainly destoning and
screening, to reduce the quantity of waste rock and ensure the required product’s quality.

Ref. [14] presents the problems and losses encountered during phosphate ore recovery
at the Benguerir mining site in Morocco. This paper highlights problems and losses in
relation to staff qualifications and lack of supervision, as well as other challenges linked
to the soil’s nature concerning the adaptation of equipment used, the encumbrance of
impurities on the phosphate, and problems related to drilling, blasting, cleaning, and
transport operations. Following the phosphate ore recovery operation, the phosphate
ore beneficiation process begins. Effective beneficiation can be achieved through various
processes, depending on the liberation size of phosphate, gangue minerals, and other
ore specifications [13]. The screening operation is one of the most effective beneficiation
processes used in the Benguerir mine. The screening station contains a certain number of
screens, which are used to separate the phosphate minerals from unwanted materials. As
part of this research project, we had the opportunity to visit the Benguerir site and received
a detailed report on the various anomalies encountered at the phosphate screening station.
This station has an intrinsic role, meaning that any dysfunction during this stage directly
affects the overall effectiveness of the process.

The main problems encountered in the screening unit can be generalized into two
primary anomalies: the abnormal presence of sterile stones on screens, which negatively
impacts the quality of the final product, and the rejection of high-quality phosphate. Indeed,
the machines cannot eliminate the stones mixed with the phosphate during the de-stoning
operation. As a result, the stones that cannot be removed could block the hoppers’ opening
in the main screening building and create a blockage in the production line that can last
anywhere from half an hour to eight hours. The situation worsens when a poor phosphate
ore layer is extracted. The screens overflow with waste rock contained in low-concentration
phosphate ore. The screens may be unable to re-screen the product because the mesh is
blocked. The existence of large quantities of phosphate mixed with waste rock is another
malfunction that leads to the loss of large quantities of net product due to a delay in
detecting the root cause of the problem. In some cases, the screens cannot filter all the
material due to the high flow rate of the material. Figure 1 presents images illustrating
malfunctions occurring in the screening unit at the Benguerir site.

These malfunctions affect the screening process in several ways, with infiltrated sterile
stones producing a direct negative impact on (i) safety, (ii) production yield due to machine
stoppages and micro-stoppages, (iii) machine life due to the vibrations produced by large
stones, which have an impact on maintenance costs, and (iv) the loss of production caused
by the passage of material to screen rejection.

Generally, the gravity of all these malfunctions lies in a delay in detection, resulting in
ineffective intervention by the maintenance department. Therefore, the screening operation
must undergo quality control analyses via real-time monitoring using surveillance cameras
and intelligent computer vision and machine-learning techniques to automate surveillance
and anomaly detection.
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Figure 1. Illustration of some malfunctions in the screening unit at the Benguerir site. (a) Passage
of pebbles to screens on the conveyor belt. (b) Pebbles in the screen. (c) High sterile content in the
screen. (d) Passage of the product through the screen.

3. Materials and Methods

3.1. Method

The choice of monitoring method is mainly based on the information available in the
system. Empirical feedback is represented by system expertise, historical data recorded
after using the system under various conditions, physical models derived from a basic
understanding of the system, and the physics of the system, expressed as a mathematical
function in relational form [15]. There are two categories of monitoring approaches: model-
based and data-based.

Model-based detection and diagnosis offer a description of dynamic behavior and
a better physical understanding of the system, which is a major advantage. However,
in practice, it is very difficult to develop an accurate mathematical model that considers
the different sources of uncertainty due to the complexity of systems. The model-based
approach is generally applied on the assumption that only simple failures occur. However,
when a large amount of historical data are available, data-driven approaches are a good
alternative [16].

Most methods based on historical data consider detection and diagnosis as classifica-
tion tasks (see Figure 2). The aim of detection is to identify whether an abnormal operation
has occurred, which corresponds to a classification into two categories: the normal func-
tioning class (NFC) and the fault class. Diagnosis aims to determine the type of fault, which
can be seen as a classification into several classes: anomaly 1, anomaly 2, etc. [15].

In this work, we adopted a data-driven approach and investigated the classifica-
tion technique based on supervised learning. We considered two main anomalies of the
screening unit:

• Anomaly 1: High sterilization rate.
• Anomaly 2: The passage of phosphate material to screen rejection (phosphate loss).
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Figure 2. Detection and diagnosis of anomalies based on a data-driven approach.

Therefore, we approached anomaly detection as a problem of image classification
into three distinct classes: the NFC class, anomaly 1 class, and anomaly 2 class. Figure 3
illustrates our implemented method for detecting malfunctions using image classification
with three classes.

Figure 3. Our method based on a data-driven approach and supervised learning-based classification
technique.

Various methods have been developed for image classification tasks. There are mainly
traditional machine learning techniques such as support vector machines (SVM), k-nearest
neighbors (KNN), and random forest (RF), as well as deep learning techniques such as
convolutional neural networks (CNN). Traditional machine learning techniques rely on
hand-crafted features extracted from images using a feature extractor such as Histogram of
Oriented Gradient (HOG) or Local Binary Pattern (LBP), while deep techniques automati-
cally extract features using their convolutional layers. Although deep models have been the
most used recently in many works, including industrial damage detection with excellent
results such as [17–19], we believe that each problem has its own challenges. Hence, in
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this study, we conducted a comparative evaluation of machine-learning and deep-learning
approaches to select the optimal models for our case study. For the machine-learning
approach, we evaluated a combination of HOG, Scale Invariant Feature (SIFT), and LBP
with one of the classifiers, SVM, KNN, or RF, while for the deep approach, we tested the
CNN model.

The support vector machine (SVM) is a well-known classification algorithm. It seeks to
create an optimal hyperplane, maximizing the separation between projected points, called
support vectors. SVMs are versatile, handling both linear and non-linear classifications
using kernel functions [20]. On the other hand, random forests, an ensemble learning
method, build several decision trees during training. Each tree contributes a unit vote to
classify an input vector based on the most common class [21]. K-nearest neighbors (KNN)
is a simple and efficient non-parametric classification method that determines the class of a
new data point by examining the majority class among its k-nearest neighbors from a set of
labeled training data [22].

Furthermore, the convolutional neural network (CNN), a well-known model of feed-
forward neural networks, is particularly well suited to large datasets such as images and
videos. CNNs work the same way as standard neural networks, except that each unit of
a CNN layer is a two-dimensional convolution filter applied to the layer’s input. This
convolution step is essential when learning models from high-dimensional inputs, such as
images or videos [23]. Regarding feature extraction algorithms, Table 1 briefly describes
the HOG, SIFT, and LBP algorithms, with an illustration of their application in an image
corresponding to the situation with the high sterilization rate.

These techniques have proven their efficacy in various smart surveillance applications.
For instance, the HOG descriptor has demonstrated its performance in human detection,
tracking, and object detection [24,25]. LBP and Violent Flows (ViF), followed by Linear
SVM, have been used to classify videos as either violent or non-violent [26]. Additionally,
SIFT has proven its efficiency when used as a feature extractor for anomaly detection [27].
On the other hand, the widely used classification algorithm SVM has been employed, for
example, when detecting abnormal events in public surveillance systems [28]. Random
forest has been utilized to automate defect detection in tunnel images [29]. Moreover, the
HOG-SVM combination has demonstrated its effectiveness in detecting anomalies in the
screening unit [12]. However, this work aims to evaluate and compare other combinations
to identify the most powerful models based on various evaluation metrics.

Figure 4 shows the flowchart used to build the models. Once the images were acquired,
our knowledge database was built to train the different models evaluated, whether from
classical or deep approaches. Finally, a comparative analysis was developed based on the
evaluation metrics.

Figure 4. Flowchart of the methodology followed.
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Table 1. HOG, SIFT and LBP principals and their application in an image corresponding to the
situation of a high sterilization rate.

Algorithm Principle Application

HOG: Histogram
of Oriented

Gradient

HOG is a feature descriptor proposed by Navneet
Dalal and Bill Triggs in 2005 [30] and used in

computer vision for object detection. The basic
principle of this descriptor is the use of the
intensity distribution of the gradient or the

direction of the contours.

SIFT: Scale
Invariant Feature

Transform

SIFT is a feature extractor proposed by researcher
David Lowe in [31]. The general idea of this

algorithm is to extract characteristic points, called
“features points”, on an image in such a way that

these points are invariant to several
transformations, including rotation, illumination,

and, especially, invariant to scale.

LBP: Local Binary
Pattern

This descriptor was first mentioned in 1993 to
measure an image’s local contrast but was

popularised three years later by Ojala et al. to
analyze textures [32]; it is also used to detect and
track moving objects in an image sequence. The

general principle is to compare a pixel’s luminance
level with its neighbors’ levels.

3.2. Datasets Preparation and System Configuration

The experiments were carried out on a balanced dataset containing images in the jpg
format, each measuring 180 × 120 × 3, and captured from the videos of the surveillance
camera installed at the screening station. The captured images were converted to grayscale
images and then pre-processed to prepare a dataset of learning. For each captured image, a
32◦ rotation, a cropping, and a resizing operation were introduced to eliminate the non-
functional parts of the image. This dataset contains three different classes; one class is the
normal case, and the others present two types of anomalies (see Figure 5). Figure 5 shows
images corresponding to the normal functioning class, images corresponding to the high
sterilization rate class, and images corresponding to the passage of the phosphate material
to the rejection of the screens (phosphate loss class). The distribution of dataset images
over the train and test samples is resented in Table 2.

The computation for this study was undertaken using Anaconda (version 4.10.3) with
Python, employing various libraries such as OpenCV, scikit-learn, scikit-image, and Ten-
sorFlow. All experiments were performed on an Asus laptop, manufactured by ASUSTeK
Computer Inc based in Taipei, Taiwan, equipped with an Intel(R) Core (TM) i5 (10th Gen)
processor and 18 GB of RAM. The laptop ran at 2.50 GHz with the Windows 10 operating
system. This hardware configuration provided a reliable and consistent computing envi-
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ronment for the execution of various computational tasks, ensuring the reproducibility and
accuracy of experiments conducted throughout this study.

Figure 5. Dataset sample.

Table 2. Dataset distribution.

Class Train Test

Phosphate less 399 266

High-sterilization rate 400 267

Good functioning 401 267

Total 1200 800

3.3. Evaluation Metrics

The classification of each test sample was based on four cases commonly represented
by the confusion matrix. These four cases included TP, TN, FP, and FN, corresponding
to True Positive, True Negative, False Positive, and False Negative, respectively. For
multi-class classification, we used a one-against-all approach as follows:

• “TP of Ci” is all Ci instances that are classified as Ci.
• “TN of Ci” is all non-Ci instances not classified as Ci.
• “FP of Ci” is all non-Ci instances that are classified as Ci.
• “FN of Ci” is all Ci instances not classified as Ci.

To compare these models’ robustness, we estimated the models’ accuracy, sensitivity,
and specificity. Accuracy gives us an idea of the proportion of correctly classified images
(TP and TN) compared to the overall number of images entered into the model (TP, TN, FP,
and FN). Sensitivity is a metric that measures the model’s capacity to predict each available
class’s True Positives. On the other hand, specificity measures the model’s capacity to
predict the true negatives of each available class. The equations of these metrics are as
follows:
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Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Sensitivity =
TP

TP + FN
(2)

Specificity =
TN

TN + FP
(3)

4. Implementation and Results

4.1. Implementation
4.1.1. Machine-Learning Approach

The machine-learning approach combines a descriptor for extracting characteristic
elements from the image and a classifier forming two blocks. The evaluation is based on
supervised machine learning, which consists of two phases: a training phase in which the
model learns from labeled data and a test phase to assess how well the model learns from
unlabeled data. The implementation process is consistent across all models in this study
and involves several key stages. Initially, required libraries are imported, followed by a
definition of model parameters. Specifically, the HOG technique employs nine gradient
orientations, with each cell covering a 16 × 16-pixel region and two cells included in each
block. SIFT utilizes a 6-pixel step between key points, effectively reducing the feature
vector’s size and runtime. LBP is configured with a circle radius (R) of one, circularly
symmetric neighbors set points (P) equal to eight times the radius, and a uniform method
to determine patterns. Our SVM used the radial basis function as its kernel with a C
value of 100. For the random forest, we used 100 trees in the forest, while the KNN
classifier retained its default parameters. Subsequently, the image dataset was imported,
labeled, and prepared for training. The predictive model was then trained using the cross-
validation method to avoid over-fitting. Finally, the model’s performance was evaluated
with new images from the test dataset, and various evaluation metrics were calculated.
This comprehensive process ensures the appropriate development and evaluation of each
model under consideration.

4.1.2. Deep-Learning Approach

The critical difference of the deep learning approach is that it combines the two stages
of feature extraction and classification in a single block while exploiting the power of neural
networks. This idea is based on a trainable system consisting of modules corresponding to
a processing step. The training of each module is performed with adjustable parameters
such as linear classifier weights. The whole system is driven from scratch: for each sample,
all parameters of the modules are adjusted to match the outcome of the system to the
desired outcome. The in-depth qualifier is due to the successive layering of these modules.

The architecture of the CNN model that we implemented and tested on our dataset is
detailed in Table 3. This model was not pre-trained; we learned it from scratch. It included
two convolution layers, each producing 64 feature maps using a 4 × 4-pixel size filter, two
max-pooling windows of size 2 × 2 pixels, two batch normalization layers, two dropout
layers, and three fully connected layers (FC). The final classification was achieved using the
SoftMax activation function. This model follows a modeling structure comprising several
vital stages. First, the necessary libraries were imported, followed by the definition of model
parameters. Next, the model was created, and the images in the dataset were prepared,
resized, labeled, and augmented. This model was then trained over 40 epochs. Finally, a
complete evaluation was carried out, including performance tests and the calculation of
key evaluation metrics.
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Table 3. CNN model architecture.

Input: Image (180, 120, 1)

Normalization

Conv4-64

Maxpol-2

Dropout (0.1)

Conv4-64

Maxpool-2

Dropout (0.3)

Flatten

Fc-256

Dropout (0.5)

Fc-64

Normalization

SoftMax
Convk-m: Convolution layer with m filters whose kernel has a dimension of k × k. Maxpool-k: window pooling
layer of k × k. Fc-n: multilayer n-neuron perceptron. Dropout (p): dropout with a probability of p.

4.2. Results

We evaluated several classification models; HOG and SVM, HOG and RF, HOG and
KNN, SIFT and SVM, SIFT and RF, SIFT and KNN, LBP and SVM, LBP and RF, LBP and
KNN, and the CNN model. The learning accuracy results presented in Table 4 reveal that
most models efficiently learned data features and could provide accurate predictions during
the learning phase, with learning accuracies above 80%. However, it is worth mentioning
that the LBP and SVM models achieved the lowest learning accuracy of 42%. It suggests
that this combination encountered difficulties in learning effectively from the training data.
On the other hand, the LBP and KNN models achieved a moderate learning accuracy of
76%

Table 4. Training accuracy of different models.

Model
HOG &

SVM
LBP &
SVM

SIFT &
SVM

HOG &
RF

LBP &
RF

SIFT &
RF

HOG &
KNN

LBP &
KNN

SIFT &
KNN

CNN

Train
Accuracy 0.99 0.42 0.84 0.97 0.93 0.94 0.99 0.76 0.81 1

Figure 6 shows a heatmap illustrating the performance measures, including accuracy,
sensitivity, and specificity, for the test dataset across different classification models explored
in this study. The CNN model emerged as the best-performing model, with the highest
accuracy, specificity, and sensitivity (99.6%, 99.6%, and 99.7%, respectively, as shown
in Figure 6). The HOG-based models (HOG and SVM, HOG and RF, HOG and KNN)
consistently performed well on all measures (exceeding 98%), especially for HOG and SVM,
which achieved high accuracy (99%) and well-balanced sensitivity and specificity (99.6%
and 99%, respectively). The SIFT-based models (SIFT and SVM, SIFT and RF, SIFT and
KNN) also performed competitively, in particular the SIFT and RF model, which excelled
in terms of accuracy and sensitivity (98% and 98.8%, respectively). By contrast, the -based
models (LBP and SVM, LBP and RF, LBP and KNN) tended to provide lower accuracy and
specificity. For example, the LBP and SVM models produced an accuracy and specificity of
33%, while the models based on HOG and SIFT yielded better results with higher values.
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Figure 6. Heatmap of the performance metrics (accuracy, sensitivity, and specificity) for each model.

Moreover, it is worth noting that the RF classifier demonstrated consistent competence
across different feature extraction methods. By contrast, the KNN classifier performed
competitively despite having a slightly lower accuracy than SVM and RF.

In summary, considering the parameters evaluated, the CNN and HOG-based models
were strong performers for achieving high robustness, with SIFT-based models proving
competitive. Figure 7 illustrates the prediction results generated by the CNN model for a
subset of images from the test sample.

Figure 7. Prediction results of some test images using the CNN model. “P” refers to the class
predicted by the CNN model, and “C” designates the actual class of the image.

189



Mining 2023, 3

5. Discussion

The previous section provided an overview of our study’s findings, highlighting the
performance of the CNN, HOG, and SIFT-based models in the context of anomaly detection
in the screening unit of the Benguerir phosphate mine. The LBP descriptor consistently
showed better sensitivity than accuracy and specificity in all combinations with various
classification methods (SVM, RF, and KNN). A notable observation was made for the
LBP-SVM combination. Thus, this algorithm tends to fail in describing “True Negative”
instances compared to “True Positive” instances. This limitation can be attributed to the
limited discriminating power of LBP, which, in some cases, may struggle to capture subtle
differences between textures. This factor led us to eliminate the LBP-based models for our
specific case study.

To provide a more in-depth analysis of our findings, it is crucial to discuss the real-time
aspect of the intended monitoring system. In fact, the image processing time was a critical
factor in our real-time system, which required the processing of two images per second
with a product residence time of 10 s on the screen. An analysis of the processing times of
best-performing models, as shown in Table 5, revealed that all models met the stringent
processing time requirements, with each model taking less than half a second to process
a single image. In particular, the SIFT-based models and the CNN model showed the
highest processing speed. Consequently, if we consider both success rates and execution
times, the CNN model, along with the HOG and SIFT-based models, proved to be the most
appropriate choices for our case study in terms of robustness and processing speed.

Table 5. Processing time of an image for the models with highest accuracies.

Model Time to Process an Image (s)

HOG and SVM 0.025

HOG and RF 0.013

HOG and KNN 0.013

SIFT and SVM 0.004

SIFT and RF 0.0005

SIFT and KNN 0.0007

CNN 0.0008

Furthermore, comparing the classical approach with the deep approach for convo-
lution neural networks, the advantage of the deep architecture is that it is not necessary
to build a feature extractor by hand since all these layers are trained to extract features in
the image in an automatic way. In ref. [13], we evaluated and compared the performances
of the CNN as a descriptor and the HOG, SIFT, and LBP descriptors, each using an SVM
classifier. As a result, we found that the deep neural network approach is robust and offers
the greatest accuracy despite a low runtime trade-off.

6. Conclusions

Intelligent monitoring systems require the use of powerful and robust models that
are capable of accurately fulfilling their assigned purpose. In this paper, we present a case
study in which we provide a comparative study of different classification models designed
to accurately detect anomalies in the screening unit of the Benguerir phosphate mine.

The experimentation in this research section highlights the robustness of both the CNN
and HOG-based models. The CNN model demonstrated exceptional accuracy, specificity,
and sensitivity, all above 0.99. Simultaneously, the HOG-based models performed well,
with accuracy, specificity, and sensitivity all exceeding 0.98. Notably, both models achieved
these results while maintaining a highly tolerant processing speed. While the SIFT-based
models did not match the performance of the CNN- and HOG-based models, they still
achieved competitive results. These outcomes were obtained based on a dataset of images
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taken under normal conditions. However, the mine is an uncertain environment subject
to severe weather conditions (fog, dust, rain, and high temperature). Hence, precise
knowledge of these methods’ robustness in images containing parasites and noise caused
by degraded weather conditions or other noise sources is imperative. Indeed, this concern
is the major challenge of any artificial vision system in a context like mining.

Our perspective for the next step is to examine the noises and degradations that can
alter the quality of images captured from surveillance cameras and then to study suitable
solutions to rectify these defects. After this system is complete, the overall objective is to
integrate this system with other systems, such as serving autonomy, to develop a global
digital platform that ensures the remote control of all activities of the mine in Benguerir.
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