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Editorial

Non-Additive Entropy Formulas: Motivation and Derivations

Tamás Sándor Biró 1,2,*,† and Airton Deppman 3
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3 Instituto de Física, University of São Paolo, São Paolo 05508-090, Brazil; deppman@usp.br
* Correspondence: biro.tamas@wigner.hu
† External Faculty Member at Complexity Science Hub, 1080 Vienna, Austria.

Entropy is a great tool in thermodynamics and statistical physics. Originally conceptu-
alized by Clausius as a state descriptor that was distinguished from heat, it became a basic
principle for statistical and informatics calculations. Its classical form, Boltzmann entropy,
is widely used. Moreover, its generalizations are numerous: altered, non-logarithmic
formulas concerning the relationship between the probability of a given state and the total
entropy of a system proliferate.

This Special Issue is devoted to the mathematical background and physical motivation
behind using non-additive entropy formulas, which are, in most cases, still group entropies,
defined as expectation values, and incorporate, in one way or another, nontrivial corre-
lations in the investigated systems and processes. Despite the vast number of studies on
applying such formulas in informatics, mathematics, and statistical physics approaches
to a wide range of physical, biological, economical, and social phenomena, we felt that a
collection of their derivations, beyond simple axiomatization and usage, would be useful
for modern statistical communities.

The concept of entropy has been changing swiftly since C. Tsallis and, before him,
a series of mathematicians and informatics experts proposed various generalizations of
Boltzmann–Gibbs entropy. The most distinguishing property of these formulas is their
non-additivity with respect to factorizing probabilities, with the notable exception of Rényi
entropy, which is, on the other hand, not an expectation value.

The determination of a non-additive entropy formula has motivated investigations in
many directions. Some works have considered the theoretical and axiomatic implications of
the new form of entropy. Others have proposed physical mechanisms that could lead to non-
additive entropy. Evidence for the applicability of generalized thermodynamics appears
in many branches of physics and other fields, such as biological systems, socio-economic
environments, information theory, and complex networks, among many others.

This Special Issue is dedicated to reviewing these developments, sharing new results
and opening new perspectives as to the advancement of our knowledge of entropy. We
have gathered contributions on the following topics:

(1) The implications and applications of non-additive entropy;
(2) Advances in the theoretical aspects of entropy;
(3) The mathematical aspects of non-additive entropy;
(4) The thermodynamic consequences of generalized entropy;
(5) The origins of non-additivity in the entropy of complex systems.

The contributors to this Special Issue include colleagues who have been working on
these ideas and related concepts for decades. The included papers cover issues ranging
from derivation discussions of given formula groups to the applications of a given entropy
formula for contemporary problems—and solving them—and the statistical data analysis
of COVID-19 infections.

We have received eleven papers, including an extended review by Angle R. Plastino
and Angelo Plastino titled “on the Connection Between the Microcanonical Ensemble
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and the Sq-canonical Probability Distribution” (i.e., the Tsallis–Pareto cut power law dis-
tribution). This work is connected to the classical thermodynamics background in the
micro-canonical approach, as is the paper by Tamás Sándor Biró entitled “Non-Additive
Entropy Composition Rules Connected With Finite Heat-Bath Effects”, which concerns
the finite heat capacity of the reservoir determining the Tsallis-q parameter. Also of a
general background nature, the contribution by Ozgur Afsar and Tirnakli investigates
the self-organization process in non-extensive open systems. This paper also reveals the
connections to chaotic dynamics and discusses a simple example.

A review-like contribution on the mathematical relations regarding q-entropy is pre-
sented by Angel R. Plastino, Constantino Tsallis, Rosell S. Wedemann, and Hans J. Hubold,
concentrating on entropy optimization issues and the use of generalized logarithms—
simultaneously implying generalizationsof the logarithmic entropy formula—and some
interesting duality relations between various q parameters. In the direction of more ab-
stract mathematical tools, two contributions in this Special Issue cover fractal derivatives.
The first of which, which was written by Airton Deppman, Eugenio Megías, and Roman
Pasechnik and concerns “Fractal Derivatives, Fractional Derivatives and q-Deforemd Cal-
culus”, dives deeper into formalism. A similarly motivated article written by Jin-Wen Kang,
Ke-Ming Shen, and Ben-Wei Zhang considers the h-Derivative in relation to non-additive
entropy. Finally, we have the paper by F. Nobre and E. Curado, wherein the dynamical
evolution of non-additive entropies is considered on the basis of a generalized H-theorem,
resulting in non-linear equations for a class of systems.

The rest of the submissions deal with applications, but what incredible applications
they are! Jin Yan and Christian Beck discuss an information shift model, which they
demonstrate to be equivalent with q = 3 entropy in a compact phase space. It is intended
to be applied to a pre-universe before ordinary spacetime was created and the natural laws
as we know them were formed. The authors show that the electromagnetic fine structure
constant’s value, 1/137, can be interpreted as a special “equilibrium” state for Chebisev
maps describing a chaotic pre-universe. This is quite an interesting perspective.

More earthbound but also more controllable applications are provided in relation
to well-studied phenomena. Grzgeorz Wilk and Zbigbiew Wlodarczyk present a review
of applying non-extensive entropy to multi-particle production in high-energy collisions
inside accelerators. In their contribution, Elif Tuna, Alif Evren, Erhan Ustaoglu, Busra Sahin,
and Zehra Zeynep Sahinbasoglu discuss an application with importance in hypothesis
testing. Lastly, we have collected a genuine non-physics application to the statistics of
COVID-19 infections written by Markos N. Xenakis estimating the risk of indoor infection.

In closing this Editorial, we thank the contributing authors for being responsive to
our call and providing such a remarkable variety of thoughtful and interesting papers on
non-additive entropy. The invaluable help provided by the MDPI Editorial Office is also
gratefully acknowledged.

Conflicts of Interest: The authors declare no conflict of interest.
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Article

Non-Additive Entropic Forms and Evolution Equations for
Continuous and Discrete Probabilities

Evaldo M. F. Curado and Fernando D. Nobre *

Centro Brasileiro de Pesquisas Físicas and National Institute of Science and Technology for Complex Systems
Rua Xavier Sigaud 150, Urca, Rio de Janeiro 22290-180, Brazil
* Correspondence: fdnobre@cbpf.br; Tel.: +55-(21)-2141-7513

Abstract: Increasing interest has been shown in the subject of non-additive entropic forms during
recent years, which has essentially been due to their potential applications in the area of complex
systems. Based on the fact that a given entropic form should depend only on a set of probabilities,
its time evolution is directly related to the evolution of these probabilities. In the present work, we
discuss some basic aspects related to non-additive entropies considering their time evolution in
the cases of continuous and discrete probabilities, for which nonlinear forms of Fokker–Planck and
master equations are considered, respectively. For continuous probabilities, we discuss an H-theorem,
which is proven by connecting functionals that appear in a nonlinear Fokker–Planck equation with a
general entropic form. This theorem ensures that the stationary-state solution of the Fokker–Planck
equation coincides with the equilibrium solution that emerges from the extremization of the entropic
form. At equilibrium, we show that a Carnot cycle holds for a general entropic form under standard
thermodynamic requirements. In the case of discrete probabilities, we also prove an H-theorem
considering the time evolution of probabilities described by a master equation. The stationary-state
solution that comes from the master equation is shown to coincide with the equilibrium solution that
emerges from the extremization of the entropic form. For this case, we also discuss how the third
law of thermodynamics applies to equilibrium non-additive entropic forms in general. The physical
consequences related to the fact that the equilibrium-state distributions, which are obtained from the
corresponding evolution equations (for both continuous and discrete probabilities), coincide with
those obtained from the extremization of the entropic form, the restrictions for the validity of a Carnot
cycle, and an appropriate formulation of the third law of thermodynamics for general entropic forms
are discussed.

Keywords: nonlinear Fokker–Planck equations; generalized entropies; nonextensive thermostatistics

PACS: 05.70.Ln; 05.40.Fb; 05.90.+m; 05.10.Gg; 05.20.-y

1. Introduction

The area of complex systems has attracted the attention of many researchers in recent
years and has exhibited a large variety of novel phenomena, such as nonlinear dynamics,
slow relaxation processes, and nonextensivity in some thermodynamic quantities [1–4].
These systems are usually characterized by a large number of components immersed in
random or disordered media that interact through long-range forces and/or possess long
time memories; as a consequence, they may present a collective behavior very different
from those of their individual components. Many of the above-mentioned phenomena
have been understood appropriately by means of proposals of generalized entropies [4–12],
which have found grounds on diverse applications within the realm of complex systems
(see, e.g., Ref. [9] for a comprehensive list of entropic forms available in the literature up
to 2011). In its statistical formulation, a given entropic form should be a functional only
of a set {Pi(t)}, i.e., S ≡ S({Pi(t)}), where Pi(t) stands for the probability of finding a

Entropy 2023, 25, 1132. https://doi.org/10.3390/e25081132 https://www.mdpi.com/journal/entropy
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given system on a state i at time t [13,14]. Most of these generalized entropies violate
the additivity property and are usually referred to as non-additive entropic forms. This
property concerns two probabilistically independent systems (A and B), described by
two sets of probabilities {P(A)

i } and {P(B)
j }, respectively, such that the probabilities for

the composed system are given by P(A+B)
ij = P(A)

i P(B)
j (∀(i, j)). A given entropic form is

considered non-additive if

S(A+B)({Pij}) �= S(A)({Pi}) + S(B)({Pj}) . (1)

Among the many proposals of generalized (or non-additive) entropies, the most commonly
known is Tsallis entropy Sq [12], which is characterized by an index q (q ∈ R),

Sq({Pi}) = k
1 − ∑W

i=1 Pq
i

q − 1
, (2)

so as to recover the Boltzmann–Gibbs (BG) entropy,

SBG({Pi}) = −k ∑
i

Pi(t) ln Pi(t) , (3)

in the limit q → 1, i.e., S1 ≡ SBG.
One of the most successful theories of contemporary theoretical physics is BG statistical

mechanics [13–17]; this theory is based on BG entropy, which is additive. The time evolution
of SBG({Pi(t)}), and consequently, its approach to the equilibrium state, is directly related
to the evolution of the probabilities {Pi(t)}, which follow some fundamental equation,
e.g., a master equation. For continuous probability densities P(�x, t), the linear Fokker–
Planck equation (FPE) appears to be an appropriate candidate for describing the evolution
of probabilities and represents one of the most important equations of nonequilibrium
BG statistical mechanics. The FPE delineates the time evolution of the probability density
P(�x, t) for finding a given particle at a position �x at time t while diffusing under an external
potential [14–18]. Usually one considers a confining external potential, leading to the
possibility of a stationary-state solution after a sufficiently long time. Particular interest in
the literature has been given to a harmonic confining potential, which leads to a Gaussian
distribution as the stationary-state solution of the FPE [17,18]. In the absence of an external
potential, the FPE reduces to the linear diffusion equation, which does not present a
stationary-state solution and is also associated with many out-of-equilibrium applications,
such as the celebrated Brownian motion and related phenomena.

A clear understanding of the range of applicability of BG statistical mechanics has
been emerging in the latest years; for example, it has become evident that it should be
used for systems characterized by weakly interacting particles and/or short time memories.
As typical counter-examples, regarding diffusion, it is very frequent nowadays to find
dynamical behavior that falls out of the ambit of the linear cases, which are commonly called
anomalous diffusion and usually take place in media presenting randomness, porosity,
and heterogeneity [19]. To deal with these phenomena, one habitually uses a nonlinear
(power-like) diffusion equation, known in the literature as a porous media equation [20].
Similar to the linear FPE, by adding a confining potential contribution, one obtains a
nonlinear Fokker–Planck equation (NLFPE) [21], as introduced in Refs. [22,23]. For a
harmonic confining potential, this NLFPE presents a q-Gaussian distribution typical of
nonextensive statistical mechanics [4–6] as its stationary-state solution. This distribution is
expressed as

Pq(u) = P0 expq(−βu2) (4)

and can be defined in terms of the q-exponential function,

expq(u) = [1 + (1 − q)u]1/(1−q)
+ ; (exp1(u) = exp(u)) , (5)

4
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where P0 ≡ Pq(0) and [y]+ = y for y > 0 (zero otherwise). In this way, the NLFPE
introduced in Refs. [22,23] is associated with the Tsallis entropy, Sq, since its q-Gaussian
solution coincides with the distribution that maximizes Sq. Additionally, proofs of an H-
theorem connect the linear FPE with BG entropy [17,18], as well as NLFPEs with generalized
entropies [21,24–35], and particularly, they relate the NLFPE of Refs. [22,23] to the entropy
Sq.

In the present work, we analyze general entropic forms (typically non-additive) for
both continuous and discrete probabilities whose time evolution follows a NLFPE, or a
master equation, respectively. Some important novel results from the thermodynamical
point of view, related to their corresponding equilibrium states, are studied. In the next
section, we define general NLFPEs and explore their relationship to non-additive entropies
by means of an H-theorem. Additionally, the corresponding stationary-state solutions are
discussed; due to the H-theorem, after a sufficiently long time, the system should reach an
equilibrium state for which a given stationary-state solution holds as the equilibrium solu-
tion. At equilibrium, we show that the Carnot cycle applies for these entropic forms under
very common conditions. In Section 3, we consider the case of discrete probabilities, whose
time evolution follows a master equation, while also proving an H-theorem; moreover, the
third law of thermodynamics is discussed for both Sq and general entropic forms. Finally,
in Section 4, we present our main conclusions.

2. Continuous Probabilities: Non-Additive Entropic Forms and NLFPEs

Although one may pursue an analysis in arbitrary dimensions, by considering a
probability density P(x1, x2, · · · , xN , t) (such as, e.g., in Ref. [34]) herein for simplicity, we
will restrict ourselves to a one-dimensional space described in terms of a probability density
P(x, t) and following the normalization condition

∫ ∞

−∞
P(x, t)dx = 1 . (6)

In this case, a general NLFPE may be defined as [30,31]

∂P(x, t)
∂t

= − ∂

∂x
{A(x)Ψ[P(x, t)]}+ D

∂

∂x

{
Ω[P(x, t)]

∂P(x, t)
∂x

}
, (7)

where D represents a diffusion coefficient with dimensions of energy, and the external
force A(x) is associated with a confining potential φ(x) [A(x) = −dφ(x)/dx]. The func-
tionals Ψ[P(x, t)] and Ω[P(x, t)] should satisfy certain mathematical requirements, e.g.,
positiveness and monotonicity with respect to P(x, t) [30,31]; moreover, to ensure the
normalizability of P(x, t) for all times, one must impose the conditions

P(x, t)|x→±∞ = 0 ;
∂P(x, t)

∂x

∣∣∣∣
x→±∞

= 0 ; A(x)Ψ[P(x, t)]|x→±∞ = 0 (∀t) . (8)

The NLFPE of Equation (7) recovers some well-known cases as particular limits:
(i) the linear FPE [14–18] for Ψ[P(x, t)] = P(x, t) and Ω[P(x, t)] = 1 and (ii) the NLFPE
introduced in Refs. [22,23], which are associated with nonextensive statistical mechanics,
for Ψ[P(x, t)] = P(x, t) and Ω[P(x, t)] = μ[P(x, t)]μ−1, where μ represents a real number
related to the entropic index through μ = 2 − q. It should be mentioned that a large
variety of NLFPEs, such as the one related to nonextensive statistical mechanics, the one
in the general form of Equation (7), or even those presenting nonhomogeneous diffusion
coefficients in the nonlinear diffusion term, have been derived in the literature by general-
izing standard procedures applied to the linear FPE [14–18], e.g., from approximations in
the master equation [34,36–39] or from a Langevin approach considering a multiplicative
noise [40–45].

Almost two decades ago, NLFPEs presenting more than one diffusive term appeared in
the literature [36,46–52], and a special interest was given to a concrete physical application,

5
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namely, a system of interacting vortices, which is currently used as a suitable model for
type II superconductors, that exhibited such a behavior [47–52]. A general discussion of
NLFPEs with two diffusive contributions was presented in Ref. [33], where one can be
identified in Equation (7),

Ω[P(x, t)] =
D1

D
Ω1[P(x, t)] +

D2

D
Ω2[P(x, t)] . (9)

Next, we discuss the H-theorem associated with Equation (7), leading to a direct connection
between this equation and entropic forms; we also comment on the above case of two
diffusive contributions.

2.1. Generalized Forms of the H-Theorem from NLFPEs

The H-theorem represents one of the most important results of nonequilibrium statis-
tical mechanics since it ensures that after a sufficiently long time, the associated system will
reach an equilibrium state. In standard nonequilibrium statistical mechanics, it is usually
proven by considering the BG entropy SBG and making use of an equation that describes
the time evolution of the associated probability density, such as the Boltzmann probability
density, linear FPE (in the case of continuous probabilities), or the master equation (in the
case of discrete probabilities) [13–17]. To our knowledge, the first proof of an H-theorem
making use of a NLFPE appeared in the literature more than 30 years ago [53]. After that,
proofs were extended by many authors in such a way as to cover generalized entropic
forms and their relationships to NLFPEs (see, e.g., Refs. [21,24–35]); below, we closely
follow those carried in Refs. [30–33].

In the case of a system under a confining external potential φ(x) (from which one
obtains the external force appearing in Equation (7), A(x) = −dφ(x)/dx), the H-theorem
corresponds to a well-defined sign for the time derivative of the free-energy functional,

F[P] = U[P]− θS[P] ; U[P] =
∞∫

−∞

dx φ(x)P(x, t) , (10)

with θ denoting a positive parameter with dimensions of temperature. Moreover, the en-
tropy may be considered in the general form [30–33],

S[P] = k
∞∫

−∞

dx g[P(x, t)] ; g(0) = g(1) = 0 ;
d2g
dP2 ≤ 0 , (11)

where k represents a positive constant with entropy dimensions, whereas the functional
g[P(x, t)] should be at least twice differentiable. Furthermore, the conditions that ensure
the normalizability of P(x, t) for all times (cf. Equation (8)) are also used in the proof of
the H-theorem. Considering D = kθ, the H-theorem may be achieved by imposing the
condition [30–33],

−d2g[P]
dP2 =

Ω[P]
Ψ[P]

, (12)

which relates the entropic form to a certain time evolution described by the two functionals
of Equation (7). Particular entropic forms and their associated NLFPEs were explored in
Ref. [30], whereas families of NLFPEs (those characterized by the same ratio Ω[P]/Ψ[P])
were studied in Ref. [32].

One should mention that the relationship of Equation (12) is applicable for a single
diffusive contribution, a linear internal-energy definition (as in Equation (10)), and for a
constant diffusion coefficient, as in Equation (7). Extensions of the H-theorem have been
achieved, disregarding these restrictions separately, by considering: (i) two diffusive con-
tributions, as in Equation (9) [33] (to be discussed next); (ii) a nonlinear internal-energy
definition (see Refs. [31,34]). In this case, the H-theorem is fulfilled through a slight mod-

6
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ification in the NLFPE of Equation (7), so that besides Equation (12), an extra equation
appears concerning the nonlinear functional appearing in the internal energy definition;
(iii) a diffusion coefficient dependent on the position, so that one needs to modify the free
energy of Equation (10) [54]. Recent studies have discussed physical systems within the
context of nonextensive statistical mechanics, characterized by a varying entropic index q,
such as a modified cosmological scenario [55], and the phenomenon of quantum mixing,
i.e., the superposition of particle states with different masses [56]. This is certainly an inter-
esting novelty, not contemplated by Equation (7), which recovers the NLFPE introduced in
Refs. [22,23] and is associated with nonextensive statistical mechanics for Ψ[P(x, t)] = P(x, t)
and Ω[P(x, t)] = (2 − q)[P(x, t)]1−q, where q represents a real number. The solution of this
NLFPE is the so-called q-Gaussian distribution (cf. Equation (4)), which was shown to cover
a large number of experimental verifications within the context of anomalous diffusion
phenomena, for which the value of q may vary for different systems [4–8]. An NLFPE with a
variable index q, its solution, as well as a possible H-theorem, require a particular nontrivial
analysis, which, to our knowledge, has not been addressed at present.

A detailed proof of the H-theorem in the case of two diffusive contributions, such as
in Equation (9), was presented in Ref. [33]; briefly, one replaces the free energy functional
of Equation (10) with

F[P] = U[P]− θ1S1[P]− θ2S2[P] ; U[P] =
∞∫

−∞

dx φ(x)P(x, t) , (13)

where θ1 and θ2 denote positive parameters with dimensions of temperature. Similarly to
Equation (11), one defines

Si[P] = k
∞∫

−∞

dx gi[P(x, t)] ; gi(0) = gi(1) = 0 ;
d2gi
dP2 ≤ 0 ; (i = 1, 2). (14)

In such a case, it is sufficient to impose the conditions

D1 = kθ1 ; D2 = kθ2 , (15)

as well as

−d2g1[P]
dP2 =

Ω1[P]
Ψ[P]

; −d2g2[P]
dP2 =

Ω2[P]
Ψ[P]

, (16)

extending the condition of Equation (12) for two diffusion contributions.
From now on, we restrict our analysis to a single diffusion contribution, as in

Equation (7), and their associated free energy functional (cf. Equation (10)), entropy
functional (cf. Equation (11)), as well as the relationship in Equation (12). In the discussion
above, this situation occurs whenever a diffusion coefficient is much larger than the other
one (e.g., D2 � D1) so that one may neglect the effects of the smaller contribution. As a
typical example, one should mention a system of interacting vortices currently used as a
suitable model for type II superconductors, for which, in typical cases, one of the diffusion
coefficients has been shown to be at least 104 times larger than the other one [49].

2.2. Equilibrium Distribution

Now, we briefly work out the stationary-state (i.e., time-independent) solution of
Equation (7), as well as the equilibrium distribution that results from an extremization
procedure of the entropic functional in Equation (11) (a detailed analysis of these procedures
may be found in Ref. [30])). As usual, the Lagrange parameters of this later approach will
be defined appropriately so that these two results coincide; based on this, in the calculations
that follow, we refer to an equilibrium state, described by a distribution Peq(x).
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First, let us obtain the time-independent distribution of Equation (7); for this purpose,
we rewrite it in the form of a continuity equation,

∂P(x, t)
∂t

= −∂J(x, t)
∂x

, (17)

where the probability current density is given by

J(x, t) = A(x)Ψ[P(x, t)]− DΩ[P(x, t)]
∂P(x, t)

∂x
. (18)

The solution Peq(x) is obtained by setting Jeq(x) = 0 (as required by conservation of
probability [30]), so that

Jeq(x) = A(x)Ψ[Peq(x)]− DΩ[Peq(x)]
dPeq

dx
= 0 , (19)

which may still be written in the form

A(x) = D
Ω[Peq(x)]
Ψ[Peq(x)]

dPeq

dx
. (20)

Integrating the equation above over x and remembering that the external force was defined
as A(x) = −dφ(x)/dx, one obtains

φ0 − φ(x) = D
∫ x

x0

dx
Ω[Peq(x)]
Ψ[Peq(x)]

dPeq

dx
= D

∫ Peq(x)

Peq(x0)

Ω[Peq(x′)]
Ψ[Peq(x′)]

dPeq(x′) , (21)

where φ0 ≡ φ(x0). Now, one uses the relationship in Equation (12), and, performing the
integration, can further obtain

D
dg[P]

dP

∣∣∣∣
P=Peq(x)

= φ(x) + C1 , (22)

with C1 being a constant.
Next, we extremize the entropic functional of Equation (11) with respect to the proba-

bility under the constraints of probability normalization and an internal energy definition
following Equation (10). For this, we introduce the functional

I =
S[P]

k
+ α

(
1 −

∫ ∞

−∞
dx P(x, t)

)
+ β

(
U −

∫ ∞

−∞
dx φ(x)P(x, t)

)
, (23)

where α and β are Lagrange multipliers. Hence, the extremization (δI)/(δP)|P=Peq(x) = 0
leads to

dg[P]
dP

∣∣∣∣
P=Peq(x)

− α − β φ(x) = 0 . (24)

One notices that Equations (22) and (24), which result from the stationary-state solution of
Equation (7) and the extremization of the entropic functional of Equation (11), respectively,
coincide if one chooses the Lagrange multipliers α = C1 and β = 1/D.

2.3. Carnot Cycle for a General Entropic Form S(P)

Considering non-additive entropies, the Carnot cycle was shown to hold for the equi-
librium entropy S2−q (in the case that q = 0) and its corresponding thermodynamically
conjugated parameter θ [49], which is used to define an infinitesimal heat-like quantity
δQ = θdS2 [50–52]; the physical system under investigation was a model for type II super-
conductors characterized by interacting vortices. Later on, the Carnot cycle was shown to
be valid for any system of particles interacting repulsively through short-range potentials,

8
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whose equilibrium distributions are compact q-Gaussian distributions (characterized by a
cutoff) and can be described by the entropy S2−q (for q < 1), extending the above-mentioned
proof for q = 0 [57]. One should notice that, in the illustrations concerning the Tsallis
entropy considered herein, the equilibrium distribution and the entropic form are related
by means of the simple change q ↔ (2 − q) [58]. This appears to be a direct consequence of
a linear internal energy definition, such as the one in Equation (10), which was considered
in Refs. [50–52,57]; this subtle property will be discussed in detail for the case of discrete
probabilities (see the next section). Herein, we show that the Carnot cycle holds for general
entropic forms, as defined in Equation (11). For this, we assume that the usual (i.e., very
common) conditions apply for the system under investigation, as described below.

(i) The equilibrium distribution Peq(x), which maximizes the entropic functional of
Equation (11) (as shown in Section 2.2), exists and leads to the entropy S[Peq] and internal
energy U[Peq] at equilibrium. Both S[Peq] and U[Peq] are state functions in the sense that∫ b

a
dS[Peq] = S[P(b)

eq ]− S[P(a)
eq ] = Sb − Sa ; (25)

∫ b

a
dU[Peq] = U[P(b)

eq ]− U[P(a)
eq ] = Ub − Ua , (26)

where a and b denote arbitrary equilibrium thermodynamic states. We introduce the short
notations Sa ≡ S[P(a)

eq ] and Ua ≡ U[P(a)
eq ] (similar notations holding for state b). Hence,

one may define an infinitesimal type of heat, δQ = θdS, where θ represents the positive
parameter with the temperature dimensions introduced in Equation (10).

(ii) The system under investigation can, in principle, perform work in several ways,
leading to an infinitesimal contribution, δW = ∑i σidαi, where for each contribution i, σi
and αi are pairs of thermodynamically conjugate variables. However, for simplicity, we
restrict the following analysis to a single “external field”, σ, and its conjugate, α. The
parameter α is also considered a state function following conditions similar to those in
Equations (25) and (26).

(iii) Using the quantities defined in (i) and (ii), we formulate the equivalent to the first
law,

dU = δQ + δW = θdS + σdα , (27)

where δW corresponds to the work carried out by the external field σ on the system.
(iv) Equation (27) implies that U = U(S, α); we assume that U(S, α) is invertible,

yielding S = S(U, α) (with the same condition holding for S(U, α)), leading to

dS =
1
θ

dU − σ

θ
dα . (28)

From Equation (27) (or equivalently, from Equation (28)) one obtains the fundamental
relationship

θ =

(
∂U
∂S

)
α

, (29)

as well as the equation of state

σ =

(
∂U
∂α

)
S

. (30)

Let us now consider four equilibrium states, yielding a Carnot cycle
a → b → c → d → a, defined by two isothermal (constant θ) transformations: a → b at
a temperature θ1 and c → d at a temperature θ2, with θ1 > θ2. These transformations are
intercalated by two adiabatic transformations (where S is constant) (b → c and d → a),

9
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so that ΔSbc = ΔSda = 0. Considering that both S and U are state functions (according to
Equations (25) and (26)), and using Equation (27), one has for the whole cycle

ΔS = ΔSab + ΔScd = 0 ⇒ ΔSab = −ΔScd ; (31)

ΔU = (Wab + Qab) + Wbc + (Wcd + Qcd) + Wda = 0 . (32)

From this later equation, one can obtain that the total work W carried out on the system is
given by

W = Wab + Wbc + Wcd + Wda = −(Qab + Qcd) = −W , (33)

where we have defined W (W > 0) as the total work completed by the system. For the two
isothermal transformations, one has

Qab = θ1

∫ b

a
dS = θ1(Sb − Sa) = θ1ΔSab ; (34)

Qcd = θ2

∫ d

c
dS = θ2(Sd − Sc) = θ2ΔScd , (35)

and using Equation (31), one obtains that

Qab
Qcd

= − θ1

θ2
, (36)

showing that Qab and Qcd present different signs. Therefore, as usually considered for a
Carnot Cycle, we assume that Qab > 0 and Qcd < 0, i.e., heat gets into (out of) the system
along the isothermal transformation at temperature θ1 (θ2). Let us now redefine Q1 = Qab
and Q2 = |Qcd|, leading to the fundamental relationship for the Carnot Cycle,

Q1

Q2
=

θ1

θ2
, (37)

as well as to the conservation of energy along the whole cycle, which can be expressed as

Q1 = W + Q2 , (38)

Tn these two equations above, all quantities are positive. Consequently, one has the
celebrated efficiency for the Carnot cycle,

η =
W
Q1

=
Q1 − Q2

Q1
= 1 − θ2

θ1
(0 ≤ η ≤ 1). (39)

Therefore, we have shown that the Carnot cycle, which represents a fundamental
thermodynamical process, holds for general entropic forms as defined in Equation (11)
and for the internal energy of Equation (10) under the usual requirements for its equilibrium
state. Within the framework of non-additive entropies, the most serious restrictions are:
(a) at equilibrium, S ≡ S[Peq] and U ≡ U[Peq], so that one must express S = S(U, {αi}),
where {αi} represents state functions, whose small changes define infinitesimal work
contributions; (b) the entropy S = S(U, {αi}) should be invertible, leading to the possibility
of expressing U = U(S, {αi}). Only if these conditions are satisfied may one be able to
calculate an effective temperature in two different (but equivalent) ways,

θ =

(
∂U
∂S

)
{αi}

and
1
θ
=

(
∂S
∂U

)
{αi}

, (40)

using Equations (27) and (28), respectively.

10
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To our knowledge, at present, the only successful proofs of a Carnot cycle for non-
additive entropies have been carried for the equilibrium entropy S2−q
(in the case that q = 0) and its corresponding thermodynamically conjugate parame-
ter θ in an application of a system of type II superconducting vortices [49–52], as well as an
extension for the equilibrium entropy S2−q (for q < 1) associated with a system of particles
interacting repulsively through short-range potentials, whose equilibrium distributions are
compact q-Gaussian distributions (characterized by a cutoff) [57]. The proof above opens
the way for the validation of the Carnot cycle considering other non-additive entropic
forms available in the literature.

3. Discrete Set of Probabilities: H-Theorem and Equilibrium Solutions for
Generalized Entropies

We now consider a system characterized by discrete states, with associated probabili-
ties {Pi(t)} (i = 1, 2, · · · , W), where Pi(t) represents the probability of finding the system
on a state i at time t, following the normalization condition

W

∑
i=1

Pi(t) = 1 (∀t). (41)

For discrete probabilities, an H-theorem was proven for SBG({Pi}) (cf. Equation (3)) in
both cases of an isolated system (expressed by dSBG/dt ≥ 0) and a system in contact with a
heat bath at a temperature T, where one can consider the time-derivative of the free-energy
functional to be

F = U − TSBG ; U = ∑
i

εiPi , (42)

leading to dF/dt ≤ 0 (see, e.g., Ref. [13]).
Recently, there has been a growing interest in generalized entropic forms for an

appropriate description of complex systems [4–11]. In most cases, these entropic forms
may be written as

S[{Pi}] = k
W

∑
i=1

g[Pi] ; g(0) = g(1) = 0 , (43)

where the functional g[Pi] should be concave and at least twice-differentiable, i.e.,
(d2g/dPi

2) ≤ 0 (∀i). Moreover, the free-energy functional is considered similar to the
one in Equation (42),

F = U − θS ; U = ∑
i

εiPi , (44)

where θ represents a positive quantity with dimensions of temperature, which in some cases
may coincide with the usual absolute temperature T, although it may present a different
concept in some complex systems (see, e.g., Refs. [49–52]).

The extremization of the entropic form of Equation (43), considering the constraints
for the probability normalization of Equation (41) (with the Lagrange multiplier α) and the
internal energy definition of Equation (44) (with its corresponding Lagrange multiplier β),
leads to the following equation for the equilibrium distribution Peq

i :

g′[Peq
i ]− α − βεi = 0 , (45)

where we have defined

g′(X) ≡ dg[P]
dP

∣∣∣∣
P=X

. (46)

One should notice that the functional g′[Peq
i ] is invertible, since g[Pi] is concave; however,

in some cases, one may deal with a transcendental equation for Peq
i . The procedure above

applied to BG entropy (cf. Equation (3)) yields the well-known Boltzmann weight [13,14];

11
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let us now illustrate this method by considering the Tsallis entropy (cf. Equation (2)), for
which

g′[Peq
i ] = − q

q − 1

(
Peq

i

)q−1
. (47)

Substituting the result above into Equation (45) and using Equation (41), one obtains the
distribution

PEquation (1)
i =

1

Z(1)
q

[1 − (q − 1)β(1)εi]
1/(q−1)
+ , (48)

where [y]+ = y for y > 0 and is zero otherwise; the superscript refers to the extremization
of the entropy Sq under the internal energy definition with a linear dependence on the set of
probabilities, as in Equation (44), which is also known as first formulation [4]. It is important
to notice that the equilibrium distribution coming out of the extremization procedure of
any entropic form is directly related to the imposed constraints (see, e.g., Refs. [58–62]
for detailed discussions on the role of constraints in nonextensive statistical mechanics);
herein, we adopt the linear internal energy definition due to its simplicity for proving the
H-theorem. However, the most common form for the equilibrium distribution, usually
known as the Tsallis distribribution, is obtained from an internal energy definition with a
nonlinear dependence on the set of probabilities {Pi}, i.e., a power-like Pq

i , leading to [4]

Peq
i =

1
Zq

[1 − (1 − q)βεi]
1/(1−q)
+ , (49)

which will be considered the equilibrium distribution from now on. Notice that Equa-
tions (48) and (49) may be converted into one another by means of the simple change
q ↔ (2 − q) [58]. In fact, the distribution of Equation (49) may also be derived from the
extremization of S2−q in Equation (45). Since in the thermodynamic application that follows,
namely, the third law of thermodynamics for the Tsallis entropy, we consider an equilibrium
state described by Equation (49), the corresponding entropic form can be written as S2−q
instead of Sq.

Below, we outline the proof of an H-theorem for general entropic forms, written as in
Equation (43), which may be achieved by making use of a master equation [63],

∂Pi(t)
∂t

= ∑
j
[Pj(t)wji(t)− Pi(t)wij(t)] . (50)

As usual, wij(t) represents the probability transition rate associated with a transition from
state i to state j (i.e., wijΔt is the probability that a transition from states i to j occurs during
the time interval t → t + Δt). Herein, we will consider the most general out-of-equilibrium
situation characterized by time-dependent probability transition rates, i.e., Pi(t)wij(t) �=
Pj(t)wji(t). These quantities will become time-independent only at equilibrium, where the
detailed balance condition holds,

Peq
i Wij = Peq

j Wji [Wij = lim
t→∞

wij(t)] . (51)

The procedure below essentially extends the proof of the H-theorem for BG entropy in
Equation (3) for an isolated system, as well as for a system in contact with a heat bath at a
temperature T, where one considers the time derivative of the free-energy functional in
Equation (42) (see, e.g., Ref. [13]). Following this, we start by taking the time derivative of
the entropic form in Equation (43),

dS
dt

= k
d
dt ∑

i
g[Pi(t)] = k ∑

i

dg
dPi

∂Pi
∂t

, (52)
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and using Equation (50), one obtains

dS
dt

= k ∑
i,j

dg
dPi

[Pj(t)wji(t)− Pi(t)wij(t)] . (53)

Interchanging i ↔ j and adding the resulting equation with Equation (53), one obtains

dS
dt

=
k
2 ∑

i,j
[g′(Pi)− g′(Pj)][Pj(t)wji(t)− Pi(t)wij(t)] , (54)

where we have used the definition of Equation (46). In a similar way, one can express the
time derivative of the internal energy of Equation (44) as

dU
dt

=
1
2 ∑

i,j
[εi − ε j][Pj(t)wji(t)− Pi(t)wij(t)] . (55)

Now, using Equations (44), (54) and (55), one obtains the time derivative of the free-
energy functional,

dF
dt

=
1
2 ∑

i,j

{
εi − ε j − kθ[g′(Pi)− g′(Pj)]

}
[Pj(t)wji(t)− Pi(t)wij(t)] . (56)

General proofs of the H-theorem have been carried out in Ref. [63] through alge-
braic manipulations of the equations above (e.g., making use of the property that g[X] is
concave, leading to a monotonically decreasing first derivative g′[X]) for two typical situa-
tions, namely, an isolated system (for which the H-theorem is expressed by (dS/dt) ≥ 0)
and a system in contact with a thermal bath )for which the H-theorem is expressed by
(dF/dt) ≤ 0). Moreover, these proofs apply to very general out-of-equilibrium situations
(along which Pi(t)wij(t) �= Pj(t)wji(t)) and are characterized by non-symmetric probability
transition rates (wij(t) �= wji(t)). Additional interesting results were achieved in Ref. [64],
where the quantities above were associated with the phenomenon of entropy production
for irreversible processes. Mathematically, this result may be expressed by writing the
entropy time rate in the form [16,65,66]

d
dt

S[P] = Π − Φ, (57)

where one can identify the contributions of the entropy production Π and entropy flux Φ.
These two concepts were extended to general entropic forms, making use of general NLF-
PEs [67] when dealing with continuous probabilities, as well as of a master equation [64]
for discrete probabilities. Comparing the quantities above with

dF
dt

=
dU
dt

− θ
dS
dt

, (58)

one identifies
Π = −1

θ

dF
dt

; Φ = −1
θ

dU
dt

, (59)

so that, for a non-negative entropy production contribution, the H-theorem implies Π ≥ 0,
as expected [16,65,66]. All these results were illustrated for the particular cases of BG (cf.
Equation (3)) and Tsallis (cf. Equation (2)) entropies [63,64].

Third Law of Thermodynamics for Generalized Entropies

Herein, we assume that the following typical conditions apply.
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(i) There is a positive temperature-like parameter θ, associated with the Lagrange
multiplier β, such that β = 1/(kθ). It is important to mention that the following analysis
also applies for the absolute temperature T of standard thermodynamics.

(ii) There is a discrete non-negative energy spectrum {εi}, i.e., εi ≥ 0 (i = 1, 2, · · · , W).
(iii) There is a non-degenerate ground state characterized by the energy ε1 ≥ 0.
(iv) There is a gap between the energies of the ground and first-excited states, Δ =

ε2 − ε1 > 0.
(v) As the temperature parameter θ decreases (or equivalently, as β increases), the

probabilities {Pi} associated with the lowest-energy states become larger.
Next, we illustrate the third law of thermodynamics for the entropy Sq of Equation (2)

and its corresponding equilibrium distribution in Equation (49). In this case, for conve-
nience, we set ε1 = 0. Notice that the requirement for real probabilities in Equation (49)
implies the condition

(1 − q)βεi ≤ 1 (∀i). (60)

Whenever the inequality above is violated, one has Pi = 0, i.e., the corresponding energy
level may not be occupied. For the third law of thermodynamics applied under the above
requirements, two distinct cases should be considered, namely, q ≥ 1 and q < 1, as
discussed below.

Case 1: q ≥ 1.

The condition in Equation (60) is always fulfilled, so that for β → ∞, the system should
reach a pure state, characterized by P1 = 1 and leading to Sq(1) = S2−q(1) = 0.

Case 2: q < 1.

The condition in Equation (60) is not always fulfilled, and it may be violated for certain
ranges of β, values of q, and energies εi, for which Pi = 0. Now, we concentrate on the
two lowest energy values, separated by the gap Δ = ε2 − ε1, and define a temperature θ∗

through kθ∗ = (1 − q)Δ. At precisely the effective temperature θ∗, only these two energy
levels are occupied with the respective probabilities P2 and P1 such that P1 + P2 = 1. Then,
for a slightly lower temperature, one has P2 = 0 and P1 = 1, leading to Sq(1) = S2−q(1) = 0.
Notice that kθ∗ ≤ Δ (for 0 ≤ q < 1), whereas kθ∗ = (1 + |q|)Δ, yielding kθ∗ > Δ (for q < 0).

Therefore, the entropy S2−q becomes zero for a positive value of temperature,
θ∗ = (1 − q)Δ/k > 0, so that the third law is satisfied at (and below) this temperature
value. In this way, the effective temperature θ∗ for q < 1 plays a role similar to θ = 0 for
q ≥ 1; thus, in the former case, all thermodynamic quantities should be analyzed in the
limit θ → θ∗ (from above). The vanishing of S2−q at an effective temperature θ∗ > 0 for
q < 1 is directly related to violations in the condition of Equation (60), i.e., to the existence
of a cutoff in the set of probabilities {Pi}. Qualitative plots of the entropy S2−q versus
the effective temperature θ are presented in Figure 1; in each case, the approach to the
limits θ → 0 (q ≥ 1) or θ → θ∗ (q < 1) are shown in dashed lines since the corresponding
slopes may depend on the system under investigation. One should mention that previous
studies of the third law for the Tsallis entropy [68,69] did not take into account the effective
temperature θ∗ for q < 1, leading to misinterpretations of the third law of thermodynamics.

Below, we formulate the third law for the entropy Sq, as well as for nonadditive
entropies in general.

Third law of thermodynamics for the entropy Sq:

Consider a system described by: (a) a positive effective temperature θ (for certain
values of q, this temperature may coincide with the absolute temperature T of standard
thermodynamics) thermodynamically conjugated to the entropy Sq∗ (typically q∗ = 2 − q);
(b) a discrete non-negative energy spectrum {εi}; (c) a non-degenerate ground state with
energy ε1 = 0; and (d) a gap between the energies of the ground and the first-excited states,
Δ = ε2. Under these conditions, the entropy Sq∗ becomes zero for θ → 0 (q ≥ 1) or for
θ → θ∗ (q < 1), where θ∗ = (1 − q)Δ/k > 0.”
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For a general nonadditive entropic form, as defined in Equation (43) and possibly
characterized by a set of indices {α, γ, · · · } typical of nonadditive entropic forms [9–11],
one should add an extra condition in the above statement concerning possible combinations
of θ, energy values {εi}, and the indices {α, γ, · · · }, for which there may be restrictions
on the probabilities {Pi}, such as a cutoff, yielding levels with Pi = 0. In this way, we
formulate the third law for a general nonadditive entropy below.

Figure 1. The entropy S2−q is exhibited versus an effective temperature θ (positive quantity with
dimensions of temperature) in three distinct cases, namely, q > 1 (red curve), q = 1 (black curve),
and q < 1 (blue curve). The entropy S2−q becomes zero for θ → 0 (q ≥ 1), whereas S2−q → 0 for
θ → θ∗ > 0 (q < 1) (see text). In the latter case, the vanishing of S2−q at an effective temperature
θ∗ > 0 is directly related to violations in the condition of Equation (60), i.e., to the existence of a cutoff
in the set of probabilities {Pi}. In these curves, the approaches S2−q → 0 are shown in dashed lines
since the corresponding slopes may depend on the system under study.

Third law of thermodynamics for a general nonadditive entropy Sα,γ,···:

Consider a system described by: (a) a positive effective temperature, θ, thermody-
namically conjugated to the entropy Sα,γ,··· (for certain values of the indices {α, γ, · · · }, this
temperature may coincide with the absolute temperature T of standard thermodynam-
ics); (b) a discrete non-negative energy spectrum {εi}; (c) a non-degenerate ground state
with energy ε1 ≥ 0; (d) a gap between the energies of the ground and the first-excited
states, Δ = ε2 − ε1 > 0; and (e) combinations of θ, the energy values {εi}, and the indices
{α, γ, · · · }, for which there are restrictions on the probabilities {Pi}, such as a cutoff, yield-
ing levels with Pi = 0. Under these conditions, the entropy Sα,γ,··· becomes zero for θ → θ∗

(with θ∗ > 0), where this threshold should depend on Δ and the parameters {α, γ, · · · } that
define the entropy; whenever the restrictions described in (e) do not apply, Sα,γ,··· becomes
zero for θ → 0”.

4. Discussion and Conclusions

We have discussed some basic aspects related to non-additive entropies, considering
their time evolution in the cases of continuous and discrete probabilities, described by
nonlinear Fokker–Planck and master equations, respectively. In both cases, forms of
the H-theorem were proven, connecting functionals of the probabilities appearing in
these equations with those of the entropic forms. A particular emphasis was given to
their equilibrium-state distributions, showing that those obtained from the corresponding
evolution equations coincide with those derived form the extremization of the associated
entropic forms.

Considering the equilibrium state, we have shown that a Carnot cycle holds for a
general entropic form under standard thermodynamic conditions. Within the framework
of non-additive entropies, the most serious restrictions for the validity of the Carnot cycle
are as follows: (a) the equilibrium functionals S ≡ S[Peq] and U ≡ U[Peq] should allow
one to express S = S(U, {αi}), where {αi} represents state functions, whose small changes
define infinitesimal work contributions; (b) the entropy S = S(U, {αi}) should be invertible,
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leading to the possibility of expressing U = U(S, {αi}). Only if these conditions are satisfied
may one be able to calculate an effective temperature parameter, which is fundamental for
the Carnot cycle. It is possible that these procedures may not be feasible for some of the
entropic forms introduced in the literature (see, e.g., a comprehensive list in Ref. [9]). To
our knowledge, at present, the only successful proofs of a Carnot cycle for non-additive
entropies have been carried out for the equilibrium entropy S2−q (in the case for which
q = 0) and its corresponding thermodynamically conjugate parameter θ in an application
of a system of type II superconducting vortices [49–52], as well as an extension for the
equilibrium entropy S2−q (for q < 1), associated with a system of particles interacting
repulsively through short-range potentials, whose equilibrium distributions are compact
q-Gaussian distributions (characterized by a cutoff) [57].

In the case of discrete probabilities, we have discussed how the third law of thermody-
namics should apply to equilibrium non-additive entropic forms in general. Considering
an equilibrium entropic form S and its thermodynamically conjugate parameter θ, one
has two situations to be analyzed, which are as follows: (i) combinations of θ, energy
values {εi}, and possible entropic indices characteristic of the generalization, for which
there are restrictions on the probabilities {Pi}, such as a cutoff, which implies levels with
Pi = 0; (ii) cases where the combinations mentioned in (i) do not lead to restrictions on the
probabilities {Pi}. If there are no restrictions, one must have S → 0 when θ → 0; whenever
there are restrictions on the set of probabilities (such as a possible cutoff), one should have
S → 0 for θ → θ∗, where θ∗ > 0.

The physical consequences, and particularly, the fact that the equilibrium-state distri-
butions obtained from the corresponding evolution equations (for both continuous and
discrete probabilities) coincide with those obtained from the extremization of the entropic
form, become very relevant for the study of complex systems. Moreover, the validity
of a Carnot cycle and a formulation of the third law of thermodynamics for general en-
tropic forms, under standard thermodynamic requirements, opens the path for consistent
thermodynamic frameworks in the context of generalized (or non-additive) entropic forms.
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Abstract: This work presents an analysis of fractional derivatives and fractal derivatives, discussing
their differences and similarities. The fractal derivative is closely connected to Haussdorff’s concepts
of fractional dimension geometry. The paper distinguishes between the derivative of a function on a
fractal domain and the derivative of a fractal function, where the image is a fractal space. Different
continuous approximations for the fractal derivative are discussed, and it is shown that the q-calculus
derivative is a continuous approximation of the fractal derivative of a fractal function. A similar
version can be obtained for the derivative of a function on a fractal space. Caputo’s derivative is
also proportional to a continuous approximation of the fractal derivative, and the corresponding
approximation of the derivative of a fractional function leads to a Caputo-like derivative. This work
has implications for studies of fractional differential equations, anomalous diffusion, information
and epidemic spread in fractal systems, and fractal geometry.

Keywords: fractal derivatives; fractional derivatives; fractional differential equations; q-calculus;
nonextensive statistics

1. Introduction

Fractional differential equations have been used to describe the behavior of complex
systems. The growing interest in this mathematical tool imposes the necessity of urgent
analysis of its fundamentals. The widespread use of fractional differential equations in
fluid dynamics, finance, and other complex systems has led to the intense investigation
of the properties of fractional derivatives and their geometrical and physical meaning.
Fractional derivatives are often associated with fractal geometry, but the connections be-
tween fractional derivatives and fractal derivatives have not been clarified so far. Fractional
derivatives have been used in many applications [1,2], and advancing our understanding
of their geometrical meaning and their relations with fractals is necessary. The q-calculus
has been frequently applied to describe the statistical properties of fractal systems [3,4].
However, the relationship between q-calculus and fractal derivatives has not been fully
understood yet.

This work reviews the fundamentals of fractal derivatives and establishes their connec-
tions with fractional derivatives and q-calculus. The generalization of standard calculus to
include fractional-order derivatives and integrals is an exciting field of research, and many
works have been conducted in this area. Different proposals for fractional generalization
are available, and applications of fractional derivatives have been used in various fields.
Fractional differential equations are frequently used to describe the behavior of complex
systems. In Refs. [5,6], the authors analyzed different forms of fractional derivatives and
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discussed their properties. Caputo’s derivative is among the most commonly used and is
defined by

Dν
Ch(x) =

1
Γ(1 − ν)

∫ x

x−δ
(x − t)−ν dh

dt
dt , (1)

which is a particular case of the Riemann–Liouville fractional derivative [7].
Haussdorff established the fundamental aspects of spaces with fractional dimension,

and an introduction to the subject can be found in [8]. One of the important quantities
associated with fractal spaces is the Haussdorff measure, denoted by Hs(F). Its definition
is based on the measure Hs

δ(F), and is given by

Hs(F) = lim
δ→0

Hs
δ(F) , (2)

where the measure depends on a δ-cover of the Borel subset F ⊆ Rn. The space F will be
referred to as a fractal space, and its Hausdorff dimension is denoted by α and defined as

α = inf{s ≥ 0 : Hs(F) = 0} = sup{s : Hs(F) = ∞} . (3)

If 0 < α < ∞, the Haussdorff measure of the δα-cover is called the mass distribution,
denoted by γα(F,a,b) [9–11], which will be discussed below. Fractal derivatives and frac-
tional derivatives are not the same concept [12], and the non-locality is a prominent aspect
of the fractal derivative. For a comprehensive review of the subject and its applications, see
Ref. [13]. The Parvate–Gangal derivative is defined for functions on a fractal domain. This
work shows that extending the same concepts to functions with a fractal image can provide
new insights into the role of fractal derivatives in the study of complex systems.

Tsallis statistics was proposed to describe the statistical properties of fractal systems.
It introduces a non-additive entropy that can be used to obtain, through the ordinary
thermodynamics formalism, the non-extensive thermodynamics [14,15]. To deal with
non-additivity, the q-calculus was proposed [16]. One important result of q-calculus is the
q-derivative, which is written as:

d̄ f
dx

= f q−1 d f
dx

. (4)

Notice that, if the function f is a q-exponential, the special derivative above results to be
identical to the standard derivative of a q-exponential function. This derivative can be
straightforwardly related to the conformal derivative [17].

The three different theoretical areas mentioned above have been investigated indepen-
dently, evolving in parallel. Despite their many common aspects, the connections between
them have not been demonstrated so far [18]. This work aims to establish connections
between Caputo’s derivative and the q-calculus with the continuous approximation of
the fractal derivative proposed by Parvate and Gangal. In this work, we assume that the
fractal derivative is correctly calculated by the definitions advanced by Parvate, Gangal,
and coworkers [9–11], and discuss how some relevant forms of fractional derivatives,
as well as the q-deformed derivative, can be obtained as a continuous approximation of the
fractal derivative.

2. Fractal Derivatives

Lemma 1. If x = (x1, · · · , xn) ∈ Rn and f = ( f1(x), · · · , fm(x)) ∈ Rm is an m-dimensional
vector field f : Rn → Rm. Then, m ≤ n.

Proof. Suppose m > n, then ( f1(x), · · · , fn(x)) forms a new set of n independent variables,
which are functions of the n independent variables of x. Then, fn+1(x) is not independent
of the functions in the set.
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Definition 1. A vector field with dimension m = 1 is a function.

Lemma 2. If there is an inverse function f−1( f (x)) = x, then m = n.

Proof. It follows immediately by applying Lemma 1.

Lemma 3. If f is a fractal vector field f : Rn → Rα, with α ∈ R, then α ≤ n.

Proof. It follows immediately by applying Lemma 1.

Definition 2. A fractal vector field with dimension α ≤ 1 is a fractal function.

Definition 3. An α-dimensional function is a fractal vector field if α > 1 or a fractal function if
α ≤ 1.

Definition 4. If γ(F, a, b) is the Haussdorff mass distribution for a cover F, with a, b ∈ F, then
the staircase function, Sα

F,ao
, is defined as

Sα
F,ao

=

{
γ(F,ao,x) for x > ao

γ(F,x,ao) for x < ao
. (5)

Lemma 4. The staircase function is a scalar.

Proof. The staircase function is proportional to the Haussdorff mass function, which is the
volume resulting from the union of the δα(x) ∈ F, so it is a scalar.

Definition 5. If F is a δα-cover and f : F → R, then the fractal derivative of f (x) is

Dα
F,ao

f (xo) =

⎧⎨
⎩F limx→xo

f (x)− f (xo)
Sα

F,ao (x)−Sα
F,ao (xo)

x, xo ∈ F

0 otherwise
. (6)

Theorem 1. There is a fractal derivative of the inverse function, and it is the inverse of the
fractal derivative.

Proof. Consider that x, xo ∈ F. Suppose there exists a function g : R → F such that
g( f (x)) = x. Then,

Dα
F,ao

g( fxo ) = F lim
x→xo

g( fx)− g( fxo )

f (x)− f (xo)

f (x)− f (xo)

Sα
F′ ,ao

(x)− Sα
F′ ,ao

(xo)
= 1 , (7)

where the simplified notation fx = f (x) was adopted. It follows that

F lim
x→xo

g( fx)− g( fxo )

f (x)− f (xo)
= F lim

x→xo

Sα
F′ ,ao

(x)− Sα
F′ ,ao

(xo)

f (x)− f (xo)
. (8)

The fractal derivative of the inverse function can be applied to any fractal function
h: R → F. The staircase function, in this case, is applied to the fractal image space of the
function h. The function f can be defined arbitrarily, with the constraint that there is an
inverse function f−1. One case of particular interest is the identity function f (x) = x, then
we have

[Dα
F,ϕ]

−1h(xo) = F lim
x→xo

Sα
F,ϕ[h(x)]− Sα

F,ϕ[h(xo)]

x − xo
, (9)
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with ϕ = h(ao).
Observe that in this case, the image space and the domain space of the function h are

the same, i.e., h: F → F.

Definition 6. The result obtained above can be generalized by defining the fractal derivative of the
inverse function or, equivalently, the inverse of the fractal derivative, as

[Dα
F,ϕ]

−1h( fxo ) =

{
F limx→xo

Sα
F,ϕ [h(x)]−Sα

F,ϕ [h(xo)]

x−xo
x, xo ∈ F .

0 otherwise
(10)

Corollary 1. The derivative of a fractal function is well-defined only if the function is almost always
non-divergent in the interval [a, b] (Following the standard terminology in the field, we say that a
function is almost always non-divergent if the set of points where it is divergent has null Lebesgue
measure).

Proof. According to Definition 4, the staircase function is well-defined only if the mass
distribution function can be defined. The mass distribution is equal to the Haussdorff
measure when the Haussdorff dimension is 0 < α < ∞. This condition is satisfied only if
the function is almost always non-divergent.

Theorem 2. If the function h(x) is almost always continuous and non-divergent in F, and
h′(x) = [Dα

F,ϕ]
−1h(x), then the Haussdorff dimension of h(x) and h′(x) are the same.

Proof. Let F be the δα-cover of the fractal function h(x), and F′ the δβ-cover of the inverse of
fractal derivative. For any δα[h(x)] ∈ F there is a δβ[h′(x)] ∈ F′, so β ≥ α. For δβ[h′(x)] ∈ F′,
there is a δα[h(x)] ∈ F; therefore, α ≤ β. Hence, α = β.

Definition 7. We will denote the inverse of an α-dimensional fractal function by Dα
F,ϕh(x), and we

will refer to it as a fractal derivative of an α-dimensional fractal function, or simply fractal function,
while the fractal derivative will be called fractal derivative over a fractal space.

Definition 8. The partial derivative of a fractal function is

Dα
F,ϕ|ih( fx) =

⎧⎨
⎩F limxi→xo,i

Sα
F,ϕ [h(x)]−Sα

F,ϕ [h(xo)]

xi−xo,i
x, xo ∈ F ,

0 otherwise
(11)

where the index i indicates the component xi of the vector x.

Corollary 2. The dimension of Dα
F,ϕ|i h( fx) is α ≤ 1.

Proof. It follows immediately from Lemma 1 and Theorem 2.

Definition 9. The staircase function differential is defined by

dSα
F,ao

(x) =

{
F limdx→0

[
Sα

F,ao
(x + dx)− Sα

F,ao
(x)

]
if x, x + dx ∈ F

0 otherwise
(12)

Theorem 3. The staircase function differential can be approximated by

dSα
F,ao

(x) =
A(α)

α
dxα , (13)

where
A(α) := 2πα/2/Γ(α/2) . (14)
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Proof. For any volume (δx)n ∈ Rn, its intersection with F has a volume (δx)α. Consider
the volume of an n-dimensional sphere of radius x given by

V(x) =
A(n)

n
xn , (15)

where A(n) = 2πn/2/Γ(n/2) is the surface area term, with Γ(z) being the Euler’s Gamma

Function, and x =
√

x2
1 + · · ·+ x2

n. Then, the volume of a spherical shell of finite width δx
is given by

δV(x) =
A(n)

n
((x + δx)n − xn) . (16)

In the limit δx → dx, where now dx is infinitesimal, it results

dV(x) = A(n)xn−1dx =
A(n)

n
dxn , (17)

where dxn := d(xn).
The intersection of δV(x) with F, which is denoted by δVα(x), is

δVα(x) =
A(α)

α
((x + δx)α − xα) . (18)

In the limit δx → dx, this leads to

δVα(x) → dVα(x) = A(α)xα−1dx =
A(α)

α
dxα . (19)

On the other hand, dSα
F,ao

(x) is the volume of the intersection between an infinitesimal
volume dV ∈ Rn with F. (The multiplicative coefficient A(α) used here is valid for integer
dimensions. The case of fractional dimensions is more challenging, so this coefficient
needs to be considered with care. In this work, we focus on the shape of the continuous
approximation.)

dSα
F,ao

(x) =
A(α)

α
dxα = A(α)xα−1dx . (20)

Definition 10. The continuous approximation of a fractal function is defined as a set of infinitesimal
elements dx such that Equation (20) is satisfied.

Theorem 4. The continuous approximation of the fractal derivative of a function is

Dα
F,ϕh(x) =

A(α)

α

dhα

dx
= A(α)hα−1(x)

dh
dx

(x) . (21)

Theorem 5. The continuous approximation of the fractal derivative of a fractal function is

Dα
F,ϕh(x) =

A(α)

α

dhα

dx
= A(α)hα−1(x)

dh
dx

(x) . (22)

Proof. It follows directly from the definition of the fractal derivative of a function and of
the continuous approximation.

Theorem 6. Consider a fractal function f : Rn → F, where F is a δα-cover, with n − 1 < α < n,
for n > 1. It defines a set of fractal functions { fi(xi)}with dimensions {αi} such that α = α1 + · · ·+ αn.

Proof. Consider the fractal function fk(xk) = f (a, · · · , xk, · · · , z), where a, · · · , z are con-
stants. For any interval I = [xk, xk + δxk], the intersection of I and F is (δxk)

αk , with αk < 1.
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For an αk−1-dimensional function hk−1(x1, · · · , xk−1, k, l, · · · , z) such that for any vol-
ume (δx)k−1, the intersection with F is (δx)αk−1 , the function hk(x1, · · · , xk−1, xk, l, · · · , z)
has dimension (δx)αk−1 δx = (δx)αk , where αk = αk−1 + αk. The theorem is proved
by induction.

Definition 11. Consider a fractal function h with dimension α < 1. The gradient of a fractal
function is defined as

Dα
F,ϕh(xo) =

(
Dα1
F,ϕ|1 h(xo), · · · , Dαn

F,ϕ|n h(xo)
)

, (23)

where α = α1 + · · ·+ αn.

Definition 12. For α > 1, the partial fractal derivative of the function is

Dα
F,ϕ|ih(xo) =

(
Dα1
F,ϕ|i h(xo), · · · , Dαn

F,ϕ|i h(xo)
)

, (24)

where α = α1 + · · ·+ αn.

Theorem 7. For a finite δ, the derivative of a fractal function in the interval [x − δ, x] is

Dα
[δ],ϕh(x) =

A(α)

α

∫ x

x−δ
hα−1(t)

dh
dt

dt . (25)

Proof. The derivative in the interval [x − δ, x] is

Dα
[δ],ϕh(x) =

∫ x

x−δ
Dα
F,ϕh(t)dt . (26)

Using Definition 10, the theorem is proved.

Theorem 8. For a finite δ, the derivative of function in the interval [x − δ, x] in a fractal space is

Dα
[δ],ah(x) =

A(α)

α

∫ x

x−δ
[h(x)− h(t)]α−1 dh

dt
dt . (27)

Proof. The proof is performed by applying the continuous approximation in Equation (20)
to the derivative on fractal space in Definition 5.

Observe that the α-dimensional sphere needs not to be centered at ϕ for the fractal
derivative of a fractal function, or at a for the derivative on a fractal space. The point x,
where the derivative is calculated, can be set as the center of the sphere.

Definition 13. The continuous approximation of the derivative of a function on a fractal space,
based on α-dimensional sphere centered at x is indicated by Dα

F,xh(x).

Theorem 9. The continuous approximation of the derivative of a function on a fractal space,
Dα
F,xh(x) in the interval [x − δ,x], for finite δ, is given by

Dα
F,xh(x) =

A(α)

α

∫ x

x−δ
(x − t)1−α dh

dt
dt , (28)

which is proportional to Caputo’s derivative.
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Proof. The local continuous approximation, considering that the radius of the spherical
shell is x − t, is determined from Theorem 5 as

Dα
F,xh(t) = A(α)(x − t)1−α dh

dx
(t) . (29)

Using Definition 13, one has

Dα
F

h(x) =
∫ x

x−δ
Dα
F,xh(t)dt , (30)

leading to the proof of the Theorem.

Definition 14. The continuous approximation of the derivative of a fractal function based on
α-dimensional sphere centered at x is indicated by Dα

F
h(x).

Theorem 10. The continuous approximation of the derivative of a fractal function, Dα
F,ϕx

h(x) in
the interval [x − δ, x], for finite δ, is given by

Dα
F,ϕx

h(x) =
A(α)

α

∫ x

x−δ
(ϕx − h(t))α−1 dh

dt
dt , (31)

for t such that h(t) < ϕx = h(x).

Proof. The proof follows the same lines of the proof for Theorem 9.

Corollary 3. The continuous approximation in Definition 10 is proportional to the limit of the
continuous approximation in the range [x − δ, x] for δ → 0 of Caputo’s derivative.

3. Discussion and Conclusions

The fractal derivative proposed by Parvate and Gangal, presented in Definition 5, is
the closest concept to the Hausdorff concept of fractional dimension spaces. Therefore,
it is considered as the starting point for the analysis of fractal derivatives and fractional
derivatives here.

The existence of the inverse of the Parvate–Gangal derivative is a natural consequence,
i.e., a derivative of a function with a fractal image space that is defined on a domain space,
which may or may not be fractal. This is proven in Theorem 1.

This work demonstrates that fractal functions with arbitrary dimension α, such as a
fractal vector field with fractal dimension α > 1, can be defined. However, the cases of
most interest are those with α ≤ 1, as they are physically relevant for the present work.

The derivative of a fractal function on a fractal space allows for a continuous approxi-
mation, as demonstrated in Theorem 4. Additionally, a similar continuous approximation
can be obtained for the derivative of a function in a fractal space, as shown in Theorem 5.
This approximation is identical to the special derivative used in Ref. [19] to derive the Plastino–
Plastino Equation, which is a generalization of the Fokker–Planck Equation for systems
with non-local correlations.

To illustrate the behavior of the continuous approximation, we utilize the well-known
Cantor Set, which has a dimension α = 0.631. We aim to demonstrate how the continuous
approximation aligns with the mass distribution, Sα

F,0(x). To achieve this, we numerically
calculate the mass distribution for this fractal set up to level 4. In other words, the smallest
component of the fractal has a linear length of l = 3−4. We employ a δ-cover with δ = 0.01
to calculate the mass distribution.

Next, we fit a power-law function, y(x) = axb. According to the theoretical findings
presented in this work, the exponent b should closely approximate the fractal dimension α
of the Cantor Set. The obtained results are displayed in Figure 1, revealing that the best fit
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corresponds to b = 0.636, which is in close proximity to the expected value. This outcome
effectively illustrates the application of the continuous approximation and provides insight
into substituting the mass distribution by the continuous approximation. It should be noted
that there are numerous other methods available for creating a continuous approximation
of the fractal measure, and each of these approaches will result in different fractional deriva-
tives. Investigating the coherence and convenience of different forms of approximation
to the staircase function is an interesting line of research that is beyond the scope of this
present study.

Figure 1. Plots of the mass distribution (blue line) for the Cantor Set at the 4th iteration, calculated
with a δ-cover with δ = 0.01, compared with the continuous approximation (orange line) represented
by a function y(x) = axb fitted to the mass distribution. The best-fit results in b = 0.636, in agreement
with the Cantor Set dimension α = 0.631.

The continuous approximation derivative is expressed in terms of the standard deriva-
tive operator and can be associated with the q-deformed calculus [16]. Unlike the fractal
derivative, the continuous approximation is a local derivative, and the non-linear be-
havior of the continuous approximation is a remnant of the non-local properties of the
fractal derivative.

Non-locality can be explicitly introduced into the continuous approximation by con-
sidering finite δ-covers. In the non-local continuous approximation, the derivative is
obtained by integrating the local continuous derivative over a finite range δ. This non-
local continuous approximation is presented in Theorem 9, and it is precisely the Caputo
fractional derivative.

The derivative of a function in a fractal space and the derivative of a fractal function
lead to different continuous approximations. The former can be associated with the Caputo
fractional derivative, as shown in Theorem 9, while the latter leads to a Caputo-like
derivative, as demonstrated in Theorem 10. Similar derivatives to Caputo’s derivative can
also be found in [20].

The results of the present work evidence the relations between the fractal derivative
and some of the most used fractional derivatives. Comparing the result of Theorem 5 with
Equation (4), it is clear that the local continuous approximation of the derivative of a fractal
function is equal to the q-derivative. Thus, for the first time, the q-calculus derivative is
shown to be a continuous approximation to the fractal derivative.

A consequence of the relationship between the q-derivative and the local continuous
approximation of the derivative of a fractal function (Theorem 5), and of the connection
between the derivative of a fractal function and the Caputo-like fractional derivative
(Theorem 10) is that the q-derivative and the Caputo-like derivative are connected through
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a dislocation of the center of the α-dimensional sphere around which the non-local con-
tinuous approximation is calculated. Hereby, one can conclude that different forms of
fractional derivatives can be obtained from the Parvate–Gangal fractal derivative by con-
sidering the different possibilities of continuous approximation and non-locality of the
fractional derivative.

Other fractal derivatives can be explored along the same lines as performed here.
The Riemann–Liouville derivative bears a close relationship with Caputo’s deriva-
tive [21] and it is interesting to observe the similarities between the fractal derivative
proposed in Refs. [22,23] and the continuous approximations studied in the present work.
The fractional derivative used in Ref. [24] is equal to the local continuous approximation of
the fractal derivative of a function in a fractal space obtained in the present work. Ref. [25]
studied this fractional derivative and its relationship with the q-derivative. Establishing a
clear connection between the Parvate–Gangal fractal derivative and Caputo’s fractional
derivative, this work opens the possibility for a deeper understanding of the use of frac-
tional differential equations, which is so common in many different areas. In this respect, let
us remark that fractal and fractional differential equations have been used in applications
as dynamic of the system in porous or heterogeneous media [26–28], diffusive flow [29–33],
solitons [34], control of complex systems [35], epidemic process [36], polymer plasma [37]
and many others. The consequences of the present study for these physical systems de-
serve further investigation in the future. The consequences of the present study for these
physical systems deserve further investigation in the future. Its implication on the study
and applications of fractal functions [38] deserves further investigation.
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Abstract: In order to study as a whole a wide part of entropy measures, we introduce a two-parameter
non-extensive entropic form with respect to the h-derivative, which generalizes the conventional
Newton–Leibniz calculus. This new entropy, Sh,h′ , is proved to describe the non-extensive systems and
recover several types of well-known non-extensive entropic expressions, such as the Tsallis entropy,
the Abe entropy, the Shafee entropy, the Kaniadakis entropy and even the classical Boltzmann–Gibbs
one. As a generalized entropy, its corresponding properties are also analyzed.

Keywords: non-additive entropy; h-derivative; Sh,h′ -entropy

1. Introduction

Since it was proposed over one hundred years ago, the conventional Boltzmann–Gibbs
(BG) statistics has been developed very delicately and successfully with wide applications
in many disciplines. During the last few decades, however, people noticed that more and
more systems are difficult to be described by this simple BG distribution, such as the long-
range interactions [1], the gravitational systems [2], the Lévy flights and fractals [3], and so
on [4]. In order to cope with this challenge, some attempts have been made to generalize the
BG statistics. Among them, the most investigated formalism is the non-extensive entropy.
It was inspired by the geometrical theory of multi-fractals and its systematic use of powers
of probabilities by C. Tsallis [5]:

Sq = kB
1 − ∑W

i=1 pq
i

q − 1
, (1)

where kB is the Boltzmann constant (hereafter we assume kB = 1 for simplicity) and q stands
for the Tsallis non-extensive parameter. It describes the departure of non-extensive statistics
from the BG one. This entropy goes back to the usual BG form when q → 1. For more than
two decades of researches and developments, the Tsallis entropy has been successfully
applied to various domains: physics, chemistry, economics, computer science, biosciences,
linguistics, and so on [5–10]. For the average charged-hadron yields in inelastic non-single-
diffractive events, V. Khachatryan et al. observe it as the Tsallis distribution [11,12]

E
d3Nch
dp3 =

1
2πpT

d2Nch
dη dpT

= C
dNch

dy

(
1 +

ET
nT

)−n
, (2)

where E d3 Nch
dp3 is for the function of spectra with E for the total energy of the particle and

p for its momentum, η denotes the pseudorapidity with y for the rapidity, pT stands for
the transverse momentum, C is for its normalization constant, T, a variational parameter
representing the temperature when the system reaches equilibrium, n is the fitting param-
eter which connects with Tsallis’ q by n = 1/(1 − q), y = 0.5 ln[(E + pz)/(E − pz)], ET =
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√
m2 + p2

T − m, and m is the charged pion mass. The data fitting results show that the Tsal-
lis distribution can well-describe both the low-pT exponential and the high-pT power-law
behaviors [11,12]. One application in astrophysics is the study of the distribution of asteroid
rotation periods from different regions of the solar system and diameter distributions of
near-Earth asteroids (NEAs) [13]. A. S. Betzler and E. P. Borges analyze two samples from
different years. They discover that the distribution of diameters of NEAs obeys a Tsallis-like
distribution, and the rotation periods of asteroids can be well-approximated by a Tsallis–
Gaussian function. According to the first conclusion, there should be 994 ± 30 NEAs with
diameters greater than 1 km [13]. In another example, Y. Wang and J. Du study the viscosity
of light charged particles in weakly ionized plasma with the power-law Tsallis-distributions
using the generalized Boltzmann equation of transport and the motion equation of hydro-
dynamics [14].

The Tsallis entropy is indeed not unique. By now, a lot of different expressions of the
non-additive entropies have been proposed, for instance, the Kaniadakis entropy [15], the
Shafee entropy [16], the q − q−1 symmetric modification of Tsallis entropy [17], and the
two-parameter (q, q′)-entropy [18]. These expressions were obtained in quite different ways
and investigated by distinct motivations. Therefore, it will be of great interest to find the
relationship among these formulas or to find a simple formula to study them as a whole.

In this paper, we first introduce a two-parameter non-additive entropy, Sh,h′ , based on
the h-derivative. The h-derivative is known as a mathematical generalization of the normal
Newton–Leibniz calculus. We address that Sh,h′ unifies different types of expressions of
non-extensive entropies; namely, it can connect a family of non-extensive entropies. On
the other hand, we also discuss its properties in order to better understand this newly
established non-additive entropic function.

2. h-Derivative

In the conventional mathematical theory, the Newton–Leibniz derivative is defined as:

D f (x) ≡ d f (x)
dx

= lim
δ→0

f (x + δ)− f (x)
δ

. (3)

Classically, most of the physical quantities are continuous, and it is natural to apply the
Newton–Leibniz derivative. In quantum physics, on the other hand, all the physical
quantities will be quantized; people then try to develop quantum calculus, which utilizes
the discrete forms of derivatives instead and presents a generalization of this Newton-
Leibniz derivative.

One formalism of quantum calculus is the h-derivative [19]. For an arbitrary function
f (x), its h-differential is defined as follows:

dh f (x) = f (x + h)− f (x). (4)

It is easily verified that
dhx = h, (5)

and
dh( f (x)g(x)) = f (x + h)dhg(x) + g(x)dh f (x). (6)

Thus, can we obtain the h-derivative of f (x):

Dh f (x) ≡ dh f (x)
dhx

=
f (x + h)− f (x)

h
. (7)

When f (x) is differentiable, the following property is obviously obtained:

lim
h→0

Dh f (x) =
d f (x)

dx
, (8)
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which is nothing but the definition of the conventional Newton–Leibniz derivative. Note
that we need the function f (x) to be continuous for the Newton–Leibniz derivative, but
this requirement becomes unnecessary for the h-derivative.

Next, some basic rules of this h-derivative are listed:

1. Sum and difference
Considering the sum and difference rules of the h-derivative, we have

Dh[ f (x)± g(x)] = Dh f (x)± Dhg(x). (9)

2. Product and quotient rules
As for the product and quotient rules,

Dh[ f (x)g(x)] = f (x)Dhg(x) + g(x + h)Dh f (x), (10)

Dh

[
f (x)
g(x)

]
=

g(x)Dh f (x)− f (x)Dhg(x)
g(x)g(x + h)

. (11)

3. h-derivative of elementary functions
Some other basic calculations of it are expressed:

DhC = 0 (here C is constant), (12)

Dhx =
(x + h)− x

h
= 1, (13)

Dhxn =
n−1

∑
k=0

n!
k!(n − k)!

xkhn−k−1 (n ∈ N), (14)

Dh
1
x
= − 1

x2 + hx
, (15)

Dh
1
xn =

1
h(x + h)n − 1

hxn , (16)

Dhebx =
ebh − 1

h
ebx (here b ∈ R), (17)

Dhabx =
abh − 1

h
abx (here b ∈ R). (18)

In Figure 1, we illustrate the behavior of Dhex at different values of h as an example.
We could see that it behaves as an exponential when h = 0. For any fixed values of h, Dhex

is a monotonically increasing function with respect to the variable x. The values of this
derivative also increase when the parameter h becomes larger.

With the definition of h-derivative, V. Kac and P. Cheung [19] developed a type of
quantum calculus, known as h-calculus. As a matter of fact, an operator such as h-derivative
is called the forward difference quotient operator. Analogously, it also has the backward
difference quotient operator ∇h and the central difference quotient operator δh, defined
as [20]

∇h f (x) =
f (x)− f (x − h)

h
, (19)

δh f (x) =
f (x +

1
2

h)− f (x − 1
2

h)

h
. (20)
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Note that the regular vector differential operator ∇ has been generalized based on h-
derivative. We then explore the connection between the h-derivative entropy and its
modified forms.

Figure 1. The behavior of Dhex when h varying from −5 to 5. The red line denotes (ex)′.

3. h-Derivative and Non-Additive Entropy

In order to generalize the non-additive entropic forms, one could utilize Equation (7)
and give out the following equation:

Sh = −Dh

W

∑
i=1

px
i

∣∣∣∣∣
x=1

= −∑W
i=1 p1+h

i − 1
h

, (21)

with the normalization condition ∑W
i=1 pi = 1. When h → 0, it will go back to the usual BG

entropy. Note that it also recovers the Tsallis non-extensive entropy, Sq, cf. Equation (1)
under the transformation of h = q − 1.

Following the ways of the central difference quotient operator of Equation (20), we
define a new form of two-parameter (h, h′)-derivative,

Dh,h′ f (x) =
f (x + h)− f (x − h′)

h + h′
(h, h′ ∈ R). (22)

The corresponding (h, h′)-entropy is

Sh,h′ = −Dh,h′
W

∑
i=1

px
i

∣∣∣∣∣
x=1

= −
W

∑
i=1

p1+h
i − p1−h′

i
h + h′

. (23)
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Similarly, when h = h′ → 0, the entropy Sh,h′ returns to the BG one. It is shown that,

lim
h=h′→0

Sh,h′ = − lim
h=h′→0

W

∑
i=1

p1+h
i − p1−h′

i
h + h′

= − lim
h=h′→0

W

∑
i=1

pi
eh ln pi − e−h′ ln pi

h + h′

= − lim
h=h′→0

W

∑
i=1

pi
eh ln pi ln pi + e−h′ ln pi ln pi

2

= −
W

∑
i=1

pi ln pi = SBG. (24)

Note that L’Hospital’s rule has been applied within the formula deαx/dx = αeαx for the
last step in the above.

It is constructive to explore the connections with the already known statistical distri-
butions. For example, the Tsallis entropy is obtained by h = q − 1, h′ = 0. While taking
h = q − 1, h′ = 1 − q−1, we can obtain the Abe entropy Equation (A5) (see the discussion
in the Appendix A) [17]. The non-extensive entropy given in Equation (A7) proposed by
Borges and Roditi [18] (also see the Appendix A) can then be recovered with the relation-
ship of h = q − 1, h′ = 1 − q′. Although the non-extensive entropy of Borges and Roditi
and our two-parameter (h, h′)-entropy have similar forms, we gained them using different
mathematical methods. Specifically, we used (h, h′)-derivative developed by ourselves,
which differs from the q-calculus used by Borges and Roditi. In addition to the difference
in the form of expression between the two-type derivative, a conspicuous point is that our
two-parameter (h, h′)-derivative does not require the function f (x) to be continuous and
differentiable at x = 0.

By assuming h′ = h, we could also obtain another new form of entropy Sh,h, which is
obviously invariant under the interchange h ↔ −h. As a matter of fact, it is nothing new
but the well-known Kaniadakis non-extensive κ-entropy [15]. Last but not least, it is set
that h′ → −h and h′ = −h + δ. Considering the limit of δ → 0 and h′ → −h, we could also
cover the exact Shafee entropy [16,21] by taking the transformation of q = h + 1.

In Table 1, we summarize different entropy functions, which can be represented by
this two-parameter Sh,h′ entropy through taking different values of h and h′. In addition,
by choosing h′ = −1/h the function Sh,h′ becomes

Sh,−1/h = −
W

∑
i=1

p1+h
i − p1−1/h

i
h + 1/h

, (25)

Note that this entropic form looks much similar to Abe entropy [17], but it is totally different
in fact that Abe entropy cannot be recovered only by exchanging q and h when comparing
them. Hereby, we name it the modified-Abe entropy function. Except for the entropy forms
listed in Table 1, there is a well-known entropy—Renyi entropy, which can be related to Sh,h′

through the relationship between Renyi entropy and Tsallis entropy (only for q ≤ 1) [22],

SRenyi
q ≡ ln ∑W

i=1 pq
i

1 − q
=

ln
[
1 + (1 − q)STsallis

q

]
1 − q

. (26)
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Table 1. The two-parameter entropy Sh,h′ recovers other entropy functions by the variation of h, h′.

Entropy Type Sh,h′

Boltzmann–Gibbs h = h′ → 0

Tsallis [5] h = q − 1, h′ = 0
or h = 0, h′ = 1 − q

κ [15] h′ = h = κ

(κ, r) [23] h = r + κ, h′ = κ − r

γ [23] h = 2γ, h′ = γ

Abe [17] h = q − 1, h′ = 1 − q−1

or h = q−1 − 1, h′ = 1 − q

Shafee [16,21,24] h′ → −h

modified Abe h′ = −1/h

4. Properties

Now we shall address some properties of this (h, h′)-entropy, Sh,h′ . As we all know,
the Boltzmann–Gibbs and the Tsallis entropy can be expressed as [6,25]

SBG = −〈ln pi〉 = 〈ln(1/pi)〉, Sq =
〈
lnq(1/pi)

〉
, (27)

where 〈. . .〉 ≡ ∑W
i=1 pi(. . .) is the standard mean value, and lnq is q-logarithm. Along this

line, we straightforwardly obtain

Sh,h′ =
〈
lnh,h′(1/pi)

〉
, (28)

where lnh,h′ is the (h, h′)-logarithm, and it can be expressed as

lnh,h′(x) =
xh′ − x−h

h + h′
. (29)

4.1. Non-Negativity

First of all, we consider a thermal system within any possible state. The probability
distribution of each microstate i is defined as pi. If we assume p1+h

i � p1−h′
i , namely,

1 + h � 1 − h′, for 0 � pi � 1, thus can we obtain h + h′ � 0 and this two-parameter
entropy Sh,h′ � 0.

4.2. Extremal at Equal Probabilities

Utilizing the Tsallis entropy, ST
q =

∑W
i=1 pq

i −1
1−q , this two-parameter entropy Sh,h′ can be

expressed with it as,

Sh,h′ =
1

h + h′
(

hST
1+h + h′ST

1−h′

)
. (30)

For the Tsallis entropies inside this formula, namely ST
1+h and ST

1−h′ , it is easy to know that
both of them reach their extreme values when all the probabilities are equal [6]. Therefore, at
the state of equal probability, our entropy Sh,h′ will also approach to its extreme value since

d
dpi

Sh,h′ =
1

h + h′

[
h

d
dpi

ST
1+h + h′

d
dpi

ST
1−h′

]
= 0. (31)

4.3. Expansibility

It is straightforwardly verified that Sh,h′ is expansible for any values of h and h′, since

Sh,h′(p1, p2, · · · , pW , 0) = Sh,h′(p1, p2, · · · , pW). (32)
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This property trivially follows from the definition itself. It means when we add some events
with zero probabilities, Sh,h′ keeps invariant.

4.4. Non-Additivity

When we consider a system that can be decomposed into two independent sub-
systems, A and B, (pA+B

ij = pA
i pB

j ),

Sh,h′(A + B) = −
WA

∑
i=1

WB

∑
j=1

(
pA+B

ij

)1+h
−

(
pA+B

ij

)1−h′

h + h′

= Sh,h′(A) ·
WB

∑
j=1

(
pB

j

)1+h
+ Sh,h′(B) ·

WA

∑
i=1

(
pA

i

)1−h′
. (33)

The values of h and h′ cannot be zero together in case (or h = −1 and h′ = 1 appear
at the same time). In other words, Sh,h′ is said to be non-additive similar to the Tsallis
non-extensive entropy.

5. Summary and Outlook

To summarize, with the generalized h-derivative we firstly propose a two-parameter
non-additive entropy, Sh,h′ , in order to connect several non-extensive entropy functions.
The h-derivative motivated non-additive entropy, Sh,h′ , is demonstrated to recover different
kinds of non-extensive entropy formalisms, such as the Tsallis entropy (h = q − 1, h′ = 0),
the Abe entropy (h = q − 1, h′ = 1 − q−1), the Borges–Roditi entropy (h = q − 1, h′ =
1 − q′), the Kaniadakis κ-entropy (h′ = h = κ) and the Shafee (h′ → −h or h′ = −h + δ,
here δ → 0) non-extensive entropy by varying values of h, h′. On the other hand, the
present two-parameter entropy exhibits all the relative properties as a generalized non-
extensive entropy. Furthermore, the remarkable relationship between Sh,h′ and other non-
extensive entropies may cast a light on the connection of non-extensive entropy and some
mathematical structures such as quantum calculus. It may lead to a deeper understanding
of the mathematical and physical foundations of non-extensive statistics. We also noticed
some other two-parameter distribution functions, such as the (r, q)-distribution and (α, κ)-
distribution [26,27], which have been well-applied to astrophysics or space plasma physics.
These two-parameter distributions provide another view to investigate the non-Maxwellian
systems. It will be of great interest to associate this (h, h′)-entropy with them and find out
the deeper connections. There are also various elegant forms of entropy, such as fractional
entropy [28] and Deng entropy [29]. Our (h, h′)-entropy, Sh,h′ , is indeed unable to establish
a connection with theirs. Further exploration of the inherent connections between different
forms of entropy is necessary.
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Appendix A

S. Abe has proven an interesting property [17] that the BG entropy can be rewritten as
a derivative of

SBG = − d
dx

W

∑
i=1

px
i

∣∣∣∣∣
x=1

, (A1)

and the Tsallis one has a similar property

Sq = −Dq

W

∑
i=1

px
i

∣∣∣∣∣
x=1

, (A2)

where Dq is Jackson q-derivative [30–33],

Dq f (x) ≡ f (qx)− f (x)
qx − x

. (A3)

Abe applied the symmetric q ↔ q−1 to give a new modified q-derivative as follows:

Dq,q−1 f (x) ≡ f (qx)− f (q−1x)
qx − q−1x

, (A4)

thus a symmetric modification of Tsallis entropy goes as

SS
q = −

W

∑
i=1

(pi)
q − (pi)

q−1

q − q−1 . (A5)

Inspired by S. Abe, Borges and Roditi define a two-parameter q-derivative [18]:

Dq,q′ f (x) ≡ f (qx)− f (q′x)
qx − q′x

, q, q′ ∈ R, (A6)

and its corresponding entropic form is

Sq,q′ = −
W

∑
i=1

pq
i − pq′

i
q − q′

. (A7)
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Abstract: Recent evidence supports that air is the main transmission pathway of the recently identified
SARS-CoV-2 coronavirus that causes COVID-19 disease. Estimating the infection risk associated with
an indoor space remains an open problem due to insufficient data concerning COVID-19 outbreaks,
as well as, methodological challenges arising from cases where environmental (i.e., out-of-host)
and immunological (i.e., within-host) heterogeneities cannot be neglected. This work addresses
these issues by introducing a generalization of the elementary Wells-Riley infection probability
model. To this end, we adopted a superstatistical approach where the exposure rate parameter is
gamma-distributed across subvolumes of the indoor space. This enabled us to construct a susceptible
(S)–exposed (E)–infected (I) dynamics model where the Tsallis entropic index q quantifies the degree
of departure from a well-mixed (i.e., homogeneous) indoor-air-environment state. A cumulative-dose
mechanism is employed to describe infection activation in relation to a host’s immunological profile.
We corroborate that the six-foot rule cannot guarantee the biosafety of susceptible occupants, even
for exposure times as short as 15 min. Overall, our work seeks to provide a minimal (in terms of the
size of the parameter space) framework for more realistic indoor SEI dynamics explorations while
highlighting their Tsallisian entropic origin and the crucial yet elusive role that the innate immune
system can play in shaping them. This may be useful for scientists and decision makers interested in
probing different indoor biosafety protocols more thoroughly and comprehensively, thus motivating
the use of nonadditive entropies in the emerging field of indoor space epidemiology.

Keywords: indoor biosafety; infection risk estimation; COVID-19; SEI dynamics; Tsallis entropy;
superstatistics; indoor-space epidemiology

1. Introduction

As a consequence of the COVID-19 pandemic, humanity has faced an unprecedented
crisis affecting every sphere of society, and causing a considerable health and economic
burden. Unsurprisingly, several mitigation strategies have been proposed and imple-
mented with the ultimate goal of controlling and, if possible, preventing the transmission
of SARS-CoV-2 strains. Growing evidence suggests that air is the main pathway through
which SARS-CoV-2 is transmitted [1–8]. Infection by SARS-CoV-2 is, thus, much more
likely to occur indoors than outdoors. In particular, an infectious occupant can spread
virus-containing aerosol particles (VCAPs) into the air via exhalation, resulting in the
infection of susceptible occupants according to three main scenarios [9]: (a) the short-range
airborne transmission scenario [10], where the spreader and the susceptible individual are
in geometrical proximity; (b) the shared-room airborne scenario, where the spreader and
susceptible individual are sharing the same indoor space, thus breathing from and exhaling
into the same air container; (c) the longer-distance airborne transmission [11] scenario,
where the spreader and the susceptible are not in geometrical proximity (i.e., they either
do not share the same room or are far apart in an ample indoor space). Realization of any
of these scenarios can trigger COVID-19 outbreaks of varying epidemiological magnitude
depending on complexly interwoven biological (e.g., viral infectivity and the host’s im-
munological preparedness) and nonbiological (e.g., indoor space geometry and ventilation
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flow) factors. For example, there is a growing consensus that micrometer-sized VCAPs
might underpin the transmission dynamics of so-called “superspreading events” [3,12,13],
thus catalyzing the spread of SARS-CoV-2 in communities [8,14,15]. Although more than
three years have passed since the beginning of the COVID-19 pandemic, the emergence of
highly mutated and transmissible Omicron subvariants, such as XBB.1.5, poses significant
threats to public health [16].

Mathematical modelling and simulation approaches to investigating airborne trans-
mission indoors ultimately aim at developing comprehensive, quantitative methods for
indoor infection-risk estimation (IIRE). The emergency of the COVID-19 pandemic acceler-
ated multidisciplinary scientific efforts and provided a wealth of mathematical modelling
approaches operating at various levels of abstraction, thus also claiming different degrees
of biological plausibility. At a coarse-grained scale, SIR-like models can be insightful for
understanding indoor infection dynamics at the occupant-group level (e.g., see [17–20]). On
the other hand, refining the spatiotemporal scale leads to particle-based models attempting
to shed light onto the transport mechanisms underlying airborne transmission and viral
accumulation in the human body (e.g., see [21,22]). Typically, what all of these models have
in common is an—at least—implicit connection between the indoor concentration (densi-
ties) of VCAPs and an infection rate parameter established via fluid mechanics. To this end,
computational fluid dynamics (CFD) have been extensively applied to the study of airborne
SARS-CoV-2 transmission pathways in different indoor environments (e.g., see [23–26]).

Due to the multiscale nature of the IIRE procedure, a crucial element of any modelling
approach is the statistical frame upon which it relies to construct probability measures.
Commonly, IIREs are obtained by either employing case-specific modifications of the
classical Wells–Riley infection probability (WRIP) [27] or even developing entirely novel
probabilistic approaches (e.g., see [28]). The WRIP’s primary assumption, inherited from
Poissonian statistics, is that of a homogeneous (i.e., well-mixed) indoor air environment,
implying that the transmission range is predominantly short, and exposure events are
probabilistically independent of each other. Stated differently, the WRIP is based on
the idea that, under steady-state conditions, indoor-air-environment-property gradients
(in short, steady-state-invariant gradients), which are the underlying cause of observed
statistical distances between a well-mixed and a not well-mixed, i.e., heterogeneous, VCAP
spatial configuration, can be neglected. The realization, however, that omitting effects of
steady-state-invariant gradients may return underrated IIREs in the vicinity of an infectious
source [29] has led many researchers to reconsidering the applicability of the WRIP scheme
by carefully localising it (e.g., see [25,26,28,30,31]). In practice, this approach can yield
satisfactory IIREs at locations of high epidemiological interest, e.g., the breathing zone
of susceptible individuals without, however, providing any systematic way to integrate
local WRIPs into a nonlocal (i.e., macroscopic) measure for evaluating the biosafety of
the indoor air environment as a whole. An additional layer of complexity that, to the
best of our knowledge, remains unexplored, mainly due to insufficient knowledge of the
innate immune system dynamics [32], can be added here by considering the possibility of
heterogeneous within-host responses to inhaled VCAPs.

In this work, we present a superstatistical [33] solution to the problem of integrating
local WRIPs into epidemiologically relevant macroscopic measures in terms of a gamma
mixture model encoding spatial fluctuations of the exposure rate parameter in an arbi-
trary indoor space volume. The decisive step is to conceptualize a spatial-epidemiology
model where susceptible occupants may receive VCAPs via distinct (i.e., noninteracting)
pathways under the influence of indoor-air-environment stochasticities. Accordingly, we
consider local exposure rates to reflect the joint yet probabilistically independent action of
intrinsically stochastic airborne transmissions occurring simultaneously, but via different
spatial routes. The core assumption accompanying this kind of spatial thinking is that
fast- and slow-dynamics timescales co-exist and are well-separated: in a steady-state in-
door air environment, fast dynamics is given by the emission and inhalation of VCAPs,
while slow dynamics describes how an indoor-air-environment-property-gradient field
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may change. This implies that macroscopic changes in the VCAP (spatial) distribution
occurring during a predetermined exposure period are forbidden as long as the steady-state
assumption is satisfied. Our modelling procedures suggest a frameshift from Poissonian
to Paretian statistics, thus leading directly to a q-exponential WRIP, with q denoting the
Tsallis entropic index [34] and admitting the interpretation of the degree of heterogeneity
associated with a given steady-state indoor air environment. From a spatial-epidemiology
viewpoint, q > 1 signals a nonvanishing transmission range, thus enabling construction
of a distance-sensitive susceptible (S)–exposed (E)–infected (I) dynamical model where
the magnitude of the rate at which occupants are transferred from the E subgroup to the I
subgroup depends on immunological traits. Specifically, the Richards growth model [35]
is employed to describe the dynamical relationship among viral accumulation, infection
activation, and a hypothetical innate-immune-system defence mechanism orchestrated by
neutralising antibodies (NAbs), and potentially enhanced by the interferon (IFN) system
(for reviews covering the crucial roles that NAbs and the IFN system play in disrupting
SARS-CoV-2 pathogenesis, see [36,37], respectively). This allows for investigating the
interplay between out-of-host and within-host heterogeneities in a single model that, as we
show, provides a simple tool for evaluating distance-based mitigation strategies such as the
six-foot rule.

2. Model Construction

2.1. Preliminaries

We consider an enclosed space of rectangular volume V (m3) occupied by N randomly
mixed individuals split into a group of susceptible individuals of size S and infectious
individuals of size F. The indoor air environment was assumed to relax into a steady
state. Infectious occupants act as virus spreaders by emitting VCAPs into V. Susceptible
occupants can be exposed to the virus via airborne transmission, i.e., by inhaling air samples
from vbr < V containing VCAPs, with vbr denoting the breathing zone volume, i.e., the
air volume surrounding a susceptible occupant and determining their epidemiological
status. The dynamics of VCAP emission and inhalation are paced by τrel , denoting the fast-
dynamics timescale. The breathing-cycle period gives the magnitude of τrel , which is ≈3 (s).
τrel also determines the time it takes for the local equilibrium density of the indoor air
particles (thus also of VCAPs) to be restored. Accordingly, perturbations in the local density
of VCAPs are expected to be damped out very quickly. The time over which macroscopic
environmental changes can occur, i.e., the slow-dynamics timescale, is denoted with T . The
magnitude of T determines the period over which an indoor-air-environment-property-
gradient field might change. It is required that T /τrel � 1. The epidemiological status of
susceptible occupants may be probed at any time t′ ∈ [t0, t′′], where τ := t′′ − t0 (h) is the
occupancy time, i.e., the total time that N occupants spend in V. It is required that τ < T so
that the steady-state assumption is satisfied at any t′. The average maximum time that the
breathing zone of a susceptible occupant is contaminated with at least one VCAP gives the
exposure time; let this be denoted with τ′ ≤ τ. The average maximum distance over which
a VCAP can be transported during τrel delimits the transmission range; let this be denoted
with ξ (m). ξ plays a similar role throughout this work to the one that the correlation length
plays in superstatistical applications (e.g., see [38]). For simplicity, it is assumed that each
VCAP contains an equal number of virions. An explicit connection with epidemiology is
obtained via the notion of infectious quantum (IQ) (plural form abbreviation: IQa) [27]
defined here as the critical number of VCAPs, Φcrit (VCAPs) ≡ 1 (IQ), that, once deposited
in the body, is expected to activate an infection.

Table 1 aims to ease the reader by presenting key parameters and highlighting their
interdependencies.
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Table 1. We consider two parameter sets, namely, the out-of-host set {N, F, V, vbr, τ, r, w, W, ξ, τ′}
and the within-host set {Φcrit, ζ, β∗}. Out-of-host parameters r, w, and W denote the volumetric
inhalation rate, the VCAP exhalation rate, and the ventilation rate, respectively, and are introduced in
Section 2.2.1. Within-host parameters ζ and β∗ codetermine a susceptible occupant’s immunological
profile and are formally introduced in Section 2.3. λ, ρ, κ, and μ may be considered summary param-
eters, as they are expressed as combinations of out-of- and within-host parameters. λ and ρ represent
the exposure rate parameter and VCAP density, respectively, and are introduced and reinterpreted
in Section 2.2.1 and Section 2.2.2, respectively. κ denotes the number of local air environments
(modelled as surrounding subvolumes of volumetric size ∝ ξ3) determining a susceptible occupant’s
epidemiological status and is introduced in Section 2.2.2. μ gives the average time separating any
pair of subsequent airborne transmission events and is introduced in Section 2.2.2.

Summary Param. Out-of-Host Param. Within-Host Param.

λ = rwF
WΦcrit

(1/h) N (nr. of occupants) Φcrit (VCAPs)

ρ = Fw
W (VCAPs/m3) F (nr. of infectors) ζ (dimensionless)

κ ∝ vbr
ξ3 (dimensionless) V (m3) β∗ (1/h)

μ ∝ Φcrit
ρ

τ′
ξ3 (h) vbr (m3)

τ (h)

r (m3/h)

w (VCAPs/h)

W (m3/h)

ξ (m)

τ′ (h)

2.2. Airborne Exposure Risk Statistics
2.2.1. Homogeneous Indoor Air Environment

If the indoor air environment is homogeneous (for a geometric description of a homo-
geneous indoor air environment, see Appendix A.1, a series of exposure events realised
anywhere in V can be thought of as a Poisson process, where the probability that any pair of
subsequent exposure events are timely separated by t = t′ − t0 is given by the exponential
probability density function (PDF):

p(t|λ) = λexp(−λt), (1)

where λ (1/h) is a macroscopic rate designating the speed at which individuals are exposed
to the virus via airborne transmission. It is common practice to consider substitution
λ = r Fw

WΦcrit
, where w > 0 (VCAPs/h) is the rate at which VCAPs are emitted into V by

an infectious occupant (i.e., VCAP exhalation rate), r > 0 (m3/h) is the rate at which a
susceptible occupant breathes air from V (i.e., volumetric inhalation rate), and W > 0
(m3/h) is the rate at which clean air is supplied to V by a ventilation system [27]. The total
number of VCAPs exhaled and inhaled during t by infectious and susceptible occupants is
then given by Fwt and λt, respectively, and the steady-state VCAP density reads [27]

ρ =
K
V

=
Fw
W

(2)

from which it follows that
λ = r

ρ

Φcrit
. (3)
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The cumulative distribution function (CDF) associated with Equation (1) gives the classical
WRIP [27]:

P(t|λ) = 1 − exp(−λt), (4)

which is assumed to serve as a good approximation for the ratio E
S [27], i.e., P(t|λ) ≈ E

S ,
where E represents the number of susceptible occupants exposed to the virus after spending
t time in V (in short, exposed occupants). For t=1 and λ=1, (4) returns an exposure risk
of ≈63.2%, namely, ≈63.2% of susceptible occupants have been exposed to the virus.

2.2.2. Heterogeneous Indoor Air Environment

If the indoor air environment is heterogeneous (for a geometric description of a
heterogeneous indoor air environment, see Appendix A.1, getting a similar closed-form
expression for the WRIP to (4) requires updating our knowledge concerning the location
of VCAPs in V. The first step in this direction is to refine the spatial resolution of the IIRE
procedure on the basis of our knowledge concerning the value of ξ (to gain some insight on
what the order of magnitude of ξ might be, see Appendix A.1, relationship (A2)). For this,
let us assume that V can be partitioned into Ω ∈ Z+ nonoverlapping cubic subvolumes
of size

v =
V
Ω

(m3), (5)

where Ω is chosen, so that 3
√

v ∝ ξ (for an illustration, see Figure 1). With Equation (5) at
hand, we can express K as K = ∑Ω

i ki, where ki gives the number of VCAPs suspended in
the i-th subvolume. By doing so, we have silently introduced a random variable, namely,
the random variable k accounting for fluctuations of the local VCAP number, i.e., of the
number of VCAPs suspended in a v-sized subvolume. Accordingly, ki denotes the i-th
realisation of k. No assumption concerning the PDF of k is made except by requiring that
the mean value of k be given by

〈k〉 = 1
Ω ∑

i
ki =

K
Ω

, (6)

where angular brackets 〈·〉 indicate that the mean value calculation was performed over Ω
subvolumes. k can only weakly fluctuate over τrel ; specifically, large-amplitude fluctuations
of k are only allowed over the slow-dynamics timescale T , since steady-state indoor-air-
environment conditions are assumed.

Given k, let us now also introduce a local version of Equation (3):

λi = r
ρi

Φcrit
, ρi =

ki
v

, (7)

where, like ki, λi represents a realisation of a random variable, namely, of the exposure rate
random variable, λ, which accounts for local fluctuations of the exposure rate parameter.
Stated differently, λ is no longer a mere phenomenological construct (as it was considered in
Section 2.2.1), but it has acquired a new, microscopic interpretation: it is distributed across
v-sized subvolumes with some probability f (λ) that is shaped by steady-state-invariant
gradients. Hence, like k, λ can only weakly fluctuate over τrel , since large-amplitude
fluctuations of λ are forbidden during T .

In light of (7), obtaining a macroscopic estimation for exposure risk statistics requires
the calculation of marginal probability:

p(t) =
∫ ∞

0
dλ f (λ)p(t|λ), (8)

43



Entropy 2023, 25, 896

which returns the mean value of p(t|λ) over f (λ) for a given t, with f (λ)p(t|λ) denoting
the joint probability (i.e., the probability for a pair of subsequent exposure events to be
timely separated by t given a certain value of λ). The CDF corresponding to (8) is given by

P(t) =
∫ ∞

0
dλ f (λ)P(t|λ). (9)

This serves as a generalisation of (4), in the sense that it quantifies the probability for a sus-
ceptible occupant to become exposed to the virus after spending t hours in a heterogeneous
indoor air environment.

A question that naturally arises is what an epidemiologically motivated choice for
f (λ) could be. In what follows, we attempt to answer this question under the macroscopic
constraint that the mean value of λ, 〈λ〉, equals rρ/Φcrit, i.e., 〈λ〉 = rρ/Φcrit.

Plausibly, an exposure event can be thought of as the outcome of κ airborne trans-
missions, which do not necessarily result in the inhalation of the same amount of VCAPs.
Accordingly, κ is defined as a dimensionless quantity describing the number of air samples
of size v inhaled during τ′, i.e.,

κ := r/ψ, ψ = v/τ′, τ′ > 0, (10)

where ψ (m3/h) re-scales r with respect to the epidemiologically relevant parameters v
and τ′. Within a spatial-epidemiology context, κ is interpreted as the number of v-sized
subvolumes surrounding a susceptible occupant, thus determining their epidemiological
status (see Figure 1). Consequently, κv gives the volumetric size of an occupant’s breathing
zone, i.e., vbr = κv = rτ′. Continuing this line of thought, the κ-th surrounding subvolume
is supposed to act as an airborne transmission pathway by facilitating routes through which
suspended VCAPs can reach the nearest susceptible occupant. The rate at which VCAPs
are transmitted via the κ-th subvolume to the nearest susceptible occupant is determined
by a random variable; let it be denoted with x (1/h). We refer to x as the transmission
rate, and we note that x essentially corresponds to the κ-th spatial component of λ, i.e.,
λ ∼ ∑κ

i=1 xi, κ ∈ Z+. Introduction of x highlights the fact that the transmission of VCAPs is
an intrinsically stochastic process that can occur over a wide range of timescales averaging
1/〈x〉, where 〈x〉 > 0 denotes the mean value of x. Assuming that the κ-th transmission
event is probabilistically independent of all the others (which, in turn, implies that the κ-th
pathway is not interacting with any of the other κ − 1 pathways), and that the transmission
of a small number of VCAPs is more likely than the transmission of a large number of
VCAPs, the simplest function that can be chosen for describing the PDF of x across v is the
following exponential:

h(x|μ) = μexp(−μx), (11)

where parameter μ = 1
〈x〉 (h) denotes the average time separating any two transmission

events and is defined as follows:

μ := τ′ Φcrit
〈k〉 , (12)

where the ratio 〈k〉
Φcrit

gives the local IQ number (i.e., the average size for an IQa dose). Like
λ, x can only weakly fluctuate over τrel , so that changes in the functional shape of h(x|μ)
during T are insignificant. From (12), it follows that 〈x〉 can be expressed as follows:

〈x〉 = 〈k〉
Φcrit

1
τ′

(7)
=

K
ΩΦcrit

1
τ′

(5)
=

K
VΦcrit

v
τ′

(3)
=

ρ

Φcrit
ψ (13)
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Given (10) and (13), the simplest possible functional form that one can assign to f so
that λ ∼ ∑κ

i=1 xi is guaranteed is that of a gamma distribution [39] of the form:

f (λ) =
μκλκ−1exp(−μλ)

Γ(κ)
(14)

with Γ(·) being the gamma function,

〈λ〉 = κ

μ
= r

ρ

Φcrit
(15)

denoting the mean value of λ (note that 〈λ〉 satisfies the initially imposed macroscopic
constraint), and Var(λ) = κ

μ2 denoting the variance in λ. For κ = 1 (14) becomes identical
with (11) implying that vbr = v (see Figure 1). When (14) is substituted into (8), we get:

p(t) =
κμκ

(t + μ)κ+1 (16)

corresponding to a Pareto Type II distribution [40] with CDF:

P(t) = 1 − (1 +
t
μ
)−κ . (17)

For t = 1, μ = 1, and κ = 1, (17) returns an exposure risk of 50% (i.e., 50% of susceptible
occupants were exposed to the virus). To show that (17) serves as a generalisation of (4)
one simply has to calculate P(t) while having ψ be vanishingly small, i.e.,

lim
ψ→0

P(t) = 1 − lim
ψ→0

(1 +
t
μ
)−κ

(10)(13)
= 1 − lim

ψ→0
(1 +

ρψ

Φcrit
t)−r/ψ

= 1 − exp(− rρ

Φcrit
t)

= 1 − exp(−〈λ〉t) ≡ (4),

(18)

which is achieved by taking either v → 0 or τ′ → ∞.
Taking (7) and (14) together implies that k is realised by a rescaled (by a factor of

c = Φcritv/r) gamma distribution, i.e.,

g(k) =
oκkκ−1exp(−ok)

Γ(κ)
, o =

μ

c
=

rμ

Φcritv
(12)
=

κ

〈k〉 , (19)

with the required mean value 〈k〉 = κ
o = K

Ω , and variance Var(k) = κ
o2 = 〈k〉2

κ .
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Figure 1. Schematic illustration of the proposed spatial-epidemiology model. We consider an indoor
space of volume V occupied by one infector (i.e., F = 1) and two susceptible (i.e., S0 = 2) individuals,
shown in red and blue, respectively. Round dots represent steady-state VCAP densities in V. The
classical WRIP scheme assumes that the indoor air environment is homogeneous, i.e., that VCAPs are
roughly uniformly spaced in V (see subfigure on the left). On the other hand, the generalized WRIP
scheme does not rely on the homogeneity assumption (e.g., as we can see in the subfigure on the
right, VCAP density can be higher near an infectious source). To systematically capture deviations
from homogeneity, we partition V into i = 1, 2, . . . , Ω = n16 subvolumes of size v = V/Ω, where n
denotes the number of subvolume layers used to fill V. For clarity, we illustrate only the front layer
containing the first 16 subvolumes (subvolume boundaries are highlighted in black). Supposing that
the epidemiological status of susceptible occupants is determined by a single surrounding subvolume
(i.e., if κ = 1), then the subvolumes indexed with i = 9 and i = 10 correspond to the breathing zones
of susceptible occupants A and B with λ9 = x9 and λ10 = x10, respectively, representing the values of
the corresponding realizations of λ with λ ∼ Gamma(1, μ) = Exp(μ) (see Equations (11) and (14)).

2.3. Infection-Activation Considerations

Once inside the body, SARS-CoV-2 can enter cells located on the surface of the upper
respiratory tract via binding to the angiotensin-converting enzyme 2 (ACE2) receptor [41].
High replication levels during the first hours following exposure are correlated with the risk
of developing symptomatic disease [42]. Although biological details concerning infection
activation remain largely unknown, knowledge gained from long-lasting superspreading
events, such as the Skagit Valley Chorale choir practice [13], suggests that a prolonged
exposure time increases the risk of symptomatic disease. The critical size of the cumulative
viral dose that could activate an infection leading with high certainty to symptomatic
disease is impossible to measure. Nevertheless, it was recently suggested that the interplay
between the size of the cumulative viral dose and the efficiency of the innate immune
system plays a crucial role in determining the course of infection and disease severity [43].
Anti-SARS-CoV-2 NAbs are at the frontlines of the innate immune system, since they can
inhibit the binding of the virus to the ACE2 receptor, thus offering protective immunity
against SARS-CoV-2 infection [36,44,45]. In this work, we assume that infection activation
is a necessary but not sufficient condition for the development of symptomatic disease.

The average number of IQa inhaled after spending t hours in V, i.e., the average size
for the cumulative IQa dose up to time t, can be estimated with

Φ =
∫ t′

t0

dz〈λ〉 ∗
= 〈λ〉t (20)

(∗ is a reminder that this equality holds only under steady-state indoor-air-environment
conditions). Without loss of generality, a relationship between Φ and a hypothetical NAb-
orchestrated antiviral defence mechanism can be obtained via the following generalised
logistic differential equation:

dR
dΦ

= aR
(
1 − Rζ

)
, (21)
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which is known as the Richards growth model [35], where R ∈ [R0, RΦ→∞ = 1) is a
hypothetical infection-activation biomarker, RΦ→∞ denotes the upper asymptotic bound
of R, R0 > 0 is the initial condition for R, a > 0 is the rate of change of R with respect to
Φ, and ζ > 0 is a dimensionless exponent accounting for host susceptibility. Concretely,
ζ is considered inversely correlated with the neutralising capacity of NAbs. Hence, the
larger ζ is, the smaller the neutralising capacity of NAbs is expected to be, which, in turn,
implies a lower degree of protective immunity against SARS-CoV-2 infection. The solution
of (21) reads

R = [1 + Aexp
(
− aζ(Φ − Φ0)

)
]−1/ζ , A = R−ζ

0 − 1, Φ0 = 〈λ〉t0. (22)

A connection with the notion of IQ is established by requiring that the inflection point
of (22)

Φin f l =
ln
(

A
ζ

)
aζ

+ Φ0, (23)

is equal to 1/ζ, i.e.,

Φin f l = 1/ζ =⇒ a =
ln
(

A
ζ

)
1 − ζΦ0

. (24)

Φin f l designates the Φ value for which R attains its maximum value. Qualitatively,
Φin f l can be understood as the beginning (with respect to Φ) of R’s asymptotic convergence
towards RΦ→∞. From a disease biology viewpoint, Φin f l represents a threshold value of
“no return” that, once surpassed, signals a high likelihood for infection activation. For
ζ = 1, we have that Φin f l = 1 = Φcrit, implying that one IQ suffices for infection activation.
Accordingly, if ζ > 1 (ζ < 1), then the host is considered to exhibit low (high) NAb-
attributed preparedness since Φin f l < Φcrit (Φin f l > Φcrit). Φin f l can, thus, be understood
as a personalised estimation for the number of IQa required to activate an infection. This
can be tuned to match an occupant’s immunological profile.

2.4. Indoor Infection Dynamics

Following [27], let us now claim that (17) = E
S . Then, for the initial condition S0 =

N − F > 0, the decrease in the number of susceptible occupants (or the increase in the
number of exposed occupants) under steady-state indoor-air-environment conditions is
given by

E
S0

=
S0 − S

S0
= 1 − (1 +

t
μ
)−κ =⇒ S = S0(1 +

t
μ
)−κ , (25)

which for a sufficiently small time step dt becomes the solution of the following differential
equation [46,47]:

dS
dt

= −αSq = −dE
dt

, α :=
〈λ〉

Sq−1
0

, q := 1 + 1/κ, (26)

where α is the “effective” [46,47] exposure rate, and q is the Tsallis entropic index [34].
Equation (25) can be derived by maximising the Tsallis entropy functional [46,47]:

S [S] = −
∫ t′′

t0
S
(
1 − Sq−1)dt

1 − q
(27)

subject to constraints L1 =
∫ t′′

t0
S dt and L2 =

∫ t′′
t0

tSq dt, where L1 and L2 are Lagrange
multipliers with their values being manually adjusted so that the desired values for S0 and
〈λ〉, respectively, may be obtained [46].

By using (22), we may now extend (26) to account for an I subgroup representing
exposed occupants who are expected to develop symptomatic disease. We consider R to
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determine the value of a hypothetical infection rate β (1/h), delimiting the speed at which
occupants are transferred from the E subgroup to the I subgroup, i.e.,

β := β∗R, (28)

where β∗ > 0 (1/h) rescales R and imposes an upper asymptotic bound on β. Generally,
β∗ can be thought of as being inversely correlated with the rate at which successful IFN-
system-driven immune responses take place (for the crucial role that the IFN system
can play during the first hours following infection activation, see [42]). Hence, its value
determines whether an initially activated infection is sustained or not. Altogether, our
modelling considerations lead us to the following set of ordinary differential equations
(ODEs) describing the indoor infection dynamics of S0 in V:

dS
dt

= −αSq

dE
dt

= αSq − βE

dI
dt

= βE,

for S0 = N − F, E0 = 0, I0 = 0, N = const, F = const.

(29)

Stability analysis of the system of ODEs described in (29) is trivial; for t → ∞, all occu-
pants were expected to have been transferred to the I subgroup, i.e., (St→∞ → 0, Et→∞ →
0, It→∞ → N − F) is the unique equilibrium point globally attracting from within the
positively invariant region {(S, E, I) | S + E + I ≤ N − F}.

The presented SEI model belongs, from a mathematical point of view, to the class of
q-SEIR models recently introduced in [19].

The numerical integration of (29) was performed in Python [48] by employing a
Runge–Kutta method of order 5(4) [49].

3. Insights Gained from Computational Analysis

3.1. Scrutinising the Generalised WRIP

To better understand the implications for indoor biosafety stemming from (17), we
may focus on (18). We set r = 1, and considered the case where K VCAPs were suspended
in V with 〈λ〉 = 1 so that Fw

WΦcrit
= ρ

Φcrit
= 1. With this choice of parameters, we gain some

insight into how (17) approaches (4), and how f (λ) and g(k) behave for decreasing the
transmission range ξ while keeping the exposure time τ′ (and, thus, also vbr) fixed.

As we can see in Figure 2a, for a vanishingly small ξ (i.e., v → 0), (4) approaches
its upper asymptotic bound, which is given by (17). Simply put, the classical WRIP
is an overestimation of the exposure risk justified on the basis that, in the absence of
any substantial knowledge concerning fluctuations of λ, the worst-case scenario may be
assumed, namely, that any realisation of λ would be approximately equal to 〈λ〉. The
necessary condition supporting this simplification is that the VCAP density is very large,
i.e., K and V should be very large and small, respectively (see also Appendix A.1). On the
other hand, the generalised WRIP returns a lower but more realistic estimation for the
exposure risk on the basis of the expectation that f (λ) may be well-approximated in terms
of a gamma distribution. In fact, (17) serves as a more “fair” IIRE, in the sense that the
chance for an occupant to become exposed to the virus after spending one hour in V is the
same as tossing an unbiased coin, namely, 50% (see Figure 2a). In particular, the difference
between the classical and the generalised WRIP at t = 1 decreases from ≈ 0.13 to ≈ 0.01
if one considers a tenfold increase in the number of subvolumes Ω (see Figure 2b and the
corresponding legend text).
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Figure 2. Classical WRIP as an upper asymptotic bound of its generalisation. (a), we plot (17) for
μ = 1/ψ and κ = 1/ψ with τ′ = τ = 2 and v ∈ (0, 2] (i.e., ψ ∈ (0, 1]). The black arrow indicates that
the generalised WRIP measure approaches the classical one as v decreases. The shaded area between
the two curves visualises the image of the generalised WRIP function for ψ ∈ (0, 1]. An estimation of
the exposure risk difference (ERD), i.e., the difference between the generalised and the classical WRIP
measures, calculated by (1 + t

μ )
−κ − exp(−t) for v ∈ (0, 2] and t = 1 (=60 min) is shown in the inset

graph. Colorful markers in the inset graph indicate the v key values considered in (a). In the same
inset graph, the ratio S/Sq→1 is plotted, where S is calculated by using the discretised version of (27)
and with Sq→1 denoting the Boltzmann–Gibbs entropy (see Appendix A.3, Equations (A3) and (A4),
respectively). (b), for a hypothetical volume of size V = 60, we plot i = 1, 2, . . . , 30 randomly-chosen
realisations of λ for v → 0, v = 0.2, and v = 2 implying that Ω → ∞, Ω = 300, and Ω = 30,
respectively, since v = V

Ω (see (5)). (c), The corresponding gamma distributions are shown. Different
colors are used to visualise the distributions obtained for the key values appearing in (a,b).

The information content of an S trace is measured in terms of q entropy S (see
Equation (27)) that, as we can see in the inset of Figure 2a, is inversely correlated with ξ.
The loss of S-trace-related information with increasing ξ accounts for the degree of viral

dispersity in V quantified in terms of the reciprocal of κ, 1/κ ∝ ξ3

vbr
. Intuitively, we may

understand 1/κ as a rough indicator for the likelihood that a suspended VCAP misses
its target due to either the smallness of vbr or the largeness of ξ (or both). Of particular
interest is the case where ξ is large since, as we show in Figure A1 found in Appendix A.2,
it may support a contaminated-air-sharing scenario where a pair of susceptible occupants
are competing for the same IQa dose, i.e., a suspended VCAP could potentially reach
any two susceptible occupants during τrel . Thus, one might anticipate that S-trace-related
information losses associated with a composite epidemiological system A ⊕ B (where A
and B may represent any two susceptible occupant subgroups (or “subsystems”)) should
be proportional to 1/κ. Indeed, because S is nonadditive, we have that

S [A ⊕ B] = S [A] + S [B]− (1 − q)S [A]S [B]

= S [A] + S [B]− S [A]S [B]
κ

=⇒

S [A ⊕ B]− (S [A] + S [B]) ∝
ξ3

vbr
S [A]S [B],

(30)

where A := {p(A)
i }, i = 1, 2, . . . , WA, B := {p(B)

j }, j = 1, 2, . . . , WB, and A⊕ B := {p(A⊕B)
i,j =

p(A)
i p(B)

j } are time-step-specific probabilities of escaping exposure introduced while dis-
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cretising S (see Appendix A.3, Equation (A3)), and the term S [A]S [B]
κ quantifies the losses in

S-trace-related information due to potential realisation of a contaminated-air-sharing sce-
nario involving A and B as a pair. This is summarised in terms of the Tsallis entropic index
q: for v → 0 (i.e., 1/κ → 0), we have that q → 1, indicating that indoor-air-environment
homogeneity is restored. In turn, this implies that the information content of S is max-
imised, i.e., the Boltzmann–Gibbs entropic functional is recovered (see Appendix A.3,
Equation (A4), and Figure 2b), and the likelihood of pairwisely sharing contaminated air
is negligible.

To gain more insight into how steady-state-invariant gradients shape the statistics of
λ and k, the asymptotes of f (λ) and g(k), respectively, are deduced. First, for v � 1, we
have that √

Var(λ) � 〈λ〉 (a)√
Var(k) � 〈k〉 (b)

(31)

since 〈λ〉 �∝ v (because 〈λ〉 is macroscopically constrained by construction) and
√

Var(λ) ∝
v, and 〈k〉 ∝ v and

√
Var(k) ∝ v3 apply, respectively. Inequality (a) in (31) implies that f (λ)

resembles a Gaussian distribution of the form [50]:

μκ

Γ(κ)
exp(−μ2

2κ
(λ − 〈λ〉)2) ∝

v−1/v

Γ(1/v)
exp(− 1

2v2 (λ − 〈λ〉)2) (32)

(see Figure 2c, green distribution), and, eventually, approaches the Dirac delta distribution
located at 〈λ〉, i.e.,

fv→0(λ) = δ(λ − 〈λ〉) (33)

is the asymptote of f (λ) (see Figure 2c, blue distribution). Equation (33) sets the basis for
constructing classical WRIPs (see Figure 2c). In fact, plugging fv→0(λ) into (9) gives (4).

Let us now turn our attention to Inequality (b) in (31). Its main implication is the same
as previously: g(k) can be approximated with the Gaussian distribution of the form [50]:

oκ

Γ(κ)
exp(− o2

2κ
(k − 〈k〉)2) ∝

v−2/v

Γ(1/v)
exp(− 1

2v3 (k − ρv)2) (34)

(see Figure 3, green distribution), and, eventually, approaches the Dirac delta distribution
located at zero, i.e.,

gv→0(k) = δ(k) (35)

is the asymptote of g(k) (see Figure 3, blue distribution). Equation (35) tells us that V is
partitioned into an infinite number of subvolumes, each containing an infinitesimally small
number of VCAPs. This is because the mean value and variance of g(k) are proportional
to v and v3, respectively, so that g(k) is translocated towards the origin while at the same
time becoming increasingly narrow as v decreases for some finite value of K (see Figure 3).
For v → 0, it is, thus, almost certain to find an infinitesimally small amount of VCAPs
anywhere in V as if VCAPs were molecules of a well-mixed gas [27].
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Figure 3. Instances of a VCAP distribution. We plot g(k) for μ = 1/ψ and κ = 1/ψ with τ′ = τ = 2
and v ∈ (0, 2] (i.e., ψ ∈ (0, 1]).

3.2. Refining the IIRE

Of particular epidemiological interest is understanding how IIREs depend not only on
indoor-air-environment properties, but also on personalised immunological traits. Towards
this end, we may utilise the SEI model described by (29) as a simple tool to probe different
scenarios. In Figure 4, we demonstrate how our model refines the IIRE procedure in the
sense that the classical WRIP is now represented in terms of two additive components
incorporating out-of-host and within-host information, namely, E and I, respectively, so
that E + I → S0(1 − exp(−〈λ〉t)) for v → 0. Normalising SEI traces over S0 turns them
into personalised biosafety scores returning the t-dependent probabilities {s := S/S0, e :=
E/S0, i := I/S0} of escaping exposure, being exposed, and getting infected (i.e., developing
symptomatic disease sometime in the near future), respectively. Decreasing the value of the
host susceptibility parameter ζ translocates the I trace towards the origin, thus decelerating
the transfer of occupants from the E-subgroup to the I-subgroup (see Figure 4 and the
corresponding legend text) since infection activation is efficiently suppressed due to a
high degree of protective immunity. This reflects the action of NAbs and is manifested
as a decelerated increase in a hypothetical infection-activation biomarker, R (see (22)),
induced by translocating inflection point Φin f l away from the origin as ζ decreases (see the
inset graph in Figure 4a). As one might expect, the rate of IFN-system-driven successful
responses, β∗, sets the speed at which occupants are transferred from the E subgroup to
the I subgroup (compare Figure 4a and Figure 4b). In principle, however, the value of β∗

is unknown in the IIRE procedure; it may exhibit nontrivial time dependencies over viral
replication dynamics and the host’s immunological profile.

3.3. Evaluation of the Six-Foot Rule

We now demonstrate how our modelling procedures can aid in designing and testing
distance-based mitigation strategies specifically targeting indoor spaces. We focused on
how changes in the {κ, ζ, β∗} triplet affect SEI dynamics under different steady-state
VCAP density conditions. As a concrete example, we scrutinise the effectiveness of
the six-foot rule, which dictates that the maximum number of occupants should be
Nmax =

√
length · width/dsa f e, V = length · width · height, where dsa f e = 1.8 (≈ 6 ft) is

the minimal distance to be kept at all times between any two occupants to guarantee
biosafety. To cover the worst-case scenario, we require that (a) the average maximum
distance over which virions can be transmitted is determined by the minimal distance
separating any pair of occupants, i.e., ξ = dsa f e, and (b) the breathing zones of susceptible
occupants are uninterruptedly contaminated, i.e., we set τ′ = τ, so that ψ was minimised.
On this basis, we proceeded with collecting iτ := i(t = t′′) values for τ = 0.25, 0.5, 0.75, 1,
and r = 0.54, 1.38, 3.30 (breathing rates values correspond to the mean values reported for
the activities of standing, light exercise, and heavy exercise, respectively [51]), and analyse
their functional dependence over ρ for different values of {ζ, β∗}.
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Figure 4. Refined biosafety scoring. (a), s, e, i traces are plotted for μ = 1/ψ and κ = 1/ψ with
v = τ′ = τ = 12 (i.e., ψ = 1), β∗ = 0.1, R0 = 0.01, and ζ ∈ [0.1, 10]. The shaded areas highlight
the images of the E and I for ζ ∈ [0.1, 10]. Green circular markers highlight the maxima of E (their
values and locations both decreased with increasing β, indicating that the transfer of occupants from
the E subgroup to the I subgroup was accelerated). The black arrow indicates that the sum E + I
approached the classical WRIP for v → 0. Φ-dependent dynamics of R are illustrated in the inset
graph. Magenta points in the inset graph highlight R values corresponding to the tunable inflection
point Φin f l = 1/ζ. The shaded area in the inset graph visualises the image of R for ζ ∈ [0.1, 10]. The
main and inset graphs use the same line styles to account for ζ = 0.1, 1, 10. (b), same as (a), but for
β∗ = 10.

First, we focus on how iτ traces behave as functions of ρ for ζ ∈ [ζmin, ζmax] and
β∗ = 1. We rely on the existence of an inflection point ρin f l marking the location where
the change from convex to concave in an iτ trace takes place for increasing ρ. For small
values of ζ (strong protective immunity), ρin f l is translocated away from the origin, thus
decelerating the increase in iτ (see Figure 5a,c,e). On the other hand, for large values of
ζ (weak protective immunity), iτ exhibits a steep increase for ρ < ρin f l with ρin f l being
located very close to the origin (see Figure 5a,c,e). For ρ > ρin f l , a saturation iτ plateau
is gradually formed due to epidemiological spatiotemporal constraints imposed by the
magnitude of ψ (see Figure 5a,c,e and the corresponding inset graphs). Specifically, there is
a large value of ρ, let this be ρ∗ > ρin f l , for which iτ traces converge (i.e., the range within
which iτ;ρ≥ρ∗ values lie tends to be vanishingly small) irrespective of what the value of
ζ is (see Figure 5a,c,e, and the corresponding inset graphs). This regime emerges when
local VCAP densities are so high that protective immunity is inadequate in counteracting
the viral threat, i.e., ki � Φin f l ; consequently, the influence of ζ on the SEI dynamics is
rendered marginal. In computational practice, ρ∗ is obtained by finding the value of ρ for
which the first-order differences of iτ drop below a threshold (for details, see the legend of
Figure 5).
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Figure 5. Evaluation of the six-foot rule. (a), we plot iτ as a function of ρ for r = 0.54, ζ ∈ [ζmin =

0.1, ζmax = 10], β∗ = 1, ξ = dsa f e, R0 = 0.01, and τ = 0.25, 0.5, 0.75, 1. Continuous and dashed lines
highlight the upper and lower boundaries of iτ values range obtained for ζmin = 0.1 and ζmax = 10,
respectively. (c), same as (a), but for r = 1.38. (e), same as (a), but for r = 3.3. Inset graphs in
(a,c,e) illustrate how the first-order differences trace Δρiτ = iτ;ρ+Δρ − iτ;ρ “flattens” for increasing
ρ. The following computational criterion was used to decide whether a Δρiτ-trace has “flattened”:
find ρ∗ so that Δρiτ < ε, ε = 1 × 10−4, is satisfied for any ρ ≥ ρ∗. Once all ρ∗ values had been
gathered for a specific r-value, we found their maximum, ρ∗max = max

ζ,τ,β∗=1
{ρ∗}. ρ∗max is provided here

for convenience: it serves as a baseline value for probing the behaviour of iτ-values with respect to
1/β∗. Round and square markers in (a,c,e) highlight the values of iτ at the inflection point ρin f l for
ζ = ζmin and ζ = ζmax, respectively. For clarity, only round markers are used in the inset graphs,
highlighting the maxima of Δρiτ for ζ = ζmin. (b) We plot the value of iτ obtained for ρ = nρ∗max,
n = 1, 2, 3, . . . , 10, ρ∗max = 384 versus 1/β∗ for r = 0.54, ζ ∈ [ζmin, ζmax], and τ = 0.25, 0.5, 0.75, 1.
(d), same as (b), but for r = 1.38 with ρ∗max = 354. (f), same as (b), but for r = 3.3 with ρ∗max = 245.
Different colour intensities in (b,d,f) were used to visualize iτ-values in ascending n-order. Black
traces appearing in (b) are particularly interesting here, as they indicate that for exposure times as
short as 15 min, iτ can take values as high as ≈0.2 if the host’s innate immune system falls short in
counteracting the viral threat, i.e., if 1/β∗ is very small.

Lastly, we evaluate the performance of the six-foot rule by ensuring again that our
calculations covered the worst-case scenario. Namely, we required that ρ ≥ ρ∗ and β∗→∞,
implying that both NAb-orchestrated and IFN-system-driven lines of defence cannot
provide sufficient protection against a viral threat. Figure 5b shows that, if Nmax occupants
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spend 15, 30, 45, and 60 min in V standing, then iτ could attain values as high as ≈0.2, ≈0.35,
≈0.5, and ≈0.6, respectively. Crucially, this finding shows that the efficiency of the six-foot
rule drops significantly after 15 min, since susceptible occupants with a weak immune
system might face as high a symptomatic-disease risk as ≈20% (notice the behaviour of
the black traces shown in Figure 5b for very small 1/β∗). If Nmax occupants spend time in
V while engaging in light exercise activities, then iτ could potentially exceed 0.4, 0.6, 0.8,
and 0.9, respectively (see Figure 5d). Moreover, if Nmax occupants engage in heavy exercise
activities, then iτ can attain values larger than 0.7 and 0.9 for τ = 0.25 and τ = 0.5, 0.75, 1,
respectively, as we can see in Figure 5f. The last two cases suggest that the six-foot rule
cannot guarantee the biosafety of immunologically weak susceptible occupants in indoor
spaces where exercise activities are undertaken, even if the exposure time is shorter than
30 min. Obviously, for β∗ → 0, we have that iτ → 0, since the transfer from the E to the I
subgroup is suppressed as if the IFN-system-driven response would successfully disrupt
viral replication and eliminate the virus (see Figure 5b,d,f).

4. Discussion

Given the current rate of biosphere degradation, respiratory viruses of zoonotic origin
capable of spreading via air, such as SARS-CoV-2, are expected not only to emerge more
often, but also to carry an unprecedentedly high epidemic potential. Self-evidently, the
probability of infection increases significantly indoors due to the very nature of the built
environment, that is, enclosure. Thus, the biosafety of societies whose members spend
most of their time indoors is likely compromised.

In this work, we presented a minimal (in terms of parameter space size) ODE-based
model for describing indoor exposure to and potentially also infection by an airborne-
transmitted virus. The initial motivation for this work was to construct a modelling
framework that could stretch beyond the idea of environmental and biological homogeneity
within the context of indoor air biosafety. We achieved this by generalising the WRIP
on the basis of a κ-pathway spatial model that treats the breathing zone as a stochastic
VCAP transmitter. Following this line of thought, we deduced that the most general PDF
that could be used to statistically describe the spatial fluctuations of the exposure rate
parameter and VCAP number is that of a gamma distribution. This pointed towards a
Tsallisian entropic origin of transmission dynamics, with q measuring the departure from
the homogeneous case. The connection between Tsallis entropy and superstatistics is
usually established via χ2 distribution (e.g., see [33]) which is nothing but a special case
of the gamma distribution. Lastly, by extending exposure dynamics to account for the
possibility of infection activation in relation to innate-immune-system defence mechanisms,
we propose that i (defined in Section 3.2) can be used as a probability measure for estimating
the risk for developing symptomatic COVID-19 disease. Although Tsallis entropy-based
modelling approaches have proven useful in understanding the spread of SARS-CoV-2
among the general population (e.g., see [19,52]), the model curated in this work serves as
a first attempt to zoom in on a single indoor space. We emphasise that even for a 15 min
exposure under the six-foot-rule guideline, a symptomatic-disease risk as high as 20%
might apply.

Let us now discuss some of the limitations of this work. First, theoretical predictions
concerning the VCAP distribution remain to be verified (or dismissed) by CFD simulations.
In practice, the values of parameters {κ, μ} can be estimated by analysing steady-state
VCAP distributions obtained from CFD experiments by employing standard distribution
parameter estimation procedures. If {r, w, W} are known, then one can investigate which
combinations of v and τ′ offer the best description for the experimental PDF of k. In-
evitably, rigorous definitions for τ′ and ξ then have to be provided in accordance with
the simulation details. Second, very little is known about how the innate immune system
reacts to SARS-CoV-2. Therefore, the presented extension of exposure dynamics based
on parameter pair {ζ, β∗} serves as a rather general starting point for investigating the
role of immunologically heterogeneous responses to SARS-CoV-2 and might be updated
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in the future as our knowledge increases. In particular, future studies could explore the
possibility of β∗ := β∗(t) in order to probe the relationship among IFN-system-driven
immune responses and SARS-CoV-2 replication dynamics.

Overall, our work demonstrates how superstatistics and related q-entropies can open
up possibilities for systematically obtaining exposure and symptomatic-disease risk esti-
mations in heterogeneous indoor air environments. In turn, this allows for minimising
the number of parameters used when constructing personalised biosafety scores such as i.
Therefore, our work provides a recipe for incorporating VCAP-related spatial information
into simple ODE-based models for indoor epidemiological scenario explorations.

5. Conclusions

At the macroscopic level, the classical Wells–Riley infection probability results in an
overrated exposure risk estimation. Locally, however, the situation is different: a classical
Wells–Riley infection probability can either over- or under-estimate the associated risks
depending on whether the corresponding realisation of exposure rate parameter λi is larger
or smaller, respectively, than its mean value 〈λ〉.

The Tsallis entropic functional can serve as an information-theoretical starting point
for exploring SEI dynamics in heterogeneous indoor air environments.
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Appendix A

Appendix A.1. Probing the Spatial Configuration of VCAPs

To probe the geometry underlying a steady-state VCAP distribution, one may adopt a
moments-expansion scheme borrowed from molecular field theory [53]. In fact, moments-
expansion schemes serve as simple, yet, informative tools for studying the spatial organisa-
tion of heterogeneous molecular systems [54,55]. Imposing periodic boundary conditions
over V, we utilise the following geometrical nonuniformity index:

γ :=

〈
1
K

K

∑
i
‖hi(t)‖

〉
t′

(m),

hi(t) =
1
K′

K′

∑
j

( =dij(t) (m)︷ ︸︸ ︷
pj(t)− pi(t)

)
(m),

(A1)

where pi is a t-dependent vector from the coordinate system origin to the location of the i-th
VCAP, di,j is a t-dependent vector difference between the i-th and j-th VCAP locations, hi
is the first-order geometric moment expanded about the i-th VCAP location calculated and
normalised over 0 < K′ ≤ K − 1 nearest-neighboring VCAP locations, ‖ · ‖ is the Euclidean
norm, and 〈 · 〉t′ returns the mean value over all t′ instances (i.e., ensemble average). hi
serves here as a t-dependent measure of the displacement tendency (or “imbalance” [53])
of the i-th VCAP about its current location, capturing the magnitude and direction of
local VCAP density fluctuations. If VCAPs tend to be uniformly spaced in V (which is a
plausible scenario if K and V are very large and small, respectively), then we expect that
||hi|| ≈ 0 for K′ would exceed a lower-value threshold value. In turn, this implies that
γ → 0, thus making the case for a homogeneous indoor air environment. On the other
hand, for heterogeneous indoor air environments, γ is larger than zero, letting its maximum
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value delimited by the diagonal of V be D, i.e., γ ∈ [0, D). Given γ, nothing can really be
said about ξ except that

ξ ∝ γ. (A2)

Proportional relationship (A2) implies that a nonvanishing value for γ sets the ground
for long-range airborne transmission since the displacement of VCAPs is possible. On the
other hand, for γ → 0, the range of airborne transmission is expected to be predominantly
short; large-magnitude displacements of VCAPs in homogeneous indoor air environments
are unlikely to take place.

Appendix A.2. Schematic Illustration of the Contaminated-Air-Sharing Scenario

Figure A1. Investigating contaminated-air-sharing scenarios. We consider the same setup as that
in Figure 1, but for V partitioned in two different ways. For simplicity, we assume that v = ξ3.
The susceptible occupants’ breathing zones are highlighted and outlined in light grey and blue,
respectively. On the left subfigure, we partitioned V into i = 1, 2, . . . , Ω = n4 subvolumes of size
v = V/Ω, so that vbr = v/4, implying that ξ > 3

√
vbr. The susceptible occupants’ breathing zones

were embedded within the subvolume indexed with i = 3. Because ξ > 3
√

vbr, the epidemiological
status of A and B may be influenced by any of the surrounding subvolumes i = 1, 2, 3, 4. In fact,
during τrel , a VCAP suspended within any of i = 1, 2, 3, 4 could reach A or B. Hence, it is likely that
A and B are sharing contaminated air; imagine a VCAP originating from any of i = 1, 2, 3, 4 being
displaced towards and inhaled by either A or B during τrel . On the right subfigure, we partitioned
V into i = 1, 2, . . . , Ω = n64 subvolumes of size v = V/Ω, so that vbr = 4v, implying that ξ < 3

√
vbr.

Those indexed with i = 33, 34, 41, 42 and i = 35, 36, 43, 44 were embedded within the breathing zone
of A and B, respectively. Because ξ < 3

√
vbr, the epidemiological status of A and B is unlikely to be

influenced by any other surrounding subvolumes except from i = 33, 34, 41, 42 and i = 35, 36, 43, 44,
respectively. Hence, A and B are also unlikely to share contaminated air, since VCAPs suspended in
any of i = 33, 34, 41, 42 and i = 35, 36, 43, 44 are unlikely to reach B and A, respectively, during τrel .

Appendix A.3. Discretisation of the Tsallis Entropic Functional

The following discretised version of (27) was used:

S [{pi}] = −1 − ∑i pq
i

1 − q
, pi =

si

∑i si
(A3)

with si := S(ti), ti=1,2,... ,W = t0 +
i−1

W−1 (t
′′ − t0), where pi ∝ (1 + t

μ )
−κ (17)

= 1 − P(t) is a
time-step-specific probability of escaping exposure (i.e., not inhaling any VCAPs) after
spending t hours in V. ∑W

i=1 pi = 1 with W being identified as the number of accessible
microstates. Accordingly, a subgroup of susceptible occupants of size smaller than S0 may
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be thought of as a subsystem visiting the i-th microstate with some probability pi. The
probabilistic independence of any pair of subsystems is guaranteed by model construction,
since probabilistically independent airborne transmissions are assumed throughout. For
q → 1, (A3) gives us the Boltzmann–Gibbs entropy, i.e.,

Sq→1[{pi}] = −
W

∑
i=1

piln(pi). (A4)
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Abstract: In this paper, we focus on evolution from an equilibrium state in a power law form by
means of q-exponentials to an arbitrary one. Introducing new q-Gibbsian equalities as the necessary
condition of self-organization in nonextensive open systems, we theoretically show how to derive the
connections between q-renormalized entropies (ΔS̃q) and q-relative entropies (KLq) in both Bregman
and Csiszar forms after we clearly explain the connection between renormalized entropy by Kliman-
tovich and relative entropy by Kullback-Leibler without using any predefined effective Hamiltonian.
This function, in our treatment, spontaneously comes directly from the calculations. We also explain
the difference between using ordinary and normalized q-expectations in mean energy calculations of
the states. To verify the results numerically, we use a toy model of complexity, namely the logistic
map defined as Xt+1 = 1 − aX2

t , where a ∈ [0, 2] is the map parameter. We measure the level of
self-organization using two distinct forms of the q-renormalized entropy through period doublings
and chaotic band mergings of the map as the number of periods/chaotic-bands increase/decrease.
We associate the behaviour of the q-renormalized entropies with the emergence/disappearance of
complex structures in the phase space as the control parameter of the map changes. Similar to
Shiner-Davison-Landsberg (SDL) complexity, we categorize the tendencies of the q-renormalized
entropies for the evaluation of the map for the whole control parameter space. Moreover, we show
that any evolution between two states possesses a unique q = q∗ value (not a range for q values)
for which the q-Gibbsian equalities hold and the values are the same for the Bregmann and Csiszar
forms. Interestingly, if the evolution is from a = 0 to a = ac � 1.4011, this unique q∗ value is found to
be q∗ � 0.2445, which is the same value of qsensitivity given in the literature.

Keywords: S-theorem; q-renormalized entropy; complexity measures; logistic map

1. Introduction

The main problem for researchers who are interested in entropy-based measures is
discerning which measure would be the most suitable one for the complex system under
consideration. The definition of ‘suitable’ implies the measure which represents a behaviour
that is compatible with the dynamics of the system among definitions of the measures in the
literature. For example, it has been expected that the measure is able to make a distinction
among possible phases of the system as the parameter set of the system slightly changes.
Despite the numerous definitions [1–8], the measures can be categorized into three types
(Figure 1), namely type-I, type-II and type-III that are similar to SDL complexity, formally
[5]. The first type considers measure as a monotonically increasing function of disorder. In
the second type, measure is a convex function of disorder. Hence, it is a minimum for both
completely order and completely disorder, and a maximum at a point between them. In
the last type, measure is a monotonically decreasing function of disorder. The crucial point
in this classification is that classic notion of entropy by Shannon [9] is associated with the
degree of disorder. It should be noted that the control parameter of the system can also

Entropy 2023, 25, 517. https://doi.org/10.3390/e25030517 https://www.mdpi.com/journal/entropy
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be used as the degree of disorder if the Shannon entropy S is a monotonically increasing
function of some system parameter, say a, as the system evolves in its parameter space
from a to a + Δa [10].
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Figure 1. An example of types of entropy based measures as a function of control parameter (adapted
from [5]).

Even if it seems that changing the parameter in space is not directly related to time, it
always takes time from one state to another for a real system since an evolution depends
on the change of conditions, i.e., of parameters, with time [11]. For the evolution of
dissipative dynamical systems which pave their way to successive stable branches, and
then to successive chaotic band mergings as the parameter set of the system slightly
changes, the classic notion of the entropy by Shannon, the relative entropy by Kullback-
Leibler and the renormalized entropy by Klimontovich are good examples for entropy-
based measures of type-I, type-II and type-III, respectively [10]. The Shannon entropy
monotonically increases from the first branch to the most chaotic state (type-I). The relative
entropy increases monotonically from the first branch up to the edge of chaos, and then
decreases monotonically up to the first chaotic band merge (type-II). The renormalized
entropy decreases monotonically from the first branch up to the edge of chaos (type-III),
and then increases monotonically up to the first chaotic band merge (type-I). In other words,
when the sequence of branches emerges, the relative order increases, i.e., the measure of
complexity, the renormalized entropy decreases [12].

The behaviour of the renormalized entropy indicates the relative degree of order
in the system as first suggested by Haken [13] in the context of self-organization. The
S-theorem that is a basis for the method of renormalized entropy was proved for the
transition from laminar to turbulent flow [14]. Such a kind transformation confirmed that
turbulent structures are more ordered, that implies highly organized, than laminar [15].
Moreover, Rayleigh–Benard convection [16,17], Taylor instability experiment [18], bacterial
[19] and Dictyostelium discoideum [20] colonies are some typical examples in which the
most ordered spatial patterns emerge in the phase spaces via changing conditions of the
systems, that indicates a high level of self-organization.

The Shannon entropy expression, setting kB = 1, reads

S = −∑
i

pi ln pi (1)

where pi are the probability of an event i of a sample set. Maximizing the Shannon entropy
of the system subject to suitable constraints (namely, mean energy and probability normal-
ization constraints), using Lagrange multipliers method, one can obtain the equilibrium
distribution as

peq
i =

e−βεi

Z
(2)

where β is the inverse temperature and Z = ∑i e−βεi is the partition function. For the
evolution to the equilibrium state from an arbitrary one (p → peq), the Shannon entropy
can be used to find the difference between the entropies ΔS(p→peq) = S(peq)− S(p) ≥ 0
that is known as the second law of thermodynamics. However, from both Boltzmann’s
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H-theorem and Gibbs theorem, it is well known that this inequality is only valid for an
isolated evolution between the states. Hence, it is violated for the evolution of open systems
that exchange of energy/matter with its surroundings is allowed. In other words, these
theorems state that ΔS(p→peq) equals relative entropy with a limitation that the mean energy
〈E〉 remains constant (i.e, 〈E〉peq

= 〈E〉p) [21]. Therefore, in a process of such an evolution
(from p to peq) as long as mean energy is the same, from these theorems, it follows that

ΔS = Seq − S = ∑
i

pi ln
pi

peq
i

= K(p||peq) ≥ 0 (3)

where peq and p are probability distributions corresponding to the equilibrium state and
arbitrary one, respectively. Equation (3) implies that the equilibrium state has the greatest
disorder (or chaoticity) as compared to the arbitrary state. The usual expression of the
relative entropy K(p||r) = ∑i pi ln pi

ri
gives the entropy produced by the change from the

state p to the state r. Whenever r = peq, it can be written in terms of free energy differences
of the states

K(p||peq) ∝ (F − Feq) (4)

where F = 〈E〉p − 1
β S and Feq = 〈E〉peq − 1

β Seq.
Due to the strong limitations on the second law, Klimontovich introduced his S-

theorem, where ‘S’ stands for ‘self-organization’, that makes it possible to analyze open
systems in terms of the Gibbs theorem [21]. According to the S-theorem, it is possible
to compare distinct states, which are the equilibrium and a non-equilibrium stationary
state, under dissipation of the energy that implies the evolution of an open system. To
compensate the dissipation, a new mean energy equality 〈E〉 p̃eq

= 〈E〉p similar to the Gibbs’
equality via a renormalization procedure peq → p̃eq is defined. After such a renormalization,
the renormalized entropy ΔS̃ is defined as (noticing that evolution is from p̃eq to p)

ΔS̃ = S − S̃eq = −∑
i

pi ln
pi

p̃eq
i

= −K(p|| p̃eq) ≤ 0 (5)

where p̃eq and p are the renormalized equilibrium and non-equilibrium stationary states, re-
spectively (all proofs regarding Equations (3)–(5) will be given in the next part of the paper).

In Section 2, we show that the definition of mean energy equality (and also
Equation (5)) in the concept of the renormalized entropy by Klimontovich is valid for an evo-
lution to/from the canonical equilibrium distribution of exponential form in
Equation (2). We also discuss the connections among the Shannon, the Kullback-Leibler
relative and the renormalized entropies within a thermodynamic perspective.

In Section 3, we theoretically show how to apply this procedure on a nonextensive
open system, whose generalized canonical probability distribution is of q-exponential form

ex
q = [1 + (1 − q)x]1/(1−q) . (6)

This distribution is the one that comes from the maximization of the Tsallis entropy
given by [22]

Sq =
1 − ∑i pi

q

1 − q
, (7)

and it recovers the Shannon entropy S = −∑i pi ln pi in the limit q → 1 as a special case. It
is well known that the maximization of the Tsallis entropy subject to the ordinary constraints
(∑i piεi = 〈E〉 and ∑i pi = 1) yields a canonical distribution in a q-exponential form,

pord
i =

e2−q
−β∗εi

Z(β∗)
, (8)
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where 1/Z(β∗) is a normalization constant [23]. On the other hand, normalized q-expectation
is employed instead of the ordinary constraints, (∑i[p

q
i εi/ ∑i pq

i ] = 〈E〉q and ∑i[p
q
i /∑i pq

i ] = 1),
the canonical probability distributions reads

p(nor)
i =

eq
−β̂(εi−〈E〉q)

Z(β̂)
(9)

where β̂ = β/Cq and Cq = ∑i (pnor
i )q [22]. Respectively, when the generalized version of

canonical distributions in Equations (8) and (9) put into two kinds of q-generalized relative
entropies, which are well known Bregman KB

q (p||pord) and Csiszar types KC
q (p||pnor), it

can be shown that the generalized relative entropies are associated with the q-generalized
version of free energy differences of the states [24]:

KB
q (p||pord) ∝ (Fq − Ford

q ) (10a)

KC
q (p||pnor) ∝ (Fq − Fnor

q ) (10b)

that are similar to the Equation (4). It can be also noted that there is one more version of
the formalism using unnormalized q-expectations in the constraints. However, it is shown
in [25] that all these versions are equivalent to each other.

In the following subsections, we explain the necessary condition (on the q-mean energy
equality) for self organization of open systems using the Bregman and Csiszar forms of
generalized relative entropies, respectively. Klimontovich himself as well as some recent
efforts on the generalization of the renormalized entropy [26,27] have invoked a predefined
‘effective Hamiltonian’ function to obtain the mean energy equality. We will theoretically
show here what kind of equalities would be necessary conditions for self organization of
nonextensive systems without using any predefined effective Hamiltonian function. The
results will come up as a direct consequence of our approach. Moreover, we derive relations
between q-renormalized entropy and the generalized relative entropies from the viewpoint
of information theoretic approaches in Section 2.

In Section 4, we use a paradigmatic toy model, the logistic map, in order to numerically
show the level of self-organization (or the degree of complexity from self-organisation) for
a system that paves its way to successive stable branches, and then to successive chaotic
band mergings as the parameter of the system slightly changes. We show the behaviour of
the q-relative entropies in both Bregmann and Csiszar forms as the suitable measure for
self-organisation, and define their types of complexity (type-I, -II or -III). Finally, we show
a unique q∗ values obtained through evolution of the states with the system parameter
and relate its value at the edge of chaos with the qsensitivity value obtained for the logistic
map [28,29].

2. Thermodynamic Perspective of the Renormalized Entropy and Connections

Let us consider an evolution from an equilibrium state p0 to an arbitrary one p as
the control parameter of the complex system slightly changes from a0 to a0 + Δa. Entropy
produced by the change of state (i.e., corresponding information gain) in such an evolution
can be given by the Kullback-Leibler relative entropy [30]

K(p||p0) = ∑
i

pi ln
pi
p0i

≥ 0 . (11)

Adding and subtracting ∑i p0i ln p0i to and from right-hand side of Equation (11), this
can be rewritten as

K(p||p0) = −ΔS(p0→p) − ∑
i
(pi − p0i) ln p0i (12)
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where ΔS(p0→p) = ∑i p0i ln p0i − ∑i pi ln pi.
Substituting p0i = peq

i , the canonical equilibrium distribution of exponential form in
Equation (2), into the logarithmic function ln p0i in Equation (12), it can be immediately
shown that

K(p||peq) = −ΔS(peq→p) + βΔ〈E〉(peq→p) (13)

where Δ〈E〉(peq→p) = 〈E〉p − 〈E〉peq
is the difference between the mean energies through

the evolution from the state peq to the state p. Comparing Equations (12) and (13), it
follows that

Δ〈E〉(peq→p) = − 1
β ∑

i
(pi − peq

i ) ln peq
i . (14)

One can notice that Equations (12)–(14) lead three important connections regarding
the proofs of Equations (3)–(5):

(i) Equation (3), the second law of thermodynamics ΔS(p→peq) ≥ 0, can be derived
from Equation (13) noticing that ΔS(p→peq) = −ΔS(peq→p) and K(p||peq) ≥ 0.
This derivation requires the limitation that the Gibbs equality holds, i.e., ∑i(pi −
peq

i ) ln peq
i ∝ Δ〈E〉 = 0, which implies the evolution is isolated, i.e., the mean

energy is the same through the evolution.
(ii) Equation (4) can easily obtain from Equation (13) using the definition of the free

energy given as F = 〈E〉r − 1
β S for any state (r). It means that Kullback-Leibler

relative entropy is associated with the free energy difference of the states in such
an evolution.

(iii) Equation (5), the result of the S-theorem by Klimontovich, can be shown from
Equation (13) by a transformation peq → p̃eq ensuring the renormalization of the
state so that it compensates the mean energy difference between the states corre-
sponding to the renormalized equilibrium and non-equilibrium stationary states,
i.e Δ〈E〉( p̃eq→p) = 0. The compensation requires the Gibbs equality defined as

∑
i

pi ln peq
i = ∑

i
p̃eq

i ln peq
i . (15)

Such a renormalization enables us to use the Gibbs theorem for an open system with
energy flux. To compare the states in terms of the renormalized ΔS̃ and Kullback-Leibler
relative entropies K, the connection can be written as

ΔS̃ = −K(p|| p̃eq) ≤ 0 (16)

by means of Equations (12) and (15).
It should be noted that our assumption reveals with Equations (12)–(14) why a quantity

called the effective Hamiltonian, He f f = − ln p0i, for the reference equilibrium state was
preferred by Klimontovich. In our assumption, choosing the reference state as p0 = peq

yields Δ〈E〉(peq→p) in Equation (13), spontaneously. The details and applications on both
synthetical and real data of the renormalized entropy by Klimontovich can be found in
references [10,12,21,31] and [32–35], respectively.

3. Derivation of the q-Renormalized Entropy and Connections

Similar to the connection in Equation (4) between Kullback-Leibler relative entropy
and free energy differences, there are two types of q-generalized relative entropies whose
connections to q-free energy differences exists [36]. Respectively, they are called Bregmann
form given by

KB
q (p||p0) =

1
q − 1 ∑

i
pi

(
pi

q−1 − p0i
q−1

)
−

∑
i
(pi − p0i)p0i

q−1
(17)
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and Csiszar form defined as

KC
q (p||p0) =

1
q − 1 ∑

i
pi

[(
pi
p0i

)q−1
− 1

]
. (18)

Noticing the dependence of the generalized relative entropies on the constraints
from Equation (10), we derive the q-renormalized entropies for the evolution from a
stationary state in the functional forms of the inverse power law (i.e., q-exponentials in
Equations (8) and (9)) within a thermodynamic perspective similar to the Section 2. The
crucial point of such an approach is that a predefined effective hamiltonian function is not
necessary. Moreover, we show the necessary conditions of self organization in nonextensive
open system using a q-Gibbsian equality in the following subsections.

3.1. Derivation and Connection I: q-Renormalized Entropy and Bregman Form of Relative Entropy

Firstly, we reorganize the Bregman form of the generalized relative entropy in
Equation (17) as

KB
q (p||p0) =∑

i
p0i ln2−q p0i + ∑

i
pi ln2−q pi −

q ∑
i
(pi − p0i) ln2−q p0i

(19)

where the identical relation of (2 − q)-deformed logarithm, ln2−q x = (xq−1 − 1)/(q − 1),
has been used. It should be noted that the same relation leads to the q-logarithmic form of
the Tsallis entropy in Equation (7), that is given by

Sq = −∑
i

pi ln2−q pi . (20)

Putting this form in Equation (19), we have a similar expression to Equation (12),
which reads

KB
q (p||p0) = −ΔSq

(p0→p) − q ∑
i
(pi − p0i) ln2−q p0i (21)

where ΔSq
(p0→p) = Sq(p)− Sq(p0) is the change in the Tsallis entropies through an evolu-

tion from the state p0 to p.
Substituting p0i = pord

i , the stationary distribution of the (2 − q)-exponential form
in Equation (8), into the (2 − q)-logarithmic function ln2−q p0i in Equation (21), we can
immediately write

KB
q (p||pord) = −ΔSq

(pord→p) + β
′
∑

i
(pi − pord

i )εi (22)

where β
′
= qβ∗

Zq−1 . From the transformation pord
i → p̃ord

i on the reference state, one can
easily obtain

KB
q (p|| p̃ord) = −ΔSq

( p̃ord→p) + β
′
Δ〈E〉(pord→p) (23)

where Δ〈E〉(pord→p) = 〈E〉p − 〈E〉pord

q is the mean energy difference and p̃ord
i = (pord

i )q/

∑i(pord
i )q is the distribution chosen so that it enables us to vanish the second terms in the

right hand side of Equations (22) and (23) at a unique value of q = q∗, namely,

KB
q∗(p|| p̃ord) = −ΔSq∗

( p̃ord→p) (24)

It should be noted here that the transformation enables us to equate the mean energies,

i.e., 〈E〉q∗
pord

= 〈E〉p, at a unique value of q taking the normalized q-average instead of
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the ordinary average in the calculation of the mean energy of the reference state. In other
words, it re-normalizes the mean energy of the reference state.

Comparing Equations (21)–(24), it can be easily shown that the compensation requires
a q-Gibbsian equality given by

∑
i

pi ln2−q∗ pord
i = ∑

i
p̃ord

i ln2−q∗ pord
i (25)

where the unique q∗ can be found numerically.
One can easily show that Bregman form of the generalized relative entropy in

Equation (22) is associated with the q-generalized version of free energy differences as
can be given in Equation (10a) where Fq = < E >p − Sq/β

′
and Ford

q = < E >pord − Sq/β
′
.

Moreover, as can be seen in Equation (24), there is a one-to-one correspondence between
the generalized relative entropy and the q-renormalized entropy due to the compensation
of the mean energy differences.

It is also worth noting that q-renormalized entropy is not a generalization of the usual
renormalized entropy by Klimontovich. Although the generalized relative entropy in
Equation (17) recovers the relative entropy by Kullback-Leibler in the limit q → 1, the
Gibbsian equality in Equation (25) is ensured at q∗ = 1 only if the transition from pord

to p belongs a cyclic process or the states possess the same degree of complexity. At
q = q∗ �= 1, the value of q holds the Gibbsian equality as the necessary condition of
self organization for the transition between distinct states and leads the connection in
Equation (24). Therefore, the parameter q∗, which is the unique value of q, measures the
relative degree of order/disorder between the states. We confirm it using the toy model in
Section 4.

3.2. Derivation and Connection II: q-Renormalized Entropy and Csiszar Type of Relative Entropy

Substituting p0i = pnor
i , the stationary distribution of the q-exponential form in Equation (9),

into Equation (18) and using the identical relation Z1−q = Cq where Cq = ∑i (pnor
i )q, the Csiszar

form of the generalized relative entropy can be written as

KC
q (p||pnor) =− ΔSq

(pnor→p)

+ β̂Dq ∑
i

pq

Dq

(
εi − 〈E〉pnor

q

) (26)

where Dq = ∑i pq
i . Using the q-deformed logarithm form, lnq x, instead of the second term

in the right hand side of Equation (26), it follows that

KC
q (p||pnor) =− ΔSq

(pnor→p)

− CqDq ∑
i

(
pq

Dq
− (pnor

i )q

Cq

)
lnq (pnor

i )
(27)

By the transformation pi → p̃i on the other state, Equation (26) yields

KC
q∗( p̃||pnor) = −ΔSq∗

(pnor→ p̃) (28)

where p̃i = p1/q
i / ∑i p1/q

i is the distribution chosen so that it enables us to vanish the
second terms in the right hand side of Equations (26) and (27) at a unique value of q = q∗,
satisfying 〈E〉q∗

pnor
= 〈E〉p.

Comparing Equations (26) and (27), it can be easily shown that the compensation of
mean energy difference requires a Gibbsian equality given by

∑
i

pi lnq∗ pnor
i = ∑

i

(pnor
i )q∗

Cq
lnq∗ pnor

i (29)
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where the unique q∗ can be found numerically.
At this point, it should be emphasized that the Gibbsian equalities in Equations (25) and (29)

both lead the same mean energy equality, that is 〈E〉q∗
p0 = 〈E〉p, if one applies a trans-

formation on the reference state for the Bregman form of the generalized relative entropy
taking p0 = pord and on the other state for the Csiszar form of the generalized relative
entropy taking p0 = pnor.

4. Application: Logistic Map

To identify behaviour of the q-renormalized entropies for an evolution in the control
parameter space and to illustrate the consistency of Bregman and Csiszar forms of the
relative entropies within the context of the self-organization, we apply these procedures
on the logistic map. In addition to its ‘very simple expression’ as a toy model, the logistic
map has ‘highly complicated’ dynamics in the phase space [37]. Moreover, it is very conve-
nient to search whether there exist a connection between self-organization and bifurcation
processes as the system parameter slightly changes.

The expression of the logistic map reads

f (Xt) = Xt+1 = 1 − aX2
t (30)

where Xt ∈ [−1, 1] is a sufficiently long phase space trajectory, t is iteration step (t = 1, 2, . . . , N)
and a ∈ [0, 2] is the control parameter of the map.

For the evolution of the map from a0 to a0 + Δa, one can easily generate the trajectories
{Xt(a0)} and {Xt(a0 + Δa)}. Respectively, the corresponding probability distributions
estimated from the trajectories are p0 = p0(X, a0) for the reference state and p1 = p1(X, a0 +
Δa) for the other state where ∑ p0 = ∑ p1 = 1.

For the estimation of the distributions, we use the dependence of spectral intensi-
ties on the frequency w. In other words, we use the Fourier transformation p(w, a) =
F(w, a) · F∗(w, a) of the trajectory {Xt(a)} instead of residence time distribution. Technically,
we generate trajectories of the map in Equation (30) with the length of 65,536 points after
4096 points are discarded as transients. The spectrum is then averaged over 16 periodograms
with a length of 4096 points. The details of the estimation procedure can be found in a recent
paper [10].

It is well known that the bifurcation diagram of the logistic map represents a very
rich dynamics where transitions with period-doubling route to chaos arise as the control
parameter changes in the range of a ∈ [0, 2] as can be seen in Figure 2. The map has a
critical point at a = ac = 1.401155 . . . which can be approached from the most ordered state
where the value of the control parameter is a = 0. From a = 0 (where period-1 occurs) to
a = ac (where 2∞ periods accumulate), the map shows a period-doubling procedure of 2n

periods. One can also approach the critical point from the most chaotic state (where the
value of the control parameter is a = 2), via a band splitting procedure where 2∞ bands
split at the critical point. In other words, the map is in a periodic region from a = 0 up
to a = ac with a period doubling procedure as it is in a chaotic region from a = 2 up to
a = ac with a band splitting procedure. It is also possible to see narrow periodic windows
in the chaotic region that possess similar structures to those of the map in the whole range
of the control parameter, i.e., a ∈ [0, 2]. Moreover, the Lyapunov exponent of the map can
be calculated using

λ = lim
N→∞

1
N

N−1

∑
t=0

log| f ′(Xt)| , (31)

by substituting the first derivative of the map function in the Equation (31) and is used to
make a distinction between periodic regions (λ < 0) and chaotic ones (λ > 0) [38].

To compare the reference state of the map with all other states within q-renormalized
entropies, we choose the reference state p0 at a = a0 = 0 and all other states in the region
of a ∈ [0, 2], i.e., p0 = p(w, a0 = 0) and p1 = p(w, a0 + Δa) with a parameter increase step
Δa = 0.01. To calculate the entropies, we firstly numerically define the unique q∗ values that
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hold the Gibsian equalities in Equations (25) and (29). We then obtain the q-renormalized
entropies ΔS( p̃0→p)

q∗ and ΔS(p0→ p̃)
q∗ that are associated with q-relative entropies KB

q∗(p|| p̃0)

and KC
q∗( p̃||p0), respectively.

In Figure 3, from top to bottom, we plot the bifurcation diagram, the Lyapunov
exponent, the q-renormalized entropy in Bregman and Csiszar forms and evolution of the
q∗ values in the control parameter space. We denote some points just above the bifurcation
diagram as can be seen as a0, a1, a2, . . . , ã2, ã1, ã0 to divide the map in distinct regions as
analogous to the periodic and chaotic band regions in Figure 2. There are 2n−1 number
of periods and chaotic bands between the regions a ∈ [an−1, an] and a ∈ [ãn−1, ãn] where
n = 1, 2, 3, . . . , ∞, respectively. As the control parameter evolves from a0 = 0 to ã0 = 2,
the periodic trajectories bifurcate at the critical point an, where the first bifurcation point
is a1, up to the chaos threshold ac, where infinite number of periods exists. As a reverse
process, an infinite number of chaotic bands which exist at the chaos threshold ac start to
merge through the critical points ãn up to the ã1 where the last chaotic band merging exists.
The Lyapunov exponent vanishes at all critical points from a1 to ã1 as it has a negative
value in the range of a ∈ [a0, ac) and has a positive value in the range of a ∈ (ac, ã0]. It
can also be seen that the q-renormalized entropy in both Bregman and Csiszar forms point
out the same relative degree of order/disorder in the range of period–1 which implies
a low level of self-organization/complexity. When the sequence of branches emerges at
a1, the relative order, i.e., the level of self-organization/complexity, increases and the q-
renormalized entropies decrease through successive bifurcations up to the chaos threshold
point ac. Such behaviour of q-renormalized entropy in the control parameter space of
a ∈ [a1, ac] is compatible with that of the entropy-based measures of type-III in Figure 1.
In the range of chaotic band merging area of a ∈ (ac, ã1] as a reverse process, increase in
q-renormalized entropies corresponds to the entropy-based measures of type-I in Figure 1.
It means that the relative order, i.e., the level of self-organization/complexity, decreases
through the band merging area. It should be noted that the q-renormalized relative entropy
in Csiszar form evaluates that the level of order in the range of period–1 of a ∈ [a0, a1] has
the same degree of complexity with the level of disorder in the range of chaotic band–1
of a ∈ (ã1, ã0]. However, the degree of order/disorder in the range of chaotic band–1 of
a ∈ (ã1, ã0] decreases/increases except for a very thin periodic window, which is similar
to the behaviour of the Lyapunov exponent in the same range of the control parameter.
Moreover, q-renormalized entropy in Bregman form is more accurate for localization of the
chaos threshold such that it corresponds to a local minimum between a ∈ (a1, ã1] where
ac = 1.4011 . . . .

The equalities between the q-generalized relative entropies and the q-renormalized
entropies in Equations (24) and (28) guarantee that the evolution of the q-generalized
relative entropies as complexity measures in the range of period doublings and chaotic
band mergings of a ∈ [a1, ã1] at a unique q = q∗ value conforms with the behaviour of the
entropy-based measure of type-II in Figure 1. Such behaviour of the complexity function
is similar to the behaviour of complexity in coffee automaton (or to experiment of coffee
with milk). It was discussed by defining a “complextropy” measure that first increases and
then decreases in closed thermodynamic systems, in contrast to usual Shannon entropy
(which increases monotonically) [39]. Similar to the model, in the range of a1 < ac < ã1,
the q∗-generalized relative entropy represents the most organized spatial pattern at the
chaos threshold where a = ac due to the relations roughly Kq∗ = −ΔS̃q∗ where ΔS̃q∗ is
the general definition of the q-renormalized entropy. q-relative entropy is an evaluation
of the change in entropy relative to a reference state chosen. For the transition between
the reference equilibrium state and the other arbitrary state, one can numerically localize
the unique q∗ value as the one for which the Gibbsian equalities hold. We show in the
bottom of Figure 3 that the q∗ values are the same for both Bregman and Csiszar forms of
the q-renormalized entropies for an evolution in the control parameter space of the logistic
map, satisfying the Gibbsian equalities as the necessary condition of self organization. In
other words, renormalization enables us to equate mean energies of the states at a unique q∗
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value in a manner that the evolution of the reference state is isolated after renormalization.
For the evolution of the q∗ values in the range of the control parameter a ∈ [0, 2], the
q∗ values decrease from q∗ = 1 to q∗ = 0 where the maximum value indicates the most
ordered state (period-1) and the minimum value points out the most disordered (strongly
chaotic) state. The process offers a method by means of q-renormalized entropies on how
to measure the level of self organization in spatially-extended fractals. On the other hand,
the Shannon entropy leads to an increase since it is proportional to the logarithm of the
accessible volume in phase space, however a decrease in entropy is necessary to link a
connection to the self-organization.

In Figure 4, we zoom to the chaos threshold in order to localize unique q∗ value at
the critical point. It is intriguing that this unique q∗ value happens to coincide with the
qsensitivity value [28,29] (i.e., q∗ � 0.2445). At this point, it is worth noting that this kind of
varying q parameter tendency with the control parameter of the map is very reminiscent
to the behaviour of the running q parameter with the energy scale detected in recent
cosmological studies [40,41].
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Figure 2. A representation of the pitchfork bifurcations in periodic regime (black) and the band
merging structures in chaotic regime (blue, green and red) of the logistic map. The black dashed lines
represent the bifurcation points (an) and the band merging points (ãn).
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5. Conclusions

It is well known that the second law of thermodynamic (ΔS ≥ 0) is only valid for
an isolated evolution of an arbitrary state to an equilibrium state. This inequality can be
derived by substituting Gibbs equality in the definition of Kullback-Leibler relative entropy,
which implies that the equilibrium state shows the greatest disorder (or chaoticity) as
compared to any arbitrary state as long as the mean energy is the same. The mean energy
equality through the evolution is a consequence of Gibbs equality, that points out a strong
limitation of the law. Hence, it is violated for the evolution of open systems in which the
exchange of energy/matter with its surroundings is allowed. The problem was solved by
Klimantovich via the S-theorem where ’S’ stands for criterion of self-organization. The
theorem is based on renormalization of the equilibrium distribution in a manner that Gibbs
equality holds. Mean energy in terms of a predefined effective Hamiltonian function for an
open system is constant through the evolution after renormalization. The renormalization
on the distribution leads a renormalized entropy as a new complexity measure to compare
distinct states, i.e., a renormalized equilibrium state and an arbitrary one. For an isolated
evolution from the renormalized equilibrium state to an arbitrary one, a decrease in the
renormalized entropy indicates an increase in the relative degree of order in the system
that indicates the creation of complicated structures in the phase space as first suggested
by Haken in the context of self-organization [13]. Although the renormalized entropy is a
suitable measure to explain highly organised structures that emerge in phase space, we
have shown that its expression (ΔS̃ = −KL ≤ 0) is valid for the systems which evaluate
from canonical equilibrium state. Moreover, choosing a reference state in exponential form
spontaneously reveals the predefined effective Hamiltonian function (He f f = ln p0) by
Klimontovich directly from the calculations. We have also shown that such kind of relation
between q-renormalized entropy and q-generalized relative entropies (in the form of both
Bregmann and Csiszar) can be written by introducing new q-Gibbsian equalities as the
necessary conditions of self-organisation. The crucial point for the new equalities is that
they are only valid for a unique q = q∗ value for the transition between two states and
lead to the same mean energy equality that is 〈E〉q∗

p0 = 〈E〉p. To achieve this result, it is
necessary to apply a transformation on the reference state for the Bregman form of the
generalized relative entropy taking p0 = pord and on the other state for the Csiszar form
of the generalized relative entropy taking p0 = pnor as the stationary distributions of the
(2 − q)-exponential and q-exponential forms, respectively. To verify the results numerically,
we have used the control parameter evolution of the logistic map. As the control parameter
changes in a ∈ [0, 2], we have shown a fall in the q-renormalized entropies through period
doublings in the range of a ∈ [0, ac] and an increase in the q-renormalized entropies
through chaotic band mergings in the range of a ∈ [ac, 2]. Such kind of behaviour of
the q-renormalized entropy is compatible with the SDL complexity of type-III and type-I
as the signs of emerging and destroying highly organized structures in the phase space,
respectively [5]. We have also looked closely at the chaos threshold of the map, and
interestingly we discovered that the unique q∗ value is q∗ � 0.2445, which coincides with
the value of qsensitivity given in the literature [28,29].

Finally, it would be good to note that these considerations could be applied to some
specific class of nonextensive systems, such as black holes and other gravitational systems.
An interesting future work addressing a possible discussion of our scheme for such systems
would be highly welcomed.
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Abstract: Non-additive (or non-extensive) entropies have long been intensively studied and used in
various fields of scientific research. This was due to the desire to describe the commonly observed
quasi-power rather than the exponential nature of various distributions of the variables of interest
when considered in the full available space of their variability. In this work we will concentrate on
the example of high energy multiparticle production processes and will limit ourselves to only one
form of non-extensive entropy, namely the Tsallis entropy. We will discuss some points not yet fully
clarified and present some non-obvious consequences of non-extensiveness of entropy when applied
to production processes.

Keywords: non-additive entropy; Tsallis distribution; multiparticle production processes

1. Introduction

Entropy plays an important role in the study of the production mechanism of ele-
mentary particles observed in hadronic and nuclear collisions. This is the case both in
the modelling of these processes based on thermodynamics (that is, on the description of
distributions of all kinds of observables characterizing multiparticle production processes)
and in their description in the language of statistical models (i.e., mainly on the description
of their multiplicity distributions).

Over time, more and more new experimental results appeared, which began clearly to
indicate that the originally used Boltzmann entropy (in the first case) or Shannon entropy
(treated as a measure of information in the second), did not describe the results in the entire
range of measured values. Experimentally observed distributions depart from the expected
exponential form (in the first case) and from the Poissonian distribution (in the second) [1,2].
This was generally taken as an indication that different mechanisms operate, resulting in
the occurrence of various types of correlations and fluctuations, and these do not fit into
the scheme of equilibrium thermodynamics or the Shannon information measure [3]. This
meant that it was necessary either to add appropriate conditions to the definition of the
Boltzmann-Shannon entropy used, or to extend the very concept of entropy so that in its
new form it could be applied to more complex systems without any additional conditions
(their operation would be replaced by a new form of the entropy formula and by some new
parameters appearing in it).

A multitude of new definitions of entropy and related measures of information have
appeared in various fields of science (see, for example, [3–7] and references cited therein).
In most cases, their distinguishing feature is their non-extensiveness. Here we will consider
only the case of Tsallis entropy [5] Sq, which for q = 1 becomes Boltzmann-Shannon entropy,
S = Sq=1:

Entropy 2023, 25, 474. https://doi.org/10.3390/e25030474 https://www.mdpi.com/journal/entropy
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Sq = −
∫

dx f (x) lnq f (x) = − 1
1 − q

∫
dx f (x)

[
1 − f q−1(x)

]
q→1
=⇒ S = −

∫
dx f (x) ln f (x), (1)

which is currently the most widely-used to describe the particle production processes
mentioned above (in fact, Tsallis entropy was introduced independently before and then
rediscovered by Tsallis in thermodynamics [8,9]. It should be mentioned that from the
point of view of information theory, the entropies S = Sq=1 and Sq are related to a different,
specific way of collecting information about the object of interest [10]. This observation has
recently been used in cognitive science [11]). The reason for this is the quasi-power nature
of the Tsallis distribution fq(x) that is obtained from it,

fq(x) = expq(−x) = (2 − q)[1 − (1 − q)x]
1

1−q
q→1
=⇒ f (x) = exp(−x), (2)

and, as it was shown a long time ago in [12–14], it is this type of distribution that is most
suitable for describing the distributions of various variables in the full observable range
of their variability. In fact, there are a variety of systems that do not comply with the
standard equilibrium theory and that fit under the description of non-extensive entropy,
thus suggesting that the entropic index q could be a convenient manner for quantifying
some relevant aspects of complexity [5].

The Tsallis distribution is obtained by maximizing the Tsallis entropy using some
constraints imposed on the distribution function sought. It turns out that in the com-
monly used version this procedure leads to a rather surprising result, namely that the
non-extensiveness parameter q appearing in the definition of entropy is, in a sense, dual to
the non-extensiveness parameter q′ obtained from the description of the observed distri-
butions. As we show in (Section 2), this result is confirmed by the simultaneous analysis
of multiparticle production processes in nucleon and nuclear collisions. In (Section 3) we
show how by properly redefining the functions expq(x) and lnq(y) this problem of duality
can be avoided.

Tsallis entropy Sq is nonadditive, namely

Sq(AB) = Sq(A) + Sq(B) + (1 − q)Sq(A)Sq(B), (3)

where A and B are two systems independent in the sense that f (AB) = f (A) f (B) and the
parameter q is simply a measure of the degree of this non-additivity (note that we tacitly
assume here and in all subsequent considerations that q is the same in both systems). If,
hypothetically, we extended this reasoning to the system of ν independent components
(again, with the same q), A1, A2, . . . , Aν such that f (∏ν

i=1 Ai) = ∏ν
i=1 f (Ai), then we would

have some kind of non-linear non-additivity (in parameter q), because now

Sq

(
ν

∏
i=1

Ai

)
=

ν

∑
i=1

(
ν

i

)
(1 − q)(i−1)

i

∏
j=1

Sq
(

Aj
)
. (4)

To better understand the role of the parameter q, let us additionally consider the
non-additive versions of conditional probability and conditional entropy. Let us say that
the considered system can be divided into two subsystems, A and B, and that pij(A, B) is
the joint normalized probability of finding A in state i and B in state j. Then the conditional
probability B with A being in the i − th state, pij(B|A), is given by Bayes’ multiplication law,

pij(A, B) = pi(A)pij(B|A), (5)
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and the corresponding conditional Shannon entropy is

S(A, B) = S(A) + S(B|A). (6)

By analogy to Equation (3) we can now write the corresponding conditional non-additive
Tsallis entropy as

Sq(A, B) = Sq(A) + Sq(B|A) (7)

where
Sq(B|A) = Sq(B)[1 + (1 − q)Sq(A)] (8)

(note that because Sq(B|A) ≤ Sq(B) one must have q ≥ 1). This allows us to interpret the
nonextensivity parameter q in terms of the conditional entropy as

q = 1 +
Sq(B)− Sq(B|A)

Sq(B)Sq(A)
, (9)

and turns out to be crucial for nonadditive (quantum) information theory [15].
In practical applications, the non-extensiveness of the entropy manifests itself in the

quasi-power character of the distributions obtained from it, i.e., in the case considered
here in the appearance of the non-extensiveness parameter q in the Tsallis distribution.
However, there is a problem here that we discuss in Sections 2 and 3, namely that for a
certain type of constraints, the parameters q in the definition of entropy and q′ in the Tsallis
distribution are not identical but dual to each other, i.e., q + q′ = 2. Usually, the meaning of
the non-extensiveness parameter is related to Tsallis distributions rather than to entropy
as above. These, in turn, can be obtained in many ways, depending on the details of the
described physical process and even from the Shannon entropy, if only the appropriate
constraints are applied. We discuss this issue in more detail in Section 4. Section 5 contains
our summary and conclusions.

2. From Tsalis Entropy to Tsalis Distribution

The Tsallis distribution (2) (valid for 0 ≤ x < ∞; 1 ≤ q ≤ 3/2) is obtained by
maximizing the Tsallis entropy (1) using the following constraints [16]:∫

dx f (x) = 1;
∫

dxx f q(x) = 〈x〉q. (10)

In most cases, it is this form of distribution that is used phenomenologically to describe the
various distributions measured in high-energy multiple particle production experiments
(with x = X/T and the scaling factor T is usually identified with the temperature and
X denotes the energy or momentum of the measured particles; it also appears in the
normalization as 1/T). As shown in Figure 1, using this form of Tsallis distribution one
obtains from measurements of different observables (rapidity, multiplicity and transverse
momentum) and for high enough energies q′ > 1 (for low energies, conservation laws are
important and they can sometimes push the parameter q′ to the q′ < 1 region). In addition,
note that the values of q obtained from different observables are different (but always
q′ > 1). These differences are due to the influence of two factors. The first is whether
q′ is estimated from the temperature fluctuations obtained from data already averaged
over other fluctuations or from data taking other fluctuations into account as well, and the
second is that in different analyzes q′ is obtained in other regions of the phase space.
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Figure 1. (Color online) Energy
√

s dependencies of the parameters q obtained from different
observables. Squares: q obtained from multiplicity distributions f (N) [17,18] (fitted by q = 0.88 +

0.063 ln[
√
(s)]). Circles: q obtained from different analyses of the transverse momenta distribution

f (pT). Data points are, respectively, from a compilation of p + p data (full symbols) [19], from CMS
data (half filled circles at high energies) [20,21] (fitted by q = 0.95 + 0.021 ln[

√
(s)]. Triangles: q

obtained from analyses of rapidity distributions f (y) [22,23] (and fitted by q = 0.92 + 0.071 ln[
√
(s)].

However, this is not the only possible choice of constraints. Instead, using constraints
in the form which seems to be more natural from the point of view of physical interpretation,
namely that ∫

dx f (x) = 1;
∫

dxx f (x) = 〈x〉 (11)

obtain [16]

f (x) = q′
[
1 − (1 − q′)x

] 1
q′−1 ; 0 ≤ x < 1/(1 − q′); 1/2 < q′ ≤ 1. (12)

These two different definitions pertain to two different schemes of the nonextensive sta-
tistical mechanics [24]. It should be noted that [25] proposes a parametric technique that
shows the equivalence of different schemes (including those discussed here), and [26] once
again shows the relationship of both averaging schemes (i.e., Equations (10) and (11)) with
duality q ↔ 1/q. Now note that for

q′ = 2 − q, (13)

distribution f (x) from Equation (12) becomes f (x) from Equation (2) (note that in addition
to the additive duality represented by Equation (13), multiplicative duality, q ↔ 1/q, was
also considered [27,28] shows the potential physical application of a combination of both
types of duality to study cosmic ray physics). This means that the imposition of these
constraints leads to a situation in which the non-extensiveness parameter q appearing in the
definition of entropy is dual to the non-extensiveness parameter q′ obtained from describing
the observed distributions. The problem of this duality has been raised many times (for
example in [29–31]), but it does not seem to have been put to the experimental test yet,
at least not in the field of multiparticle production. It turns out, however, that experiments
measuring the multiplicities and distributions of particles produced in nuclear (AA) and
nucleon (nn) collisions are very useful for this purpose, because they simultaneously
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measure the multiplicities (enabling the estimation of the entropy produced) and particle
distributions, and thus allow for the simultaneous determination and comparison of the
non-extensiveness of the above mentioned relevant parameters and to verify the hypothesis
of their duality.

Nuclear collisions are usually described by increasingly complex statistical models that
try to account for all possible collective effects [32–34]. Because, however, for our purposes,
the mutual relation between the entropies of AA and nn collisions will be important,
to estimate the entropy in the nuclear collision, it will therefore be more convenient to use
the phenomenological description based on the assumption that it can be described by a
certain superposition of collisions of single nucleons (taking into account only nucleons
that collided at least once and assuming that their collisions are independent—these are the
so-called “wounded nucleons”) [35]. (The reason for this choice may be the fact that, despite
its apparent simplicity, this model is still able to describe a surprisingly large number of
experimental results [36,37]).

In this approach, the total observed multiplicity N is the sum of the multiplicities
ni=1,...,ν of particles emitted from ν individual sources, and the average total multiplicity
〈N〉 is the product of the average number of sources, 〈ν〉, and the average multiplicity from
the source, 〈ni〉, (which here is assumed to be the same for each source):

N =
ν

∑
i=1

ni, and 〈N〉 = 〈ν〉〈ni〉. (14)

The identity of the sources assumed here means that their entropies are equal, so using the
relationship (4) the entropy ν of such sources is

S(ν)
q =

ν

∑
k=1

(
ν

k

)
(1 − q)(k−1)

[
S(1)

q

]k
=

[
1 + (1 − q)S(1)

q

]ν
− 1

1 − q
. (15)

In further considerations, ν will denote the number NP of nucleons of the incident nucleus
participating in the collision (i.e., participants), and ν = NW/2, where NW is the number of
wounded nucleons. Continuing in the same vein and assuming that the total entropy is
proportional to the average multiplicity of particles produced in the collision,

S = α〈N〉, (16)

we can relate the average multiplicities in nuclear (AA) and nucleon (NN) collisions,
namely

α〈N〉AA =

[
1 + (1 − q)α〈N〉pp

]NP − 1
1 − q

. (17)

This simple dependence already allows for some preliminary assessment of the q parameter.
It turns out that the observed NAA grows non-linearly with NP, 〈N〉AA > NP〈N〉pp [38].
Considering this observation from the point of view of entropy, it is clear that we must
have q < 1 here.

However, this is only a very rough estimate, because, strictly speaking, formula (17) is
not fully correct with respect to the Sq entropy. We will therefore return to Equation (15)
denoting now the entropy for the whole particle production process by s and the corre-
sponding non-extensiveness parameter by q̃, and their equivalents for nucleon collisions
by S and q, respectively. The relation (15) for N particles now looks like this:

s(N)
q̃ =

[
1 + (1 − q̃)s(1)q̃

]N
− 1

1 − q̃
q̃→1−→ N · s(1)q̃ = αN (18)
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where s(1)q̃ = α is the entropy for a single particle. In the A + A collision with ν nucleons
participating Equation (15) results in

S(ν)
q =

[
1 + (1 − q)S(1)

q

]ν
− 1

1 − q
(19)

where S(1)
q is the entropy for a single nucleon. Denoting multiplicity in single N + N

collisions by n, one can write that the respective entropy is

S(1)
q = S(1)

q̃ =

[
1 + (1 − q̃)s(1)q̃

]n
− 1

1 − q̃
, (20)

whereas the entropy in A + A collisions for N produced particles is

S(N)
q̃ =

[
1 + (1 − q̃)s(1)q̃

]N
− 1

1 − q̃
. (21)

This means therefore that
S(N)

q̃ = S(ν)
q . (22)

Parameters q and q̃ are usually not the same. However, from analyzes in [38,39]
one obtains that for NN collisions (where NP = 1) q̃ = 1. On the other hand, for q̃ = q
Equation (22) corresponds to the situation encountered in superpositions as now one obtains[

1 + (1 − q)s(1)q

]N
=

[
1 + (1 − q)s(1)q

]nν
or N = nν. (23)

In the general case, we obtain the formula for the ratio N/(ν · n))

N
ν · n

=
1

νn · ln c1
ln

[(
c2cn

1 + 1 − c2
)ν − (1 − c2)

c2

]
, (24)

where
c1 = 1 + (1 − q̃)s(1)q̃ ; c2 =

1 − q
1 − q̃

, (25)

which for N = 〈NAA〉 >, n = 〈Npp〉 and ν = NP is presented in Figure 2 for different
reactions (see [40] for more details). Note that for energies

√
s > 7 GeV one has c1 > 1. This

means that q̃ < 1 and (because c2 > 0) also q < 1, confirming therefore previous estimates
based on Equation (17).

This, however, is as much as can be said for sure, because while the distributions can
give exact values of the parameter q′, the same cannot be said about q except that q < 1 (at
least in a certain energy range). We still have too many free parameters here, e.g., unknown
a priori entropy s(1)q . Therefore, while the statement that mostly we have q′ > 1 and q < 1
seems certain, it is not known how exactly (if at all) the duality q′ + q = 2 (13) is satisfied.
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Figure 2. (Color online) Energy dependence of the charged multiplicity for nucleus-nucleus collisions
divided by the superposition of multiplicities from proton-proton collisions using Equation (24)
with c2 = 1.7 and with c1 depending on energy

√
s according to c1(s) = 1.0006 − 0.036s−1.035.

Experimental data on multiplicity are taken from the compilation of Ref. [41].

3. More Thorough Screening of Duality

We will now deal with the problem of duality in more detail. Figure 3 shows the
entropies Sq obtained from the distributions (12) for 0.5 < q′ ≤ 1,

Sq =
qq − (2q − 1)
(1 − q)(2q − 1)

, (26)

(here, q′ was changed to 2q − 1), and for 1 ≤ q < 1.5,

Sq =
1 − (2q − 1)q

1 − q
. (27)

Figure 3. (Color online) Tsallis entropy for different nonextensivity parameter (see text for details).

Let us note that for values of q outside the range of variability declared for a given
entropy, Sq < 1, i.e., it is always lower than unity, which is less than the Shannon entropy.
From Figure 3 it can be seen that the entropy formula Sq, which could be used in the entire
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allowable range of the parameter q, describing both q cases and 2 − q dual to them, must
contain both elements of (26) and (27), i.e., have the following form:

Sq =
1

1 − q
(1 − |1 − q|)q − 1

q − |1 − q| . (28)

The corresponding Tsallis distribution is now

f (x) =
1 − |1 − q′|

[1 + |1 − q′|x]
1

|1−q′ |
. where 0.5 < q′ < 1.5. (29)

A natural question arises as to what should be modified and how in such a case?
What we would like to suggest here is the use of appropriately modified definitions of the
expq(x) and lnq(x) functions, namely to replace expq(x) defined in Equation (2) by

expq(x) = [1 + κx]
1
κ where κ = (q − 1)sign(x) (30)

and, accordingly,

lnq(y) =
yκ − 1

κ
where κ = (q − 1)sign(y − 1). (31)

This form works for all x and q values, and there are no additional restrictions on the
admissible values of the q parameter depending on whether x > 0 or x < 0. Formally, this
corresponds to replacing q → q′ = 2 − q when changing the sign of x. Figure 4 shows
behaviour of the functions expq(x) and lnq(x). Note that using this form we now have

expq(−x) · expq(x) = 1 (32)

and the ocupation numbers of particles nq(x) and antiparticles nq(−x) satisfy relation

nq(−x) + nq(x) = −ζ (33)

for all values of q (ζ = +1 for bosons and −1 for fermions). The naive replecement
of the Euler-exponential with another, deformed exponential function (namely given by
Equation (2)) can lose the particle-hole symmetry, inherent in the traditional Fermi distri-
bution above and below the Fermi level. Previously, these relationships had a dual form,

expq(−x) · exp2−q(x) = 1 and nq(x) + n2−q(−x) = −ζ. (34)

Figure 4. (Color online) Illustration of the behavior of the function expq(x) defined by Equation (30)
and the function lnq(x) defined by Equation (31) for different values of the parameters q.
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This means that such an approach avoids not only the problem of duality discussed
earlier in Section 2, but also preserves the particle-hole symmetry concerning distribution
above and below the Fermi level which is fundamental in field theory and was discussed
in [42,43].

In the above considerations, we must remember that the modified functions expq(x)
and lnq(y) are not differentiable everywhere because the functions sign(x) (in the first case)
and sign(1 − y) (in the second) have a discontinuity at x = 0 or y = 1. Therefore, by their
derivatives for x = 0 (or y = 1), we understand their limits for x → 0 (or y → 1). In this
approach, the first derivatives expq(x) and lnq(y) are the same for x = 0 and y = 1 as the
first derivatives exp(x) and ln(y), while their n-th derivatives already depend on q in the
following way:

lim
x→0

dn expq(x)

dxn =
n

∏
i=1

[i − (i − 1)]q] (35)

and

lim
y→1

dn lnq(y)
dyn =

n

∏
i=2

(−i + q). (36)

4. Other Sources of Tsallis Distribution

Note that since Equation (2) describes the data in the entire measured area of phase
space, i.e., both those associated with the thermal approach and those associated with hard
collisions, the justification of this formula cannot be reduced to the Tsallis entropy only.
It is worth noting that for each probability distribution the appropriate form of entropy
can be given and for each probability distribution one can also give the constraints which,
when used together with the Shannon entropy, lead to this probability distribution [44].
For our considerations, it is important to note that when selecting the constraints in such a
way that they best take into account the most important dynamic features of the examined
system, one could basically stop at the Shannon entropy [45]. For example, condition
〈x〉 = const provides to the usual exponential distribution, 〈x2〉 gives Gaussian distribution,
〈ln(x)〉 = const gamma distribution, whereas 〈ln

(
1 + x2)〉 gives a Cauchy distribution.

In general, for some function h(x), the maximum entropy density for f (x) satisfying the
constraint

∫
dx f (x)h(x) = const has the form f (x) = exp[λ0 + λh(x)] where parameters

λ0 and λ are fixed by the requirement of normalization for f (x) and by the above constraint.
To obtain the Tsallis distribution in this way,

f (x) =
2 − q

x0

[
1 − (1 − q)

x
x0

] 1
1−q

(37)

we need to use a constraint like this:〈
ln
[

1 − (1 − q)
x
x0

]〉
=

q − 1
2 − q

. (38)

The Tsallis distribution understood as a quasi-power distribution can also be obtained
in many ways without referring to any form of entropy [46]. We will now discuss a few of
them in more detail.

Superstatistics. This approach extends the exponential description, f (E) = 1
T exp(− E

T ),
characterized by some parameter of the scale, T, by allowing fluctuations of this parame-
ter [47]. In particular, if they are described by a gamma distribution,

g
(

1
T

)
=

1

Γ
(

1
q−1

) T0

q − 1

(
1

q − 1
T0

T

) 2−q
q−1

exp
(
− 1

q − 1
T0

T

)
, (39)
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the total result is a Tsallis distribution [29,48], the fq(E) = 2−q
T

[
1 − (1 − q) E

T

] 1
1−q , where

the parameter q characterizing the strength of fluctuations in T is given by its variance,
ω2

T = Var(T)
〈T〉2 = q − 1. Since in thermal models ω2

T is related to the heat capacity CV , one
possible meaning of the parameter q is its relationship to the heat capacity, q = 1 + 1/CV
(note that here q > 1 always). Other classes of generalized statistics can also be obtained,
and with small variance of fluctuations they all behave universally [47].

Preferential attachment. This approach describes a situation where the scale parame-
ter depends linearly on the variable under consideration, as is the case when preferential
attachment correlations are encountered in the system under consideration, e.g., when
x0 → x0 + (q − 1)x . This changes the equation defining the distribution, resulting in the
Tsallis distribution with q > 1 [49,50],

d f (x)
dx

=
f (x)
x0

→ d f (x)
dx

=
f (x)

x0 + (q − 1)x
→ f (x) =

2 − q
x0

[
1 − (1 − q)

x
x0

] 1
1−q

. (40)

Tsallis distribution from multiplicative noise. The Tsallis distribution may also
mean that the described process has a stochastic character defined by the additive, γ(t),
and multiplicative, ξ(t), noise and described by the Langevin equation,

dp
dt

+ γ(t)p = ξ(t). (41)

The corresponding Fokker-Planck equation has the form

∂ f
∂t

= −∂(K1 f )
∂p

+
∂2(K2 f )

∂p2 , (42)

K1 = E(ξ)− E(γ)p and K2 = Var(ξ)− 2Cov(ξ, γ)p + Var(γ)p2, (43)

and for stationary solutions
d(K2 f )

dp
= K1 f . (44)

When both noises are uncorrelated (i.e., when Cov(ξ, γ) = 0) and when there is no drift
caused by additive noise (i.e., E(ξ) = 0) the solution to Equation (44) is the Tsallis distribu-
tion in p2 [51]:

f (p) =
[

1 + (q − 1)
p2

T

] q
1−q

where T =
2Var(ξ)

E(γ)
, q = 1 +

2Var(γ)
E(γ)

. (45)

The Tsallis distribution with p (as in Equation (2)) and not p2 is obtained for the more
complicated case of T = T(q) when [46]

T(q) = (2 − q)[T0 + (q − 1)T1] where T0 = −Cov(ξ, γ)

E(γ)
and T1 =

E(ξ)
2E(γ)

. (46)

Note that T now depends non-linearly on q, which significantly makes the Tsallis distribu-
tion more flexible, allowing for the analysis and comparison of various types of processes
(cf. [46]).

At this point, it is worth noting that there is a relationship between the type of
noise and the condition imposed in MaxEnt. In the case of Shannon entropy, a condition
imposed on the arithmetic mean corresponds to additive noise, while the use of a condition
imposed on the geometric mean corresponds to multiplicative noise and leads to a power
distribution [52].

Conditional probability. The methods for obtaining the Tsallis distribution presented
so far are basically limited to cases with q > 1. Cases with q < 1 can only be observed
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in constrained systems. Consider for example N independent energies, Ei=1,...,N , where

each of them follows the Boltzman distribution, gi(Ei) = 1
λ exp

(
− Ei

λ

)
, and their sum,

E = ∑N
i=1 Ei, has a gamma distribution, gN(E) = 1

λ(N−1)

(
E
λ

)N−1
exp

(
− E

λ

)
. However, if the

available energy is bounded, E = Nα = const, these energies will no longer be independent
and will be described by conditional probabilities in the form of Tsallis distributions with
q < 1:

f (Ei|E = Nα) =
g1(Ei)gN−1(Nα − Ei)

gN(Nα)
=

2 − q
λ

[
1 − (1 − q)

Ei
λ

] 1
1−q

, (47)

λ =
αN

N − 1
, q =

N − 3
N − 2

< 1. (48)

One could obtain a Tsallis-like distribution with q > 1 only if the scale parameter λ
fluctuates in the same way as in the case of superstatistics.

Statistical physics. A Tsallis distribution with q < 1 also follows from statistical
physics. Consider an isolated system with energy U = const and ν degrees of freedom
(particles). We choose one of them with energy E � U, then the rest of the system has
energy Er = U − E. If this particle is in one well-defined state then the number of states of
the entire system is Ω(Er), and the probability that the energy of the selected particle is E is
P(E) ∝ Ω(U − E). Expanding ln Ω(U − E) around U and keeping only the first two terms
one obtains

ln P(E) ∝ ln Ω(E) ∝ −βE =⇒ P(E) ∝ e−βE, (49)

that is a Boltzman distribution with

β =
1

kBT
de f
=

∂ ln Ω(Er)

∂Er
. (50)

However, it is usually expected that Ω(Er) ∝
(

Er
ν

)α1ν−α2
with α1, α2 ∼ O(1). Choosing

α1 = 1 and α2 = 2 (because the number of states in the reservoir has decreased by one),
therefore

∂kβ

∂Ek
r

∝ (−1)kk!
ν − 2
Ek+1

r
= (−1)kk!

βk−1

(ν − 2)k . (51)

This allows us to write the probability of selection of energy E as:

P(E) ∝
Ω(U − E)

Ω(E)
= C

(
1 − 1

ν − 2
βE

)(ν−2)
= β(2 − q)[1 − (1 − q)βE]

1
1−q , (52)

that is, in the form of the Tsallis distribution with q = 1 − 1
ν−2 ≤ 1, such as in the case of

conditional probability above.

5. Summary and Conclusions

Entropy has always played an important role in the study of the production mecha-
nisms of particles produced in high-energy hadronic and nuclear collisions, either in their
description based on thermodynamics [2] or in descriptions using elements of information
theory [4].

In the application of the non-extensive approach, we encounter the problem of a
certain duality manifested in the parallel occurrence of the parameter q and 2 − q, which is
best illustrated by the parallel description of particle production processes in nucleon and
nuclear collisions discussed in Section 2. The second manifestation of duality appears in an
attempt at a non-extensive description of quantum statistical distributions. As suggested
by the results of [42,43] they are inconsistent with the conventional description using Tsallis
distributions (and prefer the nonextensive Kaniadakis distribution). The point here is the
necessity to preserve the particle-hole symmetry requiring that exp(−x) · exp(x) = 1, while
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using the original q-exponential Tsallis distribution it leads to expq(−x) · exp2−q(x) = 1.
In Section 3 we propose a new formula defining the non-extensive function expq(x) which
restores this symmetry and we have a nonextensive version of particle-hole symmetry
again which restores this symmetry in the form expq(−x) · expq(x) = 1.

From a more technical perspective, it is worth noting that both Shannon’s and Tsallis’
entropies have the same generating function, f (x) = ∑i px

i , and that the difference in their
forms is just due to the form of adopted differentiation operator. For standard first-order
differentiation, d f (x)/dx , we obtain the Shannon entropy, whereas adopting the Jackson
q-derivative, Dq f (x) = f (qx)− f (x)

qx−x , yields the Tsallis entropy. In fact, other expressions for
entropy can be obtained by using yet other forms of differentiation operators [7].
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Abstract: The nature of dependence between random variables has always been the subject of
many statistical problems for over a century. Yet today, there is a great deal of research on this
topic, especially focusing on the analysis of nonlinearity. Shannon mutual information has been
considered to be the most comprehensive measure of dependence for evaluating total dependence,
and several methods have been suggested for discerning the linear and nonlinear components of
dependence between two variables. We, in this study, propose employing the Rényi and Tsallis
mutual information measures for measuring total dependence because of their parametric nature.
We first use a residual analysis in order to remove linear dependence between the variables, and then
we compare the Rényi and Tsallis mutual information measures of the original data with that the
lacking linear component to determine the degree of nonlinearity. A comparison against the values
of the Shannon mutual information measure is also provided. Finally, we apply our method to the
environmental Kuznets curve (EKC) and demonstrate the validity of the EKC hypothesis for Eastern
Asian and Asia-Pacific countries.

Keywords: nonlinearity; Rényi mutual information; Tsallis mutual information; EKC hypothesis

1. Introduction

An analysis of the dependence between two or more random variables can be traced
back to the late 19th century, beginning with the works of mathematicians such as Gauss
and Laplace. Later, Galton created the concept of correlation, which enabled Pearson to
derive the correlation coefficient that has been extensively used in all kinds of statistical
analyses since then [1]. When the dependence is linear or approximately linear, the cor-
relation coefficient is the most effective indicator of the relationship between the random
variables. It also provides a simple interpretation for the direction of the relation, whether
positive or negative. When the dependence departs from the linearity, the linear correlation
coefficient is of no use, and various methods have been proposed for evaluating nonlinear-
ity. One of these measures is Spearman’s correlation coefficient, which is nonparametric
and uses ranked values to assess monotonic nonlinearity between two random variables [2].
Another measure for nonlinear dependence is the correlation ratio, which expresses the
relationship between random variables as a single valued function. In the case of nonlinear
relationships, the value of the correlation ratio is greater than the correlation coefficient,
and therefore, the difference between the correlation ratio and the correlation coefficient
refers to the degree of the nonlinearity of dependence [3]. Polynomial regression has also
been used for modeling nonlinear dependence in various phenomena. Although nonpara-
metric regression models have been used more often, polynomial regression is still being
deployed for modeling dependence in some areas of application, such as biomechanics [4],
cosmology [5], climatization [6], and chemistry [7]. As more and more-complex data have
been produced through technological development, the need for analyzing these data have
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given rise to a new field, called functional data analysis, which also includes functional re-
gression. Functional regression models assume functional relationships between responses
and predictors, and for polynomial models, these relationships are in polynomial form
rather than linear [8].

Shannon entropy plays a central role in information theory as a measure of information
choice and uncertainty. Conditional entropy can also be used as a measure of missing
information [9]. Conditional entropy or mutual information do not assume any underlying
distribution and reflect the stochastic relationship between random variables as a whole—
linear or nonlinear [10]. These properties have made mutual information a good choice for
analyzing dependencies. Hence, mutual information is extensively used for dependency
analysis, especially in finance [11–13] and in genetics [14–16]. Although mutual information
is an effective method for determining the dependency between random variables, it does
not provide any information on the nature of the dependence as being linear or nonlinear.
Very few attempts have been made to investigate the nature of the dependence by extracting
the linear component of Shannon mutual information, though some have, such as [1,17].

The environmental Kuznets curve (EKC) hypothesis states that there is an inverse
U-shape relationship between per capita gross domestic product (GDP) and measures
of environmental degradation [18]. Because carbon dioxide (CO2) is the major factor
for greenhouse gas emissions, it is accepted as the main reason for the environmental
degradation. Hence, the same relationship is assumed between GDP and CO2. So the
EKC is an indication of the “stages of economic growth” that economies pass through as
they make a transition from agriculturally based to industrial and then to postindustrial
service-based economies. In a way, EKC provides a visual representation of the stages of
economic growth, as seen in Figure 1 (Panayatou 1993).

Figure 1. Environmental Kuznets curve.

There are various methods in the literature to test the EKC. Some studies have used
panel data, while others have used time series data [19]. Panayotou [20], who first sug-
gested the term EKC, used cross-sectional data and empirically tested the relation between
environmental degradation and economic development for the late 1980s. He discovered
quadratic patterns in a sample of developing and developed countries. Antle and Heide-
brink [21] found turning points for the EKC curve by using cross-sectional data. Vasilev [22]
also studied EKC with cross-sectional data.

Although the determination of the exact shape of the Kuznets curve is important,
demonstrating its nonlinearity will help support the EKC hypothesis. We aim to determine
nonlinearity by deploying mutual information with an application on EKC. The Rényi and
Tsallis mutual information types are used in determining the nonlinearity of EKC, and
the results are compared with that of Shannon. By demonstrating the confirmation of the
EKC hypothesis, it can be concluded that the “grow and pollute now, clean later” strategy
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revealed by the hypothesis has enormous environmental costs, so alternative strategies
should be developed for growth.

The structure of our study is as follows: Section 2 describes the tests for nonlinearity
on the basis of mutual information. Section 3 starts with the application by conducting a
cross-sectional analysis using ordinary least squares (OLS) and then adds the application
of nonlinearity tests. Finally, Section 4 concludes.

2. Relative Entropy, Mutual Information, and Dependence

2.1. Mutual Information

Relative entropy is a special case of statistical divergence. It is a measure of the
inefficiency of assuming that the probability distribution is q when the true distribution
is p [23]. Shannon, Rényi, and Tsallis relative entropies for the discrete case are defined
as follows:

DS = (p‖q) = ∑ P(x) log
P(x)
q(x)

(1)

DR = (p‖q) =
1

α − 1
log ∑ P(x)

(
P(x)
q(x)

)α−1

(2)

DT = (p‖q) =
1

α − 1∑ P(x)

[(
P(x)
q(x)

)α−1

− 1

]
(3)

Bivariate extensions are as follows:

DS(p(x, y)‖q(x, y)) = ∑ ∑ p(x, y) log
p(x, y)
q(x, y)

(4)

DR(p(x, y)‖q(x, y)) =
1

α − 1
log ∑ ∑ p(x, y)

(
p(x, y)
q(x, y)

)α−1

(5)

DT((p(x, y)‖q(x, y)) =
1

α − 1∑ ∑ p(x, y)

[(
p(x, y)
q(x, y)

)α−1

− 1

]
(6)

To check the independence of variables, the null and alternative hypotheses can be
stated as follows:

H0 : pX,Y(x, y) = qX,Y(x, y) (7)

HA : pX,Y(x, y) �= qX,Y(x, y) (8)

where qX,Y(x, y) = pX(x)·pY(y) for all (x, y) ∈ R2.
Mutual information can be seen as the divergence of the joint probability function

from the product of the two marginal probability distributions. In other words, mutual
information is derived as a special case of divergence or relative entropy. Three alternative
formulations of mutual information are due to Shannon, Rényi, and Tsallis. Shannon
mutual information (or Kullback—Leibler divergence) is defined as follows:

M(X, Y) = DS(pX,Y(x, y)‖pX(x)pY(y)) = ∑ ∑ p(x, y) log
p(x, y)

pX(x)pY(y)
(9)

Mutual information formulated this way is also called as cross entropy.
Rényi order-α divergence (or Rényi mutual information) of pX,Y(x, y) from pX(x)pY(y)

is given as follows:

DR(pX,Y(x, y)‖pX(x)pY(y)) =
1

α − 1
log ∑ ∑

pX,Y(x, y)α

(pX(x)pY(y))
α−1 (10)
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Tsallis order-α divergence of pX,Y(x, y) from pX(x)pY(y) (or Tsallis mutual informa-
tion) is given as follows:

DT(pX,Y(x, y)‖pX(x)pY(y)) =
1 − ∑ ∑

pX,Y(x,y)α

(pX(x)pY(y))
α−1

1 − α
(11)

In the case of independence, the Rényi and Tsallis mutual information types are 0,
just like Shannon mutual information. As α → 1, the Rényi and Tsallis mutual information
types approach Shannon mutual information [24]. The mutual information of two variables
reflects the reduction in the variability of one variable, by knowing the other. Mutual
information becomes 0 if and only if the random variables are independent. It should
also be emphasized that mutual information measures general dependence, whereas the
correlation coefficient measures linear dependence [15].

2.2. Testing Linearity by Using Mutual Information

The application of the Shannon mutual information measure on the problem of detect-
ing nonlinearity was suggested by Tanaka, Okamoto, and Naito [17] and by Smith [1].

This method utilizes the residuals obtained by the ordinary linear regression model.
Note that a linear regression model that fits data well is a good indicator of linear relation
between variables so that the residuals obtained from a linear model are considered to
include no linear dependence on independent variables:

ξi = Yi − b0 −
p

∑
j=1

bjXj (12)

Next, the mutual information between residuals and observed values of the indepen-
dent variable is calculated. The mutual information between independent and dependent
variables M(X,Y) can be computed, as can the mutual information between independent
variable and the residuals obtained from linear regression M(X,ξ). Note that the later
statistic reflects the nonlinear dependence between the original variables. If the mutual
information between the independent variable and residuals does not differ much from the
mutual information between the dependent and independent variables, then the relation is
nonlinear. By comparing M(X,ξ) with M(X,Y), we can evaluate the degree of nonlinearity
in the dependence [1,17].

We suggest that nonlinearity can be detected better by the Rényi and Tsallis mutual
information measures because of their parametric nature.

Especially becauase the Tsallis mutual information measure is calculated on the basis
of the power of α, the larger the α value, the larger the Tsallis mutual information was
becoming, so the difference between these two common mutual information measures
cannot be interpreted. Therefore, we suggest a new measure that still leads to the same
result, as seen in Equation (13):

λS,R,T =

∣∣∣∣1 − M(X, ξ)

M(X, Y)

∣∣∣∣ (13)

The letters S, R, and T in the index indicate the Shannon, Rényi, and Tsallis mu-
tual information measures, respectively. As M(X,ξ) and M(X,Y) become closer to each
other, λ converges to zero, implying nonlinearity. This hypothesis is tested by using
two simulated data sets, one of which represents a linear relationship and the other one
reflects curvilinearity. The number of simulated pairs of X and Y values is 1000. The
simulated data representing the linear and the curvilinear relationships are modeled by
Equations (14) and (15):

Y = a + bX + e (14)

Y = a + bX + cX2 + e (15)
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Various α values between 0 and 5 are selected randomly from a uniform distribution for
assessing the effect of α on nonlinearity measures. Table 1 provides 50 randomly generated
observations from a uniform distribution for different values of α and the corresponding λ
values for the Rényi and Tsallis measures.

Table 1. λ values for linear and curvilinear relationships, based on simulations.

Linear
Relationship

Curvilinear
Relationship

α λR λT λR λT

0.07 0.9956 0.9906 0.0489 0.0308

0.13 0.9917 0.983 0.0457 0.0263

0.17 0.9894 0.9788 0.0447 0.0247

0.18 0.9888 0.9778 0.0445 0.0244

0.35 0.9808 0.9664 0.0433 0.0228

0.41 0.9785 0.964 0.0431 0.0232

0.48 0.976 0.9619 0.0429 0.024

0.56 0.9734 0.9604 0.0429 0.0254

0.67 0.9702 0.9595 0.0435 0.0281

0.69 0.9696 0.9595 0.0437 0.0287

0.74 0.9684 0.9596 0.0444 0.0304

0.82 0.9668 0.9605 0.0464 0.0339

0.87 0.9663 0.9618 0.0483 0.0369

1.36 0.9473 0.964 0.0087 0.0099

1.46 0.9446 0.9662 0.003 0.0037

1.86 0.9323 0.9749 0.0129 0.0214

2.11 0.9236 0.9797 0.0138 0.0271

2.18 0.9209 0.981 0.0139 0.0285

2.44 0.9102 0.9851 0.0139 0.0334

2.54 0.9056 0.9865 0.0138 0.0352

2.73 0.8962 0.9888 0.0136 0.0386

2.78 0.8935 0.9893 0.0136 0.0395

2.8 0.8924 0.9895 0.0136 0.0398

2.83 0.8908 0.9898 0.0135 0.0403

2.84 0.8902 0.9899 0.0135 0.0405

2.92 0.8856 0.9907 0.0134 0.0419

3.01 0.8801 0.9914 0.0133 0.0436

3.02 0.8795 0.9915 0.0133 0.0437

3.04 0.8782 0.9917 0.0133 0.0441

3.09 0.8749 0.9921 0.0132 0.045

3.23 0.8652 0.9931 0.0131 0.0476

3.29 0.8608 0.9934 0.0131 0.0487
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Table 1. Cont.

Linear
Relationship

Curvilinear
Relationship

α λR λT λR λT

3.34 0.857 0.9937 0.013 0.0497

3.38 0.8538 0.994 0.013 0.0504

3.4 0.8522 0.9941 0.013 0.0508

3.5 0.844 0.9946 0.0129 0.0528

3.57 0.8379 0.9949 0.0128 0.0542

3.71 0.8249 0.9954 0.0128 0.057

3.74 0.822 0.9956 0.0128 0.0576

3.77 0.8191 0.9957 0.0127 0.0583

3.88 0.808 0.996 0.0127 0.0607

3.97 0.7985 0.9963 0.0127 0.0627

4.04 0.7908 0.9964 0.0127 0.0643

4.17 0.7762 0.9967 0.0127 0.0673

4.54 0.7318 0.9974 0.0128 0.0769

4.62 0.7219 0.9975 0.0128 0.0792

4.71 0.7108 0.9976 0.0129 0.0818

4.76 0.7046 0.9976 0.0129 0.0833

4.85 0.6934 0.9977 0.013 0.0861

4.94 0.6822 0.9978 0.0131 0.089

λS 0.9589 0.0121

Mean 0.8783 0.9848 0.0211 0.0443

Std. Dev. 0.0869 0.0134 0.0143 0.0199

Because λ values close to 1 indicate a linear relationship, λT , λS, and λR support
the linearity hypothesis. It can be observed that λT detects linearity more strongly than
does λR for α > 1; conversely, λR captures linearity better for α < 1. The mean and the
standard deviation for each mutual information measure are also presented in Table 1 for
checking the variability of each measure against various α values. The standard deviation
values for λT are lower than those for λR, pointing out the consistency of Tsallis in the case
of linearity.

On the other hand, nonlinearity is captured by λT better than by λR for α < 1 and
vice versa for α > 1. When the standard deviations are considered, λR is more stable in
determining nonlinearity.

Changing the scale parameter α of mutual information measures naturally changes
the sensitivity of this measure, and by plotting λ values against the scale parameter α, the
change in sensitivity can be graphically displayed. In order to visually interpret the results,
the λR and λT values, according to the different α values, are as seen in the graphs:

As can be seen from Figure 2, for α > 1, λT is more succesful and stable than λR for a
linear relationship. In addition, the λT measure consistently takes values close to 1, whereas
λR gets smaller as α values increase.
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Figure 2. λ values versus α in the case of linearity.

As seen in Figure 3, in the curvilinear relationship, λT started to grow after alpha 1.4;
λR takes values close to zero in all values of alpha. However, λT also takes a maximum
value of 0.09101. Both common information measures can be used as criteria in nonlinearity.
However, λR more consistently indicates nonlinearity. Because there is no logarithmic
function in the Tsallis mutual information formula, when α takes a value greater than
1, Tsallis mutual information makes deviations from linearity less important than Rényi
mutual information does. Therefore, λT will make it less sensitive to nonlinearity than λR
and therefore more unresponsive to nonlinearity than λS and λT . For the same reason, λT
will represent linearity better than Rényi will in linear relationship.

Figure 3. λ values versus α in the case of curvilinearity.

An important general property of Rényi entropy is that for a given probability distri-
bution, Rényi entropy is a monotonically decreasing function of α, where α is an arbitrary
real number other than 1. Therefore, as can be seen in Figure 2, increasing α values will not
provide additional information, so α values are limited to 5.

2.3. Method for Bin-Size Selection

Mutual information depends mainly on both the bin size and the sample size; thus,
a natural question arises about the optimal choice of one parameter given the value of
another. Here, we use the Freedman–Diaconis rule for finding the optimal number of bins.
According to this rule, the optimal number of bins can be calculated on the basis of the
interquartile range (IQR = Q3 − Q1) and the number of data points n. Freedman and
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Diaconis use the IQR of the data instead of the standard deviation; therefore, this method
is described as more robust than some of the other methods.

Δbin = 2 × IQR(X)
3
√

n
(16)

The Freedman–Diaconis rule takes into account the asymmetry of the data and sets
the bin size to be proportional to the IQR [25].

3. Checking the EKC Hypothesis for East Asian and Asia-Pacific Countries (1971–2016)

3.1. Model

To test the EKC hypothesis, a simple linear regression model is applied. Using the or-
dinary least squares procedure, we find a quadratic relationship (“inverted U-hypothesis”)
between CO2 emissions (metric tons per capita) and GDP per capita (current USD) in a
time series of East Asia and Asia-Pacific countries (excluding high-income countries) over
a 46-year period.

East Asia and Asia-Pacific countries were classified initially as low income (LIC) in
the 1990s, then as lower middle income (LMC) in 2010. In fact, the highest growth rate
of CO2 emissions (5.6% (1990–2008)) was observed in the East Asia and the Asia-Pacific
region, where the highest GDP growth rates (7.2% (1990–2000) and 9.4% (2000–2010)) were
achieved.

We first examine the residual diagrams from a linear regression model to determine
whether there are serious deviations from assumptions. In Figure 4a, nonlinearity is
apparent, whereas in Figure 4b, the deviation from normality assumption can be seen:

 
(a) (b) 

Figure 4. Residual plots listed as (a) fitted values to residuals and (b) normal Q-Q plot of standardized
residuals.

According to a quick visual check of the residuals in Figure 4a, a quadratic model
seems to be more appropriate. In Table 2, the results of quadratic models are given. The
scatter diagram of CO2 and GDP variables is shown in Figure 5.

Table 2. Summary of the model.

a b c F R2

Parameter Estimates 1.0121 0.0016 1.4 × 10−7

1581.224 0.986Standard Error 0.04599 5.9 × 10−5 9.35 × 10−9

p-Value 4.99 × 10−25 4.39 × 10−29 5.08 × 10−19

Model CO2 = 1.021 + 0.0016GDP −
(
1.4 × 10−7)GDP2

a: constant; b and c: coefficients of model; F: F test; R2: coefficient of determination.
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Figure 5. Quadratic regression model estimation.

To test the appropriateness of a simple linear regression function, the null and alterna-
tive hypotheses are given as follows:

H0 : E(Y) = β0 + β1X (17)

Ha : E(Y) �= β0 + β1X (18)

The general linear test statistic for simple regression model is as follows:

F∗ =
SSLF
c − 2

÷ SSPE
n − c

=
1.641
0.107

= 15.209

When we look at the results, shown in Table 3, F∗ > F(0.05; 3.41) = 2.833, so we
reject null hypothesis H0. This means that the linear regression function does not provide a
good fit for the data. The dependence measures are r2 = 0.91 and η2

XY = 0.96. A nonzero
value of η2

YX − r2 is associated with a departure from linearity. The calculated value of this
difference is η2

YX − r2 = 0.05. To test the significance of this difference, the alternatives are
given as follows:

H0: The relationship between X and Y is linear.
Ha: The relationship between X and Y is not linear.

Table 3. Related ANOVA table.

Source of Variation Df Sum of Squares Mean Squares

Explained variation by
linear regression 1 SSR = 98.658 98.658

Explained variation by
nonlinear regression 3 SSLF = 4.925 1.641

Unexplained variation 41 SSPE = 4.425 0.107

Total 45 SST = 108.01
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The test statistic is as follows:

F∗ =
n − c
c − 2

·η
2
XY − r2

1 − η2
XY

=
41
3

∗ 0.05
0.04

= 17.083

This value of F also indicates a significant departure from linearity.

3.2. Testing Linearity on the Basis of Shannon, Rényi, and Tsallis Mutual Information Measures

The Tanaka, Okamoto, and Naito [17] and Smith [1] method is based on comparing
the Shannon mutual information between the original data series with that between the
new ones obtained by removing linear dependence from the original ones.

Entropy and mutual information calculations are based on a contingency table. A
possible reason for the EKC hypothesis may lie in the fact that in poor countries, most
of the output is produced in the agricultural sector. So CO2 emissions are lower in these
countries than in other countries. In middle-income countries, pollution begins to increase.
As the country grows, it tends to switch to cleaner technologies.

Here, on the basis of the Freedman–Diaconis rule, the optimal number of bins is
calculated and presented in Table 4:

Table 4. Optimal number of bins.

Variables nbins

CO2 7
GDP 14

Residuals 9

To detect nonlinearity by using the Shannon, Rényi and Tsallis mutual information
measures, the following table for different values of alpha may help. To evaluate the
degree of nonlinearity included in the dependence, the two mutual information measures
were compared. When M(X, ξ) = M(X, Y), the dependence is interpreted to be based
on nonlinearity, so the proposed λS, λR, and λT measures are considered as criteria of
nonlinearity.

As seen in the Table 5, λS, λR, and λT are close to zero, so the relationship is nonlinear.
As can be checked from the simulation data in Table 1, α < 1 λT and α > 1 λR more
successfully reveal the curvature. Therefore, the results obtained from the EKC data
also support this situation. As a result, the λS, λR, and λT values nearly zero indicate a
curvilinear relationship, which supports the EKC hypothesis.

Table 5. λ values for EKC data.

α λR λT α λR λT

0.07 0.3892 0.3655 3.01 0.0649 0.1460

0.13 0.3809 0.3444 3.02 0.0646 0.1459

0.17 0.3741 0.3323 3.04 0.0640 0.1458

0.18 0.3722 0.3295 3.09 0.0625 0.1455

0.35 0.3355 0.2902 3.23 0.0587 0.1453

0.41 0.3221 0.2797 3.29 0.0573 0.1455

0.48 0.3071 0.2690 3.34 0.0562 0.1457

0.56 0.2910 0.2586 3.38 0.0553 0.1460

0.67 0.2708 0.2466 3.4 0.0549 0.1461

0.69 0.2673 0.2447 3.5 0.0530 0.1471

98



Entropy 2023, 25, 79

Table 5. Cont.

α λR λT α λR λT

0.74 0.2590 0.2402 3.57 0.0518 0.1481

0.82 0.2468 0.2339 3.71 0.0497 0.1505

0.87 0.2400 0.2307 3.74 0.0493 0.1511

1.36 0.1735 0.1961 3.77 0.0489 0.1518

1.46 0.1631 0.1913 3.88 0.0476 0.1545

1.86 0.1271 0.1743 3.97 0.0467 0.1570

2.11 0.1087 0.1653 4.04 0.0461 0.1591

2.18 0.1040 0.1630 4.17 0.0451 0.1635

2.44 0.0888 0.1556 4.54 0.0430 0.1782

2.54 0.0837 0.1532 4.62 0.0427 0.1817

2.73 0.0751 0.1494 4.71 0.0423 0.1858

2.78 0.0731 0.1486 4.76 0.0421 0.1881

2.8 0.0723 0.1483 4.85 0.0418 0.1923

2.83 0.0711 0.1479 4.94 0.0415 0.1965

2.84 0.0708 0.1477 λS 0.2181 0.2181

2.92 0.0679 0.1468 Mean 0.1313 0.1914

St. Dev. 0.1147 0.0607

The relationship between λ and α can be seen in Figure 6:

Figure 6. λ values against different α values for EKC data.

4. Conclusions

The environmental Kuznets curve (EKC) hypothesizes that the relationship between
environmental quality and real output has an inverted U-shaped quality. Using the ordinary
least squares estimation procedure, we have found a quadratic relationship between CO2
emission and GDP in a time series of East Asia and Asia-Pasific countries (excluding high-
income countries) over a period of 46 years. One technique to check the EKC hypothesis
utilizes an F test, by which we have concluded that the linear model does not provide a
good fit for the data. As a second technique, comparing the linear determination coefficient
with the correlation ratio may be useful. Again, for the EKC data, the difference between
these two association measures was found to be significant, addressing curvilinearity.
Alternatively, the difference between two dependence measures on the basis of mutual
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information can be used. Although Shannon mutual information has been used more often
in the literature, we suggested that the Rényi and Tsallis mutual information measures catch
the nature of the relation between the variables better because of their parametric flexibility.

In this study, the mutual information between dependent and independent variables
(M(X,Y)) was found first. Secondly, by using a simple linear regression model, the residuals
(ξ) were calculated. Then, the mutual information between the independent variable and
the residuals (M(X,ξ)) was obtained. Finally, by comparing these two mutual information
measures, the degree of nonlinearity included in the dependence was determined. We
also proposed a measure of nonlinearity, λ, and demonstrated that the Rényi and Tsallis
mutual information measures determined nonlinearity better for certain ranges of α values
compared with the Shannon mutual information measure.

Applications of all these measures on CO2 emissions and GDP data underlined curvi-
linearity, and hence, the presumed pattern by the EKC hypothesis was realistic. The
result concludes that the “growth and pollute now, clean later” strategy is wasting a lot
of resources and has enormous environmental costs. Therefore, countries should seek
alternative growth strategies.
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Abstract: Mathematical generalizations of the additive Boltzmann–Gibbs–Shannon entropy formula
have been numerous since the 1960s. In this paper we seek an interpretation of the Rényi and
Tsallis q-entropy formulas single parameter in terms of physical properties of a finite capacity
heat-bath and fluctuations of temperature. Ideal gases of non-interacting particles are used as a
demonstrating example.

Keywords: entropy; finite heat-bath; superstatistics

1. Introduction

Entropy is a great tool in thermodynamics and statistical physics. Conceptualized
originally by Clausius [1] as a state descriptor, that distinguishes it from heat, it became
a basic principle for statistical and informatics calculations. Its classical form, the Boltz-
mann entropy has a wide use [2–5]. Nevertheless, mostly in mathematical approaches to
informatics, its generalizations occurred: altered, non-logarithmic formulas between the
probability of a given sate and the total entropy of the system [6–10].

Still, the classical logarithmic formula is of widest use, having a number of properties
that make it destined to be a convex measure of information and probability. The most
known generalization is due to Alfred Renyi [6], who constructed a formula being also
additive for factorizing joint probability, but abandoned the logarithm as the sole function
with this property. There is a parameter, occurring as a power of probability, denoted by q
or α. The classical formula emerges in the q → 1 limit, formally.

As interesting as the Renyi entropy is, its form is not an expectation value. The q-
entropy as an expectation value was suggested by C. Tsallis [11–13], as that form is not
additive for factorizing joint probabilities (or being additive for correlated, non-factorizing
probabilities). Other and further generalizations, naming more parameters, were also
suggested formulated in terms of leading order corrections to the Boltzmann formula in
the thermodynamical limit or just utilizing more parameters for possible deformations of
the original formula [9,14–19]. Properties of generalized entropy formulas were intensely
studied, for two selected examples with respect to the Tsallis entropy see [20,21].

In the present paper another viewpoint is presented: (i) first we identify deviations
from the classical logarithmic formula derived from deviations from additivity; (ii) then
we demonstrate how phase space finiteness effects cause corrections to the additivity of
entropy in coincidence with the factorization of probability in a microcanonical approach;
(iii) and finally we ask the question of which modified entropy can be the most additive
one in this respect. More closely, a general group entropy [22] is considered following
non-addition rules and a limit of its infinite repetitions on small amounts is considered as
an asymptotic rule of composition [23]. Associative rules form group operations, therefore
a logarithm of the formal group can be derived from a general composition law, which is
then additive. This will be the content of the next section.
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There were decade-long discussions about the physical (or statistical) meaning of the
parameter q, the first non-universal parameter occurring in generalized entropy formulas.
It may be bound to the sort of the system under discussion, to its material properties, but at
the same time it occurs generally in a given class of statistical systems, including informatics,
statistical mechanics, dynamics at the edge of chaos, and complex random networks. A
few approaches in the quest of uncovering physical mechanisms determining the value of
q in particular cases in which the present author was involved, are in Refs. [23–27]. Similar
studies by others are copiously cited in review books, cf. [12,24].

Following this, a physical interpretation of the parameter q will be established con-
nected to the finite heat capacity of an environment [28] and to possible fluctuations in
phase space dimensionality. The latter is akin to the superstatistical approach [29–33]. A
balance between physical factors reducing and increasing the value of q may ensure the
classical q = 1 case, however, in a general setting it is not provided. One is then tempted
to restore additivity at best—since classical thermodynamics is based on this property.
The attempt is made by using a logarithm of the formal group of entropy composition
instead of the original entropy, S → K(S), and deriving again the associated qK parameter.
Then qk = 1 generates a differential equation for the K(S) function, and due to that, a new
composition rule.

Finally some examples will be discussed and families of K(S) forms will be estab-
lished. The Boltzmann, Renyi, Tsallis entropies are all special cases, and they repre-
sent physical extremes in terms of the heat container capacity and the relative size of
superstatistical fluctuations.

2. Logarithm of the Formal Group

It is worth starting our mathematical considerations with the composition law of
entropy, or any other real valued physical quantity, when contacting and combining two
systems to a bigger, unified one. Abandoning additivity, which ensures the co-extensivity
properties of entropy and other extensive quantities, constructed also as expectation values,
further composition rules are considered for non-extensive statistical mechanics [12]. The
Abe-Tsallis composition law,

S12 = S1 + S2 + (q − 1)S1S2, (1)

is a particular case for a more general one, described by a two-variable function, x ⊕ y =
h(x, y). In such composition rules the entropies, Si (i = 1, 2, or 12) can be any state
functions, S(E, N, X1, . . .) and assumed to be valid in general, both for equilibrium and
non-equilibrium entropies. Here we do not address such questions, just look for the
consequences of adopting non-additive rules for the entropy. The value of the parameter
q is usually in the open interval (0, 2), in measured cases very often close but not equal
to q = 1. Formally, however, it can be any real number, even negative. Certainly for
q < 1, the entropies cannot be too large in order to avoid a negative composite result. In
thermodynamics we deal mostly with large systems; thus, the requirement of associativity
is natural:

h(h(x, y), z) = h(x, h(y, z)). (2)

Having the third law in mind, on the other hand, zero entropy is a valid value, and its
addition must be trivial:

h(x, 0) = x, (3)

and similarly h(0, y) = y. These two requirements already circumvent composition as a
group operation. The question of inverse building remains only nontrivial.

Here, the logarithm of the formal group is helpful. It can be shown that, from the
associativity Equation (2), it follows the existence of a monotonous and hence invertible
mapping, which maps the general rule to the addition:

K(h(x, y)) = K(x) + K(y). (4)
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The function K(z) is the formal logarithm; it can be constructed asymptotically from the rule
h(x, y) as follows. Imagine we compose from x to x ⊕ y = h(x, y) by adding small amounts,
Δy, a number of time, N, so that NΔy = y. Then, in a general step, one proceeds as

xn+1 = xn ⊕ Δy = h(xn, Δy) = h(xn, 0) + Δy
∂h
∂y

(xn, 0) + ldots (5)

The index n in this change is additive, while x and y are not. Seeking for a continuous limit
in the variable t = n/N between zero and one, we arrive at

x(1)∫
x(0)

dx
∂h
∂y (x, 0)

=

1∫
0

ydt = y. (6)

Here x(0) = x and x(1) = x ⊕ y. Denoting the primitive function of the above integral by
K(z), our result reads as

K(x ⊕ y)− K(x) = y. (7)

This form breaks the symmetry between x and y. We remedy this problem by re-defining
Δy = K(y)/N, i.e., taking steps by the additive quantity K(y). By this we obtain the
K-additivity

K(x ⊕ y) = K(x) + K(y). (8)

This is the sought mapping to additivity; therefore, K(x) is called the formal logarithm. We
note by passing this point that due to the continuous limit in the above derivation, the new
rule is only asymptotic:

h∞(x, y) = K−1(K(x) + K(y)) (9)

does not always coincide with the starting rule, h(x, y). Such asymptotic rules, however,
build attractors among all composition rules. The result Equation (6) can also be obtained
by taking the partial derivative of Equation (4) at y = 0, using h(x, 0) = x and integrating.
The asymptotic rule is a reconstruction of the composition rule from its first derivative at a
very small (zero) second argument.

Here, we mention examples. The Tsallis-Abe rule, h(x, y) = x+ y+ axy with a = q− 1,
leads to the formal logarithm K(x) = 1

a ln(1 + ax) and does not change in the asymptotics:
h∞(x, y) = x + y + axy. A more general rule, using a general function of the product of
the composables, h(x, y) = x + y + f (xy) on the other hand leads back to the Tsallis-Abe
rule with a = f ′(0). Triviality requires f (0) = 0, of course. The properties K(0) = 0 and
K′(0) = 1 also do hold.

Lesser-known, more complex rules can also be investigated. For example, h(x, y) =
(x + y)A(xy) + B(xy) results in a logarithm of a rational function for K(x). Instead of
listing more and more examples, however, let us close this section with a more general
comment. Once we change the simple additivity to K-additivity, equivalent to the use of an
associative composition rule, the entropy formula in terms of the probability also changes.

Considering an ensemble in the Gibbs sense, the state i is realized Wi times, while
altogether, W = ∑i Wi instances are investigated. The probability of being in state i
approaches the pi = Wi/W ratio. Since the individual contribution to entropy would be
− ln pi in the classical approach, a composition of W such instances from which the i-th is
repeated Wi times shall be constructed by K-additivity. The logarithm of the probability
being additive for factorizing joint probabilities, a non-additive entropy can be constructed
by the inverse function of the formal logarithm:

Stot,non−add = ∑
i

WiK−1(− ln pi). (10)
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In this way the generalized entropy formula belongs to an ensemble average value (or
expectation value):

K−1(S) = ∑
i

piK−1(− ln pi). (11)

This formula may need a little more explanation. Since we replaced the original additivity
assumption with K-additivity, the additive quantities, reflected in the ln(1/pi) formula
which is additive for factorizing probabilities, must be a K-function of the non-additive
ones. The above Equations (10) and (11) are for the non-additive quantities; therefore, the
inverse function, K−1 is used on the additive log.

With the example of the Tsallis–Abe composition law, we have K(S) = 1
a ln(1 + aS)

and K−1(z) = (eaz − 1)/a. This delivers the Tsallis entropy,

ST = K−1(S) =
1
a ∑

i

(
p1−a

i − pi

)
, (12)

with q = 1 − a as the non-additive, but expectation value-like construction, with the
corresponding Rényi entropy,

SR = K(ST) = =
1
a

ln

(
∑

i
p1−a

i

)
, (13)

as the version additive for factorizing probabilities, but not being an expectation value
(ensemble average).

Consequently, equilibrium distributions when maximizing the entropy or its
monotonous function, K(S), deliver corresponding solutions of

∂S
∂pi

= α + βεi, (14)

while keeping an average energy fixed. Both for the Rényi and Tsallis q-entropy the
resulting canonical distribution becomes a cut power law in the individual energy, εi:

pi =
1
Z

(
1 + a

εi
T

)−1/a
. (15)

In the a → 0 (q → 1) limit the Boltzmann-Gibbs exponential emerges. The factor Z ensures
the normalization, ∑i pi = 1.

3. q Parameter in the Boltzmannian Approach

At a first glance, it seems arbitrary which composition rule, and consequently which
formal logarithm, is to be used in our models. However, the parameters occurring in a
modification of the entropy addition law need some connection to physical reality. In
this section we first extend the familiar textbook derivation of the exponential canonical
distribution by going a step further in the thermodynamical limit expansion and then
compare the result with the cut power-law canonical distribution. This gives rise to a
possible physical interpretation of the parameter q.

Following the classical argumentation, there is a factor in the probability of a sub-
system having energy ε out of the total E occurring as a ration of corresponding phase
space volumes:

ρ(ε) = 〈Ω(E − ε)

Ω(E)
〉. (16)

Here, the averaging is over parallel ensemble copies of the same system, allowing for
microscopical fluctuations in parameters beyond the total energy, E, like particle numbers,
charges, etc. The occupied phase space volumes are connected to the entropy, Ω(E) = eS(E).
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Expanding the expression Equation (16) up to first order in ε � E one arrives at the well
known canonical factor

ρ1(ε) = 〈e−εS′(E)〉 = e−ε〈S′(E)〉 =
1
Z

e−ε/T . (17)

Here Z is a normalization factor ensuring
E∫
0

ρ(ε)dε = E. The temperature is interpreted as

1/T = 〈S′(E)〉. The information about the environment (heat bath) is comprised into this
single parameter, traditionally.

Now we look at the consequences of going one step further, i.e., performing an
O(ε2) expansion:

ρ2(ε) = 〈e−εS′(E)+ε2S′′(E)/2〉 = 1 − ε〈S′(E)〉+ 1
2

ε2〈S′′(E) + S′(E)2〉. (18)

This result is to be compared with the canonical distribution following from the Rényi and
Tsallis entropy, to the Tsallis–Pareto distribution [12,34] to the same order

(
1 + (q − 1)

ε

T

)− 1
q−1

= 1 − ε

T
+

q
2

ε2

T2 . (19)

Term by term comparison between Equations (18) and (19) interprets the parameters T and
q in the Tsallis–Pareto distribution as being

1
T

= 〈S′(E)〉, q
T2 = 〈S′′(E)〉+ 〈S′(E)2〉. (20)

Denoting S′(E) = β as a fluctuating quantity, one uses its variance in the above interpreta-
tion of q, besides the derivative of the temperature dT/dE = 1/C, with C being the total
capacity of the heat bath in the formula 〈S′′(E)〉 = d

dE
1
T = −1/CT2:

q = 1 − 1
C
+ T2Δβ2. (21)

This result allows for q values both smaller and larger than one; the q = 1 remaining a
special choice. Indeed, textbooks [35] suggest that the q = 1 is the only possible choice
and then conclude that TΔβ = 1/

√
C argues for the ”one over square root law” for energy

fluctuations. This argumentation is, however, misleading: the physical situation and size of
the heat bath actually present must determine the value of the parameter q.

4. Optimal Restoration of Additivity

In the present section we shall optimize the choice of K(S) instead of S in estimating
the phase space volumes above in order to achieve qK = 1. This requirement leads
to a differential equation restricting the function K(S). Since according to the Tsallis-
Abe composition law q = 1 is the additive case, seeking for qK = 1 we call restoration
of additivity. This is the best result possible, keeping in mind that the Tsallis-Pareto
distribution is also an approximation in case of finite heat bathes, although one term
improved beyond the traditional Boltzmann–Gibbs exponential.

The canonical statistical factor in this case transmutes to

ρK = 〈eK(S(E−ε))−K(S(E))〉. (22)

Expanding up to (ε2) terms, as in the previous section, with the assumption that the K(S)
function is universal, i.e., independent from the energy stored in the heat bath, we obtain

ρK = 1 − ε〈S′〉K′ +
ε2

2

[
〈S′′〉K′ + 〈S′ 2〉(K′ 2 + K′′)

]
+ . . . (23)
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Comparing this with a Tsallis–Pareto distribution of the same approximation, we obtain
another temperature and different variance parameters, TK and q:

1
TK

= 〈S′〉K′

qK = 〈S′′〉T2

K′ + 〈S′ 2〉
(

1 +
K′′

K′ 2

)
. (24)

The requirement, qK = 1, singles out a K(S) formal logarithm for the entropy composition
rule, which optimizes to the subleading order O(ε2) in general. This results in a simple,
solvable differential equation for F = 1/K′:

qK = − 1
C

F + (1 + T2Δβ2)(1 − F′) = 1. (25)

Here, we again used the fact that 〈S′〉 = 1/T and 〈S′′〉 = −1/CT2. Ordering this equation
to F′ one obtains

F′ +
1/C

1 + T2Δβ2 F =
T2Δβ2

1 + T2Δβ2 . (26)

Such an equation can be solved by quadrature even for complicated functions of the entropy.
The simplest physical system is an ideal gas: in this case, the heat capacity is indepen-

dent of the total entropy, so 1/C is a constant. On the other hand, we may also assume
that the relative variance in temperature, comprised in the term TΔβ = Δβ/〈β〉, is also
a constant with respect to the total entropy. In this simplest case, it is straightforward to
obtain the optimal formal logarithm, K(S) from Equation (26).

Here we present the solution, which contains two parameters:

K(S) =
1
μ

ln
(

1 +
μ

λ
(eλS − 1)

)
. (27)

This ansatz is a “to and back” construction in a K(S) = hμ(h−1
λ (S)) form with hμ(x) =

1
μ ln(1 + μx) being the formal logarithm associated to the Tsallis–Abe composition rule.
The reciprocal inverse of the first derivative of K(S) is obtained as

F(S) =
1

K′(S)
=

μ

λ
+

(
1 − μ

λ

)
e−λS (28)

satisfying the F(0) = 1 condition. Substituting this function and its first derivative into
Equation (26) we conclude that F′ + λF = μ with

μ =
T2Δβ2

1 + T2Δβ2 ,

λ =
1/C

1 + T2Δβ2 . (29)

It is interesting to check some limits of this expression. For μ � λ or in the μ = 0 case,
corresponding to zero fluctuations in the thermodynamical temperature, one obtains

K(S) =
1
λ

(
eλS − 1

)
= C(eS/C − 1). (30)

This generates a non-additive entropy formula

K−1(S) = C ∑
i

pi ln
(

1 − 1
C

ln pi

)
. (31)
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The corresponding canonical distribution is a complicated expression involving Lam-
bert’s function.

In the other extreme, λ = 0, meaning the presence of an infinite heat capacity (ideal)
heat bath, we arrive at

K(S) =
1
μ

ln(1 + μS). (32)

In this case the non-additive entropy formula delivers a Tsallis entropy, cf. Equations (11) and (12),
and the canonical distribution is a Tsallis–Pareto distribution.

It is most intriguing that the choice μ = λ, i.e., stating that the temperature fluctu-
ations are exactly following the inverse square root law, TΔβ = 1/sqrtC; and therefore,
μ = λ = 1/(C + 1), always the Boltzmann–Gibbs formula emerges:

K(S) = S, (33)

and S itself is additive.
One realizes that the balance between ensemble fluctuations and the finiteness of the

heat bath determines which is the optimally additive entropy formula. It is convenient to
use the formal logarithm K(S) instead of S as an additive quantity. Still, the traditional
balance derived from q = 1 (λ = μ) is not always given in physical situations. Some might
find it strange that the parameter q depends on the heat capacity controlling the reservoir.
Here the relation is with the same system’s heat capacity. Analogously, a much simpler
correspondence is true for a fixed volume of photon gas, where C = 3S, since the equation
of state is given by S ∼ E3/4V1/4, stemming from E/V ∼ T4 and S/V ∼ T3.

5. Fluctuations in Phase Space Dimension

One of the most prominent cases when fluctuations are “external”, occurring due to
the way of collecting data and not stemming from the finiteness of the heat bath, is the
study of single particle energy spectra in high energy collisions. Hadronization makes
n particles, event by event a different number, while the total energy shared by them is
approximately constant. This situation is opposite to the energy fluctuations with a fixed
number of particles (atoms).

In this case the phase space to be filled by individual energies has a fluctuating dimen-
sion, while the total energy determining the microcanonical hypersurface is fixed. Then,
depending on the actual probability of making n hadrons in a single collision event, Pn, the
summed distribution of single particle energy, frequently measured by the transverse mo-
mentum for very energetic particles, will differ from the traditionally expected exponential
or Gaussian. In order to dwell on this problem, let us first review how the microcanonical
phase space is calculated at a given total energy, E, and how dimensions for n particles
move in some spatial dimensions.

Phase space is over momenta. Individual energies are functions of momenta according
to the corresponding dispersion relation. A number of such relations look like a power of
the absolute value, so they can be comprised into an Lp-norm:

(
n

∑
i=1

|pi|p
)1/p

≤ R(E) (34)

with pi individual momentum components, altogether n-dimension in phase space and E
total energy. The R(E) function also reflects the dispersion relation between energy and
momenta. For a one dimensional jet E = |�p|, here simply R(E) = E and the L1 norm is to
be used. For nonrelativistic ideal gases E = |�p|2/2m, therefore, R(E) =

√
2mE and the L2

norm is used.
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For extreme relativistic particles p = 1, and R(E) = E measures the volume satisfying

n

∑
i=1

|pi| ≤ E. (35)

The general formula reads as

Ω(p)
n (R) =

Γ(1/p + 1)n

Γ(n/p + 1)
(2R)n. (36)

Originally Dirichlet obtained this formula in a french publication [36]. More contemporary
popularizations are due to Smith and Vamanamurthy [37] from 1989 and Xianfu Wang [38]
from 2005. Wikipedia also has an entry on this formula [39] and a recursive proof in
few lines can be obtained from [40]. A microcanonical constrained hypersurface is the
derivative of the above volume formula against the total energy

G(p)
n (E) =

d
dE

Ω(p)
n (R(E)). (37)

Meanwhile the surface is the derivative against R.
We define a ratio of volumes, and consider the p = 1 case, related to relativistic

particles in a 1-dimensional jet:

r(1)n =
Ω(1)

1 (ε)Ω(1)
n−1(E − ε)

Ω(1)
n (E)

= n
ε

E

(
1 − ε

E

)n−1
. (38)

For normalization we use the pure environmental factor, the above ratio without the single
particle factor:

ρ
(1)
n =

Ω(1)
n−1(E − ε)

Ω(1)
n (E)

=
n

2E

(
1 − ε

E

)n−1
. (39)

This ρ
(1)
n (ε, E) is normalized over an integral in the single-particle phase space. This means

an integral over p between −E and +E, while ε = |p| with the absolute value:

+E∫
−E

ρ
(1)
n dp =

n
2E

+E∫
−E

(
1 − |p|

E

)n−1

dp = 1. (40)

Due to the |p| absolute value expression, this integral is twice of that between 0 and E,
whence the factor 2 in the denominator becomes cancelled.

Once its integral is normalized to 1, also the mixture

ρ(1)(ε; E) =
∞

∑
n=0

Pnρ
(1)
n (ε) (41)

is normalized to 1, provided that the ∑n Pn = 1 sum is also normalized.
Finally, note that the ratio of volumes and energy shells in the 1-dimensional, relativis-

tic case are simply related:

G(p)
n (E) =

d
dE

Ω(p)
n (R(E)) = Ω(p)

n (R(E))
d

dE
ln(Rn), (42)

in the p = 1 (relativistic) L1-norm delivers due to R(E) = E

G(1)
n (E) =

n
E

Ω(1)
n (E). (43)
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So we have G(1)
1 (ε) = 1

ε Ω(1)
1 = 2 and

g(1)n (ε; E) =
G(1)

1 (ε)G(1)
n−1(E − ε)

G(1)
n (E)

=
n − 1

E

(
1 − ε

E

)n−2
. (44)

Finally, we have
r(1)n (ε; E) = ε g(1)n+1(ε; E). (45)

In this case the microcanonical ratio, g(1)n+1 is normalized to 1 for an integral over ε between
0 and E.

For ideal gases, one considers S = ln cn + n ln E, delivering

1
T

=
〈n〉
E

; and
q

T2 =
〈n(n − 1)〉

E2 . (46)

Here, q is actually the measure of non-Poissonity,

q = 1 − 1
〈n〉 +

Δn2

〈n〉2 . (47)

For the negative binomial distribution (NBD) q = 1 + 1/(k + 1), for the Poissonian exactly
q = 1. In hadronization statistics the Tsallis–Pareto distribution extracted from transverse
momentum distributions and the multiplicity fluctuations event by event go hand in
hand [41–43]. Such distributions may be a consequence of dynamical random processes,
too, as it is investigated in the framework of the Local Growth Global Reset (LGGR) model
recently on the master equation level [44], or earlier in the framework of the generalization
of Boltzmann’s kinetic approach and the related H theorem [45–47].

6. Conclusions

In conclusion, we investigated the physical background for applying non-additive
entropy in three steps: (i) we reviewed associative composition rules and the derivation of
their asymptotic version valid in the thermodynamical limit, (ii) we have optimized which
formal logarithm of the entropy, K(S), is to be used in phase space occupation probability
arguments, including but not restricted to the case for Tsallis entropy, and finally, (iii)
we reviewed phase space ratios in high energy jets as an application for superstatistical
fluctuation in the dimensionality of phase space volumes. The coupling of these three
aspects in a particular chain concludes that even ideal gases in a finite heat bath environment
and away from thermal equilibrium can show a certain ambiguity, best removed by using
non-additive entropy formulas.

To show an example, a certain ambiguity for estimating the heat capacity from maxi-
mizing the mutual entropy between observed subsystem and heat bath is discussed in detail
for ideal gases in the Appendix A. We demonstrate in Appendix B that using K(S) instead of
S indeed clears the mismatch between statistical informatics—postulating mutual entropy
maximum in equilibrium—and thermodynamics, obtaining the heat capacity of a subsys-
tem independently of the heat bath, i.e., using the Universal Thermostat Independence
(UTI) principle.
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Appendix A. Ideal Gas with Finite Heat-Bath

First, we describe how a finite heat capacity heat bath influences the heat capacity of
an observed subsystem. The effect stems from maximizing the mutual entropy instead of
the subsystem’s entropy alone.

We consider ideal gases, occupying phase space volumes according to the N-Ball in Lp
norm picture. N is the number of degrees of freedom, or particles, while dimensionality
factorizes. For one-dimensional extreme relativistic particles, the radius is R(E) = E and
one uses the diamond shape, L1-norm. For traditional, nonrelativistic particles the radius is
R(E) =

√
2mE and one uses the spherical, L2-norm.

In both cases the entropy is given as

S = ln(a(N)) + kN ln E. (A1)

We have k = 1 for one-dimensional jets, and k = 3/2 for traditional ideal gases in 3
dimensions. The first derivative wrsp the energy defines the β = 1/T variable:

β ≡ S′(E) = k
N
E

= 1/T. (A2)

The second derivative defines implicitly the heat capacity:

C ≡ dQ
dT

∣∣∣∣
V

=
dE
dT

=
dE

d(1/β)
= kN (A3)

with

S′′(E) = − 1
CT2 = − β2

kN
. (A4)

For a subsystem connected with another system (may be called reservoir if large enough)
not the individual, but the mutual entropy maximum describes the most probable energy
for a subsystem. We have I12 = S(E1, N1) + S(E2, N2)− S(E1 + E2, N1 + N2) and when
fixing E2 and all N-s from that the first derivative,

∂I12

∂E1
= k

N1

E1
− k

N1 + N2

E1 + E2
, (A5)

and the second derivative against E1 is given by

∂2 I12

∂E2
1

= −k
N1

E2
1
+ k

N1 + N2

(E1 + E2)2 . (A6)

Due to ρ(E1) ∼ eI12 , the most probable energy value for the subsystem is obtained from the
vanishing of the first derivative of I12. This occurs at β1 = β12, according to the definition of
β and Equation (A5). At this point from the second derivative, an effective, intercorrelated
heat capacity for the subsystem appears. We have

∂2 I12

∂E2
1

∣∣∣∣∣
max

= −kβ2 N2

N1(N1 + N2)
, (A7)

and from that the effective heat capacity

C1,I12=max =
C1

C2
(C1 + C2) = C1 +

C2
1

C2
. (A8)

Exactly the correction C2
1/C2 is the effect of a finite heat bath reservoir which vanishes in

the thermodynamical limit, C2 → ∞.
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A similar result can be derived when fixing the total energy, E = E1 + E2, and then
looking for the most probable subsystem energy, E1. We get

C1,I12=max = C1 −
C2

1
C

. (A9)

In this case the total system has fixed parameters (energy, heat capacity). Again, in the
thermodynamical limit the correction vanishes.

Appendix B. Universal Thermostat Independence

The above corrections, in one case positive, in another negative, make the concept of
heat capacity ambiguous. In order to avoid this discrepancy, we can follow two strategies:
(i) ignore the problem and restrict to the infinite capacity reservoir limit, or (ii) compensate
for this leading effect near to the maximal probability. Choosing the second strategy is
equivalent with admitting that the original additive concept of mutual entropy has to
be generalized.

Following the second option, we consider the maximum of the mutual K-entropy in-
stead of the original entropy, and the additive quantity associated to a possibly non-additive
entropy, K(S), is constructed in a way that the corresponding heat capacity appears infinite.

It is easy to achieve by choosing K(S) accordingly. All usual quantities, temperature,
heat capacity acquire a K index by doing so and we obtain

1
Tk

=
∂

∂E
K(S) = K′(S)

∂S
∂E

=
K′

T

− 1
CKT2

K
=

∂

∂E
1

TK
=

1
T2

(
−K′′ + (K′)2 1

C

)
. (A10)

Solving it for the K-capacity of heat, we have

1
CK

= − K′′

(K′)2 +
1
C

. (A11)

The universal thermostat independence requires that 1/CK = 0, which is a second order
differential equation for K(S), quoted as the UTI principle in [28,48],

K′′(S)
(K′(S))2 =

1
C

. (A12)

With the boundary conditions K(0) = 0 (for the sake of keeping the third law of thermody-
namics) and K′(0) = 1 (just keeping the Boltzmann constant at its original value kB = 1),
we arrive at a solution for a constant C, independent of S, as being

K(S) = −C ln(1 − S/C). (A13)

Applying now K-additivity with this formula, we require zero mutual K-entropy reflecting
total independence of the energy states of reservoir and subsystem,

K(S1) + K(S2)− K(S12) = 0, (A14)

we derive the Tsallis–Abe composition law. From Equations (A13) and (A14), one writes

− C ln(1 − S1/C)− C ln(1 − S2/C) = −C ln(1 − S12/C). (A15)

From here, a product rule follows,(
1 − S1

C

)
·
(

1 − S2

C

)
=

(
1 − S12

C

)
, (A16)
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which in turn simplifies to

S12 = S1 + S2 −
1
C

S1S2. (A17)

Comparing this with the Tsallis–Abe rule Equation (1) one obtains q = 1 − 1/C. This is
already a part of the result presented in Equation (21). For the total result, previously
known temperature fluctuation can already be counted for, which may or may not under-
or overcompensate this effect.
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Abstract: Several generalizations or extensions of the Boltzmann–Gibbs thermostatistics, based on
non-standard entropies, have been the focus of considerable research activity in recent years. Among

these, the power-law, non-additive entropies Sq ≡ k 1−∑i pq
i

q−1 (q ∈ R; S1 = SBG ≡ −k ∑i pi ln pi) have
harvested the largest number of successful applications. The specific structural features of the Sq

thermostatistics, therefore, are worthy of close scrutiny. In the present work, we analyze one of
these features, according to which the q-logarithm function lnq x ≡ x1−q−1

1−q (ln1 x = ln x) associated
with the Sq entropy is linked, via a duality relation, to the q-exponential function characterizing the
maximum-entropy probability distributions. We enquire into which entropic functionals lead to this
or similar structures, and investigate the corresponding duality relations.

Keywords: generalized entropies; generalized logarithms; duality relations; entropy optimization;
Sq entropies

PACS: 05.90.+m

1. Introduction

Extensions of the maximum entropy principle based on non-standard entropic func-
tionals [1–4] have proven to be useful for the study of diverse problems in physics and
elsewhere, particularly in connection with complex systems [5,6]. These lines of enquiry
were greatly stimulated by research into a generalized thermostatistics advanced in the
late 80s, in which the canonical probability distributions optimize the Sq power-law, non-
additive entropies [7]. The Sq thermostatistics was successfully applied to the analysis of a
wide range of systems and processes in physics, astronomy, biology, economics, and other
fields [8–11]. Motivated by the work on the Sq entropies, researchers also explored the prop-
erties and possible applications of several other entropic measures, such as those introduced
by Borges and Roditi [12], by Anteneodo and Plastino [13], by Kaniadakis [14], and by
Obregón [15]. Recent reviews on these and other entropic forms can be found in [16,17].
These developments, in turn, led to the investigation of general properties of entropic
variational principles, in order to elucidate which features are shared by large families of
entropic forms, or are even universal, and, on the contrary, which features characterize spe-
cific entropies, such as the Sq ones. Several aspects of general entropic variational principles
have been studied along those lines, including, for instance, the Legendre transform struc-
ture [18–20], the maximum entropy–minimum norm approach to inverse problems [21],

Entropy 2022, 24, 1723. https://doi.org/10.3390/e24121723 https://www.mdpi.com/journal/entropy
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the implementation of dynamical thermostatting schemes [22,23], the interpretation of
superstatistics in terms of entropic variational prescriptions [24], and the derivation of
generalized maximum-entropy phase-space densities from Liouville dynamics [25].

Of all the thermostatistics associated with generalized entropic forms, the thermo-
statistics derived form the Sq entropies has been the most intensively studied and fruitfully
applied one. The Sq-thermostatistics exhibits some intriguing structural similarities with
the standard Boltzmann–Gibbs one. The aim of the present contribution is to explore one
of these similarities, within the context of thermostatistical formalisms based on general
entropic functionals. As is well known, the Boltzmann–Gibbs entropy SBG of a normalized
probability distribution can be expressed as minus the mean value of the logarithms of
the probabilities. Or, alternatively, as the mean value of the logarithms of the inverse
probabilities. On the other hand, the probability distribution that optimizes SBG under the
constraints imposed by normalization and by the energy mean value, has an exponential
form, where the exponential is the inverse function of the above mentioned logarithm
function. In a nutshell: the entropy is the mean value of a logarithm (evaluated on the
inverse probabilities), while the maximum-entropy probabilities are given by an exponen-
tial function, which is the inverse function of the logarithm. This structure turns out to
be nontrivial, and, up to a duality condition, is shared by the Sq-thermostatistics. Indeed,
it is possible to define a q-logarithm function, and its inverse function, a q-exponential,
both parameterized by the parameter q, such that the Sq entropy is the mean value of a
q-logarithm (evaluated on the inverse probabilities), while the probability distribution opti-
mizing Sq has a q-exponential form. The alluded duality condition, however, imposes that
the value of the q-parameter associated with the aforementioned q-logarithm should not be
the same as the value of the parameter associated with the q-exponential. Both q-values are
connected via the duality relation q ↔ 2 − q, which is ubiquitous in the Sq-thermostatistics.
In the present work, we shall explore which entropic measures generate similar structures,
linking the entropic functional, regarded as the mean value of a generalized logarithm,
with the form of the maximum-entropy distributions.

This paper is organized in the following way. In Section 2, we provide a brief review of
the Sq-thermostatistical formalism, focusing on the q-logarithm duality relation. In Section 3,
we explore which entropic functionals give rise to structures, and duality relations, similar
to those characterizing the Sq-thermostatistics. More general scenarios are considered in
Section 3. Finally, some conclusions are drawn in Section 4.

2. Sq Entropies, q-Logarithms, and q-Exponential Maximum-Entropy
Probability Distributions

The Sq-thermostatistics is constructed on the basis of the non-additive, power-law
entropy Sq [5] defined as

Sq =
k

1 − q

W

∑
i=1

(
pq

i − pi

)
, (1)

where q ∈ R is a parameter characterizing the degree of non-additivity exhibited by
the entropy, k is a constant chosen once and for ever, determining the dimensions and
the units in which the entropy is measured, and {pi, i = 1, . . . , W} is an appropriately
normalized probability distribution for a system admitting W microstates. In what follows,
we shall assume that k = 1. The limit q → 1 corresponds to the standard Boltzmann–Gibbs
(BG) entropy, that is, S1 = SBG = −k ∑W

i=1 pi ln pi. The power-law entropy Sq constitutes
a distinguished and founding member of the club of generalized entropies, which is
nowadays the focus of intensive research activity [3,4,16].

The q-logarithm function, given by

lnq(x) =
x1−q − 1

1 − q
(x > 0; ln1 x = ln x), (2)
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and its inverse function, the q-exponential

expq(x) =

{
[1 + (1 − q)x]

1
1−q , if 1 + (1 − q)x > 0 ,

0 , if 1 + (1 − q)x ≤ 0
(3)

constitute essential ingredients of the Sq thermostatistical formalism. For the sake of
completeness, it is worth mentioning that sometimes people use an alternative notation

for the q-exponential, given by expq(x) = [1 + (1 − q)x]
1

1−q
+ . The q-logarithm and the

q-exponential functions arise naturally when one considers the constrained optimization
of the entropy Sq [5,9]. Moreover, it is central to the q-thermostatistical theory that the Sq
entropy itself can be expressed in terms of q-logarithms,

Sq = k
W

∑
i=1

pi lnq

(
1
pi

)
= k

〈
lnq

(
1
pi

)〉
. (4)

Note that, for q → 1, the above equation reduces to the well-known one, SBG = k ∑W
i=1 pi ln

(
1
pi

)
.

The gist of the Sq thermostatistics is centered on the optimization of Sq under suitable
constraints. The Sq entropic variational problem can be formulated using standard linear
constraints or nonlinear constraints based on escort probability distributions [26,27]. When
working with more general entropic functionals, it is not well understood what are the ap-
propriate escort mean values to be used, and few or no concrete applications of escort mean
values to particular problems have been developed. Consequently, in order to investigate
and clarify the distinguishing features of the Sq formalism within the context of more gen-
eral entropic formalisms, it is convenient to restrict our considerations to the optimization
of the Sq entropy under linear constraints. The main instance of the Sq variational problem
is the one yielding the generalized canonical probability distribution, which corresponds to
the optimization of Sq under the constraints corresponding to normalization,

W

∑
i=1

pi = 1, (5)

and to mean energy. We assume that the ith microstate of the system under consideration,
which has probability pi, has energy εi. The mean energy is then

E =
W

∑
i=1

pi εi. (6)

Introducing the Lagrange multipliers α and β, corresponding to the constraints of normal-
ization (5) and the mean energy (6), the optimization of Sq leads to the variational problem

δ
[
Sq − α

(
W

∑
i=1

pi

)
− βE

]
= 0, (7)

yielding

pq−1
i =

1
q

[
1 − (q − 1)(α + βεi)

]
. (8)

For later comparison with thermostatistical formalisms based on general entropic forms, it
will prove convenient to recast the above equation as

pq−1
i = 1 + (q − 1)

[
A − B(α + βεi)

]
, (9)

with A = −1/q and B = 1/q. At first glance, it might seem cumbersome to introduce
the parameters A and B, since, within the context of the Sq-thermostatistics, they are
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simple functions of the entropic parameter q. The new parameters, however, will prove
essential when exploring the duality properties exhibited by thermostatitsical formalisms
based on other generalized entropies, and when comparing those properties with the ones
corresponding to the Sq entropy. In those scenarios, the parameters A and B have other
values, depending on the parameterized form of the relevant entropic functionals. Using
the A and B parameters, the maximum Sq entropy probability distribution can be expressed
in terms of a q-exponential, as follows:

pi = expq̃[A−B(α + βεi)] = ln(−1)
q̃ [A−B(α + βεi)], (10)

where
q̃ = 2 − q. (11)

Comparing now the Equation (4) for the entropy, with the Equation (10) for the
probabilities optimizing the entropy, we see that the Sq entropy can be expressed in terms of
a q-logarithm function, while the optimal probabilities are given by an inverse q-logarithm
function (that is, by a q-exponential function). However, the value of the q-parameter that
appears in the first q-logarithm, associated with the entropy, does not coincide with the one,
denoted by q̃, that appears in the inverse q-logarithm defining the optimal probabilities.
This pair of q-values satisfy the duality relation (11). It is important to emphasize that the
duality relation (11) has the property

˜̃q = q. (12)

In other words, the dual of the dual of q is equal to q itself. Note also that, in the Boltzmann–
Gibbs limit, q → 1, the duality relation reduces to q̃ = q = 1. The Boltzmann–Gibbs
thermostatistics, regarded as a particular member of the Sq-thermostatistical family, is self-
dual. The duality relation (12) between the values of the q-parameters characterizing two
q-logarithm functions, can be reformulated as a duality relation between the q-logarithms
themselves. Indeed, one has that

lnq̃(x) = − lnq

(
1
x

)
. (13)

For q → 1, the self-dual condition q = q̃ = 1 is obtained, and the relation (13) reduces to
the well-known property of the standard logarithm, ln(x) = − ln(1/x).

3. Generalized Entropies and Logarithms

Now, we shall consider a generic trace-form entropy SG. It can always be written in
the form

SG =
W

∑
i=1

pi lnG

(
1
pi

)
, (14)

expressed in terms of an appropriate generalized logarithm function lnG(x). The specific
form of the generalized logarithmic function lnG(x) depends on which particular ther-
mostatistical formalism one is considering. For example, in the case of the Sq-based
thermostatistics, lnG(x) is given by the generalized logarithm lnq(x). Note that the
subindex “G” stands for “generalized", and it does not represent a numerical param-
eter. In order to lead to a sensible entropy, the function lnG(x) has to be continuous
and two-times differentiable, has to comply with (x lnG(1/x)) > 0 for 0 < x < 1 and
limx→0(x lnG(1/x)) = limx→1(x lnG(1/x)) = 0, and has to satisfy the concavity require-
ment given by d2

dx2

[
x lnG

(
1
x

)]
< 0.
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One can optimize the entropic measure (14) under the constraints imposed by normal-
ization (5) and by the energy mean value (6). The corresponding variational problem reads

δ
[
SG − α

(
W

∑
i=1

pi

)
− βE

]
= 0, (15)

where α and β are the Lagrange multipliers corresponding to the normalization and the
mean energy constraints. The solution to the variational problem is given by a probability
distribution complying with the equations

1
pi

ln′
G

(
1
pi

)
− lnG

(
1
pi

)
= −α − βεi, (i = 1, . . . , W), (16)

where ln′
G(x) = d

dx lnG(x).
Equation (16) arises from a generic entropy optimization problem. Basically, the opti-

mization of any trace form entropy leads to an equation of the form (16). Here, we want
to consider a particular family of entropies, leading to maximum entropy distributions
satisfying a special symmetry requirement. We want the maximum entropy distribution pi
to be of the form

pi = ln(−1)
G̃

(ξi), (17)

where ξi = A+ B(−α − βεi), with A and B appropriate constants (B > 0), and ln(−1)
G̃

is
the inverse of a generalized logarithmic function lnG̃(x), related to lnG(x) through a duality
relationship. A few clarifying remarks are now in order. First, ξi is, up to the additive and
multiplicative constants A and B, equal to the right-hand side of (16). Second, the constants
A and B depend only on the form of the entropy (14), and not on any details of the system
under consideration, such as the number of microstates W, the values of the microstates’
energies εi, or the values of the Lagrange multipliers α and β. Last, the duality relation
connecting the functions lnG(x) and lnG̃(x) is such that the dual of the dual is equal to the
original function, that is

ln ˜̃G(x) = lnG(x). (18)

Combining Equations (16) and (17), one obtains

1
pi

ln′
G

(
1
pi

)
− lnG

(
1
pi

)
=

1
B
(

lnG̃(pi)−A
)

. (19)

Introducing the constants A = −A/B and B = 1/B, the above equation can be cast in the
more convenient form

1
pi

ln′
G

(
1
pi

)
− lnG

(
1
pi

)
= A + B lnG̃(pi). (20)

For a given duality relation lnG(x) → lnG̃(x), and given values of the parameters A and
B, Equation (20) can be regarded as a differential equation that has to be obeyed by the
generalized logarithmic function lnG(x). For solving the differential equation, one needs
an initial condition, given by the value lnG(x0) adopted by the generalized logarithm at
some particular point x0. We shall assume, as an initial condition, that lnG(1) = 0.

Different forms of the duality relation lnG(x) → lnG̃(x) are compatible with different
forms of the generalized logarithm, and with different forms of the generalized entropy.
In what follows, we shall explore some instances of duality relations, in order to determine
which entropic forms are compatible with them.
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3.1. The Duality Condition Satisfied by the Sq Thermostatistics

Motivated by the Sq-based thermostatistics, we shall first adopt the duality condition

lnG̃(x) = − lnG(1/x), (21)

which is precisely the relation (13) satisfied by the Sq-thermostatistics. Equation (20)
then becomes

1
pi

ln′
G

(
1
pi

)
− lnG

(
1
pi

)
= A − B lnG

(
1
pi

)
. (22)

Therefore, in order to find the form of lnG(x), we have to solve the differential equation

ln′
G(x) =

1
x

[
A + (1 − B) lnG(x)

]
, (23)

with the initial condition lnG(1) = 0. The (unique) solution of Equation (23) is then

lnG(x) = A
(

x1−B − 1
1 − B

)
. (24)

We see that, up to the multiplicative constant A, the only generalized logarithmic function
leading to an entropy optimization scheme compatible with the duality condition (21) is
the q-logarithm

lnq(x) =
x1−q − 1

1 − q
. (25)

The parameter B appearing in (22) coincides with the parameter q of the Sq-thermostatistics.

3.2. The Simplest Duality Relation

We shall now consider the simplest possible duality relation, which is

lnG̃(x) = lnG(x). (26)

In spite of its simplicity, this duality relation is worthy of consideration, because it includes
the standard logarithm (and the corresponding Boltzmann–Gibbs scenario) as a particular case. It is
interesting, therefore, to explore which entropic forms are compatible with the simplest
conceivable condition (26), even if this exploration is not a priori motivated by a generalized
entropy of known physical relevance.

Combining the general Equation (20) with the duality relation (26), one obtains

1
pi

ln′
G

(
1
pi

)
− lnG

(
1
pi

)
= A + B lnG(pi). (27)

Then, we have to solve the ordinary differential equation

1
x

ln′
G

(
1
x

)
− lnG

(
1
x

)
= A + B lnG(x), (28)

or, equivalently,
d lnG

dx
=

1
x

[
lnG(x) + A + B lnG

(
1
x

)]
, (29)

with the condition lnG(1) = 0. At first sight, Equation (29) may look like a standard
ordinary differential equation. It has, however, the peculiarity that in the right-hand side
of (29), the unknown function lnG is evaluated at two different values of its argument:
x and 1/x. This situation is similar to the one that occurs, for instance, with differential
equations describing dynamical systems with delay. In the case of (29), this difficulty can
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be removed by recasting the equation as a pair of coupled ordinary differential equations.
Let us introduce the functions

F(x) = lnG(x),
G(x) = lnG(1/x). (30)

The differential Equation (28) can be reformulated as the two coupled differential equations

dF
dx

=
1
x

[
F(x) + B G(x) + A

]
,

dG
dx

= − 1
x

[
G(x) + B F(x) + A

]
, (31)

with the conditions F(1) = G(1) = 0. To find a solution for (31), we propose the ansatz

F(x) = c1xγ1 + c2xγ2 + c3,
G(x) = c1x−γ1 + c2x−γ2 + c3. (32)

If one inserts the ansatz (32) into the differential Equations (31), one can verify that (32)
constitutes a solution, provided that

γ1 = −γ2 ≥ 0,

c1/c2 = − 1
B

(
1 +

√
1 − B2

)
, 0 ≤ B2 ≤ 1,

c3 = −A/(1 + B), (33)

and
γ =

√
1 − B2, (34)

where γ = γ1 = −γ2. It follows from (33) and (34) that 0 ≤ γ ≤ 1, and that

c2 = −
√

1 − γ

1 + γ
c1. (35)

The relations (33)–(35), together with the initial conditions F(1) = G(1) = 0, lead to

F(x) =
A

1 + B

(√
1 + γ xγ −√

1 − γ x−γ

√
1 + γ − √

1 − γ
− 1

)
, (36)

and

G(x) =
A

1 + B

(√
1 + γ x−γ −√

1 − γ xγ

√
1 + γ − √

1 − γ
− 1

)
. (37)

The solution to the system of differential Equations (31) is completely determined by the
conditions F(1) = G(1) = 0. Therefore, given these conditions, and for 0 ≤ B ≤ 1,
the solution (36) and (37) is unique. Now, the entropy Sγ compatible with the duality
relation (26) is Sγ = ∑i pi lnG(

1
pi
), with lnG(x) = F(x). Therefore, for 0 ≤ B ≤ 1, one has

Sγ =
A

1 + B ∑
i

(√
1 + γ p1−γ

i −√
1 − γ p1+γ

i√
1 + γ − √

1 − γ
− pi

)
, (38)

which, after some algebra, can be recast in the more convenient form

Sγ =
A
2

(√
1 + γ +

√
1 − γ

1 +
√

1 − γ2

)
∑

i

[√
1 + γ

(
p1−γ

i − pi

γ

)
+

√
1 − γ

(
p1+γ

i − pi

−γ

)]
. (39)
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Introducing now the parameters q = 1 − γ, (0 ≤ q ≤ 1) and q∗ = 1 + γ = 2 − q,
(1 ≤ q∗ ≤ 2), the entropy (39) can be expressed as a linear combination of two Sq entropies,

Sγ = K
(√

q∗ Sq +
√

q Sq∗
)

, (40)

where

K =
A
2

(√
q +

√
q∗

1 +
√

q q∗

)
. (41)

In the limit B → 1, which corresponds to γ → 0, q → 1, and q∗ → 1, the generalized
entropy (40) is, up to a multiplicative constant, equal to the Boltzmann–Gibbs entropy SBG.

3.3. More General Duality Relations

It is possible to consider duality relations more general than the ones discussed
previously. One can consider scenarios where the relation between a generalized logarithm
and its dual is defined in terms of a pair of functions h1,2(x), as

lnG̃(x) = h1(lnG(h2(x))), (42)

where the functions h1,2(x) satisfy

h1(h1(x)) = x, and h2(h2(x)) = x. (43)

For example, the duality relation associated with the Sq entropy corresponds to h1(x) = −x
and h2(x) = 1/x, while the duality relation associated with the entropy Sγ corresponds to
h1(x) = h2(x) = x.

Other duality relations can be constructed, for instance, in terms of the Moebius trans-
formations

M(x) =
m1x + m2

m3x + m4
, (44)

with m1m4 − m2m3 �= 0. The inverse of (44) is

M(−1)(x) =
m4x − m2

−m3x + m1
. (45)

Moebius transformations that are self-inverse (that is, transformations coinciding with their
own inverse: M(x) = M(−1)(x)) are candidates for the functions h1,2(x) from which possi-
ble duality relations for generalized logarithmic functions can be constructed. Examples of
self-inverse Moebius transformations are those of the form

M(x) =
m1x + m2

m3x − m1
, (46)

which have m4 = −m1. Notice that, for m1 �= 0, the above form of M(x) depends on only
two parameters, as follows: M(x) = x+(m2/m1)

(m3/m1)x−1 . Another self-inverse Moebius transfor-
mation, not included in the family (46), is the identity function, M(x) = x, corresponding
to m1 = m4 �= 0 and m2 = m3 = 0 (see also [28]). The duality relations corresponding to
the entropic measures Sq and Sγ are both constructed in terms of particular instances of
Moebius transformations. The duality relation associated with the entropy Sq is constructed
with h1(x) = −x and h2(x) = 1/x, which are the self-inverse Moebious transformation cor-
responding, respectively, to m1 = 1, m4 = −1, and m2 = m3 = 0, and to m1 = m4 = 0 and
m2 = m3 = 1. The duality relation for the entropy Sγ is constructed with h1(x) = h2(x) = x,
which correspond to m1 = m4 = 1 and m2 = m3 = 0.
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A generalized logarithmic function lnG(x) defining a trace-form entropy (14), for which
the associated entropic optimization principle leads to the duality relation (42), must satisfy
the differential equation

1
x

ln′
G

(
1
x

)
− lnG

(
1
x

)
= A + B lnG̃(x)

= A + B h1(lnG(h2(x))), (47)

with the condition lnG(1) = 0. For expression (14) to represent a sensible (i.e., concave)
entropy, the generalized logarithm satisfying (47) has to comply with the requirement

d2

dx2

[
x lnG

(
1
x

)]
= −B

d
dx

[
h1(lnG(h2(x)))

]
< 0. (48)

For duality relations more general than the two ones already analyzed by us in detail
(corresponding to the entropies Sq and Sγ), the associated differential Equation (47) has,
presumably, to be treated numerically.

3.4. Duality Relations: The Inverse Problem

One can also consider the following inverse problem. Given a parameterized family
of non-negative, monotonically increasing functions J(x; λ), depending on one or more
parameters (that we collectively denote by λ), find out if the inverse function J(−1)(x; λ) is
related to a generalized logarithmic function defining a sensible entropy (14), and satisfying
a duality relation (42) defined in terms of appropriate functions h1,2(x). The problem is the
following: for the inverse function J(−1)(x; λ), determine if suitable functions h1,2(x) exist,
and identify them. We assume that the integral

I =
∫ 1

0
J(−1)(x′; λ) dx′, (49)

converges.
In order to formulate this inverse problem, we consider a thermostatistical formalism,

based on a generalized entropy, which yields optimizing-entropy canonical probability
distributions of the form

pi = J(ξi; λ), (50)

where ξi = A+ B(−α − βεi). In the latter expression, α and β are, as usual, the Lagrange
multipliers associated with normalization of mean energy, and A and B are constants,
possibly depending on the parameters λ characterizing the function J(x; λ).

The associated entropy SJ can be expressed as

SJ = ∑
i
C(pi), (51)

where the function C(x) is defined as the integral

C(x) =
∫ 1

x

[
J(−1)(x′; λ) − I

]
dx′. (52)

The function C(x) satisfies the following properties,

C(x) > 0, for 0 < x < 1,
C(0) = C(1) = 0,

dC/dx = I − J(−1)(x; λ),
d2C/dx2 = −dJ(−1)(x; λ)/dx < 0, (53)

which guarantee that SJ, defined by (51), is a sensible entropy. For J(x) = exp(x), one
has J(−1)(x) = ln(x), I = −1, C(x) = −x ln(x), and SJ coincides with the Boltzmann–
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Gibbs entropy. If we compare the expression (51) for SJ with the expression (14) for a
generalized entropy in terms of a generalized logarithm, we find that the generalized
logarithm associated with SJ is

ln(J)
G

(
1
x

)
=

1
x

∫ 1

x

[
J(−1)(x′; λ) − I

]
dx′, (54)

or, equivalently,

ln(J)
G (x) = x

∫ 1

x−1

[
J(−1)(x′; λ) − I

]
dx′. (55)

On the other hand, if we compare the form (17) for a generalized canonical distribution,
with the form (50) corresponding to the function SJ , we obtain

ln(J)
G̃ (x) = J(−1)(x; λ). (56)

The present inverse problem consists of determining what type of duality relation, if any,
exists between the functions (55) and (56). It seems that this is a difficult problem, which
has to be tackled in a case-by-case way. As an intriguing example of this inverse problem,
we can consider the one posed by probability distributions related to the Mittag-Leffler
function Ea,b(x) (see [29] and references therein). The Mittag-Leffler function is given, for a
general complex argument z, by the power series expansion

Ea,b(z) =
∞

∑
k=0

zk

Γ(b + ak)
, a, b ∈ C, �(a) > 0, �(b) > 0, z ∈ C , (57)

with Ea(z) ≡ Ea,1(z). Notice that, in the literature [29], the two parameters a and b
characterizing the Mittag-Leffler function are sometimes referred to as α and β.

The Mittag-Leffler function has several applications in physics and other fields. In
particular, it plays a distinguished role in the study of non-standard diffusion processes
involving fractional calculus operators [29]. In the present context, we consider only real
values of the parameters (a, b) and real arguments. A few examples of the Mittag-Leffler
function, and of its inverses, are respectively depicted in Figures 1 and 2, for b = 1 and
different values of the parameter a.
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Figure 1. Plot of the Mittag-Leffler function Ea,b(x), for b = 1 and illustrative values of the parameter
a; E1,1(x) = ex.
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Figure 2. Plot of the inverse Mittag-Leffler function, E(−1)
a,b (x), for b = 1 and specific values of the

parameter a; E(−1)
1,1 (x) = ln x.

In the context of a Mittag-Leffler-based thermostatistical formalism, some possible
choices for the function J(x; λ) would be

J(x; λ) = Ea,b(x), or,
J(x; λ) = Ea,b(x2), (58)

where λ = (a, b) is the set of parameters characterizing the Mittag-Leffler function. For each
of these choices, provided that the values of the parameters λ are such that the appropriate
conditions are fulfilled, it is possible to explore the existence of functions h1,2 for which the
Mittag-Leffler-related generalized logarithms, (55) and (56), satisfy a differential equation
of the form (47). For J(x; λ) = Ea,1(x) = Ea(x), the corresponding generalized entropy
(51) is defined in terms of the function C(x), given by (52). A few examples of C(x), which
we obtained by numerically solving the integrals (49) and (52) for particular values of the
parameter a, are plotted in Figure 3.
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Figure 3. Plotof the function C(x) corresponding to J(x) = Ea(x), for different values of the parameter
a. The function C(x) appears in the definition of a trace-form entropic measure (51), and is given by
Equation (52). For a = 1, one has E1(x) = exp(x) and C(x) = −x ln x.

4. Conclusions

Several generalizations or extensions of the notion of entropy have been advanced
and enthusiastically investigated in recent years. The associated entropic optimization
problems seem to provide valuable tools for the study of diverse problems in physics and
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other fields, particularly when applied to the analysis of complex systems. Among the
growing number of entropic forms that have been advanced, the non-additive, power-
law Sq entropies exhibit the largest number of successful applications. It is clear by now,
however, that the Sq entropies are not universal: some systems or processes seem to be
described by entropic forms not belonging to the Sq family. Given this state of affairs,
it is imperative to investigate in detail the properties of the various entropies, and of
the associated thermostatistics, in order to elucidate and clarify the deep reasons that
make them suitable for treating specific problems. In particular, the structural features
of the Sq thermostatistics are certainly worthy of close scrutiny. In the present work, we
investigated one of these features, according to which the q-exponential function describing
the maximum-entropy probability distributions are linked, via a duality relation, with the
q-logarithm function in terms of which the Sq entropy itself can be defined. We investigated
which entropic functionals lead to this kind of structure and explored the corresponding
duality relations.

The main take-home message of the present work is that there is a close connection
between the aforementioned duality relations, and the forms of the entropic measures.
The Sq thermostatistics exhibits a particular duality connection, which, in the limit of
the Boltzmann–Gibbs thermostatistics, reduces to a self-duality. We proved that there
is no other entropic functional satisfying the duality relation associated with Sq, namely,
Equation (21). This constitutes what may be regarded as a brand new uniqueness theorem
leading to Sq, in addition to those already existing, such as the Enciso–Tempesta theo-
rem [30] and those indicated therein. Assuming other types of duality relation, it is possible
to formulate differential equations that lead to new entropic measures complying with the
assumed duality. We studied in detail a duality relation leading to a differential equation
that admits closed analytical solutions, and corresponds to a new generalized entropy,
which we denoted by Sγ. The duality relations characterizing the entropies Sq and Sγ seem
to be exceptional, in that the concomitant differential equations can be solved analytically.
In many other cases, the differential equations resulting from duality relations have to be
treated numerically. The investigation of these equations, associated with thermostatistical
scenarios different from, or more general than, those based on the entropies Sq and Sγ,
would certainly be worthwhile. It would also be valuable to identify new duality relations
admitting an analytical treatment. The exploration of the ensuing thermostatistical scenar-
ios may suggest interesting new applications of generalized entropies. Another promising
direction for future research is to extend the present study to scenarios involving non-trace-
form entropies [31], or involving escort mean values [27,32]. We would be delighted to see
further advances along these or related lines.
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Abstract: Recent mathematical investigations have shown that under very general conditions, expo-
nential mixing implies the Bernoulli property. As a concrete example of statistical mechanics that
are exponentially mixing we consider the Bernoulli shift dynamics by Chebyshev maps of arbitrary
order N ≥ 2, which maximizes Tsallis q = 3 entropy rather than the ordinary q = 1 Boltzmann-Gibbs
entropy. Such an information shift dynamics may be relevant in a pre-universe before ordinary
space-time is created. We discuss symmetry properties of the coupled Chebyshev systems, which are
different for even and odd N. We show that the value of the fine structure constant αel = 1/137 is
distinguished as a coupling constant in this context, leading to uncorrelated behaviour in the spatial
direction of the corresponding coupled map lattice for N = 3.

Keywords: information shift; Tsallis entropy; Chebyshev maps; fine structure constant

1. Introduction

The foundations of statistical mechanics are a subject of continuing theoretical interest.
It is far from obvious that a given deterministic dynamics can ultimately be described
by a statistical mechanics formalism. The introduction of generalized entropies (such as,
for example, the non-additive Tsallis entropies [1–3]) leads to a further extension of the
formalism relevant for systems with long-range interactions, or with a fractal or compacti-
fied phase space structure, or with non-equilibrium steady states exhibiting fluctuations
of temperature or of effective diffusion constants [4,5]. Generalized entropies have been
shown to have applications for a variety of complex systems, for example, in high energy
physics [6–10] or for turbulent systems [11–13]. In this paper we go back to the basics and
explore the properties of a particular statistical mechanics, namely that of an information
shift dynamics described by Tsallis entropies with the entropic index q = 3 on a compact
phase space.

Our work is inspired by recent mathematical work [14] that shows that the expo-
nential mixing property automatically implies the Bernoulli property, under very general
circumstances. This theorem is of utmost interest for the foundations of statistical mechan-
ics. Namely, by definition the systems we are interested in when dealing with statistical
mechanics relax to an equilibrium fairly quickly (under normal circumstances). That is to
say, we have the exponential mixing property. However, this then implies that somewhere
(on a suitable subset of the phase space) there must exist a Bernoulli shift dynamics in
suitable coordinates.

We will work out one of the simplest example systems that is consistent with a
generalized statistical mechanics formalism, and at the same time is exponentially mixing
and ultimately conjugated to a Bernoulli shift. These are discrete-time dynamical systems
on the interval [−1, 1] as generated by N-th order Chebyshev maps TN [15–18]. Chebyshev
maps are exponentially mixing and are conjugated to a Bernoulli shift of N symbols. We will
review and investigate their properties in detail in the following sections. It is needless to
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say that Chebyshev maps do not live in ordinary physical space but just on a compactified
space, the interval [−1, 1]. The simplest examples are given by the N = 2 and N = 3 cases,
i.e., T2(x) = 2x2 − 1 and T3(x) = 4x3 − 3x. Despite their simplicity, a statistical mechanics
formalism can be constructed as an effective description (see also Refs. [19,20]). In contrast
to ordinary statistical mechanics (described by states where the q = 1 Boltzmann–Gibbs–
Shannon entropy has a maximum subject to constraints), in our case the relevant entropy is
the q = 3 Tsallis entropy Sq. This leads to interesting properties. Our physical interpretation
is that the above information shift dynamics may be relevant in a pre-universe, i.e., in
an extremely early stage of the universe where ordinary space-time has not yet formed.
The dynamics evolves in a fictitious time coordinate (different from physical time) which is
relevant for stochastic quantization [21,22] (this idea has been worked out in more detail
in Refs. [19,23,24]).

While we will work out the properties of Chebyshev maps in further detail in the
following sections, what we mention right now as a prerequisite is that the invariant density
p(x) of Chebyshev maps TN of arbitrary order N ≥ 2 is given by

p(x) =
1

π
√

1 − x2
, x ∈ [−1, 1]. (1)

This density describes the probability density of iterates under long-term iteration. The
maps TN are ergodic and mixing. In suitable coordinates, iteration of the map TN corre-
sponds to a Bernoulli shift dynamics of N symbols. In the following we give a generalized
statistical mechanics interpretation for the above invariant density, identifying Chebyshev
maps as one of the simplest systems possible for which a generalized statistical mechanics
can be defined. The interesting aspect of this low-dimensional simplicity is that q = 3 is
relevant, rather than q = 1 as for ordinary statistical mechanics.

This paper is organized as follows. In Section 2 we derive the generalized canonical dis-
tributions obtained from the q-entropies Sq, and discuss the special distinguished features
obtained for q = 3 (or q = −1 if so-called escort distributions [20,25] are used). In Section 3
we discuss the exponential mixing property, which is fixed by the second largest eigenvalue
of the Perron–Frobenius operator. In fact, we will present formulas for all eigenvalues and
eigenfunctions, thus completely describing the exponential mixing behaviour. In Section 4
we couple two maps, thus gradually expanding the phase space, and investigate how the
coupling structure induces certain symmetries in the attractor, which are different for odd
N and even N. The degeneracy of the canonical distribution (of the invariant density) is
removed by the coupling, and all attractors become N-dependent. Finally, in Section 5 we
consider a large number of coupled maps on a one-dimensional lattice space. This is the
realm of the so-called ’chaotic strings’, which have previously been shown to have relevant
applications in quantum field theory [17,19,23]. We confirm, by numerical simulations, that
the N = 3 string distinguishes a value of the coupling constant given numerically by 1/137,
which numerically coincides with the low-energy limit of the fine structure constant fixing
the strength of electric interaction. A physical interpretation for that will be given, in the
sense that we assume that the chaotic shift dynamics, described by q = 3 Tsallis entropies
in a statistical mechanics setting, is a fundamental information shift dynamics that helps to
fix standard model parameters in a pre-universe, before ordinary space-time is created.

2. Generalized Canonical Distributions from Maximizing q-Entropy Subject
to Constraints

The relevant probability density (1) mentioned above can be regarded as a generalized
canonical distribution in non-extensive statistical mechanics [1]. As it is well known, one
defines for a dimensionless continuous random variable X with probability density p(x)
the Tsallis entropies as

Sq =
1

q − 1
(1 −

∫
p(x)qdx). (2)
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Here q ∈ (−∞, ∞) is the entropic index. The Tsallis entropies contain the Boltzmann–Gibbs–
Shannon entropy S1 = −

∫
p(x) log p(x)dx as a special case for q → 1, as can be easily

checked by writing q = 1 + ε and taking the limit ε → 0 in the above equation.
We now do statistical mechanics for general q. Typically one has some knowledge on

the system. This could be, for example, a knowledge of the mean energy U of the system.
Extremizing Sq subject to the constraint

∫
p(x)E(x)dx = U (3)

one ends up with q-generalized canonical distributions (see, e.g., Refs. [2,12] for a review).
These are given by

p(x) ∼ (1 + (q − 1)βE(x))−
1

q−1 , (4)

where E is the energy associated with microstate x, and β = 1/kT is the inverse temperature.
Of course, for q → 1 one obtains the usual Boltzmann factor e−βE.

Alternatively, one can work with the so-called escort distributions, defined for a given
parameter q and a given distribution p(x) as [20]

P(x) =
p(x)q∫
p(x)qdx

.

The escort distribution sometimes helps to avoid diverging integrals, thus ‘renormalizing’
the theory under consideration, see Ref. [26] for more details. If the energy constraint (3) is
implemented using the escort distribution P(x) rather than the original distribution p(x),
one obtains generalized canonical distributions of the form

P(x) ∼ (1 + (q − 1)βE(x))−
q

q−1 . (5)

Again the limit q → 1 yields ordinary Boltzmann factors e−βE.
Let us now apply a q-generalized statistical mechanics formalism to the chaotic dy-

namics xn+1 = TN(xn) as generated by Chebyshev maps. We may regard these Chebyshev
maps as the simplest possibility to microscopically generate a dynamics that exactly follows
a generalized canonical distribution, and at the same time lives on a compact phase space
[−1, 1]. We might identify E = 1

2 mX2 as a formal kinetic energy associated with the chaotic
fields X, interpreting X as a kind of velocity and m as a mass. Or, we might regard it as a
harmonic oscillator potential, regarding X as a kind of position. We then get, by comparing
Equations (1) and (4),

q = 3

β−1 = −m.

Note that the mass that formally comes out of this approach is negative. A formal problem
of this approach is that the q = 3 Tsallis entropy of the distribution (1) as defined by the
integral Equation (2) does not exist, since the integral

∫ 1
−1(1 − x2)−3/2dx diverges. This

problem, however, can be avoided by proceeding to the escort distribution, which has a
different effective q index. For escort distributions, all relevant integrals are well-defined,
as we will show in the following.

If the escort formalism [20,25,26] is used, then by comparing the functional form of
the invariant density π−1(1 − x2)−

1
2 with Equation (5) we get

q = −1

β−1 = m.

We obtain the result that our shift-of-information model behaves similar to an ideal gas
in the non-extensive formalism but with an entropic index of either q = 3 or q = −1,
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rather than q = 1, as in ordinary statistical mechanics. The ‘velocity’ v is given by the
dimensionless variable v = X, the ‘kinetic energy’ by the non-relativistic formula E = 1

2 mv2,
and the inverse temperature is β = m−1. This non-extensive gas has the special property
that the temperature coincides with the mass of the ’particles’ considered. Alternatively, it
corresponds to a harmonic oscillator potential if X is interpreted as a fluctuating position
variable that lives on a compact interval. The idea can also be worked out for coupled
systems, i.e., for spatially coupled Chebyshev maps on a lattice, and applied to vacuum
fluctuations in quantum field theory, see Ref. [19] for more details.

We can now evaluate all interesting thermodynamic properties of the system using the
escort formalism. Regarding the invariant density of our system as an escort distribution
P(x) = 1

π (1− x2)−
1
2 , we have, by comparing the exponent with that in Equation (5), q = −1.

The original distribution p̂(x) is then given by p̂(x) ∼ P(x)
1
q = P(x)−1 which gives

p̂(x) =
2
π

√
1 − x2, (6)

where the prefactor is fixed by the normalisation condition
∫ 1
−1 p̂(x)dx = 1. For the Tsallis

entropy of the chaotic fields, we obtain from Equations (2) and (6)

Sq[ p̂] =
1
4
(π2 − 2) = Sq[P].

It is invariant under the transformation p̂ → P, which is a distinguished property of the
entropic index q = ±1. For the generalized internal energy we obtain

Uq[P] =
∫ 1

−1
P(x)

1
2

mx2dx =
1
4

m

and for the generalized free energy

Fq = Uq − TSq =
m
4
(3 − π2).

All expectations formed with the invariant measure can be regarded as corresponding
to escort expectations within the more general type of thermodynamics that is relevant
for our chaotically evolving information-shift fields. Whereas ordinary statistical physics
is described by a statistical mechanics with q = 1, the chaotic fields underlying our
information shift are described by q = −1 or q = 3, depending on whether the escort
formalism is used or not. In general, one can easily verify that the entropic indices q = +1
and q = −1 are very distinguished cases: Only for these two cases is the Tsallis entropy of
the escort distribution equal to the Tsallis entropy of the original distribution, for arbitrary
distributions p(x).

An important distinction comes from the non-additivity property of Tsallis entropies.
Consider a factorization of probabilities, i.e., write

p(x) = pI(x)pII(x)

where I and I I are independent subsystems. A general property of Tsallis entropy is

SI,I I
q = SI

q + SII
q − (q − 1)SI

q · SII
q

which is true for arbitrary factorizing probability densities and arbitrary q.
The cases q = −1 and q = 3 are distinguished as they satisfy the relation

SI,I I
q − SI

q − SII
q = (SI

q ± SII
q )2 − (SI

q)
2 − (SII

q )2.
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That is to say, linear entropy differences on the left-hand side are connected with squared
entropy differences on the right-hand side.

We should mention here that the case q = 3, respectively q = −1, is a kind of extreme
case where |q − 1| is not small. Usually, the difference |q − 1| is assumed to be small in
typical applications of Tsallis statistics to cosmology and quantum field theory, see e.g.,
Refs. [27–29] for some recent work in this direction. Note that for our information shift
dynamics, the Kolmogorov–Sinai entropy hKS is still given by the standard Lyapunov
exponent hKS = log N > 0 as we have a strongly chaotic dynamics for which everything
can be calculated analytically since the invariant density is known. This means there is on
average a linear growth of information in each iteration step [20]. All n-point higher-order
correlation functions of the dynamics can be calculated by implementing a graph-theoretical
method developed in Ref. [16]. The deformation from ordinary statistical mechanics is
visible in the shape of the invariant density, which strongly differs from a Gaussian, as
it is described by a q-Gaussian with q = 1 ± 2. This anomaly is due to the fact that the
statistical mechanics we consider has as a phase space a compactified space—it simply lives
on the interval [−1, 1]. Our physical interpretation is that this information shift dynamics
is not living in the ordinary space-time of the current universe but describes a pre-universe
dynamics on a compactified space. Only later, when ordinary space-time unfolds, does
q start getting closer to 1, because the available phase space then becomes much bigger
and the many more degrees of freedom will start to contribute. We may assume that
there is a complex transition scenario from q = 3 to q = 1 on that way towards ordinary
statistical mechanics.

3. Relaxation Properties of Chebyshev Dynamical Systems

Formally, the Chebyshev maps are a family of discrete dynamical systems defined by

xn+1 = TN(xn), n = 0, 1, 2, . . . , (7)

where
TN(x) = cos(N arccos x), x ∈ [−1, 1], N = 2, 3, 4, . . . , (8)

which can be written as polynomials, for example,

T2(x) = 2x2 − 1,

T3(x) = 4x3 − 3x,

T4(x) = 8x4 − 8x2 + 1,
...

(9)

They are proven to be topologically conjugated to tent-like maps via the conjugacy function
h(x) = 1

π arccos(−x), and as a consequence, they are conjugated to Bernoulli shifts of
N symbols. Furthermore, one can show that the (higher-order) correlation functions of
Chebyshev maps are vanishing identically, except for special sets of tuples described by
appropriate N-ary graphs [15,16], which is a distinguished feature compared to other maps
conjugated to a Bernoulli shift.

The transfer (or Perron–Frobenius) operator L for a given map describes the time
evolution of a distribution of points characterised by a density function. Consider the
eigenvalue equation Lρ = λρ: if we write an initial distribution as a linear combination of
eigenfunctions of L, then the time evolution of the distribution is just applications of the
(linear) transfer operator, which is simply multiplying the eigenfunctions in the expansion
of the initial density with the corresponding eigenvalues.

For a one-dimensional discrete dynamical system T the Perron–Frobenius operator
is given by Lρ(y) = ∑x∈T−1(y)

ρ(x)
|T′(x)| , where T′ denotes the derivative of the map T and
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∑x∈T−1(y) is summing over all the preimages of a point y. It was shown [15] that for

Chebyshev maps T = TN , we have Lρ(n)(x) = λ(n)ρ(n)(x), n = 0, 1, 2, . . . with

λ(n) = N−2n,

ρ(n)(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
π
√

1−x2 B2n

(
1

2π arccos(−x) + 1
2

)
if N = 2, 4, . . . is even;⎧⎨

⎩ρ(n,1)(x) = 1
π
√

1−x2 B2n

(
1
π arccos(−x)

)
ρ(n,2)(x) = 1

π
√

1−x2 E2n−1

(
1
π arccos(−x)

) if N = 3, 5, . . . is odd;

where Bn(x) and En(x) are the Bernoulli and Euler polynomials, respectively. The graphs
of the first few eigenfunctions are shown below. They form a basis of the functional space
under consideration.

The invariant density of the Chebyshev map TN is the eigenfunction of the transfer
operator L associated with the unit eigenvalue, with λ(0) = 1 we recover Equation (1):
ρ(0)(x) = 1

π
√

1−x2 = p(x). The graph can be found in blue in Figure 1a or Figure 1b.

(a) (b) (c)
Figure 1. First five eigenfunctions of the transfer operator L for Chebyshev maps TN (N ∈ N≥2) with
(a) even N, and (b,c) odd N. Each inset captures the graph close to the origin.

The remaining eigenvalues are related to relaxation times of the dynamical system
and in particular, the second one λ(1) = N−2 < 1 characterises the mixing rate in the
following sense:

Consider an arbitrary initial distribution ρ0(x) in a suitable functional space, it can
then be expressed as a linear combination of the eigenfunctions of L

ρ0(x) =
∞

∑
i=0

ciρ
(i)(x),

where the ci are some real coefficients. Applying the transfer operator L m times gives

ρm(x) = Lmρ0(x) =
∞

∑
i=0

ci(λ
(i))mρ(i)(x) = c0 p(x) + Rm,

where p(x) is the invariant density and Rm := ∑∞
i=1 ci(λ

(i))mρ(i)(x) denotes the sum of
the remaining terms. Since |λ(i)| = N−2i < 1 for all i = 1, 2, . . . and N ∈ N≥2, we have
Rm → 0 as m → ∞. The decay of Rm will be dominated by the second largest eigenvalue.
In other words, λ(1) determines the rate of approaching the equilibrium state (or invariant
density) p(x).

The exponential mixing property of a map means that an arbitrary density approaches
the invariant density exponentially fast: |ρm(x)− p(x)| ∼ e−rm, where r−1 is referred to as
relaxation time and it is related to the second largest eigenvalue λ(1) by e−r = |λ(1)| [20]. In
our case we have λ(1) = N−2 and hence the relaxation time for the Chebyshev map TN is
given by r−1 = (2 ln N)−1.
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4. Symmetries in the Attractors of Coupled Chebyshev Map Systems of Small Size

We have shown in the previous section that the invariant density of a Chebyshev map
TN is independent of the order N ∈ N≥2. We will now couple the maps [17–19,23,30,31].
The independence of N will be removed by the coupling and all the attractors will become
N-dependent.

Consider a one-dimensional lattice of size J ≥ 2 with periodic boundary conditions,
and on each lattice site we impose an identical Chebyshev dynamics. The simplest coupling
scheme is the nearest-neighbour coupling and it is described as follows:

x(j)
n+1 = (1 − c)TN(x(j)

n ) +
c
2

[
TN(x(j−1)

n ) + TN(x(j+1)
n )

]
, (10)

where the superscripts j = 1, 2, . . . , J and subscripts n = 0, 1, 2, . . . of the dynamical variable
x denote the spatial position of the lattice site and the number of time steps of iterations,
respectively, and c ∈ [0, 1) is the coupling strength.

It is usually assumed that for a very weak coupling, ergodicity still holds if the
uncoupled system is ergodic. It is still an open mathematical question whether the coupled
Chebyshev systems are ergodic or not for a range of the coupling strength for a given order
N. However, we can numerically investigate their behaviour for a large time.

For a system of two (J = 2) coupled TN maps, Figure 2 shows the attractors and the
associated probability measures (in colour) for N = 2, 3, 4 and 5 with various values of
the coupling strength c. In general, the attractor shrinks to the diagonal (x(1) = x(2)) as
the coupling strength c increases, where the system achieves a completely synchronized
state, before which spikes (small regions in red) occur at various c values, indicating high
concentrations of probability; a pair of symmetric islands implies that the two lattice sites
have opposite-sign dynamics (x(1)x(2) < 0).

Apart from their intricate and complicated structures, one notices that for odd N,
the attractor is symmetric also with respect to the anti-diagonal x(1) = −x(2) while for even
N this symmetry is not present. This is simply due to the fact that TN(x) is an odd function
when N is odd: As TN(−x) = −TN(x), the coupled map Equation (10) is invariant if we
multiply the variables by −1, while this is not true for even N. The videos for Figure 2,
showing the dynamics of the attractor when the coupling strength c is slowly changed, are
available online [32].

Figure 3 shows similar symmetry behaviour for a system of three (J = 3) coupled
TN maps of order N = 2, 3, 4 and 5 with some arbitrarily chosen coupling strength c, as
indicated in each caption. Each three-dimensional attractor is projected onto the (x(1), x(2))-
plane, in other words, the marginal density

∫ 1
−1 ρ(x(1), x(2), x(3))dx(3) is shown.

In Refs. [19,23] four types of coupled map systems were introduced for applications in
stochastically quantized field theories. They differ from the current model (Equation (10),
so-called forward diffusive coupling) by changing the sign of the second term (antidiffusive) or
replacing TN(x(j±1)

n ) by x(j±1)
n (backward coupling, taking into account the propagation time

along the lattice). All of them have interesting physical applications, but in this paper we
solely focus on the model Equation (10). In the next section, we show that in this simple
model of coupled information shifts there might be a deep connection to a fundamental
constant of particle physics—the fine structure constant. For more details on this type of
approach fixing standard model parameters, see Refs. [19,23].
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 2. Probability densities on attractors of two coupled T2 (row 1), T3 (row 2), T4 (row 3) and T5

(row 4) systems, with different coupling strengths c (indicated in each caption). The x- and y-axes
intervals are x(1) ∈ [−1, 1] (the value increases horizontally from left to right) and x(2) ∈ [−1, 1] (the
value increases vertically from top to bottom). The colour codes show the averaged probability of
10,000 trajectories, randomly chosen initially, each iterated for 10,100 (−100 transient) time steps.
The colour coding is in log scaling for a better representation; dark blue indicates lower probability
and dark red indicates higher probability; each heatmap uses 200 × 200 bins. Videos of the shown
dynamics are available online https://sites.google.com/view/jinyan-cmls/home (accessed on 25
October 2022). (a) T2: c = 0.027, (b) T2: c = 0.1, (c) T2: c = 0.12, (d) T2: c = 0.22, (e) T3: c = 0.027,
(f) T3: c = 0.093, (g) T3: c = 0.12, (h) T3: c = 0.29, (i) T4: c = 0.027, (j) T4: c = 0.1, (k) T4: c = 0.29,
(l) T4: c = 0.35, (m) T5: c = 0.027, (n) T5: c = 0.093, (o) T5: c = 0.29, (p) T5: c = 0.35.

(a) (b) (c) (d)

Figure 3. Probability densities on attractors of three coupled TN systems projected onto the (x(1), x(2))-
plane of the full (x(1), x(2), x(3))-space (i.e., marginal densities are shown). The value of the coupling
strength c is indicated in each caption. The axes and colour coding are the same as in Figure 2.
The averaged probability is obtained from 500 trajectories, randomly chosen initially, each iterated
for 300 (−100 transient) time steps. (a) T2: c = 0.22, (b) T3: c = 0.35, (c) T4: c = 0.3, (d) T5: c = 0.35.
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5. Vanishing Spatial Correlations Related to the Fine Structure Constant

For applications in quantum field theory and high energy physics it is meaningful to
extend the coupled map system to a larger size, and ultimately to take the thermodynamic
limit J → ∞.

In this section we numerically study the spatial nearest-neighbour correlations (SNNC)
of the system described by Equation (10), and show that the value of the fine structure
constant is distinguished as a coupling constant for which the SNNC (with local T3 maps)
vanishes, implying that the underlying dynamics is uncorrelated in the spatial direction,
thus achieving maximal randomness.

The spatial nearest-neighbour correlation (SNNC) for the coupled map system (10) of
size J (large) is defined as

SNNC := lim
K→∞

1
KJ

K

∑
n=1

J

∑
j=1

x(j)
n x(j+1)

n ,

where the superscripts j and subscripts n of x denote the lattice location and iteration times,
respectively, as previously.

Here we choose the local Chebyshev map TN of order N = 3. The reader can refer
to Refs. [15,19] for results on other orders. Figure 4 shows our results for SNNC as a
function of the coupling c, as obtained from new numerical simulations. One notices
in Figure 4a that for the coupling strength c being very small, there is a zero of SNNC
around c ∈ [0.0072, 0.0074], and by magnifying this region in Figure 4b with higher pre-
cision, we can observe that the zero is located at a particular value c∗. Our simulations
were repeated 11 times for different random initial conditions and the averaged result
is c∗ = 0.0073084(48), where the statistical error is estimated from the small deviations
that are observed for each of the 11 runs. This value is in good agreement with the nu-
merical value of the fine structure constant αel ≈ 1/137 ≈ 0.00730 as observed in nature.
In fact, the fine structure constant αel(E) is a running coupling constant and depends on
the energy scale E considered [19]. Our numerical results are consistent with the range
me � E � 3me, where me is the electron mass. Our simulations were performed on lattices
of size J = 50,000 with periodic boundary conditions. The iteration time for each run was K
= 50,100, with 100 initial iterations discarded to avoid transients. At smaller lattice sizes J,
we observe a small tendency of the zero c∗ to decrease with the increasing lattice size, so
there may also be tiny systematic errors due to the finite lattice size used in our simulations.

(a) (b)
Figure 4. The graph of spatial nearest-neighbour correlation (SNNC) for coupled 3rd-order Cheby-
shev maps (T3) as a function of the coupling strength c ∈ [0, 1). The space×time size for the first plot
is 1000 × 1100(−100 for transient), and for the second plot is 50,000 × 50,100 (−100); all initial points
are randomly chosen from a uniform distribution in the interval [−1, 1]. (a) SNNC for c ∈ [0, 1),
(b) zoomed-in for c ∈ [0.0072, 0.0074].
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The general idea of this approach is that in a pre-universe, before the creation of a
4-dimensional space-time, the coupled information shift dynamics is already evolving
and fixing standard model parameters, such as the fine structure constant, as states of
maximum randomness (realized as a state of zero SNNC), given the constraint that we
have a deterministic (chaotic) dynamics on microscopic scales.

More extensive numerical simulations can in principle be performed on supercomput-
ers to locate the exact numerical value of c∗, making the result more precise. Within the
precision obtained in our simulations, the coupled Chebyshev system (with local T3 maps)
gives a possible distinction of a fundamental constant of particle physics, by making the cou-
pled chaotic system uncorrelated: for c = c∗, the deterministic system appears completely
random (in the spatial direction) in the sense of vanishing nearest-neighbour correlations.

Of course, one might argue that perhaps the value of the zero-crossing in Figure 4b
is just a random coincidence, i.e., it just by chance happens to coincide with the observed
value of the fine structure constant. However, coincidences with other values of standard
model coupling constants (weak and strong interactions) were also observed for other types
of chaotic strings, see Refs. [19,23,24] for more details. Thus, a pure random coincidence of
all these observed values appears quite unlikely, see Ref. [19] for quantitative estimates of
the likelihood.

One can also study in a similar way the temporal nearest-neighbour correlations
(TNNC), see Ref. [15], and also other higher-order statistics. Our results seem to indi-
cate that the distinction comes only from the spatial two-point correlation function, not
from other types of higher-order correlation functions.

6. Conclusions

In this paper we have considered an information shift dynamics that is deterministic
and chaotic, and which maximizes Tsallis q = 3 entropy in a generalized statistical me-
chanics formalism. It is, in a sense, the simplest example of a low-dimensional statistical
mechanical system that lives on a compact phase space and is ergodic and mixing. We
consider it as a candidate dynamics for a pre-universe information shift dynamics that
has the ability to fix standard model parameters (such as the fine structure constant) if a
coupled version is considered.
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Abstract: Non-standard thermostatistical formalisms derived from generalizations of the Boltzmann–
Gibbs entropy have attracted considerable attention recently. Among the various proposals, the
one that has been most intensively studied, and most successfully applied to concrete problems
in physics and other areas, is the one associated with the Sq non-additive entropies. The Sq-based
thermostatistics exhibits a number of peculiar features that distinguish it from other generalizations
of the Boltzmann–Gibbs theory. In particular, there is a close connection between the Sq-canonical
distributions and the micro-canonical ensemble. The connection, first pointed out in 1994, has been
subsequently explored by several researchers, who elaborated this facet of the Sq-thermo-statistics
in a number of interesting directions. In the present work, we provide a brief review of some
highlights within this line of inquiry, focusing on micro-canonical scenarios leading to Sq-canonical
distributions. We consider works on the micro-canonical ensemble, including historical ones, where
the Sq-canonical distributions, although present, were not identified as such, and also more resent
works by researchers who explicitly investigated the Sq-micro-canonical connection.

Keywords: generalized entropies; micro-canonical ensemble; Sq non-additive entropies

1. Introduction

To speak about things, it is often useful to have names for them. Otherwise, one faces
a plight similar to that of Garcia Marquez’s celebrated Macondo characters, who lived
when “the world was so recent that many things lacked names, and in order to indicate them it
was necessary to point” [1]. One of the tasks of scientists is to identify and baptize things,
including abstract mathematical objects, that deserve to have a name. The probability
distributions, nowadays called q-exponentials and q-Gaussians (q-distributions, for short),
constitute nice illustrations of physically relevant mathematical objects that, for a long
time, lacked a deserved name. Since the very inception of statistical mechanics, the q-
distributions are discernible in the scientific literature. These distributions are closely
related to the micro-canonical ensemble, and are central to some standard derivations of the
Gibbs canonical probability distribution from the micro-canonical one. The relevance of the
q-distributions, however, remained unrecognized for more than a century. The unnoticed
distributions remained unnamed.

In 1988 Tsallis advanced a thermo-statistical formalism based on the non-additive
entropy Sq, characterized by the parameter q [2]. The new formalism soon attracted the
attention of a few adventurous theoreticians because of its mathematical elegance and its
physically appealing features. Then, after some concrete applications were identified in the
early and mid 1990s, research activity on the Sq-thermo-statistics increased dramatically,
and the field expanded in myriad new directions [3]. In particular, the connection with
the micro-canonical ensemble describing finite systems, discovered in 1994 [4], established
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a direct link between Tsallis theory and some basic ideas of statistical mechanics dating
from the very beginnings of this branch of physics. It became clear that the probability
distributions (or densities) optimizing the Sq entropy were already present in some early
works by the founding fathers of statistical mechanics, as well as in some modern textbooks.
Nowadays, those distributions, first identified as important in their own right by Tsallis in
1988, are endowed with well-deserved short, catchy names: q-exponentials and q-Gaussians
(the latter are special instances of the former).

The link between the micro-canonical ensemble and either the q-exponential or q-
Gaussians has been, since 1994, investigated by several researchers, from diverse points of
view. The aim of the present effort is to provide a brief review of this subject, summarizing
its historical background, and discussing recent developments.

This paper is organized in the following way. In Section 2, we describe briefly the Sq-
thermo-statistical formalism and the probability distributions that optimize the Sq entropy.
The basic connection between the Sq-thermostatistics and the micro-canonical ensemble is
reviewed and explained in Section 3. In Section 4, we provide some historical background,
on works prior to 1994, where the q-exponential related to the micro-canonical ensemble
can be identified. Recent developments on these matters are reviewed in Section 5. Finally,
some concluding remarks are given in Section 6.

2. Probability Distributions Optimizing the Sq Non-Additive Entropies

Generalizations of the maximum entropy principle based on non-standard en-
tropies [5–11] have been applied to the study of a variety of systems and processes in
physics and other fields, especially in relation to complex systems [3,12,13]. This line of en-
deavor started in earnest around the mid and late 1990s, stimulated, to a large extent, by the
early applications of a generalized thermostatistics advanced by Tsallis in 1988. Within the
Tsallis proposal, the canonical probability distributions arise from the optimization of the
Sq non-additive entropies [2]. The Sq-based thermostatistics has been applied successfully
to diverse fields, including physics, astronomy, and biology, among various others [14–19].
Of all the thermo-statistics derived from generalized entropic forms, the thermo-statistics
associated with the Sq entropies has been the one that attracted more attention and the one
that generated the largest and most diverse set of fruitful applications. In this section, we
shall briefly review the main features of the Sq-thermo-statistics.

The Sq-thermo-statistics is derived from the non-additive, entropy Sq [3] which is
given by the expression

Sq =
k

q − 1

W
∑
i=1

(
pi − pq

i

)
, (1)

where the parameter q determines the degree of non-additivity exhibited by the entropy, the
constant k determines both the dimensions and the units in which the entropy is measured,
and {pi, i = 1, . . . ,W} constitutes a set of normalized probabilities associated with a
system that has W microstates. Here, we assume that k = 1. In the limit q → 1, the
standard Boltzmann–Gibbs entropy is recovered: S1 = −k ∑W

i=1 pi ln pi = SBG. Central to
the Sq thermo-statistical formalism are the q-logarithm and the q-exponential functions.
The q-logarithm is defined as

lnq(x) =
1 − x1−q

q − 1
, (2)

and its inverse function, the q-exponential, is given by

expq(x) = [1 + (1 − q)x]
1

1−q
+ , (3)

where

[1 + (1 − q)x]
1

1−q
+ =

{
[1 + (1 − q)x]

1
1−q , if 1 + (1 − q)x > 0 ,

0 , if 1 + (1 − q)x ≤ 0 .
(4)
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The q-logarithm and the q-exponential functions are inextricably linked to the con-
strained optimization of the Sq entropies [3]. It is worth mentioning that the Sq entropy
itself can be expressed in terms of q-logarithms,

Sq = k
W
∑
i=1

pi lnq(1/pi) = k
〈

lnq(1/pi)
〉

. (5)

In the limit q → 1, the above expression coincides with the well-known one,
SBG = k ∑W

i=1 pi ln(1/pi).
The Sq thermo-statistics revolves around the optimization of the entropic form Sq

under appropriate constraints. The concomitant variational problem can be formulated in
terms of standard linear constraints, or in terms of power-law nonlinear constraints related
to escort distributions [3]. For our present purposes, which are to consider some connections
between the Sq formalism and the micro-canonical ensemble, it is convenient to consider
standard linear constraints. The use of linear constraints also makes it easier to consider
more general entropic functionals, for which it is still not well understood what type of
escort mean values should be used. Sq-based canonical probability distribution is obtained
when the Sq entropy is optimized under the constraints imposed by normalization,

W
∑
i=1

pi = 1, (6)

and by the system’s mean energy. If the ith microstate of the system has energy εi and
probability pi, the mean energy is given by

E =
W
∑
i=1

pi εi. (7)

We assume that the energies of the system are bounded from below, and that for all
states, εi ≥ 0. The optimization of the entropy Sq under the constraints (6) and (7) leads to

δ
[
Sq − α

(
W

∑
i=1

pi

)
− βE

]
= 0, (8)

where α and β are the Lagrange multipliers associated with the constraints of normaliza-
tion (6) and the mean energy (7). It follows from (8) that

pq−1
i =

1
q

[
1 − (q − 1)(α + βεi)

]
, (9)

and

pi =

(
1
q

) 1
q−1 [

1 − (q − 1)(α + βεi)
] 1

q−1

+
, (10)

which constitutes the Sq-canonical probability distribution. The probabilities (10) can be
recast as

pi = C
[
1 − (q − 1)β̃εi)

] 1
q−1

+
, (11)

where C =
[(

1
q

)
β

1− (q−1)α

] 1
q−1 and β̃ = β

1− (q−1)α . Expression (11) for the Sq-canonical
probabilities coincides with the one obtained by Tsallis in his seminal paper of 1988 [2]
(compare (11) with Equation (12) from [2], making the identifications β̃ → β and C → 1/Zq).
In what follows, we shall use expression (11), focusing on scenarios satisfying q > 1 and
β̃ > 0, which, as we shall see, are related to the micro-canonical ensemble. It is also worth
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emphasizing that the probabilities (11) can be expressed in the standard q-exponential
form, as

pi = C expq̃

[
−β̃εi

]
, (12)

where
q̃ = 2 − q. (13)

That is, the expression (11) constitutes just a particular way of parameterizing a q-
exponential probability distribution. Since, as we already explained, we are going to use
the parameterization (11), all the q-values mentioned in this review correspond to this
parameterization. In order to compare our q-values with those of the authors, who use
the parameterization (12), one has to apply the relation (13). In what follows, when we
use (11) or (12), we shall drop the tilde from β̃. When deriving (11), we considered a set of
discrete energy levels. In the case of classical Hamiltonian systems with a Hamiltonian H
and continuous phase space, the optimization of the Sq entropy under the normalization
and mean energy constraints leads to a phase space Sq-canonical probability density of
the form

F (ω) = C
[
1 − (q − 1)βH(ω)

] 1
q−1

+
, (14)

where ω = (qi, q2, . . . ; p1, p2, . . .) denotes the set of generalized coordinates and
conjugate momenta.

3. The Micro-Canonical Path towards the Sq-Canonical Distribution

Now, we shall review how the Sq canonical distribution can arise from the micro-
canonical ensemble. We shall consider a composite system A + B consisting of two weakly
coupled subsystems A and B. The subsystem A has energy levels εi, i = 1, 2, . . .. The
“total” system A + B is described by the Gibbs micro-canonical ensemble, and has a total
energy lying in the interval (ET − Δ, ET + Δ) with Δ << ET . The level distribution of
subsystem B is assumed to be quasi-continuous. Under these assumptions, it is possible to
show that, if the number of states of system B having energies less or equal to E grows as a
power of E, then the marginal probability distribution associated with subsystem A has the
same form as the Sq-canonical distribution (11) (or, equivalently, as (12)).

The proof of the above statement is based on the fact that the probability pi of finding
the system A in a particular state i with energy i is proportional to the total number ν of
configurations of the complete system A + B that are compatible with the state of affairs.
In order to determine ν, we introduce the assumption, already mentioned, that the number
N (E) of states of system B having energies less or equal to E complies with the power law,

N (E) ∝ Eη , (15)

The above power law implies that the number of states of system B having energies
within the range (E − Δ, E + Δ) is proportional to

2ΔEη−1, (16)

from which it follows that the number ν of configurations of the total system A + B
compatible with finding A in a state with energy εi satisfies,

ν ∝ (ET − εi)
η−1. (17)

It is plain from the above relation that the probabilities pi to find the system A is in its
different states i = 1, 2, . . ., comply with

pi
pj

=
(ET − εi)

η−1

(ET − εj)η−1 =
[1 − (εi/ET)]

η−1

[1 − (εi/ET)]η−1 . (18)
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After introducing a normalization factor C, defined by the relation

C−1 = ∑
i
[1 − (εi/ET)]

η−1, (19)

the probabilities pi, associated with the states of system A, can be finally cast as

pi = C [1 − (εi/ET)]
η−1. (20)

Setting now

q =
η

η − 1
, (21)

and
β =

η − 1
ET

, (22)

it follows that the marginal probability distribution describing the system A has the same
form as the Sq-canonical distribution, given by (11) (or, alternatively, by (12)).

The main assumptions made in the above arguments can be summarized as follows:

• We have two weakly interacting systems, A and B, jointly described by the micro-
canonical ensemble.

• The energy level distribution of subsystem B is quasi-continuous, and the number of
states of system B with energy less than or equal to E grows as a power Eη .

Some comments are in order with regards to the second assumption. First, systems
complying with that assumption are not rare. Systems such that the number of states grows
with a power η of the system’s energy can be realized in a number of ways. Particular
examples are the following: a system B consisting of N quantum harmonic oscillators,
for which one has η = N; a set of N free non-relativistic quantum particles moving in a
D-dimensional box, for which η = DN/2; and a system of N rigid, quantum plane rotators,
for which η = N/2. As can be appreciated in these examples, in order to exhibit the desired
behavior, B has to be finite. If one interprets B as a heat bath, it follows that one of the
physical scenarios leading to the Sq-canonical distribution is the one corresponding to
systems in equilibrium with a finite heath bath. This is, indeed, a sensible interpretation.
The finite-bath interpretation is not, however, essential for our present purposes, and
we shall not emphasize it. In order to establish the connection between the Sq-canonical
distribution and the micro-canonical ensemble, it is enough to consider a system consisting
of two weakly coupled subsystems, in which one of the subsystems (our system B) is such
that the number of states grows as a power of energy.

Notice that in all the above-mentioned instances of a system B for which the number
of states depends on E according to the appropriate power-law behavior, the exponent
η is proportional to the number N of constituents of B. If one lets N → ∞ and ET → ∞,
keeping the quotient ET/N constant, one also has η → ∞, with η/ET constant. It can be
verified that, if one takes that limit, then q goes to unity, and the probability distribution
associated with system A becomes the standard canonical exponential one,

pi =
1
Z

exp(−βεi), (23)

where
Z = ∑

i
exp(−βεi). (24)

If B is interpreted as an infinite heath bath (resulting from taking the thermodynamic
limit N → ∞ and ET → ∞), the above argument is, essentially, the one provided in
many textbooks in order to derive the Gibbs canonical distribution (23). In particular, this
is the case in Feynman’s celebrated lectures on statistical mechanics [20] (for instance,
q-distributions are clearly identifiable in page 4 of [20], although they are not explicitly
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parameterized, nor referred to, as “q-distributions”, nor are they, for that matter, given
any specific name). The q-distributions appear and play a central role in these derivations,
although this fact usually remains unnoticed because the connection with the Sq-based ther-
mostatistics is not recognized. Since 1994, the connection between the sq-thermo-statistics
and the micro-canonical ensemble has been investigated by several researchers. Baranger,
an outstanding contributor to Sq-thermo-statistics, and an influential commentator on
the field [3], hailed the Sq-canonical-micro-canonical connection as a key ingredient in
answering the question “Why Tsallis Statistics?”. In a paper published in 2002, Baranger
re-visited the argument advanced in [4] and made the bold conjecture that the argument
may be extended beyond equilibrium scenarios, helping to explain the phenomenological
success of Tsallis statistics in describing diverse non-equilibrium situations [21]. Baranger
suggested that, during an out-of-equilibrium process, a subsystem may interact with a
finite number of effective degrees of freedom of the rest of the system, establishing a
quasi-equilibrium situation described by the Sq-statistics.

Our previous arguments were formulated in terms of systems having discrete energy
levels. The main arguments, however, are still valid if one considers classical Hamiltonian
systems with a continuous phase space. Let us consider a classical composite system
A + B, consisting of two weakly interacting subsystems, governed by a Hamiltonian
H = HA(ωA) + HB(ωB), where ωA denotes the set of canonical phase-space variables
describing the state of system A, and ωB stands for the set of variables describing the
state of system B. Let us assume that the volume ΦB(E) in the phase space of system B,
corresponding to HB(ωB) ≤ E, is proportional to a power η of E. That is,

ΦB(E) =
∫

H(ωB)≤E

dωB ∝ Eη , (25)

where dωB denotes the volume element in the phase space of system B. If the condition (25)
is satisfied, one can follow essentially the same argument as before, and reach a similar
conclusion: if the composite system A + B is described by the micro-canonical ensemble
with total energy ET , then the marginal probability density corresponding to system A has
the Sq-canonical form

FA(ωA) = C
[
1 − (q − 1)βHA(ωA)

] 1
q−1

+
, (26)

where C is an appropriate normalization constant, and q and β are related to η and ET
through Equations (21) and (22). Note that the above setting is applicable even in situations
in which A and B do not, strictly speaking, represent subsystems of a Hamiltonian system.
The above results are also applicable when A denotes a subset of the canonical variables
characterizing the system, B denotes the remaining canonical variables, and the total
Hamiltonian can be separated as H = HA + HB, with the term HA depending only on the
variables associated with A, the term HB only on the variables associated with B. Then, if
one assumes that the total system is in the micro-canonical ensemble, and that the volume
ΦB(E) of the region determined by HB ≤ E (the volume ΦB(E) is computed with respect
to the set of canonical variables associated with B) grows as a power η of E, the marginal
probability distribution for the canonical variables in A has the Sq-canonical shape (26). As
an example, we can consider a classical Hamiltonian system in which the kinetic energy is
a homogeneous quadratic function of the momenta, and does depend on the configuration
coordinates. If A denotes the n configuration coordinates of the system, and B denotes the
set of n momenta, then one has that ΦB(E) ∝ En/2. Consequently, if the system is described
by the micro-canonical ensemble, the marginal probability density for the configuration
coordinates is proportional to [1 − (V/ET)]

n
2 −1, where V is the system’s potential energy,

and ET is the total energy (here, V plays the role of HA). We see that the configuration
probability density is a q-exponential with q = n/(n − 2). As we shall see in the next
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section, this scenario was already discussed by Maxwell in 1879, although the connection
with the Sq-statistics was not recognized at the time.

A paradigmatic scenario (closely related to the previous example) leading to the Sq-
canonical distribution (26) is given by a composite classical Hamiltonian system A + B,
where the subsystem B consists of N free particles of mass m moving in a D-dimensional
box (that is, B is a D-dimensional finite classical ideal gas). In such a case, one can see
that the volume ΦB(E) given by (26), is proportional to the volume of a ND-dimensional
hyper-sphere of radius E1/2. That is,

ΦB(E) ∝ END/2. (27)

Therefore, the power η is equal to ND/2. It then follows that, if the composite A + B
is jointly described by the micro-canonical ensemble with total energy ET , the probability
density FA(ωA) associated with subsystem A is proportional to

[
1 − HA

ET

]η−1
=

[
1 − HA

ET

] ND−2
2

. (28)

The density FA(ωA) is thus of the Sq-canonical form (26), with the q-index given
by (21), yielding,

q =
η

η − 1
=

ND
ND − 2

(29)

As already mentioned, the early successes of the Sq theory motivated the exploration of
alternative thermostatistical frames based on other entropic forms, and also the comparative
investigation of the structural features exhibited by general entropic variational principles.
The aim of these latter endeavors was to clarify which are the properties that are shared
by large families of entropies, or even that are universal, and, on the other hand, which
are the distinguishing properties that characterize particular entropies, such as the Sq ones.
Diverse aspects of entropy optimization principles were investigated in this regard. See, for
instance [22,23] and references therein. Within this context, it is natural to ask whether the
connection with the micro-canonical ensemble is a specific feature of the Sq-thermostatistics
or, on the contrary, is a feature shared by larger families of thermo-statistical formalisms.
It is clear, on the one hand, that the connection with the Sq-thermostatistics arises from
the power law behavior of the function N (E) (Equation (15)) describing the number of
states of system B with energies less or equal E. If the function N (E) associated with B
does not exhibit a power-law behavior, the probability distribution describing the system
A will not be Sq-canonical. It will have a different form, which may be interpreted as
optimizing an entropic measure different from Sq. In that sense, the link with the micro-
canonical ensemble may be shared by other entropies. On the other hand, systems whose
energy levels (or phase-space volumes) do exhibit the appropriate power-law behavior,
and consequently lead to Sq-canonical distributions, are not rare in nature. As we shall
see in the following sections, scenarios in which the Sq-canonical distribution arises from
the micro-canonical ensemble have been discovered and investigated by many researchers,
including some of the pioneers of statistical mechanics. This situation, not shared by other
generalized entropies, suggests that there may be, perhaps, something unique to the link
between the Sq-thermostatistics and the micro-canonical ensemble.

4. When q-Exponentials Lacked a Name: From Maxwell to the Mid 1990s

Interesting examples of q-exponential distributions can already be identified in one of
Maxwell’s pioneering works on statistical mechanics, his celebrated paper “On Boltzmann’s
Theorem on the Average Distribution of Energy in a System of Material Points”, published
in 1879 [24] (the paper can also be found in Maxwell’s collected scientific works [25]).
In this paper, Maxwell developed a statistical treatment for the dynamics of a closed
system of interacting particles having a constant total energy. Maxwell considered a large
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number of copies of the system, distributed uniformly on a phase-space hyper-surface
of constant energy. In essence, Maxwell’s idea was to describe the system by recourse
to what, in modern parlance, we now call the micro-canonical ensemble. In Equation
(41) of [24], Maxwell determined that “the number of systems whose configuration is
specified by the variables b1, . . . , bn while the momenta may have any values consistent
with the equation of energy” (in Maxwell’s notation b1, . . . , bn denotes the complete set
of configuration coordinates) [24]. In other words, Equation (41) of Maxwell’s paper
corresponds to the marginal distribution in configuration space, obtained from the micro-
canonical ensemble after tracing over the particles’ momenta. Maxwell proved that the
distribution in configuration space is proportional to

(E − V)
n−2

2 , (30)

where E is the system’s total energy, and V(b1, . . . , bn) is the the system’s total potential
energy. If the potential energy is bounded from below, we can choose the zero of energy in
such a way that E, V > 0. The configuration density F (b1, . . . , bn) can then be written as

F (b1, . . . , bn) = C
(

1 − V(b1, . . . , bn)

E

) n−2
2

, (31)

which is clearly a q-exponential of the potential energy V, with a q index given by

q =
n

n − 2
. (32)

It goes without saying that Maxwell himself, working a century before Tsallis, did not
identify the configuration density as a q-exponential.

As already emphasized, q-distributions play an important role in many textbooks’
derivation of the Gibbs canonical distribution [20]. They can also be found in some remark-
able works from the 1990s on the micro-canonical approach to finite classical Hamiltonian
systems [26,27], although in none of these works were the q-distributions identified as such,
nor was their connection with the Sq-thermo-statistics discussed.

In [26], the authors investigate the micro-canonical approach to classical systems
consisting of a small number of particles. The authors point out that the momentum
distribution of small systems described by the micro-canonical ensemble is non-Maxwellian.
The authors prove that the single-particle momentum distribution (see Equation (12) of [26])
is of the form,

F (p) = C
[

1 − p2

2mE

][D(N−1)−2]/2

, (33)

where m is the mass of one particle, p is the momentum of one particle, E is the total energy
of the system, N is the number pf particles in the system, and D is the dimensionality of
space (in references [26,27] the authors refer to the spatial dimension as f , but we denote it
by D, consistently with the rest of this review). The momentum distribution (33) is clearly
a q-Gaussian with

q = 1 +
D(N − 1)− 2

2
. (34)

In their derivation of the single-particle momentum distribution (33), the authors use,
as an intermediate step, the configuration distribution (30) discussed by Maxwell in [24].
As a matter of fact, the developments reported in [26] can, to some extent, be regarded as
an interesting re-formulation and elaboration, from a modern point of view, of ideas that
were already implicit in Maxwell’s seminal paper.

In [27], the authors provide a nice detailed discussion of the micro-canonical approach
to a classical ideal gas in a uniform gravitational field confined to a D-dimensional vessel.
As in reference [26], the system considered by the authors of [27] is assumed to have a finite
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number N particles and a total energy E. Its single-particle distribution, which is provided
in Equation (10) of [27], is proportional to

(
1 − p2

2mE
− mgz

E

)[(D/2)+1]N−[(D/2)+2]

, (35)

where m is the mass of a particle, p is the momentum of a particle, and z > 0 denotes the
height of particle measured from the bottom of the vessel. As a consequence of the above
result, the single-particle distribution can then be expressed as

F (z, p) = C
[
1 − ε

E

][(D/2)+1]N−[(D/2)+2]
, (36)

where C is an appropriate normalization constant and

ε =
p2

2m
+ mgz (37)

is the single-particle energy. The distribution (36) has the Sq-canonical form. It is a q-
exponential in the single-particle energy ε, with the q parameter given by

q = 1 + {[(D/2) + 1]N − [(D/2) + 2]}−1 (38)

The single-particle distributions studied in [26,27] fit into the general picture described
in the previous section if one identifies system A with one of the system’s particles, and
system B with the remaining N − 1 particles.

5. The Many Facets of the Sq-Statistics-Micro-Canonical Connection

The connection between the micro-canonical ensemble and the q-exponentials and
q-Gaussians for finite systems has been analyzed and discussed by several researchers,
expanding this venue of inquiry into various interesting directions [28–42]. In this section,
we shall review the main developments along these lines. We shall restrict our discussion
to works centered on the Sq-canonical-micro-canonical relation per se, focusing on how
the q-distributions arise from such a relation. Some of these works are presented in terms
of finite or small heat bathes, but they contribute to our main concern here: how the
q-distributions originate from micro-canonical scenarios. We shall not discuss works revolv-
ing around interpretative issues related to the finite-bath approach. Those constitute, no
doubt, interesting and relevant efforts, but they are outside the scope of our present review.

The most powerful formulation of the micro-canonical approach to the Sq-thermostatistics
for finite classical Hamiltonian systems with a continuous phase space is, arguably, the one
advanced by Adib, Moreira, Andrade Jr, and Almeida (AMAA) in [29]. In terms of our
discussion in Section 3, the main ideas in [29] can be interpreted as follows. Let us consider
a finite classical system with a Hamiltonian that can be expressed as

H = HA(ωA) +
J

∑
k=1

Hk(ωk), (39)

where each of the terms HA, H1, . . . , HJ , depends on a different subset of canonical variables.
The term HA of the Hamiltonian depends on the subset ωA of canonical variables, and each
term Hk (1 ≤ k ≤ J) depends on the subset ωk. Each of the system’s canonical variables
belongs to one and only one of the subsets {ωA, ω1, . . . , ωJ}. Let us assume that each of the
terms Hk (1 ≤ k ≤ J) depends on nk canonical variables (the set ωk has nk components)
and is a homogeneous function of degree lk. That is, if

ωk = (z(k)1 , . . . , z(k)nk ), k = 1, . . . , J (40)
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is the set of nk canonical variables z(k)nk on which Hk depends, one has,

Hk(λωk) = Hk(λz(k)1 , . . . , λz(k)nk ),
= λlk Hk(ωk), k = 1, . . . , J. (41)

Let ωA = (z(A)
1 , . . . , z(A)

nA ) stand for the set of canonical variables on which the term HA
depends. Then, the total number of canonical variables describing the complete system, is
nt = nA + ∑J

k=1 nk. The above requirements define a class of classical Hamiltonian systems
that admits, as particular instances, concrete systems of practical relevance in Physics.
For instance, the Hamiltonian corresponding to a system of N interacting classical point
particles in D dimensions can be cast in the form (39), if one identifies the subset ωA with
the complete set of ND configuration coordinates, and the subset ω1 with the complete
set of ND components of momenta. In this example, one has J = 1, n1 = ND, and l1 = 2.
Other concrete examples will be mentioned later.

Under the above assumptions, the authors of [29] proved that, if the complete system is
described by the micro-canonical distribution, then the marginal distribution corresponding
to the variables ωA has the Sq-canonical form. Let us take a closer look at this result from
the view point of the general argument outlined in Section 3. Let us define HB as

HB(ω1, . . . , ωJ) =
J

∑
k=1

Hk(ωk), (42)

and consider the volume ΦB(E) in the space characterized by the set of variables (ω1, . . . , ωk),
for which HB ≤ E. We have

ΦB(E) =
∫

HB(ω1,...,ωJ)≤E

dω1 . . . dωJ , (43)

where
dωk = dz(k)1 . . . dz(k)nk , k = 1, . . . , J. (44)

Given a value E of the total energy and a reference value E0, let us choose a set of
dimensionless parameters λk in such a way that

λk =

(
E
E0

)1/lk
, k = 1, . . . , J. (45)

We then have, taking into account the homogeneity of the Hks, that

Hk(λkωk)

Hk(ωk)
= λ

lk
k =

E
E0

, k = 1, . . . , J, (46)

which implies that

ΦB(E) =
∫

HB(ω1,...,ωJ)≤E

dω1 . . . dωJ

=

(
J

∏
k=1

λ
nk
k

) ∫
HB(ω

′
1,...,ω′

J)≤E0

dω′
1 . . . dω′

J

=

(
J

∏
k=1

λ
nk
k

)
ΦB(E0)

=

(
E
E0

)∑J
k=1(nk/lk)

ΦB(E0). (47)
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We then see that the volume ΦB(E) grows as a power of E,

ΦB(E) = ΦB(E0)

(
E
E0

)η

, (48)

with

η =
J

∑
k=1

nk
lk

. (49)

One is then precisely within the scenario discussed in Section 3, from which it fol-
lows that the marginal probability density corresponding to the variables ωA is of the Sq
canonical form

F (ωA) = C
[

1 − HA(ωA)

ET

] 1
q−1

, (50)

where ET is the total energy of the system, and

q =
η

η − 1
= 1 +

[(
J

∑
k=1

nk
lk

)
− 1

]−1

. (51)

All the examples discussed in the previous section can be analyzed in terms of the
AMAA formulation. In the systems discussed in [26,27], one has to identify the subsystem
A with one particle of the system, and the subsystem B with the remaining N − 1 particles.
In the case discussed in [26], one has J = 1, n1 = D(N − 1), and l1 = 2. Then, (49) and (51)
determine the values of η and q, and the latter coincides with (34). In the case discussed
in [27], one has J = 2, n1 = D(N − 1), n2 = N − 1, l1 = 2, and l2 = 1. Then, from (49)
and (51), one obtains the same value of q as (38).

Remarkably, AMAA performed numerical experiments on a system consisting of a
chain of anharmonic oscillators, described by the Hamiltonian,

H =
N

∑
i=1

p2
i

2
+

N

∑
i=1

q4
i

2
+

N

∑
i=1

(qi+1 − qi)
4

4
, (52)

where qi and pi (i = 1, . . . , N are the coordinates and momenta of the N particles in the
system. The chain of anharmonic oscillators governed by the Hamiltonian (52) was inspired
by the celebrated Fermi–Pasta–Ulam system. The Hamiltonian (52) has the form (39). For
instance, if one identifies the set ωA with the set of N momenta, and the set ω1 with the
set of N coordinates (we then have J = 1, n1 = N and l1 = 4), it follows that the marginal
probability distribution corresponding to the momenta will be a q-exponential, provided
that the system is described by the micro-canonical ensemble. The numerical experiments
conducted by AMAA, based on the numerical integration of the canonical equations of
motion, confirmed that the micro-canonical description is in this case appropriate, and that
the probability distribution of the momenta is indeed q-exponential [29]. The numerical
experiments reported by AMAA are of considerable relevance because they provide a
concrete example of a highly nonlinear system, exhibiting complex dynamics, for which
the micro-canonical path toward the Sq-canonical distributions is explicitly verified.

In [32], Hanel and Thurner provide a clever analysis of the general conditions under
which micro-canonical scenarios in classical statistical mechanics naturally lead to power-
law distributions of the q-exponential type. In [33], Naudts and Baeten point out that
the configuration probability density of a classical gas always has the Sq-canonical form.
Therefore, the authors establish the connection between this scenario and the Sq-thermo-
statistics. The authors explore various aspects of this problem, and discuss the possible
role of Renyi entropy (which, once optimized, shields the same probability distributions as
Tsallis entropy, although parameterized in a different way).
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In [34], Bagci and Oikonomou explore interesting aspects of the micro-canonical setting
associated with a classical Hamiltonian system interacting with a finite heat bath. These
authors focus on how different assumptions on the heat capacity of the bath lead to different
versions of the Sq-canonical distribution. The authors reach the conclusions that a finite
bath with positive heat capacity leads to q-exponentials with compact support (that is, with
a cut-off), while a heat bath with negative heat capacity leads to q-exponentials with fat
tails. Within the present review, we restrict our discussion to micro-canonical scenarios
generating q-exponentials with a cut-off. We find, however, that Bagci and Oikonomuu’s
analysis of situations with finite baths of negative heat capacity is intriguing and worthy
of further consideration. In [35], Ramshaw re-visits the micro-canonical treatment of a
system in contact with a finite heat bath. The author analyzes the concomitant deviations
of the system’s probability distribution from the exponential Boltzmann–Gibbs one. The
author’s analysis confirms that, under appropriate conditions, probability distributions of
the Sq-canonical form are obtained. The author suggests that, although the Sq entropy may
play a direct role here, the presence of q-exponentials is not in itself enough to establish
that that is the case. There may be something to the author’s point of view. This is an
issue that certainly deserves further investigation. In [36], Biró, Barnafl̈di, and Ván apply
the Sq-micro-canonical connection to the analysis of some aspects of the physics of the
quark–gluon plasma and to the interpretation of experimental data on heavy ion collisions.
An intriguing extension of these matters to complex values of the Tsallis parameter q is
discussed by Wilk and Wlodarczyk in [37].

In [38], Lima and Deppman re-visit the micro-canonical approach to an ideal gas
constituted by a finite number N of particles and provide a detailed analysis of its relation
with the Sq-based thermostatistics. The authors investigate in detail how, as N → ∞,
the standard Boltzmann–Gibbs scenario is approached. In particular, they compute the
two-particle correlation function and study how the amount of correlation decreases as one
considers an increasing number of particles in the system. The micro-canonical ensemble
for an ideal gas with a finite number of molecules is also considered by Shim in [39], where
the Sq-canonical shape of the single-particle distribution is also investigated.

6. Conclusions

A growing number of generalizations of the concept of entropy are nowadays attract-
ing the attention of scientists. Researchers are actively exploring diverse applications of
these ideas, particularly in connection with entropic optimization methods. To a large
extent, this broad field of inquiry got its initial inspiration in the Sq-thermostatistics ad-
vanced by Tsallis in 1988. The non-additive Sq entropies still play a distinguished role
within the zoo of generalized entropies. Among the different distributions optimizing
non-standard entropies, those optimizing the Sq measures are the ones that provide useful
descriptions for the largest number of scenarios in physics and elsewhere. It is, therefore,
imperative, in order to explain this state of affairs, to study in detail the particular features
of the Sq-thermo-statistics that make it so special. The present review dealt with one of
these distinguishing features: the remarkable connection between the Sq-thermostatistics
and the micro-canonical ensemble. This connection is nowadays generally acknowledged
as constituting the basis of an important mechanism generating Sq-optimizing distributions
in physical systems. For instance, the significance of the fact that “research showed that
finite ideal gas followed q-exponential distributions” [40], was recently highlighted by
Deppman, a leading researcher in nuclear and particle physics, and in the application of
Tsallis’ non-extensive statistics to these fields. Deppman and collaborators advanced an
interesting theoretical framework, based on the concept of thermofractals, for the study of
systems that exhibit a finite effective number of degrees of freedom, independently of the
system’s size [41]. This scenario, which leads to a description similar to the micro-canonical
one, generating q-distributions even for large systems, has been applied to problems in
high-energy physics [41].
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In spite of the considerable amount of research that has been devoted to investigate
the micro-canonical approach to the Sq-canonical ensemble, we believe that the study
of this aspect of Sq-thermostatistics is still in its infancy. There is still much work to be
done, particularly in order to establish links between the micro-canonical setting and other
facets of Sq-thermostatistics. In this regard, it would be interesting to explore Baranger’s
conjecture that the micro-canonical approach may be relevant to explain the emergence of
Sq-thermo-statistics within non-equilibrium scenarios [21]. A promising first step in this
direction was taken by Megias, Lima, and Deppman in [42], where the authors consider
transport phenomena on the light of the connection between the Sq-thermostatstical and
the micro-canonical setting. Another issue that deserves further scrutiny is the connec-
tion of the entropy functional Sq itself with the micro-canonical setting. Up to now, the
main theoretical indication of a connection between the Sq-based thermostatistics and the
micro-canonical scenario is based on the presence of the q-distributions, rather than on
a more direct connection with the Sq functional itself. The presence of q-distributions is
generally construed, by a large part of the research community, as evidence for the Sq-based
thermostatistics. This is the case not only with regards to the micro-canonical scenarios
but also within more general contexts. In particular, most of the empirical evidence for
the Sq-thermostatistics rests on the experimental observation of q-distributions [17,19].
This situation is not surprising since the distributions that describe a system are more
amenable of experimental or observational investigation than an entropic functional. The
fact that probability distributions optimizing a particular functional, the Sq entropy, appear
so frequently, both in theoretical models and in experimental settings, strongly suggests
that the Sq entropy is playing an important role. This is consistent with the general notion
that variational principles provide the most fundamental description of physical systems
or processes. It is significant, in this regard, that even researchers who doubt that the Sq-
based optimization principle is the correct explanation for the presence of q-distributions,
nevertheless entertain the idea that an alternative variational principle may be at work. For
instance, Ramshaw recently observed that the non-exponential distributions describing
subsystems in micro-canonical contexts, can be derived from an entropy-optimization
prescription if one, instead of changing the entropic form, replaces the standard energy
constraint by an adroitly chosen non-linear generalization [43]. Ramshaw’s proposal is
intriguing, and certainly deserves further consideration. It nicely illustrates the belief of
many theoreticians that the identification of an appropriate entropic variational principle
leading to the non-exponential distributions observed on micro-canonical scenarios will
contribute to achieving a deep understanding of these distributions. Among the proposals
that have been advanced in this respect, the one based on the Sq-entropy has been, so far,
the most actively investigated, as attested by the works reviewed here.

The Sq canonical distributions, which exhibit the q-exponential (or, in particular cases,
are q-Gaussian) form, arise naturally as marginal probability distributions describing parts
of systems represented by the micro-canonical ensemble. In this regard, the q-distributions
can be identified in some works dating from the very beginnings of statistical mechanics.
They have also been appearing, along the years, in papers’ and textbooks’ discussions on
the micro-canonical ensemble. The relevance of these ubiquitous distributions, however,
was for a long time unrecognized. Until the development of the Sq thermo-statistics, they
lacked a name. The significance of their relationship with the micro-canonical ensemble,
which links them to the origins and history of statistical mechanics, has been highlighted
in recent times by the research efforts conducted by several scientists, who explored its
interesting and manifold implications. Intriguing results along these lines continue to
appear. What new developments the future will bring, we cannot tell. However, we can
be sure of one thing: like Holly’s cat in Breakfast at Tiffany’s [44], these long-neglected
distributions finally got a name, and the name is here to stay.
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