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Optical Sensors Technology and Applications

Maria Lepore 1,* and Ines Delfino 2,*
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Optical methods are non-invasive tools, and their use in various fields, including sens-
ing applications, is continuously increasing, which is thanks to the continuous development
of innovative low-cost sources and detectors. Together with the use of nanodevices, these
new optical technologies enable the development of new sensing schemes and devices
characterized by superior working parameters: optical sensors frequently offer very low
detection limits, high specificity, and high sensitivity. In addition, they are very versatile
and allow the realization of innovative applicative approaches for quantitatively and quali-
tatively determining the components of analytes of interest in many fields of application,
such as in pharmaceutical research, medical diagnostics, environmental monitoring, agri-
culture, industry, food safety, and security, just to name a few. The present Special Issue
aimed to offer an overview of recent advances in optical sensor technology and applications,
including source and detection technologies, sensor architectures, sensor performance, and
processing approaches and applications.

The polarization of light represents a formidable tool for the development of innova-
tive methods for the control of products and manufacturing processes. Three of the papers
in this Special Issue exploit polarization properties for proposing innovative experimental
approaches in very different fields [1–3]. In Ref. [1], the authors prove that individual mea-
surements of the optical polarization parameters of light scattered by suspended particles
are a powerful tool to classify the particulate compositions in seawater. This information
plays a pivotal role in ecological research and environmental monitoring. A method based
on a dense sampling of polarized light pulses is proposed, and the experimental setup is
built. Ref. [2] addresses a completely different field of application of polarization. In fact,
this paper presents the implementation of an automatic Stokes dynamic polarimeter to
characterize non-biological and biological material samples. Experiments demonstrated
the efficiency of the proposed optical array to calculate the Mueller matrix in reflection
and transmission mode for different samples. A comparison with similar papers reported
in the literature validates the approach proposed by the authors. Ref. [3] is devoted to
stress detection of the conical frustum window in deep manned submersibles by using
polarization imaging. The authors built a Mueller matrix polarimetry, and the examined
samples were similar to the typical conical frustum windows in submersibles. The results
evidence that the polarization parameters can characterize the stress transfer process and
the elastic–plastic transformation process of the window under different pressurization
pressures. This proposed method can offer new possibilities for monitoring the window
stress and to further ensure the safety of deep manned submersibles.

Interferometry is an optical technique that allows ingenious approaches in very dif-
ferent experimental situations, as occurs for Refs. [4,5]. In Ref. [4], a three sensors-based
Mach–Zehnder interferometer is adopted for developing a non-invasive control method
for the burning rate of solid fuel in a model solid propellant rocket motor. The results show
that the proposed method allows the non-invasive control of solid fuel burnout both by
recording the time of arrival of the combustion front to the sensor and by analyzing the
peaks of the signal recorded by the available optical fibers. In Ref. [5], the authors propose
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the use of a Fizeau interferometer for a self-calibration stitching method for the pitch
deviation evaluation of a long-range linear scale. The developed method can represent a
significant improvement in the field of optical linear encoders that are widely employed
for precision positioning applications, such as semiconductor manufacturing, precision
machine tools, and coordinate measuring machines due to their low cost, high resolution,
and robustness.

In recent years, the joint use of nanotechnologies and optics has opened new scenarios
in the development of sensing schemes. In this framework, the authors of Ref. [6] devel-
oped a simple but effective method for the colorimetric detection of antibiotic residues in
raw milk by using aptamer-conjugated gold nanoparticles. In fact, the improper use of
antibiotics in cattle breeding can cause milk contamination, which has negative effects on
the dairy industry and human health. The proposed method could allow the semiquanti-
tative analysis of antibiotic residues in raw milk to be obtained directly from dairy farms.
Nanoparticles are also exploited in Ref. [7], in which the authors describe novel flexible
plasmonic strain sensors prepared by functionalizing a polymeric transparent substrate
with a TiO2 thin film containing Au nanoparticles. The use of the localized surface plasmon
resonance (LSPR) effect due to the interaction of light with the free electrons of noble metal
nanoparticles indicated that the LSPR band of these sensors is sensitive to different applied
strains. LSPR bands are mainly modified by the changes in the refractive index of the
matrix surrounding the Au nanoparticles when uniaxial strains are applied.

Refs. [8,9] are significant examples of the very numerous and various applications
of the vibrational spectroscopies, such as Fourier Transform Infrared (FT-IR) and Raman
spectroscopy, that span from basic research, medicine, and biology to agrifood, industry,
and many other fields.

In Ref. [8], the authors use FT-IR spectroscopy to discriminate different breast cell
lines on glass substrates. They aimed to investigate the possibility of using the FT-IR
spectroscopy in the clinical diagnostic field to grow cells by adopting the same substrates
that are currently used by cytologists and histopathologists. The reported results contribute
to promoting the translation of the FT-IR technique in medical practice, representing a com-
plementary diagnostic tool. Ref. [9] addresses a completely different field of application for
Raman spectroscopy. In fact, this paper discusses the possibility of using this spectroscopy
for analyzing natural gas by taking advantage of Raman spectroscopy’s high-speed mea-
surement and the potential to monitor all molecular components simultaneously. The
adopted contour fit method to derive concentrations from the spectra of mixtures enables
reliable results to be obtained, even when a significant change in the composition of the
samples is present. The reported results confirm that Raman gas analyzers can operate
without frequent calibrations, differently from gas chromatographs.

In Ref. [10], a new criterion for analyzing the resolution and accuracy of the laser
speckle correlation method is presented. This would be of great interest and would
be relevant for a variety of applications since the laser speckle correlation method is
largely applied to obtain information from vibrating objects. The proposed new criterion
combines the mean intensity gradient and frequency spectrum and has been verified by
using simulated and real speckle patterns with different speckle sizes, densities, and gray
contrasts. The authors use rotation and vibration experiments to confirm the effectiveness of
the proposed criterion to improve the performance of the laser speckle correlation method.

The use of neural networks allows for the development of a fringe phase extraction
method for optical metrology in Ref. [11]. In this framework, a fringe pattern is usually
adopted as output from which the desired parameters can be extracted. The authors
propose an end-to-end method of fringe phase extraction based on the neural network.
The results of simulation and experimental fringe patterns validate the accuracy and the
robustness of the proposed method, which is also characterized by easier operation compare
to the other methods that are available.

Ref. [12] is a careful review of the conventional and innovative coating thickness
methodologies for application to chromium coatings on a ferromagnetic steel substrate and
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determines their advantages and limitations regarding in-line measurements. The X-ray
Fluorescence (XRF) method is the most common in-line coating thickness measurement
method employed in the steel packaging industry, but it is expensive and is characterized
by health and safety concerns due to its ionizing radiation. Optical methods can represent
a valid alternative. The authors discuss three of these methods: optical reflectometry,
ellipsometry, and interferometry. The review presents a detailed references section, and the
features of the different coating thickness measurement methods are accurately discussed.

Ref. [13] aims to review the most generally used methods for designing and fabricating
optical biosensors and sensors for phenolic compounds that are particularly dangerous
due to their toxic effects and their ability to persist in the environment for a long period of
time. Their danger is also linked to the fact that they are widely used in many industrial
processes and agricultural treatments. The basic principles of the most largely used optical
detection techniques are presented, and some selected examples of the most interesting
applications of these techniques are also discussed. The large number of bibliographic
references demonstrate the ever-keen interest in this research area.

The brief discussion of the papers published in the present Special Issue (SI) attests
the diversity of the new developments in optical sensors and their wide dissemination in
many applied research fields.

Finally, we would like to thank all the authors who have submitted their work to
Sensors, specifically to this Special Issue, “Optical Sensors Technology and Applications”, all
the reviewers for their hard work, and the editors of Sensors for their kind and continuous
support. All of these efforts made this SI possible. We hope that this SI will help researchers
to better understand the state of the art of optical sensors and techniques as well as their
wide range of applications. We hope that the 13 published papers will also help the
researchers working in the field to disclose future perspectives.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: Suspended particles affect the state and vitality of the marine ecosystem. In situ probing
and accurately classifying the suspended particles in seawater have an important impact on ecolog-
ical research and environmental monitoring. Individual measurement of the optical polarization
parameters scattered by the suspended particles has been proven to be a powerful tool to classify
the particulate compositions in seawater. In previous works, the temporal polarized light pulses
are sampled and averaged to evaluate the polarization parameters. In this paper, a method based
on dense sampling of polarized light pulses is proposed and the experimental setup is built. The
experimental results show that the dense sampling method optimizes the classification and increases
the average accuracy by at least 16% than the average method. We demonstrate the feasibility of
dense sampling method by classifying the multiple types of particles in mixed suspensions and
show its excellent generalization ability by multi-classification of the particles. Additional analysis
indicates that the dense sampling method basically takes advantage of the high-quality polarization
parameters to optimize the classification performance. The above results suggest that the proposed
dense sampling method has the potential to probe the suspended particles in seawater in red-tide
early warning, as well as sediment and microplastics monitoring.

Keywords: classification; suspended particles; polarized light pulses; dense sampling

1. Introduction

The ocean is the most important resource endowed by nature, which contains the
abundant resources necessary for the survival and development of human society [1].
While the ocean continues to create huge benefits for modern society, its own ecology has
also encountered great challenges to human life and production [2–4]. As an important and
essential component in seawater, the suspended particles significantly influence the optical
properties of seawater, as well as the marine ecological environment [5,6]. For example,
certain harmful types of microalgae rapidly cause algae blooms in a short period, which is a
threat to marine organisms [7–9]. Microplastic has become a prevalent, widespread element
of marine litter, threatening marine organisms and human health [10–12]. The accumulation
and transportation of sediments such as silts, have a great impact on the stability of the
estuarine and seacoast [13,14]. Therefore, the development of effective detection and
accurate classification and identification of these different suspended particles is of far-
reaching significance [15,16]. At the same time, the detected particle information is also
helpful to interpret the data of marine science macroscopic researches, and further, promote
the development of remote sensing in marine monitoring [17,18].

Sensors 2021, 21, 7344. https://doi.org/10.3390/s21217344 https://www.mdpi.com/journal/sensors
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Optical methods are currently one of the most popular methods to detect the sus-
pended particles, due to the advantages of high resolution, non-contact, and rich infor-
mation [19,20]. In recent years, many in situ optical instruments have been applied to the
acquisition of suspended particles in seawater such as YSI EXO [21,22], AC-S [23], BB9 [24],
and LISST-200X [25]. However, these methods use bulk measurement to obtain comprehen-
sive information of suspended particles in seawater, and cannot obtain information on the
morphology and internal structure of individual seaweed particles. The Flow cytometers,
such as FlowCytobot, individually measure the scattered intensity and fluorescence or
sometimes the images of the particles to classify the particles in seawater. However, its
dependency on the pretreatment is based on the hydrodynamic focusing system, limiting
its application in the seawater [26,27].

Polarization is the fundamental property of light. Compared with traditional optical
methods, polarized light can carry richer information [28]. The polarization information dif-
ferences can be utilized for the analysis and identification of biological tissue lesions [29,30],
and for the identification and classification of atmospheric and marine particles [31,32].
However, the polarization parameters are affected by the comprehensive effects of particles,
including size, refractive index, shape, morphological structure, and microstructure. In
2018, Wang et al. obtained the polarized pulses of temporal signals through an experi-
mental setup, and the signal-to-noise ratio of the system was bigger than 5. Then, they
used a low-pass filter to suppress the high-frequency noise and used a threshold limit to
acquire the polarized pulse signal. Finally, all the samplings in each polarized light pulse
are calculated as an average value (PLP-Ave). This method is applied to differentiate the
suspended particles of different physical and microstructural properties, which is impor-
tant for monitoring microalgae, microplastics, and silt concentrations [33]. In 2019, Liao
et al. applied the PLP-Ave method and developed a new in situ prototype, whose ability to
the classification of the suspended particles in seawater has been demonstrated by field
deployments [34]. In 2020, Li et al. used the PLP-Ave method to probe the collapse and
regeneration of the cyanobacterial gas vesicles exposed to different static pressures [20]. In
addition, Wang et al. chose samples with distinctive microstructural features, and then con-
ducted simulations and calculations to examine how these features affect the polarization
of the scattered photons using the PLP-Ave method [35].

This paper will introduce a method for optimizing the classification of suspended par-
ticles in seawater by dense sampling of polarized light pulses. The laboratory experiment
which is free of the pretreatment of the samples, preliminarily shows that this method has
local optimal characteristics and significant classification performance. Through the dense
sampling of polarized light pulses, the characteristic information of the suspended particles
can be obtained comprehensively, and a large number of local effective characteristics of
the suspended particles can be improved to achieve high accuracy. In practical applications,
the PLP-All model is more accurate and flexible in the mixed experiment prediction. These
results show that using the dense sampling of polarized light pulses is beneficial to the
more accurate classification of suspended particles. In addition, it brings a good application
method for identifying and classifying suspended particles in seawater.

2. Methods and Materials

2.1. Principle of the Experimental Setup

A polarized light scattering method for differentiating suspended particles of differ-
ent physical and microstructural properties can detect and classify the suspended parti-
cles [33,35]. On this basis, we built an experimental setup using a similar principle, which
is free from the pretreatment of the samples. It achieves the classification of suspended
particles in seawater by individual particle measurement and machine learning algorithms.

The experimental setup includes four parts: Optical path, photoelectric convertor,
analog-to-digital conversion, and the sampling system. The sampling system consists of a
sample pool and a flow circulation system. The sample pool has one inlet and one outlet.
In addition, the sample is pumped by a pumper to enter the sample pool through the
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inlet and leave the sample pool through the outlet by another pumper. The particles in
the sample are suspended and pass through the scattering volume of the setup, whose
polarization parameters can be efficiently and accurately measured.

Figure 1 shows the optical path of the setup. A 520 nm laser is the light source with
2-mm beam size and 0.7 W maximal power. Since most of the microalgae have a low
absorption coefficient and high scattering coefficient at 520 nm [36], using the 520 nm laser
the light is more conducive to reflecting the structure of microalgae and highlighting the
differences between them. A polarization state generator (PSG) converts the light into the
desired polarization states. The beam is completely reflected by the equilateral prism to
obtain the obliquely illuminating light. Then, the illuminating light passes through Lens
1 and the transparent ceramic window 1, which is focused into a tiny light spot. Once
the suspended particle passes through the light spot, it will be illuminated, and the 120◦
scattered light will pass through the transparent ceramic window 2 and be received by Lens
2. Note that windows 1 and 2 do not change the polarization states of the light passing
through them. In addition, the 120◦ scattering angle has been proven to be sensitive to
the microstructure in our previous work, which helps in identifying and distinguishing
different suspended particles in seawater [35]. Then, the 120◦ scattering angle is used to
maintain consistency with the previous work [33].

Figure 1. Schematic diagram of the optical system of the experimental setup.

Lens 2 consists of a series of lenses and a pinhole. The size of the pinhole is 100-micron
and its position is the imaging point of the light spot by the lenses before the pinhole. The
pinhole is followed by a short focal length lens to convert the scattered light to the parallel
light beam before entering the polarization state analyzer (PSA). Therefore, the scattering
volume as the intersection volume of the illuminating optical path and the receiving optical
path, is determined by the pinhole and the light spot. Moreover, in this work, the scattering
volume is less than 0.01 microliter. If the volume concentration of the suspended particles
is less than 105 per milliliter, there is only one particle in the scattering volume at most,
based on which the measurement of the individual particle can be realized. Therefore,
the requirement for the volume concentration does not depend on the particle size, but
depends on the scattering volume, which is determined by the pinhole and the light spot
of the experimental device. In the measurement, if a single particle passes through the
scattering volume, its scattered light contributes to the signal. When there are no particles
in the scattering volume, the electronic noise, environmental light, and the scattering of
water contribute to the background, which is smaller than the particle. Therefore, the
signals are a series of temporal pulses.

PSG and PSA are the important components of the experimental setup, which realize
the key functions of polarized light illumination and detection in the system. PSG is
composed of the fixed linear polarizer, achromatic half-wave plate, and achromatic quarter-
wave plate. In addition, the independent rotating motors carried by one-half wave plate
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and one-quarter wave plate change the direction of the fast axis of the wave plate. In our
self-written application interface, the operator can set the rotation angle of the motor to
obtain the desired polarization of the incident light, thereby obtaining more abundant
polarization information of the particulate matter.

PSA is composed of three non-polarizing cube beam splitters, which divide the
incident parallel beam into four parts. The two parts are analyzed with 0 and 45◦ linear
polarizers and other analyzers. The other two parts are analyzed by left-hand and right-
hand circular analyzers. The left-hand circular analyzer consists of a 135◦ fast-axis oriented
quarter-wave plate and a 90◦ linear polarizer. In addition, the right-hand circular analyzer
consists of a 45◦ fast-axis oriented quarter-wave plate and a 90◦ linear polarizer.

Then, the 120◦ backward scattered light by the suspended particles in the scattering
volume is divided into four channels by the PSA and converted into the four voltages by
the four independent photoelectric converters. In addition, it is simultaneously digitized
into a four-channel signal by a data acquisition card (DAQ). Thereafter, the four-channel
signals are transferred into the polarization state of the scattered light by the instrument
matrix gained from a polarization calibration procedure [34].

Using the experimental setup, we can measure the polarization state of the light
scattered by the suspended particles and obtain a series of temporal pulses. Due to the
individual measurement of the setup, each pulse originates from an individual particle. By
processing these pulses, we can get the polarization parameters of suspended particles.

2.2. Samples

The suspended particles used in this experiment consist of five types of microal-
gae, two types of microplastics, and one type of sediment. The five types of microalgae
(Dunaliella salina (DS), Cryptomonassp. (CP), Chaetoceros debilis (CD), Phaeocystis globosa (PG),
and Thalassiosira weissflogii (TW)) were bought from Shanghai Guangyu Biological Technol-
ogy Co., Ltd., which carried out a large-scale cultivation of liquid microalgae species based
on the production environment including the temperature, nutrient salt formula, and light
intensity. In particular, DS has a unique economic value in medicine and health care [37],
CD is often used in research studies for oceanography and aquaculture [38], PG is toxic
and will cause red tide [39], CP and TW are important components for the phytoplankton
ecosystem and productivity [40,41].

In addition, other suspended particles (monodispersed polystyrene microspheres,
2 μm (PS-02) and 10 μm (PS-10), silicon dioxide pellets, 10 μm (SD-10)) were bought from
Big Goose (Tianjin) Technology Co., Ltd. They are all white suspensions obtained by
dispersing white solid powder in water. The SD-10 mother suspension was prepared
by mixing 250 mg of silicon dioxide pellets in 10 mL of 50% ethanol water solution.
Moreover, the PS-02 and PS-10 mother suspensions were prepared by mixing 250 mg of
monodispersed polystyrene microspheres in 10 mL of deionized water solution.

Filtered seawater is used in this work. We obtained the surface seawater from Yantian
Port in Shenzhen, and filtered it in the lab with a 0.2-micron filter membrane. The filtered
seawater is prepared in advance to dilute the mother suspensions of the particles.

2.3. Polarized Light Pulse Processing Algorithm

Figure 2a shows the temporal signals of a suspension measured by the setup, which is
a series of polarized light pulses. The envelope of pulses is obtained by the treatment of
low-pass filtering. The polarized light pulses include the information of the particle and
the noises. In addition, the filtering can reduce the noisy fluctuation that originated from
the electronic noise or environmental noise. However, there is still residual noise in the
pulses.
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Figure 2. The dense sampling of polarized light pulses: (a) The temporal signals; (b) polarized light
pulse processing algorithm.

When a single suspended particle passes through the scattering volume, it stays for a
while during which it is continuously illuminated and its scattered polarization states are
measured. The width of the polarized light pulse is the settling time that the particle stays
in the scattering volume. In this case, the particle would be sampled many times by the
setup. For example, in Figure 2b, a pulse’s settling time is about 2 ms and if the sampling
rate of the DAQ is 200 K sampling per second, then this pulse consists of 400 samplings and
the particle is measured 400 times at one measurement. We have 400 scattered polarization
states of the particles. Considering that the particle is moving in the scattering volume,
we obtain abundant data of this particle and the method of extracting the information
from these data is a serious issue. Due to the noises from the electronic system and the
environmental light, in previous researches, we first averaged all of the samplings in each
polarized light pulse (PLP-Ave) to reduce the influence of the noises on the signals before
classifying the suspended particles.

In this work, we introduce the polarized light pulse processing algorithm and inves-
tigate the benefit or loss of the averaging of the polarized light pulses to achieve more
efficient and accurate classification than before. We divide the polarized light pulses with
specific methods into four samplings (PLP-4), 10 samplings (PLP-10), 100 samplings (PLP-
100), and all points (PLP-All), as shown in Figure 2b. For example, in the PLP-4 method,
we divide the polarized light pulses into four parts and average each part to obtain four
values for one pulse, which is considered as four samplings. Similarly, we get 10 samplings
for one pulse in the PLP-10 method, and 100 samplings in the PLP-100 method. For the
PLP-All method, all the samplings are considered. Generally, the averaging will suppress
the noise and enhance the signal-noise-ratio, and finally help in extracting the information
from the polarized light pulse. However, the averaging will omit the detailed information.
Definitely, the PLP-All method suffers the most from the noise and the values are most
inaccurate. Therefore, this investigation will try to estimate the benefit and loss of the
averaging of the pulses using the polarized light pulse processing method.

2.4. Analytical Methods

Stokes vector, S, as shown in Equation (1) is always used to describe the polarization
state of light [42].

S =

⎡
⎢⎢⎣

I
Q
U
V

⎤
⎥⎥⎦ (1)
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where I is the total light intensity, and Q, U, V are the residual 0◦, 45◦, and right-circularly
polarization, respectively.

As shown in Equation (2), q, u, and v are polarization parameters normalized by light
intensity I, which can be dimensionless and range from −1 to 1.

q =
Q
I

, u =
U
I

, v =
V
I

. (2)

The degree of polarization (DOP) as shown in Equation (3) commonly represents the
proportion of polarized light in the total light intensity, ranging from 0 to 1, which is also
used to characterize the depolarization ability of particles when they are illuminated by a
polarized light [43].

DOP=

√
Q2 + U2 + V2

I
(3)

For classification problems, the results of machine predictions and actual values will
deviate. The confusion matrix is a standard measure that represents accuracy evaluation,
including true positive (TP), false positive (FP), true negative (TN), and false negative
(FP) [44]. Each row of this matrix represents an instance in the actual class, and each
column represents an instance in the predicted class. It can clearly express the correct
classification and misclassification of each category on the visual system. Therefore, the
evaluation model’s advantages and disadvantages standards introduce accuracy, which is
computed from the confusion matrix using Equation (4).

Accuracy =
TP + TN

TP + FP + FN + TN
(4)

where TP denotes that the positive class is judged as a positive class, FP denotes that the
negative class is judged as a positive class, TN denotes that the positive class is judged as a
negative class, and FN denotes that the negative class is judged as a negative class.

As shown in Equation (5), the mean-square error (MSE) is a measure that reflects the
degree of difference between the estimator and the true value. x̂ is the estimator of the
sample, and x is the true value of the sample. When the sample is constant, their distance
function is an index used to evaluate the quality of an estimator.

MSE(x̂) = E(x̂ − x)2 (5)

2.5. Algorithm Theory

As one of the most traditional neural networks, the main characteristic of backpropaga-
tion neural network (BPNN) is that the signal propagates forward and the error propagates
backward. Backpropagation is the standard method for training artificial neural networks.
This method helps in calculating the gradient of the loss function with respect to all the
weights in the network. By fine-tuning the weight of the neural network based on the
error rate obtained in the previous period, it can reduce the error rate and improve the
generalization and reliability of the model. Therefore, the training and test sets of the BPNN
algorithm model that we built use the polarization parameter data, which is measured
by the suspended particles in the experimental device. As shown in Figure 3, the input
layer of the network training uses X = [I, q, u, v, DOP], and there are five input nodes.
Through multiple experiments, the hidden layer is set to three layers, which are five nodes,
six nodes, and four nodes. Finally, there are four nodes in the output layer, corresponding
to four types of suspended particles. In addition, we built the algorithm model using
the sigmoid nonlinear transfer function, which minimizes the actual output and expected
output error function of the system by revising weights and thresholds repeatedly.
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Figure 3. The schematic diagram of backpropagation algorithm structure.

3. Results

3.1. Classification of the Four Types of Microalgae

In this paper, we built the BPNN model which is used to classify the four types of
microalgae, DS, CP, CD, and PG for each method of the polarized light pulse process
algorithm. The dataset prepared by the PLP-Ave method is used as input data for training
and testing and finally, for building the PLP-Ave model. Similarly, we built the PLP-4
model, PLP-10 model, PLP-100 model, and PLP-All model. For each model, the total
number of dataset is 11,000. We used the random function of MATLAB to sort the dataset
of each model. Then, 70% of the disordered dataset is used for training and 30% is used for
testing.

After training for 100 epochs, the model tends to converge and the results are shown
in Figure 4. Figure 4a shows the confusion matrix of PLP-Ave model. As can be seen, the
classification accuracy for the DS, CP, and PG are less than 80%, and some errors are around
10%. The average accuracy of PLP-Ave model is only 80.77%. In Figure 4b, the classification
accuracy of PLP-All model for all the types of microalgae is larger than 90%, and for PG
it is larger than 99%. The average accuracy of PLP-All model is 97.32%. Next, we collect
the average accuracy of the different methods in Figure 4c. As can be seen, the PLP-All
model has achieved the best classification accuracy, and the PLP-Ave model’s accuracy is
minimal. In addition, the classification accuracy for the suspended particles increases with
the sampling numbers in the different methods. Note that the PLP-All model suffers the
most from the noises in the data. However, since it contains most of the information about
the particles, it achieves the best classification accuracy.

Figure 4. The confusion matrix of different polarized light pulses methods: (a) PLP-Ave model; (b) PLP-All model;
(c) average accuracy of five models.

The classification accuracy of the four types of microalgae in general is shown in
Table 1. In this case, the classification accuracy of the model trained by the data of PLP-All
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model is larger by 16.55% than the PLP-Ave model, which indicates that this model has
stronger feature extraction capabilities. These high-precision results are consistent in both
the training and prediction sets, which also prove that the model we trained has a strong
generalization ability.

Table 1. Accuracy of PLP-Ave model and PLP-All model.

Dataset Training Set Test Set

PLP-Ave model 80.87% 80.77%
PLP-All model 97.80% 97.32%

3.2. The Mixed Experiment Prediction

To check the flexibility and feasibility of the above models, we used them to classify
the four types of microalgae cells in the mixed suspensions. First, we measured the four
types of microalgae suspensions separately. In order to collect enough particles, we added
2 milliliter of DS to the filtered seawater and measured for 3 min, then recorded the
resulting pulse number which is 720 pulses. Similarly, the same steps were performed for
CP, CD, and PG, respectively. In addition, we obtained the polarized light pulse numbers,
2160 pulses for CP, 576 pulses for CD, and 648 pulses for PG. Then, we mixed the four
microalgae suspensions together, Groups 1, 2, and 3. In each group, the respective volumes
were carefully chosen to ensure that the obtained pulse number by the setup for each type
of microalgae was consistent with the preset pulse number. Then, the mixed suspensions
were separately measured by the experimental setup and each measurement lasted 3 min.
The obtained data were fed into the PLP-Ave and PLP-All models respectively to predict the
number of microalgae cells in each group. For the pulses of temporal signals information,
we need to accumulate enough pulses to obtain most of the particle information. In addition,
the machine learning of BPNN algorithm needs enough characteristics of particles in order
to correctly identify the category of particles.

Table 2 collects the preset pulse number by the calculated volume and the predicted
pulse number by the models for the three mixed suspensions, which can be regarded
respectively as the true value and the predicted value by the models. There are obvious
differences between the preset pulse numbers and the predicted pulse numbers gained by
the PLP-Ave model. The largest error of PLP-Ave model occurs at Group 1, the predicted
pulse number for DS is 100, while the preset pulse number is 40, and the relative error is
about 60%. However, the largest error of PLP-All model occurs in the same group, the
predicted pulse number for DS is 100, while the preset pulse number is 75, and the relative
error is about 25%. Generally, the errors between the preset and predicted pulse numbers
of PLP-All model are much smaller than the PLP-Ave model. Note that the shape and
microstructure of some specific microalgae are not obvious, and an excessive increase in
number cannot be well identified by the PLP-All model. Therefore, some specific type
of the microalgae worsens the errors of the PLP-All model. However, most other types
of the microalgae are good and acceptable, which are quite different from the PLP-Ave
model. The results indicate that the PLP-All model is flexible and feasible for use in the
classification of the microalgae in mixed suspensions.

Table 2. The predicted results of mixed suspensions.

Preset Pulse Number
PLP-Ave Model

Prediction
PLP-All Model

Prediction

Group 1 100, 100, 100, 100 115, 104, 133, 40 115, 103, 99, 75
Group 2 200, 300, 100, 200 292, 258, 80, 194 214, 308, 108, 194
Group 3 200, 400, 100, 300 280, 320, 84, 286 234, 364, 100, 268
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3.3. Comparative Analysis

Based on the classification performance of the PLP-All model, we tested a diverse
particle group that consists of five types of microalgae, two types of microplastics, and one
type of sediment, and the results are shown in Figure 5. Since TW and PG can both cause
a red tide, we added TW into the group to confirm that the PLP-All method has a strong
generalization ability and strong feature extraction ability. Through the confusion matrix
of PLP-Ave model in Figure 5a, it can be seen that the highest classification accuracy for the
eight suspended particles is less than 80%, and the lowest classification accuracy is 65.11%.
The average accuracy of PLP-Ave model is only 80.20%. In Figure 5b, the classification
accuracy of PLP-All model for all types of the suspended particles is larger than 81%,
and for PS-10 it is larger than 99%. The average accuracy of PLP-All model is 90.90%.
In addition, we noticed that all the suspended particles classification accuracy increase
and the maximal increase in the accuracy is about 19.47%. Moreover, for PS-02, which
has a rather high accuracy, the PLP-All model still improves the classification accuracy.
Meanwhile, for the total effects, half of the particle’s classification accuracy increases by
more than 10%.

Figure 5. The confusion matrix of eight suspended particles classification: (a) PLP-Ave model; (b) PLP-All model.

The classification accuracy of the eight suspended particles in the training and test sets
using the PLP-Ave and PLP-All models are shown in Table 3. The model’s classification
accuracy which is trained by the data of the PLP-All model is larger by 10.70% than the
PLP-Ave model, which indicates that this model has stronger feature extraction capabilities.

Table 3. Accuracy of PLP-Ave model and PLP-All model.

Dataset Training Set Test Set

PLP-Ave model 79.89% 80.20%
PLP-All model 90.80% 90.90%

In general, for the diverse particles classification results in Figure 5, as compared
with the PLP-Ave model, the PLP-All model effectively improves the classification accu-
racy. These results show that the PLP-All model has a strong generalization ability and
impressive classification performance.

4. Discussion

4.1. Training Details of Different Models

To further show the classification effects of the polarized light pulse processing algo-
rithm, we provide the training details of all the models for different parts. As the number

13



Sensors 2021, 21, 7344

of epoch increases, the accuracy and MSE of these different models are evidently differ-
ent, as shown in Figure 6a,b. Of note, when the number of epoch is less than 30, all the
models increase sharply, but fluctuate strongly and show little differences in accuracy
when compared with each other. However, as the number of epoch increases by more
than 40, the PLP-Ave model converges to the stable value at first, but then its accuracy
becomes worse. On the contrary, the accuracy performance of the PLP-All model is better
than the other four models, but converges most slowly. Meanwhile, we can easily see that
the models’ accuracy increases with the sampling number of the polarized light pulse.
Moreover, these models still have a large difference in MSE. The MSE of PLP-All model
reduces the fastest and reaches a lower value of about 0.05. In addition, after the MSE’s
stable value reduces with the sampling number, these training details indicate that the
PLP-All method has better classification ability, as shown in Figure 6. All of these results
emphasize that the PLP-All method can effectively distinguish the CD algae with large
differences in the microstructure. In addition, the PLP-All method can still distinguish
the microalgal samples (DS, CP, PG) with little differences in appearance and structure.
This is related to the effect of polarization information on size, shape, microstructure, and
morphology, in order to extract high-quality data from the polarization pulses.

Figure 6. (a) The accuracy curve of different processing methods; (b) the MSE of different processing methods.

4.2. Accuracy of Four Microalgal Samples

Figure 4c shows the average accuracy of five models. Here, as shown in Figure 6,
we provide the accuracy of five models for four microalgal samples. From Figure 7, the
accuracy of the three types of microalgae (DS, CP, PG) increases with the sampling number
of the polarized light pulse, which is consistent with the average accuracy in Figure 4c.
However, the CD is a little different, and its accuracy increases when the sampling number
grows from 4 to 100, and finally reaches the maximum in the PLP-All model. In addition,
the accuracy of PLP-Ave is larger than PLP-4 and PLP-10, which is quite different from
the other models. Therefore, we notice that the accuracy of CD samples is larger than the
other microalgal samples. In addition, the accuracy changes in a different manner than the
models for the four samples.
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Figure 7. The average accuracy of five polarized light pulses processing methods for signal particles.

Essentially, the accuracy of models for the microalgal samples is subjected to the
sensitivity of the polarization parameters to the physical properties of the microalgae cells.
The CD cells have flagella and their shape are long oval, which is quite different from the
other microalgae. This specific microstructure contributes to the higher accuracy of CD at
all the models than the other microalgae.

In addition, we should recall that the averaging in the polarized light pulse will
reduce the noise and then, lead to the accurate measurement of the polarization parameters.
However, the samplings of the polarized light pulse will increase the information amount,
which are both positive for the classification results. When we divide the polarized light
pulse in 4, 10, and 100 times or take all the sampling points of the polarized light pulse
into account, we suffer more from the noise but increase the information amount of the
microalgae cells. As a result, the classification accuracy would be the tradeoff between
these two factors. For CD, averaging plays a more important role at first, thus the accuracy
of PLP-Ave is larger than PLP-4 and PLP-10, but then the information amount increases and
dominates the classification. Therefore, the accuracy of PLP-100 and PLP-All is larger than
PLP-Ave. Moreover, the inherent difference between the microalgal types and the tradeoff
between the averaging and information amount determine the classification accuracy of
the models.

4.3. Origin of the Performance of PLP-All Method

Of note, the PLP-All method suffers the most from the noise of the data, but the
classification accuracy is the best. Evidently, the increase of the data amount is one origin
for the best performance. In addition, in Figure 4c, it can be seen that increasing the data
amount will promote the accuracy. However, we would like to emphasize another origin,
which is possibly more essential than the amount of data. Figure 8 shows part of the data,
[I, q, u, v], of a polarized light pulse processed by the PLP-Ave and PLP-All methods,
respectively and their original signal. The red lines are the average values given by the
PLP-Ave method and the blue lines are the temporal values given by the PLP-All method.
The temporal values change in the polarized light pulse. Here, we can imagine that if we
use the average values given by the PLP-Ave method to replace those of the PLP-All model,
the same data amount is ensured, but the classification effect would be no better than the
PLP-Ave model. Therefore, the key origin of the best performance of PLP-All method is
implied by the time-changing values of polarization parameters of the individual particle,
as shown in Figure 8.
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Figure 8. Temporal values of a polarized light pulse processed by the PLP-All method and the dash
line is the value given by the PLP-Ave method: (a) Intensity values (I); (b) polarization parameter (q);
(c) polarization parameter (u); (d) polarization parameter (v).

Moreover, Figure 8 shows the original signals in the pulse, which are noisy and not
filtered by the low-pass filter. If we use these original signals to feed the classifier, the
data amount is the same, but the final classification effect is the worst. Although the entire
information of the particle is in the original signal, the noises destroy the classification
ability. The envelope of the pulse gained by the low-pass filtering in Figures 2 and 8
possibly loses some particle information, but it reduces the noise, which indicates that the
PLP-All method takes advantage of the denoised and high-quality data.

For each suspended particle crossing the scattering volume, the transient location and
orientation change with the time, according to the setup’s optical system, which leads to
the changes of their scattered polarization states and parameters. Note that the polarization
parameters are sensitive to the structures and orientation of the particles. Therefore, they
can well characterize this essential information, and finally provide high-quality data. The
dense sampling of each pulse records these transient states of the individual particle, which
enhances the information collection. In summary, the PLP-All method takes advantage of
the polarization parameters and dense sampling, and then achieves the best performance.

In addition, compared with the existing classification methods of suspended par-
ticles, the method proposed in this paper has the advantage of not requiring a sample
pretreatment and the ability of detecting the rich polarization information of the individual
particles. However, the time efficiency needs to be enhanced in the next step. Moreover,
beyond the current Stokes vector measurement, the Muller matrix measurement of the
individually suspended particles may be added to the future worklist.

4.4. Comparative Different Machine Learning Algorithms

To further confirm that the different polarized light pulse methods for particle classifi-
cation depend little on the machine learning algorithm, we additionally built the support
vector machine (SVM) algorithm. SVM was used to classify the four types of microalgae,
DS, CP, CD, and PG for different polarized light pulse process methods and the results are
shown in Table 4. A comparison of Tables 1 and 4 showed that the classification accuracy
of the PLP-Ave model using the BPNN algorithm was larger by about 6% than the SVM
algorithm. Similarly, the accuracy of PLP-All model was larger by about 3% than the SVM
algorithm. This indicates that the BPNN algorithm was more powerful in extracting the
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polarization parameter features for achieving higher accuracy than the SVM algorithm. In
addition, we would like to emphasize that the different machine learning algorithms led to
the similarly excellent performance of PLP-All method for particle classification.

Table 4. Accuracy of PLP-Ave and PLP-All models using the SVM algorithm.

Dataset Training Set Test Set

PLP-Ave model 74.39% 74.38%
PLP-All model 94.71% 94.57%

5. Conclusions

In this paper, we proposed an optimization method for the classification of suspended
particles in seawater by dense sampling of polarized light pulses. We built an experimental
setup to measure the suspended particles and collect the polarized light pulses. Then, we
investigated the classification results of the four types of microalgae using different dense
sampling methods. For each method, we sampled the pulse with a certain number and
then built the specific model to classify the four types of microalgae. The results showed
that the classification accuracy increased with the sampling numbers. In addition, the
PLP-All model achieved the best classification performance. Moreover, we classified the
four types of microalgae cells in the mixed suspensions and the results indicated that
the PLP-All model was feasible. Furthermore, we conducted eight types of suspended
particles including microalgae, microplastics, and sediment, and the classification results
showed that the PLP-All model had a good generalization ability. In the discussion part,
the classification accuracy increased with the sampling number, but the MSE decreased.
In addition, for each type of microalgae, the PLP-All model was still the best and the
dense sampling improved the classification performance. Finally, the best performance of
the PLP-All model can be attributed to taking advantage of the high-quality polarization
parameters and dense sampling. In summary, the method based on dense sampling of
polarized light pulses had an excellent ability of classifying the suspended particles. It
can be expected that the underwater polarization scattering instrument equipped with
dense sampling can effectively and accurately help in obtaining the information of particle
compositions in seawater. Furthermore, the dense sampling idea can be used in the future
development of Muller matrix polarimetry of the suspended particles.
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Abstract: The light polarization properties provide relevant information about linear–optical media
quality and condition. The Stokes–Mueller formalism is commonly used to represent the polariza-
tion properties of the incident light over sample tests. Currently, different Stokes Polarimeters are
mainly defined by resolution, acquisition rate, and light to carry out accurate and fast measurements.
This work presents the implementation of an automatic Stokes dynamic polarimeter to characterize
non-biological and biological material samples. The proposed system is configured to work in the
He-Ne laser beam’s reflection or transmission mode to calculate the Mueller matrix. The instrumenta-
tion stage includes two asynchronous photoelastic modulators, two nano-stepper motors, and an
acquisition data card at 2% of accuracy. The Mueller matrix is numerically calculated by software
using the 36 measures method without requiring image processing. Experiments show the efficiency
of the proposed optical array to calculate the Mueller matrix in reflection and transmission mode
for different samples. The mean squared error is calculated for each element of the obtained matrix
using referenced values of the air and a mirror. A comparison with similar works in the literature
validates the proposed optical array.

Keywords: light polarization; Mueller matrix; photoelastic modulator; synchronization; surface fruit

1. Introduction

The design of biosensors has recently shown a considerable advance in human diagno-
sis through proteins and enzymes detection that characterize bacteria and virus diseases [1].
In detecting specific viruses such as SARS-CoV 2 [2] and more biomedical and clinical
diagnoses [3], some of these biosensors use the polarization of light as a detection technique.
The study of polarized light and methods of polarization measurements have increased
due to their variety and vast applications. Polarimetry techniques allow for the identifi-
cation of properties of surfaces by analyzing the changes in the polarized light [4]. Some
applications of polarized light include the characterization of microstructures in biological
tissues [5], the prevention and detection of illnesses like cancer or cirrhosis [6,7], materials
classification [8–10], and analysis of components on industrial products, among many other
biomedical and industrial areas. The Mueller matrix is used to describe the interaction
between light and different optical means to develop potential methods of diagnosis in
biomedical science [11,12]. The Mueller matrix is the numerical representation of the
polarization states of incident light on the sample surface. Thus, it plays a vital role in
characterizing samples’ structural properties associated with their Stokes Vectors.

The Stokes–Mueller theory [13] includes 36 measurements representing the different
states of the polarization of light. The conventional optical array comprises devices such
as polarizers and retarder waveplates. Usually, instrument calibration based on polarized
light [14] is carried out by calculating the Mueller matrix for one or several optical elements,
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considered as reference, and shown in the state-of-the-art [15–17]. Once the polarimeter is
calibrated, the samples under test are measured.

A polarimeter is considered dynamic when its design includes photoelastic modula-
tors. These modulators generate output signals based on the birefringence properties [18]
produced by the SiO2 piece located at the electronic circuit’s output. The birefringence
properties change in function of the input voltage of the modulator, generating linear and
circular polarization states in the output signal. Thus, the dynamic modulation range of
the polarimeter works with a random and polarized light source that passes through the
optical array composed of polarizers and photoelastic modulators. Usually, this assembly
can be used in transmission or reflection mode for different material samples.

This paper presents the design and implementation of a dynamic polarimeter in
transmission and reflection mode for calculating the Mueller matrix of different samples.
Electronic components are chosen to provide high accuracy and speed during dynamic
measurements. The advantage of the proposed system is to compute the Mueller matrix
using the 36 measurements method without using image processing. The instrumented
array automatically acquired the measurements to calculate the numerical coefficients of
the matrix. The matrices are obtained using a Graphical Unit Interface based on LabView of
National Instruments®. The proposed polarimeter is calibrated by calculating the Mueller
matrices of the air and a mirror and comparing with reference values presented in state-
of-the-art. Then, preliminary apple and banana matrices are proposed for establishing
a quantitative reference of the polarization properties of fruit tissues. To the best of our
knowledge, Mueller matrices have not been submitted to describe the behavior of the
polarized light through the fruit surfaces. However, the main contribution of our system is
the instrumentation and control device to automatically perform the polarization states
set up, which allows an economical, accurate, and easy-to-use polarimeter. The proposed
electronic components can be seen as modules that can be included in the whole optical
array and the PC for matrices calculation by software. Overall system performance is
validated experimentally, achieving high values of repeatability and precision.

The rest of the document explains the design and experimental setup of the proposed
system. The theoretical concepts of polarization properties of light are defined in Section 2.
Section 3 describes the optical array to implement the transmission and reflection modes of
the system. Section 4 shows the experimental results using different types of medium and
compares them with similar findings. Conclusions and perspectives of the proposed work
are presented at the end of this document.

2. Background

The Mueller matrix plays an essential role in characterizing the material samples’
microstructural and physical properties. According to the polarization states, different
interactions occur between the incident light and the material sample. The individual ele-
ments of the matrix register the incident beam changes during the light-sample interaction.
Hence, calculating such numerical elements in the matrix requires the study of essential
concepts about the polarized light generation and the Stokes formalism, which will be
briefly presented in the following subsections.

2.1. Polarized Light Generator

A Photoelastic Modulator (PEM) and a polarizer could be time-adjusted by software
to generate different polarization states of a reflected beam of light. The variations on the
reflected beam show a periodicity on the time domain that allows proposing an array to
measure the polarization states dynamically. The basic idea of the PEM is to modulate
polarized light [18] that passes through its optical header when the amplitude of the applied
periodic voltage varies. This amplitude variation modifies the property of optical birefrin-
gence. The optical header of PEM is a device that generates a programmed phase-retarded
between the orthogonal components of the electric field. Thus, being the light a transversal
electromagnetic wave, the beam’s polarization state allows modulating periodically in the
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time domain the polarization state of the light beam. PEM is used in multiple experimental
methods [19,20], showing essential features such as high sensibility, broad spectral range,
and high precision in phase modulation under the Stokes-Mueller formalism.

2.2. Stokes-Mueller Formalism

Recently, light polarimetry contributed to analyzing and diagnosing biological tis-
sues, revealing essential information about healthy or pathological tissue status [21]. The
structural features in organic or non-organic samples alter the incident light in the sample
surface. The changes produced on the incident light after interacting with a material sam-
ple can be described by the elements of the Mueller matrix. These elements represent the
coefficients of the incident and output Stokes vector. Figure 1 depicts the Stokes–Mueller
formalism. An input Stokes vector Si affected by a linear system with optical features given
by M provides the output Stokes vector So. M is the Mueller matrix that models the optical
properties of any material sample under test.

 
Figure 1. Incident beam light interacting on a lineal optical media.

The mathematical representation of Stokes vectors is defined by Equation (1) [16]:

So = MSi (1)

where M is the Mueller matrix, Sx represents the lineal polarization states of incident light
(x = i) and reflected light (x = o) into the optical media. Linear polarization states of light are
composed of: linear horizontal (h), linear vertical (v), linear to 45◦(+), linear to 135◦(−), and
circular polarization states, right circular (r) and left circular (l). Combining these states
helps determine variations on physical structures of material samples during polarized
light incidence.

The Mueller matrix of a lineal optical media is a 4 × 4 matrix whose elements provide
the media’s anisotropy information [22]. In this work, the Mueller matrix is calculated
using the 36 measurements method [23]. Thus, six polarization states are generated from
the incident source of light (Si); six reflected light (So) states are analyzed. This method
is mainly used to measure unknown optical properties of samples under tests (arbitrary
physical systems). Equation (2) illustrates Mueller matrix elements based on the irradiances
I. Each element mab of the matrix depends on two irradiances Ixy. The subscripts at each
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member of M represent the polarized input states established by the incident Stokes vector
Si and the polarized output states corresponding to the reflected Stokes vector So [22].

m11 = 1
2 (Ihh + Ihv + Ivh + Ivv) m12 = 1

2 (Ihh + Ihv − Ivh − Ivv)
m13 = 1

2 (I+h + I+v − I−h − I−v) m14 = 1
2 (Irh + Irv − Ilh − Ilv)

m21 = 1
2 (Ihh − Ihv + Ivh − Ivv) m22 = 1

2 (Ihh − Ihv − Ivh + Ivv)
m23 = 1

2 (I+h − I+v − I−h + I−v) m24 = 1
2 (Irh − Irv − Ilh + Ilv)

m31 = 1
2 (Ih+ − Ih− + Iv+ − Iv−) m32 = 1

2 (Ih+ − Ih− − Iv+ + Iv−)
m33 = 1

2 (I++ − I+− − I−+ + I−−) m34 = 1
2 (Ir+ − Ir− − Il+ + Il−)

m41 = 1
2 (Ihr − Ihl − Ivl + Ivr) m42 = 1

2 (Ihr − Ihl − Ivr + Ivl)
m43 = 1

2 (I+r − I+l − I−r + I−l) m44 = 1
2 (Irr − Irl − Ilr + Ill)

(2)

3. Materials and Methods

3.1. Experimental Setup

The schematic diagram of the proposed dynamic polarimeter in reflection mode is
shown in Figure 2. The dynamic polarimeter is an optical assembly configured in reflection
mode that consists of five parts: a light source module (laser), a polarization state generator
(PSG), a sample under test, a polarization state analyzer (PSA), and a photodetector (PD).

 

Figure 2. Block diagram of the dynamic polarimeter in reflection mode.

Hence, the first array adopted was configured in reflection mode composed of a 632 nm
He-Ne Laser with power output at 17 mW in random polarization. The light beam passes
through the polarization state generator (PSG) to generate the six polarization states. The
PSG consists of a linear polarizer with a transmission axis fixed at +45◦ to the horizontal
axis; additionally, it includes an optical head PEM100 Photoelastic modulator (Hinds
Instruments, OR, USA, [18]) with a transmission axis aligned to 0◦ with the horizontal axis.
After that, polarized light is transmitted or reflected through a sample, which could also be
a material substance or the air. Next, the polarization state Analyzer (PSA) consists of an
optical array to analyze six polarization states of the light. This PSA includes a Photoelastic
modulator (PEM100, Hinds Instruments®, OR, USA), with a transmission axis aligned to 0◦
with the horizontal axis and a transmission axis oriented to −45◦ with the horizontal. Both
polarizers, PSG and PSA, use two Stepper motors (NR360S, Thorlabs®, Newton, NJ, USA)
to generate the combination of circular and linear polarization states. Finally, the proposed
assembly includes a switchable gain photodetector PD (PDA36A, Thorlabs®, Newton, NJ,
USA) to measure the modulated polarized light.
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As mentioned above, the main contribution of the proposed optical assembly is the
generation of the circular and linear polarization states autonomously, combining static and
dynamic methods and employing an embedded synchronization circuit. The six polariza-
tion states are generated in the PSG block and six more in the PSA block. The combination
among these polarization states generates the 36 measurements in the photodetector to
determine the Mueller matrix. From these 36 measurements of the polarization states,
16 correspond to linear states, and 20 to linear and circular states. The overall methodology
consists of four stages: (1) alignment, (2) generation of linear polarization states, (3) genera-
tion of circular polarization states, and (4) synchronization. These four stages were also
instrumented in transmission mode for this study.

3.2. Alignment

The calibration of the proposed polarimeter requires that each component of the
experimental assembly be aligned. Initially, the alignment is performed for transmission
mode by setting the light source, the PSG, the sample, the PSA, and the photodetector in
the same line as illustrated in Figure 3. A sequence of pulses emitted by software allows
extracting minimum, mean, maximal, and normalized values for the air. After that, the
36 measures are automatically computed on the software interface (LabVIEW) to obtain
the Mueller matrix of the air as a reference. The matrix of the air shows a positive “1” value
on its diagonal elements [24]. Hence, the PSG or PSA must be realigned when diagonal
values differ to “1”.

 
Figure 3. Block diagram of the dynamic polarimeter alignment in transmission mode.

As illustrated in Figure 2, the light source module is oriented at 30◦ in the PSA and
photodetector directions in reflection mode. This configuration setup uses a front surface
mirror as a reference sample. Like transmission mode, 36 measurements are automatically
calculated using the graphical user interface on LabVIEW to determine the Mueller matrix
parameters. Ideally, the diagonal elements m11 and m22 in the Mueller matrix of the mirror
are close to 1. Unlike, m33 and m44 are close to −1. The diagonal elements with low
similarity in the ideal values indicate that the PSG must be realigned.

3.3. Combination of Linear Polarization States

The generation and analysis of the linear polarization states require the PSG and PSA
stages. Each polarizer is mounted on an N360S motorized rotation stage of Thorlabs®. A
control system programs both motors to set the transmission axis for each polarizer in
four specific positions. The 16 combinations required for input and output are calculated
from these positions. The data card model USB-6259 distributed by National Instruments®

acquires the signals of each polarization state to the PC and generates the synchronized sig-
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nals to control the instrumented array. Thus, the modules are automated using LabVIEW®.
Figure 4 shows the flow diagram programmed in a subVI of LabView software. This
strategy implements the proposed dynamic polarimeter that generates and controls various
position combinations for each stepper motor.

 
Figure 4. Block diagram of acquisition and states generation of the linear polarimeter.

Linearly polarized light generates polarization by setting off the PEM optical headers
but keeping on the data acquisition process. Table 1 shows the combinations performed by
our optical array system in transmission mode to determine the Mueller matrix for different
linear-optical media. Initially, the reference point of the stepper motors is set to 0◦. The first
column of Table 1 shows the combination of linear polarization states used for passing a
laser beam through the transmission axis of the polarizers. The second column shows each
position of the stepper motor. The third and fourth columns illustrate the theoretical and
normalized expected values.

Table 1. Setup parameters to calculate linear polarization states and the normalized irradiance.

State Angular Position PL1/PL2 Theoretical Irradiance Normalized Irradiance

hh 0◦/0◦

Maximal 1
++ 45◦/45◦
vv 90◦/90◦
−− 135◦/135◦

h+ 0◦/45◦

Medium 0.5

+h 45◦/0◦
h 0◦/135◦
−h 135◦/0◦
v+ 90◦/45◦
+v 45◦/90◦
v 90◦/135◦
−v 135◦/90◦

hv 0◦/90◦

Minimal 0
vh 90◦/0◦
l− 45◦/135◦
−+ 135◦/45◦
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Several measurements had been acquired to increase the number of samples taken
from the polarization states of Table 1. These measurements are averaged for each pair of
polarization states during a fixed time interval. The measurements are stored in a file to
calculate the Mueller matrix elements shown in Equation (2).

Linear and Circular Polarization States Combinations

Figures 2 and 3 show the schematic representation of the instrumented optical array
used to generate linear and circular polarization states. Table 2 illustrates the 20 linear and
16 circular polarizations states to determine the Mueller matrix. The first column of Table 2
shows the states generated and analyzed. Linear polarizers PL1 and PL2 are presented
in the second and fifth columns. The third and sixth columns illustrate the combined
on/off conditions for the PEM1 and PEM2. The fourth and seventh columns show retarder
waveplates values (λ) introduced to generate some circular polarization states.

Table 2. Parameters to generate linear and circular polarization states.

State
Angle of

PL1 (PSG)
PEM1

Status (PSG)
Λ

Angle of
PL2 (PSA)

PEM2

Status (PSA)
λ

−l, −r 135◦ Off - 135◦ On λ/4
l−, r− 45◦ On λ/4 135◦ Off -
l+, r+ 45◦ On λ/4 45◦ Off -
+l, +r 45◦ Off - 135◦ On λ/4
hr, hl 0◦ Off - 135◦ On λ/4
rh, lh 45◦ On λ/4 0◦ Off -
vr, vl 90◦ Off - 135◦ On λ/4
rv, lv 45◦ On λ/4 90◦ Off -

rr, ll, rl,
lr 45◦ On λ/4 135◦ On λ/4

Using Table 2, linear and circular polarization states are generated by combining
different angles and states of the polarimeters. This experiment is similar to the states
generated using the PSG and PSA blocks in reflection mode shown in Figure 2. For instance,
in the four first states (−l, −r), the state “−“ (represented by a minus sign) is performed by
setting to 135◦ the PL1 polarizer in the PSG block and setting the PEM1 to off. A similar
combination is performed for the “l” state, but in this case, the PL2 polarizer in the PSA
block is set to 135◦. The PEM2 is also on and delayed by λ/4. The two states (−r) are
generated and analyzed using similar values for PSG and PSA. The states l and r are
dynamically generated at different times, while PEM2 is set to on and delayed by λ/4
programmed on LabVIEW. Similarly, the rest of the states proposed in Table 2 are generated.
In the last row of Table 2, for the states (rr, ll, rl, lr), both PEM1 and PEM2 are turned on
and synchronized [25]; furthermore, PL1 and PL2 polarizers are set to 45◦ and −45◦ to the
horizontal, respectively [26].

3.4. Synchronization

The dynamic polarimeter proposed uses two optical heads (Hinds Instruments) to
integrate the PEM modules. In practice, we found a difference of around 6 Hz in the
oscillation frequencies in both devices. The measurements registered from PEM modules
must be synchronized to provide correct data values. A phase detector is included to
synchronize both PEM modules with a reference point. To set this reference point, we
measure the phase difference between both oscillation frequencies oriented at 0◦ and 180◦.
For that purpose, we take advantage of each PEM that provides a TTL output signal
equivalent to the input signal frequency that passes through the PEMs. Then, a digital
phase detector composed of a type II phase comparator is used to detect TTL digital output
and the frequency differences to achieve the synchronization PEMs [27].

Figure 5 shows the graphical output signal of the phase-cero detector circuit monitored
by an oscilloscope to demonstrate the functionality of the synchronization stage. This circuit
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provides an output digital pulse 4© when the phase difference is 0◦ between 1© and 2© input
signals. This pulse is used as a reference if periodic polarization states in the PEMs are
detected. Using PEMs synchronization parameters, it is possible to obtain 20 measurements
in specific points related to the combination of linear and circular polarization states. In our
case, the reference point is the transition from low to high level at the output of the phase
detector (see channel 4© in the oscilloscope).

 
Figure 5. Measured signals: (1) TTL output of PEM1, (2) TTL output of PEM2, (3) output signal of
the photodetector, (4) output signal of the phase detector.

Figure 6 illustrates the use of the phase detector to synchronize the NI-USB acquisition
card and the oscilloscope during the detection of the polarization states.

 

Figure 6. Block diagram of acquisition and states generation of circular polarization.

The polarization states r and l in the signal propagated through the optical header of
each PEM are specified in the datasheet device [18]. Figure 7 illustrates the PEMs monitored
by an oscilloscope. Two dynamic polarization states are measured using the acquisition
data card at the output of the zero-phase detector. Figure 7a displays the oscilloscope screen
for r and l polarization states, and Figure 7b shows the l,l states.

 

(a) (b) 

Figure 7. The plot of the polarization states generated. (a) Combinations for the r,l states.
(b) Combinations for the l,l states.
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Once the system is referenced to a specific point in time established for the synchroniza-
tion process, we acquire various measurements automatically at this reference point and
calculate the mean values of the instantaneous measurements for obtaining a reliable value.

4. Results

Experimental tests validate the performance and accuracy of our dynamic polarimeter
assembly. In the experiments, the room temperature was between 20 ◦C and 25 ◦C, and
the laser was pre-heated for 30 min before use. For each set of measurements, the overall
system is calibrated by software using frequency differences between the PEMs. To obtain
the differences, we average the location of maximum and minimum values measured at
the output of the photodetector. These values could vary depending on the selected gain in
the photodetector; in these experimental tests, we used a fixed gain of 20 db. The retarded
output signal pulse measurements in the phase detector showed a periodicity of 100 ns.
The air and a mirror are used as standard samples in transmission and reflection mode,
respectively, to verify the system calibration. Figure 8 shows the proposed optical system
implemented in reflection mode for two different degrees of orientation, 30◦ and 165◦.

  
(a) (b) 

Figure 8. Dynamic Stokes polarimeter in reflection mode: (a) oriented at 30◦; (b) oriented at 165◦.

Each Mueller matrix is compared with its corresponding ground-truth matrix proposed
in the literature [22]. The difference between the proposed matrix and the ideal matrix
established for standard samples is calculated using the mean square error metric (see
Equation (3)). The mean error obtained indicates the deviation of matrix elements to their
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ideal values but in general. The further numerical analysis allows the determination of the
specific details in the matrix with maximal differences.

MSE =
1
16

4

∑
i=1

4

∑
j=1

∣∣∣Mideal
ij − Mij

∣∣∣ (3)

The following subsections describe the Mueller matrix measured by our proposed
dynamic polarimeter and compare the matrix elements that show the higher accuracy error.
The comparison results demonstrate the reliability of the instrumented system capable of
measuring linear and circular polarization effects of some organic and non-organic samples
without using CCD sensors. Additional methods, like Mueller matrix transformation
or decomposition, provide a set of microstructural properties of most biological tissues;
however, the comparison and computation of such properties are reserved for future works.

4.1. Mueller Matrix in Transmission Mode

The Mueller matrix in transmission mode measures two samples: the air and a linear
polarizer with the transmission axis perpendicular to the horizontal. The first row of Table 3
shows our proposed Mueller matrix for the air [16]. According to this reference matrix, the
diagonal elements are one or close to one, indicating that our system is calibrated correctly.
The mean error indicates 2.12%, being m13, m23, and m32 the elements with maximal error.
The remaining elements of the matrix show a minimal accuracy error regarding ideal values.
This comparison indicates that such elements must be considered the most critical during
matrix calibration due to the higher accuracy errors.

Table 3. Mueller matrix for air and a polarizer with the transmission axis set to 90◦.

Sample Experimental Mueller Matrix Mean Error (e)
Elements with
Higher Error

Air

⎡
⎢⎢⎣

1.0000 −0.0203 −0.0407 −0.0032
−0.0204 0.9936 0.0677 −0.0007
0.0819 −0.0673 1.0165 −0.0009
−0.0013 0.0009 −0.0052 0.9947

⎤
⎥⎥⎦ 0.0212

m13
m23
m32

Polarizer
90◦

⎡
⎢⎢⎣

1.0000 −0.9782 −0.0540 0.0014
−0.9786 0.9767 0.0536 −0.0012
0.0727 −0.0725 −0.0242 −0.0004
−0.0010 0.0015 −0.0042 0.0040

⎤
⎥⎥⎦ 0.0223

m13
m23
m31
m32

The second row in Table 3 shows the Mueller matrix of a polarizer with the transmis-
sion axis set to 90◦ to the horizontal. The elements m11, m12, m21, and m22 in this matrix are
close to 1, similar to ideal values proposed in the literature for a linear polarizer [28]. The
mean error obtained for this matrix is 2.23%, being m13, m23, m31, and m32 the elements
with maximal error.

4.2. Mueller Matrix in Reflection Mode

A typical material used for calculating Mueller matrices is a front mirror surface. The
surface of this mirror perfectly reflects a beam of light like a half-wave plate [4,25,26]. As a
reference, we calculate the matrix for a front mirror surface in reflection mode, yielding
an error of 0.31% compared with previous work (see Table 4). For a mirror, m33 and m44
diagonal elements show a minus sign [29], validating the assumption that a front mirror
surface is perfectly reflected, like a retarder half-wave plate.

30



Sensors 2022, 22, 2155

Table 4. Mueller matrix of a mirror in reflection mode.

Sample Experimental Mueller Matrix Mean Error (e)

Mirror

⎡
⎢⎢⎣

1.0000 0 0.0013 0.0037
0 1.0000 −0.0009 0.0028

0.0005 0.0001 −1.0000 −0.0003
0.0065 0.0018 0.0012 −0.9702

⎤
⎥⎥⎦ 0.0031

Before testing with organic samples, similar experimental tests were performed with
the dynamic polarimeter in reflection mode using different reflected surfaces. Thus, we
replaced the front mirror surface with a polarizer with the transmission axis oriented at
90◦ and a rough aluminum surface. The experimental results are shown in Table 5. The
Mueller matrices for both elements are not provided in the literature to the best of our
knowledge. Hence, we have included both matrices without an MSE score. Note that
diagonal elements in both matrices show similar behavior to matrix elements of a mirror;
the first two elements are positive and the last ones negative. The experimental array
mounted for measuring rough aluminum surface is illustrated in Figure 9.

Table 5. Mueller matrix of a polarizer with the transmission axis oriented at 90◦ and aluminum
surface in reflection mode.

Sample Experimental Mueller Matrix

Polarizer 90◦
⎡
⎢⎢⎣

0.9644 −0.0228 0.1286 0.0008
−0.0119 0.9529 −0.2915 0.0910
−0.1615 0.0972 −0.9749 0.0136
0.0260 0.0650 0.0502 −0.9463

⎤
⎥⎥⎦

Aluminum surface

⎡
⎢⎢⎣

1.0079 0.0073 0.1743 0.0052
−0.0082 0.9808 −0.3409 −0.0019
0.1497 0.1023 −0.9799 −0.0011
−0.0022 −0.0018 0.0014 −0.9736

⎤
⎥⎥⎦

 

Figure 9. Dynamic Stokes polarimeter in reflection mode through the aluminum surface.

4.3. Mueller Matrix for Fruit Surfaces

The dynamic polarimeter is validated using different organic samples in reflection
modes, such as an apple and a banana. Table 6 illustrates the corresponding Mueller
matrices calculated in reflection mode.
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Table 6. Reflection Mueller matrices in fruit surfaces.

Sample Experimental Mueller Matrix

Apple surface

⎡
⎢⎢⎣

0.9912 −0.0076 −0.0106 0.0012
−0.0391 0.9301 −0.6605 −0.0020
0.1022 0.0972 −0.9749 0.0136
−0.0020 0.0002 0.0030 −0.3438

⎤
⎥⎥⎦

Banana surface

⎡
⎢⎢⎣

0.9451 −0.0418 0.0025 −0.0008
−0.0691 0.8942 −0.6369 0.0025
−0.1848 0.0212 −0.6108 0.0003
−0.0001 −0.0002 0.0030 −0.1874

⎤
⎥⎥⎦

Figures 10 and 11 show the physical experimental array implemented to measure
the Mueller matrices of an apple and a banana, respectively. The m11, m22, m23, and m33
elements of the matrix are sensitive to linear polarizing light beams. The m44 element
represents the reaction to circular polarization. We note that this element was significantly
reduced to the mirror surface, which is −1, indicating circular depolarization of the surface.

 

Figure 10. Dynamic Stokes polarimeter in reflection mode through the apple surface.

 

Figure 11. Dynamic Stokes polarimeter in reflection mode through the banana surface.

The Mueller matrices illustrated in Table 6 are general approximation matrices ob-
tained from an instrumented dynamic polarizer. This is the first time that Mueller matrices
for fruits are proposed to the best of our knowledge. We can reduce some errors in the
matrix elements associated with the number of tests performed by measuring different
apples and bananas from a batch of fruit. These matrices provide much information on the
sample surface based on the fruits’ maturity degree.
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5. Discussion

This work proposes a Stokes polarimeter system that calculates the Mueller matrix
of organic and non-organic samples by transmission or reflection. Instrumentation of
polarizers and stepper motors allow the 36 measurements method to achieve the same
precision for every experimental sample. The main contribution of this method is to
provide an instrumented array for calculating Mueller matrices by measuring polarized
light behavior on the sample surfaces. This method proposes an alternative to the typical
image of the Mueller matrix; instead, we propose numerically calculating each element of
the matrix by acquiring measured signals and using the 36 measurements method. Mueller
matrix of fundamental elements such as air, polarimeters, and mirror are used to calibrate
and validate the proposed system. Specifically, Mueller matrices of different organic
samples are calculated (fruit surfaces) and shown on the main screen of the designed
software. The mode can be selected by reflection or transmission. Moreover, even if some
matrices cannot be compared to similar experimental values, we achieve a minimal MSE
score for common elements like air or polarizers.

Overall, the Mueller matrices obtained for different elements provide a reliable calibra-
tion for ideal reference samples and show that our instrumented array can be configured
and adapted to measure lighting properties of additional organic and non-organic materials.
Related works proposed Mueller matrices measured using a CCD camera with higher error
accuracy values than our proposed optical array. For instance, in [30], the Mueller matrices
of the air or polarizers using a CCD camera show around 4% of error and 2% in our case.
In contrast, reference [31] also measures the matrix for the air achieving an error of 0.2%
and even lower for some individual elements of the matrix. Both works measure the
optical properties of the air in transmission mode but using two different models of CCD
cameras, the camera with a higher dynamic range provides notably more accurate results.
In our case, we have proposed a photodetector instead of a CCD camera because we can
vary the acquisition rate of the photodetector and acquire a high number of samples to
calculate the Mueller matrix. Additionally, the photodetector measurements require fewer
saving storage and memory resources. Moreover, this device provides high bandwidth for
measuring the polarization properties of the samples under tests. So far, the photodetector
offers an alternative to the CCD camera commonly used for Mueller matrix determination.

Some additional aspects for improvement in future works are listed: (1) the design
of a compact and portable prototype for measuring different kinds of samples under
the same conditions using reflection mode; (2) Extend the current wavelength of the
incident light to a broader spectrum range for measuring microstructural properties that
characterize biological tissues; (3) Compute other Mueller matrix properties for a suitable
characterization of material samples in industry or clinical applications.
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Abstract: Stress detection of the conical frustum window is a very important issue to ensure the safety
of deep manned submersibles. In this paper, we propose a method based on polarization imaging
to evaluate the stress accumulation and recovery in the conical frustum window. An experimental
setup of Mueller matrix polarimetry is built, and the samples are made by referring to the typical
conical frustum windows in submersibles. By pressurizing different pressures on the samples, we
can find the changes of their Mueller matrix images and further derived polarization parameters.
The results show that the polarization parameters can characterize the stress transfer process and the
elastic–plastic transformation process of the window under different pressurization pressures. We
also use a two-layered wave plate model to simulate the stress distribution in the window, which
reveals different performances of the former and latter layers of the window under pressurization.
Finally, we use a finite element model to simulate and understand some of the above experimental
results. This proposed method is expected to provide new possibilities for monitoring the window
stress and further ensure the safety of deep manned submersibles.

Keywords: conical frustum window; PMMA; polarization imaging; stress detection

1. Introduction

The pressure hull is an important part of a deep manned submersible, which is
mainly composed of a pressure shell made of high-strength titanium alloy and observation
windows made of polymethyl methacrylate (PMMA) material [1]. The observation window
is a key component as it can provide a channel for scientists to observe the external
sea conditions. Meanwhile, it is also an important pressure-bearing component, and
stress accumulation will occur in the window due to the high external pressure in the
diving process of the submersible [2,3]. The stress distribution inside the observation
window affects its pressure resistance. The stress release degree of the observation window
after the submersible surfaces is an important factor affecting the use frequency of the
submersible [4]. Cracks in the window will threaten human safety inside the submersible.
Therefore, it is of great significance for the safety and stability of the submersible to monitor
the internal stress accumulation of the observation window and provide an evaluation
standard of the window stress release degree in the recovery stage.

Many scientists have simulated the internal stress of the observation window by
finite element analysis. Du et al. [5] studied the stress and deformation characteristics of
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the conical viewport window with the flange. Zhou et al. [6] showed the creep behavior
of thick PMMA immersed in a liquid scintillator at eight stress levels. Arnold et al. [7]
built predictive models for the creep behavior of PMMA, which match the experimental
results. Pranesh et al. [8] showed several models of a viewport window to reduce the
internal stress, which can reduce the corner stress by selecting a specific fillet radius. Liu
et al. [9] identified unknown viscoelastic parameters and accurately analyzed the deep-
water damage by comparing experiments with finite element analysis. Wang et al. [10]
analyzed the time-deformation behavior of the observation window using the viscoelastic
model. There are also several practical stress measurement methods, each of which has
its own advantages and disadvantages. For example, the strain gauge method [11,12]
can accurately measure the stress but only characterizes the surface stress and strain,
while the ultrasonic method [13,14] can measure the internal stress of the bulk sample
but sometimes causes damage to the sample, and the laser speckle method [15,16] can
simultaneously measure the large area of the sample surface but requires the window
surface to be roughened. Considering that stress accumulation occurs inside the window
during diving, an in situ detection method for the submarine is still desired. To our
knowledge, the development of a nondestructive, in situ and real-time stress detection
method is currently challenging for the scientific community.

Polarization is the inherent property of light. Polarimetric techniques have been
demonstrated to provide multidimensional parameters, which are sensitive to the mi-
crostructure of the samples [17]. Recently, polarimetric techniques have been used in
biomedical therapy [18,19], marine particle probing [20,21], aerosol monitoring [22,23], etc.

Usually, we use the Stokes vector S = (I, Q, U, V)T to describe the polarization state of
light. When a beam of polarized light passes through the sample, the sample’s polarization
property, always represented as a 4 × 4 Mueller matrix, will affect the polarization state of
the incident light. Mathematically, we can obtain Equation (1) to describe the transformation
process, where (I, Q, U, V)T is the Stokes vector of the incident light and (I′, Q′, U′, V′)T

is the Stokes vector of the output light.

⎛
⎜⎜⎝

I′
Q′
U′
V′

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

m11 m12 m13 m14
m21 m22 m23 m24
m31 m32 m33 m34
m41 m42 m43 m44

⎞
⎟⎟⎠
⎛
⎜⎜⎝

I
Q
U
V

⎞
⎟⎟⎠ (1)

At present, there are many polarization systems to measure the Mueller matrix of
samples. The classical methods of rotating the optical polarization components, such as the
polarizer and the quarter-wave plate, have been extensively used in measuring the Mueller
matrix of biomedical tissues and integrated electronic chips [24]. However, reducing the
rotational components can often improve the acquisition speed, measurement accuracy
and stability of the polarimetry system. Recently, liquid crystal modulators [25,26] and
photoelastic crystal devices [27,28] tend to gradually replace rotational components. In the
meantime, new types of polarimeters are emerging to directly measure the polarization
states of light in one or two dimensions. For example, the division of a focal plane (DoFP)
polarimeter is capable of measuring the linear polarization states in a single shot, which
consists of a common CCD sensor with a pixelated micro-polarizer array (MPA) in front of
it. Several recent studies have used the DoFP polarimeter to measure the polarization prop-
erties of biological tissues [29,30]. Compared with traditional Mueller matrix polarimetry,
it effectively improves the measurement speed and enhances the system’s stability.

In this study, polarization imaging is used to measure the stress and strain of the
conical frustum window during pressurization and recovery stages. We firstly build an
experimental setup to measure the Mueller matrix of the samples referring to the typical
conical frustum window in submersibles. In the experiment, a controllable jack is used
to pressurize the sample step by step, and the Mueller matrix of the sample is measured
at each pressure level. The results demonstrate that the polarization parameters derived
from the Mueller matrix can characterize the stress accumulation and release process of
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the sample in both the pressurization and recovery stages and provide effective indicators
for the elastic–plastic transformation of the internal structure. Moreover, a two-layered
wave plate simulation is proposed to describe the stress distribution in the sample, which is
consistent with the results of finite element analysis. The results in this work indicate that
polarization imaging can effectively detect the stress of the samples referring to the typical
conical frustum window in submersibles, and this implies the possibility of monitoring the
stress distribution in the conical frustum window quantitatively in the future.

2. Materials and Methods

2.1. Material

Since Piccard first proposed a conical observation window in marine engineering in
the 1950s, the conical observation window has been widely used in deep-sea submersibles.
For convenience, we refer to the typical conical observation window of submersibles and
designed the samples to be made of PMMA material to carry out the pressure experiment.
In order to facilitate a description in this context, the large face of the sample is called
the former face and the small face is called the latter face, according to the sequence of
light passing through the sample in the experiment. The structure of the sample (Tiemao
Glass, China) is shown in Figure 1 with the diameter of the latter face Φ1 = 20 mm, the
diameter of the former face Φ2 = 80.5 mm (to follow the direction of light passing through
the sample), the height H = 32.3 mm, the former face chamfer angle R = 115◦, and the
cone Angle α = 90◦. The mechanical parameters of the sample are shown in Table 1.

 

Figure 1. Structural parameters of sample.

Table 1. Mechanical parameters of the PMMA sample.

Properties Value

Density/(g/cm3) 1.186
Tensile Modulus/GPa 3.13
Yield Strength/MPa 129

Poisson’s ratio 0.37
Refractive index 1.49

2.2. Experiment Setup

The experimental setup, as shown in Figure 2, was built to measure the Mueller matrix
images of the sample when pressurizing different pressures on it. The setup consisted of a
light collimator, a polarization state generator (PSG), a polarization state analyzer (PSA),
and a pressurization device. In the light collimator, the light emitted from an LED lamp
with the 630 nm central wavelength and 10 nm bandwidth was collimated by an optical
system to finally form a parallel light beam whose transversal homogeneity was larger
than 93%. The beam diameter was 20 mm, which can completely cover the latter face of
the sample. The light beam successively passed PSG, the sample, and finally PSA, and the
light beam’s polarization states were modulated by PSG, while its Stokes vector image after
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passing the sample was detected by PSA. A jack with a maximum working pressure of
63 MPa (RRH-1003, Yuli Electromechanical Equipment Group Co., Taizhou, China) was
used to pressurize the sample.

 

Figure 2. Schematic configuration (a) and photograph (b) of the experiment setup. P1, polarizer; R1
and R2, achromatic quarter-wave plates.

In the setup shown in Figure 2, PSG includes a fixed linear polarizer P1 (LPNIRB100,
Thorlabs Inc., Newton, NJ, USA) and a rotatable zero-order quarter-wave plate R1 (WPQ10E-
633, Thorlabs Inc., Newton, NJ, USA). R1 was installed in an electric rotating stage
(PRM1/MZ8, Thorlabs Inc., Newton, NJ, USA). PSA consisted of two 16-bit DoFP po-
larimeters (PHX050S-PC, Lucid Vision Labs Inc., Vancouver, BC, Canada, DoFP-CCD1 and
DoFP-CCD2), with 2048 × 2448 pixels and 21 frames per second. Each DoFP polarimeter
is capable of obtaining images in four linear polarization channels of 0◦, 45◦, 90◦ and
135◦ in a single measurement. Two DoFP polarimeters were installed at the transmission
and reflection ends of a 50:50 non-polarizing beam splitter prism (CCM1-BS013/M, Thor-
labs Inc., Newton, NJ, USA), and a fixed zero-order quarter-wave plate R2 (WPQ10E-633,
Thorlabs Inc., Newton, NJ, USA) was installed between the transmission end of the prism
and DoFP-CCD1.

To improve the measurement accuracy and reduce the instantaneous field-of-view
(IFOV) error, a calibration strategy was used to calibrate the Mueller matrix image mea-
surement of the setup [30]. Firstly, to reduce the error caused by the polarization direction,
the extinction ratio and the intensity response of the pixels, the parallel light beam with
known polarization states was used to evaluate the DoFP instrument matrix to calibrate the
pixels of DoFP polarimeters. The polarization states were generated by PSG and measured
by a standard polarimeter (PAX1000VIS, Thorlabs, Newton, NJ, USA). Secondly, PSA can
be also calibrated by these well-calibrated DoFP polarimeters by using the same parallel
beam with known polarization states as the incident light beam. In addition, a so-called
PSA instrument matrix was obtained to calculate the Stokes vector image of the incident
light beam from the pixel values of the two DoFP polarimeters. Thirdly, we measured a
series of Stokes vector images by rotating the wave plate in PSG at angles in a given angle
set, when the sample was not pressurized. Here, we considered the air as the standard,
whose Mueller matrix was the unit matrix. Up to this point, we obtained a controllable PSG
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and a qualified PSA. After the calibration, the error of measured Mueller matrix elements
normalized by m11 was less than 0.005.

After the sample was loaded in the setup, we illuminated the sample with the parallel
light beam with the known polarization states and, accordingly, recorded the Stokes vector
image of the beam after the sample. Since the setup can measure the Mueller matrix with
very low error after the above calibration by the air, we can calculate the Mueller matrix of
the sample using Equation (1). However, the other error, excluding those in the polarization
measurement, such as the image distortion from the deformed sample, may do harm to the
measurement of the Mueller matrix of the sample. As a result, we focused much effort to
correct the image distortion, in order to obtain the accurate Mueller matrix of the sample
under different pressure values.

During the measurement, we optimized the angle set by considering both the small
condition number to suppress the error accumulation and the fast measurement speed of
the system. Currently, four different angles, −45◦, 45◦, −19.6◦ and 19.6◦, of the rotating
wave plate in PSG were used in a single measurement [31].

In order to ensure that the light beam can pass entirely through the sample, the
pressurization area on the sample was a ring whose inner diameter was 22 mm, larger than
the latter face of the sample. Ideally, according to the pressure conversion formula, the
transfer of force without loss can be expressed as Equation (2),

F = PA ·Swindow = P·Sjack (2)

where PA is the ideal equivalent pressure, Swindow is the pressurization area of the window,
P is the pressure displayed on the jack dashboard [32], and Sjack(=175.84 cm2) is the
pressurization area of the jack, which was obtained by asking the company. The transfer
efficiency η (=0.8) was introduced considering the transfer loss in the actual situation. The
actual equivalent pressure, P′

A on the sample can be calculated by Equation (3) from the
pressure value read from the jack,

P′
A = η· P·Sjack

Swindow
≈ 3·P (3)

This means that when the jack operated between 0 and 60 MPa, the actual pressure on
the window was about 0–180 MPa, and in the following context, we mention the pressure as
the actual pressure. In the pressurization experiment, we took 12 MPa as the step pressure
to carry out the experiments. Besides, we also investigated the full recovery of the sample
after pressurization and monitored the change of polarization parameters in this process,
so as to find the parameters that can effectively characterize the stress change of the sample.

2.3. Image Distortion Correction Method

During the experiment, we found that with the increase in pressure, the sample was
deformed, which caused the parallel light beam to experience a certain level of distor-
tion. The pixel-level correspondence between the incident and output light beam was
destroyed, which decreased the accuracy of the Mueller matrix imaging. Additionally, the
correspondence between the measurement images in different pressures was damaged,
which caused harm to the stress characterization of the polarization parameters. Here, we
used a correction method to correct the distortion of these images after pressurization.

In order to correct the image distortion accurately, the grid auxiliary line was drawn by
a dark soft brush on the latter face of the sample, whose correspondence with the covered
areas on the latter surface was physically unchanged, regardless of how the distortion
occurred. Then, a manual feature point extraction method was used to correct the image
distortion under different pressures according to the grid auxiliary line. The key point
of the method was to select the feature points in the original image without pressure
and the distorted image under certain pressure, and then obtain each feature point’s
pixel coordinate index. For the example of the i th feature points, these were

(
xi

0, yi
0
)
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and
(
xi

1, yi
1
)
. If we obtained entirely n feature points, we obtained x0 as an n × 1 vector

formed by xi
0, (i = 1, 2, . . . , n), and similarly, we obtained y0, x1, and y1. After that, we

carried out the projection transformation with a 3 × 3 transformation matrix T, that is,
(x0, y0, u) = (x1, y1, u) ∗ T, where u is an n × 1 vector formed by 1. Three columns in T
respectively represent the transformation of the image in the x, y and z directions. For
the two-dimensional transformation shown in this case, the data in the third column will
be [0, 0, 1]. T is specified by pairs of feature points. By substituting T into the imwarp
function, we obtained the corrected image [33].

We compared the images before and after pressure, and the raw intensity images from
the 0◦ linear polarization channel of DoFP-CCD1 were considered as examples. Figure 3a,b
respectively show the images before and after loading 120 MPa, which are marked by red
dots. We can see that the distortion is very serious, and the grids in Figure 3b are slightly
larger than those in Figure 3a, which may originate from the bulge of the latter face of
the sample in the pressurization process. We merged these two images together with a
false-color algorithm and show it in Figure 3c where the green part is the original image
and the pink part is the 120 MPa pressure image. One can see that the overlap between
pink and green is very severe, and the ghosts of the grid auxiliary lines are rather obvious.

Figure 3. Results of the correction method. (a) Original image without pressure; (b) distorted images
with 120 MPa pressure; (c) merged image of (a,b) with false-color algorithm; (d) merged image of
original and corrected images with false-color algorithm. Red dots in (a,b) are the feature points.

We selected the feature points (marked as red points in Figure 3a,b) according to the
grid auxiliary line, and then obtained the transformation matrix to correct the distorted
image to the corrected image. Figure 3d shows the merged image of the original and
corrected images. The pixel correspondence greatly improved after the algorithm, as the
pink image was almost completely covered by the green image. The pink part that is not
completely covered may have been caused by the inaccuracy of T, due to the insufficiently
dense selection of feature points.

To verify the stability of this method, we manually marked the same data six times to
test the error introduced by the transformation matrix due to the manual mark of feature
points. Each mark process selected more than 20 pairs of feature points, and Table 2
collects and shows the nine transformation matrix elements t11 ∼ t33 calculated in the six
marking processes. By calculating the Mean ± Var values of each element, we evaluated
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the influence of the manual mark on T. t13, t23 were close to 0, t33 is 1, which means a
change of the image in the z-direction did not occur.

Table 2. Elements of transformation matrix for six independent markings.

Number t11 t12 t13 t21 t22 t23 t31 t32 t33

1 0.8452 −0.0135 −1.47 × 10−5 0.0075 0.8699 4.45 × 10−6 125.6382 150.0923 1
2 0.8322 −0.0158 −2.13 × 10−5 0.0077 0.8613 5.34 × 10−6 133.1351 154.9269 1
3 0.8250 −0.0209 −2.19 × 10−5 0.0074 0.8470 2.20 × 10−6 130.6332 151.8865 1
4 0.8434 −0.0099 −1.47 × 10−5 0.0116 0.8678 5.71 × 10−6 127.6634 150.0143 1
5 0.8436 −0.0126 −1.22 × 10−5 0.0147 0.8818 1.16 × 10−6 129.1101 149.3359 1
6 0.8437 −0.0072 −1.60 × 10−5 −0.0026 0.8559 3.04 × 10−6 131.3437 152.5151 1

Mean ±
var

0.8389 ±
0.0083

−0.0134 ±
0.0048

−1.44 × 10−5 ±
7.38 × 10−6

0.0077 ±
0.0059

0.8640 ±
0.0121

5.39 × 10−6 ±
3.32 × 10−6

129.5873 ±
2.6941

151.4619 ±
2.0874 1 ± 0

In order to verify the influence of the standard deviations of t31 and t32 on the pixel
movement, we set all other elements as their own average values but allowed t31 and t32 to
change within their own standard deviations, with which we constructed T accordingly.
The corrected image can be calculated for each new setting of t31 and t32, and the pixel
positions are found to change within 4 pixels. Compared with the 2048 × 2448 image, the
relative error of the pixel position is less than 0.2%. Generally, from Table 2, the difference
between six independent markings is so small that it indicates the above correction method
is not influenced by the manual point marking.

3. Results

3.1. Characterization of Sample Changes during Pressurization and Recovery Stages by
Polarization Parameters

The results of several polarization parameters on the sample at pressurization and
recovery stages are shown in Figure 4, which are b, t3, αr in the Mueller matrix transfor-
mation (MMT) technique [34] and parameter δ in the Mueller matrix polar decomposition
(MMPD) method [35]. Their calculation formulas are shown in Equations (4)–(12), where R
is the total retardance, εijk is the Levi–Cività permutation symbol, δij is the Kronecker delta,
ϕ is the optical rotation of magnitude. The previous literature shows that b is reversely
related to depolarization, t3 and δ are related to linear retardation, while αr is related to the
medium anisotropy [36].

b =
1
2
(m22 + m33), (4)

t3 =
√

m2
42 + m2

43, (5)

αr =
1
2

arctan
(

m24

−m34

)
, (6)

αq =
1
2

arctan
(−m24

m34

)
, (7)

MR =

⎡
⎢⎢⎣

1 0 0 0
0
0
0

mR

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 0 0 0
0
0
0

mLR

⎤
⎥⎥⎦
⎛
⎜⎜⎝

1 0
0 cos 2ϕ

0 0
sin 2ϕ 0

0 − sin 2ϕ
0 0

cos 2ϕ 0
0 1

⎞
⎟⎟⎠ = MLR MCR, (8)

(mR)ij = δij cos R + aiaj(1 − cos R) +
3

∑
k=1

εijkak sin R, i, j = 1, 2, 3 (9)

δ = arccos
(√

(mR22 + mR33)
2 + (mR32 − mR23)

2 − 1
)

, (10)

R = arccos
[

tr(MR)

2
− 1
]

(11)
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ai =
1

2 sin R

3

∑
i,j=1

εijk(mR)jk (12)

 
Figure 4. b, t3, αr, δ images of sample after 0 MPa, 72 MPa and 144 MPa pressure and those after 24 h
recovery. (a–d): b images; (e–h): t3 images; (i–l): αr images; (m–p): δ images.

We selected the above four polarization parameters to compare the sample’s images
after 0 MPa, 72 MPa and 144 MPa and images after the 24 h recovery. In the horizontal di-
rection, the polarization parameters can similarly characterize the changes in pressurization
and recovery stages. When the pressure is 0 MPa, the first column images were relatively
uniform and b in Figure 4a is close to 1 uniformly, which indicates that the sample’s depo-
larization was weak initially. t3 in Figure 4e, together with δ in Figure 4m, reflect that the
sample without pressure has relatively small variation in the linear retardation. Figure 4i
shows the sample has an almost uniform anisotropic structure, except for its peripheries
when the pressure is 0 MPa.

The jack exerts ring-shaped pressure on the sample, and the center of the sample is the
clear aperture, so there is a stress transfer from the periphery to the center of the sample.
When the pressure reaches 72 MPa, for the second column of Figure 4, the central areas
become heterogeneous, and there are also annular structures close to the periphery. It can
be inferred that at this annular area, there is a strong depolarization effect because of the
small b, and a large retardation difference because of the dramatic changes of t3, αr and δ.
When the sample is pressurized to 144 MPa, a clear and complete ring-shaped area is
observed in the third column of Figure 4, where the ring contracts more toward the central
area than what happens at 72 MPa. Note that the values of αr and δ obtained by Equations
(6) and (10) may be wrapped, and the retardance of the sample may be larger than those
values shown in the third and fourth row of Figure 4 [37]. However, we can see αr and δ
images become more heterogeneous due to the larger pressures. This indicates that the
polarization parameters can characterize the process of stress transfer inside the sample
during the pressurization stage. When the sample is recovered after 24 h, the fourth column
of Figure 4 returns to a certain homogeneity, which is similar to that in the first column, but
the values of the parameters are quite different from the initial ones. This indicates that
after pressurizing to 144 MPa, the sample experiences changes in its internal structure that
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cannot be fully recovered in 24 h, and the proposed polarization parameters are sensitive
to these changes.

3.2. Characterization of Elastic-Plastic Transformation of Samples Described by
Polarization Parameters

In the previous experiments, we found the polarization parameters could not return
to the initial state after pressurizing 144 MPa. In order to investigate the elastic–plastic
transformation process in the sample, we design the experiment and chose the MMPD
parameter γ to characterize the elastic–plastic transformation of the sample. Previous work
shows that γ can perfectly reveal the sample’s fast axis orientation [38]. The calculation
formula of γ is shown by Equations (13) and (14), with a magnitude of linear retardance β:

γ =
1
2

arctan
(

r2
r1

)
, (13)

ri =
1

2 sin β
×

3

∑
i,j=1

εijk(mLR)jk (14)

We carried out the experiments under different pressures and recovery times, and
the results are presented in Figure 5, which shows the ability of polarization parameter to
characterize the elastic–plastic transformation of the sample. Figure 5a shows the sample’s
initial image of γ, whose homogeneity indicates that the sample is an anisotropic material
with a homogeneous orientation. Figure 5b–d shows the γ images of the sample after
12 h recovery from being pressurized to 36 MPa, 60 MPa and 72 MPa, respectively. With
the increase in pressurization pressure, γ gradually changes and the overall homogeneity
decreases. Furthermore, since γ is an angle parameter with a cycle of 180 degrees, the
cross-cycle variation first appears at the top right corner of Figure 5e, which means that γ
changed so dramatically that it skipped the current cycle. Additionally, the area of the cross-
cycle parts in Figure 5f,g increases continuously with the increasing pressurization pressure.
Combined with the structural characteristics of the sample, the images in Figure 5 indicate
that γ’s distributions are rather different after 12 h recovery from different pressures, and
especially at the top right corners, γ experiences entirely different changes from the other
parts. These factors imply that γ is sensitive to the mechanical structure behavior of the
sample under pressurization.

In addition, the experimental results reveal that the sample’s recovery is closely related
to the recovery time. When the maximum pressure rises to 180 MPa, the sample obviously
cannot fully recover within 12 h, so we extended the recovery time. Figure 5h,i shows γ
images after 24 h and 36 h recovery, respectively. If γ no longer changes significantly, the
sample is considered to have reached a stable state, and the degree of unevenness in γ may
be used as an indicator for the recovery degree of the sample.

In order to quantitatively describe this process, we define the circular standard deviation
of the γ images as V. The V values after 12 h recovery from different pressurization values are
collected and shown in Figure 6a. From Figure 6a, V continues to increase with the increase in
pressurization pressure, and the slope increases sharply between 96 MPa and 120 MPa, which
may be the critical pressure range where the elastic–plastic transition occurs.
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Figure 5. γ images under different pressures and recovery times. (a–f): γ images under different
pressures; (g–i): γ images under different recovery times.

Figure 6. (a) V for different pressurization pressures; (b) V for different recovery times.

Meanwhile, V values’ temporal changes during the sample’s recovery process under
different pressurization pressures are shown in Figure 6b. Note that the initial V value is
estimated when there is no pressure applied to the sample. Under low pressures, V quickly
drops to the initial V values. With the increase in pressure, the time for V to reach the
stable value increases, and the stable V value gradually deviates from the initial V. Under
pressure of 180 MPa, V decreases continuously within 24 h after depressurization to 0 MPa
and reaches its stable value after 36 h. This means that the sample may recover to its stable
state after 36 h recovery, but it cannot return to the initial state, which indicates that the
sample has irreversible plastic deformation during the pressurization process. In this sense,
we are able to draw the conclusion that V can effectively characterize the elastic–plastic
transformation of the sample under pressure.

3.3. Two-Layered Wave Plate Simulation

In the loading experiment, we find a difference between the values of αq and αr
calculated by Equations (6) and (7), indicating that the sample may have a multilayer
structure [39]. In order to describe the structural stratification of this sample more accurately,
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we build a two-layered wave plate model to describe the polarization properties of the
sample and carry out the analysis according to the existing experimental results. In the
model, the polarization property of the sample can be approximated to the successiveness
of two optical retardation components because the dichroism and depolarization properties
of the sample can be neglected under an unpressurized state.

The Mueller matrix of one wave plate can be expressed as Equation (15), where θ is the
orientation of the fast axis of this wave plate and δ is the retardance [33]. The Mueller
matrix of a two-layered wave plate model can be expressed as Equation (16), as the light
passes through MLR1 and then through MLR2. θ1 and δ1 are the fast axis orientation and
the retardance of the first wave plate, respectively, and θ2 and δ2 are those of the second
wave plate.

MLR =

⎛
⎜⎜⎝

1 0
0 cos2 2θ + sin2 2θ cos δ

0 0
sin 2θ cos 2θ(1 − cos δ) − sin 2θ sin δ

0 sin 2θ cos 2θ(1 − cos δ)
0 sin 2θ sin δ

sin2 2θ + cos2 2θ cos δ cos 2θ sin δ
− cos 2θ sin δ cos δ

⎞
⎟⎟⎠, (15)

MLR2 MLR1 =

⎛
⎜⎜⎝

1 0 0 0
0 cos 2θ2 − sin 2θ2 0
0 sin 2θ2 cos 2θ2 0
0 0 0 1

⎞
⎟⎟⎠
⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 cos(δ1 + δ2) sin(δ1 + δ2)
0 0 − sin(δ1 + δ2) cos(δ1 + δ2)

⎞
⎟⎟⎠
⎛
⎜⎜⎝

1 0 0 0
0 cos 2θ1 sin 2θ1 0
0 − sin 2θ1 cos 2θ1 0
0 0 0 1

⎞
⎟⎟⎠ (16)

Then, the Mueller matrix of the sample is deliberately considered to be equivalent to
the Mueller matrix defined as Equation (16). The two-layered wave plate model introduces
four parameters, θ1, θ2, δ1, δ2. We expect to solve these four parameters according to the
measured Mueller matrix.

The initial θ1−1, θ2−1, δ1−1, δ2−1 are solved by the initial Mueller matrix of the sam-
ple, which is measured before the loading pressure, and the final θ1−2, θ2−2, δ1−2, δ2−2
are obtained by the Mueller matrix fully recovered after being loaded to 180 MPa. Then,
Δθ1(≡ θ1−2 − θ1−1), Δθ2(≡ θ2−2 − θ2−1), Δδ1(≡ δ1−2 − δ1−1), Δδ2(≡ δ2−2 − δ2−1) are obta
ined, as shown in Figure 7. Figure 7a,c shows the parameter differences Δθ1, Δδ1 of the
former layer, respectively, and Figure 7b,d shows the parameter differences Δθ2, Δδ2 of the
latter layer, respectively. It is obvious that Δθ2 in the latter layer is significantly greater than
Δθ1 in the former layer. Both Δδ1 and Δδ2 distribute unevenly and their values are large,
but the difference between them is not quite noticeable. This means that, relatively, θ is
sensitive to the layers but δ is sensitive to the pressurization pressure.

The part of the sample near the former face is equivalent to the former layer wave
plate, and the part of the latter face is equivalent to the latter layer wave plate. As seen in
Figure 7, in the process of pressurization and recovery, the change of the latter layer is more
significant than that of the former layer. In addition, the texture structure appears in the
upper half of each image of Figure 7, which may be the trail of stress transfer during the
stage of pressurization.

In order to explore the different reactions of the two-layered model before and after
pressurization, we draw θ images in Figure 8. Figure 8a,b shows the θ images of the former
and latter layers of the sample before pressurization, and Figure 8c,d represents those
after 24 h recovery. In order to be more intuitive, we calculate the correlation coefficients
between the matrices respectively, which are indicated on the two-way arrows.
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Figure 7. Two-layered difference of retardance parameters Δθ1, Δθ2, Δδ1, Δδ2. (a) Δθ1 image; (b) Δθ2

image; (c) Δδ1 image; (d) Δδ2 image.

 

Figure 8. Fast axis orientation flow diagram of two-layered simulation. (a) initial image of former
layer; (b) initial image of latter layer; (c) after loading image of former layer; (d) after loading image
of latter layer.

From the horizontal direction, the value of θ for the two layers before pressurization is
highly consistent, and the correlation coefficient is 0.83. After recovery, the value of θ of the
two layers change in a disorderly manner, and the correlation coefficient decreased to 0.51.
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This indicates that the loading-pressure stage causes irreversible damage to the sample,
and the internal structure changes, which echoes the conclusions drawn in Figure 4.

From the vertical direction, Figure 8c shows that the former layer still maintains good θ
homogeneity after being pressurized, and the correlation coefficient with the initial image
in Figure 8a is 0.69. Figure 8d shows that θ of the latter layer is disordered after being
pressurized, and the correlation coefficient decreases to 0.52 with the initial image Figure 8b.
This shows that in the pressurization, the latter layer undergoes a greater change than the
former layer.

4. Discussion

4.1. Finite Element Analysis of Sample after Pressurization

In order to evaluate the accuracy and effectiveness of the polarization parameters,
the finite element simulation of the stress inside the sample is carried out according to
the actual experimental situation by Solidworks (2020, educational trial version, Dassault
Systèmes SolidWorks Corporation, Concord, CA, USA). The model is built according to
the actual sample size, and the interaction mode between the model and the base is set as
sliding friction while the finite element parameters of the sample and base are collected
and shown in Table 3.

Table 3. Parameters for finite element simulation.

Properties Value

Sample’s Density/(g/cm3) 1.186
Sample’s Tensile Modulus/MPa 3130

Sample’s Yield Strength/MPa 121
Sample’s Poisson’s ratio 0.37
Base’s Density/(g/cm3) 7.85

Base’s Tensile Modulus/MPa 200,000
Base’s Yield Strength/MPa 551

Base’s Poisson’s ratio 0.3
Friction coefficient 0.05

There is some mismatch between the central ring-shaped pressurization surface and
the clear aperture of the sample due to the machining errors of the mounting bracket, as
shown in Figure 9. Note that the hollow area of the pressurization surface entirely covers
the clear aperture of the sample. When pressure is applied to the sample, the mismatched
offset of the pressure center is set to be 2 mm, and the boundary constraint distribution and
mesh element division of the finite element model are shown in Figure 10.

Figure 9. Relationship of the clear aperture of the sample with the pressurization surface.
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Figure 10. Boundary constraint and mesh division of finite element model. (a): boundary constraint
image; (b): mesh division image.

Figure 11 shows the Mises stress of the sectional sample under 108 MPa. Due to the
offset of the annular pressure area, the internal stress of the sample is not symmetrical, and
the stress near the latter periphery on the offset direction is larger than that on the opposite
side. With the pressure increasing, the stress inside the sample tends to accumulate on this
side. This conclusion can correspond to the phenomenon of Figure 5, explaining why the
experimental results change unevenly.

 

Figure 11. Mises stress diagram of sample.

The analytical results of the two-layered wave plate in Section 3.3 show that after
pressurization, the sample’s polarization properties can be described as a two-layered
model. In order to further understand this result, we especially plot several stress curves
inside the sample according to Figure 11. Figure 12 shows the Mises stress changes along
the x-axis direction (light propagating direction) when a pressure of 108 MPa is applied
to the sample, while the y-axis direction is also determined. We define a value, r, as the
distance to the central line along the y-axis, and specifically, take the side with strong
stress accumulation as the example. For the plot axes in Figure 12, the top horizontal axis
represents the thickness of the sample and the left vertical axis represents the Mises stress.
The five curves in Figure 12 represent the stress varying with different r.
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Figure 12. The stress along x-axis of sample as different distances to the central line.

In Figure 12, the orange-shadow areas are accordingly marked in both the model and
the plot to show the possible range of the latter layer, and the other parts are considered as
the former layer. From the five selected curves in Figure 12, the stress consistency of the
latter layer of the sample is far less than that of the former layer, and the maximum stress
appears in the curve of the latter layer with r = 10 mm, which corresponds to the position of
the sample near the periphery in the actual structure. The maximum stress value is around
130 MPa, exceeding the yield limit of the material, which means that plastic deformation
has been produced at the periphery of the sample. These prove that, firstly, with different
thicknesses, the stress accumulation inside the sample is unevenly distributed, and the
largest value appears at the periphery part of the sample. Meanwhile, one can see that
in the latter layer, the values of curves are rather different, which means that the stress
change at this layer is striking at both x and y directions when pressurizing a sample.
Secondly, both the experimental and simulation results reveal the critical pressure of the
elastic–plastic transformation. In Figure 6, we see that the possible critical pressure for the
elastic–plastic transition of the sample appears between 96 and 120 MPa, as the slope of V
increases significantly in this zone. As this happens, the finite element simulation, with
a 108 MPa pressurization surface, results in stress accumulation in the periphery of the
sample and reaches the yield limit, which triggers the plastic deformation in this area. So,
the results of simulation and experiment can be understood as corresponding. Besides that,
we prove that V, the degree of unevenness in γ, is able to characterize the elastic–plastic
transformation of the material.

According to Figure 12, it seems as though a multilayer model would be more rea-
sonable. However, it has been proved in the literature that multilayer wave plates can
be equivalently represented in the form of two-layered wave plates [40], such that the
two-layered model in the work is the simplest but most effective for the sample. However,
to accurately describe and analyze the internal stress structure of the sample, the detailed
multilayer model or tomographic method should be introduced to interpret or measure the
stress properties of this kind of sample.

49



Sensors 2022, 22, 2282

4.2. Characterization Potential of Other Parameters

In addition to the results described above, we also find that many other parameters
are also sensitive to the pressurization process of the sample, as shown in Figure 13. The
calculation formulas of A and Ψ parameters are given in Equations (17)–(19).

A = 2bt1/
(

b2 + t1
2
)

, (17)

t1 =
1
2

√
(m22 − m33)

2 + (m23 + m32)
2, (18)

Ψ =
1
2

arctan[(MR21 − MR12)/(MR11 + MR22)] (19)

Figure 13. A, m33, Ψ images of sample at 0 MPa, 72 MPa, 144 MPa and images after 24 h recovery.
(a–d): A images; (e–h): m33 images; (i–l): Ψ images.

Figure 13 shows that A and Ψ, calculated by Equations (17) and (19), can show the
ring-shaped area under the loading stage, which is similar to those parameters in Figure 4.
However, the boundaries of the ring-shaped area are different due to their different physical
meanings, which implies more specific meanings carried by these separate parameters than
those in Figure 4. Meanwhile, many other parameters also deserve our attention. They
may be related to the individual differences between the samples, and may also contain
more mechanical information about the material.

The results in this work encourage us to believe that polarization parameters have
great research potential for characterizing the stress change of materials. Note that the
annular pressurization method is currently adopted in this study, rather than the uniform
water pressure of the observation window in the actual working environment. However,
the polarization parameters proven in these experiments are still promising for compre-
hensively monitoring a working submersible window. Since the polarization parameters
describe physical properties such as the orientation angles, retardance, and the anisotropy
of the window under pressure, they have little relationship to the manner of pressurization.
In the future, a real water pressure environment should be considered to characterize the
internal stress changes of the observation window accordingly, and powerful polarization
parameters are promising for comprehensively monitoring the working submersible’s
window in the future.

On the other side, more possibilities can be imagined based on the results of this work.
For example, one can directly measure the polarization parameters and does not need to
measure the whole Mueller matrix. Two-dimensional imaging is not necessary and can be
replaced by specified dot measurement. Additionally, according to the requirement of in
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situ monitoring of the submersible window, other methods can be developed to overcome
the difficulties in this work such as image distortion, polarization calibration, etc.

5. Conclusions

Stress detection of observation windows is a key issue in the process of ensuring the
safety of deep manned submersible. In this paper, we present a method based on Mueller
matrix imaging and build the experimental setup to measure the stress accumulation and
recovery situation inside the window. Experimental results support the idea that some
polarization parameters can effectively characterize the internal stress transfer and elastic–
plastic transformation of the window. Furthermore, we also use the two-layered wave
plate model to analyze the internal stress structure of the window under pressurization,
and the results show the difference of the former and latter layers of the window in the
pressurization process. In addition, we present a finite element simulation explaining the
stress accumulation at different thicknesses of the window, which verifies the effectiveness
and innovation of our method in stress evaluation. Finally, more possibilities are discussed
amid the target of this work by using other polarization parameters derived from Mueller
matrix imaging. It is promising that this method can provide a new method of monitoring
window stress, which helps to further ensure the safety of deep manned submersibles.
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Abstract: In this study, an experimental study of the burning rate of solid fuel in a model solid
propellant rocket motor (SRM) E-5-0 was conducted using a non-invasive control method with
fiber-optic sensors (FOSs). Three sensors based on the Mach–Zehnder interferometer (MZI), fixed
on the SRM E-5-0, recorded the vibration signal during the entire cycle of solid fuel burning. The
results showed that, when using MZI sensors, the non-invasive control of solid fuel burnout is
made possible both by recording the time of arrival of the combustion front to the sensor and by
analyzing the peaks on the spectrogram of the recorded FOS signal. The main mode of acoustic
vibrations of the chamber of the model SRM is longitudinal, and it changes with time, depending on
the chamber length. Longitudinal modes of the combustion chamber were detected by MZI only
after the combustion front passed its fixing point, and the microphone was unable to register them at
all. The results showed that the combustion rate was practically constant after the first second, which
was confirmed by the graph of the pressure versus time at the nozzle exit.

Keywords: Mach–Zehnder interferometer; fiber optic sensor; solid fuel; solid rocket motors

1. Introduction

In modern engines and, particularly, in a solid propellant rocket motor (SRM), en-
ergy conversion processes are characterized by extreme temperatures and released power.
For example, the thermodynamic temperature is around 3600 K in the combustion cham-
ber of the Ariane-V launch vehicle’s accelerator, EAP P241, which produces a thrust of
7.08 MN [1]. Under such conditions, the SRM operation parameters change frequently due
to rates of the main intra-chamber processes—for example, fuel combustion. Therefore,
we can describe the working process parameters in SRM as fast-flowing. They include
vibrations, pressure in the combustion chamber, and acousto-optical and electrophysical
characteristics [2,3].

There are various ways to monitor these parameters. Some methods include rather
complex installations using, for example, X-ray analysis [4–6] for intra-chamber process
control. This method allows for the observation of the fuel mass combustion patterns
through the walls of the housing [7]. However, the sampling frequency is low, and the
complexity of the setup makes this method inaccessible for common usage. There are
also methods for the invasive monitoring of such processes, for example, by inserting
thermocouples into test holes. This is simpler, but violates the integrity of the engine and
probably changes the operation’s parameters. Additionally, the connection wires require a
lot of space, add mass to the setup, and can produce sparks. If we place thermocouples
on the motor casing in a non-invasive way, the measurement obtained will be incorrect
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due to low thermal conductivity in the casing in the outer direction, sensor inertia, and
the ambient temperature. In such conditions, fiber-optic sensors (FOSs) present a very
promising solution for verifying the simulation data of engine processes [8]. Nowadays,
many tasks can be solved in science and technics with the help of FOSs. They are use-
ful for measuring deformation [9], temperature [10–12], vibration [13], concentration of
substances [14], rotation speed [15], refractive index [16], pressure [17], liquid level [18],
acceleration [19], acoustics [20–22], and other parameters [2,23–25]. Additionally, new
types of fiber promise to open new opportunities for such monitoring devices [26,27].
The main FOS related advantage for SRM monitoring is its insensitivity to any kind of
electromagnetic interference. Optical fibers, unlike wired connection sensors, cannot origi-
nate ignition or explosion, since sparking is excluded during the operation. Optical fibers
are produced from dielectric materials, which allow measurements of objects with high
electrical voltage to be obtained, and allow for their use in liquid media and environments
with high humidity. The chemical inertness of FOS materials allows them to be used under
the influence of aggressive, gaseous, and dusty environments, which are realized during
tests of SRM. In addition, FOSs that are made of special radiation-resistant fibers can be
used when background radiation is high [28]. These performance advantages and their
constant evolution predict the rapid deployment of fiber sensors in various aerospace
applications [29].

Nowadays, FOSs can be directly integrated into the composite materials of aircraft
construction [30]. Fiber Bragg gratings (FBG) are the main sensors used in motors. They
detect delamination in the composite housings of rocket engines [31,32]. Polymer fibers [33]
and fixed-in-fuel FBGs [34–36] have been used to control the state of solid fuel, but this
research was conducted during storage and cannot provide information about the working
process. Fiber sensors have been used to study rapidly occurring combustion, deflagration,
and detonation in SRM [37,38]. Additionally, a spectroscopic analysis of the combustion
process was performed using FOSs [39]. Despite the wide range of FOS applications,
areas of SRM ignition and combustion processes have not been investigated as of yet. In
comparison with X-ray, a simple installation for non-invasive control can be created, with
the help of FOSs to control the working process.

In this paper, we propose the concept and operating principle of an FOS based on an
Mach–Zehnder interferometer (MZI) for monitoring the combustion of solid fuel. It allows
for the registration of combustion front displacement via two principles. The first is based
on the housing deformation measurement, and the second uses the registration of acoustic
longitudinal modes to measure the combustion chamber parameters. These investigations
use the same MZI interference signal, but with different modes of processing.

2. Theory

Pressure, temperature, deformation, and vibration constitute the most important
parameters of the working process in a model SRM chamber. Currently, only a limited
number of FOSs are able detect these values [28,40,41]. The available data suggests the
following requirement: an expected total measurement time of less than 10 seconds; typical
oscillation frequencies of intra-chamber processes starting from tens of Hz, increasing to
hundreds of kHz. In this case, optical time-domain reflectometry (OTDR) systems and
devices based on FBG are insufficient due to the low sampling frequency of 30 kHz for
phi-OTDR [42–44] and 10 kHz for FBG in configurations where there are a few sensors in
one line [45–47]. In turn, the small SRM length and the requirement of less sensing points
allows for the application of sensors based on the MZI. A phase-unwrapping technique
was used for dynamic range improvement, based on the 3 × 3 output splitter providing
phase-shifted signals.

A fiber MZI registers a phase difference between two arms, one of which is a reference
and the other a sensing arm, as shown in Figure 1. No load is applied to the reference arm
during the experiment. The sensing arm is fixed on the controlled object, and its length
changes depending on the object’s deformation. This leads to a signal intensity fluctuation,
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which is proportional to the cosine function of deformation. A 3 × 3 output splitter
produces a 2π/3 phase shift between neighboring fibers. Thus, the recorded intensity on
each photoreceiver can be determined by the following expression [48]:

⎡
⎢⎢⎢⎢⎣

IPD1(t) = I1 + I2 + 2
√

I1·I2· cos2
(π

λ
Δ(t) + ϕ0

)
,

IPD2(t) = I1 + I2 + 2
√

I1·I2· cos2
(π

λ
Δ(t) + ϕ0 + 2π/3

)
,

IPD3(t) = I1 + I2 + 2
√

I1·I2· cos2
(π

λ
Δ(t) + ϕ0 − 2π/3

)
,

(1)

where I1, I2 are the intensities from the reference and sensing arms, respectively; λ is the
wavelength of laser radiation, m; Δ(t) is the optical path difference between the MZI arms,
m and ϕ0 is the initial phase difference, rad.

Figure 1. Scheme for the deformation measurement using an MZI.

The presence of two or more signals with a 2π/3 phase shift allows for the restoration
of the phase ϕ of the deformation without uncertainty caused by a cosine function. We
implemented a scheme with two photoreceivers for each MZI, reduced the number of
photoreceivers, and simplified the measurement scheme. The deformation phase change
Δφ was obtained by the algorithm described in [49]. In this case, at each time t, it was
calculated by the formula:

(t) =
∫ t

0

[
S1(t)·S′

2(t)− S2(t)·S′
1(t)

]
dt, (2)

where S1(t) = IPD1(t)− IPD2(t), S2(t) = IPD1(t) + IPD2(t).
The phase change depends on the deformation of the fiber, which was influenced by

thermal, mechanical, and acoustic effects. In the experiment, the fiber was coiled in certain
places on the outer surface of a model SRM, as shown in Figures 1 and 3. The total sensitive
fiber length was Lsens = Nπd, where d = 19 mm is the initial outer diameter of the SRM
housing and N = 10 is the number of turns. The SRM diameter increase, and phase change
are linked through the fluctuations of the sensing arm length ΔLsens by the formula:

Δϕ =
2πnΔLsens

λ
=

2πn(NπΔd)
λ

=
2π2nNΔd

λ
,

where n is the effective refractive index of the fiber core, and consequently,

Δd =
Δϕλ

2nπ2N
. (3)

A frequency analysis of the phase change provides additional information about the
combustion process. The SRM chamber’s acoustic vibration modes depend on its size. The
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main types are the first longitudinal flon, tangential ftan, and radial frad, determined by the
formula [50–52]: ⎡

⎢⎢⎢⎢⎢⎣

flon =
a

2l(t)

ftan = 0.586
a
di

frad = 1.22
a
di

, (4)

where a is the speed of sound, m/s, and l(t) is the combustion chamber length, m, at time
t, s, as shown in Figure 2. Length l(t) varied from 8 to 109 mm during the experiments;
di = 15 mm is the chamber internal diameter.

 

Figure 2. Combustion chamber scheme before (a) and after (b) work.

These frequencies contribute to phase change fluctuations and can be observed in the
spectra. This observation method can precisely determine the chamber length.

3. Experiment

3.1. Description of the Experimental Setup and Methods for Recording the Characteristics of
Intra-Chamber Processes

In this study, a model SRM E-5-0 is the research object. It operates via a black pow-
der [53], that was pressed into a cylindrical body made of cardboard. A graphite nozzle
block was installed on the bottom with a critical section diameter of 3.4 mm. Fuel ignition
was performed using a 0.5 g black powder sample via a combustible wire. The model SRM
characteristics are shown in Table 1. Figure 3 shows the SRM photograph (a), a diagram
with dimensions between the main components and the MZIs (b), and a section of the
SRM after the study was conducted (c). The experimental setup included three MZIs; its
scheme is shown in Figure 4. The MZI sensing arms were fixed equidistantly along the
entire fuel length.

Table 1. Characteristics of the model SRM E-5-0 used in the work.

Parameter Value

External diameter, mm 19.0
Internal diameter, mm 15.0

Full length, mm 141.2
Burning time of a solid fuel charge, s 5.5 ± 0.1

Solid fuel charge length, mm 105

Fuel black powder
(C11.362H6.493O22.768N7.319S3.243K7.319)
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Figure 3. View of the model SRM E-5-0 with installed MZI (a), a diagram with dimensions between
the main SRM components and the MZI (b), and the SRM section after work (c).

 
Figure 4. Scheme of the experimental setup. Laser: radiation source; PD: photodiode; ADC: analog-
digital converter (L-Card Е20-10); PC: personal computer.

A narrow-band NKT BASIK MIKRO fiber laser with a central wavelength of 1550 nm
and a bandwidth of less than 0.1 kHz was used. Its radiation emitted through a 3 × 3 splitter
to three independent equal-arm MZIs. The supporting arms were at rest, and the sensing
arms were coiled on the SRM housing (see Figure 1). The measuring arm of each MZI
consisted of Lsens = Nπd = 10·π·19 mm ≈ 0.6 m of SMF-28. We glued this fiber loop-to-loop
using one layer of double-sided tape. This method of construction increased the MZI
sensitivity to fluctuations of housing diameter [54]. The SRM was fixed on the metal
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table by clamps. Such mounting proved adequate to complete the measurements; the
motor shifted slightly at the start as a result of the highest pressure, and the sensing fiber
remained connected to the housing at all times. The process was recorded, and is provided
in the attached Video S1. Two fibers of each MZI 3 × 3 splitter outputs were transferred to
photodiodes (PD). The signals were digitized on an ADC with a sampling rate of 2.5 MHz.
This value determined the maximum detectable vibration frequency (1.25 MHz), accord-
ing to the Nyquist theorem. An image of a laboratory setup with the measurement and
registration systems is shown in Figure 5. Before the experiment, we checked the setup’s
integrity and its ability of deformation registration.

 

Figure 5. Photo of the assembled laboratory setup.

3.2. Analysis of the Investigation Results

Images of the SRM stages are shown in Figure 6, including start-up (a,b), operation in
nominal mode (c,d), and shutdown (e,f). It is worth noting that the tracks of the condensed
phase particles flowed out of the engine nozzle, which is common for the combustion
products of powder and metal-containing fuels. The total operating time was about 5.5 s,
during which the optical fiber did not undergo any damage or changes due to the effect of
high-temperature combustion products.

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 6. Photos of the experiment: before the beginning (a); launch (b); nominal mode (c,d); engine shutdown and
combustion termination (e,f).
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The recorded data from each MZI were processed in the time and frequency domains.
The data ranges from 2 seconds before fuel ignition through the combustion process to
around 2 seconds after its completion. Until the engine was turned on, the signal at each PD
changed with a small amplitude. The high-frequency component occurred due to the PD
and the laser phase noise, and the low-frequency fluctuation was a result of the installation
temperature drift and the laser wavelength drift. At launch, the amplitude increased in
signal oscillations on all PDs. An example of the initial data from one channel of each MZI
is presented in Figure 7—the oscillation amplitude increased on all interferometers from
the moment the engine was launched, but it only reached the maximum contrast when the
combustion surface of the solid fuel reached the MZI sensing arm on the SRM housing.

Figure 7. Plots of one data channel for each MZI.

For each sensor, the phase-unwrapping procedure was carried out according to
Formula (2). An absolute value of the optical signal phase change, from the initial state
(before the engine launch), was obtained and was found to be proportional to the change of
the fiber length on the model SRM according to Equation (3). The results highlight that the
closer the MZI to the nozzle, the more changes it experienced. The plots for the housing
diameter increase are presented in Figure 8.

Figure 8. Plots of housing diameter increase.
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The derivatives of the housing diameter expansion graphs were calculated with a
60 ms window, allowing for the exclusion of high-frequency oscillations and their influence
on the derivative stability. All of the sensors had a moment of initial expansion at the engine
start, after which the diameter value became relatively stable, without a noticeable trend
of expansion. Graphs illustrating the derivatives from each sensor are shown in Figure 9.
A sharp increase in the derivative was observed when the combustion surface coordinate
reached the sensor fixing point. These points are marked with circles in Figure 9.

Figure 9. Derivative plots of increasing diameter.

The coordinates of the combustion-front propagation were determined by the time of
derivative sharp growth for the sensors, and are shown in Table 2. Based on these values,
we graphed the combustion surface movement, as presented in Figure 10.

Table 2. Time and coordinates of burning front propagation.

Point Fuel Bottom Edge MZI1 MZI2 MZI3

Coordinate, mm 0 9 49 96
Time of the derivative growth beginning 1.95 2.97 5.20 7.21

Figure 10. Graph of the combustion surface movement.

The burning rate is non-linear in the first and smaller section of the graph due to the
uneven combustion front, caused by the presence of a groove at the end of the solid fuel, as
well as the combustion of the igniter sample, also made of black powder. After the end of
the ignition period, the time dependence of the combustion surface movement was found
to be close to linear with an average linear displacement velocity of 0.0193 m/s.

This dependence (nonlinear during the ~1 second and then linear) is consistent with
the results of a similar SRM test, showing that the pressure in the combustion chamber
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after around 1 second, following the engine start, became almost constant, as shown in
Figure 11. The pressure in the combustion chamber during the experiment was measured
using a special setup. The SRM was installed in a stainless steel external chamber with a
pressure sensor. This setup was the only method by which to fix the pressure sensor to
SRM. The described modification slightly increased the combustion time to 6.5 s. However,
in general, the pressure change during the investigation remained unchanged for all SRMs
of such a model. The fuel and housing construction provide a constant combustion surface
area for when the fuel burns, therefore, a constant pressure in the chamber after ~1 second
after start becomes apparent even in the presence of deviations in the initial temperature,
solid fuel composition, critical section diameter, etc.

 
Figure 11. Pressure plot for the similar SRM.

Spectrograms of the unwrapped signal were calculated for each sensor to complete
the frequency analysis. They are shown in Figure 12. Some peaks in the characteristic
frequencies can be expected. The values of the first longitudinal flon, tangential ftan, and
radial frad modes of chamber sound vibrations, according to Equation (4), are as follows:

⎡
⎣ flon = from 45 kHz at SRM start to 3.30 kHz at finish

ftan = 28.13 kHz
frad = 58.56 kHz

A shifting peak, in the range from 3 to 20 kHz, and its harmonics are visible in the
spectrograms, and have been caused by the changing longitudinal modes. They have a
lower frequency in comparison to tangential and radial modes, so longitudinal modes were
the most probable. It is possible to calculate the speed of sound, which is determined by the
used fuel. Based on the boundary conditions—the minimum frequency of the longitudinal
mode in Figure 12a is 3.3 kHz, and the length of the combustion chamber, which was
109 mm—the following results are found using Equation (4):

a = 2l(t) flon(t) = 2l(7.4) flon(7.4) = 2·0.109·3300 ≈ 720m/s

The spectrograms in Figure 12 show that the peak of longitudinal oscillations only
appeared in the interferometer signal when the burning front reached the MZI fixing
point. We also analyzed the spectrogram of the audio signal, which was recorded by
a microphone during the experiment, and is presented in Figure 13. This plot did not
reveal any changing peaks during the burning process. This highlights the advantage
provided by the FOS, which was able to detect vibrations that have been generated via
sound longitudinal modes. Thus, the fiber MZI worked as a small, light, fire-safe, and
easily installed sensor for SRM monitoring.

We plotted the graphs of the ideal longitudinal vibration modes with a known speed
of sound and the length of the combustion chamber, calculated according to Equation (4).
They are shown in Figure 12b,d,f and are in good agreement with the experimental data.
The length changes of the combustion chamber account for two aspects. The first is a
meniscus of the burning front, among other factors, caused by a deepening in the solid fuel,
as shown in Figure 2. The second is a partial burnout of the plug with the nozzle, from 9 to
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5 mm in the center, as shown in Figure 2b. It should be noted that the frequencies of the
peaks on the MZI1 and MZI2 spectrograms coincide during their occurrence.

The graphs obtained allow us to conclude that the rate of fuel burnout in the model
SRM was almost constant, since the burning front reached the coordinate of the MZI1 after
1 s following initiation.

(a) (b) 

 
(c) (d) 

(e) (f) 

Figure 12. Spectrograms of the housing diameter deformation signals recorded by sensors: pure graphs MZI1 (a), MZI2 (c),
MZI3 (e), and the same with marked ideal longitudinal mode and its harmonics for MZI1 (b), MZI2 (d), and MZI3 (f).
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Figure 13. Spectrogram of the audio signal recorded during the experiment.

4. Discussion

A non-invasive diagnostic technique using fiber-optic MZIs as sensors has been devel-
oped. This technique makes it possible to determine the characteristics of intra-chamber
processes—particularly the burning rate of solid fuel and the length of the combustion
chamber—at a given time. The calculations aim to determine when the burning front
passes through the MZI fixation points. For each MZI, this can be determined by the
derivative growth. Additionally, the resonance frequencies of the acoustic vibration lon-
gitudinal modes in the combustion chamber can be determined via the shifting peaks in
the spectrogram. As a result, the calculation of the combustion chamber length and the
burning rate of solid fuel during the overall SRM worktime can be performed.

For the tested SRM, an uneven combustion of the fuel was detected during the first
phase of the work due to deepening occurring at the point at which combustion begins.
Then, the burnout rate became almost constant; for our experimental conditions, the
burnout rate was approximately 0.0193 m/s.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/s21237836/s1, Video S1: Process of SRM work.
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Abstract: An interferometric self-calibration method for the evaluation of the pitch deviation of
scale grating has been extended to evaluate the pitch deviation of the long-range type linear scale
by utilizing the stitching interferometry technique. Following the previous work, in which the
interferometric self-calibration method was proposed to assess the pitch deviation of the scale
grating by combing the first-order diffracted beams from the grating, a stitching calibration method
is proposed to enlarge the measurement range. Theoretical analysis is performed to realize the
X-directional pitch deviation calibration of the long-range linear scale while reducing the second-
order accumulation effect by canceling the influence of the reference flat error in the sub-apertures’
measurements. In this paper, the stitching interferometry theory is briefly reviewed, and theoretical
equations of the X-directional pitch deviation stitching are derived for evaluation of the pitch
deviation of the long-range linear scale. Followed by the simulation verification, some experiments
with a linear scale of 105 mm length from a commercial interferential scanning-type optical encoder
are conducted to verify the feasibility of the self-calibration stitching method for the calibration of
the X-directional pitch deviation of the linear scale over its whole area.

Keywords: optical encoder; linear scale; pitch deviation; stitching interferometry; self-calibration

1. Introduction

Due to their low cost, high resolution, and robustness, optical linear encoders are
widely employed for precision positioning applications, such as semiconductor manufac-
turing, precision machine tools, and coordinate measuring machines (CMMs) [1–4]. Among
the optical encoders, the interferential scanning-type optical encoder with a high precision
scale grating has the highest performance [5,6]. The optical setup of the optical linear
encoder is arranged to produce interference signals generated by combining the positive
and negative first-order diffracted beams from the linear scale [7]. The displacement of
the linear scale can then be obtained by analyzing the monitored interference signals by
using the interpolation technique. Since the period of the interference signal is determined
by the pitch of the linear scale, the measurement accuracy of the linear encoder will be
directly influenced by the pitch deviation of the linear scale [8]. Meanwhile, the spanning
width of the linear scale directly determines the measurement range of the linear encoder.
Scale grating that has a length longer than 100 mm is required for long-range precision
positioning [7,9,10]. The interest in expanding the evaluation area of the linear scale is
growing, and it also increases the difficulty to calibrate the pitch deviation of the long-range
type linear scale along its whole length.

The line scale comparator is used as the standard solution to accurately evaluate the
pitch deviation of the one-axis linear scale used in the linear encoder [11,12]. However, it is
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burdensome to construct such a system in a research lab with a limited budget. On the
other hand, although the scanning probe microscopes (SPMs) can be applied to provide an
image of a small part of the linear scale [13–15], it is limited by the slow scanning speed and
small scanning range. These limitations would hinder the efficient evaluation of the pitch
deviation of the long-range linear scale over its whole area. Meanwhile, the measured pitch
maps using SPMs need to be further processed for the evaluation of the pitch deviation
at each position. In responding to the above issues, an interferometric calibration method
has been proposed to evaluate the pitch deviation of the scale grating using a Fizeau form
interferometer through wavefront analysis [16]. The proposed method is further improved
to a self-calibration method so that the influence of the reference flat error in the Fizeau
interferometer can be removed [17–19].

However, according to the measurement principle of the form interferometer, the mea-
surement range is limited by the size of its reference optical flat [20]. Using a larger size
interferometer so that the beam of the interferometer can be expanded to completely cover
the long-range linear scale could be a possible solution [21]. Nonetheless, it suffers from
defects such as being slow to reach thermal equilibrium and sometimes it is impossible
to prevent long propagation of distance, which would result in thermal fluctuations and
distortion in higher spatial frequencies [22]. In addition, the cost of acquisition and setup
can be high for such a large system. On the other hand, the stitching interferometry tech-
nique has long been used to evaluate the Z-directional surface form error of the large size
optical components [23–26]. Nevertheless, the stitching calibration of X-directional pitch
deviation of large size scale grating has not been conducted yet. Meanwhile, with the
reference flat error that exists in each sub-aperture, an accumulative second surface error
could be generated by the conventional stitching algorithm [27,28], which would result
in unwanted power and astigmatism terms. Since calibration of the reference flat would
cost time and require other precision optical components, the self-calibration technique is
needed to remove the systematic error.

In this paper, a Fizeau form interferometer is used to evaluate the X-directional pitch
deviation of a reflective-type long-range linear scale with a self-calibration stitching method.
With the proposed method, the X-directional pitch deviation of a long-range linear scale
over its whole area can be self-calibrated in a short time with high throughput. At first,
the basic stitching interferometry technique is briefly introduced. The self-calibrated stitch-
ing method for the long-range type linear scale pitch deviation evaluation is then proposed
by considering the additional phase shift errors introduced in the stitching measurement,
which is then verified through a simulation. Finally, experiments are conducted with a
long-range-type linear scale used in a commercial optical linear encoder.

2. Principle

2.1. Basic Principle of Z-Directional Surface Form Stitching Interferometry

The basic idea of stitching interferometry is quite simple. If an optical component
is too large to be measured, the measurement area can be separated into several small
overlapped pieces (sub-apertures) and stitched together so that the surface form of the large
optical component can be evaluated by using a standard “small” interferometer [29,30].
Figure 1 shows the schematic of the concept of stitching interferometry, which indicates
that the stitching technique can enable the measurement of the large size optical com-
ponent by using a “small size” interferometer. The final result is obtained by taking
multiple overlapping images of the large component, and numerically “stitching” these
sub-apertures together by computing a correcting “Tip-Tilt-Piston” correction for each
sub-aperture [27,31]. In addition, for some special applications such as stitching the optical
component with a large convex aspheric surface or a high numerical aperture cylindrical
optics, other additional corrections except the “Tip-Tilt-Piston” can also be conducted in
the stitching process by using a well-designed algorithm [32,33]. According to the princi-
ple of stitching interferometry, it would be helpful to enlarge the measurement area and
improve the lateral resolution with little investment in the additional devices (usually a
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precision motion stage, which is available in most of the optical lab). However, for the
case of the stitching calibration of long-range linear scale, the sub-aperture topography is
one-dimensional, and the calibration error will propagate fully and could result in a second-
order accumulative error when applying the stitching algorithm. Figure 1 shows the effect
of the calibration error on the final stitching result. From the Figure, it can be deduced that
as the measured object size increases, the accumulative second-order stitching error would
be enlarged correspondingly and should not be neglected in the stitching calibration.

X
Y

Z

Figure 1. Schematic of the concept of the Z-directional surface form stitching interferometry and the
influence of calibration error on stitching result.

2.2. Self-Calibrated Stitching of X-Directional Pitch Deviation of the Long-Range Linear Scale

The stitching calibration method for the long-range linear scale pitch deviation eval-
uation can be developed by integrating the stitching interferometry for the Z-direction
phase error compensation, just as it is used to evaluate the surface form of a large size
optical component. On the other hand, since the periodic pattern of the linear scale is
arranged along the X-direction, the X-directional stitching for pitch deviation should also
be included. The pitch deviation evaluation of the linear scale requires the measurement
of the first-order diffracted beams from the linear scale by setting it in the Littrow setup
as Figure 2 shows. In the setup, the diffracted beam can be back-reflected directly to the
direction of the incident beam and be captured by the interferometer. When using the
Fizeau interferometer for the measurement of the diffracted wavefront of the linear scale,
the positive and negative first-order phase outputs of the interferometer can be expressed
by [16]

IX+1(x, y) = 2π
eX(x, y)

g
+ 2π

2eZ(x, y)
λ

cos θ − 2π
2eR(x, y)

λ
(1)

IX−1(x, y) = −2π
eX(x, y)

g
+ 2π

2eZ(x, y)
λ

cos θ − 2π
2eR(x, y)

λ
(2)

where IX+1(x, y) and IX−1(x, y) are the positive and negative first-order phase outputs,
respectively. eZ(x, y) and eR(x, y) are Z-directional out-of-flatness of the scale grating and
reference flat. λ is the wavelength of the light source of the Fizeau interferometer, eX(x, y)
is the X-directional pitch deviation of the linear scale, g is the nominal pitch of the grating,
θ is the Littrow angle. It should be pointed out that in the experiment only the first-order
diffracted beams from the grating are utilized for calibration. Although higher-order
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diffracted beams can also be used to calibrate pitch deviation, the measurement could
suffer from low diffraction efficiency and loss of lateral information when applying a
larger tilt angle. Consequently, the X-directional pitch deviation of the linear scale can be
calculated as [16]

eX(x, y) =
g

4π
[IX+1(x, y)− IX−1(x, y)] (3)

Figure 2. Measurement of the positive first-order diffracted beams from the grating by using the
Littrow setup.

In the stitching measurement, multiple measurements are required by shifting the
linear scale along the X-direction to obtain several overlapped results and stitching them
together. When measuring after shifting the linear scale with a known distance, phase
error would be generated by the pitch deviation in different areas. According to the phase
shift theory of diffraction grating, the phase error caused by the pitch deviation of the scale
grating is accumulated and can be stitched. Figure 3 shows the case that two adjacent
areas A and B with an overlapped area of the scale grating are measured by the Fizeau
interferometer. The translation distance is a known value a. In the figure, g0 represents
the nominal pitch, gi (i = 1, 2, 3, . . . , M) represents the actual pitch. More conveniently,
the pitch at any coordinate can be expressed as the pitch function g(x). When the linear
scale is measured at area A, the phase error caused by the pitch deviation at coordinate x
can be calculated as

ΔφD(x) ∼= 2mπ

g0

∫ x

0

(g0 − g(x))
g(x)

dx =
2mπ

g0

∫ x

0

Δg(x)
g(x)

dx (4)
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Figure 3. Schematic of the phase error generated by the X-directional pitch deviation in stitching
measurement.

After moving the linear scale to the next area B with a distance of value a, the phase
error caused by the pitch deviation at the coordinate x would be changed to

Δφ′
D(x) ∼= 2mπ

g0

∫ x

a

(g0 − g(x))
g(x)

dx =
2mπ

g0

∫ x

a

Δg(x)
g(x)

dx (5)

Therefore, at the same position x from the field-of-view (FOV) of the interferometer,
the phase error is generated due to the change of the evaluated area. The phase difference
caused by the shifting process can be expressed as

Δϕ(x) = ΔφD(x)− Δφ′
D(x) =

2mπ

g0

∫ a

0

(g0 − g(x))
g(x)

dx = c (6)

Equation (6) indicates that the difference of the phase shift caused by the two mea-
surements is only a constant value c, and the additional piston error caused by the pitch
deviation should also be corrected. On the other hand, regarding the grating itself as a
rigid body in the stitching measurement, the piston/tilts errors would be generated in the
shifting process. Combing the additional phase errors caused by the X-directional pitch de-
viation and Z-directional out-of-flatness error in the stitching measurement, the first-order
phase outputs in the overlapped area can be expressed as

IX±1,i(x, y) = ±2π
eX,i(x, y)

g
+

4π

λ
[eZ,i(x, y) cos θ − eR,i(x, y)] + aX±1,ix + bX±1,iy + cX±1,i (7)

where the coefficients aX±1,i, bX±1,i, are the tilt coefficients along the X- and Y- directions in
i-th sub-aperture corresponding to the positive and negative first-order diffracted beams
measurement, respectively, while cX±1,i is the coefficient of the piston error along the
Z-direction in i-th sub-aperture of the positive and negative first-order diffracted beams
measurement. To correct the tilts and piston error and obtain the full aperture of the phase
maps, it is desired to minimize the sum of the square differences for all overlapped areas at
the same time [32]
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min = ∑
i=1...N

j∩i

∑
j=1...N(j �=i)

[(Ik,i(x, y) + ak,ix + bk,iy + ck,i)− (Ik,j(x, y) + ak,jx + bk,jy + ck,j)]
2 (8)

where N represents the total number of the sub-apertures, k = X ± 1, i and j represent
different i-th/j-th sub-aperture. The error coefficients ak,i/j, bk,i/j, and ck,i/j can be calculated
by solving Equation (8) with least-square techniques [34]. The equation is differentiated
and the error coefficients can be calculated by solving a linear matrix equation. Assuming
the overlap area is square (n × n pixels), the time-complexity of the optimization of
the equation would be proportional to n2N. Equation (8) can be applied to calculate the
error coefficients for each sub-aperture in the two diffraction orders. It is noted that
the Z-directional rotational error is ignored due to the small effect of the cosine error.
In addition, the X-directional displacement error is also not considered since the resolution
of the precision stage used to translate the measured optics is usually better than that of
the form interferometer. According to Equation (3), by using the stitched positive and
negative first-order phase outputs, the pitch deviation of the long-range linear scale over its
whole area can be evaluated. Since the reference flat error component contained in the i-th
positive and negative first-order diffracted beams are the same. Therefore, the second-order
error component caused by the reference flat error component would also be the same
in the final stitched phase maps, which can be wiped out by carrying out the differential
operation. Based on the self-calibration principle, a more direct approach is to stitch the
pitch deviation maps in each sub-aperture together by minimizing the following function

min = ∑
i=1...N

j∩i

∑
j=1...N(j �=i)

[(eX,i(x, y) + ak,ix + bk,iy + ck,i)− (eX,j(x, y) + ak,jx + bk,jy + ck,j)]
2 (9)

where eX,i(x, y) is the pitch deviation in i-th aperture, which is calculated by

eX,i(x, y) =
g

4π
[IX+1,i(x, y)− IX−1,i(x, y)] (10)

From the above analysis, the procedure of the interferometric self-calibrated stitching
of the long-range linear scale pitch deviation can thus be summarized, as shown in Figure 4.
In the stitching measurement, n phase maps are first collected continuously by moving
the tested object or the interferometer. Since one-dimensional stitching is conducted for
the linear scale, the arrangement of the position of each sub-aperture should be carefully
designed to ensure there is enough overlap area between adjacent sub-apertures. With
the existence of the calibration errors and dynamic errors (i.e., thermal, mechanical, etc.),
the stitching accuracy could be influenced if only a single-overlap strategy with a small
overlap area between adjacent sub-apertures is performed. Although there is no rule-of-
thumb of the selection of the best overlap ratio, a double-overlap strategy is preferred so that
each overlap could be constrained by an independent sub-aperture and the stitching error
can be reduced. The digital filtering method is then used to remove the high-frequency noise
components in the phase maps and enhance the performance of the stitching algorithm.
The next step is to locate the unified global phase map center and sort the different images
according to the moving distance between each phase map. With the arrangement of each
image, the overlapped area of each image in the global coordinate can thus be determined.
Before applying the stitching algorithm, the reference image should be decided. Usually,
the image closest to the global image center could act as the global reference and will remain
fixed throughout the whole stitching process. Then the objective is to find a transformation
that can describe the misalignment of the sub-image sets with respect to the global reference
image and then correct for the misalignment. The n phase maps can, thus, be stitched
together to obtain the final phase maps. Finally, the pitch deviation can be calibrated using
Equation (3). On the other hand, as demonstrated in the previous analysis, another approach
to obtain the pitch deviation of the scale grating is to directly stitch the pitch deviation in
each sub-aperture together by using Equations (9) and (10).
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N

N

N

N

Figure 4. Flow diagram indicating the working principle and the data flow of the stitching algorithm
for the calibration of the long-range linear scale pitch deviation.

3. Simulations

Following the theoretical analysis described in the previous sections, numerical cal-
culations are conducted to verify the proposed algorithm. In the simulation, the nominal
pitch of the scale grating is set to be 1.6 μm, while the wavelength of the laser source is
set as 632.8 nm. First, the form errors of the scale grating eZ(x, y) and eX(x, y), as well
as the reference flat error eR(x, y), are simulated with given functions. Note that in the
simulation, the X- and Y- coordinate of the linear scale is normalized to [−1, 1] for the sake
of simplicity. Then, the phase outputs IX±1(x) are simulated by using the previously given
form errors of the scale grating and reference flat. Next, the simulated phase outputs are
separated into several sub-apertures with known overlap information. Finally, the pitch
deviation of the scale grating is reconstructed with the proposed self-calibration method
by using both the stitched phase outputs or directly stitching the pitch deviation in each
sub-aperture together.

As the first step of the numerical calculation, each of the form errors of the scale
grating and the reference flat is given as follows

eZ(x, y) = 0.31 − 26.1x + 3.3y + 147.9x2 + 18.1y2 + 20.7x3 − 0.53x2y + 2.76xy2 − 2.9xy2

−154.7x4 + 12.1x3y + 16.1x2y2 + 12.1xy3 − 27.5y4

eR(x, y) = −8.1 − 1.1x − 4.3y − 0.066x2 − 22.5y2 + 0.14x3 + 0.44x2y − 3.63xy2 − 45x4

−0.55x3y + 19.1x2y2 + 1.02xy3 − 1.02y4
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eX(x, y) = −0.84 + 188.7x − 4.2y − 93.4x2 − 1.8xy − 12.8y2 − 183.8x3 + 0.76x2y + 2.29xy2

−61x4 − 1.2x3y + 7.47x2y2 + 2.8xy3 + 11y4

Figure 5 shows the simulated results of the form errors. After the form errors are
simulated, the phase outputs IX±1(x) are then calculated according to Equations (1) and (2).
To simplify the analysis, three sub-apertures with a rectangular shape are applied totally to
separate the simulated phase outputs IX±1(x) with known overlap information, as shown
in Figure 6.

Figure 5. Simulation results of the form errors of a linear scale. (a) Out-of-flatness error; (b) Reference flat error; (c) X-
directional pitch deviation.

Figure 6. Simulation results of the positive and negative first-order diffracted beams. (a) Sub-apertures of the positive
first-order diffracted beams; (b) Sub-apertures of the negative first-order diffracted beams.

The reference flat error is also considered and added to the phase output in each
sub-aperture, as shown in Figure 7. To simulate the possible phase errors caused by the
tilt, tip, and piston, the values of the error coefficients a, b, and c are randomly generated
for sub-aperture 1 and 3, while these error coefficients are set to be zero for sub-aperture 2
since it is arranged as the reference sub-aperture.
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Figure 7. Simulated reference flat error for each sub-aperture.

Figure 8 shows the reconstructed pitch deviation using the proposed self-calibration
method. The pitch deviation of the scale evaluated by using the stitched phase outputs
IX±1(x) is shown in Figure 8a and the evaluation result obtained by directly stitching the
pitch deviation is shown in Figure 8b. Figure 8c shows the difference between the two
reconstruction results, which indicates that the two reconstruction results are almost the
same with a small difference on the level of 10–13 nm. Figure 8d presents the differential
result between the reconstructed pitch deviation and simulated pitch deviation. The results
verify that the self-calibration stitching method has a stitching accuracy at the level of
10–13 nm.

Figure 8. Reconstructed pitch deviation results using the stitched first-order diffracted beams and the pitch deviation maps.
(a) Evaluated pitch deviation obtained by using the stitched first-order diffracted beams; (b) Evaluated pitch deviation
obtained by directly stitching the pitch deviation maps; (c) Difference obtained from the two results (a,b); (d) Difference
between the evaluated pitch deviation and the simulated pitch deviation in Figure 5c.

4. Experiments

4.1. Experimental Setup

A commercial Fizeau interferometer (VerifireTM, Zygo Corp., Middlefield, CT, USA),
which has a measurement range of 102 mm in diameter, was used in the experiment.
The wavelength of the light source was 632.8 nm. The resolution and accuracy along the
z-axis were 0.05 nm and λ/20, respectively. Figure 9 shows the experiment setup with major
components. A precision tilt stage (TS-211, Chuo Precision Industrial Co., Ltd., Tokyo,
Japan) was employed in the experiments to set the linear scale in the Littrow configuration.
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A precision two-axis positioning stage with a resolution of 10 μm and a manual rotary stage
was employed to adjust the in-plane position of the linear scale. In addition, a precision
manual linear stage with a resolution of 100 μm and a travel range of 100 mm was used.
It should be noted that the in-plane position of the linear scale could easily be determined
by locating the edges of the linear scale to coincide with those of the CCD image from the
visual feedback system. Meanwhile, highly precise in-plane positioning of the linear scale
was not required since the lateral resolution of the CCD camera was larger than that of the
positioning stages employed in the experiments.

Figure 9. Experimental setup with a commercial Fizeau interferometer.

In the experiment, the linear scale having a nominal pitch of 1.6 μm over an area
of 5 mm × 105 mm was employed as the measurement specimen. The linear scale was
measured through three shots for each diffraction order and the diffracted beams in
different sub-apertures were measured by reciprocating the linear stage. First, the positive
first-order diffracted beam of the right part of the linear scale was measured by tilting
the linear scale clockwise. Then, the scale grating was translated forward with a distance
of 12 mm to measure the positive first-order diffracted beam from the middle part of
the linear scale. At last, the positive first-order diffracted beam from the left part of
the linear scale was measured by moving the scale slightly forward with a distance of
13 mm. Once the measurements of the positive first-order diffracted beams in each sub-
aperture were finished, the linear scale was moved back to the initial position. The linear
scale was then tilted counter-clockwise to measure the negative first-order diffracted
beams. The measurement procedure of the negative first-order diffracted beams in each
sub-aperture was the same as the measurement of the positive first-order diffracted beams.
In each measurement, the number of the observed interference fringes in the visual feedback
system was reduced to a minimum through adjusting the manual tilt stage to reduce the
influence of the angular misalignment from the Littrow angle. In addition, to reduce the
influence of environmental noise, three repetitive measurements were conducted in each
position. Excluding the warm-up and pre-adjustment time, it took approximately 20 min
to conduct all the measurements including the translation of the linear stage and the tilt
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operation of the linear scale grating. The measured phase outputs were then processed
offline for the analysis with the self-calibration stitching method.

4.2. Experiment Results and Discussions

Figure 10 shows the observed positive first-order diffracted beams from each sub-
aperture, while Figure 11 shows the measured negative first-order diffracted beams from
sub-aperture 1 to sub-aperture 3, respectively.

Figure 10. Measured positive first-order diffracted wavefront from the linear scale grating. (a) X-directional positive
first-order diffracted beam from Sub-aperture 1; (b) X-directional positive first-order diffracted beam from Sub-aperture 2;
(c) X-directional positive first-order diffracted beam from Sub-aperture 3.

Sub-aperture 2 was arranged as the reference aperture since it has the maximum
overlap area with the other two sub-apertures. The error coefficients (a, b, c) of sub-aperture
two were then calculated using Equations (8) and (9) for different stitching strategies. The
calculated error coefficients of each sub-aperture are summarized in Table 1.

Table 1. Error coefficients for each sub-aperture.

a b c

IX+1,1 −2.06 −8.24 −0.59
IX+1,3 1.95 8.37 −0.39
IX−1,1 −2.29 −10.44 −0.66
IX−1,3 2.25 9.98 −0.33
eX,1 28.80 280.04 8.47
eX,3 −38.62 −204.10 −7.02
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Figure 11. Measured negative first-order diffracted wavefront from the linear scale grating. (a) X-directional negative
first-order diffracted beam from Sub-aperture 1; (b) X-directional negative first-order diffracted beam from Sub-aperture 2;
(c) X-directional negative first-order diffracted beam from Sub-aperture 3.

Figure 12 shows the pitch deviation results obtained in the previously described two
different strategies. The pitch deviation calculated from the stitched phase maps is shown
in Figure 12a, which indicates that the pitch deviation over the whole area of the linear
scale had a peak-to-valley (PV) value of 343 nm. Meanwhile, Figure 12b shows the pitch
deviation of the linear scale calculated by stitching the pitch deviation in each sub-aperture,
which also had a PV value of 343 nm. Figure 12c shows the difference between the 2D
pitch deviation maps obtained by the two different methods. From the small differential
result, it is noted that almost the same results were obtained by using the two different
self-calibration stitching methods.

To verify the stitching calibration results, a one-shot experiment was also conducted.
By zooming out the observation area of the CCD camera, most of the scale area (about
5 mm × 101 mm) was covered by the illumination area of the one-shot measurement.
The positive and negative first-order diffracted beams of the linear scale were evaluated
by tilting the linear scale clockwise and counter-clockwise, as shown in Figure 13a,b,
respectively. Figure 14 presents the calculated pitch deviation of the linear scale by using
the measured wavefronts from the one-shot measurement and the results obtained by
using the self-calibrated stitching method. Figure 14a shows the measured pitch deviation
with the one-shot measurement had a PV value of 314 nm, which is slightly smaller than
that of the self-calibrated stitching result. Nevertheless, the high correspondence of the
topography features in the two 2D pitch deviation maps verified the feasibility of the
proposed method for pitch deviation stitching calibration.
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Figure 12. Evaluated X-directional pitch deviation of the linear scale through different stitching strategies. (a) Pitched
deviation evaluated from stitched first-order diffracted beams; (b) Pitched deviation evaluated by stitching the pitch
deviation from each sub-aperture; (c) Difference obtained from the two results in (a,b).

Figure 13. Measured first-order diffracted beams from the linear scale with one-shot measurement. (a) X-directional positive
first-order diffracted beam; (b) X-directional negative first-order diffracted beam.

To further verify the detail, the averaged X-direction cross-section of the two results
was calculated and compared with each other. Figure 15a shows the comparison of the
averaged X-directional cross-sections of the two calibration results in Figure 14. The pitch
deviation was then reconstructed by considering the cosine value of the Littrow angle
with a 20-order polynomial function using the least-square technique [17]. The difference
was then calculated with the two reconstruction results, as shown in Figure 15b. From
the figures, the two averaged cross-sections show good correspondence with each other,
and the difference was within the range of ±50 nm over the whole calibration area, verifying
the capability of the proposed self-calibration stitching method for long-range linear scale
pitch deviation evaluation.
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Figure 14. Evaluated pitch deviation of the linear scale through one-shot and three-shot measurements. (a) Pitch deviation
of the linear scale evaluated with a one-shot measurement; (b) Pitch deviation of the linear scale evaluated with a three-shot
measurement and stitching method.

ex

ex

a b

Figure 15. Comparison of the X-directional averaged cross-sections of the measured and stitched pitch deviation through
one-shot and three-shot measurements. (a) X-directional averaged cross-section of the measured and stitched pitch deviation
results; (b) Reconstruction results of the two averaged pitch deviation cross-sections and their difference.

The pitch deviation of a long-range linear scale was successfully calibrated using the
proposed stitching calibration method. The same results are obtained by using different
stitching strategies with the self-calibration method. Considering the lengths of the in-
dustrial used commercial linear scale are mostly within the range of 300 mm [9], these
could be measured with a commercial interferometer with three to four shots. The mea-
surement results obtained using the proposed self-calibrated stitching method are thus
representative, indicating the feasibility of the proposed method to measure a 200 mm
or 300 mm long linear scale. On the other hand, it was found that there was a difference
between the stitched pitch deviation with three-shot measurement and the evaluated pitch
deviation with one-shot measurement. The difference could be mainly caused by the
X-directional straightness error of the linear stage, which should be calibrated before the
stitching measurement. The positioning error related to the straightness error and the
linear stage could also influence the stitching accuracy, although it is usually ignored since
the lateral resolution of the interferometer is worse than that of the precision positioning
stage [35,36]. It should be pointed out that systematic errors such as the calibration error of
the phase shifter as well as the possible speckle effect could also influence the measurement
results and reduce the stitching accuracy. Well-designed PSI algorithms and speckle reduc-
tion methods could be applied to address these issues [37,38]. Other uncertainties such as
the environmental noise and the uncertainty related to the interferometer are estimated to
be several nanometers and are not considered in the analysis [19].

It should be noted that the main focus of this paper is to verify the feasibility of
applying the proposed self-calibration stitching method for the long-range linear scale pitch
deviation calibration. The proposed method could be extended to calibrate the Z-directional
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out-of-flatness error of the scale grating as well as the form errors of the two-dimensional
planar scale grating with an XY motorized precision stage [39]. The measurement time
could increase in this case and the automation of the XY stage, as well as the self-calibration
stitching program, is expected to facilitate the calibration process. Future research will
include the comparison of the calibrated pitch deviation of the linear scale and the nonlinear
component error of the linear optical encoder.

5. Conclusions

A self-calibration stitching method based on the Fizeau interferometer, in which the
pitch deviation of the linear scale can be evaluated while removing the influence from
the reference flat error, has been proposed to evaluate the pitch deviation of a long-range
linear scale. The stitching interferometry method has never been applied to evaluate
the X-directional pitch deviation of the scale grating while eliminating the accumulative
second-order effect of the systematic error of the interferometer. Therefore, in this paper,
theoretical analysis and simulation have been carried out to develop and test the feasibility
of the self-calibration stitching method. Following the theoretical analysis and simulation
verification, experiments are conducted by using a long-range linear scale with a length
of 105 mm. The pitch deviation of the linear scale can be obtained by directly stitching
the pitch deviation from the sub-apertures or evaluated from the firstly stitched order
phase outputs, which result to be the same. The PV value of the X-directional pitch
deviation of the linear scale is evaluated to be 343 nm over its whole area. The pitch
deviation evaluation result with three-shot measurement is further compared with the
result obtained within one-shot measurement. The high correspondence of the topography
in the two assessed pitch deviation maps indicates the capability of the proposed method
for long-range linear scale pitch deviation calibration. Meanwhile, the small difference in
the averaged X-directional cross-sections from the two results also show they have good
correspondence with each other. As the first step of the self-calibration stitching of the pitch
deviation of the long-range linear scale grating, theoretical analysis has been conducted
and primary experiment results have verified the feasibility of the proposed method for
the long-range linear scale pitch deviation evaluation. Comprehensive uncertainty analysis
of the measurement results, and an extension of the proposed method for the Z-directional
out-of-flatness measurement of the scale grating as well as the comparison of the evaluated
pitch deviation with the optical encoder error will be conducted as future work.
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Abstract: The misuse of antibiotics in the cattle sector can lead to milk contamination, with con-
comitant effects on the dairy industry and human health. Biosensors can be applied in this field;
however, the influence of the milk matrix on their activity has been poorly studied in light of the
preanalytical process. Herein, aptamer-conjugated gold nanoparticles (nanoaptasensors) were in-
vestigated for the colorimetric detection in raw milk of four antibiotics used in cattle. The effect of
milk components on the colorimetric response of the nanoaptasensors was analyzed by following
the selective aggregation of the nanoparticles, using the absorption ratio A520/A720. A preanalytical
strategy was developed to apply the nanoaptasensors to antibiotic-contaminated raw milk samples,
which involves a clarification step with Carrez reagents followed by the removal of cations through
dilution, chelation (EDTA) or precipitation (NaHCO3). The colorimetric signals were detected in
spiked samples at concentrations of antibiotics as low as 0.25-fold the maximum residue limits (MRLs)
for kanamycin (37.5 μg/L), oxytetracycline (25 μg/L), sulfadimethoxine (6.25 μg/L) and ampicillin
(1 μg/L), according to European and Chilean legislation. Overall, we conclude that this methodology
holds potential for the semiquantitative analysis of antibiotic residues in raw milk obtained directly
from dairy farms.

Keywords: nanoaptasensor; preanalytical processing; clarification; antibiotics; gold nanoparticles; aptamer

1. Introduction

Bovine milk is one of the most important nutrient-rich food sources in the human
diet [1], the global production of which reached 540,925 million tons in July 2021 [2].
The quality and safety of milk and dairy products are of paramount importance for the
food industry and public health [3]. There is a rising concern surrounding the presence
of antibiotic residues in raw milk, which are extensively used in dairy farms for the
treatment and prevention of bacterial diseases affecting cattle as well as to improve animal
performance [4]. Exposure to low levels of antibiotics in milk and milk derivatives is known
to cause serious harmful effects in human health [5]. In addition, the usage of antibiotics
in food-producing animals is a well-recognized factor in triggering the emergence of
antimicrobial resistance, which contributes to select bacterial strains and antimicrobial
resistance genes that can be further transferred to the human microbiome [6]. Bacterial
multidrug resistance to antibiotics is today among the biggest threats to global health,
accounting for over 700,000 deaths each year due to infections caused by antibiotic-resistant
bacteria (ARB) [7]. ARB are expected to cause 10 million deaths per year by 2050 at an
economic cost of USD 100 trillion [8]. Finally, antibiotic-contaminated raw milk may
interfere with fermentation processes of dairy products by inhibiting the growth of lactic
acid bacteria (starter cultures) [9].

The Codex Alimentarius Commission develops international food standards, includ-
ing reference maximum residue limits (MRLs) for veterinary drugs. In the European
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Union (EU) the MRLs of antibiotic residues in milk are fixed by Commission Regulation
N◦ 37/2010 [10], which are comparable to those set in Chilean legislation [11]. The Ministry
of Health in Chile implements a national plan to control the presence of antibiotic residues
in dairy products, while the Agriculture and Livestock Service (SAG, for its acronym
in Spanish) is responsible for ensuring the sanitary inspection and control of veterinary
pharmaceuticals in dairy cattle farms. Accordingly, raw milk contaminated with antibiotic
residues at levels above the MRLs must be discarded to prevent them from entering the
human food chain and their impacts on food safety and public health. Therefore, rapid
screening kits (e.g., SNAPR beta-lactam tests) to monitor the presence of antibiotic residues
in bovine raw milk have become a major requirement for farmers and the dairy indus-
try. However, these tests are qualitative and unsuitable for the simultaneous detection of
multiple groups of antibiotics. There is thus growing scientific and industrial interest in
supporting the development of fast, sensitive and quantitative biosensing technologies to
determine antibiotic residues in raw milk [12].

Nanotechnology is currently driving innovation in a pleyade of fields, including
the sensing of environmental and food contaminants, industrial advanced materials and
nanocatalysis applications in the chemical industry, as well as for water purification and
the detection of explosives, among others [13–17]. Nanobiosensors are nanoscale sensors
that include a biological recognition molecule (bioreceptor), which allow for improved
analytical performances along with rapid and sensitive detection of analytes in the ppb
(μg/L) concentration range [18,19]. A promising class of bioreceptors is DNA aptamers,
which consist of short single-stranded oligonucleotides that provide high affinity and
specificity for non-nucleotide molecules, including those with low molecular weight, toxic
or nonimmunogenic [20]. The combination of AuNPs with aptamers in nanoaptasensors
(NAS) is widely used to investigate the detection of a variety of analytes [21–24], with
a growing number of reports addressing the detection of antibiotics in the field of food
safety [25,26]. Surface plasmon resonance (SPR) is an optical property of AuNPs that allows
the development of label-free NAS capable of analyzing multiple analytes in real time [27].
SPR causes a sharp and intense absorption band in the visible range, enabling colorimetric
detection by following a red-to-purple–blue shift of the absorption spectrum during the
aggregation of the nanoparticles. Optical NAS are a preferred sensing technique due to
their non-invasive nature, high sensitivity, direct readout and easy coupling with other
technologies, with recent developments in optical technology lowering the cost of the
instrumentation [28,29]. However, most works address colorimetric detection exclusively
from the point of view of the analytical behavior of the biosensor. Consequently, significant
gaps remain in the literature regarding the preanalytical processes that are required to
implement this technology in real-world applications with complex matrices.

Milk is a heterogeneous fluid composed of multi-dispersed phases of emulsion (fat–
water), colloidal suspension (protein–water) and solution (salts–water), whose chemi-
cal complexity interferes with the analysis of antibiotic residues [30]. Previous reports
shed light on the capacity of AuNP-based colorimetric aptasensors to detect a few of
the antibiotic residues in commercial milk, including kanamycin [31], tetracycline [32],
oxytetracycline [33] and streptomycin [34,35]. Preanalytical techniques described in these
studies are often laborious and involve the use of chemical agents such as ethyl acetate,
trichloroacetic acid or trifluoracetic acid. In addition, solvent extraction is especially chal-
lenging for nanobiosensor technology since pH and ionic environment severely influence
their analytical behavior [36].

Herein, we investigated the effects of the main raw milk components on the activity of
aptamer-conjugated AuNPs in the colorimetric detection of antibiotics belonging to four
different groups used in cattle: kanamycin (aminoglycosides), oxytetracycline (tetracy-
clines), sulfadimethoxine (sulfonamides) and ampicillin (beta-lactams). A methodology
was proposed to address preanalytical and analytical variables affecting the colorimetric
detection of the four antibiotics in this matrix. The utility of this strategy was demonstrated

86



Sensors 2022, 22, 1281

according to the MRLs of veterinary drugs in food for human consumption accepted in EU
and Chilean legislation.

2. Materials and Methods

2.1. Chemicals and Reagents

Kanamycin, oxytetracycline, sulfadimethoxine, ampicillin, tetrachloroauric acid so-
lution (HAuCl4·3H2O), Carrez clarification reagent kit, Total Protein Kit, Micro Lowry
reagent kit and Sephadex G-25 resin were purchased from Merk (Darmstadt, Germany).
Ethyl acetate, lactose, ethylenediaminetetraacetic acid (EDTA), sodium citrate and all salt
solutions were purchased from Winkler (Santiago, Chile). Aptamers were purchased from
Integrated DNA Technologies, Inc. (Coralville, IA, USA).

2.2. Synthesis of Gold Nanoparticles (AuNPs)

The synthesis of AuNPs was carried out according to the standard citrate reduction
method [24]. Briefly, 100 mL of 1 mM tetrachloroauric acid solution (HAuCl4·3H2O) was
prepared with nanopure water (18 M Ω·cm). The solution was isovolumetrically heated to
boiling point under stirring and refluxed with a three-neck round flask connected to the
condenser. Then, 10 mL of 38.8 mM trisodium citrate solution at pH 11 was preheated to
60 ◦C and quickly added to the boiling solution of HAuCl4 under vigorous stirring [35].
After the color of the solution turned deep red the mixture was refluxed for an additional
30 min and cooled down to room temperature without stirring for 2 h. The resulting
nanoparticle suspension was filtered with Millipore nylon filters (0.45 μm) and preserved
in the dark at 4◦C. The concentrations of AuNPs and NAS were calculated according to
the Beer–Lambert law by measuring the absorbance at 520 nm (extinction coefficient of
2.01 × 108 M−1 cm−1) [37,38].

2.3. AuNPs Characterization

The spectroscopic characterization of the synthesized AuNPs was carried out with an
EpochTM microplate spectrophotometer (Biotek Instruments, Winooski, VT, USA). The size
distribution and surface charge characterization (pZ) of the AuNPs were determined with a
Zetasizer Nano-ZS90 dynamic light scattering (DLS) analyzer (Malvern Instruments, West-
boroug, MA, USA). The characterization of the size and morphology of the nanoparticles
was carried out by transmission electron microscopy (TEM) with a 4 Å resolution (TEM;
JEOL-JEM 1200EX-II, Tokyo, Japan), using a Gatan CCD camera for image acquisition
(model 782; Gatan, Inc., Pleasanton, CA, USA).

2.4. Synthesis of NAS and the Determination of Detection Parameters

AuNPs were functionalized with aptamers specific for the antibiotics listed in Table 1.
Thiol-modified aptamers (C3-S-S-Aptamer) were reduced by incubation with dithiothreitol
0.1 M in a phosphate buffer of pH 8 for 3 h at 37 ◦C. Then, 3′-SH-aptamers were purified
by gel filtration with Sephadex G-25 and incubated with the AuNPs in a phosphate buffer
(10 mM, pH 7.4) for 2 days at room temperature and darkness [39]. AuNP–aptamer
molar ratios of 1:20, 1:40 and 1:60 were investigated to determine the best parameters and
conditions for the maximization of the colorimetric signal produced by the NAS in the
detection of antibiotics at concentrations equal to their MRLs. The resulting NAS were
activated by being heated at 80 ◦C for 10 min and then cooled down at room temperature for
10 min to induce linear conformation on the nanoparticle surface. This step is paramount
to stabilize the nanoparticles and to allow the aptamers to interact with the antibiotics.
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Table 1. Antibiotics used in the experiments, including their maximum acceptable levels in raw milk
(MRLs) according to EU and Chilean legislation, and aptamers used in the NAS to recognize each antibiotic.

Antibiotic
Maximum Residual

Limit (MRL)
Aptamer Sequence (ssDNA) Aptamer Ref.

Kanamycin 150 μg/L * 5′-TGGGGGTTGAGGCTAAGCC
GA-3′ (21b) [40]

Oxytetracycline 100 μg/L *

5′-CGTACGGAATTCGCTAGCG
GGCGGGGGTGCTGGGGGAAT

GGAGTGCTGCGTGCTGCGGGG
ATCCGAGCTCCACGTG-3′ (76b)

[41]

Sulfadimethoxine 25 μg/L †

100 μg/L *
5◦′-GAGGGCAACGAGTGTTTA

TAGA-3′ (22b) [42]

Ampicillin 4 μg/L *,† 5′-GCGGGCGGTTGTATAGC
GG-3′ (19b) [43]

* EU legislation [10]. † Chilean legislation [11].

A typical assay in microplate wells consisted of 200 μL of antibiotic solution incubated
with 100 μL of the activated NAS (4 nM) at 60 ◦C for 10 min, subsequently cooled down at
room temperature. Then, 60 μL of NaCl 1 M was added into the solutions and incubated
for 30 min to monitor the aggregation process. AuNP aggregation data were analyzed
spectrophotometrically by measuring the shift of the plasmon resonance peak from 520 nm
to 620 nm (A520/A620). The absorbance values were calibrated by subtracting the value in
nanopure water (blank) and expressed as the difference in colorimetric signal between the
control (without antibiotic) and the antibiotic solution, using concentration ranges around
their MRLs (Equation (1)):

A520
A620

Control − Treatment = Signal
A520
A620

NAS without antibiotics − Signal
A520
A620

NAS with antibiotics(MRL) (1)

The aggregation of the NAS followed, during 60 min in a mixture of 100 μL of the
activated NAS and 200 μL of nanopure water (without antibiotics). The absorbance was
measured at 520 nm and 720 nm during 60 min (the absorption ratio A520/A720) upon the
addition of the saline solution. Further experiments monitoring the SPR shift to 720 nm
were also expressed according to Equation (1).

2.5. Preanalytical Processing of Raw Milk

Bulk tank raw milk samples (50 mL) were spiked with the antibiotics in final concen-
trations of 0.5×, 1×, 2× and 4× the corresponding MRLs and then homogenized for 30 min.
The samples were clarified by using both Carrez reagents and ethyl acetate as follows:

• Carrez clarification: Five hundred milliliters of Carrez I reagent was added into
10 mL of raw milk without antibiotics (control) or with kanamycin, oxytetracycline,
sulfadimethoxine or ampicillin, and vortexed for 1 min. Then, 500 mL of Carrez II
reagent was added and vortexed for 1 min until the mixture was homogeneous, which
was subsequently centrifuged at 1000× g for 5 min. The supernatant (milk whey) was
recovered and immediately used for the detection of antibiotics with the NAS.

• Ethyl acetate clarification: Four milliliters of raw milk was centrifuged for 20 min at
1000 and 10 ◦C to separate the fat. Then, 2 mL of the supernatant was diluted with
2 mL of nanopure water and stirred for 10 min in a vortex. Seven milliliters of ethyl
acetate was added, vortexed for 15 min and centrifuged for 15 min at 1500× g and
4 ◦C, which gave rise to a three-phase mixture. The bottom layer (milk whey) was
recovered and centrifugated again before being stored at 4 ◦C.

2.6. Milk and Milk Whey Characterization

The proximate analysis of raw milk and whey (by Carrez method) was determined in
accordance with the standard methods of the Association of Official Analytical Chemists
(AOAC methods) [44]: fat (AOAC 945.16), ash (AOAC 920.181), crude fiber (AOAC 962.09),
total protein (total nitrogen × 6.25) (AOAC 978.02), total carbohydrates (AOAC 929.09) and
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lactose (AOAC 982.14). The protein concentration was determined by the Lowry protein
assay (Peterson’s modification) with protein precipitation, using the Total Protein Kit, Micro
Lowry, in accordance with the manufacturer’s protocol. Optical density was measured at
650 nm in 96-well plates using and EpochTM microplate spectrophotometer. The protein
removal efficiency was determined according to Equation (2):

Protein removal efficiency =
CRM − CMW

CRM
× 100 (2)

where CMW is the protein concentration of the milk whey and CRM is the concentration of
the raw milk.

2.7. Colorimetric Detection of Antibiotics in Clarificatecd Raw Milk

Ten milliliters of raw milk was spiked (contaminated) with kanamycin, oxytetracycline,
sulfadimethoxine and ampicillin at final concentrations of 0.25×, 0.5×, 1×, 2× and 4× the
MRL of each antibiotic and then incubated for 30 min at room temperature. The colorimetric
detection of the antibiotics was thus investigated in solutions containing the main soluble
components of bovine raw milk (lactose and ionic species) to determine their specific effect
on the aggregation process of AuNPs (Table 2). Raw milk (with and without antibiotics) was
clarified using the Carrez method, after which samples of the resulting whey were assessed
with the NAS by following the aggregation according to the methodology described
in Section 2.4.

Table 2. Solutions employed to study the effect of soluble milk constituents on the aggregation of
the NAS.

Element Concentration
Synthetic

Milk Whey
Lactose

Solution
Ionic Solution

Lactose 5% w/v X X
Ca2+ 30.120 mM (60.232 mEq/L) X X
Mg2+ 4.750 mM (9.506 mEq/L) X X
Fe3+ 0.011 mM (0.032 mEq/L) X X

PO4
3− 30.582 mM (91.745 mEq/L) X X

Na+ 23.587 mM (23.587 mEq/L) X X
K+ 38,930 mM (38.930 mEq/L) X X

Zn2+ 0.066 mM (0.131 mEq/L) X X
Citrate3− 9.292 mM (18.584 mEq/L) X X

Cu2+ 0.002 mM (0.005 mEq/L) X X

The symbol (X) indicates the presence of each particular milk component in the solutions.

2.8. Colorimetric Detection of Antibiotics in Cation-Removed Milk Whey

Raw milk samples were incubated with the antibiotics at concentrations of 0.25×,
0.5×, 1×, 2× and 4× their MRLs and subsequently subjected to Carrez clarification (see
Section 2.5). Prior to performing the experiments of antibiotics detection the whey samples
(1.5 mL) were divided into three isovolumetric fractions to remove cations by different
methods: (i) by adding 80 μL of NaHCO3 1 M into the solutions to a final concentration
of 30 mM, which were subsequently incubated (10 min at 60 ◦C), cooled down at room
temperature and centrifugated at 20,000× g for 10 min to recover the supernatant; (ii) by
adding 80 μL of EDTA to a final concentration of 5 mM; and (iii) by diluting 1:1 with
nanopure water to attenuate the effects of cations and lactose in the salt-induced aggregation
of AuNPs. The absorbance values were normalized with respect to the absorbance ratio
measured for the whey without antibiotics (control), according to the following equation:

Fold A520/A720 =
signal A520

A720 of NAS with antibiotic

signal A520
A720 of NAS without antibiotic (control)

(3)
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2.9. Statistical Analysis

Data shown are the average ± standard error of at least three independent experiments.
Statistical significance was determined at a 95% confidence interval, using a nonparametric
Mann–Whitney U test for the comparison of two groups.

3. Results and Discussions

3.1. NAS and Detection Principle

The NAS developed herein are based on previously reported aptamers specific to four
antibiotics used in cattle (kanamycin, oxytetracycline, sulfadimethoxine and ampicillin).
Numerous works in the nanobiosensor field are based on aptamers bound to the nanopar-
ticles through electrostatic interactions, which is a suitable approach for the detection of
antibiotics in a saline buffer solution or highly clarified matrices. The recognition of antibi-
otics by adsorbed aptamers causes them to detach from the AuNPs with the concomitant
loss of stability and subsequent aggregation [41]. However, this strategy becomes less
applicable in complex matrices containing chemical species that can interfere with the
analytical method. Accordingly, the experimental approach followed in this work involved
the covalent conjugation of the ssDNA aptamers on the AuNPs’ surface (through thiol–gold
interactions) to prevent their release from the nanoparticle surface. It is worth mentioning
that this reaction has been well-characterized in numerous works, using different instru-
mental techniques such as X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD)
and atomic force microscopy (AFM). The resulting interaction between the thiol group and
the gold surface is strong and stable, providing a robust mechanism to link aptamers onto
AuNPs [45–48]. Importantly, the aptamers adopt a flexible random coil linear structure
that allows their bases to interact with the nanoparticle surface through van der Waals
forces [49]. Figure 1 provides a schematic description of the detection reaction, showing
the aptamers coating the AuNPs’ surface and inhibiting salt-induced aggregation due to
electrostatic repulsions among the nanoparticles. However, in the presence of the antibiotics
the aptamers adopt a folded structure that leads to a decrease in surface protection and the
subsequent aggregation of the AuNPs upon the addition of NaCl. The aggregation process
is proportional to the antibiotic concentration and can be followed through the decrease in
the absorption ratio (A520/A620).

Figure 1. Schematic illustration showing the sensing principle of aptamer-conjugated AuNPs for the
colorimetric detection of antibiotic residues present in raw milk. (A) Covalently conjugated aptamers
in a random coiled linear structure inhibit salt-induced aggregation, while the conformational change
induced by antibiotic interaction decreases surface protection and allows the aggregation of AuNPs
upon the addition of NaCl. (B) Absorption spectra of AuNPs showing antibiotic-induced aggregation
of the nanoparticles and the resulting shift in the plasmon resonance peak (from red to blue–purple).
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3.2. Determination of the Detection Parameters of NAS

The detection parameters of (i) AuNP:aptamer molar ratio; (ii) absorption ratio; and
(iii) incubation time were evaluated in water to select conditions that maximized the
colorimetric signal generated by the NAS. AuNP:aptamer molar ratios of 1:20, 1:40 and
1:60 were compared for each NAS in the presence of each antibiotic at concentrations
equal to the corresponding MRL in the EU (Table 1). In the case of sulfadimethoxine the
MRL considered was 25 μg/L (instead of 100 μg/L), which is the highest concentration
of sulfonamides legally permitted in Chile for milk [11]. Differences in susceptibility to
salt-induced aggregation at different molar ratios (AuNP functionalization) could be a
consequence of the variable degrees of surface coverage in each NAS. Figure 2 shows
the variation in the colorimetric signal produced by the NAS in detection of the four
antibiotics upon the addition of NaCl. Dispersed and aggregated NAS resulting from
the detection process are presented in Figure 2, with TEM images (inset) showing typical
spherical particles with diameters of ~15 nm [24,27]. The highest colorimetric response
was determined in the case of kanamycin at a molar ratio of 1:60, while for oxytetracycline,
sulfadimethoxine and ampicillin the best molar ratio was 1:20. These parameters were
selected for subsequent antibiotic detection assays.

Figure 2. Colorimetric response of the NAS at molar ratios (AuNP:aptamer) of 1:20 (blue), 1:40 (green)
and 1:60 (red) for the detection of antibiotics in water at their maximum concentration of residues
permitted in milk (MRLs) for kanamycin, oxytetracycline, sulfadimethoxine and ampicillin. Treat-
ments correspond to antibiotic-containing samples at the MRL concentrations and controls include
nanopure water instead of antibiotics. The inset shows TEM images of dispersed NAS (before the
detection of antibiotics) and aggregated NAS (after the detections of antibiotics). The absorbance
readings were transformed according to Equation (1). Results were averaged from 3 to 5 independent
experiments. Data were analyzed using a nonparametric Mann–Whitney U test. Asterisks denote
statistically significant differences between the treatments and controls. * = p < 0.05.

We hypothesized that differences in the colorimetric response of NAS at different molar
ratios are associated with the effect of this parameter on the degree of surface coverage
of the AuNPs by the aptamers (i.e., reactive surface). Thus, nanoparticles partially coated
on their surface would have fewer reactive sites available to interact with the antibiotics
in comparison with mostly coated nanoparticles. By calculating the surface coverages for
each mol of NAS and considering the aptamer length for NAS-Kan (21b), NAS-Oxy (76b),
NAS-Sul (22b) and NAS-Amp (19b), the total number of moles of DNA bases that would
be interacting with each NAS is 1260b (NAS-Kan), 1520b (NAS-Oxy), 440b (NAS-Sul) and
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380b (NAS-Amp) (Table S1). Interestingly, both NAS-Amp and NAS-Sul share a low total
number of bases available on their surfaces and a lower concentration of antibiotics in
the assays (MRLs of 4 μg/L and 25 μg/L, respectively) in comparison with NAS-Oxy
and NAS-Kan. By contrast, the latter groups of NAS have a higher number of bases
coating the nanoparticle surface and a higher concentration of antibiotics (100 μg/L and
150 μg/L, respectively) in common. This analysis lends support to the relationship between
reactive surface and the analyte concentration, given that NAS with a low proportion of
aptamer coverage are more likely to become saturated at low concentrations and vice versa.
Kim et al., for example, explored different molar ratios for the colorimetric detection of
oxytetracycline in water, finding an optimal molar ratio of 1:50. However, this work was
conducted with aptamers bound to AuNPs via electrostatic interactions, and the authors
discussed the need to determine in each NAS the best molar ratio for optimal detection [35].

The shift of the SPR peak (from 520 nm) associated with the aggregation of AuNPs
spans a wide spectral region (until 800 nm), despite most of the works in the field of
NAS following the shift between 520 nm and 620 or 650 nm [50]. Accordingly, our group
previously developed an electro-opto-mechanic device for high-resolution AuNP spectral
data in a wavelength range from 400 to 800 nm, which was proven to improve the analytical
performance of NAS with the aid of machine learning tools [51]. With this in mind, AuNP
aggregation data were analyzed spectrophotometrically between 400 and 750 nm, using two
absorption ratios (A520/A620 and A520/A720) to select reading parameters that maximize the
colorimetric signal associated with NAS detection and aggregation. As shown in Figure 3,
the ratio A520/A720 outperformed A520/A620 in generating a color intensity three–four
times greater in terms of the shift of the SPR peak. We proposed that the reason for this
result is the greater difference between the absorbance values at each wavelength in the
spectra before and after NaCl-induced AuNP aggregation. This phenomenon can be clearly
seen in the Figure S1 of Supplementary Materials, where the differences in absorbance
at 720 nm between the red (before aggregation) and blue (after aggregation) curves are
greater than the difference at 620 nm. The relevant parameter is thus the difference between
absorbances (not the absolute value); therefore, a greater difference at 720 nm is expected
to decrease the detection limit by providing a stronger colorimetric signal. To the best of
our knowledge this is the first study proposing the absorption ratio A520/A720 nm as a way
to improve the sensitivity of the NAS.

 

Figure 3. Comparison of the absorption ratios A520/A620 and A520/A720 from spectral variation
associated with the aggregation of AuNPs as a colorimetric signal generated by the NAS in the de-
tection of kanamycin (blue), oxytetracycline (green), sulfadimethoxine (red) and ampicillin (purple).
Treatments correspond to antibiotic-containing samples at the MRL concentrations of each antibiotic,
while controls include nanopure water instead of antibiotics. The absorbance readings were trans-
formed according to Equation (1). Results were averaged from 3 to 5 independent experiments. Data
were analyzed using a nonparametric Mann–Whitney U test. Asterisks denote statistically significant
differences between the treatments and controls. * = p < 0.05.
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Figure 4 presents the spectral variation across time resulting from the salt-induced
aggregation of AuNPs for the four NAS. The curves exhibit an exponential decay, with a
sharp decrease in the absorption ratio over the first 5 min followed by a slower exponential
decline between 30 and 60 min. Based on these results the incubation time with NaCl was
established as 30 min prior to proceeding with spectroscopic characterization.

 

Figure 4. Kinetics of the aggregation of AuNPs in response to NAS detecting kanamycin (red),
oxytetracycline (green), sulfadimethoxine (blue) and ampicillin (purple) upon the addition of NaCl.
The results were averaged from 3 independent experiments for each NAS (n = 3). Non-significant
differences are shown as n.s. Data were analyzed using a nonparametric Mann–Whitney U test.

The previously determined parameters were employed in antibiotic detection ex-
periments. As shown in Figure 5, the NAS allowed for the discrimination of trace-level
concentrations of the antibiotics kanamycin (0, 37.5, 75 and 150 μg/L), oxytetracycline (0, 50,
100 and 200 μg/L), sulfadimethoxine (above 12.5 μg/L) and ampicillin (above 1 μg/L).

Figure 5. Colorimetric detection of the antibiotics in water for (A) kanamycin, (B) oxytetracycline,
(C) sulfadimethoxine and (D) ampicillin, based on the A520/A720 absorption ratio. Results were
averaged from three independent experiments (n = 3). Data were analyzed using a nonparametric
Mann–Whitney U test. Asterisks denote statistically significant differences between the treatments
and controls. * = p < 0.05.
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These results suggest the need to include spectral information above 700 nm to better
analyze the aggregation of AuNPs, in contrast with the most common approach of following
the shift of the SPR band between 520 nm (red) and 620 or 650 nm (purple–blue) [37,41,42].

3.3. Raw Milk Clarification

The aggregation behavior of non-functionalized AuNPs in raw milk was initially
determined in order to explore the activity of the NAS in this matrix. Figure S2 accounts
for the absorption spectra of dispersed (~15 nm) and aggregated nanoparticles in the raw
milk, which showed no spectral change in the plasmon resonance peak (at 520 nm) when
incubating AuNP-containing raw milk with NaCl 0.1 M. The aggregation of AuNPs was
followed through the A520/A620 ratio by increasing the NaCl concentration from 0.1 to
0.5 M. No significant differences between the control (without NaCl) and treated samples
(with NaCl) were observed. The lack of aggregation of AuNPs in the milk suggests that the
nanoparticles are strongly stabilized by electrostatic interactions with lactose or ion species,
which interfere with the activity of NAS.

Two preanalytical treatments were employed for protein and fat removal from raw
milk. The procedure based on the Carrez reagent produces two layers consisting of the
supernatant (whey) and a precipitate of proteins and fat (Figure 6A). Instead, ethyl acetate
forms three distinct layers corresponding to ethyl acetate (upper layer), a white layer of
insoluble constituents (middle layer) and milk whey (bottom layer) (Figure 6B). The Carrez
method outperformed in effectivity and simplicity the treatment with ethyl acetate to
clarify raw milk, allowing around 98% of the protein content to be removed with the full
elimination of fats (Table 3).

The Carrez method is often employed in the preanalytical processing of complex
matrices. However, the absorption spectra of the four NAS in the resulting milk whey still
showed no variations, accounting for a strong stabilization of the nanoparticles caused
by ionic species in this solution (Figure S3). The NAS are prevented from generating a
colorimetric response under these conditions, requiring further clarification steps.

 

Figure 6. Phases and protein removal resulting from raw milk clarification using (A) the Carrez
reagent and (B) ethyl acetate.
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Table 3. Proximate analysis of raw milk and whey obtained with the Carrez method.

Components Raw Milk Milk Whey

Lipids 5.3% 0.0%
Proteins 3.2% 0.2%

Raw fiber 0.4% 0.6%
Total carbohydrates 4.7% 4.5%

Lactose 5.0% 5.3%
Ashes 0.7% 1.2%

pH 5.94 6.05

3.4. Effect of Ion and Lactose on the Aggregation of AuNPs

In the milk serum sodium and potassium ions (Na+ and K+) form weak ion pairs
with chloride, citrate and phosphate, mainly remaining as free ions while divalent cations
(Ca2+ and Mg2+) are mostly complexed with citrate [52]. These cations are thus capable of
interacting with negative charges of the citrate layer adsorbed onto AuNPs (citrate-capped
AuNPs) and with phosphate groups from the DNA aptamers, thereby competing with
electrostatic interactions that stabilize the nanoparticles and inducing their aggregation.
This phenomenon occurs due to the displacement of the capping citrate layer and the
consequent loss of the repulsive charges that counteract the van der Waal attractive forces
between gold particles. Lactose, on the other hand, is the mayor carbohydrate component
of milk and its interaction with AuNPs is also expected to influence aggregation. Given
these complex interactions, synthetic milk whey (SMW) mimicking the ions and lactose
composition of bovine raw milk was prepared with the aim of understanding the specific
effects of these components on the activity of NAS.

Figure 7 shows that the SMW (red line) and the ionic solution (blue line) induce the
aggregation of AuNPs even before the addition of NaCl, according to the spectral shift of
the plasmon resonance peak. The lactose solution (green line) prevented the salt-induced
aggregation of AuNPs from taking place upon incubation both without NaCl (Figure 7A)
and with NaCl (Figure 7B). This result suggests that lactose–AuNP interactions contribute
to the stabilization of nanoparticles and would therefore inhibit salt-induced aggregation, a
finding that is in agreement with previous works that show that this molecule is capable
of interacting with metals cations such as iron [53] and calcium [54]. A recent study also
reports the interaction of gold with the acetalized OH group of lactose [55]. Figure 7A,C
point to the strong effect of milk ions on the aggregation of AuNPs as long as the aggregation
of AuNPs caused by the ionic solution is similar to that induced by NaCl incubation, even
decreasing the concentration of the ions four-fold. The activity of NAS becomes suppressed
due to this effect (Figure S3).

Figure 7. Spectroscopic characterization of the aggregation of AuNPs in synthetic whey (red line),
lactose (green line), solution of ion species (blue line) and water (black line) during the incubation of
AuNPs at (A) 10 min without the addition of NaCl addition and (B) 30 min after the addition of NaCl
addition. (C) Effect of the solution dilution on the aggregation of AuNPs. The curves are based on the
average of the results from three independent experiments (n = 3). Statistically significant differences
compared with the controls and different treatments are indicated as * p < 0.05, *** p < 0.001 and
**** p < 0.0001.
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The concentration of ions in the milk whey includes 132.423 mEq/L of cations (mono,
di and trivalent) and 110.329 mEq/L of anions, where citrate and PO4

3− bind and chelate
metallic cations in the solution (Table 2). Accordingly, ≈22.1 mEq/L of free cations are in
theory involved in the aggregation of NAS. On the other hand, the aggregation of NAS
induced by NaCl (monovalent cation) occurs at concentrations of 100 mEq/L of cations,
while the aggregation of AuNPs starts at above 50 mEq/L (Figure S4). This analysis
suggests that cations with a higher valence generate a stronger effect on the aggregation of
AuNPs under equal conditions of normal concentration (Eq/L). Therefore, both cations
and lactose need to be removed from the milk whey to make the aggregation of AuNPs
possible and allow the NAS to be applied in this matrix.

3.5. Cation Removal and Antibiotic Detection

Figure 8 shows that both the dilution and treatment of milk whey with chelating
(EDTA) and precipitating (NaHCO3) agents allow the NAS to colorimetrically detect the
corresponding antibiotics in concentrations as low as 0.25× their corresponding MRL.
EDTA acts by sequestering divalent cations present in whey (Ca2+ and Mg2+), while
NaHCO3 precipitates Ca2+ (as CaCO3) and Mg2+ (as Mg(OH)2). The colorimetrical signal is
inversely correlated with the concentration of the different antibiotics (0–600 μg/L), where
a decrease in the signal accounts for a larger presence of antibiotics in raw milk. Therefore,
preanalytical steps must be considered as a part of the protocol to eliminate interference
effects of cationic species, though the specific treatment with EDTA or NaHCO3 would
depend on the antibiotic.

Figure 8. Colorimetric detection of antibiotics in cation-removed milk whey with NAS specific for
(A) kanamycin, (B) oxytetracycline, (C) sulfadimethoxine and (D) ampicillin. The interferents were
removed by dilution (�), EDTA treatment (�) and NaHCO3 treatment (•). The results were averaged
from three independent experiments (n = 3). Statistically significant differences compared with the
controls and different treatments are indicated. * p < 0.05 and ** p < 0.01.

As summarized in Table 4, the methods employed to remove cations from the milk
whey (dilution, chelation or precipitation) enabled the NAS to perform the sensitive de-
tection of kanamycin (from 37.5 μg/L), oxytetracycline (from 25 μg/L), sulfadimethoxine
(from 6.25 μg/L) and ampicillin (from 1 μg/L) in the clarified matrix. However, some of
the treatments are associated with a higher degree of data dispersion (colorimetric signal)
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and these differences were further analyzed to select the best preanalytical methodology.
In the case of kanamycin, the EDTA treatment allowed a highly sensitive detection to be
achieved and qualitative discrimination between concentrations lower and higher than its
MRL (150 μg/L). By contrast, the dilution and NaHCO3 treatments only allowed for the
detection of the presence of antibiotics at the MRL concentration. For oxytetracycline both
the dilution with water and NaHCO3 treatments enabled sensitive detection (from 25 to
200 μg/L), even though dilution was associated with less data variation and thus with a
better detection performance. The NaHCO3 treatment was also suitable to perform the
sensitive detection of sulfadimethoxine (from 6.25 μg/L) and to discriminate concentrations
under the MRL and up to two-fold the MRL (50 μg/L). Instead, the dilution and EDTA
treatments allowed for detection (from 12.5 μg/L) but without discrimination capability.
Finally, the EDTA and NaHCO3 treatments were associated with the sensitive detection of
ampicillin (from 1 μg/L). However, EDTA outperformed NaHCO3 in discriminating among
different concentrations, despite it producing a rather high data dispersion. Therefore,
the methodologies developed herein provide suitable conditions to discriminate at least
0.25 times the MRLs of each antibiotic, making it possible to implement the semiquantitative
detection of them in samples of contaminated raw milk.

Table 4. Selected methods for the removal of cationic interferents, which provide the minimum
detection limit of antibiotic for each NAS.

Nanoaptasensor
Best Method for

Interference Elimination
Detection Limit

Kanamycin EDTA 37.50 μg/L (0.25 MRL)
Oxytetracycline Dilution 25.00 μg/L (0.25 MRL)

Sulfadimethoxine NaHCO3 6.25 μg/L (0.25 MRL)
Ampicillin EDTA 1.00 μg/L (0.25 MRL)

In summary, the experimental strategy developed in this work involves three simple steps:
(i) removal of fats and proteins with the Carrez reagents; (ii) elimination of ionic interferents
by either dilution, chelation (EDTA) or precipitation (NaHCO3), depending on the target
antibiotic; and (iii) incubation with the NAS to generate the colorimetric response (Figure 9).

Figure 9. Preanalytical and analytical steps of the methodology developed to apply NAS technology
for the detection in raw milk of kanamycin, oxytetracycline, sulfadimethoxine and ampicillin at MRL
concentration levels.

Table 5 shows that the methodology developed reached low detection limits (nM
range) and assay times (70 min) that are comparable with similar methods, but avoided
the use of organic solvents and the requirement of complex pretreatment procedures. The
proposed approach allowed for the gain of knowledge on the influence of the milk matrix
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on NAS activity, focusing on the preanalytical strategy required to implement the detection
of antibiotic residues in raw milk directly obtained and assayed in a dairy farm. In addition,
this is the first study addressing the effect of raw milk constituents on the colorimetric
response of NAS in the process of detecting antibiotics belonging to four different groups
(aminoglycoside, tetracycline, sulfonamide and beta-lactam).

Table 5. Colorimetric AuNP-based aptasensors for the determination of antibiotics in milk.

Milk Sample
Antibiotic
Residue

Preanalytical
Time

Assay Time LOD Range
Pretreatment/Antibiotic

Addition
Ref.

Supermarket
milk

Ampicillin
(AMP) 1.5 h 80 min 10 ng/mL

(28.6 nM)
1–100 ng/mL
(2.86–286 nM)

Ethyl acetate
addition/centrifugation at

5000 rpm to obtain
supernatant/nitrogen

blow-down at 40 ◦C/pellet
resuspension in water (total

dilution: 2-fold)/AMP
addition (after pretreatment).

[43]

N.S. Tetracycline
(TET) N.S. 25 min 45.8 nM 10–400 nM

Milk dilution with water
(1:5)/acetic acid

addition/centrifugation (total
dilution: 5-fold)/TET

addition (protocol details
unspecified).

[56]

Milk powder Tetracycline
(TET) N.S. 60 min 122 nM 10–500 nM

Acetic acid addi-
tion/centrifugation/TET
addition (protocol details

unspecified).

[32]

N.S. Kanamycin
(KAN) 35 min 100 min 1 nM 1–8 nM

100–500 nM

KAN addition (before
pretreatment)/acetic acid

addition/incubation at
45 ◦C/centrifugation at
10,000 rpm/filtration

0.22 μm/pH adjustment
(total dilution unspecified).

[31]

N.S. Streptomycin
(STR) N.A. 70 min 73.1 nM 30–1030 nM

Milk dilution with water
(total dilution: 50-fold)/STR
addition (after pretreatment).

[34]

Supermarket
milk

Streptomycin
(STR) 30 min 60 min 86 nM 100–500 nM

Milk dilution with water
(total dilution: 5-fold)/STR
addition (after dilution)/

EDTA and trifluoracetic acid
addition/centrifugation at

6000 rpm/supernatant
collection.

[35]

Raw milk from
a dairy farm

Ampicillin
Oxytetracycline
Sulfadimethoxine

Kanamycin

40 min 30 min

1 μg/L
(2.9 nM)
25 μg/L

(54.3 nM)
6.25 μg/L
(20.9 nM)
37.5 μg/L
(77.4 nM)

1–16 μg/L
(2.9–46.4 nM)
25–200 μg/L

(54.3–434.4 nM)
6.25–100 μg/L
(20.9–334.4 nM)
37.5–600 μg/L
(77.4–1238.4 nM)

Antibiotic addition (before
pretreatment)/Carrez

reagents/centrifugation at
1000 rpm/dilution,
NaHCO3 or EDTA

treatments/centrifugation at
1000 rpm/supernatant

collection (total dilution:
1.16-fold).

This
study

N.S. = Details not specified by the authors. N.A. = Not applicable.

In contrast to our approach, previous works report the determination of antibiotics on
processed (commercial) milk, which is typically subjected to treatments involving the use
of chemical agents such as ethyl acetate [43], trichloroacetic acid [31,33] or trifluoracetic
acid [35], followed by centrifugation/resuspension. In some cases, final steps involve the
adjustment of pH or the removal of solvents by nitrogen blow-down [57]. Milk dilution
has also been reported elsewhere as a simple clarification procedure to deal with matrix
complexity by using dilution factors ranging from 5-fold [35] to 50-fold [34]. However, in
these works milk samples are typically spiked with antibiotics after dilution.
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A realistic condition to apply NAS technology must consider the analyte already
present in the sample of raw milk, because dilution could lower its concentration below the
detection limit of the method. However, with the exception of Zhou et al. [31] the approach
followed in the rest of the works consists of contaminating the milk after and not before the
clarification step (Table 5). This is the reason why our work focuses on antibiotic-spiked
raw milk samples, which were employed as the starting point from which to investigate
a preanalytical strategy and analytical techniques necessary to advance NAS technology
toward its application for real samples obtained in dairy farms. Table 5 highlights that this
is the first study addressing this problem in raw milk, while other works have focused on
milk powder [32], supermarket milk [35,43] or non-specified information [31,34,56]. Finally,
a number of approaches have been proposed to generate and scale-up, at low costs, the
production of AuNPs, as well as for the recovery of gold from laboratory wastes [58,59],
which together contribute to the economic viability of this technology at an industrial level.

4. Conclusions

The contamination of raw milk with antibiotic residues is an issue of worldwide
concern due to its impacts on the dairy industry and human health. The application of
NAS for the detection of antibiotics in bovine raw milk involves preanalytical and ana-
lytical challenges related with the chemical complexity of this matrix. In this context, the
bioconjugation of AuNPs with thiolated ssDNA aptamers provided suitable experimental
conditions with which to apply NAS for the colorimetric detection of antibiotics in raw
milk. For the first time a methodology was proposed to enable the highly sensitive col-
orimetric detection of antibiotics belonging to four different groups, namely kanamycin
(aminoglycosides), oxytetracycline (tetracyclines), sulfadimethoxine (sulfonamides) and
ampicillin (beta-lactams), using a straightforward preanalytical process. The method de-
veloped herein consists of a clarification treatment with Carrez reagents, followed by the
removal of cations from milk whey through dilution, chelation (EDTA) or precipitation
(NaHCO3). In all cases the methodology allowed for the semiquantitative detection of
the colorimetric signals generated by the NAS at concentrations as low as 0.25-fold the
MRL of the antibiotics. However, the specific treatment to address ionic interference (di-
lution/chelation/precipitation) depends on the particular antibiotic to be determined in
the raw milk. Furthermore, the results proved that analyzing the spectral shift at 720 nm
(A520/A720) improved the analytical performance of the NAS in comparison with the
typical absorption ratio (A520/A620). Overall, this methodology combines simplicity and
sensitivity for the four antibiotics, holding the potential to be applied for semiquantitative
analyses of antibiotic residues in raw milk obtained directly from dairy farms.
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10.3390/s22031281/s1, Figure S1: Spectral variation associated with the aggregation of AuNPs of
the NAS, Figure S2: Aggregation of AuNPs in raw milk, Figure S3: Detection of antibiotics in milk
whey using the NAS, Figure S4: Aggregation of AuNPs versus NAS in water, Table S1: Molar ratio
between AuNPs-aptamers and AuNPs-aptamers bases.

Author Contributions: Conceptualization, P.O., V.D.-G. and P.C.; methodology, V.D.-G., B.C.-T. and
C.R.; formal analysis, P.O., V.D.-G., P.C. and B.C.-T.; investigation, all authors; data curation, V.D.-G.
and B.C.-T.; writing—original draft preparation, V.D.-G. and P.O.; writing—review and editing,
P.O., V.D.-G., B.C.-T. and P.C.; supervision, P.O. and V.D.-G.; project administration, P.O.; funding
acquisition, all authors. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Agency for Research and Development (ANID)
of Chile, through its programs Convocatoria Nacional Subvención a la Instalación en la Academia (grant
number PAI77180078) and Fondecyt Posdoctorado (grant number 3190734).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

99



Sensors 2022, 22, 1281

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to privacy restrictions.

Acknowledgments: We thank the Agriculture and Livestock Service of Chile (SAG) for valuable
discussions and orientations.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Haug, A.; Høstmark, A.T.; Harstad, O.M. Bovine Milk in Human Nutrition—A Review. Lipids Health Dis. 2007, 6, 25. [CrossRef]
[PubMed]

2. USDA Foreign Agricultural Service. Dairy: World Markets and Trade. Washington, DC, USA. Available online: https://Apps.
Fas.Usda.Gov/Psdonline/Circulars/Dairy.Pdf (accessed on 13 September 2021).

3. Fusco, V.; Chieffi, D.; Fanelli, F.; Logrieco, A.F.; Cho, G.-S.; Kabisch, J.; Böhnlein, C.; Franz, C.M.A.P. Microbial Quality and Safety
of Milk and Milk Products in the 21st Century. Compr. Rev. Food Sci. Food Saf. 2020, 19, 2013–2049. [CrossRef] [PubMed]

4. Boeckel, T.P.V.; Brower, C.; Gilbert, M.; Grenfell, B.T.; Levin, S.A.; Robinson, T.P.; Teillant, A.; Laxminarayan, R. Global Trends in
Antimicrobial Use in Food Animals. PNAS 2015, 112, 5649–5654. [CrossRef] [PubMed]

5. Hao, H.; Cheng, G.; Iqbal, Z.; Ai, X.; Hussain, H.I.; Huang, L.; Dai, M.; Wang, Y.; Liu, Z.; Yuan, Z. Benefits and Risks of
Antimicrobial Use in Food-Producing Animals. Front. Microbiol. 2014, 5, 288. [CrossRef]

6. Sharma, C.; Rokana, N.; Chandra, M.; Singh, B.P.; Gulhane, R.D.; Gill, J.P.S.; Ray, P.; Puniya, A.K.; Panwar, H. Antimicrobial
Resistance: Its Surveillance, Impact, and Alternative Management Strategies in Dairy Animals. Front. Vet. Sci. 2018, 4, 237.
[CrossRef]

7. Limmathurotsakul, D.; Dunachie, S.; Fukuda, K.; Feasey, N.A.; Okeke, I.N.; Holmes, A.H.; Moore, C.E.; Dolecek, C.; van Doorn,
H.R.; Shetty, N.; et al. Improving the Estimation of the Global Burden of Antimicrobial Resistant Infections. Lancet Infect. Dis.
2019, 19, e392–e398. [CrossRef]

8. O’Neill, J. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations. HM Government and Welcome
Trust: UK. 2016. Available online: https://Amr-Review.Org/Sites/Default/Files/160518_Final%20paper_with%20cover.Pdf.
(accessed on 18 October 2021).

9. Chiesa, L.M.; DeCastelli, L.; Nobile, M.; Martucci, F.; Mosconi, G.; Fontana, M.; Castrica, M.; Arioli, F.; Panseri, S. Analysis of
Antibiotic Residues in Raw Bovine Milk and Their Impact toward Food Safety and on Milk Starter Cultures in Cheese-Making
Process. LWT 2020, 131, 109783. [CrossRef]

10. Commission Regulation (EU) No 37/2010 of 22 December 2009 on Pharmacologically Active Substances and Their Classification
Regarding Maximum Residue Limits in Foodstuffs of Animal Origin. Official Journal of the European Union. 2010 L15: 1–72.
Available online: https://Ec.Europa.Eu/Health/Sites/Default/Files/Files/Eudralex/Vol-5/Reg_2010_37/Reg_2010_37_en.Pdf
(accessed on 18 October 2021).

11. MINSAL Subsecretaría de Salud Pública. Resolución 1560 Exenta Fija Límites Máximos de Residuos de Medicamentos Veterinarios
En Alimentos Destinados al Consumo Humano. Santiago, Chile. Available online: https://www.Bcn.Cl/Leychile/Navegar?
IdNorma=1135977 (accessed on 18 October 2021).

12. Gaudin, V. The Growing Interest in Development of Innovative Optical Aptasensors for the Detection of Antimicrobial Residues
in Food Products. Biosensors 2020, 10, 21. [CrossRef]

13. Somwanshi, S.; Somvanshi, S.; Kharat, P. Nanocatalyst: A Brief Review on Synthesis to Applications. J. Phys. Conf. Ser. 2020, 1644,
012046. [CrossRef]

14. Jain, K.; Patel, A.S.; Pardhi, V.P.; Flora, S.J.S. Nanotechnology in Wastewater Management: A New Paradigm Towards Wastewater
Treatment. Molecules 2021, 26, 1797. [CrossRef]

15. McClements, D. Nanotechnology Approaches for Improving the Healthiness and Sustainability of the Modern Food Supply. ACS
Omega 2020, 5, 29623–29630. [CrossRef] [PubMed]

16. Zuliani, A.; Ranjan, P.; Luque, R.; Van der Eycken, E.V. Heterogeneously Catalyzed Synthesis of Imidazolones via Cycloi-
somerizations of Propargylic Ureas Using Ag and Au/Al SBA-15 Systems. ACS Sustain. Chem. Eng. 2019, 7, 5568–5575.
[CrossRef]

17. Moram, S.S.B.; Shaik, A.K.; Byram, C.; Hamad, S.; Soma, V.R. Instantaneous Trace Detection of Nitro-Explosives and Mixtures
with Nanotextured Silicon Decorated with Ag–Au Alloy Nanoparticles Using the SERS Technique. Anal. Chim. Acta 2020, 1101,
157–168. [CrossRef] [PubMed]

18. Srivastava, A.K.; Dev, A.; Karmakar, S. Nanosensors and Nanobiosensors in Food and Agriculture. Environ. Chem. Lett. 2018, 16,
161–182. [CrossRef]

19. Prajapati, S.; Padhan, B.; Amulyasai, B.; Sarkar, A. Chapter 11—Nanotechnology-Based Sensors. In Biopolymer-Based Formulations;
Pal, K., Banerjee, I., Sarkar, P., Kim, D., Deng, W.-P., Dubey, N.K., Majumder, K., Eds.; Elsevier: Amsterdam, The Netherlands,
2020; pp. 237–262. ISBN 978-0-12-816897-4. [CrossRef]

20. Díaz-García, V.; Retamal-Morales, G. Aptamer and Riboswitches: A Novel Tool for the Need of New Antimicrobial Active
Compounds. In Antibiotic Materials in Healthcare; Kokkarachedu, V., Kanikireddy, V., Sadiku, R., Eds.; Academic Press: Cambridge,
MA, USA, 2020; pp. 231–247. [CrossRef]

100



Sensors 2022, 22, 1281

21. Hu, X.; Chang, K.; Wang, S.; Sun, X.; Hu, J.; Jiang, M. Aptamer-Functionalized AuNPs for the High-Sensitivity Colorimetric
Detection of Melamine in Milk Samples. PLoS ONE 2018, 13, e0201626. [CrossRef]

22. Bai, W.; Zhu, C.; Liu, J.; Yan, M.; Yang, S.; Chen, A. Gold Nanoparticle-Based Colorimetric Aptasensor for Rapid Detection of Six
Organophosphorous Pesticides. Environ. Toxicol. Chem. 2015, 34, 2244–2249. [CrossRef]

23. Yin, X.; Wang, S.; Liu, X.; He, C.; Tang, Y.; Li, Q.; Liu, J.; Su, H.; Tan, T.; Dong, Y. Aptamer-Based Colorimetric Biosensing
of Ochratoxin A in Fortified White Grape Wine Sample Using Unmodified Gold Nanoparticles. Anal. Sci. 2017, 33, 659–664.
[CrossRef]

24. Priyadarshini, E.; Pradhan, N. Gold Nanoparticles as Efficient Sensors in Colorimetric Detection of Toxic Metal Ions: A Review.
Sens. Actuators B Chem. 2017, 238, 888–902. [CrossRef]

25. Liu, G.; Lu, M.; Huang, X.; Li, T.; Xu, D. Application of Gold-Nanoparticle Colorimetric Sensing to Rapid Food Safety Screening.
Sensors 2018, 18, 4166. [CrossRef]

26. Zahra, Q.; Luo, Z.; Ali, R.; Khan, M.I.; Li, F.; Qiu, B. Advances in Gold Nanoparticles-Based Colorimetric Aptasensors for the
Detection of Antibiotics: An Overview of the Past Decade. Nanomaterials 2021, 11, 840. [CrossRef]

27. Zhang, F.; Liu, J. Label-Free Colorimetric Biosensors Based on Aptamers and Gold Nanoparticles: A Critical Review. Anal. Sens.
2021, 1, 30–43. [CrossRef]

28. Amendola, V.; Pilot, R.; Frasconi, M.; Maragò, O.M.; Iatì, M.A. Surface Plasmon Resonance in Gold Nanoparticles: A Review.
J. Phys. Condens. Matter 2017, 29, 203002. [CrossRef]

29. Yan, S.; Foroughi, M.; Safaei, M.; Jahani, S.; Ebrahimpour, N.; Borhani, F.; Zade, N.; Aramesh-Boroujeni, Z.; Foong, L. A review:
Recent advances in ultrasensitive and highly specific recognition aptasensors with various detection strategies. Int. J. Biol. Macrom.
2020, 155, 184–207. [CrossRef]

30. Andrew, S.M. Effect of Fat and Protein Content of Milk from Individual Cows on the Specificity Rates of Antibiotic Residue
Screening Tests. J. Dairy Sci. 2000, 83, 2992–2997. [CrossRef]

31. Zhou, N.; Zhang, J.; Tian, Y. Aptamer-Based Spectrophotometric Detection of Kanamycin in Milk. Anal. Methods 2014, 6,
1569–1574. [CrossRef]

32. He, L.; Luo, Y.; Zhi, W.; Wu, Y.; Zhou, P.; He, L.; Luo, Y.; Zhi, W.; Wu, Y.; Zhou, P. A Colorimetric Aptamer Biosensor Based
on Gold Nanoparticles for the Ultrasensitive and Specific Detection of Tetracycline in Milk. Aust. J. Chem. 2013, 66, 485–490.
[CrossRef]

33. Kim, C.-H.; Lee, L.-P.; Min, J.-R.; Lim, M.-W.; Jeong, S.-H. An Indirect Competitive Assay-Based Aptasensor for Detection of
Oxytetracycline in Milk. Biosens. Bioelectron. 2014, 51, 426–430. [CrossRef] [PubMed]

34. Emrani, A.S.; Danesh, N.M.; Lavaee, P.; Ramezani, M.; Abnous, K.; Taghdisi, S.M. Colorimetric and Fluorescence Quenching
Aptasensors for Detection of Streptomycin in Blood Serum and Milk Based on Double-Stranded DNA and Gold Nanoparticles.
Food Chem. 2016, 190, 115–121. [CrossRef]

35. Zhao, J.; Wu, Y.; Tao, H.; Chen, H.; Yang, W.; Qiu, S. Colorimetric Detection of Streptomycin in Milk Based on Peroxidase-
Mimicking Catalytic Activity of Gold Nanoparticles. RSC Adv. 2017, 7, 38471–38478. [CrossRef]

36. Adami, A.; Mortari, A.; Morganti, E.; Lorenzelli, L. Microfluidic Sample Preparation Methods for the Analysis of Milk Contami-
nants. J. Sens. 2015, 2016, e2385267. [CrossRef]

37. Contreras-Trigo, B.; Díaz-García, V.; Guzmán-Gutierrez, E.; Sanhueza, I.; Coelho, P.; Godoy, S.E.; Torres, S.; Oyarzún, P. Slight pH
Fluctuations in the Gold Nanoparticle Synthesis Process Influence the Performance of the Citrate Reduction Method. Sensors
2018, 18, 2246. [CrossRef]

38. Maye, M.M.; Han, L.; Kariuki, N.N.; Ly, N.K.; Chan, W.-B.; Luo, J.; Zhong, C.-J. Gold and Alloy Nanoparticles in Solution and
Thin Film Assembly: Spectrophotometric Determination of Molar Absorptivity. Anal. Chim. Acta 2003, 496, 17–27. [CrossRef]

39. Hill, H.D.; Mirkin, C.A. The Bio-Barcode Assay for the Detection of Protein and Nucleic Acid Targets Using DTT-Induced Ligand
Exchange. Nat. Protoc. 2006, 1, 324–336. [CrossRef] [PubMed]

40. Song, K.-M.; Cho, M.; Jo, H.; Min, K.; Jeon, S.H.; Kim, T.; Han, M.S.; Ku, J.K.; Ban, C. Gold Nanoparticle-Based Colorimetric
Detection of Kanamycin Using a DNA Aptamer. Anal. Biochem. 2011, 415, 175–181. [CrossRef] [PubMed]

41. Kim, Y.S.; Kim, J.H.; Kim, I.A.; Lee, S.J.; Jurng, J.; Gu, M.B. A Novel Colorimetric Aptasensor Using Gold Nanoparticle for a
Highly Sensitive and Specific Detection of Oxytetracycline. Biosens. Bioelectron. 2010, 26, 1644–1649. [CrossRef]

42. Chen, A.; Jiang, X.; Zhang, W.; Chen, G.; Zhao, Y.; Tunio, T.M.; Liu, J.; Lv, Z.; Li, C.; Yang, S. High Sensitive Rapid Visual Detection
of Sulfadimethoxine by Label-Free Aptasensor. Biosens. Bioelectron. 2013, 42, 419–425. [CrossRef]

43. Song, K.-M.; Jeong, E.; Jeon, W.; Cho, M.; Ban, C. Aptasensor for Ampicillin Using Gold Nanoparticle Based Dual Fluorescence-
Colorimetric Methods. Anal. Bioanal. Chem. 2012, 402, 2153–2161. [CrossRef]

44. Horwitz, W.; Latimer, G.W. Official Methods of Analysis of AOAC International; AOAC International: Gaithersburg, MA, USA, 2005.
45. Xue, Y.; Li, X.; Li, H.; Zhang, W. Quantifying Thiol–Gold Interactions towards the Efficient Strength Control. Nat. Commun. 2014,

5, 4348. [CrossRef]
46. Adeel, M.; Rahman, M.; Lee, J.-J. Label-Free Aptasensor for the Detection of Cardiac Biomarker Myoglobin Based on Gold

Nanoparticles Decorated Boron Nitride Nanosheets. Biosens. Bioelectron. 2019, 126, 143–150. [CrossRef]
47. Peng, Y.; Li, L.; Mu, X.; Guo, L. Aptamer-Gold Nanoparticle-Based Colorimetric Assay for the Sensitive Detection of Thrombin.

Sens. Actuators B Chem. 2013, 177, 818–825. [CrossRef]

101



Sensors 2022, 22, 1281

48. Azzam EM, S.; El-Farargy AF, M.; Hegazy, M.A.; Abd El-Aal, A.A. Detection of Heavy Metal Ions Using Synthesized Amino
Thiol Surfactants Assembled on Gold Nanoparticles. J. Disp. Sci. Technol. 2014, 35, 175–184. [CrossRef]

49. Li, H.; Rothberg, L. Colorimetric Detection of DNA Sequences Based on Electrostatic Interactions with Unmodified Gold
Nanoparticles. PNAS 2004, 101, 14036–14039. [CrossRef] [PubMed]

50. Ma, Q.; Wang, Y.; Jia, J.; Xiang, Y. Colorimetric aptasensors for determination of tobramycin in milk and chicken eggs based on
DNA and gold nanoparticles. Food Chem. 2018, 30, 98–103. [CrossRef] [PubMed]

51. Gutiérrez, P.; Godoy, S.E.; Torres, S.; Oyarzún, P.; Sanhueza, I.; Díaz-García, V.; Contreras-Trigo, B.; Coelho, P. Improved Antibiotic
Detection in Raw Milk Using Machine Learning Tools over the Absorption Spectra of a Problem-Specific Nanobiosensor. Sensors
2020, 20, 4552. [CrossRef]

52. Holt, C. The Milk Salts and Their Interaction with Casein. In Advanced Dairy Chemistry: Lactose, Water, Salts and Vitamins; Fox, P.F.,
Ed.; Springer: Boston, MA, USA, 1997; Volume 3, pp. 233–256. [CrossRef]

53. Bachran, K.; Bernhard, R.A. Interaction of Iron(II) with Lactose. J. Agric. Food Chem. 1980, 28, 536–540. [CrossRef]
54. Reynolds, A.J.; Haines, A.H.; Russell, D.A. Gold Glyconanoparticles for Mimics and Measurement of Metal Ion-Mediated

Carbohydrate−Carbohydrate Interactions. Langmuir 2006, 22, 1156–1163. [CrossRef]
55. Ho, T.T.-T.; Dang, C.-H.; Huynh, T.K.-C.; Hoang, T.K.-D.; Nguyen, T.-D. In Situ Synthesis of Gold Nanoparticles on Novel

Nanocomposite Lactose/Alginate: Recyclable Catalysis and Colorimetric Detection of Fe(III). Carbohydr. Polym. 2021, 251, 116998.
[CrossRef]

56. He, L.; Luo, Y.; Zhi, W.; Zhou, P. Colorimetric Sensing of Tetracyclines in Milk Based on the Assembly of Cationic Conjugated
Polymer-Aggregated Gold Nanoparticles. Food Anal. Methods 2013, 6, 1704–1711. [CrossRef]

57. Chen, M.; Gan, N.; Zhou, Y.; Li, T.; Xu, Q.; Cao, Y.; Chen, Y. A novel aptamer- metal ions- nanoscale MOF based electrochemical
biocodes for multiple antibiotics detection and signal amplification. Sens. Actuators B Chem. 2017, 242, 1201–1209. [CrossRef]

58. Giannone, G.; Santi, M.; Ermini, M.L.; Cassano, D.; Voliani, V. A Cost-Effective Approach for Non-Persistent Gold Nano-
Architectures Production. Nanomaterials 2020, 10, 1600. [CrossRef]

59. Gan, P.P.; Ng, S.H.; Huang, Y.; Li, S.F. Green synthesis of gold nanoparticles using palm oil mill effluent (POME): A low-cost and
eco-friendly viable approach. Bioresour. Technol. 2012, 113, 132–135. [CrossRef] [PubMed]

102



Citation: Rodrigues, M.S.; Borges, J.;

Vaz, F. Plasmonic Strain Sensors

Based on Au-TiO2 Thin Films on

Flexible Substrates. Sensors 2022, 22,

1375. https://doi.org/10.3390/

s22041375

Academic Editor: Nikolay Kazanskiy

Received: 11 January 2022

Accepted: 7 February 2022

Published: 11 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Plasmonic Strain Sensors Based on Au-TiO2 Thin Films on
Flexible Substrates

Marco S. Rodrigues *, Joel Borges and Filipe Vaz

CF-UM-UP, Centro de Física das Universidades do Minho e do Porto, Universidade do Minho,
4710-057 Braga, Portugal; joelborges@fisica.uminho.pt (J.B.); fvaz@fisica.uminho.pt (F.V.)
* Correspondence: marcopsr@gmail.com or mprodrigues@fisica.uminho.pt

Abstract: This study aimed at introducing thin films exhibiting the localized surface plasmon res-
onance (LSPR) phenomenon with a reversible optical response to repeated uniaxial strain. The
sensing platform was prepared by growing gold (Au) nanoparticles throughout a titanium dioxide
dielectric matrix. The thin films were deposited on transparent polymeric substrates, using reactive
magnetron sputtering, followed by a low temperature thermal treatment to grow the nanoparticles.
The microstructural characterization of the thin films’ surface revealed Au nanoparticle with an
average size of 15.9 nm, an aspect ratio of 1.29 and an average nearest neighbor nanoparticle at
16.3 nm distance. The plasmonic response of the flexible nanoplasmonic transducers was charac-
terized with custom-made mechanical testing equipment using simultaneous optical transmittance
measurements. The higher sensitivity that was obtained at a maximum strain of 6.7%, reached the
values of 420 nm/ε and 110 pp/ε when measured at the wavelength or transmittance coordinates of
the transmittance-LSPR band minimum, respectively. The higher transmittance gauge factor of 4.5
was obtained for a strain of 10.1%. Optical modelling, using discrete dipole approximation, seems to
correlate the optical response of the strained thin film sensor to a reduction in the refractive index of
the matrix surrounding the gold nanoparticles when uniaxial strain is applied.

Keywords: gold nanoparticles; localized surface plasmon resonance; flexible optical sensors;
plasmonic thin films

1. Introduction

The world market for strain sensors has been thriving in the last decade and is expected
to continue growing in the next years, supported by the development of smart cities,
buildings automation, and wearable devices [1]. Strain sensors can measure or detect
strain, pressure, vibration, impact and deflection on an object after a change in their
optical or electrical response. Although most of the commercialized and investigated
strain sensors rely on a change in the electrical properties of a material as the transduction
mechanism [2–5], the use of optical phenomena in sensing applications as increased in
basic research, health applications and industry, mostly due to its high sensitivity; aging,
and high temperature, stability; safety to be used in flammable and explosive atmospheres;
and blindness to surrounding electric noise [6–8]. Furthermore, the advancements in
low-energy optoelectronic components have enabled the construction of miniaturized and
portable optical devices [9].

Among the several optical transduction mechanisms, the use of the localized surface
plasmon resonance (LSPR) phenomenon, related to the interaction of light with the free
electrons of noble metal nanoparticles [10–18], has already revealed its capabilities in
(bio)chemical sensing [19–22] and gas sensing [23–26]. Moreover, regarding the detection
of physical and mechanical stimuli, such as temperature and force, some pioneering works
have been published, most of them related to theoretical approaches in ultra-thin gold
films [27–38] and arrays of plasmonic nanoparticles [39–48]. These and other works led
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to the development of a new field in plasmonics and nano-optomechanics, also related to
mechanochromism [49], named thereafter as plasmomechanics by Maurer et al. [36].

In very simple terms, plasmomechanics studies the reciprocal interactions of light, plas-
monic structures, forces applied (from the macro- to the nano-scale) and localized thermal
effects [50]. In plasmomechanical systems, the electromagnetic field confinement in metal-
lic nanostructures with subwavelength dimensions, enables to generate large resonance
frequency shifts for extremely small displacements. Furthermore, the resonant excitation of
these plasmonic nanostructures leads to a strong absorption of the incident light, generating
photo-induced thermal effect that can be exploited for actuation of mechanical systems at
the nanoscale. Therefore, these systems offer optical and mechanical degrees of freedom
for different kinds of applications including active control of nano-mechanical motion
transduction and amplification of weak external stimuli [51].

When using plasmomechanics for strain sensing with materials containing noble metal
nanoparticles, the transduction mechanism can rely on LSPR band changes induced by
external physical stimuli. For example, an applied force may change the nanoparticles’
shape (form) (Figure 1a) and distribution (Figure 1b), or the refractive index (Figure 1c) of
the surrounding medium where they might be embedded [36].

Figure 1. Simplified schematics of deformation mechanisms induced to (a) individual nanoparticles
being compressed, (b) arrays of nanoparticles in a substrate that is being stretched and (c) arrays of
nanoparticles embedded in a dielectric matrix that is being stretched, where the thickness (scenario 1),
the roughness (scenario 2) and the cohesion (scenario 3) of the matrix is changed.
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In this work, nanoplasmonic thin films with gold (Au) embedded in titanium dioxide
(TiO2) were deposited on polydimethylsiloxane (PDMS) and characterized. The correlation
between the tensile deformation of the flexible nanomaterial and its optical (plasmonic)
response was studied. Different mechanisms for strain sensing with nanoparticles exhibit-
ing the LSPR phenomenon were simulated using the discrete dipole approximation (DDA).
The obtained results were then used to explain the optical behavior of nanocomposite thin
films, when uniaxial strain was applied. The plasmonic sensing platforms’ repeatability
was evaluated under several load/unload strain cycles.

2. Materials and Methods

The sensing platform consists of an optically transparent polydimethylsiloxane (PDMS)
substrate that was functionalized with a nanocomposite gold and titanium dioxide (Au-
TiO2) thin film (Figure 2a). The thin film was deposited by reactive DC magnetron sputter-
ing [52,53]. In order to obtain an optical LSPR response a thermal annealing protocol was
applied (150 ◦C for 10 min) as explained in detail elsewhere [54].

Figure 2. Simplified schematics of (a) the sensing platform, a nanoplasmonic thin film (composed
by gold nanoparticles dispersed in TiO2) deposited on transparent PDMS, and (b) the strain testing
module coupled to an optical transmittance measurement system.

The in-depth chemical composition profile was evaluated by Rutherford Backscatter-
ing Spectrometry (RBS). The measurements were conducted in a chamber, where three
detectors were installed, a standard at 140◦ and two pin-diode detectors located sym-
metrically to each other, both at 165◦. Spectra were collected for 2 MeV 4He+ beams at
normal incidence (0◦). The obtained RBS data were analyzed with IBA DataFurnace NDF
v10.0a [55,56], and the double scattering and pileup were calculated with the algorithms
given in N. P. Barradas et al. [57] and in N. P. Barradas et al. [58], respectively.

To study the microstructure of the thin films, scanning electron microscopy (SEM) was
used with a FEI Quanta 650 FEG (Field Emission Gun) environmental SEM microscope
operating at 20 kV from INL (International Iberian Nanotechnology Laboratory). Then, a
custom MATLAB algorithm was employed to study the features of the Au nanoparticles
(Feret diameter, nearest neighbor and aspect ratio) [59].
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The plasmonic response of the Au-TiO2 thin films was investigated in a custom-made
strain testing module coupled with an optical system, as depicted in Figure 2b.

While the strain module stretches the sensor, its optical transmittance spectrum is
measured using a modular spectrometer (SPEC RES + UV/Vis, SARSPEC—with a diffrac-
tion grating), and a LED light source (LS-LED, SARSPEC) to excite the localized surface
plasmons. Precise strain was controlled by a stepper motor (200 steps per turn) connected
to a 20:1 worm reduction gear system, with a total 4000 steps per turn, thus giving the
strain movement a resolution of 0.15 μm per step. Two protocols were used to apply stress
strains to the sensors, by (i) varying the strain speed keeping the maximum strain constant;
and (ii) varying the maximum strain keeping the strain speed constant.

The optical transmittance measurement was synchronized with the applied strain and
a full spectrum (from 450 nm to 750 nm) was recorded every 0.5 s with an integration time
of 3 ms and an average of 20 spectra. These transmittance spectra data were then analyzed
using the software NANOPTICS [60] to follow the LSPR band minimum wavelength and
transmittance coordinates.

Optical modelling and simulation of gold nanoparticles was conducted with the dis-
crete dipole approximation (DDA) method [7,61,62] using the software nanoDDSCAT+ [63]
freely available at “nanohub.org” (Figure S1).

For all the simulations, the extinction spectra were calculated with the following
principal parameters: two dipoles per nanometer for each shape; unpolarized incident
light; Au dielectric function from Johnson and Christy [64]; surrounding external refractive
index set either to 1.5, 2.0, or 2.5, as a “semi-infinite” layer; and 5 nm steps in all spectra
windows. For individual nanoparticles with different sizes and aspect ratios, the predefined
configurable ellipsoid shapes in DDSCAT tool (Figure S1-III) were used. For the simulations
using arrays of nanoparticles, a 16 nm spherical nanoparticle was designed with Blender
tool (Figure S1-I), then converted to dipoles with DDA convert tool (Figure S1-II), and
exported to DDSCAT tool (Figure S1-III), where, along with the previously described
parameters, a 2-D object periodicity was selected, with the y and z spacings of interest.

3. Results and Discussion

3.1. Nanoplasmonic Thin Film Characterization

The RBS analysis of the as-deposited thin film revealed a uniform in-depth Au concen-
tration of 22 at.%, across a total estimated thickness of 30 nm.

To study the distribution of Au nanoparticles dispersed in the TiO2 matrix, the
nanoplasmonic thin film deposited on the flexible substrate and annealed at 150 ◦C was
analyzed using SEM (Figure 3). The micrographs revealed the Au nanoparticles partially
embedded in the TiO2 matrix, Figure 3a, and equally distributed throughout the observed
areas. After image processing in a custom MATLAB algorithm, the SEM micrograph was
thresholded to black (TiO2 matrix) and white (nanoparticles), as depicted in Figure 3b,
thus allowing to analyze the Au nanoparticles distributions, presented in Figure 3c. The
nanoparticles’ analysis revealed a 10.2% of area covered by Au, with a nanoparticle den-
sity of 451 nanoparticles/μm2 and an average size of 15.9 nm. The fact that 55% of the
nanoparticles possessed a Feret diameter between 10 and 20 nm is also noteworthy. Re-
garding the nearest neighbor distance, 51% of the nanoparticles possess a nearest Au
nanoparticle neighbor between 10 to 20 nm, giving an average nearest neighbor of 16.3 nm.
When analyzing the aspect ratio (AR), an average of 1.29 was obtained, with 58% of the
nanoparticles having an AR between 1 and 1.2, and 83% with an AR below 1.4. Following
these results, 16 nm Au nanoparticles were used for the starting conditions in the simula-
tions presented in Section 3.2, as well as a starting nearest neighbor distance of 16 nm in
Sections 3.2.3 and 3.2.4.
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Figure 3. Au nanoparticles analysis in the Au-TiO2 thin film deposited on PDMS and annealed
at 150 ◦C, showing the (a) SEM top-view micrograph of the Au-TiO2 thin film’s surface, (b) the
thresholded micrograph, revealing the Au nanoparticles in white, as well as (c) a statistical analysis
of the exposed nanoparticles, with the distribution histograms of nanoparticles diameter (average of
15.9 nm), nearest neighbor distance (average of 16.3 nm) and aspect ratio (average of 1.29).

3.2. Gold Nanoparticles’ Optical Modelling under Different Mechanical Strain Conditions

The LSPR phenomenon arises from the interaction of light with metallic nanoparticles
of a size of about one order of magnitude lower than the wavelength of the incident light.
This interaction depends on the size, shape and distribution of the nanoparticles [65–67]
but also on the material surrounding them [59,68], and it can be characterized by studying
their extinction spectra, both experimentally and theoretically. In this section, the optical
extinction spectra of isolated and arrays of Au nanoparticles was simulated considering the
parameters from the previous section, during the application of several mechanical stimulus.
The results were then used to be compared to the experimental results in Section 3.3.

Among the numerous methods available for optical modelling, DDA was used because
it allows the simulation of nanoparticles with different shapes [7,61] and organized in 1D
or 2D networks [62].

3.2.1. Compressing Single Nanoparticles

Nanoparticles with different shapes have distinct optical responses as it can be con-
firmed in the supplementary material for a Au sphere, an oblate and prolate spheroid,
and an ellipsoid with similar effective volumes (Figure S2). While the sphere presents an
extinction maximum at a wavelength of 535 nm (when surrounded by a semi-infinite layer
with a refractive index of 1.5), for the oblate and prolate spheroid, and for the ellipsoid, the
extinction maximum occurs due to the longitudinal vibration modes of the localized surface
plasmons [7] that gave rise to a second peak at higher wavelengths, 575 nm, 610 nm and
635 nm, respectively. On the other hand, since a single Au nanoparticle can be deformed
elastically [69], if it is compressed and transformed into an oblate spheroid with an AR of
1.4 (as simulated in Figure S3), it gives rise to a second peak in the extinction spectrum at
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higher wavelengths (Figure 4). As the AR of this oblate spheroid increases to 1.8 (due to
the compression of the nanoparticle), the second peak shifts to higher wavelengths. If the
maximum compression is limited to the elastic regime of the nanoparticle’s deformation,
this process will be reversible; this effect can be used, for e.g., in optical strain sensing.

Figure 4. Optical extinction spectra of nanoparticles with different diameters (a) 16 nm, (b) 32 nm and
(c) 160 nm, and after being compressed, changing from a sphere (initial state) to an oblate spheroid
with an AR of 1.4, and then to an oblate spheroid with an AR of 1.8, calculated with nanoDDSCAT+.
The blue arrow shows the shift direction of the extinction spectra (red-shift) when the nanoparticle is
compressed.

3.2.2. Biaxial Elongation of Gold Nanoparticles Network

For pairs or arrays of nanoparticles, the LSPR coupling effect between nanoparticles
that are close together leads to a strong interaction that can be used for strain and deflection
sensing. When considering a biaxial elongation of an array of Au nanoparticles (with
16 nm diameter, for example) where the nearest neighbor starts at a distance of 1 nm, as
depicted in Figure S4, the strong coupling effect quickly vanishes, leading to a blue shift of
the LSPR band, as can be observed in Figure 5. When the nearest neighbor is at a distance
of 24 nm (strain of 135%-ε = 1.35), the coupling between the 16 nm nanoparticles is very
weak, leading to a total LSPR band shift of 84 nm. Further increasing the nearest neighbor
distance from 24 to 44 nm (strain of 253%-ε = 2.53) the LSPR band blue-shifts only 3 nm,
and the coupling effect practically disappears. In fact, as depicted in Figure 5, the extinction
spectrum of the array of nanoparticles for distances higher than 44 nm is similar to the
single nanoparticle spectrum. The inverse process (approximation of nanoparticles) would
give rise to (an opposite) red-shift.
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Figure 5. Optical extinction spectra of a network of gold nanoparticles being biaxially elongated,
calculated with nanoDDSCAT+. The blue arrow shows the shift direction of the extinction spectra
(blue-shift) when the array of nanoparticles is biaxially elongated.

3.2.3. Uniaxial Elongation of a Gold Nanoparticles Network in Different Surrounding
Refractive Indices

For this case, an array of Au nanoparticles with 16 nm diameter, a starting nearest
neighbor distance of 16 nm (surface to surface) and surrounded by different refractive
indices (1.5, 2.0 and 2.5) was simulated during uniaxial elongation, as depicted in Figure
S5. These parameters were chosen considering the nanoparticles’ distribution analyzed in
Section 3.1 and previous works from the authors [54,70].

From the simulation results, shown in Figure 6, it seems obvious that the refractive
index of the material surrounding the nanoparticles holds a strong influence in the position
of the LSPR band. In the simple case, i.e., for a single nanoparticle, when the refractive
index decreased from 2.5 to 1.5 (Figure 6a,c) it led to a blue-shift of 125 nm. For the
arrays of nanoparticles suffering uniaxial elongation (separation in the direction of the
elongation), a maximum strain of 156% (ε = 1.56) led to blue-shifts of 15 nm, 8 nm and
5 nm for surrounding refractive indices of 2.5, 2.0 and 1.5 (Figure 6a, Figure 6b, Figure 6c),
respectively.

Therefore, if one could separate the nanoparticles while lowering the refractive index
of the surrounding matrix, a strain sensor with enhanced sensitivity would be obtained.
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Figure 6. Optical extinction spectra of a network of nanoparticles being uniaxially elongated in a
refractive index of (a) 2.5, (b) 2.0 and (c) 1.5, calculated with nanoDDSCAT+. The blue arrow shows
the shift direction of the extinction spectra (blue-shift) when the array of nanoparticles is elongated.

3.2.4. Elongation of a Gold Nanoparticles Array, Considering Transverse Deformation

Since there is a transverse deformation when a flexible material such as PDMS is
elongated in a tensile test, a Poisson’s ratio of 0.499 (from PDMS [71]) was used in the simu-
lations to calculate the elongation and compression of the nanoparticles’ array. Following
the previous sections, a similar array of nanoparticles was used (i.e., same initial relative
positions) surrounded by a refractive index of 1.5 and a maximum strain of 56% (ε = 0.56),
as depicted in Figure S6.

The extinction spectra presented in Figure 7 indicate that under these conditions, the
red-shift of the LSPR band, due to the enhanced coupling between the nanoparticles in the
transverse direction to the tensile test direction, overcame the expected blue-shift due to
the lower coupling between the nanoparticles in the elongation direction. In this example,
applying a maximum strain of 56% (ε = 0.56), led to a total LSPR band red-shift of 10 nm.
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Figure 7. Optical extinction spectra of a network of nanoparticles being uniaxially elongated and
transversely compressed, calculated with nanoDDSCAT+. The blue arrow shows the shift direction
of the extinction spectra (red-shift) when the array of nanoparticles is elongated while transverse
compression occurs.

3.3. Experimental Uniaxial Elongation of Nanoplasmonic Au-TiO2 Thin Films Deposited
on PDMS

For the experimental tensile tests, a Au–TiO2 thin film deposited on flexible and
transparent PDMS was used. After a low temperature annealing process at 150 ◦C for
10 min, the Au nanoparticles were formed (see Section 3.1) and the Au–TiO2 thin film
revealed its plasmonic nature by exhibiting the LSPR band, as depicted in Figure 8.

Figure 8. Optical transmittance of the unstrained (black line) and strained (blue line) thin film, with
a maximum strain of (a) 3.4%, (b) 6.7%, (c) 10.1% and (d) 13.4%. The black arrow shows the shift
direction of the extinction spectra (blue-shift and lower transmittance shift) when the nanoplasmonic
sensors are strained.
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After applying different strains to the flexible sensor, the optical transmittance of the
plasmonic sensor suffered an overall reduction, and the LSPR band minimum was blue-
shifted, Figure 8. The transmittance coordinate of the LSPR band minimum was reduced
by 3 pp, 7 pp, 10 pp and 12 pp, while the wavelength coordinate was blue-shifted by 12 nm,
25 nm, 37 nm and 50 nm, at maximum strains of 3.4% (ε = 0.034, Figure 8a), 6.7% (ε = 0.067,
Figure 8b), 10.1% (ε = 0.101, Figure 8c) and 13.4% (ε = 0.134, Figure 8d), respectively.

When comparing the simulation results with this optical LSPR band response to the
maximum applied strain of 0.134 (13.4%), it seems that the most important effect is not
related to changes in nanoparticle’s coupling. Indeed, and since the results simulated in
Section 3.2.4 are the ones with the most comparable conditions, one would expect that
the LSPR band would be red-shifting due to a higher coupling effect in the transverse
direction [72]. Instead, Figure 8 shows that there was a considerable blue-shift, with the
minimum wavelength coordinate varying from 640 nm to 590 nm.

These results seem to indicate that the refractive index surrounding the nanoparticles
might be the main effect, as it can be confirmed by the simulation of the optical behavior
evolution in Section 3.2.3.

Following these results, several strain cycles were applied to the same sensor, by
changing the strain speed, from 15 μm/s up to 310 μm/s, Figure 9, and the maximum
strain, from 3.4% (ε = 0.034) up to 13.4% (ε = 0.134), Figure 10. The response of the plasmonic
thin film sensor was replicated for all the tested conditions with no drifts nor hysteresis in
the monitored cycles.

Figure 9. Response of the nanoplasmonic sensor, with the LSPR band minimum (a) wavelength and
(b) transmittance coordinates monitoring during strain cycles at different speeds (from 15 μm/s up
to 310 μm/s) and with a maximum strain of 3.4%. In green (right axis) the corresponding strain
monitoring for each test.

Figure 9 shows the real time response of the plasmonic platform, after consecutive
tensile tests with a maximum strain of 3.4% (ε = 0.034) by following the variations of
the LSPR band wavelength and transmittance coordinates. These results show that the

112



Sensors 2022, 22, 1375

response of the sensor is consistent if the deformation speed is changed, which means that
the response time of the sensor is lower, or in the order of the spectra acquisition time
(0.5 s). Regarding the quality of the signals, both the wavelength and the transmittance
coordinates showed an acceptable signal-to-noise ratio, although the transmittance signal
is fairly better.

Figure 10. Cyclic response of the nanoplasmonic sensor, with the LSPR band minimum (a) wavelength
and (b) transmittance coordinates monitoring during strain cycles with different maximum strains
(from 3.4% to 13.3%) and at a speed of 70 μm/s. In green (right axis) the corresponding strain
monitoring for each test. (b) also presents in blue and purple, the transmittance at 650 nm of the
PDMS substrate and the TiO2 thin film deposited on PDMS respectively, for a maximum strain of
10.1% and a strain speed of 70 μm/s.

To test the strain limits of these sensors, several cycles were applied with different
maximum strains, as depicted in Figure 10, using a constant strain speed. The signals
obtained from the wavelength (Figure 10a) and the transmittance (Figure 10b) coordinates of
the LSPR band minimum also offered a consistent optical response that seemed to saturate
for a maximum strain of 13.4% (ε = 0.134). Nonetheless, the sensor seems to be recovering
for all the used strains. Similarly to the tensile tests with speed variations in Figure 9, the
transmittance coordinate of the LSPR band minimum has a superior signal-to-noise ratio
than the wavelength coordinate signal.

Furthermore, to compare the influence of the PDMS substrate and the TiO2 matrix
deposited on the PDMS substrate, a maximum strain of 10.1% (ε = 0.101) and a strain speed
of 70 μm/s was used to test them. Since these materials have no plasmonic extinction band,
a transmittance near the LSPR band minimum (650 nm) was analyzed. The results can
be observed in Figure 10b. The transmittance of the PDMS substrate (Figure 10b in blue)
only varied a small fraction of the plasmonic sensor (less than 10%), most probably due
to some scattering as a result of the elongation of the polymer along the tensile direction,
and compression on the perpendicular direction. Regarding the TiO2 matrix deposited on
PDMS, the transmittance variation (Figure 10b in purple) was considerably higher than for
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the PDMS substrate, but still lower than for the Au-TiO2 thin film, reaching about 60% of
the change in transmittance of the plasmonic sensor.

To quantify and compare the response of the plasmonic sensor to different strains,
similarly to the gauge factor that is used in piezoresistive sensors [73] and surface-enhanced
Raman scattering (SERS) piezoplamonics [74], the transmittance gauge factor (GFT) was
defined as follows:

GFT =

Tinitial−Tstrained
Tstrained

ε
, (1)

where Tinitial and Tstrained are the transmittance coordinate at the LSPR band minimum
before and after the application of a maximum strain ε.

Furthermore, the sensitivity of both the transmittance (ST) and the wavelength (Sλ)
signals of the LSPR band minimum were calculated using the following equations [43]:

ST =
ΔT
ε

, (2)

Sλ =
Δλ

ε
, (3)

where ΔT and Δλ are the variations of the transmittance and the wavelength coordinate of
the LSPR band minimum, respectively, after an applied strain ε.

The estimated sensitivities and gauge factors are represented in Figure 11, as a function
of the maximum strain applied. It is obvious that, for both coordinates, the maximum
sensitivity was reached for strains between of 6.7% (ε = 0.067) and 10.1% (ε = 0.101). At a
strain of 6.7% the sensitivity for the wavelength coordinate reached 420 nm/ε (Figure 11a),
while for the transmittance a sensitivity 110 pp/ε was achieved (Figure 11b). These results
are close to those found in the literature for gold nanoparticles’ arrays [43], but, for this
work, a change of the refractive index surrounding the nanoparticles seems to be the
reversible event that tunes the LSPR band of the sensor for different applied strains.

Figure 11. Sensitivity of (a) the wavelength and (b) the transmittance coordinates of the LSPR
band minimum of the nanoplasmonic sensors, plotted against each maximum strain applied (3.4%,
6.7%, 10.1% and 13.4%). (b) Also shows the transmittance sensitivity (at 650 nm) of the PDMS
substrate and a TiO2 thin film deposited on PMDS. Furthermore, the transmittance gauge factor (GFT)
considering the transmittance coordinates of the nanoplasmonic sensor, the TiO2 on PDMS and the
PDMS substrate are presented in (b).
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When analyzing the transmittance gauge factor (Figure 11b) it is clear that the trans-
mittance signal was enhanced in the plasmonic sensor, until a maximum strain of 10.1%
(ε = 0.101) was attained, leading to a gauge factor of 4.5. The gauge factor of the PDMS
substrate and the TiO2 thin film on PDMS, were considerably lower, 0.1 and 0.7 respectively.
Therefore, when a strain of 10.1% was applied, the plasmonic thin film’s gauge factor was
still 45 and 6.5 times higher than the gauge factor of PDMS and TiO2, respectively.

4. Conclusions

A novel flexible plasmonic strain sensor was prepared by functionalizing a PDMS
substrate with a TiO2 thin film containing Au nanoparticles. Preliminary tensile tests
revealed that the LSPR band of these sensors could be modified by applying different
strains. After correlating these findings with the simulations results in different strain
scenarios, it became plausible that, in these sensors, the LSPR band is adjusted mainly due
to changes in the refractive index surrounding the Au nanoparticles, probably caused by
some induced porosity. Several strain protocols were applied to the sensors with consistent
repeatability, and the maximum sensitivity was achieved for strains between 6.7% and
10.1%.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s22041375/s1, Figure S1: nanoDDSCAT+ software interface tools,
Figure S2: Optical extinction efficiency coefficient estimation of several shapes with nanoDDSCAT+,
Figure S3: Nanoparticles being compressed change their aspect ratios (AR = 1, AR = 1.4 and AR = 1.8)
but keep the same effective volume., Figure S4: Array of 16 nm diameter nanoparticles being biaxially
elongated, Figure S5: Array of 16 nm diameter nanoparticles being uniaxially elongated, Figure S6:
Array of 16 nm diameter nanoparticles being uniaxially elongated with transverse compression.
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Abstract: Fourier transform infrared (FTIR) micro-spectroscopy has been attracting the interest
of many cytologists and histopathologists for several years. This is related to the possibility of
FTIR translation in the clinical diagnostic field. In fact, FTIR spectra are able to detect changes in
biochemical cellular components occurring when the cells pass to a pathological state. Recently,
this interest has increased because it has been shown that FTIR spectra carried out just in the high
wavenumber spectral range (2500–4000 cm−1), where information mainly relating to lipids and
proteins can be obtained, are able to discriminate cell lines related to different tissues. This possibility
allows to perform IR absorption measurements of cellular samples deposited onto microscopy glass
slides (widely used in the medical environment) which are transparent to IR radiation only for
wavenumber values larger than 2000 cm−1. For these reasons, we show that FTIR spectra in the
2800–3000 cm−1 spectral range can discriminate three different cell lines from breast tissue: a non-
malignant cell line (MCF10A), a non-metastatic adenocarcinoma cell line (MCF7) and a metastatic
adenocarcinoma cell line (MDA). All the cells were grown onto glass slides. The spectra were
discriminated by means of a principal component analysis, according to the PC1 component, whose
values have the opposite sign in the pairwise score plots. This result supports the wide studies
that are being carried out to promote the translation of the FTIR technique in medical practice, as a
complementary diagnostic tool.

Keywords: FTIR micro-spectroscopy; breast cell lines; principal component analysis

1. Introduction

In recent years, Fourier transform infrared (FTIR) micro-spectroscopy has been held
in increasing consideration as a versatile tool for biomedical and bioanalytical applications.
The main reason for the interest in such a technique is that it provides biochemical infor-
mation without employing reagents and has easy sample preparation. As a consequence,
many works have proposed the FTIR technique as a complementary spectroscopic method
to support diagnostic investigation of cytological samples [1–5]. In addition, FTIR has
also been considered in clinical practice for biological tissues [6–8] and biofluids [9–11]
analysis, as well as to monitor the response of cells and tissues to radiotherapy [12] and
chemotherapy [13] treatments.

In addition to FTIR, other examples of spectroscopy techniques able to provide bio-
chemical information in a label free away are fluorescence [14] and Raman spectroscopy [15].
In particular, the Raman technique has been successfully proposed for cancer diagnostic
applications of cytological [16], tissue [17] and biofluids [18,19] samples. FTIR and Raman
techniques are considered complimentary methods to provide biochemical information
about biological samples. The former technique is based on the selective absorption of
incident IR radiation, whereas the latter one analyzes the inelastic scattering of incident
light. The Raman spectroscopy has a few limitations, such as a longer time for measuring a
spectrum with respect to FTIR, the possible damage to the sample (because the excitation
beam consists of a laser focused on the sample) and the fluorescence from the sample which
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can strongly interfere with the Raman signal. Although FTIR spectroscopy has several
disadvantages compared with the Raman technique, such as the worst spatial resolution
and the impossibility of measuring samples in aqueous environment, it is preferable for
diagnostic purposes, especially for the capability of providing reliable information in a
relatively short time.

One of the main obstacles to overcome before the adoption of the FTIR technique in
cytological diagnostics is related to the substrate on which the cells must be deposited for
the spectral measurements. In fact, the cell substrate most widely used by pathologists
is a glass slide, with a thickness of about 1 mm. The advantage of these slides is that
they are cheap, robust, and largely available. However, glass slides absorb IR radiation in
the spectral range corresponding to the fingerprint region (1000–1800 cm−1), so making
impossible the FTIR spectrum acquisition in this important spectra range, characterized by
peaks related to the most important cellular components (proteins, lipids and nucleic acids).
Nonetheless, glass substrates are transparent to mid-IR radiation in the high wavenumber
spectral range (2000–4000 cm−1), where absorption peaks mainly related to lipid and
protein components are located.

We recently showed that FTIR measurements in the high wavenumber spectral range
are able to discriminate two cellular samples from different human cell lines, regardless
of the growth substrate [20]. In particular, the FTIR spectra of the two cell lines were dis-
criminated through the difference of the score values by performing a principal component
analysis (PCA), which is a multivariate statistical technique widely used to discriminate
spectral data [21]. Briefly, PCA transforms the N original variables, consisting in the ab-
sorption values for the N wavenumber values for the group of all the M measured samples,
into a new set of N variables, called principal components (PCs), each one is a linear
combination of the N original variables. Each original spectrum takes specific values in
the set of PCs: such values are called scores. The criterion according to which the first PC
is chosen is that it contains most of the variance of the scores, and each subsequent PC
contains less variance. A score plot, reporting the score values of two different PCs for
all the M samples, allows to visualize differences and similarities among the M samples,
based on the original spectral characteristics.

Other authors successfully discriminated different types of cell lines, deposited on
glass thick slides and thin coverslips, according to their FTIR spectra in the high wavenum-
ber range and partially in the fingerprint range [22,23]. However, the cell lines investigated
by these authors, as well as those measured by us in our previous paper [20], were very
different among them. In particular, three types of cells were investigated by Rutter
et al., i.e., cells from lung cancer (CALU-1 line), leukemia (K562 line), and peripheral
blood (PBMC) [22,23]. Instead, we compared FTIR spectra of human neuroblastoma cells
(SH-SY5Y line) with those of human normal keratynocytes cells (HUKE line).

In this paper, we investigate by FTIR micro-spectroscopy in the high wavenumber
range three different samples of cells from breast tissue: non-malignant (MCF10A), malig-
nant non-metastatic (MCF7), and metastatic (MDA). All the cellular samples were grown
on conventional glass slides. We found that PCA technique is able to discriminate the
spectra of the three samples according to the values of PC1 score. Although we found that
the different relative amount of lipid component plays a fundamental role in the separation
of score values of PC1, we remark that the principal component analysis was performed
by considering the whole spectra of the samples (i.e., it was not limited to specific peaks).
Therefore, full spectral data can be considered as spectral biomarkers of the cell type,
without the need to search for any specific biochemical component. These results, obtained
with cheap conventional glass slides, are promising for supporting the use of the FTIR
technique as a complementary diagnostic tool in medical practice.
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2. Materials and Methods

2.1. Cell Culture and Preparation

Three different breast cell lines, including non-malignant (MCF10A), malignant
(MCF7), and metastatic (MDA-MB-231) cells were grown. MCF10A were cultured in
DMEM/Ham’s F-12 (Sigma-Aldrich, Milano, Italy) supplemented with 100 ng/mL cholera
toxin, 20 ng/mL EGF epidermal growth factor, 0.01 mg/mL insulin, 500 ng/mL hydrocor-
tisone, and 5% horse serum (Life Technologies, Monza, Italy). MCF7 and MDA-MB-231 cells
were cultured in the DMEM medium (DMEM, Life Technologies, Monza, Italy) and supple-
mented with 2 mM L-glutamine, (Sigma-Aldrich, St. Louis, MO, USA), 10% heat-inactivated
fetal bovine serum (FBS) (Thermo Scientific), 1% penicillin/streptomycin (Life Technologies,
Monza, Italy) and 0.25 ug/mL amphotericin B.

Cells were grown on poly-lysine coated glass microscopy slides (Fisher Scientific,
Rodano, Italy). The slides were located at the bottom of petri dishes incubated at 37 ◦C,
and 5% CO2. Before FTIR measurements, the cells were fixed by means of 3.7% PFA in PBS
solution and preserved inside a desiccator.

2.2. FTIR Measurements and Spectral Analysis

A FTIR Microscope HYPERION 2000 (Bruker Optik GmbH, Ettlingen, Germany) was
employed to perform FTIR spectra in the transmission mode. The IR radiation entering the
microscope came from a Vertex 70 Bruker interferometer (Bruker Optik GmbH). The IR
signal was measured by means of a mercury cadmium telluride (MCT) detector, cooled
at liquid N2 temperature. Each spectrum was estimated as an average of 64 scans in the
2500–4000 cm−1 range, with a resolution of 4 cm−1. The IR radiation was focused with
a 15× objective on a sampling area of about 80 × 80 μm size, including 3–4 cells of each
type. The background signal was measured from a spatial region of the slide close to the
sampling area, but without any cell. About 30 cells were measured for each type of cells.
The data acquisition was performed by means of the Opus 6.5 software (Bruker Optik).

For each FTIR measurement, the spectral range between 2750 and 3700 cm−1 was
analyzed, because it includes the main spectral peaks related to radiation absorption from
the cellular lipid and protein components. The spectra were normalized using standard
normal variate (SNV) which, for each absorption intensity value corresponding to each
wavenumber value, subtracts the mean value and then divides by the standard deviation
value. Such a normalization procedure reduces spectrum baseline shifts due to scattering
effects resulting from the interaction between IR radiation and sample particles [24] and
minimizes the contribution of the absorption from cells having a different thickness.

The R software was employed to achieve PCA by using the Chemospec package
(version 3.4.1, R Core Team, Vienna, Austria, 2017) [25]. The t-test method was employed
to evaluate the statistical differences between the groups of different cells, by means of the
SigmaPlot software (version 12.5, Systat Software Inc., San Jose, CA, USA).

3. Results and Discussion

The comparison among the normalized spectra of the three cell types grown on glass
slides is shown in Figure 1, where the mean and standard deviation signals are reported.
The mean spectra are not very different from each other, and they are also similar to the FTIR
spectra obtained by other authors for breast cell lines and tissues [26–28]. Each spectrum is
characterized by a few absorption peaks, which can be attributed according to the published
literature [29]. Specifically, the broadest band at about 3300 cm−1 is related to the amide A
(N-H stretching mode of proteins amino acids and nucleic acids), although a contribution
of O-H stretching mode from residual water inside cells cannot be excluded. In addition,
the peaks at about 2958 and 2871 cm−1 are due to the asymmetric and symmetric stretching
mode of the CH3 groups of cellular proteins and lipids, respectively, whereas the peaks at
2924 and 2852 cm−1 can be attributed to the asymmetric and symmetric stretching of the
CH2 groups of lipids, respectively.
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Figure 1. Mean FTIR spectra of MCF10A (continuous black line), MCF7 (continuous red line),
and MDA (continuous blue line) cells after SNV normalization. Standard deviation spectra are also
reported as dashed lines. The assignment of vibrational modes is also reported (c: carbohydrates;
n.a.: nucleic acids; p: proteins; l: lipids). The spectra are vertically shifted for clarity of purpose.

Two main characteristics are evident in Figure 1. First, the standard deviation values
suggest that the spectral intensities for the MCF10A cells spectra are more broadly dis-
tributed with respect to those of the other two cell lines, whose distributions of spectra are
quite narrow. As the spectral variability is related to the biochemical content variability,
we might deduce that non-malignant cells present larger differences of the relative content of
cellular components with respect to the malignant and metastatic cancer cells. In addition,
for each spectrum the FTIR signal between 2750 and 2850 cm−1 has a slightly larger inten-
sity with respect to the signal at about 3700 cm−1, although no specific absorption peaks
are reported for both such spectral ranges: this means that a baseline signal is still present.
Therefore, the SNV normalization fails to totally remove the scattering signal.

In order to decrease the effect of the unwanted baseline and improve the comparison
among the three cellular samples, second derivative signals of the SNV normalized spectra
were calculated and are reported in Figure 2 as far as the 2800–3000 cm−1 spectral range is
concerned. The subsequent analysis was focused on this spectral range, for two reasons:
first, because the most interesting signals related to protein and lipid components are
located in such a spectral range. Secondly, because of the doubts about the attribution
of large a band at about 3300 cm−1, due to the uncertainty about the water contribution.
Indeed, an important effect of the derivative process is that the signals of broad bands are
suppressed relatively to those of sharp bands. So, since the scattering component resembles
a very broad absorbance, using derivatives reduces the scattering effect. In particular,
the second derivative was used because the most characteristic feature of a second-order
derivative is a negative band with a minimum at the spectral position corresponding to
the maximum on the zero-order band. An interesting feature visible in Figure 2 is that the
intensity signals corresponding to the minima of the derivative spectra of the three cell
lines show similar variability (as deduced by standard deviation values). By considering
what was reported above for the comparison of the SNV spectra in Figure 1, it can be
deduced that the largest variability of MCF10A cells is probably related to the distribution
of the size of the scattering centers, which are the nuclei for cellular samples [30].

The PCA technique was used to assess whether FTIR is able to discriminate between
the non-malignant MCF10A cells and the two types of mentioned cancer cells. Figure 3a
shows the PCA score plots for the MCF10A and MCF7 cells: it is clearly visible that the
two types of cells are separated according to the PC1 component. In fact, MCF10A scores
(black dots) are characterized by negative values, whereas MCF7 scores (red dots) have
mainly positive values. The average and standard deviation values of scores distributions
are reported at the bottom of Figure 3a. The differences of PCA score values between
the two types of cells were statistically significant, as confirmed by a t-test yielding a
p-value < 0.001. The loading 1 plot, shown in Figure 3b (black line), is in good agree-
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ment with the difference plot (blue line) between the average spectra of the two types of
cells (considering that spectral positions of positive and negative peaks are exchanged).
In particular, the largest negative bands in the loading 1 plot are located at about 2855 and
2925 cm−1, corresponding to the spectral positions of CH2 stretching modes of lipid com-
ponents in Figure 1. The loadings represent coefficients describing the influence of the
variables (IR absorption at specific wavenumber values) on the score values for a given
PC [31]; therefore, Figure 3b suggests that the spectral origin of the variations which differ-
entiate the two types of cells is related to the different relative amount of lipid components.
Such a result is in agreement with the results reported by C. Nieva et al. [32], by using the
Raman micro-spectroscopy and immunocytochemistry methods. They found that the lipid
content in MCF10A cells is larger than in MCF7 cells. Apart from this specific biochemical
marker that differentiates the two types of cells, the results shown in Figure 3a suggests
that the FTIR technique, associated with multivariate methods such as PCA, is able to dis-
criminate the two cell types on the basis of a spectral marker, i.e., a combination of several
peaks and bands that make up the whole spectrum in the measured wavenumber range.

 
Figure 2. Mean second derivative signals of the SNV normalized FTIR spectra of MCF10A (continuous
black line), MCF7 (continuous red line), and MDA (continuous blue line) cells. Standard deviation
spectra are also reported as dashed lines. The spectra are vertically shifted for clarity of purpose.

Figure 3. PC1 and PC2 score plot (a) for the MCF10A (black dots) and MCF7 (red dots) cells; average
(−0.0021 and +0.0008 for MCF10A and MCF7, respectively) and standard deviation (0.0008 and
0.0005 for MCF10A and MCF7, respectively) of the PC 1 distribution values are shown at the bottom
of (a). Loading 1 spectrum (black line), compared with the difference between average spectra (blue
line), is reported in (b).

PC1 also discriminates MCF10A and MDA cells, as shown in the score plot Figure 4a,
with the MCF10A cells corresponding mostly to positive score values and MDA cells
mainly to negative values, although this separation is not as clear as in Figure 3a and
some outliers are visible. Therefore, the FTIR spectrum in the high wavenumber range
successfully can be considered as a spectral marker capable of separating the two types of
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cell without the need to investigate for any biochemical cellular component whose relative
content is different for the two cell lines. However, the similarity of the loading plot to
the difference of average spectra in Figure 4b suggests that the vibrational modes of lipids
mainly contribute to the separation of the two cell lines. Small differences in the relative
lipid content of MCF10A and MDA cells have been attributed to a large content of lipid
droplets in MDA metastatic cells [32]. In fact, it is well-known that lipid metabolism is
altered in metastatic cells, which use lipids as a source of energy to proliferate more and
more [33,34].

Figure 4. PC1 and PC2 score plot (a) for the MCF10A (black dots) and MDA (red dots) cells; average
(+0.0016 and −0.0023 for MCF10A and MDA, respectively) and standard deviation (0.0009 and 0.0013
for MCF10A and MDA, respectively) of the PC 1 distribution values are shown at the bottom of (a).
Loading 1 spectrum (black line), compared with the difference between average spectra (blue line),
is reported in (b).

The PCA analysis performed for MCF7 and MDA cells is characterized by a large
separation of the score values according to PC1, as shown in Figure 5a. In this case, from a
biochemical point of view, the discrimination occurs as a consequence of the difference in
the relative amount of lipid components, as suggested by the loading 1 and difference plots
in Figure 5b. Previously reported findings also observed that MCF7 cells are characterized
by a lower amount of fatty acids, both membrane phospholipids and cholesterol [32].
The lipidomic analysis performed by means of liquid chromatography mass spectrometry
for these two different breast cancer cell lines showed that they are characterized by
different mutual proportions of specific lipids [35]. However, we remark that Figure 5a
shows that the FTIR spectra constitute a reliable marker for the spectral characterization of
the cellular samples and for the differentiation of their different types.

Figure 5. PC1 and PC2 score plot (a) for the MCF7 (black dots) and MDA (red dots) cells; average
(+0.0014 and −0.0044 for MCF7 and MDA, respectively) and standard deviation (0.0008 and 0.0011
for MCF7 and MDA, respectively) of the PC 1 distribution values are shown at the bottom of (a).
Loading 1 spectrum (black line), compared with the difference between average spectra (blue line),
is reported in (b).
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If we consider the difference of average PC1 score values as an estimate of the dis-
crimination quality, Figures 3–5 suggest that non-malignant (MCF10A) cells can be better
separated from metastatic (MDA) cells than from malignant non-metastatic (MCF7) cells.
In particular, the difference of average PC1 score values is 0.0039 ± 0.0003 in the former
case, and 0.0030 ± 0.0002 in the latter one. Moreover, the best separation occurs between
MCF7 and MDA cells, whose difference of PC1 score values is 0.0058 ± 0.0002. This is
probably related to the main role of lipid components in the discrimination among such
cell lines: indeed, as described above, MCF7 cells are characterized by the smallest rela-
tive amount of lipid components [32]. Such different separation is also clearly visible in
Figure 6, which shows the results of the PCA analysis of the three cell lines. Figure 6a
confirms that PC1 score values are able to significantly discriminate (p < 0.001) the three
types of cell line. In particular, PC1 scores are mainly positive for MCF7 cells and mostly
negative for MDA and MCF10A cells, with the former cells having larger negative values
than the latter ones. Figure 6b suggests that the separation between positive and negative
values occurs because of the different lipid contents (the negative bands in Figure 6b are
located at spectral positions corresponding quite to lipid peaks in the absorption spectra),
as a consequence of the low lipid relative amount of MCF7 cells with respect to the other
two types of cells.

 
Figure 6. PC1 and PC2 score plot (a) for the MCF10A (black dots), MCF7 (red dots), and MDA (blue
dots) cells and loading 1 spectrum (b).

Overall, the PCA analysis of FTIR spectra measured in the high wavenumber spectral
range proved to be a reliable tool for discriminating non-malignant cells from malignant
cells and from metastatic cells. The aspect to be remarked is that such separation can
yield possible application in clinical diagnostics, even neglecting any discussion about the
biochemical components.

4. Conclusions

The obtained result observe that FTIR spectra in the high wavenumber range and the
principal components analysis technique are able to discriminate three cellular samples
from different cell lines related to the same tissue. In particular, three breast cell lines were
successfully separated: MCF10A, consisting of a non-malignant mammary epithelial cell
line; MCF7, which is a human breast non-metastatic adenocarcinoma cell line; and MDA,
which is a metastatic mammary adenocarcinoma cell line. The three cell samples, grown
on conventional microscopy glass slides and measured by means of the FTIR technique
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in transmission mode, were discriminated according to PC1 score values. The separation
occurs as a consequence of the different relative content of lipid components, as deduced by
the features at 2924 and 2852 cm−1 in the loading plots, which are related to the asymmetric
and symmetric stretching modes of the CH2 groups of lipids.

Regardless of the biochemical point of view, a significant feature to remark is that
FTIR spectrum in the 2800–3000 cm−1 range can be used as a spectroscopic biomarker for
the discrimination of non-malignant, malignant, and metastatic breast cells. This means
that the whole spectrum can be used as a marker of cell status, instead of specific spectral
peaks (molecular markers). In addition, the use of the microscopy glass slide as cell
growth substrates is worthy of attention because such slides are widely used in a clinical
environment for cytological and histological diagnosis. Therefore, the obtained results
suggest a possible implementation of the FTIR technique as a complementary diagnostic
tool in medical practice.

However, it must be remarked that the PCA method, while displaying the discrimina-
tion between objects belonging to different classes, is not a classification method. Therefore,
it does not allow to properly classify new objects (spectra, in our case) whose classification is
unknown. For this purpose, appropriate statistical techniques must be used (e.g., k-nearest
neighbors, soft independent modeling of class analogies, and support-vector machine).
Hence, the PCA analysis is only a starting point for using FTIR in medical diagnostics.

In addition, there are also other limits and hindrances to be overcome before the use of
FTIR in diagnostics can be accepted. First of all, an in-vivo analysis is difficult to perform.
Being an in-vitro method, such a procedure is albeit minimally invasive, because it needs
cellular samples to be extracted from patients. Further, it is necessary to also extract healthy
cells from the patient if the aim is to discriminate healthy cells from pathological cells.

Other authors have shown the possibility to discriminate different types of cells grown
onto a glass substrate by means of FTIR spectra in the high wavenumbers range [22,23];
however, they investigated cells from different tissues. Our findings point out that the
discrimination is possible also for cells from the same type of tissue but at a different
pathology stage. This is an interesting, but not decisive, step towards the introduction of
this spectral investigation in the medical diagnostic field. Further steps are both to confirm
the separation by using cell lines from other types of tissue than breast and particularly,
to measure ex-vivo cells as well as tissues from patients.
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Abstract: Raman spectroscopy is a promising method for analyzing natural gas due to its high
measurement speed and the potential to monitor all molecular components simultaneously. This
paper discusses the features of measurements of samples whose composition varies over a wide range
(0.005–100%). Analysis of the concentrations obtained during three weeks of experiments showed
that their variation is within the error caused by spectral noise. This result confirms that Raman gas
analyzers can operate without frequent calibrations, unlike gas chromatographs. It was found that a
variation in the gas composition can change the widths of the spectral lines of methane. As a result,
the measurement error of oxygen concentration can reach 200 ppm. It is also shown that neglecting
the measurement of pentanes and n-hexane leads to an increase in the calculated concentrations of
other alkanes and to errors in the density and heating value of natural gas.

Keywords: Raman spectroscopy; gas analysis; natural gas; methane; alkanes; isotopic composition;
heating value

1. Introduction

Natural gas (NG) is the most environmentally friendly of all fossil fuels and is also a
raw material for the production of many chemicals, including hydrogen [1]. To date, the
basic method for measuring its composition is gas chromatography. However, this method
has some disadvantages. Among them are the need for consumables, frequent calibration
checks, and a long analysis time. These features make real-time measurements impossible.
Devices based on optical spectroscopy do not have such drawbacks. The application of
infrared (IR) spectroscopy for the analysis of NG composition was demonstrated by Kireev
et al. [2,3]. The measurement accuracy of hydrocarbons is close to the gas chromatography.
However, it is impossible to measure the content of diatomic homonuclear molecules (such
as N2, O2, H2, etc.), using this method. Taking into account the ongoing development of
energy technologies with minimal CO2 emissions, the use of hydrogen-enriched natural gas
will increase [4,5]. In this regard, IR spectroscopy is not an ideal method for measuring such
gas mixtures. Raman spectroscopy is a promising alternative technique. It is possible to
simultaneously control the content of all types of molecules using an instrument based on
this effect. The capabilities of such gas analyzers were demonstrated in many studies [6–17].
It should be noted that many authors measure alkanes only up to C4. This is explained by
the weakness of the Raman signals of gaseous components and the difficulty in deriving
the concentrations of heavy alkanes from the Raman spectrum of NG due to the significant
overlap of the spectra of various components [18]. According to ISO 6974-5 [19], the
detection limit for C2–C6 alkanes is 0.005%. Thus, a Raman gas analyzer must measure NG
composition with this accuracy to be competitive with gas chromatographs. In this work,
we study the capabilities of the developed Raman gas analyzer using NG samples whose
composition varies in ranges close to values indicated in ISO 6974-5 [19]. In addition, we
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investigate the influence of line broadening and the effect of ignoring the spectra of C5+
alkanes on measurement precision.

2. Materials and Methods

2.1. Raman Gas Analyzer

The Raman gas analyzer used in this work is an improved analog of the device as that
used previously [6]. Its optical design is based on a 90-degree geometry of scattered light
collection (see Figure 1) since spectra with a minimum background level can be recorded using
this scheme. A solid-state continuous-wave laser with a power of 1.5 W at a wavelength of 532
nm was used as a source of exciting radiation. Two identical f/1.8-lenses were used for scattered
light collection. An analysis of our previous results [6] and the Raman spectra of the main NG
components [18] showed that it is necessary to improve the signal-to-noise ratio to improve the
accuracy of measurements. In this regard, a new compact no-moving-parts f/1.8-spectrometer
MKR-2m (Sibanalitpribor LLC, Tomsk, Russia) was used in this work. Its main difference
from the previous spectrometer [6] is a higher spectral sensitivity (especially at the edges of the
recorded range) due to the optimization of the optical scheme. The simultaneously recorded
spectral range was 530–628 nm using the 1800 lines/mm grating. With an entrance slit of
40 μm, the half-width of instrumental function response was ~6 cm−1 at the center of this range.
The signals were recorded using the charge-coupled device (CCD) sensor Hamamatsu S10141
(2048 × 256 pixels, 12 μm in size) with thermoelectric cooling down to −10◦C. About 10-fold
amplification of the Raman signals was obtained in the range of 300–1000 cm−1, where the
characteristic peaks of C2+ alkanes are located, using this spectrometer (in comparison with
Ref. [6]).

Figure 1. Schematic of Raman gas analyzer.

2.2. Concentration Measurement Method

The contour fit method was used to derive the concentrations due to the significant
overlap in the spectra of NG species [18]. Its essence is as follows. The NG spectrum Imix(ν)
at each wavenumber ν can be represented as the sum of the spectra of its components Ii(ν):

Imix(ν) =
m

∑
i=1

ai Ii(ν), (1)

where ai is the contribution of the spectrum of the ith component to the spectrum of the
mixture [0..1], and m is the number of measured components.
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Taking into account the number of CCD sensor columns, a system of 2048 equations
can be obtained. Its solution (contributions ai) can be found using the least-squares method.
The required relative concentrations (Ni) can be found using Equation (2).

Ni =
niai

m
∑

j=1
njaj

· 100%, (2)

where ni is the absolute concentration of the ith component in the reference spectrum Ii(ν).
According to Ref. [20], the spectral characteristics (peak positions and half-widths)

of the reference spectra and the spectra of the mixture should be equivalent to obtain the
most accurate results. First of all, to ensure this condition, all measurements of mixtures
were carried out at a pressure of 25 atm and a temperature of 300 K. Reference spectra of
pure methane, ethane, nitrogen, carbon dioxide, hydrogen, and oxygen were also obtained
at these parameters. The spectra of heavier alkanes (propane, n-butane, isobutane, n-
pentane, iso-pentane, neo-pentane, and n-hexane) liquefy under the above conditions. For
this reason, they were obtained at saturated vapor pressure. The exposure time for each
reference spectrum was 1000 s.

2.3. Experiment

Three samples of synthetic NG with significantly different compositions were used for
research (see Table 1). These samples are the reference gas mixtures with low uncertainties
that were purchased from Monitoring LLC (Saint Petersburg, Russia). Measurements were
carried out for three weeks, once a week, to assess the long-term stability of the results. The
sequence of analysis of mixtures is presented in Table 2. A series of five measurements were
performed for each mixture with the replacement of the sample in the cell. The time of one
analysis was 30 s. Note that the set of reference spectra of pure components was obtained
once before the measurement procedure was started. Additional calibration procedures
were not performed during all measurements.

Table 1. Composition of natural gas samples used.

Component
Concentration (%)

Sample 1 Sample 2 Sample 3

CH4 99.9403 95.998 49.0379
C2H6 0.00496 0.997 15.1
C3H8 0.00474 0.509 6.05

n-C4H10 0.00493 0.105 0.709
iso-C4H10 0.00497 0.102 0.816
n-C5H12 0.00503 0.0474 0.205

iso-C5H12 0.00522 0.0472 0.19
neo-C5H12 0.0048 0.01 0.0511

n-C6H14 0.00445 0.0236 0.131
CO2 0.0047 1 10.1
N2 0.0054 1.039 15.1
H2 0.00559 0.102 0.5
O2 0.0048 0.0198 2.01

Table 2. Program of measurements.

Day Sequence of Sample Analysis

1st #1–#2–#3–#2–#1–#3–#2
2nd #2–#1–#2–#1–#2–#1–#2–#3
3rd #1–#3–#1–#3–#1–#3–#1–#2
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3. Results and Discussion

3.1. Mixture Measurements

Figures 2 and 3 show the obtained Raman spectra of the samples of NG. Despite
mutual overlaps, the characteristic peaks of most components are distinguishable at the
resolution of the spectrometer used. The achieved sensitivity makes it possible to see the
lines of the ν4 band of methane down to ~800 cm−1. In addition, a wide unresolved band
is observed in the methane spectrum in the region of 300–600 cm−1. We suppose this is
a collision-induced rotational band [21,22], which is attenuated up to ~350 cm−1 by the
notch filter. Bands of C–C–C deformation vibrations of C3+ hydrocarbons are also located
in the region of 300–500 cm−1 (see Figure 4). The accuracy of concentration measurements
can be improved using this range due to intense peaks of n-butane (429 cm−1), n-pentane
(398 cm−1), and iso-pentane (459 cm−1), the overlap of which is not as significant as in
the region of 700–1000 cm−1. Thus, to measure low concentrations, it is necessary to
take into account the contribution of the methane spectrum to the spectrum of NG not
only in the region of >990 cm−1 (as indicated in Ref. [18]) but also in the region of lower
wavenumbers. The inset in Figure 2 shows the vibrational band of nitrogen (2330 cm−1),
whose concentration in sample 1 is 54 ppm, despite its significant overlap with the lines
of the 2ν4 and ν3 bands of methane, is also well observed. Hence, concentrations with
a sensitivity of <50 ppm can be measured due to the achieved signal-to-noise ratio. The
limits of detection will be estimated below.

Figure 2. Raman spectra of pure methane and sample 1.

Figure 3. Raman spectra of sample 2 and sample 3.
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Figure 4. Raman spectra of C1–C6 alkanes in the range of 300–500 cm−1. The intensities correspond
to the equivalent pressure.

The range of 300–2400 cm−1 was used to determine the composition of mixtures. All
measured concentrations during one day for each mixture were averaged. The concen-
trations (C) and their standard deviations (σ) are presented in Tables 3–5. It can be seen
that the measured and reference concentrations are in good agreement taking into account
the uncertainties. The only exception is data of n-hexane in samples 2 and 3. For most
components, the variation in measured concentrations over all days is within their mean
standard deviation. It indicates these variations are due to noise in the spectra. Thus,
the presented data confirm that Raman gas analyzers can operate for a long time without
calibration, unlike gas chromatographs.

Table 3. Measurement results for sample 1.

Component
Reference Data

Data Obtained

1st Day 2nd Day 3rd Day

C (%) σ (%) C (%) σ (%) C (%) σ (%) C (%) σ (%)

CH4 99.9403 0.0023 99.94 0.0023 99.938 0.0022 99.9401 0.0046
C2H6 0.00496 0.00018 0.00479 0.00027 0.00508 0.00025 0.00526 0.00047
C3H8 0.00474 0.00022 0.00496 0.00011 0.0052 0.00024 0.0052 0.00031

n-C4H10 0.00493 0.00023 0.00453 0.00025 0.00501 0.00027 0.00466 0.00030
iso-C4H10 0.00497 0.00023 0.00492 0.00006 0.0049 0.00007 0.00486 0.00011
n-C5H12 0.00503 0.00023 0.00545 0.00019 0.00549 0.00018 0.00514 0.00032

iso-C5H12 0.00522 0.00024 0.00496 0.00019 0.00517 0.00015 0.00508 0.00016
neo-C5H12 0.0048 0.00023 0.00492 0.00004 0.00493 0.00005 0.00494 0.00005

n-C6H14 0.00445 0.00021 0.00505 0.00064 0.00524 0.00072 0.00429 0.00098
CO2 0.0047 0.0005 0.00527 0.00071 0.00509 0.00031 0.00504 0.0011
N2 0.0054 0.0005 0.00539 0.00035 0.0048 0.00027 0.00584 0.0006
O2 0.0048 0.0005 0.00457 0.0010 0.00595 0.0011 0.00428 0.0014
H2 0.00559 0.00025 0.0051 0.00008 0.00508 0.00008 0.0052 0.00009
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Table 4. Measurement results for sample 2.

Component
Reference Data

Data Obtained

1st Day 2nd Day 3rd Day

C (%) σ (%) C (%) σ (%) C (%) σ (%) C (%) σ (%)

CH4 95.998 0.09 95.9512 0.0042 95.9509 0.0046 95.9503 0.0029
C2H6 0.997 0.02 1.0172 0.0010 1.0181 0.0011 1.0179 0.0009
C3H8 0.509 0.015 0.5166 0.0006 0.5168 0.0008 0.5173 0.0005

n-C4H10 0.105 0.003 0.1038 0.0004 0.1035 0.0005 0.1042 0.0003
iso-C4H10 0.102 0.003 0.1018 0.0002 0.1018 0.0002 0.1019 0.0002
n-C5H12 0.0474 0.0015 0.0455 0.0003 0.0446 0.0003 0.0446 0.0003

iso-C5H12 0.0472 0.0015 0.0479 0.0002 0.0481 0.0004 0.0482 0.0003
neo-C5H12 0.01 0.0004 0.0096 0.00005 0.0096 0.00006 0.0096 0.00004

n-C6H14 0.0236 0.0008 0.0184 0.0007 0.0183 0.0006 0.0186 0.0006
CO2 1 0.03 1.0238 0.0012 1.0234 0.0010 1.0228 0.0006
N2 1.039 0.021 1.0447 0.0014 1.0451 0.0015 1.0432 0.0005
O2 0.0198 0.001 0.0206 0.0015 0.0205 0.0017 0.0221 0.0008
H2 0.102 0.003 0.0989 0.0002 0.0988 0.0002 0.099 0.0001

Table 5. Measurement results for sample 3.

Component
Reference Data

Data Obtained

1st Day 2nd Day 3rd Day

C (%) σ (%) C (%) σ (%) C (%) σ (%) C (%) σ (%)

CH4 49.038 1.12 49.499 0.0285 49.517 0.0049 49.518 0.0071
C2H6 15.1 0.3 14.908 0.0079 14.913 0.0081 14.905 0.0103
C3H8 6.05 0.18 6.0128 0.0036 6.0138 0.0021 6.0091 0.0043

n-C4H10 0.709 0.021 0.6987 0.0024 0.6985 0.0019 0.698 0.0017
iso-C4H10 0.816 0.025 0.8177 0.0005 0.8175 0.0006 0.817 0.0007
n-C5H12 0.205 0.006 0.204 0.0015 0.209 0.0017 0.2089 0.0022

iso-C5H12 0.19 0.006 0.1832 0.001 0.1829 0.0009 0.1828 0.0009
neo-C5H12 0.0511 0.0016 0.0502 0.0001 0.0502 0.0001 0.0508 0.0001

n-C6H14 0.131 0.004 0.1444 0.0033 0.1564 0.0044 0.1566 0.0049
CO2 10.1 0.3 9.9551 0.0151 9.931 0.0106 9.9319 0.0102
N2 15.1 0.3 15.035 0.015 15.02 0.0078 15.032 0.0134
O2 2.01 0.06 1.978 0.0017 1.9772 0.0007 1.9766 0.0012
H2 0.5 0.015 0.5141 0.0008 0.5134 0.0006 0.5125 0.001

The relative measurement errors of each component were obtained using the mean
standard deviations (see Figure 5). It can be seen that these values depend both on the
concentration and the type of molecule (due to different scattering cross-sections and the
level of overlap of the spectral bands). Taking into account that the measurement errors of
gas chromatographs are close to 5%, it can be concluded that the accuracy of the presented
Raman gas analyzer is higher for species with a concentration of more than ~100 ppm.

3.2. Limits of Detection

Limits of detection (LODi) were estimated using Equation (3). Here, we defined the
concentrations at which the signal of ith component is three times the standard deviation of
the noise. The spectrum of sample 1 was used to obtain these data. Peak intensities of each
component (Si) were estimated, taking into account their contribution to the spectrum of
the mixture (see Figure 6). The difference between two successive spectra of sample 1 was
obtained to estimate the magnitude of the noise (see Figure 7). It can be seen that the noise
in the region of 500–1000 cm−1, where the characteristic bands of C2+ alkanes are located,
is less than in the region of intense lines of the ν2 band of methane (1200–1700 cm−1). This
feature is related to the effect of photon shot noise, which is proportional to the square
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root of the signal intensity. In this regard, the noises that affect measurement errors and
LODs are higher for CO2 and O2 than for all other components. The standard deviations of
noise (Ni) were calculated using the intensities in the spectrum shown in Figure 7 in the
following regions: 1540–1580 cm−1 (for O2), 1280–1380 cm−1 (for CO2), and 700–900 cm−1

(for other components). Concentrations of components (Ci) in sample 1 for calculations
were taken from Table 1. The results obtained are presented in Table 6. It can be seen that
the LOD values are within the range of 2–35 ppm. Thus, the achieved sensitivity of the
Raman analyzer meets the requirements of ISO 6974-5 [19].

LODi = 3
Ci

Si/Ni
, (3)

Figure 5. Relative measurement errors of alkanes at different concentrations.

Figure 6. Contributions of the species to the spectrum of sample 1.
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Figure 7. Difference between two successive spectra of sample 1.

Table 6. Parameters for Equation (3) and limits of detection of the Raman natural gas analyzer.

Component S (arb.u.) N (arb.u.) LOD (ppm)

C2H6 4.3 0.017 5.9
C3H8 4.94 0.017 4.9

n-C4H10 2.15 0.017 11.7
iso-C4H10 7.39 0.017 3.4
n-C5H12 1.94 0.017 13.2

iso-C5H12 2.87 0.017 9.3
neo-C5H12 11.27 0.017 2.1

n-C6H14 0.73 0.017 31.1
CO2 5.5 0.036 9.2
N2 2.8 0.017 9.8
O2 2.8 0.068 35.1
H2 6.8 0.017 4.2

3.3. Influence of Line Broadening on Measurements

Let us consider the features of O2 measurement. It has one fundamental vibrational
band with the position of the maximum at 1555 cm−1, which is overlapped by the ν2 band
of methane (see Figure 3). Hence, the measurement accuracy is affected by the broadening
of the spectral lines of methane [20] besides the signal-to-noise ratio. Pressure [23] and
molecular environment [24,25] influence the half-widths of the lines. The line at 1793 cm−1

was analyzed to assess the influence of the composition on the line half-widths of the ν2
band of methane. This line was chosen since it is not overlapped by the spectra of other
species and, therefore, the measurement error of its half-width in mixtures is eliminated.
The data obtained and the half-width of this line as a function of pure methane pressure are
shown in Figure 8. It can be seen that the half-width increases with a decrease in the fraction
of methane in the mixtures. This broadening is related to an increase in the concentration
of heavy hydrocarbons in the mixture since the methane-methane broadening coefficients
are less than the broadening coefficients of methane-ethane, methane-propane, etc. [25].
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Figure 8. Half-width of the methane line at 1793 cm−1 in pure methane at various pressures and in
analyzed samples at 25 atm.

According to Figure 8, an increase in the pressure of pure methane to 26.6 atm leads to
the same broadening as in the spectrum of sample 3 at a pressure of 25 atm. Thus, in our
case, we can use the spectra of pure methane at pressures of 25.0 and 26.6 atm to estimate
the error in oxygen measurements due to the broadening of methane lines. The spectrum
at a pressure of 26.6 atm was multiplied by the 25/26.6 value to ensure equal integral
intensities of these spectra. Figure 9 shows the difference between these methane spectra in
the region of 1555 cm−1, denoted as R. According to Equation (4), this effect leads to an
oxygen measurement error (Δ) close to 200 ppm.

Δ =
R · 100%

IMAX
, (4)

where IMAX is the peak intensity of the spectrum of pure oxygen at 25 atm. Taking into
account the concentration ranges of C2+ alkanes in NG [19], it can be concluded that the
systematic error in oxygen measurement can reach 200 ppm (depending on the composi-
tion). This error is less than the uncertainty of the reference O2 concentration in sample
3. However, in the case of an O2 concentration in such a mixture below 200 ppm, this is
a sufficiently large value that cannot be ignored. Calibration coefficients or a reference
spectrum of pure methane at a pressure that results in the required line broadening can be
used to obtain reliable data.

We believe that the deviations of the measured hexane concentrations from the refer-
ence values are due to similar effects. Although hexane has several bands in the region of
700–900 cm−1, their peak intensity is relatively low (see Figure 6), and all of them are over-
lapped by the spectra of other molecules [18]. Thus, a change in the spectral characteristics
of alkanes in a mixture compared to a pure substance can lead to errors in measurements
of the hexane concentration. We plan to study these features in more detail in the future.

3.4. Estimation of Errors in the Case of Ignoring C5+ Spectra

We decided to estimate the errors in the case of neglecting pentanes and hexane since
many authors analyze the composition of mixtures only up to C4 [7,9–15]. All spectra of
mixtures obtained during the first day of experiments were used. The spectra of pentanes
and hexane were excluded from the set of reference spectra of pure components to calculate
the concentrations. The results obtained are presented in Table 7. It can be seen that ignoring
these components leads to an increase in the measured concentrations of ethane, propane,
and butanes. Taking into account that this effect is due to the overlap of their spectra, the
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errors depend on the composition of the mixture and cannot be eliminated using calibration
coefficients. In addition to these data, the characteristic parameters [26], which are required
for power plant operators, were calculated. To this end, the concentrations shown in
Tables 3 and 7, Tables 4 and 5 (1st day) were used. As shown in Table 8, these characteristics
correspond to the reference data when all components are measured. In turn, only the
heating value of sample 1 corresponds to the reference value in the case of ignoring the
measurement of pentanes and hexane. Despite the increase in the measured concentrations
of other alkanes, other characteristics are significantly less than the reference ones. Thus,
reliable characteristic parameters of NG cannot be obtained by measuring alkanes only up
to C4.

Figure 9. Raman spectra of methane (at 25 and 26.6 atm) and oxygen (at 25 atm). The inset shows
that the broadening of the methane lines leads to different intensities in the region where the oxygen
band is located.

Table 7. The results of the analysis of mixtures, the spectra of which were obtained during the first
day of experiments, in the case of ignoring C5+ alkanes. C*/C is the ratio of the concentration
obtained by measuring alkanes up to C4 to the concentration obtained by measuring all components
(data from Tables 3–5).

Component
Sample 1 Sample 2 Sample 3

C* (%) C*/C C* (%) C*/C C* (%) C*/C

CH4 99.9419 1.000 95.960 1.000 49.779 1.006
C2H6 0.00644 1.353 1.0280 1.011 14.872 0.998
C3H8 0.0088 1.774 0.5405 1.046 6.1022 1.015

n-C4H10 0.01348 2.975 0.1588 1.530 0.9894 1.416
iso-C4H10 0.00746 1.516 0.1194 1.173 0.8907 1.089
n-C5H12 – – – – – –

iso-C5H12 – – – – – –
neo-C5H12 – – – – – –

n-C6H14 – – – – – –
CO2 0.00629 1.194 1.0273 1.003 9.9140 0.996
N2 0.0055 1.020 1.0443 0.999 14.963 0.995
O2 0.00447 0.978 0.0199 0.966 1.9616 0.992
H2 0.00561 1.100 0.1016 1.027 0.5285 1.028
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Table 8. Comparison of characteristics of natural gas samples.

Sample Parameter Reference Data
Data Obtained

All Species Were Measured C5 and C6 Were Ignored

1
Lower heating value (MJ/kg) 33.45 ± 0.03 33.45 33.44

Relative density 0.55545 ± 0.00004 0.55547 0.55528

2
Lower heating value (MJ/kg) 33.54 ± 0.04 33.53 33.47

Relative density 0.5838 ± 0.0004 0.5841 0.5830

3
Lower heating value (MJ/kg) 33.12 ± 0.19 33.13 32.86

Relative density 0.8908 ± 0.0040 0.8876 0.8807

3.5. Variation in the Isotopic Composition of Methane

We noticed the different intensity of the peak with a wavenumber of 2196 cm−1

between the spectra of pure methane and sample 1 during the experiments. The ν2 band of
the CH3D methane isotopologue is located in this region (see Figure 10). This discrepancy
may be due to the different nature of the origin of the pure methane and methane in the
mixtures. The difference in the peak intensity is ~0.4% and agrees with possible CH3D/CH4
variations in NG [27]. We did not find signs of 13CH4/12CH4 variation in our samples since
there is a small shift in their lines relative to each other in the ν2 region [28]. It is worth
noting that knowledge of the isotopic composition of methane is also useful. It is possible
to determine the type of reservoir (gas, gas condensate, or oil), as well as the origin of
natural gas (biogenic or thermogenic) based on this information [29]. Raman gas analyzer
can also measure the content of 13CH4 by registration of spectra up to 3100 cm−1 [30,31].
Note that when using the contour fit method, the discrepancy in the isotopic composition
of methane in comparison to the reference methane can lead to a difference between their
spectra and, consequently, to errors in the measurement of other components. In this case,
the simulation of spectra can be used to improve the reliability of measurements [32]. The
effects of pressure, molecular environment, and the contributions of all isotopologues can
be taken into account to obtain a spectrum using this approach.

Figure 10. Raman spectra of pure methane and sample 1 in the range of 1800–2400 cm−1.

4. Conclusions

This study presents the features of natural gas analysis using Raman spectroscopy. The
use of the contour fit method to derive concentrations from the spectra of mixtures makes
it possible to obtain reliable results even with a significant change in the composition of
the samples. However, in the case of measuring low concentrations of components whose
characteristic peaks are overlapped by intense bands of other molecules, it is necessary to
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take into account the change in spectral characteristics due to changes in the molecular
environment to increase the accuracy. The data obtained confirmed that such devices can
operate for a long time without calibration. This is a very important advantage of Raman
gas analyzers over analogs. The achieved detection limits of the developed compact Raman
gas analyzer are 2–35 ppm at a pressure of 25 atm and an analysis time of 30 s. This level of
sensitivity makes it possible to monitor the isotopic composition of methane. In turn, it
is possible to reduce the analysis time or improve the accuracy by using a more powerful
laser and/or a photodetector with a lower noise level. Taking into account the advantages
of Raman gas analyzers, we believe that they have great potential in natural gas analysis
and can replace conventional gas chromatographs.
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Abstract: The laser speckle correlation method has found widespread application for obtaining
information from vibrating objects. However, the resolution and accuracy of the laser speckle
correlation method as they relate to the defocusing degree have not been analyzed sufficiently.
Furthermore, the possible methods for speckle pattern quality assessment and enhancement have not
been studied. In this study, the resolution and accuracy of the laser speckle correlation method are
analyzed, and it is found that they are affected by the defocusing degree and speckle pattern quality,
respectively. A new speckle pattern quality criterion combining the mean intensity gradient and
frequency spectrum was proposed, called CMZ. The quality of the speckle pattern is higher when
the CMZ is closer to zero. The proposed criterion was verified by simulated speckle patterns and real
speckle patterns with different speckle sizes, densities, and gray contrasts. In the experimental setup
stage, a suitable defocusing degree can be selected based on the resolution requirement and optimal
speckle size, and other experimental parameters can be determined according to the CMZ criterion.
Rotation and vibration experiments verified the effectiveness of the laser speckle correlation method
and confirmed the reliability of the experiment preparation based on proposed CMZ criterion.

Keywords: laser speckle correlation; defocusing degree; speckle pattern quality criterion; vibration
measurement; rotation measurement

1. Introduction

Optical dynamic measurements have been widely used to detect noncontact vibrations,
continuous deformation, or movement of objects in various research and industrial applica-
tions. The common methods are divided into interferometric and imaging-based methods.
Interferometric methods include electric speckle pattern interferometry (ESPI) [1–4], shear
interferometry [5,6], and holographic interferometry [7–9], and these methods generally
produce subwavelength accuracy. Adopting high-efficiency phase extraction methods, such
as the temporal phase-shifting method [10,11], spatial carrier phase-shifting method [12,13],
and Fourier transform method [14,15], nanometer accuracy can be achieved under labo-
ratory conditions. However, its applications are limited by the sampling rate of camera
and environmental requirements. The more powerful laser Doppler vibrometry (LDV)
technique [16–18] can provide single-point high-speed dynamic measurements using a
photoelectric detector, but it is still essentially an interferometer that is sensitive to environ-
mental fluctuations. Furthermore, the digital image correlation (DIC) method [19–21] is
sensitive to object surface displacement, especially in-plane displacement. In DIC, artificial
speckle or laser speckle is as a carrier of deformation information and deforms together
with the specimen surface. Artificial speckle is most commonly used and is usually pre-
pared by spraying paints on the sample surface [22] or transferring speckle patterns to
sample surface using the water transfer printing technique [23]. However, laser speckles,
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formed by the reflection and scattering of laser irradiation onto a rough surface, are desir-
able in some situations. For example, in a high temperature environment, artificial speckle
will inevitably fall off and discoloration will occur. Song et al. [24] and Zheng et al. [25]
have applied laser speckle correlation method to a high temperature measurement field
successfully.

Gregory et al. [26] proposed defocused speckle photography and described how to
separate tilt (differential) topology variations on a scatter surface from linear displacements.
Horváth et al. [27] deduced the relationship between the small-deformation tensor and
the speckle field displacement in detail. Based on these analyses, another simple and
prospective application of the laser speckle correlation method has emerged. Jo et al. [28]
proposes to observe the movement of the secondary speckle patterns that are generated on
top of a target when it is illuminated by a laser beam spot. Through proper defocusing,
the movement of the object creates a scenario in which the same speckle pattern moves or
vibrates in the transverse plane, instead of the speckle pattern constantly changing. Grad-
ually, this method has achieved widespread application for obtaining information from
vibrating objects. For instance, Zeev et al. [29], Lin et al. [30], and Yevgeny et al. [31] applied
this method for the simultaneous remote extraction of multiple speech sources, vibration
measurements, and blood pulse pressure measurements, respectively. Furthermore, Wu
et al. [32] introduced a high-speed optical flow algorithm to tracking laser speckle images to
realize real-time audio detection and regeneration of a moving sound source. However, the
influence of the laser speckle quality and possible ways to achieve quality assessment and
enhancement have not received enough attention in vibration measurements. Furthermore,
the key parameter defocusing degree can be selected combining optimal speckle pattern
quality and resolution requirement.

In the DIC field, many quality assessment criteria aimed at sprayed speckle patterns
have been developed gradually. Subset entropy [33] and the sum of square subset intensity
gradients (SSSIG) [34] are suitable for subset optimization. In order to evaluate the quality
of the whole speckle pattern, Lecompte et al. [35] first proposed the mean speckle size
based on the image morphology, and then Grammond et al. [36] applied edge detection to
determine the speckle size and density. These methods based on speckle morphology lack
the ability to evaluate gray information, such as the contrast influence on the speckle pattern
quality. To overcome this deficiency, the mean intensity gradient (MIG) [37], the mean
intensity of the second derivative (MIOSD) [38] and standard deviation of gray intensities
within each speckle (SDGIS) [39] are proposed successively. Another trend is to consider the
primary and secondary peaks of the autocorrelation functions [40–42]. However, compared
with the sprayed speckle, the laser speckle has a more uniform distribution of speckle
particles, a smaller difference of the gray standard deviations between individual speckles,
and non-obvious secondary auto-correlation peaks. Thus, the assessment criteria described
above cannot be used directly. Song et al. proposed a new index, the multi-factor fusion
index (MFFI) [43], which took the inhomogeneity of the gray contribution, the mean square
deviation of the gray contribution, and the standard deviation of the speckle particles size
into consideration.

In this study, the resolution of the laser speckle correlation method is analyzed, and its
main influence factors are distance relationships between the measurement planes, which
depend on the defocusing degree. The defocusing degree also affects the speckle pattern
quality, further influencing the accuracy of the laser speckle correlation method. To ensure
a high quality of the speckle pattern, a new speckle pattern quality criterion combining the
MIG and frequency spectrum was proposed, called CMZ, which accounts for both random
error and the interpolation bias. A simple rule is presented based on the balance of random
error and interpolation bias, and it was verified that the quality of the speckle pattern is
higher when CMZ is closer to zero. Furthermore, the particular characteristics of the laser
speckle have been used, which were distinguished using traditional indices, such as MIG
and MIOSD. The proposed criterion was demonstrated by simulated speckle patterns with
different speckle sizes and densities. Experimental speckle patterns at different defocusing
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degrees, exposure times, and measurement locations and the corresponding translation pat-
terns were then used to validate the proposed criterion. Based on the sufficient resolution
requirement and optimal speckle size, a suitable defocusing degree (such that the distance
relationships between the measurement planes can be determined) and other experimental
parameters can be determined according to the CMZ criterion during the experimental
setup. Rotation experiments were used to illustrate the relationship between the resolution
and the defocusing degree, which further verified the CMZ criterion. Vibration experi-
ments simultaneously verified the effectiveness of the laser speckle correlation method and
the reliability of the experimental setup based on the proposed CMZ criterion.

2. Defocusing Degree Determination of Laser Speckle Correlation Method

By illuminating an object with a laser beam spot, a speckle pattern can be generated
due to the roughness of the object surface. When a spatially coherent beam is reflected
from the object whose roughness generates a random phase distribution, we may obtain
the self interfering speckle pattern in the far field.

As shown in Figure 1a,b the camera is focused on the plane behind or in front of the
object such that the object itself is defocused, respectively, where the focal plane is at a
distance of Z1.

 

Figure 1. Schematic of the system: camera is focused on the plane (a) behind or (b) in front of
the object.

According to the analysis conducted by Zeeval et al. [29], this system was sensitive to
the tilt, and the effect caused by transversal and axial movement is negligible. When slightly
defocusing, object tilt creates a situation in which the same speckle pattern only moves or
vibrates in the transverse plane instead of constantly changing the speckle pattern. Thus,
shifts of the speckle pattern due to tilt can be easily detected by spatial pattern correlation.
According to the geometric relation, the tilt angle α can then be determined as follows:

α =
Z1U
M

(1)

where U represents the displacement of the pattern on the camera. M is the imaging system
magnification. Once tilt angles along the time axis are obtained during vibration, vibration
information including frequency and strain can be calculated. Thus, accurate correlation
tracking is a prerequisite to tilt angle calculation, even to vibration analysis.

Valid correlation calculations require a suitable speckle size to be imaged to the sensor
plane. In the case of an objective laser speckle, the speckle size S is described as follows:

S ≈ λZ1

D
(2)
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where λ and D are the optical wavelength and the dimension of the illuminated spot,
respectively. The size S′. of the speckle imaged to the sensor plane, which is obtained at
the Z1 plane, is expressed as follows:

S′ = λZ1

DM
(3)

To ensure that every speckle in the sensor plane equals K pixels, the condition is
described as follows:

λZ1

DM
= K × Lx (4)

where Lx is the physical size of one pixel in the CCD sensor.
According to formula (1), a greater distance Z1 and a smaller magnification factor M

correspond to a higher tilt angle resolution U. When the camera magnification is fixed,
the larger Z1 corresponds to larger angle resolution U in situations (a) and (b). However,
usually the distance between the sensor plane and object is fixed, but the defocusing
degree can be adjusted by changing the focal length. When the adjusted parameter is the
defocusing degree, the rule is different in the two situations. If the camera is focused on
the plane behind the object, as in situation (a), a greater distance Z1 means a shorter object
distance Z2, that is, a smaller magnification factor M and a higher angle resolution U. For
situation (b), a greater distance Z1 corresponds to a greater magnification factor M, so the
variation of Z1

M cannot be judge directly, causing non-determinacy of the angle resolution
change. Thus, a reasonable defocusing degree that determines the relative distances
between the object, the focal plane, and the sensor plane can be obtained according to
speckle size requirement imaged to the sensor plane and a sufficient tilt angle resolution
requirement.

3. Laser Speckle Pattern Quality Assessment

An effective speckle pattern quality assessment criterion is a prerequisite to ensure
correlation tracking. In general, correlation calculation error consists of random error and
interpolation bias. Random error highly depends on image noise, which is related to the
gray scale of the image. For zero- and first-order shape functions, Pan et al. [34] pointed
out that the random error Std is defined as follows:

Std =
σ√

∑N
i=−N ∑N

j=−N
(gx[i,j])

2+(gy[i,j])
2

2

(5)

where N is half of the size of the subset, σ is the standard deviation of the image noise.
gx[i, j] and gy[i, j] are the x- and y-directional gray derivatives at point [i, j], respectively. Su
et al. [44] introduced interpolation bias kernel to characterize the frequency response of the
interpolation bias, and interpolation bias kernel was defined as

E
(
vx, vy

)
= (vx − 1)ϕ

(
vx − 1, vy

)− (vx + 1)ϕ
(
vx + 1, vy

)
+ϕ

(
vx, vy

)
(vx+

1, vy) +ϕ
(
vx, vy

)(
vx − 1, vy

) (6)

where ϕ
(
vx, vy

)
represents interpolation function (cubic BSpline) at frequency

(
vx, vy

)
.

The result curve of interpolation bias kernel verified that high-frequency components are
the major source of interpolation bias.

As for sprayed speckle patterns assessment, MIG and MIOSD are the most commonly
used. MIG is defined as

MIG =
∑W

i=1 ∑H
j=1

√
gx(x)ij

2 + gy(x)ij
2

W × H
(7)

146



Sensors 2021, 21, 4728

MIOSD is defined as:

MIOSD =
∑W

i=1 ∑H
j=1

√
gxx(x)ij

2 + gyy(x)ij
2

W × H
(8)

where gx(x)ij and gy(x)ij are the x- and y-directional gray derivatives at position xij, respec-
tively. gxx(x)ij and gyy(x)ij are the x- and y-directional intensity of the second derivatives at
position xij, respectively. W and H represent the pixel width and pixel height, respectively.

The MIG and MIOSD are defined according to gray gradient, which are supposed to
assess random error sufficiently. However, the other component interpolation bias is not
only related to the gray gradient. Typically, MIG should be large and continue increasing
as the speckle particle size decreases, but this does not mean the smallest speckle particle
size is optimal. Based on the rich research in the DIC field, the optimal speckle size is
3–5 pixels [41–44]. If the speckle size is too small, it leads to image under-sampling, which
causes a large interpolation bias. If the speckle size is too large, the details of the image are
not rich enough, and the contrast is poor, resulting in a large random error.

Considering high-frequency components are the major source of interpolation bias, we
present a new concept called the zero spectrum ratio (ZSR) to quantize frequency spectrum
component. The ZSR is defined as

ZSR =
max[FFT(g)]
sum[FFT(g)]

(9)

where FFT(f) represents the Fourier transform of the speckle pattern, and max[FFT(g)] and
sum[FFT(g)] are the maximum and sum of the frequency spectrum, respectively. The value
of ZSR represents the proportion of the zero-order spectrum, which is designed to be
related to interpolation bias.

To take both the interpolation error and the random error into account, we propose to
combine these two indexes. Because laser speckles have a more uniform distribution of
speckle particles and a smaller difference of the gray standard deviation between individual
speckle particles, we first analyze the speckle particle size and speckle density effects on
the MIG and the ZSR. A speckle density of 100% means that adjacent speckle particles are
in contact with each other.

As shown in Figure 2, we simulated two series of speckle patterns. In series (a),
the speckle size increased from 2 to 14 pixels, and the speckle density remained at 50%.
In series (b), the speckle size was unchanged, but the speckle density decreased from
80% to 20%. Although real speckle patterns for surfaces could have significantly different
appearances [45], this simple model was used to illustrate the proposed quality assessment
criterion, then real experiment speckle patterns were applied to ensure its validation.

Figure 2. Simulated speckle patterns with (a) different speckle sizes and (b) different speckle densities.

Figure 3a,b give the results of the speckle pattern series (a) and (b), respectively.
We found that the values of MIG and ZSR undergo opposite changes with the speckle size
increasing or the speckle density decreasing. We propose a new assessment criterion: the
speckle pattern quality is higher when the normalized MIG and normalized ZSR are closer
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to the same value, which can also be understood as finding the intersection of the MIG
and ZSR curves. Thus, neither MIG nor ZSR is too big, balancing the interpolation bias
and random error. Based on this idea, a new parameter combining the MIG and the ZSR,
named CMZ, is defined as

CMZ =
∣∣MIG′ − ZSR′∣∣ (10)

MIG′ =

⎧⎨
⎩

1 If MIG > 35
MIG−5

30 If 5 < MIG < 35
0 If MIG < 5

(11)

ZSR′ =

⎧⎨
⎩

1 If ZSR > 0.08
ZSR−0.01

0.07 If 0.01 < ZSR < 0.08
0 If ZSR < 0.01

(12)

where MIG′ and ZSR′ are the normalized MIG and normalized ZSR, respectively. The ranges
of MIG and ZSR need to be determined in advance. Considering the limiting case, the den-
sity and the size of speckle were set to be 100% and 1 pixel, respectively, and the corre-
sponding MIG was 35. Thus, we set the MIG range to be 0–35, ignoring the exceeding part.
Similarly, in the limiting case where the densities were set to be 20% and 85%, the corre-
sponding ZSR values were 0.0817 and 0.011, respectively, where the size of speckle was
2 pixels. Thus, we set the ZSR range to be 0.01–0.08. We concluded that the quality of the
speckle pattern was higher when CMZ was closer to zero.

 

Figure 3. Assessment results of speckle patterns with (a) different speckle sizes and (b) different
speckle densities.

4. Experimental Verification

4.1. CMZ Assessment Criterion

To verify the effectiveness of the proposed assessment criterion based on the CMZ,
experimental speckle patterns at different defocusing degrees, exposure times, and surface
roughness were evaluated, and results were compared with the MIG and the MIOSD.
As shown in Figure 4a, the object was irradiated by a laser beam, and then the surface
of the object formed bright spots and dark spots due to coherent subwaves interference.
The defocused speckle pattern was captured by a charge-coupled device (CCD) camera
and analyzed by the computer. Figure 4b shows the experimental setup. The laser power
of the He-Ne laser was 20 mW, and the wavelength was 632.8 nm. Defocusing degree
related to speckle particle size was controlled by focal length. Exposure time related to gray
contrast was adjusted through camera software. In order to ensure different roughness at
different measurement locations, uniform white paint was sprayed on the surface of the
specimen, and then sandpaper was used to polish different parts in different degrees.
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Figure 4. Experimental setup: (a) schematic of the experimental setup and (b) physical diagram of
experimental setup.

The quality of the speckle pattern can be affected by factors: the defocusing degree,
the camera exposure time, and the measurement location. The defocusing degree and the
camera exposure time are related to speckle particle size and gray contrast, respectively,
and the different measurement locations are due to the roughness difference.

During speckle pattern acquisition, the defocusing degree was adjusted gradually, and
the exposure time of the camera was then slightly adjusted around the value 8000 to retain
the gray contrast. Twenty-eight speckle patterns (Group A: A1–A28, size: 256 × 256 pixels)
with increasing speckle sizes were obtained, which are partially shown in Figure 5. In order
to obtain deformed images with 0–1 pixel translation, sub-pixel shifted operation along
the x-direction in the Fourier domain [34] was done. The step of translation was set to be
0.1 pixels. Decorrelation caused by big displacement or tilt should be avoided to ensure
the validation of correlation calculation. Based on the DIC algorithm described in [46], the
displacements of 81 points of each deformed image were calculated, and then the curves of
the mean bias errors and the standard deviations of the displacements were obtained.

Figure 5. Speckle patterns collected at different defocusing degrees.

The average speckle size curve of the speckle pattern in group A is shown in Figure 6a.
Results curves of MIG, MIOSD, ZSR, and CMZ assessment criteria are shown in Figure 6b.
When sub-pixel translation is imposed to be 0.3 pixels, mean bias error curve of calculated
displacement with different CMZ values is shown in Figure 6c, and standard deviation
curve of calculated displacement with different CMZ values is shown in Figure 6d. The
MIG and MIOSD values decreased as the speckle size increased. Conversely, the ZSR
values increased as the speckle size increased. According to Figure 6b, the values of the
proposed CMZ assessment criterion decreased first and then increased. Based on our
research, the smaller the value of CMZ was, the higher the speckle pattern quality was.
Thus, speckle patterns A15–A20, whose CMZ values were less than 0.3, were superior to
the other patterns. As shown in Figure 6a, the speckle sizes of speckle patterns A15–A20
were between 3 and 5 pixels, which are consistent with the optimal speckle size during
the DIC calculation. Results of Figure 6c,d verified that quality of the speckle pattern was
higher when CMZ was closer to zero. Furthermore, standard deviation curve was relatively
flat when CMZ was small.
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Figure 6. Results of speckle patterns in group A: (a) speckle size curve, (b) assessment criteria,
(c) mean bias errors with different CMZ values, and (d) standard deviations with different CMZ
values.

The curves of the mean bias errors and standard deviations calculated with the subset
of 31 × 31 pixels are shown in Figure 7a,c, respectively. The curves of the mean bias
errors and standard deviations calculated with the subset of 61 × 61 pixels are shown in
Figure 7b,d, respectively. The mean bias errors and standard deviations both decreased
first and then increased, and the displacement calculation errors of pattern A19 were
the lowest. The results were consistent with the results predicted by the proposed CMZ
criterion. Furthermore, calculation with the subset of 61 × 61 pixels performed better.
Therefore, choosing a larger subset can improve the calculation accuracy.

 
Figure 7. (a) Mean bias errors and (b) standard deviations of speckle patterns displacements in group
A calculated with the subset of 31 × 31 pixels. (c) Mean bias errors and (d) standard deviations of
speckle patterns displacements in group A calculated with the subset of 61 × 61 pixels.

To obtain speckle patterns with different gray contrasts, the defocusing degree was
unchanged, and the exposure time of the camera was adjusted from 1000 to 16,000 gradually.
Sixteen speckle patterns (Group B: B1–B16) were obtained, which are partly shown in

150



Sensors 2021, 21, 4728

Figure 8, and then the same translation operation and displacement error calculation were
performed.

Figure 8. Speckle patterns collected at different camera exposure times.

The result curves of different assessment criteria are shown in Figure 9a. The MIG
value increased and then decreased as the exposure time increased. According to the
greater MIG principle, speckle patterns B13–B15 had stronger abilities to resist noise, which
are supposed to have higher calculation accuracies. However, the proposed CMZ principle
considers that the qualities of speckle patterns B6–B10 were superior. The trend of MIG
and CMZ both indicate that the speckle pattern quality will decline when overexposure
or underexposure because of decline of gray contrast. Mean bias error curve and stan-
dard deviation curve of calculated displacement with different CMZ values are drawn in
Figure 9b,c, respectively. Mean bias error increased when CMZ value increased. Standard
deviation and CMZ value also showed synchronous growth.

 
Figure 9. (a) Results of speckle patterns in group B: (a) assessment criteria, (b) mean bias errors with
different CMZ values, and (c) standard deviations with different CMZ values.

The curves of the mean bias errors and standard deviations calculated with the subset
of 31 × 31 pixels are shown in Figure 10a,c, respectively. The curves of the mean bias
errors and standard deviations calculated with the subset of 61 × 61 pixels are shown in
Figure 10b,d, respectively. The mean bias errors and standard deviation both decreased first
and then increased, which verified that the contrast of speckle patterns will be reduced due
to overexposure or underexposure, causing decline of speckle pattern quality. According
to displacement calculation errors, pattern B6–B10 perform better, which was closer to the
result predicted by the proposed criterion CMZ. Similarly, calculation with the subset of
61 × 61 pixels performed better.
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Figure 10. (a) Mean bias errors and (b) standard deviations of of speckle patterns displacements in
group B calculated with the subset of 31 × 31 pixels. (c) Mean bias errors and (d) standard deviations
of speckle patterns displacements in group B calculated with the subset of 61 × 61 pixels.

To further evaluate the proposed CMZ assessment criterion, we changed the measure-
ment locations to acquire speckle patterns C1–C25 with nearly the same gray contrasts and
speckle sizes but different speckle particle location distributions due to the object surface
roughness, as partially shown in Figure 11. The mean bias error and standard deviation
curves calculated with the subset of 31 × 31 pixels are shown in Figure 12a,b, respectively,
and those calculated with the subset of 61 × 61 pixels are shown in Figure 12c,d, respec-
tively. The results of different speckle patterns were similar, and no trend was evident.

The results for different assessment criteria are shown in Figure 13. The MIG, MIOSD,
ZSR, and CMZ values all remained stable, which is consistent with the displacement
calculation results presented in Figure 12. Thus, the surface roughness of the object has
little effect on its speckle pattern quality. High laser speckle pattern quality depends on
suitable speckle size and gray contrast, which can be controlled by defocus degree and
exposure time and so on. When the gray contrast is unchanged and the speckle size keeps
within a suitable range, the displacement calculation accuracy of the laser speckle pattern
remains stable with different speckle particle distributions.

Figure 11. Speckle patterns collected at different measurement locations.
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Figure 12. (a) Mean bias errors and (b) standard deviations of speckle patterns displacements in
group C calculated with the subset of 31 × 31 pixels. (c) Mean bias errors and (d) standard deviations
of speckle patterns displacements in group C calculated with the subset of 61 × 61 pixels.

Figure 13. Comparison of different assessment criteria.

4.2. Rotation Experiment

Considering the vibration information is obtained from tilt angle, rotation experiments
were first designed to test angle calculation accuracy and further verify the proposed quality
assessment. Besides, different relative distances between the object, the focal plane, and
the sensor plane were adopted, which corresponded to different defocusing degree, so
as to illustrate the relationship between defocusing degree and the angle resolution. The
schematic diagram of the rotation experiment is shown in Figure 4a. A square measured
plate was placed on a rotary platform, and the position accuracy was 2′. The plate was
irradiated by a laser beam, and then the defocused speckle pattern was acquired by a CCD
camera. The laser power of He-Ne laser was 20 mW, and the wavelength was 632.8 nm.
We conducted four experiments. In two, the measured object was placed behind the focal
plane, and in the other two, the measured object was placed in front of the focal plane, as
shown in Figure 14a,c. In the two experiments with the object in front (shown in Figure 14b
we changed the focal plane by adjusting the focal length slightly and keeping the other
parameters fixed. In the two experiments with the object behind (shown in Figure 14d,
only the location of the object changed. Based on the optimal speckle size determined by
experience, the relative distances were first determined according to Equation (3) to ensure
that the speckle sizes were all around 5 pixels. Next, the exposure time of the camera was
adjusted to ensure a low CMZ value, because a low CMZ value corresponds to a high
quality of the speckle pattern. The four speckle patterns given in Figure 15 are from the
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four different experiments. The speckle sizes and CMZ values of these speckle patterns
were also calculated and are shown. The CMZ value of the third experiment was highest
due to its low gray contrast. The CCD camera was a CP70 1HS M/C (Optronis, Germany).
The physical size of the CCD sensor was 17.536 × 11.782 mm, and the size of the acquired
speckle pattern was 1280 × 860 pixels.

 

Figure 14. (a) Physical and (b) schematic diagrams of the first two experiments. (c) Physical and (d)
schematic diagrams of the last two experiments.

 
Figure 15. Four speckle patterns from the different experiments, their speckle sizes, and their
CMZ values.

As shown in Figure 16, we used an object with a known size, such as a wire or wafer,
to find the focal plane where the acquired image was clearest. The camera magnification
factor was calculated through the real width of the wire or wafer and its corresponding pixel
width. The rotation angle resolution, which was defined as the calculated displacement at
the focal plane when rotating 1′, could be obtained through the magnification factor and the
distance between the object and the focal plane. In the four experiments, we adjusted the
rotation angle to acquire different speckle patterns, and then displacement fields containing
100 calculated points at the focal plane were calculated by normal DIC algorithm. Mean
displacement of each speckle pattern was eventually converted to the measured angle
using Equation (4). The range of the rotation angle was 4’–20’, and the step of rotation was
set to be 2’.
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Figure 16. Physical diagram of focal plane determination in (a) the first two experiments and (b) the
last two experiments.

The measurement parameters and calculated angle resolutions are shown in Table 1.
Comparing experiments 1 and 2, we found that when the distance between the sensor
plane and object was fixed and the object was placed between the focal and sensor planes,
the larger Z1 corresponded to a larger angle resolution. According to experiments 3 and
4, when the magnification was fixed, Z1 was larger, and the angle resolution was higher.
Thus, the results are consistent with the analysis based on Equation (1).

Table 1. Comparison of measurement parameters and calculated angle resolutions.

Experiment
Object at Focus Plane

(Pixels/mm)
M

Z1
(mm)

Z2
(mm)

Angle Resolution
(Pixels/Minutes)

1 36 0.4932 324 150 3.393
2 32 0.4384 313 161 2.913
3 9 0.1233 730 1200 1.800
4 9 0.1233 754 1200 1.971

Notice: (1 pixels/minute = 1 pixels/ π
180×60 rad).

For all rotation angles, the real displacements at the focal plane are plotted as a line
and the calculated displacements are plotted as scatter points in Figure 17, and results of
the different experiments were all in good agreement. The angle resolution was considered
to be the slope of the best fit line to the scatter points.

Figure 17. Comparison of displacement results at different rotation angles.

Table 2 gives the calculated slopes and errors. The calculated slopes were equal to the
desired angle resolution. The mean errors of the displacements were less than 0.04 pixels,
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verifying the effectiveness of the laser speckle correlation method and further verifying
the effectiveness of the CMZ speckle pattern quality criteria. Furthermore, the mean error
and standard deviation of third experiment were the highest, which was consistent with
the largest CMZ value of its speckle pattern. The mean errors of the rotation angle did not
exceed 0.02 min, but the error included correlation calculation errors and calculated errors
of the camera magnification.

Table 2. Comparison of error results from different experiments.

Experiment
Calculated Slope
(Pixels/Minutes)

Displacement at Focus Plane (Pixels) Rotation Angle (Minutes)

Mean Error Standard Deviations Mean Error Standard Deviations

1 3.393 0.023 0.008 0.017 0.0064
2 2.913 0.030 0.012 0.017 0.0042
3 1.800 0.036 0.009 0.020 0.0053
4 1.971 0.021 0.011 0.006 0.0034

4.3. Vibration Experiment

Two real vibration experiments were conducted to further evaluate accuracy of the
laser speckle correlation method. Using the same measurement system, a vibrating beam
was used as the measured object. The vibration signal was passed through the signal
generator, to the amplifier, and finally to the cantilever beam. To ensure that the speckle
sizes were all around 5 pixels, the defocusing degree was determined using Equation (4),
and then the exposure time was adjusted to ensure a low CMZ value to acquire a speckle
pattern with a high quality. The size of the vibrating beam was 235 mm × 10 mm, as shown
in Figure 18. Eight points (A–H) were measured in turn, where the distance from point
A to the fixed end was 50 mm and the interval of the measurement points was 20 mm.
The first experiment is illustrated in Figure 19a. At a distance of 30 mm from the free
end, a simple harmonic excitation was applied to the cantilever beam with a frequency
of 10 Hz, which was close to the first-order natural frequency of the beam. In the second
experiment, which is shown in Figure 19c, the simple harmonic excitation was applied to
point B with a frequency of 30 Hz. One speckle pattern coming from each experiment and
the corresponding CMZ values are given in Figure 19b,d respectively. The laser power
of the He-Ne laser was 20 mW, and the wavelength was 632.8 nm. However, the size of
acquired speckle pattern was set to be 256 × 256 pixels to achieve a high sampling rate.
The sampling rate was 2000 Hz, and the sampling time was 0.5 s. Meanwhile, laser doppler
vibrometry (LDV) with a sampling rate of 40,000 Hz was used to collect the vibration
signals. Finally, the calculated results of the speckle correlation method were compared
with the signal processing results of the Doppler vibrator.

 

Figure 18. Dimension diagram of cantilever beam.
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Figure 19. (a) Physical diagram of the first experiment. (b) One speckle pattern of the first experiment,
its speckle size, and its CMZ value. (c) Physical diagram of the second experiment. (d) One speckle
pattern of the second experiment, its speckle size, and its CMZ value.

Figures 20a and 21a show the frequency spectrum results from the two experiments
obtained by the LDV, and Figures 20b and 21b show the frequency spectrum results from
the two experiments calculated by the laser speckle correlation method. The focus of this
study was the response frequency, so the pixel displacement was not translated into a
physical displacement. The calculated response frequencies of the two methods were in
good agreement, and response frequencies showed no obvious difference at different tested
location. In the frequency spectrum of the first experiment, a primary energy peak at 10 Hz.
Several secondary energy peaks were present at 20 Hz, 30 Hz, 40 Hz, and 50 Hz. The
response frequency error of the laser speckle correlation method increased from 0.02 Hz to
0.1 Hz. Similarly, the second experiment showed primary peak at 30 Hz. Secondary peaks
happened at 90 and 150 Hz, respectively. The response frequency error of the proposed
method increased from 0.06 Hz to 0.3 Hz.

 

Figure 20. Comparison of the frequency spectrum obtained by (a) the LDV signals and (b) speckle
patterns in the first experiment.
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Figure 21. Comparison of the frequency spectrum obtained by (a) the LDV signals and (b) speckle
patterns in the second experiment.

In order to further verify the quality assessment criterion, excitation signal frequency
was kept 30Hz, and defocusing degree was changed to acquire four groups of vibration
laser patterns with different CMZ value. Response frequencies at point G were calculated
and compared. Results were shown in Table 3.

Table 3. Frequency results comparison of different pattern groups.

Patterns Group CMZ Value
Frequency (Hz)

Primary Energy Peak Secondary Energy Peak Secondary Energy Peak

1 0.06 30.01 90.07 150.09
2 0.12 30.03 90.11 150.17
3 0.29 30.06 90.18 150.30
4 0.45 30.19 90.35 150.75

From the results we can see, the frequency error increases with the CMZ value rising,
verifying the effectiveness of the proposed quality assessment criterion.

5. Conclusions

To balance the random error and the interpolation bias, a global assessment crite-
rion CMZ was proposed, which combined the MIG and the ZSR. A CMZ closer to zero
corresponded to a better quality of the speckle pattern and a smaller displacement error.
Considering that the laser speckle has a more uniform distribution of speckle particles, the
simulated speckle patterns with different speckle particle sizes and densities were used to
illustrate the determination of the CMZ criterion.

During the application of laser speckle correlation method, the main influencing
factors include defocusing degree, exposure time and measured location. Experimental
speckle patterns at different defocusing degrees, exposure times and measured locations
were analyzed, and the results validated the proposed assessment criterion using the CMZ.
Defocusing degree affects speckle particle size. The analysis results also further showed
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that the optimal speckle particle size was 3–5 pixels, and the contrast of the speckle patterns
was reduced due to the overexposure, causing a decline of the speckle pattern quality.
Thus, high quality speckle patterns can be guaranteed based on the CMZ criterion.

The resolution and accuracy of the laser speckle correlation method were found to
be related to the distances between the measurement planes. In the experimental setup
stage, a suitable defocusing degree can be determined based on the resolution requirement
and the optimal speckle size, and then other experimental parameters can be determined
according to the CMZ criterion. In rotation experiments, the comparison of the angle
resolution verified the relationship between the resolution and distance, and the accuracy
of the calculated displacement was consistent with the results predicted by the CMZ value.
The frequency spectrum results of the vibration experiments were in good agreement
with the LDV results, which simultaneously verified the effectiveness of the laser speckle
correlation method and the reliability of the experimental setup based on the proposed
CMZ rule. Thus, adopting this experimental setup method can ensure the resolution and
accuracy of the laser speckle correlation method and facilitate its widespread application.
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Abstract: In optical metrology, the output is usually in the form of a fringe pattern, from which a
phase map can be generated and phase information can be converted into the desired parameters.
This paper proposes an end-to-end method of fringe phase extraction based on the neural network.
This method uses the U-net neural network to directly learn the correspondence between the gray
level of a fringe pattern and the wrapped phase map, which is simpler than the exist deep learning
methods. The results of simulation and experimental fringe patterns verify the accuracy and the
robustness of this method. While it yields the same accuracy, the proposed method features easier
operation and a simpler principle than the traditional phase-shifting method and has a faster speed
than wavelet transform method.

Keywords: phase extraction; U-net neural network; warped phase map; fringe pattern

1. Introduction

Optical metrology has been widely used in various areas, such as 3D sensing, machine
vision, intelligent robot control, industry monitoring, and dressmaking. In optical metrol-
ogy, the output is usually in the form of a fringe pattern, from which a phase map can be
determined. Once the phase map has been obtained, it can be converted into the desired
parameters, such as the shape of the object, and in-plane or out-of-plane deformation. For
instance, the fringe projection technique [1–4] is often used to measure the 3D-profile of
objects [2]. When the fringe pattern is projected on a measured free surface, the phase of
the fringe pattern is modulated by the height distribution of the object. A method to extract
the phase map from the deformed fringe pattern is thus needed.

Thus far, many methods for phase calculation have been developed, including tem-
poral phase-shifting [4,5], spatial phase-shifting [6,7], and Fourier transform [8]. The
phase-shifting is a pointwise technique and it is sensitive to noise such as CCD random
noise, environmental vibration, air disturbance, etc. The temporal phase-shifting method
requires four images in one stage, which is unsuitable for real-time measurement, and
the spatial phase-shifting method requires a complex optical path. The Fourier transform
technique, on the contrary, is a global transform method that is hence more tolerant to
noise. However, as the transform is global, an accurate frequency band containing effective
information of the measured object needs to be determined to avoid large calculation er-
rors. Some improvements have been proposed to overcome the shortcoming of the simple
Fourier transform method. A windowed Fourier ridges algorithm [9–11] and a windowed
Fourier filtering algorithm have been proposed to achieve a low standard deviation for local
frequencies and phase distributions in fringe pattern analysis. Morlet wavelet transform
has also been used for phase extraction on different types of fringe patterns [12–14].

In this research, we propose a fringe phase extraction method based on the neural
network. As an important part of machine learning, neural networks have been widely
used in various fields, such as object recognition [15–18], object segmentation [19], and
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speech recognition [20,21]. This method has also been introduced to optical measurement.
Liu et al. employed the backpropagation (BP) [22,23] artificial neural network to directly
build a nonlinear mapping relationship between the gray-gradient of speckle images
before and after deformation, and sub-pixel displacement in the digital image correlation
method. This method avoids the least squares analytical optimal solution of the correlation
coefficient. Horisaki et al. have used support vector regression (SVR) to recover the image
through the scattering layer [24]. This approach enables model-free sensing, where it
is not necessary to know the sensing processes/models. Guan et al. have introduced a
method of grating sub-division based on the radial-basis function (RBF) neural network.
It converts displacement into a digital measure that is transmitted to the microprocessor
of a neural network to obtain the sub-division value. This improves the accuracy of sub-
division and the tracking speed of the displacement [22]. Rivenson et al. have proposed
a holographic image reconstruction method based on the convolutional neural network
(CNN) that can reconstruct the phase and amplitude of images of objects using only a
hologram [25]. Pitkaaho et al. have employed the CNN to focus on automatic distance
calculation in holographic image reconstruction [26]. Wang et al. have proposed a one-step
end-to-end learning-based method for in-line holographic reconstruction that creates a
network called eHoIoNet to avoid phase shifting [27]. Deep-learning based temporal phase
unwrapping (DL-TPU) is introduced by Wei Yin [28], which can substantially improve the
unwrapping reliability compared with multi-frequency temporal phase unwrapping (MF-
TPU). These results show that challenging problems in optical metrology can be overcome
through machine learning, and provide new avenues for image analysis. Shijie Feng et al.
has introduced a machine-learning-based fringe analysis method, which employs two
convolutional neural networks (CNN1 and CNN2) to calculate phase information [29]. For
CNN2, the inputs are the fringe pattern and the background image predicted by CNN1, and
the outputs are the numerator and the denominator, which are then fed into the arctangent
function to calculate phase. Some improvement and simplification have also been made by
them. A micro deep learning profilometry using a single network is presented for high-
speed 3D surface imaging [30]. However, three fringe patterns are needed for correct phase
unwarpping. Haotian Yu et al. has introduced a novel phase retrieval method based on a
deep neural network called FPPnet [31]. The FPPnet only requires one single image and one
single network, and this network is used to achieve prediction of output fringes in the same
period and different periods. Then, the phase calculation and the phase unwrapping can
be achieved by these predicted fringes. However, these methods employ neural network to
obtain intermediate calculation parameters such as numerator or denominator or related
fringe pattern, not directly acquiring phase information. Furthermore, a deep-learning-
based approach is proposed by Sam to extract height information from single deformed
fringe patterns [32]. The fully CNN is trained on a large set of simulated height maps with
corresponding deformed fringe patterns, so phase results rely too much on the complexity
of these simulated height maps.

In this paper, we introduce a one-step deep-learning-based method to extract the
wrapped phase map directly from a single fringe pattern. This method employs the
U-net neural network to directly learn the correspondence between the gray level of
a fringe pattern and the wrapped phase map. Once a stable network model has been
obtained, the wrapped phase map of an arbitrary fringe pattern can be output directly, thus
simplifying the phase extraction further. The mathematics problem is transformed into
image processing problem, developing the advantage of neural network. Meanwhile, the
network can be saved and shared. More and deeper training contributes to the network
generalization ability, so as to solve more complex and different fringe patterns. Besides,
experimental results verified effectiveness on different fringe pattern whether coming from
fringe projection profilometry or interferometer. While it yields the same accuracy, the
proposed method features easier operation and a simpler principle than the traditional
phase-shifting method, and it owns faster computation speed and higher accuracy than
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wavelet transform method. Moreover, the results of simulated and experimental fringe
patterns verify the efficiency and the robustness of the proposed method.

2. Method

2.1. Principle

The U-net is an end-to-end deep neural network that takes an image of any size
(fringe patterns here) as input and outputs a specified image (corresponding wrapped
phase maps here). The process of forward propagation, the training method and output
principle used for the neural network are described in Sections 2.2–2.4, respectively. As our
ultimate goal is to obtain a stable network model with effective parameters, a large amount
of training data, including fringe patterns and corresponding wrapped phase maps, are
needed in advance. Once this stable network model has been obtained, the wrapped phase
map of an arbitrary fringe pattern can be obtained directly. The neural network method
was programmed in Python based on the Tensorflow framework, and run on a desktop
computer equipped with an Intel i5-4460 CPU and a GeForce GTX 1080 graphics card.

2.2. U-Net Neural Network

The size of the input fringe pattern is 512 × 512 pixels and the output maintain the
same size. This network features a contracting path, a transition path and an expansive path.
The contracting path is used to extract features of the fringe pattern, and the expansive
path is applied for converting into corresponding warped phase map. With the deepening
of the contracting layers, low-dimensional features including gray gradient of every pixel
are changed into high-dimensional features including the location and the local gradient.
More layers of each path mean more connection parameters, so as to fit more complex
non-linear mapping relationship.

The principle of the contracting path is the same as that of the CNN [33]. The contract-
ing path includes four repeated down-sampling process. Every down-sampling contains
two convolution blocks and a pooling block. The feature channel doubles every two convo-
lution blocks, and the image dimensions reduce the half after a pooling operation because
the stride is two pixels.

The down-sampling operation is illustrated in Figure 1. As Figure 1 shows, the
convolution kernel shifting stride is (1, 1) along two dimensions. This means that the
convolution kernels shift 1 pixel along the x and y directions each time and multiple with
the image. The convolution consists of a convolution layer and an activation function, and
the principle [34] can be described by Formula (1):

vx,y
i,r2

= f

(
R

∑
r1=1

P−1

∑
p=0

Q−1

∑
q=0

wp,q
i,r2,r1

vx+p,y+q
i−1,r1

+ bi,r2

)
, (1)

where vx,y
i,r2

represents the value of the output at (x, y) for the r2-th feature channel map

of the i -th layer. vx+p,y+q
i−1,r1

represents the value of the result at (x + p, y + q) for the r1-th
feature channel map of the (i − 1) -th layer, and R is the total number of feature channel in
the (i − 1) -th convolution layer. bi,r2 is a common basic term for the r2-th feature channel
map of the i -th layer. wp,q

i,r2,r1
represents the weight of the convolution kernel at (p, q), and

P × Q is the size of the convolution kernels in terms of pixels, which is 3 × 3 in all the
convolution blocks of the contraction path. f represents the activation function, which uses
rectified linear units (ReLUs) [33]. The principle of ReLU is described by Formula (2):

f (x) = RELU(x) = max(0, x), (2)
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Figure 1. Process of down-sampling.

The pooling block employs the max-pooling method, and the region of every pooling
operation is 2 × 2 pixels, which is intended to obtain the maximum pixel value in this small
region. Additionally, the pooling stride is (2, 2) along the x and y directions so as to reduce
the image size by a factor of 2.

The expansive path includes four repeated up-sampling process, and it aims to enlarge
the image and decode the convolution process. The up-sampling operation including a
transposed convolution block, a merge block and two convolution blocks is illustrated in
Figure 2. This operation doubles the size of the image and reduces the number of feature
channel by half.

The transposed convolution operation is identical to the convolution operation, but it
enlarges the image from the previous block. Some zero-value pixels between neighboring
image pixels are inserted, and a convolution operation on the up-sampled image is em-
ployed. The stride of the transported convolution layer is 2 × 2 pixels, which means that
it inserts one zero pixel between neighboring image pixels, doubling the image size. The
convolution kernel size in the transposed convolution layer is also 3 × 3 pixels.

The merge block is an image mosaic process. Once the result of the transposed
convolution layer has been obtained, it is spliced into the feature image of the corresponding
procedure in the contracting path. The principle of two convolution blocks is the same as
the down-sampling operation, but it reduces the number of feature channel by half.

All the convolution kernel values are initialized with random numbers from a trun-
cated Gaussian distribution and the values of biases are initialized as constant.

The whole process of network propagation is shown in Figure 3. This process features
a contracting path (left), a transition path and an expansive path (right). The size of the
input fringe pattern is 512 × 512 pixels. After once down-sampling operation, the size of
the image is changed to 256 × 256 pixels and the number of feature channels to 64. By
repeating this process four times, the size of the image is reduced to 32 × 32 pixels and the
number of feature channel changes to 512.

The transition path is consisted of two convolution blocks. Additionally, the feature
channel doubles after two convolution blocks. The size of the image maintains 32 × 32
pixels and the number of feature channel changes to 1024.

Then, the result is subjected to the expansive path including four repeated up-sampling
operation. The size of image is 64 × 64 pixels, 128 × 128 pixels, 256 × 256, and 512 × 512
pixels after each up-sampling when the numbers of feature channels are 512, 256, 128, and
64, respectively. Finally, a convolution operation is applied, and the size of the convolution
kernel is 1 × 1 pixels. The size of the image maintains 512 × 512 pixels, and the number of
feature channel changes to 256.

166



Sensors 2021, 21, 1664

 

Figure 2. Process of up-sampling.

2.3. Network Training

Note that the warped phase results are periodic, when 1 output channel and MSE
loss function are used, the result is easily restricted to the local optimal solution, where all
output values tend to be 0. Thus, this problem is chosen to be converted into a classification
problem. The result of the network is a three-dimensional matrix, and the size is 512, 512,
256 along x, y, and feature channel directions, respectively. For every pixel, the values
along feature channel direction represent the possibility of being 0 to 255. A softmax
function is used to reset the result to meet the requirement of probability distribution, so
that cross-entropy [35] known as multi-class log loss can be used as loss function.

When the output of a pixel along the feature channel direction is q1, q2, · · · qn, the
result of the softmax function can be described by

softmax(q)i =
eqi

∑n
j=1 eqj

, (3)

where n represents the number of feature channels, and there is 256.
The probability distribution of reset q meets the following condition:

∀i; qi ∈ [0, 1];
n

∑
i=1

qi = 1, (4)
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The ground truth g of each pixel supposed to be -pi to pi is scaled up to between 0
and 255. The probability distribution of training label p is given according to the formula:

∀i; pi=g = 1; pi �=g = 0, (5)

Cross-entropy is defined by [35]

H(p, q) = −
w

∑
x=1

h

∑
y=1

n

∑
i=1

pi(x, y) log qi(x, y), (6)

where p represents the training label and q represents the calculated result. The values of p
and q are explained in the next section. n represents the number of feature channels, and
w, h represents the width and height of the fringe pattern, respectively. The smaller the
cross-entropy, the higher the probability that the actual and the calculated results are closer.

 

Figure 3. Process of network propagation.

The backpropagation algorithm [36] is used to back-propagate the error into the
network, and adaptive moment estimation (Adam) [37]-based optimization is used to
optimize the weights of convolution kernels(w) and common basic terms(b) of all layers.
An input is first propagated through the network. Then, the difference between the
calculated and the desired output is backpropagated from the output layer to the first
layer of the network, thereby adjusting the network weights in the opposite direction of
the derivative of the network error with respect to each individual network weight. By

168



Sensors 2021, 21, 1664

repeating this procedure multiple times for each data in a training set, the network can be
taught to map the inputs on the correct outputs. The batch size was 10, and the epoch was
1000. The learning rate was 10−4.

2.4. Output Principle

The values of each pixel along feature channel direction represent the possibility of
being 0 to 255. As Figure 4 shows, the output is the position corresponding to maximum
possibility, so the output value is between 0 and 255. Note that the number of feature
channels in the last convolution operation can choose more than 256, corresponding to
higher resolution and more calculated time. At last, the output is restored to between -pi
and pi.

 

Figure 4. Output schematic.

3. Verification of Method

3.1. Simulation Image

Numerical simulations were carried out to test the performance of the proposed
algorithm. From simple to complex, we used three equations to simulate fringe patterns,
and the size of patterns was set to 512 × 512 pixels.

The gray level of the first kind of patterns was determined by Equation (7). A total
of 1600 fringe patterns were obtained, in which the fringe number of a pattern was set
between three and 44, and the fringe interval decreased gradually.

I(t, x, y)= 255 × cos(((44 × pi/512 − 3 × pi/512)/1600 × (t − 1)+3 × pi/512))× y),t = 1, 2, · · · 1600; y = 1, 2, · · · 512, (7)

where t represents the series number of the pattern and y represents width in pixels.
The second and third kinds of fringe patterns were generated according to Equations

(8) and (9). The 1600 fringe patterns with different fringe shapes were obtained through
image cropping and rotation from a fringe pattern:

I(x, y) = 50 + 50 × cos(peaks(1000) + 20 × pi/1000 × y),y = 1, 2 · · · 1000, (8)

I(x, y) = 50 + 50 × cos(50 −
(
(x − 200)2 − (y − 200)2

10, 000

)
), x = 1, 2, · · · 1000; y = 1, 2, · · · 1000, (9)

where x represents height in pixels and y represents width.
Figure 5 shows some simulation patterns. (a), (b), and (c) represent fringe patterns

generated according to Equations (7)–(9), respectively. Of all simulation patterns, 100 fringe
patterns were selected to evaluate the trained network and the rest were used to train the
model. The gray level of the fringe patterns was set as the input to the network, and the
wrapped phase data calculated by four-step phase-shifting method were set as the output.
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Figure 5. Simulated fringe patterns.

3.2. Experimental Image

The fringe projection technique is often used to determine the 3D-profile of an object.
When the fringe pattern is projected on a measured free surface, its phase is modulated by
the height distribution of the object. We used the fringe pattern captured from the fringe
projection experiment to verify the ability of the neural network to extract the phase map.
Figure 6a,b show schematic layout and physical diagram of the experiment, respectively.

 
Figure 6. Fringe projection experiment: (a) Schematic layout; (b) physical diagram.

The optical path adopted oblique projection and vertical shooting. The digital fringe
projector chosen was Vivitek-D5158HD at a resolution of 1920 × 1280 pixels. The camera
used was the Basler ace 1600-20 g, with a resolution of 1600 × 1200 pixels. The optical axis
of the projection and the receiving end intersected at point O. Moreover, the camera and
the digital fringe projector were at the same height L. Due to modulation by the object’s
height, light that was supposed to obtain at point B was cast on point E, but the light point
recorded by the camera was A. Finally, the height information of the object was recorded
in the fringe pattern.

A 1-mm-thick disk was chosen as the measurement object. The position and angle of
the disk were altered to obtain different fringe patterns. To obtain a sufficient number of
images to meet the big data requirement of network training, such data extension as image
cropping, translation, and rotation were used. One thousand fringe patterns were obtained.
Figure 7 shows one of these and its corresponding phase-shifting fringe patterns.
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Figure 7. A fringe pattern from the disk experiment and its corresponding phase-shifting fringe patterns.

Another complex object, a facial mask from opera, was measured, as shown in Figure 8.
The same operations were performed as before to yield another 1000 experimental patterns.

 
Figure 8. A fringe pattern from the mask experiment and its corresponding phase-shifting fringe patterns.

Michelson interferometry is widely used to measure out-of-place displacement. An
MI-based measurement system was setup to obtain different interferograms, and Figure 9
shows a schematic drawing of the measurement system. A light beam was emitted from the
He–Ne laser generator, and expanded as parallel light beams after going through a spatial
filter and convex lens. The parallel light beams were then divided into two identical parts by a
beam splitter (BS), and one each was introduced to the reference arm and the objective arm. In
the objective arm, the light beam propagated onto the surface of the object and was reflected.
The reference arm had a reflector coupled with a PZT used for phase-shifting. Finally, two
reflected light beams were returned to the BS and interference onto the surface of a CCD. The
phase of the captured interferogram recorded the out-of-place displacement information of the
object. By changing the fringe interval or the position of the reflector, 100 interferograms were
obtained directly, and the other 900 interferograms were obtained through data extension.
Figure 10a,b show physical diagram and some interferograms, respectively.

Figure 9. The schematic drawing of the measurement system.

The 100 fringe patterns from the fringe projection experiment and 100 interferograms
were selected to evaluate the trained network, and the remainder was used to training the
model. During the training, the wrapped phase dataset as the output of the neural network
was calculated by the four-step phase-shifting method.
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Figure 10. (a) Physical diagram. (b) Interferograms.

4. Results and Discussion

4.1. Computation Accuracy
4.1.1. Results on Simulation Image

The 100 simulation fringe patterns were used to test the accuracy and robustness of
the method. Figure 11 shows some simulated fringe patterns and corresponding calculated
wrapped phase maps. Figure 11b was calculated by the four-step phase-shifting method
and Figure 11c was obtained through the trained neural network. The results show that
the two types of measurement aligned well, and patterns with different fringe intervals and
types yielded the correct values. In order to further illustrate the accuracy of our proposed
method, wavelet transform method was used to make comparison. The two-dimension
wavelet transform was implemented according to approach proposed by Wang [38], and the
window-modifying parameter chose to be 2. The error maps coming from different methods
are shown in Figure 11d,e, respectively. The whole error level verified the high accuracy.

To evaluate the accuracy of this method, we defined two types of error: systematic
error (E) and standard deviation error (S) [31].

E is defined as

E =
1
N

1
M

M

∑
j=1

N

∑
i=1

∣∣∣djical
− djireal

∣∣∣, (10)

where djireal
represents the wrapped phase data of the i-th pixel in the j-th calculated image,

and djical
represents the calculated phase data of the i-th pixel in the j-th calculated image,

which was also warped. M represents the number of calculated images, and N represents
the number of pixels in an image. S reflects the average error, and its best possible score
was zero.
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S is defined as

S =

√√√√(
1
N

1
M

M

∑
j=1

N

∑
i=1

(djical
− djireal

− E)2), (11)

where S reflects the deviation in the measured displacement corresponding to the mean
value, and has is related to random error.

For the phase data of the simulation fringe patterns, the value of E was 0.03 rad and
that of S was 0.07 rad.

Figure 11. (a) Simulated fringe patterns, wrapped phase maps calculated from (b) four-step phase
shifting method, and (c) neural network, and corresponding error maps from (d) wavelet transform
method, and (e) neural network.

4.1.2. Results on Experimental Image

The 100 fringe patterns obtained from the experiment on fringe projection were used
to test the accuracy and the robustness of the method. Figure 12 shows some patterns and
their results of wrapped phase maps. The patterns in Figure 12a were chosen from different
projection experiments that used an empty background, a disk, and different parts of a
mask as measured object. One hundred interferograms were also used to test the accuracy
and the robustness of the method. Some interferograms and their wrapped phase map
results are shown in Figure 13. The results shown in Figures 12 and 13b were calculated by
the four-step phase-shifting method, and those shown in Figures 12 and 13c were obtained
through the trained neural network. Through the comparison, we see that the results of
the two methods were consistent. They also show that both experimental fringe projection
patterns and interferograms yielded the correct results, and verified the robustness of the
trained neural network and the feasibility of the machine learning method. Additionally,
error maps are presented in Figure 12d,e and Figure 13d,e. Through contrast, errors of our
proposed method were reduced obviously, demonstrating its improved performance in
measuring complex objects under environmental noise. Thus, the proposed method owns
higher noise resistance ability compared with wavelet transform method.
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Figure 12. (a) Experimental fringe patterns, wrapped phase maps calculated from (b) four-step
phase-shifting method, and (c) neural network, and corresponding error maps from (d) wavelet
transform method, and (e) neural network.

Figure 13. (a) Interferograms, wrapped maps calculated from (b) four-step phase-shifting method,
and (c) neural network, and corresponding error maps from (d) wavelet transform method, and (e)
neural network.

By referring again to the results of calculation of the four-step phase-shifting method,
we used E and S to evaluate the accuracy of the experimentally obtained fringe pattern. For
the wrapped phase data of the experimental fringe patterns, the value of E was 0.10 rad
and S was 0.08 rad. For the wrapped phase data of interferograms, the value of E was 0.22
rad and S was 0.24 rad. The results verified the precision of this trained neural network
and the accuracy of the learning-based method, as well as the system’s ability to resist
environmental noise. We also see that with decreasing quality of the fringe pattern, error
increased.

4.2. Computation Efficiency

In order to illustrate the computation efficiency of the proposed method, the wavelet
transform method was used to make comparison, which also only needed a single fringe
pattern. The wavelet transform method was also programming using python language. 10
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simulation patterns, 10 fringe projection patterns and 10 interferograms were calculated,
respectively, and the values of E and S were shown in Table 1. The average calculated time
of one pattern were recorded in Table 2.

Table 1. E and S of the proposed method and wavelet transform method.

Value E(rad) S(rad)

Patterns Simulation
Fringe

Projection
Interferograms Simulation

Fringe
Projection

Interferograms

The proposed method 0.03 0.10 0.22 0.07 0.08 0.24

Wavelet transform
method 0.05 0.15 0.24 0.08 0.14 0.29

Table 2. Calculated time of the proposed method and wavelet transform method.

Time (s) Simulation Patterns
Fringe Projection

Patterns
Interferograms

The proposed method 0.069 0.066 0.071

Wavelet transform method 1.154 3.152 2.850

From Table 2, we can see, once the neural network was determined, the calculated
time of the neural network method have no matter with the fringe pattern quality, only
depending on the network structure and the input size. Under the same accuracy, the
calculated speed of the proposed method is 20 times faster than the wavelet transform
method.

4.3. Discussion

From Figure 12c, we find that different measured objects can yield correct results
regardless of the change in the position or the angles of objects. Figure 13c shows that this
trained neural network can be applied to interferograms with lower pattern quality. To
verify the network’s ability to handle more complex fringe patterns with different shapes
and intervals of fringes, some fringe obtained from such data extensions as image extension
and rotation were calculated, and consistent results were obtained as shown in Figure 14.
The results of Figure 14 further verify the robustness of this trained neural network.

 
Figure 14. Calculated wrapped phase maps from (a) four-step phase-shifting method, and (b) neural
network.

This learning-based method is an improving process. The more different fringe
patterns are learned, the more complex model can be calculated. A sufficient amount of big
data can support this neural network to adapt to all kinds of fringe patterns. Different fringe
patterns verified its precision with the four-step phase-shifting method, however, this end-
to-end neural network only needs one original fringe pattern to obtain the corresponding
wrapped phase map.
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This method requires a considerable amount of training data, which is time-consuming
in data preparation. This training can be a continuous process. Once a batch of fringe
patterns has been trained, the obtained neural network can be saved. The next batch of
images can then be trained on the saved neural network, which can significantly reduce
the time needed for training.

5. Conclusions

In this paper, we proposed a fringe wrapped-phase map extraction method based on
the U-net neural network that can obtain the wrapped phase map directly from a fringe
pattern. The results of simulated and experimental fringe patterns verified the efficiency
and the robustness of this method. At the same accuracy, the proposed method boasts easy
operation and a simple principle compared with the traditional phase-shifting method and
owns faster speed than wavelet transform method.
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Abstract: Coatings or films are applied to a substrate for several applications, such as waterproofing,
corrosion resistance, adhesion performance, cosmetic effects, and optical coatings. When applying
a coating to a substrate, it is vital to monitor the coating thickness during the coating process to
achieve a product to the desired specification via real time production control. There are several
different coating thickness measurement methods that can be used, either in-line or off-line, which
can determine the coating thickness relative to the material of the coating and the substrate. In-line
coating thickness measurement methods are often very difficult to design and implement due to the
nature of the harsh environmental conditions of typical production processes and the speed at which
the process is run. This paper addresses the current and novel coating thickness methodologies
for application to chromium coatings on a ferro-magnetic steel substrate with their advantages and
limitations regarding in-line measurement. The most common in-line coating thickness measurement
method utilized within the steel packaging industry is the X-ray Fluorescence (XRF) method, but these
systems can become costly when implemented for a wide packaging product and pose health and
safety concerns due to its ionizing radiation. As technology advances, nanometer-scale coatings are
becoming more common, and here three methods are highlighted, which have been used extensively
in other industries (with several variants in their design) which can potentially measure coatings
of nanometer thickness in a production line, precisely, safely, and do so in a non-contact and non-
destructive manner. These methods are optical reflectometry, ellipsometry and interferometry.

Keywords: coating thickness measurement; chromium; steel substrate; optical metrology

1. Introduction

1.1. Background of Functional Coatings, Applications, and Coating Thickness Methodologies

When applying a coating to a substrate, it is important to consider whether the mea-
surement technique for coating thickness is sensitive in the thickness range required by the
coating specification, as the thickness of a coating is one of the key variables in determining
the effectiveness for its given function [1]. Coating weight, and hence thickness specifica-
tions, is chosen for optimum performance with regards to a particular application and it is
common that under-coating and over-coating can both lead to negative effects [2]. Coatings
are typically important for waterproofing applications [3], corrosion resistance [4,5], adhe-
sion performance [6,7], aesthetic effects [8], painting applications, and several more needs.
There are many different methodologies for monitoring coating thickness and each method
is usually specific for an application dependent on the substrate and coating materials.
There are several reported methodologies for thin film characterization for application
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in the photonics industry [9], metal finishing industry [10,11], medical industry [12–14],
and semi-conductor industry [15,16]. The successful monitoring of coating thickness can
produce results such as creating a product to the intended specification for the customer,
cost savings resultant from the prevention of material wastage, and a greater yield output
from the implementation of in-line control.

Coating thickness test methods are split into two main categories, destructive and
non-destructive measurement [10]. There are also other factors to consider when applying
a proposed method to a fast-paced production setting with a harsh environment. There are
contact and non-contact coating thickness measurement methods which can be used for
specific coating and substrate applications. A contact method for this application would
be unfeasible, as the production line is continuous in nature, and these methods may
cause damage to the product or even the production process. The need for high-speed
measurement rules out several other methods such as X-ray Photoelectron Spectroscopy
(XPS) and Transmission Electron Microscopy (TEM) [17]. Most accurate methods, such
as XPS and TEM, require sample preparation [17], making them unfeasible for in-line
measurement. Another requirement for this application is that the measurement method
must have the ability to measure coating thicknesses under 50 nanometers in thickness.
Although there are other important factors to consider for the measurement methods, these
factors have been considered a priority for this application.

1.2. Background of Electrolytic Chromium Coated Steel (ECCS)/Tin Free Steel (TFS)

This review emerges from a requirement to measure chromium coatings on a steel
substrate passing through a production line running at full speed, which can be more
than 6 m s−1. For this application, metallic chromium (Cr) is electroplated onto both the
top and bottom surfaces of a stainless-steel substrate in a series of chromium baths, this
layer then passivates to form a chromium oxide (Cr2O3) layer. This product is widely
known as ECCS or TFS, and its primary function is for the steel packaging industry. ECCS
is used in many applications such as food and beverage containers, personal hygiene
products, industrial packaging products and paint containers, as well as containers for gift
products [18]. Steel packaging is highly recyclable and offers a long shelf-life which makes
it a highly sustainable packaging solution, both for the present and the future [19]. Figure 1
illustrates the typical coating structure of ECCS.

Figure 1. On-line ECCS layer structure for packaging steel. ECCS comprises a steel substrate, a
metallic chromium layer, a chromium oxide layer and a Dioctyl Sebacate (DOS) oil layer. ECCS
was developed in the 1980s for the packaging market, providing cost savings in comparison to
tinplated packaging products as ECCS requires a much thinner coating to provide similar corrosion
protection [20]. The steel substrate for this application is typically less than 0.5 mm in thickness
and varies with customer specifications. The total chromium layer for this application (summation
of both the metallic and oxide layers) has a maximum thickness of 50 nm and again varies with
customer specifications, but the thickness of these coatings must also comply to European standards,
EN 10202:2001, to ensure product quality requirements [21].

180



Sensors 2021, 21, 3340

1.3. Developments and Challenges in ECCS/TFS

The traditional ECCS manufacturing process utilizes Cr (VI) compounds in the pas-
sivation process of the steel. These Cr (VI) compounds are highly oxidizing substances
which are easily reduced to Cr (III) compounds [18]. Unfortunately, with Cr (VI) com-
pounds, there have been several studies that indicate their high toxicity compared to Cr
(III) compounds in humans and animals, causing allergenicity and carcinogenicity through
ingestion, dermal contact, and inhalation [22]. High concentrations of Cr (VI) have been
found in US tap water, which may be resultant from the discharge of steel, pulp, metal-
plating, and leather-tanning facilities, as well as through erosion of soil and rock [23–25].
REACH (Registration, Evaluation, Authorization and Restriction of Chemicals) legislation
require the withdrawal of the use of chromium (VI) compounds due to safety concerns [18],
which requires the steel packaging industry to develop new substrate variants [20]. One
of the most recent developments in this area is Trivalent Chromium Coating Technology
(TCCT), which is based on a chromium (III) process [6,26].

1.4. Continuous In-Line Chromium Coating Thickness Measurement

In addition to the ECCS application, thin chromium and chromium oxide films have
been studied in several other applications, such as electrode materials for solar energy
conversion and electrochromic windows [27], masking for lithography [28], and improve-
ment of adhesion to transparent substrates [29]. The overall aim of this research is to
investigate current and potentially novel in-line coating thickness measurement methods,
applicable to chromium coatings on a steel substrate within a steel production setting,
which could potentially be used for other applications highlighted above, or even other
thin film coatings, with the following requirements:

• Non-destructive;
• Non-contact;
• Ability to measure nanometer coating thickness;
• High speed measurement for a continuous production setting;
• Feasibility for measuring multilayer coating structures;
• Feasibility of the methodologies in terms of the substrate material and coating material.

This research has been driven by a need for a new in-line chromium coating thickness
measurement method for ECCS and TCCT coatings for packaging steels. The most common
in-line coating thickness test methods for this application are based on X-ray Fluorescence
(XRF) methods [30] however, these systems can become extremely costly, especially when
implemented for a wide ECCS product, and impose health considerations, as they involve
ionizing radiation. In terms of chromium thickness measurement, there is very little
literature for an in-line measurement technique, except from similar application cases
implementing several variants of ellipsometry [31–36]. Here, we examine the potential
methods for in-line coating thickness measurement methods for ECCS and TCCT [33],
and includes not only the measurement of the thin metallic chromium layer, but also the
chromium oxide and DOS oil layers [31,32]. Therefore, this article aims to review potential
methods for the in-line measurement of nanometrically thin chromium layers on a steel
substrate for packaging applications, which could potentially be implemented into other
industries. This review will briefly cover the operating principles of traditional, offline,
and potentially novel in-line coating thickness measurement methods and summarize the
advantages and limitations of these methodologies. Development of an accurate in-line
coating measurement system would determine the precise coating thickness, removing the
need for over-plating (excess electrical current), and consequently providing both cost and
environmental benefits.

2. Traditional Coating Thickness Test Methods

Traditional coating thickness test methods are well known techniques that have been
used previously and currently to measure coating thickness in several applications.
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2.1. Coulometry

Coulometry is a destructive method in which the coating weight is measured by
stripping the coating off the substrate and a mass per unit area relative to the coating
thickness is calculated [10,37,38]. This method uses the reverse method of the electroplating
process used to deposit coatings and the measurement of the coating is calculated using an
electrolysis cell which contains electrolyte specifically designed for stripping the intended
coating [38]. Constant current runs through the test cell and strips the coating (as the
coating surface acts as the anode). As the current and surface area remains constant, the
coating thickness can be calculated relevant to the time taken to strip the coating off the
substrate. This method is very effective for electrically conductive coatings on a conductive
substrate [10]. Schneider et al. [37], conducted a study to compare coulometry and optical
reflectometry for thickness determination on titanium oxide films, which lead to the
potential further study of an in situ spectroelectrochemical cell for this particular application
This method has high measurement accuracy, is a low-cost system, can measure multilayer
coatings and can be useful for a wide range of offline coating thickness applications. As
this is a destructive process, this method is not feasible for in-line measurement. Figure 2
illustrates an electrochemical cell used in coulometry.

Figure 2. Photograph of an electrochemical cell used in coulometry. The tip of the cell has direct
action with the coating structure, with a crater formed on dissolution on the sample. (Reprinted
from [37], Copyright © 2011 John Wiley & Sons, Ltd.).

2.2. Beta Particle-Backscattering

For the Beta particle backscattering method, the sample under test is exposed to
beta particles from a beta emitting isotope. Particles are directed though an aperture
onto the sample with the coating to be measured. A percentage of these particles are
backscattered back through an aperture into a Geiger–Muller tube [10]. Upon interaction of
the backscattered particles with the gas within this tube, an ionization event occurs which
is detected by the tube electrodes, held at a high potential difference, forming an electrical
pulse which is then electronically counted. Materials of low atomic number backscatter at
a lower rate than materials with a high atomic number. The change in the rate of electrons
backscattered is a measure of the coating thickness. However, for this method to work
effectively, the atomic number difference between the coating and the substrate must
differ by at least 5 atomic units. Chromium’s elemental atomic number is 24, whereas
steel, predominantly iron, has an atomic number of 26, so the atomic number difference
between these elements is only 2, rendering this method not feasible for this measurement
application. Figure 3 illustrates the operating principle of the beta-backscatter method.
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Figure 3. Operating principle of Beta-backscatter method. (Adapted from [10], Copyright © 2001
Published by Elsevier Inc.).

2.3. Eddy Current

The eddy current method uses a probe which contains a current carrying coil which
is driven by a high frequency oscillator to generate an AC high frequency magnetic field.
When the probe comes into proximity with the sample, eddy currents are generated at the
sample, which alter in amplitude and phase to the original magnetic field. This difference
generates an impedance signal between the excitation coil and the sample which is related
to the coating thickness. This impedance change is dependent on the distance between
the probe and the conductive substrate material. There are two main alternatives to this
method, measuring the phase or the amplitude of the impedance changes [10]. Eddy current
techniques are widely available commercially and offer micron coating thickness resolution.
There is literature available for this technique, including the development of Pulsed Eddy
Current (PEC) techniques [39] and research into varying probe constructions [40]. Eddy
current measurements can be made on nonconductive coatings on nonferrous conductive
substrates, nonferrous conductive coatings on nonconductive substrates and nonferrous
metal coatings on nonferrous metals, rendering this method not feasible for this application,
as the steel substrate is ferromagnetic. Figure 4a illustrates the operating principle of the
eddy current method for coating thickness evaluation.
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Figure 4. (a) Eddy current operating principle. (Adapted from [10], Copyright © 2001 Published by
Elsevier Inc.). (b) Magnetic induction operating principle. (Adapted from [10], Copyright © 2001
Published by Elsevier Inc.).

2.4. Magnetic Induction

This method consists of a measurement probe containing a low frequency AC coil
which is placed on the sample surface. By bringing a ferromagnetic substrate into the
magnetic field, the core magnetic flux density is changed and is captured by a secondary
sensing coil. The difference between the contact point at the sample and the distance
to the substrate would equal the coating thickness. The typical time for a measurement
ranges between 50 and 100 ms [10], which has potential for in-line measurement; how-
ever, this method generally requires contact with the sample, and has only micron level
thickness determination. The magnetic induction method is used for measuring thickness
of nonferrous coatings on ferro-magnetic substrates, thickness of magnetic coatings on
non-magnetic substrates and thickness of magnetic coatings on magnetic substrates if the
permeabilities of the coating and substrate are different and constant. Both Petrilli [10]
and Hinken et al. [41] express the application of the eddy current and magnetic induction
methods unfeasible for this application (ferromagnetic stainless-steel substrate) due to
the limitations of the substrate/coating material combinations along with the thickness
limitations, rendering this method not feasible. Figure 4b illustrates the operating principle
of the magnetic induction method for coating thickness evaluation.

2.5. X-ray Fluorescence (XRF)

XRF is a measurement method which can be used to determine the compositional
analysis of solids, liquids, powders, and can also be used to determine the thickness of
coatings. This method can measure elements from Beryllium (Be) to Uranium (U) at sub-ppm
levels. Elements with higher atomic numbers have better detection than lighter elements. This
method is fast, accurate and non-destructive and can measure in a continuous production
process for in-line measurement. The measurement time of a sample can range between
seconds and minutes [30] and is based on the number of elements to be examined within
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a sample and the required accuracy. As the sample is irradiated with X-ray excitation, the
sample will emit fluorescent radiation with discrete energies that are related to the elements
of the sample. These energies differ by color, and this determines the different elements of
the sample which provides qualitative analysis of the sample. Measuring the intensity of this
fluorescent radiation can determine the quantity of each element present within the sample,
which provides quantitative analysis. Fluorescent radiation from a sample occurs when the
incident source expels an electron from an atom with a higher energy level. This produces a
vacancy in the inner electron orbit, causing instability within the atom. The atom naturally
wants to restore stability by transferring an electron from the outer to the inner orbit.
This process emits fluorescent radiation in the form of a photon by the energy required
for this orbit transfer. XRF methods are split into two main groups, Energy dispersive
(ED-XRF) and Wavelength dispersive (WD-XRF). ED-XRF can measure from Sodium (Na)
to Uranium (U). This method is comprised of detectors that measure the different energies
of the characteristic radiation from the sample. WD-XRF can measure from Beryllium (Be)
to Uranium (U). This method uses an analysis crystal that disperse the differing energies
from the irradiated sample. This radiation is diffracted off the crystal in differing directions
like a visible spectrum prism. ED-XRF systems feature fast measurement times, which
is commonly used for in-line coating thickness measurement. Both ED-XRF systems and
WD-XRF systems are currently being used in this research application to measure chromium
coating thickness in-line and offline; however, there have been issues regarding the in-line
system accuracy. These systems are very costly, and to implement an ED-XRF system for a
wide product in a continuously fast-moving production environment, can become extremely
complex. There are many applications for this measurement method [10,11,30,41,42], although
this research originates from a need to investigate another potential in-line method, rendering
this method not feasible for this application.

2.6. X-ray Reflectometry (XRR)

XRR operates on a similar theory as reflectance spectroscopy [43]. This reflectance
measurement comprises of an incident ray, which reflects off the different interfaces at the
sample, which form interference patterns through a range of incident angles. The incident ray
in XRR consists of a beam of X-ray photons. The incident angle of this ray can be varied to
give variations in the amplitude of the reflected beam, which can provide information on the
coating and substrate. The incident ray will reflect or transmit through the sample at differing
optical path lengths and amplitudes. Varying the incident angle can supply information on
the sample, and to vary the incident angle, a Goniometer [10] can be used with reference
to the source and detector, this slow process can take between 30 and 60 min. There are
advancements within focused beam optics that can decrease this measurement time from 1
to 10 s. Typical additions to the system to increase performance are the monochromator,
entrance aperture and collimators. This method is a very costly solution but does feature
all the requirements needed for this application. Research has already been conducted
with this method, investigating nanometer thick chromium coating thickness on a silicon
substrate [44], which provided positive results when comparing with SEM methodologies.
This method looks highly feasible for this application, however, to implement this system
for a full product width would not provide the detection times needed for a continuous
production line, and therefore it can be considered not feasible for this application.

2.7. Ultrasonic Detection

The ultrasonic method is a non-destructive technology (NDT) for the coating thickness
measurement of primarily wood, concrete, and plastic applications. This method comprises
of a single element transducer and numerical techniques to filter sound wave echoes from
a sample. Current instruments on the market typically need to apply contact to the sample.
The principle of operation is that a probe is placed upon the sample surface, a sound
wave is propagated through the sample which results in differing vibrations at each layer
interval. These vibrations are received at the probe source and numerical calculation is
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conducted to investigate the appropriate thickness of each layer. Novel advances to this
method include high frequency scanning acoustic microscopy to measure sprayed coating
thickness, non-destructively [45]. This method has been reported not ideal for thin metallic
coatings or metallic substrates and conventional gauges require contact with the sample,
which renders this method not feasible for continuous in-line implementation [46].

2.8. Overview of Traditional Coating Thickness Methodologies

Table 1 summarizes the feasibility for in-line implementation for this research applica-
tion. These methods are the most common and traditional coating thickness measurement
methods, surveyed within the current literature. It can be noted that there are clearly sev-
eral key variables to consider for these technologies, and the only traditional test method
outlined that could be used is the XRF method (in this case, ED-XRF for the fast measure-
ment response). This test method is currently implemented in-line for this application and
has several disadvantages, such as being a costly system to implement for a full product
width, the measurement of total chromium only (unable to differentiate between oxide
and metallic components) and has reported inaccuracies when comparing with offline
test methods. Therefore, novel methods were needed to be explored to address these
disadvantages, to provide a potential complimentary system which could be low-cost and
not utilizing ionization radiation for safer working practices. Seven traditional coating
thickness measurement methodologies are reviewed for this steel packaging application
within Table 1. These are Coulometry (A1), Beta-backscatter (A2), Eddy current (A3),
Magnetic induction (A4), XRF (A5), XRR (A6), and Ultrasonic detection (A7). All the
traditional methodologies highlighted are currently available commercially, however, the
typical cost and pricing of most of the systems is provided on a case-by-case quotation.
The eddy current, magnetic induction and ultrasonic methodologies are widely available
on the current market for several coating thickness applications, and the price is dependent
on the complexity of the application requirements. The thickness ranges, sampling rate,
spatial resolution and measurement accuracy of each system are also dependent on their
individual system design.

Table 1. Overview of traditional coating thickness methodologies.

Methodology A1 A2 A3 A4 A5 A6 A7

Thickness ranges 1 nm–50 μm 1–800 μm 1–10,000 μm 1–10,000 μm 0.5 nm–10 μm 1 nm–1 μm 10–7500 μm

Measurement accuracy (%) 0.1–0.5 0–5 0.1–0.7 1–3 0.2–0.5 0.33–0.65 0.53–0.7

Multi-layer � � X X � � �

Sampling rate 1–500 m 0.5–15 s 0.6–1 s 0.6–1 s 0.5–100 s 1 s–60 m 0.5–2.5 s

Detection area (ø) 1.5–3.2 mm 0.63–20 mm 5–8 mm 5–8 mm 0.1–15 mm 2 mm 5 mm

Commercial availability [47] [48,49] [50] [50] [51] [52] [53]

Typical cost (GBP) >3000 Unspecified >1000 >1000 >35,000 >30,000 >1000

Non-contact X � � X � � X

Non-destructive X � � � � � �

Materials � X X � � � X

3. Offline Coating Thickness Test Methods

Offline measurement methodologies have been characterized as methods which do
not possess detection times fast enough for continuous production settings, are destructive
in nature, require contact with the sample under test, require sample preparation or also
require vacuum sealed environments.

3.1. X-ray Photoelectron Spectroscopy (XPS)

XPS is a measurement method which can be used to quantitatively measure coating
thickness by identifying elemental composition of a sample via the photoelectric effect.
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A sample under test is irradiated by a beam of X-ray radiation (photons) which excites
an electron spectra resultant from the kinetic energy of the transmitted electrons. The
typical measurement time of an XPS system differs dependent on the type of analysis
performed, but the minimum analysis time is roughly 1 min, which renders this technique
an offline measurement solution [17]. This method, however, is very accurate and can
directly quantify coatings in nanometer scale thickness; however, this system is a very costly
solution. Although this method requires sample preparation and requires a vacuum sealed
environment, the measurement process is typically non-contact and non-destructive [17].
XPS studies have been conducted for monitor similar application areas, such as studying
the surface chemistry of Zn-Al alloy coatings on steel [54] and studying the effects of
passive films on stainless steel [55]. XPS is a well-known technique for investigating
several different coatings, such as oxide thickness determination [56] and is also a method
used currently for this research application to investigate the thicknesses of chrome oxide
and metallic chromium layers, offline. Due to the cost and requirement for a vacuum
environment, this technique is not feasible for in-line measurement.

3.2. Scanning Electron Microscopy (SEM)

Electron microscopes permit the observation of material composition at the nm and
μm level. Electron microscopes are instruments which use a beam of electrons to examine
an object on a magnified scale. This examination can provide information of the topogra-
phy, morphology, composition, and crystallographic properties of a sample. A source of
electrons is beamed over the surface of a sample. When the electrons penetrate the surface,
several interactions occur that result in the emission of electrons or photons through the
surface. These electrons can be detected, and an output is derived by modulating the
brightness of a cathode ray tube [9] in terms of voltage. Many kinds of samples can be
analyzed such as metals, ceramics, glass, hair, bones, and plastics. The main constraints of
SEM are that the sample must be conductive (non-conductive materials must be carbon
coated) and materials with a smaller atomic number than carbon cannot be detected. The
vertical resolution of current SEM instruments ranges from between 0.6 and 1.5 nm [9],
depending on the primary voltage. Giurlani et al., provide a comprehensive review on
SEM technology, the advancement of SEM over time and the different detection method-
ologies used to create an SEM image, such as using secondary electrons, backscattered
electrons or through a microanalysis map [26]. This method is considered not feasible for
in-line measurement as it requires extensive sample preparation and highly controlled
environmental conditions that are not suitable for in-line inspection. Figure 5 illustrates
the operating principle of SEM.

Figure 5. Operating scheme of SEM with SE, BSE, and EDS detection. (Reprinted from [26], CC BY
4.0 license).
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3.3. Atomic Force Microscopy (AFM)

The field of Profilometry has a wide range of methods for investigating surface
topographical analysis with sub-nanometer resolution. AFM measures the surface profile
and film thickness of a sample through direct mechanical action. This method functions by
directly measuring the deflection and oscillation of a flexible, microscopic cantilever tip
caused by attractive and repulsive atomic forces when the tip is moved vertically in respect
to the film surface. The AFM system uses a cantilever, tip, laser source, and a scanner.
The laser source focuses a beam of light onto the rear face of the cantilever tip and the
photodetector measures the intensity of the beam off the tip. The system may also use a
voltmeter or a waveform generator to measure the oscillation of the cantilever or drive the
oscillation with a waveform. An AFM system may be used in two modes, a contact mode
in where the tip remains in contact with the sample during testing and a tapping mode in
where a spring force mechanism is implemented on the cantilever tip. This measurement
method is highly accurate and allows for calculation of surface roughness, however, this
method requires contact with the sample under test and the resolution depth is limited by
its magnification range [9]. There are advancements within AFM which requires no contact
with the sample under test [57], and there is an abundant amount of literature covering
the different operating methodologies This method is considered not feasible for in-line
measurement due to the need for sample preparation and the detection speed to determine
coating thickness. AFM has been used in several thickness measurement applications, such
applications include the thickness measurement of graphene onto oxidized Si wafers [58],
thin metal films on silicon substrates and polymer films on silicon substrates [59].

3.4. Glow Discharge Optical Emission Spectroscopy (GDOES)

This technique comprises of an optical emission spectrometer (OES) coupled with
glow discharge (GD), and allows for the monitoring of both the surface and depth profiling
of the elemental composition of solid materials, with high sensitivity. This technique is
destructive in nature and involves sputtering an area of a sample with GD plasma, whilst
observing optical emission. This technique has vertical resolution at the nm level and
can identify which elements are present within a sample, quantify the concentration of
elements in a sample, and in this research application case, measure coating thickness
within a sample. GDOES has been used to measure coating thickness and elemental
composition in several applications [60–62]; however, as this technique is destructive in
nature, this method is assessed as not feasible for this application.

3.5. Overview of Offline Coating Thickness Methodologies

Table 2 provides a summary of offline coating thickness measurement methodologies.
These methods have been considered not feasible for in-line measurement due to their
limitations outlined and have been briefly researched to demonstrate and convey why they
are considered unfeasible. All the offline measurement systems outlined have high accuracy
and can determine nanometer scale thickness, but all methods require sample preparation.
In terms of the detection speeds listed above, these are relevant for this application (coatings
under 100 nm in thickness). From the literature, each of these methods and method variants
have advanced greatly over the past two decades, with results in faster detection speeds.
Four offline coating thickness measurement methodologies are reviewed for this steel
packaging application within Table 2. These are XPS (B1), SEM (B2), AFM (B3), and GDOES
(B4). As noted from the review table for the offline coating methodologies, the thickness
ranges and measurement accuracy have an increased vertical resolution over the traditional
methodologies, at the expense of the increase in system cost. There are many commercial
systems available for these techniques which have been surveyed and highlighted, and
XPS technology is by far the most expensive (where systems can be in the cost excess
of GBP 500,000). It must also be noted that all offline methodologies can determine the
coating weight of multi-layer structures through direct measurement, at the expense of
slow measurement speeds (typically within the range of minutes to hours).
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Table 2. Overview of offline coating thickness methodologies.

Methodology B1 B2 B3 B4

Thickness ranges 0.5–20 nm 0.1 nm–2 μm 0.1–100 nm 1 nm–50 μm

Measurement accuracy (%) 0.05 0.2 2–5 <5

Multi-layer � � � �

Sampling rate 1 m–4 h 1–5 m 5 m–1 h 3 s–12 m

Detection area (ø) 10 μm–5 mm 50 nm–1 cm 10–100 μm Unspecified

Commercial availability [63] [64] [65] [66]

Typical cost (GBP) >200,000 >50,000 >20,000 Unspecified

Non-contact � � X X

Non-destructive � � � X

Materials � � � �

4. Potential In-Line Coating Thickness Test Methods

In-line measurement methodologies have been characterized as methods which have
the potential to measure real time, non-destructively and require no contact with the sample
under test.

4.1. Thermoelectric Method with Magnetic Readout

The thermoelectric effect with magnetic readout takes in principle the Seebeck effect of
bi-metallic materials coupled with a non-contact magnetic readout [41]. The Seebeck effect
is mostly known for its application in thermocouples, an instrument that provides a voltage
output approximating the applied heat at the junction of bi-metallic materials [67]. This
method has been studied for Non-Destructive Testing (NDT) like the magnetic induction
method, without contact with the sample [41,68] and is operated in the following steps:

• At the junction of dissimilar electrical conductors, a thermoelectric voltage is present
when the junctions are at differing temperature.

• As this thermoelectric voltage would create a closed circuit regarding the coating and
substrate, a current will flow from the hot junction to the cold junction.

• In turn, this electrical current will generate a magnetic field with a flux density that
would extend to the outside of the material and into the air interface.

This method is largely dependent on the magnetic field strength that occurs at the
air interface and the sensitivity of the magnetic sensor. The strength of the magnetic field
can be influenced by the temperature gradient applied to the sample. A reverse process of
this effect is known as the Peltier effect [41]. Applying the sample to an external magnetic
field will induce currents and therefore voltages. This difference in voltage at the interface
junctions will give rise to a change in temperature which could potentially be monitored
with a thermoreflectance approach [69], but this technique will be discussed separately later.
This method would provide non-destructive, non-contact analysis, and a high potential
for in-line measurement. For nanometer scale measurement, it would be expected that the
process heating phase would require a large differential to excite a magnetic field strong
enough to detect with present magnetometers, based on the results from Hinken et al.,
experiments at the micrometer thickness ranges [41].

4.2. Terahertz Time Domain Spectroscopy (THz-TDS)

This method involves the use of high frequency radio waves (typically pulsed laser
radiation) to reflect off the sample to provide information on the coating thickness [70]. A
typical example of this method utilizes pulsed-echo terahertz thickness measurement by
sending terahertz energy via a transceiver and to reflect off a conductive material substrate
back to the transceiver. The terahertz transceiver is separated from the sample by an air
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path which makes this method non-contact and non-destructive in nature [71]. There is
little research regarding this method in terms of nanometer scale resolution; however, this
technique looks like a promising method for continuous in-line implementation [72,73].
The operating principle of this method involves the time domain analysis of the delay
between the received echoes from the top surface of the coating and the top surface of the
substrate. This method has a very similar operating principle to the optical reflectometry
method; however, the detection and analysis of this method is not a function of optical
intensity as in reflectometry, but as a function of the difference in time. The time delay
between the coating surface echo (FS) and the substrate surface echo (BS) is directly affected
by the thickness variation of the coating [73].

4.3. Optical Reflectometry

Optical reflectometry is a method which analyzes the reflectance spectra of a sam-
ple to measure characteristics such as optical constants and thin film thickness and is a
well-known and powerful technique for measuring film thickness quickly in several indus-
tries [12,74–77]. There are extensive variants of this method, which are widely available
for review in the literature, but the key operating principle of this methodology is the
illumination of a sample with an optical light source, detection of the reflected intensity
and fitting this intensity as a function of coating thickness [76]. Most technologies utilizing
this method measure a range of wavelengths to calculate the film thickness, and one of
the key limitations to this measurement method in the past is that the technique is only
able to measure one point at a time [76]. Variants of this method have included volumetric
detection using Charge Coupled Devices (CCD) to monitor an area of a sample, simultane-
ously, with the disadvantage of decreased detection speeds, but there is literature available
into techniques which can reduce these detection times, such as direct phase extraction
techniques [78]. Reflectometry methods usually operate at normal incident angles for mea-
surement; however, varying incident angles can be used which again increases the system
complexity in terms of monitoring both parallel and perpendicular polarizations, based on
the Fresnel equations [79]. This method also consists of a form of self-interferometry, in
where there are several internal reflections between the coating and substrate interfaces.
These coating and substrate interfaces are often modelled using the Fresnel reflection
coefficients to determine the reflected intensity present at the optical detector, however,
for several layers these calculations become complex, and researchers tend to model these
interfaces using Transfer Matrix Methodologies (TMM) [80]. The main operating principle
for this method relies on reflection intensity, which is calculated by the ratio of the reflected
intensity at the detector to the incident intensity. In terms of measurement limitations
for this application, to measure metallic coatings, there is a requirement that the incident
radiation can transmit through the coating to the substrate, and for chromium coatings,
the calculated limitation through Beer’s law is roughly below 70 nm coating thickness. As
this application intends to monitor thicknesses of less than 50 nm, this method has high
feasibility [29]. This method has high speed capability, has the potential to measure the
thickness ranges of the application area, is a non-contact and non-destructive approach
which renders this method high feasibility for future research. There are several factors
that must be considered taking this method forward, such as the surface roughness of the
coating and the substrate, the coating uniformity and the production process parameters
that could hinder measurement, most importantly, the vibration of the electroplated prod-
uct running continuously through the production line. Figure 6 illustrates the operating
principle of optical reflectometry for coating thickness evaluation.
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Figure 6. Principle of optical reflectometry. A light source (LS) illuminates the sample of interest and
as a result, there are several reflections returned to the detector due to layer interference. As the layer
thickness is increased or decreased, dependent on the optical properties of the layer structure, the
resultant reflection spectrum can determine coating thickness as a function of reflection intensity.

4.4. Optical Interferometry

Interferometry is a very similar optical technique to the reflectometry method in that
they both use the phenomena of optical reflection or transmission to gain an understanding
of a sample under measurement. Where reflectometry measures the intensity of a reflected
or transmitted spectrum and takes into consideration the self-interference of the layers of a
sample, the interferometry method takes into consideration the optical path difference in
relation to a single light source between a sample under test and a reference mirror via a
beam splitter [81]. As the optical path difference will change relative to the reference mirror
and the sample as a function of coating thickness, differing phases based on the optical
path difference will provide constructive or destructive interference for the output signal.
There are many variants of optical interferometry, such as using differing light sources
such as white light or singular wavelength [16,82], differing optical path layouts [83,84],
and differing detection elements [85,86]. There are many interferometric solutions for the
measurement of thin film thickness which operate on the principle of interference but utilize
different components within the system for different applications. An interferometric and
reflectometric method which may be suitable for this project’s application was reported
to be non-destructive, non-contact and has high-speed data acquisition, has published
results within the nanometer thickness range in a microelectronics production setting [81].
Typically, interferometry is limited by a factor of the incident wavelength of light, however,
the proposed system [81] utilizes Fast Fourier Transforms for the surface topography
coupled with a reflectometric approach which has highly promising continuous in-line
implementation. The setup proposed is basically a Michelson interferometer with two arms,
one to generate the reference wave from a flat mirror and one to generate the reflection
from the sample of interest. Two similar objective lenses are added into the system to
adjust the lateral measuring magnification. The thickness ranges for this method have
been reported down to a single nanometer [87], but like reflectometry, this setup is limited
to metallic layers within the optical transparency region, which renders interferometry
highly promising for this application. Figure 7 illustrates the operating principle of optical
interferometry for coating thickness evaluation.
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Figure 7. Principle of optical interferometry (Michelson setup) for coating thickness applications. A
non-polarizing Beamsplitter (BS) separates a light source into two separate elements determined
by the beam splitting ratio (typically 50:50). The transmitted light reflects from a reference sample
(substrate only) at L1. The reflected light from the Beamsplitter irradiates the sample and undergoes
varying self-interference dependent on the thickness of the coating outlined within the reflectometry
method, coupled with L2. Both elements combine at the Beamsplitter and are then transmitted to
a Charge Coupled Device (CCD). Signal processing is the conducted on the interference signal to
evaluate coating thickness.

4.5. Optical Ellipsometry

Ellipsometry is an optical measurement method using light reflection or transmission
of a sample. This method is very similar to the reflectometry method; however, ellip-
sometry also measures the change in polarization regarding reflection or transmission
on a sample. This method can be high speed in operation with the ability to measure
nanometer scale coating thickness, giving rise to real time measurement [32]. This method
measures two variables, Δ and Ψ, where Δ is the phase difference between parallel (p) and
perpendicular planes (s) and Ψ is the amplitude ratio of parallel (p) and perpendicular
(s) planes [88]. To put the method simply, a light source generates a beam of light that is
transmitted through a linear polarizer and compensator to control the incident polarization
of the light at the sample surface. Reflections occur at each interface within the sample at a
given amplitude and phase. These reflections are analyzed and detected and can determine
specific properties of each layer of the sample, whether it is to evaluate coating thickness,
coating uniformity, surface roughness or even to determine the optical constants for the
coating structure [89,90]. There are several variants of ellipsometry and its optical setup,
such as using spectroscopic or singular wavelength light sources [91,92], using numer-
ous passive optical components setups [93,94] and using imaging techniques [1]. This
method is covered extensively in the literature for application for in-line coating thickness
measurement in several industries, such as the measurement of thin film thickness of
photovoltaic development on production lines [34], the monitoring of optical constants
and layer thickness of organic photovoltaics in a roll-to-roll (r2r) production setting [35]
and the evaluation of optical constants, layer thickness with nanometer precision and
uniformity of organic electronic (OE) devices [36]. Extending in-line ellipsometry further
for this steel packaging application, there are two publications in which researchers ap-
plied ellipsometry to extremely similar steel packaging applications to this research [31,33].
Firstly, Izumidate et al. [31] researched and developed an in-line ellipsometry system to
measure the ultra-thin oil layer that is applied to the steel packaging product after the
coating process, and to measure the hydrated chromium oxide layer that occurs through
passivation after the metallic chromium layer has been electroplated onto the steel sub-
strate. This research was reported to have been successfully implemented to measure these
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layers, continuously in-line with nanometer thickness ranges, which gives high poten-
tial for this application. However, the difference for this application is that the metallic
chromium layer also needs to be measured in-line, which may have been a challenge
as the metallic chromium thickness on their Tin Free Steel (TFS) product had reported
millimeter thickness ranges, which would result in no optical transmission through the
coating layer to the substrate interface. Secondly, Rischmueller et al. [33] conducted re-
search utilizing the ellipsometry method for the inspection of future REACH (Registration,
Evaluation, Authorization, and Restriction of Chemicals) compliant Trivalent Chromium
Conversion Coatings (TCCC) on an aluminum substrate. This research article provided
great depth on measuring this coating thickness within the optical transparency region
of chromium (<70 nm), researching the most effective wavelength for their product with
angular dependency and mitigation controls regarding the surface roughness resultant
from the rolling process. It was reported [33] that this method could be implemented
in-line, with a non-contact approach which is like this research application. Given the
requirements of this application for nanometer chromium thickness measurement on steel
with a measurable surface roughness, further research would need to be conducted into
the feasibility of this method, however judging from the literature available, this method
looks highly promising. Figure 8 illustrates the operating principle of optical ellipsometry
for coating thickness evaluation.

Figure 8. Principle of optical reflection ellipsometry for coating thickness applications. A polarizer
(P) linearly polarizes a light source into a known polarization state at incidence of a sample. As light
interacts with the sample, a change of polarization for both parallel and perpendicular polarizations
will occur, dependent on the sample properties and coating thickness. An analyzer (A) is used
to detect the polarization state of both polarizations, which is then fed to a detection element
for further analysis. A ratio of both the parallel and perpendicular polarization determines the
amplitude and phase difference generated from the sample of interest, which can then be compared
to pre-determined optical model to measure several parameters, such as coating thickness, coating
uniformity, and optical constants [95].

4.6. Stimulated Brillouin Scattering (SBS)

Stimulated Brillouin scattering is non-linear scattering which involves the artificial
generation of acoustic phonons in a transparent medium. This type of scattering comes from
light interaction with acoustic waves in a material and are generated by thermodynamic
fluctuations [96]. This scattering method has been used in a spectroscopic nature to non-
invasively provide general imaging solutions for applications in biology and materials
science [97]. The SBS method utilizes two incident light waves at two differing frequencies,
and the waves generated in the sample are the density variations (acoustic waves) that are
resultant from the incident light waves which develop a beat frequency, which can then
be monitored to provide information on the coating thickness. For this method to work
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for this application, the thin film layers and the substrate will need to be transparent [97],
rendering this method unfeasible; however, this method is non-contact and non-destructive,
which could potentially be applied to other coating/substrate material combinations for
in-line measurement.

4.7. Self-Mixing Interferometry (SMI)

Self-mixing interferometry is a non-contact optical method which has been employed
for the measurement of refractive indices and thickness measurement of optical compo-
nents [98]. This method operates on similar principles to standard interferometry, using
the measurement of optical path length; however, this method utilizes the phase difference
of a back scattered beam without a beam splitter and reference measurement [99]. The self-
mixing interferometer emits a collimated beam from a laser and is passed through a trans-
parent sample. Upon reflection at a second photodiode [100], some of the reflected light
is re-entered into the laser cavity where the weak signal interacts with the incident beam.
This results in modulation of amplitude and frequency of the laser field where the driver is
the optical path length. This method provides non-contact, non-destructive measurement
and has proven research at the micron thickness level [98–100]. For this application, this
method is unfeasible as SMI requires optical transmission through both the coating and
substrate but could potentially be applied to other transparent coating/substrate material
combination applications for in-line measurement.

4.8. Chromatic Confocal Microscopy (CCM)

The CCM method is a non-destructive and non-contact optical technique that has
been researched for film thickness measurement for transparent and non-transparent
films [101,102]. An incident white light source is focused into its spectrum of wavelengths
for varying distances to the sample, and in terms of film thickness measurement, two peaks
relational to the wavelengths and distance to the sample are calculated, the difference
between these peaks would result in the optical thickness of the measured material. When
the optical properties of the material are known, the physical thickness can be calculated
via the dispersion properties as a function of wavelength in terms of the sample optical
properties [102]. This method has been reported to have micron thickness resolution, and
feasible for in-line implementation [102]. There are several researched variants of the
CCM technique, one such variant is Chromatic Confocal Spectral Interferometry (CCSI),
which combines the operating principles of CCM and optical interferometry for increased
resolution [103]. Although current literature reports only micron thickness resolution, it is
assessed that this method may be developed further, rendering this method potentially
feasible for this application.

4.9. Infrared Thermography

Infrared imaging has been previously used to measure the coating thickness of paints
on steel substrates with a coating thickness at the micron level [104]. The principle of
operation is to apply external heating of a sample and measure the thermal radiation
via a high-resolution thermal camera within the IR spectrum [104]. The benefits of this
measurement method are that it can image a large spatial area concurrently, allowing
for the monitoring of the coating uniformity real time. The underlying principle of this
method is the correlation between the heat transfer of each coating layer with the layer
thickness [104]. As most elements have differing heat transfer properties, this method
makes it suitable to measure many combinations of substrate and coating materials. Some
of the key requirements for this method is the introduction of an external heating source, a
high-resolution thermal IR detector capable of nanometer resolution and the heat transfer
properties between coating layers and substrate are diverse. This method is non-contact,
non-destructive and can potentially be used for a vast number of coatings and substrates
with high-speed detection [104]. In terms for this application, for coating thickness at the
nanometer scale, the detection elements to measure the full width of the electroplated
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product would require great expense, not to mention, the heating element may also cause
complications to the production process dependent on the amount of heating required to
trigger accurate detection. One variant of this technique discussed briefly previously was a
thermoreflectance imaging approach [69]. This technique operates on the reverse process
of the Seebeck effect, known as the Peltier effect. By exciting the sample under test with an
alternating current supply, this in turn would generate an oscillating temperature field in
the sample, which could then be detected using a CCD. This technique has been used in
the semi-conductor industry [69], providing a topographical image of the heat propagation
at sub-micron thickness resolution.

4.10. Overview of Potential In-Line Coating Thickness Methodologies

Table 3 summarizes the potential and novel in-line coating thickness test methods that
have high potential for this research application. Nine potential in-line coating thickness
measurement methodologies are reviewed for this steel packaging application, these are
thermoelectric magnetic method (C1), THz-TDS (C2), Optical reflectometry (C3), Optical
interferometry (C4), Optical ellipsometry (C5), SBS (C6), SMI (C7), CCM (C8), and infrared
thermography (C9). From a commercial product survey, the thermoelectric magnetic,
SBS, and SMI methodologies were not found to have a specific product for a coating
thickness application. It must also be noted that at this current time, only three methods
have been found through research for the capability to measure coatings of nanometer
in thickness, these are optical reflectometry, ellipsometry, and interferometry. There are
several variants of these three optical methods as highlighted previously in this review
paper, and there are also commercial systems available for these methodologies; however,
none of these systems specify their unique ability to be applied to this steel packaging
application, specifically the metallic chromium layer. It was interesting to find through
the reflectometry commercial product analysis [105] that it states that reflectometry and
ellipsometry have the capability to measure metallic coatings of under 50 nm in thickness,
which directly relates to the outlined literature, which reinforces the high potential of these
methodologies in particular for further research and development or this steel packaging
application, as we are intending investigate metallic chromium coatings under these
thickness limits. In terms of the detection area of these methodologies, these are highly
dependent on the system construction, which can be clearly noted from the commercial
product survey and the appropriate citations. The interferometry method highlighted from
the commercial product survey is based on Optical Coherence Tomography (OCT), where
the method provides similar output results to AFM, non-destructively, and without contact
with the sample under test.

Table 3. Overview of potential in-line coating thickness methodologies.

Methodology C1 C2 C3 C4 C5 C6 C7 C8 C9

Thickness
ranges 1–200 μm 300–1400 μm 0.5 nm–3 mm 0.1 nm–10 μm 0.5 nm–1 mm >1 μm >1 μm >1 μm >1 μm

Measurement
accuracy (%) 10 0.43 0.1–0.2 <1 0.1 Unspecified Unspecified <3% Unspecified

Multi-layer Unspecified � � � � � � � �

Sampling
frequency 0.1–4 s >50 ms 0.1–5 s <3 s 0.1–300 s Unspecified Unspecified <1 s <1 s

Detection
area (ø) Unspecified Unspecified 50 μm–1 mm Unspecified 50 μm–1 mm Unspecified Unspecified Unspecified Unspecified

Commercial
availability Unspecified [106] [105] [107] [108] Unspecified Unspecified [109] [110]

Typical cost
(GBP) Unspecified Unspecified >13,000 >45,000 >40,000 Unspecified Unspecified >10,000 >10,000

Non-contact � � � � � � � � �

Non-
destructive � � � � � � � � �

Materials � � � � � X X � �
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From this review table, there are three clear methodologies to pursue for future
research into this steel packaging application, these are optical reflectometry, optical ellip-
sometry and optical interferometry. Taking into consideration the system complexity, cost
and potential, reflectometry and its variants are highlighted as the focus of future research,
followed by interferometry and ellipsometry.

5. Conclusions

This review has attempted to identify several potential in-line coating thickness
measurement methods that could be applied to measure nanometer chrome coatings on
a steel substrate. Each method outlined within this paper has been categorized into their
potential for: continuous, non-contact, non-destructive, in-line measurement; at speed
of sub 50 nm coating thickness measurement of applicable substrate/coating material
combinations. From this interim investigation there are three main optical methods which
have been assessed as highly feasible for this research application, optical reflectometry,
ellipsometry, and interferometry. There are also other novel methodologies which may
satisfy this application requirements such as a thermoelectric method with a magnetic
readout approach, THz-TDS, CCM, and infrared thermography; however, there is very
little research regarding these methods for nano-scale precision. The X-ray methods
outlined such as XRR and XRF are also highly feasible for this application; however, this
research is based upon finding a novel approach from the current coating thickness test
methods implemented at the industrial partner. There is an abundance of research in the
literature suitable to establish a novel method to measure metallic coating thickness for
steel packaging applications. All three optical methodologies identified have also been
reviewed for potential in-line monitoring for other applications [111], and it can clearly be
seen through the literature that optical techniques are being highlighted as the successors
for potential in-line monitoring of nanometric coatings. For the optical methods outlined,
there is the potential to: create a low-cost system; implement this low-cost system at
multiple points at within a production line; multiplex measurements across the width of a
production line to ensure full width coverage; and to provide redundancy to currently used
XRF-based systems that are unable to differentiate between metallic and oxide chromium
layers. In terms of the applicable optical methods, there are several variants that have been
researched, developed, and implemented in other industries. Consequently, this research
aims to develop these techniques, or variants thereof, for steel packaging applications
with metallic sub-50 nm coating thicknesses. In addition to this review paper, further
research will be conducted into the three optical methods highlighted via simulations and
experimental research for this application based on the requirements set out within this
paper, with emphasis placed on other significant factors that may hinder the feasibility
of these methods such as the effect of illumination wavelength, effect of incident angle,
effect of chrome oxide layer within the sample, effect of differing substrate chemistry, effect
of substrate surface roughness resultant from the steel rolling process, and the effect of
vibrational parameters on a continuous production line.
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Abstract: Phenolic compounds are particularly dangerous due to their ability to remain in the envi-
ronment for a long period of time and their toxic effects. They enter in the environment in different
ways, such as waste from paper manufacturing, agriculture (pesticides, insecticides, herbicides),
pharmaceuticals, the petrochemical industry, and coal processing. Conventional methods for phe-
nolic compounds detection present some disadvantages, such as cumbersome sample preparation,
complex and time-consuming procedures, and need of expensive equipment. Therefore, there is a
very large interest in developing sensors and new sensing schemes for fast and easy-to-use methods
for detecting and monitoring the phenolic compound concentration in the environment, with special
attention to water. Good analytical properties, reliability, and adaptability are required for the de-
veloped sensors. The present paper aims at revising the most generally used optical methods for
designing and fabricating biosensors and sensors for phenolic compounds. Some selected examples
of the most interesting applications of these techniques are also proposed.

Keywords: phenols; optical methods; biosensors; sensors

1. Introduction

Over the last several decades, water pollution has threatened both quality of life
and public health worldwide. In particular, phenol and related phenolic compounds
(chloro, bromo, nitro, and alkyl phenol) that are discharged into the wastewater and can
contaminate surface, ground, and sometimes drinking water have recently drawn attention
due their potential impact on human and environmental health. They derive from urban,
agro-industrial, and livestock-related human activities [1,2], and they can cause adverse
effects in all the food chain rings, even at low concentration (μg/L–ng/L). By way of
example, Table S1 shows the permissible concentration limit allowed for some phenolic
compounds.

The US Environmental Protection Agency (EPA) and European Commission have
already placed them on the Priority Pollutants List that must be monitored by local govern-
ments in the next years [3,4]. However, it must be considered that the types and mixtures
of pollutants can change according to the urban and industrial activities specific for each
territory and that synergic effects can strengthen toxic effects. For these reasons, it is crucial
to monitor their levels in samples deriving from local wastewaters, to test their biological
activity and to develop new sustainable and green strategies to remove them.

Due to their persistence in the environment and their toxicity, the phenolic com-
pounds can induce acute and chronic hazardous health effects [5–8]. Long-term exposure
to phenols can cause irregular breathing, muscle weakness, and respiratory arrest at lethal
doses in humans. Chronic exposure to phenols leads to disorders of the gastrointestinal
and central nervous systems and the liver, as well as growth retardation and abnormal
development and reproduction in animals. It is known that some of phenol compounds
affect the endocrine system, altering the hormones balance within the human body [9]. The
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alteration of correct levels of endogenous hormones or the introduction of chemicals that
can mimic their effect in the cell has been related not only to estrogen-dependent tumors
but also to an increased risk for a tremendous number of pathologies, such as Alzheimer’s
disease, metabolic syndrome, and cardiovascular disorders [10]. The xenoestrogen com-
pound bisphenol A (BPA) is one of the most widely used chemicals, commonly used in the
production of epoxy resins, polycarbonates, dental fillers, food storage containers, baby
milk containers, and mineral water containers. Due to the extensive manufacturing of
these products, human exposure to BPA through several routes, such as food and the envi-
ronment, is ubiquitous [11,12]. Biomonitoring studies around the world have shown that
BPA exposure is common among the general population, with a detectable concentration
in more than 80% of the considered cases [13–15].

The most largely used techniques for phenolic compounds detection are gas chro-
matography, high-performance liquid chromatography, and capillary electrophoresis [16].
These well-established methods present some disadvantages, such as cumbersome sam-
ple preparation complex and time-consuming procedures. and the need for expensive
equipment; consequently. they cannot be used for routine analysis.

For all these reasons, there is a very large interest in developing sensors and new sens-
ing schemes for monitoring the phenolic compound concentration in environments, with
special attention to water. Good analytical properties (sensitivity, accuracy, reproducibility,
rapidness, and signal-to-noise ratio), reliability (long life, resistance to the environment,
and operational safety), and adaptability (small size, light weight, simple structure, and
low cost) are required to the developed sensors [17].

In this framework, the optical sensing scheme can play a pivotal role since sensors can
be small, light, chemically inert, non-toxic, and immune to electromagnetic interferences.
In fact, optical sensors are among the most versatile sensing devices; they can detect a
large class of physical and chemical parameters, such as temperature, pressure, force,
electric and magnetic field, pH, strain, chemical concentration, displacement, humidity,
and many others.

In 2013, Rodionov et al. [17] revised the development and applications of optical
sensors for the determination of phenolic compounds in the period of 1993–2013. They pre-
sented an overview of the different approaches for optical sensing with particular attention
to spectrophotometric and fluorescent sensors using optical fibers for the delivery and col-
lection of light signals. In their Tables 1 and 2, the authors reported the spectrophotometric
and fluorescence sensors for different phenolic compounds with the information about
linearity range, limit-of-detection (LOD), and response time for the most representative
results reported in the literature in the examined period (see Ref. [17] and cited references).
In Table 3 of the cited paper, many optical sensors used in the determination of phenolic
compounds in real samples, such as residential and industrial wastewater and river water,
were summarized.

The aim of the present paper is to revise the most generally used optical methods
for designing and fabricating biosensors and sensors for phenolic compounds with par-
ticular attention to the methodologies that we personally used in our previous investiga-
tions [18–22]. We also discuss some representative examples for each of them. As far as the
cited references, the list is far from being exhaustive, but it is indicative of the large amount
of literature available in this field.

2. Optical Detection Techniques

A large number of optical techniques can be used for developing fast, accurate, and
sensitive sensors for phenol detection. In this section, we briefly summarize some aspects
of the most-used ones.

The simplest method is based on the visual inspection of the investigated samples
after their interaction with a proper probe. For example, in Figure 1 it is possible to note
the color change occurring in water samples with different concentrations of phenols after
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the interaction with extracellular gold nanoparticles on which Streptomyces tuirus DBZ39
has been synthetized (see Ref. [23] for further details).

Figure 1. An example of the use of Streptomyces-mediated gold nanoparticles for the detection of
phenols from industrial wastewater. (Reprinted from [23] under an Open Access condition).

The qualitatively appreciable color change upon visual inspection can be quanti-
fied thanks to absorption measurements. Using a spectrophotometer, it is possible to
quantitatively determine absorbance changes linearly related to the presence of different
concentrations of phenolic compounds. Bayram et al. [24] show the results obtained by
a colorimetric assay based on the formation of quinone-type complexes in an alkaline
medium for different concentrations of BPA (see Figure 3 in Ref. [24]). As is evident,
different absorbances are obtained in correspondence of color variations, and considering
the absorbance values at a particular wavelength, it is possible to obtain a calibration curve
that can be used for estimating analyte concentration in other samples of interest.

Diffuse reflectance measurements often coupled with the use of optical fibers are also
widely used for developing phenolic compounds sensors [25,26]. A typical set-up, where a
tungsten halogen broadband is used as a light source and a fiber-optic probe is in contact
with the sample used for this approach, is shown in Figure 2.

Figure 2. Schematic layout of an experimental set-up for diffuse reflectance measurements. A broadband
light source is used, and a spectrometer allows wavelength selection of the incident beam. The second
spectrometer is employed for monitoring the reflected signal.

One of the spectrometers is used for recording the lamp spectrum and its background,
while the second spectrometer detects the signal reflected the sample. CCD array detectors
and a computer allowed the detection and processing of optical signals. In Figure 3a,
typical results obtained using this reflectance approach are reported. In these cases, the
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authors [25] have developed a fiber-optic sensor for p-aminophenol (PAP) based on the
use of 25,26,27,28-tetrahydroxycalix[4]arene (CAL4) immobilized onto Amberlite XAD-16
and reflectance spectrometry. The sensor is based on the reaction of PAP with CAL4 in the
presence of an oxidant to produce an indophenol dye. The measurements were carried out
at 620 nm since it gives the largest differences in reflectance spectra before and after reaction
with the analyte. Figure 3b shows the changes in the reflectance spectra of immobilized
CAL4 before and after reaction with different concentrations of PAP. In Figure 3c,d, the
calibration curves for the wide range of PAP concentrations are reported.

Figure 3. (a) Reflectance spectra of immobilized CAL4 before (Rf) and after (a–d) reaction with
different concentrations of PAP, being 0.545 mg/L (curve a), 2.18 mg/L (curve b), 5.45 mg/L (curve c),
and 10.9 mg/L (curve d). (b) Response curve to a wide range of PAP concentrations. The panels (c,d)
show the linear and non-linear portions of the response curve. (Reprinted-adapted-with permission
from [25]).

Fluorescence and luminescence are certainly the most-used methods to develop sensor
devices for phenolic substance and to conceive new sensing schemes. See, for example,
Table 2 in the review of Rodianov et al. [17] to realize the variety of the available schemes.
The fluorescence approach makes available a large cohort of parameters to be used; among
them, the most largely used are intensity, decay time, anisotropy, quenching efficiency, and
luminescence energy transfer. The components of a basic fluorescence experimental set-up
are the light source, two wavelength selectors, and the detector. Usually, the light sources
are tungsten-halogen and xenon lamps. As far as the wavelength selection, the simplest
apparatus uses fixed filters to isolate both the excitation and emission wavelengths, but it is
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better to use monochromators to select both the excitation and emission wavelengths. Most
modern instruments of this type employ diffraction grating monochromators for this pur-
pose. Using monochromators, both excitation and emission spectra can be recorded making
full use of the analytical potential of the fluorescence approach. Regarding detectors, the
most largely used are photomultipliers exploiting the wide variety of types available nowa-
days. Usually, the different components can be chosen and assembled in accordance with
the user’s needs, or they are combined in a commercial spectrofluorometer, such as the one
reported in Figure 4, in which two monochromators are used as wavelength selectors.

Figure 4. Schematic diagrams of a spectrofluorometer (image taken from https://chem.libretexts.org/
Bookshelves/Analytical_Chemistry/Physical_Methods_in_Chemistry_and_Nano_Science_(Barron)
(accessed on 8 November 2021).

As is evident from the literature, optical fibers and waveguide-based optical sensors
have gained a large interest since they show enormous potential for applications in various
fields [27–31]. In fact, fiber-optic sensors can have small size; are sensitive to multiple
environmental parameters; allow remote sensing also into normally inaccessible areas; do
not strictly require contact; are independent from radio frequency and electromagnetic
interference; avoid contamination of their surrounding area; are characterized by high
sensitivity, resolution, and dynamic range; and can be connected with data communication
systems. A particularly interesting use of optical fibers is related to the development of
fiber-optic chemical sensors (FOCS) [32,33]. These devices usually include three main
components: an active sensing element that recognizes the analyte and generates an optical
signal, a detector that measures one of the characteristics of the optical signal (intensity,
frequency, phase) that can be employed for evaluating the concentrations of the analyte of
interest, and a computer and a software for data acquisition and processing. In Figure 5,
basic sensing schemes for FOCS are shown [34]. In detail, in Figure 5a, one end of the fiber
is made sensitive to the chemical substance to be detected. The interaction between the
tip of the fiber and the substance causes fluorescence or other signals that can be revealed
in the coming back light. In Figure 5b, another configuration for FOCS is reported. In
this case, the interaction occurs between the evanescent portion of the light propagating
in the fiber and the chemical substances that are near the fiber surface. In Figure 5c, a
transmission geometry is adopted for studying the investigated interaction process.
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Figure 5. Basic sensing schemes for typical fiber-optic chemical sensors based on (a) fiber tip, (b)
evanescent field sensing, and (c) simple transmission setup. (Reprinted from [34] under Open Ac-
cess conditions).

Another largely employed approach that uses optical fiber is represented by fiber
Bragg gratings (FBGs) that nowadays are used for many applications in different fields by
adopting one of the most common configurations, shown in Figure 6 [35,36].

Figure 6. In the (a) panel, the main configurations of FBGs are shown. The spectral responses of the
measured parameters (strain (ε), temperature (T), refractive index (RI)) are also reported. In the (b)
panel, a schematic representation of the developed device with all the components used with FBGs is
presented. (Reprinted-rearranged-with permission from [36] under Open Access conditions).
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Basically, an FBG-based sensor consists of an optical resonator located inside the fiber-
optic core. By using an external laser source and a proper optical element (an interferometer
or a diffraction grating), it is possible to periodically perturb the refractive index of a single-
mode optical fiber, inducing an interference between waves propagating in the opposite
direction in the fiber. The refractive index and the periodicity of the interference pattern can
be modified by the external environment, and these changes can be used for mechanical,
biomechanical, surgical, physiological, and chemical applications [35–38].

Surface plasmon resonance (SPR) optical sensors offer large advantages in terms of
detection limit, sensitivity, and selectivity when compared with other sensing schemes,
and for this reason, many researchers have focused their attention on these sensing devices,
starting in the 1990s [39]. The SPR effect was observed by Wood in 1902, when he sent a
monochromatic polarized light beam on a diffraction grating and he noticed a pattern of
white and dark bands. The physical explanation of these effects was reported by Otto and
Kretschmann [40]. The SPR configuration proposed by Daniyal et al. [39] is the most-used
(see Figure 7) one, and it is based on the “angular interrogation” approach, since the
wavelength of the incident light is kept constant, and the angle of incidence of the light
is varied. In fact, in this configuration, a monochromatic and p-polarized light is used
for exciting a surface plasmon that propagates along a metal surface. At a certain angle,
named the resonance angle, the intensity of the reflected light decreases due to resonance,
which occurs when the momentum of the surface plasmon wave is equivalent to that
of the incident light. This sensing method is based on the incident angle interrogation,
since the wavelength of the light is kept constant, and the angle of incidence of the light
is varied (angular interrogation) while in the other method, the wavelength of light is
varied, and the angle of incidence is kept constant and greater than the critical angle
(wavelength interrogation). An SPR optical sensor is based on the measurement of the
refractive index near the metal surface. Any changes in refractive index will also change
the resonance angle.

Figure 7. Schematic representation of an SPR optical sensor for phenol and pesticide detection in
environmental applications. (Reprinted from [39] under Open Access conditions).

To further enhance their sensitivity and selectivity towards a specific target pollutant,
various active layers to place on the top of a metal surface have been investigated in the
last several years [40].

In the last several decades, there has also been a very large use of vibrational spec-
troscopies techniques for developing very sensitive optical sensing schemes for phenolic
substances. These spectroscopies represent a class of analytical techniques that give in-
formation on vibrational energy levels associated with the functionality of the examined
sample. Fourier Trasform Infrared (FT-IR) spectroscopy measures the light absorption
using a broadband light source in the 4000–500 cm−1 wavenumber region (or in the
2500–20,000 nm wavelength range), while Raman spectroscopy (RS) is related to the in-
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elastic scattering process occurring when light interacts with matter [41]. When FT-IR
and the Raman spectrometer are equipped with a microscope, they allow the biochemical
characterization of samples also at microscopic levels [42,43].

In Figure 8, a typical commercial instrument for FT-IR spectroscopy is reported. This
system adopts a long-life source with proprietary hot-spot stabilization as a source, and it
is equipped with two different detectors for the acquisition at macroscopic and microscopic
levels. It allows the acquisition of infrared spectra in transmission and attenuated total
reflection (ATR) mode for macroscopic samples. At the microscopic level, spectra can be
acquired in transmission, reflectance, transflection, and micro-ATR collection geometry.
The availability of all these different approaches makes FT-IR spectroscopy very versatile
and suitable for all types of samples [41].

Figure 8. Photo of a commercial Fourier transform infrared (FT-IR) spectrometer equipped with
different options for acquisition of spectra in different geometries at micro and macroscopic levels.

In Figure 9, a typical micro-Raman set-up is shown. Typical equipment for micro-
Raman spectroscopy requires a laser source, a microscope objective to view the sample,
focusing the laser beam on the sample and collecting the weak light from it in back-
scattering geometry, a filtering system for rejecting the exciting light (Notch filter), a
dispersive apparatus (monochromator), a high-sensitivity detector for the detection of
the output signal (typically a nitrogen-cooled CCD), an electronic counting chain for the
acquisition of the Raman signal, and a software for recording and processing Raman
spectra. The adoption of confocal microscope stages allows the acquisition of appreciable
Raman signals in experimental conditions of interest for phenolic compound sensing. See
Ref. [43] and references therein for additional information.

Figure 9. Experimental set-up for micro-Raman spectroscopy.

RS and FT-IR can give complementary information since the related signals are due to
nonpolar and polar functional groups, respectively. In addition, the design and fabrication
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of nanostructured substrates has allowed the development of companion techniques,
such as Surface-Enhanced Infrared Radiation Absorption (SEIRA) [22,44,45] and Surface-
Enhanced Raman Spectroscopy (SERS) [46], that are currently used for the preparation of a
new generation of sensors.

3. Biosensors

In discussing optical biosensors, we followed the classification made by Borisov and
Wolfbeis in ref. [47] that divide biosensors in two classes: catalytic and affinity biosensors.
Catalytic biosensors use biocomponents capable of recognizing biochemical species and
causing their transformation in a product by means of chemical reaction. The most relevant
examples of this class are enzymatic biosensors. Affinity biosensors use analyte able
to bind to a biorecognition element. This class is divided into immunosensors (which
exploit the specific interactions between an antibody and an antigen), biosensors based on
interactions between an analyte and a bioreceptor, nucleic acid biosensors (which use the
affinity between complementary oligonucleotides), and whole-cell biosensors that behave
as recognition elements that respond to substances by expressing a specific gene. Some
examples of these two different classes of biosensors that have been specifically designed
for phenolic species detection in the environment will be reviewed in the following sections.

3.1. Enzymatic Biosensors

The enzymes generally used for phenolic compounds biosensing are laccase, tyrosi-
nase, and, in a few cases, horseradish peroxidase. Tyrosinase is characterized by low
stability and a relevant inhibition caused by reaction products. Horseradish peroxidase
requires hydrogen peroxidase for carrying out its catalytic action. Laccase can catalyze
electron-transfer reactions without the presence of cofactors; it is stable and can oxidize
phenols and o,m,p-benzenediol compounds when molecular oxygen is present. These
characteristics are particularly useful for the development of high-quality biosensors.

3.1.1. Laccase-Based Biosensors

Laccases (benzenediol oxygen oxidoreductase; EC 1.10.3.2) are cuproproteins and are
also called polyphenol oxidase or blue multicopper proteins and are widely distributed in
higher plants, fungi, and bacteria [48]. Most laccases are characterized by four copper atoms
per functional unit, which are crucial for catalytic activity. Copper atoms are allocated
in different binding sites and have different spectroscopic, functional, and paramagnetic
features that enable their classification into three groups. The copper of type 1 (T1) shows
a maximum in the absorption spectrum around 600 nm, and it causes the typical blue
color of these cuproproteins. It is the primary site of oxidation. The copper of type 2 (T2)
shows only a weak absorption in the visible, and it is electron paramagnetic resonance
(EPR) active. The two copper atoms of type 3 (T3) are characterized by an absorption band
around 330 nm and are EPR silent [49,50]. In a typical laccase reaction, a phenolic substrate
is subjected to one-electron oxidation. The obtained species can be converted to a quinone
in the second step of the oxidation process. Low-substrate specificity is typical of laccases,
and they show a large variability in their catalytic properties in dependence of the source.
Laccase can catalyze the oxidation of many compounds, such as hydroquinone, catechol,
guaiacol, 2,6-dimethoxyphenol, polyphenols, aromatic amines, benzenethiols, and a series
of other compounds [51].

In 2015, M.M. Rodriguez-Delgado et al. [52] revised the laccase-based biosensors for
the detection of phenolic compounds. The authors briefly revised the different immobiliza-
tion procedures available for the laccase enzyme (see Table 1 of Ref. [52]) and presented
also the different optical biosensors reported in the literature.

For phenols detection in environmental analysis, Abdullah et al. [53] developed an
optical biosensor exploiting the ability of laccase to oxidize methoxy phenols in the pres-
ence of 3-methyl-2 benzothiazolinonehydrazone (MBTH) to produce azo-dye compounds.
Stacked films of MBTH in hybrid Nafion/sol-gel silicate and laccase in chitosan were
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used for fabricating the proposed biosensor that is more selective to catechol, as compared
with another analyte, such as guaiacol, o-cresol, and m-cresol, that were also investigated.
This characteristic is due to the immobilization of laccase in a hybrid material. The linear
range obtained for this biosensor was 0.5–8 mM, and synthetic samples were also used for
mimicking real samples.

Sanz et al. [54] developed a laccase-polyacrilamide sensor exploiting absorption and
fluorescence and characterized by a linear range of 0.109–2.5 mM and a limit of detection
(LOD) of 100 μM. This biosensor was also tested on wastewater samples.

Andreu-Navarro et al. [55] proposed another interesting optical sensing approach for
the determination of polyphenols, such as catechol, resorcinol, hydroquinone, pyrogallol,
hydroxyhydroquinone, phloroglucinol, and gallic acid. This biosensor is based on the
inhibition of the green indocyanine fluorescence in the presence of laccase and positively
charged gold nanoparticles caused by polyphenols. The developed chemical system is
based on the ability of these substances to delay the oxidation of green indocyanine in
the presence of laccase. When the fluorophore is mixed with the laccase, its fluorescence
shows a rapid decrease, which can be attributed to the catalytic effect of the enzyme on
the oxidation of the fluorophore. However, this effect is delayed in the presence of a
phenolic compound in a manner proportional to the concentration of the polyphenols. This
biosensor allowed for catechol a LOD of 0.01 μM and a linear range of 0.08–5 μM.

Laccases and phenol reaction products present significant optical characteristics in UV
and visible range that are routinely adopted for the development of spectrophotometric
methods for measuring laccase activity [56]. These optical features can be suitably exploited
for biosensing applications since laccase interacting with different phenols shows different
optical absorption spectra. These differences can be useful for increasing the specificity
of laccase-based biosensors [57]. To take advantage of the above-cited spectral properties,
it is necessary to have optically transparent matrices for enzyme immobilization. Sol–
gel technology can be a good choice for fabricating matrices for laccase immobilization
with suitable chemical stability, optical transparency, and porosity [58,59]. The changes
occurring in the optical absorption spectra of laccase reaction products at 425, 375, and
400 nm have been used to determine hydroquinone, resorcinol, and catechol concentrations,
respectively (see Figure 10).

Owing to the slow response time of the hydroquinone–laccase reaction, the proposed
optical biosensor was used for resorcinol and catechol. Linear ranges up to 1.4 and 0.2 mM
and an LOD of 4.5 and 0.6 μM were evidenced for resorcinol and catechol, respectively.
This type of biosensor is characterized by larger linear ranges, significant sensitivities, and
good LODs when compared to other biosensors employing laccase from Trametes versicolor.
Tap water samples spiked with a known amount of catechol and resorcinol were also
employed for testing this biosensing device with real samples.

Another interesting optical biosensor for continuous monitoring of phenolic species
in water was proposed by Jȩdrichowska et al. by using laccase from Cerrena unicolor
immobilized by physical adsorption in low-temperature co-fired ceramics (LTTC) [60].

LTTC technology is a well-known technique largely employed in the industry. This
kind of material has excellent physical and chemical properties, and three-dimensional
structures can be easily obtained in the LTTC supports [61]. Microfluidic systems for
sampling micro- and nanoliter volumes and optoelectronic components can be integrated
in a single LTCC multilayer substrate [62]. In their paper, Jȩdrichowska et al. describe all
the different steps required for biosensor fabrication and the optimization of the differ-
ent parameters [60]. Scanning electron microscopy was used for visualizing the laccase,
which was positioned onto the chemically modified substrate and the morphology of the
deposited layer. Sensing measurements were performed in a flow-through system by
evaluating the optical absorbance changes occurring in response to various concentra-
tions of standard laccase assay substrate 2,20-azino-bis (3-ethylbenzothiazoline-6-sulfonic
acid)-ABTS. In addition, the role of different sensor parameters, such as flow rate, optical
source characteristics, and reproducibility, was investigated. According to the authors,
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the use of LTTC technology allows the realization of optical sensors characterized by
significant advantages in terms of the sensitivity, precision, linearity, and simplicity of
construction [60].

Figure 10. Experimental results obtained with an optical biosensor based on sol–gel immobilized lac-
case. (a) Absorption spectra of hydroquinone (dashed line) and laccase-reaction product (continuous
line), (b) the same for resorcinol, (c) the same for catechol. In the different insets, the spectra in the
300–600 nm region. (Reprinted with permission from [59]).

Very recently, Cano-Raya et al. proposed a new laccase-based optical biosensor for
catechol concentration determination [63]. Laccase from Trametes Versicolor is attached
to anionic polyamide 6 (PA6) porous microparticles placed in a Pebax MH1657 polymer
binder that includes MBTH that can produce a colored product when it interacts with
the o-benzoquinone produced by the enzymatic reaction of catechol. The analyte concen-
tration is estimated by measuring the absorbance at 500 nm. The proposed biosensor is
characterized by an LOD of 11 μM and a linear range up to 118 μM of catechol and has
been challenged with spiked natural water samples from rivers and springs, showing a
recovery rate varying in the 97–108% interval.

3.1.2. Tyrosinase-Based Biosensors

Tyrosinase is a copper protein that catalyzes two successive reactions ([64] and refer-
ences therein). In the first reaction, a hydroxyl group is added in the ortho position of a
monophenolic compound, converting it into an o-diphenolic compound (monophenolase
or cresolase activity). This diphenolic compound is subsequently oxidized into o-quinones
by diphenolase or catecholase. Monophenols and diphenols are used by tyrosinase as a
substrate. This enzyme can be found in different organisms, such as plants, animals, and
fungi. The characteristics of this enzyme are different in size, sequence of amino acids, and
glycosylation pattern [65]. Tyrosinase shows hydroxylase and catecholase activities due to
histidine. In 2012 and 2017, two reviews prepared by Karim et al. [16] and Gui et al. [54]
presented the optical biosensors reported in the literature.
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In 1999, Russell and Burton [66] proposed a portable disposable biosensor using
tyrosinase immobilized on a synthetic membrane for the detection and quantification of
phenolic compounds in water. The enzyme produces changes of color in the solution, and
these changes were found to be proportional to the phenolic substance concentration. The
proposed biosensor is characterized by an LOD of 0.05 mg/L.

Using MBTH, Abdullah et al. developed also an optical biosensor based on the
tyrosinase enzyme immobilized in a chitosan film similar to that previously described for
the detection of phenol by laccase [67]. This biosensor exploits changes in the absorption
spectra of the tyrosinase in the presence of MBTH and phenolic compounds. The authors
investigated the response of this biosensor to different compounds and estimated the
linear concentration range for 4-chlorophenol (2.5–50.0 μM), m-cresol (2.5–100.0 μM),
and p-cresol (12.5–400.0 μM). The authors also reported interesting low LOD for the
investigated phenolic substances.

Fiorentino et al. adopted a singular immobilization procedure in which ordered tyrosinase
films deposited on an optical transparent support were immobilized by a “layer-by-layer”
assembly, alternating the enzyme with the polycation polymer poly(dimethyldiallylammonium
chloride) [68]. This procedure allowed a high loading of enzyme. The proposed biosensor
was adopted for the detection of the o-diphenolic compound l-3,4-dihydroxyphenyl-alanine
(l-DOPA) by means of absorption and fluorescence measurements. The developed device
showed good repeatability and time stability. Using absorption measurements, an LOD
equal to 23 μM and a linear response up to 350 μM was obtained; fluorescence measure-
ments allow an LOD of 3 μM and a linear response in the range up to 10 μM.

Another example of biosensors exploiting a “layer-by-layer” immobilization was
proposed by Alkasir et al. [69], who adopted this procedure for fabricating a colorimetric
biosensor. The different layers are formed by chitosan and alginate polyelectrolytes de-
posited on a filter paper. The tyrosinase is embedded between these layers. This biosensor
was used for the detection of phenol, BPA, catechol, and cresols [69]. The visual inspection of
the color changes allows the detection of one of these substances. The color change is due to the
specific binding of the quinone given by the enzymatic reaction to the multilayers of chitosan
deposited on the paper. The digitalized approach was also used for more sensitive detection.
The LOD was 0.86 ± 0.1 μg/L for each of the phenolic compounds studied. The proposed
device showed very good time stability and was tested with real environmental samples.

Microarray-based biosensor systems were proposed by Jang et al. for the determina-
tion of phenol using CdSe/ZnS quantum dots [70].Microarrays were based on poly(ethylene
glycol)(PEG) hydrogel. They were prepared by photopatterninga solution containing PEG
diacrylate (PEG-DA), a photoinitiator, and tyrosinase. Tyrosinase and QDs were entrapped
within the hydrogel microarrays because of a photo-induced crosslinking. The obtained
hydrogel microarray was characterized by a fluorescent signal whose intensity linearly
decreases phenol concentration. The detection limit of this biosensor is 1.0 μM [70]. As
we said before, the surface plasmon resonance (SPR) approach allows the realization of a
highly performing sensing scheme. Singh et al. [71] presented an SPR-based fiber-optic
biosensor for the detection of phenolic compounds in an aqueous solution [71], based on
the use of the wavelength interrogation approach. Differently from the mentioned angular
interrogation approach, when wavelength interrogation is used, the wavelength of light
is varied, and the angle of incidence is kept constant and greater than the critical angle
(wavelength interrogation). In this method, light from a polychromatic source is coupled
into the input end of the fiber, and the spectrum of the transmitted power at the output
end of the fiber is recorded. A dip at a specific wavelength is observed in the transmitted
spectrum (this is the resonance wavelength): its position depends on the refractive index of
the sensing medium around the metal layer, and, hence, the shift of the dip is related to
the number of molecules captured by the substrate. In the reported case, a silver film was
deposited on the core of an optical fiber and tyrosinase from lyophilized mushroom pow-
der was immobilized using the gel entrapment technique. The experimental setup of this
wavelength interrogation SPR-based fiber-optic phenol biosensor is shown in Figure 11.
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Figure 11. Schematic sketch of the experimental setup of an SPR-based fiber-optic phenol biosensor
is shown. The fiber-optic probe is fixed in a small flow cell to enable the delivery and removal of
aqueous samples of phenol around the sensing surface. Light from a tungsten–halogen lamp is
coupled into the fiber. The spectrum of the transmitted power is recorded by using a spectrometer
and a personal computer. (Reprinted with permission from [71]).

The fiber-optic probe was attached to a small flow cell in which the aqueous solutions
can be delivered to the sensing element and removed. The developed biosensor was
used for determining the concentration of different phenolic compounds (phenol, catechol,
m-cresol, and 4-chlorophenol).

Aqueous samples of phenolic species with a variable concentration in the range of
0–1000 μM were examined. SPR spectra were collected for different concentrations, and the
resonance wavelength showed a red shift when the concentration of the analyte increased.
Representative calibration curves are reported in Figure 12.

Figure 12. (a) Surface plasmon resonance spectra of a fiber-optic SPR probe for different concentra-
tions of catechol, (b) Calibration curves obtained by measuring the variation in resonance wave-
length for different concentrations of various phenol species. (Reprinted-adapted-with permission
from [71]).

The LODs were evaluated for catechol, m-cresol, 4-chlorophenol, and phenol and resulted
to be around 11, 17, 25, and 38 μM, respectively. The authors evidenced that the characteristics
(high sensitivity, wider operating range, reusability, and reproducibility of results) of the
developed sensor make it suitable for practical applications. In these cases, it would be also
possible to take advantage of miniaturization properties, low costs, online monitoring and
remote sensing potentiality, immunity to electromagnetic fields, and biocompatibility.

An SPR approach has also been adopted very recently by Hashim et al. for realizing a
biosensor for phenol solution in which tyrosinase is immobilized on graphene oxide thin
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film. The device is characterized by a sensitivity of 0.00193 μM−1 and a LOD of 1 μM with
a linear range up to 100 μM [72,73].

As is evident from the few examples of enzymatic biosensors described in this sec-
tion, the interest in this category of devices is always alive. New ideas will probably be
developed by exploiting the properties of nano enzymes, a new class of nanomaterials
that has peculiar physicochemical properties. Nanozymes can imitate natural enzymes
and show similar properties. Their reactions are effective, fast, and highly selective. These
characteristics make nano enzymes exceptionally good candidates for the development of
new sensing and monitoring applications [74].

3.2. Immunosensors

Immunosensors are sensing devices composed of an antigen or antibody coupled to a
transducer that can evidence the binding of complementary species. Antibodies are proteins
that are produced by mammals in response to foreign elements (bacteria, viruses, chemicals,
etc.). The analyte detection is very specific and can allow concentration measurements.

SPR technology can be advantageously coupled with antibody immobilization, and
various examples of SPR-based immunosensors for the detection and monitoring of low-
molecular-weight analytes for environmental applications are described by Shankaran
et al. [75]. For SPR immunosensor fabrication, biomolecules, as antigen or antibody, are
adsorbed on the gold surface, and all the changes occurring for these molecules or the
different interaction occurring processes can be studied. The binding between the antibody
and the analyte causes a change in the refractive index that induces a shift in the resonance
angle that can be registered as previously described. These shifts allow the determination
of bound analyte concentration and the evaluation of the affinity between analyte and
antibody and give information about their association or dissociation processes. In Ref. [75],
the advantages of SPR immunoassay are exhaustively described, and the different SPR
immunoassay format characteristics are discussed.

Dostalek et al. [76] presented an example of an SPR-based immunosensor for differ-
ent endocrine disruptors and, in particular, for 4-nonylphenol, which is widely used as
detergents in both domestic and industrial products. The sensing scheme and the working
principles are clearly described in Ref. [76], and for 4-nonylphenol, an LOD of 0.26 ng/mL
is estimated. The obtained calibration curve allows the determination of concentration up
to 4.4 ng/mL. Analytes can be detected in 45-min cycles, including 30-min incubation of
antibodies with samples. The sensor is regenerable. The LOD is relevant in comparison
with the maximum admissible concentrations in drinking water currently permitted by the
regulatory authorities in the USA and EU.

Long et al. [77] presented a highly sensitive and selective immunosensor for BPA
detection that takes advantage of evanescent wave fiber-optic sensor and microfluidic tech-
nology for developing an all-fiber optofluidic-based bioassay platform [77]. In Figure 13,
representative results are reported. The changes in fluorescence signal related to differ-
ent BPA concentrations are used for realizing the calibration curve that shows a linear
range between 0.5 μg/L and 1.0 μg/L and an LOD of 0.06 μg/L. This value is particularly
appealing when compared with ELISA and amperometric biosensor performances. The
biosensor was also tested with BPA-spiked samples, and the recovered data and the relative
standard deviations were between 90–120% and 3.8–9.1%, respectively. The authors use
the developed biosensing device also for investigating the BPA leaching of polycarbonate
(PC) bottles of different brands. In fact, the residual and degraded BPA in this kind of
bottle may migrate into food, especially at elevated temperatures for long periods [78]. The
presented results show that the risk of BPA leaching from PC bottles is a real problem, and
this approach can give a sensitive, rapid, on-site, real-time detection of BPA leaching.
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Figure 13. (a) Typical fluorescence curves signals obtained at various concentrations of BPA. (b)
Logarithmic calibration curves for determination of BPA obtained by using an optofluidics-based
immunosensor. In the inset, the linear relationship between BPA concentration and fluorescence
intensity is shown. (Reprinted-adapted-with permission from [77]).

3.3. Receptor-Based Biosensors

In 1998, Wright et al. [79] developed an SPR sensor with specific receptors for the
detection of phenols in water. The authors synthesized some receptor molecules and
immobilized them in gold or silver films. These films were deposited on glass slides
mounted on a semicircular glass prism (refractive index 1.5151) and fastened to a small
chamber connected to a peristaltic pump and waste reservoir. A p-polarized He: Ne laser
was used for studying SPR response. The reported results evidenced the capability of this
approach to detect and discriminate different phenolic species at low concentrations in
aqueous media [79].

An example of this approach is represented by the device developed by Filik et al.
for PAP employing CAL4 and reflectance measurements that we have previously de-
scribed [25]. A typical result has been already reported in Figure 3. A linear calibration
curve is obtained in the PAP concentration range of 0.5–5.5 ppm) with an LOD of 0.109 ppm.
A response time of about 5 min is obtained for a stirred solution. The proposed sensor was
also tested with several complex samples with spiked PAP, with recovered data ranging
between 97 and 102%.

A very recent example of a receptor-based immunosensor has been developed by
Conti et al. for BPA optical sensing by exploiting the luminescence emission of a new
RuII complex that is able to bind BPA in an aqueous solution and to quench the lumines-
cence emission of the core. The quenching effect is not remarkable, but the appropriately
designed complexes can be used for determining BPA concentration in water. A linear
calibration range up 50 μM BPA concentration has been obtained (see Figure 14) by using
the luminescence quenching effect [80].
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Figure 14. Calibration curve for different BPA concentration obtained by using the ratio of lumines-
cence intensity of the [Ru (phen)2 L]2+ complex over luminescence intensity of the complex upon
addition of increasing concentration. (Reprinted from [80] under Open Access conditions).

3.4. Nucleic Acids-Based Biosensors

Another very attractive class of biosensors is represented by the devices that exploit
DNA as biosensing element. These biosensors can take advantage of the excellent stability
of nucleic acids and the remarkable selectivity of the interaction of nucleic acids.

Yildirim et al. [81] proposed a portable, evanescent, wave fiber-optic DNA-based
sensor for rapid, on-site detection of BPA with excellent sensitivity and selectivity. The
authors covalently immobilized DNA on the optical fiber sensor surface. This biosensor
uses an indirect competitive detection mode. For this sensing scheme, a pre-injection of
BSA is used for avoiding the nonspecific binding to the sensor surface. After this step, the
concentration of the remaining free aptamers becomes inversely proportional to that of
BPA in the water sample. The sample solution is sent to the optical fiber sensor surface
for allowing the generation of a useful fluorescence signal. The working parameters of
the developed biosensors were investigated in detail. The authors reported a linear range
for BPA from 2 nM to 100 nM with an LOD of 1.86 nM that becomes competitive with
standard liquid chromatography detection results for BPA. Good reproducibility, stability,
and selectivity for BPA detection were also demonstrated. The proposed sensor was
successfully tested with wastewater samples [81].

Lim et al. [82] developed a palm-size NanoAptamer analyzer able to detect BPA
at environmentally relevant concentrations (<1 ng/mL or ppb) with excellent sensing
characteristics [82]. The presented biodevice uses a modified NanoGene assay [83] for BPA
detection using magnetic beads for covalent bonding with a BPA-specific aptamer. After
interaction with BPA, there is a decrease in the fluorescence signal that is proportional to
the analyte concentration. The proposed biosensor showed a linear range for BPA from
0.0005 to 1 ng/mL. The BPA detection using this analyzer requires an incubation time
of 30 min. This time can be positively compared with the time of other DNA aptamer
methods for BPA detection that usually need incubation time lasting from 20 min to 8 h.

In 2019 Allsop et al. designed and fabricated another aptamer-based optical biosensor
able to test BPA solutions in the concentration range from 10 nM to 1 fM. The presented
device employs an array of gold nano-antennae that generate coupled localized surface
plasmon (LSP) and are modified with an aptamer specifically for BPA detection [84].
The array of nano-antennae is assembled on a section of a standard telecommunication
optical fiber. This configuration potentially enables multiplexing and remote sensing
applications. Using a linear regression analysis, the authors can attain an extremely low
LOD (330 ± 70 aM) that represents the lowest measured LOD.
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3.5. Whole-Cells Biosensors

Optical microbial biosensors are devices that use microorganisms with an optical trans-
ducer to allow fast and accurate monitoring of the analytes of interest. Different researchers
presented similar devices for applications in the field of environmental monitoring.

Mazhari and Agsar [23] proposed the use of Streptomyces tuirus DBZ39 synthesized on
extracellular gold nanoparticles for the visual detection of phenol. The visual detection
was improved by the addition of sodium sulphate, and the change of color occurred within
2 min. The proposed method was successfully tested with water samples from the effluents
of fertilizer and distillery industries.

The same authors further exploited the properties of Streptomyces tuirus DBZ39 to-
gether with tyrosinase and gold nanoparticles for developing a paper biosensor for the
detection of phenol from industrial water. The proposed biosensor can efficiently detect the
changes in absorbance due to phenol presence thanks to the specific catalytic activity of the
tyrosinase and the SPR contribution due to gold nanoparticles. This biosensor was tested
with different types and quantities of phenolic constituents in various industrial effluents.
The peculiar optical properties of gold nanoparticles increase the efficacy of tyrosinase for
detecting phenol compounds [85].

3.6. Molecularly Imprinted Polymer-Based Sensors

Notwithstanding their synthetic origin, molecularly imprinted polymers (MIPs) are
often considered biomimetic materials, and MIPs-based sensors are usually regarded as
biosensors.

Griffete et al. exploit the characteristics of MIPs and photonic crystals for preparing
a defect-embedded imprinted photonic polymer that is constituted by an ordered and
interlinked three-dimensional microporous array [26]. In this structure, some nanocavities
can interact with BPA using binding sites. Reflectance spectroscopy has been used to
investigate the optical properties of the structure that are influenced by the interaction with
BPA (see Figure 3 of Ref. [26]). The authors also demonstrate the selectivity and specificity
of the developed MIP-based sensors for BPA solutions.

Taguchi et al. developed a slab-type optical waveguide (s-OWG) and fabricated a
microfluidic system [86]. On this OWG, consecutive parallel gold and silver bands are
deposited. These can generate two individual SPR signals because of the difference in
resonant reflection spectra of these metals. MIP nanoparticles were used as a recognition
element for the BPA compound. In Figure 15, the immobilization procedure for preparing
MIP nanoparticles and BPA grafted to gold nanoparticles on the sensor chip for the binding
of free BPA is described. Peak shifts of SPR spectra by the addition of free BPA into MIP
with immobilized nanoparticles were observed for BPA concentration varying in the range
0.1–2000 mM.

The detection of BPA is also the aim of other MIP-based sensors [87,88]. In Ref. [88],
the use of black phosphorus and hollow-core anti-resonant fiber allowed two orders of
magnitude enhancement of sensitivity in a fluorescence-sensing scheme. The simulated
LOD was 1.69 pM, according to the calibration curve based on the IUPAC definition. The
sensor was tested with real samples, such as water (collected from a lake near the campus
of Beijing University of Technology) and human blood (see Figure 5 of Ref. [88]).
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Figure 15. Schematic representation of the immobilization procedure of MIP-Np and BPA-Np on the
sensor chip for the BPA detection. (Reprinted with permission from [86]. Copyright 2012 American
Chemical Society).

4. Sensors

In addition to the sensing schemes using biological transducers for detecting phenols
that we described until now, optical techniques allow the implementation of chemical
and/or physical sensors in which a chemical or physical property of a specific analyte is
converted into a measurable optical signal that is proportional to the concentration of the
analyte of interest. These sensors are less common for phenolic species detection due to
their low sensitivity and selectivity, but currently, the development of new nanomaterials,
such as gold, silver, and other metal nanoparticles; nanotubes; and quantum dots enables a
significant improvement of these characteristics [89].

4.1. Optical Chemical Sensors

A clear classification of the different types of chemical optical sensors is shown in
Figure 2 of Ref. [90]. The simplest sensing schemes are based on direct and reagent-
mediated spectroscopic techniques. This framework includes methods based on the vari-
ations induced in the absorption or fluorescence signals of suitably designed inorganic
probes [91–93]. Another relevant class of sensors is related to the design and fabrication
of optical fiber chemical sensors that we have already mentioned in Section 2 [32,33]. A
representative example of these devices has been developed by Wang et al. using a plastic
optical fiber, a polymer membrane, a gold mirror, and a TiO2-based composite layer [38,94].
In particular, the relative variations of reflected light intensity are used as a working pa-
rameter. Phenol solutions at different concentrations were used for testing the sensor, and
an LOD of 0.294·10−3 mg/L was obtained with a high selectivity.
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4.2. Nanostructure-Based Sensors

As previously mentioned, the development of nanotechnology allowed the design and
development of new sensing devices for phenolic species detection [95]. In 2008 Nezhad
et al. presented an indirect colorimetric method for the optical detection of phenolic
compounds exploiting the SPR band shown by gold nanoparticles [96]. By using the
changes in the absorbance signal (typically occurring in a few tens of seconds) the authors
were able to detect low concentrations of hydroquinone, catechol, and pyrogallol. Linear
ranges from 7.0·10−7 to 1.0·10−4 M, 6.0·10−6 to 2.0·10−4 M, and 6.0·10−7 to 1.0·10−4 M
were, respectively, obtained for the three above-mentioned phenolic species. The proposed
method was also successfully tested with tap and river water samples.

Gold nanoparticles were also used for BPA detection by various researchers; for exam-
ple, Ma et al. synthesized a diazonium carrying ligand monolayer film on the nanoparticles
with the diazonium ions exposed on their surface [97]. The BPA-diazonium interaction
causes a BPA concentration-dependent color change that can be employed for concentration
determination. Also, for BPA, the gold nanoparticles-SPR method allows a fast response
time (4 min), a broad linear range (0.1–4 nM), and a low LOD (0.02 nM). Table 1 of the
cited paper also reports an interesting comparison among different methods available for
BPA sensing.

In the last several years, semiconductor quantum dots, nanocubes, and nanorods
have also attracted great interest in sensing applications due to their appealing physical
and chemical properties [98,99]. Very representative examples of this class of devices are
reported in Refs. [100–104]. In particular, Jaiswal et al. proposed a fast synthesis route
of doped carbon nitride quantum dots for the detection of hydroquinone by photolu-
minescence quenching. They obtained an LOD of 50 nM and a linear range from 12 to
57.5 μM [102].

4.3. Photonic Crystal Fiber Sensors

Recently, Frazao et al. reviewed optical sensing applications of photonic crystal fibers.
They revised the different approaches based on fiber Bragg gratings, long-period gratings,
and interferometric structures. In addition, the role of nonlinear effects and the main
sensing schemes for gaseous and liquid compounds were also discussed [105]. Using a
photocatalytic long-period fiber grating (PLPFG), a fiber Bragg grating (FBG), a polymer
membrane, an ultraviolet light, and microchannels, Zhong et al. developed a lab-on-
a-chip device for phenol concentration sensing [38]. This approach is characterized by
easy and fast in situ use, low consumption of agents and reagents, low costs, and high
sensitivity. The PLPFG component is a three-layer structure in which the refractive index
of the cladding layer is less than that of the core, and both are less than the refractive
index of the coating layer. This is a photocatalytic film for UV-visible-driven photocatalytic
degradation of phenol. The LPFG enhances the evanescent wave absorption and shifts the
central wavelength due to the interaction between the evanescent wave and the analyte.
The developed sensor is characterized by a linear performance in a large range of phenol
concentrations (7.5 μg/L to 100 mg/L). It can operate at pH values and temperatures
ranging from 2.0 to 14.0 and from 10 ◦C to 48 ◦C, respectively.

A sensor for BPA and bisphenol S (BPS) based on photonic crystal technology was
proposed by Niger et al. employing a dodecagonal photonic crystal fiber structure having
a floral pattern in the first cladding layer [106]. Using this approach, the authors reported a
relative sensitivity of 97.6% and 94.9%, respectively, for BPA and BPS.

4.4. Sensing Schemes Using Vibrational Spectroscopies

As described in Section 2, vibrational spectroscopies have been largely employed
for designing and developing a huge number of devices for sensing different pheno-
lic compounds. In 1984, the pioneering work of Marley et al. was devoted to evalu-
ating the possibility to use RS for the quantitative analysis of six compounds (phenol,
o-chlorophenol, 2,4-dichlorophenol, 2,4,6-trichlorophenol, 2-chloro-5-methylphenol and
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2-chloro-4-nitrophenol) in water [107]. The authors used two different methods for the
quantitative determination of concentrations, namely peak area measurement and cross-
correlation. Both methods were applied to data after Savitzky-Golay smoothing and after
correction for internal standard fluctuations. Areas were measured on selected bands in the
spectra, and cross-correlation operation was accomplished on a complete set of spectra for
a given compound, eliminating frequency components from both the high and low ends of
the set. LODs ranged from 0.3 ppm to 100 ppm, depending on the compound.

The use of properly designed nanostructured substrates has allowed the implementa-
tion of a certain number of sensing devices for BPA [108–118] by means of SERS. Typically,
these devices exploit silver or gold nanoparticles that can be functionalized with organic
groups to enhance Raman signal intensity and, consequently, the sensitivity for BPA or
other phenolic substances concentration determination. In particular, Roschi et al. em-
ployed silver nanoparticles functionalized with thiolated-cyclodextrin (CD-SH) for the
detection of bisphenols (BPs) A, B, and S. Using multivariate analysis of the SERS data,
the LOD for BPs was estimated at about 10−7 M, in the range of the tens of ppb (see
Figure 16) [112].

Figure 16. (a) BPA SERS spectra as a function of the BPA molar concentration. (b) Loadings for
the first two components in the PCA analysis on the BPA SERS data. (c) Calibration curve as
obtained by the partial least square regression analysis on SERS data. (Reprinted from [112] under
Open Access conditions).

5. Conclusions

The danger of phenolic compounds and their tendency to remain present in the envi-
ronment motivates the intense search for new methods for their detection and measurement
of their concentrations. In this paper, we intended to highlight the relevant role that optical
techniques can play in this framework. For this reason, we focused our attention on UV-vis
fluorescence, reflectance, and absorption experimental approaches, on the different uses of
optical fibers and Bragg gratings and on SPR and vibrational spectroscopies methods. In
addition, we revised some representative applications of these techniques in developing
new sensors for some phenolic compounds especially present in water.

In Table S2, we summarized the most relevant working parameter of these optical
sensors. In particular, their sensitivity, linear range, LOD, and response time have been
reported. From the inspection of this Table, it is evident that the largest number of optical
sensing schemes among those discussed in this review has been proposed for bisphenol
A and phenol. More conventional optical techniques, such as absorption and UV-vis
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fluorescence, are still adopted, often using innovative biocomponents. However, it is
also evident that more novel optical techniques, such as SPR, SERS, and SERRS (Surface-
Enhanced-Resonant Raman Spectroscopy), with the help of sophisticated nanostructures,
are making their way. Despite the difficulty of a rigorous comparison due to the different
experimental conditions, it can be seen that the use of advanced new biocomponents and
new optical techniques is offering ever more performing working parameters.

Although limited to the most common techniques and not particularly complete,
this review certainly confirms the important role played by optical techniques for the
development of sensitive, fast, and easy-to-use biosensors and physical and chemical
sensing schemes for phenolic species monitoring.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/s21227563/s1, Table S1: Permissible concentration limits for different phenolic compounds,
Table S2: Relevant working parameters for the optical sensors for the determination of phenolic
compounds in environmental applications discussed in the present paper.
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